blob: 5047c6698565d8c073ec694b2efa19406248f1f2 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000062#include "llvm/Analysis/ScalarEvolution.h"
63#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
John Criswella1156432005-10-27 15:54:34 +000066#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000067#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000071#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Assembly/Writer.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000073#include "llvm/IR/Constants.h"
74#include "llvm/IR/DataLayout.h"
75#include "llvm/IR/DerivedTypes.h"
76#include "llvm/IR/GlobalAlias.h"
77#include "llvm/IR/GlobalVariable.h"
78#include "llvm/IR/Instructions.h"
79#include "llvm/IR/LLVMContext.h"
80#include "llvm/IR/Operator.h"
Chris Lattner95255282006-06-28 23:17:24 +000081#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000082#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000083#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000084#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000086#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000087#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000088#include "llvm/Support/raw_ostream.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000089#include "llvm/Target/TargetLibraryInfo.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000090#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000091using namespace llvm;
92
Chris Lattner3b27d682006-12-19 22:30:33 +000093STATISTIC(NumArrayLenItCounts,
94 "Number of trip counts computed with array length");
95STATISTIC(NumTripCountsComputed,
96 "Number of loops with predictable loop counts");
97STATISTIC(NumTripCountsNotComputed,
98 "Number of loops without predictable loop counts");
99STATISTIC(NumBruteForceTripCountsComputed,
100 "Number of loops with trip counts computed by force");
101
Dan Gohman844731a2008-05-13 00:00:25 +0000102static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000103MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
104 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000105 "symbolically execute a constant "
106 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000107 cl::init(100));
108
Benjamin Kramerff183102012-10-26 17:31:32 +0000109// FIXME: Enable this with XDEBUG when the test suite is clean.
110static cl::opt<bool>
111VerifySCEV("verify-scev",
112 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
113
Owen Anderson2ab36d32010-10-12 19:48:12 +0000114INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
115 "Scalar Evolution Analysis", false, true)
116INITIALIZE_PASS_DEPENDENCY(LoopInfo)
117INITIALIZE_PASS_DEPENDENCY(DominatorTree)
Chad Rosier618c1db2011-12-01 03:08:23 +0000118INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson2ab36d32010-10-12 19:48:12 +0000119INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000120 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000121char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000122
123//===----------------------------------------------------------------------===//
124// SCEV class definitions
125//===----------------------------------------------------------------------===//
126
127//===----------------------------------------------------------------------===//
128// Implementation of the SCEV class.
129//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000130
Manman Ren286c4dc2012-09-12 05:06:18 +0000131#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattner53e677a2004-04-02 20:23:17 +0000132void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000133 print(dbgs());
134 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000135}
Manman Rencc77eec2012-09-06 19:55:56 +0000136#endif
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000137
Dan Gohman4ce32db2010-11-17 22:27:42 +0000138void SCEV::print(raw_ostream &OS) const {
139 switch (getSCEVType()) {
140 case scConstant:
141 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
142 return;
143 case scTruncate: {
144 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
145 const SCEV *Op = Trunc->getOperand();
146 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
147 << *Trunc->getType() << ")";
148 return;
149 }
150 case scZeroExtend: {
151 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
152 const SCEV *Op = ZExt->getOperand();
153 OS << "(zext " << *Op->getType() << " " << *Op << " to "
154 << *ZExt->getType() << ")";
155 return;
156 }
157 case scSignExtend: {
158 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
159 const SCEV *Op = SExt->getOperand();
160 OS << "(sext " << *Op->getType() << " " << *Op << " to "
161 << *SExt->getType() << ")";
162 return;
163 }
164 case scAddRecExpr: {
165 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
166 OS << "{" << *AR->getOperand(0);
167 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
168 OS << ",+," << *AR->getOperand(i);
169 OS << "}<";
Andrew Trick3228cc22011-03-14 16:50:06 +0000170 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000171 OS << "nuw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000172 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000173 OS << "nsw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000174 if (AR->getNoWrapFlags(FlagNW) &&
175 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
176 OS << "nw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000177 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
178 OS << ">";
179 return;
180 }
181 case scAddExpr:
182 case scMulExpr:
183 case scUMaxExpr:
184 case scSMaxExpr: {
185 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000186 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000187 switch (NAry->getSCEVType()) {
188 case scAddExpr: OpStr = " + "; break;
189 case scMulExpr: OpStr = " * "; break;
190 case scUMaxExpr: OpStr = " umax "; break;
191 case scSMaxExpr: OpStr = " smax "; break;
192 }
193 OS << "(";
194 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
195 I != E; ++I) {
196 OS << **I;
197 if (llvm::next(I) != E)
198 OS << OpStr;
199 }
200 OS << ")";
Andrew Trick121d78f2011-11-29 02:06:35 +0000201 switch (NAry->getSCEVType()) {
202 case scAddExpr:
203 case scMulExpr:
204 if (NAry->getNoWrapFlags(FlagNUW))
205 OS << "<nuw>";
206 if (NAry->getNoWrapFlags(FlagNSW))
207 OS << "<nsw>";
208 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000209 return;
210 }
211 case scUDivExpr: {
212 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
213 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
214 return;
215 }
216 case scUnknown: {
217 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000218 Type *AllocTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000219 if (U->isSizeOf(AllocTy)) {
220 OS << "sizeof(" << *AllocTy << ")";
221 return;
222 }
223 if (U->isAlignOf(AllocTy)) {
224 OS << "alignof(" << *AllocTy << ")";
225 return;
226 }
Andrew Trick635f7182011-03-09 17:23:39 +0000227
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000228 Type *CTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000229 Constant *FieldNo;
230 if (U->isOffsetOf(CTy, FieldNo)) {
231 OS << "offsetof(" << *CTy << ", ";
232 WriteAsOperand(OS, FieldNo, false);
233 OS << ")";
234 return;
235 }
Andrew Trick635f7182011-03-09 17:23:39 +0000236
Dan Gohman4ce32db2010-11-17 22:27:42 +0000237 // Otherwise just print it normally.
238 WriteAsOperand(OS, U->getValue(), false);
239 return;
240 }
241 case scCouldNotCompute:
242 OS << "***COULDNOTCOMPUTE***";
243 return;
244 default: break;
245 }
246 llvm_unreachable("Unknown SCEV kind!");
247}
248
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000249Type *SCEV::getType() const {
Dan Gohman4ce32db2010-11-17 22:27:42 +0000250 switch (getSCEVType()) {
251 case scConstant:
252 return cast<SCEVConstant>(this)->getType();
253 case scTruncate:
254 case scZeroExtend:
255 case scSignExtend:
256 return cast<SCEVCastExpr>(this)->getType();
257 case scAddRecExpr:
258 case scMulExpr:
259 case scUMaxExpr:
260 case scSMaxExpr:
261 return cast<SCEVNAryExpr>(this)->getType();
262 case scAddExpr:
263 return cast<SCEVAddExpr>(this)->getType();
264 case scUDivExpr:
265 return cast<SCEVUDivExpr>(this)->getType();
266 case scUnknown:
267 return cast<SCEVUnknown>(this)->getType();
268 case scCouldNotCompute:
269 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +0000270 default:
271 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman4ce32db2010-11-17 22:27:42 +0000272 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000273}
274
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000275bool SCEV::isZero() const {
276 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
277 return SC->getValue()->isZero();
278 return false;
279}
280
Dan Gohman70a1fe72009-05-18 15:22:39 +0000281bool SCEV::isOne() const {
282 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
283 return SC->getValue()->isOne();
284 return false;
285}
Chris Lattner53e677a2004-04-02 20:23:17 +0000286
Dan Gohman4d289bf2009-06-24 00:30:26 +0000287bool SCEV::isAllOnesValue() const {
288 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
289 return SC->getValue()->isAllOnesValue();
290 return false;
291}
292
Andrew Trickf8fd8412012-01-07 00:27:31 +0000293/// isNonConstantNegative - Return true if the specified scev is negated, but
294/// not a constant.
295bool SCEV::isNonConstantNegative() const {
296 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
297 if (!Mul) return false;
298
299 // If there is a constant factor, it will be first.
300 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
301 if (!SC) return false;
302
303 // Return true if the value is negative, this matches things like (-42 * V).
304 return SC->getValue()->getValue().isNegative();
305}
306
Owen Anderson753ad612009-06-22 21:57:23 +0000307SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000308 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000309
Chris Lattner53e677a2004-04-02 20:23:17 +0000310bool SCEVCouldNotCompute::classof(const SCEV *S) {
311 return S->getSCEVType() == scCouldNotCompute;
312}
313
Dan Gohman0bba49c2009-07-07 17:06:11 +0000314const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000315 FoldingSetNodeID ID;
316 ID.AddInteger(scConstant);
317 ID.AddPointer(V);
318 void *IP = 0;
319 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000320 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000321 UniqueSCEVs.InsertNode(S, IP);
322 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000323}
Chris Lattner53e677a2004-04-02 20:23:17 +0000324
Dan Gohman0bba49c2009-07-07 17:06:11 +0000325const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000326 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000327}
328
Dan Gohman0bba49c2009-07-07 17:06:11 +0000329const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000330ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
331 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana560fd22010-04-21 16:04:04 +0000332 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000333}
334
Dan Gohman3bf63762010-06-18 19:54:20 +0000335SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000336 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000337 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000338
Dan Gohman3bf63762010-06-18 19:54:20 +0000339SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000340 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000341 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000342 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
343 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000344 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000345}
Chris Lattner53e677a2004-04-02 20:23:17 +0000346
Dan Gohman3bf63762010-06-18 19:54:20 +0000347SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000348 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000349 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000350 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
351 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000352 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000353}
354
Dan Gohman3bf63762010-06-18 19:54:20 +0000355SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000356 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000357 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000358 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
359 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000360 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000361}
362
Dan Gohmanab37f502010-08-02 23:49:30 +0000363void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000364 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000365 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000366
367 // Remove this SCEVUnknown from the uniquing map.
368 SE->UniqueSCEVs.RemoveNode(this);
369
370 // Release the value.
371 setValPtr(0);
372}
373
374void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000375 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000376 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000377
378 // Remove this SCEVUnknown from the uniquing map.
379 SE->UniqueSCEVs.RemoveNode(this);
380
381 // Update this SCEVUnknown to point to the new value. This is needed
382 // because there may still be outstanding SCEVs which still point to
383 // this SCEVUnknown.
384 setValPtr(New);
385}
386
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000387bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000388 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000389 if (VCE->getOpcode() == Instruction::PtrToInt)
390 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000391 if (CE->getOpcode() == Instruction::GetElementPtr &&
392 CE->getOperand(0)->isNullValue() &&
393 CE->getNumOperands() == 2)
394 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
395 if (CI->isOne()) {
396 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
397 ->getElementType();
398 return true;
399 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000400
401 return false;
402}
403
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000404bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000405 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000406 if (VCE->getOpcode() == Instruction::PtrToInt)
407 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000408 if (CE->getOpcode() == Instruction::GetElementPtr &&
409 CE->getOperand(0)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000410 Type *Ty =
Dan Gohman8db08df2010-02-02 01:38:49 +0000411 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000412 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman8db08df2010-02-02 01:38:49 +0000413 if (!STy->isPacked() &&
414 CE->getNumOperands() == 3 &&
415 CE->getOperand(1)->isNullValue()) {
416 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
417 if (CI->isOne() &&
418 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000419 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000420 AllocTy = STy->getElementType(1);
421 return true;
422 }
423 }
424 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000425
426 return false;
427}
428
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000429bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000430 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000431 if (VCE->getOpcode() == Instruction::PtrToInt)
432 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
433 if (CE->getOpcode() == Instruction::GetElementPtr &&
434 CE->getNumOperands() == 3 &&
435 CE->getOperand(0)->isNullValue() &&
436 CE->getOperand(1)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000437 Type *Ty =
Dan Gohman4f8eea82010-02-01 18:27:38 +0000438 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
439 // Ignore vector types here so that ScalarEvolutionExpander doesn't
440 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000441 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000442 CTy = Ty;
443 FieldNo = CE->getOperand(2);
444 return true;
445 }
446 }
447
448 return false;
449}
450
Chris Lattner8d741b82004-06-20 06:23:15 +0000451//===----------------------------------------------------------------------===//
452// SCEV Utilities
453//===----------------------------------------------------------------------===//
454
455namespace {
456 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
457 /// than the complexity of the RHS. This comparator is used to canonicalize
458 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000459 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000460 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000461 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000462 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000463
Dan Gohman67ef74e2010-08-27 15:26:01 +0000464 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000465 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000466 return compare(LHS, RHS) < 0;
467 }
468
469 // Return negative, zero, or positive, if LHS is less than, equal to, or
470 // greater than RHS, respectively. A three-way result allows recursive
471 // comparisons to be more efficient.
472 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000473 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
474 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000475 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000476
Dan Gohman72861302009-05-07 14:39:04 +0000477 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000478 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
479 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000480 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000481
Dan Gohman3bf63762010-06-18 19:54:20 +0000482 // Aside from the getSCEVType() ordering, the particular ordering
483 // isn't very important except that it's beneficial to be consistent,
484 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000485 switch (LType) {
486 case scUnknown: {
487 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000488 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000489
490 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
491 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000492 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000493
494 // Order pointer values after integer values. This helps SCEVExpander
495 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000496 bool LIsPointer = LV->getType()->isPointerTy(),
497 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000498 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000499 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000500
501 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000502 unsigned LID = LV->getValueID(),
503 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000504 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000505 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000506
507 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000508 if (const Argument *LA = dyn_cast<Argument>(LV)) {
509 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000510 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
511 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000512 }
513
Dan Gohman67ef74e2010-08-27 15:26:01 +0000514 // For instructions, compare their loop depth, and their operand
515 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000516 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
517 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000518
519 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000520 const BasicBlock *LParent = LInst->getParent(),
521 *RParent = RInst->getParent();
522 if (LParent != RParent) {
523 unsigned LDepth = LI->getLoopDepth(LParent),
524 RDepth = LI->getLoopDepth(RParent);
525 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000526 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000527 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000528
529 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000530 unsigned LNumOps = LInst->getNumOperands(),
531 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000532 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000533 }
534
Dan Gohman67ef74e2010-08-27 15:26:01 +0000535 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000536 }
537
Dan Gohman67ef74e2010-08-27 15:26:01 +0000538 case scConstant: {
539 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000540 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000541
542 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000543 const APInt &LA = LC->getValue()->getValue();
544 const APInt &RA = RC->getValue()->getValue();
545 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000546 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000547 return (int)LBitWidth - (int)RBitWidth;
548 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000549 }
550
Dan Gohman67ef74e2010-08-27 15:26:01 +0000551 case scAddRecExpr: {
552 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000553 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000554
555 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000556 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
557 if (LLoop != RLoop) {
558 unsigned LDepth = LLoop->getLoopDepth(),
559 RDepth = RLoop->getLoopDepth();
560 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000561 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000562 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000563
564 // Addrec complexity grows with operand count.
565 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
566 if (LNumOps != RNumOps)
567 return (int)LNumOps - (int)RNumOps;
568
569 // Lexicographically compare.
570 for (unsigned i = 0; i != LNumOps; ++i) {
571 long X = compare(LA->getOperand(i), RA->getOperand(i));
572 if (X != 0)
573 return X;
574 }
575
576 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000577 }
578
Dan Gohman67ef74e2010-08-27 15:26:01 +0000579 case scAddExpr:
580 case scMulExpr:
581 case scSMaxExpr:
582 case scUMaxExpr: {
583 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000584 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000585
586 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000587 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickd832d322013-07-31 02:43:40 +0000588 if (LNumOps != RNumOps)
589 return (int)LNumOps - (int)RNumOps;
590
Dan Gohman304a7a62010-07-23 21:20:52 +0000591 for (unsigned i = 0; i != LNumOps; ++i) {
592 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000593 return 1;
594 long X = compare(LC->getOperand(i), RC->getOperand(i));
595 if (X != 0)
596 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000597 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000598 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000599 }
600
Dan Gohman67ef74e2010-08-27 15:26:01 +0000601 case scUDivExpr: {
602 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000603 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000604
605 // Lexicographically compare udiv expressions.
606 long X = compare(LC->getLHS(), RC->getLHS());
607 if (X != 0)
608 return X;
609 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000610 }
611
Dan Gohman67ef74e2010-08-27 15:26:01 +0000612 case scTruncate:
613 case scZeroExtend:
614 case scSignExtend: {
615 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000616 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000617
618 // Compare cast expressions by operand.
619 return compare(LC->getOperand(), RC->getOperand());
620 }
621
622 default:
David Blaikie4d6ccb52012-01-20 21:51:11 +0000623 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman3bf63762010-06-18 19:54:20 +0000624 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000625 }
626 };
627}
628
629/// GroupByComplexity - Given a list of SCEV objects, order them by their
630/// complexity, and group objects of the same complexity together by value.
631/// When this routine is finished, we know that any duplicates in the vector are
632/// consecutive and that complexity is monotonically increasing.
633///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000634/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000635/// results from this routine. In other words, we don't want the results of
636/// this to depend on where the addresses of various SCEV objects happened to
637/// land in memory.
638///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000639static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000640 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000641 if (Ops.size() < 2) return; // Noop
642 if (Ops.size() == 2) {
643 // This is the common case, which also happens to be trivially simple.
644 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000645 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
646 if (SCEVComplexityCompare(LI)(RHS, LHS))
647 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000648 return;
649 }
650
Dan Gohman3bf63762010-06-18 19:54:20 +0000651 // Do the rough sort by complexity.
652 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
653
654 // Now that we are sorted by complexity, group elements of the same
655 // complexity. Note that this is, at worst, N^2, but the vector is likely to
656 // be extremely short in practice. Note that we take this approach because we
657 // do not want to depend on the addresses of the objects we are grouping.
658 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
659 const SCEV *S = Ops[i];
660 unsigned Complexity = S->getSCEVType();
661
662 // If there are any objects of the same complexity and same value as this
663 // one, group them.
664 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
665 if (Ops[j] == S) { // Found a duplicate.
666 // Move it to immediately after i'th element.
667 std::swap(Ops[i+1], Ops[j]);
668 ++i; // no need to rescan it.
669 if (i == e-2) return; // Done!
670 }
671 }
672 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000673}
674
Chris Lattner53e677a2004-04-02 20:23:17 +0000675
Chris Lattner53e677a2004-04-02 20:23:17 +0000676
677//===----------------------------------------------------------------------===//
678// Simple SCEV method implementations
679//===----------------------------------------------------------------------===//
680
Eli Friedmanb42a6262008-08-04 23:49:06 +0000681/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000682/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000683static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000684 ScalarEvolution &SE,
Nick Lewycky8cfb2f82011-09-06 06:39:54 +0000685 Type *ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000686 // Handle the simplest case efficiently.
687 if (K == 1)
688 return SE.getTruncateOrZeroExtend(It, ResultTy);
689
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000690 // We are using the following formula for BC(It, K):
691 //
692 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
693 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000694 // Suppose, W is the bitwidth of the return value. We must be prepared for
695 // overflow. Hence, we must assure that the result of our computation is
696 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
697 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000698 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000699 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000700 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000701 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
702 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000703 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000704 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000705 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000706 // This formula is trivially equivalent to the previous formula. However,
707 // this formula can be implemented much more efficiently. The trick is that
708 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
709 // arithmetic. To do exact division in modular arithmetic, all we have
710 // to do is multiply by the inverse. Therefore, this step can be done at
711 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000712 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000713 // The next issue is how to safely do the division by 2^T. The way this
714 // is done is by doing the multiplication step at a width of at least W + T
715 // bits. This way, the bottom W+T bits of the product are accurate. Then,
716 // when we perform the division by 2^T (which is equivalent to a right shift
717 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
718 // truncated out after the division by 2^T.
719 //
720 // In comparison to just directly using the first formula, this technique
721 // is much more efficient; using the first formula requires W * K bits,
722 // but this formula less than W + K bits. Also, the first formula requires
723 // a division step, whereas this formula only requires multiplies and shifts.
724 //
725 // It doesn't matter whether the subtraction step is done in the calculation
726 // width or the input iteration count's width; if the subtraction overflows,
727 // the result must be zero anyway. We prefer here to do it in the width of
728 // the induction variable because it helps a lot for certain cases; CodeGen
729 // isn't smart enough to ignore the overflow, which leads to much less
730 // efficient code if the width of the subtraction is wider than the native
731 // register width.
732 //
733 // (It's possible to not widen at all by pulling out factors of 2 before
734 // the multiplication; for example, K=2 can be calculated as
735 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
736 // extra arithmetic, so it's not an obvious win, and it gets
737 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000738
Eli Friedmanb42a6262008-08-04 23:49:06 +0000739 // Protection from insane SCEVs; this bound is conservative,
740 // but it probably doesn't matter.
741 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000742 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000743
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000744 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000745
Eli Friedmanb42a6262008-08-04 23:49:06 +0000746 // Calculate K! / 2^T and T; we divide out the factors of two before
747 // multiplying for calculating K! / 2^T to avoid overflow.
748 // Other overflow doesn't matter because we only care about the bottom
749 // W bits of the result.
750 APInt OddFactorial(W, 1);
751 unsigned T = 1;
752 for (unsigned i = 3; i <= K; ++i) {
753 APInt Mult(W, i);
754 unsigned TwoFactors = Mult.countTrailingZeros();
755 T += TwoFactors;
756 Mult = Mult.lshr(TwoFactors);
757 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000758 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000759
Eli Friedmanb42a6262008-08-04 23:49:06 +0000760 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000761 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000762
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000763 // Calculate 2^T, at width T+W.
Benjamin Kramer0a230e02013-07-11 16:05:50 +0000764 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000765
766 // Calculate the multiplicative inverse of K! / 2^T;
767 // this multiplication factor will perform the exact division by
768 // K! / 2^T.
769 APInt Mod = APInt::getSignedMinValue(W+1);
770 APInt MultiplyFactor = OddFactorial.zext(W+1);
771 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
772 MultiplyFactor = MultiplyFactor.trunc(W);
773
774 // Calculate the product, at width T+W
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000775 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson1d0be152009-08-13 21:58:54 +0000776 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000777 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000778 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000779 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000780 Dividend = SE.getMulExpr(Dividend,
781 SE.getTruncateOrZeroExtend(S, CalculationTy));
782 }
783
784 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000785 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000786
787 // Truncate the result, and divide by K! / 2^T.
788
789 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
790 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000791}
792
Chris Lattner53e677a2004-04-02 20:23:17 +0000793/// evaluateAtIteration - Return the value of this chain of recurrences at
794/// the specified iteration number. We can evaluate this recurrence by
795/// multiplying each element in the chain by the binomial coefficient
796/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
797///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000798/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000799///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000800/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000801///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000802const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000803 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000804 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000805 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000806 // The computation is correct in the face of overflow provided that the
807 // multiplication is performed _after_ the evaluation of the binomial
808 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000809 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000810 if (isa<SCEVCouldNotCompute>(Coeff))
811 return Coeff;
812
813 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000814 }
815 return Result;
816}
817
Chris Lattner53e677a2004-04-02 20:23:17 +0000818//===----------------------------------------------------------------------===//
819// SCEV Expression folder implementations
820//===----------------------------------------------------------------------===//
821
Dan Gohman0bba49c2009-07-07 17:06:11 +0000822const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000823 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000824 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000825 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000826 assert(isSCEVable(Ty) &&
827 "This is not a conversion to a SCEVable type!");
828 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000829
Dan Gohmanc050fd92009-07-13 20:50:19 +0000830 FoldingSetNodeID ID;
831 ID.AddInteger(scTruncate);
832 ID.AddPointer(Op);
833 ID.AddPointer(Ty);
834 void *IP = 0;
835 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
836
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000837 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000838 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000839 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +0000840 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000841
Dan Gohman20900ca2009-04-22 16:20:48 +0000842 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000843 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000844 return getTruncateExpr(ST->getOperand(), Ty);
845
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000846 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000847 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000848 return getTruncateOrSignExtend(SS->getOperand(), Ty);
849
850 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000851 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000852 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
853
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000854 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
855 // eliminate all the truncates.
856 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
857 SmallVector<const SCEV *, 4> Operands;
858 bool hasTrunc = false;
859 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
860 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
861 hasTrunc = isa<SCEVTruncateExpr>(S);
862 Operands.push_back(S);
863 }
864 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000865 return getAddExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000866 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000867 }
868
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000869 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
870 // eliminate all the truncates.
871 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
872 SmallVector<const SCEV *, 4> Operands;
873 bool hasTrunc = false;
874 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
875 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
876 hasTrunc = isa<SCEVTruncateExpr>(S);
877 Operands.push_back(S);
878 }
879 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000880 return getMulExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000881 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000882 }
883
Dan Gohman6864db62009-06-18 16:24:47 +0000884 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000885 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000886 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000887 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000888 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick3228cc22011-03-14 16:50:06 +0000889 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +0000890 }
891
Dan Gohman420ab912010-06-25 18:47:08 +0000892 // The cast wasn't folded; create an explicit cast node. We can reuse
893 // the existing insert position since if we get here, we won't have
894 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000895 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
896 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000897 UniqueSCEVs.InsertNode(S, IP);
898 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000899}
900
Dan Gohman0bba49c2009-07-07 17:06:11 +0000901const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000902 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000903 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000904 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000905 assert(isSCEVable(Ty) &&
906 "This is not a conversion to a SCEVable type!");
907 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000908
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000909 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000910 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
911 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +0000912 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000913
Dan Gohman20900ca2009-04-22 16:20:48 +0000914 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000915 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000916 return getZeroExtendExpr(SZ->getOperand(), Ty);
917
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000918 // Before doing any expensive analysis, check to see if we've already
919 // computed a SCEV for this Op and Ty.
920 FoldingSetNodeID ID;
921 ID.AddInteger(scZeroExtend);
922 ID.AddPointer(Op);
923 ID.AddPointer(Ty);
924 void *IP = 0;
925 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
926
Nick Lewycky630d85a2011-01-23 06:20:19 +0000927 // zext(trunc(x)) --> zext(x) or x or trunc(x)
928 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
929 // It's possible the bits taken off by the truncate were all zero bits. If
930 // so, we should be able to simplify this further.
931 const SCEV *X = ST->getOperand();
932 ConstantRange CR = getUnsignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000933 unsigned TruncBits = getTypeSizeInBits(ST->getType());
934 unsigned NewBits = getTypeSizeInBits(Ty);
935 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +0000936 CR.zextOrTrunc(NewBits)))
937 return getTruncateOrZeroExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000938 }
939
Dan Gohman01ecca22009-04-27 20:16:15 +0000940 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000941 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000942 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000943 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000944 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000945 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000946 const SCEV *Start = AR->getStart();
947 const SCEV *Step = AR->getStepRecurrence(*this);
948 unsigned BitWidth = getTypeSizeInBits(AR->getType());
949 const Loop *L = AR->getLoop();
950
Dan Gohmaneb490a72009-07-25 01:22:26 +0000951 // If we have special knowledge that this addrec won't overflow,
952 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +0000953 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmaneb490a72009-07-25 01:22:26 +0000954 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
955 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000956 L, AR->getNoWrapFlags());
Dan Gohmaneb490a72009-07-25 01:22:26 +0000957
Dan Gohman01ecca22009-04-27 20:16:15 +0000958 // Check whether the backedge-taken count is SCEVCouldNotCompute.
959 // Note that this serves two purposes: It filters out loops that are
960 // simply not analyzable, and it covers the case where this code is
961 // being called from within backedge-taken count analysis, such that
962 // attempting to ask for the backedge-taken count would likely result
963 // in infinite recursion. In the later case, the analysis code will
964 // cope with a conservative value, and it will take care to purge
965 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000966 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000967 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000968 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000969 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000970
971 // Check whether the backedge-taken count can be losslessly casted to
972 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000973 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000974 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000975 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000976 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
977 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000978 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000979 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000980 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesac94bd82012-05-15 20:20:14 +0000981 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
982 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
983 const SCEV *WideMaxBECount =
984 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000985 const SCEV *OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +0000986 getAddExpr(WideStart,
987 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +0000988 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +0000989 if (ZAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +0000990 // Cache knowledge of AR NUW, which is propagated to this AddRec.
991 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000992 // Return the expression with the addrec on the outside.
993 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
994 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000995 L, AR->getNoWrapFlags());
996 }
Dan Gohman01ecca22009-04-27 20:16:15 +0000997 // Similar to above, only this time treat the step value as signed.
998 // This covers loops that count down.
Dan Gohman5183cae2009-05-18 15:58:39 +0000999 OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +00001000 getAddExpr(WideStart,
1001 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +00001002 getSignExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001003 if (ZAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001004 // Cache knowledge of AR NW, which is propagated to this AddRec.
1005 // Negative step causes unsigned wrap, but it still can't self-wrap.
1006 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001007 // Return the expression with the addrec on the outside.
1008 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1009 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001010 L, AR->getNoWrapFlags());
1011 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001012 }
1013
1014 // If the backedge is guarded by a comparison with the pre-inc value
1015 // the addrec is safe. Also, if the entry is guarded by a comparison
1016 // with the start value and the backedge is guarded by a comparison
1017 // with the post-inc value, the addrec is safe.
1018 if (isKnownPositive(Step)) {
1019 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1020 getUnsignedRange(Step).getUnsignedMax());
1021 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001022 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001023 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001024 AR->getPostIncExpr(*this), N))) {
1025 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1026 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman85b05a22009-07-13 21:35:55 +00001027 // Return the expression with the addrec on the outside.
1028 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1029 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001030 L, AR->getNoWrapFlags());
1031 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001032 } else if (isKnownNegative(Step)) {
1033 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1034 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001035 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1036 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001037 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001038 AR->getPostIncExpr(*this), N))) {
1039 // Cache knowledge of AR NW, which is propagated to this AddRec.
1040 // Negative step causes unsigned wrap, but it still can't self-wrap.
1041 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1042 // Return the expression with the addrec on the outside.
Dan Gohman85b05a22009-07-13 21:35:55 +00001043 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1044 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001045 L, AR->getNoWrapFlags());
1046 }
Dan Gohman01ecca22009-04-27 20:16:15 +00001047 }
1048 }
1049 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001050
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001051 // The cast wasn't folded; create an explicit cast node.
1052 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001053 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001054 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1055 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001056 UniqueSCEVs.InsertNode(S, IP);
1057 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001058}
1059
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001060// Get the limit of a recurrence such that incrementing by Step cannot cause
1061// signed overflow as long as the value of the recurrence within the loop does
1062// not exceed this limit before incrementing.
1063static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1064 ICmpInst::Predicate *Pred,
1065 ScalarEvolution *SE) {
1066 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1067 if (SE->isKnownPositive(Step)) {
1068 *Pred = ICmpInst::ICMP_SLT;
1069 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1070 SE->getSignedRange(Step).getSignedMax());
1071 }
1072 if (SE->isKnownNegative(Step)) {
1073 *Pred = ICmpInst::ICMP_SGT;
1074 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1075 SE->getSignedRange(Step).getSignedMin());
1076 }
1077 return 0;
1078}
1079
1080// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1081// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1082// or postincrement sibling. This allows normalizing a sign extended AddRec as
1083// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1084// result, the expression "Step + sext(PreIncAR)" is congruent with
1085// "sext(PostIncAR)"
1086static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001087 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001088 ScalarEvolution *SE) {
1089 const Loop *L = AR->getLoop();
1090 const SCEV *Start = AR->getStart();
1091 const SCEV *Step = AR->getStepRecurrence(*SE);
1092
1093 // Check for a simple looking step prior to loop entry.
1094 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickf63ae212011-09-28 17:02:54 +00001095 if (!SA)
1096 return 0;
1097
1098 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1099 // subtraction is expensive. For this purpose, perform a quick and dirty
1100 // difference, by checking for Step in the operand list.
1101 SmallVector<const SCEV *, 4> DiffOps;
1102 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1103 I != E; ++I) {
1104 if (*I != Step)
1105 DiffOps.push_back(*I);
1106 }
1107 if (DiffOps.size() == SA->getNumOperands())
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001108 return 0;
1109
1110 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1111 // same three conditions that getSignExtendedExpr checks.
1112
1113 // 1. NSW flags on the step increment.
Andrew Trickf63ae212011-09-28 17:02:54 +00001114 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001115 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1116 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1117
Andrew Trickcf31f912011-06-01 19:14:56 +00001118 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001119 return PreStart;
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001120
1121 // 2. Direct overflow check on the step operation's expression.
1122 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001123 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001124 const SCEV *OperandExtendedStart =
1125 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1126 SE->getSignExtendExpr(Step, WideTy));
1127 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1128 // Cache knowledge of PreAR NSW.
1129 if (PreAR)
1130 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1131 // FIXME: this optimization needs a unit test
1132 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1133 return PreStart;
1134 }
1135
1136 // 3. Loop precondition.
1137 ICmpInst::Predicate Pred;
1138 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1139
Andrew Trickcf31f912011-06-01 19:14:56 +00001140 if (OverflowLimit &&
1141 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001142 return PreStart;
1143 }
1144 return 0;
1145}
1146
1147// Get the normalized sign-extended expression for this AddRec's Start.
1148static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001149 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001150 ScalarEvolution *SE) {
1151 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1152 if (!PreStart)
1153 return SE->getSignExtendExpr(AR->getStart(), Ty);
1154
1155 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1156 SE->getSignExtendExpr(PreStart, Ty));
1157}
1158
Dan Gohman0bba49c2009-07-07 17:06:11 +00001159const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001160 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001161 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001162 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001163 assert(isSCEVable(Ty) &&
1164 "This is not a conversion to a SCEVable type!");
1165 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001166
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001167 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001168 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1169 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +00001170 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmand19534a2007-06-15 14:38:12 +00001171
Dan Gohman20900ca2009-04-22 16:20:48 +00001172 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001173 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001174 return getSignExtendExpr(SS->getOperand(), Ty);
1175
Nick Lewycky73f565e2011-01-19 15:56:12 +00001176 // sext(zext(x)) --> zext(x)
1177 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1178 return getZeroExtendExpr(SZ->getOperand(), Ty);
1179
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001180 // Before doing any expensive analysis, check to see if we've already
1181 // computed a SCEV for this Op and Ty.
1182 FoldingSetNodeID ID;
1183 ID.AddInteger(scSignExtend);
1184 ID.AddPointer(Op);
1185 ID.AddPointer(Ty);
1186 void *IP = 0;
1187 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1188
Nick Lewycky9b8d2c22011-01-22 22:06:21 +00001189 // If the input value is provably positive, build a zext instead.
1190 if (isKnownNonNegative(Op))
1191 return getZeroExtendExpr(Op, Ty);
1192
Nick Lewycky630d85a2011-01-23 06:20:19 +00001193 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1194 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1195 // It's possible the bits taken off by the truncate were all sign bits. If
1196 // so, we should be able to simplify this further.
1197 const SCEV *X = ST->getOperand();
1198 ConstantRange CR = getSignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001199 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1200 unsigned NewBits = getTypeSizeInBits(Ty);
1201 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +00001202 CR.sextOrTrunc(NewBits)))
1203 return getTruncateOrSignExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001204 }
1205
Dan Gohman01ecca22009-04-27 20:16:15 +00001206 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001207 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001208 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001209 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001210 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001211 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001212 const SCEV *Start = AR->getStart();
1213 const SCEV *Step = AR->getStepRecurrence(*this);
1214 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1215 const Loop *L = AR->getLoop();
1216
Dan Gohmaneb490a72009-07-25 01:22:26 +00001217 // If we have special knowledge that this addrec won't overflow,
1218 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +00001219 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001220 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmaneb490a72009-07-25 01:22:26 +00001221 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001222 L, SCEV::FlagNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00001223
Dan Gohman01ecca22009-04-27 20:16:15 +00001224 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1225 // Note that this serves two purposes: It filters out loops that are
1226 // simply not analyzable, and it covers the case where this code is
1227 // being called from within backedge-taken count analysis, such that
1228 // attempting to ask for the backedge-taken count would likely result
1229 // in infinite recursion. In the later case, the analysis code will
1230 // cope with a conservative value, and it will take care to purge
1231 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001232 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001233 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001234 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001235 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001236
1237 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001238 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001239 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001240 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001241 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001242 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1243 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001244 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001245 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001246 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesac94bd82012-05-15 20:20:14 +00001247 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1248 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1249 const SCEV *WideMaxBECount =
1250 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001251 const SCEV *OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +00001252 getAddExpr(WideStart,
1253 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +00001254 getSignExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001255 if (SAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001256 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1257 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001258 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001259 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmanac70cea2009-04-29 22:28:28 +00001260 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001261 L, AR->getNoWrapFlags());
1262 }
Dan Gohman850f7912009-07-16 17:34:36 +00001263 // Similar to above, only this time treat the step value as unsigned.
1264 // This covers loops that count up with an unsigned step.
Dan Gohman850f7912009-07-16 17:34:36 +00001265 OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +00001266 getAddExpr(WideStart,
1267 getMulExpr(WideMaxBECount,
Dan Gohman850f7912009-07-16 17:34:36 +00001268 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001269 if (SAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001270 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1271 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman850f7912009-07-16 17:34:36 +00001272 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001273 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman850f7912009-07-16 17:34:36 +00001274 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001275 L, AR->getNoWrapFlags());
1276 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001277 }
1278
1279 // If the backedge is guarded by a comparison with the pre-inc value
1280 // the addrec is safe. Also, if the entry is guarded by a comparison
1281 // with the start value and the backedge is guarded by a comparison
1282 // with the post-inc value, the addrec is safe.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001283 ICmpInst::Predicate Pred;
1284 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1285 if (OverflowLimit &&
1286 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1287 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1288 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1289 OverflowLimit)))) {
1290 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1291 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1292 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1293 getSignExtendExpr(Step, Ty),
1294 L, AR->getNoWrapFlags());
Dan Gohman01ecca22009-04-27 20:16:15 +00001295 }
1296 }
1297 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001298
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001299 // The cast wasn't folded; create an explicit cast node.
1300 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001301 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001302 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1303 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001304 UniqueSCEVs.InsertNode(S, IP);
1305 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001306}
1307
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001308/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1309/// unspecified bits out to the given type.
1310///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001311const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001312 Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001313 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1314 "This is not an extending conversion!");
1315 assert(isSCEVable(Ty) &&
1316 "This is not a conversion to a SCEVable type!");
1317 Ty = getEffectiveSCEVType(Ty);
1318
1319 // Sign-extend negative constants.
1320 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1321 if (SC->getValue()->getValue().isNegative())
1322 return getSignExtendExpr(Op, Ty);
1323
1324 // Peel off a truncate cast.
1325 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001326 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001327 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1328 return getAnyExtendExpr(NewOp, Ty);
1329 return getTruncateOrNoop(NewOp, Ty);
1330 }
1331
1332 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001333 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001334 if (!isa<SCEVZeroExtendExpr>(ZExt))
1335 return ZExt;
1336
1337 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001338 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001339 if (!isa<SCEVSignExtendExpr>(SExt))
1340 return SExt;
1341
Dan Gohmana10756e2010-01-21 02:09:26 +00001342 // Force the cast to be folded into the operands of an addrec.
1343 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1344 SmallVector<const SCEV *, 4> Ops;
1345 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1346 I != E; ++I)
1347 Ops.push_back(getAnyExtendExpr(*I, Ty));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001348 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00001349 }
1350
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001351 // If the expression is obviously signed, use the sext cast value.
1352 if (isa<SCEVSMaxExpr>(Op))
1353 return SExt;
1354
1355 // Absent any other information, use the zext cast value.
1356 return ZExt;
1357}
1358
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001359/// CollectAddOperandsWithScales - Process the given Ops list, which is
1360/// a list of operands to be added under the given scale, update the given
1361/// map. This is a helper function for getAddRecExpr. As an example of
1362/// what it does, given a sequence of operands that would form an add
1363/// expression like this:
1364///
1365/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1366///
1367/// where A and B are constants, update the map with these values:
1368///
1369/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1370///
1371/// and add 13 + A*B*29 to AccumulatedConstant.
1372/// This will allow getAddRecExpr to produce this:
1373///
1374/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1375///
1376/// This form often exposes folding opportunities that are hidden in
1377/// the original operand list.
1378///
Sylvestre Ledru94c22712012-09-27 10:14:43 +00001379/// Return true iff it appears that any interesting folding opportunities
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001380/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1381/// the common case where no interesting opportunities are present, and
1382/// is also used as a check to avoid infinite recursion.
1383///
1384static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001385CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper9e639e82013-07-11 16:22:38 +00001386 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001387 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001388 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001389 const APInt &Scale,
1390 ScalarEvolution &SE) {
1391 bool Interesting = false;
1392
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001393 // Iterate over the add operands. They are sorted, with constants first.
1394 unsigned i = 0;
1395 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1396 ++i;
1397 // Pull a buried constant out to the outside.
1398 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1399 Interesting = true;
1400 AccumulatedConstant += Scale * C->getValue()->getValue();
1401 }
1402
1403 // Next comes everything else. We're especially interested in multiplies
1404 // here, but they're in the middle, so just visit the rest with one loop.
1405 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001406 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1407 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1408 APInt NewScale =
1409 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1410 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1411 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001412 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001413 Interesting |=
1414 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001415 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001416 NewScale, SE);
1417 } else {
1418 // A multiplication of a constant with some other value. Update
1419 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001420 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1421 const SCEV *Key = SE.getMulExpr(MulOps);
1422 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001423 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001424 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001425 NewOps.push_back(Pair.first->first);
1426 } else {
1427 Pair.first->second += NewScale;
1428 // The map already had an entry for this value, which may indicate
1429 // a folding opportunity.
1430 Interesting = true;
1431 }
1432 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001433 } else {
1434 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001435 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001436 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001437 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001438 NewOps.push_back(Pair.first->first);
1439 } else {
1440 Pair.first->second += Scale;
1441 // The map already had an entry for this value, which may indicate
1442 // a folding opportunity.
1443 Interesting = true;
1444 }
1445 }
1446 }
1447
1448 return Interesting;
1449}
1450
1451namespace {
1452 struct APIntCompare {
1453 bool operator()(const APInt &LHS, const APInt &RHS) const {
1454 return LHS.ult(RHS);
1455 }
1456 };
1457}
1458
Dan Gohman6c0866c2009-05-24 23:45:28 +00001459/// getAddExpr - Get a canonical add expression, or something simpler if
1460/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001461const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001462 SCEV::NoWrapFlags Flags) {
1463 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1464 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001465 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001466 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001467#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001468 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001469 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001470 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001471 "SCEVAddExpr operand types don't match!");
1472#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001473
Andrew Trick3228cc22011-03-14 16:50:06 +00001474 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001475 // And vice-versa.
1476 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1477 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1478 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001479 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001480 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1481 E = Ops.end(); I != E; ++I)
1482 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001483 All = false;
1484 break;
1485 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001486 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001487 }
1488
Chris Lattner53e677a2004-04-02 20:23:17 +00001489 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001490 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001491
1492 // If there are any constants, fold them together.
1493 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001494 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001495 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001496 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001497 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001498 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001499 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1500 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001501 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001502 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001503 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001504 }
1505
1506 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001507 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001508 Ops.erase(Ops.begin());
1509 --Idx;
1510 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001511
Dan Gohmanbca091d2010-04-12 23:08:18 +00001512 if (Ops.size() == 1) return Ops[0];
1513 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001514
Dan Gohman68ff7762010-08-27 21:39:59 +00001515 // Okay, check to see if the same value occurs in the operand list more than
1516 // once. If so, merge them together into an multiply expression. Since we
1517 // sorted the list, these values are required to be adjacent.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001518 Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001519 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001520 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001521 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001522 // Scan ahead to count how many equal operands there are.
1523 unsigned Count = 2;
1524 while (i+Count != e && Ops[i+Count] == Ops[i])
1525 ++Count;
1526 // Merge the values into a multiply.
1527 const SCEV *Scale = getConstant(Ty, Count);
1528 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1529 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001530 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001531 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001532 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001533 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001534 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001535 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001536 if (FoundMatch)
Andrew Trick3228cc22011-03-14 16:50:06 +00001537 return getAddExpr(Ops, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00001538
Dan Gohman728c7f32009-05-08 21:03:19 +00001539 // Check for truncates. If all the operands are truncated from the same
1540 // type, see if factoring out the truncate would permit the result to be
1541 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1542 // if the contents of the resulting outer trunc fold to something simple.
1543 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1544 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001545 Type *DstType = Trunc->getType();
1546 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001547 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001548 bool Ok = true;
1549 // Check all the operands to see if they can be represented in the
1550 // source type of the truncate.
1551 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1552 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1553 if (T->getOperand()->getType() != SrcType) {
1554 Ok = false;
1555 break;
1556 }
1557 LargeOps.push_back(T->getOperand());
1558 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001559 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001560 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001561 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001562 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1563 if (const SCEVTruncateExpr *T =
1564 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1565 if (T->getOperand()->getType() != SrcType) {
1566 Ok = false;
1567 break;
1568 }
1569 LargeMulOps.push_back(T->getOperand());
1570 } else if (const SCEVConstant *C =
1571 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001572 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001573 } else {
1574 Ok = false;
1575 break;
1576 }
1577 }
1578 if (Ok)
1579 LargeOps.push_back(getMulExpr(LargeMulOps));
1580 } else {
1581 Ok = false;
1582 break;
1583 }
1584 }
1585 if (Ok) {
1586 // Evaluate the expression in the larger type.
Andrew Trick3228cc22011-03-14 16:50:06 +00001587 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman728c7f32009-05-08 21:03:19 +00001588 // If it folds to something simple, use it. Otherwise, don't.
1589 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1590 return getTruncateExpr(Fold, DstType);
1591 }
1592 }
1593
1594 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001595 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1596 ++Idx;
1597
1598 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001599 if (Idx < Ops.size()) {
1600 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001601 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001602 // If we have an add, expand the add operands onto the end of the operands
1603 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001604 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001605 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001606 DeletedAdd = true;
1607 }
1608
1609 // If we deleted at least one add, we added operands to the end of the list,
1610 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001611 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001612 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001613 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001614 }
1615
1616 // Skip over the add expression until we get to a multiply.
1617 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1618 ++Idx;
1619
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001620 // Check to see if there are any folding opportunities present with
1621 // operands multiplied by constant values.
1622 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1623 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001624 DenseMap<const SCEV *, APInt> M;
1625 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001626 APInt AccumulatedConstant(BitWidth, 0);
1627 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001628 Ops.data(), Ops.size(),
1629 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001630 // Some interesting folding opportunity is present, so its worthwhile to
1631 // re-generate the operands list. Group the operands by constant scale,
1632 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001633 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper365ef0b2013-07-03 15:07:05 +00001634 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001635 E = NewOps.end(); I != E; ++I)
1636 MulOpLists[M.find(*I)->second].push_back(*I);
1637 // Re-generate the operands list.
1638 Ops.clear();
1639 if (AccumulatedConstant != 0)
1640 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001641 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1642 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001643 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001644 Ops.push_back(getMulExpr(getConstant(I->first),
1645 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001646 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001647 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001648 if (Ops.size() == 1)
1649 return Ops[0];
1650 return getAddExpr(Ops);
1651 }
1652 }
1653
Chris Lattner53e677a2004-04-02 20:23:17 +00001654 // If we are adding something to a multiply expression, make sure the
1655 // something is not already an operand of the multiply. If so, merge it into
1656 // the multiply.
1657 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001658 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001659 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001660 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001661 if (isa<SCEVConstant>(MulOpSCEV))
1662 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001663 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001664 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001665 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001666 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001667 if (Mul->getNumOperands() != 2) {
1668 // If the multiply has more than two operands, we must get the
1669 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001670 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1671 Mul->op_begin()+MulOp);
1672 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001673 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001674 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001675 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001676 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001677 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001678 if (Ops.size() == 2) return OuterMul;
1679 if (AddOp < Idx) {
1680 Ops.erase(Ops.begin()+AddOp);
1681 Ops.erase(Ops.begin()+Idx-1);
1682 } else {
1683 Ops.erase(Ops.begin()+Idx);
1684 Ops.erase(Ops.begin()+AddOp-1);
1685 }
1686 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001687 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001688 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001689
Chris Lattner53e677a2004-04-02 20:23:17 +00001690 // Check this multiply against other multiplies being added together.
1691 for (unsigned OtherMulIdx = Idx+1;
1692 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1693 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001694 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001695 // If MulOp occurs in OtherMul, we can fold the two multiplies
1696 // together.
1697 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1698 OMulOp != e; ++OMulOp)
1699 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1700 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001701 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001702 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001703 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001704 Mul->op_begin()+MulOp);
1705 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001706 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001707 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001708 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001709 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001710 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001711 OtherMul->op_begin()+OMulOp);
1712 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001713 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001714 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001715 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1716 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001717 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001718 Ops.erase(Ops.begin()+Idx);
1719 Ops.erase(Ops.begin()+OtherMulIdx-1);
1720 Ops.push_back(OuterMul);
1721 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001722 }
1723 }
1724 }
1725 }
1726
1727 // If there are any add recurrences in the operands list, see if any other
1728 // added values are loop invariant. If so, we can fold them into the
1729 // recurrence.
1730 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1731 ++Idx;
1732
1733 // Scan over all recurrences, trying to fold loop invariants into them.
1734 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1735 // Scan all of the other operands to this add and add them to the vector if
1736 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001737 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001738 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001739 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001740 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001741 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001742 LIOps.push_back(Ops[i]);
1743 Ops.erase(Ops.begin()+i);
1744 --i; --e;
1745 }
1746
1747 // If we found some loop invariants, fold them into the recurrence.
1748 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001749 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001750 LIOps.push_back(AddRec->getStart());
1751
Dan Gohman0bba49c2009-07-07 17:06:11 +00001752 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001753 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001754 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001755
Dan Gohmanb9f96512010-06-30 07:16:37 +00001756 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001757 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001758 // Always propagate NW.
1759 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick3228cc22011-03-14 16:50:06 +00001760 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman59de33e2009-12-18 18:45:31 +00001761
Chris Lattner53e677a2004-04-02 20:23:17 +00001762 // If all of the other operands were loop invariant, we are done.
1763 if (Ops.size() == 1) return NewRec;
1764
Nick Lewycky980e9f32011-09-06 05:08:09 +00001765 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00001766 for (unsigned i = 0;; ++i)
1767 if (Ops[i] == AddRec) {
1768 Ops[i] = NewRec;
1769 break;
1770 }
Dan Gohman246b2562007-10-22 18:31:58 +00001771 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001772 }
1773
1774 // Okay, if there weren't any loop invariants to be folded, check to see if
1775 // there are multiple AddRec's with the same loop induction variable being
1776 // added together. If so, we can fold them.
1777 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001778 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1779 ++OtherIdx)
1780 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1781 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1782 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1783 AddRec->op_end());
1784 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1785 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001786 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001787 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001788 if (OtherAddRec->getLoop() == AddRecLoop) {
1789 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1790 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001791 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001792 AddRecOps.append(OtherAddRec->op_begin()+i,
1793 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001794 break;
1795 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001796 AddRecOps[i] = getAddExpr(AddRecOps[i],
1797 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001798 }
1799 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001800 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001801 // Step size has changed, so we cannot guarantee no self-wraparound.
1802 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohman32527152010-08-27 20:45:56 +00001803 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001804 }
1805
1806 // Otherwise couldn't fold anything into this recurrence. Move onto the
1807 // next one.
1808 }
1809
1810 // Okay, it looks like we really DO need an add expr. Check to see if we
1811 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001812 FoldingSetNodeID ID;
1813 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001814 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1815 ID.AddPointer(Ops[i]);
1816 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001817 SCEVAddExpr *S =
1818 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1819 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001820 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1821 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001822 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1823 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001824 UniqueSCEVs.InsertNode(S, IP);
1825 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001826 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00001827 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001828}
1829
Nick Lewyckye97728e2011-10-04 06:51:26 +00001830static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1831 uint64_t k = i*j;
1832 if (j > 1 && k / j != i) Overflow = true;
1833 return k;
1834}
1835
1836/// Compute the result of "n choose k", the binomial coefficient. If an
1837/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerd9b0b022012-06-02 10:20:22 +00001838/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewyckye97728e2011-10-04 06:51:26 +00001839static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1840 // We use the multiplicative formula:
1841 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1842 // At each iteration, we take the n-th term of the numeral and divide by the
1843 // (k-n)th term of the denominator. This division will always produce an
1844 // integral result, and helps reduce the chance of overflow in the
1845 // intermediate computations. However, we can still overflow even when the
1846 // final result would fit.
1847
1848 if (n == 0 || n == k) return 1;
1849 if (k > n) return 0;
1850
1851 if (k > n/2)
1852 k = n-k;
1853
1854 uint64_t r = 1;
1855 for (uint64_t i = 1; i <= k; ++i) {
1856 r = umul_ov(r, n-(i-1), Overflow);
1857 r /= i;
1858 }
1859 return r;
1860}
1861
Dan Gohman6c0866c2009-05-24 23:45:28 +00001862/// getMulExpr - Get a canonical multiply expression, or something simpler if
1863/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001864const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001865 SCEV::NoWrapFlags Flags) {
1866 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1867 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001868 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001869 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001870#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001871 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001872 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001873 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001874 "SCEVMulExpr operand types don't match!");
1875#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001876
Andrew Trick3228cc22011-03-14 16:50:06 +00001877 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001878 // And vice-versa.
1879 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1880 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1881 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001882 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001883 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1884 E = Ops.end(); I != E; ++I)
1885 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001886 All = false;
1887 break;
1888 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001889 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001890 }
1891
Chris Lattner53e677a2004-04-02 20:23:17 +00001892 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001893 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001894
1895 // If there are any constants, fold them together.
1896 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001897 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001898
1899 // C1*(C2+V) -> C1*C2 + C1*V
1900 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001901 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001902 if (Add->getNumOperands() == 2 &&
1903 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001904 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1905 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001906
Chris Lattner53e677a2004-04-02 20:23:17 +00001907 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001908 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001909 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001910 ConstantInt *Fold = ConstantInt::get(getContext(),
1911 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001912 RHSC->getValue()->getValue());
1913 Ops[0] = getConstant(Fold);
1914 Ops.erase(Ops.begin()+1); // Erase the folded element
1915 if (Ops.size() == 1) return Ops[0];
1916 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001917 }
1918
1919 // If we are left with a constant one being multiplied, strip it off.
1920 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1921 Ops.erase(Ops.begin());
1922 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001923 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001924 // If we have a multiply of zero, it will always be zero.
1925 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001926 } else if (Ops[0]->isAllOnesValue()) {
1927 // If we have a mul by -1 of an add, try distributing the -1 among the
1928 // add operands.
Andrew Trick3228cc22011-03-14 16:50:06 +00001929 if (Ops.size() == 2) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001930 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1931 SmallVector<const SCEV *, 4> NewOps;
1932 bool AnyFolded = false;
Andrew Trick3228cc22011-03-14 16:50:06 +00001933 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1934 E = Add->op_end(); I != E; ++I) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001935 const SCEV *Mul = getMulExpr(Ops[0], *I);
1936 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1937 NewOps.push_back(Mul);
1938 }
1939 if (AnyFolded)
1940 return getAddExpr(NewOps);
1941 }
Andrew Tricka053b212011-03-14 17:38:54 +00001942 else if (const SCEVAddRecExpr *
1943 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1944 // Negation preserves a recurrence's no self-wrap property.
1945 SmallVector<const SCEV *, 4> Operands;
1946 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1947 E = AddRec->op_end(); I != E; ++I) {
1948 Operands.push_back(getMulExpr(Ops[0], *I));
1949 }
1950 return getAddRecExpr(Operands, AddRec->getLoop(),
1951 AddRec->getNoWrapFlags(SCEV::FlagNW));
1952 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001953 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001954 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001955
1956 if (Ops.size() == 1)
1957 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001958 }
1959
1960 // Skip over the add expression until we get to a multiply.
1961 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1962 ++Idx;
1963
Chris Lattner53e677a2004-04-02 20:23:17 +00001964 // If there are mul operands inline them all into this expression.
1965 if (Idx < Ops.size()) {
1966 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001967 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001968 // If we have an mul, expand the mul operands onto the end of the operands
1969 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001970 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001971 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001972 DeletedMul = true;
1973 }
1974
1975 // If we deleted at least one mul, we added operands to the end of the list,
1976 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001977 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001978 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001979 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001980 }
1981
1982 // If there are any add recurrences in the operands list, see if any other
1983 // added values are loop invariant. If so, we can fold them into the
1984 // recurrence.
1985 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1986 ++Idx;
1987
1988 // Scan over all recurrences, trying to fold loop invariants into them.
1989 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1990 // Scan all of the other operands to this mul and add them to the vector if
1991 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001992 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001993 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001994 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001995 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001996 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001997 LIOps.push_back(Ops[i]);
1998 Ops.erase(Ops.begin()+i);
1999 --i; --e;
2000 }
2001
2002 // If we found some loop invariants, fold them into the recurrence.
2003 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00002004 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00002005 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00002006 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00002007 const SCEV *Scale = getMulExpr(LIOps);
2008 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2009 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00002010
Dan Gohmanb9f96512010-06-30 07:16:37 +00002011 // Build the new addrec. Propagate the NUW and NSW flags if both the
2012 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick3228cc22011-03-14 16:50:06 +00002013 //
2014 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner7a2bdde2011-04-15 05:18:47 +00002015 // will be inferred if either NUW or NSW is true.
Andrew Trick3228cc22011-03-14 16:50:06 +00002016 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2017 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002018
2019 // If all of the other operands were loop invariant, we are done.
2020 if (Ops.size() == 1) return NewRec;
2021
Nick Lewycky980e9f32011-09-06 05:08:09 +00002022 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00002023 for (unsigned i = 0;; ++i)
2024 if (Ops[i] == AddRec) {
2025 Ops[i] = NewRec;
2026 break;
2027 }
Dan Gohman246b2562007-10-22 18:31:58 +00002028 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002029 }
2030
2031 // Okay, if there weren't any loop invariants to be folded, check to see if
2032 // there are multiple AddRec's with the same loop induction variable being
2033 // multiplied together. If so, we can fold them.
2034 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00002035 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckyc103a082011-09-06 21:42:18 +00002036 ++OtherIdx) {
Andrew Trick97178ae2012-05-30 03:35:17 +00002037 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
2038 continue;
2039
2040 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2041 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2042 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2043 // ]]],+,...up to x=2n}.
2044 // Note that the arguments to choose() are always integers with values
2045 // known at compile time, never SCEV objects.
2046 //
2047 // The implementation avoids pointless extra computations when the two
2048 // addrec's are of different length (mathematically, it's equivalent to
2049 // an infinite stream of zeros on the right).
2050 bool OpsModified = false;
2051 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2052 ++OtherIdx) {
2053 const SCEVAddRecExpr *OtherAddRec =
2054 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2055 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2056 continue;
2057
2058 bool Overflow = false;
2059 Type *Ty = AddRec->getType();
2060 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2061 SmallVector<const SCEV*, 7> AddRecOps;
2062 for (int x = 0, xe = AddRec->getNumOperands() +
2063 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2064 const SCEV *Term = getConstant(Ty, 0);
2065 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2066 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2067 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2068 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2069 z < ze && !Overflow; ++z) {
2070 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2071 uint64_t Coeff;
2072 if (LargerThan64Bits)
2073 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2074 else
2075 Coeff = Coeff1*Coeff2;
2076 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2077 const SCEV *Term1 = AddRec->getOperand(y-z);
2078 const SCEV *Term2 = OtherAddRec->getOperand(z);
2079 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Dan Gohman6a0c1252010-08-31 22:52:12 +00002080 }
Andrew Trick97178ae2012-05-30 03:35:17 +00002081 }
2082 AddRecOps.push_back(Term);
2083 }
2084 if (!Overflow) {
2085 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2086 SCEV::FlagAnyWrap);
2087 if (Ops.size() == 2) return NewAddRec;
Andrew Trickfe3516f2012-05-30 03:35:20 +00002088 Ops[Idx] = NewAddRec;
Andrew Trick97178ae2012-05-30 03:35:17 +00002089 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2090 OpsModified = true;
Andrew Trickfe3516f2012-05-30 03:35:20 +00002091 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2092 if (!AddRec)
2093 break;
Andrew Trick97178ae2012-05-30 03:35:17 +00002094 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002095 }
Andrew Trick97178ae2012-05-30 03:35:17 +00002096 if (OpsModified)
2097 return getMulExpr(Ops);
Nick Lewyckyc103a082011-09-06 21:42:18 +00002098 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002099
2100 // Otherwise couldn't fold anything into this recurrence. Move onto the
2101 // next one.
2102 }
2103
2104 // Okay, it looks like we really DO need an mul expr. Check to see if we
2105 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002106 FoldingSetNodeID ID;
2107 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002108 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2109 ID.AddPointer(Ops[i]);
2110 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002111 SCEVMulExpr *S =
2112 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2113 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002114 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2115 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002116 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2117 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00002118 UniqueSCEVs.InsertNode(S, IP);
2119 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002120 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002121 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002122}
2123
Andreas Bolka8a11c982009-08-07 22:55:26 +00002124/// getUDivExpr - Get a canonical unsigned division expression, or something
2125/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00002126const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2127 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00002128 assert(getEffectiveSCEVType(LHS->getType()) ==
2129 getEffectiveSCEVType(RHS->getType()) &&
2130 "SCEVUDivExpr operand types don't match!");
2131
Dan Gohman622ed672009-05-04 22:02:23 +00002132 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002133 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00002134 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002135 // If the denominator is zero, the result of the udiv is undefined. Don't
2136 // try to analyze it, because the resolution chosen here may differ from
2137 // the resolution chosen in other parts of the compiler.
2138 if (!RHSC->getValue()->isZero()) {
2139 // Determine if the division can be folded into the operands of
2140 // its operands.
2141 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002142 Type *Ty = LHS->getType();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002143 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00002144 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002145 // For non-power-of-two values, effectively round the value up to the
2146 // nearest power of two.
2147 if (!RHSC->getValue()->getValue().isPowerOf2())
2148 ++MaxShiftAmt;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002149 IntegerType *ExtTy =
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002150 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002151 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2152 if (const SCEVConstant *Step =
Andrew Trick06988bc2011-08-06 07:00:37 +00002153 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2154 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2155 const APInt &StepInt = Step->getValue()->getValue();
2156 const APInt &DivInt = RHSC->getValue()->getValue();
2157 if (!StepInt.urem(DivInt) &&
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002158 getZeroExtendExpr(AR, ExtTy) ==
2159 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2160 getZeroExtendExpr(Step, ExtTy),
Andrew Trick3228cc22011-03-14 16:50:06 +00002161 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002162 SmallVector<const SCEV *, 4> Operands;
2163 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2164 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick3228cc22011-03-14 16:50:06 +00002165 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00002166 SCEV::FlagNW);
Dan Gohman185cf032009-05-08 20:18:49 +00002167 }
Andrew Trick06988bc2011-08-06 07:00:37 +00002168 /// Get a canonical UDivExpr for a recurrence.
2169 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2170 // We can currently only fold X%N if X is constant.
2171 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2172 if (StartC && !DivInt.urem(StepInt) &&
2173 getZeroExtendExpr(AR, ExtTy) ==
2174 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2175 getZeroExtendExpr(Step, ExtTy),
2176 AR->getLoop(), SCEV::FlagAnyWrap)) {
2177 const APInt &StartInt = StartC->getValue()->getValue();
2178 const APInt &StartRem = StartInt.urem(StepInt);
2179 if (StartRem != 0)
2180 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2181 AR->getLoop(), SCEV::FlagNW);
2182 }
2183 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002184 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2185 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2186 SmallVector<const SCEV *, 4> Operands;
2187 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2188 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2189 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2190 // Find an operand that's safely divisible.
2191 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2192 const SCEV *Op = M->getOperand(i);
2193 const SCEV *Div = getUDivExpr(Op, RHSC);
2194 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2195 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2196 M->op_end());
2197 Operands[i] = Div;
2198 return getMulExpr(Operands);
2199 }
2200 }
Dan Gohman185cf032009-05-08 20:18:49 +00002201 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002202 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Tricka2a16202011-04-27 18:17:36 +00002203 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002204 SmallVector<const SCEV *, 4> Operands;
2205 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2206 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2207 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2208 Operands.clear();
2209 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2210 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2211 if (isa<SCEVUDivExpr>(Op) ||
2212 getMulExpr(Op, RHS) != A->getOperand(i))
2213 break;
2214 Operands.push_back(Op);
2215 }
2216 if (Operands.size() == A->getNumOperands())
2217 return getAddExpr(Operands);
2218 }
2219 }
Dan Gohman185cf032009-05-08 20:18:49 +00002220
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002221 // Fold if both operands are constant.
2222 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2223 Constant *LHSCV = LHSC->getValue();
2224 Constant *RHSCV = RHSC->getValue();
2225 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2226 RHSCV)));
2227 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002228 }
2229 }
2230
Dan Gohman1c343752009-06-27 21:21:31 +00002231 FoldingSetNodeID ID;
2232 ID.AddInteger(scUDivExpr);
2233 ID.AddPointer(LHS);
2234 ID.AddPointer(RHS);
2235 void *IP = 0;
2236 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002237 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2238 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002239 UniqueSCEVs.InsertNode(S, IP);
2240 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002241}
2242
2243
Dan Gohman6c0866c2009-05-24 23:45:28 +00002244/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2245/// Simplify the expression as much as possible.
Andrew Trick3228cc22011-03-14 16:50:06 +00002246const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2247 const Loop *L,
2248 SCEV::NoWrapFlags Flags) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002249 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002250 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002251 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002252 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002253 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickc343c1e2011-03-15 00:37:00 +00002254 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattner53e677a2004-04-02 20:23:17 +00002255 }
2256
2257 Operands.push_back(Step);
Andrew Trick3228cc22011-03-14 16:50:06 +00002258 return getAddRecExpr(Operands, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002259}
2260
Dan Gohman6c0866c2009-05-24 23:45:28 +00002261/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2262/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002263const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002264ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick3228cc22011-03-14 16:50:06 +00002265 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002266 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002267#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002268 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002269 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002270 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002271 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002272 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002273 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002274 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002275#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002276
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002277 if (Operands.back()->isZero()) {
2278 Operands.pop_back();
Andrew Trick3228cc22011-03-14 16:50:06 +00002279 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002280 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002281
Dan Gohmanbc028532010-02-19 18:49:22 +00002282 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2283 // use that information to infer NUW and NSW flags. However, computing a
2284 // BE count requires calling getAddRecExpr, so we may not yet have a
2285 // meaningful BE count at this point (and if we don't, we'd be stuck
2286 // with a SCEVCouldNotCompute as the cached BE count).
2287
Andrew Trick3228cc22011-03-14 16:50:06 +00002288 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002289 // And vice-versa.
2290 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2291 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2292 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002293 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002294 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2295 E = Operands.end(); I != E; ++I)
2296 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002297 All = false;
2298 break;
2299 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00002300 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00002301 }
2302
Dan Gohmand9cc7492008-08-08 18:33:12 +00002303 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002304 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002305 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002306 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002307 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002308 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002309 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002310 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002311 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002312 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002313 // AddRecs require their operands be loop-invariant with respect to their
2314 // loops. Don't perform this transformation if it would break this
2315 // requirement.
2316 bool AllInvariant = true;
2317 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002318 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002319 AllInvariant = false;
2320 break;
2321 }
2322 if (AllInvariant) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002323 // Create a recurrence for the outer loop with the same step size.
2324 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002325 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2326 // inner recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002327 SCEV::NoWrapFlags OuterFlags =
2328 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick3228cc22011-03-14 16:50:06 +00002329
2330 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohman9a80b452009-06-26 22:36:20 +00002331 AllInvariant = true;
2332 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002333 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002334 AllInvariant = false;
2335 break;
2336 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002337 if (AllInvariant) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002338 // Ok, both add recurrences are valid after the transformation.
Andrew Trick3228cc22011-03-14 16:50:06 +00002339 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002340 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2341 // the outer recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002342 SCEV::NoWrapFlags InnerFlags =
2343 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick3228cc22011-03-14 16:50:06 +00002344 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2345 }
Dan Gohman9a80b452009-06-26 22:36:20 +00002346 }
2347 // Reset Operands to its original state.
2348 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002349 }
2350 }
2351
Dan Gohman67847532010-01-19 22:27:22 +00002352 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2353 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002354 FoldingSetNodeID ID;
2355 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002356 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2357 ID.AddPointer(Operands[i]);
2358 ID.AddPointer(L);
2359 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002360 SCEVAddRecExpr *S =
2361 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2362 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002363 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2364 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002365 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2366 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002367 UniqueSCEVs.InsertNode(S, IP);
2368 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002369 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002370 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002371}
2372
Dan Gohman9311ef62009-06-24 14:49:00 +00002373const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2374 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002375 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002376 Ops.push_back(LHS);
2377 Ops.push_back(RHS);
2378 return getSMaxExpr(Ops);
2379}
2380
Dan Gohman0bba49c2009-07-07 17:06:11 +00002381const SCEV *
2382ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002383 assert(!Ops.empty() && "Cannot get empty smax!");
2384 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002385#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002386 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002387 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002388 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002389 "SCEVSMaxExpr operand types don't match!");
2390#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002391
2392 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002393 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002394
2395 // If there are any constants, fold them together.
2396 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002397 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002398 ++Idx;
2399 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002400 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002401 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002402 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002403 APIntOps::smax(LHSC->getValue()->getValue(),
2404 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002405 Ops[0] = getConstant(Fold);
2406 Ops.erase(Ops.begin()+1); // Erase the folded element
2407 if (Ops.size() == 1) return Ops[0];
2408 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002409 }
2410
Dan Gohmane5aceed2009-06-24 14:46:22 +00002411 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002412 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2413 Ops.erase(Ops.begin());
2414 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002415 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2416 // If we have an smax with a constant maximum-int, it will always be
2417 // maximum-int.
2418 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002419 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002420
Dan Gohman3ab13122010-04-13 16:49:23 +00002421 if (Ops.size() == 1) return Ops[0];
2422 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002423
2424 // Find the first SMax
2425 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2426 ++Idx;
2427
2428 // Check to see if one of the operands is an SMax. If so, expand its operands
2429 // onto our operand list, and recurse to simplify.
2430 if (Idx < Ops.size()) {
2431 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002432 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002433 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002434 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002435 DeletedSMax = true;
2436 }
2437
2438 if (DeletedSMax)
2439 return getSMaxExpr(Ops);
2440 }
2441
2442 // Okay, check to see if the same value occurs in the operand list twice. If
2443 // so, delete one. Since we sorted the list, these values are required to
2444 // be adjacent.
2445 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002446 // X smax Y smax Y --> X smax Y
2447 // X smax Y --> X, if X is always greater than Y
2448 if (Ops[i] == Ops[i+1] ||
2449 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2450 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2451 --i; --e;
2452 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002453 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2454 --i; --e;
2455 }
2456
2457 if (Ops.size() == 1) return Ops[0];
2458
2459 assert(!Ops.empty() && "Reduced smax down to nothing!");
2460
Nick Lewycky3e630762008-02-20 06:48:22 +00002461 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002462 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002463 FoldingSetNodeID ID;
2464 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002465 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2466 ID.AddPointer(Ops[i]);
2467 void *IP = 0;
2468 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002469 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2470 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002471 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2472 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002473 UniqueSCEVs.InsertNode(S, IP);
2474 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002475}
2476
Dan Gohman9311ef62009-06-24 14:49:00 +00002477const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2478 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002479 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002480 Ops.push_back(LHS);
2481 Ops.push_back(RHS);
2482 return getUMaxExpr(Ops);
2483}
2484
Dan Gohman0bba49c2009-07-07 17:06:11 +00002485const SCEV *
2486ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002487 assert(!Ops.empty() && "Cannot get empty umax!");
2488 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002489#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002490 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002491 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002492 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002493 "SCEVUMaxExpr operand types don't match!");
2494#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002495
2496 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002497 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002498
2499 // If there are any constants, fold them together.
2500 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002501 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002502 ++Idx;
2503 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002504 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002505 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002506 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002507 APIntOps::umax(LHSC->getValue()->getValue(),
2508 RHSC->getValue()->getValue()));
2509 Ops[0] = getConstant(Fold);
2510 Ops.erase(Ops.begin()+1); // Erase the folded element
2511 if (Ops.size() == 1) return Ops[0];
2512 LHSC = cast<SCEVConstant>(Ops[0]);
2513 }
2514
Dan Gohmane5aceed2009-06-24 14:46:22 +00002515 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002516 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2517 Ops.erase(Ops.begin());
2518 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002519 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2520 // If we have an umax with a constant maximum-int, it will always be
2521 // maximum-int.
2522 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002523 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002524
Dan Gohman3ab13122010-04-13 16:49:23 +00002525 if (Ops.size() == 1) return Ops[0];
2526 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002527
2528 // Find the first UMax
2529 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2530 ++Idx;
2531
2532 // Check to see if one of the operands is a UMax. If so, expand its operands
2533 // onto our operand list, and recurse to simplify.
2534 if (Idx < Ops.size()) {
2535 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002536 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002537 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002538 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002539 DeletedUMax = true;
2540 }
2541
2542 if (DeletedUMax)
2543 return getUMaxExpr(Ops);
2544 }
2545
2546 // Okay, check to see if the same value occurs in the operand list twice. If
2547 // so, delete one. Since we sorted the list, these values are required to
2548 // be adjacent.
2549 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002550 // X umax Y umax Y --> X umax Y
2551 // X umax Y --> X, if X is always greater than Y
2552 if (Ops[i] == Ops[i+1] ||
2553 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2554 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2555 --i; --e;
2556 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002557 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2558 --i; --e;
2559 }
2560
2561 if (Ops.size() == 1) return Ops[0];
2562
2563 assert(!Ops.empty() && "Reduced umax down to nothing!");
2564
2565 // Okay, it looks like we really DO need a umax expr. Check to see if we
2566 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002567 FoldingSetNodeID ID;
2568 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002569 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2570 ID.AddPointer(Ops[i]);
2571 void *IP = 0;
2572 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002573 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2574 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002575 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2576 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002577 UniqueSCEVs.InsertNode(S, IP);
2578 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002579}
2580
Dan Gohman9311ef62009-06-24 14:49:00 +00002581const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2582 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002583 // ~smax(~x, ~y) == smin(x, y).
2584 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2585}
2586
Dan Gohman9311ef62009-06-24 14:49:00 +00002587const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2588 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002589 // ~umax(~x, ~y) == umin(x, y)
2590 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2591}
2592
Matt Arsenault14807bd2013-09-10 19:55:24 +00002593const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Micah Villmow3574eca2012-10-08 16:38:25 +00002594 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman6ab10f62010-04-12 23:03:26 +00002595 // constant expression and then folding it back into a ConstantInt.
2596 // This is just a compile-time optimization.
2597 if (TD)
Matt Arsenault14807bd2013-09-10 19:55:24 +00002598 return getConstant(IntTy, TD->getTypeAllocSize(AllocTy));
Dan Gohman6ab10f62010-04-12 23:03:26 +00002599
Dan Gohman4f8eea82010-02-01 18:27:38 +00002600 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2601 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002602 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002603 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002604 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Matt Arsenault14807bd2013-09-10 19:55:24 +00002605 assert(Ty == IntTy && "Effective SCEV type doesn't match");
Dan Gohman4f8eea82010-02-01 18:27:38 +00002606 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2607}
2608
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002609const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00002610 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2611 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002612 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002613 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002614 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002615 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2616}
2617
Matt Arsenault14807bd2013-09-10 19:55:24 +00002618const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
2619 StructType *STy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002620 unsigned FieldNo) {
Micah Villmow3574eca2012-10-08 16:38:25 +00002621 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman6ab10f62010-04-12 23:03:26 +00002622 // constant expression and then folding it back into a ConstantInt.
2623 // This is just a compile-time optimization.
Matt Arsenault14807bd2013-09-10 19:55:24 +00002624 if (TD) {
2625 return getConstant(IntTy,
Dan Gohman6ab10f62010-04-12 23:03:26 +00002626 TD->getStructLayout(STy)->getElementOffset(FieldNo));
Matt Arsenault14807bd2013-09-10 19:55:24 +00002627 }
Dan Gohman6ab10f62010-04-12 23:03:26 +00002628
Dan Gohman0f5efe52010-01-28 02:15:55 +00002629 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2630 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002631 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002632 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002633 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002634 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002635}
2636
Matt Arsenault14807bd2013-09-10 19:55:24 +00002637const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
2638 Type *CTy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002639 Constant *FieldNo) {
2640 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002641 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002642 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002643 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002644 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002645 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002646}
2647
Dan Gohman0bba49c2009-07-07 17:06:11 +00002648const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002649 // Don't attempt to do anything other than create a SCEVUnknown object
2650 // here. createSCEV only calls getUnknown after checking for all other
2651 // interesting possibilities, and any other code that calls getUnknown
2652 // is doing so in order to hide a value from SCEV canonicalization.
2653
Dan Gohman1c343752009-06-27 21:21:31 +00002654 FoldingSetNodeID ID;
2655 ID.AddInteger(scUnknown);
2656 ID.AddPointer(V);
2657 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002658 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2659 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2660 "Stale SCEVUnknown in uniquing map!");
2661 return S;
2662 }
2663 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2664 FirstUnknown);
2665 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002666 UniqueSCEVs.InsertNode(S, IP);
2667 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002668}
2669
Chris Lattner53e677a2004-04-02 20:23:17 +00002670//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002671// Basic SCEV Analysis and PHI Idiom Recognition Code
2672//
2673
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002674/// isSCEVable - Test if values of the given type are analyzable within
2675/// the SCEV framework. This primarily includes integer types, and it
2676/// can optionally include pointer types if the ScalarEvolution class
2677/// has access to target-specific information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002678bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002679 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002680 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002681}
2682
2683/// getTypeSizeInBits - Return the size in bits of the specified type,
2684/// for which isSCEVable must return true.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002685uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002686 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2687
Micah Villmow3574eca2012-10-08 16:38:25 +00002688 // If we have a DataLayout, use it!
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002689 if (TD)
2690 return TD->getTypeSizeInBits(Ty);
2691
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002692 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002693 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002694 return Ty->getPrimitiveSizeInBits();
2695
Micah Villmow3574eca2012-10-08 16:38:25 +00002696 // The only other support type is pointer. Without DataLayout, conservatively
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002697 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002698 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002699 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002700}
2701
2702/// getEffectiveSCEVType - Return a type with the same bitwidth as
2703/// the given type and which represents how SCEV will treat the given
2704/// type, for which isSCEVable must return true. For pointer types,
2705/// this is the pointer-sized integer type.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002706Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002707 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2708
Matt Arsenault14807bd2013-09-10 19:55:24 +00002709 if (Ty->isIntegerTy()) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002710 return Ty;
Matt Arsenault14807bd2013-09-10 19:55:24 +00002711 }
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002712
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002713 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002714 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Matt Arsenault14807bd2013-09-10 19:55:24 +00002715
2716 if (TD)
2717 return TD->getIntPtrType(Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002718
Micah Villmow3574eca2012-10-08 16:38:25 +00002719 // Without DataLayout, conservatively assume pointers are 64-bit.
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002720 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002721}
Chris Lattner53e677a2004-04-02 20:23:17 +00002722
Dan Gohman0bba49c2009-07-07 17:06:11 +00002723const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002724 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002725}
2726
Shuxin Yang5e915e62013-07-08 17:33:13 +00002727namespace {
2728 // Helper class working with SCEVTraversal to figure out if a SCEV contains
2729 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
2730 // is set iff if find such SCEVUnknown.
2731 //
2732 struct FindInvalidSCEVUnknown {
2733 bool FindOne;
2734 FindInvalidSCEVUnknown() { FindOne = false; }
2735 bool follow(const SCEV *S) {
2736 switch (S->getSCEVType()) {
2737 case scConstant:
2738 return false;
2739 case scUnknown:
Shuxin Yanga1036992013-07-12 07:25:38 +00002740 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yang5e915e62013-07-08 17:33:13 +00002741 FindOne = true;
2742 return false;
2743 default:
2744 return true;
2745 }
2746 }
2747 bool isDone() const { return FindOne; }
2748 };
2749}
2750
2751bool ScalarEvolution::checkValidity(const SCEV *S) const {
2752 FindInvalidSCEVUnknown F;
2753 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
2754 ST.visitAll(S);
2755
2756 return !F.FindOne;
2757}
2758
Chris Lattner53e677a2004-04-02 20:23:17 +00002759/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2760/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002761const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002762 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002763
Shuxin Yang5e915e62013-07-08 17:33:13 +00002764 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
2765 if (I != ValueExprMap.end()) {
2766 const SCEV *S = I->second;
Shuxin Yanga1036992013-07-12 07:25:38 +00002767 if (checkValidity(S))
Shuxin Yang5e915e62013-07-08 17:33:13 +00002768 return S;
2769 else
2770 ValueExprMap.erase(I);
2771 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00002772 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002773
2774 // The process of creating a SCEV for V may have caused other SCEVs
2775 // to have been created, so it's necessary to insert the new entry
2776 // from scratch, rather than trying to remember the insert position
2777 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002778 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002779 return S;
2780}
2781
Dan Gohman2d1be872009-04-16 03:18:22 +00002782/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2783///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002784const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002785 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002786 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002787 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002788
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002789 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002790 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002791 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002792 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002793}
2794
2795/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002796const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002797 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002798 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002799 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002800
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002801 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002802 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002803 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002804 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002805 return getMinusSCEV(AllOnes, V);
2806}
2807
Andrew Trick3228cc22011-03-14 16:50:06 +00002808/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattner992efb02011-01-09 22:26:35 +00002809const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00002810 SCEV::NoWrapFlags Flags) {
Andrew Trick4dbe2002011-03-15 01:16:14 +00002811 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2812
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002813 // Fast path: X - X --> 0.
2814 if (LHS == RHS)
2815 return getConstant(LHS->getType(), 0);
2816
Dan Gohman2d1be872009-04-16 03:18:22 +00002817 // X - Y --> X + -Y
Andrew Trick3228cc22011-03-14 16:50:06 +00002818 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman2d1be872009-04-16 03:18:22 +00002819}
2820
2821/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2822/// input value to the specified type. If the type must be extended, it is zero
2823/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002824const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002825ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2826 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002827 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2828 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002829 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002830 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002831 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002832 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002833 return getTruncateExpr(V, Ty);
2834 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002835}
2836
2837/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2838/// input value to the specified type. If the type must be extended, it is sign
2839/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002840const SCEV *
2841ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002842 Type *Ty) {
2843 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002844 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2845 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002846 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002847 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002848 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002849 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002850 return getTruncateExpr(V, Ty);
2851 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002852}
2853
Dan Gohman467c4302009-05-13 03:46:30 +00002854/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2855/// input value to the specified type. If the type must be extended, it is zero
2856/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002857const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002858ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2859 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002860 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2861 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002862 "Cannot noop or zero extend with non-integer arguments!");
2863 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2864 "getNoopOrZeroExtend cannot truncate!");
2865 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2866 return V; // No conversion
2867 return getZeroExtendExpr(V, Ty);
2868}
2869
2870/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2871/// input value to the specified type. If the type must be extended, it is sign
2872/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002873const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002874ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2875 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002876 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2877 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002878 "Cannot noop or sign extend with non-integer arguments!");
2879 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2880 "getNoopOrSignExtend cannot truncate!");
2881 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2882 return V; // No conversion
2883 return getSignExtendExpr(V, Ty);
2884}
2885
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002886/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2887/// the input value to the specified type. If the type must be extended,
2888/// it is extended with unspecified bits. The conversion must not be
2889/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002890const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002891ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2892 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002893 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2894 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002895 "Cannot noop or any extend with non-integer arguments!");
2896 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2897 "getNoopOrAnyExtend cannot truncate!");
2898 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2899 return V; // No conversion
2900 return getAnyExtendExpr(V, Ty);
2901}
2902
Dan Gohman467c4302009-05-13 03:46:30 +00002903/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2904/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002905const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002906ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2907 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002908 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2909 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002910 "Cannot truncate or noop with non-integer arguments!");
2911 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2912 "getTruncateOrNoop cannot extend!");
2913 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2914 return V; // No conversion
2915 return getTruncateExpr(V, Ty);
2916}
2917
Dan Gohmana334aa72009-06-22 00:31:57 +00002918/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2919/// the types using zero-extension, and then perform a umax operation
2920/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002921const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2922 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002923 const SCEV *PromotedLHS = LHS;
2924 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002925
2926 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2927 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2928 else
2929 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2930
2931 return getUMaxExpr(PromotedLHS, PromotedRHS);
2932}
2933
Dan Gohmanc9759e82009-06-22 15:03:27 +00002934/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2935/// the types using zero-extension, and then perform a umin operation
2936/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002937const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2938 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002939 const SCEV *PromotedLHS = LHS;
2940 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002941
2942 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2943 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2944 else
2945 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2946
2947 return getUMinExpr(PromotedLHS, PromotedRHS);
2948}
2949
Andrew Trickb12a7542011-03-17 23:51:11 +00002950/// getPointerBase - Transitively follow the chain of pointer-type operands
2951/// until reaching a SCEV that does not have a single pointer operand. This
2952/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2953/// but corner cases do exist.
2954const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2955 // A pointer operand may evaluate to a nonpointer expression, such as null.
2956 if (!V->getType()->isPointerTy())
2957 return V;
2958
2959 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2960 return getPointerBase(Cast->getOperand());
2961 }
2962 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2963 const SCEV *PtrOp = 0;
2964 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2965 I != E; ++I) {
2966 if ((*I)->getType()->isPointerTy()) {
2967 // Cannot find the base of an expression with multiple pointer operands.
2968 if (PtrOp)
2969 return V;
2970 PtrOp = *I;
2971 }
2972 }
2973 if (!PtrOp)
2974 return V;
2975 return getPointerBase(PtrOp);
2976 }
2977 return V;
2978}
2979
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002980/// PushDefUseChildren - Push users of the given Instruction
2981/// onto the given Worklist.
2982static void
2983PushDefUseChildren(Instruction *I,
2984 SmallVectorImpl<Instruction *> &Worklist) {
2985 // Push the def-use children onto the Worklist stack.
2986 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2987 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002988 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002989}
2990
2991/// ForgetSymbolicValue - This looks up computed SCEV values for all
2992/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002993/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002994/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002995void
Dan Gohman85669632010-02-25 06:57:05 +00002996ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002997 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002998 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002999
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003000 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00003001 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003002 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00003003 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003004 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00003005
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003006 ValueExprMapType::iterator It =
Benjamin Kramer992c25a2012-06-30 22:37:15 +00003007 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003008 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003009 const SCEV *Old = It->second;
3010
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003011 // Short-circuit the def-use traversal if the symbolic name
3012 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00003013 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003014 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00003015
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003016 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00003017 // structure, it's a PHI that's in the progress of being computed
3018 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3019 // additional loop trip count information isn't going to change anything.
3020 // In the second case, createNodeForPHI will perform the necessary
3021 // updates on its own when it gets to that point. In the third, we do
3022 // want to forget the SCEVUnknown.
3023 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00003024 !isa<SCEVUnknown>(Old) ||
3025 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00003026 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003027 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003028 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003029 }
3030
3031 PushDefUseChildren(I, Worklist);
3032 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00003033}
Chris Lattner53e677a2004-04-02 20:23:17 +00003034
3035/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3036/// a loop header, making it a potential recurrence, or it doesn't.
3037///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003038const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00003039 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3040 if (L->getHeader() == PN->getParent()) {
3041 // The loop may have multiple entrances or multiple exits; we can analyze
3042 // this phi as an addrec if it has a unique entry value and a unique
3043 // backedge value.
3044 Value *BEValueV = 0, *StartValueV = 0;
3045 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3046 Value *V = PN->getIncomingValue(i);
3047 if (L->contains(PN->getIncomingBlock(i))) {
3048 if (!BEValueV) {
3049 BEValueV = V;
3050 } else if (BEValueV != V) {
3051 BEValueV = 0;
3052 break;
3053 }
3054 } else if (!StartValueV) {
3055 StartValueV = V;
3056 } else if (StartValueV != V) {
3057 StartValueV = 0;
3058 break;
3059 }
3060 }
3061 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003062 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003063 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramer992c25a2012-06-30 22:37:15 +00003064 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00003065 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003066 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00003067
3068 // Using this symbolic name for the PHI, analyze the value coming around
3069 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003070 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00003071
3072 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3073 // has a special value for the first iteration of the loop.
3074
3075 // If the value coming around the backedge is an add with the symbolic
3076 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00003077 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003078 // If there is a single occurrence of the symbolic value, replace it
3079 // with a recurrence.
3080 unsigned FoundIndex = Add->getNumOperands();
3081 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3082 if (Add->getOperand(i) == SymbolicName)
3083 if (FoundIndex == e) {
3084 FoundIndex = i;
3085 break;
3086 }
3087
3088 if (FoundIndex != Add->getNumOperands()) {
3089 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003090 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00003091 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3092 if (i != FoundIndex)
3093 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00003094 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00003095
3096 // This is not a valid addrec if the step amount is varying each
3097 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003098 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00003099 (isa<SCEVAddRecExpr>(Accum) &&
3100 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003101 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohmana10756e2010-01-21 02:09:26 +00003102
3103 // If the increment doesn't overflow, then neither the addrec nor
3104 // the post-increment will overflow.
3105 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3106 if (OBO->hasNoUnsignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003107 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003108 if (OBO->hasNoSignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003109 Flags = setFlags(Flags, SCEV::FlagNSW);
Andrew Trick635f7182011-03-09 17:23:39 +00003110 } else if (const GEPOperator *GEP =
Andrew Trick3228cc22011-03-14 16:50:06 +00003111 dyn_cast<GEPOperator>(BEValueV)) {
3112 // If the increment is an inbounds GEP, then we know the address
3113 // space cannot be wrapped around. We cannot make any guarantee
3114 // about signed or unsigned overflow because pointers are
3115 // unsigned but we may have a negative index from the base
3116 // pointer.
3117 if (GEP->isInBounds())
Andrew Trickc343c1e2011-03-15 00:37:00 +00003118 Flags = setFlags(Flags, SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003119 }
3120
Dan Gohman27dead42010-04-12 07:49:36 +00003121 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick3228cc22011-03-14 16:50:06 +00003122 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohmaneb490a72009-07-25 01:22:26 +00003123
Dan Gohmana10756e2010-01-21 02:09:26 +00003124 // Since the no-wrap flags are on the increment, they apply to the
3125 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003126 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00003127 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick3228cc22011-03-14 16:50:06 +00003128 Accum, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00003129
3130 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003131 // to be symbolic. We now need to go back and purge all of the
3132 // entries for the scalars that use the symbolic expression.
3133 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003134 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00003135 return PHISCEV;
3136 }
3137 }
Dan Gohman622ed672009-05-04 22:02:23 +00003138 } else if (const SCEVAddRecExpr *AddRec =
3139 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00003140 // Otherwise, this could be a loop like this:
3141 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3142 // In this case, j = {1,+,1} and BEValue is j.
3143 // Because the other in-value of i (0) fits the evolution of BEValue
3144 // i really is an addrec evolution.
3145 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00003146 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00003147
3148 // If StartVal = j.start - j.stride, we can use StartVal as the
3149 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003150 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00003151 AddRec->getOperand(1))) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003152 // FIXME: For constant StartVal, we should be able to infer
3153 // no-wrap flags.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003154 const SCEV *PHISCEV =
Andrew Trick3228cc22011-03-14 16:50:06 +00003155 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3156 SCEV::FlagAnyWrap);
Chris Lattner97156e72006-04-26 18:34:07 +00003157
3158 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003159 // to be symbolic. We now need to go back and purge all of the
3160 // entries for the scalars that use the symbolic expression.
3161 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003162 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00003163 return PHISCEV;
3164 }
3165 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003166 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003167 }
Dan Gohman27dead42010-04-12 07:49:36 +00003168 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003169
Dan Gohman85669632010-02-25 06:57:05 +00003170 // If the PHI has a single incoming value, follow that value, unless the
3171 // PHI's incoming blocks are in a different loop, in which case doing so
3172 // risks breaking LCSSA form. Instcombine would normally zap these, but
3173 // it doesn't have DominatorTree information, so it may miss cases.
Chad Rosier618c1db2011-12-01 03:08:23 +00003174 if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00003175 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00003176 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00003177
Chris Lattner53e677a2004-04-02 20:23:17 +00003178 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003179 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00003180}
3181
Dan Gohman26466c02009-05-08 20:26:55 +00003182/// createNodeForGEP - Expand GEP instructions into add and multiply
3183/// operations. This allows them to be analyzed by regular SCEV code.
3184///
Dan Gohmand281ed22009-12-18 02:09:29 +00003185const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003186 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00003187 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00003188 // Don't attempt to analyze GEPs over unsized objects.
3189 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3190 return getUnknown(GEP);
Matt Arsenault9ed1a3c2013-09-27 22:38:23 +00003191
3192 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3193 // Add expression, because the Instruction may be guarded by control flow
3194 // and the no-overflow bits may not be valid for the expression in any
3195 // context.
3196 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3197
Dan Gohmandeff6212010-05-03 22:09:21 +00003198 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00003199 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00003200 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00003201 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00003202 I != E; ++I) {
3203 Value *Index = *I;
3204 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003205 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohman26466c02009-05-08 20:26:55 +00003206 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00003207 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenault14807bd2013-09-10 19:55:24 +00003208 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003209
Dan Gohmanb9f96512010-06-30 07:16:37 +00003210 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003211 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003212 } else {
3213 // For an array, add the element offset, explicitly scaled.
Matt Arsenault14807bd2013-09-10 19:55:24 +00003214 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003215 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003216 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003217 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3218
Dan Gohmanb9f96512010-06-30 07:16:37 +00003219 // Multiply the index by the element size to compute the element offset.
Matt Arsenault9ed1a3c2013-09-27 22:38:23 +00003220 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003221
3222 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003223 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003224 }
3225 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00003226
3227 // Get the SCEV for the GEP base.
3228 const SCEV *BaseS = getSCEV(Base);
3229
Dan Gohmanb9f96512010-06-30 07:16:37 +00003230 // Add the total offset from all the GEP indices to the base.
Matt Arsenault9ed1a3c2013-09-27 22:38:23 +00003231 return getAddExpr(BaseS, TotalOffset, Wrap);
Dan Gohman26466c02009-05-08 20:26:55 +00003232}
3233
Nick Lewycky83bb0052007-11-22 07:59:40 +00003234/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3235/// guaranteed to end in (at every loop iteration). It is, at the same time,
3236/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3237/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003238uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00003239ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00003240 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00003241 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00003242
Dan Gohman622ed672009-05-04 22:02:23 +00003243 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00003244 return std::min(GetMinTrailingZeros(T->getOperand()),
3245 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003246
Dan Gohman622ed672009-05-04 22:02:23 +00003247 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003248 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3249 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3250 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003251 }
3252
Dan Gohman622ed672009-05-04 22:02:23 +00003253 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003254 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3255 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3256 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003257 }
3258
Dan Gohman622ed672009-05-04 22:02:23 +00003259 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003260 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003261 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003262 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003263 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003264 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003265 }
3266
Dan Gohman622ed672009-05-04 22:02:23 +00003267 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003268 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003269 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3270 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00003271 for (unsigned i = 1, e = M->getNumOperands();
3272 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003273 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00003274 BitWidth);
3275 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003276 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003277
Dan Gohman622ed672009-05-04 22:02:23 +00003278 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003279 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003280 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003281 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003282 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003283 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003284 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003285
Dan Gohman622ed672009-05-04 22:02:23 +00003286 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003287 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003288 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003289 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003290 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003291 return MinOpRes;
3292 }
3293
Dan Gohman622ed672009-05-04 22:02:23 +00003294 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00003295 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003296 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00003297 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003298 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003299 return MinOpRes;
3300 }
3301
Dan Gohman2c364ad2009-06-19 23:29:04 +00003302 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3303 // For a SCEVUnknown, ask ValueTracking.
3304 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohman2c364ad2009-06-19 23:29:04 +00003305 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003306 ComputeMaskedBits(U->getValue(), Zeros, Ones);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003307 return Zeros.countTrailingOnes();
3308 }
3309
3310 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003311 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003312}
Chris Lattner53e677a2004-04-02 20:23:17 +00003313
Dan Gohman85b05a22009-07-13 21:35:55 +00003314/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3315///
3316ConstantRange
3317ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003318 // See if we've computed this range already.
3319 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3320 if (I != UnsignedRanges.end())
3321 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003322
3323 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003324 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003325
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003326 unsigned BitWidth = getTypeSizeInBits(S->getType());
3327 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3328
3329 // If the value has known zeros, the maximum unsigned value will have those
3330 // known zeros as well.
3331 uint32_t TZ = GetMinTrailingZeros(S);
3332 if (TZ != 0)
3333 ConservativeResult =
3334 ConstantRange(APInt::getMinValue(BitWidth),
3335 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3336
Dan Gohman85b05a22009-07-13 21:35:55 +00003337 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3338 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3339 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3340 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003341 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003342 }
3343
3344 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3345 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3346 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3347 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003348 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003349 }
3350
3351 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3352 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3353 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3354 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003355 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003356 }
3357
3358 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3359 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3360 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3361 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003362 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003363 }
3364
3365 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3366 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3367 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003368 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003369 }
3370
3371 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3372 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003373 return setUnsignedRange(ZExt,
3374 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003375 }
3376
3377 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3378 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003379 return setUnsignedRange(SExt,
3380 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003381 }
3382
3383 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3384 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003385 return setUnsignedRange(Trunc,
3386 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003387 }
3388
Dan Gohman85b05a22009-07-13 21:35:55 +00003389 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003390 // If there's no unsigned wrap, the value will never be less than its
3391 // initial value.
Andrew Trick3228cc22011-03-14 16:50:06 +00003392 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmana10756e2010-01-21 02:09:26 +00003393 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003394 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003395 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003396 ConservativeResult.intersectWith(
3397 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003398
3399 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003400 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003401 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003402 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003403 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3404 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003405 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3406
3407 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003408 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003409
3410 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003411 ConstantRange StepRange = getSignedRange(Step);
3412 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3413 ConstantRange EndRange =
3414 StartRange.add(MaxBECountRange.multiply(StepRange));
3415
3416 // Check for overflow. This must be done with ConstantRange arithmetic
3417 // because we could be called from within the ScalarEvolution overflow
3418 // checking code.
3419 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3420 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3421 ConstantRange ExtMaxBECountRange =
3422 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3423 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3424 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3425 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003426 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003427
Dan Gohman85b05a22009-07-13 21:35:55 +00003428 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3429 EndRange.getUnsignedMin());
3430 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3431 EndRange.getUnsignedMax());
3432 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003433 return setUnsignedRange(AddRec, ConservativeResult);
3434 return setUnsignedRange(AddRec,
3435 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003436 }
3437 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003438
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003439 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003440 }
3441
3442 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3443 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003444 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003445 ComputeMaskedBits(U->getValue(), Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003446 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003447 return setUnsignedRange(U, ConservativeResult);
3448 return setUnsignedRange(U,
3449 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003450 }
3451
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003452 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003453}
3454
Dan Gohman85b05a22009-07-13 21:35:55 +00003455/// getSignedRange - Determine the signed range for a particular SCEV.
3456///
3457ConstantRange
3458ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohmana3bbf242011-01-24 17:54:18 +00003459 // See if we've computed this range already.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003460 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3461 if (I != SignedRanges.end())
3462 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003463
Dan Gohman85b05a22009-07-13 21:35:55 +00003464 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003465 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003466
Dan Gohman52fddd32010-01-26 04:40:18 +00003467 unsigned BitWidth = getTypeSizeInBits(S->getType());
3468 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3469
3470 // If the value has known zeros, the maximum signed value will have those
3471 // known zeros as well.
3472 uint32_t TZ = GetMinTrailingZeros(S);
3473 if (TZ != 0)
3474 ConservativeResult =
3475 ConstantRange(APInt::getSignedMinValue(BitWidth),
3476 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3477
Dan Gohman85b05a22009-07-13 21:35:55 +00003478 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3479 ConstantRange X = getSignedRange(Add->getOperand(0));
3480 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3481 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003482 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003483 }
3484
Dan Gohman85b05a22009-07-13 21:35:55 +00003485 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3486 ConstantRange X = getSignedRange(Mul->getOperand(0));
3487 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3488 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003489 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003490 }
3491
Dan Gohman85b05a22009-07-13 21:35:55 +00003492 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3493 ConstantRange X = getSignedRange(SMax->getOperand(0));
3494 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3495 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003496 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003497 }
Dan Gohman62849c02009-06-24 01:05:09 +00003498
Dan Gohman85b05a22009-07-13 21:35:55 +00003499 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3500 ConstantRange X = getSignedRange(UMax->getOperand(0));
3501 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3502 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003503 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003504 }
Dan Gohman62849c02009-06-24 01:05:09 +00003505
Dan Gohman85b05a22009-07-13 21:35:55 +00003506 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3507 ConstantRange X = getSignedRange(UDiv->getLHS());
3508 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003509 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003510 }
Dan Gohman62849c02009-06-24 01:05:09 +00003511
Dan Gohman85b05a22009-07-13 21:35:55 +00003512 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3513 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003514 return setSignedRange(ZExt,
3515 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003516 }
3517
3518 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3519 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003520 return setSignedRange(SExt,
3521 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003522 }
3523
3524 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3525 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003526 return setSignedRange(Trunc,
3527 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003528 }
3529
Dan Gohman85b05a22009-07-13 21:35:55 +00003530 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003531 // If there's no signed wrap, and all the operands have the same sign or
3532 // zero, the value won't ever change sign.
Andrew Trick3228cc22011-03-14 16:50:06 +00003533 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003534 bool AllNonNeg = true;
3535 bool AllNonPos = true;
3536 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3537 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3538 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3539 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003540 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003541 ConservativeResult = ConservativeResult.intersectWith(
3542 ConstantRange(APInt(BitWidth, 0),
3543 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003544 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003545 ConservativeResult = ConservativeResult.intersectWith(
3546 ConstantRange(APInt::getSignedMinValue(BitWidth),
3547 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003548 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003549
3550 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003551 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003552 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003553 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003554 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3555 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003556 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3557
3558 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003559 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003560
3561 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003562 ConstantRange StepRange = getSignedRange(Step);
3563 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3564 ConstantRange EndRange =
3565 StartRange.add(MaxBECountRange.multiply(StepRange));
3566
3567 // Check for overflow. This must be done with ConstantRange arithmetic
3568 // because we could be called from within the ScalarEvolution overflow
3569 // checking code.
3570 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3571 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3572 ConstantRange ExtMaxBECountRange =
3573 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3574 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3575 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3576 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003577 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003578
Dan Gohman85b05a22009-07-13 21:35:55 +00003579 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3580 EndRange.getSignedMin());
3581 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3582 EndRange.getSignedMax());
3583 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003584 return setSignedRange(AddRec, ConservativeResult);
3585 return setSignedRange(AddRec,
3586 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003587 }
Dan Gohman62849c02009-06-24 01:05:09 +00003588 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003589
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003590 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003591 }
3592
Dan Gohman2c364ad2009-06-19 23:29:04 +00003593 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3594 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003595 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003596 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003597 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
Hal Finkel033e0a92013-07-09 18:16:16 +00003598 if (NS <= 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003599 return setSignedRange(U, ConservativeResult);
3600 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003601 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003602 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003603 }
3604
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003605 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003606}
3607
Chris Lattner53e677a2004-04-02 20:23:17 +00003608/// createSCEV - We know that there is no SCEV for the specified value.
3609/// Analyze the expression.
3610///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003611const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003612 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003613 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003614
Dan Gohman6c459a22008-06-22 19:56:46 +00003615 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003616 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003617 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003618
3619 // Don't attempt to analyze instructions in blocks that aren't
3620 // reachable. Such instructions don't matter, and they aren't required
3621 // to obey basic rules for definitions dominating uses which this
3622 // analysis depends on.
3623 if (!DT->isReachableFromEntry(I->getParent()))
3624 return getUnknown(V);
3625 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003626 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003627 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3628 return getConstant(CI);
3629 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003630 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003631 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3632 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003633 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003634 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003635
Dan Gohmanca178902009-07-17 20:47:02 +00003636 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003637 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003638 case Instruction::Add: {
3639 // The simple thing to do would be to just call getSCEV on both operands
3640 // and call getAddExpr with the result. However if we're looking at a
3641 // bunch of things all added together, this can be quite inefficient,
3642 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3643 // Instead, gather up all the operands and make a single getAddExpr call.
3644 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickecb35ec2011-11-29 02:16:38 +00003645 //
3646 // Don't apply this instruction's NSW or NUW flags to the new
3647 // expression. The instruction may be guarded by control flow that the
3648 // no-wrap behavior depends on. Non-control-equivalent instructions can be
3649 // mapped to the same SCEV expression, and it would be incorrect to transfer
3650 // NSW/NUW semantics to those operations.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003651 SmallVector<const SCEV *, 4> AddOps;
3652 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003653 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3654 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3655 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3656 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003657 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003658 const SCEV *Op1 = getSCEV(U->getOperand(1));
3659 if (Opcode == Instruction::Sub)
3660 AddOps.push_back(getNegativeSCEV(Op1));
3661 else
3662 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003663 }
3664 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickecb35ec2011-11-29 02:16:38 +00003665 return getAddExpr(AddOps);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003666 }
3667 case Instruction::Mul: {
Andrew Trickecb35ec2011-11-29 02:16:38 +00003668 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003669 SmallVector<const SCEV *, 4> MulOps;
3670 MulOps.push_back(getSCEV(U->getOperand(1)));
3671 for (Value *Op = U->getOperand(0);
Andrew Trick635f7182011-03-09 17:23:39 +00003672 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003673 Op = U->getOperand(0)) {
3674 U = cast<Operator>(Op);
3675 MulOps.push_back(getSCEV(U->getOperand(1)));
3676 }
3677 MulOps.push_back(getSCEV(U->getOperand(0)));
3678 return getMulExpr(MulOps);
3679 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003680 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003681 return getUDivExpr(getSCEV(U->getOperand(0)),
3682 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003683 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003684 return getMinusSCEV(getSCEV(U->getOperand(0)),
3685 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003686 case Instruction::And:
3687 // For an expression like x&255 that merely masks off the high bits,
3688 // use zext(trunc(x)) as the SCEV expression.
3689 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003690 if (CI->isNullValue())
3691 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003692 if (CI->isAllOnesValue())
3693 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003694 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003695
3696 // Instcombine's ShrinkDemandedConstant may strip bits out of
3697 // constants, obscuring what would otherwise be a low-bits mask.
3698 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3699 // knew about to reconstruct a low-bits mask value.
3700 unsigned LZ = A.countLeadingZeros();
3701 unsigned BitWidth = A.getBitWidth();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003702 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003703 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD);
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003704
3705 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3706
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003707 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003708 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003709 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003710 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003711 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003712 }
3713 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003714
Dan Gohman6c459a22008-06-22 19:56:46 +00003715 case Instruction::Or:
3716 // If the RHS of the Or is a constant, we may have something like:
3717 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3718 // optimizations will transparently handle this case.
3719 //
3720 // In order for this transformation to be safe, the LHS must be of the
3721 // form X*(2^n) and the Or constant must be less than 2^n.
3722 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003723 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003724 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003725 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003726 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3727 // Build a plain add SCEV.
3728 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3729 // If the LHS of the add was an addrec and it has no-wrap flags,
3730 // transfer the no-wrap flags, since an or won't introduce a wrap.
3731 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3732 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick3228cc22011-03-14 16:50:06 +00003733 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3734 OldAR->getNoWrapFlags());
Dan Gohman1f96e672009-09-17 18:05:20 +00003735 }
3736 return S;
3737 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003738 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003739 break;
3740 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003741 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003742 // If the RHS of the xor is a signbit, then this is just an add.
3743 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003744 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003745 return getAddExpr(getSCEV(U->getOperand(0)),
3746 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003747
3748 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003749 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003750 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003751
3752 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3753 // This is a variant of the check for xor with -1, and it handles
3754 // the case where instcombine has trimmed non-demanded bits out
3755 // of an xor with -1.
3756 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3757 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3758 if (BO->getOpcode() == Instruction::And &&
3759 LCI->getValue() == CI->getValue())
3760 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003761 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003762 Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003763 const SCEV *Z0 = Z->getOperand();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003764 Type *Z0Ty = Z0->getType();
Dan Gohman82052832009-06-18 00:00:20 +00003765 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3766
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003767 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003768 // mask off the high bits. Complement the operand and
3769 // re-apply the zext.
3770 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3771 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3772
3773 // If C is a single bit, it may be in the sign-bit position
3774 // before the zero-extend. In this case, represent the xor
3775 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003776 APInt Trunc = CI->getValue().trunc(Z0TySize);
3777 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003778 Trunc.isSignBit())
3779 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3780 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003781 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003782 }
3783 break;
3784
3785 case Instruction::Shl:
3786 // Turn shift left of a constant amount into a multiply.
3787 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003788 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003789
3790 // If the shift count is not less than the bitwidth, the result of
3791 // the shift is undefined. Don't try to analyze it, because the
3792 // resolution chosen here may differ from the resolution chosen in
3793 // other parts of the compiler.
3794 if (SA->getValue().uge(BitWidth))
3795 break;
3796
Owen Andersoneed707b2009-07-24 23:12:02 +00003797 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramer0a230e02013-07-11 16:05:50 +00003798 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003799 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003800 }
3801 break;
3802
Nick Lewycky01eaf802008-07-07 06:15:49 +00003803 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003804 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003805 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003806 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003807
3808 // If the shift count is not less than the bitwidth, the result of
3809 // the shift is undefined. Don't try to analyze it, because the
3810 // resolution chosen here may differ from the resolution chosen in
3811 // other parts of the compiler.
3812 if (SA->getValue().uge(BitWidth))
3813 break;
3814
Owen Andersoneed707b2009-07-24 23:12:02 +00003815 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramer0a230e02013-07-11 16:05:50 +00003816 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003817 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003818 }
3819 break;
3820
Dan Gohman4ee29af2009-04-21 02:26:00 +00003821 case Instruction::AShr:
3822 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3823 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003824 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003825 if (L->getOpcode() == Instruction::Shl &&
3826 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003827 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3828
3829 // If the shift count is not less than the bitwidth, the result of
3830 // the shift is undefined. Don't try to analyze it, because the
3831 // resolution chosen here may differ from the resolution chosen in
3832 // other parts of the compiler.
3833 if (CI->getValue().uge(BitWidth))
3834 break;
3835
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003836 uint64_t Amt = BitWidth - CI->getZExtValue();
3837 if (Amt == BitWidth)
3838 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003839 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003840 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003841 IntegerType::get(getContext(),
3842 Amt)),
3843 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003844 }
3845 break;
3846
Dan Gohman6c459a22008-06-22 19:56:46 +00003847 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003848 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003849
3850 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003851 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003852
3853 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003854 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003855
3856 case Instruction::BitCast:
3857 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003858 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003859 return getSCEV(U->getOperand(0));
3860 break;
3861
Dan Gohman4f8eea82010-02-01 18:27:38 +00003862 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3863 // lead to pointer expressions which cannot safely be expanded to GEPs,
3864 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3865 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003866
Dan Gohman26466c02009-05-08 20:26:55 +00003867 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003868 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003869
Dan Gohman6c459a22008-06-22 19:56:46 +00003870 case Instruction::PHI:
3871 return createNodeForPHI(cast<PHINode>(U));
3872
3873 case Instruction::Select:
3874 // This could be a smax or umax that was lowered earlier.
3875 // Try to recover it.
3876 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3877 Value *LHS = ICI->getOperand(0);
3878 Value *RHS = ICI->getOperand(1);
3879 switch (ICI->getPredicate()) {
3880 case ICmpInst::ICMP_SLT:
3881 case ICmpInst::ICMP_SLE:
3882 std::swap(LHS, RHS);
3883 // fall through
3884 case ICmpInst::ICMP_SGT:
3885 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003886 // a >s b ? a+x : b+x -> smax(a, b)+x
3887 // a >s b ? b+x : a+x -> smin(a, b)+x
3888 if (LHS->getType() == U->getType()) {
3889 const SCEV *LS = getSCEV(LHS);
3890 const SCEV *RS = getSCEV(RHS);
3891 const SCEV *LA = getSCEV(U->getOperand(1));
3892 const SCEV *RA = getSCEV(U->getOperand(2));
3893 const SCEV *LDiff = getMinusSCEV(LA, LS);
3894 const SCEV *RDiff = getMinusSCEV(RA, RS);
3895 if (LDiff == RDiff)
3896 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3897 LDiff = getMinusSCEV(LA, RS);
3898 RDiff = getMinusSCEV(RA, LS);
3899 if (LDiff == RDiff)
3900 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3901 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003902 break;
3903 case ICmpInst::ICMP_ULT:
3904 case ICmpInst::ICMP_ULE:
3905 std::swap(LHS, RHS);
3906 // fall through
3907 case ICmpInst::ICMP_UGT:
3908 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003909 // a >u b ? a+x : b+x -> umax(a, b)+x
3910 // a >u b ? b+x : a+x -> umin(a, b)+x
3911 if (LHS->getType() == U->getType()) {
3912 const SCEV *LS = getSCEV(LHS);
3913 const SCEV *RS = getSCEV(RHS);
3914 const SCEV *LA = getSCEV(U->getOperand(1));
3915 const SCEV *RA = getSCEV(U->getOperand(2));
3916 const SCEV *LDiff = getMinusSCEV(LA, LS);
3917 const SCEV *RDiff = getMinusSCEV(RA, RS);
3918 if (LDiff == RDiff)
3919 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3920 LDiff = getMinusSCEV(LA, RS);
3921 RDiff = getMinusSCEV(RA, LS);
3922 if (LDiff == RDiff)
3923 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3924 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003925 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003926 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003927 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3928 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003929 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003930 cast<ConstantInt>(RHS)->isZero()) {
3931 const SCEV *One = getConstant(LHS->getType(), 1);
3932 const SCEV *LS = getSCEV(LHS);
3933 const SCEV *LA = getSCEV(U->getOperand(1));
3934 const SCEV *RA = getSCEV(U->getOperand(2));
3935 const SCEV *LDiff = getMinusSCEV(LA, LS);
3936 const SCEV *RDiff = getMinusSCEV(RA, One);
3937 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003938 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003939 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003940 break;
3941 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003942 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3943 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003944 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003945 cast<ConstantInt>(RHS)->isZero()) {
3946 const SCEV *One = getConstant(LHS->getType(), 1);
3947 const SCEV *LS = getSCEV(LHS);
3948 const SCEV *LA = getSCEV(U->getOperand(1));
3949 const SCEV *RA = getSCEV(U->getOperand(2));
3950 const SCEV *LDiff = getMinusSCEV(LA, One);
3951 const SCEV *RDiff = getMinusSCEV(RA, LS);
3952 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003953 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003954 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003955 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003956 default:
3957 break;
3958 }
3959 }
3960
3961 default: // We cannot analyze this expression.
3962 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003963 }
3964
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003965 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003966}
3967
3968
3969
3970//===----------------------------------------------------------------------===//
3971// Iteration Count Computation Code
3972//
3973
Andrew Trickb1831c62011-08-11 23:36:16 +00003974/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Trick3eada312012-01-11 06:52:55 +00003975/// normal unsigned value. Returns 0 if the trip count is unknown or not
3976/// constant. Will also return 0 if the maximum trip count is very large (>=
3977/// 2^32).
3978///
3979/// This "trip count" assumes that control exits via ExitingBlock. More
3980/// precisely, it is the number of times that control may reach ExitingBlock
3981/// before taking the branch. For loops with multiple exits, it may not be the
3982/// number times that the loop header executes because the loop may exit
3983/// prematurely via another branch.
Andrew Trickcd8e3c42013-05-31 23:34:46 +00003984///
3985/// FIXME: We conservatively call getBackedgeTakenCount(L) instead of
3986/// getExitCount(L, ExitingBlock) to compute a safe trip count considering all
3987/// loop exits. getExitCount() may return an exact count for this branch
3988/// assuming no-signed-wrap. The number of well-defined iterations may actually
3989/// be higher than this trip count if this exit test is skipped and the loop
3990/// exits via a different branch. Ideally, getExitCount() would know whether it
3991/// depends on a NSW assumption, and we would only fall back to a conservative
3992/// trip count in that case.
Andrew Trick3eada312012-01-11 06:52:55 +00003993unsigned ScalarEvolution::
Aaron Ballmanf56a6de2013-06-04 01:01:56 +00003994getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) {
Andrew Trickb1831c62011-08-11 23:36:16 +00003995 const SCEVConstant *ExitCount =
Andrew Trickcd8e3c42013-05-31 23:34:46 +00003996 dyn_cast<SCEVConstant>(getBackedgeTakenCount(L));
Andrew Trickb1831c62011-08-11 23:36:16 +00003997 if (!ExitCount)
3998 return 0;
3999
4000 ConstantInt *ExitConst = ExitCount->getValue();
4001
4002 // Guard against huge trip counts.
4003 if (ExitConst->getValue().getActiveBits() > 32)
4004 return 0;
4005
4006 // In case of integer overflow, this returns 0, which is correct.
4007 return ((unsigned)ExitConst->getZExtValue()) + 1;
4008}
4009
4010/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4011/// trip count of this loop as a normal unsigned value, if possible. This
4012/// means that the actual trip count is always a multiple of the returned
4013/// value (don't forget the trip count could very well be zero as well!).
4014///
4015/// Returns 1 if the trip count is unknown or not guaranteed to be the
4016/// multiple of a constant (which is also the case if the trip count is simply
4017/// constant, use getSmallConstantTripCount for that case), Will also return 1
4018/// if the trip count is very large (>= 2^32).
Andrew Trick3eada312012-01-11 06:52:55 +00004019///
4020/// As explained in the comments for getSmallConstantTripCount, this assumes
4021/// that control exits the loop via ExitingBlock.
4022unsigned ScalarEvolution::
Aaron Ballmanf56a6de2013-06-04 01:01:56 +00004023getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) {
Andrew Trickcd8e3c42013-05-31 23:34:46 +00004024 const SCEV *ExitCount = getBackedgeTakenCount(L);
Andrew Trickb1831c62011-08-11 23:36:16 +00004025 if (ExitCount == getCouldNotCompute())
4026 return 1;
4027
4028 // Get the trip count from the BE count by adding 1.
4029 const SCEV *TCMul = getAddExpr(ExitCount,
4030 getConstant(ExitCount->getType(), 1));
4031 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4032 // to factor simple cases.
4033 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4034 TCMul = Mul->getOperand(0);
4035
4036 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4037 if (!MulC)
4038 return 1;
4039
4040 ConstantInt *Result = MulC->getValue();
4041
Hal Finkel8c655492012-10-24 19:46:44 +00004042 // Guard against huge trip counts (this requires checking
4043 // for zero to handle the case where the trip count == -1 and the
4044 // addition wraps).
4045 if (!Result || Result->getValue().getActiveBits() > 32 ||
4046 Result->getValue().getActiveBits() == 0)
Andrew Trickb1831c62011-08-11 23:36:16 +00004047 return 1;
4048
4049 return (unsigned)Result->getZExtValue();
4050}
4051
Andrew Trick5116ff62011-07-26 17:19:55 +00004052// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickcd8e3c42013-05-31 23:34:46 +00004053// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick5116ff62011-07-26 17:19:55 +00004054// SCEVCouldNotCompute.
Andrew Trickfcb43562011-08-02 04:23:35 +00004055const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4056 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick5116ff62011-07-26 17:19:55 +00004057}
4058
Dan Gohman46bdfb02009-02-24 18:55:53 +00004059/// getBackedgeTakenCount - If the specified loop has a predictable
4060/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4061/// object. The backedge-taken count is the number of times the loop header
4062/// will be branched to from within the loop. This is one less than the
4063/// trip count of the loop, since it doesn't count the first iteration,
4064/// when the header is branched to from outside the loop.
4065///
4066/// Note that it is not valid to call this method on a loop without a
4067/// loop-invariant backedge-taken count (see
4068/// hasLoopInvariantBackedgeTakenCount).
4069///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004070const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004071 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004072}
4073
4074/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4075/// return the least SCEV value that is known never to be less than the
4076/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004077const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004078 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004079}
4080
Dan Gohman59ae6b92009-07-08 19:23:34 +00004081/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4082/// onto the given Worklist.
4083static void
4084PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4085 BasicBlock *Header = L->getHeader();
4086
4087 // Push all Loop-header PHIs onto the Worklist stack.
4088 for (BasicBlock::iterator I = Header->begin();
4089 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4090 Worklist.push_back(PN);
4091}
4092
Dan Gohmana1af7572009-04-30 20:47:05 +00004093const ScalarEvolution::BackedgeTakenInfo &
4094ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004095 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004096 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00004097 // update the value. The temporary CouldNotCompute value tells SCEV
4098 // code elsewhere that it shouldn't attempt to request a new
4099 // backedge-taken count, which could result in infinite recursion.
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004100 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick5116ff62011-07-26 17:19:55 +00004101 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnerf1859892011-01-09 02:16:18 +00004102 if (!Pair.second)
4103 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00004104
Andrew Trick5116ff62011-07-26 17:19:55 +00004105 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4106 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4107 // must be cleared in this scope.
4108 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4109
4110 if (Result.getExact(this) != getCouldNotCompute()) {
4111 assert(isLoopInvariant(Result.getExact(this), L) &&
4112 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnerf1859892011-01-09 02:16:18 +00004113 "Computed backedge-taken count isn't loop invariant for loop!");
4114 ++NumTripCountsComputed;
Andrew Trick5116ff62011-07-26 17:19:55 +00004115 }
4116 else if (Result.getMax(this) == getCouldNotCompute() &&
4117 isa<PHINode>(L->getHeader()->begin())) {
4118 // Only count loops that have phi nodes as not being computable.
4119 ++NumTripCountsNotComputed;
Chris Lattnerf1859892011-01-09 02:16:18 +00004120 }
Dan Gohmana1af7572009-04-30 20:47:05 +00004121
Chris Lattnerf1859892011-01-09 02:16:18 +00004122 // Now that we know more about the trip count for this loop, forget any
4123 // existing SCEV values for PHI nodes in this loop since they are only
4124 // conservative estimates made without the benefit of trip count
4125 // information. This is similar to the code in forgetLoop, except that
4126 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick5116ff62011-07-26 17:19:55 +00004127 if (Result.hasAnyInfo()) {
Chris Lattnerf1859892011-01-09 02:16:18 +00004128 SmallVector<Instruction *, 16> Worklist;
4129 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004130
Chris Lattnerf1859892011-01-09 02:16:18 +00004131 SmallPtrSet<Instruction *, 8> Visited;
4132 while (!Worklist.empty()) {
4133 Instruction *I = Worklist.pop_back_val();
4134 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004135
Chris Lattnerf1859892011-01-09 02:16:18 +00004136 ValueExprMapType::iterator It =
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004137 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnerf1859892011-01-09 02:16:18 +00004138 if (It != ValueExprMap.end()) {
4139 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00004140
Chris Lattnerf1859892011-01-09 02:16:18 +00004141 // SCEVUnknown for a PHI either means that it has an unrecognized
4142 // structure, or it's a PHI that's in the progress of being computed
4143 // by createNodeForPHI. In the former case, additional loop trip
4144 // count information isn't going to change anything. In the later
4145 // case, createNodeForPHI will perform the necessary updates on its
4146 // own when it gets to that point.
4147 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4148 forgetMemoizedResults(Old);
4149 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004150 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004151 if (PHINode *PN = dyn_cast<PHINode>(I))
4152 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004153 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004154
4155 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004156 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004157 }
Dan Gohman308bec32011-04-25 22:48:29 +00004158
4159 // Re-lookup the insert position, since the call to
4160 // ComputeBackedgeTakenCount above could result in a
4161 // recusive call to getBackedgeTakenInfo (on a different
4162 // loop), which would invalidate the iterator computed
4163 // earlier.
4164 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattner53e677a2004-04-02 20:23:17 +00004165}
4166
Dan Gohman4c7279a2009-10-31 15:04:55 +00004167/// forgetLoop - This method should be called by the client when it has
4168/// changed a loop in a way that may effect ScalarEvolution's ability to
4169/// compute a trip count, or if the loop is deleted.
4170void ScalarEvolution::forgetLoop(const Loop *L) {
4171 // Drop any stored trip count value.
Andrew Trick5116ff62011-07-26 17:19:55 +00004172 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4173 BackedgeTakenCounts.find(L);
4174 if (BTCPos != BackedgeTakenCounts.end()) {
4175 BTCPos->second.clear();
4176 BackedgeTakenCounts.erase(BTCPos);
4177 }
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00004178
Dan Gohman4c7279a2009-10-31 15:04:55 +00004179 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00004180 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004181 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004182
Dan Gohman59ae6b92009-07-08 19:23:34 +00004183 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00004184 while (!Worklist.empty()) {
4185 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00004186 if (!Visited.insert(I)) continue;
4187
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004188 ValueExprMapType::iterator It =
4189 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004190 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004191 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004192 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004193 if (PHINode *PN = dyn_cast<PHINode>(I))
4194 ConstantEvolutionLoopExitValue.erase(PN);
4195 }
4196
4197 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004198 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00004199
4200 // Forget all contained loops too, to avoid dangling entries in the
4201 // ValuesAtScopes map.
4202 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4203 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00004204}
4205
Eric Christophere6cbfa62010-07-29 01:25:38 +00004206/// forgetValue - This method should be called by the client when it has
4207/// changed a value in a way that may effect its value, or which may
4208/// disconnect it from a def-use chain linking it to a loop.
4209void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004210 Instruction *I = dyn_cast<Instruction>(V);
4211 if (!I) return;
4212
4213 // Drop information about expressions based on loop-header PHIs.
4214 SmallVector<Instruction *, 16> Worklist;
4215 Worklist.push_back(I);
4216
4217 SmallPtrSet<Instruction *, 8> Visited;
4218 while (!Worklist.empty()) {
4219 I = Worklist.pop_back_val();
4220 if (!Visited.insert(I)) continue;
4221
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004222 ValueExprMapType::iterator It =
4223 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004224 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004225 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004226 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004227 if (PHINode *PN = dyn_cast<PHINode>(I))
4228 ConstantEvolutionLoopExitValue.erase(PN);
4229 }
4230
4231 PushDefUseChildren(I, Worklist);
4232 }
4233}
4234
Andrew Trick5116ff62011-07-26 17:19:55 +00004235/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004236/// exits. A computable result can only be return for loops with a single exit.
4237/// Returning the minimum taken count among all exits is incorrect because one
4238/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4239/// the limit of each loop test is never skipped. This is a valid assumption as
4240/// long as the loop exits via that test. For precise results, it is the
4241/// caller's responsibility to specify the relevant loop exit using
4242/// getExact(ExitingBlock, SE).
Andrew Trick5116ff62011-07-26 17:19:55 +00004243const SCEV *
4244ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4245 // If any exits were not computable, the loop is not computable.
4246 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4247
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004248 // We need exactly one computable exit.
Andrew Trickfcb43562011-08-02 04:23:35 +00004249 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004250 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4251
4252 const SCEV *BECount = 0;
4253 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4254 ENT != 0; ENT = ENT->getNextExit()) {
4255
4256 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4257
4258 if (!BECount)
4259 BECount = ENT->ExactNotTaken;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004260 else if (BECount != ENT->ExactNotTaken)
4261 return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004262 }
Andrew Trick252ef7a2011-09-02 21:20:46 +00004263 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick5116ff62011-07-26 17:19:55 +00004264 return BECount;
4265}
4266
4267/// getExact - Get the exact not taken count for this loop exit.
4268const SCEV *
Andrew Trickfcb43562011-08-02 04:23:35 +00004269ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick5116ff62011-07-26 17:19:55 +00004270 ScalarEvolution *SE) const {
4271 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4272 ENT != 0; ENT = ENT->getNextExit()) {
4273
Andrew Trickfcb43562011-08-02 04:23:35 +00004274 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick5116ff62011-07-26 17:19:55 +00004275 return ENT->ExactNotTaken;
4276 }
4277 return SE->getCouldNotCompute();
4278}
4279
4280/// getMax - Get the max backedge taken count for the loop.
4281const SCEV *
4282ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4283 return Max ? Max : SE->getCouldNotCompute();
4284}
4285
Andrew Tricke74c2e82013-03-26 03:14:53 +00004286bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4287 ScalarEvolution *SE) const {
4288 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4289 return true;
4290
4291 if (!ExitNotTaken.ExitingBlock)
4292 return false;
4293
4294 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4295 ENT != 0; ENT = ENT->getNextExit()) {
4296
4297 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4298 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4299 return true;
4300 }
4301 }
4302 return false;
4303}
4304
Andrew Trick5116ff62011-07-26 17:19:55 +00004305/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4306/// computable exit into a persistent ExitNotTakenInfo array.
4307ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4308 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4309 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4310
4311 if (!Complete)
4312 ExitNotTaken.setIncomplete();
4313
4314 unsigned NumExits = ExitCounts.size();
4315 if (NumExits == 0) return;
4316
Andrew Trickfcb43562011-08-02 04:23:35 +00004317 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004318 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4319 if (NumExits == 1) return;
4320
4321 // Handle the rare case of multiple computable exits.
4322 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4323
4324 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4325 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4326 PrevENT->setNextExit(ENT);
Andrew Trickfcb43562011-08-02 04:23:35 +00004327 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004328 ENT->ExactNotTaken = ExitCounts[i].second;
4329 }
4330}
4331
4332/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4333void ScalarEvolution::BackedgeTakenInfo::clear() {
Andrew Trickfcb43562011-08-02 04:23:35 +00004334 ExitNotTaken.ExitingBlock = 0;
Andrew Trick5116ff62011-07-26 17:19:55 +00004335 ExitNotTaken.ExactNotTaken = 0;
4336 delete[] ExitNotTaken.getNextExit();
4337}
4338
Dan Gohman46bdfb02009-02-24 18:55:53 +00004339/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4340/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00004341ScalarEvolution::BackedgeTakenInfo
4342ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00004343 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00004344 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00004345
Dan Gohmana334aa72009-06-22 00:31:57 +00004346 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004347 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004348 bool CouldComputeBECount = true;
4349 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Dan Gohmana334aa72009-06-22 00:31:57 +00004350 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004351 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4352 if (EL.Exact == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004353 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00004354 // we won't be able to compute an exact value for the loop.
Andrew Trick5116ff62011-07-26 17:19:55 +00004355 CouldComputeBECount = false;
4356 else
4357 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4358
Dan Gohman1c343752009-06-27 21:21:31 +00004359 if (MaxBECount == getCouldNotCompute())
Andrew Trick5116ff62011-07-26 17:19:55 +00004360 MaxBECount = EL.Max;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004361 else if (EL.Max != getCouldNotCompute()) {
4362 // We cannot take the "min" MaxBECount, because non-unit stride loops may
4363 // skip some loop tests. Taking the max over the exits is sufficiently
4364 // conservative. TODO: We could do better taking into consideration
4365 // that (1) the loop has unit stride (2) the last loop test is
4366 // less-than/greater-than (3) any loop test is less-than/greater-than AND
4367 // falls-through some constant times less then the other tests.
4368 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
4369 }
Dan Gohmana334aa72009-06-22 00:31:57 +00004370 }
4371
Andrew Trick5116ff62011-07-26 17:19:55 +00004372 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004373}
4374
Andrew Trick5116ff62011-07-26 17:19:55 +00004375/// ComputeExitLimit - Compute the number of times the backedge of the specified
4376/// loop will execute if it exits via the specified block.
4377ScalarEvolution::ExitLimit
4378ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004379
4380 // Okay, we've chosen an exiting block. See what condition causes us to
4381 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00004382 //
4383 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00004384 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00004385 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004386 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00004387
Chris Lattner8b0e3602007-01-07 02:24:26 +00004388 // At this point, we know we have a conditional branch that determines whether
4389 // the loop is exited. However, we don't know if the branch is executed each
4390 // time through the loop. If not, then the execution count of the branch will
4391 // not be equal to the trip count of the loop.
4392 //
4393 // Currently we check for this by checking to see if the Exit branch goes to
4394 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00004395 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00004396 // loop header. This is common for un-rotated loops.
4397 //
4398 // If both of those tests fail, walk up the unique predecessor chain to the
4399 // header, stopping if there is an edge that doesn't exit the loop. If the
4400 // header is reached, the execution count of the branch will be equal to the
4401 // trip count of the loop.
4402 //
4403 // More extensive analysis could be done to handle more cases here.
4404 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00004405 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00004406 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00004407 ExitBr->getParent() != L->getHeader()) {
4408 // The simple checks failed, try climbing the unique predecessor chain
4409 // up to the header.
4410 bool Ok = false;
4411 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4412 BasicBlock *Pred = BB->getUniquePredecessor();
4413 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00004414 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004415 TerminatorInst *PredTerm = Pred->getTerminator();
4416 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4417 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4418 if (PredSucc == BB)
4419 continue;
4420 // If the predecessor has a successor that isn't BB and isn't
4421 // outside the loop, assume the worst.
4422 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00004423 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004424 }
4425 if (Pred == L->getHeader()) {
4426 Ok = true;
4427 break;
4428 }
4429 BB = Pred;
4430 }
4431 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00004432 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004433 }
4434
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004435 // Proceed to the next level to examine the exit condition expression.
Andrew Trick5116ff62011-07-26 17:19:55 +00004436 return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4437 ExitBr->getSuccessor(0),
Andrew Trick61601142013-05-31 06:43:25 +00004438 ExitBr->getSuccessor(1),
4439 /*IsSubExpr=*/false);
Dan Gohmana334aa72009-06-22 00:31:57 +00004440}
4441
Andrew Trick5116ff62011-07-26 17:19:55 +00004442/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004443/// backedge of the specified loop will execute if its exit condition
4444/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick61601142013-05-31 06:43:25 +00004445///
4446/// @param IsSubExpr is true if ExitCond does not directly control the exit
4447/// branch. In this case, we cannot assume that the loop only exits when the
4448/// condition is true and cannot infer that failing to meet the condition prior
4449/// to integer wraparound results in undefined behavior.
Andrew Trick5116ff62011-07-26 17:19:55 +00004450ScalarEvolution::ExitLimit
4451ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4452 Value *ExitCond,
4453 BasicBlock *TBB,
Andrew Trick61601142013-05-31 06:43:25 +00004454 BasicBlock *FBB,
4455 bool IsSubExpr) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004456 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00004457 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4458 if (BO->getOpcode() == Instruction::And) {
4459 // Recurse on the operands of the and.
Andrew Trick61601142013-05-31 06:43:25 +00004460 bool EitherMayExit = L->contains(TBB);
4461 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4462 IsSubExpr || EitherMayExit);
4463 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4464 IsSubExpr || EitherMayExit);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004465 const SCEV *BECount = getCouldNotCompute();
4466 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick61601142013-05-31 06:43:25 +00004467 if (EitherMayExit) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004468 // Both conditions must be true for the loop to continue executing.
4469 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004470 if (EL0.Exact == getCouldNotCompute() ||
4471 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004472 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004473 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004474 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4475 if (EL0.Max == getCouldNotCompute())
4476 MaxBECount = EL1.Max;
4477 else if (EL1.Max == getCouldNotCompute())
4478 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004479 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004480 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004481 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004482 // Both conditions must be true at the same time for the loop to exit.
4483 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004484 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004485 if (EL0.Max == EL1.Max)
4486 MaxBECount = EL0.Max;
4487 if (EL0.Exact == EL1.Exact)
4488 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004489 }
4490
Andrew Trick5116ff62011-07-26 17:19:55 +00004491 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004492 }
4493 if (BO->getOpcode() == Instruction::Or) {
4494 // Recurse on the operands of the or.
Andrew Trick61601142013-05-31 06:43:25 +00004495 bool EitherMayExit = L->contains(FBB);
4496 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4497 IsSubExpr || EitherMayExit);
4498 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4499 IsSubExpr || EitherMayExit);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004500 const SCEV *BECount = getCouldNotCompute();
4501 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick61601142013-05-31 06:43:25 +00004502 if (EitherMayExit) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004503 // Both conditions must be false for the loop to continue executing.
4504 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004505 if (EL0.Exact == getCouldNotCompute() ||
4506 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004507 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004508 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004509 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4510 if (EL0.Max == getCouldNotCompute())
4511 MaxBECount = EL1.Max;
4512 else if (EL1.Max == getCouldNotCompute())
4513 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004514 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004515 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004516 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004517 // Both conditions must be false at the same time for the loop to exit.
4518 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004519 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004520 if (EL0.Max == EL1.Max)
4521 MaxBECount = EL0.Max;
4522 if (EL0.Exact == EL1.Exact)
4523 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004524 }
4525
Andrew Trick5116ff62011-07-26 17:19:55 +00004526 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004527 }
4528 }
4529
4530 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004531 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004532 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Andrew Trick61601142013-05-31 06:43:25 +00004533 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004534
Dan Gohman00cb5b72010-02-19 18:12:07 +00004535 // Check for a constant condition. These are normally stripped out by
4536 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4537 // preserve the CFG and is temporarily leaving constant conditions
4538 // in place.
4539 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4540 if (L->contains(FBB) == !CI->getZExtValue())
4541 // The backedge is always taken.
4542 return getCouldNotCompute();
4543 else
4544 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004545 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004546 }
4547
Eli Friedman361e54d2009-05-09 12:32:42 +00004548 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick5116ff62011-07-26 17:19:55 +00004549 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohmana334aa72009-06-22 00:31:57 +00004550}
4551
Andrew Trick5116ff62011-07-26 17:19:55 +00004552/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004553/// backedge of the specified loop will execute if its exit condition
4554/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004555ScalarEvolution::ExitLimit
4556ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4557 ICmpInst *ExitCond,
4558 BasicBlock *TBB,
Andrew Trick61601142013-05-31 06:43:25 +00004559 BasicBlock *FBB,
4560 bool IsSubExpr) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004561
Reid Spencere4d87aa2006-12-23 06:05:41 +00004562 // If the condition was exit on true, convert the condition to exit on false
4563 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004564 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004565 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004566 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004567 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004568
4569 // Handle common loops like: for (X = "string"; *X; ++X)
4570 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4571 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004572 ExitLimit ItCnt =
4573 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004574 if (ItCnt.hasAnyInfo())
4575 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004576 }
4577
Dan Gohman0bba49c2009-07-07 17:06:11 +00004578 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4579 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004580
4581 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004582 LHS = getSCEVAtScope(LHS, L);
4583 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004584
Dan Gohman64a845e2009-06-24 04:48:43 +00004585 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004586 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004587 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004588 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004589 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004590 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004591 }
4592
Dan Gohman03557dc2010-05-03 16:35:17 +00004593 // Simplify the operands before analyzing them.
4594 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4595
Chris Lattner53e677a2004-04-02 20:23:17 +00004596 // If we have a comparison of a chrec against a constant, try to use value
4597 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004598 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4599 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004600 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004601 // Form the constant range.
4602 ConstantRange CompRange(
4603 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004604
Dan Gohman0bba49c2009-07-07 17:06:11 +00004605 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004606 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004607 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004608
Chris Lattner53e677a2004-04-02 20:23:17 +00004609 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004610 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004611 // Convert to: while (X-Y != 0)
Andrew Trick61601142013-05-31 06:43:25 +00004612 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
Andrew Trick5116ff62011-07-26 17:19:55 +00004613 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004614 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004615 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004616 case ICmpInst::ICMP_EQ: { // while (X == Y)
4617 // Convert to: while (X-Y == 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004618 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4619 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004620 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004621 }
4622 case ICmpInst::ICMP_SLT: {
Andrew Trick61601142013-05-31 06:43:25 +00004623 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true, IsSubExpr);
Andrew Trick5116ff62011-07-26 17:19:55 +00004624 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004625 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004626 }
4627 case ICmpInst::ICMP_SGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004628 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Andrew Trick61601142013-05-31 06:43:25 +00004629 getNotSCEV(RHS), L, true, IsSubExpr);
Andrew Trick5116ff62011-07-26 17:19:55 +00004630 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004631 break;
4632 }
4633 case ICmpInst::ICMP_ULT: {
Andrew Trick61601142013-05-31 06:43:25 +00004634 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false, IsSubExpr);
Andrew Trick5116ff62011-07-26 17:19:55 +00004635 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004636 break;
4637 }
4638 case ICmpInst::ICMP_UGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004639 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Andrew Trick61601142013-05-31 06:43:25 +00004640 getNotSCEV(RHS), L, false, IsSubExpr);
Andrew Trick5116ff62011-07-26 17:19:55 +00004641 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004642 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004643 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004644 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004645#if 0
David Greene25e0e872009-12-23 22:18:14 +00004646 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004647 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004648 dbgs() << "[unsigned] ";
4649 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004650 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004651 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004652#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004653 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004654 }
Andrew Trick5116ff62011-07-26 17:19:55 +00004655 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004656}
4657
Chris Lattner673e02b2004-10-12 01:49:27 +00004658static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004659EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4660 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004661 const SCEV *InVal = SE.getConstant(C);
4662 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004663 assert(isa<SCEVConstant>(Val) &&
4664 "Evaluation of SCEV at constant didn't fold correctly?");
4665 return cast<SCEVConstant>(Val)->getValue();
4666}
4667
Andrew Trick5116ff62011-07-26 17:19:55 +00004668/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman46bdfb02009-02-24 18:55:53 +00004669/// 'icmp op load X, cst', try to see if we can compute the backedge
4670/// execution count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004671ScalarEvolution::ExitLimit
4672ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4673 LoadInst *LI,
4674 Constant *RHS,
4675 const Loop *L,
4676 ICmpInst::Predicate predicate) {
4677
Dan Gohman1c343752009-06-27 21:21:31 +00004678 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004679
4680 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004681 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004682 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004683 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004684
4685 // Make sure that it is really a constant global we are gepping, with an
4686 // initializer, and make sure the first IDX is really 0.
4687 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004688 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004689 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4690 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004691 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004692
4693 // Okay, we allow one non-constant index into the GEP instruction.
4694 Value *VarIdx = 0;
Chris Lattnerdada5862012-01-24 05:49:24 +00004695 std::vector<Constant*> Indexes;
Chris Lattner673e02b2004-10-12 01:49:27 +00004696 unsigned VarIdxNum = 0;
4697 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4698 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4699 Indexes.push_back(CI);
4700 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004701 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004702 VarIdx = GEP->getOperand(i);
4703 VarIdxNum = i-2;
4704 Indexes.push_back(0);
4705 }
4706
Andrew Trickeb6dd232012-03-26 22:33:59 +00004707 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
4708 if (!VarIdx)
4709 return getCouldNotCompute();
4710
Chris Lattner673e02b2004-10-12 01:49:27 +00004711 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4712 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004713 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004714 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004715
4716 // We can only recognize very limited forms of loop index expressions, in
4717 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004718 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004719 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004720 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4721 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004722 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004723
4724 unsigned MaxSteps = MaxBruteForceIterations;
4725 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004726 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004727 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004728 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004729
4730 // Form the GEP offset.
4731 Indexes[VarIdxNum] = Val;
4732
Chris Lattnerdada5862012-01-24 05:49:24 +00004733 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
4734 Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004735 if (Result == 0) break; // Cannot compute!
4736
4737 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004738 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004739 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004740 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004741#if 0
David Greene25e0e872009-12-23 22:18:14 +00004742 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004743 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4744 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004745#endif
4746 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004747 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004748 }
4749 }
Dan Gohman1c343752009-06-27 21:21:31 +00004750 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004751}
4752
4753
Chris Lattner3221ad02004-04-17 22:58:41 +00004754/// CanConstantFold - Return true if we can constant fold an instruction of the
4755/// specified type, assuming that all operands were constants.
4756static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004757 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewycky614fef62011-10-22 19:58:20 +00004758 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4759 isa<LoadInst>(I))
Chris Lattner3221ad02004-04-17 22:58:41 +00004760 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004761
Chris Lattner3221ad02004-04-17 22:58:41 +00004762 if (const CallInst *CI = dyn_cast<CallInst>(I))
4763 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004764 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004765 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004766}
4767
Andrew Trick13d31e02011-10-05 03:25:31 +00004768/// Determine whether this instruction can constant evolve within this loop
4769/// assuming its operands can all constant evolve.
4770static bool canConstantEvolve(Instruction *I, const Loop *L) {
4771 // An instruction outside of the loop can't be derived from a loop PHI.
4772 if (!L->contains(I)) return false;
4773
4774 if (isa<PHINode>(I)) {
4775 if (L->getHeader() == I->getParent())
4776 return true;
4777 else
4778 // We don't currently keep track of the control flow needed to evaluate
4779 // PHIs, so we cannot handle PHIs inside of loops.
4780 return false;
4781 }
4782
4783 // If we won't be able to constant fold this expression even if the operands
4784 // are constants, bail early.
4785 return CanConstantFold(I);
4786}
4787
4788/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4789/// recursing through each instruction operand until reaching a loop header phi.
4790static PHINode *
4791getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Trick28ab7db2011-10-05 05:58:49 +00004792 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004793
4794 // Otherwise, we can evaluate this instruction if all of its operands are
4795 // constant or derived from a PHI node themselves.
4796 PHINode *PHI = 0;
4797 for (Instruction::op_iterator OpI = UseInst->op_begin(),
4798 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4799
4800 if (isa<Constant>(*OpI)) continue;
4801
4802 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4803 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4804
4805 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trickef8a4c22011-10-05 22:06:53 +00004806 if (!P)
4807 // If this operand is already visited, reuse the prior result.
4808 // We may have P != PHI if this is the deepest point at which the
4809 // inconsistent paths meet.
4810 P = PHIMap.lookup(OpInst);
4811 if (!P) {
4812 // Recurse and memoize the results, whether a phi is found or not.
4813 // This recursive call invalidates pointers into PHIMap.
4814 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4815 PHIMap[OpInst] = P;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004816 }
Andrew Trick28ab7db2011-10-05 05:58:49 +00004817 if (P == 0) return 0; // Not evolving from PHI
4818 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs.
4819 PHI = P;
Andrew Trick13d31e02011-10-05 03:25:31 +00004820 }
4821 // This is a expression evolving from a constant PHI!
4822 return PHI;
4823}
4824
Chris Lattner3221ad02004-04-17 22:58:41 +00004825/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4826/// in the loop that V is derived from. We allow arbitrary operations along the
4827/// way, but the operands of an operation must either be constants or a value
4828/// derived from a constant PHI. If this expression does not fit with these
4829/// constraints, return null.
4830static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004831 Instruction *I = dyn_cast<Instruction>(V);
Andrew Trick13d31e02011-10-05 03:25:31 +00004832 if (I == 0 || !canConstantEvolve(I, L)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004833
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004834 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004835 return PN;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004836 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004837
Andrew Trick13d31e02011-10-05 03:25:31 +00004838 // Record non-constant instructions contained by the loop.
Andrew Trick28ab7db2011-10-05 05:58:49 +00004839 DenseMap<Instruction *, PHINode *> PHIMap;
4840 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattner3221ad02004-04-17 22:58:41 +00004841}
4842
4843/// EvaluateExpression - Given an expression that passes the
4844/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4845/// in the loop has the value PHIVal. If we can't fold this expression for some
4846/// reason, return null.
Andrew Trick13d31e02011-10-05 03:25:31 +00004847static Constant *EvaluateExpression(Value *V, const Loop *L,
4848 DenseMap<Instruction *, Constant *> &Vals,
Micah Villmow3574eca2012-10-08 16:38:25 +00004849 const DataLayout *TD,
Chad Rosier00737bd2011-12-01 21:29:16 +00004850 const TargetLibraryInfo *TLI) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004851 // Convenient constant check, but redundant for recursive calls.
Reid Spencere8404342004-07-18 00:18:30 +00004852 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewycky614fef62011-10-22 19:58:20 +00004853 Instruction *I = dyn_cast<Instruction>(V);
4854 if (!I) return 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004855
Andrew Trick13d31e02011-10-05 03:25:31 +00004856 if (Constant *C = Vals.lookup(I)) return C;
4857
Nick Lewycky614fef62011-10-22 19:58:20 +00004858 // An instruction inside the loop depends on a value outside the loop that we
4859 // weren't given a mapping for, or a value such as a call inside the loop.
4860 if (!canConstantEvolve(I, L)) return 0;
4861
4862 // An unmapped PHI can be due to a branch or another loop inside this loop,
4863 // or due to this not being the initial iteration through a loop where we
4864 // couldn't compute the evolution of this particular PHI last time.
4865 if (isa<PHINode>(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004866
Dan Gohman9d4588f2010-06-22 13:15:46 +00004867 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004868
4869 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004870 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4871 if (!Operand) {
Nick Lewycky4c7f1ca2011-10-14 09:38:46 +00004872 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4873 if (!Operands[i]) return 0;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004874 continue;
4875 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004876 Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
Andrew Trick28ab7db2011-10-05 05:58:49 +00004877 Vals[Operand] = C;
4878 if (!C) return 0;
4879 Operands[i] = C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004880 }
4881
Nick Lewycky614fef62011-10-22 19:58:20 +00004882 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004883 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chad Rosieraab8e282011-12-02 01:26:24 +00004884 Operands[1], TD, TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00004885 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4886 if (!LI->isVolatile())
4887 return ConstantFoldLoadFromConstPtr(Operands[0], TD);
4888 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004889 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
4890 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004891}
4892
4893/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4894/// in the header of its containing loop, we know the loop executes a
4895/// constant number of times, and the PHI node is just a recurrence
4896/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004897Constant *
4898ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004899 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004900 const Loop *L) {
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004901 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004902 ConstantEvolutionLoopExitValue.find(PN);
4903 if (I != ConstantEvolutionLoopExitValue.end())
4904 return I->second;
4905
Dan Gohmane0567812010-04-08 23:03:40 +00004906 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004907 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4908
4909 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4910
Andrew Trick13d31e02011-10-05 03:25:31 +00004911 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewycky614fef62011-10-22 19:58:20 +00004912 BasicBlock *Header = L->getHeader();
4913 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick13d31e02011-10-05 03:25:31 +00004914
Chris Lattner3221ad02004-04-17 22:58:41 +00004915 // Since the loop is canonicalized, the PHI node must have two entries. One
4916 // entry must be a constant (coming in from outside of the loop), and the
4917 // second must be derived from the same PHI.
4918 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Nick Lewycky614fef62011-10-22 19:58:20 +00004919 PHINode *PHI = 0;
4920 for (BasicBlock::iterator I = Header->begin();
4921 (PHI = dyn_cast<PHINode>(I)); ++I) {
4922 Constant *StartCST =
4923 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4924 if (StartCST == 0) continue;
4925 CurrentIterVals[PHI] = StartCST;
4926 }
4927 if (!CurrentIterVals.count(PN))
4928 return RetVal = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004929
4930 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattner3221ad02004-04-17 22:58:41 +00004931
4932 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004933 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004934 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004935
Dan Gohman46bdfb02009-02-24 18:55:53 +00004936 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004937 unsigned IterationNum = 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004938 for (; ; ++IterationNum) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004939 if (IterationNum == NumIterations)
Andrew Trick13d31e02011-10-05 03:25:31 +00004940 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattner3221ad02004-04-17 22:58:41 +00004941
Nick Lewycky614fef62011-10-22 19:58:20 +00004942 // Compute the value of the PHIs for the next iteration.
Andrew Trick13d31e02011-10-05 03:25:31 +00004943 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewycky614fef62011-10-22 19:58:20 +00004944 DenseMap<Instruction *, Constant *> NextIterVals;
Chad Rosier00737bd2011-12-01 21:29:16 +00004945 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
4946 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004947 if (NextPHI == 0)
4948 return 0; // Couldn't evaluate!
Andrew Trick13d31e02011-10-05 03:25:31 +00004949 NextIterVals[PN] = NextPHI;
Nick Lewycky614fef62011-10-22 19:58:20 +00004950
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004951 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
4952
Nick Lewycky614fef62011-10-22 19:58:20 +00004953 // Also evaluate the other PHI nodes. However, we don't get to stop if we
4954 // cease to be able to evaluate one of them or if they stop evolving,
4955 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004956 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewycky614fef62011-10-22 19:58:20 +00004957 for (DenseMap<Instruction *, Constant *>::const_iterator
4958 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4959 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky5bef0eb2011-10-24 05:51:01 +00004960 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004961 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
4962 }
4963 // We use two distinct loops because EvaluateExpression may invalidate any
4964 // iterators into CurrentIterVals.
4965 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
4966 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
4967 PHINode *PHI = I->first;
Nick Lewycky614fef62011-10-22 19:58:20 +00004968 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004969 if (!NextPHI) { // Not already computed.
4970 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00004971 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004972 }
4973 if (NextPHI != I->second)
4974 StoppedEvolving = false;
Nick Lewycky614fef62011-10-22 19:58:20 +00004975 }
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004976
4977 // If all entries in CurrentIterVals == NextIterVals then we can stop
4978 // iterating, the loop can't continue to change.
4979 if (StoppedEvolving)
4980 return RetVal = CurrentIterVals[PN];
4981
Andrew Trick13d31e02011-10-05 03:25:31 +00004982 CurrentIterVals.swap(NextIterVals);
Chris Lattner3221ad02004-04-17 22:58:41 +00004983 }
4984}
4985
Andrew Trick5116ff62011-07-26 17:19:55 +00004986/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004987/// constant number of times (the condition evolves only from constants),
4988/// try to evaluate a few iterations of the loop until we get the exit
4989/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004990/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewycky614fef62011-10-22 19:58:20 +00004991const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4992 Value *Cond,
4993 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004994 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004995 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004996
Dan Gohmanb92654d2010-06-19 14:17:24 +00004997 // If the loop is canonicalized, the PHI will have exactly two entries.
4998 // That's the only form we support here.
4999 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5000
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005001 DenseMap<Instruction *, Constant *> CurrentIterVals;
5002 BasicBlock *Header = L->getHeader();
5003 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5004
Dan Gohmanb92654d2010-06-19 14:17:24 +00005005 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00005006 // second must be derived from the same PHI.
5007 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005008 PHINode *PHI = 0;
5009 for (BasicBlock::iterator I = Header->begin();
5010 (PHI = dyn_cast<PHINode>(I)); ++I) {
5011 Constant *StartCST =
5012 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
5013 if (StartCST == 0) continue;
5014 CurrentIterVals[PHI] = StartCST;
5015 }
5016 if (!CurrentIterVals.count(PN))
5017 return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00005018
5019 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5020 // the loop symbolically to determine when the condition gets a value of
5021 // "ExitWhen".
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005022
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005023 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005024 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005025 ConstantInt *CondVal =
Chad Rosier00737bd2011-12-01 21:29:16 +00005026 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
5027 TD, TLI));
Chris Lattner3221ad02004-04-17 22:58:41 +00005028
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005029 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00005030 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005031
Reid Spencere8019bb2007-03-01 07:25:48 +00005032 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00005033 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00005034 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00005035 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005036
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005037 // Update all the PHI nodes for the next iteration.
5038 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00005039
5040 // Create a list of which PHIs we need to compute. We want to do this before
5041 // calling EvaluateExpression on them because that may invalidate iterators
5042 // into CurrentIterVals.
5043 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005044 for (DenseMap<Instruction *, Constant *>::const_iterator
5045 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5046 PHINode *PHI = dyn_cast<PHINode>(I->first);
5047 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00005048 PHIsToCompute.push_back(PHI);
5049 }
5050 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5051 E = PHIsToCompute.end(); I != E; ++I) {
5052 PHINode *PHI = *I;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005053 Constant *&NextPHI = NextIterVals[PHI];
5054 if (NextPHI) continue; // Already computed!
5055
5056 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00005057 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005058 }
5059 CurrentIterVals.swap(NextIterVals);
Chris Lattner7980fb92004-04-17 18:36:24 +00005060 }
5061
5062 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00005063 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005064}
5065
Dan Gohmane7125f42009-09-03 15:00:26 +00005066/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00005067/// at the specified scope in the program. The L value specifies a loop
5068/// nest to evaluate the expression at, where null is the top-level or a
5069/// specified loop is immediately inside of the loop.
5070///
5071/// This method can be used to compute the exit value for a variable defined
5072/// in a loop by querying what the value will hold in the parent loop.
5073///
Dan Gohmand594e6f2009-05-24 23:25:42 +00005074/// In the case that a relevant loop exit value cannot be computed, the
5075/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005076const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00005077 // Check to see if we've folded this expression at this loop before.
5078 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
5079 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
5080 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
5081 if (!Pair.second)
5082 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00005083
Dan Gohman42214892009-08-31 21:15:23 +00005084 // Otherwise compute it.
5085 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00005086 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00005087 return C;
5088}
5089
Nick Lewycky614fef62011-10-22 19:58:20 +00005090/// This builds up a Constant using the ConstantExpr interface. That way, we
5091/// will return Constants for objects which aren't represented by a
5092/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5093/// Returns NULL if the SCEV isn't representable as a Constant.
5094static Constant *BuildConstantFromSCEV(const SCEV *V) {
5095 switch (V->getSCEVType()) {
5096 default: // TODO: smax, umax.
5097 case scCouldNotCompute:
5098 case scAddRecExpr:
5099 break;
5100 case scConstant:
5101 return cast<SCEVConstant>(V)->getValue();
5102 case scUnknown:
5103 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5104 case scSignExtend: {
5105 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5106 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5107 return ConstantExpr::getSExt(CastOp, SS->getType());
5108 break;
5109 }
5110 case scZeroExtend: {
5111 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5112 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5113 return ConstantExpr::getZExt(CastOp, SZ->getType());
5114 break;
5115 }
5116 case scTruncate: {
5117 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5118 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5119 return ConstantExpr::getTrunc(CastOp, ST->getType());
5120 break;
5121 }
5122 case scAddExpr: {
5123 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5124 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5125 if (C->getType()->isPointerTy())
5126 C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext()));
5127 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5128 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5129 if (!C2) return 0;
5130
5131 // First pointer!
5132 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5133 std::swap(C, C2);
5134 // The offsets have been converted to bytes. We can add bytes to an
5135 // i8* by GEP with the byte count in the first index.
5136 C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext()));
5137 }
5138
5139 // Don't bother trying to sum two pointers. We probably can't
5140 // statically compute a load that results from it anyway.
5141 if (C2->getType()->isPointerTy())
5142 return 0;
5143
5144 if (C->getType()->isPointerTy()) {
5145 if (cast<PointerType>(C->getType())->getElementType()->isStructTy())
5146 C2 = ConstantExpr::getIntegerCast(
5147 C2, Type::getInt32Ty(C->getContext()), true);
5148 C = ConstantExpr::getGetElementPtr(C, C2);
5149 } else
5150 C = ConstantExpr::getAdd(C, C2);
5151 }
5152 return C;
5153 }
5154 break;
5155 }
5156 case scMulExpr: {
5157 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5158 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5159 // Don't bother with pointers at all.
5160 if (C->getType()->isPointerTy()) return 0;
5161 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5162 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5163 if (!C2 || C2->getType()->isPointerTy()) return 0;
5164 C = ConstantExpr::getMul(C, C2);
5165 }
5166 return C;
5167 }
5168 break;
5169 }
5170 case scUDivExpr: {
5171 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5172 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5173 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5174 if (LHS->getType() == RHS->getType())
5175 return ConstantExpr::getUDiv(LHS, RHS);
5176 break;
5177 }
5178 }
5179 return 0;
5180}
5181
Dan Gohman42214892009-08-31 21:15:23 +00005182const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005183 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005184
Nick Lewycky3e630762008-02-20 06:48:22 +00005185 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00005186 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00005187 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005188 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005189 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00005190 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5191 if (PHINode *PN = dyn_cast<PHINode>(I))
5192 if (PN->getParent() == LI->getHeader()) {
5193 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00005194 // to see if the loop that contains it has a known backedge-taken
5195 // count. If so, we may be able to force computation of the exit
5196 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005197 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00005198 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00005199 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005200 // Okay, we know how many times the containing loop executes. If
5201 // this is a constant evolving PHI node, get the final value at
5202 // the specified iteration number.
5203 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00005204 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00005205 LI);
Dan Gohman09987962009-06-29 21:31:18 +00005206 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00005207 }
5208 }
5209
Reid Spencer09906f32006-12-04 21:33:23 +00005210 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00005211 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00005212 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00005213 // result. This is particularly useful for computing loop exit values.
5214 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00005215 SmallVector<Constant *, 4> Operands;
5216 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00005217 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5218 Value *Op = I->getOperand(i);
5219 if (Constant *C = dyn_cast<Constant>(Op)) {
5220 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00005221 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00005222 }
Dan Gohman11046452010-06-29 23:43:06 +00005223
5224 // If any of the operands is non-constant and if they are
5225 // non-integer and non-pointer, don't even try to analyze them
5226 // with scev techniques.
5227 if (!isSCEVable(Op->getType()))
5228 return V;
5229
5230 const SCEV *OrigV = getSCEV(Op);
5231 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5232 MadeImprovement |= OrigV != OpV;
5233
Nick Lewycky614fef62011-10-22 19:58:20 +00005234 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohman11046452010-06-29 23:43:06 +00005235 if (!C) return V;
5236 if (C->getType() != Op->getType())
5237 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5238 Op->getType(),
5239 false),
5240 C, Op->getType());
5241 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00005242 }
Dan Gohman64a845e2009-06-24 04:48:43 +00005243
Dan Gohman11046452010-06-29 23:43:06 +00005244 // Check to see if getSCEVAtScope actually made an improvement.
5245 if (MadeImprovement) {
5246 Constant *C = 0;
5247 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5248 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Chad Rosieraab8e282011-12-02 01:26:24 +00005249 Operands[0], Operands[1], TD,
5250 TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00005251 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5252 if (!LI->isVolatile())
5253 C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
5254 } else
Dan Gohman11046452010-06-29 23:43:06 +00005255 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Chad Rosier00737bd2011-12-01 21:29:16 +00005256 Operands, TD, TLI);
Dan Gohman11046452010-06-29 23:43:06 +00005257 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00005258 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00005259 }
Chris Lattner3221ad02004-04-17 22:58:41 +00005260 }
5261 }
5262
5263 // This is some other type of SCEVUnknown, just return it.
5264 return V;
5265 }
5266
Dan Gohman622ed672009-05-04 22:02:23 +00005267 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005268 // Avoid performing the look-up in the common case where the specified
5269 // expression has no loop-variant portions.
5270 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005271 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005272 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005273 // Okay, at least one of these operands is loop variant but might be
5274 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00005275 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5276 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00005277 NewOps.push_back(OpAtScope);
5278
5279 for (++i; i != e; ++i) {
5280 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005281 NewOps.push_back(OpAtScope);
5282 }
5283 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005284 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005285 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005286 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005287 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005288 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00005289 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005290 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00005291 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005292 }
5293 }
5294 // If we got here, all operands are loop invariant.
5295 return Comm;
5296 }
5297
Dan Gohman622ed672009-05-04 22:02:23 +00005298 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005299 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5300 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00005301 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5302 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005303 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00005304 }
5305
5306 // If this is a loop recurrence for a loop that does not contain L, then we
5307 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00005308 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00005309 // First, attempt to evaluate each operand.
5310 // Avoid performing the look-up in the common case where the specified
5311 // expression has no loop-variant portions.
5312 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5313 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5314 if (OpAtScope == AddRec->getOperand(i))
5315 continue;
5316
5317 // Okay, at least one of these operands is loop variant but might be
5318 // foldable. Build a new instance of the folded commutative expression.
5319 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5320 AddRec->op_begin()+i);
5321 NewOps.push_back(OpAtScope);
5322 for (++i; i != e; ++i)
5323 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5324
Andrew Trick3f95c882011-04-27 01:21:25 +00005325 const SCEV *FoldedRec =
Andrew Trick3228cc22011-03-14 16:50:06 +00005326 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick3f95c882011-04-27 01:21:25 +00005327 AddRec->getNoWrapFlags(SCEV::FlagNW));
5328 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick104f4ad2011-04-27 05:42:17 +00005329 // The addrec may be folded to a nonrecurrence, for example, if the
5330 // induction variable is multiplied by zero after constant folding. Go
5331 // ahead and return the folded value.
Andrew Trick3f95c882011-04-27 01:21:25 +00005332 if (!AddRec)
5333 return FoldedRec;
Dan Gohman11046452010-06-29 23:43:06 +00005334 break;
5335 }
5336
5337 // If the scope is outside the addrec's loop, evaluate it by using the
5338 // loop exit value of the addrec.
5339 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005340 // To evaluate this recurrence, we need to know how many times the AddRec
5341 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005342 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00005343 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005344
Eli Friedmanb42a6262008-08-04 23:49:06 +00005345 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005346 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005347 }
Dan Gohman11046452010-06-29 23:43:06 +00005348
Dan Gohmand594e6f2009-05-24 23:25:42 +00005349 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00005350 }
5351
Dan Gohman622ed672009-05-04 22:02:23 +00005352 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005353 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005354 if (Op == Cast->getOperand())
5355 return Cast; // must be loop invariant
5356 return getZeroExtendExpr(Op, Cast->getType());
5357 }
5358
Dan Gohman622ed672009-05-04 22:02:23 +00005359 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005360 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005361 if (Op == Cast->getOperand())
5362 return Cast; // must be loop invariant
5363 return getSignExtendExpr(Op, Cast->getType());
5364 }
5365
Dan Gohman622ed672009-05-04 22:02:23 +00005366 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005367 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005368 if (Op == Cast->getOperand())
5369 return Cast; // must be loop invariant
5370 return getTruncateExpr(Op, Cast->getType());
5371 }
5372
Torok Edwinc23197a2009-07-14 16:55:14 +00005373 llvm_unreachable("Unknown SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005374}
5375
Dan Gohman66a7e852009-05-08 20:38:54 +00005376/// getSCEVAtScope - This is a convenience function which does
5377/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00005378const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005379 return getSCEVAtScope(getSCEV(V), L);
5380}
5381
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005382/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5383/// following equation:
5384///
5385/// A * X = B (mod N)
5386///
5387/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5388/// A and B isn't important.
5389///
5390/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005391static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005392 ScalarEvolution &SE) {
5393 uint32_t BW = A.getBitWidth();
5394 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5395 assert(A != 0 && "A must be non-zero.");
5396
5397 // 1. D = gcd(A, N)
5398 //
5399 // The gcd of A and N may have only one prime factor: 2. The number of
5400 // trailing zeros in A is its multiplicity
5401 uint32_t Mult2 = A.countTrailingZeros();
5402 // D = 2^Mult2
5403
5404 // 2. Check if B is divisible by D.
5405 //
5406 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5407 // is not less than multiplicity of this prime factor for D.
5408 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005409 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005410
5411 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5412 // modulo (N / D).
5413 //
5414 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5415 // bit width during computations.
5416 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5417 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00005418 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005419 APInt I = AD.multiplicativeInverse(Mod);
5420
5421 // 4. Compute the minimum unsigned root of the equation:
5422 // I * (B / D) mod (N / D)
5423 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5424
5425 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5426 // bits.
5427 return SE.getConstant(Result.trunc(BW));
5428}
Chris Lattner53e677a2004-04-02 20:23:17 +00005429
5430/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5431/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5432/// might be the same) or two SCEVCouldNotCompute objects.
5433///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005434static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00005435SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005436 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005437 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5438 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5439 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005440
Chris Lattner53e677a2004-04-02 20:23:17 +00005441 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00005442 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005443 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005444 return std::make_pair(CNC, CNC);
5445 }
5446
Reid Spencere8019bb2007-03-01 07:25:48 +00005447 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00005448 const APInt &L = LC->getValue()->getValue();
5449 const APInt &M = MC->getValue()->getValue();
5450 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00005451 APInt Two(BitWidth, 2);
5452 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005453
Dan Gohman64a845e2009-06-24 04:48:43 +00005454 {
Reid Spencere8019bb2007-03-01 07:25:48 +00005455 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00005456 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00005457 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5458 // The B coefficient is M-N/2
5459 APInt B(M);
5460 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005461
Reid Spencere8019bb2007-03-01 07:25:48 +00005462 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00005463 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00005464
Reid Spencere8019bb2007-03-01 07:25:48 +00005465 // Compute the B^2-4ac term.
5466 APInt SqrtTerm(B);
5467 SqrtTerm *= B;
5468 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00005469
Nick Lewycky6ce24712012-08-01 09:14:36 +00005470 if (SqrtTerm.isNegative()) {
5471 // The loop is provably infinite.
5472 const SCEV *CNC = SE.getCouldNotCompute();
5473 return std::make_pair(CNC, CNC);
5474 }
5475
Reid Spencere8019bb2007-03-01 07:25:48 +00005476 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5477 // integer value or else APInt::sqrt() will assert.
5478 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005479
Dan Gohman64a845e2009-06-24 04:48:43 +00005480 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00005481 // The divisions must be performed as signed divisions.
5482 APInt NegB(-B);
Nick Lewycky1cbae182011-10-03 07:10:45 +00005483 APInt TwoA(A << 1);
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005484 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005485 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005486 return std::make_pair(CNC, CNC);
5487 }
5488
Owen Andersone922c022009-07-22 00:24:57 +00005489 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00005490
5491 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005492 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00005493 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005494 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005495
Dan Gohman64a845e2009-06-24 04:48:43 +00005496 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00005497 SE.getConstant(Solution2));
Nick Lewycky1cbae182011-10-03 07:10:45 +00005498 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00005499}
5500
5501/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005502/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick3228cc22011-03-14 16:50:06 +00005503///
5504/// This is only used for loops with a "x != y" exit test. The exit condition is
5505/// now expressed as a single expression, V = x-y. So the exit test is
5506/// effectively V != 0. We know and take advantage of the fact that this
5507/// expression only being used in a comparison by zero context.
Andrew Trick5116ff62011-07-26 17:19:55 +00005508ScalarEvolution::ExitLimit
Andrew Trick61601142013-05-31 06:43:25 +00005509ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005510 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00005511 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005512 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00005513 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00005514 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005515 }
5516
Dan Gohman35738ac2009-05-04 22:30:44 +00005517 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00005518 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005519 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005520
Chris Lattner7975e3e2011-01-09 22:39:48 +00005521 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5522 // the quadratic equation to solve it.
5523 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5524 std::pair<const SCEV *,const SCEV *> Roots =
5525 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00005526 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5527 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00005528 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005529#if 0
David Greene25e0e872009-12-23 22:18:14 +00005530 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005531 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005532#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00005533 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005534 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00005535 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5536 R1->getValue(),
5537 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005538 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005539 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick635f7182011-03-09 17:23:39 +00005540
Chris Lattner53e677a2004-04-02 20:23:17 +00005541 // We can only use this value if the chrec ends up with an exact zero
5542 // value at this index. When solving for "X*X != 5", for example, we
5543 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005544 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00005545 if (Val->isZero())
5546 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00005547 }
5548 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005549 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005550 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005551
Chris Lattner7975e3e2011-01-09 22:39:48 +00005552 // Otherwise we can only handle this if it is affine.
5553 if (!AddRec->isAffine())
5554 return getCouldNotCompute();
5555
5556 // If this is an affine expression, the execution count of this branch is
5557 // the minimum unsigned root of the following equation:
5558 //
5559 // Start + Step*N = 0 (mod 2^BW)
5560 //
5561 // equivalent to:
5562 //
5563 // Step*N = -Start (mod 2^BW)
5564 //
5565 // where BW is the common bit width of Start and Step.
5566
5567 // Get the initial value for the loop.
5568 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5569 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5570
5571 // For now we handle only constant steps.
Andrew Trick3228cc22011-03-14 16:50:06 +00005572 //
5573 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5574 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5575 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5576 // We have not yet seen any such cases.
Chris Lattner7975e3e2011-01-09 22:39:48 +00005577 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Nick Lewycky4d3bba52012-06-28 23:44:57 +00005578 if (StepC == 0 || StepC->getValue()->equalsInt(0))
Chris Lattner7975e3e2011-01-09 22:39:48 +00005579 return getCouldNotCompute();
5580
Andrew Trick3228cc22011-03-14 16:50:06 +00005581 // For positive steps (counting up until unsigned overflow):
5582 // N = -Start/Step (as unsigned)
5583 // For negative steps (counting down to zero):
5584 // N = Start/-Step
5585 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005586 bool CountDown = StepC->getValue()->getValue().isNegative();
5587 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick3228cc22011-03-14 16:50:06 +00005588
5589 // Handle unitary steps, which cannot wraparound.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005590 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5591 // N = Distance (as unsigned)
Nick Lewycky1cbae182011-10-03 07:10:45 +00005592 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5593 ConstantRange CR = getUnsignedRange(Start);
5594 const SCEV *MaxBECount;
5595 if (!CountDown && CR.getUnsignedMin().isMinValue())
5596 // When counting up, the worst starting value is 1, not 0.
5597 MaxBECount = CR.getUnsignedMax().isMinValue()
5598 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5599 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5600 else
5601 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5602 : -CR.getUnsignedMin());
5603 return ExitLimit(Distance, MaxBECount);
5604 }
Andrew Trick635f7182011-03-09 17:23:39 +00005605
Andrew Trickdcfd4042011-03-14 17:28:02 +00005606 // If the recurrence is known not to wraparound, unsigned divide computes the
Andrew Trick61601142013-05-31 06:43:25 +00005607 // back edge count. (Ideally we would have an "isexact" bit for udiv). We know
5608 // that the value will either become zero (and thus the loop terminates), that
5609 // the loop will terminate through some other exit condition first, or that
5610 // the loop has undefined behavior. This means we can't "miss" the exit
5611 // value, even with nonunit stride.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005612 //
Andrew Trick61601142013-05-31 06:43:25 +00005613 // This is only valid for expressions that directly compute the loop exit. It
5614 // is invalid for subexpressions in which the loop may exit through this
5615 // branch even if this subexpression is false. In that case, the trip count
5616 // computed by this udiv could be smaller than the number of well-defined
5617 // iterations.
5618 if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW))
Andrew Trickdcfd4042011-03-14 17:28:02 +00005619 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
Andrew Trick61601142013-05-31 06:43:25 +00005620
Chris Lattner7975e3e2011-01-09 22:39:48 +00005621 // Then, try to solve the above equation provided that Start is constant.
5622 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5623 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5624 -StartC->getValue()->getValue(),
5625 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00005626 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005627}
5628
5629/// HowFarToNonZero - Return the number of times a backedge checking the
5630/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005631/// CouldNotCompute
Andrew Trick5116ff62011-07-26 17:19:55 +00005632ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005633ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005634 // Loops that look like: while (X == 0) are very strange indeed. We don't
5635 // handle them yet except for the trivial case. This could be expanded in the
5636 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005637
Chris Lattner53e677a2004-04-02 20:23:17 +00005638 // If the value is a constant, check to see if it is known to be non-zero
5639 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00005640 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00005641 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00005642 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00005643 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005644 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005645
Chris Lattner53e677a2004-04-02 20:23:17 +00005646 // We could implement others, but I really doubt anyone writes loops like
5647 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00005648 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005649}
5650
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005651/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5652/// (which may not be an immediate predecessor) which has exactly one
5653/// successor from which BB is reachable, or null if no such block is
5654/// found.
5655///
Dan Gohman005752b2010-04-15 16:19:08 +00005656std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005657ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00005658 // If the block has a unique predecessor, then there is no path from the
5659 // predecessor to the block that does not go through the direct edge
5660 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005661 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00005662 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005663
5664 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00005665 // If the header has a unique predecessor outside the loop, it must be
5666 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005667 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00005668 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005669
Dan Gohman005752b2010-04-15 16:19:08 +00005670 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005671}
5672
Dan Gohman763bad12009-06-20 00:35:32 +00005673/// HasSameValue - SCEV structural equivalence is usually sufficient for
5674/// testing whether two expressions are equal, however for the purposes of
5675/// looking for a condition guarding a loop, it can be useful to be a little
5676/// more general, since a front-end may have replicated the controlling
5677/// expression.
5678///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005679static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00005680 // Quick check to see if they are the same SCEV.
5681 if (A == B) return true;
5682
5683 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5684 // two different instructions with the same value. Check for this case.
5685 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5686 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5687 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5688 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00005689 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00005690 return true;
5691
5692 // Otherwise assume they may have a different value.
5693 return false;
5694}
5695
Dan Gohmane9796502010-04-24 01:28:42 +00005696/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru94c22712012-09-27 10:14:43 +00005697/// predicate Pred. Return true iff any changes were made.
Dan Gohmane9796502010-04-24 01:28:42 +00005698///
5699bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005700 const SCEV *&LHS, const SCEV *&RHS,
5701 unsigned Depth) {
Dan Gohmane9796502010-04-24 01:28:42 +00005702 bool Changed = false;
5703
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005704 // If we hit the max recursion limit bail out.
5705 if (Depth >= 3)
5706 return false;
5707
Dan Gohmane9796502010-04-24 01:28:42 +00005708 // Canonicalize a constant to the right side.
5709 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5710 // Check for both operands constant.
5711 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5712 if (ConstantExpr::getICmp(Pred,
5713 LHSC->getValue(),
5714 RHSC->getValue())->isNullValue())
5715 goto trivially_false;
5716 else
5717 goto trivially_true;
5718 }
5719 // Otherwise swap the operands to put the constant on the right.
5720 std::swap(LHS, RHS);
5721 Pred = ICmpInst::getSwappedPredicate(Pred);
5722 Changed = true;
5723 }
5724
5725 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00005726 // addrec's loop, put the addrec on the left. Also make a dominance check,
5727 // as both operands could be addrecs loop-invariant in each other's loop.
5728 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5729 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005730 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005731 std::swap(LHS, RHS);
5732 Pred = ICmpInst::getSwappedPredicate(Pred);
5733 Changed = true;
5734 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005735 }
Dan Gohmane9796502010-04-24 01:28:42 +00005736
5737 // If there's a constant operand, canonicalize comparisons with boundary
5738 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5739 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5740 const APInt &RA = RC->getValue()->getValue();
5741 switch (Pred) {
5742 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5743 case ICmpInst::ICMP_EQ:
5744 case ICmpInst::ICMP_NE:
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005745 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
5746 if (!RA)
5747 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
5748 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer127563b2012-05-30 18:42:43 +00005749 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
5750 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005751 RHS = AE->getOperand(1);
5752 LHS = ME->getOperand(1);
5753 Changed = true;
5754 }
Dan Gohmane9796502010-04-24 01:28:42 +00005755 break;
5756 case ICmpInst::ICMP_UGE:
5757 if ((RA - 1).isMinValue()) {
5758 Pred = ICmpInst::ICMP_NE;
5759 RHS = getConstant(RA - 1);
5760 Changed = true;
5761 break;
5762 }
5763 if (RA.isMaxValue()) {
5764 Pred = ICmpInst::ICMP_EQ;
5765 Changed = true;
5766 break;
5767 }
5768 if (RA.isMinValue()) goto trivially_true;
5769
5770 Pred = ICmpInst::ICMP_UGT;
5771 RHS = getConstant(RA - 1);
5772 Changed = true;
5773 break;
5774 case ICmpInst::ICMP_ULE:
5775 if ((RA + 1).isMaxValue()) {
5776 Pred = ICmpInst::ICMP_NE;
5777 RHS = getConstant(RA + 1);
5778 Changed = true;
5779 break;
5780 }
5781 if (RA.isMinValue()) {
5782 Pred = ICmpInst::ICMP_EQ;
5783 Changed = true;
5784 break;
5785 }
5786 if (RA.isMaxValue()) goto trivially_true;
5787
5788 Pred = ICmpInst::ICMP_ULT;
5789 RHS = getConstant(RA + 1);
5790 Changed = true;
5791 break;
5792 case ICmpInst::ICMP_SGE:
5793 if ((RA - 1).isMinSignedValue()) {
5794 Pred = ICmpInst::ICMP_NE;
5795 RHS = getConstant(RA - 1);
5796 Changed = true;
5797 break;
5798 }
5799 if (RA.isMaxSignedValue()) {
5800 Pred = ICmpInst::ICMP_EQ;
5801 Changed = true;
5802 break;
5803 }
5804 if (RA.isMinSignedValue()) goto trivially_true;
5805
5806 Pred = ICmpInst::ICMP_SGT;
5807 RHS = getConstant(RA - 1);
5808 Changed = true;
5809 break;
5810 case ICmpInst::ICMP_SLE:
5811 if ((RA + 1).isMaxSignedValue()) {
5812 Pred = ICmpInst::ICMP_NE;
5813 RHS = getConstant(RA + 1);
5814 Changed = true;
5815 break;
5816 }
5817 if (RA.isMinSignedValue()) {
5818 Pred = ICmpInst::ICMP_EQ;
5819 Changed = true;
5820 break;
5821 }
5822 if (RA.isMaxSignedValue()) goto trivially_true;
5823
5824 Pred = ICmpInst::ICMP_SLT;
5825 RHS = getConstant(RA + 1);
5826 Changed = true;
5827 break;
5828 case ICmpInst::ICMP_UGT:
5829 if (RA.isMinValue()) {
5830 Pred = ICmpInst::ICMP_NE;
5831 Changed = true;
5832 break;
5833 }
5834 if ((RA + 1).isMaxValue()) {
5835 Pred = ICmpInst::ICMP_EQ;
5836 RHS = getConstant(RA + 1);
5837 Changed = true;
5838 break;
5839 }
5840 if (RA.isMaxValue()) goto trivially_false;
5841 break;
5842 case ICmpInst::ICMP_ULT:
5843 if (RA.isMaxValue()) {
5844 Pred = ICmpInst::ICMP_NE;
5845 Changed = true;
5846 break;
5847 }
5848 if ((RA - 1).isMinValue()) {
5849 Pred = ICmpInst::ICMP_EQ;
5850 RHS = getConstant(RA - 1);
5851 Changed = true;
5852 break;
5853 }
5854 if (RA.isMinValue()) goto trivially_false;
5855 break;
5856 case ICmpInst::ICMP_SGT:
5857 if (RA.isMinSignedValue()) {
5858 Pred = ICmpInst::ICMP_NE;
5859 Changed = true;
5860 break;
5861 }
5862 if ((RA + 1).isMaxSignedValue()) {
5863 Pred = ICmpInst::ICMP_EQ;
5864 RHS = getConstant(RA + 1);
5865 Changed = true;
5866 break;
5867 }
5868 if (RA.isMaxSignedValue()) goto trivially_false;
5869 break;
5870 case ICmpInst::ICMP_SLT:
5871 if (RA.isMaxSignedValue()) {
5872 Pred = ICmpInst::ICMP_NE;
5873 Changed = true;
5874 break;
5875 }
5876 if ((RA - 1).isMinSignedValue()) {
5877 Pred = ICmpInst::ICMP_EQ;
5878 RHS = getConstant(RA - 1);
5879 Changed = true;
5880 break;
5881 }
5882 if (RA.isMinSignedValue()) goto trivially_false;
5883 break;
5884 }
5885 }
5886
5887 // Check for obvious equality.
5888 if (HasSameValue(LHS, RHS)) {
5889 if (ICmpInst::isTrueWhenEqual(Pred))
5890 goto trivially_true;
5891 if (ICmpInst::isFalseWhenEqual(Pred))
5892 goto trivially_false;
5893 }
5894
Dan Gohman03557dc2010-05-03 16:35:17 +00005895 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5896 // adding or subtracting 1 from one of the operands.
5897 switch (Pred) {
5898 case ICmpInst::ICMP_SLE:
5899 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5900 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005901 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005902 Pred = ICmpInst::ICMP_SLT;
5903 Changed = true;
5904 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005905 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005906 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005907 Pred = ICmpInst::ICMP_SLT;
5908 Changed = true;
5909 }
5910 break;
5911 case ICmpInst::ICMP_SGE:
5912 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005913 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005914 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005915 Pred = ICmpInst::ICMP_SGT;
5916 Changed = true;
5917 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5918 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005919 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005920 Pred = ICmpInst::ICMP_SGT;
5921 Changed = true;
5922 }
5923 break;
5924 case ICmpInst::ICMP_ULE:
5925 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005926 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005927 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005928 Pred = ICmpInst::ICMP_ULT;
5929 Changed = true;
5930 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005931 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005932 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005933 Pred = ICmpInst::ICMP_ULT;
5934 Changed = true;
5935 }
5936 break;
5937 case ICmpInst::ICMP_UGE:
5938 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005939 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005940 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005941 Pred = ICmpInst::ICMP_UGT;
5942 Changed = true;
5943 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005944 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005945 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005946 Pred = ICmpInst::ICMP_UGT;
5947 Changed = true;
5948 }
5949 break;
5950 default:
5951 break;
5952 }
5953
Dan Gohmane9796502010-04-24 01:28:42 +00005954 // TODO: More simplifications are possible here.
5955
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005956 // Recursively simplify until we either hit a recursion limit or nothing
5957 // changes.
5958 if (Changed)
5959 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
5960
Dan Gohmane9796502010-04-24 01:28:42 +00005961 return Changed;
5962
5963trivially_true:
5964 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005965 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005966 Pred = ICmpInst::ICMP_EQ;
5967 return true;
5968
5969trivially_false:
5970 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005971 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005972 Pred = ICmpInst::ICMP_NE;
5973 return true;
5974}
5975
Dan Gohman85b05a22009-07-13 21:35:55 +00005976bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5977 return getSignedRange(S).getSignedMax().isNegative();
5978}
5979
5980bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5981 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5982}
5983
5984bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5985 return !getSignedRange(S).getSignedMin().isNegative();
5986}
5987
5988bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5989 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5990}
5991
5992bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5993 return isKnownNegative(S) || isKnownPositive(S);
5994}
5995
5996bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5997 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005998 // Canonicalize the inputs first.
5999 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6000
Dan Gohman53c66ea2010-04-11 22:16:48 +00006001 // If LHS or RHS is an addrec, check to see if the condition is true in
6002 // every iteration of the loop.
6003 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
6004 if (isLoopEntryGuardedByCond(
6005 AR->getLoop(), Pred, AR->getStart(), RHS) &&
6006 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00006007 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00006008 return true;
6009 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
6010 if (isLoopEntryGuardedByCond(
6011 AR->getLoop(), Pred, LHS, AR->getStart()) &&
6012 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00006013 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00006014 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00006015
Dan Gohman53c66ea2010-04-11 22:16:48 +00006016 // Otherwise see what can be done with known constant ranges.
6017 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6018}
6019
6020bool
6021ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6022 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00006023 if (HasSameValue(LHS, RHS))
6024 return ICmpInst::isTrueWhenEqual(Pred);
6025
Dan Gohman53c66ea2010-04-11 22:16:48 +00006026 // This code is split out from isKnownPredicate because it is called from
6027 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00006028 switch (Pred) {
6029 default:
Dan Gohman850f7912009-07-16 17:34:36 +00006030 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00006031 case ICmpInst::ICMP_SGT:
6032 Pred = ICmpInst::ICMP_SLT;
6033 std::swap(LHS, RHS);
6034 case ICmpInst::ICMP_SLT: {
6035 ConstantRange LHSRange = getSignedRange(LHS);
6036 ConstantRange RHSRange = getSignedRange(RHS);
6037 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6038 return true;
6039 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6040 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006041 break;
6042 }
6043 case ICmpInst::ICMP_SGE:
6044 Pred = ICmpInst::ICMP_SLE;
6045 std::swap(LHS, RHS);
6046 case ICmpInst::ICMP_SLE: {
6047 ConstantRange LHSRange = getSignedRange(LHS);
6048 ConstantRange RHSRange = getSignedRange(RHS);
6049 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6050 return true;
6051 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6052 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006053 break;
6054 }
6055 case ICmpInst::ICMP_UGT:
6056 Pred = ICmpInst::ICMP_ULT;
6057 std::swap(LHS, RHS);
6058 case ICmpInst::ICMP_ULT: {
6059 ConstantRange LHSRange = getUnsignedRange(LHS);
6060 ConstantRange RHSRange = getUnsignedRange(RHS);
6061 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6062 return true;
6063 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6064 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006065 break;
6066 }
6067 case ICmpInst::ICMP_UGE:
6068 Pred = ICmpInst::ICMP_ULE;
6069 std::swap(LHS, RHS);
6070 case ICmpInst::ICMP_ULE: {
6071 ConstantRange LHSRange = getUnsignedRange(LHS);
6072 ConstantRange RHSRange = getUnsignedRange(RHS);
6073 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6074 return true;
6075 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6076 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006077 break;
6078 }
6079 case ICmpInst::ICMP_NE: {
6080 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6081 return true;
6082 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6083 return true;
6084
6085 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6086 if (isKnownNonZero(Diff))
6087 return true;
6088 break;
6089 }
6090 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00006091 // The check at the top of the function catches the case where
6092 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00006093 break;
6094 }
6095 return false;
6096}
6097
6098/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6099/// protected by a conditional between LHS and RHS. This is used to
6100/// to eliminate casts.
6101bool
6102ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6103 ICmpInst::Predicate Pred,
6104 const SCEV *LHS, const SCEV *RHS) {
6105 // Interpret a null as meaning no loop, where there is obviously no guard
6106 // (interprocedural conditions notwithstanding).
6107 if (!L) return true;
6108
6109 BasicBlock *Latch = L->getLoopLatch();
6110 if (!Latch)
6111 return false;
6112
6113 BranchInst *LoopContinuePredicate =
6114 dyn_cast<BranchInst>(Latch->getTerminator());
6115 if (!LoopContinuePredicate ||
6116 LoopContinuePredicate->isUnconditional())
6117 return false;
6118
Dan Gohmanaf08a362010-08-10 23:46:30 +00006119 return isImpliedCond(Pred, LHS, RHS,
6120 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00006121 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00006122}
6123
Dan Gohman3948d0b2010-04-11 19:27:13 +00006124/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00006125/// by a conditional between LHS and RHS. This is used to help avoid max
6126/// expressions in loop trip counts, and to eliminate casts.
6127bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00006128ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6129 ICmpInst::Predicate Pred,
6130 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00006131 // Interpret a null as meaning no loop, where there is obviously no guard
6132 // (interprocedural conditions notwithstanding).
6133 if (!L) return false;
6134
Dan Gohman859b4822009-05-18 15:36:09 +00006135 // Starting at the loop predecessor, climb up the predecessor chain, as long
6136 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00006137 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00006138 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00006139 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00006140 Pair.first;
6141 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00006142
6143 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00006144 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00006145 if (!LoopEntryPredicate ||
6146 LoopEntryPredicate->isUnconditional())
6147 continue;
6148
Dan Gohmanaf08a362010-08-10 23:46:30 +00006149 if (isImpliedCond(Pred, LHS, RHS,
6150 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00006151 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00006152 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00006153 }
6154
Dan Gohman38372182008-08-12 20:17:31 +00006155 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00006156}
6157
Andrew Trick8aa22012012-05-19 00:48:25 +00006158/// RAII wrapper to prevent recursive application of isImpliedCond.
6159/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6160/// currently evaluating isImpliedCond.
6161struct MarkPendingLoopPredicate {
6162 Value *Cond;
6163 DenseSet<Value*> &LoopPreds;
6164 bool Pending;
6165
6166 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6167 : Cond(C), LoopPreds(LP) {
6168 Pending = !LoopPreds.insert(Cond).second;
6169 }
6170 ~MarkPendingLoopPredicate() {
6171 if (!Pending)
6172 LoopPreds.erase(Cond);
6173 }
6174};
6175
Dan Gohman0f4b2852009-07-21 23:03:19 +00006176/// isImpliedCond - Test whether the condition described by Pred, LHS,
6177/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006178bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006179 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00006180 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006181 bool Inverse) {
Andrew Trick8aa22012012-05-19 00:48:25 +00006182 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6183 if (Mark.Pending)
6184 return false;
6185
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006186 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006187 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006188 if (BO->getOpcode() == Instruction::And) {
6189 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006190 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6191 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006192 } else if (BO->getOpcode() == Instruction::Or) {
6193 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006194 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6195 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006196 }
6197 }
6198
Dan Gohmanaf08a362010-08-10 23:46:30 +00006199 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006200 if (!ICI) return false;
6201
Dan Gohman85b05a22009-07-13 21:35:55 +00006202 // Bail if the ICmp's operands' types are wider than the needed type
6203 // before attempting to call getSCEV on them. This avoids infinite
6204 // recursion, since the analysis of widening casts can require loop
6205 // exit condition information for overflow checking, which would
6206 // lead back here.
6207 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00006208 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00006209 return false;
6210
Andrew Trickffc9ee42012-11-29 18:35:13 +00006211 // Now that we found a conditional branch that dominates the loop or controls
6212 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman0f4b2852009-07-21 23:03:19 +00006213 ICmpInst::Predicate FoundPred;
6214 if (Inverse)
6215 FoundPred = ICI->getInversePredicate();
6216 else
6217 FoundPred = ICI->getPredicate();
6218
6219 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6220 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00006221
6222 // Balance the types. The case where FoundLHS' type is wider than
6223 // LHS' type is checked for above.
6224 if (getTypeSizeInBits(LHS->getType()) >
6225 getTypeSizeInBits(FoundLHS->getType())) {
6226 if (CmpInst::isSigned(Pred)) {
6227 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6228 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6229 } else {
6230 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6231 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6232 }
6233 }
6234
Dan Gohman0f4b2852009-07-21 23:03:19 +00006235 // Canonicalize the query to match the way instcombine will have
6236 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00006237 if (SimplifyICmpOperands(Pred, LHS, RHS))
6238 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00006239 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramer7d4253a2012-11-29 19:07:57 +00006240 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6241 if (FoundLHS == FoundRHS)
6242 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00006243
6244 // Check to see if we can make the LHS or RHS match.
6245 if (LHS == FoundRHS || RHS == FoundLHS) {
6246 if (isa<SCEVConstant>(RHS)) {
6247 std::swap(FoundLHS, FoundRHS);
6248 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6249 } else {
6250 std::swap(LHS, RHS);
6251 Pred = ICmpInst::getSwappedPredicate(Pred);
6252 }
6253 }
6254
6255 // Check whether the found predicate is the same as the desired predicate.
6256 if (FoundPred == Pred)
6257 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6258
6259 // Check whether swapping the found predicate makes it the same as the
6260 // desired predicate.
6261 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6262 if (isa<SCEVConstant>(RHS))
6263 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6264 else
6265 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6266 RHS, LHS, FoundLHS, FoundRHS);
6267 }
6268
6269 // Check whether the actual condition is beyond sufficient.
6270 if (FoundPred == ICmpInst::ICMP_EQ)
6271 if (ICmpInst::isTrueWhenEqual(Pred))
6272 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6273 return true;
6274 if (Pred == ICmpInst::ICMP_NE)
6275 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6276 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6277 return true;
6278
6279 // Otherwise assume the worst.
6280 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006281}
6282
Dan Gohman0f4b2852009-07-21 23:03:19 +00006283/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006284/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006285/// and FoundRHS is true.
6286bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6287 const SCEV *LHS, const SCEV *RHS,
6288 const SCEV *FoundLHS,
6289 const SCEV *FoundRHS) {
6290 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6291 FoundLHS, FoundRHS) ||
6292 // ~x < ~y --> x > y
6293 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6294 getNotSCEV(FoundRHS),
6295 getNotSCEV(FoundLHS));
6296}
6297
6298/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006299/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006300/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00006301bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00006302ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6303 const SCEV *LHS, const SCEV *RHS,
6304 const SCEV *FoundLHS,
6305 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00006306 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00006307 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6308 case ICmpInst::ICMP_EQ:
6309 case ICmpInst::ICMP_NE:
6310 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6311 return true;
6312 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00006313 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00006314 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006315 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6316 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006317 return true;
6318 break;
6319 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006320 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006321 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6322 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006323 return true;
6324 break;
6325 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00006326 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006327 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6328 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006329 return true;
6330 break;
6331 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006332 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006333 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6334 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006335 return true;
6336 break;
6337 }
6338
6339 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006340}
6341
Dan Gohman51f53b72009-06-21 23:46:38 +00006342/// getBECount - Subtract the end and start values and divide by the step,
6343/// rounding up, to get the number of times the backedge is executed. Return
6344/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006345const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00006346 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00006347 const SCEV *Step,
6348 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00006349 assert(!isKnownNegative(Step) &&
6350 "This code doesn't handle negative strides yet!");
6351
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006352 Type *Ty = Start->getType();
Andrew Tricke62289b2011-03-09 17:29:58 +00006353
6354 // When Start == End, we have an exact BECount == 0. Short-circuit this case
6355 // here because SCEV may not be able to determine that the unsigned division
6356 // after rounding is zero.
6357 if (Start == End)
6358 return getConstant(Ty, 0);
6359
Dan Gohmandeff6212010-05-03 22:09:21 +00006360 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00006361 const SCEV *Diff = getMinusSCEV(End, Start);
6362 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00006363
6364 // Add an adjustment to the difference between End and Start so that
6365 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006366 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00006367
Dan Gohman1f96e672009-09-17 18:05:20 +00006368 if (!NoWrap) {
6369 // Check Add for unsigned overflow.
6370 // TODO: More sophisticated things could be done here.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006371 Type *WideTy = IntegerType::get(getContext(),
Dan Gohman1f96e672009-09-17 18:05:20 +00006372 getTypeSizeInBits(Ty) + 1);
6373 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
6374 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
6375 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
6376 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
6377 return getCouldNotCompute();
6378 }
Dan Gohman51f53b72009-06-21 23:46:38 +00006379
6380 return getUDivExpr(Add, Step);
6381}
6382
Chris Lattnerdb25de42005-08-15 23:33:51 +00006383/// HowManyLessThans - Return the number of times a backedge containing the
6384/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00006385/// CouldNotCompute.
Andrew Trick61601142013-05-31 06:43:25 +00006386///
6387/// @param IsSubExpr is true when the LHS < RHS condition does not directly
6388/// control the branch. In this case, we can only compute an iteration count for
6389/// a subexpression that cannot overflow before evaluating true.
Andrew Trick5116ff62011-07-26 17:19:55 +00006390ScalarEvolution::ExitLimit
Dan Gohman64a845e2009-06-24 04:48:43 +00006391ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick61601142013-05-31 06:43:25 +00006392 const Loop *L, bool isSigned,
6393 bool IsSubExpr) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00006394 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00006395 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006396
Dan Gohman35738ac2009-05-04 22:30:44 +00006397 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006398 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00006399 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006400
6401 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006402 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00006403 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00006404
Dan Gohman52fddd32010-01-26 04:40:18 +00006405 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00006406 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00006407 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006408 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00006409 } else if (isKnownPositive(Step)) {
Andrew Tricka5c5bc92013-10-18 23:43:53 +00006410 // Test whether a positive iteration can step past the limit value and
6411 // past the maximum value for its type in a single step. The NSW/NUW flags
6412 // can imply that stepping past RHS would immediately result in undefined
6413 // behavior. No self-wrap is not useful here because the loop counter may
6414 // signed or unsigned wrap but continue iterating and terminate with
6415 // defined behavior without ever self-wrapping.
Dan Gohmandeff6212010-05-03 22:09:21 +00006416 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00006417 if (isSigned) {
Andrew Tricka5c5bc92013-10-18 23:43:53 +00006418 if (!AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
6419 APInt Max = APInt::getSignedMaxValue(BitWidth);
6420 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
Dan Gohman52fddd32010-01-26 04:40:18 +00006421 .slt(getSignedRange(RHS).getSignedMax()))
Andrew Tricka5c5bc92013-10-18 23:43:53 +00006422 return getCouldNotCompute();
6423 }
6424 } else if (!AddRec->getNoWrapFlags(SCEV::FlagNUW)){
Dan Gohman52fddd32010-01-26 04:40:18 +00006425 APInt Max = APInt::getMaxValue(BitWidth);
6426 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
6427 .ult(getUnsignedRange(RHS).getUnsignedMax()))
6428 return getCouldNotCompute();
6429 }
Dan Gohmana1af7572009-04-30 20:47:05 +00006430 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00006431 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00006432 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006433
Dan Gohmana1af7572009-04-30 20:47:05 +00006434 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
6435 // m. So, we count the number of iterations in which {n,+,s} < m is true.
6436 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00006437 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00006438
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006439 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00006440 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006441
Dan Gohmana1af7572009-04-30 20:47:05 +00006442 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006443 const SCEV *MinStart = getConstant(isSigned ?
6444 getSignedRange(Start).getSignedMin() :
6445 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006446
Dan Gohmana1af7572009-04-30 20:47:05 +00006447 // If we know that the condition is true in order to enter the loop,
6448 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00006449 // only know that it will execute (max(m,n)-n)/s times. In both cases,
6450 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006451 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00006452 if (!isLoopEntryGuardedByCond(L,
6453 isSigned ? ICmpInst::ICMP_SLT :
6454 ICmpInst::ICMP_ULT,
6455 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00006456 End = isSigned ? getSMaxExpr(RHS, Start)
6457 : getUMaxExpr(RHS, Start);
6458
6459 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006460 const SCEV *MaxEnd = getConstant(isSigned ?
6461 getSignedRange(End).getSignedMax() :
6462 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00006463
Dan Gohman52fddd32010-01-26 04:40:18 +00006464 // If MaxEnd is within a step of the maximum integer value in its type,
6465 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006466 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00006467 // compute the correct value.
6468 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00006469 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00006470 MaxEnd = isSigned ?
6471 getSMinExpr(MaxEnd,
6472 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6473 StepMinusOne)) :
6474 getUMinExpr(MaxEnd,
6475 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6476 StepMinusOne));
6477
Andrew Tricka5c5bc92013-10-18 23:43:53 +00006478 // If the loop counter does not self-wrap, then the trip count may be
6479 // computed by dividing the distance by the step. This is independent of
6480 // signed or unsigned wrap.
6481 bool NoWrap = false;
6482 if (!IsSubExpr) {
6483 NoWrap = AddRec->getNoWrapFlags(
6484 (SCEV::NoWrapFlags)(((isSigned ? SCEV::FlagNSW : SCEV::FlagNUW))
6485 | SCEV::FlagNW));
6486 }
Dan Gohmana1af7572009-04-30 20:47:05 +00006487 // Finally, we subtract these two values and divide, rounding up, to get
6488 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00006489 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00006490
6491 // The maximum backedge count is similar, except using the minimum start
6492 // value and the maximum end value.
Andrew Tricke62289b2011-03-09 17:29:58 +00006493 // If we already have an exact constant BECount, use it instead.
6494 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6495 : getBECount(MinStart, MaxEnd, Step, NoWrap);
6496
6497 // If the stride is nonconstant, and NoWrap == true, then
6498 // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6499 // exact BECount and invalid MaxBECount, which should be avoided to catch
6500 // more optimization opportunities.
6501 if (isa<SCEVCouldNotCompute>(MaxBECount))
6502 MaxBECount = BECount;
Dan Gohmana1af7572009-04-30 20:47:05 +00006503
Andrew Trick5116ff62011-07-26 17:19:55 +00006504 return ExitLimit(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006505 }
6506
Dan Gohman1c343752009-06-27 21:21:31 +00006507 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006508}
6509
Chris Lattner53e677a2004-04-02 20:23:17 +00006510/// getNumIterationsInRange - Return the number of iterations of this loop that
6511/// produce values in the specified constant range. Another way of looking at
6512/// this is that it returns the first iteration number where the value is not in
6513/// the condition, thus computing the exit count. If the iteration count can't
6514/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006515const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00006516 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00006517 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006518 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006519
6520 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00006521 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00006522 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00006523 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00006524 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick3228cc22011-03-14 16:50:06 +00006525 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00006526 getNoWrapFlags(FlagNW));
Dan Gohman622ed672009-05-04 22:02:23 +00006527 if (const SCEVAddRecExpr *ShiftedAddRec =
6528 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00006529 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00006530 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00006531 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006532 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006533 }
6534
6535 // The only time we can solve this is when we have all constant indices.
6536 // Otherwise, we cannot determine the overflow conditions.
6537 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6538 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006539 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006540
6541
6542 // Okay at this point we know that all elements of the chrec are constants and
6543 // that the start element is zero.
6544
6545 // First check to see if the range contains zero. If not, the first
6546 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00006547 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00006548 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00006549 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006550
Chris Lattner53e677a2004-04-02 20:23:17 +00006551 if (isAffine()) {
6552 // If this is an affine expression then we have this situation:
6553 // Solve {0,+,A} in Range === Ax in Range
6554
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006555 // We know that zero is in the range. If A is positive then we know that
6556 // the upper value of the range must be the first possible exit value.
6557 // If A is negative then the lower of the range is the last possible loop
6558 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00006559 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006560 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6561 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00006562
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006563 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00006564 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00006565 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00006566
6567 // Evaluate at the exit value. If we really did fall out of the valid
6568 // range, then we computed our trip count, otherwise wrap around or other
6569 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00006570 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006571 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006572 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006573
6574 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00006575 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00006576 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00006577 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00006578 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00006579 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00006580 } else if (isQuadratic()) {
6581 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6582 // quadratic equation to solve it. To do this, we must frame our problem in
6583 // terms of figuring out when zero is crossed, instead of when
6584 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006585 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00006586 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick3228cc22011-03-14 16:50:06 +00006587 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6588 // getNoWrapFlags(FlagNW)
6589 FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +00006590
6591 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00006592 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00006593 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00006594 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6595 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00006596 if (R1) {
6597 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006598 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00006599 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00006600 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00006601 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00006602 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006603
Chris Lattner53e677a2004-04-02 20:23:17 +00006604 // Make sure the root is not off by one. The returned iteration should
6605 // not be in the range, but the previous one should be. When solving
6606 // for "X*X < 5", for example, we should not return a root of 2.
6607 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00006608 R1->getValue(),
6609 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006610 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006611 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00006612 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006613 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006614
Dan Gohman246b2562007-10-22 18:31:58 +00006615 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006616 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00006617 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006618 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006619 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006620
Chris Lattner53e677a2004-04-02 20:23:17 +00006621 // If R1 was not in the range, then it is a good return value. Make
6622 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00006623 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006624 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00006625 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006626 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00006627 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006628 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006629 }
6630 }
6631 }
6632
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006633 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006634}
6635
6636
6637
6638//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00006639// SCEVCallbackVH Class Implementation
6640//===----------------------------------------------------------------------===//
6641
Dan Gohman1959b752009-05-19 19:22:47 +00006642void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006643 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00006644 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6645 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006646 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00006647 // this now dangles!
6648}
6649
Dan Gohman81f91212010-07-28 01:09:07 +00006650void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006651 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00006652
Dan Gohman35738ac2009-05-04 22:30:44 +00006653 // Forget all the expressions associated with users of the old value,
6654 // so that future queries will recompute the expressions using the new
6655 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00006656 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00006657 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00006658 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00006659 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6660 UI != UE; ++UI)
6661 Worklist.push_back(*UI);
6662 while (!Worklist.empty()) {
6663 User *U = Worklist.pop_back_val();
6664 // Deleting the Old value will cause this to dangle. Postpone
6665 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00006666 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00006667 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00006668 if (!Visited.insert(U))
6669 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00006670 if (PHINode *PN = dyn_cast<PHINode>(U))
6671 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006672 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00006673 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6674 UI != UE; ++UI)
6675 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00006676 }
Dan Gohman59846ac2010-07-28 00:28:25 +00006677 // Delete the Old value.
6678 if (PHINode *PN = dyn_cast<PHINode>(Old))
6679 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006680 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00006681 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00006682}
6683
Dan Gohman1959b752009-05-19 19:22:47 +00006684ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00006685 : CallbackVH(V), SE(se) {}
6686
6687//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00006688// ScalarEvolution Class Implementation
6689//===----------------------------------------------------------------------===//
6690
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006691ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00006692 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00006693 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006694}
6695
Chris Lattner53e677a2004-04-02 20:23:17 +00006696bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006697 this->F = &F;
6698 LI = &getAnalysis<LoopInfo>();
Micah Villmow3574eca2012-10-08 16:38:25 +00006699 TD = getAnalysisIfAvailable<DataLayout>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006700 TLI = &getAnalysis<TargetLibraryInfo>();
Dan Gohman454d26d2010-02-22 04:11:59 +00006701 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00006702 return false;
6703}
6704
6705void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00006706 // Iterate through all the SCEVUnknown instances and call their
6707 // destructors, so that they release their references to their values.
6708 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6709 U->~SCEVUnknown();
6710 FirstUnknown = 0;
6711
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006712 ValueExprMap.clear();
Andrew Trick5116ff62011-07-26 17:19:55 +00006713
6714 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6715 // that a loop had multiple computable exits.
6716 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6717 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6718 I != E; ++I) {
6719 I->second.clear();
6720 }
6721
Andrew Trick8aa22012012-05-19 00:48:25 +00006722 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
6723
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006724 BackedgeTakenCounts.clear();
6725 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00006726 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00006727 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006728 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00006729 UnsignedRanges.clear();
6730 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00006731 UniqueSCEVs.clear();
6732 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00006733}
6734
6735void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6736 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00006737 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00006738 AU.addRequiredTransitive<DominatorTree>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006739 AU.addRequired<TargetLibraryInfo>();
Dan Gohman2d1be872009-04-16 03:18:22 +00006740}
6741
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006742bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006743 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00006744}
6745
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006746static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00006747 const Loop *L) {
6748 // Print all inner loops first
6749 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6750 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006751
Dan Gohman30733292010-01-09 18:17:45 +00006752 OS << "Loop ";
6753 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6754 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006755
Dan Gohman5d984912009-12-18 01:14:11 +00006756 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006757 L->getExitBlocks(ExitBlocks);
6758 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00006759 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006760
Dan Gohman46bdfb02009-02-24 18:55:53 +00006761 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6762 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00006763 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006764 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006765 }
6766
Dan Gohman30733292010-01-09 18:17:45 +00006767 OS << "\n"
6768 "Loop ";
6769 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6770 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00006771
6772 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6773 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6774 } else {
6775 OS << "Unpredictable max backedge-taken count. ";
6776 }
6777
6778 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006779}
6780
Dan Gohman5d984912009-12-18 01:14:11 +00006781void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006782 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006783 // out SCEV values of all instructions that are interesting. Doing
6784 // this potentially causes it to create new SCEV objects though,
6785 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00006786 // observable from outside the class though, so casting away the
6787 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00006788 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00006789
Dan Gohman30733292010-01-09 18:17:45 +00006790 OS << "Classifying expressions for: ";
6791 WriteAsOperand(OS, F, /*PrintType=*/false);
6792 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006793 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00006794 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00006795 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00006796 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006797 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006798 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006799
Dan Gohman0c689c52009-06-19 17:49:54 +00006800 const Loop *L = LI->getLoopFor((*I).getParent());
6801
Dan Gohman0bba49c2009-07-07 17:06:11 +00006802 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00006803 if (AtUse != SV) {
6804 OS << " --> ";
6805 AtUse->print(OS);
6806 }
6807
6808 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006809 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006810 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006811 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006812 OS << "<<Unknown>>";
6813 } else {
6814 OS << *ExitValue;
6815 }
6816 }
6817
Chris Lattner53e677a2004-04-02 20:23:17 +00006818 OS << "\n";
6819 }
6820
Dan Gohman30733292010-01-09 18:17:45 +00006821 OS << "Determining loop execution counts for: ";
6822 WriteAsOperand(OS, F, /*PrintType=*/false);
6823 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006824 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6825 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006826}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006827
Dan Gohman714b5292010-11-17 23:21:44 +00006828ScalarEvolution::LoopDisposition
6829ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6830 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6831 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6832 Values.insert(std::make_pair(L, LoopVariant));
6833 if (!Pair.second)
6834 return Pair.first->second;
6835
6836 LoopDisposition D = computeLoopDisposition(S, L);
6837 return LoopDispositions[S][L] = D;
6838}
6839
6840ScalarEvolution::LoopDisposition
6841ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006842 switch (S->getSCEVType()) {
6843 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006844 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006845 case scTruncate:
6846 case scZeroExtend:
6847 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006848 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006849 case scAddRecExpr: {
6850 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6851
Dan Gohman714b5292010-11-17 23:21:44 +00006852 // If L is the addrec's loop, it's computable.
6853 if (AR->getLoop() == L)
6854 return LoopComputable;
6855
Dan Gohman17ead4f2010-11-17 21:23:15 +00006856 // Add recurrences are never invariant in the function-body (null loop).
6857 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006858 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006859
6860 // This recurrence is variant w.r.t. L if L contains AR's loop.
6861 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006862 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006863
6864 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6865 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006866 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006867
6868 // This recurrence is variant w.r.t. L if any of its operands
6869 // are variant.
6870 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6871 I != E; ++I)
6872 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006873 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006874
6875 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006876 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006877 }
6878 case scAddExpr:
6879 case scMulExpr:
6880 case scUMaxExpr:
6881 case scSMaxExpr: {
6882 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006883 bool HasVarying = false;
6884 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6885 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006886 LoopDisposition D = getLoopDisposition(*I, L);
6887 if (D == LoopVariant)
6888 return LoopVariant;
6889 if (D == LoopComputable)
6890 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006891 }
Dan Gohman714b5292010-11-17 23:21:44 +00006892 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006893 }
6894 case scUDivExpr: {
6895 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006896 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6897 if (LD == LoopVariant)
6898 return LoopVariant;
6899 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6900 if (RD == LoopVariant)
6901 return LoopVariant;
6902 return (LD == LoopInvariant && RD == LoopInvariant) ?
6903 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006904 }
6905 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006906 // All non-instruction values are loop invariant. All instructions are loop
6907 // invariant if they are not contained in the specified loop.
6908 // Instructions are never considered invariant in the function body
6909 // (null loop) because they are defined within the "loop".
6910 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6911 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6912 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006913 case scCouldNotCompute:
6914 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +00006915 default: llvm_unreachable("Unknown SCEV kind!");
Dan Gohman17ead4f2010-11-17 21:23:15 +00006916 }
Dan Gohman714b5292010-11-17 23:21:44 +00006917}
6918
6919bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6920 return getLoopDisposition(S, L) == LoopInvariant;
6921}
6922
6923bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6924 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006925}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006926
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006927ScalarEvolution::BlockDisposition
6928ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6929 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6930 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6931 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6932 if (!Pair.second)
6933 return Pair.first->second;
6934
6935 BlockDisposition D = computeBlockDisposition(S, BB);
6936 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006937}
6938
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006939ScalarEvolution::BlockDisposition
6940ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006941 switch (S->getSCEVType()) {
6942 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006943 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006944 case scTruncate:
6945 case scZeroExtend:
6946 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006947 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006948 case scAddRecExpr: {
6949 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006950 // to test for proper dominance too, because the instruction which
6951 // produces the addrec's value is a PHI, and a PHI effectively properly
6952 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006953 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6954 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006955 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006956 }
6957 // FALL THROUGH into SCEVNAryExpr handling.
6958 case scAddExpr:
6959 case scMulExpr:
6960 case scUMaxExpr:
6961 case scSMaxExpr: {
6962 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006963 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006964 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006965 I != E; ++I) {
6966 BlockDisposition D = getBlockDisposition(*I, BB);
6967 if (D == DoesNotDominateBlock)
6968 return DoesNotDominateBlock;
6969 if (D == DominatesBlock)
6970 Proper = false;
6971 }
6972 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006973 }
6974 case scUDivExpr: {
6975 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006976 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6977 BlockDisposition LD = getBlockDisposition(LHS, BB);
6978 if (LD == DoesNotDominateBlock)
6979 return DoesNotDominateBlock;
6980 BlockDisposition RD = getBlockDisposition(RHS, BB);
6981 if (RD == DoesNotDominateBlock)
6982 return DoesNotDominateBlock;
6983 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6984 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006985 }
6986 case scUnknown:
6987 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006988 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6989 if (I->getParent() == BB)
6990 return DominatesBlock;
6991 if (DT->properlyDominates(I->getParent(), BB))
6992 return ProperlyDominatesBlock;
6993 return DoesNotDominateBlock;
6994 }
6995 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006996 case scCouldNotCompute:
6997 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Andrew Trickeb6dd232012-03-26 22:33:59 +00006998 default:
David Blaikie4d6ccb52012-01-20 21:51:11 +00006999 llvm_unreachable("Unknown SCEV kind!");
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00007000 }
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00007001}
7002
7003bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
7004 return getBlockDisposition(S, BB) >= DominatesBlock;
7005}
7006
7007bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
7008 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00007009}
Dan Gohman4ce32db2010-11-17 22:27:42 +00007010
Andrew Trick8b7036b2012-07-13 23:33:03 +00007011namespace {
7012// Search for a SCEV expression node within an expression tree.
7013// Implements SCEVTraversal::Visitor.
7014struct SCEVSearch {
7015 const SCEV *Node;
7016 bool IsFound;
7017
7018 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
7019
7020 bool follow(const SCEV *S) {
7021 IsFound |= (S == Node);
7022 return !IsFound;
7023 }
7024 bool isDone() const { return IsFound; }
7025};
7026}
7027
Dan Gohman4ce32db2010-11-17 22:27:42 +00007028bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick8b7036b2012-07-13 23:33:03 +00007029 SCEVSearch Search(Op);
7030 visitAll(S, Search);
7031 return Search.IsFound;
Dan Gohman4ce32db2010-11-17 22:27:42 +00007032}
Dan Gohman56a75682010-11-17 23:28:48 +00007033
7034void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
7035 ValuesAtScopes.erase(S);
7036 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00007037 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00007038 UnsignedRanges.erase(S);
7039 SignedRanges.erase(S);
Andrew Tricke74c2e82013-03-26 03:14:53 +00007040
7041 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7042 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
7043 BackedgeTakenInfo &BEInfo = I->second;
7044 if (BEInfo.hasOperand(S, this)) {
7045 BEInfo.clear();
7046 BackedgeTakenCounts.erase(I++);
7047 }
7048 else
7049 ++I;
7050 }
Dan Gohman56a75682010-11-17 23:28:48 +00007051}
Benjamin Kramerff183102012-10-26 17:31:32 +00007052
7053typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramercb8b8ea2012-10-27 10:45:01 +00007054
7055/// replaceSubString - Replaces all occurences of From in Str with To.
7056static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
7057 size_t Pos = 0;
7058 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
7059 Str.replace(Pos, From.size(), To.data(), To.size());
7060 Pos += To.size();
7061 }
7062}
7063
Benjamin Kramerff183102012-10-26 17:31:32 +00007064/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
7065static void
7066getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
7067 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
7068 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
7069
7070 std::string &S = Map[L];
7071 if (S.empty()) {
7072 raw_string_ostream OS(S);
7073 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramercb8b8ea2012-10-27 10:45:01 +00007074
7075 // false and 0 are semantically equivalent. This can happen in dead loops.
7076 replaceSubString(OS.str(), "false", "0");
7077 // Remove wrap flags, their use in SCEV is highly fragile.
7078 // FIXME: Remove this when SCEV gets smarter about them.
7079 replaceSubString(OS.str(), "<nw>", "");
7080 replaceSubString(OS.str(), "<nsw>", "");
7081 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramerff183102012-10-26 17:31:32 +00007082 }
7083 }
7084}
7085
7086void ScalarEvolution::verifyAnalysis() const {
7087 if (!VerifySCEV)
7088 return;
7089
7090 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7091
7092 // Gather stringified backedge taken counts for all loops using SCEV's caches.
7093 // FIXME: It would be much better to store actual values instead of strings,
7094 // but SCEV pointers will change if we drop the caches.
7095 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
7096 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
7097 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
7098
7099 // Gather stringified backedge taken counts for all loops without using
7100 // SCEV's caches.
7101 SE.releaseMemory();
7102 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
7103 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
7104
7105 // Now compare whether they're the same with and without caches. This allows
7106 // verifying that no pass changed the cache.
7107 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
7108 "New loops suddenly appeared!");
7109
7110 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
7111 OldE = BackedgeDumpsOld.end(),
7112 NewI = BackedgeDumpsNew.begin();
7113 OldI != OldE; ++OldI, ++NewI) {
7114 assert(OldI->first == NewI->first && "Loop order changed!");
7115
7116 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
7117 // changes.
Benjamin Kramer974d98d2012-10-27 11:36:07 +00007118 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramerff183102012-10-26 17:31:32 +00007119 // means that a pass is buggy or SCEV has to learn a new pattern but is
7120 // usually not harmful.
7121 if (OldI->second != NewI->second &&
7122 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer974d98d2012-10-27 11:36:07 +00007123 NewI->second.find("undef") == std::string::npos &&
7124 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramerff183102012-10-26 17:31:32 +00007125 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer974d98d2012-10-27 11:36:07 +00007126 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramerff183102012-10-26 17:31:32 +00007127 << OldI->first->getHeader()->getName()
Benjamin Kramer974d98d2012-10-27 11:36:07 +00007128 << "' changed from '" << OldI->second
7129 << "' to '" << NewI->second << "'!\n";
Benjamin Kramerff183102012-10-26 17:31:32 +00007130 std::abort();
7131 }
7132 }
7133
7134 // TODO: Verify more things.
7135}