blob: 5df6f3725a3e3c4b0c22aff81029f6fb5b90e2d7 [file] [log] [blame]
Chris Lattner4fd56002002-05-08 22:19:27 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner4fd56002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattner90461932010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattner4fd56002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattner4fd56002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattner08b43922005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattner4fd56002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Chris Lattner0975ed52005-05-07 04:24:13 +000025#include "llvm/Constants.h"
Chris Lattnerae74f552006-04-28 04:14:49 +000026#include "llvm/DerivedTypes.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000027#include "llvm/Function.h"
Misha Brukmand8e1eea2004-07-29 17:05:13 +000028#include "llvm/Instructions.h"
Dale Johannesen03afd022009-03-06 01:41:59 +000029#include "llvm/IntrinsicInst.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000030#include "llvm/Pass.h"
Chris Lattnerc9fd0972005-05-08 20:09:57 +000031#include "llvm/Assembly/Writer.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000032#include "llvm/Support/CFG.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000033#include "llvm/Support/Debug.h"
Chris Lattnerd3c7b732009-03-31 22:13:29 +000034#include "llvm/Support/ValueHandle.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000035#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000036#include "llvm/ADT/PostOrderIterator.h"
37#include "llvm/ADT/Statistic.h"
Chris Lattnerec531232009-12-31 07:33:14 +000038#include "llvm/ADT/DenseMap.h"
Chris Lattnerc0649ac2005-05-07 21:59:39 +000039#include <algorithm>
Chris Lattnerd7456022004-01-09 06:02:20 +000040using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000041
Chris Lattner0e5f4992006-12-19 21:40:18 +000042STATISTIC(NumLinear , "Number of insts linearized");
43STATISTIC(NumChanged, "Number of insts reassociated");
44STATISTIC(NumAnnihil, "Number of expr tree annihilated");
45STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnera92f6962002-10-01 22:38:41 +000046
Chris Lattner0e5f4992006-12-19 21:40:18 +000047namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000048 struct ValueEntry {
Chris Lattnerc0649ac2005-05-07 21:59:39 +000049 unsigned Rank;
50 Value *Op;
51 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
52 };
53 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
54 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
55 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000056}
Chris Lattnerc0649ac2005-05-07 21:59:39 +000057
Devang Patel50cacb22008-11-21 21:00:20 +000058#ifndef NDEBUG
Chris Lattnere5022fe2006-03-04 09:31:13 +000059/// PrintOps - Print out the expression identified in the Ops list.
60///
Chris Lattner9f7b7082009-12-31 18:40:32 +000061static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere5022fe2006-03-04 09:31:13 +000062 Module *M = I->getParent()->getParent()->getParent();
David Greenea1fa76c2010-01-05 01:27:24 +000063 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner1befe642009-12-31 07:17:37 +000064 << *Ops[0].Op->getType() << '\t';
Chris Lattner7de3b5d2008-08-19 04:45:19 +000065 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greenea1fa76c2010-01-05 01:27:24 +000066 dbgs() << "[ ";
67 WriteAsOperand(dbgs(), Ops[i].Op, false, M);
68 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner7de3b5d2008-08-19 04:45:19 +000069 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000070}
Devang Patel59500c82008-11-21 20:00:59 +000071#endif
Chris Lattnere5022fe2006-03-04 09:31:13 +000072
Dan Gohman844731a2008-05-13 00:00:25 +000073namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000074 class Reassociate : public FunctionPass {
Chris Lattnerf55e7f52010-01-01 00:01:34 +000075 DenseMap<BasicBlock*, unsigned> RankMap;
76 DenseMap<AssertingVH<>, unsigned> ValueRankMap;
Chris Lattnerc0649ac2005-05-07 21:59:39 +000077 bool MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +000078 public:
Nick Lewyckyecd94c82007-05-06 13:37:16 +000079 static char ID; // Pass identification, replacement for typeid
Owen Anderson081c34b2010-10-19 17:21:58 +000080 Reassociate() : FunctionPass(ID) {
81 initializeReassociatePass(*PassRegistry::getPassRegistry());
82 }
Devang Patel794fd752007-05-01 21:15:47 +000083
Chris Lattner7e708292002-06-25 16:13:24 +000084 bool runOnFunction(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +000085
86 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnercb2610e2002-10-21 20:00:28 +000087 AU.setPreservesCFG();
Chris Lattner4fd56002002-05-08 22:19:27 +000088 }
89 private:
Chris Lattner7e708292002-06-25 16:13:24 +000090 void BuildRankMap(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +000091 unsigned getRank(Value *V);
Chris Lattner69e98e22009-12-31 19:24:52 +000092 Value *ReassociateExpression(BinaryOperator *I);
Chris Lattner9f7b7082009-12-31 18:40:32 +000093 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
Chris Lattnere9efecb2006-03-14 16:04:29 +000094 unsigned Idx = 0);
Chris Lattner9f7b7082009-12-31 18:40:32 +000095 Value *OptimizeExpression(BinaryOperator *I,
96 SmallVectorImpl<ValueEntry> &Ops);
97 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
98 void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattnerc0649ac2005-05-07 21:59:39 +000099 void LinearizeExpr(BinaryOperator *I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000100 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000101 void ReassociateBB(BasicBlock *BB);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000102
103 void RemoveDeadBinaryOp(Value *V);
Chris Lattner4fd56002002-05-08 22:19:27 +0000104 };
105}
106
Dan Gohman844731a2008-05-13 00:00:25 +0000107char Reassociate::ID = 0;
Owen Andersond13db2c2010-07-21 22:09:45 +0000108INITIALIZE_PASS(Reassociate, "reassociate",
Owen Andersonce665bd2010-10-07 22:25:06 +0000109 "Reassociate expressions", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +0000110
Brian Gaeked0fde302003-11-11 22:41:34 +0000111// Public interface to the Reassociate pass
Chris Lattnerd7456022004-01-09 06:02:20 +0000112FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattner4fd56002002-05-08 22:19:27 +0000113
Chris Lattnere5022fe2006-03-04 09:31:13 +0000114void Reassociate::RemoveDeadBinaryOp(Value *V) {
Reid Spencere4d87aa2006-12-23 06:05:41 +0000115 Instruction *Op = dyn_cast<Instruction>(V);
Chris Lattner69e98e22009-12-31 19:24:52 +0000116 if (!Op || !isa<BinaryOperator>(Op) || !Op->use_empty())
Reid Spencere4d87aa2006-12-23 06:05:41 +0000117 return;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000118
Reid Spencere4d87aa2006-12-23 06:05:41 +0000119 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
Chris Lattner69e98e22009-12-31 19:24:52 +0000120
121 ValueRankMap.erase(Op);
122 Op->eraseFromParent();
Chris Lattnere5022fe2006-03-04 09:31:13 +0000123 RemoveDeadBinaryOp(LHS);
124 RemoveDeadBinaryOp(RHS);
125}
126
Chris Lattner9c723192005-05-08 20:57:04 +0000127
128static bool isUnmovableInstruction(Instruction *I) {
129 if (I->getOpcode() == Instruction::PHI ||
130 I->getOpcode() == Instruction::Alloca ||
131 I->getOpcode() == Instruction::Load ||
Chris Lattner9c723192005-05-08 20:57:04 +0000132 I->getOpcode() == Instruction::Invoke ||
Dale Johannesen03afd022009-03-06 01:41:59 +0000133 (I->getOpcode() == Instruction::Call &&
134 !isa<DbgInfoIntrinsic>(I)) ||
Reid Spencer1628cec2006-10-26 06:15:43 +0000135 I->getOpcode() == Instruction::UDiv ||
136 I->getOpcode() == Instruction::SDiv ||
137 I->getOpcode() == Instruction::FDiv ||
Reid Spencer0a783f72006-11-02 01:53:59 +0000138 I->getOpcode() == Instruction::URem ||
139 I->getOpcode() == Instruction::SRem ||
140 I->getOpcode() == Instruction::FRem)
Chris Lattner9c723192005-05-08 20:57:04 +0000141 return true;
142 return false;
143}
144
Chris Lattner7e708292002-06-25 16:13:24 +0000145void Reassociate::BuildRankMap(Function &F) {
Chris Lattner6007cb62003-08-12 20:14:27 +0000146 unsigned i = 2;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000147
148 // Assign distinct ranks to function arguments
Chris Lattnere4d5c442005-03-15 04:54:21 +0000149 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000150 ValueRankMap[&*I] = ++i;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000151
Chris Lattner7e708292002-06-25 16:13:24 +0000152 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000153 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9c723192005-05-08 20:57:04 +0000154 E = RPOT.end(); I != E; ++I) {
155 BasicBlock *BB = *I;
156 unsigned BBRank = RankMap[BB] = ++i << 16;
157
158 // Walk the basic block, adding precomputed ranks for any instructions that
159 // we cannot move. This ensures that the ranks for these instructions are
160 // all different in the block.
161 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
162 if (isUnmovableInstruction(I))
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000163 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9c723192005-05-08 20:57:04 +0000164 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000165}
166
167unsigned Reassociate::getRank(Value *V) {
Chris Lattner08b43922005-05-07 04:08:02 +0000168 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000169 if (I == 0) {
170 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
171 return 0; // Otherwise it's a global or constant, rank 0.
172 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000173
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000174 if (unsigned Rank = ValueRankMap[I])
175 return Rank; // Rank already known?
Jeff Cohen00b168892005-07-27 06:12:32 +0000176
Chris Lattner08b43922005-05-07 04:08:02 +0000177 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
178 // we can reassociate expressions for code motion! Since we do not recurse
179 // for PHI nodes, we cannot have infinite recursion here, because there
180 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattner08b43922005-05-07 04:08:02 +0000181 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
182 for (unsigned i = 0, e = I->getNumOperands();
183 i != e && Rank != MaxRank; ++i)
184 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen00b168892005-07-27 06:12:32 +0000185
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000186 // If this is a not or neg instruction, do not count it for rank. This
187 // assures us that X and ~X will have the same rank.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000188 if (!I->getType()->isIntegerTy() ||
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000189 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000190 ++Rank;
191
David Greenea1fa76c2010-01-05 01:27:24 +0000192 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
Chris Lattnerbdff5482009-08-23 04:37:46 +0000193 // << Rank << "\n");
Jeff Cohen00b168892005-07-27 06:12:32 +0000194
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000195 return ValueRankMap[I] = Rank;
Chris Lattner4fd56002002-05-08 22:19:27 +0000196}
197
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000198/// isReassociableOp - Return true if V is an instruction of the specified
199/// opcode and if it only has one use.
200static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000201 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000202 cast<Instruction>(V)->getOpcode() == Opcode)
203 return cast<BinaryOperator>(V);
204 return 0;
205}
Chris Lattner4fd56002002-05-08 22:19:27 +0000206
Chris Lattnerf33151a2005-05-08 21:28:52 +0000207/// LowerNegateToMultiply - Replace 0-X with X*-1.
208///
Dale Johannesenf4978e22009-03-19 17:22:53 +0000209static Instruction *LowerNegateToMultiply(Instruction *Neg,
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000210 DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
Owen Andersona7235ea2009-07-31 20:28:14 +0000211 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Chris Lattnerf33151a2005-05-08 21:28:52 +0000212
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000213 Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Dale Johannesenf4978e22009-03-19 17:22:53 +0000214 ValueRankMap.erase(Neg);
Chris Lattner6934a042007-02-11 01:23:03 +0000215 Res->takeName(Neg);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000216 Neg->replaceAllUsesWith(Res);
217 Neg->eraseFromParent();
218 return Res;
219}
220
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000221// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
222// Note that if D is also part of the expression tree that we recurse to
223// linearize it as well. Besides that case, this does not recurse into A,B, or
224// C.
225void Reassociate::LinearizeExpr(BinaryOperator *I) {
226 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
227 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
Jeff Cohen00b168892005-07-27 06:12:32 +0000228 assert(isReassociableOp(LHS, I->getOpcode()) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000229 isReassociableOp(RHS, I->getOpcode()) &&
230 "Not an expression that needs linearization?");
Misha Brukmanfd939082005-04-21 23:48:37 +0000231
David Greenea1fa76c2010-01-05 01:27:24 +0000232 DEBUG(dbgs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
Chris Lattner4fd56002002-05-08 22:19:27 +0000233
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000234 // Move the RHS instruction to live immediately before I, avoiding breaking
235 // dominator properties.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000236 RHS->moveBefore(I);
Chris Lattnere4b73042002-10-31 17:12:59 +0000237
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000238 // Move operands around to do the linearization.
239 I->setOperand(1, RHS->getOperand(0));
240 RHS->setOperand(0, LHS);
241 I->setOperand(0, RHS);
Jeff Cohen00b168892005-07-27 06:12:32 +0000242
Dan Gohman46985a12011-02-02 02:02:34 +0000243 // Conservatively clear all the optional flags, which may not hold
244 // after the reassociation.
245 I->clearSubclassOptionalData();
246 LHS->clearSubclassOptionalData();
247 RHS->clearSubclassOptionalData();
248
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000249 ++NumLinear;
250 MadeChange = true;
David Greenea1fa76c2010-01-05 01:27:24 +0000251 DEBUG(dbgs() << "Linearized: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000252
253 // If D is part of this expression tree, tail recurse.
254 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
255 LinearizeExpr(I);
256}
257
258
259/// LinearizeExprTree - Given an associative binary expression tree, traverse
260/// all of the uses putting it into canonical form. This forces a left-linear
Dan Gohmanf451cb82010-02-10 16:03:48 +0000261/// form of the expression (((a+b)+c)+d), and collects information about the
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000262/// rank of the non-tree operands.
263///
Chris Lattnere9efecb2006-03-14 16:04:29 +0000264/// NOTE: These intentionally destroys the expression tree operands (turning
265/// them into undef values) to reduce #uses of the values. This means that the
266/// caller MUST use something like RewriteExprTree to put the values back in.
267///
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000268void Reassociate::LinearizeExprTree(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000269 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000270 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
271 unsigned Opcode = I->getOpcode();
272
273 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
274 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
275 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
276
Chris Lattnerf33151a2005-05-08 21:28:52 +0000277 // If this is a multiply expression tree and it contains internal negations,
278 // transform them into multiplies by -1 so they can be reassociated.
279 if (I->getOpcode() == Instruction::Mul) {
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000280 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000281 LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000282 LHSBO = isReassociableOp(LHS, Opcode);
283 }
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000284 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000285 RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000286 RHSBO = isReassociableOp(RHS, Opcode);
287 }
288 }
289
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000290 if (!LHSBO) {
291 if (!RHSBO) {
292 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
293 // such, just remember these operands and their rank.
294 Ops.push_back(ValueEntry(getRank(LHS), LHS));
295 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000296
297 // Clear the leaves out.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000298 I->setOperand(0, UndefValue::get(I->getType()));
299 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000300 return;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000301 }
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000302
303 // Turn X+(Y+Z) -> (Y+Z)+X
304 std::swap(LHSBO, RHSBO);
305 std::swap(LHS, RHS);
306 bool Success = !I->swapOperands();
307 assert(Success && "swapOperands failed");
308 Success = false;
309 MadeChange = true;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000310 } else if (RHSBO) {
Dan Gohmanf451cb82010-02-10 16:03:48 +0000311 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the RHS is not
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000312 // part of the expression tree.
313 LinearizeExpr(I);
314 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
315 RHS = I->getOperand(1);
316 RHSBO = 0;
Chris Lattner4fd56002002-05-08 22:19:27 +0000317 }
Misha Brukmanfd939082005-04-21 23:48:37 +0000318
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000319 // Okay, now we know that the LHS is a nested expression and that the RHS is
320 // not. Perform reassociation.
321 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
Chris Lattner4fd56002002-05-08 22:19:27 +0000322
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000323 // Move LHS right before I to make sure that the tree expression dominates all
324 // values.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000325 LHSBO->moveBefore(I);
Chris Lattnere9608e32003-08-12 21:45:24 +0000326
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000327 // Linearize the expression tree on the LHS.
328 LinearizeExprTree(LHSBO, Ops);
Chris Lattnere4b73042002-10-31 17:12:59 +0000329
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000330 // Remember the RHS operand and its rank.
331 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000332
333 // Clear the RHS leaf out.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000334 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattner4fd56002002-05-08 22:19:27 +0000335}
336
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000337// RewriteExprTree - Now that the operands for this expression tree are
338// linearized and optimized, emit them in-order. This function is written to be
339// tail recursive.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000340void Reassociate::RewriteExprTree(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000341 SmallVectorImpl<ValueEntry> &Ops,
Chris Lattnere9efecb2006-03-14 16:04:29 +0000342 unsigned i) {
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000343 if (i+2 == Ops.size()) {
344 if (I->getOperand(0) != Ops[i].Op ||
345 I->getOperand(1) != Ops[i+1].Op) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000346 Value *OldLHS = I->getOperand(0);
David Greenea1fa76c2010-01-05 01:27:24 +0000347 DEBUG(dbgs() << "RA: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000348 I->setOperand(0, Ops[i].Op);
349 I->setOperand(1, Ops[i+1].Op);
Dan Gohman46985a12011-02-02 02:02:34 +0000350
351 // Conservatively clear all the optional flags, which may not hold
352 // after the reassociation.
353 I->clearSubclassOptionalData();
354
David Greenea1fa76c2010-01-05 01:27:24 +0000355 DEBUG(dbgs() << "TO: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000356 MadeChange = true;
357 ++NumChanged;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000358
359 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
360 // delete the extra, now dead, nodes.
361 RemoveDeadBinaryOp(OldLHS);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000362 }
363 return;
364 }
365 assert(i+2 < Ops.size() && "Ops index out of range!");
366
367 if (I->getOperand(1) != Ops[i].Op) {
David Greenea1fa76c2010-01-05 01:27:24 +0000368 DEBUG(dbgs() << "RA: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000369 I->setOperand(1, Ops[i].Op);
Dan Gohman46985a12011-02-02 02:02:34 +0000370
371 // Conservatively clear all the optional flags, which may not hold
372 // after the reassociation.
373 I->clearSubclassOptionalData();
374
David Greenea1fa76c2010-01-05 01:27:24 +0000375 DEBUG(dbgs() << "TO: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000376 MadeChange = true;
377 ++NumChanged;
378 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000379
380 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
381 assert(LHS->getOpcode() == I->getOpcode() &&
382 "Improper expression tree!");
383
384 // Compactify the tree instructions together with each other to guarantee
385 // that the expression tree is dominated by all of Ops.
386 LHS->moveBefore(I);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000387 RewriteExprTree(LHS, Ops, i+1);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000388}
389
390
Chris Lattner4fd56002002-05-08 22:19:27 +0000391
Chris Lattnera36e6c82002-05-16 04:37:07 +0000392// NegateValue - Insert instructions before the instruction pointed to by BI,
393// that computes the negative version of the value specified. The negative
394// version of the value is returned, and BI is left pointing at the instruction
395// that should be processed next by the reassociation pass.
396//
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000397static Value *NegateValue(Value *V, Instruction *BI) {
Chris Lattner35239932009-12-31 20:34:32 +0000398 if (Constant *C = dyn_cast<Constant>(V))
399 return ConstantExpr::getNeg(C);
400
Chris Lattnera36e6c82002-05-16 04:37:07 +0000401 // We are trying to expose opportunity for reassociation. One of the things
402 // that we want to do to achieve this is to push a negation as deep into an
403 // expression chain as possible, to expose the add instructions. In practice,
404 // this means that we turn this:
405 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
406 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
407 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattner90461932010-01-01 00:04:26 +0000408 // we introduce tons of unnecessary negation instructions.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000409 //
410 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000411 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
Chris Lattner2cd85da2005-09-02 06:38:04 +0000412 // Push the negates through the add.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000413 I->setOperand(0, NegateValue(I->getOperand(0), BI));
414 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattnera36e6c82002-05-16 04:37:07 +0000415
Chris Lattner2cd85da2005-09-02 06:38:04 +0000416 // We must move the add instruction here, because the neg instructions do
417 // not dominate the old add instruction in general. By moving it, we are
418 // assured that the neg instructions we just inserted dominate the
419 // instruction we are about to insert after them.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000420 //
Chris Lattner2cd85da2005-09-02 06:38:04 +0000421 I->moveBefore(BI);
422 I->setName(I->getName()+".neg");
423 return I;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000424 }
Chris Lattner35239932009-12-31 20:34:32 +0000425
426 // Okay, we need to materialize a negated version of V with an instruction.
427 // Scan the use lists of V to see if we have one already.
428 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
Gabor Greif110b75a2010-07-12 12:03:02 +0000429 User *U = *UI;
430 if (!BinaryOperator::isNeg(U)) continue;
Chris Lattner35239932009-12-31 20:34:32 +0000431
432 // We found one! Now we have to make sure that the definition dominates
433 // this use. We do this by moving it to the entry block (if it is a
434 // non-instruction value) or right after the definition. These negates will
435 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif110b75a2010-07-12 12:03:02 +0000436 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattner1c91fae2010-01-02 21:46:33 +0000437
438 // Verify that the negate is in this function, V might be a constant expr.
439 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
440 continue;
Chris Lattner35239932009-12-31 20:34:32 +0000441
442 BasicBlock::iterator InsertPt;
443 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
444 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
445 InsertPt = II->getNormalDest()->begin();
446 } else {
447 InsertPt = InstInput;
448 ++InsertPt;
449 }
450 while (isa<PHINode>(InsertPt)) ++InsertPt;
451 } else {
452 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
453 }
454 TheNeg->moveBefore(InsertPt);
455 return TheNeg;
456 }
Chris Lattnera36e6c82002-05-16 04:37:07 +0000457
458 // Insert a 'neg' instruction that subtracts the value from zero to get the
459 // negation.
Dan Gohman4ae51262009-08-12 16:23:25 +0000460 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Chris Lattner08b43922005-05-07 04:08:02 +0000461}
462
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000463/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
464/// X-Y into (X + -Y).
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000465static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000466 // If this is a negation, we can't split it up!
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000467 if (BinaryOperator::isNeg(Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000468 return false;
469
470 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner0b0803a2008-02-17 20:51:26 +0000471 // subtract or if this is only used by one.
472 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
473 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000474 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000475 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner5329bb22008-02-17 20:54:40 +0000476 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000477 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000478 if (Sub->hasOneUse() &&
479 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
480 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000481 return true;
482
483 return false;
484}
485
Chris Lattner08b43922005-05-07 04:08:02 +0000486/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
487/// only used by an add, transform this into (X+(0-Y)) to promote better
488/// reassociation.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000489static Instruction *BreakUpSubtract(Instruction *Sub,
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000490 DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
Chris Lattner90461932010-01-01 00:04:26 +0000491 // Convert a subtract into an add and a neg instruction. This allows sub
492 // instructions to be commuted with other add instructions.
Chris Lattner08b43922005-05-07 04:08:02 +0000493 //
Chris Lattner90461932010-01-01 00:04:26 +0000494 // Calculate the negative value of Operand 1 of the sub instruction,
495 // and set it as the RHS of the add instruction we just made.
Chris Lattner08b43922005-05-07 04:08:02 +0000496 //
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000497 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000498 Instruction *New =
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000499 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Chris Lattner6934a042007-02-11 01:23:03 +0000500 New->takeName(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000501
502 // Everyone now refers to the add instruction.
Dale Johannesenf4978e22009-03-19 17:22:53 +0000503 ValueRankMap.erase(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000504 Sub->replaceAllUsesWith(New);
505 Sub->eraseFromParent();
Jeff Cohen00b168892005-07-27 06:12:32 +0000506
David Greenea1fa76c2010-01-05 01:27:24 +0000507 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattner08b43922005-05-07 04:08:02 +0000508 return New;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000509}
510
Chris Lattner0975ed52005-05-07 04:24:13 +0000511/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
512/// by one, change this into a multiply by a constant to assist with further
513/// reassociation.
Dale Johannesenf4978e22009-03-19 17:22:53 +0000514static Instruction *ConvertShiftToMul(Instruction *Shl,
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000515 DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
Chris Lattner22a66c42006-03-14 06:55:18 +0000516 // If an operand of this shift is a reassociable multiply, or if the shift
517 // is used by a reassociable multiply or add, turn into a multiply.
518 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
519 (Shl->hasOneUse() &&
520 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
521 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000522 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000523 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Chris Lattner22a66c42006-03-14 06:55:18 +0000524
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000525 Instruction *Mul =
526 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
Dale Johannesenf4978e22009-03-19 17:22:53 +0000527 ValueRankMap.erase(Shl);
Chris Lattner6934a042007-02-11 01:23:03 +0000528 Mul->takeName(Shl);
Chris Lattner22a66c42006-03-14 06:55:18 +0000529 Shl->replaceAllUsesWith(Mul);
530 Shl->eraseFromParent();
531 return Mul;
532 }
533 return 0;
Chris Lattner0975ed52005-05-07 04:24:13 +0000534}
535
Chris Lattner109d34d2005-05-08 18:59:37 +0000536// Scan backwards and forwards among values with the same rank as element i to
Chris Lattner9506c932010-01-01 01:13:15 +0000537// see if X exists. If X does not exist, return i. This is useful when
538// scanning for 'x' when we see '-x' because they both get the same rank.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000539static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner109d34d2005-05-08 18:59:37 +0000540 Value *X) {
541 unsigned XRank = Ops[i].Rank;
542 unsigned e = Ops.size();
543 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
544 if (Ops[j].Op == X)
545 return j;
Chris Lattner9506c932010-01-01 01:13:15 +0000546 // Scan backwards.
Chris Lattner109d34d2005-05-08 18:59:37 +0000547 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
548 if (Ops[j].Op == X)
549 return j;
550 return i;
551}
552
Chris Lattnere5022fe2006-03-04 09:31:13 +0000553/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
554/// and returning the result. Insert the tree before I.
Chris Lattner8d93b252009-12-31 07:48:51 +0000555static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
Chris Lattnere5022fe2006-03-04 09:31:13 +0000556 if (Ops.size() == 1) return Ops.back();
557
558 Value *V1 = Ops.back();
559 Ops.pop_back();
560 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000561 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000562}
563
564/// RemoveFactorFromExpression - If V is an expression tree that is a
565/// multiplication sequence, and if this sequence contains a multiply by Factor,
566/// remove Factor from the tree and return the new tree.
567Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
568 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
569 if (!BO) return 0;
570
Chris Lattner9f7b7082009-12-31 18:40:32 +0000571 SmallVector<ValueEntry, 8> Factors;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000572 LinearizeExprTree(BO, Factors);
573
574 bool FoundFactor = false;
Chris Lattner9506c932010-01-01 01:13:15 +0000575 bool NeedsNegate = false;
576 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000577 if (Factors[i].Op == Factor) {
578 FoundFactor = true;
579 Factors.erase(Factors.begin()+i);
580 break;
581 }
Chris Lattner9506c932010-01-01 01:13:15 +0000582
583 // If this is a negative version of this factor, remove it.
584 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
585 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
586 if (FC1->getValue() == -FC2->getValue()) {
587 FoundFactor = NeedsNegate = true;
588 Factors.erase(Factors.begin()+i);
589 break;
590 }
591 }
592
Chris Lattnere9efecb2006-03-14 16:04:29 +0000593 if (!FoundFactor) {
594 // Make sure to restore the operands to the expression tree.
595 RewriteExprTree(BO, Factors);
596 return 0;
597 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000598
Chris Lattner9506c932010-01-01 01:13:15 +0000599 BasicBlock::iterator InsertPt = BO; ++InsertPt;
600
Chris Lattner1e7558b2009-12-31 19:34:45 +0000601 // If this was just a single multiply, remove the multiply and return the only
602 // remaining operand.
603 if (Factors.size() == 1) {
604 ValueRankMap.erase(BO);
605 BO->eraseFromParent();
Chris Lattner9506c932010-01-01 01:13:15 +0000606 V = Factors[0].Op;
607 } else {
608 RewriteExprTree(BO, Factors);
609 V = BO;
Chris Lattner1e7558b2009-12-31 19:34:45 +0000610 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000611
Chris Lattner9506c932010-01-01 01:13:15 +0000612 if (NeedsNegate)
613 V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
614
615 return V;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000616}
617
Chris Lattnere9efecb2006-03-14 16:04:29 +0000618/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
619/// add its operands as factors, otherwise add V to the list of factors.
Chris Lattner893075f2010-03-05 07:18:54 +0000620///
621/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000622static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattner893075f2010-03-05 07:18:54 +0000623 SmallVectorImpl<Value*> &Factors,
624 const SmallVectorImpl<ValueEntry> &Ops,
625 bool IsRoot) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000626 BinaryOperator *BO;
Chris Lattner893075f2010-03-05 07:18:54 +0000627 if (!(V->hasOneUse() || V->use_empty()) || // More than one use.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000628 !(BO = dyn_cast<BinaryOperator>(V)) ||
629 BO->getOpcode() != Instruction::Mul) {
630 Factors.push_back(V);
631 return;
632 }
633
Chris Lattner893075f2010-03-05 07:18:54 +0000634 // If this value has a single use because it is another input to the add
635 // tree we're reassociating and we dropped its use, it actually has two
636 // uses and we can't factor it.
637 if (!IsRoot) {
638 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
639 if (Ops[i].Op == V) {
640 Factors.push_back(V);
641 return;
642 }
643 }
644
645
Chris Lattnere9efecb2006-03-14 16:04:29 +0000646 // Otherwise, add the LHS and RHS to the list of factors.
Chris Lattner893075f2010-03-05 07:18:54 +0000647 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops, false);
648 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops, false);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000649}
650
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000651/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
652/// instruction. This optimizes based on identities. If it can be reduced to
653/// a single Value, it is returned, otherwise the Ops list is mutated as
654/// necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000655static Value *OptimizeAndOrXor(unsigned Opcode,
656 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000657 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
658 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
659 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
660 // First, check for X and ~X in the operand list.
661 assert(i < Ops.size());
662 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
663 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
664 unsigned FoundX = FindInOperandList(Ops, i, X);
665 if (FoundX != i) {
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000666 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000667 return Constant::getNullValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000668
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000669 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000670 return Constant::getAllOnesValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000671 }
672 }
673
674 // Next, check for duplicate pairs of values, which we assume are next to
675 // each other, due to our sorting criteria.
676 assert(i < Ops.size());
677 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
678 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000679 // Drop duplicate values for And and Or.
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000680 Ops.erase(Ops.begin()+i);
681 --i; --e;
682 ++NumAnnihil;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000683 continue;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000684 }
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000685
686 // Drop pairs of values for Xor.
687 assert(Opcode == Instruction::Xor);
688 if (e == 2)
689 return Constant::getNullValue(Ops[0].Op->getType());
690
Chris Lattner90461932010-01-01 00:04:26 +0000691 // Y ^ X^X -> Y
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000692 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
693 i -= 1; e -= 2;
694 ++NumAnnihil;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000695 }
696 }
697 return 0;
698}
Chris Lattnere9efecb2006-03-14 16:04:29 +0000699
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000700/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
701/// optimizes based on identities. If it can be reduced to a single Value, it
702/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000703Value *Reassociate::OptimizeAdd(Instruction *I,
704 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000705 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattner69e98e22009-12-31 19:24:52 +0000706 // can simplify the expression. X+-X == 0. While we're at it, scan for any
707 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Chris Lattner9506c932010-01-01 01:13:15 +0000708 //
709 // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
710 //
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000711 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner69e98e22009-12-31 19:24:52 +0000712 Value *TheOp = Ops[i].Op;
713 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000714 // instances of the operand together. Due to our sorting criteria, we know
715 // that these need to be next to each other in the vector.
716 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
717 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner69e98e22009-12-31 19:24:52 +0000718 unsigned NumFound = 0;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000719 do {
720 Ops.erase(Ops.begin()+i);
Chris Lattner69e98e22009-12-31 19:24:52 +0000721 ++NumFound;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000722 } while (i != Ops.size() && Ops[i].Op == TheOp);
723
Chris Lattnerf8a447d2009-12-31 19:25:19 +0000724 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner69e98e22009-12-31 19:24:52 +0000725 ++NumFactor;
Chris Lattner69e98e22009-12-31 19:24:52 +0000726
727 // Insert a new multiply.
728 Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
729 Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
730
731 // Now that we have inserted a multiply, optimize it. This allows us to
732 // handle cases that require multiple factoring steps, such as this:
733 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
734 Mul = ReassociateExpression(cast<BinaryOperator>(Mul));
735
736 // If every add operand was a duplicate, return the multiply.
737 if (Ops.empty())
738 return Mul;
739
740 // Otherwise, we had some input that didn't have the dupe, such as
741 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
742 // things being added by this operation.
743 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000744
745 --i;
746 e = Ops.size();
747 continue;
Chris Lattner69e98e22009-12-31 19:24:52 +0000748 }
749
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000750 // Check for X and -X in the operand list.
Chris Lattner69e98e22009-12-31 19:24:52 +0000751 if (!BinaryOperator::isNeg(TheOp))
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000752 continue;
753
Chris Lattner69e98e22009-12-31 19:24:52 +0000754 Value *X = BinaryOperator::getNegArgument(TheOp);
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000755 unsigned FoundX = FindInOperandList(Ops, i, X);
756 if (FoundX == i)
757 continue;
758
759 // Remove X and -X from the operand list.
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000760 if (Ops.size() == 2)
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000761 return Constant::getNullValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000762
763 Ops.erase(Ops.begin()+i);
764 if (i < FoundX)
765 --FoundX;
766 else
767 --i; // Need to back up an extra one.
768 Ops.erase(Ops.begin()+FoundX);
769 ++NumAnnihil;
770 --i; // Revisit element.
771 e -= 2; // Removed two elements.
772 }
Chris Lattner94285e62009-12-31 18:17:13 +0000773
774 // Scan the operand list, checking to see if there are any common factors
775 // between operands. Consider something like A*A+A*B*C+D. We would like to
776 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
777 // To efficiently find this, we count the number of times a factor occurs
778 // for any ADD operands that are MULs.
779 DenseMap<Value*, unsigned> FactorOccurrences;
780
781 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
782 // where they are actually the same multiply.
Chris Lattner94285e62009-12-31 18:17:13 +0000783 unsigned MaxOcc = 0;
784 Value *MaxOccVal = 0;
785 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
786 BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
787 if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
788 continue;
789
Chris Lattner94285e62009-12-31 18:17:13 +0000790 // Compute all of the factors of this added value.
791 SmallVector<Value*, 8> Factors;
Chris Lattner893075f2010-03-05 07:18:54 +0000792 FindSingleUseMultiplyFactors(BOp, Factors, Ops, true);
Chris Lattner94285e62009-12-31 18:17:13 +0000793 assert(Factors.size() > 1 && "Bad linearize!");
794
795 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner9506c932010-01-01 01:13:15 +0000796 SmallPtrSet<Value*, 8> Duplicates;
797 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
798 Value *Factor = Factors[i];
799 if (!Duplicates.insert(Factor)) continue;
800
801 unsigned Occ = ++FactorOccurrences[Factor];
802 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
803
804 // If Factor is a negative constant, add the negated value as a factor
805 // because we can percolate the negate out. Watch for minint, which
806 // cannot be positivified.
807 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
808 if (CI->getValue().isNegative() && !CI->getValue().isMinSignedValue()) {
809 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
810 assert(!Duplicates.count(Factor) &&
811 "Shouldn't have two constant factors, missed a canonicalize");
812
813 unsigned Occ = ++FactorOccurrences[Factor];
814 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
815 }
Chris Lattner94285e62009-12-31 18:17:13 +0000816 }
817 }
818
819 // If any factor occurred more than one time, we can pull it out.
820 if (MaxOcc > 1) {
Chris Lattner69e98e22009-12-31 19:24:52 +0000821 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner94285e62009-12-31 18:17:13 +0000822 ++NumFactor;
823
824 // Create a new instruction that uses the MaxOccVal twice. If we don't do
825 // this, we could otherwise run into situations where removing a factor
826 // from an expression will drop a use of maxocc, and this can cause
827 // RemoveFactorFromExpression on successive values to behave differently.
828 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
829 SmallVector<Value*, 4> NewMulOps;
Duncan Sands37f87c72011-01-26 10:08:38 +0000830 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerc2d1b692010-01-09 06:01:36 +0000831 // Only try to remove factors from expressions we're allowed to.
832 BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
833 if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
834 continue;
835
Chris Lattner94285e62009-12-31 18:17:13 +0000836 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands37f87c72011-01-26 10:08:38 +0000837 // The factorized operand may occur several times. Convert them all in
838 // one fell swoop.
839 for (unsigned j = Ops.size(); j != i;) {
840 --j;
841 if (Ops[j].Op == Ops[i].Op) {
842 NewMulOps.push_back(V);
843 Ops.erase(Ops.begin()+j);
844 }
845 }
846 --i;
Chris Lattner94285e62009-12-31 18:17:13 +0000847 }
848 }
849
850 // No need for extra uses anymore.
851 delete DummyInst;
Duncan Sands54a57042010-01-08 17:51:48 +0000852
Chris Lattner94285e62009-12-31 18:17:13 +0000853 unsigned NumAddedValues = NewMulOps.size();
854 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands54a57042010-01-08 17:51:48 +0000855
Chris Lattner69e98e22009-12-31 19:24:52 +0000856 // Now that we have inserted the add tree, optimize it. This allows us to
857 // handle cases that require multiple factoring steps, such as this:
Chris Lattner94285e62009-12-31 18:17:13 +0000858 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000859 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands54a57042010-01-08 17:51:48 +0000860 (void)NumAddedValues;
Chris Lattner69e98e22009-12-31 19:24:52 +0000861 V = ReassociateExpression(cast<BinaryOperator>(V));
862
863 // Create the multiply.
864 Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
865
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000866 // Rerun associate on the multiply in case the inner expression turned into
867 // a multiply. We want to make sure that we keep things in canonical form.
868 V2 = ReassociateExpression(cast<BinaryOperator>(V2));
Chris Lattner94285e62009-12-31 18:17:13 +0000869
870 // If every add operand included the factor (e.g. "A*B + A*C"), then the
871 // entire result expression is just the multiply "A*(B+C)".
872 if (Ops.empty())
873 return V2;
874
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000875 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner94285e62009-12-31 18:17:13 +0000876 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000877 // things being added by this operation.
Chris Lattner94285e62009-12-31 18:17:13 +0000878 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
879 }
880
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000881 return 0;
882}
Chris Lattnere5022fe2006-03-04 09:31:13 +0000883
884Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000885 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner46900102005-05-08 00:19:31 +0000886 // Now that we have the linearized expression tree, try to optimize it.
887 // Start by folding any constants that we found.
Chris Lattner109d34d2005-05-08 18:59:37 +0000888 bool IterateOptimization = false;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000889 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +0000890
Chris Lattnere5022fe2006-03-04 09:31:13 +0000891 unsigned Opcode = I->getOpcode();
892
Chris Lattner46900102005-05-08 00:19:31 +0000893 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
894 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
895 Ops.pop_back();
Owen Andersonbaf3c402009-07-29 18:55:55 +0000896 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000897 return OptimizeExpression(I, Ops);
Chris Lattner46900102005-05-08 00:19:31 +0000898 }
899
900 // Check for destructive annihilation due to a constant being used.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +0000901 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
Chris Lattner46900102005-05-08 00:19:31 +0000902 switch (Opcode) {
903 default: break;
904 case Instruction::And:
Chris Lattner90461932010-01-01 00:04:26 +0000905 if (CstVal->isZero()) // X & 0 -> 0
Chris Lattnere5022fe2006-03-04 09:31:13 +0000906 return CstVal;
Chris Lattner90461932010-01-01 00:04:26 +0000907 if (CstVal->isAllOnesValue()) // X & -1 -> X
Chris Lattner8d93b252009-12-31 07:48:51 +0000908 Ops.pop_back();
Chris Lattner46900102005-05-08 00:19:31 +0000909 break;
910 case Instruction::Mul:
Chris Lattner90461932010-01-01 00:04:26 +0000911 if (CstVal->isZero()) { // X * 0 -> 0
Chris Lattner109d34d2005-05-08 18:59:37 +0000912 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000913 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +0000914 }
Chris Lattner8d93b252009-12-31 07:48:51 +0000915
916 if (cast<ConstantInt>(CstVal)->isOne())
Chris Lattner90461932010-01-01 00:04:26 +0000917 Ops.pop_back(); // X * 1 -> X
Chris Lattner46900102005-05-08 00:19:31 +0000918 break;
919 case Instruction::Or:
Chris Lattner90461932010-01-01 00:04:26 +0000920 if (CstVal->isAllOnesValue()) // X | -1 -> -1
Chris Lattnere5022fe2006-03-04 09:31:13 +0000921 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +0000922 // FALLTHROUGH!
923 case Instruction::Add:
924 case Instruction::Xor:
Chris Lattner90461932010-01-01 00:04:26 +0000925 if (CstVal->isZero()) // X [|^+] 0 -> X
Chris Lattner46900102005-05-08 00:19:31 +0000926 Ops.pop_back();
927 break;
928 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000929 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +0000930
Chris Lattnerec531232009-12-31 07:33:14 +0000931 // Handle destructive annihilation due to identities between elements in the
Chris Lattner46900102005-05-08 00:19:31 +0000932 // argument list here.
Chris Lattner109d34d2005-05-08 18:59:37 +0000933 switch (Opcode) {
934 default: break;
935 case Instruction::And:
936 case Instruction::Or:
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000937 case Instruction::Xor: {
938 unsigned NumOps = Ops.size();
939 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
940 return Result;
941 IterateOptimization |= Ops.size() != NumOps;
Chris Lattner109d34d2005-05-08 18:59:37 +0000942 break;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000943 }
Chris Lattner109d34d2005-05-08 18:59:37 +0000944
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000945 case Instruction::Add: {
946 unsigned NumOps = Ops.size();
Chris Lattner94285e62009-12-31 18:17:13 +0000947 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000948 return Result;
949 IterateOptimization |= Ops.size() != NumOps;
950 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000951
Chris Lattner109d34d2005-05-08 18:59:37 +0000952 break;
953 //case Instruction::Mul:
954 }
955
Jeff Cohen00b168892005-07-27 06:12:32 +0000956 if (IterateOptimization)
Chris Lattnere5022fe2006-03-04 09:31:13 +0000957 return OptimizeExpression(I, Ops);
958 return 0;
Chris Lattner46900102005-05-08 00:19:31 +0000959}
960
Chris Lattnera36e6c82002-05-16 04:37:07 +0000961
Chris Lattner08b43922005-05-07 04:08:02 +0000962/// ReassociateBB - Inspect all of the instructions in this basic block,
963/// reassociating them as we go.
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000964void Reassociate::ReassociateBB(BasicBlock *BB) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000965 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
966 Instruction *BI = BBI++;
Chris Lattner641f02f2005-05-10 03:39:25 +0000967 if (BI->getOpcode() == Instruction::Shl &&
968 isa<ConstantInt>(BI->getOperand(1)))
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000969 if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
Chris Lattner641f02f2005-05-10 03:39:25 +0000970 MadeChange = true;
971 BI = NI;
972 }
973
Chris Lattner6f156852005-05-08 21:33:47 +0000974 // Reject cases where it is pointless to do this.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000975 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPointTy() ||
Duncan Sands1df98592010-02-16 11:11:14 +0000976 BI->getType()->isVectorTy())
Chris Lattner6f156852005-05-08 21:33:47 +0000977 continue; // Floating point ops are not associative.
978
Bob Wilsonfc375d22010-02-04 23:32:37 +0000979 // Do not reassociate boolean (i1) expressions. We want to preserve the
980 // original order of evaluation for short-circuited comparisons that
981 // SimplifyCFG has folded to AND/OR expressions. If the expression
982 // is not further optimized, it is likely to be transformed back to a
983 // short-circuited form for code gen, and the source order may have been
984 // optimized for the most likely conditions.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000985 if (BI->getType()->isIntegerTy(1))
Bob Wilsonfc375d22010-02-04 23:32:37 +0000986 continue;
987
Chris Lattner08b43922005-05-07 04:08:02 +0000988 // If this is a subtract instruction which is not already in negate form,
989 // see if we can convert it to X+-Y.
Chris Lattnerf33151a2005-05-08 21:28:52 +0000990 if (BI->getOpcode() == Instruction::Sub) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000991 if (ShouldBreakUpSubtract(BI)) {
992 BI = BreakUpSubtract(BI, ValueRankMap);
Chris Lattner5f94af02010-01-05 04:55:35 +0000993 // Reset the BBI iterator in case BreakUpSubtract changed the
994 // instruction it points to.
995 BBI = BI;
996 ++BBI;
Chris Lattnerd5b8d922008-02-18 02:18:25 +0000997 MadeChange = true;
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000998 } else if (BinaryOperator::isNeg(BI)) {
Chris Lattnerf33151a2005-05-08 21:28:52 +0000999 // Otherwise, this is a negation. See if the operand is a multiply tree
1000 // and if this is not an inner node of a multiply tree.
1001 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
1002 (!BI->hasOneUse() ||
1003 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +00001004 BI = LowerNegateToMultiply(BI, ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +00001005 MadeChange = true;
1006 }
Chris Lattner08b43922005-05-07 04:08:02 +00001007 }
Chris Lattnerf33151a2005-05-08 21:28:52 +00001008 }
Chris Lattnere4b73042002-10-31 17:12:59 +00001009
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001010 // If this instruction is a commutative binary operator, process it.
1011 if (!BI->isAssociative()) continue;
1012 BinaryOperator *I = cast<BinaryOperator>(BI);
Jeff Cohen00b168892005-07-27 06:12:32 +00001013
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001014 // If this is an interior node of a reassociable tree, ignore it until we
1015 // get to the root of the tree, to avoid N^2 analysis.
1016 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
1017 continue;
Chris Lattnera36e6c82002-05-16 04:37:07 +00001018
Chris Lattner7b4ad942005-09-02 07:07:58 +00001019 // If this is an add tree that is used by a sub instruction, ignore it
1020 // until we process the subtract.
1021 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
1022 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
1023 continue;
1024
Chris Lattner895b3922006-03-14 07:11:11 +00001025 ReassociateExpression(I);
1026 }
1027}
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001028
Chris Lattner69e98e22009-12-31 19:24:52 +00001029Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
Chris Lattner895b3922006-03-14 07:11:11 +00001030
Chris Lattner69e98e22009-12-31 19:24:52 +00001031 // First, walk the expression tree, linearizing the tree, collecting the
1032 // operand information.
Chris Lattner9f7b7082009-12-31 18:40:32 +00001033 SmallVector<ValueEntry, 8> Ops;
Chris Lattner895b3922006-03-14 07:11:11 +00001034 LinearizeExprTree(I, Ops);
1035
David Greenea1fa76c2010-01-05 01:27:24 +00001036 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +00001037
1038 // Now that we have linearized the tree to a list and have gathered all of
1039 // the operands and their ranks, sort the operands by their rank. Use a
1040 // stable_sort so that values with equal ranks will have their relative
1041 // positions maintained (and so the compiler is deterministic). Note that
1042 // this sorts so that the highest ranking values end up at the beginning of
1043 // the vector.
1044 std::stable_sort(Ops.begin(), Ops.end());
1045
1046 // OptimizeExpression - Now that we have the expression tree in a convenient
1047 // sorted form, optimize it globally if possible.
1048 if (Value *V = OptimizeExpression(I, Ops)) {
1049 // This expression tree simplified to something that isn't a tree,
1050 // eliminate it.
David Greenea1fa76c2010-01-05 01:27:24 +00001051 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +00001052 I->replaceAllUsesWith(V);
1053 RemoveDeadBinaryOp(I);
Chris Lattner9fdaefa2009-12-31 17:51:05 +00001054 ++NumAnnihil;
Chris Lattner69e98e22009-12-31 19:24:52 +00001055 return V;
Chris Lattner895b3922006-03-14 07:11:11 +00001056 }
1057
1058 // We want to sink immediates as deeply as possible except in the case where
1059 // this is a multiply tree used only by an add, and the immediate is a -1.
1060 // In this case we reassociate to put the negation on the outside so that we
1061 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1062 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1063 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1064 isa<ConstantInt>(Ops.back().Op) &&
1065 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
Chris Lattner9f7b7082009-12-31 18:40:32 +00001066 ValueEntry Tmp = Ops.pop_back_val();
1067 Ops.insert(Ops.begin(), Tmp);
Chris Lattner895b3922006-03-14 07:11:11 +00001068 }
1069
David Greenea1fa76c2010-01-05 01:27:24 +00001070 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +00001071
1072 if (Ops.size() == 1) {
1073 // This expression tree simplified to something that isn't a tree,
1074 // eliminate it.
1075 I->replaceAllUsesWith(Ops[0].Op);
1076 RemoveDeadBinaryOp(I);
Chris Lattner69e98e22009-12-31 19:24:52 +00001077 return Ops[0].Op;
Chris Lattner4fd56002002-05-08 22:19:27 +00001078 }
Chris Lattner69e98e22009-12-31 19:24:52 +00001079
1080 // Now that we ordered and optimized the expressions, splat them back into
1081 // the expression tree, removing any unneeded nodes.
1082 RewriteExprTree(I, Ops);
1083 return I;
Chris Lattner4fd56002002-05-08 22:19:27 +00001084}
1085
1086
Chris Lattner7e708292002-06-25 16:13:24 +00001087bool Reassociate::runOnFunction(Function &F) {
Chris Lattner4fd56002002-05-08 22:19:27 +00001088 // Recalculate the rank map for F
1089 BuildRankMap(F);
1090
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001091 MadeChange = false;
Chris Lattner7e708292002-06-25 16:13:24 +00001092 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001093 ReassociateBB(FI);
Chris Lattner4fd56002002-05-08 22:19:27 +00001094
Chris Lattnerf55e7f52010-01-01 00:01:34 +00001095 // We are done with the rank map.
Chris Lattner4fd56002002-05-08 22:19:27 +00001096 RankMap.clear();
Chris Lattnerfb5be092003-08-13 16:16:26 +00001097 ValueRankMap.clear();
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001098 return MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +00001099}
Brian Gaeked0fde302003-11-11 22:41:34 +00001100