blob: 4b2a20d18096da76c191b42b4fe6fecadda5a047 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Owen Anderson1636de92007-09-07 04:06:50 +000021#include "llvm/ADT/STLExtras.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000022#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000023#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000024#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000026#include "llvm/Support/CommandLine.h"
Evan Cheng950aac02007-09-25 01:57:46 +000027#include "llvm/Target/TargetOptions.h"
Nicolas Geoffraycb162a02008-04-16 20:10:13 +000028#include "llvm/Target/TargetAsmInfo.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000029
Dan Gohmanf17a25c2007-07-18 16:29:46 +000030using namespace llvm;
31
Owen Anderson9a184ef2008-01-07 01:35:02 +000032namespace {
33 cl::opt<bool>
34 NoFusing("disable-spill-fusing",
35 cl::desc("Disable fusing of spill code into instructions"));
36 cl::opt<bool>
37 PrintFailedFusing("print-failed-fuse-candidates",
38 cl::desc("Print instructions that the allocator wants to"
39 " fuse, but the X86 backend currently can't"),
40 cl::Hidden);
Evan Chengc87df652008-04-01 23:26:12 +000041 cl::opt<bool>
42 ReMatPICStubLoad("remat-pic-stub-load",
43 cl::desc("Re-materialize load from stub in PIC mode"),
44 cl::init(false), cl::Hidden);
Owen Anderson9a184ef2008-01-07 01:35:02 +000045}
46
Dan Gohmanf17a25c2007-07-18 16:29:46 +000047X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattnerd2fd6db2008-01-01 01:03:04 +000048 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049 TM(tm), RI(tm, *this) {
Owen Anderson9a184ef2008-01-07 01:35:02 +000050 SmallVector<unsigned,16> AmbEntries;
51 static const unsigned OpTbl2Addr[][2] = {
52 { X86::ADC32ri, X86::ADC32mi },
53 { X86::ADC32ri8, X86::ADC32mi8 },
54 { X86::ADC32rr, X86::ADC32mr },
55 { X86::ADC64ri32, X86::ADC64mi32 },
56 { X86::ADC64ri8, X86::ADC64mi8 },
57 { X86::ADC64rr, X86::ADC64mr },
58 { X86::ADD16ri, X86::ADD16mi },
59 { X86::ADD16ri8, X86::ADD16mi8 },
60 { X86::ADD16rr, X86::ADD16mr },
61 { X86::ADD32ri, X86::ADD32mi },
62 { X86::ADD32ri8, X86::ADD32mi8 },
63 { X86::ADD32rr, X86::ADD32mr },
64 { X86::ADD64ri32, X86::ADD64mi32 },
65 { X86::ADD64ri8, X86::ADD64mi8 },
66 { X86::ADD64rr, X86::ADD64mr },
67 { X86::ADD8ri, X86::ADD8mi },
68 { X86::ADD8rr, X86::ADD8mr },
69 { X86::AND16ri, X86::AND16mi },
70 { X86::AND16ri8, X86::AND16mi8 },
71 { X86::AND16rr, X86::AND16mr },
72 { X86::AND32ri, X86::AND32mi },
73 { X86::AND32ri8, X86::AND32mi8 },
74 { X86::AND32rr, X86::AND32mr },
75 { X86::AND64ri32, X86::AND64mi32 },
76 { X86::AND64ri8, X86::AND64mi8 },
77 { X86::AND64rr, X86::AND64mr },
78 { X86::AND8ri, X86::AND8mi },
79 { X86::AND8rr, X86::AND8mr },
80 { X86::DEC16r, X86::DEC16m },
81 { X86::DEC32r, X86::DEC32m },
82 { X86::DEC64_16r, X86::DEC64_16m },
83 { X86::DEC64_32r, X86::DEC64_32m },
84 { X86::DEC64r, X86::DEC64m },
85 { X86::DEC8r, X86::DEC8m },
86 { X86::INC16r, X86::INC16m },
87 { X86::INC32r, X86::INC32m },
88 { X86::INC64_16r, X86::INC64_16m },
89 { X86::INC64_32r, X86::INC64_32m },
90 { X86::INC64r, X86::INC64m },
91 { X86::INC8r, X86::INC8m },
92 { X86::NEG16r, X86::NEG16m },
93 { X86::NEG32r, X86::NEG32m },
94 { X86::NEG64r, X86::NEG64m },
95 { X86::NEG8r, X86::NEG8m },
96 { X86::NOT16r, X86::NOT16m },
97 { X86::NOT32r, X86::NOT32m },
98 { X86::NOT64r, X86::NOT64m },
99 { X86::NOT8r, X86::NOT8m },
100 { X86::OR16ri, X86::OR16mi },
101 { X86::OR16ri8, X86::OR16mi8 },
102 { X86::OR16rr, X86::OR16mr },
103 { X86::OR32ri, X86::OR32mi },
104 { X86::OR32ri8, X86::OR32mi8 },
105 { X86::OR32rr, X86::OR32mr },
106 { X86::OR64ri32, X86::OR64mi32 },
107 { X86::OR64ri8, X86::OR64mi8 },
108 { X86::OR64rr, X86::OR64mr },
109 { X86::OR8ri, X86::OR8mi },
110 { X86::OR8rr, X86::OR8mr },
111 { X86::ROL16r1, X86::ROL16m1 },
112 { X86::ROL16rCL, X86::ROL16mCL },
113 { X86::ROL16ri, X86::ROL16mi },
114 { X86::ROL32r1, X86::ROL32m1 },
115 { X86::ROL32rCL, X86::ROL32mCL },
116 { X86::ROL32ri, X86::ROL32mi },
117 { X86::ROL64r1, X86::ROL64m1 },
118 { X86::ROL64rCL, X86::ROL64mCL },
119 { X86::ROL64ri, X86::ROL64mi },
120 { X86::ROL8r1, X86::ROL8m1 },
121 { X86::ROL8rCL, X86::ROL8mCL },
122 { X86::ROL8ri, X86::ROL8mi },
123 { X86::ROR16r1, X86::ROR16m1 },
124 { X86::ROR16rCL, X86::ROR16mCL },
125 { X86::ROR16ri, X86::ROR16mi },
126 { X86::ROR32r1, X86::ROR32m1 },
127 { X86::ROR32rCL, X86::ROR32mCL },
128 { X86::ROR32ri, X86::ROR32mi },
129 { X86::ROR64r1, X86::ROR64m1 },
130 { X86::ROR64rCL, X86::ROR64mCL },
131 { X86::ROR64ri, X86::ROR64mi },
132 { X86::ROR8r1, X86::ROR8m1 },
133 { X86::ROR8rCL, X86::ROR8mCL },
134 { X86::ROR8ri, X86::ROR8mi },
135 { X86::SAR16r1, X86::SAR16m1 },
136 { X86::SAR16rCL, X86::SAR16mCL },
137 { X86::SAR16ri, X86::SAR16mi },
138 { X86::SAR32r1, X86::SAR32m1 },
139 { X86::SAR32rCL, X86::SAR32mCL },
140 { X86::SAR32ri, X86::SAR32mi },
141 { X86::SAR64r1, X86::SAR64m1 },
142 { X86::SAR64rCL, X86::SAR64mCL },
143 { X86::SAR64ri, X86::SAR64mi },
144 { X86::SAR8r1, X86::SAR8m1 },
145 { X86::SAR8rCL, X86::SAR8mCL },
146 { X86::SAR8ri, X86::SAR8mi },
147 { X86::SBB32ri, X86::SBB32mi },
148 { X86::SBB32ri8, X86::SBB32mi8 },
149 { X86::SBB32rr, X86::SBB32mr },
150 { X86::SBB64ri32, X86::SBB64mi32 },
151 { X86::SBB64ri8, X86::SBB64mi8 },
152 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000153 { X86::SHL16rCL, X86::SHL16mCL },
154 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000155 { X86::SHL32rCL, X86::SHL32mCL },
156 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000157 { X86::SHL64rCL, X86::SHL64mCL },
158 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000159 { X86::SHL8rCL, X86::SHL8mCL },
160 { X86::SHL8ri, X86::SHL8mi },
161 { X86::SHLD16rrCL, X86::SHLD16mrCL },
162 { X86::SHLD16rri8, X86::SHLD16mri8 },
163 { X86::SHLD32rrCL, X86::SHLD32mrCL },
164 { X86::SHLD32rri8, X86::SHLD32mri8 },
165 { X86::SHLD64rrCL, X86::SHLD64mrCL },
166 { X86::SHLD64rri8, X86::SHLD64mri8 },
167 { X86::SHR16r1, X86::SHR16m1 },
168 { X86::SHR16rCL, X86::SHR16mCL },
169 { X86::SHR16ri, X86::SHR16mi },
170 { X86::SHR32r1, X86::SHR32m1 },
171 { X86::SHR32rCL, X86::SHR32mCL },
172 { X86::SHR32ri, X86::SHR32mi },
173 { X86::SHR64r1, X86::SHR64m1 },
174 { X86::SHR64rCL, X86::SHR64mCL },
175 { X86::SHR64ri, X86::SHR64mi },
176 { X86::SHR8r1, X86::SHR8m1 },
177 { X86::SHR8rCL, X86::SHR8mCL },
178 { X86::SHR8ri, X86::SHR8mi },
179 { X86::SHRD16rrCL, X86::SHRD16mrCL },
180 { X86::SHRD16rri8, X86::SHRD16mri8 },
181 { X86::SHRD32rrCL, X86::SHRD32mrCL },
182 { X86::SHRD32rri8, X86::SHRD32mri8 },
183 { X86::SHRD64rrCL, X86::SHRD64mrCL },
184 { X86::SHRD64rri8, X86::SHRD64mri8 },
185 { X86::SUB16ri, X86::SUB16mi },
186 { X86::SUB16ri8, X86::SUB16mi8 },
187 { X86::SUB16rr, X86::SUB16mr },
188 { X86::SUB32ri, X86::SUB32mi },
189 { X86::SUB32ri8, X86::SUB32mi8 },
190 { X86::SUB32rr, X86::SUB32mr },
191 { X86::SUB64ri32, X86::SUB64mi32 },
192 { X86::SUB64ri8, X86::SUB64mi8 },
193 { X86::SUB64rr, X86::SUB64mr },
194 { X86::SUB8ri, X86::SUB8mi },
195 { X86::SUB8rr, X86::SUB8mr },
196 { X86::XOR16ri, X86::XOR16mi },
197 { X86::XOR16ri8, X86::XOR16mi8 },
198 { X86::XOR16rr, X86::XOR16mr },
199 { X86::XOR32ri, X86::XOR32mi },
200 { X86::XOR32ri8, X86::XOR32mi8 },
201 { X86::XOR32rr, X86::XOR32mr },
202 { X86::XOR64ri32, X86::XOR64mi32 },
203 { X86::XOR64ri8, X86::XOR64mi8 },
204 { X86::XOR64rr, X86::XOR64mr },
205 { X86::XOR8ri, X86::XOR8mi },
206 { X86::XOR8rr, X86::XOR8mr }
207 };
208
209 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
210 unsigned RegOp = OpTbl2Addr[i][0];
211 unsigned MemOp = OpTbl2Addr[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000212 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
213 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000214 assert(false && "Duplicated entries?");
215 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
216 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000217 std::make_pair(RegOp,
218 AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000219 AmbEntries.push_back(MemOp);
220 }
221
222 // If the third value is 1, then it's folding either a load or a store.
223 static const unsigned OpTbl0[][3] = {
224 { X86::CALL32r, X86::CALL32m, 1 },
225 { X86::CALL64r, X86::CALL64m, 1 },
226 { X86::CMP16ri, X86::CMP16mi, 1 },
227 { X86::CMP16ri8, X86::CMP16mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000228 { X86::CMP16rr, X86::CMP16mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000229 { X86::CMP32ri, X86::CMP32mi, 1 },
230 { X86::CMP32ri8, X86::CMP32mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000231 { X86::CMP32rr, X86::CMP32mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000232 { X86::CMP64ri32, X86::CMP64mi32, 1 },
233 { X86::CMP64ri8, X86::CMP64mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000234 { X86::CMP64rr, X86::CMP64mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000235 { X86::CMP8ri, X86::CMP8mi, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000236 { X86::CMP8rr, X86::CMP8mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000237 { X86::DIV16r, X86::DIV16m, 1 },
238 { X86::DIV32r, X86::DIV32m, 1 },
239 { X86::DIV64r, X86::DIV64m, 1 },
240 { X86::DIV8r, X86::DIV8m, 1 },
Dan Gohmana41862a2008-08-08 18:30:21 +0000241 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000242 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
243 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
244 { X86::IDIV16r, X86::IDIV16m, 1 },
245 { X86::IDIV32r, X86::IDIV32m, 1 },
246 { X86::IDIV64r, X86::IDIV64m, 1 },
247 { X86::IDIV8r, X86::IDIV8m, 1 },
248 { X86::IMUL16r, X86::IMUL16m, 1 },
249 { X86::IMUL32r, X86::IMUL32m, 1 },
250 { X86::IMUL64r, X86::IMUL64m, 1 },
251 { X86::IMUL8r, X86::IMUL8m, 1 },
252 { X86::JMP32r, X86::JMP32m, 1 },
253 { X86::JMP64r, X86::JMP64m, 1 },
254 { X86::MOV16ri, X86::MOV16mi, 0 },
255 { X86::MOV16rr, X86::MOV16mr, 0 },
256 { X86::MOV16to16_, X86::MOV16_mr, 0 },
257 { X86::MOV32ri, X86::MOV32mi, 0 },
258 { X86::MOV32rr, X86::MOV32mr, 0 },
259 { X86::MOV32to32_, X86::MOV32_mr, 0 },
260 { X86::MOV64ri32, X86::MOV64mi32, 0 },
261 { X86::MOV64rr, X86::MOV64mr, 0 },
262 { X86::MOV8ri, X86::MOV8mi, 0 },
263 { X86::MOV8rr, X86::MOV8mr, 0 },
264 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
265 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
266 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
267 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
268 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
269 { X86::MOVSDrr, X86::MOVSDmr, 0 },
270 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
271 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
272 { X86::MOVSSrr, X86::MOVSSmr, 0 },
273 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
274 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
275 { X86::MUL16r, X86::MUL16m, 1 },
276 { X86::MUL32r, X86::MUL32m, 1 },
277 { X86::MUL64r, X86::MUL64m, 1 },
278 { X86::MUL8r, X86::MUL8m, 1 },
279 { X86::SETAEr, X86::SETAEm, 0 },
280 { X86::SETAr, X86::SETAm, 0 },
281 { X86::SETBEr, X86::SETBEm, 0 },
282 { X86::SETBr, X86::SETBm, 0 },
Bill Wendling0c52d0a2008-12-02 00:07:05 +0000283 { X86::SETCr, X86::SETCm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000284 { X86::SETEr, X86::SETEm, 0 },
285 { X86::SETGEr, X86::SETGEm, 0 },
286 { X86::SETGr, X86::SETGm, 0 },
287 { X86::SETLEr, X86::SETLEm, 0 },
288 { X86::SETLr, X86::SETLm, 0 },
Bill Wendling0c52d0a2008-12-02 00:07:05 +0000289 { X86::SETNCr, X86::SETNCm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000290 { X86::SETNEr, X86::SETNEm, 0 },
Bill Wendling0c52d0a2008-12-02 00:07:05 +0000291 { X86::SETNOr, X86::SETNOm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000292 { X86::SETNPr, X86::SETNPm, 0 },
293 { X86::SETNSr, X86::SETNSm, 0 },
Bill Wendling0c52d0a2008-12-02 00:07:05 +0000294 { X86::SETOr, X86::SETOm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000295 { X86::SETPr, X86::SETPm, 0 },
296 { X86::SETSr, X86::SETSm, 0 },
297 { X86::TAILJMPr, X86::TAILJMPm, 1 },
298 { X86::TEST16ri, X86::TEST16mi, 1 },
299 { X86::TEST32ri, X86::TEST32mi, 1 },
300 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000301 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000302 };
303
304 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
305 unsigned RegOp = OpTbl0[i][0];
306 unsigned MemOp = OpTbl0[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000307 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
308 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000309 assert(false && "Duplicated entries?");
310 unsigned FoldedLoad = OpTbl0[i][2];
311 // Index 0, folded load or store.
312 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
313 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
314 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000315 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000316 AmbEntries.push_back(MemOp);
317 }
318
319 static const unsigned OpTbl1[][2] = {
320 { X86::CMP16rr, X86::CMP16rm },
321 { X86::CMP32rr, X86::CMP32rm },
322 { X86::CMP64rr, X86::CMP64rm },
323 { X86::CMP8rr, X86::CMP8rm },
324 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
325 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
326 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
327 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
328 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
329 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
330 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
331 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
332 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
333 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
334 { X86::FsMOVAPDrr, X86::MOVSDrm },
335 { X86::FsMOVAPSrr, X86::MOVSSrm },
336 { X86::IMUL16rri, X86::IMUL16rmi },
337 { X86::IMUL16rri8, X86::IMUL16rmi8 },
338 { X86::IMUL32rri, X86::IMUL32rmi },
339 { X86::IMUL32rri8, X86::IMUL32rmi8 },
340 { X86::IMUL64rri32, X86::IMUL64rmi32 },
341 { X86::IMUL64rri8, X86::IMUL64rmi8 },
342 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
343 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
344 { X86::Int_COMISDrr, X86::Int_COMISDrm },
345 { X86::Int_COMISSrr, X86::Int_COMISSrm },
346 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
347 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
348 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
349 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
350 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
351 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
352 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
353 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
354 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
355 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
356 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
357 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
358 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
359 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
360 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
361 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
362 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
363 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
364 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
365 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
366 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
367 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
368 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
369 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
370 { X86::MOV16rr, X86::MOV16rm },
371 { X86::MOV16to16_, X86::MOV16_rm },
372 { X86::MOV32rr, X86::MOV32rm },
373 { X86::MOV32to32_, X86::MOV32_rm },
374 { X86::MOV64rr, X86::MOV64rm },
375 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
376 { X86::MOV64toSDrr, X86::MOV64toSDrm },
377 { X86::MOV8rr, X86::MOV8rm },
378 { X86::MOVAPDrr, X86::MOVAPDrm },
379 { X86::MOVAPSrr, X86::MOVAPSrm },
380 { X86::MOVDDUPrr, X86::MOVDDUPrm },
381 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
382 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
383 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
384 { X86::MOVSDrr, X86::MOVSDrm },
385 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
386 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
387 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
388 { X86::MOVSSrr, X86::MOVSSrm },
389 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
390 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
391 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
392 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
393 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
394 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
395 { X86::MOVUPDrr, X86::MOVUPDrm },
396 { X86::MOVUPSrr, X86::MOVUPSrm },
397 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
398 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
399 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
400 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
401 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
402 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
403 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
Dan Gohman47a419d2008-08-07 02:54:50 +0000404 { X86::MOVZX64rr32, X86::MOVZX64rm32 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000405 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
406 { X86::PSHUFDri, X86::PSHUFDmi },
407 { X86::PSHUFHWri, X86::PSHUFHWmi },
408 { X86::PSHUFLWri, X86::PSHUFLWmi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000409 { X86::RCPPSr, X86::RCPPSm },
410 { X86::RCPPSr_Int, X86::RCPPSm_Int },
411 { X86::RSQRTPSr, X86::RSQRTPSm },
412 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
413 { X86::RSQRTSSr, X86::RSQRTSSm },
414 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
415 { X86::SQRTPDr, X86::SQRTPDm },
416 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
417 { X86::SQRTPSr, X86::SQRTPSm },
418 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
419 { X86::SQRTSDr, X86::SQRTSDm },
420 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
421 { X86::SQRTSSr, X86::SQRTSSm },
422 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
423 { X86::TEST16rr, X86::TEST16rm },
424 { X86::TEST32rr, X86::TEST32rm },
425 { X86::TEST64rr, X86::TEST64rm },
426 { X86::TEST8rr, X86::TEST8rm },
427 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
428 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000429 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000430 };
431
432 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
433 unsigned RegOp = OpTbl1[i][0];
434 unsigned MemOp = OpTbl1[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000435 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
436 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000437 assert(false && "Duplicated entries?");
438 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
439 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
440 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000441 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000442 AmbEntries.push_back(MemOp);
443 }
444
445 static const unsigned OpTbl2[][2] = {
446 { X86::ADC32rr, X86::ADC32rm },
447 { X86::ADC64rr, X86::ADC64rm },
448 { X86::ADD16rr, X86::ADD16rm },
449 { X86::ADD32rr, X86::ADD32rm },
450 { X86::ADD64rr, X86::ADD64rm },
451 { X86::ADD8rr, X86::ADD8rm },
452 { X86::ADDPDrr, X86::ADDPDrm },
453 { X86::ADDPSrr, X86::ADDPSrm },
454 { X86::ADDSDrr, X86::ADDSDrm },
455 { X86::ADDSSrr, X86::ADDSSrm },
456 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
457 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
458 { X86::AND16rr, X86::AND16rm },
459 { X86::AND32rr, X86::AND32rm },
460 { X86::AND64rr, X86::AND64rm },
461 { X86::AND8rr, X86::AND8rm },
462 { X86::ANDNPDrr, X86::ANDNPDrm },
463 { X86::ANDNPSrr, X86::ANDNPSrm },
464 { X86::ANDPDrr, X86::ANDPDrm },
465 { X86::ANDPSrr, X86::ANDPSrm },
466 { X86::CMOVA16rr, X86::CMOVA16rm },
467 { X86::CMOVA32rr, X86::CMOVA32rm },
468 { X86::CMOVA64rr, X86::CMOVA64rm },
469 { X86::CMOVAE16rr, X86::CMOVAE16rm },
470 { X86::CMOVAE32rr, X86::CMOVAE32rm },
471 { X86::CMOVAE64rr, X86::CMOVAE64rm },
472 { X86::CMOVB16rr, X86::CMOVB16rm },
473 { X86::CMOVB32rr, X86::CMOVB32rm },
474 { X86::CMOVB64rr, X86::CMOVB64rm },
475 { X86::CMOVBE16rr, X86::CMOVBE16rm },
476 { X86::CMOVBE32rr, X86::CMOVBE32rm },
477 { X86::CMOVBE64rr, X86::CMOVBE64rm },
478 { X86::CMOVE16rr, X86::CMOVE16rm },
479 { X86::CMOVE32rr, X86::CMOVE32rm },
480 { X86::CMOVE64rr, X86::CMOVE64rm },
481 { X86::CMOVG16rr, X86::CMOVG16rm },
482 { X86::CMOVG32rr, X86::CMOVG32rm },
483 { X86::CMOVG64rr, X86::CMOVG64rm },
484 { X86::CMOVGE16rr, X86::CMOVGE16rm },
485 { X86::CMOVGE32rr, X86::CMOVGE32rm },
486 { X86::CMOVGE64rr, X86::CMOVGE64rm },
487 { X86::CMOVL16rr, X86::CMOVL16rm },
488 { X86::CMOVL32rr, X86::CMOVL32rm },
489 { X86::CMOVL64rr, X86::CMOVL64rm },
490 { X86::CMOVLE16rr, X86::CMOVLE16rm },
491 { X86::CMOVLE32rr, X86::CMOVLE32rm },
492 { X86::CMOVLE64rr, X86::CMOVLE64rm },
493 { X86::CMOVNE16rr, X86::CMOVNE16rm },
494 { X86::CMOVNE32rr, X86::CMOVNE32rm },
495 { X86::CMOVNE64rr, X86::CMOVNE64rm },
496 { X86::CMOVNP16rr, X86::CMOVNP16rm },
497 { X86::CMOVNP32rr, X86::CMOVNP32rm },
498 { X86::CMOVNP64rr, X86::CMOVNP64rm },
499 { X86::CMOVNS16rr, X86::CMOVNS16rm },
500 { X86::CMOVNS32rr, X86::CMOVNS32rm },
501 { X86::CMOVNS64rr, X86::CMOVNS64rm },
502 { X86::CMOVP16rr, X86::CMOVP16rm },
503 { X86::CMOVP32rr, X86::CMOVP32rm },
504 { X86::CMOVP64rr, X86::CMOVP64rm },
505 { X86::CMOVS16rr, X86::CMOVS16rm },
506 { X86::CMOVS32rr, X86::CMOVS32rm },
507 { X86::CMOVS64rr, X86::CMOVS64rm },
508 { X86::CMPPDrri, X86::CMPPDrmi },
509 { X86::CMPPSrri, X86::CMPPSrmi },
510 { X86::CMPSDrr, X86::CMPSDrm },
511 { X86::CMPSSrr, X86::CMPSSrm },
512 { X86::DIVPDrr, X86::DIVPDrm },
513 { X86::DIVPSrr, X86::DIVPSrm },
514 { X86::DIVSDrr, X86::DIVSDrm },
515 { X86::DIVSSrr, X86::DIVSSrm },
Evan Chengc392b122008-05-02 17:01:01 +0000516 { X86::FsANDNPDrr, X86::FsANDNPDrm },
517 { X86::FsANDNPSrr, X86::FsANDNPSrm },
518 { X86::FsANDPDrr, X86::FsANDPDrm },
519 { X86::FsANDPSrr, X86::FsANDPSrm },
520 { X86::FsORPDrr, X86::FsORPDrm },
521 { X86::FsORPSrr, X86::FsORPSrm },
522 { X86::FsXORPDrr, X86::FsXORPDrm },
523 { X86::FsXORPSrr, X86::FsXORPSrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000524 { X86::HADDPDrr, X86::HADDPDrm },
525 { X86::HADDPSrr, X86::HADDPSrm },
526 { X86::HSUBPDrr, X86::HSUBPDrm },
527 { X86::HSUBPSrr, X86::HSUBPSrm },
528 { X86::IMUL16rr, X86::IMUL16rm },
529 { X86::IMUL32rr, X86::IMUL32rm },
530 { X86::IMUL64rr, X86::IMUL64rm },
531 { X86::MAXPDrr, X86::MAXPDrm },
532 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
533 { X86::MAXPSrr, X86::MAXPSrm },
534 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
535 { X86::MAXSDrr, X86::MAXSDrm },
536 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
537 { X86::MAXSSrr, X86::MAXSSrm },
538 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
539 { X86::MINPDrr, X86::MINPDrm },
540 { X86::MINPDrr_Int, X86::MINPDrm_Int },
541 { X86::MINPSrr, X86::MINPSrm },
542 { X86::MINPSrr_Int, X86::MINPSrm_Int },
543 { X86::MINSDrr, X86::MINSDrm },
544 { X86::MINSDrr_Int, X86::MINSDrm_Int },
545 { X86::MINSSrr, X86::MINSSrm },
546 { X86::MINSSrr_Int, X86::MINSSrm_Int },
547 { X86::MULPDrr, X86::MULPDrm },
548 { X86::MULPSrr, X86::MULPSrm },
549 { X86::MULSDrr, X86::MULSDrm },
550 { X86::MULSSrr, X86::MULSSrm },
551 { X86::OR16rr, X86::OR16rm },
552 { X86::OR32rr, X86::OR32rm },
553 { X86::OR64rr, X86::OR64rm },
554 { X86::OR8rr, X86::OR8rm },
555 { X86::ORPDrr, X86::ORPDrm },
556 { X86::ORPSrr, X86::ORPSrm },
557 { X86::PACKSSDWrr, X86::PACKSSDWrm },
558 { X86::PACKSSWBrr, X86::PACKSSWBrm },
559 { X86::PACKUSWBrr, X86::PACKUSWBrm },
560 { X86::PADDBrr, X86::PADDBrm },
561 { X86::PADDDrr, X86::PADDDrm },
562 { X86::PADDQrr, X86::PADDQrm },
563 { X86::PADDSBrr, X86::PADDSBrm },
564 { X86::PADDSWrr, X86::PADDSWrm },
565 { X86::PADDWrr, X86::PADDWrm },
566 { X86::PANDNrr, X86::PANDNrm },
567 { X86::PANDrr, X86::PANDrm },
568 { X86::PAVGBrr, X86::PAVGBrm },
569 { X86::PAVGWrr, X86::PAVGWrm },
570 { X86::PCMPEQBrr, X86::PCMPEQBrm },
571 { X86::PCMPEQDrr, X86::PCMPEQDrm },
572 { X86::PCMPEQWrr, X86::PCMPEQWrm },
573 { X86::PCMPGTBrr, X86::PCMPGTBrm },
574 { X86::PCMPGTDrr, X86::PCMPGTDrm },
575 { X86::PCMPGTWrr, X86::PCMPGTWrm },
576 { X86::PINSRWrri, X86::PINSRWrmi },
577 { X86::PMADDWDrr, X86::PMADDWDrm },
578 { X86::PMAXSWrr, X86::PMAXSWrm },
579 { X86::PMAXUBrr, X86::PMAXUBrm },
580 { X86::PMINSWrr, X86::PMINSWrm },
581 { X86::PMINUBrr, X86::PMINUBrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000582 { X86::PMULDQrr, X86::PMULDQrm },
583 { X86::PMULDQrr_int, X86::PMULDQrm_int },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000584 { X86::PMULHUWrr, X86::PMULHUWrm },
585 { X86::PMULHWrr, X86::PMULHWrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000586 { X86::PMULLDrr, X86::PMULLDrm },
587 { X86::PMULLDrr_int, X86::PMULLDrm_int },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000588 { X86::PMULLWrr, X86::PMULLWrm },
589 { X86::PMULUDQrr, X86::PMULUDQrm },
590 { X86::PORrr, X86::PORrm },
591 { X86::PSADBWrr, X86::PSADBWrm },
592 { X86::PSLLDrr, X86::PSLLDrm },
593 { X86::PSLLQrr, X86::PSLLQrm },
594 { X86::PSLLWrr, X86::PSLLWrm },
595 { X86::PSRADrr, X86::PSRADrm },
596 { X86::PSRAWrr, X86::PSRAWrm },
597 { X86::PSRLDrr, X86::PSRLDrm },
598 { X86::PSRLQrr, X86::PSRLQrm },
599 { X86::PSRLWrr, X86::PSRLWrm },
600 { X86::PSUBBrr, X86::PSUBBrm },
601 { X86::PSUBDrr, X86::PSUBDrm },
602 { X86::PSUBSBrr, X86::PSUBSBrm },
603 { X86::PSUBSWrr, X86::PSUBSWrm },
604 { X86::PSUBWrr, X86::PSUBWrm },
605 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
606 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
607 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
608 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
609 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
610 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
611 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
612 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
613 { X86::PXORrr, X86::PXORrm },
614 { X86::SBB32rr, X86::SBB32rm },
615 { X86::SBB64rr, X86::SBB64rm },
616 { X86::SHUFPDrri, X86::SHUFPDrmi },
617 { X86::SHUFPSrri, X86::SHUFPSrmi },
618 { X86::SUB16rr, X86::SUB16rm },
619 { X86::SUB32rr, X86::SUB32rm },
620 { X86::SUB64rr, X86::SUB64rm },
621 { X86::SUB8rr, X86::SUB8rm },
622 { X86::SUBPDrr, X86::SUBPDrm },
623 { X86::SUBPSrr, X86::SUBPSrm },
624 { X86::SUBSDrr, X86::SUBSDrm },
625 { X86::SUBSSrr, X86::SUBSSrm },
626 // FIXME: TEST*rr -> swapped operand of TEST*mr.
627 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
628 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
629 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
630 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
631 { X86::XOR16rr, X86::XOR16rm },
632 { X86::XOR32rr, X86::XOR32rm },
633 { X86::XOR64rr, X86::XOR64rm },
634 { X86::XOR8rr, X86::XOR8rm },
635 { X86::XORPDrr, X86::XORPDrm },
636 { X86::XORPSrr, X86::XORPSrm }
637 };
638
639 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
640 unsigned RegOp = OpTbl2[i][0];
641 unsigned MemOp = OpTbl2[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000642 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
643 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000644 assert(false && "Duplicated entries?");
645 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
646 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000647 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000648 AmbEntries.push_back(MemOp);
649 }
650
651 // Remove ambiguous entries.
652 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000653}
654
655bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
656 unsigned& sourceReg,
657 unsigned& destReg) const {
Chris Lattnerff195282008-03-11 19:28:17 +0000658 switch (MI.getOpcode()) {
659 default:
660 return false;
661 case X86::MOV8rr:
662 case X86::MOV16rr:
663 case X86::MOV32rr:
664 case X86::MOV64rr:
665 case X86::MOV16to16_:
666 case X86::MOV32to32_:
Chris Lattnerff195282008-03-11 19:28:17 +0000667 case X86::MOVSSrr:
668 case X86::MOVSDrr:
Chris Lattnerc81df282008-03-11 19:30:09 +0000669
670 // FP Stack register class copies
671 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
672 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
673 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
674
Chris Lattnerff195282008-03-11 19:28:17 +0000675 case X86::FsMOVAPSrr:
676 case X86::FsMOVAPDrr:
677 case X86::MOVAPSrr:
678 case X86::MOVAPDrr:
679 case X86::MOVSS2PSrr:
680 case X86::MOVSD2PDrr:
681 case X86::MOVPS2SSrr:
682 case X86::MOVPD2SDrr:
683 case X86::MMX_MOVD64rr:
684 case X86::MMX_MOVQ64rr:
685 assert(MI.getNumOperands() >= 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000686 MI.getOperand(0).isReg() &&
687 MI.getOperand(1).isReg() &&
Chris Lattnerff195282008-03-11 19:28:17 +0000688 "invalid register-register move instruction");
689 sourceReg = MI.getOperand(1).getReg();
690 destReg = MI.getOperand(0).getReg();
691 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000692 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000693}
694
Dan Gohman90feee22008-11-18 19:49:32 +0000695unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000696 int &FrameIndex) const {
697 switch (MI->getOpcode()) {
698 default: break;
699 case X86::MOV8rm:
700 case X86::MOV16rm:
701 case X86::MOV16_rm:
702 case X86::MOV32rm:
703 case X86::MOV32_rm:
704 case X86::MOV64rm:
705 case X86::LD_Fp64m:
706 case X86::MOVSSrm:
707 case X86::MOVSDrm:
708 case X86::MOVAPSrm:
709 case X86::MOVAPDrm:
710 case X86::MMX_MOVD64rm:
711 case X86::MMX_MOVQ64rm:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000712 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
713 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000714 MI->getOperand(2).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000715 MI->getOperand(3).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000716 MI->getOperand(4).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000717 FrameIndex = MI->getOperand(1).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000718 return MI->getOperand(0).getReg();
719 }
720 break;
721 }
722 return 0;
723}
724
Dan Gohman90feee22008-11-18 19:49:32 +0000725unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000726 int &FrameIndex) const {
727 switch (MI->getOpcode()) {
728 default: break;
729 case X86::MOV8mr:
730 case X86::MOV16mr:
731 case X86::MOV16_mr:
732 case X86::MOV32mr:
733 case X86::MOV32_mr:
734 case X86::MOV64mr:
735 case X86::ST_FpP64m:
736 case X86::MOVSSmr:
737 case X86::MOVSDmr:
738 case X86::MOVAPSmr:
739 case X86::MOVAPDmr:
740 case X86::MMX_MOVD64mr:
741 case X86::MMX_MOVQ64mr:
742 case X86::MMX_MOVNTQmr:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000743 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
744 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000745 MI->getOperand(1).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000746 MI->getOperand(2).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000747 MI->getOperand(3).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000748 FrameIndex = MI->getOperand(0).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000749 return MI->getOperand(4).getReg();
750 }
751 break;
752 }
753 return 0;
754}
755
756
Evan Chengb819a512008-03-27 01:45:11 +0000757/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
758/// X86::MOVPC32r.
Dan Gohman221a4372008-07-07 23:14:23 +0000759static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Evan Chengb819a512008-03-27 01:45:11 +0000760 bool isPICBase = false;
761 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
762 E = MRI.def_end(); I != E; ++I) {
763 MachineInstr *DefMI = I.getOperand().getParent();
764 if (DefMI->getOpcode() != X86::MOVPC32r)
765 return false;
766 assert(!isPICBase && "More than one PIC base?");
767 isPICBase = true;
768 }
769 return isPICBase;
770}
Evan Chenge9caab52008-03-31 07:54:19 +0000771
772/// isGVStub - Return true if the GV requires an extra load to get the
773/// real address.
774static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
775 return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
776}
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000777
Bill Wendlingb1cc1302008-05-12 20:54:26 +0000778bool
779X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000780 switch (MI->getOpcode()) {
781 default: break;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000782 case X86::MOV8rm:
783 case X86::MOV16rm:
784 case X86::MOV16_rm:
785 case X86::MOV32rm:
786 case X86::MOV32_rm:
787 case X86::MOV64rm:
788 case X86::LD_Fp64m:
789 case X86::MOVSSrm:
790 case X86::MOVSDrm:
791 case X86::MOVAPSrm:
792 case X86::MOVAPDrm:
793 case X86::MMX_MOVD64rm:
794 case X86::MMX_MOVQ64rm: {
795 // Loads from constant pools are trivially rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000796 if (MI->getOperand(1).isReg() &&
797 MI->getOperand(2).isImm() &&
798 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
799 (MI->getOperand(4).isCPI() ||
800 (MI->getOperand(4).isGlobal() &&
Evan Chenge9caab52008-03-31 07:54:19 +0000801 isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000802 unsigned BaseReg = MI->getOperand(1).getReg();
803 if (BaseReg == 0)
804 return true;
805 // Allow re-materialization of PIC load.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000806 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
Evan Chengc87df652008-04-01 23:26:12 +0000807 return false;
Dan Gohman221a4372008-07-07 23:14:23 +0000808 const MachineFunction &MF = *MI->getParent()->getParent();
809 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000810 bool isPICBase = false;
811 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
812 E = MRI.def_end(); I != E; ++I) {
813 MachineInstr *DefMI = I.getOperand().getParent();
814 if (DefMI->getOpcode() != X86::MOVPC32r)
815 return false;
816 assert(!isPICBase && "More than one PIC base?");
817 isPICBase = true;
818 }
819 return isPICBase;
820 }
821 return false;
Evan Cheng60490e62008-02-22 09:25:47 +0000822 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000823
824 case X86::LEA32r:
825 case X86::LEA64r: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000826 if (MI->getOperand(2).isImm() &&
827 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
828 !MI->getOperand(4).isReg()) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000829 // lea fi#, lea GV, etc. are all rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000830 if (!MI->getOperand(1).isReg())
Dan Gohmanbee19a42008-09-26 21:30:20 +0000831 return true;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000832 unsigned BaseReg = MI->getOperand(1).getReg();
833 if (BaseReg == 0)
834 return true;
835 // Allow re-materialization of lea PICBase + x.
Dan Gohman221a4372008-07-07 23:14:23 +0000836 const MachineFunction &MF = *MI->getParent()->getParent();
837 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chengb819a512008-03-27 01:45:11 +0000838 return regIsPICBase(BaseReg, MRI);
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000839 }
840 return false;
841 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000842 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000843
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000844 // All other instructions marked M_REMATERIALIZABLE are always trivially
845 // rematerializable.
846 return true;
847}
848
Evan Chengc564ded2008-06-24 07:10:51 +0000849/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
850/// would clobber the EFLAGS condition register. Note the result may be
851/// conservative. If it cannot definitely determine the safety after visiting
852/// two instructions it assumes it's not safe.
853static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
854 MachineBasicBlock::iterator I) {
Dan Gohman3588f9d2008-10-21 03:24:31 +0000855 // It's always safe to clobber EFLAGS at the end of a block.
856 if (I == MBB.end())
857 return true;
858
Evan Chengc564ded2008-06-24 07:10:51 +0000859 // For compile time consideration, if we are not able to determine the
860 // safety after visiting 2 instructions, we will assume it's not safe.
861 for (unsigned i = 0; i < 2; ++i) {
Evan Chengc564ded2008-06-24 07:10:51 +0000862 bool SeenDef = false;
863 for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
864 MachineOperand &MO = I->getOperand(j);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000865 if (!MO.isReg())
Evan Chengc564ded2008-06-24 07:10:51 +0000866 continue;
867 if (MO.getReg() == X86::EFLAGS) {
868 if (MO.isUse())
869 return false;
870 SeenDef = true;
871 }
872 }
873
874 if (SeenDef)
875 // This instruction defines EFLAGS, no need to look any further.
876 return true;
877 ++I;
Dan Gohman3588f9d2008-10-21 03:24:31 +0000878
879 // If we make it to the end of the block, it's safe to clobber EFLAGS.
880 if (I == MBB.end())
881 return true;
Evan Chengc564ded2008-06-24 07:10:51 +0000882 }
883
884 // Conservative answer.
885 return false;
886}
887
Evan Cheng7d73efc2008-03-31 20:40:39 +0000888void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
889 MachineBasicBlock::iterator I,
890 unsigned DestReg,
891 const MachineInstr *Orig) const {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000892 unsigned SubIdx = Orig->getOperand(0).isReg()
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000893 ? Orig->getOperand(0).getSubReg() : 0;
894 bool ChangeSubIdx = SubIdx != 0;
895 if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
896 DestReg = RI.getSubReg(DestReg, SubIdx);
897 SubIdx = 0;
898 }
899
Evan Cheng7d73efc2008-03-31 20:40:39 +0000900 // MOV32r0 etc. are implemented with xor which clobbers condition code.
901 // Re-materialize them as movri instructions to avoid side effects.
Evan Chengc564ded2008-06-24 07:10:51 +0000902 bool Emitted = false;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000903 switch (Orig->getOpcode()) {
Evan Chengc564ded2008-06-24 07:10:51 +0000904 default: break;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000905 case X86::MOV8r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000906 case X86::MOV16r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000907 case X86::MOV32r0:
Evan Chengc564ded2008-06-24 07:10:51 +0000908 case X86::MOV64r0: {
909 if (!isSafeToClobberEFLAGS(MBB, I)) {
910 unsigned Opc = 0;
911 switch (Orig->getOpcode()) {
912 default: break;
913 case X86::MOV8r0: Opc = X86::MOV8ri; break;
914 case X86::MOV16r0: Opc = X86::MOV16ri; break;
915 case X86::MOV32r0: Opc = X86::MOV32ri; break;
916 case X86::MOV64r0: Opc = X86::MOV64ri32; break;
917 }
918 BuildMI(MBB, I, get(Opc), DestReg).addImm(0);
919 Emitted = true;
920 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000921 break;
Evan Chengc564ded2008-06-24 07:10:51 +0000922 }
923 }
924
925 if (!Emitted) {
Dan Gohman221a4372008-07-07 23:14:23 +0000926 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000927 MI->getOperand(0).setReg(DestReg);
928 MBB.insert(I, MI);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000929 }
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000930
931 if (ChangeSubIdx) {
932 MachineInstr *NewMI = prior(I);
933 NewMI->getOperand(0).setSubReg(SubIdx);
934 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000935}
936
Chris Lattnerea3a1812008-01-10 23:08:24 +0000937/// isInvariantLoad - Return true if the specified instruction (which is marked
938/// mayLoad) is loading from a location whose value is invariant across the
939/// function. For example, loading a value from the constant pool or from
940/// from the argument area of a function if it does not change. This should
941/// only return true of *all* loads the instruction does are invariant (if it
942/// does multiple loads).
Dan Gohman90feee22008-11-18 19:49:32 +0000943bool X86InstrInfo::isInvariantLoad(const MachineInstr *MI) const {
Chris Lattner0875b572008-01-12 00:35:08 +0000944 // This code cares about loads from three cases: constant pool entries,
945 // invariant argument slots, and global stubs. In order to handle these cases
946 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner828fe302008-01-12 00:53:16 +0000947 // operand and base our analysis on it. This is safe because the address of
Chris Lattner0875b572008-01-12 00:35:08 +0000948 // none of these three cases is ever used as anything other than a load base
949 // and X86 doesn't have any instructions that load from multiple places.
950
951 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
952 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnerea3a1812008-01-10 23:08:24 +0000953 // Loads from constant pools are trivially invariant.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000954 if (MO.isCPI())
Chris Lattner00e46fa2008-01-05 05:28:30 +0000955 return true;
Evan Chenge9caab52008-03-31 07:54:19 +0000956
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000957 if (MO.isGlobal())
Evan Chenge9caab52008-03-31 07:54:19 +0000958 return isGVStub(MO.getGlobal(), TM);
Chris Lattner0875b572008-01-12 00:35:08 +0000959
960 // If this is a load from an invariant stack slot, the load is a constant.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000961 if (MO.isFI()) {
Chris Lattner0875b572008-01-12 00:35:08 +0000962 const MachineFrameInfo &MFI =
963 *MI->getParent()->getParent()->getFrameInfo();
964 int Idx = MO.getIndex();
Chris Lattner41aed732008-01-10 04:16:31 +0000965 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
966 }
Bill Wendling57e31d62007-12-17 23:07:56 +0000967 }
Chris Lattner0875b572008-01-12 00:35:08 +0000968
Chris Lattnerea3a1812008-01-10 23:08:24 +0000969 // All other instances of these instructions are presumed to have other
970 // issues.
Chris Lattnereb0f16f2008-01-05 05:26:26 +0000971 return false;
Bill Wendling57e31d62007-12-17 23:07:56 +0000972}
973
Evan Chengfa1a4952007-10-05 08:04:01 +0000974/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
975/// is not marked dead.
976static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chengfa1a4952007-10-05 08:04:01 +0000977 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
978 MachineOperand &MO = MI->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000979 if (MO.isReg() && MO.isDef() &&
Evan Chengfa1a4952007-10-05 08:04:01 +0000980 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
981 return true;
982 }
983 }
984 return false;
985}
986
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000987/// convertToThreeAddress - This method must be implemented by targets that
988/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
989/// may be able to convert a two-address instruction into a true
990/// three-address instruction on demand. This allows the X86 target (for
991/// example) to convert ADD and SHL instructions into LEA instructions if they
992/// would require register copies due to two-addressness.
993///
994/// This method returns a null pointer if the transformation cannot be
995/// performed, otherwise it returns the new instruction.
996///
997MachineInstr *
998X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
999 MachineBasicBlock::iterator &MBBI,
Owen Andersonc6959722008-07-02 23:41:07 +00001000 LiveVariables *LV) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001001 MachineInstr *MI = MBBI;
Dan Gohman221a4372008-07-07 23:14:23 +00001002 MachineFunction &MF = *MI->getParent()->getParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001003 // All instructions input are two-addr instructions. Get the known operands.
1004 unsigned Dest = MI->getOperand(0).getReg();
1005 unsigned Src = MI->getOperand(1).getReg();
Evan Chenge52c1912008-07-03 09:09:37 +00001006 bool isDead = MI->getOperand(0).isDead();
1007 bool isKill = MI->getOperand(1).isKill();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001008
1009 MachineInstr *NewMI = NULL;
1010 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
1011 // we have better subtarget support, enable the 16-bit LEA generation here.
1012 bool DisableLEA16 = true;
1013
Evan Cheng6b96ed32007-10-05 20:34:26 +00001014 unsigned MIOpc = MI->getOpcode();
1015 switch (MIOpc) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001016 case X86::SHUFPSrri: {
1017 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1018 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1019
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001020 unsigned B = MI->getOperand(1).getReg();
1021 unsigned C = MI->getOperand(2).getReg();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001022 if (B != C) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001023 unsigned A = MI->getOperand(0).getReg();
1024 unsigned M = MI->getOperand(3).getImm();
Dan Gohman221a4372008-07-07 23:14:23 +00001025 NewMI = BuildMI(MF, get(X86::PSHUFDri)).addReg(A, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001026 .addReg(B, false, false, isKill).addImm(M);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001027 break;
1028 }
1029 case X86::SHL64ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001030 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001031 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1032 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001033 unsigned ShAmt = MI->getOperand(2).getImm();
1034 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001035
Dan Gohman221a4372008-07-07 23:14:23 +00001036 NewMI = BuildMI(MF, get(X86::LEA64r)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001037 .addReg(0).addImm(1 << ShAmt).addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001038 break;
1039 }
1040 case X86::SHL32ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001041 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001042 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1043 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001044 unsigned ShAmt = MI->getOperand(2).getImm();
1045 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001046
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001047 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1048 X86::LEA64_32r : X86::LEA32r;
Dan Gohman221a4372008-07-07 23:14:23 +00001049 NewMI = BuildMI(MF, get(Opc)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001050 .addReg(0).addImm(1 << ShAmt)
1051 .addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001052 break;
1053 }
1054 case X86::SHL16ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001055 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng0b1e8712007-09-06 00:14:41 +00001056 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1057 // the flags produced by a shift yet, so this is safe.
Evan Cheng0b1e8712007-09-06 00:14:41 +00001058 unsigned ShAmt = MI->getOperand(2).getImm();
1059 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001060
Christopher Lamb380c6272007-08-10 21:18:25 +00001061 if (DisableLEA16) {
1062 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner1b989192007-12-31 04:13:23 +00001063 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng0b1e8712007-09-06 00:14:41 +00001064 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1065 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner1b989192007-12-31 04:13:23 +00001066 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1067 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Chengbd97af02008-03-10 19:31:26 +00001068
Christopher Lamb8d226a22008-03-11 10:27:36 +00001069 // Build and insert into an implicit UNDEF value. This is OK because
1070 // well be shifting and then extracting the lower 16-bits.
Dan Gohman221a4372008-07-07 23:14:23 +00001071 BuildMI(*MFI, MBBI, get(X86::IMPLICIT_DEF), leaInReg);
1072 MachineInstr *InsMI = BuildMI(*MFI, MBBI, get(X86::INSERT_SUBREG),leaInReg)
Evan Chenge52c1912008-07-03 09:09:37 +00001073 .addReg(leaInReg).addReg(Src, false, false, isKill)
1074 .addImm(X86::SUBREG_16BIT);
Christopher Lamb76d72da2008-03-16 03:12:01 +00001075
Dan Gohman221a4372008-07-07 23:14:23 +00001076 NewMI = BuildMI(*MFI, MBBI, get(Opc), leaOutReg).addReg(0).addImm(1 << ShAmt)
Evan Chenge52c1912008-07-03 09:09:37 +00001077 .addReg(leaInReg, false, false, true).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001078
Dan Gohman221a4372008-07-07 23:14:23 +00001079 MachineInstr *ExtMI = BuildMI(*MFI, MBBI, get(X86::EXTRACT_SUBREG))
Evan Chenge52c1912008-07-03 09:09:37 +00001080 .addReg(Dest, true, false, false, isDead)
1081 .addReg(leaOutReg, false, false, true).addImm(X86::SUBREG_16BIT);
Owen Andersonc6959722008-07-02 23:41:07 +00001082 if (LV) {
Evan Chenge52c1912008-07-03 09:09:37 +00001083 // Update live variables
1084 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1085 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1086 if (isKill)
1087 LV->replaceKillInstruction(Src, MI, InsMI);
1088 if (isDead)
1089 LV->replaceKillInstruction(Dest, MI, ExtMI);
Owen Andersonc6959722008-07-02 23:41:07 +00001090 }
Evan Chenge52c1912008-07-03 09:09:37 +00001091 return ExtMI;
Christopher Lamb380c6272007-08-10 21:18:25 +00001092 } else {
Dan Gohman221a4372008-07-07 23:14:23 +00001093 NewMI = BuildMI(MF, get(X86::LEA16r)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001094 .addReg(0).addImm(1 << ShAmt)
1095 .addReg(Src, false, false, isKill).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001096 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001097 break;
1098 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001099 default: {
1100 // The following opcodes also sets the condition code register(s). Only
1101 // convert them to equivalent lea if the condition code register def's
1102 // are dead!
1103 if (hasLiveCondCodeDef(MI))
1104 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001105
Evan Chenga28a9562007-10-09 07:14:53 +00001106 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001107 switch (MIOpc) {
1108 default: return 0;
1109 case X86::INC64r:
Evan Cheng3cdc7192007-10-05 21:55:32 +00001110 case X86::INC32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001111 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001112 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1113 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Dan Gohman221a4372008-07-07 23:14:23 +00001114 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001115 .addReg(Dest, true, false, false, isDead),
1116 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001117 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001118 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001119 case X86::INC16r:
1120 case X86::INC64_16r:
1121 if (DisableLEA16) return 0;
1122 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Dan Gohman221a4372008-07-07 23:14:23 +00001123 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001124 .addReg(Dest, true, false, false, isDead),
1125 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001126 break;
1127 case X86::DEC64r:
Evan Cheng3cdc7192007-10-05 21:55:32 +00001128 case X86::DEC32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001129 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001130 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1131 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Dan Gohman221a4372008-07-07 23:14:23 +00001132 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001133 .addReg(Dest, true, false, false, isDead),
1134 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001135 break;
1136 }
1137 case X86::DEC16r:
1138 case X86::DEC64_16r:
1139 if (DisableLEA16) return 0;
1140 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Dan Gohman221a4372008-07-07 23:14:23 +00001141 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001142 .addReg(Dest, true, false, false, isDead),
1143 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001144 break;
1145 case X86::ADD64rr:
1146 case X86::ADD32rr: {
1147 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001148 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1149 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Chenge52c1912008-07-03 09:09:37 +00001150 unsigned Src2 = MI->getOperand(2).getReg();
1151 bool isKill2 = MI->getOperand(2).isKill();
Dan Gohman221a4372008-07-07 23:14:23 +00001152 NewMI = addRegReg(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001153 .addReg(Dest, true, false, false, isDead),
1154 Src, isKill, Src2, isKill2);
1155 if (LV && isKill2)
1156 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001157 break;
1158 }
Evan Chenge52c1912008-07-03 09:09:37 +00001159 case X86::ADD16rr: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001160 if (DisableLEA16) return 0;
1161 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenge52c1912008-07-03 09:09:37 +00001162 unsigned Src2 = MI->getOperand(2).getReg();
1163 bool isKill2 = MI->getOperand(2).isKill();
Dan Gohman221a4372008-07-07 23:14:23 +00001164 NewMI = addRegReg(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001165 .addReg(Dest, true, false, false, isDead),
1166 Src, isKill, Src2, isKill2);
1167 if (LV && isKill2)
1168 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001169 break;
Evan Chenge52c1912008-07-03 09:09:37 +00001170 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001171 case X86::ADD64ri32:
1172 case X86::ADD64ri8:
1173 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001174 if (MI->getOperand(2).isImm())
Dan Gohman221a4372008-07-07 23:14:23 +00001175 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA64r))
Evan Chenge52c1912008-07-03 09:09:37 +00001176 .addReg(Dest, true, false, false, isDead),
1177 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001178 break;
1179 case X86::ADD32ri:
1180 case X86::ADD32ri8:
1181 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001182 if (MI->getOperand(2).isImm()) {
Evan Chenga28a9562007-10-09 07:14:53 +00001183 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Dan Gohman221a4372008-07-07 23:14:23 +00001184 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001185 .addReg(Dest, true, false, false, isDead),
1186 Src, isKill, MI->getOperand(2).getImm());
Evan Chenga28a9562007-10-09 07:14:53 +00001187 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001188 break;
1189 case X86::ADD16ri:
1190 case X86::ADD16ri8:
1191 if (DisableLEA16) return 0;
1192 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001193 if (MI->getOperand(2).isImm())
Dan Gohman221a4372008-07-07 23:14:23 +00001194 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001195 .addReg(Dest, true, false, false, isDead),
1196 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001197 break;
1198 case X86::SHL16ri:
1199 if (DisableLEA16) return 0;
1200 case X86::SHL32ri:
1201 case X86::SHL64ri: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001202 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
Evan Cheng6b96ed32007-10-05 20:34:26 +00001203 "Unknown shl instruction!");
Chris Lattnera96056a2007-12-30 20:49:49 +00001204 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001205 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1206 X86AddressMode AM;
1207 AM.Scale = 1 << ShAmt;
1208 AM.IndexReg = Src;
1209 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chenga28a9562007-10-09 07:14:53 +00001210 : (MIOpc == X86::SHL32ri
1211 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Dan Gohman221a4372008-07-07 23:14:23 +00001212 NewMI = addFullAddress(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001213 .addReg(Dest, true, false, false, isDead), AM);
1214 if (isKill)
1215 NewMI->getOperand(3).setIsKill(true);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001216 }
1217 break;
1218 }
1219 }
1220 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001221 }
1222
Evan Chengc3cb24d2008-02-07 08:29:53 +00001223 if (!NewMI) return 0;
1224
Evan Chenge52c1912008-07-03 09:09:37 +00001225 if (LV) { // Update live variables
1226 if (isKill)
1227 LV->replaceKillInstruction(Src, MI, NewMI);
1228 if (isDead)
1229 LV->replaceKillInstruction(Dest, MI, NewMI);
1230 }
1231
Evan Cheng6b96ed32007-10-05 20:34:26 +00001232 MFI->insert(MBBI, NewMI); // Insert the new inst
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001233 return NewMI;
1234}
1235
1236/// commuteInstruction - We have a few instructions that must be hacked on to
1237/// commute them.
1238///
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001239MachineInstr *
1240X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001241 switch (MI->getOpcode()) {
1242 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1243 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1244 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001245 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1246 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1247 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001248 unsigned Opc;
1249 unsigned Size;
1250 switch (MI->getOpcode()) {
1251 default: assert(0 && "Unreachable!");
1252 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1253 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1254 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1255 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001256 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1257 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001258 }
Chris Lattnera96056a2007-12-30 20:49:49 +00001259 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohman921581d2008-10-17 01:23:35 +00001260 if (NewMI) {
1261 MachineFunction &MF = *MI->getParent()->getParent();
1262 MI = MF.CloneMachineInstr(MI);
1263 NewMI = false;
Evan Chengb554e532008-02-13 02:46:49 +00001264 }
Dan Gohman921581d2008-10-17 01:23:35 +00001265 MI->setDesc(get(Opc));
1266 MI->getOperand(3).setImm(Size-Amt);
1267 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001268 }
Evan Cheng926658c2007-10-05 23:13:21 +00001269 case X86::CMOVB16rr:
1270 case X86::CMOVB32rr:
1271 case X86::CMOVB64rr:
1272 case X86::CMOVAE16rr:
1273 case X86::CMOVAE32rr:
1274 case X86::CMOVAE64rr:
1275 case X86::CMOVE16rr:
1276 case X86::CMOVE32rr:
1277 case X86::CMOVE64rr:
1278 case X86::CMOVNE16rr:
1279 case X86::CMOVNE32rr:
1280 case X86::CMOVNE64rr:
1281 case X86::CMOVBE16rr:
1282 case X86::CMOVBE32rr:
1283 case X86::CMOVBE64rr:
1284 case X86::CMOVA16rr:
1285 case X86::CMOVA32rr:
1286 case X86::CMOVA64rr:
1287 case X86::CMOVL16rr:
1288 case X86::CMOVL32rr:
1289 case X86::CMOVL64rr:
1290 case X86::CMOVGE16rr:
1291 case X86::CMOVGE32rr:
1292 case X86::CMOVGE64rr:
1293 case X86::CMOVLE16rr:
1294 case X86::CMOVLE32rr:
1295 case X86::CMOVLE64rr:
1296 case X86::CMOVG16rr:
1297 case X86::CMOVG32rr:
1298 case X86::CMOVG64rr:
1299 case X86::CMOVS16rr:
1300 case X86::CMOVS32rr:
1301 case X86::CMOVS64rr:
1302 case X86::CMOVNS16rr:
1303 case X86::CMOVNS32rr:
1304 case X86::CMOVNS64rr:
1305 case X86::CMOVP16rr:
1306 case X86::CMOVP32rr:
1307 case X86::CMOVP64rr:
1308 case X86::CMOVNP16rr:
1309 case X86::CMOVNP32rr:
1310 case X86::CMOVNP64rr: {
Evan Cheng926658c2007-10-05 23:13:21 +00001311 unsigned Opc = 0;
1312 switch (MI->getOpcode()) {
1313 default: break;
1314 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1315 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1316 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1317 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1318 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1319 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1320 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1321 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1322 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1323 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1324 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1325 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1326 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1327 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1328 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1329 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1330 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1331 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1332 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1333 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1334 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1335 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1336 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1337 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1338 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1339 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1340 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1341 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1342 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1343 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1344 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1345 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1346 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1347 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1348 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1349 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1350 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1351 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1352 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1353 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1354 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1355 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1356 }
Dan Gohman921581d2008-10-17 01:23:35 +00001357 if (NewMI) {
1358 MachineFunction &MF = *MI->getParent()->getParent();
1359 MI = MF.CloneMachineInstr(MI);
1360 NewMI = false;
1361 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00001362 MI->setDesc(get(Opc));
Evan Cheng926658c2007-10-05 23:13:21 +00001363 // Fallthrough intended.
1364 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001365 default:
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001366 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001367 }
1368}
1369
1370static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1371 switch (BrOpc) {
1372 default: return X86::COND_INVALID;
1373 case X86::JE: return X86::COND_E;
1374 case X86::JNE: return X86::COND_NE;
1375 case X86::JL: return X86::COND_L;
1376 case X86::JLE: return X86::COND_LE;
1377 case X86::JG: return X86::COND_G;
1378 case X86::JGE: return X86::COND_GE;
1379 case X86::JB: return X86::COND_B;
1380 case X86::JBE: return X86::COND_BE;
1381 case X86::JA: return X86::COND_A;
1382 case X86::JAE: return X86::COND_AE;
1383 case X86::JS: return X86::COND_S;
1384 case X86::JNS: return X86::COND_NS;
1385 case X86::JP: return X86::COND_P;
1386 case X86::JNP: return X86::COND_NP;
1387 case X86::JO: return X86::COND_O;
1388 case X86::JNO: return X86::COND_NO;
Bill Wendlingd06b4202008-11-26 22:37:40 +00001389 case X86::JC: return X86::COND_C;
1390 case X86::JNC: return X86::COND_NC;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001391 }
1392}
1393
1394unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1395 switch (CC) {
1396 default: assert(0 && "Illegal condition code!");
Evan Cheng621216e2007-09-29 00:00:36 +00001397 case X86::COND_E: return X86::JE;
1398 case X86::COND_NE: return X86::JNE;
1399 case X86::COND_L: return X86::JL;
1400 case X86::COND_LE: return X86::JLE;
1401 case X86::COND_G: return X86::JG;
1402 case X86::COND_GE: return X86::JGE;
1403 case X86::COND_B: return X86::JB;
1404 case X86::COND_BE: return X86::JBE;
1405 case X86::COND_A: return X86::JA;
1406 case X86::COND_AE: return X86::JAE;
1407 case X86::COND_S: return X86::JS;
1408 case X86::COND_NS: return X86::JNS;
1409 case X86::COND_P: return X86::JP;
1410 case X86::COND_NP: return X86::JNP;
1411 case X86::COND_O: return X86::JO;
1412 case X86::COND_NO: return X86::JNO;
Bill Wendlingd06b4202008-11-26 22:37:40 +00001413 case X86::COND_C: return X86::JC;
1414 case X86::COND_NC: return X86::JNC;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001415 }
1416}
1417
1418/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1419/// e.g. turning COND_E to COND_NE.
1420X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1421 switch (CC) {
1422 default: assert(0 && "Illegal condition code!");
1423 case X86::COND_E: return X86::COND_NE;
1424 case X86::COND_NE: return X86::COND_E;
1425 case X86::COND_L: return X86::COND_GE;
1426 case X86::COND_LE: return X86::COND_G;
1427 case X86::COND_G: return X86::COND_LE;
1428 case X86::COND_GE: return X86::COND_L;
1429 case X86::COND_B: return X86::COND_AE;
1430 case X86::COND_BE: return X86::COND_A;
1431 case X86::COND_A: return X86::COND_BE;
1432 case X86::COND_AE: return X86::COND_B;
1433 case X86::COND_S: return X86::COND_NS;
1434 case X86::COND_NS: return X86::COND_S;
1435 case X86::COND_P: return X86::COND_NP;
1436 case X86::COND_NP: return X86::COND_P;
1437 case X86::COND_O: return X86::COND_NO;
1438 case X86::COND_NO: return X86::COND_O;
Bill Wendlingd06b4202008-11-26 22:37:40 +00001439 case X86::COND_C: return X86::COND_NC;
1440 case X86::COND_NC: return X86::COND_C;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001441 }
1442}
1443
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001444bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner5b930372008-01-07 07:27:27 +00001445 const TargetInstrDesc &TID = MI->getDesc();
1446 if (!TID.isTerminator()) return false;
Chris Lattner62327602008-01-07 01:56:04 +00001447
1448 // Conditional branch is a special case.
Chris Lattner5b930372008-01-07 07:27:27 +00001449 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner62327602008-01-07 01:56:04 +00001450 return true;
Chris Lattner5b930372008-01-07 07:27:27 +00001451 if (!TID.isPredicable())
Chris Lattner62327602008-01-07 01:56:04 +00001452 return true;
1453 return !isPredicated(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001454}
1455
Evan Cheng12515792007-07-26 17:32:14 +00001456// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1457static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1458 const X86InstrInfo &TII) {
1459 if (MI->getOpcode() == X86::FP_REG_KILL)
1460 return false;
1461 return TII.isUnpredicatedTerminator(MI);
1462}
1463
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001464bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1465 MachineBasicBlock *&TBB,
1466 MachineBasicBlock *&FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +00001467 SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001468 // Start from the bottom of the block and work up, examining the
1469 // terminator instructions.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001470 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001471 while (I != MBB.begin()) {
1472 --I;
1473 // Working from the bottom, when we see a non-terminator
1474 // instruction, we're done.
1475 if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1476 break;
1477 // A terminator that isn't a branch can't easily be handled
1478 // by this analysis.
1479 if (!I->getDesc().isBranch())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001480 return true;
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001481 // Handle unconditional branches.
1482 if (I->getOpcode() == X86::JMP) {
1483 // If the block has any instructions after a JMP, delete them.
1484 while (next(I) != MBB.end())
1485 next(I)->eraseFromParent();
1486 Cond.clear();
1487 FBB = 0;
1488 // Delete the JMP if it's equivalent to a fall-through.
1489 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1490 TBB = 0;
1491 I->eraseFromParent();
1492 I = MBB.end();
1493 continue;
1494 }
1495 // TBB is used to indicate the unconditinal destination.
1496 TBB = I->getOperand(0).getMBB();
1497 continue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001498 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001499 // Handle conditional branches.
1500 X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001501 if (BranchCode == X86::COND_INVALID)
1502 return true; // Can't handle indirect branch.
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001503 // Working from the bottom, handle the first conditional branch.
1504 if (Cond.empty()) {
1505 FBB = TBB;
1506 TBB = I->getOperand(0).getMBB();
1507 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1508 continue;
1509 }
1510 // Handle subsequent conditional branches. Only handle the case
1511 // where all conditional branches branch to the same destination
1512 // and their condition opcodes fit one of the special
1513 // multi-branch idioms.
1514 assert(Cond.size() == 1);
1515 assert(TBB);
1516 // Only handle the case where all conditional branches branch to
1517 // the same destination.
1518 if (TBB != I->getOperand(0).getMBB())
1519 return true;
1520 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1521 // If the conditions are the same, we can leave them alone.
1522 if (OldBranchCode == BranchCode)
1523 continue;
1524 // If they differ, see if they fit one of the known patterns.
1525 // Theoretically we could handle more patterns here, but
1526 // we shouldn't expect to see them if instruction selection
1527 // has done a reasonable job.
1528 if ((OldBranchCode == X86::COND_NP &&
1529 BranchCode == X86::COND_E) ||
1530 (OldBranchCode == X86::COND_E &&
1531 BranchCode == X86::COND_NP))
1532 BranchCode = X86::COND_NP_OR_E;
1533 else if ((OldBranchCode == X86::COND_P &&
1534 BranchCode == X86::COND_NE) ||
1535 (OldBranchCode == X86::COND_NE &&
1536 BranchCode == X86::COND_P))
1537 BranchCode = X86::COND_NE_OR_P;
1538 else
1539 return true;
1540 // Update the MachineOperand.
1541 Cond[0].setImm(BranchCode);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001542 }
1543
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001544 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001545}
1546
1547unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1548 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001549 unsigned Count = 0;
1550
1551 while (I != MBB.begin()) {
1552 --I;
1553 if (I->getOpcode() != X86::JMP &&
1554 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1555 break;
1556 // Remove the branch.
1557 I->eraseFromParent();
1558 I = MBB.end();
1559 ++Count;
1560 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001561
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001562 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001563}
1564
Owen Anderson81875432008-01-01 21:11:32 +00001565static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
Dan Gohman46b948e2008-10-16 01:49:15 +00001566 const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001567 if (MO.isReg())
Owen Anderson81875432008-01-01 21:11:32 +00001568 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
Evan Chenge52c1912008-07-03 09:09:37 +00001569 MO.isKill(), MO.isDead(), MO.getSubReg());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001570 else if (MO.isImm())
Owen Anderson81875432008-01-01 21:11:32 +00001571 MIB = MIB.addImm(MO.getImm());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001572 else if (MO.isFI())
Owen Anderson81875432008-01-01 21:11:32 +00001573 MIB = MIB.addFrameIndex(MO.getIndex());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001574 else if (MO.isGlobal())
Owen Anderson81875432008-01-01 21:11:32 +00001575 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001576 else if (MO.isCPI())
Owen Anderson81875432008-01-01 21:11:32 +00001577 MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001578 else if (MO.isJTI())
Owen Anderson81875432008-01-01 21:11:32 +00001579 MIB = MIB.addJumpTableIndex(MO.getIndex());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001580 else if (MO.isSymbol())
Owen Anderson81875432008-01-01 21:11:32 +00001581 MIB = MIB.addExternalSymbol(MO.getSymbolName());
1582 else
1583 assert(0 && "Unknown operand for X86InstrAddOperand!");
1584
1585 return MIB;
1586}
1587
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001588unsigned
1589X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1590 MachineBasicBlock *FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +00001591 const SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001592 // Shouldn't be a fall through.
1593 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1594 assert((Cond.size() == 1 || Cond.size() == 0) &&
1595 "X86 branch conditions have one component!");
1596
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001597 if (Cond.empty()) {
1598 // Unconditional branch?
1599 assert(!FBB && "Unconditional branch with multiple successors!");
1600 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001601 return 1;
1602 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001603
1604 // Conditional branch.
1605 unsigned Count = 0;
1606 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1607 switch (CC) {
1608 case X86::COND_NP_OR_E:
1609 // Synthesize NP_OR_E with two branches.
1610 BuildMI(&MBB, get(X86::JNP)).addMBB(TBB);
1611 ++Count;
1612 BuildMI(&MBB, get(X86::JE)).addMBB(TBB);
1613 ++Count;
1614 break;
1615 case X86::COND_NE_OR_P:
1616 // Synthesize NE_OR_P with two branches.
1617 BuildMI(&MBB, get(X86::JNE)).addMBB(TBB);
1618 ++Count;
1619 BuildMI(&MBB, get(X86::JP)).addMBB(TBB);
1620 ++Count;
1621 break;
1622 default: {
1623 unsigned Opc = GetCondBranchFromCond(CC);
1624 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1625 ++Count;
1626 }
1627 }
1628 if (FBB) {
1629 // Two-way Conditional branch. Insert the second branch.
1630 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
1631 ++Count;
1632 }
1633 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001634}
1635
Owen Anderson9fa72d92008-08-26 18:03:31 +00001636bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner8869eeb2008-03-09 08:46:19 +00001637 MachineBasicBlock::iterator MI,
1638 unsigned DestReg, unsigned SrcReg,
1639 const TargetRegisterClass *DestRC,
1640 const TargetRegisterClass *SrcRC) const {
Chris Lattner59707122008-03-09 07:58:04 +00001641 if (DestRC == SrcRC) {
1642 unsigned Opc;
1643 if (DestRC == &X86::GR64RegClass) {
1644 Opc = X86::MOV64rr;
1645 } else if (DestRC == &X86::GR32RegClass) {
1646 Opc = X86::MOV32rr;
1647 } else if (DestRC == &X86::GR16RegClass) {
1648 Opc = X86::MOV16rr;
1649 } else if (DestRC == &X86::GR8RegClass) {
1650 Opc = X86::MOV8rr;
1651 } else if (DestRC == &X86::GR32_RegClass) {
1652 Opc = X86::MOV32_rr;
1653 } else if (DestRC == &X86::GR16_RegClass) {
1654 Opc = X86::MOV16_rr;
1655 } else if (DestRC == &X86::RFP32RegClass) {
1656 Opc = X86::MOV_Fp3232;
1657 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1658 Opc = X86::MOV_Fp6464;
1659 } else if (DestRC == &X86::RFP80RegClass) {
1660 Opc = X86::MOV_Fp8080;
1661 } else if (DestRC == &X86::FR32RegClass) {
1662 Opc = X86::FsMOVAPSrr;
1663 } else if (DestRC == &X86::FR64RegClass) {
1664 Opc = X86::FsMOVAPDrr;
1665 } else if (DestRC == &X86::VR128RegClass) {
1666 Opc = X86::MOVAPSrr;
1667 } else if (DestRC == &X86::VR64RegClass) {
1668 Opc = X86::MMX_MOVQ64rr;
1669 } else {
Owen Anderson9fa72d92008-08-26 18:03:31 +00001670 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001671 }
Chris Lattner59707122008-03-09 07:58:04 +00001672 BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001673 return true;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001674 }
Chris Lattner59707122008-03-09 07:58:04 +00001675
1676 // Moving EFLAGS to / from another register requires a push and a pop.
1677 if (SrcRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001678 if (SrcReg != X86::EFLAGS)
1679 return false;
Chris Lattner59707122008-03-09 07:58:04 +00001680 if (DestRC == &X86::GR64RegClass) {
1681 BuildMI(MBB, MI, get(X86::PUSHFQ));
1682 BuildMI(MBB, MI, get(X86::POP64r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001683 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001684 } else if (DestRC == &X86::GR32RegClass) {
1685 BuildMI(MBB, MI, get(X86::PUSHFD));
1686 BuildMI(MBB, MI, get(X86::POP32r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001687 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001688 }
1689 } else if (DestRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001690 if (DestReg != X86::EFLAGS)
1691 return false;
Chris Lattner59707122008-03-09 07:58:04 +00001692 if (SrcRC == &X86::GR64RegClass) {
1693 BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1694 BuildMI(MBB, MI, get(X86::POPFQ));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001695 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001696 } else if (SrcRC == &X86::GR32RegClass) {
1697 BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1698 BuildMI(MBB, MI, get(X86::POPFD));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001699 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001700 }
Owen Anderson8f2c8932007-12-31 06:32:00 +00001701 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001702
Chris Lattner0d128722008-03-09 09:15:31 +00001703 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner8869eeb2008-03-09 08:46:19 +00001704 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner60d14d82008-03-21 06:38:26 +00001705 // Copying from ST(0)/ST(1).
Owen Anderson9fa72d92008-08-26 18:03:31 +00001706 if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1707 // Can only copy from ST(0)/ST(1) right now
1708 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001709 bool isST0 = SrcReg == X86::ST0;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001710 unsigned Opc;
1711 if (DestRC == &X86::RFP32RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001712 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001713 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001714 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001715 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001716 if (DestRC != &X86::RFP80RegClass)
1717 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001718 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001719 }
1720 BuildMI(MBB, MI, get(Opc), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001721 return true;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001722 }
Chris Lattner0d128722008-03-09 09:15:31 +00001723
1724 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1725 if (DestRC == &X86::RSTRegClass) {
1726 // Copying to ST(0). FIXME: handle ST(1) also
Owen Anderson9fa72d92008-08-26 18:03:31 +00001727 if (DestReg != X86::ST0)
1728 // Can only copy to TOS right now
1729 return false;
Chris Lattner0d128722008-03-09 09:15:31 +00001730 unsigned Opc;
1731 if (SrcRC == &X86::RFP32RegClass)
1732 Opc = X86::FpSET_ST0_32;
1733 else if (SrcRC == &X86::RFP64RegClass)
1734 Opc = X86::FpSET_ST0_64;
1735 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001736 if (SrcRC != &X86::RFP80RegClass)
1737 return false;
Chris Lattner0d128722008-03-09 09:15:31 +00001738 Opc = X86::FpSET_ST0_80;
1739 }
1740 BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001741 return true;
Chris Lattner0d128722008-03-09 09:15:31 +00001742 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001743
Owen Anderson9fa72d92008-08-26 18:03:31 +00001744 // Not yet supported!
1745 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001746}
1747
Owen Anderson81875432008-01-01 21:11:32 +00001748static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001749 bool isStackAligned) {
Owen Anderson81875432008-01-01 21:11:32 +00001750 unsigned Opc = 0;
1751 if (RC == &X86::GR64RegClass) {
1752 Opc = X86::MOV64mr;
1753 } else if (RC == &X86::GR32RegClass) {
1754 Opc = X86::MOV32mr;
1755 } else if (RC == &X86::GR16RegClass) {
1756 Opc = X86::MOV16mr;
1757 } else if (RC == &X86::GR8RegClass) {
1758 Opc = X86::MOV8mr;
1759 } else if (RC == &X86::GR32_RegClass) {
1760 Opc = X86::MOV32_mr;
1761 } else if (RC == &X86::GR16_RegClass) {
1762 Opc = X86::MOV16_mr;
1763 } else if (RC == &X86::RFP80RegClass) {
1764 Opc = X86::ST_FpP80m; // pops
1765 } else if (RC == &X86::RFP64RegClass) {
1766 Opc = X86::ST_Fp64m;
1767 } else if (RC == &X86::RFP32RegClass) {
1768 Opc = X86::ST_Fp32m;
1769 } else if (RC == &X86::FR32RegClass) {
1770 Opc = X86::MOVSSmr;
1771 } else if (RC == &X86::FR64RegClass) {
1772 Opc = X86::MOVSDmr;
1773 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001774 // If stack is realigned we can use aligned stores.
1775 Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
Owen Anderson81875432008-01-01 21:11:32 +00001776 } else if (RC == &X86::VR64RegClass) {
1777 Opc = X86::MMX_MOVQ64mr;
1778 } else {
1779 assert(0 && "Unknown regclass");
1780 abort();
1781 }
1782
1783 return Opc;
1784}
1785
1786void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1787 MachineBasicBlock::iterator MI,
1788 unsigned SrcReg, bool isKill, int FrameIdx,
1789 const TargetRegisterClass *RC) const {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001790 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001791 bool isAligned = (RI.getStackAlignment() >= 16) ||
1792 RI.needsStackRealignment(MF);
1793 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Owen Anderson81875432008-01-01 21:11:32 +00001794 addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1795 .addReg(SrcReg, false, false, isKill);
1796}
1797
1798void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1799 bool isKill,
1800 SmallVectorImpl<MachineOperand> &Addr,
1801 const TargetRegisterClass *RC,
1802 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001803 bool isAligned = (RI.getStackAlignment() >= 16) ||
1804 RI.needsStackRealignment(MF);
1805 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Dan Gohman221a4372008-07-07 23:14:23 +00001806 MachineInstrBuilder MIB = BuildMI(MF, get(Opc));
Owen Anderson81875432008-01-01 21:11:32 +00001807 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1808 MIB = X86InstrAddOperand(MIB, Addr[i]);
1809 MIB.addReg(SrcReg, false, false, isKill);
1810 NewMIs.push_back(MIB);
1811}
1812
1813static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001814 bool isStackAligned) {
Owen Anderson81875432008-01-01 21:11:32 +00001815 unsigned Opc = 0;
1816 if (RC == &X86::GR64RegClass) {
1817 Opc = X86::MOV64rm;
1818 } else if (RC == &X86::GR32RegClass) {
1819 Opc = X86::MOV32rm;
1820 } else if (RC == &X86::GR16RegClass) {
1821 Opc = X86::MOV16rm;
1822 } else if (RC == &X86::GR8RegClass) {
1823 Opc = X86::MOV8rm;
1824 } else if (RC == &X86::GR32_RegClass) {
1825 Opc = X86::MOV32_rm;
1826 } else if (RC == &X86::GR16_RegClass) {
1827 Opc = X86::MOV16_rm;
1828 } else if (RC == &X86::RFP80RegClass) {
1829 Opc = X86::LD_Fp80m;
1830 } else if (RC == &X86::RFP64RegClass) {
1831 Opc = X86::LD_Fp64m;
1832 } else if (RC == &X86::RFP32RegClass) {
1833 Opc = X86::LD_Fp32m;
1834 } else if (RC == &X86::FR32RegClass) {
1835 Opc = X86::MOVSSrm;
1836 } else if (RC == &X86::FR64RegClass) {
1837 Opc = X86::MOVSDrm;
1838 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001839 // If stack is realigned we can use aligned loads.
1840 Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
Owen Anderson81875432008-01-01 21:11:32 +00001841 } else if (RC == &X86::VR64RegClass) {
1842 Opc = X86::MMX_MOVQ64rm;
1843 } else {
1844 assert(0 && "Unknown regclass");
1845 abort();
1846 }
1847
1848 return Opc;
1849}
1850
1851void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001852 MachineBasicBlock::iterator MI,
1853 unsigned DestReg, int FrameIdx,
1854 const TargetRegisterClass *RC) const{
1855 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001856 bool isAligned = (RI.getStackAlignment() >= 16) ||
1857 RI.needsStackRealignment(MF);
1858 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Owen Anderson81875432008-01-01 21:11:32 +00001859 addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1860}
1861
1862void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Chenge52c1912008-07-03 09:09:37 +00001863 SmallVectorImpl<MachineOperand> &Addr,
1864 const TargetRegisterClass *RC,
Owen Anderson81875432008-01-01 21:11:32 +00001865 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001866 bool isAligned = (RI.getStackAlignment() >= 16) ||
1867 RI.needsStackRealignment(MF);
1868 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Dan Gohman221a4372008-07-07 23:14:23 +00001869 MachineInstrBuilder MIB = BuildMI(MF, get(Opc), DestReg);
Owen Anderson81875432008-01-01 21:11:32 +00001870 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1871 MIB = X86InstrAddOperand(MIB, Addr[i]);
1872 NewMIs.push_back(MIB);
1873}
1874
Owen Anderson6690c7f2008-01-04 23:57:37 +00001875bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001876 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00001877 const std::vector<CalleeSavedInfo> &CSI) const {
1878 if (CSI.empty())
1879 return false;
1880
Evan Chengc275cf62008-09-26 19:14:21 +00001881 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001882 unsigned SlotSize = is64Bit ? 8 : 4;
1883
1884 MachineFunction &MF = *MBB.getParent();
1885 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1886 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1887
Owen Anderson6690c7f2008-01-04 23:57:37 +00001888 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1889 for (unsigned i = CSI.size(); i != 0; --i) {
1890 unsigned Reg = CSI[i-1].getReg();
1891 // Add the callee-saved register as live-in. It's killed at the spill.
1892 MBB.addLiveIn(Reg);
Dan Gohman4df0e362008-11-26 06:39:12 +00001893 BuildMI(MBB, MI, get(Opc))
1894 .addReg(Reg, /*isDef=*/false, /*isImp=*/false, /*isKill=*/true);
Owen Anderson6690c7f2008-01-04 23:57:37 +00001895 }
1896 return true;
1897}
1898
1899bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001900 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00001901 const std::vector<CalleeSavedInfo> &CSI) const {
1902 if (CSI.empty())
1903 return false;
1904
1905 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1906
1907 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1908 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1909 unsigned Reg = CSI[i].getReg();
1910 BuildMI(MBB, MI, get(Opc), Reg);
1911 }
1912 return true;
1913}
1914
Dan Gohman221a4372008-07-07 23:14:23 +00001915static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Dan Gohman46b948e2008-10-16 01:49:15 +00001916 const SmallVector<MachineOperand,4> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001917 MachineInstr *MI, const TargetInstrInfo &TII) {
1918 // Create the base instruction with the memory operand as the first part.
Dan Gohman221a4372008-07-07 23:14:23 +00001919 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001920 MachineInstrBuilder MIB(NewMI);
1921 unsigned NumAddrOps = MOs.size();
1922 for (unsigned i = 0; i != NumAddrOps; ++i)
1923 MIB = X86InstrAddOperand(MIB, MOs[i]);
1924 if (NumAddrOps < 4) // FrameIndex only
1925 MIB.addImm(1).addReg(0).addImm(0);
1926
1927 // Loop over the rest of the ri operands, converting them over.
Chris Lattner5b930372008-01-07 07:27:27 +00001928 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001929 for (unsigned i = 0; i != NumOps; ++i) {
1930 MachineOperand &MO = MI->getOperand(i+2);
1931 MIB = X86InstrAddOperand(MIB, MO);
1932 }
1933 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1934 MachineOperand &MO = MI->getOperand(i);
1935 MIB = X86InstrAddOperand(MIB, MO);
1936 }
1937 return MIB;
1938}
1939
Dan Gohman221a4372008-07-07 23:14:23 +00001940static MachineInstr *FuseInst(MachineFunction &MF,
1941 unsigned Opcode, unsigned OpNo,
Dan Gohman46b948e2008-10-16 01:49:15 +00001942 const SmallVector<MachineOperand,4> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001943 MachineInstr *MI, const TargetInstrInfo &TII) {
Dan Gohman221a4372008-07-07 23:14:23 +00001944 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001945 MachineInstrBuilder MIB(NewMI);
1946
1947 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1948 MachineOperand &MO = MI->getOperand(i);
1949 if (i == OpNo) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001950 assert(MO.isReg() && "Expected to fold into reg operand!");
Owen Anderson9a184ef2008-01-07 01:35:02 +00001951 unsigned NumAddrOps = MOs.size();
1952 for (unsigned i = 0; i != NumAddrOps; ++i)
1953 MIB = X86InstrAddOperand(MIB, MOs[i]);
1954 if (NumAddrOps < 4) // FrameIndex only
1955 MIB.addImm(1).addReg(0).addImm(0);
1956 } else {
1957 MIB = X86InstrAddOperand(MIB, MO);
1958 }
1959 }
1960 return MIB;
1961}
1962
1963static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
Dan Gohman46b948e2008-10-16 01:49:15 +00001964 const SmallVector<MachineOperand,4> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001965 MachineInstr *MI) {
Dan Gohman221a4372008-07-07 23:14:23 +00001966 MachineFunction &MF = *MI->getParent()->getParent();
1967 MachineInstrBuilder MIB = BuildMI(MF, TII.get(Opcode));
Owen Anderson9a184ef2008-01-07 01:35:02 +00001968
1969 unsigned NumAddrOps = MOs.size();
1970 for (unsigned i = 0; i != NumAddrOps; ++i)
1971 MIB = X86InstrAddOperand(MIB, MOs[i]);
1972 if (NumAddrOps < 4) // FrameIndex only
1973 MIB.addImm(1).addReg(0).addImm(0);
1974 return MIB.addImm(0);
1975}
1976
1977MachineInstr*
Dan Gohman221a4372008-07-07 23:14:23 +00001978X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1979 MachineInstr *MI, unsigned i,
Dan Gohman46b948e2008-10-16 01:49:15 +00001980 const SmallVector<MachineOperand,4> &MOs) const{
Owen Anderson9a184ef2008-01-07 01:35:02 +00001981 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1982 bool isTwoAddrFold = false;
Chris Lattner5b930372008-01-07 07:27:27 +00001983 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00001984 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00001985 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001986
1987 MachineInstr *NewMI = NULL;
1988 // Folding a memory location into the two-address part of a two-address
1989 // instruction is different than folding it other places. It requires
1990 // replacing the *two* registers with the memory location.
1991 if (isTwoAddr && NumOps >= 2 && i < 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001992 MI->getOperand(0).isReg() &&
1993 MI->getOperand(1).isReg() &&
Owen Anderson9a184ef2008-01-07 01:35:02 +00001994 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1995 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1996 isTwoAddrFold = true;
1997 } else if (i == 0) { // If operand 0
1998 if (MI->getOpcode() == X86::MOV16r0)
1999 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2000 else if (MI->getOpcode() == X86::MOV32r0)
2001 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2002 else if (MI->getOpcode() == X86::MOV64r0)
2003 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2004 else if (MI->getOpcode() == X86::MOV8r0)
2005 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
Evan Chenge52c1912008-07-03 09:09:37 +00002006 if (NewMI)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002007 return NewMI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002008
2009 OpcodeTablePtr = &RegOp2MemOpTable0;
2010 } else if (i == 1) {
2011 OpcodeTablePtr = &RegOp2MemOpTable1;
2012 } else if (i == 2) {
2013 OpcodeTablePtr = &RegOp2MemOpTable2;
2014 }
2015
2016 // If table selected...
2017 if (OpcodeTablePtr) {
2018 // Find the Opcode to fuse
2019 DenseMap<unsigned*, unsigned>::iterator I =
2020 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2021 if (I != OpcodeTablePtr->end()) {
2022 if (isTwoAddrFold)
Dan Gohman221a4372008-07-07 23:14:23 +00002023 NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002024 else
Dan Gohman221a4372008-07-07 23:14:23 +00002025 NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002026 return NewMI;
2027 }
2028 }
2029
2030 // No fusion
2031 if (PrintFailedFusing)
Chris Lattnerb4cbb682008-01-09 00:37:18 +00002032 cerr << "We failed to fuse operand " << i << *MI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002033 return NULL;
2034}
2035
2036
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002037MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
2038 MachineInstr *MI,
Dan Gohman46b948e2008-10-16 01:49:15 +00002039 const SmallVectorImpl<unsigned> &Ops,
Owen Anderson9a184ef2008-01-07 01:35:02 +00002040 int FrameIndex) const {
2041 // Check switch flag
2042 if (NoFusing) return NULL;
2043
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002044 const MachineFrameInfo *MFI = MF.getFrameInfo();
2045 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2046 // FIXME: Move alignment requirement into tables?
2047 if (Alignment < 16) {
2048 switch (MI->getOpcode()) {
2049 default: break;
2050 // Not always safe to fold movsd into these instructions since their load
2051 // folding variants expects the address to be 16 byte aligned.
2052 case X86::FsANDNPDrr:
2053 case X86::FsANDNPSrr:
2054 case X86::FsANDPDrr:
2055 case X86::FsANDPSrr:
2056 case X86::FsORPDrr:
2057 case X86::FsORPSrr:
2058 case X86::FsXORPDrr:
2059 case X86::FsXORPSrr:
2060 return NULL;
2061 }
2062 }
2063
Owen Anderson9a184ef2008-01-07 01:35:02 +00002064 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2065 unsigned NewOpc = 0;
2066 switch (MI->getOpcode()) {
2067 default: return NULL;
2068 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2069 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2070 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2071 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2072 }
2073 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002074 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002075 MI->getOperand(1).ChangeToImmediate(0);
2076 } else if (Ops.size() != 1)
2077 return NULL;
2078
2079 SmallVector<MachineOperand,4> MOs;
2080 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
Dan Gohman221a4372008-07-07 23:14:23 +00002081 return foldMemoryOperand(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002082}
2083
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002084MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
2085 MachineInstr *MI,
Dan Gohman46b948e2008-10-16 01:49:15 +00002086 const SmallVectorImpl<unsigned> &Ops,
Chris Lattnerb4cbb682008-01-09 00:37:18 +00002087 MachineInstr *LoadMI) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002088 // Check switch flag
2089 if (NoFusing) return NULL;
2090
Dan Gohmand0e8c752008-07-12 00:10:52 +00002091 // Determine the alignment of the load.
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002092 unsigned Alignment = 0;
Dan Gohmand0e8c752008-07-12 00:10:52 +00002093 if (LoadMI->hasOneMemOperand())
2094 Alignment = LoadMI->memoperands_begin()->getAlignment();
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002095
2096 // FIXME: Move alignment requirement into tables?
2097 if (Alignment < 16) {
2098 switch (MI->getOpcode()) {
2099 default: break;
2100 // Not always safe to fold movsd into these instructions since their load
2101 // folding variants expects the address to be 16 byte aligned.
2102 case X86::FsANDNPDrr:
2103 case X86::FsANDNPSrr:
2104 case X86::FsANDPDrr:
2105 case X86::FsANDPSrr:
2106 case X86::FsORPDrr:
2107 case X86::FsORPSrr:
2108 case X86::FsXORPDrr:
2109 case X86::FsXORPSrr:
2110 return NULL;
2111 }
2112 }
2113
Owen Anderson9a184ef2008-01-07 01:35:02 +00002114 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2115 unsigned NewOpc = 0;
2116 switch (MI->getOpcode()) {
2117 default: return NULL;
2118 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2119 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2120 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2121 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2122 }
2123 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002124 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002125 MI->getOperand(1).ChangeToImmediate(0);
2126 } else if (Ops.size() != 1)
2127 return NULL;
2128
2129 SmallVector<MachineOperand,4> MOs;
Chris Lattner5b930372008-01-07 07:27:27 +00002130 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002131 for (unsigned i = NumOps - 4; i != NumOps; ++i)
2132 MOs.push_back(LoadMI->getOperand(i));
Dan Gohman221a4372008-07-07 23:14:23 +00002133 return foldMemoryOperand(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002134}
2135
2136
Dan Gohman46b948e2008-10-16 01:49:15 +00002137bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2138 const SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002139 // Check switch flag
2140 if (NoFusing) return 0;
2141
2142 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2143 switch (MI->getOpcode()) {
2144 default: return false;
2145 case X86::TEST8rr:
2146 case X86::TEST16rr:
2147 case X86::TEST32rr:
2148 case X86::TEST64rr:
2149 return true;
2150 }
2151 }
2152
2153 if (Ops.size() != 1)
2154 return false;
2155
2156 unsigned OpNum = Ops[0];
2157 unsigned Opc = MI->getOpcode();
Chris Lattner5b930372008-01-07 07:27:27 +00002158 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002159 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002160 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002161
2162 // Folding a memory location into the two-address part of a two-address
2163 // instruction is different than folding it other places. It requires
2164 // replacing the *two* registers with the memory location.
2165 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2166 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2167 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2168 } else if (OpNum == 0) { // If operand 0
2169 switch (Opc) {
2170 case X86::MOV16r0:
2171 case X86::MOV32r0:
2172 case X86::MOV64r0:
2173 case X86::MOV8r0:
2174 return true;
2175 default: break;
2176 }
2177 OpcodeTablePtr = &RegOp2MemOpTable0;
2178 } else if (OpNum == 1) {
2179 OpcodeTablePtr = &RegOp2MemOpTable1;
2180 } else if (OpNum == 2) {
2181 OpcodeTablePtr = &RegOp2MemOpTable2;
2182 }
2183
2184 if (OpcodeTablePtr) {
2185 // Find the Opcode to fuse
2186 DenseMap<unsigned*, unsigned>::iterator I =
2187 OpcodeTablePtr->find((unsigned*)Opc);
2188 if (I != OpcodeTablePtr->end())
2189 return true;
2190 }
2191 return false;
2192}
2193
2194bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2195 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2196 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2197 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2198 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2199 if (I == MemOp2RegOpTable.end())
2200 return false;
2201 unsigned Opc = I->second.first;
2202 unsigned Index = I->second.second & 0xf;
2203 bool FoldedLoad = I->second.second & (1 << 4);
2204 bool FoldedStore = I->second.second & (1 << 5);
2205 if (UnfoldLoad && !FoldedLoad)
2206 return false;
2207 UnfoldLoad &= FoldedLoad;
2208 if (UnfoldStore && !FoldedStore)
2209 return false;
2210 UnfoldStore &= FoldedStore;
2211
Chris Lattner5b930372008-01-07 07:27:27 +00002212 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002213 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002214 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002215 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2216 SmallVector<MachineOperand,4> AddrOps;
2217 SmallVector<MachineOperand,2> BeforeOps;
2218 SmallVector<MachineOperand,2> AfterOps;
2219 SmallVector<MachineOperand,4> ImpOps;
2220 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2221 MachineOperand &Op = MI->getOperand(i);
2222 if (i >= Index && i < Index+4)
2223 AddrOps.push_back(Op);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002224 else if (Op.isReg() && Op.isImplicit())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002225 ImpOps.push_back(Op);
2226 else if (i < Index)
2227 BeforeOps.push_back(Op);
2228 else if (i > Index)
2229 AfterOps.push_back(Op);
2230 }
2231
2232 // Emit the load instruction.
2233 if (UnfoldLoad) {
2234 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2235 if (UnfoldStore) {
2236 // Address operands cannot be marked isKill.
2237 for (unsigned i = 1; i != 5; ++i) {
2238 MachineOperand &MO = NewMIs[0]->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002239 if (MO.isReg())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002240 MO.setIsKill(false);
2241 }
2242 }
2243 }
2244
2245 // Emit the data processing instruction.
Dan Gohman221a4372008-07-07 23:14:23 +00002246 MachineInstr *DataMI = MF.CreateMachineInstr(TID, true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002247 MachineInstrBuilder MIB(DataMI);
2248
2249 if (FoldedStore)
2250 MIB.addReg(Reg, true);
2251 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2252 MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2253 if (FoldedLoad)
2254 MIB.addReg(Reg);
2255 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2256 MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2257 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2258 MachineOperand &MO = ImpOps[i];
2259 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2260 }
2261 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2262 unsigned NewOpc = 0;
2263 switch (DataMI->getOpcode()) {
2264 default: break;
2265 case X86::CMP64ri32:
2266 case X86::CMP32ri:
2267 case X86::CMP16ri:
2268 case X86::CMP8ri: {
2269 MachineOperand &MO0 = DataMI->getOperand(0);
2270 MachineOperand &MO1 = DataMI->getOperand(1);
2271 if (MO1.getImm() == 0) {
2272 switch (DataMI->getOpcode()) {
2273 default: break;
2274 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2275 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2276 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2277 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2278 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00002279 DataMI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002280 MO1.ChangeToRegister(MO0.getReg(), false);
2281 }
2282 }
2283 }
2284 NewMIs.push_back(DataMI);
2285
2286 // Emit the store instruction.
2287 if (UnfoldStore) {
2288 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002289 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002290 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2291 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2292 }
2293
2294 return true;
2295}
2296
2297bool
2298X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2299 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohmanbd68c792008-07-17 19:10:17 +00002300 if (!N->isMachineOpcode())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002301 return false;
2302
2303 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
Dan Gohmanbd68c792008-07-17 19:10:17 +00002304 MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002305 if (I == MemOp2RegOpTable.end())
2306 return false;
2307 unsigned Opc = I->second.first;
2308 unsigned Index = I->second.second & 0xf;
2309 bool FoldedLoad = I->second.second & (1 << 4);
2310 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner5b930372008-01-07 07:27:27 +00002311 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002312 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002313 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002314 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
Dan Gohman8181bd12008-07-27 21:46:04 +00002315 std::vector<SDValue> AddrOps;
2316 std::vector<SDValue> BeforeOps;
2317 std::vector<SDValue> AfterOps;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002318 unsigned NumOps = N->getNumOperands();
2319 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman8181bd12008-07-27 21:46:04 +00002320 SDValue Op = N->getOperand(i);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002321 if (i >= Index && i < Index+4)
2322 AddrOps.push_back(Op);
2323 else if (i < Index)
2324 BeforeOps.push_back(Op);
2325 else if (i > Index)
2326 AfterOps.push_back(Op);
2327 }
Dan Gohman8181bd12008-07-27 21:46:04 +00002328 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002329 AddrOps.push_back(Chain);
2330
2331 // Emit the load instruction.
2332 SDNode *Load = 0;
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002333 const MachineFunction &MF = DAG.getMachineFunction();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002334 if (FoldedLoad) {
Duncan Sands92c43912008-06-06 12:08:01 +00002335 MVT VT = *RC->vt_begin();
Evan Cheng47906a22008-07-21 06:34:17 +00002336 bool isAligned = (RI.getStackAlignment() >= 16) ||
2337 RI.needsStackRealignment(MF);
2338 Load = DAG.getTargetNode(getLoadRegOpcode(RC, isAligned),
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002339 VT, MVT::Other,
2340 &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002341 NewNodes.push_back(Load);
2342 }
2343
2344 // Emit the data processing instruction.
Duncan Sands92c43912008-06-06 12:08:01 +00002345 std::vector<MVT> VTs;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002346 const TargetRegisterClass *DstRC = 0;
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002347 if (TID.getNumDefs() > 0) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002348 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002349 DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002350 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2351 VTs.push_back(*DstRC->vt_begin());
2352 }
2353 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Duncan Sands92c43912008-06-06 12:08:01 +00002354 MVT VT = N->getValueType(i);
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002355 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002356 VTs.push_back(VT);
2357 }
2358 if (Load)
Dan Gohman8181bd12008-07-27 21:46:04 +00002359 BeforeOps.push_back(SDValue(Load, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002360 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2361 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2362 NewNodes.push_back(NewNode);
2363
2364 // Emit the store instruction.
2365 if (FoldedStore) {
2366 AddrOps.pop_back();
Dan Gohman8181bd12008-07-27 21:46:04 +00002367 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002368 AddrOps.push_back(Chain);
Evan Cheng47906a22008-07-21 06:34:17 +00002369 bool isAligned = (RI.getStackAlignment() >= 16) ||
2370 RI.needsStackRealignment(MF);
2371 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, isAligned),
2372 MVT::Other, &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002373 NewNodes.push_back(Store);
2374 }
2375
2376 return true;
2377}
2378
2379unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2380 bool UnfoldLoad, bool UnfoldStore) const {
2381 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2382 MemOp2RegOpTable.find((unsigned*)Opc);
2383 if (I == MemOp2RegOpTable.end())
2384 return 0;
2385 bool FoldedLoad = I->second.second & (1 << 4);
2386 bool FoldedStore = I->second.second & (1 << 5);
2387 if (UnfoldLoad && !FoldedLoad)
2388 return 0;
2389 if (UnfoldStore && !FoldedStore)
2390 return 0;
2391 return I->second.first;
2392}
2393
Dan Gohman46b948e2008-10-16 01:49:15 +00002394bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002395 if (MBB.empty()) return false;
2396
2397 switch (MBB.back().getOpcode()) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002398 case X86::TCRETURNri:
2399 case X86::TCRETURNdi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002400 case X86::RET: // Return.
2401 case X86::RETI:
2402 case X86::TAILJMPd:
2403 case X86::TAILJMPr:
2404 case X86::TAILJMPm:
2405 case X86::JMP: // Uncond branch.
2406 case X86::JMP32r: // Indirect branch.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002407 case X86::JMP64r: // Indirect branch (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002408 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002409 case X86::JMP64m: // Indirect branch through mem (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002410 return true;
2411 default: return false;
2412 }
2413}
2414
2415bool X86InstrInfo::
Owen Andersond131b5b2008-08-14 22:49:33 +00002416ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002417 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Evan Chenge3f1a412008-08-29 23:21:31 +00002418 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
Dan Gohman6a00fcb2008-10-21 03:29:32 +00002419 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2420 return true;
Evan Chenge3f1a412008-08-29 23:21:31 +00002421 Cond[0].setImm(GetOppositeBranchCondition(CC));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002422 return false;
2423}
2424
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002425bool X86InstrInfo::
2426IgnoreRegisterClassBarriers(const TargetRegisterClass *RC) const {
2427 // FIXME: Ignore bariers of x87 stack registers for now. We can't
2428 // allow any loads of these registers before FpGet_ST0_80.
2429 return RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2430 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass;
2431}
2432
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002433const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2434 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2435 if (Subtarget->is64Bit())
2436 return &X86::GR64RegClass;
2437 else
2438 return &X86::GR32RegClass;
2439}
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002440
2441unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2442 switch (Desc->TSFlags & X86II::ImmMask) {
2443 case X86II::Imm8: return 1;
2444 case X86II::Imm16: return 2;
2445 case X86II::Imm32: return 4;
2446 case X86II::Imm64: return 8;
2447 default: assert(0 && "Immediate size not set!");
2448 return 0;
2449 }
2450}
2451
2452/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2453/// e.g. r8, xmm8, etc.
2454bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002455 if (!MO.isReg()) return false;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002456 switch (MO.getReg()) {
2457 default: break;
2458 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2459 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2460 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2461 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2462 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2463 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2464 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2465 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2466 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2467 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2468 return true;
2469 }
2470 return false;
2471}
2472
2473
2474/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2475/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2476/// size, and 3) use of X86-64 extended registers.
2477unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2478 unsigned REX = 0;
2479 const TargetInstrDesc &Desc = MI.getDesc();
2480
2481 // Pseudo instructions do not need REX prefix byte.
2482 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2483 return 0;
2484 if (Desc.TSFlags & X86II::REX_W)
2485 REX |= 1 << 3;
2486
2487 unsigned NumOps = Desc.getNumOperands();
2488 if (NumOps) {
2489 bool isTwoAddr = NumOps > 1 &&
2490 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2491
2492 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2493 unsigned i = isTwoAddr ? 1 : 0;
2494 for (unsigned e = NumOps; i != e; ++i) {
2495 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002496 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002497 unsigned Reg = MO.getReg();
2498 if (isX86_64NonExtLowByteReg(Reg))
2499 REX |= 0x40;
2500 }
2501 }
2502
2503 switch (Desc.TSFlags & X86II::FormMask) {
2504 case X86II::MRMInitReg:
2505 if (isX86_64ExtendedReg(MI.getOperand(0)))
2506 REX |= (1 << 0) | (1 << 2);
2507 break;
2508 case X86II::MRMSrcReg: {
2509 if (isX86_64ExtendedReg(MI.getOperand(0)))
2510 REX |= 1 << 2;
2511 i = isTwoAddr ? 2 : 1;
2512 for (unsigned e = NumOps; i != e; ++i) {
2513 const MachineOperand& MO = MI.getOperand(i);
2514 if (isX86_64ExtendedReg(MO))
2515 REX |= 1 << 0;
2516 }
2517 break;
2518 }
2519 case X86II::MRMSrcMem: {
2520 if (isX86_64ExtendedReg(MI.getOperand(0)))
2521 REX |= 1 << 2;
2522 unsigned Bit = 0;
2523 i = isTwoAddr ? 2 : 1;
2524 for (; i != NumOps; ++i) {
2525 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002526 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002527 if (isX86_64ExtendedReg(MO))
2528 REX |= 1 << Bit;
2529 Bit++;
2530 }
2531 }
2532 break;
2533 }
2534 case X86II::MRM0m: case X86II::MRM1m:
2535 case X86II::MRM2m: case X86II::MRM3m:
2536 case X86II::MRM4m: case X86II::MRM5m:
2537 case X86II::MRM6m: case X86II::MRM7m:
2538 case X86II::MRMDestMem: {
2539 unsigned e = isTwoAddr ? 5 : 4;
2540 i = isTwoAddr ? 1 : 0;
2541 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2542 REX |= 1 << 2;
2543 unsigned Bit = 0;
2544 for (; i != e; ++i) {
2545 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002546 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002547 if (isX86_64ExtendedReg(MO))
2548 REX |= 1 << Bit;
2549 Bit++;
2550 }
2551 }
2552 break;
2553 }
2554 default: {
2555 if (isX86_64ExtendedReg(MI.getOperand(0)))
2556 REX |= 1 << 0;
2557 i = isTwoAddr ? 2 : 1;
2558 for (unsigned e = NumOps; i != e; ++i) {
2559 const MachineOperand& MO = MI.getOperand(i);
2560 if (isX86_64ExtendedReg(MO))
2561 REX |= 1 << 2;
2562 }
2563 break;
2564 }
2565 }
2566 }
2567 return REX;
2568}
2569
2570/// sizePCRelativeBlockAddress - This method returns the size of a PC
2571/// relative block address instruction
2572///
2573static unsigned sizePCRelativeBlockAddress() {
2574 return 4;
2575}
2576
2577/// sizeGlobalAddress - Give the size of the emission of this global address
2578///
2579static unsigned sizeGlobalAddress(bool dword) {
2580 return dword ? 8 : 4;
2581}
2582
2583/// sizeConstPoolAddress - Give the size of the emission of this constant
2584/// pool address
2585///
2586static unsigned sizeConstPoolAddress(bool dword) {
2587 return dword ? 8 : 4;
2588}
2589
2590/// sizeExternalSymbolAddress - Give the size of the emission of this external
2591/// symbol
2592///
2593static unsigned sizeExternalSymbolAddress(bool dword) {
2594 return dword ? 8 : 4;
2595}
2596
2597/// sizeJumpTableAddress - Give the size of the emission of this jump
2598/// table address
2599///
2600static unsigned sizeJumpTableAddress(bool dword) {
2601 return dword ? 8 : 4;
2602}
2603
2604static unsigned sizeConstant(unsigned Size) {
2605 return Size;
2606}
2607
2608static unsigned sizeRegModRMByte(){
2609 return 1;
2610}
2611
2612static unsigned sizeSIBByte(){
2613 return 1;
2614}
2615
2616static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2617 unsigned FinalSize = 0;
2618 // If this is a simple integer displacement that doesn't require a relocation.
2619 if (!RelocOp) {
2620 FinalSize += sizeConstant(4);
2621 return FinalSize;
2622 }
2623
2624 // Otherwise, this is something that requires a relocation.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002625 if (RelocOp->isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002626 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002627 } else if (RelocOp->isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002628 FinalSize += sizeConstPoolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002629 } else if (RelocOp->isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002630 FinalSize += sizeJumpTableAddress(false);
2631 } else {
2632 assert(0 && "Unknown value to relocate!");
2633 }
2634 return FinalSize;
2635}
2636
2637static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2638 bool IsPIC, bool Is64BitMode) {
2639 const MachineOperand &Op3 = MI.getOperand(Op+3);
2640 int DispVal = 0;
2641 const MachineOperand *DispForReloc = 0;
2642 unsigned FinalSize = 0;
2643
2644 // Figure out what sort of displacement we have to handle here.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002645 if (Op3.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002646 DispForReloc = &Op3;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002647 } else if (Op3.isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002648 if (Is64BitMode || IsPIC) {
2649 DispForReloc = &Op3;
2650 } else {
2651 DispVal = 1;
2652 }
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002653 } else if (Op3.isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002654 if (Is64BitMode || IsPIC) {
2655 DispForReloc = &Op3;
2656 } else {
2657 DispVal = 1;
2658 }
2659 } else {
2660 DispVal = 1;
2661 }
2662
2663 const MachineOperand &Base = MI.getOperand(Op);
2664 const MachineOperand &IndexReg = MI.getOperand(Op+2);
2665
2666 unsigned BaseReg = Base.getReg();
2667
2668 // Is a SIB byte needed?
2669 if (IndexReg.getReg() == 0 &&
2670 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2671 if (BaseReg == 0) { // Just a displacement?
2672 // Emit special case [disp32] encoding
2673 ++FinalSize;
2674 FinalSize += getDisplacementFieldSize(DispForReloc);
2675 } else {
2676 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2677 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2678 // Emit simple indirect register encoding... [EAX] f.e.
2679 ++FinalSize;
2680 // Be pessimistic and assume it's a disp32, not a disp8
2681 } else {
2682 // Emit the most general non-SIB encoding: [REG+disp32]
2683 ++FinalSize;
2684 FinalSize += getDisplacementFieldSize(DispForReloc);
2685 }
2686 }
2687
2688 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2689 assert(IndexReg.getReg() != X86::ESP &&
2690 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2691
2692 bool ForceDisp32 = false;
2693 if (BaseReg == 0 || DispForReloc) {
2694 // Emit the normal disp32 encoding.
2695 ++FinalSize;
2696 ForceDisp32 = true;
2697 } else {
2698 ++FinalSize;
2699 }
2700
2701 FinalSize += sizeSIBByte();
2702
2703 // Do we need to output a displacement?
2704 if (DispVal != 0 || ForceDisp32) {
2705 FinalSize += getDisplacementFieldSize(DispForReloc);
2706 }
2707 }
2708 return FinalSize;
2709}
2710
2711
2712static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2713 const TargetInstrDesc *Desc,
2714 bool IsPIC, bool Is64BitMode) {
2715
2716 unsigned Opcode = Desc->Opcode;
2717 unsigned FinalSize = 0;
2718
2719 // Emit the lock opcode prefix as needed.
2720 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2721
Anton Korobeynikov4b7be802008-10-12 10:30:11 +00002722 // Emit segment overrid opcode prefix as needed.
2723 switch (Desc->TSFlags & X86II::SegOvrMask) {
2724 case X86II::FS:
2725 case X86II::GS:
2726 ++FinalSize;
2727 break;
2728 default: assert(0 && "Invalid segment!");
2729 case 0: break; // No segment override!
2730 }
2731
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002732 // Emit the repeat opcode prefix as needed.
2733 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2734
2735 // Emit the operand size opcode prefix as needed.
2736 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2737
2738 // Emit the address size opcode prefix as needed.
2739 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2740
2741 bool Need0FPrefix = false;
2742 switch (Desc->TSFlags & X86II::Op0Mask) {
2743 case X86II::TB: // Two-byte opcode prefix
2744 case X86II::T8: // 0F 38
2745 case X86II::TA: // 0F 3A
2746 Need0FPrefix = true;
2747 break;
2748 case X86II::REP: break; // already handled.
2749 case X86II::XS: // F3 0F
2750 ++FinalSize;
2751 Need0FPrefix = true;
2752 break;
2753 case X86II::XD: // F2 0F
2754 ++FinalSize;
2755 Need0FPrefix = true;
2756 break;
2757 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2758 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2759 ++FinalSize;
2760 break; // Two-byte opcode prefix
2761 default: assert(0 && "Invalid prefix!");
2762 case 0: break; // No prefix!
2763 }
2764
2765 if (Is64BitMode) {
2766 // REX prefix
2767 unsigned REX = X86InstrInfo::determineREX(MI);
2768 if (REX)
2769 ++FinalSize;
2770 }
2771
2772 // 0x0F escape code must be emitted just before the opcode.
2773 if (Need0FPrefix)
2774 ++FinalSize;
2775
2776 switch (Desc->TSFlags & X86II::Op0Mask) {
2777 case X86II::T8: // 0F 38
2778 ++FinalSize;
2779 break;
2780 case X86II::TA: // 0F 3A
2781 ++FinalSize;
2782 break;
2783 }
2784
2785 // If this is a two-address instruction, skip one of the register operands.
2786 unsigned NumOps = Desc->getNumOperands();
2787 unsigned CurOp = 0;
2788 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2789 CurOp++;
2790
2791 switch (Desc->TSFlags & X86II::FormMask) {
2792 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2793 case X86II::Pseudo:
2794 // Remember the current PC offset, this is the PIC relocation
2795 // base address.
2796 switch (Opcode) {
2797 default:
2798 break;
2799 case TargetInstrInfo::INLINEASM: {
2800 const MachineFunction *MF = MI.getParent()->getParent();
2801 const char *AsmStr = MI.getOperand(0).getSymbolName();
2802 const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2803 FinalSize += AI->getInlineAsmLength(AsmStr);
2804 break;
2805 }
Dan Gohmanfa607c92008-07-01 00:05:16 +00002806 case TargetInstrInfo::DBG_LABEL:
2807 case TargetInstrInfo::EH_LABEL:
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002808 break;
2809 case TargetInstrInfo::IMPLICIT_DEF:
2810 case TargetInstrInfo::DECLARE:
2811 case X86::DWARF_LOC:
2812 case X86::FP_REG_KILL:
2813 break;
2814 case X86::MOVPC32r: {
2815 // This emits the "call" portion of this pseudo instruction.
2816 ++FinalSize;
2817 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2818 break;
2819 }
Nicolas Geoffray81580792008-10-25 15:22:06 +00002820 case X86::TLS_tp:
2821 case X86::TLS_gs_ri:
2822 FinalSize += 2;
2823 FinalSize += sizeGlobalAddress(false);
2824 break;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002825 }
2826 CurOp = NumOps;
2827 break;
2828 case X86II::RawFrm:
2829 ++FinalSize;
2830
2831 if (CurOp != NumOps) {
2832 const MachineOperand &MO = MI.getOperand(CurOp++);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002833 if (MO.isMBB()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002834 FinalSize += sizePCRelativeBlockAddress();
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002835 } else if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002836 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002837 } else if (MO.isSymbol()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002838 FinalSize += sizeExternalSymbolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002839 } else if (MO.isImm()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002840 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2841 } else {
2842 assert(0 && "Unknown RawFrm operand!");
2843 }
2844 }
2845 break;
2846
2847 case X86II::AddRegFrm:
2848 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002849 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002850
2851 if (CurOp != NumOps) {
2852 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2853 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002854 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002855 FinalSize += sizeConstant(Size);
2856 else {
2857 bool dword = false;
2858 if (Opcode == X86::MOV64ri)
2859 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002860 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002861 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002862 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002863 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002864 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002865 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002866 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002867 FinalSize += sizeJumpTableAddress(dword);
2868 }
2869 }
2870 break;
2871
2872 case X86II::MRMDestReg: {
2873 ++FinalSize;
2874 FinalSize += sizeRegModRMByte();
2875 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002876 if (CurOp != NumOps) {
2877 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002878 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002879 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002880 break;
2881 }
2882 case X86II::MRMDestMem: {
2883 ++FinalSize;
2884 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2885 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002886 if (CurOp != NumOps) {
2887 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002888 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002889 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002890 break;
2891 }
2892
2893 case X86II::MRMSrcReg:
2894 ++FinalSize;
2895 FinalSize += sizeRegModRMByte();
2896 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002897 if (CurOp != NumOps) {
2898 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002899 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002900 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002901 break;
2902
2903 case X86II::MRMSrcMem: {
2904
2905 ++FinalSize;
2906 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
2907 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002908 if (CurOp != NumOps) {
2909 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002910 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002911 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002912 break;
2913 }
2914
2915 case X86II::MRM0r: case X86II::MRM1r:
2916 case X86II::MRM2r: case X86II::MRM3r:
2917 case X86II::MRM4r: case X86II::MRM5r:
2918 case X86II::MRM6r: case X86II::MRM7r:
2919 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002920 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002921 FinalSize += sizeRegModRMByte();
2922
2923 if (CurOp != NumOps) {
2924 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2925 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002926 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002927 FinalSize += sizeConstant(Size);
2928 else {
2929 bool dword = false;
2930 if (Opcode == X86::MOV64ri32)
2931 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002932 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002933 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002934 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002935 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002936 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002937 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002938 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002939 FinalSize += sizeJumpTableAddress(dword);
2940 }
2941 }
2942 break;
2943
2944 case X86II::MRM0m: case X86II::MRM1m:
2945 case X86II::MRM2m: case X86II::MRM3m:
2946 case X86II::MRM4m: case X86II::MRM5m:
2947 case X86II::MRM6m: case X86II::MRM7m: {
2948
2949 ++FinalSize;
2950 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2951 CurOp += 4;
2952
2953 if (CurOp != NumOps) {
2954 const MachineOperand &MO = MI.getOperand(CurOp++);
2955 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002956 if (MO.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002957 FinalSize += sizeConstant(Size);
2958 else {
2959 bool dword = false;
2960 if (Opcode == X86::MOV64mi32)
2961 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002962 if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002963 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002964 } else if (MO.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002965 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002966 else if (MO.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002967 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002968 else if (MO.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002969 FinalSize += sizeJumpTableAddress(dword);
2970 }
2971 }
2972 break;
2973 }
2974
2975 case X86II::MRMInitReg:
2976 ++FinalSize;
2977 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
2978 FinalSize += sizeRegModRMByte();
2979 ++CurOp;
2980 break;
2981 }
2982
2983 if (!Desc->isVariadic() && CurOp != NumOps) {
2984 cerr << "Cannot determine size: ";
2985 MI.dump();
2986 cerr << '\n';
2987 abort();
2988 }
2989
2990
2991 return FinalSize;
2992}
2993
2994
2995unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
2996 const TargetInstrDesc &Desc = MI->getDesc();
2997 bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
Dan Gohmanb41dfba2008-05-14 01:58:56 +00002998 bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002999 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
3000 if (Desc.getOpcode() == X86::MOVPC32r) {
3001 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
3002 }
3003 return Size;
3004}
Dan Gohmanb60482f2008-09-23 18:22:58 +00003005
Dan Gohman882ab732008-09-30 00:58:23 +00003006/// getGlobalBaseReg - Return a virtual register initialized with the
3007/// the global base register value. Output instructions required to
3008/// initialize the register in the function entry block, if necessary.
Dan Gohmanb60482f2008-09-23 18:22:58 +00003009///
Dan Gohman882ab732008-09-30 00:58:23 +00003010unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3011 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3012 "X86-64 PIC uses RIP relative addressing");
3013
3014 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3015 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3016 if (GlobalBaseReg != 0)
3017 return GlobalBaseReg;
3018
Dan Gohmanb60482f2008-09-23 18:22:58 +00003019 // Insert the set of GlobalBaseReg into the first MBB of the function
3020 MachineBasicBlock &FirstMBB = MF->front();
3021 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3022 MachineRegisterInfo &RegInfo = MF->getRegInfo();
3023 unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3024
3025 const TargetInstrInfo *TII = TM.getInstrInfo();
3026 // Operand of MovePCtoStack is completely ignored by asm printer. It's
3027 // only used in JIT code emission as displacement to pc.
3028 BuildMI(FirstMBB, MBBI, TII->get(X86::MOVPC32r), PC).addImm(0);
3029
3030 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3031 // not to pc, but to _GLOBAL_ADDRESS_TABLE_ external
3032 if (TM.getRelocationModel() == Reloc::PIC_ &&
3033 TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
Dan Gohman882ab732008-09-30 00:58:23 +00003034 GlobalBaseReg =
Dan Gohmanb60482f2008-09-23 18:22:58 +00003035 RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3036 BuildMI(FirstMBB, MBBI, TII->get(X86::ADD32ri), GlobalBaseReg)
3037 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
Dan Gohman882ab732008-09-30 00:58:23 +00003038 } else {
3039 GlobalBaseReg = PC;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003040 }
3041
Dan Gohman882ab732008-09-30 00:58:23 +00003042 X86FI->setGlobalBaseReg(GlobalBaseReg);
3043 return GlobalBaseReg;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003044}