blob: 94df9557608fa9cb98c7a9e12e9e5d6ec954e4c2 [file] [log] [blame]
Dan Gohman2d1be872009-04-16 03:18:22 +00001//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
Nate Begemaneaa13852004-10-18 21:08:22 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
Nate Begemaneaa13852004-10-18 21:08:22 +00008//===----------------------------------------------------------------------===//
9//
Dan Gohmancec8f9d2009-05-19 20:37:36 +000010// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
Nate Begemaneaa13852004-10-18 21:08:22 +000014// This pass performs a strength reduction on array references inside loops that
Dan Gohmancec8f9d2009-05-19 20:37:36 +000015// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
Nate Begemaneaa13852004-10-18 21:08:22 +000019//
Dan Gohman572645c2010-02-12 10:34:29 +000020// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24// %i = phi [ 0, %entry ], [ %i.next, %latch ]
25// ...
26// %i.next = add %i, 1
27// %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using // it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41// instead of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44// smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47// multiple base registers, or as the increment expression in an addrec),
48// we may not actually need both reg and (-1 * reg) in registers; the
49// negation can be implemented by using a sub instead of an add. The
50// lack of support for taking this into consideration when making
51// register pressure decisions is partly worked around by the "Special"
52// use kind.
53//
Nate Begemaneaa13852004-10-18 21:08:22 +000054//===----------------------------------------------------------------------===//
55
Chris Lattnerbe3e5212005-08-03 23:30:08 +000056#define DEBUG_TYPE "loop-reduce"
Nate Begemaneaa13852004-10-18 21:08:22 +000057#include "llvm/Transforms/Scalar.h"
58#include "llvm/Constants.h"
59#include "llvm/Instructions.h"
Dan Gohmane5b01be2007-05-04 14:59:09 +000060#include "llvm/IntrinsicInst.h"
Jeff Cohen2f3c9b72005-03-04 04:04:26 +000061#include "llvm/DerivedTypes.h"
Dan Gohman81db61a2009-05-12 02:17:14 +000062#include "llvm/Analysis/IVUsers.h"
Dan Gohman572645c2010-02-12 10:34:29 +000063#include "llvm/Analysis/Dominators.h"
Devang Patel0f54dcb2007-03-06 21:14:09 +000064#include "llvm/Analysis/LoopPass.h"
Nate Begeman16997482005-07-30 00:15:07 +000065#include "llvm/Analysis/ScalarEvolutionExpander.h"
Chris Lattnere0391be2005-08-12 22:06:11 +000066#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Nate Begemaneaa13852004-10-18 21:08:22 +000067#include "llvm/Transforms/Utils/Local.h"
Dan Gohman572645c2010-02-12 10:34:29 +000068#include "llvm/ADT/SmallBitVector.h"
69#include "llvm/ADT/SetVector.h"
70#include "llvm/ADT/DenseSet.h"
Nate Begeman16997482005-07-30 00:15:07 +000071#include "llvm/Support/Debug.h"
Dan Gohmanafc36a92009-05-02 18:29:22 +000072#include "llvm/Support/ValueHandle.h"
Daniel Dunbar460f6562009-07-26 09:48:23 +000073#include "llvm/Support/raw_ostream.h"
Evan Chengd277f2c2006-03-13 23:14:23 +000074#include "llvm/Target/TargetLowering.h"
Jeff Cohencfb1d422005-07-30 18:22:27 +000075#include <algorithm>
Nate Begemaneaa13852004-10-18 21:08:22 +000076using namespace llvm;
77
Dan Gohman572645c2010-02-12 10:34:29 +000078namespace {
Nate Begemaneaa13852004-10-18 21:08:22 +000079
Dan Gohman572645c2010-02-12 10:34:29 +000080/// RegSortData - This class holds data which is used to order reuse candidates.
81class RegSortData {
82public:
83 /// UsedByIndices - This represents the set of LSRUse indices which reference
84 /// a particular register.
85 SmallBitVector UsedByIndices;
86
87 RegSortData() {}
88
89 void print(raw_ostream &OS) const;
90 void dump() const;
91};
92
93}
94
95void RegSortData::print(raw_ostream &OS) const {
96 OS << "[NumUses=" << UsedByIndices.count() << ']';
97}
98
99void RegSortData::dump() const {
100 print(errs()); errs() << '\n';
101}
Dan Gohmanc17e0cf2009-02-20 04:17:46 +0000102
Chris Lattner0e5f4992006-12-19 21:40:18 +0000103namespace {
Dale Johannesendc42f482007-03-20 00:47:50 +0000104
Dan Gohman572645c2010-02-12 10:34:29 +0000105/// RegUseTracker - Map register candidates to information about how they are
106/// used.
107class RegUseTracker {
108 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
Dale Johannesendc42f482007-03-20 00:47:50 +0000109
Dan Gohman90bb3552010-05-18 22:33:00 +0000110 RegUsesTy RegUsesMap;
Dan Gohman572645c2010-02-12 10:34:29 +0000111 SmallVector<const SCEV *, 16> RegSequence;
Evan Chengd1d6b5c2006-03-16 21:53:05 +0000112
Dan Gohman572645c2010-02-12 10:34:29 +0000113public:
114 void CountRegister(const SCEV *Reg, size_t LUIdx);
Dan Gohmanb2df4332010-05-18 23:42:37 +0000115 void DropRegister(const SCEV *Reg, size_t LUIdx);
Dan Gohmana2086b32010-05-19 23:43:12 +0000116 void DropUse(size_t LUIdx);
Dan Gohmana10756e2010-01-21 02:09:26 +0000117
Dan Gohman572645c2010-02-12 10:34:29 +0000118 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
Dan Gohmana10756e2010-01-21 02:09:26 +0000119
Dan Gohman572645c2010-02-12 10:34:29 +0000120 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
Dan Gohmana10756e2010-01-21 02:09:26 +0000121
Dan Gohman572645c2010-02-12 10:34:29 +0000122 void clear();
Dan Gohmana10756e2010-01-21 02:09:26 +0000123
Dan Gohman572645c2010-02-12 10:34:29 +0000124 typedef SmallVectorImpl<const SCEV *>::iterator iterator;
125 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
126 iterator begin() { return RegSequence.begin(); }
127 iterator end() { return RegSequence.end(); }
128 const_iterator begin() const { return RegSequence.begin(); }
129 const_iterator end() const { return RegSequence.end(); }
130};
Dan Gohmana10756e2010-01-21 02:09:26 +0000131
Dan Gohmana10756e2010-01-21 02:09:26 +0000132}
133
Dan Gohman572645c2010-02-12 10:34:29 +0000134void
135RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
136 std::pair<RegUsesTy::iterator, bool> Pair =
Dan Gohman90bb3552010-05-18 22:33:00 +0000137 RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
Dan Gohman572645c2010-02-12 10:34:29 +0000138 RegSortData &RSD = Pair.first->second;
139 if (Pair.second)
140 RegSequence.push_back(Reg);
141 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
142 RSD.UsedByIndices.set(LUIdx);
Dan Gohmana10756e2010-01-21 02:09:26 +0000143}
144
Dan Gohmanb2df4332010-05-18 23:42:37 +0000145void
146RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
147 RegUsesTy::iterator It = RegUsesMap.find(Reg);
148 assert(It != RegUsesMap.end());
149 RegSortData &RSD = It->second;
150 assert(RSD.UsedByIndices.size() > LUIdx);
151 RSD.UsedByIndices.reset(LUIdx);
152}
153
Dan Gohmana2086b32010-05-19 23:43:12 +0000154void
155RegUseTracker::DropUse(size_t LUIdx) {
156 // Remove the use index from every register's use list.
157 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
158 I != E; ++I)
159 I->second.UsedByIndices.reset(LUIdx);
160}
161
Dan Gohman572645c2010-02-12 10:34:29 +0000162bool
163RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
Dan Gohman90bb3552010-05-18 22:33:00 +0000164 if (!RegUsesMap.count(Reg)) return false;
Dan Gohman572645c2010-02-12 10:34:29 +0000165 const SmallBitVector &UsedByIndices =
Dan Gohman90bb3552010-05-18 22:33:00 +0000166 RegUsesMap.find(Reg)->second.UsedByIndices;
Dan Gohman572645c2010-02-12 10:34:29 +0000167 int i = UsedByIndices.find_first();
168 if (i == -1) return false;
169 if ((size_t)i != LUIdx) return true;
170 return UsedByIndices.find_next(i) != -1;
171}
Dan Gohmana10756e2010-01-21 02:09:26 +0000172
Dan Gohman572645c2010-02-12 10:34:29 +0000173const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
Dan Gohman90bb3552010-05-18 22:33:00 +0000174 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
175 assert(I != RegUsesMap.end() && "Unknown register!");
Dan Gohman572645c2010-02-12 10:34:29 +0000176 return I->second.UsedByIndices;
177}
Dan Gohmana10756e2010-01-21 02:09:26 +0000178
Dan Gohman572645c2010-02-12 10:34:29 +0000179void RegUseTracker::clear() {
Dan Gohman90bb3552010-05-18 22:33:00 +0000180 RegUsesMap.clear();
Dan Gohman572645c2010-02-12 10:34:29 +0000181 RegSequence.clear();
182}
Dan Gohmana10756e2010-01-21 02:09:26 +0000183
Dan Gohman572645c2010-02-12 10:34:29 +0000184namespace {
185
186/// Formula - This class holds information that describes a formula for
187/// computing satisfying a use. It may include broken-out immediates and scaled
188/// registers.
189struct Formula {
190 /// AM - This is used to represent complex addressing, as well as other kinds
191 /// of interesting uses.
192 TargetLowering::AddrMode AM;
193
194 /// BaseRegs - The list of "base" registers for this use. When this is
195 /// non-empty, AM.HasBaseReg should be set to true.
196 SmallVector<const SCEV *, 2> BaseRegs;
197
198 /// ScaledReg - The 'scaled' register for this use. This should be non-null
199 /// when AM.Scale is not zero.
200 const SCEV *ScaledReg;
201
202 Formula() : ScaledReg(0) {}
203
204 void InitialMatch(const SCEV *S, Loop *L,
205 ScalarEvolution &SE, DominatorTree &DT);
206
207 unsigned getNumRegs() const;
208 const Type *getType() const;
209
Dan Gohman5ce6d052010-05-20 15:17:54 +0000210 void DeleteBaseReg(const SCEV *&S);
211
Dan Gohman572645c2010-02-12 10:34:29 +0000212 bool referencesReg(const SCEV *S) const;
213 bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
214 const RegUseTracker &RegUses) const;
215
216 void print(raw_ostream &OS) const;
217 void dump() const;
218};
219
220}
221
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000222/// DoInitialMatch - Recursion helper for InitialMatch.
Dan Gohman572645c2010-02-12 10:34:29 +0000223static void DoInitialMatch(const SCEV *S, Loop *L,
224 SmallVectorImpl<const SCEV *> &Good,
225 SmallVectorImpl<const SCEV *> &Bad,
226 ScalarEvolution &SE, DominatorTree &DT) {
227 // Collect expressions which properly dominate the loop header.
228 if (S->properlyDominates(L->getHeader(), &DT)) {
229 Good.push_back(S);
230 return;
Dan Gohmana10756e2010-01-21 02:09:26 +0000231 }
Dan Gohman572645c2010-02-12 10:34:29 +0000232
233 // Look at add operands.
234 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
235 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
236 I != E; ++I)
237 DoInitialMatch(*I, L, Good, Bad, SE, DT);
238 return;
239 }
240
241 // Look at addrec operands.
242 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
243 if (!AR->getStart()->isZero()) {
244 DoInitialMatch(AR->getStart(), L, Good, Bad, SE, DT);
Dan Gohmandeff6212010-05-03 22:09:21 +0000245 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
Dan Gohman572645c2010-02-12 10:34:29 +0000246 AR->getStepRecurrence(SE),
247 AR->getLoop()),
248 L, Good, Bad, SE, DT);
249 return;
250 }
251
252 // Handle a multiplication by -1 (negation) if it didn't fold.
253 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
254 if (Mul->getOperand(0)->isAllOnesValue()) {
255 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
256 const SCEV *NewMul = SE.getMulExpr(Ops);
257
258 SmallVector<const SCEV *, 4> MyGood;
259 SmallVector<const SCEV *, 4> MyBad;
260 DoInitialMatch(NewMul, L, MyGood, MyBad, SE, DT);
261 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
262 SE.getEffectiveSCEVType(NewMul->getType())));
263 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
264 E = MyGood.end(); I != E; ++I)
265 Good.push_back(SE.getMulExpr(NegOne, *I));
266 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
267 E = MyBad.end(); I != E; ++I)
268 Bad.push_back(SE.getMulExpr(NegOne, *I));
269 return;
270 }
271
272 // Ok, we can't do anything interesting. Just stuff the whole thing into a
273 // register and hope for the best.
274 Bad.push_back(S);
275}
276
277/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
278/// attempting to keep all loop-invariant and loop-computable values in a
279/// single base register.
280void Formula::InitialMatch(const SCEV *S, Loop *L,
281 ScalarEvolution &SE, DominatorTree &DT) {
282 SmallVector<const SCEV *, 4> Good;
283 SmallVector<const SCEV *, 4> Bad;
284 DoInitialMatch(S, L, Good, Bad, SE, DT);
285 if (!Good.empty()) {
Dan Gohmane60bb152010-04-08 23:36:27 +0000286 const SCEV *Sum = SE.getAddExpr(Good);
287 if (!Sum->isZero())
288 BaseRegs.push_back(Sum);
Dan Gohman572645c2010-02-12 10:34:29 +0000289 AM.HasBaseReg = true;
290 }
291 if (!Bad.empty()) {
Dan Gohmane60bb152010-04-08 23:36:27 +0000292 const SCEV *Sum = SE.getAddExpr(Bad);
293 if (!Sum->isZero())
294 BaseRegs.push_back(Sum);
Dan Gohman572645c2010-02-12 10:34:29 +0000295 AM.HasBaseReg = true;
296 }
297}
298
299/// getNumRegs - Return the total number of register operands used by this
300/// formula. This does not include register uses implied by non-constant
301/// addrec strides.
302unsigned Formula::getNumRegs() const {
303 return !!ScaledReg + BaseRegs.size();
304}
305
306/// getType - Return the type of this formula, if it has one, or null
307/// otherwise. This type is meaningless except for the bit size.
308const Type *Formula::getType() const {
309 return !BaseRegs.empty() ? BaseRegs.front()->getType() :
310 ScaledReg ? ScaledReg->getType() :
311 AM.BaseGV ? AM.BaseGV->getType() :
312 0;
313}
314
Dan Gohman5ce6d052010-05-20 15:17:54 +0000315/// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
316void Formula::DeleteBaseReg(const SCEV *&S) {
317 if (&S != &BaseRegs.back())
318 std::swap(S, BaseRegs.back());
319 BaseRegs.pop_back();
320}
321
Dan Gohman572645c2010-02-12 10:34:29 +0000322/// referencesReg - Test if this formula references the given register.
323bool Formula::referencesReg(const SCEV *S) const {
324 return S == ScaledReg ||
325 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
326}
327
328/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
329/// which are used by uses other than the use with the given index.
330bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
331 const RegUseTracker &RegUses) const {
332 if (ScaledReg)
333 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
334 return true;
335 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
336 E = BaseRegs.end(); I != E; ++I)
337 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
338 return true;
339 return false;
340}
341
342void Formula::print(raw_ostream &OS) const {
343 bool First = true;
344 if (AM.BaseGV) {
345 if (!First) OS << " + "; else First = false;
346 WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
347 }
348 if (AM.BaseOffs != 0) {
349 if (!First) OS << " + "; else First = false;
350 OS << AM.BaseOffs;
351 }
352 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
353 E = BaseRegs.end(); I != E; ++I) {
354 if (!First) OS << " + "; else First = false;
355 OS << "reg(" << **I << ')';
356 }
Dan Gohmanc4cfbaf2010-05-18 22:35:55 +0000357 if (AM.HasBaseReg && BaseRegs.empty()) {
358 if (!First) OS << " + "; else First = false;
359 OS << "**error: HasBaseReg**";
360 } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
361 if (!First) OS << " + "; else First = false;
362 OS << "**error: !HasBaseReg**";
363 }
Dan Gohman572645c2010-02-12 10:34:29 +0000364 if (AM.Scale != 0) {
365 if (!First) OS << " + "; else First = false;
366 OS << AM.Scale << "*reg(";
367 if (ScaledReg)
368 OS << *ScaledReg;
369 else
370 OS << "<unknown>";
371 OS << ')';
372 }
373}
374
375void Formula::dump() const {
376 print(errs()); errs() << '\n';
377}
378
Dan Gohmanaae01f12010-02-19 19:32:49 +0000379/// isAddRecSExtable - Return true if the given addrec can be sign-extended
380/// without changing its value.
381static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
382 const Type *WideTy =
Dan Gohmanea507f52010-05-20 19:44:23 +0000383 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000384 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
385}
386
387/// isAddSExtable - Return true if the given add can be sign-extended
388/// without changing its value.
389static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
390 const Type *WideTy =
Dan Gohmanea507f52010-05-20 19:44:23 +0000391 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000392 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
393}
394
395/// isMulSExtable - Return true if the given add can be sign-extended
396/// without changing its value.
397static bool isMulSExtable(const SCEVMulExpr *A, ScalarEvolution &SE) {
398 const Type *WideTy =
Dan Gohmanea507f52010-05-20 19:44:23 +0000399 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000400 return isa<SCEVMulExpr>(SE.getSignExtendExpr(A, WideTy));
401}
402
Dan Gohmanf09b7122010-02-19 19:35:48 +0000403/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
404/// and if the remainder is known to be zero, or null otherwise. If
405/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
406/// to Y, ignoring that the multiplication may overflow, which is useful when
407/// the result will be used in a context where the most significant bits are
408/// ignored.
409static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
410 ScalarEvolution &SE,
411 bool IgnoreSignificantBits = false) {
Dan Gohman572645c2010-02-12 10:34:29 +0000412 // Handle the trivial case, which works for any SCEV type.
413 if (LHS == RHS)
Dan Gohmandeff6212010-05-03 22:09:21 +0000414 return SE.getConstant(LHS->getType(), 1);
Dan Gohman572645c2010-02-12 10:34:29 +0000415
416 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do some
417 // folding.
418 if (RHS->isAllOnesValue())
419 return SE.getMulExpr(LHS, RHS);
420
421 // Check for a division of a constant by a constant.
422 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
423 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
424 if (!RC)
425 return 0;
426 if (C->getValue()->getValue().srem(RC->getValue()->getValue()) != 0)
427 return 0;
428 return SE.getConstant(C->getValue()->getValue()
429 .sdiv(RC->getValue()->getValue()));
430 }
431
Dan Gohmanaae01f12010-02-19 19:32:49 +0000432 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
Dan Gohman572645c2010-02-12 10:34:29 +0000433 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000434 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
Dan Gohmanf09b7122010-02-19 19:35:48 +0000435 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
436 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000437 if (!Start) return 0;
Dan Gohmanf09b7122010-02-19 19:35:48 +0000438 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
439 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000440 if (!Step) return 0;
441 return SE.getAddRecExpr(Start, Step, AR->getLoop());
442 }
Dan Gohman572645c2010-02-12 10:34:29 +0000443 }
444
Dan Gohmanaae01f12010-02-19 19:32:49 +0000445 // Distribute the sdiv over add operands, if the add doesn't overflow.
Dan Gohman572645c2010-02-12 10:34:29 +0000446 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000447 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
448 SmallVector<const SCEV *, 8> Ops;
449 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
450 I != E; ++I) {
Dan Gohmanf09b7122010-02-19 19:35:48 +0000451 const SCEV *Op = getExactSDiv(*I, RHS, SE,
452 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000453 if (!Op) return 0;
454 Ops.push_back(Op);
455 }
456 return SE.getAddExpr(Ops);
Dan Gohman572645c2010-02-12 10:34:29 +0000457 }
Dan Gohman572645c2010-02-12 10:34:29 +0000458 }
459
460 // Check for a multiply operand that we can pull RHS out of.
461 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS))
Dan Gohmanaae01f12010-02-19 19:32:49 +0000462 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
Dan Gohman572645c2010-02-12 10:34:29 +0000463 SmallVector<const SCEV *, 4> Ops;
464 bool Found = false;
465 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
466 I != E; ++I) {
Dan Gohman47667442010-05-20 16:23:28 +0000467 const SCEV *S = *I;
Dan Gohman572645c2010-02-12 10:34:29 +0000468 if (!Found)
Dan Gohman47667442010-05-20 16:23:28 +0000469 if (const SCEV *Q = getExactSDiv(S, RHS, SE,
Dan Gohmanf09b7122010-02-19 19:35:48 +0000470 IgnoreSignificantBits)) {
Dan Gohman47667442010-05-20 16:23:28 +0000471 S = Q;
Dan Gohman572645c2010-02-12 10:34:29 +0000472 Found = true;
Dan Gohman572645c2010-02-12 10:34:29 +0000473 }
Dan Gohman47667442010-05-20 16:23:28 +0000474 Ops.push_back(S);
Dan Gohman572645c2010-02-12 10:34:29 +0000475 }
476 return Found ? SE.getMulExpr(Ops) : 0;
477 }
478
479 // Otherwise we don't know.
480 return 0;
481}
482
483/// ExtractImmediate - If S involves the addition of a constant integer value,
484/// return that integer value, and mutate S to point to a new SCEV with that
485/// value excluded.
486static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
487 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
488 if (C->getValue()->getValue().getMinSignedBits() <= 64) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000489 S = SE.getConstant(C->getType(), 0);
Dan Gohman572645c2010-02-12 10:34:29 +0000490 return C->getValue()->getSExtValue();
491 }
492 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
493 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
494 int64_t Result = ExtractImmediate(NewOps.front(), SE);
495 S = SE.getAddExpr(NewOps);
496 return Result;
497 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
498 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
499 int64_t Result = ExtractImmediate(NewOps.front(), SE);
500 S = SE.getAddRecExpr(NewOps, AR->getLoop());
501 return Result;
502 }
503 return 0;
504}
505
506/// ExtractSymbol - If S involves the addition of a GlobalValue address,
507/// return that symbol, and mutate S to point to a new SCEV with that
508/// value excluded.
509static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
510 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
511 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000512 S = SE.getConstant(GV->getType(), 0);
Dan Gohman572645c2010-02-12 10:34:29 +0000513 return GV;
514 }
515 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
516 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
517 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
518 S = SE.getAddExpr(NewOps);
519 return Result;
520 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
521 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
522 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
523 S = SE.getAddRecExpr(NewOps, AR->getLoop());
524 return Result;
525 }
526 return 0;
Nate Begemaneaa13852004-10-18 21:08:22 +0000527}
528
Dan Gohmanf284ce22009-02-18 00:08:39 +0000529/// isAddressUse - Returns true if the specified instruction is using the
Dale Johannesen203af582008-12-05 21:47:27 +0000530/// specified value as an address.
531static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
532 bool isAddress = isa<LoadInst>(Inst);
533 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
534 if (SI->getOperand(1) == OperandVal)
535 isAddress = true;
536 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
537 // Addressing modes can also be folded into prefetches and a variety
538 // of intrinsics.
539 switch (II->getIntrinsicID()) {
540 default: break;
541 case Intrinsic::prefetch:
542 case Intrinsic::x86_sse2_loadu_dq:
543 case Intrinsic::x86_sse2_loadu_pd:
544 case Intrinsic::x86_sse_loadu_ps:
545 case Intrinsic::x86_sse_storeu_ps:
546 case Intrinsic::x86_sse2_storeu_pd:
547 case Intrinsic::x86_sse2_storeu_dq:
548 case Intrinsic::x86_sse2_storel_dq:
549 if (II->getOperand(1) == OperandVal)
550 isAddress = true;
551 break;
552 }
553 }
554 return isAddress;
555}
Chris Lattner0ae33eb2005-10-03 01:04:44 +0000556
Dan Gohman21e77222009-03-09 21:01:17 +0000557/// getAccessType - Return the type of the memory being accessed.
558static const Type *getAccessType(const Instruction *Inst) {
Dan Gohmana537bf82009-05-18 16:45:28 +0000559 const Type *AccessTy = Inst->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000560 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
Dan Gohmana537bf82009-05-18 16:45:28 +0000561 AccessTy = SI->getOperand(0)->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000562 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
563 // Addressing modes can also be folded into prefetches and a variety
564 // of intrinsics.
565 switch (II->getIntrinsicID()) {
566 default: break;
567 case Intrinsic::x86_sse_storeu_ps:
568 case Intrinsic::x86_sse2_storeu_pd:
569 case Intrinsic::x86_sse2_storeu_dq:
570 case Intrinsic::x86_sse2_storel_dq:
Dan Gohmana537bf82009-05-18 16:45:28 +0000571 AccessTy = II->getOperand(1)->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000572 break;
573 }
574 }
Dan Gohman572645c2010-02-12 10:34:29 +0000575
576 // All pointers have the same requirements, so canonicalize them to an
577 // arbitrary pointer type to minimize variation.
578 if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy))
579 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
580 PTy->getAddressSpace());
581
Dan Gohmana537bf82009-05-18 16:45:28 +0000582 return AccessTy;
Dan Gohman21e77222009-03-09 21:01:17 +0000583}
584
Dan Gohman572645c2010-02-12 10:34:29 +0000585/// DeleteTriviallyDeadInstructions - If any of the instructions is the
586/// specified set are trivially dead, delete them and see if this makes any of
587/// their operands subsequently dead.
588static bool
589DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
590 bool Changed = false;
591
592 while (!DeadInsts.empty()) {
593 Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
594
595 if (I == 0 || !isInstructionTriviallyDead(I))
596 continue;
597
598 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
599 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
600 *OI = 0;
601 if (U->use_empty())
602 DeadInsts.push_back(U);
603 }
604
605 I->eraseFromParent();
606 Changed = true;
607 }
608
609 return Changed;
610}
611
Dan Gohman7979b722010-01-22 00:46:49 +0000612namespace {
Jim Grosbach56a1f802009-11-17 17:53:56 +0000613
Dan Gohman572645c2010-02-12 10:34:29 +0000614/// Cost - This class is used to measure and compare candidate formulae.
615class Cost {
616 /// TODO: Some of these could be merged. Also, a lexical ordering
617 /// isn't always optimal.
618 unsigned NumRegs;
619 unsigned AddRecCost;
620 unsigned NumIVMuls;
621 unsigned NumBaseAdds;
622 unsigned ImmCost;
623 unsigned SetupCost;
Nate Begeman16997482005-07-30 00:15:07 +0000624
Dan Gohman572645c2010-02-12 10:34:29 +0000625public:
626 Cost()
627 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
628 SetupCost(0) {}
Jim Grosbach56a1f802009-11-17 17:53:56 +0000629
Dan Gohman572645c2010-02-12 10:34:29 +0000630 unsigned getNumRegs() const { return NumRegs; }
Dan Gohman7979b722010-01-22 00:46:49 +0000631
Dan Gohman572645c2010-02-12 10:34:29 +0000632 bool operator<(const Cost &Other) const;
Dan Gohman7979b722010-01-22 00:46:49 +0000633
Dan Gohman572645c2010-02-12 10:34:29 +0000634 void Loose();
Dan Gohman7979b722010-01-22 00:46:49 +0000635
Dan Gohman572645c2010-02-12 10:34:29 +0000636 void RateFormula(const Formula &F,
637 SmallPtrSet<const SCEV *, 16> &Regs,
638 const DenseSet<const SCEV *> &VisitedRegs,
639 const Loop *L,
640 const SmallVectorImpl<int64_t> &Offsets,
641 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman7979b722010-01-22 00:46:49 +0000642
Dan Gohman572645c2010-02-12 10:34:29 +0000643 void print(raw_ostream &OS) const;
644 void dump() const;
Dan Gohman7979b722010-01-22 00:46:49 +0000645
Dan Gohman572645c2010-02-12 10:34:29 +0000646private:
647 void RateRegister(const SCEV *Reg,
648 SmallPtrSet<const SCEV *, 16> &Regs,
649 const Loop *L,
650 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman9214b822010-02-13 02:06:02 +0000651 void RatePrimaryRegister(const SCEV *Reg,
652 SmallPtrSet<const SCEV *, 16> &Regs,
653 const Loop *L,
654 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000655};
656
657}
658
659/// RateRegister - Tally up interesting quantities from the given register.
660void Cost::RateRegister(const SCEV *Reg,
661 SmallPtrSet<const SCEV *, 16> &Regs,
662 const Loop *L,
663 ScalarEvolution &SE, DominatorTree &DT) {
Dan Gohman9214b822010-02-13 02:06:02 +0000664 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
665 if (AR->getLoop() == L)
666 AddRecCost += 1; /// TODO: This should be a function of the stride.
Dan Gohman572645c2010-02-12 10:34:29 +0000667
Dan Gohman9214b822010-02-13 02:06:02 +0000668 // If this is an addrec for a loop that's already been visited by LSR,
669 // don't second-guess its addrec phi nodes. LSR isn't currently smart
670 // enough to reason about more than one loop at a time. Consider these
671 // registers free and leave them alone.
672 else if (L->contains(AR->getLoop()) ||
673 (!AR->getLoop()->contains(L) &&
674 DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
675 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
676 PHINode *PN = dyn_cast<PHINode>(I); ++I)
677 if (SE.isSCEVable(PN->getType()) &&
678 (SE.getEffectiveSCEVType(PN->getType()) ==
679 SE.getEffectiveSCEVType(AR->getType())) &&
680 SE.getSCEV(PN) == AR)
681 return;
Dan Gohman572645c2010-02-12 10:34:29 +0000682
Dan Gohman9214b822010-02-13 02:06:02 +0000683 // If this isn't one of the addrecs that the loop already has, it
684 // would require a costly new phi and add. TODO: This isn't
685 // precisely modeled right now.
686 ++NumBaseAdds;
687 if (!Regs.count(AR->getStart()))
Dan Gohman572645c2010-02-12 10:34:29 +0000688 RateRegister(AR->getStart(), Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000689 }
Dan Gohman572645c2010-02-12 10:34:29 +0000690
Dan Gohman9214b822010-02-13 02:06:02 +0000691 // Add the step value register, if it needs one.
692 // TODO: The non-affine case isn't precisely modeled here.
693 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1)))
694 if (!Regs.count(AR->getStart()))
695 RateRegister(AR->getOperand(1), Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000696 }
Dan Gohman9214b822010-02-13 02:06:02 +0000697 ++NumRegs;
698
699 // Rough heuristic; favor registers which don't require extra setup
700 // instructions in the preheader.
701 if (!isa<SCEVUnknown>(Reg) &&
702 !isa<SCEVConstant>(Reg) &&
703 !(isa<SCEVAddRecExpr>(Reg) &&
704 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
705 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
706 ++SetupCost;
707}
708
709/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
710/// before, rate it.
711void Cost::RatePrimaryRegister(const SCEV *Reg,
Dan Gohman7fca2292010-02-16 19:42:34 +0000712 SmallPtrSet<const SCEV *, 16> &Regs,
713 const Loop *L,
714 ScalarEvolution &SE, DominatorTree &DT) {
Dan Gohman9214b822010-02-13 02:06:02 +0000715 if (Regs.insert(Reg))
716 RateRegister(Reg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000717}
718
719void Cost::RateFormula(const Formula &F,
720 SmallPtrSet<const SCEV *, 16> &Regs,
721 const DenseSet<const SCEV *> &VisitedRegs,
722 const Loop *L,
723 const SmallVectorImpl<int64_t> &Offsets,
724 ScalarEvolution &SE, DominatorTree &DT) {
725 // Tally up the registers.
726 if (const SCEV *ScaledReg = F.ScaledReg) {
727 if (VisitedRegs.count(ScaledReg)) {
728 Loose();
729 return;
730 }
Dan Gohman9214b822010-02-13 02:06:02 +0000731 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000732 }
733 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
734 E = F.BaseRegs.end(); I != E; ++I) {
735 const SCEV *BaseReg = *I;
736 if (VisitedRegs.count(BaseReg)) {
737 Loose();
738 return;
739 }
Dan Gohman9214b822010-02-13 02:06:02 +0000740 RatePrimaryRegister(BaseReg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000741
742 NumIVMuls += isa<SCEVMulExpr>(BaseReg) &&
743 BaseReg->hasComputableLoopEvolution(L);
744 }
745
746 if (F.BaseRegs.size() > 1)
747 NumBaseAdds += F.BaseRegs.size() - 1;
748
749 // Tally up the non-zero immediates.
750 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
751 E = Offsets.end(); I != E; ++I) {
752 int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
753 if (F.AM.BaseGV)
754 ImmCost += 64; // Handle symbolic values conservatively.
755 // TODO: This should probably be the pointer size.
756 else if (Offset != 0)
757 ImmCost += APInt(64, Offset, true).getMinSignedBits();
758 }
759}
760
761/// Loose - Set this cost to a loosing value.
762void Cost::Loose() {
763 NumRegs = ~0u;
764 AddRecCost = ~0u;
765 NumIVMuls = ~0u;
766 NumBaseAdds = ~0u;
767 ImmCost = ~0u;
768 SetupCost = ~0u;
769}
770
771/// operator< - Choose the lower cost.
772bool Cost::operator<(const Cost &Other) const {
773 if (NumRegs != Other.NumRegs)
774 return NumRegs < Other.NumRegs;
775 if (AddRecCost != Other.AddRecCost)
776 return AddRecCost < Other.AddRecCost;
777 if (NumIVMuls != Other.NumIVMuls)
778 return NumIVMuls < Other.NumIVMuls;
779 if (NumBaseAdds != Other.NumBaseAdds)
780 return NumBaseAdds < Other.NumBaseAdds;
781 if (ImmCost != Other.ImmCost)
782 return ImmCost < Other.ImmCost;
783 if (SetupCost != Other.SetupCost)
784 return SetupCost < Other.SetupCost;
785 return false;
786}
787
788void Cost::print(raw_ostream &OS) const {
789 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
790 if (AddRecCost != 0)
791 OS << ", with addrec cost " << AddRecCost;
792 if (NumIVMuls != 0)
793 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
794 if (NumBaseAdds != 0)
795 OS << ", plus " << NumBaseAdds << " base add"
796 << (NumBaseAdds == 1 ? "" : "s");
797 if (ImmCost != 0)
798 OS << ", plus " << ImmCost << " imm cost";
799 if (SetupCost != 0)
800 OS << ", plus " << SetupCost << " setup cost";
801}
802
803void Cost::dump() const {
804 print(errs()); errs() << '\n';
805}
806
807namespace {
808
809/// LSRFixup - An operand value in an instruction which is to be replaced
810/// with some equivalent, possibly strength-reduced, replacement.
811struct LSRFixup {
812 /// UserInst - The instruction which will be updated.
813 Instruction *UserInst;
814
815 /// OperandValToReplace - The operand of the instruction which will
816 /// be replaced. The operand may be used more than once; every instance
817 /// will be replaced.
818 Value *OperandValToReplace;
819
Dan Gohman448db1c2010-04-07 22:27:08 +0000820 /// PostIncLoops - If this user is to use the post-incremented value of an
Dan Gohman572645c2010-02-12 10:34:29 +0000821 /// induction variable, this variable is non-null and holds the loop
822 /// associated with the induction variable.
Dan Gohman448db1c2010-04-07 22:27:08 +0000823 PostIncLoopSet PostIncLoops;
Dan Gohman572645c2010-02-12 10:34:29 +0000824
825 /// LUIdx - The index of the LSRUse describing the expression which
826 /// this fixup needs, minus an offset (below).
827 size_t LUIdx;
828
829 /// Offset - A constant offset to be added to the LSRUse expression.
830 /// This allows multiple fixups to share the same LSRUse with different
831 /// offsets, for example in an unrolled loop.
832 int64_t Offset;
833
Dan Gohman448db1c2010-04-07 22:27:08 +0000834 bool isUseFullyOutsideLoop(const Loop *L) const;
835
Dan Gohman572645c2010-02-12 10:34:29 +0000836 LSRFixup();
837
838 void print(raw_ostream &OS) const;
839 void dump() const;
840};
841
842}
843
844LSRFixup::LSRFixup()
Dan Gohmanea507f52010-05-20 19:44:23 +0000845 : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
Dan Gohman572645c2010-02-12 10:34:29 +0000846
Dan Gohman448db1c2010-04-07 22:27:08 +0000847/// isUseFullyOutsideLoop - Test whether this fixup always uses its
848/// value outside of the given loop.
849bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
850 // PHI nodes use their value in their incoming blocks.
851 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
852 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
853 if (PN->getIncomingValue(i) == OperandValToReplace &&
854 L->contains(PN->getIncomingBlock(i)))
855 return false;
856 return true;
857 }
858
859 return !L->contains(UserInst);
860}
861
Dan Gohman572645c2010-02-12 10:34:29 +0000862void LSRFixup::print(raw_ostream &OS) const {
863 OS << "UserInst=";
864 // Store is common and interesting enough to be worth special-casing.
865 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
866 OS << "store ";
867 WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
868 } else if (UserInst->getType()->isVoidTy())
869 OS << UserInst->getOpcodeName();
870 else
871 WriteAsOperand(OS, UserInst, /*PrintType=*/false);
872
873 OS << ", OperandValToReplace=";
874 WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
875
Dan Gohman448db1c2010-04-07 22:27:08 +0000876 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
877 E = PostIncLoops.end(); I != E; ++I) {
Dan Gohman572645c2010-02-12 10:34:29 +0000878 OS << ", PostIncLoop=";
Dan Gohman448db1c2010-04-07 22:27:08 +0000879 WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
Dan Gohman572645c2010-02-12 10:34:29 +0000880 }
881
882 if (LUIdx != ~size_t(0))
883 OS << ", LUIdx=" << LUIdx;
884
885 if (Offset != 0)
886 OS << ", Offset=" << Offset;
887}
888
889void LSRFixup::dump() const {
890 print(errs()); errs() << '\n';
891}
892
893namespace {
894
895/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
896/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
897struct UniquifierDenseMapInfo {
898 static SmallVector<const SCEV *, 2> getEmptyKey() {
899 SmallVector<const SCEV *, 2> V;
900 V.push_back(reinterpret_cast<const SCEV *>(-1));
901 return V;
902 }
903
904 static SmallVector<const SCEV *, 2> getTombstoneKey() {
905 SmallVector<const SCEV *, 2> V;
906 V.push_back(reinterpret_cast<const SCEV *>(-2));
907 return V;
908 }
909
910 static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
911 unsigned Result = 0;
912 for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
913 E = V.end(); I != E; ++I)
914 Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
915 return Result;
916 }
917
918 static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
919 const SmallVector<const SCEV *, 2> &RHS) {
920 return LHS == RHS;
921 }
922};
923
924/// LSRUse - This class holds the state that LSR keeps for each use in
925/// IVUsers, as well as uses invented by LSR itself. It includes information
926/// about what kinds of things can be folded into the user, information about
927/// the user itself, and information about how the use may be satisfied.
928/// TODO: Represent multiple users of the same expression in common?
929class LSRUse {
930 DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
931
932public:
933 /// KindType - An enum for a kind of use, indicating what types of
934 /// scaled and immediate operands it might support.
935 enum KindType {
936 Basic, ///< A normal use, with no folding.
937 Special, ///< A special case of basic, allowing -1 scales.
938 Address, ///< An address use; folding according to TargetLowering
939 ICmpZero ///< An equality icmp with both operands folded into one.
940 // TODO: Add a generic icmp too?
Dan Gohman7979b722010-01-22 00:46:49 +0000941 };
Dan Gohman572645c2010-02-12 10:34:29 +0000942
943 KindType Kind;
944 const Type *AccessTy;
945
946 SmallVector<int64_t, 8> Offsets;
947 int64_t MinOffset;
948 int64_t MaxOffset;
949
950 /// AllFixupsOutsideLoop - This records whether all of the fixups using this
951 /// LSRUse are outside of the loop, in which case some special-case heuristics
952 /// may be used.
953 bool AllFixupsOutsideLoop;
954
955 /// Formulae - A list of ways to build a value that can satisfy this user.
956 /// After the list is populated, one of these is selected heuristically and
957 /// used to formulate a replacement for OperandValToReplace in UserInst.
958 SmallVector<Formula, 12> Formulae;
959
960 /// Regs - The set of register candidates used by all formulae in this LSRUse.
961 SmallPtrSet<const SCEV *, 4> Regs;
962
963 LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T),
964 MinOffset(INT64_MAX),
965 MaxOffset(INT64_MIN),
966 AllFixupsOutsideLoop(true) {}
967
Dan Gohmana2086b32010-05-19 23:43:12 +0000968 bool HasFormulaWithSameRegs(const Formula &F) const;
Dan Gohman454d26d2010-02-22 04:11:59 +0000969 bool InsertFormula(const Formula &F);
Dan Gohmand69d6282010-05-18 22:39:15 +0000970 void DeleteFormula(Formula &F);
Dan Gohmanb2df4332010-05-18 23:42:37 +0000971 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
Dan Gohman572645c2010-02-12 10:34:29 +0000972
973 void check() const;
974
975 void print(raw_ostream &OS) const;
976 void dump() const;
977};
978
Dan Gohmana2086b32010-05-19 23:43:12 +0000979/// HasFormula - Test whether this use as a formula which has the same
980/// registers as the given formula.
981bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
982 SmallVector<const SCEV *, 2> Key = F.BaseRegs;
983 if (F.ScaledReg) Key.push_back(F.ScaledReg);
984 // Unstable sort by host order ok, because this is only used for uniquifying.
985 std::sort(Key.begin(), Key.end());
986 return Uniquifier.count(Key);
987}
988
Dan Gohman572645c2010-02-12 10:34:29 +0000989/// InsertFormula - If the given formula has not yet been inserted, add it to
990/// the list, and return true. Return false otherwise.
Dan Gohman454d26d2010-02-22 04:11:59 +0000991bool LSRUse::InsertFormula(const Formula &F) {
Dan Gohman572645c2010-02-12 10:34:29 +0000992 SmallVector<const SCEV *, 2> Key = F.BaseRegs;
993 if (F.ScaledReg) Key.push_back(F.ScaledReg);
994 // Unstable sort by host order ok, because this is only used for uniquifying.
995 std::sort(Key.begin(), Key.end());
996
997 if (!Uniquifier.insert(Key).second)
998 return false;
999
1000 // Using a register to hold the value of 0 is not profitable.
1001 assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1002 "Zero allocated in a scaled register!");
1003#ifndef NDEBUG
1004 for (SmallVectorImpl<const SCEV *>::const_iterator I =
1005 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
1006 assert(!(*I)->isZero() && "Zero allocated in a base register!");
1007#endif
1008
1009 // Add the formula to the list.
1010 Formulae.push_back(F);
1011
1012 // Record registers now being used by this use.
1013 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1014 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1015
1016 return true;
Dan Gohman7979b722010-01-22 00:46:49 +00001017}
1018
Dan Gohmand69d6282010-05-18 22:39:15 +00001019/// DeleteFormula - Remove the given formula from this use's list.
1020void LSRUse::DeleteFormula(Formula &F) {
Dan Gohman5ce6d052010-05-20 15:17:54 +00001021 if (&F != &Formulae.back())
1022 std::swap(F, Formulae.back());
Dan Gohmand69d6282010-05-18 22:39:15 +00001023 Formulae.pop_back();
Dan Gohmana2086b32010-05-19 23:43:12 +00001024 assert(!Formulae.empty() && "LSRUse has no formulae left!");
Dan Gohmand69d6282010-05-18 22:39:15 +00001025}
1026
Dan Gohmanb2df4332010-05-18 23:42:37 +00001027/// RecomputeRegs - Recompute the Regs field, and update RegUses.
1028void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1029 // Now that we've filtered out some formulae, recompute the Regs set.
1030 SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
1031 Regs.clear();
Dan Gohman402d4352010-05-20 20:33:18 +00001032 for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
1033 E = Formulae.end(); I != E; ++I) {
1034 const Formula &F = *I;
Dan Gohmanb2df4332010-05-18 23:42:37 +00001035 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1036 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1037 }
1038
1039 // Update the RegTracker.
1040 for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
1041 E = OldRegs.end(); I != E; ++I)
1042 if (!Regs.count(*I))
1043 RegUses.DropRegister(*I, LUIdx);
1044}
1045
Dan Gohman572645c2010-02-12 10:34:29 +00001046void LSRUse::print(raw_ostream &OS) const {
1047 OS << "LSR Use: Kind=";
1048 switch (Kind) {
1049 case Basic: OS << "Basic"; break;
1050 case Special: OS << "Special"; break;
1051 case ICmpZero: OS << "ICmpZero"; break;
1052 case Address:
1053 OS << "Address of ";
Duncan Sands1df98592010-02-16 11:11:14 +00001054 if (AccessTy->isPointerTy())
Dan Gohman572645c2010-02-12 10:34:29 +00001055 OS << "pointer"; // the full pointer type could be really verbose
1056 else
1057 OS << *AccessTy;
Evan Chengcdf43b12007-10-25 09:11:16 +00001058 }
1059
Dan Gohman572645c2010-02-12 10:34:29 +00001060 OS << ", Offsets={";
1061 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1062 E = Offsets.end(); I != E; ++I) {
1063 OS << *I;
1064 if (next(I) != E)
1065 OS << ',';
Dan Gohman7979b722010-01-22 00:46:49 +00001066 }
Dan Gohman572645c2010-02-12 10:34:29 +00001067 OS << '}';
Dan Gohman7979b722010-01-22 00:46:49 +00001068
Dan Gohman572645c2010-02-12 10:34:29 +00001069 if (AllFixupsOutsideLoop)
1070 OS << ", all-fixups-outside-loop";
Dan Gohman7979b722010-01-22 00:46:49 +00001071}
1072
Dan Gohman572645c2010-02-12 10:34:29 +00001073void LSRUse::dump() const {
1074 print(errs()); errs() << '\n';
1075}
Dan Gohman7979b722010-01-22 00:46:49 +00001076
Dan Gohman572645c2010-02-12 10:34:29 +00001077/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1078/// be completely folded into the user instruction at isel time. This includes
1079/// address-mode folding and special icmp tricks.
1080static bool isLegalUse(const TargetLowering::AddrMode &AM,
1081 LSRUse::KindType Kind, const Type *AccessTy,
1082 const TargetLowering *TLI) {
1083 switch (Kind) {
1084 case LSRUse::Address:
1085 // If we have low-level target information, ask the target if it can
1086 // completely fold this address.
1087 if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
1088
1089 // Otherwise, just guess that reg+reg addressing is legal.
1090 return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
1091
1092 case LSRUse::ICmpZero:
1093 // There's not even a target hook for querying whether it would be legal to
1094 // fold a GV into an ICmp.
1095 if (AM.BaseGV)
1096 return false;
1097
1098 // ICmp only has two operands; don't allow more than two non-trivial parts.
1099 if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1100 return false;
1101
1102 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1103 // putting the scaled register in the other operand of the icmp.
1104 if (AM.Scale != 0 && AM.Scale != -1)
1105 return false;
1106
1107 // If we have low-level target information, ask the target if it can fold an
1108 // integer immediate on an icmp.
1109 if (AM.BaseOffs != 0) {
1110 if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs);
1111 return false;
Dan Gohman7979b722010-01-22 00:46:49 +00001112 }
Dan Gohman572645c2010-02-12 10:34:29 +00001113
1114 return true;
1115
1116 case LSRUse::Basic:
1117 // Only handle single-register values.
1118 return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1119
1120 case LSRUse::Special:
1121 // Only handle -1 scales, or no scale.
1122 return AM.Scale == 0 || AM.Scale == -1;
Dan Gohman7979b722010-01-22 00:46:49 +00001123 }
1124
Dan Gohman7979b722010-01-22 00:46:49 +00001125 return false;
1126}
1127
Dan Gohman572645c2010-02-12 10:34:29 +00001128static bool isLegalUse(TargetLowering::AddrMode AM,
1129 int64_t MinOffset, int64_t MaxOffset,
1130 LSRUse::KindType Kind, const Type *AccessTy,
1131 const TargetLowering *TLI) {
1132 // Check for overflow.
1133 if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1134 (MinOffset > 0))
1135 return false;
1136 AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1137 if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1138 AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1139 // Check for overflow.
1140 if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1141 (MaxOffset > 0))
1142 return false;
1143 AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1144 return isLegalUse(AM, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001145 }
Dan Gohman572645c2010-02-12 10:34:29 +00001146 return false;
Dan Gohman7979b722010-01-22 00:46:49 +00001147}
1148
Dan Gohman572645c2010-02-12 10:34:29 +00001149static bool isAlwaysFoldable(int64_t BaseOffs,
1150 GlobalValue *BaseGV,
1151 bool HasBaseReg,
1152 LSRUse::KindType Kind, const Type *AccessTy,
Dan Gohman454d26d2010-02-22 04:11:59 +00001153 const TargetLowering *TLI) {
Dan Gohman572645c2010-02-12 10:34:29 +00001154 // Fast-path: zero is always foldable.
1155 if (BaseOffs == 0 && !BaseGV) return true;
Dan Gohman7979b722010-01-22 00:46:49 +00001156
Dan Gohman572645c2010-02-12 10:34:29 +00001157 // Conservatively, create an address with an immediate and a
1158 // base and a scale.
1159 TargetLowering::AddrMode AM;
1160 AM.BaseOffs = BaseOffs;
1161 AM.BaseGV = BaseGV;
1162 AM.HasBaseReg = HasBaseReg;
1163 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
Dan Gohman7979b722010-01-22 00:46:49 +00001164
Dan Gohmana2086b32010-05-19 23:43:12 +00001165 // Canonicalize a scale of 1 to a base register if the formula doesn't
1166 // already have a base register.
1167 if (!AM.HasBaseReg && AM.Scale == 1) {
1168 AM.Scale = 0;
1169 AM.HasBaseReg = true;
1170 }
1171
Dan Gohman572645c2010-02-12 10:34:29 +00001172 return isLegalUse(AM, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001173}
1174
Dan Gohman572645c2010-02-12 10:34:29 +00001175static bool isAlwaysFoldable(const SCEV *S,
1176 int64_t MinOffset, int64_t MaxOffset,
1177 bool HasBaseReg,
1178 LSRUse::KindType Kind, const Type *AccessTy,
1179 const TargetLowering *TLI,
1180 ScalarEvolution &SE) {
1181 // Fast-path: zero is always foldable.
1182 if (S->isZero()) return true;
1183
1184 // Conservatively, create an address with an immediate and a
1185 // base and a scale.
1186 int64_t BaseOffs = ExtractImmediate(S, SE);
1187 GlobalValue *BaseGV = ExtractSymbol(S, SE);
1188
1189 // If there's anything else involved, it's not foldable.
1190 if (!S->isZero()) return false;
1191
1192 // Fast-path: zero is always foldable.
1193 if (BaseOffs == 0 && !BaseGV) return true;
1194
1195 // Conservatively, create an address with an immediate and a
1196 // base and a scale.
1197 TargetLowering::AddrMode AM;
1198 AM.BaseOffs = BaseOffs;
1199 AM.BaseGV = BaseGV;
1200 AM.HasBaseReg = HasBaseReg;
1201 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1202
1203 return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001204}
1205
Dan Gohman572645c2010-02-12 10:34:29 +00001206/// FormulaSorter - This class implements an ordering for formulae which sorts
1207/// the by their standalone cost.
1208class FormulaSorter {
1209 /// These two sets are kept empty, so that we compute standalone costs.
1210 DenseSet<const SCEV *> VisitedRegs;
1211 SmallPtrSet<const SCEV *, 16> Regs;
1212 Loop *L;
1213 LSRUse *LU;
1214 ScalarEvolution &SE;
1215 DominatorTree &DT;
1216
1217public:
1218 FormulaSorter(Loop *l, LSRUse &lu, ScalarEvolution &se, DominatorTree &dt)
1219 : L(l), LU(&lu), SE(se), DT(dt) {}
1220
1221 bool operator()(const Formula &A, const Formula &B) {
1222 Cost CostA;
1223 CostA.RateFormula(A, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1224 Regs.clear();
1225 Cost CostB;
1226 CostB.RateFormula(B, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1227 Regs.clear();
1228 return CostA < CostB;
1229 }
1230};
1231
1232/// LSRInstance - This class holds state for the main loop strength reduction
1233/// logic.
1234class LSRInstance {
1235 IVUsers &IU;
1236 ScalarEvolution &SE;
1237 DominatorTree &DT;
Dan Gohmane5f76872010-04-09 22:07:05 +00001238 LoopInfo &LI;
Dan Gohman572645c2010-02-12 10:34:29 +00001239 const TargetLowering *const TLI;
1240 Loop *const L;
1241 bool Changed;
1242
1243 /// IVIncInsertPos - This is the insert position that the current loop's
1244 /// induction variable increment should be placed. In simple loops, this is
1245 /// the latch block's terminator. But in more complicated cases, this is a
1246 /// position which will dominate all the in-loop post-increment users.
1247 Instruction *IVIncInsertPos;
1248
1249 /// Factors - Interesting factors between use strides.
1250 SmallSetVector<int64_t, 8> Factors;
1251
1252 /// Types - Interesting use types, to facilitate truncation reuse.
1253 SmallSetVector<const Type *, 4> Types;
1254
1255 /// Fixups - The list of operands which are to be replaced.
1256 SmallVector<LSRFixup, 16> Fixups;
1257
1258 /// Uses - The list of interesting uses.
1259 SmallVector<LSRUse, 16> Uses;
1260
1261 /// RegUses - Track which uses use which register candidates.
1262 RegUseTracker RegUses;
1263
1264 void OptimizeShadowIV();
1265 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1266 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
Dan Gohmanc6519f92010-05-20 20:05:31 +00001267 void OptimizeLoopTermCond();
Dan Gohman572645c2010-02-12 10:34:29 +00001268
1269 void CollectInterestingTypesAndFactors();
1270 void CollectFixupsAndInitialFormulae();
1271
1272 LSRFixup &getNewFixup() {
1273 Fixups.push_back(LSRFixup());
1274 return Fixups.back();
1275 }
1276
1277 // Support for sharing of LSRUses between LSRFixups.
1278 typedef DenseMap<const SCEV *, size_t> UseMapTy;
1279 UseMapTy UseMap;
1280
Dan Gohmanea507f52010-05-20 19:44:23 +00001281 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
Dan Gohman572645c2010-02-12 10:34:29 +00001282 LSRUse::KindType Kind, const Type *AccessTy);
1283
1284 std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1285 LSRUse::KindType Kind,
1286 const Type *AccessTy);
1287
Dan Gohman5ce6d052010-05-20 15:17:54 +00001288 void DeleteUse(LSRUse &LU);
1289
Dan Gohmana2086b32010-05-19 23:43:12 +00001290 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1291
Dan Gohman572645c2010-02-12 10:34:29 +00001292public:
Dan Gohman454d26d2010-02-22 04:11:59 +00001293 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
Dan Gohman572645c2010-02-12 10:34:29 +00001294 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1295 void CountRegisters(const Formula &F, size_t LUIdx);
1296 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1297
1298 void CollectLoopInvariantFixupsAndFormulae();
1299
1300 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1301 unsigned Depth = 0);
1302 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1303 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1304 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1305 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1306 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1307 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1308 void GenerateCrossUseConstantOffsets();
1309 void GenerateAllReuseFormulae();
1310
1311 void FilterOutUndesirableDedicatedRegisters();
Dan Gohmand079c302010-05-18 22:51:59 +00001312
1313 size_t EstimateSearchSpaceComplexity() const;
Dan Gohman572645c2010-02-12 10:34:29 +00001314 void NarrowSearchSpaceUsingHeuristics();
1315
1316 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1317 Cost &SolutionCost,
1318 SmallVectorImpl<const Formula *> &Workspace,
1319 const Cost &CurCost,
1320 const SmallPtrSet<const SCEV *, 16> &CurRegs,
1321 DenseSet<const SCEV *> &VisitedRegs) const;
1322 void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1323
Dan Gohmane5f76872010-04-09 22:07:05 +00001324 BasicBlock::iterator
1325 HoistInsertPosition(BasicBlock::iterator IP,
1326 const SmallVectorImpl<Instruction *> &Inputs) const;
1327 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1328 const LSRFixup &LF,
1329 const LSRUse &LU) const;
Dan Gohmand96eae82010-04-09 02:00:38 +00001330
Dan Gohman572645c2010-02-12 10:34:29 +00001331 Value *Expand(const LSRFixup &LF,
1332 const Formula &F,
Dan Gohman454d26d2010-02-22 04:11:59 +00001333 BasicBlock::iterator IP,
Dan Gohman572645c2010-02-12 10:34:29 +00001334 SCEVExpander &Rewriter,
Dan Gohman454d26d2010-02-22 04:11:59 +00001335 SmallVectorImpl<WeakVH> &DeadInsts) const;
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001336 void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1337 const Formula &F,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001338 SCEVExpander &Rewriter,
1339 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001340 Pass *P) const;
Dan Gohman572645c2010-02-12 10:34:29 +00001341 void Rewrite(const LSRFixup &LF,
1342 const Formula &F,
Dan Gohman572645c2010-02-12 10:34:29 +00001343 SCEVExpander &Rewriter,
1344 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman572645c2010-02-12 10:34:29 +00001345 Pass *P) const;
1346 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1347 Pass *P);
1348
1349 LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1350
1351 bool getChanged() const { return Changed; }
1352
1353 void print_factors_and_types(raw_ostream &OS) const;
1354 void print_fixups(raw_ostream &OS) const;
1355 void print_uses(raw_ostream &OS) const;
1356 void print(raw_ostream &OS) const;
1357 void dump() const;
1358};
1359
1360}
1361
1362/// OptimizeShadowIV - If IV is used in a int-to-float cast
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001363/// inside the loop then try to eliminate the cast operation.
Dan Gohman572645c2010-02-12 10:34:29 +00001364void LSRInstance::OptimizeShadowIV() {
1365 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1366 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1367 return;
1368
1369 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1370 UI != E; /* empty */) {
1371 IVUsers::const_iterator CandidateUI = UI;
1372 ++UI;
1373 Instruction *ShadowUse = CandidateUI->getUser();
1374 const Type *DestTy = NULL;
1375
1376 /* If shadow use is a int->float cast then insert a second IV
1377 to eliminate this cast.
1378
1379 for (unsigned i = 0; i < n; ++i)
1380 foo((double)i);
1381
1382 is transformed into
1383
1384 double d = 0.0;
1385 for (unsigned i = 0; i < n; ++i, ++d)
1386 foo(d);
1387 */
1388 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
1389 DestTy = UCast->getDestTy();
1390 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
1391 DestTy = SCast->getDestTy();
1392 if (!DestTy) continue;
1393
1394 if (TLI) {
1395 // If target does not support DestTy natively then do not apply
1396 // this transformation.
1397 EVT DVT = TLI->getValueType(DestTy);
1398 if (!TLI->isTypeLegal(DVT)) continue;
1399 }
1400
1401 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1402 if (!PH) continue;
1403 if (PH->getNumIncomingValues() != 2) continue;
1404
1405 const Type *SrcTy = PH->getType();
1406 int Mantissa = DestTy->getFPMantissaWidth();
1407 if (Mantissa == -1) continue;
1408 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1409 continue;
1410
1411 unsigned Entry, Latch;
1412 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1413 Entry = 0;
1414 Latch = 1;
Dan Gohman7979b722010-01-22 00:46:49 +00001415 } else {
Dan Gohman572645c2010-02-12 10:34:29 +00001416 Entry = 1;
1417 Latch = 0;
Dan Gohman7979b722010-01-22 00:46:49 +00001418 }
Dan Gohman7979b722010-01-22 00:46:49 +00001419
Dan Gohman572645c2010-02-12 10:34:29 +00001420 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1421 if (!Init) continue;
1422 Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
Dan Gohman7979b722010-01-22 00:46:49 +00001423
Dan Gohman572645c2010-02-12 10:34:29 +00001424 BinaryOperator *Incr =
1425 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1426 if (!Incr) continue;
1427 if (Incr->getOpcode() != Instruction::Add
1428 && Incr->getOpcode() != Instruction::Sub)
Dan Gohman7979b722010-01-22 00:46:49 +00001429 continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001430
Dan Gohman572645c2010-02-12 10:34:29 +00001431 /* Initialize new IV, double d = 0.0 in above example. */
1432 ConstantInt *C = NULL;
1433 if (Incr->getOperand(0) == PH)
1434 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1435 else if (Incr->getOperand(1) == PH)
1436 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
Dan Gohman7979b722010-01-22 00:46:49 +00001437 else
Dan Gohman7979b722010-01-22 00:46:49 +00001438 continue;
1439
Dan Gohman572645c2010-02-12 10:34:29 +00001440 if (!C) continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001441
Dan Gohman572645c2010-02-12 10:34:29 +00001442 // Ignore negative constants, as the code below doesn't handle them
1443 // correctly. TODO: Remove this restriction.
1444 if (!C->getValue().isStrictlyPositive()) continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001445
Dan Gohman572645c2010-02-12 10:34:29 +00001446 /* Add new PHINode. */
1447 PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
Dan Gohman7979b722010-01-22 00:46:49 +00001448
Dan Gohman572645c2010-02-12 10:34:29 +00001449 /* create new increment. '++d' in above example. */
1450 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1451 BinaryOperator *NewIncr =
1452 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1453 Instruction::FAdd : Instruction::FSub,
1454 NewPH, CFP, "IV.S.next.", Incr);
Dan Gohman7979b722010-01-22 00:46:49 +00001455
Dan Gohman572645c2010-02-12 10:34:29 +00001456 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1457 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
Dan Gohman7979b722010-01-22 00:46:49 +00001458
Dan Gohman572645c2010-02-12 10:34:29 +00001459 /* Remove cast operation */
1460 ShadowUse->replaceAllUsesWith(NewPH);
1461 ShadowUse->eraseFromParent();
Dan Gohmanc6519f92010-05-20 20:05:31 +00001462 Changed = true;
Dan Gohman572645c2010-02-12 10:34:29 +00001463 break;
Dan Gohman7979b722010-01-22 00:46:49 +00001464 }
1465}
1466
1467/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1468/// set the IV user and stride information and return true, otherwise return
1469/// false.
Dan Gohmanea507f52010-05-20 19:44:23 +00001470bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
Dan Gohman572645c2010-02-12 10:34:29 +00001471 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1472 if (UI->getUser() == Cond) {
1473 // NOTE: we could handle setcc instructions with multiple uses here, but
1474 // InstCombine does it as well for simple uses, it's not clear that it
1475 // occurs enough in real life to handle.
1476 CondUse = UI;
1477 return true;
1478 }
Dan Gohman7979b722010-01-22 00:46:49 +00001479 return false;
Evan Chengcdf43b12007-10-25 09:11:16 +00001480}
1481
Dan Gohman7979b722010-01-22 00:46:49 +00001482/// OptimizeMax - Rewrite the loop's terminating condition if it uses
1483/// a max computation.
1484///
1485/// This is a narrow solution to a specific, but acute, problem. For loops
1486/// like this:
1487///
1488/// i = 0;
1489/// do {
1490/// p[i] = 0.0;
1491/// } while (++i < n);
1492///
1493/// the trip count isn't just 'n', because 'n' might not be positive. And
1494/// unfortunately this can come up even for loops where the user didn't use
1495/// a C do-while loop. For example, seemingly well-behaved top-test loops
1496/// will commonly be lowered like this:
1497//
1498/// if (n > 0) {
1499/// i = 0;
1500/// do {
1501/// p[i] = 0.0;
1502/// } while (++i < n);
1503/// }
1504///
1505/// and then it's possible for subsequent optimization to obscure the if
1506/// test in such a way that indvars can't find it.
1507///
1508/// When indvars can't find the if test in loops like this, it creates a
1509/// max expression, which allows it to give the loop a canonical
1510/// induction variable:
1511///
1512/// i = 0;
1513/// max = n < 1 ? 1 : n;
1514/// do {
1515/// p[i] = 0.0;
1516/// } while (++i != max);
1517///
1518/// Canonical induction variables are necessary because the loop passes
1519/// are designed around them. The most obvious example of this is the
1520/// LoopInfo analysis, which doesn't remember trip count values. It
1521/// expects to be able to rediscover the trip count each time it is
Dan Gohman572645c2010-02-12 10:34:29 +00001522/// needed, and it does this using a simple analysis that only succeeds if
Dan Gohman7979b722010-01-22 00:46:49 +00001523/// the loop has a canonical induction variable.
1524///
1525/// However, when it comes time to generate code, the maximum operation
1526/// can be quite costly, especially if it's inside of an outer loop.
1527///
1528/// This function solves this problem by detecting this type of loop and
1529/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1530/// the instructions for the maximum computation.
1531///
Dan Gohman572645c2010-02-12 10:34:29 +00001532ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
Dan Gohman7979b722010-01-22 00:46:49 +00001533 // Check that the loop matches the pattern we're looking for.
1534 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1535 Cond->getPredicate() != CmpInst::ICMP_NE)
1536 return Cond;
Dan Gohmana10756e2010-01-21 02:09:26 +00001537
Dan Gohman7979b722010-01-22 00:46:49 +00001538 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1539 if (!Sel || !Sel->hasOneUse()) return Cond;
Dan Gohmana10756e2010-01-21 02:09:26 +00001540
Dan Gohman572645c2010-02-12 10:34:29 +00001541 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
Dan Gohman7979b722010-01-22 00:46:49 +00001542 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1543 return Cond;
Dan Gohmandeff6212010-05-03 22:09:21 +00001544 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
Dan Gohmana10756e2010-01-21 02:09:26 +00001545
Dan Gohman7979b722010-01-22 00:46:49 +00001546 // Add one to the backedge-taken count to get the trip count.
Dan Gohman572645c2010-02-12 10:34:29 +00001547 const SCEV *IterationCount = SE.getAddExpr(BackedgeTakenCount, One);
Dan Gohman1d367982010-04-24 03:13:44 +00001548 if (IterationCount != SE.getSCEV(Sel)) return Cond;
Dan Gohman7979b722010-01-22 00:46:49 +00001549
Dan Gohman1d367982010-04-24 03:13:44 +00001550 // Check for a max calculation that matches the pattern. There's no check
1551 // for ICMP_ULE here because the comparison would be with zero, which
1552 // isn't interesting.
1553 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1554 const SCEVNAryExpr *Max = 0;
1555 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1556 Pred = ICmpInst::ICMP_SLE;
1557 Max = S;
1558 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1559 Pred = ICmpInst::ICMP_SLT;
1560 Max = S;
1561 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1562 Pred = ICmpInst::ICMP_ULT;
1563 Max = U;
1564 } else {
1565 // No match; bail.
Dan Gohman7979b722010-01-22 00:46:49 +00001566 return Cond;
Dan Gohman1d367982010-04-24 03:13:44 +00001567 }
Dan Gohman7979b722010-01-22 00:46:49 +00001568
1569 // To handle a max with more than two operands, this optimization would
1570 // require additional checking and setup.
1571 if (Max->getNumOperands() != 2)
1572 return Cond;
1573
1574 const SCEV *MaxLHS = Max->getOperand(0);
1575 const SCEV *MaxRHS = Max->getOperand(1);
Dan Gohman1d367982010-04-24 03:13:44 +00001576
1577 // ScalarEvolution canonicalizes constants to the left. For < and >, look
1578 // for a comparison with 1. For <= and >=, a comparison with zero.
1579 if (!MaxLHS ||
1580 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
1581 return Cond;
1582
Dan Gohman7979b722010-01-22 00:46:49 +00001583 // Check the relevant induction variable for conformance to
1584 // the pattern.
Dan Gohman572645c2010-02-12 10:34:29 +00001585 const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
Dan Gohman7979b722010-01-22 00:46:49 +00001586 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1587 if (!AR || !AR->isAffine() ||
1588 AR->getStart() != One ||
Dan Gohman572645c2010-02-12 10:34:29 +00001589 AR->getStepRecurrence(SE) != One)
Dan Gohman7979b722010-01-22 00:46:49 +00001590 return Cond;
1591
1592 assert(AR->getLoop() == L &&
1593 "Loop condition operand is an addrec in a different loop!");
1594
1595 // Check the right operand of the select, and remember it, as it will
1596 // be used in the new comparison instruction.
1597 Value *NewRHS = 0;
Dan Gohman1d367982010-04-24 03:13:44 +00001598 if (ICmpInst::isTrueWhenEqual(Pred)) {
1599 // Look for n+1, and grab n.
1600 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
1601 if (isa<ConstantInt>(BO->getOperand(1)) &&
1602 cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1603 SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1604 NewRHS = BO->getOperand(0);
1605 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
1606 if (isa<ConstantInt>(BO->getOperand(1)) &&
1607 cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1608 SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1609 NewRHS = BO->getOperand(0);
1610 if (!NewRHS)
1611 return Cond;
1612 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
Dan Gohman7979b722010-01-22 00:46:49 +00001613 NewRHS = Sel->getOperand(1);
Dan Gohman572645c2010-02-12 10:34:29 +00001614 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
Dan Gohman7979b722010-01-22 00:46:49 +00001615 NewRHS = Sel->getOperand(2);
Dan Gohman1d367982010-04-24 03:13:44 +00001616 else
1617 llvm_unreachable("Max doesn't match expected pattern!");
Dan Gohman7979b722010-01-22 00:46:49 +00001618
1619 // Determine the new comparison opcode. It may be signed or unsigned,
1620 // and the original comparison may be either equality or inequality.
Dan Gohman7979b722010-01-22 00:46:49 +00001621 if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1622 Pred = CmpInst::getInversePredicate(Pred);
1623
1624 // Ok, everything looks ok to change the condition into an SLT or SGE and
1625 // delete the max calculation.
1626 ICmpInst *NewCond =
1627 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1628
1629 // Delete the max calculation instructions.
1630 Cond->replaceAllUsesWith(NewCond);
1631 CondUse->setUser(NewCond);
1632 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1633 Cond->eraseFromParent();
1634 Sel->eraseFromParent();
1635 if (Cmp->use_empty())
1636 Cmp->eraseFromParent();
1637 return NewCond;
Dan Gohmanad7321f2008-09-15 21:22:06 +00001638}
1639
Jim Grosbach56a1f802009-11-17 17:53:56 +00001640/// OptimizeLoopTermCond - Change loop terminating condition to use the
Evan Cheng586f69a2009-11-12 07:35:05 +00001641/// postinc iv when possible.
Dan Gohmanc6519f92010-05-20 20:05:31 +00001642void
Dan Gohman572645c2010-02-12 10:34:29 +00001643LSRInstance::OptimizeLoopTermCond() {
1644 SmallPtrSet<Instruction *, 4> PostIncs;
1645
Evan Cheng586f69a2009-11-12 07:35:05 +00001646 BasicBlock *LatchBlock = L->getLoopLatch();
Evan Cheng076e0852009-11-17 18:10:11 +00001647 SmallVector<BasicBlock*, 8> ExitingBlocks;
1648 L->getExitingBlocks(ExitingBlocks);
Jim Grosbach56a1f802009-11-17 17:53:56 +00001649
Evan Cheng076e0852009-11-17 18:10:11 +00001650 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1651 BasicBlock *ExitingBlock = ExitingBlocks[i];
Evan Cheng586f69a2009-11-12 07:35:05 +00001652
Dan Gohman572645c2010-02-12 10:34:29 +00001653 // Get the terminating condition for the loop if possible. If we
Evan Cheng076e0852009-11-17 18:10:11 +00001654 // can, we want to change it to use a post-incremented version of its
1655 // induction variable, to allow coalescing the live ranges for the IV into
1656 // one register value.
Evan Cheng586f69a2009-11-12 07:35:05 +00001657
Evan Cheng076e0852009-11-17 18:10:11 +00001658 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1659 if (!TermBr)
1660 continue;
1661 // FIXME: Overly conservative, termination condition could be an 'or' etc..
1662 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1663 continue;
Evan Cheng586f69a2009-11-12 07:35:05 +00001664
Evan Cheng076e0852009-11-17 18:10:11 +00001665 // Search IVUsesByStride to find Cond's IVUse if there is one.
1666 IVStrideUse *CondUse = 0;
Evan Cheng076e0852009-11-17 18:10:11 +00001667 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
Dan Gohman572645c2010-02-12 10:34:29 +00001668 if (!FindIVUserForCond(Cond, CondUse))
Evan Cheng076e0852009-11-17 18:10:11 +00001669 continue;
1670
Evan Cheng076e0852009-11-17 18:10:11 +00001671 // If the trip count is computed in terms of a max (due to ScalarEvolution
1672 // being unable to find a sufficient guard, for example), change the loop
1673 // comparison to use SLT or ULT instead of NE.
Dan Gohman572645c2010-02-12 10:34:29 +00001674 // One consequence of doing this now is that it disrupts the count-down
1675 // optimization. That's not always a bad thing though, because in such
1676 // cases it may still be worthwhile to avoid a max.
1677 Cond = OptimizeMax(Cond, CondUse);
Evan Cheng076e0852009-11-17 18:10:11 +00001678
Dan Gohman572645c2010-02-12 10:34:29 +00001679 // If this exiting block dominates the latch block, it may also use
1680 // the post-inc value if it won't be shared with other uses.
1681 // Check for dominance.
1682 if (!DT.dominates(ExitingBlock, LatchBlock))
Dan Gohman7979b722010-01-22 00:46:49 +00001683 continue;
Evan Cheng076e0852009-11-17 18:10:11 +00001684
Dan Gohman572645c2010-02-12 10:34:29 +00001685 // Conservatively avoid trying to use the post-inc value in non-latch
1686 // exits if there may be pre-inc users in intervening blocks.
Dan Gohman590bfe82010-02-14 03:21:49 +00001687 if (LatchBlock != ExitingBlock)
Dan Gohman572645c2010-02-12 10:34:29 +00001688 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1689 // Test if the use is reachable from the exiting block. This dominator
1690 // query is a conservative approximation of reachability.
1691 if (&*UI != CondUse &&
1692 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1693 // Conservatively assume there may be reuse if the quotient of their
1694 // strides could be a legal scale.
Dan Gohmanc0564542010-04-19 21:48:58 +00001695 const SCEV *A = IU.getStride(*CondUse, L);
1696 const SCEV *B = IU.getStride(*UI, L);
Dan Gohman448db1c2010-04-07 22:27:08 +00001697 if (!A || !B) continue;
Dan Gohman572645c2010-02-12 10:34:29 +00001698 if (SE.getTypeSizeInBits(A->getType()) !=
1699 SE.getTypeSizeInBits(B->getType())) {
1700 if (SE.getTypeSizeInBits(A->getType()) >
1701 SE.getTypeSizeInBits(B->getType()))
1702 B = SE.getSignExtendExpr(B, A->getType());
1703 else
1704 A = SE.getSignExtendExpr(A, B->getType());
1705 }
1706 if (const SCEVConstant *D =
Dan Gohmanf09b7122010-02-19 19:35:48 +00001707 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
Dan Gohman9f383eb2010-05-20 22:25:20 +00001708 const ConstantInt *C = D->getValue();
Dan Gohman572645c2010-02-12 10:34:29 +00001709 // Stride of one or negative one can have reuse with non-addresses.
Dan Gohman9f383eb2010-05-20 22:25:20 +00001710 if (C->isOne() || C->isAllOnesValue())
Dan Gohman572645c2010-02-12 10:34:29 +00001711 goto decline_post_inc;
1712 // Avoid weird situations.
Dan Gohman9f383eb2010-05-20 22:25:20 +00001713 if (C->getValue().getMinSignedBits() >= 64 ||
1714 C->getValue().isMinSignedValue())
Dan Gohman572645c2010-02-12 10:34:29 +00001715 goto decline_post_inc;
Dan Gohman590bfe82010-02-14 03:21:49 +00001716 // Without TLI, assume that any stride might be valid, and so any
1717 // use might be shared.
1718 if (!TLI)
1719 goto decline_post_inc;
Dan Gohman572645c2010-02-12 10:34:29 +00001720 // Check for possible scaled-address reuse.
1721 const Type *AccessTy = getAccessType(UI->getUser());
1722 TargetLowering::AddrMode AM;
Dan Gohman9f383eb2010-05-20 22:25:20 +00001723 AM.Scale = C->getSExtValue();
Dan Gohman2763dfd2010-02-14 02:45:21 +00001724 if (TLI->isLegalAddressingMode(AM, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001725 goto decline_post_inc;
1726 AM.Scale = -AM.Scale;
Dan Gohman2763dfd2010-02-14 02:45:21 +00001727 if (TLI->isLegalAddressingMode(AM, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001728 goto decline_post_inc;
1729 }
1730 }
1731
David Greene63c94632009-12-23 22:58:38 +00001732 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
Dan Gohman572645c2010-02-12 10:34:29 +00001733 << *Cond << '\n');
Evan Cheng076e0852009-11-17 18:10:11 +00001734
1735 // It's possible for the setcc instruction to be anywhere in the loop, and
1736 // possible for it to have multiple users. If it is not immediately before
1737 // the exiting block branch, move it.
Dan Gohman572645c2010-02-12 10:34:29 +00001738 if (&*++BasicBlock::iterator(Cond) != TermBr) {
1739 if (Cond->hasOneUse()) {
Evan Cheng076e0852009-11-17 18:10:11 +00001740 Cond->moveBefore(TermBr);
1741 } else {
Dan Gohman572645c2010-02-12 10:34:29 +00001742 // Clone the terminating condition and insert into the loopend.
1743 ICmpInst *OldCond = Cond;
Evan Cheng076e0852009-11-17 18:10:11 +00001744 Cond = cast<ICmpInst>(Cond->clone());
1745 Cond->setName(L->getHeader()->getName() + ".termcond");
1746 ExitingBlock->getInstList().insert(TermBr, Cond);
1747
1748 // Clone the IVUse, as the old use still exists!
Dan Gohmanc0564542010-04-19 21:48:58 +00001749 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
Dan Gohman572645c2010-02-12 10:34:29 +00001750 TermBr->replaceUsesOfWith(OldCond, Cond);
Evan Cheng076e0852009-11-17 18:10:11 +00001751 }
Evan Cheng586f69a2009-11-12 07:35:05 +00001752 }
1753
Evan Cheng076e0852009-11-17 18:10:11 +00001754 // If we get to here, we know that we can transform the setcc instruction to
1755 // use the post-incremented version of the IV, allowing us to coalesce the
1756 // live ranges for the IV correctly.
Dan Gohman448db1c2010-04-07 22:27:08 +00001757 CondUse->transformToPostInc(L);
Evan Cheng076e0852009-11-17 18:10:11 +00001758 Changed = true;
1759
Dan Gohman572645c2010-02-12 10:34:29 +00001760 PostIncs.insert(Cond);
1761 decline_post_inc:;
Dan Gohmana10756e2010-01-21 02:09:26 +00001762 }
Dan Gohman572645c2010-02-12 10:34:29 +00001763
1764 // Determine an insertion point for the loop induction variable increment. It
1765 // must dominate all the post-inc comparisons we just set up, and it must
1766 // dominate the loop latch edge.
1767 IVIncInsertPos = L->getLoopLatch()->getTerminator();
1768 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
1769 E = PostIncs.end(); I != E; ++I) {
1770 BasicBlock *BB =
1771 DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
1772 (*I)->getParent());
1773 if (BB == (*I)->getParent())
1774 IVIncInsertPos = *I;
1775 else if (BB != IVIncInsertPos->getParent())
1776 IVIncInsertPos = BB->getTerminator();
1777 }
Dan Gohmana10756e2010-01-21 02:09:26 +00001778}
1779
Dan Gohman76c315a2010-05-20 20:52:00 +00001780/// reconcileNewOffset - Determine if the given use can accomodate a fixup
1781/// at the given offset and other details. If so, update the use and
1782/// return true.
Dan Gohman572645c2010-02-12 10:34:29 +00001783bool
Dan Gohmanea507f52010-05-20 19:44:23 +00001784LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
Dan Gohman572645c2010-02-12 10:34:29 +00001785 LSRUse::KindType Kind, const Type *AccessTy) {
1786 int64_t NewMinOffset = LU.MinOffset;
1787 int64_t NewMaxOffset = LU.MaxOffset;
1788 const Type *NewAccessTy = AccessTy;
Dan Gohman7979b722010-01-22 00:46:49 +00001789
Dan Gohman572645c2010-02-12 10:34:29 +00001790 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
1791 // something conservative, however this can pessimize in the case that one of
1792 // the uses will have all its uses outside the loop, for example.
1793 if (LU.Kind != Kind)
Dan Gohman7979b722010-01-22 00:46:49 +00001794 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001795 // Conservatively assume HasBaseReg is true for now.
1796 if (NewOffset < LU.MinOffset) {
Dan Gohmana2086b32010-05-19 23:43:12 +00001797 if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
Dan Gohman454d26d2010-02-22 04:11:59 +00001798 Kind, AccessTy, TLI))
Dan Gohman7979b722010-01-22 00:46:49 +00001799 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001800 NewMinOffset = NewOffset;
1801 } else if (NewOffset > LU.MaxOffset) {
Dan Gohmana2086b32010-05-19 23:43:12 +00001802 if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
Dan Gohman454d26d2010-02-22 04:11:59 +00001803 Kind, AccessTy, TLI))
Dan Gohman7979b722010-01-22 00:46:49 +00001804 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001805 NewMaxOffset = NewOffset;
Dan Gohmana10756e2010-01-21 02:09:26 +00001806 }
Dan Gohman572645c2010-02-12 10:34:29 +00001807 // Check for a mismatched access type, and fall back conservatively as needed.
1808 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
1809 NewAccessTy = Type::getVoidTy(AccessTy->getContext());
Dan Gohmana10756e2010-01-21 02:09:26 +00001810
Dan Gohman572645c2010-02-12 10:34:29 +00001811 // Update the use.
1812 LU.MinOffset = NewMinOffset;
1813 LU.MaxOffset = NewMaxOffset;
1814 LU.AccessTy = NewAccessTy;
1815 if (NewOffset != LU.Offsets.back())
1816 LU.Offsets.push_back(NewOffset);
Dan Gohman8b0ade32010-01-21 22:42:49 +00001817 return true;
1818}
1819
Dan Gohman572645c2010-02-12 10:34:29 +00001820/// getUse - Return an LSRUse index and an offset value for a fixup which
1821/// needs the given expression, with the given kind and optional access type.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001822/// Either reuse an existing use or create a new one, as needed.
Dan Gohman572645c2010-02-12 10:34:29 +00001823std::pair<size_t, int64_t>
1824LSRInstance::getUse(const SCEV *&Expr,
1825 LSRUse::KindType Kind, const Type *AccessTy) {
1826 const SCEV *Copy = Expr;
1827 int64_t Offset = ExtractImmediate(Expr, SE);
Evan Cheng586f69a2009-11-12 07:35:05 +00001828
Dan Gohman572645c2010-02-12 10:34:29 +00001829 // Basic uses can't accept any offset, for example.
Dan Gohman454d26d2010-02-22 04:11:59 +00001830 if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
Dan Gohman572645c2010-02-12 10:34:29 +00001831 Expr = Copy;
1832 Offset = 0;
1833 }
1834
1835 std::pair<UseMapTy::iterator, bool> P =
1836 UseMap.insert(std::make_pair(Expr, 0));
1837 if (!P.second) {
1838 // A use already existed with this base.
1839 size_t LUIdx = P.first->second;
1840 LSRUse &LU = Uses[LUIdx];
Dan Gohmana2086b32010-05-19 23:43:12 +00001841 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001842 // Reuse this use.
1843 return std::make_pair(LUIdx, Offset);
1844 }
1845
1846 // Create a new use.
1847 size_t LUIdx = Uses.size();
1848 P.first->second = LUIdx;
1849 Uses.push_back(LSRUse(Kind, AccessTy));
1850 LSRUse &LU = Uses[LUIdx];
1851
1852 // We don't need to track redundant offsets, but we don't need to go out
1853 // of our way here to avoid them.
1854 if (LU.Offsets.empty() || Offset != LU.Offsets.back())
1855 LU.Offsets.push_back(Offset);
1856
1857 LU.MinOffset = Offset;
1858 LU.MaxOffset = Offset;
1859 return std::make_pair(LUIdx, Offset);
1860}
1861
Dan Gohman5ce6d052010-05-20 15:17:54 +00001862/// DeleteUse - Delete the given use from the Uses list.
1863void LSRInstance::DeleteUse(LSRUse &LU) {
1864 if (&LU != &Uses.back())
1865 std::swap(LU, Uses.back());
1866 Uses.pop_back();
1867}
1868
Dan Gohmana2086b32010-05-19 23:43:12 +00001869/// FindUseWithFormula - Look for a use distinct from OrigLU which is has
1870/// a formula that has the same registers as the given formula.
1871LSRUse *
1872LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
1873 const LSRUse &OrigLU) {
1874 // Search all uses for the formula. This could be more clever. Ignore
1875 // ICmpZero uses because they may contain formulae generated by
1876 // GenerateICmpZeroScales, in which case adding fixup offsets may
1877 // be invalid.
1878 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
1879 LSRUse &LU = Uses[LUIdx];
1880 if (&LU != &OrigLU &&
1881 LU.Kind != LSRUse::ICmpZero &&
1882 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
1883 LU.HasFormulaWithSameRegs(OrigF)) {
Dan Gohman402d4352010-05-20 20:33:18 +00001884 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
1885 E = LU.Formulae.end(); I != E; ++I) {
1886 const Formula &F = *I;
Dan Gohmana2086b32010-05-19 23:43:12 +00001887 if (F.BaseRegs == OrigF.BaseRegs &&
1888 F.ScaledReg == OrigF.ScaledReg &&
1889 F.AM.BaseGV == OrigF.AM.BaseGV &&
1890 F.AM.Scale == OrigF.AM.Scale &&
1891 LU.Kind) {
1892 if (F.AM.BaseOffs == 0)
1893 return &LU;
1894 break;
1895 }
1896 }
1897 }
1898 }
1899
1900 return 0;
1901}
1902
Dan Gohman572645c2010-02-12 10:34:29 +00001903void LSRInstance::CollectInterestingTypesAndFactors() {
1904 SmallSetVector<const SCEV *, 4> Strides;
1905
Dan Gohman1b7bf182010-02-19 00:05:23 +00001906 // Collect interesting types and strides.
Dan Gohman448db1c2010-04-07 22:27:08 +00001907 SmallVector<const SCEV *, 4> Worklist;
Dan Gohman572645c2010-02-12 10:34:29 +00001908 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
Dan Gohmanc0564542010-04-19 21:48:58 +00001909 const SCEV *Expr = IU.getExpr(*UI);
Dan Gohman572645c2010-02-12 10:34:29 +00001910
1911 // Collect interesting types.
Dan Gohman448db1c2010-04-07 22:27:08 +00001912 Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
Dan Gohman572645c2010-02-12 10:34:29 +00001913
Dan Gohman448db1c2010-04-07 22:27:08 +00001914 // Add strides for mentioned loops.
1915 Worklist.push_back(Expr);
1916 do {
1917 const SCEV *S = Worklist.pop_back_val();
1918 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1919 Strides.insert(AR->getStepRecurrence(SE));
1920 Worklist.push_back(AR->getStart());
1921 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1922 Worklist.insert(Worklist.end(), Add->op_begin(), Add->op_end());
1923 }
1924 } while (!Worklist.empty());
Dan Gohman1b7bf182010-02-19 00:05:23 +00001925 }
1926
1927 // Compute interesting factors from the set of interesting strides.
1928 for (SmallSetVector<const SCEV *, 4>::const_iterator
1929 I = Strides.begin(), E = Strides.end(); I != E; ++I)
Dan Gohman572645c2010-02-12 10:34:29 +00001930 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
Dan Gohman1b7bf182010-02-19 00:05:23 +00001931 next(I); NewStrideIter != E; ++NewStrideIter) {
1932 const SCEV *OldStride = *I;
Dan Gohman572645c2010-02-12 10:34:29 +00001933 const SCEV *NewStride = *NewStrideIter;
Dan Gohman572645c2010-02-12 10:34:29 +00001934
1935 if (SE.getTypeSizeInBits(OldStride->getType()) !=
1936 SE.getTypeSizeInBits(NewStride->getType())) {
1937 if (SE.getTypeSizeInBits(OldStride->getType()) >
1938 SE.getTypeSizeInBits(NewStride->getType()))
1939 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
1940 else
1941 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
1942 }
1943 if (const SCEVConstant *Factor =
Dan Gohmanf09b7122010-02-19 19:35:48 +00001944 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
1945 SE, true))) {
Dan Gohman572645c2010-02-12 10:34:29 +00001946 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1947 Factors.insert(Factor->getValue()->getValue().getSExtValue());
1948 } else if (const SCEVConstant *Factor =
Dan Gohman454d26d2010-02-22 04:11:59 +00001949 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
1950 NewStride,
Dan Gohmanf09b7122010-02-19 19:35:48 +00001951 SE, true))) {
Dan Gohman572645c2010-02-12 10:34:29 +00001952 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1953 Factors.insert(Factor->getValue()->getValue().getSExtValue());
1954 }
1955 }
Dan Gohman572645c2010-02-12 10:34:29 +00001956
1957 // If all uses use the same type, don't bother looking for truncation-based
1958 // reuse.
1959 if (Types.size() == 1)
1960 Types.clear();
1961
1962 DEBUG(print_factors_and_types(dbgs()));
1963}
1964
1965void LSRInstance::CollectFixupsAndInitialFormulae() {
1966 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
1967 // Record the uses.
1968 LSRFixup &LF = getNewFixup();
1969 LF.UserInst = UI->getUser();
1970 LF.OperandValToReplace = UI->getOperandValToReplace();
Dan Gohman448db1c2010-04-07 22:27:08 +00001971 LF.PostIncLoops = UI->getPostIncLoops();
Dan Gohman572645c2010-02-12 10:34:29 +00001972
1973 LSRUse::KindType Kind = LSRUse::Basic;
1974 const Type *AccessTy = 0;
1975 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
1976 Kind = LSRUse::Address;
1977 AccessTy = getAccessType(LF.UserInst);
1978 }
1979
Dan Gohmanc0564542010-04-19 21:48:58 +00001980 const SCEV *S = IU.getExpr(*UI);
Dan Gohman572645c2010-02-12 10:34:29 +00001981
1982 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
1983 // (N - i == 0), and this allows (N - i) to be the expression that we work
1984 // with rather than just N or i, so we can consider the register
1985 // requirements for both N and i at the same time. Limiting this code to
1986 // equality icmps is not a problem because all interesting loops use
1987 // equality icmps, thanks to IndVarSimplify.
1988 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
1989 if (CI->isEquality()) {
1990 // Swap the operands if needed to put the OperandValToReplace on the
1991 // left, for consistency.
1992 Value *NV = CI->getOperand(1);
1993 if (NV == LF.OperandValToReplace) {
1994 CI->setOperand(1, CI->getOperand(0));
1995 CI->setOperand(0, NV);
Dan Gohmanf182b232010-05-20 19:26:52 +00001996 NV = CI->getOperand(1);
Dan Gohman9da1bf42010-05-20 19:16:03 +00001997 Changed = true;
Dan Gohman572645c2010-02-12 10:34:29 +00001998 }
1999
2000 // x == y --> x - y == 0
2001 const SCEV *N = SE.getSCEV(NV);
2002 if (N->isLoopInvariant(L)) {
2003 Kind = LSRUse::ICmpZero;
2004 S = SE.getMinusSCEV(N, S);
2005 }
2006
2007 // -1 and the negations of all interesting strides (except the negation
2008 // of -1) are now also interesting.
2009 for (size_t i = 0, e = Factors.size(); i != e; ++i)
2010 if (Factors[i] != -1)
2011 Factors.insert(-(uint64_t)Factors[i]);
2012 Factors.insert(-1);
2013 }
2014
2015 // Set up the initial formula for this use.
2016 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
2017 LF.LUIdx = P.first;
2018 LF.Offset = P.second;
2019 LSRUse &LU = Uses[LF.LUIdx];
Dan Gohman448db1c2010-04-07 22:27:08 +00002020 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
Dan Gohman572645c2010-02-12 10:34:29 +00002021
2022 // If this is the first use of this LSRUse, give it a formula.
2023 if (LU.Formulae.empty()) {
Dan Gohman454d26d2010-02-22 04:11:59 +00002024 InsertInitialFormula(S, LU, LF.LUIdx);
Dan Gohman572645c2010-02-12 10:34:29 +00002025 CountRegisters(LU.Formulae.back(), LF.LUIdx);
2026 }
2027 }
2028
2029 DEBUG(print_fixups(dbgs()));
2030}
2031
Dan Gohman76c315a2010-05-20 20:52:00 +00002032/// InsertInitialFormula - Insert a formula for the given expression into
2033/// the given use, separating out loop-variant portions from loop-invariant
2034/// and loop-computable portions.
Dan Gohman572645c2010-02-12 10:34:29 +00002035void
Dan Gohman454d26d2010-02-22 04:11:59 +00002036LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
Dan Gohman572645c2010-02-12 10:34:29 +00002037 Formula F;
2038 F.InitialMatch(S, L, SE, DT);
2039 bool Inserted = InsertFormula(LU, LUIdx, F);
2040 assert(Inserted && "Initial formula already exists!"); (void)Inserted;
2041}
2042
Dan Gohman76c315a2010-05-20 20:52:00 +00002043/// InsertSupplementalFormula - Insert a simple single-register formula for
2044/// the given expression into the given use.
Dan Gohman572645c2010-02-12 10:34:29 +00002045void
2046LSRInstance::InsertSupplementalFormula(const SCEV *S,
2047 LSRUse &LU, size_t LUIdx) {
2048 Formula F;
2049 F.BaseRegs.push_back(S);
2050 F.AM.HasBaseReg = true;
2051 bool Inserted = InsertFormula(LU, LUIdx, F);
2052 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
2053}
2054
2055/// CountRegisters - Note which registers are used by the given formula,
2056/// updating RegUses.
2057void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
2058 if (F.ScaledReg)
2059 RegUses.CountRegister(F.ScaledReg, LUIdx);
2060 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2061 E = F.BaseRegs.end(); I != E; ++I)
2062 RegUses.CountRegister(*I, LUIdx);
2063}
2064
2065/// InsertFormula - If the given formula has not yet been inserted, add it to
2066/// the list, and return true. Return false otherwise.
2067bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
Dan Gohman454d26d2010-02-22 04:11:59 +00002068 if (!LU.InsertFormula(F))
Dan Gohman572645c2010-02-12 10:34:29 +00002069 return false;
2070
2071 CountRegisters(F, LUIdx);
2072 return true;
2073}
2074
2075/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
2076/// loop-invariant values which we're tracking. These other uses will pin these
2077/// values in registers, making them less profitable for elimination.
2078/// TODO: This currently misses non-constant addrec step registers.
2079/// TODO: Should this give more weight to users inside the loop?
2080void
2081LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
2082 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
2083 SmallPtrSet<const SCEV *, 8> Inserted;
2084
2085 while (!Worklist.empty()) {
2086 const SCEV *S = Worklist.pop_back_val();
2087
2088 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
2089 Worklist.insert(Worklist.end(), N->op_begin(), N->op_end());
2090 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
2091 Worklist.push_back(C->getOperand());
2092 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2093 Worklist.push_back(D->getLHS());
2094 Worklist.push_back(D->getRHS());
2095 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2096 if (!Inserted.insert(U)) continue;
2097 const Value *V = U->getValue();
Dan Gohmana15ec5d2010-06-04 23:16:05 +00002098 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
2099 // Look for instructions defined outside the loop.
Dan Gohman572645c2010-02-12 10:34:29 +00002100 if (L->contains(Inst)) continue;
Dan Gohmana15ec5d2010-06-04 23:16:05 +00002101 } else if (isa<UndefValue>(V))
2102 // Undef doesn't have a live range, so it doesn't matter.
2103 continue;
Gabor Greif60ad7812010-03-25 23:06:16 +00002104 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
Dan Gohman572645c2010-02-12 10:34:29 +00002105 UI != UE; ++UI) {
2106 const Instruction *UserInst = dyn_cast<Instruction>(*UI);
2107 // Ignore non-instructions.
2108 if (!UserInst)
Dan Gohman7979b722010-01-22 00:46:49 +00002109 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002110 // Ignore instructions in other functions (as can happen with
2111 // Constants).
2112 if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
Dan Gohman7979b722010-01-22 00:46:49 +00002113 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002114 // Ignore instructions not dominated by the loop.
2115 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
2116 UserInst->getParent() :
2117 cast<PHINode>(UserInst)->getIncomingBlock(
2118 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
2119 if (!DT.dominates(L->getHeader(), UseBB))
2120 continue;
2121 // Ignore uses which are part of other SCEV expressions, to avoid
2122 // analyzing them multiple times.
Dan Gohman4a2a6832010-04-09 19:12:34 +00002123 if (SE.isSCEVable(UserInst->getType())) {
2124 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
2125 // If the user is a no-op, look through to its uses.
2126 if (!isa<SCEVUnknown>(UserS))
2127 continue;
2128 if (UserS == U) {
2129 Worklist.push_back(
2130 SE.getUnknown(const_cast<Instruction *>(UserInst)));
2131 continue;
2132 }
2133 }
Dan Gohman572645c2010-02-12 10:34:29 +00002134 // Ignore icmp instructions which are already being analyzed.
2135 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
2136 unsigned OtherIdx = !UI.getOperandNo();
2137 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
2138 if (SE.getSCEV(OtherOp)->hasComputableLoopEvolution(L))
2139 continue;
2140 }
2141
2142 LSRFixup &LF = getNewFixup();
2143 LF.UserInst = const_cast<Instruction *>(UserInst);
2144 LF.OperandValToReplace = UI.getUse();
2145 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
2146 LF.LUIdx = P.first;
2147 LF.Offset = P.second;
2148 LSRUse &LU = Uses[LF.LUIdx];
Dan Gohman448db1c2010-04-07 22:27:08 +00002149 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
Dan Gohman572645c2010-02-12 10:34:29 +00002150 InsertSupplementalFormula(U, LU, LF.LUIdx);
2151 CountRegisters(LU.Formulae.back(), Uses.size() - 1);
2152 break;
2153 }
2154 }
2155 }
2156}
2157
2158/// CollectSubexprs - Split S into subexpressions which can be pulled out into
2159/// separate registers. If C is non-null, multiply each subexpression by C.
2160static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
2161 SmallVectorImpl<const SCEV *> &Ops,
2162 ScalarEvolution &SE) {
2163 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2164 // Break out add operands.
2165 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
2166 I != E; ++I)
2167 CollectSubexprs(*I, C, Ops, SE);
2168 return;
2169 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2170 // Split a non-zero base out of an addrec.
2171 if (!AR->getStart()->isZero()) {
Dan Gohmandeff6212010-05-03 22:09:21 +00002172 CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
Dan Gohman572645c2010-02-12 10:34:29 +00002173 AR->getStepRecurrence(SE),
2174 AR->getLoop()), C, Ops, SE);
Dan Gohman68d6da12010-02-12 19:35:25 +00002175 CollectSubexprs(AR->getStart(), C, Ops, SE);
Dan Gohman572645c2010-02-12 10:34:29 +00002176 return;
2177 }
2178 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2179 // Break (C * (a + b + c)) into C*a + C*b + C*c.
2180 if (Mul->getNumOperands() == 2)
2181 if (const SCEVConstant *Op0 =
2182 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2183 CollectSubexprs(Mul->getOperand(1),
2184 C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
2185 Ops, SE);
2186 return;
2187 }
2188 }
2189
2190 // Otherwise use the value itself.
2191 Ops.push_back(C ? SE.getMulExpr(C, S) : S);
2192}
2193
2194/// GenerateReassociations - Split out subexpressions from adds and the bases of
2195/// addrecs.
2196void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
2197 Formula Base,
2198 unsigned Depth) {
2199 // Arbitrarily cap recursion to protect compile time.
2200 if (Depth >= 3) return;
2201
2202 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2203 const SCEV *BaseReg = Base.BaseRegs[i];
2204
2205 SmallVector<const SCEV *, 8> AddOps;
2206 CollectSubexprs(BaseReg, 0, AddOps, SE);
2207 if (AddOps.size() == 1) continue;
2208
2209 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
2210 JE = AddOps.end(); J != JE; ++J) {
2211 // Don't pull a constant into a register if the constant could be folded
2212 // into an immediate field.
2213 if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
2214 Base.getNumRegs() > 1,
2215 LU.Kind, LU.AccessTy, TLI, SE))
2216 continue;
2217
2218 // Collect all operands except *J.
2219 SmallVector<const SCEV *, 8> InnerAddOps;
2220 for (SmallVectorImpl<const SCEV *>::const_iterator K = AddOps.begin(),
2221 KE = AddOps.end(); K != KE; ++K)
2222 if (K != J)
2223 InnerAddOps.push_back(*K);
2224
2225 // Don't leave just a constant behind in a register if the constant could
2226 // be folded into an immediate field.
2227 if (InnerAddOps.size() == 1 &&
2228 isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
2229 Base.getNumRegs() > 1,
2230 LU.Kind, LU.AccessTy, TLI, SE))
2231 continue;
2232
Dan Gohmanfafb8902010-04-23 01:55:05 +00002233 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
2234 if (InnerSum->isZero())
2235 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002236 Formula F = Base;
Dan Gohmanfafb8902010-04-23 01:55:05 +00002237 F.BaseRegs[i] = InnerSum;
Dan Gohman572645c2010-02-12 10:34:29 +00002238 F.BaseRegs.push_back(*J);
2239 if (InsertFormula(LU, LUIdx, F))
2240 // If that formula hadn't been seen before, recurse to find more like
2241 // it.
2242 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
2243 }
2244 }
2245}
2246
2247/// GenerateCombinations - Generate a formula consisting of all of the
2248/// loop-dominating registers added into a single register.
2249void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
Dan Gohman441a3892010-02-14 18:51:39 +00002250 Formula Base) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002251 // This method is only interesting on a plurality of registers.
Dan Gohman572645c2010-02-12 10:34:29 +00002252 if (Base.BaseRegs.size() <= 1) return;
2253
2254 Formula F = Base;
2255 F.BaseRegs.clear();
2256 SmallVector<const SCEV *, 4> Ops;
2257 for (SmallVectorImpl<const SCEV *>::const_iterator
2258 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
2259 const SCEV *BaseReg = *I;
2260 if (BaseReg->properlyDominates(L->getHeader(), &DT) &&
2261 !BaseReg->hasComputableLoopEvolution(L))
2262 Ops.push_back(BaseReg);
2263 else
2264 F.BaseRegs.push_back(BaseReg);
2265 }
2266 if (Ops.size() > 1) {
Dan Gohmance947362010-02-14 18:50:49 +00002267 const SCEV *Sum = SE.getAddExpr(Ops);
2268 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
2269 // opportunity to fold something. For now, just ignore such cases
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002270 // rather than proceed with zero in a register.
Dan Gohmance947362010-02-14 18:50:49 +00002271 if (!Sum->isZero()) {
2272 F.BaseRegs.push_back(Sum);
2273 (void)InsertFormula(LU, LUIdx, F);
2274 }
Dan Gohman572645c2010-02-12 10:34:29 +00002275 }
2276}
2277
2278/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
2279void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
2280 Formula Base) {
2281 // We can't add a symbolic offset if the address already contains one.
2282 if (Base.AM.BaseGV) return;
2283
2284 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2285 const SCEV *G = Base.BaseRegs[i];
2286 GlobalValue *GV = ExtractSymbol(G, SE);
2287 if (G->isZero() || !GV)
2288 continue;
2289 Formula F = Base;
2290 F.AM.BaseGV = GV;
2291 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2292 LU.Kind, LU.AccessTy, TLI))
2293 continue;
2294 F.BaseRegs[i] = G;
2295 (void)InsertFormula(LU, LUIdx, F);
2296 }
2297}
2298
2299/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
2300void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
2301 Formula Base) {
2302 // TODO: For now, just add the min and max offset, because it usually isn't
2303 // worthwhile looking at everything inbetween.
2304 SmallVector<int64_t, 4> Worklist;
2305 Worklist.push_back(LU.MinOffset);
2306 if (LU.MaxOffset != LU.MinOffset)
2307 Worklist.push_back(LU.MaxOffset);
2308
2309 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2310 const SCEV *G = Base.BaseRegs[i];
2311
2312 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
2313 E = Worklist.end(); I != E; ++I) {
2314 Formula F = Base;
2315 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
2316 if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
2317 LU.Kind, LU.AccessTy, TLI)) {
Dan Gohmandeff6212010-05-03 22:09:21 +00002318 F.BaseRegs[i] = SE.getAddExpr(G, SE.getConstant(G->getType(), *I));
Dan Gohman572645c2010-02-12 10:34:29 +00002319
2320 (void)InsertFormula(LU, LUIdx, F);
2321 }
2322 }
2323
2324 int64_t Imm = ExtractImmediate(G, SE);
2325 if (G->isZero() || Imm == 0)
2326 continue;
2327 Formula F = Base;
2328 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
2329 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2330 LU.Kind, LU.AccessTy, TLI))
2331 continue;
2332 F.BaseRegs[i] = G;
2333 (void)InsertFormula(LU, LUIdx, F);
2334 }
2335}
2336
2337/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
2338/// the comparison. For example, x == y -> x*c == y*c.
2339void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
2340 Formula Base) {
2341 if (LU.Kind != LSRUse::ICmpZero) return;
2342
2343 // Determine the integer type for the base formula.
2344 const Type *IntTy = Base.getType();
2345 if (!IntTy) return;
2346 if (SE.getTypeSizeInBits(IntTy) > 64) return;
2347
2348 // Don't do this if there is more than one offset.
2349 if (LU.MinOffset != LU.MaxOffset) return;
2350
2351 assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
2352
2353 // Check each interesting stride.
2354 for (SmallSetVector<int64_t, 8>::const_iterator
2355 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2356 int64_t Factor = *I;
2357 Formula F = Base;
2358
2359 // Check that the multiplication doesn't overflow.
Dan Gohman968cb932010-02-17 00:41:53 +00002360 if (F.AM.BaseOffs == INT64_MIN && Factor == -1)
2361 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002362 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
Dan Gohman378c0b32010-02-17 00:42:19 +00002363 if (F.AM.BaseOffs / Factor != Base.AM.BaseOffs)
Dan Gohman572645c2010-02-12 10:34:29 +00002364 continue;
2365
2366 // Check that multiplying with the use offset doesn't overflow.
2367 int64_t Offset = LU.MinOffset;
Dan Gohman968cb932010-02-17 00:41:53 +00002368 if (Offset == INT64_MIN && Factor == -1)
2369 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002370 Offset = (uint64_t)Offset * Factor;
Dan Gohman378c0b32010-02-17 00:42:19 +00002371 if (Offset / Factor != LU.MinOffset)
Dan Gohman572645c2010-02-12 10:34:29 +00002372 continue;
2373
2374 // Check that this scale is legal.
2375 if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
2376 continue;
2377
2378 // Compensate for the use having MinOffset built into it.
2379 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
2380
Dan Gohmandeff6212010-05-03 22:09:21 +00002381 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
Dan Gohman572645c2010-02-12 10:34:29 +00002382
2383 // Check that multiplying with each base register doesn't overflow.
2384 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
2385 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
Dan Gohmanf09b7122010-02-19 19:35:48 +00002386 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
Dan Gohman572645c2010-02-12 10:34:29 +00002387 goto next;
2388 }
2389
2390 // Check that multiplying with the scaled register doesn't overflow.
2391 if (F.ScaledReg) {
2392 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
Dan Gohmanf09b7122010-02-19 19:35:48 +00002393 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
Dan Gohman572645c2010-02-12 10:34:29 +00002394 continue;
2395 }
2396
2397 // If we make it here and it's legal, add it.
2398 (void)InsertFormula(LU, LUIdx, F);
2399 next:;
2400 }
2401}
2402
2403/// GenerateScales - Generate stride factor reuse formulae by making use of
2404/// scaled-offset address modes, for example.
Dan Gohmanea507f52010-05-20 19:44:23 +00002405void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
Dan Gohman572645c2010-02-12 10:34:29 +00002406 // Determine the integer type for the base formula.
2407 const Type *IntTy = Base.getType();
2408 if (!IntTy) return;
2409
2410 // If this Formula already has a scaled register, we can't add another one.
2411 if (Base.AM.Scale != 0) return;
2412
2413 // Check each interesting stride.
2414 for (SmallSetVector<int64_t, 8>::const_iterator
2415 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2416 int64_t Factor = *I;
2417
2418 Base.AM.Scale = Factor;
2419 Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
2420 // Check whether this scale is going to be legal.
2421 if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2422 LU.Kind, LU.AccessTy, TLI)) {
2423 // As a special-case, handle special out-of-loop Basic users specially.
2424 // TODO: Reconsider this special case.
2425 if (LU.Kind == LSRUse::Basic &&
2426 isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2427 LSRUse::Special, LU.AccessTy, TLI) &&
2428 LU.AllFixupsOutsideLoop)
2429 LU.Kind = LSRUse::Special;
2430 else
2431 continue;
2432 }
2433 // For an ICmpZero, negating a solitary base register won't lead to
2434 // new solutions.
2435 if (LU.Kind == LSRUse::ICmpZero &&
2436 !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
2437 continue;
2438 // For each addrec base reg, apply the scale, if possible.
2439 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
2440 if (const SCEVAddRecExpr *AR =
2441 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
Dan Gohmandeff6212010-05-03 22:09:21 +00002442 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
Dan Gohman572645c2010-02-12 10:34:29 +00002443 if (FactorS->isZero())
2444 continue;
2445 // Divide out the factor, ignoring high bits, since we'll be
2446 // scaling the value back up in the end.
Dan Gohmanf09b7122010-02-19 19:35:48 +00002447 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
Dan Gohman572645c2010-02-12 10:34:29 +00002448 // TODO: This could be optimized to avoid all the copying.
2449 Formula F = Base;
2450 F.ScaledReg = Quotient;
Dan Gohman5ce6d052010-05-20 15:17:54 +00002451 F.DeleteBaseReg(F.BaseRegs[i]);
Dan Gohman572645c2010-02-12 10:34:29 +00002452 (void)InsertFormula(LU, LUIdx, F);
2453 }
2454 }
2455 }
2456}
2457
2458/// GenerateTruncates - Generate reuse formulae from different IV types.
Dan Gohmanea507f52010-05-20 19:44:23 +00002459void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
Dan Gohman572645c2010-02-12 10:34:29 +00002460 // This requires TargetLowering to tell us which truncates are free.
2461 if (!TLI) return;
2462
2463 // Don't bother truncating symbolic values.
2464 if (Base.AM.BaseGV) return;
2465
2466 // Determine the integer type for the base formula.
2467 const Type *DstTy = Base.getType();
2468 if (!DstTy) return;
2469 DstTy = SE.getEffectiveSCEVType(DstTy);
2470
2471 for (SmallSetVector<const Type *, 4>::const_iterator
2472 I = Types.begin(), E = Types.end(); I != E; ++I) {
2473 const Type *SrcTy = *I;
2474 if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
2475 Formula F = Base;
2476
2477 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
2478 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
2479 JE = F.BaseRegs.end(); J != JE; ++J)
2480 *J = SE.getAnyExtendExpr(*J, SrcTy);
2481
2482 // TODO: This assumes we've done basic processing on all uses and
2483 // have an idea what the register usage is.
2484 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
2485 continue;
2486
2487 (void)InsertFormula(LU, LUIdx, F);
2488 }
2489 }
2490}
2491
2492namespace {
2493
Dan Gohman6020d852010-02-14 18:51:20 +00002494/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
Dan Gohman572645c2010-02-12 10:34:29 +00002495/// defer modifications so that the search phase doesn't have to worry about
2496/// the data structures moving underneath it.
2497struct WorkItem {
2498 size_t LUIdx;
2499 int64_t Imm;
2500 const SCEV *OrigReg;
2501
2502 WorkItem(size_t LI, int64_t I, const SCEV *R)
2503 : LUIdx(LI), Imm(I), OrigReg(R) {}
2504
2505 void print(raw_ostream &OS) const;
2506 void dump() const;
2507};
2508
2509}
2510
2511void WorkItem::print(raw_ostream &OS) const {
2512 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
2513 << " , add offset " << Imm;
2514}
2515
2516void WorkItem::dump() const {
2517 print(errs()); errs() << '\n';
2518}
2519
2520/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
2521/// distance apart and try to form reuse opportunities between them.
2522void LSRInstance::GenerateCrossUseConstantOffsets() {
2523 // Group the registers by their value without any added constant offset.
2524 typedef std::map<int64_t, const SCEV *> ImmMapTy;
2525 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
2526 RegMapTy Map;
2527 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
2528 SmallVector<const SCEV *, 8> Sequence;
2529 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2530 I != E; ++I) {
2531 const SCEV *Reg = *I;
2532 int64_t Imm = ExtractImmediate(Reg, SE);
2533 std::pair<RegMapTy::iterator, bool> Pair =
2534 Map.insert(std::make_pair(Reg, ImmMapTy()));
2535 if (Pair.second)
2536 Sequence.push_back(Reg);
2537 Pair.first->second.insert(std::make_pair(Imm, *I));
2538 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
2539 }
2540
2541 // Now examine each set of registers with the same base value. Build up
2542 // a list of work to do and do the work in a separate step so that we're
2543 // not adding formulae and register counts while we're searching.
2544 SmallVector<WorkItem, 32> WorkItems;
2545 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
2546 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
2547 E = Sequence.end(); I != E; ++I) {
2548 const SCEV *Reg = *I;
2549 const ImmMapTy &Imms = Map.find(Reg)->second;
2550
Dan Gohmancd045c02010-02-12 19:20:37 +00002551 // It's not worthwhile looking for reuse if there's only one offset.
2552 if (Imms.size() == 1)
2553 continue;
2554
Dan Gohman572645c2010-02-12 10:34:29 +00002555 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
2556 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2557 J != JE; ++J)
2558 dbgs() << ' ' << J->first;
2559 dbgs() << '\n');
2560
2561 // Examine each offset.
2562 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2563 J != JE; ++J) {
2564 const SCEV *OrigReg = J->second;
2565
2566 int64_t JImm = J->first;
2567 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
2568
2569 if (!isa<SCEVConstant>(OrigReg) &&
2570 UsedByIndicesMap[Reg].count() == 1) {
2571 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
2572 continue;
2573 }
2574
2575 // Conservatively examine offsets between this orig reg a few selected
2576 // other orig regs.
2577 ImmMapTy::const_iterator OtherImms[] = {
2578 Imms.begin(), prior(Imms.end()),
2579 Imms.upper_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
2580 };
2581 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
2582 ImmMapTy::const_iterator M = OtherImms[i];
Dan Gohmancd045c02010-02-12 19:20:37 +00002583 if (M == J || M == JE) continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002584
2585 // Compute the difference between the two.
2586 int64_t Imm = (uint64_t)JImm - M->first;
2587 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
2588 LUIdx = UsedByIndices.find_next(LUIdx))
2589 // Make a memo of this use, offset, and register tuple.
2590 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
2591 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
Evan Cheng586f69a2009-11-12 07:35:05 +00002592 }
2593 }
2594 }
2595
Dan Gohman572645c2010-02-12 10:34:29 +00002596 Map.clear();
2597 Sequence.clear();
2598 UsedByIndicesMap.clear();
2599 UniqueItems.clear();
2600
2601 // Now iterate through the worklist and add new formulae.
2602 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
2603 E = WorkItems.end(); I != E; ++I) {
2604 const WorkItem &WI = *I;
2605 size_t LUIdx = WI.LUIdx;
2606 LSRUse &LU = Uses[LUIdx];
2607 int64_t Imm = WI.Imm;
2608 const SCEV *OrigReg = WI.OrigReg;
2609
2610 const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
2611 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
2612 unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
2613
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002614 // TODO: Use a more targeted data structure.
Dan Gohman572645c2010-02-12 10:34:29 +00002615 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
Dan Gohman9f383eb2010-05-20 22:25:20 +00002616 const Formula &F = LU.Formulae[L];
Dan Gohman572645c2010-02-12 10:34:29 +00002617 // Use the immediate in the scaled register.
2618 if (F.ScaledReg == OrigReg) {
2619 int64_t Offs = (uint64_t)F.AM.BaseOffs +
2620 Imm * (uint64_t)F.AM.Scale;
2621 // Don't create 50 + reg(-50).
2622 if (F.referencesReg(SE.getSCEV(
2623 ConstantInt::get(IntTy, -(uint64_t)Offs))))
2624 continue;
2625 Formula NewF = F;
2626 NewF.AM.BaseOffs = Offs;
2627 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2628 LU.Kind, LU.AccessTy, TLI))
2629 continue;
2630 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
2631
2632 // If the new scale is a constant in a register, and adding the constant
2633 // value to the immediate would produce a value closer to zero than the
2634 // immediate itself, then the formula isn't worthwhile.
2635 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
2636 if (C->getValue()->getValue().isNegative() !=
2637 (NewF.AM.BaseOffs < 0) &&
2638 (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
Dan Gohmane0567812010-04-08 23:03:40 +00002639 .ule(abs64(NewF.AM.BaseOffs)))
Dan Gohman572645c2010-02-12 10:34:29 +00002640 continue;
2641
2642 // OK, looks good.
2643 (void)InsertFormula(LU, LUIdx, NewF);
2644 } else {
2645 // Use the immediate in a base register.
2646 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
2647 const SCEV *BaseReg = F.BaseRegs[N];
2648 if (BaseReg != OrigReg)
2649 continue;
2650 Formula NewF = F;
2651 NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
2652 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2653 LU.Kind, LU.AccessTy, TLI))
2654 continue;
2655 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
2656
2657 // If the new formula has a constant in a register, and adding the
2658 // constant value to the immediate would produce a value closer to
2659 // zero than the immediate itself, then the formula isn't worthwhile.
2660 for (SmallVectorImpl<const SCEV *>::const_iterator
2661 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
2662 J != JE; ++J)
2663 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
Dan Gohman360026f2010-05-18 23:48:08 +00002664 if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
2665 abs64(NewF.AM.BaseOffs)) &&
2666 (C->getValue()->getValue() +
2667 NewF.AM.BaseOffs).countTrailingZeros() >=
2668 CountTrailingZeros_64(NewF.AM.BaseOffs))
Dan Gohman572645c2010-02-12 10:34:29 +00002669 goto skip_formula;
2670
2671 // Ok, looks good.
2672 (void)InsertFormula(LU, LUIdx, NewF);
2673 break;
2674 skip_formula:;
2675 }
2676 }
2677 }
2678 }
Dale Johannesenc1acc3f2009-05-11 17:15:42 +00002679}
2680
Dan Gohman572645c2010-02-12 10:34:29 +00002681/// GenerateAllReuseFormulae - Generate formulae for each use.
2682void
2683LSRInstance::GenerateAllReuseFormulae() {
Dan Gohmanc2385a02010-02-16 01:42:53 +00002684 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
Dan Gohman572645c2010-02-12 10:34:29 +00002685 // queries are more precise.
2686 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2687 LSRUse &LU = Uses[LUIdx];
2688 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2689 GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
2690 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2691 GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
2692 }
2693 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2694 LSRUse &LU = Uses[LUIdx];
2695 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2696 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
2697 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2698 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
2699 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2700 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
2701 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2702 GenerateScales(LU, LUIdx, LU.Formulae[i]);
Dan Gohmanc2385a02010-02-16 01:42:53 +00002703 }
2704 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2705 LSRUse &LU = Uses[LUIdx];
Dan Gohman572645c2010-02-12 10:34:29 +00002706 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2707 GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
2708 }
2709
2710 GenerateCrossUseConstantOffsets();
2711}
2712
2713/// If their are multiple formulae with the same set of registers used
2714/// by other uses, pick the best one and delete the others.
2715void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
2716#ifndef NDEBUG
Dan Gohmanc6519f92010-05-20 20:05:31 +00002717 bool ChangedFormulae = false;
Dan Gohman572645c2010-02-12 10:34:29 +00002718#endif
2719
2720 // Collect the best formula for each unique set of shared registers. This
2721 // is reset for each use.
2722 typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
2723 BestFormulaeTy;
2724 BestFormulaeTy BestFormulae;
2725
2726 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2727 LSRUse &LU = Uses[LUIdx];
2728 FormulaSorter Sorter(L, LU, SE, DT);
Dan Gohmanea507f52010-05-20 19:44:23 +00002729 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
Dan Gohman572645c2010-02-12 10:34:29 +00002730
Dan Gohmanb2df4332010-05-18 23:42:37 +00002731 bool Any = false;
Dan Gohman572645c2010-02-12 10:34:29 +00002732 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
2733 FIdx != NumForms; ++FIdx) {
2734 Formula &F = LU.Formulae[FIdx];
2735
2736 SmallVector<const SCEV *, 2> Key;
2737 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
2738 JE = F.BaseRegs.end(); J != JE; ++J) {
2739 const SCEV *Reg = *J;
2740 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
2741 Key.push_back(Reg);
2742 }
2743 if (F.ScaledReg &&
2744 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
2745 Key.push_back(F.ScaledReg);
2746 // Unstable sort by host order ok, because this is only used for
2747 // uniquifying.
2748 std::sort(Key.begin(), Key.end());
2749
2750 std::pair<BestFormulaeTy::const_iterator, bool> P =
2751 BestFormulae.insert(std::make_pair(Key, FIdx));
2752 if (!P.second) {
2753 Formula &Best = LU.Formulae[P.first->second];
2754 if (Sorter.operator()(F, Best))
2755 std::swap(F, Best);
Dan Gohman6458ff92010-05-18 22:37:37 +00002756 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
Dan Gohman572645c2010-02-12 10:34:29 +00002757 dbgs() << "\n"
Dan Gohman6458ff92010-05-18 22:37:37 +00002758 " in favor of formula "; Best.print(dbgs());
Dan Gohman572645c2010-02-12 10:34:29 +00002759 dbgs() << '\n');
2760#ifndef NDEBUG
Dan Gohmanc6519f92010-05-20 20:05:31 +00002761 ChangedFormulae = true;
Dan Gohman572645c2010-02-12 10:34:29 +00002762#endif
Dan Gohmand69d6282010-05-18 22:39:15 +00002763 LU.DeleteFormula(F);
Dan Gohman572645c2010-02-12 10:34:29 +00002764 --FIdx;
2765 --NumForms;
Dan Gohmanb2df4332010-05-18 23:42:37 +00002766 Any = true;
Dan Gohman572645c2010-02-12 10:34:29 +00002767 continue;
2768 }
Dan Gohman59dc6032010-05-07 23:36:59 +00002769 }
2770
Dan Gohman57aaa0b2010-05-18 23:55:57 +00002771 // Now that we've filtered out some formulae, recompute the Regs set.
Dan Gohmanb2df4332010-05-18 23:42:37 +00002772 if (Any)
2773 LU.RecomputeRegs(LUIdx, RegUses);
Dan Gohman59dc6032010-05-07 23:36:59 +00002774
2775 // Reset this to prepare for the next use.
Dan Gohman572645c2010-02-12 10:34:29 +00002776 BestFormulae.clear();
2777 }
2778
Dan Gohmanc6519f92010-05-20 20:05:31 +00002779 DEBUG(if (ChangedFormulae) {
Dan Gohman9214b822010-02-13 02:06:02 +00002780 dbgs() << "\n"
2781 "After filtering out undesirable candidates:\n";
Dan Gohman572645c2010-02-12 10:34:29 +00002782 print_uses(dbgs());
2783 });
2784}
2785
Dan Gohmand079c302010-05-18 22:51:59 +00002786// This is a rough guess that seems to work fairly well.
2787static const size_t ComplexityLimit = UINT16_MAX;
2788
2789/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
2790/// solutions the solver might have to consider. It almost never considers
2791/// this many solutions because it prune the search space, but the pruning
2792/// isn't always sufficient.
2793size_t LSRInstance::EstimateSearchSpaceComplexity() const {
2794 uint32_t Power = 1;
2795 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
2796 E = Uses.end(); I != E; ++I) {
2797 size_t FSize = I->Formulae.size();
2798 if (FSize >= ComplexityLimit) {
2799 Power = ComplexityLimit;
2800 break;
2801 }
2802 Power *= FSize;
2803 if (Power >= ComplexityLimit)
2804 break;
2805 }
2806 return Power;
2807}
2808
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002809/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
Dan Gohman572645c2010-02-12 10:34:29 +00002810/// formulae to choose from, use some rough heuristics to prune down the number
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002811/// of formulae. This keeps the main solver from taking an extraordinary amount
Dan Gohman572645c2010-02-12 10:34:29 +00002812/// of time in some worst-case scenarios.
2813void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
Dan Gohmana2086b32010-05-19 23:43:12 +00002814 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2815 DEBUG(dbgs() << "The search space is too complex.\n");
2816
2817 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
2818 "which use a superset of registers used by other "
2819 "formulae.\n");
2820
2821 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2822 LSRUse &LU = Uses[LUIdx];
2823 bool Any = false;
2824 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2825 Formula &F = LU.Formulae[i];
Dan Gohmanf7ff37d2010-05-20 20:00:41 +00002826 // Look for a formula with a constant or GV in a register. If the use
2827 // also has a formula with that same value in an immediate field,
2828 // delete the one that uses a register.
Dan Gohmana2086b32010-05-19 23:43:12 +00002829 for (SmallVectorImpl<const SCEV *>::const_iterator
2830 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
2831 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
2832 Formula NewF = F;
2833 NewF.AM.BaseOffs += C->getValue()->getSExtValue();
2834 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2835 (I - F.BaseRegs.begin()));
2836 if (LU.HasFormulaWithSameRegs(NewF)) {
2837 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
2838 LU.DeleteFormula(F);
2839 --i;
2840 --e;
2841 Any = true;
2842 break;
2843 }
2844 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
2845 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
2846 if (!F.AM.BaseGV) {
2847 Formula NewF = F;
2848 NewF.AM.BaseGV = GV;
2849 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2850 (I - F.BaseRegs.begin()));
2851 if (LU.HasFormulaWithSameRegs(NewF)) {
2852 DEBUG(dbgs() << " Deleting "; F.print(dbgs());
2853 dbgs() << '\n');
2854 LU.DeleteFormula(F);
2855 --i;
2856 --e;
2857 Any = true;
2858 break;
2859 }
2860 }
2861 }
2862 }
2863 }
2864 if (Any)
2865 LU.RecomputeRegs(LUIdx, RegUses);
2866 }
2867
2868 DEBUG(dbgs() << "After pre-selection:\n";
2869 print_uses(dbgs()));
2870 }
2871
2872 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2873 DEBUG(dbgs() << "The search space is too complex.\n");
2874
2875 DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
2876 "separated by a constant offset will use the same "
2877 "registers.\n");
2878
Dan Gohmanf7ff37d2010-05-20 20:00:41 +00002879 // This is especially useful for unrolled loops.
2880
Dan Gohmana2086b32010-05-19 23:43:12 +00002881 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2882 LSRUse &LU = Uses[LUIdx];
Dan Gohman402d4352010-05-20 20:33:18 +00002883 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2884 E = LU.Formulae.end(); I != E; ++I) {
2885 const Formula &F = *I;
Dan Gohmana2086b32010-05-19 23:43:12 +00002886 if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
2887 if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
2888 if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
2889 /*HasBaseReg=*/false,
2890 LU.Kind, LU.AccessTy)) {
2891 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs());
2892 dbgs() << '\n');
2893
2894 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
2895
2896 // Delete formulae from the new use which are no longer legal.
2897 bool Any = false;
2898 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
2899 Formula &F = LUThatHas->Formulae[i];
2900 if (!isLegalUse(F.AM,
2901 LUThatHas->MinOffset, LUThatHas->MaxOffset,
2902 LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
2903 DEBUG(dbgs() << " Deleting "; F.print(dbgs());
2904 dbgs() << '\n');
2905 LUThatHas->DeleteFormula(F);
2906 --i;
2907 --e;
2908 Any = true;
2909 }
2910 }
2911 if (Any)
2912 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
2913
2914 // Update the relocs to reference the new use.
Dan Gohman402d4352010-05-20 20:33:18 +00002915 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
2916 E = Fixups.end(); I != E; ++I) {
2917 LSRFixup &Fixup = *I;
2918 if (Fixup.LUIdx == LUIdx) {
2919 Fixup.LUIdx = LUThatHas - &Uses.front();
2920 Fixup.Offset += F.AM.BaseOffs;
Dan Gohmana2086b32010-05-19 23:43:12 +00002921 DEBUG(errs() << "New fixup has offset "
Dan Gohman402d4352010-05-20 20:33:18 +00002922 << Fixup.Offset << '\n');
Dan Gohmana2086b32010-05-19 23:43:12 +00002923 }
Dan Gohman402d4352010-05-20 20:33:18 +00002924 if (Fixup.LUIdx == NumUses-1)
2925 Fixup.LUIdx = LUIdx;
Dan Gohmana2086b32010-05-19 23:43:12 +00002926 }
2927
2928 // Delete the old use.
Dan Gohman5ce6d052010-05-20 15:17:54 +00002929 DeleteUse(LU);
Dan Gohmana2086b32010-05-19 23:43:12 +00002930 --LUIdx;
2931 --NumUses;
2932 break;
2933 }
2934 }
2935 }
2936 }
2937 }
2938
2939 DEBUG(dbgs() << "After pre-selection:\n";
2940 print_uses(dbgs()));
2941 }
2942
Dan Gohman76c315a2010-05-20 20:52:00 +00002943 // With all other options exhausted, loop until the system is simple
2944 // enough to handle.
Dan Gohman572645c2010-02-12 10:34:29 +00002945 SmallPtrSet<const SCEV *, 4> Taken;
Dan Gohmand079c302010-05-18 22:51:59 +00002946 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
Dan Gohman572645c2010-02-12 10:34:29 +00002947 // Ok, we have too many of formulae on our hands to conveniently handle.
2948 // Use a rough heuristic to thin out the list.
Dan Gohman0da751b2010-05-18 22:41:32 +00002949 DEBUG(dbgs() << "The search space is too complex.\n");
Dan Gohman572645c2010-02-12 10:34:29 +00002950
2951 // Pick the register which is used by the most LSRUses, which is likely
2952 // to be a good reuse register candidate.
2953 const SCEV *Best = 0;
2954 unsigned BestNum = 0;
2955 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2956 I != E; ++I) {
2957 const SCEV *Reg = *I;
2958 if (Taken.count(Reg))
2959 continue;
2960 if (!Best)
2961 Best = Reg;
2962 else {
2963 unsigned Count = RegUses.getUsedByIndices(Reg).count();
2964 if (Count > BestNum) {
2965 Best = Reg;
2966 BestNum = Count;
2967 }
2968 }
2969 }
2970
2971 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002972 << " will yield profitable reuse.\n");
Dan Gohman572645c2010-02-12 10:34:29 +00002973 Taken.insert(Best);
2974
2975 // In any use with formulae which references this register, delete formulae
2976 // which don't reference it.
Dan Gohmanb2df4332010-05-18 23:42:37 +00002977 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2978 LSRUse &LU = Uses[LUIdx];
Dan Gohman572645c2010-02-12 10:34:29 +00002979 if (!LU.Regs.count(Best)) continue;
2980
Dan Gohmanb2df4332010-05-18 23:42:37 +00002981 bool Any = false;
Dan Gohman572645c2010-02-12 10:34:29 +00002982 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2983 Formula &F = LU.Formulae[i];
2984 if (!F.referencesReg(Best)) {
2985 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
Dan Gohmand69d6282010-05-18 22:39:15 +00002986 LU.DeleteFormula(F);
Dan Gohman572645c2010-02-12 10:34:29 +00002987 --e;
2988 --i;
Dan Gohmanb2df4332010-05-18 23:42:37 +00002989 Any = true;
Dan Gohman59dc6032010-05-07 23:36:59 +00002990 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
Dan Gohman572645c2010-02-12 10:34:29 +00002991 continue;
2992 }
Dan Gohman572645c2010-02-12 10:34:29 +00002993 }
Dan Gohmanb2df4332010-05-18 23:42:37 +00002994
2995 if (Any)
2996 LU.RecomputeRegs(LUIdx, RegUses);
Dan Gohman572645c2010-02-12 10:34:29 +00002997 }
2998
2999 DEBUG(dbgs() << "After pre-selection:\n";
3000 print_uses(dbgs()));
3001 }
3002}
3003
3004/// SolveRecurse - This is the recursive solver.
3005void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
3006 Cost &SolutionCost,
3007 SmallVectorImpl<const Formula *> &Workspace,
3008 const Cost &CurCost,
3009 const SmallPtrSet<const SCEV *, 16> &CurRegs,
3010 DenseSet<const SCEV *> &VisitedRegs) const {
3011 // Some ideas:
3012 // - prune more:
3013 // - use more aggressive filtering
3014 // - sort the formula so that the most profitable solutions are found first
3015 // - sort the uses too
3016 // - search faster:
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003017 // - don't compute a cost, and then compare. compare while computing a cost
Dan Gohman572645c2010-02-12 10:34:29 +00003018 // and bail early.
3019 // - track register sets with SmallBitVector
3020
3021 const LSRUse &LU = Uses[Workspace.size()];
3022
3023 // If this use references any register that's already a part of the
3024 // in-progress solution, consider it a requirement that a formula must
3025 // reference that register in order to be considered. This prunes out
3026 // unprofitable searching.
3027 SmallSetVector<const SCEV *, 4> ReqRegs;
3028 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
3029 E = CurRegs.end(); I != E; ++I)
Dan Gohman9214b822010-02-13 02:06:02 +00003030 if (LU.Regs.count(*I))
Dan Gohman572645c2010-02-12 10:34:29 +00003031 ReqRegs.insert(*I);
Dan Gohman572645c2010-02-12 10:34:29 +00003032
Dan Gohman9214b822010-02-13 02:06:02 +00003033 bool AnySatisfiedReqRegs = false;
Dan Gohman572645c2010-02-12 10:34:29 +00003034 SmallPtrSet<const SCEV *, 16> NewRegs;
3035 Cost NewCost;
Dan Gohman9214b822010-02-13 02:06:02 +00003036retry:
Dan Gohman572645c2010-02-12 10:34:29 +00003037 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3038 E = LU.Formulae.end(); I != E; ++I) {
3039 const Formula &F = *I;
3040
3041 // Ignore formulae which do not use any of the required registers.
3042 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
3043 JE = ReqRegs.end(); J != JE; ++J) {
3044 const SCEV *Reg = *J;
3045 if ((!F.ScaledReg || F.ScaledReg != Reg) &&
3046 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
3047 F.BaseRegs.end())
3048 goto skip;
3049 }
Dan Gohman9214b822010-02-13 02:06:02 +00003050 AnySatisfiedReqRegs = true;
Dan Gohman572645c2010-02-12 10:34:29 +00003051
3052 // Evaluate the cost of the current formula. If it's already worse than
3053 // the current best, prune the search at that point.
3054 NewCost = CurCost;
3055 NewRegs = CurRegs;
3056 NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
3057 if (NewCost < SolutionCost) {
3058 Workspace.push_back(&F);
3059 if (Workspace.size() != Uses.size()) {
3060 SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
3061 NewRegs, VisitedRegs);
3062 if (F.getNumRegs() == 1 && Workspace.size() == 1)
3063 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
3064 } else {
3065 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
3066 dbgs() << ". Regs:";
3067 for (SmallPtrSet<const SCEV *, 16>::const_iterator
3068 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
3069 dbgs() << ' ' << **I;
3070 dbgs() << '\n');
3071
3072 SolutionCost = NewCost;
3073 Solution = Workspace;
3074 }
3075 Workspace.pop_back();
3076 }
3077 skip:;
3078 }
Dan Gohman9214b822010-02-13 02:06:02 +00003079
3080 // If none of the formulae had all of the required registers, relax the
3081 // constraint so that we don't exclude all formulae.
3082 if (!AnySatisfiedReqRegs) {
Dan Gohman59dc6032010-05-07 23:36:59 +00003083 assert(!ReqRegs.empty() && "Solver failed even without required registers");
Dan Gohman9214b822010-02-13 02:06:02 +00003084 ReqRegs.clear();
3085 goto retry;
3086 }
Dan Gohman572645c2010-02-12 10:34:29 +00003087}
3088
Dan Gohman76c315a2010-05-20 20:52:00 +00003089/// Solve - Choose one formula from each use. Return the results in the given
3090/// Solution vector.
Dan Gohman572645c2010-02-12 10:34:29 +00003091void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
3092 SmallVector<const Formula *, 8> Workspace;
3093 Cost SolutionCost;
3094 SolutionCost.Loose();
3095 Cost CurCost;
3096 SmallPtrSet<const SCEV *, 16> CurRegs;
3097 DenseSet<const SCEV *> VisitedRegs;
3098 Workspace.reserve(Uses.size());
3099
Dan Gohmanf7ff37d2010-05-20 20:00:41 +00003100 // SolveRecurse does all the work.
Dan Gohman572645c2010-02-12 10:34:29 +00003101 SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
3102 CurRegs, VisitedRegs);
3103
3104 // Ok, we've now made all our decisions.
3105 DEBUG(dbgs() << "\n"
3106 "The chosen solution requires "; SolutionCost.print(dbgs());
3107 dbgs() << ":\n";
3108 for (size_t i = 0, e = Uses.size(); i != e; ++i) {
3109 dbgs() << " ";
3110 Uses[i].print(dbgs());
3111 dbgs() << "\n"
3112 " ";
3113 Solution[i]->print(dbgs());
3114 dbgs() << '\n';
3115 });
Dan Gohmana5528782010-05-20 20:59:23 +00003116
3117 assert(Solution.size() == Uses.size() && "Malformed solution!");
Dan Gohman572645c2010-02-12 10:34:29 +00003118}
3119
Dan Gohmane5f76872010-04-09 22:07:05 +00003120/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
3121/// the dominator tree far as we can go while still being dominated by the
3122/// input positions. This helps canonicalize the insert position, which
3123/// encourages sharing.
3124BasicBlock::iterator
3125LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
3126 const SmallVectorImpl<Instruction *> &Inputs)
3127 const {
3128 for (;;) {
3129 const Loop *IPLoop = LI.getLoopFor(IP->getParent());
3130 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
3131
3132 BasicBlock *IDom;
Dan Gohmand974a0e2010-05-20 20:00:25 +00003133 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
Dan Gohman0fe46d92010-05-20 22:46:54 +00003134 if (!Rung) return IP;
Dan Gohmand974a0e2010-05-20 20:00:25 +00003135 Rung = Rung->getIDom();
3136 if (!Rung) return IP;
3137 IDom = Rung->getBlock();
Dan Gohmane5f76872010-04-09 22:07:05 +00003138
3139 // Don't climb into a loop though.
3140 const Loop *IDomLoop = LI.getLoopFor(IDom);
3141 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
3142 if (IDomDepth <= IPLoopDepth &&
3143 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
3144 break;
3145 }
3146
3147 bool AllDominate = true;
3148 Instruction *BetterPos = 0;
3149 Instruction *Tentative = IDom->getTerminator();
3150 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
3151 E = Inputs.end(); I != E; ++I) {
3152 Instruction *Inst = *I;
3153 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
3154 AllDominate = false;
3155 break;
3156 }
3157 // Attempt to find an insert position in the middle of the block,
3158 // instead of at the end, so that it can be used for other expansions.
3159 if (IDom == Inst->getParent() &&
3160 (!BetterPos || DT.dominates(BetterPos, Inst)))
Douglas Gregor7d9663c2010-05-11 06:17:44 +00003161 BetterPos = llvm::next(BasicBlock::iterator(Inst));
Dan Gohmane5f76872010-04-09 22:07:05 +00003162 }
3163 if (!AllDominate)
3164 break;
3165 if (BetterPos)
3166 IP = BetterPos;
3167 else
3168 IP = Tentative;
3169 }
3170
3171 return IP;
3172}
3173
3174/// AdjustInsertPositionForExpand - Determine an input position which will be
Dan Gohmand96eae82010-04-09 02:00:38 +00003175/// dominated by the operands and which will dominate the result.
3176BasicBlock::iterator
Dan Gohmane5f76872010-04-09 22:07:05 +00003177LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP,
3178 const LSRFixup &LF,
3179 const LSRUse &LU) const {
Dan Gohmand96eae82010-04-09 02:00:38 +00003180 // Collect some instructions which must be dominated by the
Dan Gohman448db1c2010-04-07 22:27:08 +00003181 // expanding replacement. These must be dominated by any operands that
Dan Gohman572645c2010-02-12 10:34:29 +00003182 // will be required in the expansion.
3183 SmallVector<Instruction *, 4> Inputs;
3184 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
3185 Inputs.push_back(I);
3186 if (LU.Kind == LSRUse::ICmpZero)
3187 if (Instruction *I =
3188 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
3189 Inputs.push_back(I);
Dan Gohman448db1c2010-04-07 22:27:08 +00003190 if (LF.PostIncLoops.count(L)) {
3191 if (LF.isUseFullyOutsideLoop(L))
Dan Gohman069d6f32010-03-02 01:59:21 +00003192 Inputs.push_back(L->getLoopLatch()->getTerminator());
3193 else
3194 Inputs.push_back(IVIncInsertPos);
3195 }
Dan Gohman701a4ae2010-04-08 05:57:57 +00003196 // The expansion must also be dominated by the increment positions of any
3197 // loops it for which it is using post-inc mode.
3198 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
3199 E = LF.PostIncLoops.end(); I != E; ++I) {
3200 const Loop *PIL = *I;
3201 if (PIL == L) continue;
3202
Dan Gohmane5f76872010-04-09 22:07:05 +00003203 // Be dominated by the loop exit.
Dan Gohman701a4ae2010-04-08 05:57:57 +00003204 SmallVector<BasicBlock *, 4> ExitingBlocks;
3205 PIL->getExitingBlocks(ExitingBlocks);
3206 if (!ExitingBlocks.empty()) {
3207 BasicBlock *BB = ExitingBlocks[0];
3208 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
3209 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
3210 Inputs.push_back(BB->getTerminator());
3211 }
3212 }
Dan Gohman572645c2010-02-12 10:34:29 +00003213
3214 // Then, climb up the immediate dominator tree as far as we can go while
3215 // still being dominated by the input positions.
Dan Gohmane5f76872010-04-09 22:07:05 +00003216 IP = HoistInsertPosition(IP, Inputs);
Dan Gohmand96eae82010-04-09 02:00:38 +00003217
3218 // Don't insert instructions before PHI nodes.
Dan Gohman572645c2010-02-12 10:34:29 +00003219 while (isa<PHINode>(IP)) ++IP;
Dan Gohmand96eae82010-04-09 02:00:38 +00003220
3221 // Ignore debug intrinsics.
Dan Gohman449f31c2010-03-26 00:33:27 +00003222 while (isa<DbgInfoIntrinsic>(IP)) ++IP;
Dan Gohman572645c2010-02-12 10:34:29 +00003223
Dan Gohmand96eae82010-04-09 02:00:38 +00003224 return IP;
3225}
3226
Dan Gohman76c315a2010-05-20 20:52:00 +00003227/// Expand - Emit instructions for the leading candidate expression for this
3228/// LSRUse (this is called "expanding").
Dan Gohmand96eae82010-04-09 02:00:38 +00003229Value *LSRInstance::Expand(const LSRFixup &LF,
3230 const Formula &F,
3231 BasicBlock::iterator IP,
3232 SCEVExpander &Rewriter,
3233 SmallVectorImpl<WeakVH> &DeadInsts) const {
3234 const LSRUse &LU = Uses[LF.LUIdx];
3235
3236 // Determine an input position which will be dominated by the operands and
3237 // which will dominate the result.
Dan Gohmane5f76872010-04-09 22:07:05 +00003238 IP = AdjustInsertPositionForExpand(IP, LF, LU);
Dan Gohmand96eae82010-04-09 02:00:38 +00003239
Dan Gohman572645c2010-02-12 10:34:29 +00003240 // Inform the Rewriter if we have a post-increment use, so that it can
3241 // perform an advantageous expansion.
Dan Gohman448db1c2010-04-07 22:27:08 +00003242 Rewriter.setPostInc(LF.PostIncLoops);
Dan Gohman572645c2010-02-12 10:34:29 +00003243
3244 // This is the type that the user actually needs.
3245 const Type *OpTy = LF.OperandValToReplace->getType();
3246 // This will be the type that we'll initially expand to.
3247 const Type *Ty = F.getType();
3248 if (!Ty)
3249 // No type known; just expand directly to the ultimate type.
3250 Ty = OpTy;
3251 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
3252 // Expand directly to the ultimate type if it's the right size.
3253 Ty = OpTy;
3254 // This is the type to do integer arithmetic in.
3255 const Type *IntTy = SE.getEffectiveSCEVType(Ty);
3256
3257 // Build up a list of operands to add together to form the full base.
3258 SmallVector<const SCEV *, 8> Ops;
3259
3260 // Expand the BaseRegs portion.
3261 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
3262 E = F.BaseRegs.end(); I != E; ++I) {
3263 const SCEV *Reg = *I;
3264 assert(!Reg->isZero() && "Zero allocated in a base register!");
3265
Dan Gohman448db1c2010-04-07 22:27:08 +00003266 // If we're expanding for a post-inc user, make the post-inc adjustment.
3267 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3268 Reg = TransformForPostIncUse(Denormalize, Reg,
3269 LF.UserInst, LF.OperandValToReplace,
3270 Loops, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +00003271
3272 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
3273 }
3274
Dan Gohman087bd1e2010-03-03 05:29:13 +00003275 // Flush the operand list to suppress SCEVExpander hoisting.
3276 if (!Ops.empty()) {
3277 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3278 Ops.clear();
3279 Ops.push_back(SE.getUnknown(FullV));
3280 }
3281
Dan Gohman572645c2010-02-12 10:34:29 +00003282 // Expand the ScaledReg portion.
3283 Value *ICmpScaledV = 0;
3284 if (F.AM.Scale != 0) {
3285 const SCEV *ScaledS = F.ScaledReg;
3286
Dan Gohman448db1c2010-04-07 22:27:08 +00003287 // If we're expanding for a post-inc user, make the post-inc adjustment.
3288 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3289 ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
3290 LF.UserInst, LF.OperandValToReplace,
3291 Loops, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +00003292
3293 if (LU.Kind == LSRUse::ICmpZero) {
3294 // An interesting way of "folding" with an icmp is to use a negated
3295 // scale, which we'll implement by inserting it into the other operand
3296 // of the icmp.
3297 assert(F.AM.Scale == -1 &&
3298 "The only scale supported by ICmpZero uses is -1!");
3299 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
3300 } else {
3301 // Otherwise just expand the scaled register and an explicit scale,
3302 // which is expected to be matched as part of the address.
3303 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
3304 ScaledS = SE.getMulExpr(ScaledS,
Dan Gohmandeff6212010-05-03 22:09:21 +00003305 SE.getConstant(ScaledS->getType(), F.AM.Scale));
Dan Gohman572645c2010-02-12 10:34:29 +00003306 Ops.push_back(ScaledS);
Dan Gohman087bd1e2010-03-03 05:29:13 +00003307
3308 // Flush the operand list to suppress SCEVExpander hoisting.
3309 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3310 Ops.clear();
3311 Ops.push_back(SE.getUnknown(FullV));
Dan Gohman572645c2010-02-12 10:34:29 +00003312 }
3313 }
3314
Dan Gohman087bd1e2010-03-03 05:29:13 +00003315 // Expand the GV portion.
3316 if (F.AM.BaseGV) {
3317 Ops.push_back(SE.getUnknown(F.AM.BaseGV));
3318
3319 // Flush the operand list to suppress SCEVExpander hoisting.
3320 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3321 Ops.clear();
3322 Ops.push_back(SE.getUnknown(FullV));
3323 }
3324
3325 // Expand the immediate portion.
Dan Gohman572645c2010-02-12 10:34:29 +00003326 int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
3327 if (Offset != 0) {
3328 if (LU.Kind == LSRUse::ICmpZero) {
3329 // The other interesting way of "folding" with an ICmpZero is to use a
3330 // negated immediate.
3331 if (!ICmpScaledV)
3332 ICmpScaledV = ConstantInt::get(IntTy, -Offset);
3333 else {
3334 Ops.push_back(SE.getUnknown(ICmpScaledV));
3335 ICmpScaledV = ConstantInt::get(IntTy, Offset);
3336 }
3337 } else {
3338 // Just add the immediate values. These again are expected to be matched
3339 // as part of the address.
Dan Gohman087bd1e2010-03-03 05:29:13 +00003340 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
Dan Gohman572645c2010-02-12 10:34:29 +00003341 }
3342 }
3343
3344 // Emit instructions summing all the operands.
3345 const SCEV *FullS = Ops.empty() ?
Dan Gohmandeff6212010-05-03 22:09:21 +00003346 SE.getConstant(IntTy, 0) :
Dan Gohman572645c2010-02-12 10:34:29 +00003347 SE.getAddExpr(Ops);
3348 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
3349
3350 // We're done expanding now, so reset the rewriter.
Dan Gohman448db1c2010-04-07 22:27:08 +00003351 Rewriter.clearPostInc();
Dan Gohman572645c2010-02-12 10:34:29 +00003352
3353 // An ICmpZero Formula represents an ICmp which we're handling as a
3354 // comparison against zero. Now that we've expanded an expression for that
3355 // form, update the ICmp's other operand.
3356 if (LU.Kind == LSRUse::ICmpZero) {
3357 ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
3358 DeadInsts.push_back(CI->getOperand(1));
3359 assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
3360 "a scale at the same time!");
3361 if (F.AM.Scale == -1) {
3362 if (ICmpScaledV->getType() != OpTy) {
3363 Instruction *Cast =
3364 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
3365 OpTy, false),
3366 ICmpScaledV, OpTy, "tmp", CI);
3367 ICmpScaledV = Cast;
3368 }
3369 CI->setOperand(1, ICmpScaledV);
3370 } else {
3371 assert(F.AM.Scale == 0 &&
3372 "ICmp does not support folding a global value and "
3373 "a scale at the same time!");
3374 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
3375 -(uint64_t)Offset);
3376 if (C->getType() != OpTy)
3377 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3378 OpTy, false),
3379 C, OpTy);
3380
3381 CI->setOperand(1, C);
3382 }
3383 }
3384
3385 return FullV;
3386}
3387
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003388/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
3389/// of their operands effectively happens in their predecessor blocks, so the
3390/// expression may need to be expanded in multiple places.
3391void LSRInstance::RewriteForPHI(PHINode *PN,
3392 const LSRFixup &LF,
3393 const Formula &F,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003394 SCEVExpander &Rewriter,
3395 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003396 Pass *P) const {
3397 DenseMap<BasicBlock *, Value *> Inserted;
3398 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3399 if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
3400 BasicBlock *BB = PN->getIncomingBlock(i);
3401
3402 // If this is a critical edge, split the edge so that we do not insert
3403 // the code on all predecessor/successor paths. We do this unless this
3404 // is the canonical backedge for this loop, which complicates post-inc
3405 // users.
3406 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
3407 !isa<IndirectBrInst>(BB->getTerminator()) &&
3408 (PN->getParent() != L->getHeader() || !L->contains(BB))) {
3409 // Split the critical edge.
3410 BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P);
3411
3412 // If PN is outside of the loop and BB is in the loop, we want to
3413 // move the block to be immediately before the PHI block, not
3414 // immediately after BB.
3415 if (L->contains(BB) && !L->contains(PN))
3416 NewBB->moveBefore(PN->getParent());
3417
3418 // Splitting the edge can reduce the number of PHI entries we have.
3419 e = PN->getNumIncomingValues();
3420 BB = NewBB;
3421 i = PN->getBasicBlockIndex(BB);
3422 }
3423
3424 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
3425 Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
3426 if (!Pair.second)
3427 PN->setIncomingValue(i, Pair.first->second);
3428 else {
Dan Gohman454d26d2010-02-22 04:11:59 +00003429 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003430
3431 // If this is reuse-by-noop-cast, insert the noop cast.
3432 const Type *OpTy = LF.OperandValToReplace->getType();
3433 if (FullV->getType() != OpTy)
3434 FullV =
3435 CastInst::Create(CastInst::getCastOpcode(FullV, false,
3436 OpTy, false),
3437 FullV, LF.OperandValToReplace->getType(),
3438 "tmp", BB->getTerminator());
3439
3440 PN->setIncomingValue(i, FullV);
3441 Pair.first->second = FullV;
3442 }
3443 }
3444}
3445
Dan Gohman572645c2010-02-12 10:34:29 +00003446/// Rewrite - Emit instructions for the leading candidate expression for this
3447/// LSRUse (this is called "expanding"), and update the UserInst to reference
3448/// the newly expanded value.
3449void LSRInstance::Rewrite(const LSRFixup &LF,
3450 const Formula &F,
Dan Gohman572645c2010-02-12 10:34:29 +00003451 SCEVExpander &Rewriter,
3452 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman572645c2010-02-12 10:34:29 +00003453 Pass *P) const {
Dan Gohman572645c2010-02-12 10:34:29 +00003454 // First, find an insertion point that dominates UserInst. For PHI nodes,
3455 // find the nearest block which dominates all the relevant uses.
3456 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
Dan Gohman454d26d2010-02-22 04:11:59 +00003457 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
Dan Gohman572645c2010-02-12 10:34:29 +00003458 } else {
Dan Gohman454d26d2010-02-22 04:11:59 +00003459 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
Dan Gohman572645c2010-02-12 10:34:29 +00003460
3461 // If this is reuse-by-noop-cast, insert the noop cast.
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003462 const Type *OpTy = LF.OperandValToReplace->getType();
Dan Gohman572645c2010-02-12 10:34:29 +00003463 if (FullV->getType() != OpTy) {
3464 Instruction *Cast =
3465 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
3466 FullV, OpTy, "tmp", LF.UserInst);
3467 FullV = Cast;
3468 }
3469
3470 // Update the user. ICmpZero is handled specially here (for now) because
3471 // Expand may have updated one of the operands of the icmp already, and
3472 // its new value may happen to be equal to LF.OperandValToReplace, in
3473 // which case doing replaceUsesOfWith leads to replacing both operands
3474 // with the same value. TODO: Reorganize this.
3475 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
3476 LF.UserInst->setOperand(0, FullV);
3477 else
3478 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
3479 }
3480
3481 DeadInsts.push_back(LF.OperandValToReplace);
3482}
3483
Dan Gohman76c315a2010-05-20 20:52:00 +00003484/// ImplementSolution - Rewrite all the fixup locations with new values,
3485/// following the chosen solution.
Dan Gohman572645c2010-02-12 10:34:29 +00003486void
3487LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
3488 Pass *P) {
3489 // Keep track of instructions we may have made dead, so that
3490 // we can remove them after we are done working.
3491 SmallVector<WeakVH, 16> DeadInsts;
3492
3493 SCEVExpander Rewriter(SE);
3494 Rewriter.disableCanonicalMode();
3495 Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
3496
3497 // Expand the new value definitions and update the users.
Dan Gohman402d4352010-05-20 20:33:18 +00003498 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3499 E = Fixups.end(); I != E; ++I) {
3500 const LSRFixup &Fixup = *I;
Dan Gohman572645c2010-02-12 10:34:29 +00003501
Dan Gohman402d4352010-05-20 20:33:18 +00003502 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
Dan Gohman572645c2010-02-12 10:34:29 +00003503
3504 Changed = true;
3505 }
3506
3507 // Clean up after ourselves. This must be done before deleting any
3508 // instructions.
3509 Rewriter.clear();
3510
3511 Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
3512}
3513
3514LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
3515 : IU(P->getAnalysis<IVUsers>()),
3516 SE(P->getAnalysis<ScalarEvolution>()),
3517 DT(P->getAnalysis<DominatorTree>()),
Dan Gohmane5f76872010-04-09 22:07:05 +00003518 LI(P->getAnalysis<LoopInfo>()),
Dan Gohman572645c2010-02-12 10:34:29 +00003519 TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
Devang Patel0f54dcb2007-03-06 21:14:09 +00003520
Dan Gohman03e896b2009-11-05 21:11:53 +00003521 // If LoopSimplify form is not available, stay out of trouble.
Dan Gohman572645c2010-02-12 10:34:29 +00003522 if (!L->isLoopSimplifyForm()) return;
Dan Gohman03e896b2009-11-05 21:11:53 +00003523
Dan Gohman572645c2010-02-12 10:34:29 +00003524 // If there's no interesting work to be done, bail early.
3525 if (IU.empty()) return;
Dan Gohman80b0f8c2009-03-09 20:34:59 +00003526
Dan Gohman572645c2010-02-12 10:34:29 +00003527 DEBUG(dbgs() << "\nLSR on loop ";
3528 WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
3529 dbgs() << ":\n");
Dan Gohmanf7912df2009-03-09 20:46:50 +00003530
Dan Gohman402d4352010-05-20 20:33:18 +00003531 // First, perform some low-level loop optimizations.
Dan Gohman572645c2010-02-12 10:34:29 +00003532 OptimizeShadowIV();
Dan Gohmanc6519f92010-05-20 20:05:31 +00003533 OptimizeLoopTermCond();
Evan Cheng5792f512009-05-11 22:33:01 +00003534
Dan Gohman402d4352010-05-20 20:33:18 +00003535 // Start collecting data and preparing for the solver.
Dan Gohman572645c2010-02-12 10:34:29 +00003536 CollectInterestingTypesAndFactors();
3537 CollectFixupsAndInitialFormulae();
3538 CollectLoopInvariantFixupsAndFormulae();
Chris Lattner010de252005-08-08 05:28:22 +00003539
Dan Gohman572645c2010-02-12 10:34:29 +00003540 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
3541 print_uses(dbgs()));
Misha Brukmanfd939082005-04-21 23:48:37 +00003542
Dan Gohman572645c2010-02-12 10:34:29 +00003543 // Now use the reuse data to generate a bunch of interesting ways
3544 // to formulate the values needed for the uses.
3545 GenerateAllReuseFormulae();
Evan Chengd1d6b5c2006-03-16 21:53:05 +00003546
Dan Gohman572645c2010-02-12 10:34:29 +00003547 DEBUG(dbgs() << "\n"
3548 "After generating reuse formulae:\n";
3549 print_uses(dbgs()));
Nate Begemaneaa13852004-10-18 21:08:22 +00003550
Dan Gohman572645c2010-02-12 10:34:29 +00003551 FilterOutUndesirableDedicatedRegisters();
3552 NarrowSearchSpaceUsingHeuristics();
Dan Gohman6bec5bb2009-12-18 00:06:20 +00003553
Dan Gohman572645c2010-02-12 10:34:29 +00003554 SmallVector<const Formula *, 8> Solution;
3555 Solve(Solution);
Dan Gohman6bec5bb2009-12-18 00:06:20 +00003556
Dan Gohman572645c2010-02-12 10:34:29 +00003557 // Release memory that is no longer needed.
3558 Factors.clear();
3559 Types.clear();
3560 RegUses.clear();
3561
3562#ifndef NDEBUG
3563 // Formulae should be legal.
3564 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3565 E = Uses.end(); I != E; ++I) {
3566 const LSRUse &LU = *I;
3567 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3568 JE = LU.Formulae.end(); J != JE; ++J)
3569 assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
3570 LU.Kind, LU.AccessTy, TLI) &&
3571 "Illegal formula generated!");
3572 };
3573#endif
3574
3575 // Now that we've decided what we want, make it so.
3576 ImplementSolution(Solution, P);
3577}
3578
3579void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
3580 if (Factors.empty() && Types.empty()) return;
3581
3582 OS << "LSR has identified the following interesting factors and types: ";
3583 bool First = true;
3584
3585 for (SmallSetVector<int64_t, 8>::const_iterator
3586 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3587 if (!First) OS << ", ";
3588 First = false;
3589 OS << '*' << *I;
Evan Cheng81ebdcf2009-11-10 21:14:05 +00003590 }
Dale Johannesenc1acc3f2009-05-11 17:15:42 +00003591
Dan Gohman572645c2010-02-12 10:34:29 +00003592 for (SmallSetVector<const Type *, 4>::const_iterator
3593 I = Types.begin(), E = Types.end(); I != E; ++I) {
3594 if (!First) OS << ", ";
3595 First = false;
3596 OS << '(' << **I << ')';
3597 }
3598 OS << '\n';
3599}
3600
3601void LSRInstance::print_fixups(raw_ostream &OS) const {
3602 OS << "LSR is examining the following fixup sites:\n";
3603 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3604 E = Fixups.end(); I != E; ++I) {
Dan Gohman572645c2010-02-12 10:34:29 +00003605 dbgs() << " ";
Dan Gohman9f383eb2010-05-20 22:25:20 +00003606 I->print(OS);
Dan Gohman572645c2010-02-12 10:34:29 +00003607 OS << '\n';
3608 }
3609}
3610
3611void LSRInstance::print_uses(raw_ostream &OS) const {
3612 OS << "LSR is examining the following uses:\n";
3613 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3614 E = Uses.end(); I != E; ++I) {
3615 const LSRUse &LU = *I;
3616 dbgs() << " ";
3617 LU.print(OS);
3618 OS << '\n';
3619 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3620 JE = LU.Formulae.end(); J != JE; ++J) {
3621 OS << " ";
3622 J->print(OS);
3623 OS << '\n';
3624 }
3625 }
3626}
3627
3628void LSRInstance::print(raw_ostream &OS) const {
3629 print_factors_and_types(OS);
3630 print_fixups(OS);
3631 print_uses(OS);
3632}
3633
3634void LSRInstance::dump() const {
3635 print(errs()); errs() << '\n';
3636}
3637
3638namespace {
3639
3640class LoopStrengthReduce : public LoopPass {
3641 /// TLI - Keep a pointer of a TargetLowering to consult for determining
3642 /// transformation profitability.
3643 const TargetLowering *const TLI;
3644
3645public:
3646 static char ID; // Pass ID, replacement for typeid
3647 explicit LoopStrengthReduce(const TargetLowering *tli = 0);
3648
3649private:
3650 bool runOnLoop(Loop *L, LPPassManager &LPM);
3651 void getAnalysisUsage(AnalysisUsage &AU) const;
3652};
3653
3654}
3655
3656char LoopStrengthReduce::ID = 0;
3657static RegisterPass<LoopStrengthReduce>
3658X("loop-reduce", "Loop Strength Reduction");
3659
3660Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
3661 return new LoopStrengthReduce(TLI);
3662}
3663
3664LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
3665 : LoopPass(&ID), TLI(tli) {}
3666
3667void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
3668 // We split critical edges, so we change the CFG. However, we do update
3669 // many analyses if they are around.
3670 AU.addPreservedID(LoopSimplifyID);
Dan Gohman572645c2010-02-12 10:34:29 +00003671 AU.addPreserved("domfrontier");
3672
Dan Gohmane5f76872010-04-09 22:07:05 +00003673 AU.addRequired<LoopInfo>();
3674 AU.addPreserved<LoopInfo>();
Dan Gohman572645c2010-02-12 10:34:29 +00003675 AU.addRequiredID(LoopSimplifyID);
3676 AU.addRequired<DominatorTree>();
3677 AU.addPreserved<DominatorTree>();
3678 AU.addRequired<ScalarEvolution>();
3679 AU.addPreserved<ScalarEvolution>();
3680 AU.addRequired<IVUsers>();
3681 AU.addPreserved<IVUsers>();
3682}
3683
3684bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
3685 bool Changed = false;
3686
3687 // Run the main LSR transformation.
3688 Changed |= LSRInstance(TLI, L, this).getChanged();
3689
Dan Gohmanafc36a92009-05-02 18:29:22 +00003690 // At this point, it is worth checking to see if any recurrence PHIs are also
Dan Gohman35738ac2009-05-04 22:30:44 +00003691 // dead, so that we can remove them as well.
Dan Gohman9fff2182010-01-05 16:31:45 +00003692 Changed |= DeleteDeadPHIs(L->getHeader());
Dan Gohmanafc36a92009-05-02 18:29:22 +00003693
Evan Cheng1ce75dc2008-07-07 19:51:32 +00003694 return Changed;
Nate Begemaneaa13852004-10-18 21:08:22 +00003695}