blob: fe63381077f572dfcd98d71aa001dd8c0e0d5708 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
Dale Johannesen5981f6b2009-03-06 01:41:59 +000029#include "llvm/IntrinsicInst.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000030#include "llvm/Pass.h"
31#include "llvm/Assembly/Writer.h"
32#include "llvm/Support/CFG.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000033#include "llvm/Support/Debug.h"
Chris Lattner3bbf2a72009-03-31 22:13:29 +000034#include "llvm/Support/ValueHandle.h"
Chris Lattner8a6411c2009-08-23 04:37:46 +000035#include "llvm/Support/raw_ostream.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000036#include "llvm/ADT/PostOrderIterator.h"
37#include "llvm/ADT/Statistic.h"
Chris Lattnera0d64b92009-12-31 07:33:14 +000038#include "llvm/ADT/DenseMap.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000039#include <algorithm>
Dan Gohman249ddbf2008-03-21 23:51:57 +000040#include <map>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000041using namespace llvm;
42
43STATISTIC(NumLinear , "Number of insts linearized");
44STATISTIC(NumChanged, "Number of insts reassociated");
45STATISTIC(NumAnnihil, "Number of expr tree annihilated");
46STATISTIC(NumFactor , "Number of multiplies factored");
47
48namespace {
Chris Lattnerfa2d1ba2009-09-02 06:11:42 +000049 struct ValueEntry {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000050 unsigned Rank;
51 Value *Op;
52 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
53 };
54 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
55 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
56 }
57}
58
Devang Patele93afd52008-11-21 21:00:20 +000059#ifndef NDEBUG
Dan Gohmanf17a25c2007-07-18 16:29:46 +000060/// PrintOps - Print out the expression identified in the Ops list.
61///
Chris Lattner4780eb22009-12-31 18:40:32 +000062static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000063 Module *M = I->getParent()->getParent()->getParent();
Chris Lattnerb0659d42009-08-23 04:52:46 +000064 errs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner0f4ee1a2009-12-31 07:17:37 +000065 << *Ops[0].Op->getType() << '\t';
Chris Lattner51216ad2008-08-19 04:45:19 +000066 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner0f4ee1a2009-12-31 07:17:37 +000067 errs() << "[ ";
68 WriteAsOperand(errs(), Ops[i].Op, false, M);
69 errs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner51216ad2008-08-19 04:45:19 +000070 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000071}
Devang Patel4354f5c2008-11-21 20:00:59 +000072#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +000073
Dan Gohman089efff2008-05-13 00:00:25 +000074namespace {
Chris Lattnerfa2d1ba2009-09-02 06:11:42 +000075 class Reassociate : public FunctionPass {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000076 std::map<BasicBlock*, unsigned> RankMap;
Chris Lattner3bbf2a72009-03-31 22:13:29 +000077 std::map<AssertingVH<>, unsigned> ValueRankMap;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 bool MadeChange;
79 public:
80 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000081 Reassociate() : FunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000082
83 bool runOnFunction(Function &F);
84
85 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
86 AU.setPreservesCFG();
87 }
88 private:
89 void BuildRankMap(Function &F);
90 unsigned getRank(Value *V);
91 void ReassociateExpression(BinaryOperator *I);
Chris Lattner4780eb22009-12-31 18:40:32 +000092 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
Dan Gohmanf17a25c2007-07-18 16:29:46 +000093 unsigned Idx = 0);
Chris Lattner4780eb22009-12-31 18:40:32 +000094 Value *OptimizeExpression(BinaryOperator *I,
95 SmallVectorImpl<ValueEntry> &Ops);
96 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
97 void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000098 void LinearizeExpr(BinaryOperator *I);
99 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
100 void ReassociateBB(BasicBlock *BB);
101
102 void RemoveDeadBinaryOp(Value *V);
103 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000104}
105
Dan Gohman089efff2008-05-13 00:00:25 +0000106char Reassociate::ID = 0;
107static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
108
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000109// Public interface to the Reassociate pass
110FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
111
112void Reassociate::RemoveDeadBinaryOp(Value *V) {
113 Instruction *Op = dyn_cast<Instruction>(V);
114 if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
115 return;
116
117 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
118 RemoveDeadBinaryOp(LHS);
119 RemoveDeadBinaryOp(RHS);
120}
121
122
123static bool isUnmovableInstruction(Instruction *I) {
124 if (I->getOpcode() == Instruction::PHI ||
125 I->getOpcode() == Instruction::Alloca ||
126 I->getOpcode() == Instruction::Load ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 I->getOpcode() == Instruction::Invoke ||
Dale Johannesen5981f6b2009-03-06 01:41:59 +0000128 (I->getOpcode() == Instruction::Call &&
129 !isa<DbgInfoIntrinsic>(I)) ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000130 I->getOpcode() == Instruction::UDiv ||
131 I->getOpcode() == Instruction::SDiv ||
132 I->getOpcode() == Instruction::FDiv ||
133 I->getOpcode() == Instruction::URem ||
134 I->getOpcode() == Instruction::SRem ||
135 I->getOpcode() == Instruction::FRem)
136 return true;
137 return false;
138}
139
140void Reassociate::BuildRankMap(Function &F) {
141 unsigned i = 2;
142
143 // Assign distinct ranks to function arguments
144 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattner3bbf2a72009-03-31 22:13:29 +0000145 ValueRankMap[&*I] = ++i;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000146
147 ReversePostOrderTraversal<Function*> RPOT(&F);
148 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
149 E = RPOT.end(); I != E; ++I) {
150 BasicBlock *BB = *I;
151 unsigned BBRank = RankMap[BB] = ++i << 16;
152
153 // Walk the basic block, adding precomputed ranks for any instructions that
154 // we cannot move. This ensures that the ranks for these instructions are
155 // all different in the block.
156 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
157 if (isUnmovableInstruction(I))
Chris Lattner3bbf2a72009-03-31 22:13:29 +0000158 ValueRankMap[&*I] = ++BBRank;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000159 }
160}
161
162unsigned Reassociate::getRank(Value *V) {
163 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
164
165 Instruction *I = dyn_cast<Instruction>(V);
166 if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
167
168 unsigned &CachedRank = ValueRankMap[I];
169 if (CachedRank) return CachedRank; // Rank already known?
170
171 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
172 // we can reassociate expressions for code motion! Since we do not recurse
173 // for PHI nodes, we cannot have infinite recursion here, because there
174 // cannot be loops in the value graph that do not go through PHI nodes.
175 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
176 for (unsigned i = 0, e = I->getNumOperands();
177 i != e && Rank != MaxRank; ++i)
178 Rank = std::max(Rank, getRank(I->getOperand(i)));
179
180 // If this is a not or neg instruction, do not count it for rank. This
181 // assures us that X and ~X will have the same rank.
182 if (!I->getType()->isInteger() ||
Owen Anderson76f49252009-07-13 22:18:28 +0000183 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000184 ++Rank;
185
Chris Lattner8a6411c2009-08-23 04:37:46 +0000186 //DEBUG(errs() << "Calculated Rank[" << V->getName() << "] = "
187 // << Rank << "\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000188
189 return CachedRank = Rank;
190}
191
192/// isReassociableOp - Return true if V is an instruction of the specified
193/// opcode and if it only has one use.
194static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
195 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
196 cast<Instruction>(V)->getOpcode() == Opcode)
197 return cast<BinaryOperator>(V);
198 return 0;
199}
200
201/// LowerNegateToMultiply - Replace 0-X with X*-1.
202///
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000203static Instruction *LowerNegateToMultiply(Instruction *Neg,
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000204 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
Owen Andersonaac28372009-07-31 20:28:14 +0000205 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000206
Gabor Greifa645dd32008-05-16 19:29:10 +0000207 Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000208 ValueRankMap.erase(Neg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000209 Res->takeName(Neg);
210 Neg->replaceAllUsesWith(Res);
211 Neg->eraseFromParent();
212 return Res;
213}
214
215// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
216// Note that if D is also part of the expression tree that we recurse to
217// linearize it as well. Besides that case, this does not recurse into A,B, or
218// C.
219void Reassociate::LinearizeExpr(BinaryOperator *I) {
220 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
221 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
222 assert(isReassociableOp(LHS, I->getOpcode()) &&
223 isReassociableOp(RHS, I->getOpcode()) &&
224 "Not an expression that needs linearization?");
225
Chris Lattner8a6411c2009-08-23 04:37:46 +0000226 DEBUG(errs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000227
228 // Move the RHS instruction to live immediately before I, avoiding breaking
229 // dominator properties.
230 RHS->moveBefore(I);
231
232 // Move operands around to do the linearization.
233 I->setOperand(1, RHS->getOperand(0));
234 RHS->setOperand(0, LHS);
235 I->setOperand(0, RHS);
236
237 ++NumLinear;
238 MadeChange = true;
Chris Lattner8a6411c2009-08-23 04:37:46 +0000239 DEBUG(errs() << "Linearized: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000240
241 // If D is part of this expression tree, tail recurse.
242 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
243 LinearizeExpr(I);
244}
245
246
247/// LinearizeExprTree - Given an associative binary expression tree, traverse
248/// all of the uses putting it into canonical form. This forces a left-linear
249/// form of the the expression (((a+b)+c)+d), and collects information about the
250/// rank of the non-tree operands.
251///
252/// NOTE: These intentionally destroys the expression tree operands (turning
253/// them into undef values) to reduce #uses of the values. This means that the
254/// caller MUST use something like RewriteExprTree to put the values back in.
255///
256void Reassociate::LinearizeExprTree(BinaryOperator *I,
Chris Lattner4780eb22009-12-31 18:40:32 +0000257 SmallVectorImpl<ValueEntry> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000258 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
259 unsigned Opcode = I->getOpcode();
260
261 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
262 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
263 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
264
265 // If this is a multiply expression tree and it contains internal negations,
266 // transform them into multiplies by -1 so they can be reassociated.
267 if (I->getOpcode() == Instruction::Mul) {
Owen Anderson76f49252009-07-13 22:18:28 +0000268 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000269 LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000270 LHSBO = isReassociableOp(LHS, Opcode);
271 }
Owen Anderson76f49252009-07-13 22:18:28 +0000272 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000273 RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000274 RHSBO = isReassociableOp(RHS, Opcode);
275 }
276 }
277
278 if (!LHSBO) {
279 if (!RHSBO) {
280 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
281 // such, just remember these operands and their rank.
282 Ops.push_back(ValueEntry(getRank(LHS), LHS));
283 Ops.push_back(ValueEntry(getRank(RHS), RHS));
284
285 // Clear the leaves out.
Owen Andersonb99ecca2009-07-30 23:03:37 +0000286 I->setOperand(0, UndefValue::get(I->getType()));
287 I->setOperand(1, UndefValue::get(I->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000288 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000289 }
Chris Lattnere3b19f32009-12-31 07:59:34 +0000290
291 // Turn X+(Y+Z) -> (Y+Z)+X
292 std::swap(LHSBO, RHSBO);
293 std::swap(LHS, RHS);
294 bool Success = !I->swapOperands();
295 assert(Success && "swapOperands failed");
296 Success = false;
297 MadeChange = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000298 } else if (RHSBO) {
299 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
300 // part of the expression tree.
301 LinearizeExpr(I);
302 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
303 RHS = I->getOperand(1);
304 RHSBO = 0;
305 }
306
307 // Okay, now we know that the LHS is a nested expression and that the RHS is
308 // not. Perform reassociation.
309 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
310
311 // Move LHS right before I to make sure that the tree expression dominates all
312 // values.
313 LHSBO->moveBefore(I);
314
315 // Linearize the expression tree on the LHS.
316 LinearizeExprTree(LHSBO, Ops);
317
318 // Remember the RHS operand and its rank.
319 Ops.push_back(ValueEntry(getRank(RHS), RHS));
320
321 // Clear the RHS leaf out.
Owen Andersonb99ecca2009-07-30 23:03:37 +0000322 I->setOperand(1, UndefValue::get(I->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000323}
324
325// RewriteExprTree - Now that the operands for this expression tree are
326// linearized and optimized, emit them in-order. This function is written to be
327// tail recursive.
328void Reassociate::RewriteExprTree(BinaryOperator *I,
Chris Lattner4780eb22009-12-31 18:40:32 +0000329 SmallVectorImpl<ValueEntry> &Ops,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000330 unsigned i) {
331 if (i+2 == Ops.size()) {
332 if (I->getOperand(0) != Ops[i].Op ||
333 I->getOperand(1) != Ops[i+1].Op) {
334 Value *OldLHS = I->getOperand(0);
Chris Lattner8a6411c2009-08-23 04:37:46 +0000335 DEBUG(errs() << "RA: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000336 I->setOperand(0, Ops[i].Op);
337 I->setOperand(1, Ops[i+1].Op);
Chris Lattner8a6411c2009-08-23 04:37:46 +0000338 DEBUG(errs() << "TO: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000339 MadeChange = true;
340 ++NumChanged;
341
342 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
343 // delete the extra, now dead, nodes.
344 RemoveDeadBinaryOp(OldLHS);
345 }
346 return;
347 }
348 assert(i+2 < Ops.size() && "Ops index out of range!");
349
350 if (I->getOperand(1) != Ops[i].Op) {
Chris Lattner8a6411c2009-08-23 04:37:46 +0000351 DEBUG(errs() << "RA: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000352 I->setOperand(1, Ops[i].Op);
Chris Lattner8a6411c2009-08-23 04:37:46 +0000353 DEBUG(errs() << "TO: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000354 MadeChange = true;
355 ++NumChanged;
356 }
357
358 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
359 assert(LHS->getOpcode() == I->getOpcode() &&
360 "Improper expression tree!");
361
362 // Compactify the tree instructions together with each other to guarantee
363 // that the expression tree is dominated by all of Ops.
364 LHS->moveBefore(I);
365 RewriteExprTree(LHS, Ops, i+1);
366}
367
368
369
370// NegateValue - Insert instructions before the instruction pointed to by BI,
371// that computes the negative version of the value specified. The negative
372// version of the value is returned, and BI is left pointing at the instruction
373// that should be processed next by the reassociation pass.
374//
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000375static Value *NegateValue(Value *V, Instruction *BI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000376 // We are trying to expose opportunity for reassociation. One of the things
377 // that we want to do to achieve this is to push a negation as deep into an
378 // expression chain as possible, to expose the add instructions. In practice,
379 // this means that we turn this:
380 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
381 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
382 // the constants. We assume that instcombine will clean up the mess later if
383 // we introduce tons of unnecessary negation instructions...
384 //
385 if (Instruction *I = dyn_cast<Instruction>(V))
386 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
387 // Push the negates through the add.
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000388 I->setOperand(0, NegateValue(I->getOperand(0), BI));
389 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000390
391 // We must move the add instruction here, because the neg instructions do
392 // not dominate the old add instruction in general. By moving it, we are
393 // assured that the neg instructions we just inserted dominate the
394 // instruction we are about to insert after them.
395 //
396 I->moveBefore(BI);
397 I->setName(I->getName()+".neg");
398 return I;
399 }
400
401 // Insert a 'neg' instruction that subtracts the value from zero to get the
402 // negation.
403 //
Dan Gohmancdff2122009-08-12 16:23:25 +0000404 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000405}
406
Chris Lattner6cf17172008-02-17 20:44:51 +0000407/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
408/// X-Y into (X + -Y).
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000409static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner6cf17172008-02-17 20:44:51 +0000410 // If this is a negation, we can't split it up!
Owen Anderson76f49252009-07-13 22:18:28 +0000411 if (BinaryOperator::isNeg(Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000412 return false;
413
414 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner4846b312008-02-17 20:51:26 +0000415 // subtract or if this is only used by one.
416 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
417 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000418 return true;
Chris Lattner4846b312008-02-17 20:51:26 +0000419 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner720f2ba2008-02-17 20:54:40 +0000420 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000421 return true;
Chris Lattner4846b312008-02-17 20:51:26 +0000422 if (Sub->hasOneUse() &&
423 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
424 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner6cf17172008-02-17 20:44:51 +0000425 return true;
426
427 return false;
428}
429
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000430/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
431/// only used by an add, transform this into (X+(0-Y)) to promote better
432/// reassociation.
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000433static Instruction *BreakUpSubtract(Instruction *Sub,
Chris Lattner3bbf2a72009-03-31 22:13:29 +0000434 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000435 // Convert a subtract into an add and a neg instruction... so that sub
436 // instructions can be commuted with other add instructions...
437 //
438 // Calculate the negative value of Operand 1 of the sub instruction...
439 // and set it as the RHS of the add instruction we just made...
440 //
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000441 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000442 Instruction *New =
Gabor Greifa645dd32008-05-16 19:29:10 +0000443 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000444 New->takeName(Sub);
445
446 // Everyone now refers to the add instruction.
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000447 ValueRankMap.erase(Sub);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000448 Sub->replaceAllUsesWith(New);
449 Sub->eraseFromParent();
450
Chris Lattner8a6411c2009-08-23 04:37:46 +0000451 DEBUG(errs() << "Negated: " << *New << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000452 return New;
453}
454
455/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
456/// by one, change this into a multiply by a constant to assist with further
457/// reassociation.
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000458static Instruction *ConvertShiftToMul(Instruction *Shl,
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000459 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000460 // If an operand of this shift is a reassociable multiply, or if the shift
461 // is used by a reassociable multiply or add, turn into a multiply.
462 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
463 (Shl->hasOneUse() &&
464 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
465 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
Owen Andersoneacb44d2009-07-24 23:12:02 +0000466 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
Chris Lattnere3b19f32009-12-31 07:59:34 +0000467 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000468
Chris Lattnere3b19f32009-12-31 07:59:34 +0000469 Instruction *Mul =
470 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000471 ValueRankMap.erase(Shl);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000472 Mul->takeName(Shl);
473 Shl->replaceAllUsesWith(Mul);
474 Shl->eraseFromParent();
475 return Mul;
476 }
477 return 0;
478}
479
480// Scan backwards and forwards among values with the same rank as element i to
481// see if X exists. If X does not exist, return i.
Chris Lattner4780eb22009-12-31 18:40:32 +0000482static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000483 Value *X) {
484 unsigned XRank = Ops[i].Rank;
485 unsigned e = Ops.size();
486 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
487 if (Ops[j].Op == X)
488 return j;
489 // Scan backwards
490 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
491 if (Ops[j].Op == X)
492 return j;
493 return i;
494}
495
496/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
497/// and returning the result. Insert the tree before I.
Chris Lattner4f663d02009-12-31 07:48:51 +0000498static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000499 if (Ops.size() == 1) return Ops.back();
500
501 Value *V1 = Ops.back();
502 Ops.pop_back();
503 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greifa645dd32008-05-16 19:29:10 +0000504 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000505}
506
507/// RemoveFactorFromExpression - If V is an expression tree that is a
508/// multiplication sequence, and if this sequence contains a multiply by Factor,
509/// remove Factor from the tree and return the new tree.
510Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
511 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
512 if (!BO) return 0;
513
Chris Lattner4780eb22009-12-31 18:40:32 +0000514 SmallVector<ValueEntry, 8> Factors;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000515 LinearizeExprTree(BO, Factors);
516
517 bool FoundFactor = false;
518 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
519 if (Factors[i].Op == Factor) {
520 FoundFactor = true;
521 Factors.erase(Factors.begin()+i);
522 break;
523 }
524 if (!FoundFactor) {
525 // Make sure to restore the operands to the expression tree.
526 RewriteExprTree(BO, Factors);
527 return 0;
528 }
529
530 if (Factors.size() == 1) return Factors[0].Op;
531
532 RewriteExprTree(BO, Factors);
533 return BO;
534}
535
536/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
537/// add its operands as factors, otherwise add V to the list of factors.
538static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattner4f663d02009-12-31 07:48:51 +0000539 SmallVectorImpl<Value*> &Factors) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000540 BinaryOperator *BO;
541 if ((!V->hasOneUse() && !V->use_empty()) ||
542 !(BO = dyn_cast<BinaryOperator>(V)) ||
543 BO->getOpcode() != Instruction::Mul) {
544 Factors.push_back(V);
545 return;
546 }
547
548 // Otherwise, add the LHS and RHS to the list of factors.
549 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
550 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
551}
552
Chris Lattnere3b19f32009-12-31 07:59:34 +0000553/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
554/// instruction. This optimizes based on identities. If it can be reduced to
555/// a single Value, it is returned, otherwise the Ops list is mutated as
556/// necessary.
Chris Lattner4780eb22009-12-31 18:40:32 +0000557static Value *OptimizeAndOrXor(unsigned Opcode,
558 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere3b19f32009-12-31 07:59:34 +0000559 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
560 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
561 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
562 // First, check for X and ~X in the operand list.
563 assert(i < Ops.size());
564 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
565 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
566 unsigned FoundX = FindInOperandList(Ops, i, X);
567 if (FoundX != i) {
Chris Lattnerff3866c2009-12-31 17:51:05 +0000568 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattnere3b19f32009-12-31 07:59:34 +0000569 return Constant::getNullValue(X->getType());
Chris Lattnere3b19f32009-12-31 07:59:34 +0000570
Chris Lattnerff3866c2009-12-31 17:51:05 +0000571 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattnere3b19f32009-12-31 07:59:34 +0000572 return Constant::getAllOnesValue(X->getType());
Chris Lattnere3b19f32009-12-31 07:59:34 +0000573 }
574 }
575
576 // Next, check for duplicate pairs of values, which we assume are next to
577 // each other, due to our sorting criteria.
578 assert(i < Ops.size());
579 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
580 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
581 // Drop duplicate values.
582 Ops.erase(Ops.begin()+i);
583 --i; --e;
584 ++NumAnnihil;
585 } else {
586 assert(Opcode == Instruction::Xor);
Chris Lattnerff3866c2009-12-31 17:51:05 +0000587 if (e == 2)
Chris Lattnere3b19f32009-12-31 07:59:34 +0000588 return Constant::getNullValue(Ops[0].Op->getType());
Chris Lattnerff3866c2009-12-31 17:51:05 +0000589
Chris Lattnere3b19f32009-12-31 07:59:34 +0000590 // ... X^X -> ...
591 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
592 i -= 1; e -= 2;
593 ++NumAnnihil;
594 }
595 }
596 }
597 return 0;
598}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000599
Chris Lattnere3b19f32009-12-31 07:59:34 +0000600/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
601/// optimizes based on identities. If it can be reduced to a single Value, it
602/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner4780eb22009-12-31 18:40:32 +0000603Value *Reassociate::OptimizeAdd(Instruction *I,
604 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere3b19f32009-12-31 07:59:34 +0000605 // Scan the operand lists looking for X and -X pairs. If we find any, we
606 // can simplify the expression. X+-X == 0.
607 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
608 assert(i < Ops.size());
609 // Check for X and -X in the operand list.
610 if (!BinaryOperator::isNeg(Ops[i].Op))
611 continue;
612
613 Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
614 unsigned FoundX = FindInOperandList(Ops, i, X);
615 if (FoundX == i)
616 continue;
617
618 // Remove X and -X from the operand list.
Chris Lattnerff3866c2009-12-31 17:51:05 +0000619 if (Ops.size() == 2)
Chris Lattnere3b19f32009-12-31 07:59:34 +0000620 return Constant::getNullValue(X->getType());
Chris Lattnere3b19f32009-12-31 07:59:34 +0000621
622 Ops.erase(Ops.begin()+i);
623 if (i < FoundX)
624 --FoundX;
625 else
626 --i; // Need to back up an extra one.
627 Ops.erase(Ops.begin()+FoundX);
628 ++NumAnnihil;
629 --i; // Revisit element.
630 e -= 2; // Removed two elements.
631 }
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000632
633 // Scan the operand list, checking to see if there are any common factors
634 // between operands. Consider something like A*A+A*B*C+D. We would like to
635 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
636 // To efficiently find this, we count the number of times a factor occurs
637 // for any ADD operands that are MULs.
638 DenseMap<Value*, unsigned> FactorOccurrences;
639
640 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
641 // where they are actually the same multiply.
642 SmallPtrSet<BinaryOperator*, 4> Multiplies;
643 unsigned MaxOcc = 0;
644 Value *MaxOccVal = 0;
645 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
646 BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
647 if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
648 continue;
649
650 // If we've already seen this multiply, don't revisit it.
651 if (!Multiplies.insert(BOp)) continue;
652
653 // Compute all of the factors of this added value.
654 SmallVector<Value*, 8> Factors;
655 FindSingleUseMultiplyFactors(BOp, Factors);
656 assert(Factors.size() > 1 && "Bad linearize!");
657
658 // Add one to FactorOccurrences for each unique factor in this op.
659 if (Factors.size() == 2) {
660 unsigned Occ = ++FactorOccurrences[Factors[0]];
661 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
662 if (Factors[0] != Factors[1]) { // Don't double count A*A.
663 Occ = ++FactorOccurrences[Factors[1]];
664 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
665 }
666 } else {
667 SmallPtrSet<Value*, 4> Duplicates;
668 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
669 if (!Duplicates.insert(Factors[i])) continue;
670
671 unsigned Occ = ++FactorOccurrences[Factors[i]];
672 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
673 }
674 }
675 }
676
677 // If any factor occurred more than one time, we can pull it out.
678 if (MaxOcc > 1) {
679 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n");
680 ++NumFactor;
681
682 // Create a new instruction that uses the MaxOccVal twice. If we don't do
683 // this, we could otherwise run into situations where removing a factor
684 // from an expression will drop a use of maxocc, and this can cause
685 // RemoveFactorFromExpression on successive values to behave differently.
686 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
687 SmallVector<Value*, 4> NewMulOps;
688 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
689 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
690 NewMulOps.push_back(V);
691 Ops.erase(Ops.begin()+i);
692 --i; --e;
693 }
694 }
695
696 // No need for extra uses anymore.
697 delete DummyInst;
698
699 unsigned NumAddedValues = NewMulOps.size();
700 Value *V = EmitAddTreeOfValues(I, NewMulOps);
701 Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
702
703 // Now that we have inserted V and its sole use, optimize it. This allows
704 // us to handle cases that require multiple factoring steps, such as this:
705 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattner19bacd42009-12-31 18:18:46 +0000706 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
707 ReassociateExpression(cast<BinaryOperator>(V));
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000708
709 // If every add operand included the factor (e.g. "A*B + A*C"), then the
710 // entire result expression is just the multiply "A*(B+C)".
711 if (Ops.empty())
712 return V2;
713
Chris Lattner19bacd42009-12-31 18:18:46 +0000714 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000715 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattner19bacd42009-12-31 18:18:46 +0000716 // things being added by this operation.
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000717 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
718 }
719
Chris Lattnere3b19f32009-12-31 07:59:34 +0000720 return 0;
721}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000722
723Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner4780eb22009-12-31 18:40:32 +0000724 SmallVectorImpl<ValueEntry> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000725 // Now that we have the linearized expression tree, try to optimize it.
726 // Start by folding any constants that we found.
727 bool IterateOptimization = false;
728 if (Ops.size() == 1) return Ops[0].Op;
729
730 unsigned Opcode = I->getOpcode();
731
732 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
733 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
734 Ops.pop_back();
Owen Anderson02b48c32009-07-29 18:55:55 +0000735 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000736 return OptimizeExpression(I, Ops);
737 }
738
739 // Check for destructive annihilation due to a constant being used.
740 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
741 switch (Opcode) {
742 default: break;
743 case Instruction::And:
Chris Lattnerff3866c2009-12-31 17:51:05 +0000744 if (CstVal->isZero()) // ... & 0 -> 0
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000745 return CstVal;
Chris Lattnerff3866c2009-12-31 17:51:05 +0000746 if (CstVal->isAllOnesValue()) // ... & -1 -> ...
Chris Lattner4f663d02009-12-31 07:48:51 +0000747 Ops.pop_back();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000748 break;
749 case Instruction::Mul:
750 if (CstVal->isZero()) { // ... * 0 -> 0
751 ++NumAnnihil;
752 return CstVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000753 }
Chris Lattner4f663d02009-12-31 07:48:51 +0000754
755 if (cast<ConstantInt>(CstVal)->isOne())
756 Ops.pop_back(); // ... * 1 -> ...
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000757 break;
758 case Instruction::Or:
Chris Lattnerff3866c2009-12-31 17:51:05 +0000759 if (CstVal->isAllOnesValue()) // ... | -1 -> -1
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000760 return CstVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000761 // FALLTHROUGH!
762 case Instruction::Add:
763 case Instruction::Xor:
764 if (CstVal->isZero()) // ... [|^+] 0 -> ...
765 Ops.pop_back();
766 break;
767 }
768 if (Ops.size() == 1) return Ops[0].Op;
769
Chris Lattnera0d64b92009-12-31 07:33:14 +0000770 // Handle destructive annihilation due to identities between elements in the
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000771 // argument list here.
772 switch (Opcode) {
773 default: break;
774 case Instruction::And:
775 case Instruction::Or:
Chris Lattnere3b19f32009-12-31 07:59:34 +0000776 case Instruction::Xor: {
777 unsigned NumOps = Ops.size();
778 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
779 return Result;
780 IterateOptimization |= Ops.size() != NumOps;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000781 break;
Chris Lattnere3b19f32009-12-31 07:59:34 +0000782 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000783
Chris Lattnere3b19f32009-12-31 07:59:34 +0000784 case Instruction::Add: {
785 unsigned NumOps = Ops.size();
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000786 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattnere3b19f32009-12-31 07:59:34 +0000787 return Result;
788 IterateOptimization |= Ops.size() != NumOps;
789 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000790
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000791 break;
792 //case Instruction::Mul:
793 }
794
795 if (IterateOptimization)
796 return OptimizeExpression(I, Ops);
797 return 0;
798}
799
800
801/// ReassociateBB - Inspect all of the instructions in this basic block,
802/// reassociating them as we go.
803void Reassociate::ReassociateBB(BasicBlock *BB) {
804 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
805 Instruction *BI = BBI++;
806 if (BI->getOpcode() == Instruction::Shl &&
807 isa<ConstantInt>(BI->getOperand(1)))
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000808 if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000809 MadeChange = true;
810 BI = NI;
811 }
812
813 // Reject cases where it is pointless to do this.
814 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
815 isa<VectorType>(BI->getType()))
816 continue; // Floating point ops are not associative.
817
818 // If this is a subtract instruction which is not already in negate form,
819 // see if we can convert it to X+-Y.
820 if (BI->getOpcode() == Instruction::Sub) {
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000821 if (ShouldBreakUpSubtract(BI)) {
822 BI = BreakUpSubtract(BI, ValueRankMap);
Chris Lattnerb0cd25e2008-02-18 02:18:25 +0000823 MadeChange = true;
Owen Anderson76f49252009-07-13 22:18:28 +0000824 } else if (BinaryOperator::isNeg(BI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000825 // Otherwise, this is a negation. See if the operand is a multiply tree
826 // and if this is not an inner node of a multiply tree.
827 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
828 (!BI->hasOneUse() ||
829 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000830 BI = LowerNegateToMultiply(BI, ValueRankMap);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000831 MadeChange = true;
832 }
833 }
834 }
835
836 // If this instruction is a commutative binary operator, process it.
837 if (!BI->isAssociative()) continue;
838 BinaryOperator *I = cast<BinaryOperator>(BI);
839
840 // If this is an interior node of a reassociable tree, ignore it until we
841 // get to the root of the tree, to avoid N^2 analysis.
842 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
843 continue;
844
845 // If this is an add tree that is used by a sub instruction, ignore it
846 // until we process the subtract.
847 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
848 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
849 continue;
850
851 ReassociateExpression(I);
852 }
853}
854
855void Reassociate::ReassociateExpression(BinaryOperator *I) {
856
857 // First, walk the expression tree, linearizing the tree, collecting
Chris Lattner4780eb22009-12-31 18:40:32 +0000858 SmallVector<ValueEntry, 8> Ops;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000859 LinearizeExprTree(I, Ops);
860
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000861 DEBUG(errs() << "RAIn:\t"; PrintOps(I, Ops); errs() << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000862
863 // Now that we have linearized the tree to a list and have gathered all of
864 // the operands and their ranks, sort the operands by their rank. Use a
865 // stable_sort so that values with equal ranks will have their relative
866 // positions maintained (and so the compiler is deterministic). Note that
867 // this sorts so that the highest ranking values end up at the beginning of
868 // the vector.
869 std::stable_sort(Ops.begin(), Ops.end());
870
871 // OptimizeExpression - Now that we have the expression tree in a convenient
872 // sorted form, optimize it globally if possible.
873 if (Value *V = OptimizeExpression(I, Ops)) {
874 // This expression tree simplified to something that isn't a tree,
875 // eliminate it.
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000876 DEBUG(errs() << "Reassoc to scalar: " << *V << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000877 I->replaceAllUsesWith(V);
878 RemoveDeadBinaryOp(I);
Chris Lattnerff3866c2009-12-31 17:51:05 +0000879 ++NumAnnihil;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000880 return;
881 }
882
883 // We want to sink immediates as deeply as possible except in the case where
884 // this is a multiply tree used only by an add, and the immediate is a -1.
885 // In this case we reassociate to put the negation on the outside so that we
886 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
887 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
888 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
889 isa<ConstantInt>(Ops.back().Op) &&
890 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
Chris Lattner4780eb22009-12-31 18:40:32 +0000891 ValueEntry Tmp = Ops.pop_back_val();
892 Ops.insert(Ops.begin(), Tmp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000893 }
894
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000895 DEBUG(errs() << "RAOut:\t"; PrintOps(I, Ops); errs() << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000896
897 if (Ops.size() == 1) {
898 // This expression tree simplified to something that isn't a tree,
899 // eliminate it.
900 I->replaceAllUsesWith(Ops[0].Op);
901 RemoveDeadBinaryOp(I);
902 } else {
903 // Now that we ordered and optimized the expressions, splat them back into
904 // the expression tree, removing any unneeded nodes.
905 RewriteExprTree(I, Ops);
906 }
907}
908
909
910bool Reassociate::runOnFunction(Function &F) {
911 // Recalculate the rank map for F
912 BuildRankMap(F);
913
914 MadeChange = false;
915 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
916 ReassociateBB(FI);
917
918 // We are done with the rank map...
919 RankMap.clear();
920 ValueRankMap.clear();
921 return MadeChange;
922}
923