blob: e0528f76670f27bc8800383425f1856659194cad [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
Dale Johannesen5981f6b2009-03-06 01:41:59 +000029#include "llvm/IntrinsicInst.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000030#include "llvm/Pass.h"
31#include "llvm/Assembly/Writer.h"
32#include "llvm/Support/CFG.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000033#include "llvm/Support/Debug.h"
Chris Lattner3bbf2a72009-03-31 22:13:29 +000034#include "llvm/Support/ValueHandle.h"
Chris Lattner8a6411c2009-08-23 04:37:46 +000035#include "llvm/Support/raw_ostream.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000036#include "llvm/ADT/PostOrderIterator.h"
37#include "llvm/ADT/Statistic.h"
Chris Lattnera0d64b92009-12-31 07:33:14 +000038#include "llvm/ADT/DenseMap.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000039#include <algorithm>
Dan Gohman249ddbf2008-03-21 23:51:57 +000040#include <map>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000041using namespace llvm;
42
43STATISTIC(NumLinear , "Number of insts linearized");
44STATISTIC(NumChanged, "Number of insts reassociated");
45STATISTIC(NumAnnihil, "Number of expr tree annihilated");
46STATISTIC(NumFactor , "Number of multiplies factored");
47
48namespace {
Chris Lattnerfa2d1ba2009-09-02 06:11:42 +000049 struct ValueEntry {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000050 unsigned Rank;
51 Value *Op;
52 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
53 };
54 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
55 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
56 }
57}
58
Devang Patele93afd52008-11-21 21:00:20 +000059#ifndef NDEBUG
Dan Gohmanf17a25c2007-07-18 16:29:46 +000060/// PrintOps - Print out the expression identified in the Ops list.
61///
Chris Lattner4780eb22009-12-31 18:40:32 +000062static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000063 Module *M = I->getParent()->getParent()->getParent();
Chris Lattnerb0659d42009-08-23 04:52:46 +000064 errs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner0f4ee1a2009-12-31 07:17:37 +000065 << *Ops[0].Op->getType() << '\t';
Chris Lattner51216ad2008-08-19 04:45:19 +000066 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner0f4ee1a2009-12-31 07:17:37 +000067 errs() << "[ ";
68 WriteAsOperand(errs(), Ops[i].Op, false, M);
69 errs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner51216ad2008-08-19 04:45:19 +000070 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000071}
Devang Patel4354f5c2008-11-21 20:00:59 +000072#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +000073
Dan Gohman089efff2008-05-13 00:00:25 +000074namespace {
Chris Lattnerfa2d1ba2009-09-02 06:11:42 +000075 class Reassociate : public FunctionPass {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000076 std::map<BasicBlock*, unsigned> RankMap;
Chris Lattner3bbf2a72009-03-31 22:13:29 +000077 std::map<AssertingVH<>, unsigned> ValueRankMap;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 bool MadeChange;
79 public:
80 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000081 Reassociate() : FunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000082
83 bool runOnFunction(Function &F);
84
85 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
86 AU.setPreservesCFG();
87 }
88 private:
89 void BuildRankMap(Function &F);
90 unsigned getRank(Value *V);
Chris Lattner2ab9d282009-12-31 19:24:52 +000091 Value *ReassociateExpression(BinaryOperator *I);
Chris Lattner4780eb22009-12-31 18:40:32 +000092 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
Dan Gohmanf17a25c2007-07-18 16:29:46 +000093 unsigned Idx = 0);
Chris Lattner4780eb22009-12-31 18:40:32 +000094 Value *OptimizeExpression(BinaryOperator *I,
95 SmallVectorImpl<ValueEntry> &Ops);
96 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
97 void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000098 void LinearizeExpr(BinaryOperator *I);
99 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
100 void ReassociateBB(BasicBlock *BB);
101
102 void RemoveDeadBinaryOp(Value *V);
103 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000104}
105
Dan Gohman089efff2008-05-13 00:00:25 +0000106char Reassociate::ID = 0;
107static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
108
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000109// Public interface to the Reassociate pass
110FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
111
112void Reassociate::RemoveDeadBinaryOp(Value *V) {
113 Instruction *Op = dyn_cast<Instruction>(V);
Chris Lattner2ab9d282009-12-31 19:24:52 +0000114 if (!Op || !isa<BinaryOperator>(Op) || !Op->use_empty())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000115 return;
116
117 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
Chris Lattner2ab9d282009-12-31 19:24:52 +0000118
119 ValueRankMap.erase(Op);
120 Op->eraseFromParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000121 RemoveDeadBinaryOp(LHS);
122 RemoveDeadBinaryOp(RHS);
123}
124
125
126static bool isUnmovableInstruction(Instruction *I) {
127 if (I->getOpcode() == Instruction::PHI ||
128 I->getOpcode() == Instruction::Alloca ||
129 I->getOpcode() == Instruction::Load ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000130 I->getOpcode() == Instruction::Invoke ||
Dale Johannesen5981f6b2009-03-06 01:41:59 +0000131 (I->getOpcode() == Instruction::Call &&
132 !isa<DbgInfoIntrinsic>(I)) ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000133 I->getOpcode() == Instruction::UDiv ||
134 I->getOpcode() == Instruction::SDiv ||
135 I->getOpcode() == Instruction::FDiv ||
136 I->getOpcode() == Instruction::URem ||
137 I->getOpcode() == Instruction::SRem ||
138 I->getOpcode() == Instruction::FRem)
139 return true;
140 return false;
141}
142
143void Reassociate::BuildRankMap(Function &F) {
144 unsigned i = 2;
145
146 // Assign distinct ranks to function arguments
147 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattner3bbf2a72009-03-31 22:13:29 +0000148 ValueRankMap[&*I] = ++i;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000149
150 ReversePostOrderTraversal<Function*> RPOT(&F);
151 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
152 E = RPOT.end(); I != E; ++I) {
153 BasicBlock *BB = *I;
154 unsigned BBRank = RankMap[BB] = ++i << 16;
155
156 // Walk the basic block, adding precomputed ranks for any instructions that
157 // we cannot move. This ensures that the ranks for these instructions are
158 // all different in the block.
159 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
160 if (isUnmovableInstruction(I))
Chris Lattner3bbf2a72009-03-31 22:13:29 +0000161 ValueRankMap[&*I] = ++BBRank;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000162 }
163}
164
165unsigned Reassociate::getRank(Value *V) {
166 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
167
168 Instruction *I = dyn_cast<Instruction>(V);
169 if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
170
171 unsigned &CachedRank = ValueRankMap[I];
172 if (CachedRank) return CachedRank; // Rank already known?
173
174 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
175 // we can reassociate expressions for code motion! Since we do not recurse
176 // for PHI nodes, we cannot have infinite recursion here, because there
177 // cannot be loops in the value graph that do not go through PHI nodes.
178 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
179 for (unsigned i = 0, e = I->getNumOperands();
180 i != e && Rank != MaxRank; ++i)
181 Rank = std::max(Rank, getRank(I->getOperand(i)));
182
183 // If this is a not or neg instruction, do not count it for rank. This
184 // assures us that X and ~X will have the same rank.
185 if (!I->getType()->isInteger() ||
Owen Anderson76f49252009-07-13 22:18:28 +0000186 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000187 ++Rank;
188
Chris Lattner8a6411c2009-08-23 04:37:46 +0000189 //DEBUG(errs() << "Calculated Rank[" << V->getName() << "] = "
190 // << Rank << "\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000191
192 return CachedRank = Rank;
193}
194
195/// isReassociableOp - Return true if V is an instruction of the specified
196/// opcode and if it only has one use.
197static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
198 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
199 cast<Instruction>(V)->getOpcode() == Opcode)
200 return cast<BinaryOperator>(V);
201 return 0;
202}
203
204/// LowerNegateToMultiply - Replace 0-X with X*-1.
205///
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000206static Instruction *LowerNegateToMultiply(Instruction *Neg,
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000207 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
Owen Andersonaac28372009-07-31 20:28:14 +0000208 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000209
Gabor Greifa645dd32008-05-16 19:29:10 +0000210 Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000211 ValueRankMap.erase(Neg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000212 Res->takeName(Neg);
213 Neg->replaceAllUsesWith(Res);
214 Neg->eraseFromParent();
215 return Res;
216}
217
218// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
219// Note that if D is also part of the expression tree that we recurse to
220// linearize it as well. Besides that case, this does not recurse into A,B, or
221// C.
222void Reassociate::LinearizeExpr(BinaryOperator *I) {
223 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
224 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
225 assert(isReassociableOp(LHS, I->getOpcode()) &&
226 isReassociableOp(RHS, I->getOpcode()) &&
227 "Not an expression that needs linearization?");
228
Chris Lattner8a6411c2009-08-23 04:37:46 +0000229 DEBUG(errs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000230
231 // Move the RHS instruction to live immediately before I, avoiding breaking
232 // dominator properties.
233 RHS->moveBefore(I);
234
235 // Move operands around to do the linearization.
236 I->setOperand(1, RHS->getOperand(0));
237 RHS->setOperand(0, LHS);
238 I->setOperand(0, RHS);
239
240 ++NumLinear;
241 MadeChange = true;
Chris Lattner8a6411c2009-08-23 04:37:46 +0000242 DEBUG(errs() << "Linearized: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000243
244 // If D is part of this expression tree, tail recurse.
245 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
246 LinearizeExpr(I);
247}
248
249
250/// LinearizeExprTree - Given an associative binary expression tree, traverse
251/// all of the uses putting it into canonical form. This forces a left-linear
252/// form of the the expression (((a+b)+c)+d), and collects information about the
253/// rank of the non-tree operands.
254///
255/// NOTE: These intentionally destroys the expression tree operands (turning
256/// them into undef values) to reduce #uses of the values. This means that the
257/// caller MUST use something like RewriteExprTree to put the values back in.
258///
259void Reassociate::LinearizeExprTree(BinaryOperator *I,
Chris Lattner4780eb22009-12-31 18:40:32 +0000260 SmallVectorImpl<ValueEntry> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000261 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
262 unsigned Opcode = I->getOpcode();
263
264 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
265 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
266 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
267
268 // If this is a multiply expression tree and it contains internal negations,
269 // transform them into multiplies by -1 so they can be reassociated.
270 if (I->getOpcode() == Instruction::Mul) {
Owen Anderson76f49252009-07-13 22:18:28 +0000271 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000272 LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000273 LHSBO = isReassociableOp(LHS, Opcode);
274 }
Owen Anderson76f49252009-07-13 22:18:28 +0000275 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000276 RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000277 RHSBO = isReassociableOp(RHS, Opcode);
278 }
279 }
280
281 if (!LHSBO) {
282 if (!RHSBO) {
283 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
284 // such, just remember these operands and their rank.
285 Ops.push_back(ValueEntry(getRank(LHS), LHS));
286 Ops.push_back(ValueEntry(getRank(RHS), RHS));
287
288 // Clear the leaves out.
Owen Andersonb99ecca2009-07-30 23:03:37 +0000289 I->setOperand(0, UndefValue::get(I->getType()));
290 I->setOperand(1, UndefValue::get(I->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000291 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000292 }
Chris Lattnere3b19f32009-12-31 07:59:34 +0000293
294 // Turn X+(Y+Z) -> (Y+Z)+X
295 std::swap(LHSBO, RHSBO);
296 std::swap(LHS, RHS);
297 bool Success = !I->swapOperands();
298 assert(Success && "swapOperands failed");
299 Success = false;
300 MadeChange = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000301 } else if (RHSBO) {
302 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
303 // part of the expression tree.
304 LinearizeExpr(I);
305 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
306 RHS = I->getOperand(1);
307 RHSBO = 0;
308 }
309
310 // Okay, now we know that the LHS is a nested expression and that the RHS is
311 // not. Perform reassociation.
312 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
313
314 // Move LHS right before I to make sure that the tree expression dominates all
315 // values.
316 LHSBO->moveBefore(I);
317
318 // Linearize the expression tree on the LHS.
319 LinearizeExprTree(LHSBO, Ops);
320
321 // Remember the RHS operand and its rank.
322 Ops.push_back(ValueEntry(getRank(RHS), RHS));
323
324 // Clear the RHS leaf out.
Owen Andersonb99ecca2009-07-30 23:03:37 +0000325 I->setOperand(1, UndefValue::get(I->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000326}
327
328// RewriteExprTree - Now that the operands for this expression tree are
329// linearized and optimized, emit them in-order. This function is written to be
330// tail recursive.
331void Reassociate::RewriteExprTree(BinaryOperator *I,
Chris Lattner4780eb22009-12-31 18:40:32 +0000332 SmallVectorImpl<ValueEntry> &Ops,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000333 unsigned i) {
334 if (i+2 == Ops.size()) {
335 if (I->getOperand(0) != Ops[i].Op ||
336 I->getOperand(1) != Ops[i+1].Op) {
337 Value *OldLHS = I->getOperand(0);
Chris Lattner8a6411c2009-08-23 04:37:46 +0000338 DEBUG(errs() << "RA: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000339 I->setOperand(0, Ops[i].Op);
340 I->setOperand(1, Ops[i+1].Op);
Chris Lattner8a6411c2009-08-23 04:37:46 +0000341 DEBUG(errs() << "TO: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000342 MadeChange = true;
343 ++NumChanged;
344
345 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
346 // delete the extra, now dead, nodes.
347 RemoveDeadBinaryOp(OldLHS);
348 }
349 return;
350 }
351 assert(i+2 < Ops.size() && "Ops index out of range!");
352
353 if (I->getOperand(1) != Ops[i].Op) {
Chris Lattner8a6411c2009-08-23 04:37:46 +0000354 DEBUG(errs() << "RA: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000355 I->setOperand(1, Ops[i].Op);
Chris Lattner8a6411c2009-08-23 04:37:46 +0000356 DEBUG(errs() << "TO: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000357 MadeChange = true;
358 ++NumChanged;
359 }
360
361 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
362 assert(LHS->getOpcode() == I->getOpcode() &&
363 "Improper expression tree!");
364
365 // Compactify the tree instructions together with each other to guarantee
366 // that the expression tree is dominated by all of Ops.
367 LHS->moveBefore(I);
368 RewriteExprTree(LHS, Ops, i+1);
369}
370
371
372
373// NegateValue - Insert instructions before the instruction pointed to by BI,
374// that computes the negative version of the value specified. The negative
375// version of the value is returned, and BI is left pointing at the instruction
376// that should be processed next by the reassociation pass.
377//
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000378static Value *NegateValue(Value *V, Instruction *BI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000379 // We are trying to expose opportunity for reassociation. One of the things
380 // that we want to do to achieve this is to push a negation as deep into an
381 // expression chain as possible, to expose the add instructions. In practice,
382 // this means that we turn this:
383 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
384 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
385 // the constants. We assume that instcombine will clean up the mess later if
386 // we introduce tons of unnecessary negation instructions...
387 //
388 if (Instruction *I = dyn_cast<Instruction>(V))
389 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
390 // Push the negates through the add.
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000391 I->setOperand(0, NegateValue(I->getOperand(0), BI));
392 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000393
394 // We must move the add instruction here, because the neg instructions do
395 // not dominate the old add instruction in general. By moving it, we are
396 // assured that the neg instructions we just inserted dominate the
397 // instruction we are about to insert after them.
398 //
399 I->moveBefore(BI);
400 I->setName(I->getName()+".neg");
401 return I;
402 }
403
404 // Insert a 'neg' instruction that subtracts the value from zero to get the
405 // negation.
406 //
Dan Gohmancdff2122009-08-12 16:23:25 +0000407 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000408}
409
Chris Lattner6cf17172008-02-17 20:44:51 +0000410/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
411/// X-Y into (X + -Y).
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000412static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner6cf17172008-02-17 20:44:51 +0000413 // If this is a negation, we can't split it up!
Owen Anderson76f49252009-07-13 22:18:28 +0000414 if (BinaryOperator::isNeg(Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000415 return false;
416
417 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner4846b312008-02-17 20:51:26 +0000418 // subtract or if this is only used by one.
419 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
420 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000421 return true;
Chris Lattner4846b312008-02-17 20:51:26 +0000422 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner720f2ba2008-02-17 20:54:40 +0000423 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000424 return true;
Chris Lattner4846b312008-02-17 20:51:26 +0000425 if (Sub->hasOneUse() &&
426 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
427 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner6cf17172008-02-17 20:44:51 +0000428 return true;
429
430 return false;
431}
432
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000433/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
434/// only used by an add, transform this into (X+(0-Y)) to promote better
435/// reassociation.
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000436static Instruction *BreakUpSubtract(Instruction *Sub,
Chris Lattner3bbf2a72009-03-31 22:13:29 +0000437 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000438 // Convert a subtract into an add and a neg instruction... so that sub
439 // instructions can be commuted with other add instructions...
440 //
441 // Calculate the negative value of Operand 1 of the sub instruction...
442 // and set it as the RHS of the add instruction we just made...
443 //
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000444 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000445 Instruction *New =
Gabor Greifa645dd32008-05-16 19:29:10 +0000446 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000447 New->takeName(Sub);
448
449 // Everyone now refers to the add instruction.
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000450 ValueRankMap.erase(Sub);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000451 Sub->replaceAllUsesWith(New);
452 Sub->eraseFromParent();
453
Chris Lattner8a6411c2009-08-23 04:37:46 +0000454 DEBUG(errs() << "Negated: " << *New << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000455 return New;
456}
457
458/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
459/// by one, change this into a multiply by a constant to assist with further
460/// reassociation.
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000461static Instruction *ConvertShiftToMul(Instruction *Shl,
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000462 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000463 // If an operand of this shift is a reassociable multiply, or if the shift
464 // is used by a reassociable multiply or add, turn into a multiply.
465 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
466 (Shl->hasOneUse() &&
467 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
468 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
Owen Andersoneacb44d2009-07-24 23:12:02 +0000469 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
Chris Lattnere3b19f32009-12-31 07:59:34 +0000470 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000471
Chris Lattnere3b19f32009-12-31 07:59:34 +0000472 Instruction *Mul =
473 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000474 ValueRankMap.erase(Shl);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000475 Mul->takeName(Shl);
476 Shl->replaceAllUsesWith(Mul);
477 Shl->eraseFromParent();
478 return Mul;
479 }
480 return 0;
481}
482
483// Scan backwards and forwards among values with the same rank as element i to
484// see if X exists. If X does not exist, return i.
Chris Lattner4780eb22009-12-31 18:40:32 +0000485static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000486 Value *X) {
487 unsigned XRank = Ops[i].Rank;
488 unsigned e = Ops.size();
489 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
490 if (Ops[j].Op == X)
491 return j;
492 // Scan backwards
493 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
494 if (Ops[j].Op == X)
495 return j;
496 return i;
497}
498
499/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
500/// and returning the result. Insert the tree before I.
Chris Lattner4f663d02009-12-31 07:48:51 +0000501static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000502 if (Ops.size() == 1) return Ops.back();
503
504 Value *V1 = Ops.back();
505 Ops.pop_back();
506 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greifa645dd32008-05-16 19:29:10 +0000507 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000508}
509
510/// RemoveFactorFromExpression - If V is an expression tree that is a
511/// multiplication sequence, and if this sequence contains a multiply by Factor,
512/// remove Factor from the tree and return the new tree.
513Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
514 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
515 if (!BO) return 0;
516
Chris Lattner4780eb22009-12-31 18:40:32 +0000517 SmallVector<ValueEntry, 8> Factors;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000518 LinearizeExprTree(BO, Factors);
519
520 bool FoundFactor = false;
521 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
522 if (Factors[i].Op == Factor) {
523 FoundFactor = true;
524 Factors.erase(Factors.begin()+i);
525 break;
526 }
527 if (!FoundFactor) {
528 // Make sure to restore the operands to the expression tree.
529 RewriteExprTree(BO, Factors);
530 return 0;
531 }
532
533 if (Factors.size() == 1) return Factors[0].Op;
534
535 RewriteExprTree(BO, Factors);
536 return BO;
537}
538
539/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
540/// add its operands as factors, otherwise add V to the list of factors.
541static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattner4f663d02009-12-31 07:48:51 +0000542 SmallVectorImpl<Value*> &Factors) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000543 BinaryOperator *BO;
544 if ((!V->hasOneUse() && !V->use_empty()) ||
545 !(BO = dyn_cast<BinaryOperator>(V)) ||
546 BO->getOpcode() != Instruction::Mul) {
547 Factors.push_back(V);
548 return;
549 }
550
551 // Otherwise, add the LHS and RHS to the list of factors.
552 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
553 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
554}
555
Chris Lattnere3b19f32009-12-31 07:59:34 +0000556/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
557/// instruction. This optimizes based on identities. If it can be reduced to
558/// a single Value, it is returned, otherwise the Ops list is mutated as
559/// necessary.
Chris Lattner4780eb22009-12-31 18:40:32 +0000560static Value *OptimizeAndOrXor(unsigned Opcode,
561 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere3b19f32009-12-31 07:59:34 +0000562 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
563 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
564 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
565 // First, check for X and ~X in the operand list.
566 assert(i < Ops.size());
567 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
568 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
569 unsigned FoundX = FindInOperandList(Ops, i, X);
570 if (FoundX != i) {
Chris Lattnerff3866c2009-12-31 17:51:05 +0000571 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattnere3b19f32009-12-31 07:59:34 +0000572 return Constant::getNullValue(X->getType());
Chris Lattnere3b19f32009-12-31 07:59:34 +0000573
Chris Lattnerff3866c2009-12-31 17:51:05 +0000574 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattnere3b19f32009-12-31 07:59:34 +0000575 return Constant::getAllOnesValue(X->getType());
Chris Lattnere3b19f32009-12-31 07:59:34 +0000576 }
577 }
578
579 // Next, check for duplicate pairs of values, which we assume are next to
580 // each other, due to our sorting criteria.
581 assert(i < Ops.size());
582 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
583 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
584 // Drop duplicate values.
585 Ops.erase(Ops.begin()+i);
586 --i; --e;
587 ++NumAnnihil;
588 } else {
589 assert(Opcode == Instruction::Xor);
Chris Lattnerff3866c2009-12-31 17:51:05 +0000590 if (e == 2)
Chris Lattnere3b19f32009-12-31 07:59:34 +0000591 return Constant::getNullValue(Ops[0].Op->getType());
Chris Lattnerff3866c2009-12-31 17:51:05 +0000592
Chris Lattnere3b19f32009-12-31 07:59:34 +0000593 // ... X^X -> ...
594 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
595 i -= 1; e -= 2;
596 ++NumAnnihil;
597 }
598 }
599 }
600 return 0;
601}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000602
Chris Lattnere3b19f32009-12-31 07:59:34 +0000603/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
604/// optimizes based on identities. If it can be reduced to a single Value, it
605/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner4780eb22009-12-31 18:40:32 +0000606Value *Reassociate::OptimizeAdd(Instruction *I,
607 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner2ab9d282009-12-31 19:24:52 +0000608 SmallPtrSet<Value*, 8> OperandsSeen;
609
610Restart:
611 OperandsSeen.clear();
612
Chris Lattnere3b19f32009-12-31 07:59:34 +0000613 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattner2ab9d282009-12-31 19:24:52 +0000614 // can simplify the expression. X+-X == 0. While we're at it, scan for any
615 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Chris Lattnere3b19f32009-12-31 07:59:34 +0000616 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner2ab9d282009-12-31 19:24:52 +0000617 Value *TheOp = Ops[i].Op;
618 // Check to see if we've seen this operand before. If so, we factor all
619 // instances of the operand together.
620 if (!OperandsSeen.insert(TheOp)) {
621 // Rescan the list, removing all instances of this operand from the expr.
622 unsigned NumFound = 0;
623 for (unsigned j = 0, je = Ops.size(); j != je; ++j) {
624 if (Ops[j].Op != TheOp) continue;
625 ++NumFound;
626 Ops.erase(Ops.begin()+j);
627 --j; --je;
628 }
629
630 /*DEBUG*/(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
631 ++NumFactor;
632
633
634 // Insert a new multiply.
635 Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
636 Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
637
638 // Now that we have inserted a multiply, optimize it. This allows us to
639 // handle cases that require multiple factoring steps, such as this:
640 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
641 Mul = ReassociateExpression(cast<BinaryOperator>(Mul));
642
643 // If every add operand was a duplicate, return the multiply.
644 if (Ops.empty())
645 return Mul;
646
647 // Otherwise, we had some input that didn't have the dupe, such as
648 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
649 // things being added by this operation.
650 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
651 goto Restart;
652 }
653
Chris Lattnere3b19f32009-12-31 07:59:34 +0000654 // Check for X and -X in the operand list.
Chris Lattner2ab9d282009-12-31 19:24:52 +0000655 if (!BinaryOperator::isNeg(TheOp))
Chris Lattnere3b19f32009-12-31 07:59:34 +0000656 continue;
657
Chris Lattner2ab9d282009-12-31 19:24:52 +0000658 Value *X = BinaryOperator::getNegArgument(TheOp);
Chris Lattnere3b19f32009-12-31 07:59:34 +0000659 unsigned FoundX = FindInOperandList(Ops, i, X);
660 if (FoundX == i)
661 continue;
662
663 // Remove X and -X from the operand list.
Chris Lattnerff3866c2009-12-31 17:51:05 +0000664 if (Ops.size() == 2)
Chris Lattnere3b19f32009-12-31 07:59:34 +0000665 return Constant::getNullValue(X->getType());
Chris Lattnere3b19f32009-12-31 07:59:34 +0000666
667 Ops.erase(Ops.begin()+i);
668 if (i < FoundX)
669 --FoundX;
670 else
671 --i; // Need to back up an extra one.
672 Ops.erase(Ops.begin()+FoundX);
673 ++NumAnnihil;
674 --i; // Revisit element.
675 e -= 2; // Removed two elements.
676 }
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000677
678 // Scan the operand list, checking to see if there are any common factors
679 // between operands. Consider something like A*A+A*B*C+D. We would like to
680 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
681 // To efficiently find this, we count the number of times a factor occurs
682 // for any ADD operands that are MULs.
683 DenseMap<Value*, unsigned> FactorOccurrences;
684
685 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
686 // where they are actually the same multiply.
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000687 unsigned MaxOcc = 0;
688 Value *MaxOccVal = 0;
689 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
690 BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
691 if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
692 continue;
693
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000694 // Compute all of the factors of this added value.
695 SmallVector<Value*, 8> Factors;
696 FindSingleUseMultiplyFactors(BOp, Factors);
697 assert(Factors.size() > 1 && "Bad linearize!");
698
699 // Add one to FactorOccurrences for each unique factor in this op.
700 if (Factors.size() == 2) {
701 unsigned Occ = ++FactorOccurrences[Factors[0]];
702 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
703 if (Factors[0] != Factors[1]) { // Don't double count A*A.
704 Occ = ++FactorOccurrences[Factors[1]];
705 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
706 }
707 } else {
708 SmallPtrSet<Value*, 4> Duplicates;
709 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
710 if (!Duplicates.insert(Factors[i])) continue;
711
712 unsigned Occ = ++FactorOccurrences[Factors[i]];
713 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
714 }
715 }
716 }
717
718 // If any factor occurred more than one time, we can pull it out.
719 if (MaxOcc > 1) {
Chris Lattner2ab9d282009-12-31 19:24:52 +0000720 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000721 ++NumFactor;
722
723 // Create a new instruction that uses the MaxOccVal twice. If we don't do
724 // this, we could otherwise run into situations where removing a factor
725 // from an expression will drop a use of maxocc, and this can cause
726 // RemoveFactorFromExpression on successive values to behave differently.
727 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
728 SmallVector<Value*, 4> NewMulOps;
729 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
730 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
731 NewMulOps.push_back(V);
732 Ops.erase(Ops.begin()+i);
733 --i; --e;
734 }
735 }
736
737 // No need for extra uses anymore.
738 delete DummyInst;
739
740 unsigned NumAddedValues = NewMulOps.size();
741 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000742
Chris Lattner2ab9d282009-12-31 19:24:52 +0000743 // Now that we have inserted the add tree, optimize it. This allows us to
744 // handle cases that require multiple factoring steps, such as this:
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000745 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattner19bacd42009-12-31 18:18:46 +0000746 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Chris Lattner2ab9d282009-12-31 19:24:52 +0000747 V = ReassociateExpression(cast<BinaryOperator>(V));
748
749 // Create the multiply.
750 Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
751
752 // FIXME: Should rerun 'ReassociateExpression' on the mul too??
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000753
754 // If every add operand included the factor (e.g. "A*B + A*C"), then the
755 // entire result expression is just the multiply "A*(B+C)".
756 if (Ops.empty())
757 return V2;
758
Chris Lattner19bacd42009-12-31 18:18:46 +0000759 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000760 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattner19bacd42009-12-31 18:18:46 +0000761 // things being added by this operation.
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000762 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
763 }
764
Chris Lattnere3b19f32009-12-31 07:59:34 +0000765 return 0;
766}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000767
768Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner4780eb22009-12-31 18:40:32 +0000769 SmallVectorImpl<ValueEntry> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000770 // Now that we have the linearized expression tree, try to optimize it.
771 // Start by folding any constants that we found.
772 bool IterateOptimization = false;
773 if (Ops.size() == 1) return Ops[0].Op;
774
775 unsigned Opcode = I->getOpcode();
776
777 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
778 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
779 Ops.pop_back();
Owen Anderson02b48c32009-07-29 18:55:55 +0000780 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000781 return OptimizeExpression(I, Ops);
782 }
783
784 // Check for destructive annihilation due to a constant being used.
785 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
786 switch (Opcode) {
787 default: break;
788 case Instruction::And:
Chris Lattnerff3866c2009-12-31 17:51:05 +0000789 if (CstVal->isZero()) // ... & 0 -> 0
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000790 return CstVal;
Chris Lattnerff3866c2009-12-31 17:51:05 +0000791 if (CstVal->isAllOnesValue()) // ... & -1 -> ...
Chris Lattner4f663d02009-12-31 07:48:51 +0000792 Ops.pop_back();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000793 break;
794 case Instruction::Mul:
795 if (CstVal->isZero()) { // ... * 0 -> 0
796 ++NumAnnihil;
797 return CstVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000798 }
Chris Lattner4f663d02009-12-31 07:48:51 +0000799
800 if (cast<ConstantInt>(CstVal)->isOne())
801 Ops.pop_back(); // ... * 1 -> ...
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000802 break;
803 case Instruction::Or:
Chris Lattnerff3866c2009-12-31 17:51:05 +0000804 if (CstVal->isAllOnesValue()) // ... | -1 -> -1
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000805 return CstVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000806 // FALLTHROUGH!
807 case Instruction::Add:
808 case Instruction::Xor:
809 if (CstVal->isZero()) // ... [|^+] 0 -> ...
810 Ops.pop_back();
811 break;
812 }
813 if (Ops.size() == 1) return Ops[0].Op;
814
Chris Lattnera0d64b92009-12-31 07:33:14 +0000815 // Handle destructive annihilation due to identities between elements in the
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000816 // argument list here.
817 switch (Opcode) {
818 default: break;
819 case Instruction::And:
820 case Instruction::Or:
Chris Lattnere3b19f32009-12-31 07:59:34 +0000821 case Instruction::Xor: {
822 unsigned NumOps = Ops.size();
823 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
824 return Result;
825 IterateOptimization |= Ops.size() != NumOps;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000826 break;
Chris Lattnere3b19f32009-12-31 07:59:34 +0000827 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000828
Chris Lattnere3b19f32009-12-31 07:59:34 +0000829 case Instruction::Add: {
830 unsigned NumOps = Ops.size();
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000831 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattnere3b19f32009-12-31 07:59:34 +0000832 return Result;
833 IterateOptimization |= Ops.size() != NumOps;
834 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000835
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000836 break;
837 //case Instruction::Mul:
838 }
839
840 if (IterateOptimization)
841 return OptimizeExpression(I, Ops);
842 return 0;
843}
844
845
846/// ReassociateBB - Inspect all of the instructions in this basic block,
847/// reassociating them as we go.
848void Reassociate::ReassociateBB(BasicBlock *BB) {
849 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
850 Instruction *BI = BBI++;
851 if (BI->getOpcode() == Instruction::Shl &&
852 isa<ConstantInt>(BI->getOperand(1)))
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000853 if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000854 MadeChange = true;
855 BI = NI;
856 }
857
858 // Reject cases where it is pointless to do this.
859 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
860 isa<VectorType>(BI->getType()))
861 continue; // Floating point ops are not associative.
862
863 // If this is a subtract instruction which is not already in negate form,
864 // see if we can convert it to X+-Y.
865 if (BI->getOpcode() == Instruction::Sub) {
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000866 if (ShouldBreakUpSubtract(BI)) {
867 BI = BreakUpSubtract(BI, ValueRankMap);
Chris Lattnerb0cd25e2008-02-18 02:18:25 +0000868 MadeChange = true;
Owen Anderson76f49252009-07-13 22:18:28 +0000869 } else if (BinaryOperator::isNeg(BI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000870 // Otherwise, this is a negation. See if the operand is a multiply tree
871 // and if this is not an inner node of a multiply tree.
872 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
873 (!BI->hasOneUse() ||
874 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000875 BI = LowerNegateToMultiply(BI, ValueRankMap);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000876 MadeChange = true;
877 }
878 }
879 }
880
881 // If this instruction is a commutative binary operator, process it.
882 if (!BI->isAssociative()) continue;
883 BinaryOperator *I = cast<BinaryOperator>(BI);
884
885 // If this is an interior node of a reassociable tree, ignore it until we
886 // get to the root of the tree, to avoid N^2 analysis.
887 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
888 continue;
889
890 // If this is an add tree that is used by a sub instruction, ignore it
891 // until we process the subtract.
892 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
893 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
894 continue;
895
896 ReassociateExpression(I);
897 }
898}
899
Chris Lattner2ab9d282009-12-31 19:24:52 +0000900Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000901
Chris Lattner2ab9d282009-12-31 19:24:52 +0000902 // First, walk the expression tree, linearizing the tree, collecting the
903 // operand information.
Chris Lattner4780eb22009-12-31 18:40:32 +0000904 SmallVector<ValueEntry, 8> Ops;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000905 LinearizeExprTree(I, Ops);
906
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000907 DEBUG(errs() << "RAIn:\t"; PrintOps(I, Ops); errs() << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000908
909 // Now that we have linearized the tree to a list and have gathered all of
910 // the operands and their ranks, sort the operands by their rank. Use a
911 // stable_sort so that values with equal ranks will have their relative
912 // positions maintained (and so the compiler is deterministic). Note that
913 // this sorts so that the highest ranking values end up at the beginning of
914 // the vector.
915 std::stable_sort(Ops.begin(), Ops.end());
916
917 // OptimizeExpression - Now that we have the expression tree in a convenient
918 // sorted form, optimize it globally if possible.
919 if (Value *V = OptimizeExpression(I, Ops)) {
920 // This expression tree simplified to something that isn't a tree,
921 // eliminate it.
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000922 DEBUG(errs() << "Reassoc to scalar: " << *V << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000923 I->replaceAllUsesWith(V);
924 RemoveDeadBinaryOp(I);
Chris Lattnerff3866c2009-12-31 17:51:05 +0000925 ++NumAnnihil;
Chris Lattner2ab9d282009-12-31 19:24:52 +0000926 return V;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000927 }
928
929 // We want to sink immediates as deeply as possible except in the case where
930 // this is a multiply tree used only by an add, and the immediate is a -1.
931 // In this case we reassociate to put the negation on the outside so that we
932 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
933 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
934 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
935 isa<ConstantInt>(Ops.back().Op) &&
936 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
Chris Lattner4780eb22009-12-31 18:40:32 +0000937 ValueEntry Tmp = Ops.pop_back_val();
938 Ops.insert(Ops.begin(), Tmp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000939 }
940
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000941 DEBUG(errs() << "RAOut:\t"; PrintOps(I, Ops); errs() << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000942
943 if (Ops.size() == 1) {
944 // This expression tree simplified to something that isn't a tree,
945 // eliminate it.
946 I->replaceAllUsesWith(Ops[0].Op);
947 RemoveDeadBinaryOp(I);
Chris Lattner2ab9d282009-12-31 19:24:52 +0000948 return Ops[0].Op;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000949 }
Chris Lattner2ab9d282009-12-31 19:24:52 +0000950
951 // Now that we ordered and optimized the expressions, splat them back into
952 // the expression tree, removing any unneeded nodes.
953 RewriteExprTree(I, Ops);
954 return I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000955}
956
957
958bool Reassociate::runOnFunction(Function &F) {
959 // Recalculate the rank map for F
960 BuildRankMap(F);
961
962 MadeChange = false;
963 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
964 ReassociateBB(FI);
965
966 // We are done with the rank map...
967 RankMap.clear();
968 ValueRankMap.clear();
969 return MadeChange;
970}
971