blob: f27961b9e921559ee76d9d071fd1e0cd14df5954 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohman089efff2008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000013//
14// This pass combines things like:
15// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
17// into:
18// %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
25// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
27// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
29// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
32// ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "llvm/IntrinsicInst.h"
39#include "llvm/Pass.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/GlobalVariable.h"
42#include "llvm/Analysis/ConstantFolding.h"
Chris Lattnera432bc72008-06-02 01:18:21 +000043#include "llvm/Analysis/ValueTracking.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000044#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/Support/CallSite.h"
Nick Lewycky0185bbf2008-02-03 16:33:09 +000048#include "llvm/Support/ConstantRange.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049#include "llvm/Support/Debug.h"
50#include "llvm/Support/GetElementPtrTypeIterator.h"
51#include "llvm/Support/InstVisitor.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/PatternMatch.h"
54#include "llvm/Support/Compiler.h"
55#include "llvm/ADT/DenseMap.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/SmallPtrSet.h"
58#include "llvm/ADT/Statistic.h"
59#include "llvm/ADT/STLExtras.h"
60#include <algorithm>
Edwin Töröka0e6fce2008-04-20 08:33:11 +000061#include <climits>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062#include <sstream>
63using namespace llvm;
64using namespace llvm::PatternMatch;
65
66STATISTIC(NumCombined , "Number of insts combined");
67STATISTIC(NumConstProp, "Number of constant folds");
68STATISTIC(NumDeadInst , "Number of dead inst eliminated");
69STATISTIC(NumDeadStore, "Number of dead stores eliminated");
70STATISTIC(NumSunkInst , "Number of instructions sunk");
71
72namespace {
73 class VISIBILITY_HIDDEN InstCombiner
74 : public FunctionPass,
75 public InstVisitor<InstCombiner, Instruction*> {
76 // Worklist of all of the instructions that need to be simplified.
Chris Lattnera06291a2008-08-15 04:03:01 +000077 SmallVector<Instruction*, 256> Worklist;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 DenseMap<Instruction*, unsigned> WorklistMap;
79 TargetData *TD;
80 bool MustPreserveLCSSA;
81 public:
82 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000083 InstCombiner() : FunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000084
85 /// AddToWorkList - Add the specified instruction to the worklist if it
86 /// isn't already in it.
87 void AddToWorkList(Instruction *I) {
Dan Gohman55d19662008-07-07 17:46:23 +000088 if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000089 Worklist.push_back(I);
90 }
91
92 // RemoveFromWorkList - remove I from the worklist if it exists.
93 void RemoveFromWorkList(Instruction *I) {
94 DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
95 if (It == WorklistMap.end()) return; // Not in worklist.
96
97 // Don't bother moving everything down, just null out the slot.
98 Worklist[It->second] = 0;
99
100 WorklistMap.erase(It);
101 }
102
103 Instruction *RemoveOneFromWorkList() {
104 Instruction *I = Worklist.back();
105 Worklist.pop_back();
106 WorklistMap.erase(I);
107 return I;
108 }
109
110
111 /// AddUsersToWorkList - When an instruction is simplified, add all users of
112 /// the instruction to the work lists because they might get more simplified
113 /// now.
114 ///
115 void AddUsersToWorkList(Value &I) {
116 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
117 UI != UE; ++UI)
118 AddToWorkList(cast<Instruction>(*UI));
119 }
120
121 /// AddUsesToWorkList - When an instruction is simplified, add operands to
122 /// the work lists because they might get more simplified now.
123 ///
124 void AddUsesToWorkList(Instruction &I) {
Gabor Greif17396002008-06-12 21:37:33 +0000125 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
126 if (Instruction *Op = dyn_cast<Instruction>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 AddToWorkList(Op);
128 }
129
130 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
131 /// dead. Add all of its operands to the worklist, turning them into
132 /// undef's to reduce the number of uses of those instructions.
133 ///
134 /// Return the specified operand before it is turned into an undef.
135 ///
136 Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
137 Value *R = I.getOperand(op);
138
Gabor Greif17396002008-06-12 21:37:33 +0000139 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
140 if (Instruction *Op = dyn_cast<Instruction>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141 AddToWorkList(Op);
142 // Set the operand to undef to drop the use.
Gabor Greif17396002008-06-12 21:37:33 +0000143 *i = UndefValue::get(Op->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000144 }
145
146 return R;
147 }
148
149 public:
150 virtual bool runOnFunction(Function &F);
151
152 bool DoOneIteration(Function &F, unsigned ItNum);
153
154 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
155 AU.addRequired<TargetData>();
156 AU.addPreservedID(LCSSAID);
157 AU.setPreservesCFG();
158 }
159
160 TargetData &getTargetData() const { return *TD; }
161
162 // Visitation implementation - Implement instruction combining for different
163 // instruction types. The semantics are as follows:
164 // Return Value:
165 // null - No change was made
166 // I - Change was made, I is still valid, I may be dead though
167 // otherwise - Change was made, replace I with returned instruction
168 //
169 Instruction *visitAdd(BinaryOperator &I);
170 Instruction *visitSub(BinaryOperator &I);
171 Instruction *visitMul(BinaryOperator &I);
172 Instruction *visitURem(BinaryOperator &I);
173 Instruction *visitSRem(BinaryOperator &I);
174 Instruction *visitFRem(BinaryOperator &I);
Chris Lattner76972db2008-07-14 00:15:52 +0000175 bool SimplifyDivRemOfSelect(BinaryOperator &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000176 Instruction *commonRemTransforms(BinaryOperator &I);
177 Instruction *commonIRemTransforms(BinaryOperator &I);
178 Instruction *commonDivTransforms(BinaryOperator &I);
179 Instruction *commonIDivTransforms(BinaryOperator &I);
180 Instruction *visitUDiv(BinaryOperator &I);
181 Instruction *visitSDiv(BinaryOperator &I);
182 Instruction *visitFDiv(BinaryOperator &I);
183 Instruction *visitAnd(BinaryOperator &I);
184 Instruction *visitOr (BinaryOperator &I);
185 Instruction *visitXor(BinaryOperator &I);
186 Instruction *visitShl(BinaryOperator &I);
187 Instruction *visitAShr(BinaryOperator &I);
188 Instruction *visitLShr(BinaryOperator &I);
189 Instruction *commonShiftTransforms(BinaryOperator &I);
Chris Lattnere6b62d92008-05-19 20:18:56 +0000190 Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
191 Constant *RHSC);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000192 Instruction *visitFCmpInst(FCmpInst &I);
193 Instruction *visitICmpInst(ICmpInst &I);
194 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
195 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
196 Instruction *LHS,
197 ConstantInt *RHS);
198 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
199 ConstantInt *DivRHS);
200
201 Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
202 ICmpInst::Predicate Cond, Instruction &I);
203 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
204 BinaryOperator &I);
205 Instruction *commonCastTransforms(CastInst &CI);
206 Instruction *commonIntCastTransforms(CastInst &CI);
207 Instruction *commonPointerCastTransforms(CastInst &CI);
208 Instruction *visitTrunc(TruncInst &CI);
209 Instruction *visitZExt(ZExtInst &CI);
210 Instruction *visitSExt(SExtInst &CI);
Chris Lattnerdf7e8402008-01-27 05:29:54 +0000211 Instruction *visitFPTrunc(FPTruncInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000212 Instruction *visitFPExt(CastInst &CI);
Chris Lattnerdeef1a72008-05-19 20:25:04 +0000213 Instruction *visitFPToUI(FPToUIInst &FI);
214 Instruction *visitFPToSI(FPToSIInst &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000215 Instruction *visitUIToFP(CastInst &CI);
216 Instruction *visitSIToFP(CastInst &CI);
217 Instruction *visitPtrToInt(CastInst &CI);
Chris Lattner7c1626482008-01-08 07:23:51 +0000218 Instruction *visitIntToPtr(IntToPtrInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000219 Instruction *visitBitCast(BitCastInst &CI);
220 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
221 Instruction *FI);
Dan Gohman58c09632008-09-16 18:46:06 +0000222 Instruction *visitSelectInst(SelectInst &SI);
223 Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000224 Instruction *visitCallInst(CallInst &CI);
225 Instruction *visitInvokeInst(InvokeInst &II);
226 Instruction *visitPHINode(PHINode &PN);
227 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
228 Instruction *visitAllocationInst(AllocationInst &AI);
229 Instruction *visitFreeInst(FreeInst &FI);
230 Instruction *visitLoadInst(LoadInst &LI);
231 Instruction *visitStoreInst(StoreInst &SI);
232 Instruction *visitBranchInst(BranchInst &BI);
233 Instruction *visitSwitchInst(SwitchInst &SI);
234 Instruction *visitInsertElementInst(InsertElementInst &IE);
235 Instruction *visitExtractElementInst(ExtractElementInst &EI);
236 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000237 Instruction *visitExtractValueInst(ExtractValueInst &EV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000238
239 // visitInstruction - Specify what to return for unhandled instructions...
240 Instruction *visitInstruction(Instruction &I) { return 0; }
241
242 private:
243 Instruction *visitCallSite(CallSite CS);
244 bool transformConstExprCastCall(CallSite CS);
Duncan Sands74833f22007-09-17 10:26:40 +0000245 Instruction *transformCallThroughTrampoline(CallSite CS);
Evan Chenge3779cf2008-03-24 00:21:34 +0000246 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
247 bool DoXform = true);
Chris Lattner3554f972008-05-20 05:46:13 +0000248 bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000249
250 public:
251 // InsertNewInstBefore - insert an instruction New before instruction Old
252 // in the program. Add the new instruction to the worklist.
253 //
254 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
255 assert(New && New->getParent() == 0 &&
256 "New instruction already inserted into a basic block!");
257 BasicBlock *BB = Old.getParent();
258 BB->getInstList().insert(&Old, New); // Insert inst
259 AddToWorkList(New);
260 return New;
261 }
262
263 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
264 /// This also adds the cast to the worklist. Finally, this returns the
265 /// cast.
266 Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
267 Instruction &Pos) {
268 if (V->getType() == Ty) return V;
269
270 if (Constant *CV = dyn_cast<Constant>(V))
271 return ConstantExpr::getCast(opc, CV, Ty);
272
Gabor Greifa645dd32008-05-16 19:29:10 +0000273 Instruction *C = CastInst::Create(opc, V, Ty, V->getName(), &Pos);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000274 AddToWorkList(C);
275 return C;
276 }
Chris Lattner13c2d6e2008-01-13 22:23:22 +0000277
278 Value *InsertBitCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
279 return InsertCastBefore(Instruction::BitCast, V, Ty, Pos);
280 }
281
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000282
283 // ReplaceInstUsesWith - This method is to be used when an instruction is
284 // found to be dead, replacable with another preexisting expression. Here
285 // we add all uses of I to the worklist, replace all uses of I with the new
286 // value, then return I, so that the inst combiner will know that I was
287 // modified.
288 //
289 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
290 AddUsersToWorkList(I); // Add all modified instrs to worklist
291 if (&I != V) {
292 I.replaceAllUsesWith(V);
293 return &I;
294 } else {
295 // If we are replacing the instruction with itself, this must be in a
296 // segment of unreachable code, so just clobber the instruction.
297 I.replaceAllUsesWith(UndefValue::get(I.getType()));
298 return &I;
299 }
300 }
301
302 // UpdateValueUsesWith - This method is to be used when an value is
303 // found to be replacable with another preexisting expression or was
304 // updated. Here we add all uses of I to the worklist, replace all uses of
305 // I with the new value (unless the instruction was just updated), then
306 // return true, so that the inst combiner will know that I was modified.
307 //
308 bool UpdateValueUsesWith(Value *Old, Value *New) {
309 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
310 if (Old != New)
311 Old->replaceAllUsesWith(New);
312 if (Instruction *I = dyn_cast<Instruction>(Old))
313 AddToWorkList(I);
314 if (Instruction *I = dyn_cast<Instruction>(New))
315 AddToWorkList(I);
316 return true;
317 }
318
319 // EraseInstFromFunction - When dealing with an instruction that has side
320 // effects or produces a void value, we can't rely on DCE to delete the
321 // instruction. Instead, visit methods should return the value returned by
322 // this function.
323 Instruction *EraseInstFromFunction(Instruction &I) {
324 assert(I.use_empty() && "Cannot erase instruction that is used!");
325 AddUsesToWorkList(I);
326 RemoveFromWorkList(&I);
327 I.eraseFromParent();
328 return 0; // Don't do anything with FI
329 }
Chris Lattnera432bc72008-06-02 01:18:21 +0000330
331 void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
332 APInt &KnownOne, unsigned Depth = 0) const {
333 return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
334 }
335
336 bool MaskedValueIsZero(Value *V, const APInt &Mask,
337 unsigned Depth = 0) const {
338 return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
339 }
340 unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
341 return llvm::ComputeNumSignBits(Op, TD, Depth);
342 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000343
344 private:
345 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
346 /// InsertBefore instruction. This is specialized a bit to avoid inserting
347 /// casts that are known to not do anything...
348 ///
349 Value *InsertOperandCastBefore(Instruction::CastOps opcode,
350 Value *V, const Type *DestTy,
351 Instruction *InsertBefore);
352
353 /// SimplifyCommutative - This performs a few simplifications for
354 /// commutative operators.
355 bool SimplifyCommutative(BinaryOperator &I);
356
357 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
358 /// most-complex to least-complex order.
359 bool SimplifyCompare(CmpInst &I);
360
361 /// SimplifyDemandedBits - Attempts to replace V with a simpler value based
362 /// on the demanded bits.
363 bool SimplifyDemandedBits(Value *V, APInt DemandedMask,
364 APInt& KnownZero, APInt& KnownOne,
365 unsigned Depth = 0);
366
367 Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
368 uint64_t &UndefElts, unsigned Depth = 0);
369
370 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
371 // PHI node as operand #0, see if we can fold the instruction into the PHI
372 // (which is only possible if all operands to the PHI are constants).
373 Instruction *FoldOpIntoPhi(Instruction &I);
374
375 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
376 // operator and they all are only used by the PHI, PHI together their
377 // inputs, and do the operation once, to the result of the PHI.
378 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
379 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
380
381
382 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
383 ConstantInt *AndRHS, BinaryOperator &TheAnd);
384
385 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
386 bool isSub, Instruction &I);
387 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
388 bool isSigned, bool Inside, Instruction &IB);
389 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI);
390 Instruction *MatchBSwap(BinaryOperator &I);
391 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000392 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
Chris Lattner5af8a912008-04-30 06:39:11 +0000393 Instruction *SimplifyMemSet(MemSetInst *MI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000394
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000395
396 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
Dan Gohman2d648bb2008-04-10 18:43:06 +0000397
Dan Gohman2d648bb2008-04-10 18:43:06 +0000398 bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
399 unsigned CastOpc,
400 int &NumCastsRemoved);
401 unsigned GetOrEnforceKnownAlignment(Value *V,
402 unsigned PrefAlign = 0);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000403
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000404 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000405}
406
Dan Gohman089efff2008-05-13 00:00:25 +0000407char InstCombiner::ID = 0;
408static RegisterPass<InstCombiner>
409X("instcombine", "Combine redundant instructions");
410
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000411// getComplexity: Assign a complexity or rank value to LLVM Values...
412// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
413static unsigned getComplexity(Value *V) {
414 if (isa<Instruction>(V)) {
415 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
416 return 3;
417 return 4;
418 }
419 if (isa<Argument>(V)) return 3;
420 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
421}
422
423// isOnlyUse - Return true if this instruction will be deleted if we stop using
424// it.
425static bool isOnlyUse(Value *V) {
426 return V->hasOneUse() || isa<Constant>(V);
427}
428
429// getPromotedType - Return the specified type promoted as it would be to pass
430// though a va_arg area...
431static const Type *getPromotedType(const Type *Ty) {
432 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
433 if (ITy->getBitWidth() < 32)
434 return Type::Int32Ty;
435 }
436 return Ty;
437}
438
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000439/// getBitCastOperand - If the specified operand is a CastInst, a constant
440/// expression bitcast, or a GetElementPtrInst with all zero indices, return the
441/// operand value, otherwise return null.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000442static Value *getBitCastOperand(Value *V) {
443 if (BitCastInst *I = dyn_cast<BitCastInst>(V))
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000444 // BitCastInst?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000445 return I->getOperand(0);
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000446 else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
447 // GetElementPtrInst?
448 if (GEP->hasAllZeroIndices())
449 return GEP->getOperand(0);
450 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000451 if (CE->getOpcode() == Instruction::BitCast)
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000452 // BitCast ConstantExp?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000453 return CE->getOperand(0);
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000454 else if (CE->getOpcode() == Instruction::GetElementPtr) {
455 // GetElementPtr ConstantExp?
456 for (User::op_iterator I = CE->op_begin() + 1, E = CE->op_end();
457 I != E; ++I) {
458 ConstantInt *CI = dyn_cast<ConstantInt>(I);
459 if (!CI || !CI->isZero())
460 // Any non-zero indices? Not cast-like.
461 return 0;
462 }
463 // All-zero indices? This is just like casting.
464 return CE->getOperand(0);
465 }
466 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000467 return 0;
468}
469
470/// This function is a wrapper around CastInst::isEliminableCastPair. It
471/// simply extracts arguments and returns what that function returns.
472static Instruction::CastOps
473isEliminableCastPair(
474 const CastInst *CI, ///< The first cast instruction
475 unsigned opcode, ///< The opcode of the second cast instruction
476 const Type *DstTy, ///< The target type for the second cast instruction
477 TargetData *TD ///< The target data for pointer size
478) {
479
480 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
481 const Type *MidTy = CI->getType(); // B from above
482
483 // Get the opcodes of the two Cast instructions
484 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
485 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
486
487 return Instruction::CastOps(
488 CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
489 DstTy, TD->getIntPtrType()));
490}
491
492/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
493/// in any code being generated. It does not require codegen if V is simple
494/// enough or if the cast can be folded into other casts.
495static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
496 const Type *Ty, TargetData *TD) {
497 if (V->getType() == Ty || isa<Constant>(V)) return false;
498
499 // If this is another cast that can be eliminated, it isn't codegen either.
500 if (const CastInst *CI = dyn_cast<CastInst>(V))
501 if (isEliminableCastPair(CI, opcode, Ty, TD))
502 return false;
503 return true;
504}
505
506/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
507/// InsertBefore instruction. This is specialized a bit to avoid inserting
508/// casts that are known to not do anything...
509///
510Value *InstCombiner::InsertOperandCastBefore(Instruction::CastOps opcode,
511 Value *V, const Type *DestTy,
512 Instruction *InsertBefore) {
513 if (V->getType() == DestTy) return V;
514 if (Constant *C = dyn_cast<Constant>(V))
515 return ConstantExpr::getCast(opcode, C, DestTy);
516
517 return InsertCastBefore(opcode, V, DestTy, *InsertBefore);
518}
519
520// SimplifyCommutative - This performs a few simplifications for commutative
521// operators:
522//
523// 1. Order operands such that they are listed from right (least complex) to
524// left (most complex). This puts constants before unary operators before
525// binary operators.
526//
527// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
528// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
529//
530bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
531 bool Changed = false;
532 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
533 Changed = !I.swapOperands();
534
535 if (!I.isAssociative()) return Changed;
536 Instruction::BinaryOps Opcode = I.getOpcode();
537 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
538 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
539 if (isa<Constant>(I.getOperand(1))) {
540 Constant *Folded = ConstantExpr::get(I.getOpcode(),
541 cast<Constant>(I.getOperand(1)),
542 cast<Constant>(Op->getOperand(1)));
543 I.setOperand(0, Op->getOperand(0));
544 I.setOperand(1, Folded);
545 return true;
546 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
547 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
548 isOnlyUse(Op) && isOnlyUse(Op1)) {
549 Constant *C1 = cast<Constant>(Op->getOperand(1));
550 Constant *C2 = cast<Constant>(Op1->getOperand(1));
551
552 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
553 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +0000554 Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000555 Op1->getOperand(0),
556 Op1->getName(), &I);
557 AddToWorkList(New);
558 I.setOperand(0, New);
559 I.setOperand(1, Folded);
560 return true;
561 }
562 }
563 return Changed;
564}
565
566/// SimplifyCompare - For a CmpInst this function just orders the operands
567/// so that theyare listed from right (least complex) to left (most complex).
568/// This puts constants before unary operators before binary operators.
569bool InstCombiner::SimplifyCompare(CmpInst &I) {
570 if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
571 return false;
572 I.swapOperands();
573 // Compare instructions are not associative so there's nothing else we can do.
574 return true;
575}
576
577// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
578// if the LHS is a constant zero (which is the 'negate' form).
579//
580static inline Value *dyn_castNegVal(Value *V) {
581 if (BinaryOperator::isNeg(V))
582 return BinaryOperator::getNegArgument(V);
583
584 // Constants can be considered to be negated values if they can be folded.
585 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
586 return ConstantExpr::getNeg(C);
Nick Lewycky58867bc2008-05-23 04:54:45 +0000587
588 if (ConstantVector *C = dyn_cast<ConstantVector>(V))
589 if (C->getType()->getElementType()->isInteger())
590 return ConstantExpr::getNeg(C);
591
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000592 return 0;
593}
594
595static inline Value *dyn_castNotVal(Value *V) {
596 if (BinaryOperator::isNot(V))
597 return BinaryOperator::getNotArgument(V);
598
599 // Constants can be considered to be not'ed values...
600 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
601 return ConstantInt::get(~C->getValue());
602 return 0;
603}
604
605// dyn_castFoldableMul - If this value is a multiply that can be folded into
606// other computations (because it has a constant operand), return the
607// non-constant operand of the multiply, and set CST to point to the multiplier.
608// Otherwise, return null.
609//
610static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
611 if (V->hasOneUse() && V->getType()->isInteger())
612 if (Instruction *I = dyn_cast<Instruction>(V)) {
613 if (I->getOpcode() == Instruction::Mul)
614 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
615 return I->getOperand(0);
616 if (I->getOpcode() == Instruction::Shl)
617 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
618 // The multiplier is really 1 << CST.
619 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
620 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
621 CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal));
622 return I->getOperand(0);
623 }
624 }
625 return 0;
626}
627
628/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
629/// expression, return it.
630static User *dyn_castGetElementPtr(Value *V) {
631 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
632 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
633 if (CE->getOpcode() == Instruction::GetElementPtr)
634 return cast<User>(V);
635 return false;
636}
637
Dan Gohman2d648bb2008-04-10 18:43:06 +0000638/// getOpcode - If this is an Instruction or a ConstantExpr, return the
639/// opcode value. Otherwise return UserOp1.
Dan Gohman8c397862008-05-29 19:53:46 +0000640static unsigned getOpcode(const Value *V) {
641 if (const Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000642 return I->getOpcode();
Dan Gohman8c397862008-05-29 19:53:46 +0000643 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000644 return CE->getOpcode();
645 // Use UserOp1 to mean there's no opcode.
646 return Instruction::UserOp1;
647}
648
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000649/// AddOne - Add one to a ConstantInt
650static ConstantInt *AddOne(ConstantInt *C) {
651 APInt Val(C->getValue());
652 return ConstantInt::get(++Val);
653}
654/// SubOne - Subtract one from a ConstantInt
655static ConstantInt *SubOne(ConstantInt *C) {
656 APInt Val(C->getValue());
657 return ConstantInt::get(--Val);
658}
659/// Add - Add two ConstantInts together
660static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) {
661 return ConstantInt::get(C1->getValue() + C2->getValue());
662}
663/// And - Bitwise AND two ConstantInts together
664static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) {
665 return ConstantInt::get(C1->getValue() & C2->getValue());
666}
667/// Subtract - Subtract one ConstantInt from another
668static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) {
669 return ConstantInt::get(C1->getValue() - C2->getValue());
670}
671/// Multiply - Multiply two ConstantInts together
672static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) {
673 return ConstantInt::get(C1->getValue() * C2->getValue());
674}
Nick Lewycky9d798f92008-02-18 22:48:05 +0000675/// MultiplyOverflows - True if the multiply can not be expressed in an int
676/// this size.
677static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
678 uint32_t W = C1->getBitWidth();
679 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
680 if (sign) {
681 LHSExt.sext(W * 2);
682 RHSExt.sext(W * 2);
683 } else {
684 LHSExt.zext(W * 2);
685 RHSExt.zext(W * 2);
686 }
687
688 APInt MulExt = LHSExt * RHSExt;
689
690 if (sign) {
691 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
692 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
693 return MulExt.slt(Min) || MulExt.sgt(Max);
694 } else
695 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
696}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000697
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000698
699/// ShrinkDemandedConstant - Check to see if the specified operand of the
700/// specified instruction is a constant integer. If so, check to see if there
701/// are any bits set in the constant that are not demanded. If so, shrink the
702/// constant and return true.
703static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
704 APInt Demanded) {
705 assert(I && "No instruction?");
706 assert(OpNo < I->getNumOperands() && "Operand index too large");
707
708 // If the operand is not a constant integer, nothing to do.
709 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
710 if (!OpC) return false;
711
712 // If there are no bits set that aren't demanded, nothing to do.
713 Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
714 if ((~Demanded & OpC->getValue()) == 0)
715 return false;
716
717 // This instruction is producing bits that are not demanded. Shrink the RHS.
718 Demanded &= OpC->getValue();
719 I->setOperand(OpNo, ConstantInt::get(Demanded));
720 return true;
721}
722
723// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
724// set of known zero and one bits, compute the maximum and minimum values that
725// could have the specified known zero and known one bits, returning them in
726// min/max.
727static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
728 const APInt& KnownZero,
729 const APInt& KnownOne,
730 APInt& Min, APInt& Max) {
731 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
732 assert(KnownZero.getBitWidth() == BitWidth &&
733 KnownOne.getBitWidth() == BitWidth &&
734 Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth &&
735 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
736 APInt UnknownBits = ~(KnownZero|KnownOne);
737
738 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
739 // bit if it is unknown.
740 Min = KnownOne;
741 Max = KnownOne|UnknownBits;
742
743 if (UnknownBits[BitWidth-1]) { // Sign bit is unknown
744 Min.set(BitWidth-1);
745 Max.clear(BitWidth-1);
746 }
747}
748
749// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
750// a set of known zero and one bits, compute the maximum and minimum values that
751// could have the specified known zero and known one bits, returning them in
752// min/max.
753static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
Chris Lattnerb933ea62007-08-05 08:47:58 +0000754 const APInt &KnownZero,
755 const APInt &KnownOne,
756 APInt &Min, APInt &Max) {
757 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth(); BitWidth = BitWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000758 assert(KnownZero.getBitWidth() == BitWidth &&
759 KnownOne.getBitWidth() == BitWidth &&
760 Min.getBitWidth() == BitWidth && Max.getBitWidth() &&
761 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
762 APInt UnknownBits = ~(KnownZero|KnownOne);
763
764 // The minimum value is when the unknown bits are all zeros.
765 Min = KnownOne;
766 // The maximum value is when the unknown bits are all ones.
767 Max = KnownOne|UnknownBits;
768}
769
770/// SimplifyDemandedBits - This function attempts to replace V with a simpler
771/// value based on the demanded bits. When this function is called, it is known
772/// that only the bits set in DemandedMask of the result of V are ever used
773/// downstream. Consequently, depending on the mask and V, it may be possible
774/// to replace V with a constant or one of its operands. In such cases, this
775/// function does the replacement and returns true. In all other cases, it
776/// returns false after analyzing the expression and setting KnownOne and known
777/// to be one in the expression. KnownZero contains all the bits that are known
778/// to be zero in the expression. These are provided to potentially allow the
779/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
780/// the expression. KnownOne and KnownZero always follow the invariant that
781/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
782/// the bits in KnownOne and KnownZero may only be accurate for those bits set
783/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
784/// and KnownOne must all be the same.
785bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
786 APInt& KnownZero, APInt& KnownOne,
787 unsigned Depth) {
788 assert(V != 0 && "Null pointer of Value???");
789 assert(Depth <= 6 && "Limit Search Depth");
790 uint32_t BitWidth = DemandedMask.getBitWidth();
791 const IntegerType *VTy = cast<IntegerType>(V->getType());
792 assert(VTy->getBitWidth() == BitWidth &&
793 KnownZero.getBitWidth() == BitWidth &&
794 KnownOne.getBitWidth() == BitWidth &&
795 "Value *V, DemandedMask, KnownZero and KnownOne \
796 must have same BitWidth");
797 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
798 // We know all of the bits for a constant!
799 KnownOne = CI->getValue() & DemandedMask;
800 KnownZero = ~KnownOne & DemandedMask;
801 return false;
802 }
803
804 KnownZero.clear();
805 KnownOne.clear();
806 if (!V->hasOneUse()) { // Other users may use these bits.
807 if (Depth != 0) { // Not at the root.
808 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
809 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
810 return false;
811 }
812 // If this is the root being simplified, allow it to have multiple uses,
813 // just set the DemandedMask to all bits.
814 DemandedMask = APInt::getAllOnesValue(BitWidth);
815 } else if (DemandedMask == 0) { // Not demanding any bits from V.
816 if (V != UndefValue::get(VTy))
817 return UpdateValueUsesWith(V, UndefValue::get(VTy));
818 return false;
819 } else if (Depth == 6) { // Limit search depth.
820 return false;
821 }
822
823 Instruction *I = dyn_cast<Instruction>(V);
824 if (!I) return false; // Only analyze instructions.
825
826 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
827 APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
828 switch (I->getOpcode()) {
Dan Gohmanbec16052008-04-28 17:02:21 +0000829 default:
830 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
831 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000832 case Instruction::And:
833 // If either the LHS or the RHS are Zero, the result is zero.
834 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
835 RHSKnownZero, RHSKnownOne, Depth+1))
836 return true;
837 assert((RHSKnownZero & RHSKnownOne) == 0 &&
838 "Bits known to be one AND zero?");
839
840 // If something is known zero on the RHS, the bits aren't demanded on the
841 // LHS.
842 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
843 LHSKnownZero, LHSKnownOne, Depth+1))
844 return true;
845 assert((LHSKnownZero & LHSKnownOne) == 0 &&
846 "Bits known to be one AND zero?");
847
848 // If all of the demanded bits are known 1 on one side, return the other.
849 // These bits cannot contribute to the result of the 'and'.
850 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
851 (DemandedMask & ~LHSKnownZero))
852 return UpdateValueUsesWith(I, I->getOperand(0));
853 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
854 (DemandedMask & ~RHSKnownZero))
855 return UpdateValueUsesWith(I, I->getOperand(1));
856
857 // If all of the demanded bits in the inputs are known zeros, return zero.
858 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
859 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
860
861 // If the RHS is a constant, see if we can simplify it.
862 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
863 return UpdateValueUsesWith(I, I);
864
865 // Output known-1 bits are only known if set in both the LHS & RHS.
866 RHSKnownOne &= LHSKnownOne;
867 // Output known-0 are known to be clear if zero in either the LHS | RHS.
868 RHSKnownZero |= LHSKnownZero;
869 break;
870 case Instruction::Or:
871 // If either the LHS or the RHS are One, the result is One.
872 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
873 RHSKnownZero, RHSKnownOne, Depth+1))
874 return true;
875 assert((RHSKnownZero & RHSKnownOne) == 0 &&
876 "Bits known to be one AND zero?");
877 // If something is known one on the RHS, the bits aren't demanded on the
878 // LHS.
879 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
880 LHSKnownZero, LHSKnownOne, Depth+1))
881 return true;
882 assert((LHSKnownZero & LHSKnownOne) == 0 &&
883 "Bits known to be one AND zero?");
884
885 // If all of the demanded bits are known zero on one side, return the other.
886 // These bits cannot contribute to the result of the 'or'.
887 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
888 (DemandedMask & ~LHSKnownOne))
889 return UpdateValueUsesWith(I, I->getOperand(0));
890 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
891 (DemandedMask & ~RHSKnownOne))
892 return UpdateValueUsesWith(I, I->getOperand(1));
893
894 // If all of the potentially set bits on one side are known to be set on
895 // the other side, just use the 'other' side.
896 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
897 (DemandedMask & (~RHSKnownZero)))
898 return UpdateValueUsesWith(I, I->getOperand(0));
899 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
900 (DemandedMask & (~LHSKnownZero)))
901 return UpdateValueUsesWith(I, I->getOperand(1));
902
903 // If the RHS is a constant, see if we can simplify it.
904 if (ShrinkDemandedConstant(I, 1, DemandedMask))
905 return UpdateValueUsesWith(I, I);
906
907 // Output known-0 bits are only known if clear in both the LHS & RHS.
908 RHSKnownZero &= LHSKnownZero;
909 // Output known-1 are known to be set if set in either the LHS | RHS.
910 RHSKnownOne |= LHSKnownOne;
911 break;
912 case Instruction::Xor: {
913 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
914 RHSKnownZero, RHSKnownOne, Depth+1))
915 return true;
916 assert((RHSKnownZero & RHSKnownOne) == 0 &&
917 "Bits known to be one AND zero?");
918 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
919 LHSKnownZero, LHSKnownOne, Depth+1))
920 return true;
921 assert((LHSKnownZero & LHSKnownOne) == 0 &&
922 "Bits known to be one AND zero?");
923
924 // If all of the demanded bits are known zero on one side, return the other.
925 // These bits cannot contribute to the result of the 'xor'.
926 if ((DemandedMask & RHSKnownZero) == DemandedMask)
927 return UpdateValueUsesWith(I, I->getOperand(0));
928 if ((DemandedMask & LHSKnownZero) == DemandedMask)
929 return UpdateValueUsesWith(I, I->getOperand(1));
930
931 // Output known-0 bits are known if clear or set in both the LHS & RHS.
932 APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
933 (RHSKnownOne & LHSKnownOne);
934 // Output known-1 are known to be set if set in only one of the LHS, RHS.
935 APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
936 (RHSKnownOne & LHSKnownZero);
937
938 // If all of the demanded bits are known to be zero on one side or the
939 // other, turn this into an *inclusive* or.
940 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
941 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
942 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +0000943 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000944 I->getName());
945 InsertNewInstBefore(Or, *I);
946 return UpdateValueUsesWith(I, Or);
947 }
948
949 // If all of the demanded bits on one side are known, and all of the set
950 // bits on that side are also known to be set on the other side, turn this
951 // into an AND, as we know the bits will be cleared.
952 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
953 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
954 // all known
955 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
956 Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask);
957 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +0000958 BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000959 InsertNewInstBefore(And, *I);
960 return UpdateValueUsesWith(I, And);
961 }
962 }
963
964 // If the RHS is a constant, see if we can simplify it.
965 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
966 if (ShrinkDemandedConstant(I, 1, DemandedMask))
967 return UpdateValueUsesWith(I, I);
968
969 RHSKnownZero = KnownZeroOut;
970 RHSKnownOne = KnownOneOut;
971 break;
972 }
973 case Instruction::Select:
974 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
975 RHSKnownZero, RHSKnownOne, Depth+1))
976 return true;
977 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
978 LHSKnownZero, LHSKnownOne, Depth+1))
979 return true;
980 assert((RHSKnownZero & RHSKnownOne) == 0 &&
981 "Bits known to be one AND zero?");
982 assert((LHSKnownZero & LHSKnownOne) == 0 &&
983 "Bits known to be one AND zero?");
984
985 // If the operands are constants, see if we can simplify them.
986 if (ShrinkDemandedConstant(I, 1, DemandedMask))
987 return UpdateValueUsesWith(I, I);
988 if (ShrinkDemandedConstant(I, 2, DemandedMask))
989 return UpdateValueUsesWith(I, I);
990
991 // Only known if known in both the LHS and RHS.
992 RHSKnownOne &= LHSKnownOne;
993 RHSKnownZero &= LHSKnownZero;
994 break;
995 case Instruction::Trunc: {
996 uint32_t truncBf =
997 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
998 DemandedMask.zext(truncBf);
999 RHSKnownZero.zext(truncBf);
1000 RHSKnownOne.zext(truncBf);
1001 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1002 RHSKnownZero, RHSKnownOne, Depth+1))
1003 return true;
1004 DemandedMask.trunc(BitWidth);
1005 RHSKnownZero.trunc(BitWidth);
1006 RHSKnownOne.trunc(BitWidth);
1007 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1008 "Bits known to be one AND zero?");
1009 break;
1010 }
1011 case Instruction::BitCast:
1012 if (!I->getOperand(0)->getType()->isInteger())
1013 return false;
1014
1015 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1016 RHSKnownZero, RHSKnownOne, Depth+1))
1017 return true;
1018 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1019 "Bits known to be one AND zero?");
1020 break;
1021 case Instruction::ZExt: {
1022 // Compute the bits in the result that are not present in the input.
1023 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1024 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1025
1026 DemandedMask.trunc(SrcBitWidth);
1027 RHSKnownZero.trunc(SrcBitWidth);
1028 RHSKnownOne.trunc(SrcBitWidth);
1029 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1030 RHSKnownZero, RHSKnownOne, Depth+1))
1031 return true;
1032 DemandedMask.zext(BitWidth);
1033 RHSKnownZero.zext(BitWidth);
1034 RHSKnownOne.zext(BitWidth);
1035 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1036 "Bits known to be one AND zero?");
1037 // The top bits are known to be zero.
1038 RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1039 break;
1040 }
1041 case Instruction::SExt: {
1042 // Compute the bits in the result that are not present in the input.
1043 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1044 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1045
1046 APInt InputDemandedBits = DemandedMask &
1047 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
1048
1049 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
1050 // If any of the sign extended bits are demanded, we know that the sign
1051 // bit is demanded.
1052 if ((NewBits & DemandedMask) != 0)
1053 InputDemandedBits.set(SrcBitWidth-1);
1054
1055 InputDemandedBits.trunc(SrcBitWidth);
1056 RHSKnownZero.trunc(SrcBitWidth);
1057 RHSKnownOne.trunc(SrcBitWidth);
1058 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
1059 RHSKnownZero, RHSKnownOne, Depth+1))
1060 return true;
1061 InputDemandedBits.zext(BitWidth);
1062 RHSKnownZero.zext(BitWidth);
1063 RHSKnownOne.zext(BitWidth);
1064 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1065 "Bits known to be one AND zero?");
1066
1067 // If the sign bit of the input is known set or clear, then we know the
1068 // top bits of the result.
1069
1070 // If the input sign bit is known zero, or if the NewBits are not demanded
1071 // convert this into a zero extension.
1072 if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits)
1073 {
1074 // Convert to ZExt cast
1075 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
1076 return UpdateValueUsesWith(I, NewCast);
1077 } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set
1078 RHSKnownOne |= NewBits;
1079 }
1080 break;
1081 }
1082 case Instruction::Add: {
1083 // Figure out what the input bits are. If the top bits of the and result
1084 // are not demanded, then the add doesn't demand them from its input
1085 // either.
1086 uint32_t NLZ = DemandedMask.countLeadingZeros();
1087
1088 // If there is a constant on the RHS, there are a variety of xformations
1089 // we can do.
1090 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1091 // If null, this should be simplified elsewhere. Some of the xforms here
1092 // won't work if the RHS is zero.
1093 if (RHS->isZero())
1094 break;
1095
1096 // If the top bit of the output is demanded, demand everything from the
1097 // input. Otherwise, we demand all the input bits except NLZ top bits.
1098 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
1099
1100 // Find information about known zero/one bits in the input.
1101 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1102 LHSKnownZero, LHSKnownOne, Depth+1))
1103 return true;
1104
1105 // If the RHS of the add has bits set that can't affect the input, reduce
1106 // the constant.
1107 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1108 return UpdateValueUsesWith(I, I);
1109
1110 // Avoid excess work.
1111 if (LHSKnownZero == 0 && LHSKnownOne == 0)
1112 break;
1113
1114 // Turn it into OR if input bits are zero.
1115 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
1116 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00001117 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001118 I->getName());
1119 InsertNewInstBefore(Or, *I);
1120 return UpdateValueUsesWith(I, Or);
1121 }
1122
1123 // We can say something about the output known-zero and known-one bits,
1124 // depending on potential carries from the input constant and the
1125 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1126 // bits set and the RHS constant is 0x01001, then we know we have a known
1127 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1128
1129 // To compute this, we first compute the potential carry bits. These are
1130 // the bits which may be modified. I'm not aware of a better way to do
1131 // this scan.
1132 const APInt& RHSVal = RHS->getValue();
1133 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
1134
1135 // Now that we know which bits have carries, compute the known-1/0 sets.
1136
1137 // Bits are known one if they are known zero in one operand and one in the
1138 // other, and there is no input carry.
1139 RHSKnownOne = ((LHSKnownZero & RHSVal) |
1140 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
1141
1142 // Bits are known zero if they are known zero in both operands and there
1143 // is no input carry.
1144 RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
1145 } else {
1146 // If the high-bits of this ADD are not demanded, then it does not demand
1147 // the high bits of its LHS or RHS.
1148 if (DemandedMask[BitWidth-1] == 0) {
1149 // Right fill the mask of bits for this ADD to demand the most
1150 // significant bit and all those below it.
1151 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1152 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1153 LHSKnownZero, LHSKnownOne, Depth+1))
1154 return true;
1155 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1156 LHSKnownZero, LHSKnownOne, Depth+1))
1157 return true;
1158 }
1159 }
1160 break;
1161 }
1162 case Instruction::Sub:
1163 // If the high-bits of this SUB are not demanded, then it does not demand
1164 // the high bits of its LHS or RHS.
1165 if (DemandedMask[BitWidth-1] == 0) {
1166 // Right fill the mask of bits for this SUB to demand the most
1167 // significant bit and all those below it.
1168 uint32_t NLZ = DemandedMask.countLeadingZeros();
1169 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1170 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1171 LHSKnownZero, LHSKnownOne, Depth+1))
1172 return true;
1173 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1174 LHSKnownZero, LHSKnownOne, Depth+1))
1175 return true;
1176 }
Dan Gohmanbec16052008-04-28 17:02:21 +00001177 // Otherwise just hand the sub off to ComputeMaskedBits to fill in
1178 // the known zeros and ones.
1179 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001180 break;
1181 case Instruction::Shl:
1182 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1183 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1184 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
1185 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1186 RHSKnownZero, RHSKnownOne, Depth+1))
1187 return true;
1188 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1189 "Bits known to be one AND zero?");
1190 RHSKnownZero <<= ShiftAmt;
1191 RHSKnownOne <<= ShiftAmt;
1192 // low bits known zero.
1193 if (ShiftAmt)
1194 RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
1195 }
1196 break;
1197 case Instruction::LShr:
1198 // For a logical shift right
1199 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1200 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1201
1202 // Unsigned shift right.
1203 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1204 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1205 RHSKnownZero, RHSKnownOne, Depth+1))
1206 return true;
1207 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1208 "Bits known to be one AND zero?");
1209 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1210 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1211 if (ShiftAmt) {
1212 // Compute the new bits that are at the top now.
1213 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1214 RHSKnownZero |= HighBits; // high bits known zero.
1215 }
1216 }
1217 break;
1218 case Instruction::AShr:
1219 // If this is an arithmetic shift right and only the low-bit is set, we can
1220 // always convert this into a logical shr, even if the shift amount is
1221 // variable. The low bit of the shift cannot be an input sign bit unless
1222 // the shift amount is >= the size of the datatype, which is undefined.
1223 if (DemandedMask == 1) {
1224 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001225 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001226 I->getOperand(0), I->getOperand(1), I->getName());
1227 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1228 return UpdateValueUsesWith(I, NewVal);
1229 }
1230
1231 // If the sign bit is the only bit demanded by this ashr, then there is no
1232 // need to do it, the shift doesn't change the high bit.
1233 if (DemandedMask.isSignBit())
1234 return UpdateValueUsesWith(I, I->getOperand(0));
1235
1236 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1237 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
1238
1239 // Signed shift right.
1240 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1241 // If any of the "high bits" are demanded, we should set the sign bit as
1242 // demanded.
1243 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
1244 DemandedMaskIn.set(BitWidth-1);
1245 if (SimplifyDemandedBits(I->getOperand(0),
1246 DemandedMaskIn,
1247 RHSKnownZero, RHSKnownOne, Depth+1))
1248 return true;
1249 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1250 "Bits known to be one AND zero?");
1251 // Compute the new bits that are at the top now.
1252 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1253 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1254 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1255
1256 // Handle the sign bits.
1257 APInt SignBit(APInt::getSignBit(BitWidth));
1258 // Adjust to where it is now in the mask.
1259 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
1260
1261 // If the input sign bit is known to be zero, or if none of the top bits
1262 // are demanded, turn this into an unsigned shift right.
Zhou Sheng533604e2008-06-06 08:32:05 +00001263 if (BitWidth <= ShiftAmt || RHSKnownZero[BitWidth-ShiftAmt-1] ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001264 (HighBits & ~DemandedMask) == HighBits) {
1265 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001266 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001267 I->getOperand(0), SA, I->getName());
1268 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1269 return UpdateValueUsesWith(I, NewVal);
1270 } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
1271 RHSKnownOne |= HighBits;
1272 }
1273 }
1274 break;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001275 case Instruction::SRem:
1276 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Nick Lewyckycfaaece2008-11-02 02:41:50 +00001277 APInt RA = Rem->getValue().abs();
1278 if (RA.isPowerOf2()) {
Nick Lewycky245de422008-07-12 05:04:38 +00001279 if (DemandedMask.ule(RA)) // srem won't affect demanded bits
1280 return UpdateValueUsesWith(I, I->getOperand(0));
1281
Nick Lewyckycfaaece2008-11-02 02:41:50 +00001282 APInt LowBits = RA - 1;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001283 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1284 if (SimplifyDemandedBits(I->getOperand(0), Mask2,
1285 LHSKnownZero, LHSKnownOne, Depth+1))
1286 return true;
1287
1288 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
1289 LHSKnownZero |= ~LowBits;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001290
1291 KnownZero |= LHSKnownZero & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001292
1293 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1294 }
1295 }
1296 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001297 case Instruction::URem: {
Dan Gohmanbec16052008-04-28 17:02:21 +00001298 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
1299 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
Dan Gohman23ea06d2008-05-01 19:13:24 +00001300 if (SimplifyDemandedBits(I->getOperand(0), AllOnes,
1301 KnownZero2, KnownOne2, Depth+1))
1302 return true;
1303
Dan Gohmanbec16052008-04-28 17:02:21 +00001304 uint32_t Leaders = KnownZero2.countLeadingOnes();
Dan Gohman23ea06d2008-05-01 19:13:24 +00001305 if (SimplifyDemandedBits(I->getOperand(1), AllOnes,
Dan Gohmanbec16052008-04-28 17:02:21 +00001306 KnownZero2, KnownOne2, Depth+1))
1307 return true;
1308
1309 Leaders = std::max(Leaders,
1310 KnownZero2.countLeadingOnes());
1311 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001312 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001313 }
Chris Lattner989ba312008-06-18 04:33:20 +00001314 case Instruction::Call:
1315 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1316 switch (II->getIntrinsicID()) {
1317 default: break;
1318 case Intrinsic::bswap: {
1319 // If the only bits demanded come from one byte of the bswap result,
1320 // just shift the input byte into position to eliminate the bswap.
1321 unsigned NLZ = DemandedMask.countLeadingZeros();
1322 unsigned NTZ = DemandedMask.countTrailingZeros();
1323
1324 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
1325 // we need all the bits down to bit 8. Likewise, round NLZ. If we
1326 // have 14 leading zeros, round to 8.
1327 NLZ &= ~7;
1328 NTZ &= ~7;
1329 // If we need exactly one byte, we can do this transformation.
1330 if (BitWidth-NLZ-NTZ == 8) {
1331 unsigned ResultBit = NTZ;
1332 unsigned InputBit = BitWidth-NTZ-8;
1333
1334 // Replace this with either a left or right shift to get the byte into
1335 // the right place.
1336 Instruction *NewVal;
1337 if (InputBit > ResultBit)
1338 NewVal = BinaryOperator::CreateLShr(I->getOperand(1),
1339 ConstantInt::get(I->getType(), InputBit-ResultBit));
1340 else
1341 NewVal = BinaryOperator::CreateShl(I->getOperand(1),
1342 ConstantInt::get(I->getType(), ResultBit-InputBit));
1343 NewVal->takeName(I);
1344 InsertNewInstBefore(NewVal, *I);
1345 return UpdateValueUsesWith(I, NewVal);
1346 }
1347
1348 // TODO: Could compute known zero/one bits based on the input.
1349 break;
1350 }
1351 }
1352 }
Chris Lattner4946e222008-06-18 18:11:55 +00001353 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Chris Lattner989ba312008-06-18 04:33:20 +00001354 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001355 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001356
1357 // If the client is only demanding bits that we know, return the known
1358 // constant.
1359 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
1360 return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne));
1361 return false;
1362}
1363
1364
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001365/// SimplifyDemandedVectorElts - The specified value produces a vector with
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001366/// 64 or fewer elements. DemandedElts contains the set of elements that are
1367/// actually used by the caller. This method analyzes which elements of the
1368/// operand are undef and returns that information in UndefElts.
1369///
1370/// If the information about demanded elements can be used to simplify the
1371/// operation, the operation is simplified, then the resultant value is
1372/// returned. This returns null if no change was made.
1373Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
1374 uint64_t &UndefElts,
1375 unsigned Depth) {
1376 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
1377 assert(VWidth <= 64 && "Vector too wide to analyze!");
1378 uint64_t EltMask = ~0ULL >> (64-VWidth);
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001379 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001380
1381 if (isa<UndefValue>(V)) {
1382 // If the entire vector is undefined, just return this info.
1383 UndefElts = EltMask;
1384 return 0;
1385 } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
1386 UndefElts = EltMask;
1387 return UndefValue::get(V->getType());
1388 }
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001389
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001390 UndefElts = 0;
1391 if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
1392 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1393 Constant *Undef = UndefValue::get(EltTy);
1394
1395 std::vector<Constant*> Elts;
1396 for (unsigned i = 0; i != VWidth; ++i)
1397 if (!(DemandedElts & (1ULL << i))) { // If not demanded, set to undef.
1398 Elts.push_back(Undef);
1399 UndefElts |= (1ULL << i);
1400 } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
1401 Elts.push_back(Undef);
1402 UndefElts |= (1ULL << i);
1403 } else { // Otherwise, defined.
1404 Elts.push_back(CP->getOperand(i));
1405 }
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001406
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001407 // If we changed the constant, return it.
1408 Constant *NewCP = ConstantVector::get(Elts);
1409 return NewCP != CP ? NewCP : 0;
1410 } else if (isa<ConstantAggregateZero>(V)) {
1411 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
1412 // set to undef.
Mon P Wang927daf52008-11-06 22:52:21 +00001413
1414 // Check if this is identity. If so, return 0 since we are not simplifying
1415 // anything.
1416 if (DemandedElts == ((1ULL << VWidth) -1))
1417 return 0;
1418
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001419 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1420 Constant *Zero = Constant::getNullValue(EltTy);
1421 Constant *Undef = UndefValue::get(EltTy);
1422 std::vector<Constant*> Elts;
1423 for (unsigned i = 0; i != VWidth; ++i)
1424 Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
1425 UndefElts = DemandedElts ^ EltMask;
1426 return ConstantVector::get(Elts);
1427 }
1428
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001429 // Limit search depth.
1430 if (Depth == 10)
1431 return false;
1432
1433 // If multiple users are using the root value, procede with
1434 // simplification conservatively assuming that all elements
1435 // are needed.
1436 if (!V->hasOneUse()) {
1437 // Quit if we find multiple users of a non-root value though.
1438 // They'll be handled when it's their turn to be visited by
1439 // the main instcombine process.
1440 if (Depth != 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001441 // TODO: Just compute the UndefElts information recursively.
1442 return false;
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001443
1444 // Conservatively assume that all elements are needed.
1445 DemandedElts = EltMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001446 }
1447
1448 Instruction *I = dyn_cast<Instruction>(V);
1449 if (!I) return false; // Only analyze instructions.
1450
1451 bool MadeChange = false;
1452 uint64_t UndefElts2;
1453 Value *TmpV;
1454 switch (I->getOpcode()) {
1455 default: break;
1456
1457 case Instruction::InsertElement: {
1458 // If this is a variable index, we don't know which element it overwrites.
1459 // demand exactly the same input as we produce.
1460 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1461 if (Idx == 0) {
1462 // Note that we can't propagate undef elt info, because we don't know
1463 // which elt is getting updated.
1464 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1465 UndefElts2, Depth+1);
1466 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1467 break;
1468 }
1469
1470 // If this is inserting an element that isn't demanded, remove this
1471 // insertelement.
1472 unsigned IdxNo = Idx->getZExtValue();
1473 if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
1474 return AddSoonDeadInstToWorklist(*I, 0);
1475
1476 // Otherwise, the element inserted overwrites whatever was there, so the
1477 // input demanded set is simpler than the output set.
1478 TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
1479 DemandedElts & ~(1ULL << IdxNo),
1480 UndefElts, Depth+1);
1481 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1482
1483 // The inserted element is defined.
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001484 UndefElts &= ~(1ULL << IdxNo);
1485 break;
1486 }
1487 case Instruction::ShuffleVector: {
1488 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001489 uint64_t LHSVWidth =
1490 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001491 uint64_t LeftDemanded = 0, RightDemanded = 0;
1492 for (unsigned i = 0; i < VWidth; i++) {
1493 if (DemandedElts & (1ULL << i)) {
1494 unsigned MaskVal = Shuffle->getMaskValue(i);
1495 if (MaskVal != -1u) {
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001496 assert(MaskVal < LHSVWidth * 2 &&
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001497 "shufflevector mask index out of range!");
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001498 if (MaskVal < LHSVWidth)
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001499 LeftDemanded |= 1ULL << MaskVal;
1500 else
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001501 RightDemanded |= 1ULL << (MaskVal - LHSVWidth);
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001502 }
1503 }
1504 }
1505
1506 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1507 UndefElts2, Depth+1);
1508 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1509
1510 uint64_t UndefElts3;
1511 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1512 UndefElts3, Depth+1);
1513 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1514
1515 bool NewUndefElts = false;
1516 for (unsigned i = 0; i < VWidth; i++) {
1517 unsigned MaskVal = Shuffle->getMaskValue(i);
Dan Gohman24f6ee22008-09-10 01:09:32 +00001518 if (MaskVal == -1u) {
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001519 uint64_t NewBit = 1ULL << i;
1520 UndefElts |= NewBit;
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001521 } else if (MaskVal < LHSVWidth) {
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001522 uint64_t NewBit = ((UndefElts2 >> MaskVal) & 1) << i;
1523 NewUndefElts |= NewBit;
1524 UndefElts |= NewBit;
1525 } else {
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001526 uint64_t NewBit = ((UndefElts3 >> (MaskVal - LHSVWidth)) & 1) << i;
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001527 NewUndefElts |= NewBit;
1528 UndefElts |= NewBit;
1529 }
1530 }
1531
1532 if (NewUndefElts) {
1533 // Add additional discovered undefs.
1534 std::vector<Constant*> Elts;
1535 for (unsigned i = 0; i < VWidth; ++i) {
1536 if (UndefElts & (1ULL << i))
1537 Elts.push_back(UndefValue::get(Type::Int32Ty));
1538 else
1539 Elts.push_back(ConstantInt::get(Type::Int32Ty,
1540 Shuffle->getMaskValue(i)));
1541 }
1542 I->setOperand(2, ConstantVector::get(Elts));
1543 MadeChange = true;
1544 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001545 break;
1546 }
1547 case Instruction::BitCast: {
1548 // Vector->vector casts only.
1549 const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1550 if (!VTy) break;
1551 unsigned InVWidth = VTy->getNumElements();
1552 uint64_t InputDemandedElts = 0;
1553 unsigned Ratio;
1554
1555 if (VWidth == InVWidth) {
1556 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1557 // elements as are demanded of us.
1558 Ratio = 1;
1559 InputDemandedElts = DemandedElts;
1560 } else if (VWidth > InVWidth) {
1561 // Untested so far.
1562 break;
1563
1564 // If there are more elements in the result than there are in the source,
1565 // then an input element is live if any of the corresponding output
1566 // elements are live.
1567 Ratio = VWidth/InVWidth;
1568 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1569 if (DemandedElts & (1ULL << OutIdx))
1570 InputDemandedElts |= 1ULL << (OutIdx/Ratio);
1571 }
1572 } else {
1573 // Untested so far.
1574 break;
1575
1576 // If there are more elements in the source than there are in the result,
1577 // then an input element is live if the corresponding output element is
1578 // live.
1579 Ratio = InVWidth/VWidth;
1580 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1581 if (DemandedElts & (1ULL << InIdx/Ratio))
1582 InputDemandedElts |= 1ULL << InIdx;
1583 }
1584
1585 // div/rem demand all inputs, because they don't want divide by zero.
1586 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1587 UndefElts2, Depth+1);
1588 if (TmpV) {
1589 I->setOperand(0, TmpV);
1590 MadeChange = true;
1591 }
1592
1593 UndefElts = UndefElts2;
1594 if (VWidth > InVWidth) {
1595 assert(0 && "Unimp");
1596 // If there are more elements in the result than there are in the source,
1597 // then an output element is undef if the corresponding input element is
1598 // undef.
1599 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1600 if (UndefElts2 & (1ULL << (OutIdx/Ratio)))
1601 UndefElts |= 1ULL << OutIdx;
1602 } else if (VWidth < InVWidth) {
1603 assert(0 && "Unimp");
1604 // If there are more elements in the source than there are in the result,
1605 // then a result element is undef if all of the corresponding input
1606 // elements are undef.
1607 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1608 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1609 if ((UndefElts2 & (1ULL << InIdx)) == 0) // Not undef?
1610 UndefElts &= ~(1ULL << (InIdx/Ratio)); // Clear undef bit.
1611 }
1612 break;
1613 }
1614 case Instruction::And:
1615 case Instruction::Or:
1616 case Instruction::Xor:
1617 case Instruction::Add:
1618 case Instruction::Sub:
1619 case Instruction::Mul:
1620 // div/rem demand all inputs, because they don't want divide by zero.
1621 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1622 UndefElts, Depth+1);
1623 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1624 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1625 UndefElts2, Depth+1);
1626 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1627
1628 // Output elements are undefined if both are undefined. Consider things
1629 // like undef&0. The result is known zero, not undef.
1630 UndefElts &= UndefElts2;
1631 break;
1632
1633 case Instruction::Call: {
1634 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1635 if (!II) break;
1636 switch (II->getIntrinsicID()) {
1637 default: break;
1638
1639 // Binary vector operations that work column-wise. A dest element is a
1640 // function of the corresponding input elements from the two inputs.
1641 case Intrinsic::x86_sse_sub_ss:
1642 case Intrinsic::x86_sse_mul_ss:
1643 case Intrinsic::x86_sse_min_ss:
1644 case Intrinsic::x86_sse_max_ss:
1645 case Intrinsic::x86_sse2_sub_sd:
1646 case Intrinsic::x86_sse2_mul_sd:
1647 case Intrinsic::x86_sse2_min_sd:
1648 case Intrinsic::x86_sse2_max_sd:
1649 TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
1650 UndefElts, Depth+1);
1651 if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
1652 TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
1653 UndefElts2, Depth+1);
1654 if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
1655
1656 // If only the low elt is demanded and this is a scalarizable intrinsic,
1657 // scalarize it now.
1658 if (DemandedElts == 1) {
1659 switch (II->getIntrinsicID()) {
1660 default: break;
1661 case Intrinsic::x86_sse_sub_ss:
1662 case Intrinsic::x86_sse_mul_ss:
1663 case Intrinsic::x86_sse2_sub_sd:
1664 case Intrinsic::x86_sse2_mul_sd:
1665 // TODO: Lower MIN/MAX/ABS/etc
1666 Value *LHS = II->getOperand(1);
1667 Value *RHS = II->getOperand(2);
1668 // Extract the element as scalars.
1669 LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
1670 RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
1671
1672 switch (II->getIntrinsicID()) {
1673 default: assert(0 && "Case stmts out of sync!");
1674 case Intrinsic::x86_sse_sub_ss:
1675 case Intrinsic::x86_sse2_sub_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001676 TmpV = InsertNewInstBefore(BinaryOperator::CreateSub(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001677 II->getName()), *II);
1678 break;
1679 case Intrinsic::x86_sse_mul_ss:
1680 case Intrinsic::x86_sse2_mul_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001681 TmpV = InsertNewInstBefore(BinaryOperator::CreateMul(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001682 II->getName()), *II);
1683 break;
1684 }
1685
1686 Instruction *New =
Gabor Greifd6da1d02008-04-06 20:25:17 +00001687 InsertElementInst::Create(UndefValue::get(II->getType()), TmpV, 0U,
1688 II->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001689 InsertNewInstBefore(New, *II);
1690 AddSoonDeadInstToWorklist(*II, 0);
1691 return New;
1692 }
1693 }
1694
1695 // Output elements are undefined if both are undefined. Consider things
1696 // like undef&0. The result is known zero, not undef.
1697 UndefElts &= UndefElts2;
1698 break;
1699 }
1700 break;
1701 }
1702 }
1703 return MadeChange ? I : 0;
1704}
1705
Dan Gohman5d56fd42008-05-19 22:14:15 +00001706
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001707/// AssociativeOpt - Perform an optimization on an associative operator. This
1708/// function is designed to check a chain of associative operators for a
1709/// potential to apply a certain optimization. Since the optimization may be
1710/// applicable if the expression was reassociated, this checks the chain, then
1711/// reassociates the expression as necessary to expose the optimization
1712/// opportunity. This makes use of a special Functor, which must define
1713/// 'shouldApply' and 'apply' methods.
1714///
1715template<typename Functor>
Dan Gohmand8bcf5b2008-05-20 01:14:05 +00001716static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001717 unsigned Opcode = Root.getOpcode();
1718 Value *LHS = Root.getOperand(0);
1719
1720 // Quick check, see if the immediate LHS matches...
1721 if (F.shouldApply(LHS))
1722 return F.apply(Root);
1723
1724 // Otherwise, if the LHS is not of the same opcode as the root, return.
1725 Instruction *LHSI = dyn_cast<Instruction>(LHS);
1726 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
1727 // Should we apply this transform to the RHS?
1728 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
1729
1730 // If not to the RHS, check to see if we should apply to the LHS...
1731 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
1732 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
1733 ShouldApply = true;
1734 }
1735
1736 // If the functor wants to apply the optimization to the RHS of LHSI,
1737 // reassociate the expression from ((? op A) op B) to (? op (A op B))
1738 if (ShouldApply) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001739 // Now all of the instructions are in the current basic block, go ahead
1740 // and perform the reassociation.
1741 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
1742
1743 // First move the selected RHS to the LHS of the root...
1744 Root.setOperand(0, LHSI->getOperand(1));
1745
1746 // Make what used to be the LHS of the root be the user of the root...
1747 Value *ExtraOperand = TmpLHSI->getOperand(1);
1748 if (&Root == TmpLHSI) {
1749 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
1750 return 0;
1751 }
1752 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
1753 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001754 BasicBlock::iterator ARI = &Root; ++ARI;
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001755 TmpLHSI->moveBefore(ARI); // Move TmpLHSI to after Root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001756 ARI = Root;
1757
1758 // Now propagate the ExtraOperand down the chain of instructions until we
1759 // get to LHSI.
1760 while (TmpLHSI != LHSI) {
1761 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
1762 // Move the instruction to immediately before the chain we are
1763 // constructing to avoid breaking dominance properties.
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001764 NextLHSI->moveBefore(ARI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001765 ARI = NextLHSI;
1766
1767 Value *NextOp = NextLHSI->getOperand(1);
1768 NextLHSI->setOperand(1, ExtraOperand);
1769 TmpLHSI = NextLHSI;
1770 ExtraOperand = NextOp;
1771 }
1772
1773 // Now that the instructions are reassociated, have the functor perform
1774 // the transformation...
1775 return F.apply(Root);
1776 }
1777
1778 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
1779 }
1780 return 0;
1781}
1782
Dan Gohman089efff2008-05-13 00:00:25 +00001783namespace {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001784
Nick Lewycky27f6c132008-05-23 04:34:58 +00001785// AddRHS - Implements: X + X --> X << 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001786struct AddRHS {
1787 Value *RHS;
1788 AddRHS(Value *rhs) : RHS(rhs) {}
1789 bool shouldApply(Value *LHS) const { return LHS == RHS; }
1790 Instruction *apply(BinaryOperator &Add) const {
Nick Lewycky27f6c132008-05-23 04:34:58 +00001791 return BinaryOperator::CreateShl(Add.getOperand(0),
1792 ConstantInt::get(Add.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001793 }
1794};
1795
1796// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
1797// iff C1&C2 == 0
1798struct AddMaskingAnd {
1799 Constant *C2;
1800 AddMaskingAnd(Constant *c) : C2(c) {}
1801 bool shouldApply(Value *LHS) const {
1802 ConstantInt *C1;
1803 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
1804 ConstantExpr::getAnd(C1, C2)->isNullValue();
1805 }
1806 Instruction *apply(BinaryOperator &Add) const {
Gabor Greifa645dd32008-05-16 19:29:10 +00001807 return BinaryOperator::CreateOr(Add.getOperand(0), Add.getOperand(1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001808 }
1809};
1810
Dan Gohman089efff2008-05-13 00:00:25 +00001811}
1812
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001813static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
1814 InstCombiner *IC) {
1815 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
1816 if (Constant *SOC = dyn_cast<Constant>(SO))
1817 return ConstantExpr::getCast(CI->getOpcode(), SOC, I.getType());
1818
Gabor Greifa645dd32008-05-16 19:29:10 +00001819 return IC->InsertNewInstBefore(CastInst::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001820 CI->getOpcode(), SO, I.getType(), SO->getName() + ".cast"), I);
1821 }
1822
1823 // Figure out if the constant is the left or the right argument.
1824 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1825 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
1826
1827 if (Constant *SOC = dyn_cast<Constant>(SO)) {
1828 if (ConstIsRHS)
1829 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1830 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
1831 }
1832
1833 Value *Op0 = SO, *Op1 = ConstOperand;
1834 if (!ConstIsRHS)
1835 std::swap(Op0, Op1);
1836 Instruction *New;
1837 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001838 New = BinaryOperator::Create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001839 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001840 New = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001841 SO->getName()+".cmp");
1842 else {
1843 assert(0 && "Unknown binary instruction type!");
1844 abort();
1845 }
1846 return IC->InsertNewInstBefore(New, I);
1847}
1848
1849// FoldOpIntoSelect - Given an instruction with a select as one operand and a
1850// constant as the other operand, try to fold the binary operator into the
1851// select arguments. This also works for Cast instructions, which obviously do
1852// not have a second operand.
1853static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1854 InstCombiner *IC) {
1855 // Don't modify shared select instructions
1856 if (!SI->hasOneUse()) return 0;
1857 Value *TV = SI->getOperand(1);
1858 Value *FV = SI->getOperand(2);
1859
1860 if (isa<Constant>(TV) || isa<Constant>(FV)) {
1861 // Bool selects with constant operands can be folded to logical ops.
1862 if (SI->getType() == Type::Int1Ty) return 0;
1863
1864 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
1865 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
1866
Gabor Greifd6da1d02008-04-06 20:25:17 +00001867 return SelectInst::Create(SI->getCondition(), SelectTrueVal,
1868 SelectFalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001869 }
1870 return 0;
1871}
1872
1873
1874/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
1875/// node as operand #0, see if we can fold the instruction into the PHI (which
1876/// is only possible if all operands to the PHI are constants).
1877Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
1878 PHINode *PN = cast<PHINode>(I.getOperand(0));
1879 unsigned NumPHIValues = PN->getNumIncomingValues();
1880 if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
1881
1882 // Check to see if all of the operands of the PHI are constants. If there is
1883 // one non-constant value, remember the BB it is. If there is more than one
1884 // or if *it* is a PHI, bail out.
1885 BasicBlock *NonConstBB = 0;
1886 for (unsigned i = 0; i != NumPHIValues; ++i)
1887 if (!isa<Constant>(PN->getIncomingValue(i))) {
1888 if (NonConstBB) return 0; // More than one non-const value.
1889 if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
1890 NonConstBB = PN->getIncomingBlock(i);
1891
1892 // If the incoming non-constant value is in I's block, we have an infinite
1893 // loop.
1894 if (NonConstBB == I.getParent())
1895 return 0;
1896 }
1897
1898 // If there is exactly one non-constant value, we can insert a copy of the
1899 // operation in that block. However, if this is a critical edge, we would be
1900 // inserting the computation one some other paths (e.g. inside a loop). Only
1901 // do this if the pred block is unconditionally branching into the phi block.
1902 if (NonConstBB) {
1903 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1904 if (!BI || !BI->isUnconditional()) return 0;
1905 }
1906
1907 // Okay, we can do the transformation: create the new PHI node.
Gabor Greifd6da1d02008-04-06 20:25:17 +00001908 PHINode *NewPN = PHINode::Create(I.getType(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001909 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
1910 InsertNewInstBefore(NewPN, *PN);
1911 NewPN->takeName(PN);
1912
1913 // Next, add all of the operands to the PHI.
1914 if (I.getNumOperands() == 2) {
1915 Constant *C = cast<Constant>(I.getOperand(1));
1916 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00001917 Value *InV = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001918 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1919 if (CmpInst *CI = dyn_cast<CmpInst>(&I))
1920 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1921 else
1922 InV = ConstantExpr::get(I.getOpcode(), InC, C);
1923 } else {
1924 assert(PN->getIncomingBlock(i) == NonConstBB);
1925 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001926 InV = BinaryOperator::Create(BO->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001927 PN->getIncomingValue(i), C, "phitmp",
1928 NonConstBB->getTerminator());
1929 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001930 InV = CmpInst::Create(CI->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001931 CI->getPredicate(),
1932 PN->getIncomingValue(i), C, "phitmp",
1933 NonConstBB->getTerminator());
1934 else
1935 assert(0 && "Unknown binop!");
1936
1937 AddToWorkList(cast<Instruction>(InV));
1938 }
1939 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1940 }
1941 } else {
1942 CastInst *CI = cast<CastInst>(&I);
1943 const Type *RetTy = CI->getType();
1944 for (unsigned i = 0; i != NumPHIValues; ++i) {
1945 Value *InV;
1946 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1947 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1948 } else {
1949 assert(PN->getIncomingBlock(i) == NonConstBB);
Gabor Greifa645dd32008-05-16 19:29:10 +00001950 InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001951 I.getType(), "phitmp",
1952 NonConstBB->getTerminator());
1953 AddToWorkList(cast<Instruction>(InV));
1954 }
1955 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1956 }
1957 }
1958 return ReplaceInstUsesWith(I, NewPN);
1959}
1960
Chris Lattner55476162008-01-29 06:52:45 +00001961
Chris Lattner3554f972008-05-20 05:46:13 +00001962/// WillNotOverflowSignedAdd - Return true if we can prove that:
1963/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
1964/// This basically requires proving that the add in the original type would not
1965/// overflow to change the sign bit or have a carry out.
1966bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
1967 // There are different heuristics we can use for this. Here are some simple
1968 // ones.
1969
1970 // Add has the property that adding any two 2's complement numbers can only
1971 // have one carry bit which can change a sign. As such, if LHS and RHS each
1972 // have at least two sign bits, we know that the addition of the two values will
1973 // sign extend fine.
1974 if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
1975 return true;
1976
1977
1978 // If one of the operands only has one non-zero bit, and if the other operand
1979 // has a known-zero bit in a more significant place than it (not including the
1980 // sign bit) the ripple may go up to and fill the zero, but won't change the
1981 // sign. For example, (X & ~4) + 1.
1982
1983 // TODO: Implement.
1984
1985 return false;
1986}
1987
Chris Lattner55476162008-01-29 06:52:45 +00001988
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001989Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1990 bool Changed = SimplifyCommutative(I);
1991 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1992
1993 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1994 // X + undef -> undef
1995 if (isa<UndefValue>(RHS))
1996 return ReplaceInstUsesWith(I, RHS);
1997
1998 // X + 0 --> X
1999 if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
2000 if (RHSC->isNullValue())
2001 return ReplaceInstUsesWith(I, LHS);
2002 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
Dale Johannesen2fc20782007-09-14 22:26:36 +00002003 if (CFP->isExactlyValue(ConstantFP::getNegativeZero
2004 (I.getType())->getValueAPF()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002005 return ReplaceInstUsesWith(I, LHS);
2006 }
2007
2008 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
2009 // X + (signbit) --> X ^ signbit
2010 const APInt& Val = CI->getValue();
2011 uint32_t BitWidth = Val.getBitWidth();
2012 if (Val == APInt::getSignBit(BitWidth))
Gabor Greifa645dd32008-05-16 19:29:10 +00002013 return BinaryOperator::CreateXor(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002014
2015 // See if SimplifyDemandedBits can simplify this. This handles stuff like
2016 // (X & 254)+1 -> (X&254)|1
2017 if (!isa<VectorType>(I.getType())) {
2018 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2019 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
2020 KnownZero, KnownOne))
2021 return &I;
2022 }
Dan Gohman35b76162008-10-30 20:40:10 +00002023
2024 // zext(i1) - 1 -> select i1, 0, -1
2025 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
2026 if (CI->isAllOnesValue() &&
2027 ZI->getOperand(0)->getType() == Type::Int1Ty)
2028 return SelectInst::Create(ZI->getOperand(0),
2029 Constant::getNullValue(I.getType()),
2030 ConstantInt::getAllOnesValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002031 }
2032
2033 if (isa<PHINode>(LHS))
2034 if (Instruction *NV = FoldOpIntoPhi(I))
2035 return NV;
2036
2037 ConstantInt *XorRHS = 0;
2038 Value *XorLHS = 0;
2039 if (isa<ConstantInt>(RHSC) &&
2040 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
2041 uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits();
2042 const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
2043
2044 uint32_t Size = TySizeBits / 2;
2045 APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
2046 APInt CFF80Val(-C0080Val);
2047 do {
2048 if (TySizeBits > Size) {
2049 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
2050 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
2051 if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
2052 (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
2053 // This is a sign extend if the top bits are known zero.
2054 if (!MaskedValueIsZero(XorLHS,
2055 APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
2056 Size = 0; // Not a sign ext, but can't be any others either.
2057 break;
2058 }
2059 }
2060 Size >>= 1;
2061 C0080Val = APIntOps::lshr(C0080Val, Size);
2062 CFF80Val = APIntOps::ashr(CFF80Val, Size);
2063 } while (Size >= 1);
2064
2065 // FIXME: This shouldn't be necessary. When the backends can handle types
Chris Lattnerdeef1a72008-05-19 20:25:04 +00002066 // with funny bit widths then this switch statement should be removed. It
2067 // is just here to get the size of the "middle" type back up to something
2068 // that the back ends can handle.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002069 const Type *MiddleType = 0;
2070 switch (Size) {
2071 default: break;
2072 case 32: MiddleType = Type::Int32Ty; break;
2073 case 16: MiddleType = Type::Int16Ty; break;
2074 case 8: MiddleType = Type::Int8Ty; break;
2075 }
2076 if (MiddleType) {
2077 Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
2078 InsertNewInstBefore(NewTrunc, I);
2079 return new SExtInst(NewTrunc, I.getType(), I.getName());
2080 }
2081 }
2082 }
2083
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002084 if (I.getType() == Type::Int1Ty)
2085 return BinaryOperator::CreateXor(LHS, RHS);
2086
Nick Lewycky4d474cd2008-05-23 04:39:38 +00002087 // X + X --> X << 1
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002088 if (I.getType()->isInteger()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002089 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
2090
2091 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
2092 if (RHSI->getOpcode() == Instruction::Sub)
2093 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
2094 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
2095 }
2096 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
2097 if (LHSI->getOpcode() == Instruction::Sub)
2098 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
2099 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
2100 }
2101 }
2102
2103 // -A + B --> B - A
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002104 // -A + -B --> -(A + B)
2105 if (Value *LHSV = dyn_castNegVal(LHS)) {
Chris Lattner322a9192008-02-18 17:50:16 +00002106 if (LHS->getType()->isIntOrIntVector()) {
2107 if (Value *RHSV = dyn_castNegVal(RHS)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002108 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSV, RHSV, "sum");
Chris Lattner322a9192008-02-18 17:50:16 +00002109 InsertNewInstBefore(NewAdd, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002110 return BinaryOperator::CreateNeg(NewAdd);
Chris Lattner322a9192008-02-18 17:50:16 +00002111 }
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002112 }
2113
Gabor Greifa645dd32008-05-16 19:29:10 +00002114 return BinaryOperator::CreateSub(RHS, LHSV);
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002115 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002116
2117 // A + -B --> A - B
2118 if (!isa<Constant>(RHS))
2119 if (Value *V = dyn_castNegVal(RHS))
Gabor Greifa645dd32008-05-16 19:29:10 +00002120 return BinaryOperator::CreateSub(LHS, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002121
2122
2123 ConstantInt *C2;
2124 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
2125 if (X == RHS) // X*C + X --> X * (C+1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002126 return BinaryOperator::CreateMul(RHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002127
2128 // X*C1 + X*C2 --> X * (C1+C2)
2129 ConstantInt *C1;
2130 if (X == dyn_castFoldableMul(RHS, C1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002131 return BinaryOperator::CreateMul(X, Add(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002132 }
2133
2134 // X + X*C --> X * (C+1)
2135 if (dyn_castFoldableMul(RHS, C2) == LHS)
Gabor Greifa645dd32008-05-16 19:29:10 +00002136 return BinaryOperator::CreateMul(LHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002137
2138 // X + ~X --> -1 since ~X = -X-1
2139 if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS)
2140 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
2141
2142
2143 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
2144 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
2145 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
2146 return R;
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002147
2148 // A+B --> A|B iff A and B have no bits set in common.
2149 if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
2150 APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
2151 APInt LHSKnownOne(IT->getBitWidth(), 0);
2152 APInt LHSKnownZero(IT->getBitWidth(), 0);
2153 ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
2154 if (LHSKnownZero != 0) {
2155 APInt RHSKnownOne(IT->getBitWidth(), 0);
2156 APInt RHSKnownZero(IT->getBitWidth(), 0);
2157 ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
2158
2159 // No bits in common -> bitwise or.
Chris Lattner130443c2008-05-19 20:03:53 +00002160 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002161 return BinaryOperator::CreateOr(LHS, RHS);
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002162 }
2163 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002164
Nick Lewycky83598a72008-02-03 07:42:09 +00002165 // W*X + Y*Z --> W * (X+Z) iff W == Y
Nick Lewycky5d03b512008-02-03 08:19:11 +00002166 if (I.getType()->isIntOrIntVector()) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002167 Value *W, *X, *Y, *Z;
2168 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
2169 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
2170 if (W != Y) {
2171 if (W == Z) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002172 std::swap(Y, Z);
Nick Lewycky83598a72008-02-03 07:42:09 +00002173 } else if (Y == X) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002174 std::swap(W, X);
2175 } else if (X == Z) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002176 std::swap(Y, Z);
2177 std::swap(W, X);
2178 }
2179 }
2180
2181 if (W == Y) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002182 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, Z,
Nick Lewycky83598a72008-02-03 07:42:09 +00002183 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002184 return BinaryOperator::CreateMul(W, NewAdd);
Nick Lewycky83598a72008-02-03 07:42:09 +00002185 }
2186 }
2187 }
2188
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002189 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
2190 Value *X = 0;
2191 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002192 return BinaryOperator::CreateSub(SubOne(CRHS), X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002193
2194 // (X & FF00) + xx00 -> (X+xx00) & FF00
2195 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
2196 Constant *Anded = And(CRHS, C2);
2197 if (Anded == CRHS) {
2198 // See if all bits from the first bit set in the Add RHS up are included
2199 // in the mask. First, get the rightmost bit.
2200 const APInt& AddRHSV = CRHS->getValue();
2201
2202 // Form a mask of all bits from the lowest bit added through the top.
2203 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
2204
2205 // See if the and mask includes all of these bits.
2206 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
2207
2208 if (AddRHSHighBits == AddRHSHighBitsAnd) {
2209 // Okay, the xform is safe. Insert the new add pronto.
Gabor Greifa645dd32008-05-16 19:29:10 +00002210 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, CRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002211 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002212 return BinaryOperator::CreateAnd(NewAdd, C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002213 }
2214 }
2215 }
2216
2217 // Try to fold constant add into select arguments.
2218 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
2219 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2220 return R;
2221 }
2222
2223 // add (cast *A to intptrtype) B ->
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002224 // cast (GEP (cast *A to sbyte*) B) --> intptrtype
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002225 {
2226 CastInst *CI = dyn_cast<CastInst>(LHS);
2227 Value *Other = RHS;
2228 if (!CI) {
2229 CI = dyn_cast<CastInst>(RHS);
2230 Other = LHS;
2231 }
2232 if (CI && CI->getType()->isSized() &&
2233 (CI->getType()->getPrimitiveSizeInBits() ==
2234 TD->getIntPtrType()->getPrimitiveSizeInBits())
2235 && isa<PointerType>(CI->getOperand(0)->getType())) {
Christopher Lambbb2f2222007-12-17 01:12:55 +00002236 unsigned AS =
2237 cast<PointerType>(CI->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +00002238 Value *I2 = InsertBitCastBefore(CI->getOperand(0),
2239 PointerType::get(Type::Int8Ty, AS), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00002240 I2 = InsertNewInstBefore(GetElementPtrInst::Create(I2, Other, "ctg2"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002241 return new PtrToIntInst(I2, CI->getType());
2242 }
2243 }
Christopher Lamb244ec282007-12-18 09:34:41 +00002244
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002245 // add (select X 0 (sub n A)) A --> select X A n
Christopher Lamb244ec282007-12-18 09:34:41 +00002246 {
2247 SelectInst *SI = dyn_cast<SelectInst>(LHS);
2248 Value *Other = RHS;
2249 if (!SI) {
2250 SI = dyn_cast<SelectInst>(RHS);
2251 Other = LHS;
2252 }
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002253 if (SI && SI->hasOneUse()) {
Christopher Lamb244ec282007-12-18 09:34:41 +00002254 Value *TV = SI->getTrueValue();
2255 Value *FV = SI->getFalseValue();
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002256 Value *A, *N;
Christopher Lamb244ec282007-12-18 09:34:41 +00002257
2258 // Can we fold the add into the argument of the select?
2259 // We check both true and false select arguments for a matching subtract.
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002260 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Value(A))) &&
2261 A == Other) // Fold the add into the true select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002262 return SelectInst::Create(SI->getCondition(), N, A);
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002263 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Value(A))) &&
2264 A == Other) // Fold the add into the false select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002265 return SelectInst::Create(SI->getCondition(), A, N);
Christopher Lamb244ec282007-12-18 09:34:41 +00002266 }
2267 }
Chris Lattner55476162008-01-29 06:52:45 +00002268
2269 // Check for X+0.0. Simplify it to X if we know X is not -0.0.
2270 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
2271 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
2272 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002273
Chris Lattner3554f972008-05-20 05:46:13 +00002274 // Check for (add (sext x), y), see if we can merge this into an
2275 // integer add followed by a sext.
2276 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
2277 // (add (sext x), cst) --> (sext (add x, cst'))
2278 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2279 Constant *CI =
2280 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
2281 if (LHSConv->hasOneUse() &&
2282 ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
2283 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2284 // Insert the new, smaller add.
2285 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2286 CI, "addconv");
2287 InsertNewInstBefore(NewAdd, I);
2288 return new SExtInst(NewAdd, I.getType());
2289 }
2290 }
2291
2292 // (add (sext x), (sext y)) --> (sext (add int x, y))
2293 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
2294 // Only do this if x/y have the same type, if at last one of them has a
2295 // single use (so we don't increase the number of sexts), and if the
2296 // integer add will not overflow.
2297 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2298 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2299 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2300 RHSConv->getOperand(0))) {
2301 // Insert the new integer add.
2302 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2303 RHSConv->getOperand(0),
2304 "addconv");
2305 InsertNewInstBefore(NewAdd, I);
2306 return new SExtInst(NewAdd, I.getType());
2307 }
2308 }
2309 }
2310
2311 // Check for (add double (sitofp x), y), see if we can merge this into an
2312 // integer add followed by a promotion.
2313 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
2314 // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
2315 // ... if the constant fits in the integer value. This is useful for things
2316 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
2317 // requires a constant pool load, and generally allows the add to be better
2318 // instcombined.
2319 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
2320 Constant *CI =
2321 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
2322 if (LHSConv->hasOneUse() &&
2323 ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
2324 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2325 // Insert the new integer add.
2326 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2327 CI, "addconv");
2328 InsertNewInstBefore(NewAdd, I);
2329 return new SIToFPInst(NewAdd, I.getType());
2330 }
2331 }
2332
2333 // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
2334 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
2335 // Only do this if x/y have the same type, if at last one of them has a
2336 // single use (so we don't increase the number of int->fp conversions),
2337 // and if the integer add will not overflow.
2338 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2339 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2340 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2341 RHSConv->getOperand(0))) {
2342 // Insert the new integer add.
2343 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2344 RHSConv->getOperand(0),
2345 "addconv");
2346 InsertNewInstBefore(NewAdd, I);
2347 return new SIToFPInst(NewAdd, I.getType());
2348 }
2349 }
2350 }
2351
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002352 return Changed ? &I : 0;
2353}
2354
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002355Instruction *InstCombiner::visitSub(BinaryOperator &I) {
2356 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2357
Chris Lattner27fbef42008-07-17 06:07:20 +00002358 if (Op0 == Op1 && // sub X, X -> 0
2359 !I.getType()->isFPOrFPVector())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002360 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2361
2362 // If this is a 'B = x-(-A)', change to B = x+A...
2363 if (Value *V = dyn_castNegVal(Op1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002364 return BinaryOperator::CreateAdd(Op0, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002365
2366 if (isa<UndefValue>(Op0))
2367 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
2368 if (isa<UndefValue>(Op1))
2369 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
2370
2371 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
2372 // Replace (-1 - A) with (~A)...
2373 if (C->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002374 return BinaryOperator::CreateNot(Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002375
2376 // C - ~X == X + (1+C)
2377 Value *X = 0;
2378 if (match(Op1, m_Not(m_Value(X))))
Gabor Greifa645dd32008-05-16 19:29:10 +00002379 return BinaryOperator::CreateAdd(X, AddOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002380
2381 // -(X >>u 31) -> (X >>s 31)
2382 // -(X >>s 31) -> (X >>u 31)
2383 if (C->isZero()) {
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002384 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002385 if (SI->getOpcode() == Instruction::LShr) {
2386 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2387 // Check to see if we are shifting out everything but the sign bit.
2388 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2389 SI->getType()->getPrimitiveSizeInBits()-1) {
2390 // Ok, the transformation is safe. Insert AShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002391 return BinaryOperator::Create(Instruction::AShr,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002392 SI->getOperand(0), CU, SI->getName());
2393 }
2394 }
2395 }
2396 else if (SI->getOpcode() == Instruction::AShr) {
2397 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2398 // Check to see if we are shifting out everything but the sign bit.
2399 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2400 SI->getType()->getPrimitiveSizeInBits()-1) {
2401 // Ok, the transformation is safe. Insert LShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002402 return BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002403 SI->getOperand(0), CU, SI->getName());
2404 }
2405 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002406 }
2407 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002408 }
2409
2410 // Try to fold constant sub into select arguments.
2411 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2412 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2413 return R;
2414
2415 if (isa<PHINode>(Op0))
2416 if (Instruction *NV = FoldOpIntoPhi(I))
2417 return NV;
2418 }
2419
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002420 if (I.getType() == Type::Int1Ty)
2421 return BinaryOperator::CreateXor(Op0, Op1);
2422
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002423 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2424 if (Op1I->getOpcode() == Instruction::Add &&
2425 !Op0->getType()->isFPOrFPVector()) {
2426 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002427 return BinaryOperator::CreateNeg(Op1I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002428 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002429 return BinaryOperator::CreateNeg(Op1I->getOperand(0), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002430 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
2431 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
2432 // C1-(X+C2) --> (C1-C2)-X
Gabor Greifa645dd32008-05-16 19:29:10 +00002433 return BinaryOperator::CreateSub(Subtract(CI1, CI2),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002434 Op1I->getOperand(0));
2435 }
2436 }
2437
2438 if (Op1I->hasOneUse()) {
2439 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2440 // is not used by anyone else...
2441 //
2442 if (Op1I->getOpcode() == Instruction::Sub &&
2443 !Op1I->getType()->isFPOrFPVector()) {
2444 // Swap the two operands of the subexpr...
2445 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
2446 Op1I->setOperand(0, IIOp1);
2447 Op1I->setOperand(1, IIOp0);
2448
2449 // Create the new top level add instruction...
Gabor Greifa645dd32008-05-16 19:29:10 +00002450 return BinaryOperator::CreateAdd(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002451 }
2452
2453 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2454 //
2455 if (Op1I->getOpcode() == Instruction::And &&
2456 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
2457 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
2458
2459 Value *NewNot =
Gabor Greifa645dd32008-05-16 19:29:10 +00002460 InsertNewInstBefore(BinaryOperator::CreateNot(OtherOp, "B.not"), I);
2461 return BinaryOperator::CreateAnd(Op0, NewNot);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002462 }
2463
2464 // 0 - (X sdiv C) -> (X sdiv -C)
2465 if (Op1I->getOpcode() == Instruction::SDiv)
2466 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
2467 if (CSI->isZero())
2468 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002469 return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002470 ConstantExpr::getNeg(DivRHS));
2471
2472 // X - X*C --> X * (1-C)
2473 ConstantInt *C2 = 0;
2474 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
2475 Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002476 return BinaryOperator::CreateMul(Op0, CP1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002477 }
Dan Gohmanda338742007-09-17 17:31:57 +00002478
2479 // X - ((X / Y) * Y) --> X % Y
2480 if (Op1I->getOpcode() == Instruction::Mul)
2481 if (Instruction *I = dyn_cast<Instruction>(Op1I->getOperand(0)))
2482 if (Op0 == I->getOperand(0) &&
2483 Op1I->getOperand(1) == I->getOperand(1)) {
2484 if (I->getOpcode() == Instruction::SDiv)
Gabor Greifa645dd32008-05-16 19:29:10 +00002485 return BinaryOperator::CreateSRem(Op0, Op1I->getOperand(1));
Dan Gohmanda338742007-09-17 17:31:57 +00002486 if (I->getOpcode() == Instruction::UDiv)
Gabor Greifa645dd32008-05-16 19:29:10 +00002487 return BinaryOperator::CreateURem(Op0, Op1I->getOperand(1));
Dan Gohmanda338742007-09-17 17:31:57 +00002488 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002489 }
2490 }
2491
2492 if (!Op0->getType()->isFPOrFPVector())
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002493 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002494 if (Op0I->getOpcode() == Instruction::Add) {
2495 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
2496 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2497 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
2498 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
2499 } else if (Op0I->getOpcode() == Instruction::Sub) {
2500 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002501 return BinaryOperator::CreateNeg(Op0I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002502 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002503 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002504
2505 ConstantInt *C1;
2506 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
2507 if (X == Op1) // X*C - X --> X * (C-1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002508 return BinaryOperator::CreateMul(Op1, SubOne(C1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002509
2510 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
2511 if (X == dyn_castFoldableMul(Op1, C2))
Gabor Greifa645dd32008-05-16 19:29:10 +00002512 return BinaryOperator::CreateMul(X, Subtract(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002513 }
2514 return 0;
2515}
2516
2517/// isSignBitCheck - Given an exploded icmp instruction, return true if the
2518/// comparison only checks the sign bit. If it only checks the sign bit, set
2519/// TrueIfSigned if the result of the comparison is true when the input value is
2520/// signed.
2521static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
2522 bool &TrueIfSigned) {
2523 switch (pred) {
2524 case ICmpInst::ICMP_SLT: // True if LHS s< 0
2525 TrueIfSigned = true;
2526 return RHS->isZero();
2527 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
2528 TrueIfSigned = true;
2529 return RHS->isAllOnesValue();
2530 case ICmpInst::ICMP_SGT: // True if LHS s> -1
2531 TrueIfSigned = false;
2532 return RHS->isAllOnesValue();
2533 case ICmpInst::ICMP_UGT:
2534 // True if LHS u> RHS and RHS == high-bit-mask - 1
2535 TrueIfSigned = true;
2536 return RHS->getValue() ==
2537 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
2538 case ICmpInst::ICMP_UGE:
2539 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2540 TrueIfSigned = true;
Chris Lattner60813c22008-06-02 01:29:46 +00002541 return RHS->getValue().isSignBit();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002542 default:
2543 return false;
2544 }
2545}
2546
2547Instruction *InstCombiner::visitMul(BinaryOperator &I) {
2548 bool Changed = SimplifyCommutative(I);
2549 Value *Op0 = I.getOperand(0);
2550
2551 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
2552 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2553
2554 // Simplify mul instructions with a constant RHS...
2555 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2556 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2557
2558 // ((X << C1)*C2) == (X * (C2 << C1))
2559 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
2560 if (SI->getOpcode() == Instruction::Shl)
2561 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002562 return BinaryOperator::CreateMul(SI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002563 ConstantExpr::getShl(CI, ShOp));
2564
2565 if (CI->isZero())
2566 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
2567 if (CI->equalsInt(1)) // X * 1 == X
2568 return ReplaceInstUsesWith(I, Op0);
2569 if (CI->isAllOnesValue()) // X * -1 == 0 - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002570 return BinaryOperator::CreateNeg(Op0, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002571
2572 const APInt& Val = cast<ConstantInt>(CI)->getValue();
2573 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
Gabor Greifa645dd32008-05-16 19:29:10 +00002574 return BinaryOperator::CreateShl(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002575 ConstantInt::get(Op0->getType(), Val.logBase2()));
2576 }
2577 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
2578 if (Op1F->isNullValue())
2579 return ReplaceInstUsesWith(I, Op1);
2580
2581 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2582 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
Chris Lattner6297fc72008-08-11 22:06:05 +00002583 if (Op1F->isExactlyValue(1.0))
2584 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
2585 } else if (isa<VectorType>(Op1->getType())) {
2586 if (isa<ConstantAggregateZero>(Op1))
2587 return ReplaceInstUsesWith(I, Op1);
2588
2589 // As above, vector X*splat(1.0) -> X in all defined cases.
2590 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1))
2591 if (ConstantFP *F = dyn_cast_or_null<ConstantFP>(Op1V->getSplatValue()))
2592 if (F->isExactlyValue(1.0))
2593 return ReplaceInstUsesWith(I, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002594 }
2595
2596 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2597 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
Chris Lattner58194082008-05-18 04:11:26 +00002598 isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002599 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
Gabor Greifa645dd32008-05-16 19:29:10 +00002600 Instruction *Add = BinaryOperator::CreateMul(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002601 Op1, "tmp");
2602 InsertNewInstBefore(Add, I);
2603 Value *C1C2 = ConstantExpr::getMul(Op1,
2604 cast<Constant>(Op0I->getOperand(1)));
Gabor Greifa645dd32008-05-16 19:29:10 +00002605 return BinaryOperator::CreateAdd(Add, C1C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002606
2607 }
2608
2609 // Try to fold constant mul into select arguments.
2610 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2611 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2612 return R;
2613
2614 if (isa<PHINode>(Op0))
2615 if (Instruction *NV = FoldOpIntoPhi(I))
2616 return NV;
2617 }
2618
2619 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
2620 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002621 return BinaryOperator::CreateMul(Op0v, Op1v);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002622
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002623 if (I.getType() == Type::Int1Ty)
2624 return BinaryOperator::CreateAnd(Op0, I.getOperand(1));
2625
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002626 // If one of the operands of the multiply is a cast from a boolean value, then
2627 // we know the bool is either zero or one, so this is a 'masking' multiply.
2628 // See if we can simplify things based on how the boolean was originally
2629 // formed.
2630 CastInst *BoolCast = 0;
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002631 if (ZExtInst *CI = dyn_cast<ZExtInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002632 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2633 BoolCast = CI;
2634 if (!BoolCast)
2635 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
2636 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2637 BoolCast = CI;
2638 if (BoolCast) {
2639 if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
2640 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
2641 const Type *SCOpTy = SCIOp0->getType();
2642 bool TIS = false;
2643
2644 // If the icmp is true iff the sign bit of X is set, then convert this
2645 // multiply into a shift/and combination.
2646 if (isa<ConstantInt>(SCIOp1) &&
2647 isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
2648 TIS) {
2649 // Shift the X value right to turn it into "all signbits".
2650 Constant *Amt = ConstantInt::get(SCIOp0->getType(),
2651 SCOpTy->getPrimitiveSizeInBits()-1);
2652 Value *V =
2653 InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00002654 BinaryOperator::Create(Instruction::AShr, SCIOp0, Amt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002655 BoolCast->getOperand(0)->getName()+
2656 ".mask"), I);
2657
2658 // If the multiply type is not the same as the source type, sign extend
2659 // or truncate to the multiply type.
2660 if (I.getType() != V->getType()) {
2661 uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits();
2662 uint32_t DstBits = I.getType()->getPrimitiveSizeInBits();
2663 Instruction::CastOps opcode =
2664 (SrcBits == DstBits ? Instruction::BitCast :
2665 (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
2666 V = InsertCastBefore(opcode, V, I.getType(), I);
2667 }
2668
2669 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
Gabor Greifa645dd32008-05-16 19:29:10 +00002670 return BinaryOperator::CreateAnd(V, OtherOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002671 }
2672 }
2673 }
2674
2675 return Changed ? &I : 0;
2676}
2677
Chris Lattner76972db2008-07-14 00:15:52 +00002678/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
2679/// instruction.
2680bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
2681 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
2682
2683 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
2684 int NonNullOperand = -1;
2685 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
2686 if (ST->isNullValue())
2687 NonNullOperand = 2;
2688 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
2689 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
2690 if (ST->isNullValue())
2691 NonNullOperand = 1;
2692
2693 if (NonNullOperand == -1)
2694 return false;
2695
2696 Value *SelectCond = SI->getOperand(0);
2697
2698 // Change the div/rem to use 'Y' instead of the select.
2699 I.setOperand(1, SI->getOperand(NonNullOperand));
2700
2701 // Okay, we know we replace the operand of the div/rem with 'Y' with no
2702 // problem. However, the select, or the condition of the select may have
2703 // multiple uses. Based on our knowledge that the operand must be non-zero,
2704 // propagate the known value for the select into other uses of it, and
2705 // propagate a known value of the condition into its other users.
2706
2707 // If the select and condition only have a single use, don't bother with this,
2708 // early exit.
2709 if (SI->use_empty() && SelectCond->hasOneUse())
2710 return true;
2711
2712 // Scan the current block backward, looking for other uses of SI.
2713 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
2714
2715 while (BBI != BBFront) {
2716 --BBI;
2717 // If we found a call to a function, we can't assume it will return, so
2718 // information from below it cannot be propagated above it.
2719 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
2720 break;
2721
2722 // Replace uses of the select or its condition with the known values.
2723 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
2724 I != E; ++I) {
2725 if (*I == SI) {
2726 *I = SI->getOperand(NonNullOperand);
2727 AddToWorkList(BBI);
2728 } else if (*I == SelectCond) {
2729 *I = NonNullOperand == 1 ? ConstantInt::getTrue() :
2730 ConstantInt::getFalse();
2731 AddToWorkList(BBI);
2732 }
2733 }
2734
2735 // If we past the instruction, quit looking for it.
2736 if (&*BBI == SI)
2737 SI = 0;
2738 if (&*BBI == SelectCond)
2739 SelectCond = 0;
2740
2741 // If we ran out of things to eliminate, break out of the loop.
2742 if (SelectCond == 0 && SI == 0)
2743 break;
2744
2745 }
2746 return true;
2747}
2748
2749
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002750/// This function implements the transforms on div instructions that work
2751/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
2752/// used by the visitors to those instructions.
2753/// @brief Transforms common to all three div instructions
2754Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
2755 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2756
Chris Lattner653ef3c2008-02-19 06:12:18 +00002757 // undef / X -> 0 for integer.
2758 // undef / X -> undef for FP (the undef could be a snan).
2759 if (isa<UndefValue>(Op0)) {
2760 if (Op0->getType()->isFPOrFPVector())
2761 return ReplaceInstUsesWith(I, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002762 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002763 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002764
2765 // X / undef -> undef
2766 if (isa<UndefValue>(Op1))
2767 return ReplaceInstUsesWith(I, Op1);
2768
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002769 return 0;
2770}
2771
2772/// This function implements the transforms common to both integer division
2773/// instructions (udiv and sdiv). It is called by the visitors to those integer
2774/// division instructions.
2775/// @brief Common integer divide transforms
2776Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
2777 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2778
Chris Lattnercefb36c2008-05-16 02:59:42 +00002779 // (sdiv X, X) --> 1 (udiv X, X) --> 1
Nick Lewycky386c0132008-05-23 03:26:47 +00002780 if (Op0 == Op1) {
2781 if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) {
2782 ConstantInt *CI = ConstantInt::get(Ty->getElementType(), 1);
2783 std::vector<Constant*> Elts(Ty->getNumElements(), CI);
2784 return ReplaceInstUsesWith(I, ConstantVector::get(Elts));
2785 }
2786
2787 ConstantInt *CI = ConstantInt::get(I.getType(), 1);
2788 return ReplaceInstUsesWith(I, CI);
2789 }
Chris Lattnercefb36c2008-05-16 02:59:42 +00002790
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002791 if (Instruction *Common = commonDivTransforms(I))
2792 return Common;
Chris Lattner76972db2008-07-14 00:15:52 +00002793
2794 // Handle cases involving: [su]div X, (select Cond, Y, Z)
2795 // This does not apply for fdiv.
2796 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2797 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002798
2799 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2800 // div X, 1 == X
2801 if (RHS->equalsInt(1))
2802 return ReplaceInstUsesWith(I, Op0);
2803
2804 // (X / C1) / C2 -> X / (C1*C2)
2805 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
2806 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
2807 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
Nick Lewycky9d798f92008-02-18 22:48:05 +00002808 if (MultiplyOverflows(RHS, LHSRHS, I.getOpcode()==Instruction::SDiv))
2809 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2810 else
Gabor Greifa645dd32008-05-16 19:29:10 +00002811 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
Nick Lewycky9d798f92008-02-18 22:48:05 +00002812 Multiply(RHS, LHSRHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002813 }
2814
2815 if (!RHS->isZero()) { // avoid X udiv 0
2816 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2817 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2818 return R;
2819 if (isa<PHINode>(Op0))
2820 if (Instruction *NV = FoldOpIntoPhi(I))
2821 return NV;
2822 }
2823 }
2824
2825 // 0 / X == 0, we don't need to preserve faults!
2826 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
2827 if (LHS->equalsInt(0))
2828 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2829
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002830 // It can't be division by zero, hence it must be division by one.
2831 if (I.getType() == Type::Int1Ty)
2832 return ReplaceInstUsesWith(I, Op0);
2833
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002834 return 0;
2835}
2836
2837Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
2838 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2839
2840 // Handle the integer div common cases
2841 if (Instruction *Common = commonIDivTransforms(I))
2842 return Common;
2843
2844 // X udiv C^2 -> X >> C
2845 // Check to see if this is an unsigned division with an exact power of 2,
2846 // if so, convert to a right shift.
2847 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
2848 if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
Gabor Greifa645dd32008-05-16 19:29:10 +00002849 return BinaryOperator::CreateLShr(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002850 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
2851 }
2852
2853 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
2854 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
2855 if (RHSI->getOpcode() == Instruction::Shl &&
2856 isa<ConstantInt>(RHSI->getOperand(0))) {
2857 const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
2858 if (C1.isPowerOf2()) {
2859 Value *N = RHSI->getOperand(1);
2860 const Type *NTy = N->getType();
2861 if (uint32_t C2 = C1.logBase2()) {
2862 Constant *C2V = ConstantInt::get(NTy, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002863 N = InsertNewInstBefore(BinaryOperator::CreateAdd(N, C2V, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002864 }
Gabor Greifa645dd32008-05-16 19:29:10 +00002865 return BinaryOperator::CreateLShr(Op0, N);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002866 }
2867 }
2868 }
2869
2870 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
2871 // where C1&C2 are powers of two.
2872 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2873 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
2874 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
2875 const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
2876 if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
2877 // Compute the shift amounts
2878 uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
2879 // Construct the "on true" case of the select
2880 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002881 Instruction *TSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002882 Op0, TC, SI->getName()+".t");
2883 TSI = InsertNewInstBefore(TSI, I);
2884
2885 // Construct the "on false" case of the select
2886 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002887 Instruction *FSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002888 Op0, FC, SI->getName()+".f");
2889 FSI = InsertNewInstBefore(FSI, I);
2890
2891 // construct the select instruction and return it.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002892 return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002893 }
2894 }
2895 return 0;
2896}
2897
2898Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
2899 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2900
2901 // Handle the integer div common cases
2902 if (Instruction *Common = commonIDivTransforms(I))
2903 return Common;
2904
2905 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2906 // sdiv X, -1 == -X
2907 if (RHS->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002908 return BinaryOperator::CreateNeg(Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002909
2910 // -X/C -> X/-C
2911 if (Value *LHSNeg = dyn_castNegVal(Op0))
Gabor Greifa645dd32008-05-16 19:29:10 +00002912 return BinaryOperator::CreateSDiv(LHSNeg, ConstantExpr::getNeg(RHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002913 }
2914
2915 // If the sign bits of both operands are zero (i.e. we can prove they are
2916 // unsigned inputs), turn this into a udiv.
2917 if (I.getType()->isInteger()) {
2918 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
2919 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Dan Gohmandb3dd962007-11-05 23:16:33 +00002920 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00002921 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002922 }
2923 }
2924
2925 return 0;
2926}
2927
2928Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
2929 return commonDivTransforms(I);
2930}
2931
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002932/// This function implements the transforms on rem instructions that work
2933/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
2934/// is used by the visitors to those instructions.
2935/// @brief Transforms common to all three rem instructions
2936Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
2937 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2938
Chris Lattner653ef3c2008-02-19 06:12:18 +00002939 // 0 % X == 0 for integer, we don't need to preserve faults!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002940 if (Constant *LHS = dyn_cast<Constant>(Op0))
2941 if (LHS->isNullValue())
2942 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2943
Chris Lattner653ef3c2008-02-19 06:12:18 +00002944 if (isa<UndefValue>(Op0)) { // undef % X -> 0
2945 if (I.getType()->isFPOrFPVector())
2946 return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002947 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002948 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002949 if (isa<UndefValue>(Op1))
2950 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
2951
2952 // Handle cases involving: rem X, (select Cond, Y, Z)
Chris Lattner76972db2008-07-14 00:15:52 +00002953 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2954 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002955
2956 return 0;
2957}
2958
2959/// This function implements the transforms common to both integer remainder
2960/// instructions (urem and srem). It is called by the visitors to those integer
2961/// remainder instructions.
2962/// @brief Common integer remainder transforms
2963Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
2964 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2965
2966 if (Instruction *common = commonRemTransforms(I))
2967 return common;
2968
2969 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2970 // X % 0 == undef, we don't need to preserve faults!
2971 if (RHS->equalsInt(0))
2972 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
2973
2974 if (RHS->equalsInt(1)) // X % 1 == 0
2975 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2976
2977 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
2978 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
2979 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2980 return R;
2981 } else if (isa<PHINode>(Op0I)) {
2982 if (Instruction *NV = FoldOpIntoPhi(I))
2983 return NV;
2984 }
Nick Lewyckyc1372c82008-03-06 06:48:30 +00002985
2986 // See if we can fold away this rem instruction.
2987 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
2988 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2989 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
2990 KnownZero, KnownOne))
2991 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002992 }
2993 }
2994
2995 return 0;
2996}
2997
2998Instruction *InstCombiner::visitURem(BinaryOperator &I) {
2999 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3000
3001 if (Instruction *common = commonIRemTransforms(I))
3002 return common;
3003
3004 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3005 // X urem C^2 -> X and C
3006 // Check to see if this is an unsigned remainder with an exact power of 2,
3007 // if so, convert to a bitwise and.
3008 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
3009 if (C->getValue().isPowerOf2())
Gabor Greifa645dd32008-05-16 19:29:10 +00003010 return BinaryOperator::CreateAnd(Op0, SubOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003011 }
3012
3013 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
3014 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
3015 if (RHSI->getOpcode() == Instruction::Shl &&
3016 isa<ConstantInt>(RHSI->getOperand(0))) {
3017 if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
3018 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00003019 Value *Add = InsertNewInstBefore(BinaryOperator::CreateAdd(RHSI, N1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003020 "tmp"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003021 return BinaryOperator::CreateAnd(Op0, Add);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003022 }
3023 }
3024 }
3025
3026 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
3027 // where C1&C2 are powers of two.
3028 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3029 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
3030 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3031 // STO == 0 and SFO == 0 handled above.
3032 if ((STO->getValue().isPowerOf2()) &&
3033 (SFO->getValue().isPowerOf2())) {
3034 Value *TrueAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003035 BinaryOperator::CreateAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003036 Value *FalseAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003037 BinaryOperator::CreateAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00003038 return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003039 }
3040 }
3041 }
3042
3043 return 0;
3044}
3045
3046Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
3047 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3048
Dan Gohmandb3dd962007-11-05 23:16:33 +00003049 // Handle the integer rem common cases
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003050 if (Instruction *common = commonIRemTransforms(I))
3051 return common;
3052
3053 if (Value *RHSNeg = dyn_castNegVal(Op1))
Nick Lewyckycfadfbd2008-09-03 06:24:21 +00003054 if (!isa<Constant>(RHSNeg) ||
3055 (isa<ConstantInt>(RHSNeg) &&
3056 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003057 // X % -Y -> X % Y
3058 AddUsesToWorkList(I);
3059 I.setOperand(1, RHSNeg);
3060 return &I;
3061 }
Nick Lewycky5515c7a2008-09-30 06:08:34 +00003062
Dan Gohmandb3dd962007-11-05 23:16:33 +00003063 // If the sign bits of both operands are zero (i.e. we can prove they are
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003064 // unsigned inputs), turn this into a urem.
Dan Gohmandb3dd962007-11-05 23:16:33 +00003065 if (I.getType()->isInteger()) {
3066 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
3067 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
3068 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00003069 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
Dan Gohmandb3dd962007-11-05 23:16:33 +00003070 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003071 }
3072
3073 return 0;
3074}
3075
3076Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
3077 return commonRemTransforms(I);
3078}
3079
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003080// isOneBitSet - Return true if there is exactly one bit set in the specified
3081// constant.
3082static bool isOneBitSet(const ConstantInt *CI) {
3083 return CI->getValue().isPowerOf2();
3084}
3085
3086// isHighOnes - Return true if the constant is of the form 1+0+.
3087// This is the same as lowones(~X).
3088static bool isHighOnes(const ConstantInt *CI) {
3089 return (~CI->getValue() + 1).isPowerOf2();
3090}
3091
3092/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
3093/// are carefully arranged to allow folding of expressions such as:
3094///
3095/// (A < B) | (A > B) --> (A != B)
3096///
3097/// Note that this is only valid if the first and second predicates have the
3098/// same sign. Is illegal to do: (A u< B) | (A s> B)
3099///
3100/// Three bits are used to represent the condition, as follows:
3101/// 0 A > B
3102/// 1 A == B
3103/// 2 A < B
3104///
3105/// <=> Value Definition
3106/// 000 0 Always false
3107/// 001 1 A > B
3108/// 010 2 A == B
3109/// 011 3 A >= B
3110/// 100 4 A < B
3111/// 101 5 A != B
3112/// 110 6 A <= B
3113/// 111 7 Always true
3114///
3115static unsigned getICmpCode(const ICmpInst *ICI) {
3116 switch (ICI->getPredicate()) {
3117 // False -> 0
3118 case ICmpInst::ICMP_UGT: return 1; // 001
3119 case ICmpInst::ICMP_SGT: return 1; // 001
3120 case ICmpInst::ICMP_EQ: return 2; // 010
3121 case ICmpInst::ICMP_UGE: return 3; // 011
3122 case ICmpInst::ICMP_SGE: return 3; // 011
3123 case ICmpInst::ICMP_ULT: return 4; // 100
3124 case ICmpInst::ICMP_SLT: return 4; // 100
3125 case ICmpInst::ICMP_NE: return 5; // 101
3126 case ICmpInst::ICMP_ULE: return 6; // 110
3127 case ICmpInst::ICMP_SLE: return 6; // 110
3128 // True -> 7
3129 default:
3130 assert(0 && "Invalid ICmp predicate!");
3131 return 0;
3132 }
3133}
3134
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003135/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
3136/// predicate into a three bit mask. It also returns whether it is an ordered
3137/// predicate by reference.
3138static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
3139 isOrdered = false;
3140 switch (CC) {
3141 case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000
3142 case FCmpInst::FCMP_UNO: return 0; // 000
Evan Chengf1f2cea2008-10-14 18:13:38 +00003143 case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001
3144 case FCmpInst::FCMP_UGT: return 1; // 001
3145 case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010
3146 case FCmpInst::FCMP_UEQ: return 2; // 010
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003147 case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011
3148 case FCmpInst::FCMP_UGE: return 3; // 011
3149 case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100
3150 case FCmpInst::FCMP_ULT: return 4; // 100
Evan Chengf1f2cea2008-10-14 18:13:38 +00003151 case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101
3152 case FCmpInst::FCMP_UNE: return 5; // 101
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003153 case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110
3154 case FCmpInst::FCMP_ULE: return 6; // 110
Evan Cheng72988052008-10-14 18:44:08 +00003155 // True -> 7
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003156 default:
3157 // Not expecting FCMP_FALSE and FCMP_TRUE;
3158 assert(0 && "Unexpected FCmp predicate!");
3159 return 0;
3160 }
3161}
3162
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003163/// getICmpValue - This is the complement of getICmpCode, which turns an
3164/// opcode and two operands into either a constant true or false, or a brand
Dan Gohmanda338742007-09-17 17:31:57 +00003165/// new ICmp instruction. The sign is passed in to determine which kind
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003166/// of predicate to use in the new icmp instruction.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003167static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
3168 switch (code) {
3169 default: assert(0 && "Illegal ICmp code!");
3170 case 0: return ConstantInt::getFalse();
3171 case 1:
3172 if (sign)
3173 return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
3174 else
3175 return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
3176 case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
3177 case 3:
3178 if (sign)
3179 return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
3180 else
3181 return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
3182 case 4:
3183 if (sign)
3184 return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
3185 else
3186 return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
3187 case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
3188 case 6:
3189 if (sign)
3190 return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
3191 else
3192 return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
3193 case 7: return ConstantInt::getTrue();
3194 }
3195}
3196
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003197/// getFCmpValue - This is the complement of getFCmpCode, which turns an
3198/// opcode and two operands into either a FCmp instruction. isordered is passed
3199/// in to determine which kind of predicate to use in the new fcmp instruction.
3200static Value *getFCmpValue(bool isordered, unsigned code,
3201 Value *LHS, Value *RHS) {
3202 switch (code) {
Evan Chengf1f2cea2008-10-14 18:13:38 +00003203 default: assert(0 && "Illegal FCmp code!");
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003204 case 0:
3205 if (isordered)
3206 return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS);
3207 else
3208 return new FCmpInst(FCmpInst::FCMP_UNO, LHS, RHS);
3209 case 1:
3210 if (isordered)
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003211 return new FCmpInst(FCmpInst::FCMP_OGT, LHS, RHS);
3212 else
3213 return new FCmpInst(FCmpInst::FCMP_UGT, LHS, RHS);
Evan Chengf1f2cea2008-10-14 18:13:38 +00003214 case 2:
3215 if (isordered)
3216 return new FCmpInst(FCmpInst::FCMP_OEQ, LHS, RHS);
3217 else
3218 return new FCmpInst(FCmpInst::FCMP_UEQ, LHS, RHS);
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003219 case 3:
3220 if (isordered)
3221 return new FCmpInst(FCmpInst::FCMP_OGE, LHS, RHS);
3222 else
3223 return new FCmpInst(FCmpInst::FCMP_UGE, LHS, RHS);
3224 case 4:
3225 if (isordered)
3226 return new FCmpInst(FCmpInst::FCMP_OLT, LHS, RHS);
3227 else
3228 return new FCmpInst(FCmpInst::FCMP_ULT, LHS, RHS);
3229 case 5:
3230 if (isordered)
Evan Chengf1f2cea2008-10-14 18:13:38 +00003231 return new FCmpInst(FCmpInst::FCMP_ONE, LHS, RHS);
3232 else
3233 return new FCmpInst(FCmpInst::FCMP_UNE, LHS, RHS);
3234 case 6:
3235 if (isordered)
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003236 return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS);
3237 else
3238 return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS);
Evan Cheng72988052008-10-14 18:44:08 +00003239 case 7: return ConstantInt::getTrue();
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003240 }
3241}
3242
3243
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003244static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
3245 return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
3246 (ICmpInst::isSignedPredicate(p1) &&
3247 (p2 == ICmpInst::ICMP_EQ || p2 == ICmpInst::ICMP_NE)) ||
3248 (ICmpInst::isSignedPredicate(p2) &&
3249 (p1 == ICmpInst::ICMP_EQ || p1 == ICmpInst::ICMP_NE));
3250}
3251
3252namespace {
3253// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3254struct FoldICmpLogical {
3255 InstCombiner &IC;
3256 Value *LHS, *RHS;
3257 ICmpInst::Predicate pred;
3258 FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
3259 : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
3260 pred(ICI->getPredicate()) {}
3261 bool shouldApply(Value *V) const {
3262 if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
3263 if (PredicatesFoldable(pred, ICI->getPredicate()))
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003264 return ((ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS) ||
3265 (ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003266 return false;
3267 }
3268 Instruction *apply(Instruction &Log) const {
3269 ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
3270 if (ICI->getOperand(0) != LHS) {
3271 assert(ICI->getOperand(1) == LHS);
3272 ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
3273 }
3274
3275 ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
3276 unsigned LHSCode = getICmpCode(ICI);
3277 unsigned RHSCode = getICmpCode(RHSICI);
3278 unsigned Code;
3279 switch (Log.getOpcode()) {
3280 case Instruction::And: Code = LHSCode & RHSCode; break;
3281 case Instruction::Or: Code = LHSCode | RHSCode; break;
3282 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
3283 default: assert(0 && "Illegal logical opcode!"); return 0;
3284 }
3285
3286 bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
3287 ICmpInst::isSignedPredicate(ICI->getPredicate());
3288
3289 Value *RV = getICmpValue(isSigned, Code, LHS, RHS);
3290 if (Instruction *I = dyn_cast<Instruction>(RV))
3291 return I;
3292 // Otherwise, it's a constant boolean value...
3293 return IC.ReplaceInstUsesWith(Log, RV);
3294 }
3295};
3296} // end anonymous namespace
3297
3298// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3299// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
3300// guaranteed to be a binary operator.
3301Instruction *InstCombiner::OptAndOp(Instruction *Op,
3302 ConstantInt *OpRHS,
3303 ConstantInt *AndRHS,
3304 BinaryOperator &TheAnd) {
3305 Value *X = Op->getOperand(0);
3306 Constant *Together = 0;
3307 if (!Op->isShift())
3308 Together = And(AndRHS, OpRHS);
3309
3310 switch (Op->getOpcode()) {
3311 case Instruction::Xor:
3312 if (Op->hasOneUse()) {
3313 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
Gabor Greifa645dd32008-05-16 19:29:10 +00003314 Instruction *And = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003315 InsertNewInstBefore(And, TheAnd);
3316 And->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003317 return BinaryOperator::CreateXor(And, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003318 }
3319 break;
3320 case Instruction::Or:
3321 if (Together == AndRHS) // (X | C) & C --> C
3322 return ReplaceInstUsesWith(TheAnd, AndRHS);
3323
3324 if (Op->hasOneUse() && Together != OpRHS) {
3325 // (X | C1) & C2 --> (X | (C1&C2)) & C2
Gabor Greifa645dd32008-05-16 19:29:10 +00003326 Instruction *Or = BinaryOperator::CreateOr(X, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003327 InsertNewInstBefore(Or, TheAnd);
3328 Or->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003329 return BinaryOperator::CreateAnd(Or, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003330 }
3331 break;
3332 case Instruction::Add:
3333 if (Op->hasOneUse()) {
3334 // Adding a one to a single bit bit-field should be turned into an XOR
3335 // of the bit. First thing to check is to see if this AND is with a
3336 // single bit constant.
3337 const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
3338
3339 // If there is only one bit set...
3340 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
3341 // Ok, at this point, we know that we are masking the result of the
3342 // ADD down to exactly one bit. If the constant we are adding has
3343 // no bits set below this bit, then we can eliminate the ADD.
3344 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
3345
3346 // Check to see if any bits below the one bit set in AndRHSV are set.
3347 if ((AddRHS & (AndRHSV-1)) == 0) {
3348 // If not, the only thing that can effect the output of the AND is
3349 // the bit specified by AndRHSV. If that bit is set, the effect of
3350 // the XOR is to toggle the bit. If it is clear, then the ADD has
3351 // no effect.
3352 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
3353 TheAnd.setOperand(0, X);
3354 return &TheAnd;
3355 } else {
3356 // Pull the XOR out of the AND.
Gabor Greifa645dd32008-05-16 19:29:10 +00003357 Instruction *NewAnd = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003358 InsertNewInstBefore(NewAnd, TheAnd);
3359 NewAnd->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003360 return BinaryOperator::CreateXor(NewAnd, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003361 }
3362 }
3363 }
3364 }
3365 break;
3366
3367 case Instruction::Shl: {
3368 // We know that the AND will not produce any of the bits shifted in, so if
3369 // the anded constant includes them, clear them now!
3370 //
3371 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3372 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3373 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
3374 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask);
3375
3376 if (CI->getValue() == ShlMask) {
3377 // Masking out bits that the shift already masks
3378 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
3379 } else if (CI != AndRHS) { // Reducing bits set in and.
3380 TheAnd.setOperand(1, CI);
3381 return &TheAnd;
3382 }
3383 break;
3384 }
3385 case Instruction::LShr:
3386 {
3387 // We know that the AND will not produce any of the bits shifted in, so if
3388 // the anded constant includes them, clear them now! This only applies to
3389 // unsigned shifts, because a signed shr may bring in set bits!
3390 //
3391 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3392 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3393 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3394 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask);
3395
3396 if (CI->getValue() == ShrMask) {
3397 // Masking out bits that the shift already masks.
3398 return ReplaceInstUsesWith(TheAnd, Op);
3399 } else if (CI != AndRHS) {
3400 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
3401 return &TheAnd;
3402 }
3403 break;
3404 }
3405 case Instruction::AShr:
3406 // Signed shr.
3407 // See if this is shifting in some sign extension, then masking it out
3408 // with an and.
3409 if (Op->hasOneUse()) {
3410 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3411 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3412 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3413 Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask);
3414 if (C == AndRHS) { // Masking out bits shifted in.
3415 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
3416 // Make the argument unsigned.
3417 Value *ShVal = Op->getOperand(0);
3418 ShVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003419 BinaryOperator::CreateLShr(ShVal, OpRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003420 Op->getName()), TheAnd);
Gabor Greifa645dd32008-05-16 19:29:10 +00003421 return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003422 }
3423 }
3424 break;
3425 }
3426 return 0;
3427}
3428
3429
3430/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3431/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
3432/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3433/// whether to treat the V, Lo and HI as signed or not. IB is the location to
3434/// insert new instructions.
3435Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
3436 bool isSigned, bool Inside,
3437 Instruction &IB) {
3438 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
3439 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
3440 "Lo is not <= Hi in range emission code!");
3441
3442 if (Inside) {
3443 if (Lo == Hi) // Trivially false.
3444 return new ICmpInst(ICmpInst::ICMP_NE, V, V);
3445
3446 // V >= Min && V < Hi --> V < Hi
3447 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3448 ICmpInst::Predicate pred = (isSigned ?
3449 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
3450 return new ICmpInst(pred, V, Hi);
3451 }
3452
3453 // Emit V-Lo <u Hi-Lo
3454 Constant *NegLo = ConstantExpr::getNeg(Lo);
Gabor Greifa645dd32008-05-16 19:29:10 +00003455 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003456 InsertNewInstBefore(Add, IB);
3457 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
3458 return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
3459 }
3460
3461 if (Lo == Hi) // Trivially true.
3462 return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
3463
3464 // V < Min || V >= Hi -> V > Hi-1
3465 Hi = SubOne(cast<ConstantInt>(Hi));
3466 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3467 ICmpInst::Predicate pred = (isSigned ?
3468 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
3469 return new ICmpInst(pred, V, Hi);
3470 }
3471
3472 // Emit V-Lo >u Hi-1-Lo
3473 // Note that Hi has already had one subtracted from it, above.
3474 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
Gabor Greifa645dd32008-05-16 19:29:10 +00003475 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003476 InsertNewInstBefore(Add, IB);
3477 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
3478 return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
3479}
3480
3481// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3482// any number of 0s on either side. The 1s are allowed to wrap from LSB to
3483// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3484// not, since all 1s are not contiguous.
3485static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
3486 const APInt& V = Val->getValue();
3487 uint32_t BitWidth = Val->getType()->getBitWidth();
3488 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
3489
3490 // look for the first zero bit after the run of ones
3491 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
3492 // look for the first non-zero bit
3493 ME = V.getActiveBits();
3494 return true;
3495}
3496
3497/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3498/// where isSub determines whether the operator is a sub. If we can fold one of
3499/// the following xforms:
3500///
3501/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3502/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3503/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3504///
3505/// return (A +/- B).
3506///
3507Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
3508 ConstantInt *Mask, bool isSub,
3509 Instruction &I) {
3510 Instruction *LHSI = dyn_cast<Instruction>(LHS);
3511 if (!LHSI || LHSI->getNumOperands() != 2 ||
3512 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
3513
3514 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
3515
3516 switch (LHSI->getOpcode()) {
3517 default: return 0;
3518 case Instruction::And:
3519 if (And(N, Mask) == Mask) {
3520 // If the AndRHS is a power of two minus one (0+1+), this is simple.
3521 if ((Mask->getValue().countLeadingZeros() +
3522 Mask->getValue().countPopulation()) ==
3523 Mask->getValue().getBitWidth())
3524 break;
3525
3526 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3527 // part, we don't need any explicit masks to take them out of A. If that
3528 // is all N is, ignore it.
3529 uint32_t MB = 0, ME = 0;
3530 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
3531 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
3532 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
3533 if (MaskedValueIsZero(RHS, Mask))
3534 break;
3535 }
3536 }
3537 return 0;
3538 case Instruction::Or:
3539 case Instruction::Xor:
3540 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
3541 if ((Mask->getValue().countLeadingZeros() +
3542 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
3543 && And(N, Mask)->isZero())
3544 break;
3545 return 0;
3546 }
3547
3548 Instruction *New;
3549 if (isSub)
Gabor Greifa645dd32008-05-16 19:29:10 +00003550 New = BinaryOperator::CreateSub(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003551 else
Gabor Greifa645dd32008-05-16 19:29:10 +00003552 New = BinaryOperator::CreateAdd(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003553 return InsertNewInstBefore(New, I);
3554}
3555
3556Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
3557 bool Changed = SimplifyCommutative(I);
3558 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3559
3560 if (isa<UndefValue>(Op1)) // X & undef -> 0
3561 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3562
3563 // and X, X = X
3564 if (Op0 == Op1)
3565 return ReplaceInstUsesWith(I, Op1);
3566
3567 // See if we can simplify any instructions used by the instruction whose sole
3568 // purpose is to compute bits we don't care about.
3569 if (!isa<VectorType>(I.getType())) {
3570 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3571 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3572 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3573 KnownZero, KnownOne))
3574 return &I;
3575 } else {
3576 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
3577 if (CP->isAllOnesValue()) // X & <-1,-1> -> X
3578 return ReplaceInstUsesWith(I, I.getOperand(0));
3579 } else if (isa<ConstantAggregateZero>(Op1)) {
3580 return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0>
3581 }
3582 }
3583
3584 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
3585 const APInt& AndRHSMask = AndRHS->getValue();
3586 APInt NotAndRHS(~AndRHSMask);
3587
3588 // Optimize a variety of ((val OP C1) & C2) combinations...
3589 if (isa<BinaryOperator>(Op0)) {
3590 Instruction *Op0I = cast<Instruction>(Op0);
3591 Value *Op0LHS = Op0I->getOperand(0);
3592 Value *Op0RHS = Op0I->getOperand(1);
3593 switch (Op0I->getOpcode()) {
3594 case Instruction::Xor:
3595 case Instruction::Or:
3596 // If the mask is only needed on one incoming arm, push it up.
3597 if (Op0I->hasOneUse()) {
3598 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
3599 // Not masking anything out for the LHS, move to RHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003600 Instruction *NewRHS = BinaryOperator::CreateAnd(Op0RHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003601 Op0RHS->getName()+".masked");
3602 InsertNewInstBefore(NewRHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003603 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003604 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
3605 }
3606 if (!isa<Constant>(Op0RHS) &&
3607 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
3608 // Not masking anything out for the RHS, move to LHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003609 Instruction *NewLHS = BinaryOperator::CreateAnd(Op0LHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003610 Op0LHS->getName()+".masked");
3611 InsertNewInstBefore(NewLHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003612 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003613 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
3614 }
3615 }
3616
3617 break;
3618 case Instruction::Add:
3619 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3620 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3621 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3622 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003623 return BinaryOperator::CreateAnd(V, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003624 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003625 return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003626 break;
3627
3628 case Instruction::Sub:
3629 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3630 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3631 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3632 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003633 return BinaryOperator::CreateAnd(V, AndRHS);
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003634
Nick Lewyckya349ba42008-07-10 05:51:40 +00003635 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
3636 // has 1's for all bits that the subtraction with A might affect.
3637 if (Op0I->hasOneUse()) {
3638 uint32_t BitWidth = AndRHSMask.getBitWidth();
3639 uint32_t Zeros = AndRHSMask.countLeadingZeros();
3640 APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
3641
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003642 ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS);
Nick Lewyckya349ba42008-07-10 05:51:40 +00003643 if (!(A && A->isZero()) && // avoid infinite recursion.
3644 MaskedValueIsZero(Op0LHS, Mask)) {
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003645 Instruction *NewNeg = BinaryOperator::CreateNeg(Op0RHS);
3646 InsertNewInstBefore(NewNeg, I);
3647 return BinaryOperator::CreateAnd(NewNeg, AndRHS);
3648 }
3649 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003650 break;
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003651
3652 case Instruction::Shl:
3653 case Instruction::LShr:
3654 // (1 << x) & 1 --> zext(x == 0)
3655 // (1 >> x) & 1 --> zext(x == 0)
Nick Lewyckyf1b12222008-07-09 07:35:26 +00003656 if (AndRHSMask == 1 && Op0LHS == AndRHS) {
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003657 Instruction *NewICmp = new ICmpInst(ICmpInst::ICMP_EQ, Op0RHS,
3658 Constant::getNullValue(I.getType()));
3659 InsertNewInstBefore(NewICmp, I);
3660 return new ZExtInst(NewICmp, I.getType());
3661 }
3662 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003663 }
3664
3665 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
3666 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
3667 return Res;
3668 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
3669 // If this is an integer truncation or change from signed-to-unsigned, and
3670 // if the source is an and/or with immediate, transform it. This
3671 // frequently occurs for bitfield accesses.
3672 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
3673 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
3674 CastOp->getNumOperands() == 2)
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003675 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003676 if (CastOp->getOpcode() == Instruction::And) {
3677 // Change: and (cast (and X, C1) to T), C2
3678 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3679 // This will fold the two constants together, which may allow
3680 // other simplifications.
Gabor Greifa645dd32008-05-16 19:29:10 +00003681 Instruction *NewCast = CastInst::CreateTruncOrBitCast(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003682 CastOp->getOperand(0), I.getType(),
3683 CastOp->getName()+".shrunk");
3684 NewCast = InsertNewInstBefore(NewCast, I);
3685 // trunc_or_bitcast(C1)&C2
3686 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3687 C3 = ConstantExpr::getAnd(C3, AndRHS);
Gabor Greifa645dd32008-05-16 19:29:10 +00003688 return BinaryOperator::CreateAnd(NewCast, C3);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003689 } else if (CastOp->getOpcode() == Instruction::Or) {
3690 // Change: and (cast (or X, C1) to T), C2
3691 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
3692 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3693 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
3694 return ReplaceInstUsesWith(I, AndRHS);
3695 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003696 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003697 }
3698 }
3699
3700 // Try to fold constant and into select arguments.
3701 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3702 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3703 return R;
3704 if (isa<PHINode>(Op0))
3705 if (Instruction *NV = FoldOpIntoPhi(I))
3706 return NV;
3707 }
3708
3709 Value *Op0NotVal = dyn_castNotVal(Op0);
3710 Value *Op1NotVal = dyn_castNotVal(Op1);
3711
3712 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
3713 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3714
3715 // (~A & ~B) == (~(A | B)) - De Morgan's Law
3716 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00003717 Instruction *Or = BinaryOperator::CreateOr(Op0NotVal, Op1NotVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003718 I.getName()+".demorgan");
3719 InsertNewInstBefore(Or, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003720 return BinaryOperator::CreateNot(Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003721 }
3722
3723 {
3724 Value *A = 0, *B = 0, *C = 0, *D = 0;
3725 if (match(Op0, m_Or(m_Value(A), m_Value(B)))) {
3726 if (A == Op1 || B == Op1) // (A | ?) & A --> A
3727 return ReplaceInstUsesWith(I, Op1);
3728
3729 // (A|B) & ~(A&B) -> A^B
3730 if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) {
3731 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003732 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003733 }
3734 }
3735
3736 if (match(Op1, m_Or(m_Value(A), m_Value(B)))) {
3737 if (A == Op0 || B == Op0) // A & (A | ?) --> A
3738 return ReplaceInstUsesWith(I, Op0);
3739
3740 // ~(A&B) & (A|B) -> A^B
3741 if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) {
3742 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003743 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003744 }
3745 }
3746
3747 if (Op0->hasOneUse() &&
3748 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3749 if (A == Op1) { // (A^B)&A -> A&(A^B)
3750 I.swapOperands(); // Simplify below
3751 std::swap(Op0, Op1);
3752 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
3753 cast<BinaryOperator>(Op0)->swapOperands();
3754 I.swapOperands(); // Simplify below
3755 std::swap(Op0, Op1);
3756 }
3757 }
3758 if (Op1->hasOneUse() &&
3759 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3760 if (B == Op0) { // B&(A^B) -> B&(B^A)
3761 cast<BinaryOperator>(Op1)->swapOperands();
3762 std::swap(A, B);
3763 }
3764 if (A == Op0) { // A&(A^B) -> A & ~B
Gabor Greifa645dd32008-05-16 19:29:10 +00003765 Instruction *NotB = BinaryOperator::CreateNot(B, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003766 InsertNewInstBefore(NotB, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003767 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003768 }
3769 }
3770 }
3771
Nick Lewycky771d6052008-08-06 04:54:03 +00003772 { // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
3773 // where C is a power of 2
3774 Value *A, *B;
3775 ConstantInt *C1, *C2;
Evan Cheng94fd9742008-08-20 23:36:48 +00003776 ICmpInst::Predicate LHSCC = ICmpInst::BAD_ICMP_PREDICATE;
3777 ICmpInst::Predicate RHSCC = ICmpInst::BAD_ICMP_PREDICATE;
Nick Lewycky771d6052008-08-06 04:54:03 +00003778 if (match(&I, m_And(m_ICmp(LHSCC, m_Value(A), m_ConstantInt(C1)),
3779 m_ICmp(RHSCC, m_Value(B), m_ConstantInt(C2)))))
3780 if (C1 == C2 && LHSCC == RHSCC && LHSCC == ICmpInst::ICMP_ULT &&
3781 C1->getValue().isPowerOf2()) {
3782 Instruction *NewOr = BinaryOperator::CreateOr(A, B);
3783 InsertNewInstBefore(NewOr, I);
3784 return new ICmpInst(LHSCC, NewOr, C1);
3785 }
3786 }
3787
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003788 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
3789 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3790 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
3791 return R;
3792
3793 Value *LHSVal, *RHSVal;
3794 ConstantInt *LHSCst, *RHSCst;
3795 ICmpInst::Predicate LHSCC, RHSCC;
3796 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
3797 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
3798 if (LHSVal == RHSVal && // Found (X icmp C1) & (X icmp C2)
3799 // ICMP_[GL]E X, CST is folded to ICMP_[GL]T elsewhere.
3800 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
3801 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
3802 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
Chris Lattner205ad1d2007-11-22 23:47:13 +00003803 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
3804
3805 // Don't try to fold ICMP_SLT + ICMP_ULT.
3806 (ICmpInst::isEquality(LHSCC) || ICmpInst::isEquality(RHSCC) ||
3807 ICmpInst::isSignedPredicate(LHSCC) ==
3808 ICmpInst::isSignedPredicate(RHSCC))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003809 // Ensure that the larger constant is on the RHS.
Chris Lattnerda628ca2008-01-13 20:59:02 +00003810 ICmpInst::Predicate GT;
3811 if (ICmpInst::isSignedPredicate(LHSCC) ||
3812 (ICmpInst::isEquality(LHSCC) &&
3813 ICmpInst::isSignedPredicate(RHSCC)))
3814 GT = ICmpInst::ICMP_SGT;
3815 else
3816 GT = ICmpInst::ICMP_UGT;
3817
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003818 Constant *Cmp = ConstantExpr::getICmp(GT, LHSCst, RHSCst);
3819 ICmpInst *LHS = cast<ICmpInst>(Op0);
3820 if (cast<ConstantInt>(Cmp)->getZExtValue()) {
3821 std::swap(LHS, RHS);
3822 std::swap(LHSCst, RHSCst);
3823 std::swap(LHSCC, RHSCC);
3824 }
3825
3826 // At this point, we know we have have two icmp instructions
3827 // comparing a value against two constants and and'ing the result
3828 // together. Because of the above check, we know that we only have
3829 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
3830 // (from the FoldICmpLogical check above), that the two constants
3831 // are not equal and that the larger constant is on the RHS
3832 assert(LHSCst != RHSCst && "Compares not folded above?");
3833
3834 switch (LHSCC) {
3835 default: assert(0 && "Unknown integer condition code!");
3836 case ICmpInst::ICMP_EQ:
3837 switch (RHSCC) {
3838 default: assert(0 && "Unknown integer condition code!");
3839 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
3840 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
3841 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
3842 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3843 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
3844 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
3845 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
3846 return ReplaceInstUsesWith(I, LHS);
3847 }
3848 case ICmpInst::ICMP_NE:
3849 switch (RHSCC) {
3850 default: assert(0 && "Unknown integer condition code!");
3851 case ICmpInst::ICMP_ULT:
3852 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
3853 return new ICmpInst(ICmpInst::ICMP_ULT, LHSVal, LHSCst);
3854 break; // (X != 13 & X u< 15) -> no change
3855 case ICmpInst::ICMP_SLT:
3856 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
3857 return new ICmpInst(ICmpInst::ICMP_SLT, LHSVal, LHSCst);
3858 break; // (X != 13 & X s< 15) -> no change
3859 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
3860 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
3861 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
3862 return ReplaceInstUsesWith(I, RHS);
3863 case ICmpInst::ICMP_NE:
3864 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
3865 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
Gabor Greifa645dd32008-05-16 19:29:10 +00003866 Instruction *Add = BinaryOperator::CreateAdd(LHSVal, AddCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003867 LHSVal->getName()+".off");
3868 InsertNewInstBefore(Add, I);
3869 return new ICmpInst(ICmpInst::ICMP_UGT, Add,
3870 ConstantInt::get(Add->getType(), 1));
3871 }
3872 break; // (X != 13 & X != 15) -> no change
3873 }
3874 break;
3875 case ICmpInst::ICMP_ULT:
3876 switch (RHSCC) {
3877 default: assert(0 && "Unknown integer condition code!");
3878 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
3879 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
3880 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3881 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
3882 break;
3883 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
3884 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
3885 return ReplaceInstUsesWith(I, LHS);
3886 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
3887 break;
3888 }
3889 break;
3890 case ICmpInst::ICMP_SLT:
3891 switch (RHSCC) {
3892 default: assert(0 && "Unknown integer condition code!");
3893 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
3894 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
3895 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3896 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
3897 break;
3898 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
3899 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
3900 return ReplaceInstUsesWith(I, LHS);
3901 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
3902 break;
3903 }
3904 break;
3905 case ICmpInst::ICMP_UGT:
3906 switch (RHSCC) {
3907 default: assert(0 && "Unknown integer condition code!");
Eli Friedman22b85622008-06-21 23:36:13 +00003908 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003909 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
3910 return ReplaceInstUsesWith(I, RHS);
3911 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
3912 break;
3913 case ICmpInst::ICMP_NE:
3914 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
3915 return new ICmpInst(LHSCC, LHSVal, RHSCst);
3916 break; // (X u> 13 & X != 15) -> no change
3917 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) ->(X-14) <u 1
3918 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, false,
3919 true, I);
3920 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
3921 break;
3922 }
3923 break;
3924 case ICmpInst::ICMP_SGT:
3925 switch (RHSCC) {
3926 default: assert(0 && "Unknown integer condition code!");
Chris Lattnerab0fc252007-11-16 06:04:17 +00003927 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003928 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
3929 return ReplaceInstUsesWith(I, RHS);
3930 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
3931 break;
3932 case ICmpInst::ICMP_NE:
3933 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
3934 return new ICmpInst(LHSCC, LHSVal, RHSCst);
3935 break; // (X s> 13 & X != 15) -> no change
3936 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) ->(X-14) s< 1
3937 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true,
3938 true, I);
3939 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
3940 break;
3941 }
3942 break;
3943 }
3944 }
3945 }
3946
3947 // fold (and (cast A), (cast B)) -> (cast (and A, B))
3948 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
3949 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
3950 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
3951 const Type *SrcTy = Op0C->getOperand(0)->getType();
3952 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
3953 // Only do this if the casts both really cause code to be generated.
3954 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
3955 I.getType(), TD) &&
3956 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
3957 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00003958 Instruction *NewOp = BinaryOperator::CreateAnd(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003959 Op1C->getOperand(0),
3960 I.getName());
3961 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003962 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003963 }
3964 }
3965
3966 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
3967 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
3968 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
3969 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
3970 SI0->getOperand(1) == SI1->getOperand(1) &&
3971 (SI0->hasOneUse() || SI1->hasOneUse())) {
3972 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00003973 InsertNewInstBefore(BinaryOperator::CreateAnd(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003974 SI1->getOperand(0),
3975 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003976 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003977 SI1->getOperand(1));
3978 }
3979 }
3980
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003981 // If and'ing two fcmp, try combine them into one.
Chris Lattner91882432007-10-24 05:38:08 +00003982 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
3983 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
3984 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003985 RHS->getPredicate() == FCmpInst::FCMP_ORD) {
3986 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
Chris Lattner91882432007-10-24 05:38:08 +00003987 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
3988 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
3989 // If either of the constants are nans, then the whole thing returns
3990 // false.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00003991 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00003992 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3993 return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0),
3994 RHS->getOperand(0));
3995 }
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003996 } else {
3997 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
3998 FCmpInst::Predicate Op0CC, Op1CC;
3999 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
4000 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
Evan Chengf1f2cea2008-10-14 18:13:38 +00004001 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4002 // Swap RHS operands to match LHS.
4003 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4004 std::swap(Op1LHS, Op1RHS);
4005 }
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004006 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4007 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
4008 if (Op0CC == Op1CC)
4009 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
4010 else if (Op0CC == FCmpInst::FCMP_FALSE ||
4011 Op1CC == FCmpInst::FCMP_FALSE)
4012 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4013 else if (Op0CC == FCmpInst::FCMP_TRUE)
4014 return ReplaceInstUsesWith(I, Op1);
4015 else if (Op1CC == FCmpInst::FCMP_TRUE)
4016 return ReplaceInstUsesWith(I, Op0);
4017 bool Op0Ordered;
4018 bool Op1Ordered;
4019 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4020 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4021 if (Op1Pred == 0) {
4022 std::swap(Op0, Op1);
4023 std::swap(Op0Pred, Op1Pred);
4024 std::swap(Op0Ordered, Op1Ordered);
4025 }
4026 if (Op0Pred == 0) {
4027 // uno && ueq -> uno && (uno || eq) -> ueq
4028 // ord && olt -> ord && (ord && lt) -> olt
4029 if (Op0Ordered == Op1Ordered)
4030 return ReplaceInstUsesWith(I, Op1);
4031 // uno && oeq -> uno && (ord && eq) -> false
4032 // uno && ord -> false
4033 if (!Op0Ordered)
4034 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4035 // ord && ueq -> ord && (uno || eq) -> oeq
4036 return cast<Instruction>(getFCmpValue(true, Op1Pred,
4037 Op0LHS, Op0RHS));
4038 }
4039 }
4040 }
4041 }
Chris Lattner91882432007-10-24 05:38:08 +00004042 }
4043 }
Nick Lewyckyffed71b2008-07-09 04:32:37 +00004044
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004045 return Changed ? &I : 0;
4046}
4047
Chris Lattner567f5112008-10-05 02:13:19 +00004048/// CollectBSwapParts - Analyze the specified subexpression and see if it is
4049/// capable of providing pieces of a bswap. The subexpression provides pieces
4050/// of a bswap if it is proven that each of the non-zero bytes in the output of
4051/// the expression came from the corresponding "byte swapped" byte in some other
4052/// value. For example, if the current subexpression is "(shl i32 %X, 24)" then
4053/// we know that the expression deposits the low byte of %X into the high byte
4054/// of the bswap result and that all other bytes are zero. This expression is
4055/// accepted, the high byte of ByteValues is set to X to indicate a correct
4056/// match.
4057///
4058/// This function returns true if the match was unsuccessful and false if so.
4059/// On entry to the function the "OverallLeftShift" is a signed integer value
4060/// indicating the number of bytes that the subexpression is later shifted. For
4061/// example, if the expression is later right shifted by 16 bits, the
4062/// OverallLeftShift value would be -2 on entry. This is used to specify which
4063/// byte of ByteValues is actually being set.
4064///
4065/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
4066/// byte is masked to zero by a user. For example, in (X & 255), X will be
4067/// processed with a bytemask of 1. Because bytemask is 32-bits, this limits
4068/// this function to working on up to 32-byte (256 bit) values. ByteMask is
4069/// always in the local (OverallLeftShift) coordinate space.
4070///
4071static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
4072 SmallVector<Value*, 8> &ByteValues) {
4073 if (Instruction *I = dyn_cast<Instruction>(V)) {
4074 // If this is an or instruction, it may be an inner node of the bswap.
4075 if (I->getOpcode() == Instruction::Or) {
4076 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4077 ByteValues) ||
4078 CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
4079 ByteValues);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004080 }
Chris Lattner567f5112008-10-05 02:13:19 +00004081
4082 // If this is a logical shift by a constant multiple of 8, recurse with
4083 // OverallLeftShift and ByteMask adjusted.
4084 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
4085 unsigned ShAmt =
4086 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
4087 // Ensure the shift amount is defined and of a byte value.
4088 if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
4089 return true;
4090
4091 unsigned ByteShift = ShAmt >> 3;
4092 if (I->getOpcode() == Instruction::Shl) {
4093 // X << 2 -> collect(X, +2)
4094 OverallLeftShift += ByteShift;
4095 ByteMask >>= ByteShift;
4096 } else {
4097 // X >>u 2 -> collect(X, -2)
4098 OverallLeftShift -= ByteShift;
4099 ByteMask <<= ByteShift;
Chris Lattner44448592008-10-08 06:42:28 +00004100 ByteMask &= (~0U >> (32-ByteValues.size()));
Chris Lattner567f5112008-10-05 02:13:19 +00004101 }
4102
4103 if (OverallLeftShift >= (int)ByteValues.size()) return true;
4104 if (OverallLeftShift <= -(int)ByteValues.size()) return true;
4105
4106 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4107 ByteValues);
4108 }
4109
4110 // If this is a logical 'and' with a mask that clears bytes, clear the
4111 // corresponding bytes in ByteMask.
4112 if (I->getOpcode() == Instruction::And &&
4113 isa<ConstantInt>(I->getOperand(1))) {
4114 // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
4115 unsigned NumBytes = ByteValues.size();
4116 APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
4117 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
4118
4119 for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
4120 // If this byte is masked out by a later operation, we don't care what
4121 // the and mask is.
4122 if ((ByteMask & (1 << i)) == 0)
4123 continue;
4124
4125 // If the AndMask is all zeros for this byte, clear the bit.
4126 APInt MaskB = AndMask & Byte;
4127 if (MaskB == 0) {
4128 ByteMask &= ~(1U << i);
4129 continue;
4130 }
4131
4132 // If the AndMask is not all ones for this byte, it's not a bytezap.
4133 if (MaskB != Byte)
4134 return true;
4135
4136 // Otherwise, this byte is kept.
4137 }
4138
4139 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4140 ByteValues);
4141 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004142 }
4143
Chris Lattner567f5112008-10-05 02:13:19 +00004144 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
4145 // the input value to the bswap. Some observations: 1) if more than one byte
4146 // is demanded from this input, then it could not be successfully assembled
4147 // into a byteswap. At least one of the two bytes would not be aligned with
4148 // their ultimate destination.
4149 if (!isPowerOf2_32(ByteMask)) return true;
4150 unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004151
Chris Lattner567f5112008-10-05 02:13:19 +00004152 // 2) The input and ultimate destinations must line up: if byte 3 of an i32
4153 // is demanded, it needs to go into byte 0 of the result. This means that the
4154 // byte needs to be shifted until it lands in the right byte bucket. The
4155 // shift amount depends on the position: if the byte is coming from the high
4156 // part of the value (e.g. byte 3) then it must be shifted right. If from the
4157 // low part, it must be shifted left.
4158 unsigned DestByteNo = InputByteNo + OverallLeftShift;
4159 if (InputByteNo < ByteValues.size()/2) {
4160 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4161 return true;
4162 } else {
4163 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4164 return true;
4165 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004166
4167 // If the destination byte value is already defined, the values are or'd
4168 // together, which isn't a bswap (unless it's an or of the same bits).
Chris Lattner567f5112008-10-05 02:13:19 +00004169 if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004170 return true;
Chris Lattner567f5112008-10-05 02:13:19 +00004171 ByteValues[DestByteNo] = V;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004172 return false;
4173}
4174
4175/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
4176/// If so, insert the new bswap intrinsic and return it.
4177Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
4178 const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
Chris Lattner567f5112008-10-05 02:13:19 +00004179 if (!ITy || ITy->getBitWidth() % 16 ||
4180 // ByteMask only allows up to 32-byte values.
4181 ITy->getBitWidth() > 32*8)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004182 return 0; // Can only bswap pairs of bytes. Can't do vectors.
4183
4184 /// ByteValues - For each byte of the result, we keep track of which value
4185 /// defines each byte.
4186 SmallVector<Value*, 8> ByteValues;
4187 ByteValues.resize(ITy->getBitWidth()/8);
4188
4189 // Try to find all the pieces corresponding to the bswap.
Chris Lattner567f5112008-10-05 02:13:19 +00004190 uint32_t ByteMask = ~0U >> (32-ByteValues.size());
4191 if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004192 return 0;
4193
4194 // Check to see if all of the bytes come from the same value.
4195 Value *V = ByteValues[0];
4196 if (V == 0) return 0; // Didn't find a byte? Must be zero.
4197
4198 // Check to make sure that all of the bytes come from the same value.
4199 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
4200 if (ByteValues[i] != V)
4201 return 0;
Chandler Carrutha228e392007-08-04 01:51:18 +00004202 const Type *Tys[] = { ITy };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004203 Module *M = I.getParent()->getParent()->getParent();
Chandler Carrutha228e392007-08-04 01:51:18 +00004204 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
Gabor Greifd6da1d02008-04-06 20:25:17 +00004205 return CallInst::Create(F, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004206}
4207
4208
4209Instruction *InstCombiner::visitOr(BinaryOperator &I) {
4210 bool Changed = SimplifyCommutative(I);
4211 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4212
4213 if (isa<UndefValue>(Op1)) // X | undef -> -1
4214 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4215
4216 // or X, X = X
4217 if (Op0 == Op1)
4218 return ReplaceInstUsesWith(I, Op0);
4219
4220 // See if we can simplify any instructions used by the instruction whose sole
4221 // purpose is to compute bits we don't care about.
4222 if (!isa<VectorType>(I.getType())) {
4223 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4224 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4225 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4226 KnownZero, KnownOne))
4227 return &I;
4228 } else if (isa<ConstantAggregateZero>(Op1)) {
4229 return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X
4230 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
4231 if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1>
4232 return ReplaceInstUsesWith(I, I.getOperand(1));
4233 }
4234
4235
4236
4237 // or X, -1 == -1
4238 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
4239 ConstantInt *C1 = 0; Value *X = 0;
4240 // (X & C1) | C2 --> (X | C2) & (C1|C2)
4241 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004242 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004243 InsertNewInstBefore(Or, I);
4244 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004245 return BinaryOperator::CreateAnd(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004246 ConstantInt::get(RHS->getValue() | C1->getValue()));
4247 }
4248
4249 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
4250 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004251 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004252 InsertNewInstBefore(Or, I);
4253 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004254 return BinaryOperator::CreateXor(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004255 ConstantInt::get(C1->getValue() & ~RHS->getValue()));
4256 }
4257
4258 // Try to fold constant and into select arguments.
4259 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4260 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4261 return R;
4262 if (isa<PHINode>(Op0))
4263 if (Instruction *NV = FoldOpIntoPhi(I))
4264 return NV;
4265 }
4266
4267 Value *A = 0, *B = 0;
4268 ConstantInt *C1 = 0, *C2 = 0;
4269
4270 if (match(Op0, m_And(m_Value(A), m_Value(B))))
4271 if (A == Op1 || B == Op1) // (A & ?) | A --> A
4272 return ReplaceInstUsesWith(I, Op1);
4273 if (match(Op1, m_And(m_Value(A), m_Value(B))))
4274 if (A == Op0 || B == Op0) // A | (A & ?) --> A
4275 return ReplaceInstUsesWith(I, Op0);
4276
4277 // (A | B) | C and A | (B | C) -> bswap if possible.
4278 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
4279 if (match(Op0, m_Or(m_Value(), m_Value())) ||
4280 match(Op1, m_Or(m_Value(), m_Value())) ||
4281 (match(Op0, m_Shift(m_Value(), m_Value())) &&
4282 match(Op1, m_Shift(m_Value(), m_Value())))) {
4283 if (Instruction *BSwap = MatchBSwap(I))
4284 return BSwap;
4285 }
4286
4287 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
4288 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4289 MaskedValueIsZero(Op1, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004290 Instruction *NOr = BinaryOperator::CreateOr(A, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004291 InsertNewInstBefore(NOr, I);
4292 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004293 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004294 }
4295
4296 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
4297 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4298 MaskedValueIsZero(Op0, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004299 Instruction *NOr = BinaryOperator::CreateOr(A, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004300 InsertNewInstBefore(NOr, I);
4301 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004302 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004303 }
4304
4305 // (A & C)|(B & D)
4306 Value *C = 0, *D = 0;
4307 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
4308 match(Op1, m_And(m_Value(B), m_Value(D)))) {
4309 Value *V1 = 0, *V2 = 0, *V3 = 0;
4310 C1 = dyn_cast<ConstantInt>(C);
4311 C2 = dyn_cast<ConstantInt>(D);
4312 if (C1 && C2) { // (A & C1)|(B & C2)
4313 // If we have: ((V + N) & C1) | (V & C2)
4314 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
4315 // replace with V+N.
4316 if (C1->getValue() == ~C2->getValue()) {
4317 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
4318 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
4319 // Add commutes, try both ways.
4320 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
4321 return ReplaceInstUsesWith(I, A);
4322 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
4323 return ReplaceInstUsesWith(I, A);
4324 }
4325 // Or commutes, try both ways.
4326 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
4327 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
4328 // Add commutes, try both ways.
4329 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
4330 return ReplaceInstUsesWith(I, B);
4331 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
4332 return ReplaceInstUsesWith(I, B);
4333 }
4334 }
4335 V1 = 0; V2 = 0; V3 = 0;
4336 }
4337
4338 // Check to see if we have any common things being and'ed. If so, find the
4339 // terms for V1 & (V2|V3).
4340 if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
4341 if (A == B) // (A & C)|(A & D) == A & (C|D)
4342 V1 = A, V2 = C, V3 = D;
4343 else if (A == D) // (A & C)|(B & A) == A & (B|C)
4344 V1 = A, V2 = B, V3 = C;
4345 else if (C == B) // (A & C)|(C & D) == C & (A|D)
4346 V1 = C, V2 = A, V3 = D;
4347 else if (C == D) // (A & C)|(B & C) == C & (A|B)
4348 V1 = C, V2 = A, V3 = B;
4349
4350 if (V1) {
4351 Value *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00004352 InsertNewInstBefore(BinaryOperator::CreateOr(V2, V3, "tmp"), I);
4353 return BinaryOperator::CreateAnd(V1, Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004354 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004355 }
Dan Gohman279952c2008-10-28 22:38:57 +00004356
Bill Wendlingb45917b2008-11-09 23:17:42 +00004357#define GET_SELECT_COND(Val) \
4358 cast<User>(Val)->getOperand(0)
Bill Wendlingd1854af2008-11-09 23:37:53 +00004359#define SELECT_MATCH(Val) \
4360 m_Select(m_Value(Val), m_ConstantInt(0), m_ConstantInt(-1))
Bill Wendlingb45917b2008-11-09 23:17:42 +00004361
Dan Gohman35b76162008-10-30 20:40:10 +00004362 // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants
4363 if (match(A, m_Select(m_Value(), m_ConstantInt(-1), m_ConstantInt(0)))) {
Bill Wendlingd1854af2008-11-09 23:37:53 +00004364 Value *Cond = GET_SELECT_COND(A);
4365 if (match(D, m_Not(SELECT_MATCH(Cond))))
4366 return SelectInst::Create(Cond, C, B);
4367 if (match(B, m_Not(SELECT_MATCH(Cond))))
4368 return SelectInst::Create(Cond, C, D);
Dan Gohman35b76162008-10-30 20:40:10 +00004369 }
4370 if (match(B, m_Select(m_Value(), m_ConstantInt(-1), m_ConstantInt(0)))) {
Bill Wendlingd1854af2008-11-09 23:37:53 +00004371 Value *Cond = GET_SELECT_COND(B);
4372 if (match(C, m_Not(SELECT_MATCH(Cond))))
4373 return SelectInst::Create(Cond, A, D);
4374 if (match(A, m_Not(SELECT_MATCH(Cond))))
4375 return SelectInst::Create(Cond, C, D);
Dan Gohman35b76162008-10-30 20:40:10 +00004376 }
4377 if (match(C, m_Select(m_Value(), m_ConstantInt(-1), m_ConstantInt(0)))) {
Bill Wendlingd1854af2008-11-09 23:37:53 +00004378 Value *Cond = GET_SELECT_COND(C);
4379 if (match(D, m_Not(SELECT_MATCH(Cond))))
4380 return SelectInst::Create(Cond, A, B);
4381 if (match(B, m_Not(SELECT_MATCH(Cond))))
4382 return SelectInst::Create(Cond, A, D);
Dan Gohman279952c2008-10-28 22:38:57 +00004383 }
Dan Gohman35b76162008-10-30 20:40:10 +00004384 if (match(D, m_Select(m_Value(), m_ConstantInt(-1), m_ConstantInt(0)))) {
Bill Wendlingd1854af2008-11-09 23:37:53 +00004385 Value *Cond = GET_SELECT_COND(D);
4386 if (match(C, m_Not(SELECT_MATCH(Cond))))
4387 return SelectInst::Create(Cond, A, B);
4388 if (match(A, m_Not(SELECT_MATCH(Cond))))
4389 return SelectInst::Create(Cond, C, B);
Dan Gohman279952c2008-10-28 22:38:57 +00004390 }
Dan Gohman35b76162008-10-30 20:40:10 +00004391 if (match(A, m_Select(m_Value(), m_ConstantInt(0), m_ConstantInt(-1)))) {
Bill Wendlingd1854af2008-11-09 23:37:53 +00004392 Value *Cond = GET_SELECT_COND(A);
4393 if (match(D, m_Not(SELECT_MATCH(Cond))))
4394 return SelectInst::Create(Cond, B, C);
4395 if (match(B, m_Not(SELECT_MATCH(Cond))))
4396 return SelectInst::Create(Cond, D, C);
Dan Gohman35b76162008-10-30 20:40:10 +00004397 }
4398 if (match(B, m_Select(m_Value(), m_ConstantInt(0), m_ConstantInt(-1)))) {
Bill Wendlingd1854af2008-11-09 23:37:53 +00004399 Value *Cond = GET_SELECT_COND(B);
4400 if (match(C, m_Not(SELECT_MATCH(Cond))))
4401 return SelectInst::Create(Cond, D, A);
4402 if (match(A, m_Not(SELECT_MATCH(Cond))))
4403 return SelectInst::Create(Cond, D, C);
Dan Gohman35b76162008-10-30 20:40:10 +00004404 }
4405 if (match(C, m_Select(m_Value(), m_ConstantInt(0), m_ConstantInt(-1)))) {
Bill Wendlingd1854af2008-11-09 23:37:53 +00004406 Value *Cond = GET_SELECT_COND(C);
4407 if (match(D, m_Not(SELECT_MATCH(Cond))))
4408 return SelectInst::Create(Cond, B, A);
4409 if (match(B, m_Not(SELECT_MATCH(Cond))))
4410 return SelectInst::Create(Cond, D, A);
Dan Gohman35b76162008-10-30 20:40:10 +00004411 }
4412 if (match(D, m_Select(m_Value(), m_ConstantInt(0), m_ConstantInt(-1)))) {
Bill Wendlingd1854af2008-11-09 23:37:53 +00004413 Value *Cond = GET_SELECT_COND(D);
4414 if (match(C, m_Not(SELECT_MATCH(Cond))))
4415 return SelectInst::Create(Cond, B, A);
4416 if (match(A, m_Not(SELECT_MATCH(Cond))))
4417 return SelectInst::Create(Cond, B, C);
Dan Gohman35b76162008-10-30 20:40:10 +00004418 }
Bill Wendlingb45917b2008-11-09 23:17:42 +00004419#undef SELECT_MATCH
4420#undef GET_SELECT_COND
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004421 }
4422
4423 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
4424 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4425 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4426 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4427 SI0->getOperand(1) == SI1->getOperand(1) &&
4428 (SI0->hasOneUse() || SI1->hasOneUse())) {
4429 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004430 InsertNewInstBefore(BinaryOperator::CreateOr(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004431 SI1->getOperand(0),
4432 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004433 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004434 SI1->getOperand(1));
4435 }
4436 }
4437
4438 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
4439 if (A == Op1) // ~A | A == -1
4440 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4441 } else {
4442 A = 0;
4443 }
4444 // Note, A is still live here!
4445 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
4446 if (Op0 == B)
4447 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4448
4449 // (~A | ~B) == (~(A & B)) - De Morgan's Law
4450 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004451 Value *And = InsertNewInstBefore(BinaryOperator::CreateAnd(A, B,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004452 I.getName()+".demorgan"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004453 return BinaryOperator::CreateNot(And);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004454 }
4455 }
4456
4457 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
4458 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
4459 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4460 return R;
4461
4462 Value *LHSVal, *RHSVal;
4463 ConstantInt *LHSCst, *RHSCst;
4464 ICmpInst::Predicate LHSCC, RHSCC;
4465 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
4466 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
4467 if (LHSVal == RHSVal && // Found (X icmp C1) | (X icmp C2)
4468 // icmp [us][gl]e x, cst is folded to icmp [us][gl]t elsewhere.
4469 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
4470 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
4471 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
4472 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
4473 // We can't fold (ugt x, C) | (sgt x, C2).
4474 PredicatesFoldable(LHSCC, RHSCC)) {
4475 // Ensure that the larger constant is on the RHS.
4476 ICmpInst *LHS = cast<ICmpInst>(Op0);
4477 bool NeedsSwap;
Nick Lewycky5515c7a2008-09-30 06:08:34 +00004478 if (ICmpInst::isEquality(LHSCC) ? ICmpInst::isSignedPredicate(RHSCC)
4479 : ICmpInst::isSignedPredicate(LHSCC))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004480 NeedsSwap = LHSCst->getValue().sgt(RHSCst->getValue());
4481 else
4482 NeedsSwap = LHSCst->getValue().ugt(RHSCst->getValue());
4483
4484 if (NeedsSwap) {
4485 std::swap(LHS, RHS);
4486 std::swap(LHSCst, RHSCst);
4487 std::swap(LHSCC, RHSCC);
4488 }
4489
4490 // At this point, we know we have have two icmp instructions
4491 // comparing a value against two constants and or'ing the result
4492 // together. Because of the above check, we know that we only have
4493 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
4494 // FoldICmpLogical check above), that the two constants are not
4495 // equal.
4496 assert(LHSCst != RHSCst && "Compares not folded above?");
4497
4498 switch (LHSCC) {
4499 default: assert(0 && "Unknown integer condition code!");
4500 case ICmpInst::ICMP_EQ:
4501 switch (RHSCC) {
4502 default: assert(0 && "Unknown integer condition code!");
4503 case ICmpInst::ICMP_EQ:
4504 if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 <u 2
4505 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
Gabor Greifa645dd32008-05-16 19:29:10 +00004506 Instruction *Add = BinaryOperator::CreateAdd(LHSVal, AddCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004507 LHSVal->getName()+".off");
4508 InsertNewInstBefore(Add, I);
4509 AddCST = Subtract(AddOne(RHSCst), LHSCst);
4510 return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
4511 }
4512 break; // (X == 13 | X == 15) -> no change
4513 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
4514 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
4515 break;
4516 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
4517 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
4518 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
4519 return ReplaceInstUsesWith(I, RHS);
4520 }
4521 break;
4522 case ICmpInst::ICMP_NE:
4523 switch (RHSCC) {
4524 default: assert(0 && "Unknown integer condition code!");
4525 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
4526 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
4527 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
4528 return ReplaceInstUsesWith(I, LHS);
4529 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
4530 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
4531 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
4532 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4533 }
4534 break;
4535 case ICmpInst::ICMP_ULT:
4536 switch (RHSCC) {
4537 default: assert(0 && "Unknown integer condition code!");
4538 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
4539 break;
4540 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) ->(X-13) u> 2
Chris Lattner26376862007-11-01 02:18:41 +00004541 // If RHSCst is [us]MAXINT, it is always false. Not handling
4542 // this can cause overflow.
4543 if (RHSCst->isMaxValue(false))
4544 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004545 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false,
4546 false, I);
4547 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
4548 break;
4549 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
4550 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
4551 return ReplaceInstUsesWith(I, RHS);
4552 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
4553 break;
4554 }
4555 break;
4556 case ICmpInst::ICMP_SLT:
4557 switch (RHSCC) {
4558 default: assert(0 && "Unknown integer condition code!");
4559 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
4560 break;
4561 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) ->(X-13) s> 2
Chris Lattner26376862007-11-01 02:18:41 +00004562 // If RHSCst is [us]MAXINT, it is always false. Not handling
4563 // this can cause overflow.
4564 if (RHSCst->isMaxValue(true))
4565 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004566 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), true,
4567 false, I);
4568 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
4569 break;
4570 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
4571 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
4572 return ReplaceInstUsesWith(I, RHS);
4573 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
4574 break;
4575 }
4576 break;
4577 case ICmpInst::ICMP_UGT:
4578 switch (RHSCC) {
4579 default: assert(0 && "Unknown integer condition code!");
4580 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
4581 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
4582 return ReplaceInstUsesWith(I, LHS);
4583 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
4584 break;
4585 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
4586 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
4587 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4588 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
4589 break;
4590 }
4591 break;
4592 case ICmpInst::ICMP_SGT:
4593 switch (RHSCC) {
4594 default: assert(0 && "Unknown integer condition code!");
4595 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
4596 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
4597 return ReplaceInstUsesWith(I, LHS);
4598 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
4599 break;
4600 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
4601 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
4602 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4603 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
4604 break;
4605 }
4606 break;
4607 }
4608 }
4609 }
4610
4611 // fold (or (cast A), (cast B)) -> (cast (or A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004612 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004613 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4614 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
Evan Chenge3779cf2008-03-24 00:21:34 +00004615 if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
4616 !isa<ICmpInst>(Op1C->getOperand(0))) {
4617 const Type *SrcTy = Op0C->getOperand(0)->getType();
4618 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4619 // Only do this if the casts both really cause code to be
4620 // generated.
4621 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4622 I.getType(), TD) &&
4623 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4624 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004625 Instruction *NewOp = BinaryOperator::CreateOr(Op0C->getOperand(0),
Evan Chenge3779cf2008-03-24 00:21:34 +00004626 Op1C->getOperand(0),
4627 I.getName());
4628 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004629 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Evan Chenge3779cf2008-03-24 00:21:34 +00004630 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004631 }
4632 }
Chris Lattner91882432007-10-24 05:38:08 +00004633 }
4634
4635
4636 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
4637 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4638 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4639 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
Chris Lattnerbe9e63e2008-02-29 06:09:11 +00004640 RHS->getPredicate() == FCmpInst::FCMP_UNO &&
Evan Cheng72988052008-10-14 18:44:08 +00004641 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
Chris Lattner91882432007-10-24 05:38:08 +00004642 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4643 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4644 // If either of the constants are nans, then the whole thing returns
4645 // true.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004646 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004647 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4648
4649 // Otherwise, no need to compare the two constants, compare the
4650 // rest.
4651 return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0),
4652 RHS->getOperand(0));
4653 }
Evan Cheng72988052008-10-14 18:44:08 +00004654 } else {
4655 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
4656 FCmpInst::Predicate Op0CC, Op1CC;
4657 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
4658 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
4659 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4660 // Swap RHS operands to match LHS.
4661 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4662 std::swap(Op1LHS, Op1RHS);
4663 }
4664 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4665 // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
4666 if (Op0CC == Op1CC)
4667 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
4668 else if (Op0CC == FCmpInst::FCMP_TRUE ||
4669 Op1CC == FCmpInst::FCMP_TRUE)
4670 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4671 else if (Op0CC == FCmpInst::FCMP_FALSE)
4672 return ReplaceInstUsesWith(I, Op1);
4673 else if (Op1CC == FCmpInst::FCMP_FALSE)
4674 return ReplaceInstUsesWith(I, Op0);
4675 bool Op0Ordered;
4676 bool Op1Ordered;
4677 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4678 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4679 if (Op0Ordered == Op1Ordered) {
4680 // If both are ordered or unordered, return a new fcmp with
4681 // or'ed predicates.
4682 Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred,
4683 Op0LHS, Op0RHS);
4684 if (Instruction *I = dyn_cast<Instruction>(RV))
4685 return I;
4686 // Otherwise, it's a constant boolean value...
4687 return ReplaceInstUsesWith(I, RV);
4688 }
4689 }
4690 }
4691 }
Chris Lattner91882432007-10-24 05:38:08 +00004692 }
4693 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004694
4695 return Changed ? &I : 0;
4696}
4697
Dan Gohman089efff2008-05-13 00:00:25 +00004698namespace {
4699
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004700// XorSelf - Implements: X ^ X --> 0
4701struct XorSelf {
4702 Value *RHS;
4703 XorSelf(Value *rhs) : RHS(rhs) {}
4704 bool shouldApply(Value *LHS) const { return LHS == RHS; }
4705 Instruction *apply(BinaryOperator &Xor) const {
4706 return &Xor;
4707 }
4708};
4709
Dan Gohman089efff2008-05-13 00:00:25 +00004710}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004711
4712Instruction *InstCombiner::visitXor(BinaryOperator &I) {
4713 bool Changed = SimplifyCommutative(I);
4714 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4715
Evan Chenge5cd8032008-03-25 20:07:13 +00004716 if (isa<UndefValue>(Op1)) {
4717 if (isa<UndefValue>(Op0))
4718 // Handle undef ^ undef -> 0 special case. This is a common
4719 // idiom (misuse).
4720 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004721 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
Evan Chenge5cd8032008-03-25 20:07:13 +00004722 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004723
4724 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4725 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00004726 assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004727 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4728 }
4729
4730 // See if we can simplify any instructions used by the instruction whose sole
4731 // purpose is to compute bits we don't care about.
4732 if (!isa<VectorType>(I.getType())) {
4733 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4734 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4735 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4736 KnownZero, KnownOne))
4737 return &I;
4738 } else if (isa<ConstantAggregateZero>(Op1)) {
4739 return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
4740 }
4741
4742 // Is this a ~ operation?
4743 if (Value *NotOp = dyn_castNotVal(&I)) {
4744 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
4745 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
4746 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
4747 if (Op0I->getOpcode() == Instruction::And ||
4748 Op0I->getOpcode() == Instruction::Or) {
4749 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
4750 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
4751 Instruction *NotY =
Gabor Greifa645dd32008-05-16 19:29:10 +00004752 BinaryOperator::CreateNot(Op0I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004753 Op0I->getOperand(1)->getName()+".not");
4754 InsertNewInstBefore(NotY, I);
4755 if (Op0I->getOpcode() == Instruction::And)
Gabor Greifa645dd32008-05-16 19:29:10 +00004756 return BinaryOperator::CreateOr(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004757 else
Gabor Greifa645dd32008-05-16 19:29:10 +00004758 return BinaryOperator::CreateAnd(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004759 }
4760 }
4761 }
4762 }
4763
4764
4765 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky1405e922007-08-06 20:04:16 +00004766 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
4767 if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) {
4768 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004769 return new ICmpInst(ICI->getInversePredicate(),
4770 ICI->getOperand(0), ICI->getOperand(1));
4771
Nick Lewycky1405e922007-08-06 20:04:16 +00004772 if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
4773 return new FCmpInst(FCI->getInversePredicate(),
4774 FCI->getOperand(0), FCI->getOperand(1));
4775 }
4776
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00004777 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
4778 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
4779 if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
4780 if (CI->hasOneUse() && Op0C->hasOneUse()) {
4781 Instruction::CastOps Opcode = Op0C->getOpcode();
4782 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
4783 if (RHS == ConstantExpr::getCast(Opcode, ConstantInt::getTrue(),
4784 Op0C->getDestTy())) {
4785 Instruction *NewCI = InsertNewInstBefore(CmpInst::Create(
4786 CI->getOpcode(), CI->getInversePredicate(),
4787 CI->getOperand(0), CI->getOperand(1)), I);
4788 NewCI->takeName(CI);
4789 return CastInst::Create(Opcode, NewCI, Op0C->getType());
4790 }
4791 }
4792 }
4793 }
4794 }
4795
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004796 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
4797 // ~(c-X) == X-c-1 == X+(-c-1)
4798 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
4799 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
4800 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
4801 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
4802 ConstantInt::get(I.getType(), 1));
Gabor Greifa645dd32008-05-16 19:29:10 +00004803 return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004804 }
4805
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004806 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004807 if (Op0I->getOpcode() == Instruction::Add) {
4808 // ~(X-c) --> (-c-1)-X
4809 if (RHS->isAllOnesValue()) {
4810 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00004811 return BinaryOperator::CreateSub(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004812 ConstantExpr::getSub(NegOp0CI,
4813 ConstantInt::get(I.getType(), 1)),
4814 Op0I->getOperand(0));
4815 } else if (RHS->getValue().isSignBit()) {
4816 // (X + C) ^ signbit -> (X + C + signbit)
4817 Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue());
Gabor Greifa645dd32008-05-16 19:29:10 +00004818 return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004819
4820 }
4821 } else if (Op0I->getOpcode() == Instruction::Or) {
4822 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
4823 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
4824 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
4825 // Anything in both C1 and C2 is known to be zero, remove it from
4826 // NewRHS.
4827 Constant *CommonBits = And(Op0CI, RHS);
4828 NewRHS = ConstantExpr::getAnd(NewRHS,
4829 ConstantExpr::getNot(CommonBits));
4830 AddToWorkList(Op0I);
4831 I.setOperand(0, Op0I->getOperand(0));
4832 I.setOperand(1, NewRHS);
4833 return &I;
4834 }
4835 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004836 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004837 }
4838
4839 // Try to fold constant and into select arguments.
4840 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4841 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4842 return R;
4843 if (isa<PHINode>(Op0))
4844 if (Instruction *NV = FoldOpIntoPhi(I))
4845 return NV;
4846 }
4847
4848 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
4849 if (X == Op1)
4850 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4851
4852 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
4853 if (X == Op0)
4854 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4855
4856
4857 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
4858 if (Op1I) {
4859 Value *A, *B;
4860 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
4861 if (A == Op0) { // B^(B|A) == (A|B)^B
4862 Op1I->swapOperands();
4863 I.swapOperands();
4864 std::swap(Op0, Op1);
4865 } else if (B == Op0) { // B^(A|B) == (A|B)^B
4866 I.swapOperands(); // Simplified below.
4867 std::swap(Op0, Op1);
4868 }
4869 } else if (match(Op1I, m_Xor(m_Value(A), m_Value(B)))) {
4870 if (Op0 == A) // A^(A^B) == B
4871 return ReplaceInstUsesWith(I, B);
4872 else if (Op0 == B) // A^(B^A) == B
4873 return ReplaceInstUsesWith(I, A);
4874 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
4875 if (A == Op0) { // A^(A&B) -> A^(B&A)
4876 Op1I->swapOperands();
4877 std::swap(A, B);
4878 }
4879 if (B == Op0) { // A^(B&A) -> (B&A)^A
4880 I.swapOperands(); // Simplified below.
4881 std::swap(Op0, Op1);
4882 }
4883 }
4884 }
4885
4886 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
4887 if (Op0I) {
4888 Value *A, *B;
4889 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
4890 if (A == Op1) // (B|A)^B == (A|B)^B
4891 std::swap(A, B);
4892 if (B == Op1) { // (A|B)^B == A & ~B
4893 Instruction *NotB =
Gabor Greifa645dd32008-05-16 19:29:10 +00004894 InsertNewInstBefore(BinaryOperator::CreateNot(Op1, "tmp"), I);
4895 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004896 }
4897 } else if (match(Op0I, m_Xor(m_Value(A), m_Value(B)))) {
4898 if (Op1 == A) // (A^B)^A == B
4899 return ReplaceInstUsesWith(I, B);
4900 else if (Op1 == B) // (B^A)^A == B
4901 return ReplaceInstUsesWith(I, A);
4902 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
4903 if (A == Op1) // (A&B)^A -> (B&A)^A
4904 std::swap(A, B);
4905 if (B == Op1 && // (B&A)^A == ~B & A
4906 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
4907 Instruction *N =
Gabor Greifa645dd32008-05-16 19:29:10 +00004908 InsertNewInstBefore(BinaryOperator::CreateNot(A, "tmp"), I);
4909 return BinaryOperator::CreateAnd(N, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004910 }
4911 }
4912 }
4913
4914 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
4915 if (Op0I && Op1I && Op0I->isShift() &&
4916 Op0I->getOpcode() == Op1I->getOpcode() &&
4917 Op0I->getOperand(1) == Op1I->getOperand(1) &&
4918 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
4919 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004920 InsertNewInstBefore(BinaryOperator::CreateXor(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004921 Op1I->getOperand(0),
4922 Op0I->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004923 return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004924 Op1I->getOperand(1));
4925 }
4926
4927 if (Op0I && Op1I) {
4928 Value *A, *B, *C, *D;
4929 // (A & B)^(A | B) -> A ^ B
4930 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4931 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
4932 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00004933 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004934 }
4935 // (A | B)^(A & B) -> A ^ B
4936 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
4937 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4938 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00004939 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004940 }
4941
4942 // (A & B)^(C & D)
4943 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
4944 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4945 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4946 // (X & Y)^(X & Y) -> (Y^Z) & X
4947 Value *X = 0, *Y = 0, *Z = 0;
4948 if (A == C)
4949 X = A, Y = B, Z = D;
4950 else if (A == D)
4951 X = A, Y = B, Z = C;
4952 else if (B == C)
4953 X = B, Y = A, Z = D;
4954 else if (B == D)
4955 X = B, Y = A, Z = C;
4956
4957 if (X) {
4958 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004959 InsertNewInstBefore(BinaryOperator::CreateXor(Y, Z, Op0->getName()), I);
4960 return BinaryOperator::CreateAnd(NewOp, X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004961 }
4962 }
4963 }
4964
4965 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
4966 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
4967 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4968 return R;
4969
4970 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004971 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004972 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4973 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
4974 const Type *SrcTy = Op0C->getOperand(0)->getType();
4975 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4976 // Only do this if the casts both really cause code to be generated.
4977 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4978 I.getType(), TD) &&
4979 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4980 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004981 Instruction *NewOp = BinaryOperator::CreateXor(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004982 Op1C->getOperand(0),
4983 I.getName());
4984 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004985 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004986 }
4987 }
Chris Lattner91882432007-10-24 05:38:08 +00004988 }
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00004989
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004990 return Changed ? &I : 0;
4991}
4992
4993/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
4994/// overflowed for this type.
4995static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
4996 ConstantInt *In2, bool IsSigned = false) {
4997 Result = cast<ConstantInt>(Add(In1, In2));
4998
4999 if (IsSigned)
5000 if (In2->getValue().isNegative())
5001 return Result->getValue().sgt(In1->getValue());
5002 else
5003 return Result->getValue().slt(In1->getValue());
5004 else
5005 return Result->getValue().ult(In1->getValue());
5006}
5007
Dan Gohmanb80d5612008-09-10 23:30:57 +00005008/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
5009/// overflowed for this type.
5010static bool SubWithOverflow(ConstantInt *&Result, ConstantInt *In1,
5011 ConstantInt *In2, bool IsSigned = false) {
Dan Gohman2c3b4892008-09-11 18:53:02 +00005012 Result = cast<ConstantInt>(Subtract(In1, In2));
Dan Gohmanb80d5612008-09-10 23:30:57 +00005013
5014 if (IsSigned)
5015 if (In2->getValue().isNegative())
5016 return Result->getValue().slt(In1->getValue());
5017 else
5018 return Result->getValue().sgt(In1->getValue());
5019 else
5020 return Result->getValue().ugt(In1->getValue());
5021}
5022
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005023/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
5024/// code necessary to compute the offset from the base pointer (without adding
5025/// in the base pointer). Return the result as a signed integer of intptr size.
5026static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
5027 TargetData &TD = IC.getTargetData();
5028 gep_type_iterator GTI = gep_type_begin(GEP);
5029 const Type *IntPtrTy = TD.getIntPtrType();
5030 Value *Result = Constant::getNullValue(IntPtrTy);
5031
5032 // Build a mask for high order bits.
Chris Lattnereba75862008-04-22 02:53:33 +00005033 unsigned IntPtrWidth = TD.getPointerSizeInBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005034 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5035
Gabor Greif17396002008-06-12 21:37:33 +00005036 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
5037 ++i, ++GTI) {
5038 Value *Op = *i;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00005039 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType()) & PtrSizeMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005040 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
5041 if (OpC->isZero()) continue;
5042
5043 // Handle a struct index, which adds its field offset to the pointer.
5044 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5045 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
5046
5047 if (ConstantInt *RC = dyn_cast<ConstantInt>(Result))
5048 Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size));
5049 else
5050 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00005051 BinaryOperator::CreateAdd(Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005052 ConstantInt::get(IntPtrTy, Size),
5053 GEP->getName()+".offs"), I);
5054 continue;
5055 }
5056
5057 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5058 Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
5059 Scale = ConstantExpr::getMul(OC, Scale);
5060 if (Constant *RC = dyn_cast<Constant>(Result))
5061 Result = ConstantExpr::getAdd(RC, Scale);
5062 else {
5063 // Emit an add instruction.
5064 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00005065 BinaryOperator::CreateAdd(Result, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005066 GEP->getName()+".offs"), I);
5067 }
5068 continue;
5069 }
5070 // Convert to correct type.
5071 if (Op->getType() != IntPtrTy) {
5072 if (Constant *OpC = dyn_cast<Constant>(Op))
5073 Op = ConstantExpr::getSExt(OpC, IntPtrTy);
5074 else
5075 Op = IC.InsertNewInstBefore(new SExtInst(Op, IntPtrTy,
5076 Op->getName()+".c"), I);
5077 }
5078 if (Size != 1) {
5079 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5080 if (Constant *OpC = dyn_cast<Constant>(Op))
5081 Op = ConstantExpr::getMul(OpC, Scale);
5082 else // We'll let instcombine(mul) convert this to a shl if possible.
Gabor Greifa645dd32008-05-16 19:29:10 +00005083 Op = IC.InsertNewInstBefore(BinaryOperator::CreateMul(Op, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005084 GEP->getName()+".idx"), I);
5085 }
5086
5087 // Emit an add instruction.
5088 if (isa<Constant>(Op) && isa<Constant>(Result))
5089 Result = ConstantExpr::getAdd(cast<Constant>(Op),
5090 cast<Constant>(Result));
5091 else
Gabor Greifa645dd32008-05-16 19:29:10 +00005092 Result = IC.InsertNewInstBefore(BinaryOperator::CreateAdd(Op, Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005093 GEP->getName()+".offs"), I);
5094 }
5095 return Result;
5096}
5097
Chris Lattnereba75862008-04-22 02:53:33 +00005098
5099/// EvaluateGEPOffsetExpression - Return an value that can be used to compare of
5100/// the *offset* implied by GEP to zero. For example, if we have &A[i], we want
5101/// to return 'i' for "icmp ne i, 0". Note that, in general, indices can be
5102/// complex, and scales are involved. The above expression would also be legal
5103/// to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). This
5104/// later form is less amenable to optimization though, and we are allowed to
5105/// generate the first by knowing that pointer arithmetic doesn't overflow.
5106///
5107/// If we can't emit an optimized form for this expression, this returns null.
5108///
5109static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
5110 InstCombiner &IC) {
Chris Lattnereba75862008-04-22 02:53:33 +00005111 TargetData &TD = IC.getTargetData();
5112 gep_type_iterator GTI = gep_type_begin(GEP);
5113
5114 // Check to see if this gep only has a single variable index. If so, and if
5115 // any constant indices are a multiple of its scale, then we can compute this
5116 // in terms of the scale of the variable index. For example, if the GEP
5117 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
5118 // because the expression will cross zero at the same point.
5119 unsigned i, e = GEP->getNumOperands();
5120 int64_t Offset = 0;
5121 for (i = 1; i != e; ++i, ++GTI) {
5122 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5123 // Compute the aggregate offset of constant indices.
5124 if (CI->isZero()) continue;
5125
5126 // Handle a struct index, which adds its field offset to the pointer.
5127 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5128 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5129 } else {
5130 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5131 Offset += Size*CI->getSExtValue();
5132 }
5133 } else {
5134 // Found our variable index.
5135 break;
5136 }
5137 }
5138
5139 // If there are no variable indices, we must have a constant offset, just
5140 // evaluate it the general way.
5141 if (i == e) return 0;
5142
5143 Value *VariableIdx = GEP->getOperand(i);
5144 // Determine the scale factor of the variable element. For example, this is
5145 // 4 if the variable index is into an array of i32.
5146 uint64_t VariableScale = TD.getABITypeSize(GTI.getIndexedType());
5147
5148 // Verify that there are no other variable indices. If so, emit the hard way.
5149 for (++i, ++GTI; i != e; ++i, ++GTI) {
5150 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
5151 if (!CI) return 0;
5152
5153 // Compute the aggregate offset of constant indices.
5154 if (CI->isZero()) continue;
5155
5156 // Handle a struct index, which adds its field offset to the pointer.
5157 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5158 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5159 } else {
5160 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5161 Offset += Size*CI->getSExtValue();
5162 }
5163 }
5164
5165 // Okay, we know we have a single variable index, which must be a
5166 // pointer/array/vector index. If there is no offset, life is simple, return
5167 // the index.
5168 unsigned IntPtrWidth = TD.getPointerSizeInBits();
5169 if (Offset == 0) {
5170 // Cast to intptrty in case a truncation occurs. If an extension is needed,
5171 // we don't need to bother extending: the extension won't affect where the
5172 // computation crosses zero.
5173 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
5174 VariableIdx = new TruncInst(VariableIdx, TD.getIntPtrType(),
5175 VariableIdx->getNameStart(), &I);
5176 return VariableIdx;
5177 }
5178
5179 // Otherwise, there is an index. The computation we will do will be modulo
5180 // the pointer size, so get it.
5181 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5182
5183 Offset &= PtrSizeMask;
5184 VariableScale &= PtrSizeMask;
5185
5186 // To do this transformation, any constant index must be a multiple of the
5187 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
5188 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
5189 // multiple of the variable scale.
5190 int64_t NewOffs = Offset / (int64_t)VariableScale;
5191 if (Offset != NewOffs*(int64_t)VariableScale)
5192 return 0;
5193
5194 // Okay, we can do this evaluation. Start by converting the index to intptr.
5195 const Type *IntPtrTy = TD.getIntPtrType();
5196 if (VariableIdx->getType() != IntPtrTy)
Gabor Greifa645dd32008-05-16 19:29:10 +00005197 VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
Chris Lattnereba75862008-04-22 02:53:33 +00005198 true /*SExt*/,
5199 VariableIdx->getNameStart(), &I);
5200 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
Gabor Greifa645dd32008-05-16 19:29:10 +00005201 return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
Chris Lattnereba75862008-04-22 02:53:33 +00005202}
5203
5204
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005205/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
5206/// else. At this point we know that the GEP is on the LHS of the comparison.
5207Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
5208 ICmpInst::Predicate Cond,
5209 Instruction &I) {
5210 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
5211
Chris Lattnereba75862008-04-22 02:53:33 +00005212 // Look through bitcasts.
5213 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
5214 RHS = BCI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005215
5216 Value *PtrBase = GEPLHS->getOperand(0);
5217 if (PtrBase == RHS) {
Chris Lattneraf97d022008-02-05 04:45:32 +00005218 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
Chris Lattnereba75862008-04-22 02:53:33 +00005219 // This transformation (ignoring the base and scales) is valid because we
5220 // know pointers can't overflow. See if we can output an optimized form.
5221 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
5222
5223 // If not, synthesize the offset the hard way.
5224 if (Offset == 0)
5225 Offset = EmitGEPOffset(GEPLHS, I, *this);
Chris Lattneraf97d022008-02-05 04:45:32 +00005226 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
5227 Constant::getNullValue(Offset->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005228 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
5229 // If the base pointers are different, but the indices are the same, just
5230 // compare the base pointer.
5231 if (PtrBase != GEPRHS->getOperand(0)) {
5232 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
5233 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
5234 GEPRHS->getOperand(0)->getType();
5235 if (IndicesTheSame)
5236 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5237 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5238 IndicesTheSame = false;
5239 break;
5240 }
5241
5242 // If all indices are the same, just compare the base pointers.
5243 if (IndicesTheSame)
5244 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
5245 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
5246
5247 // Otherwise, the base pointers are different and the indices are
5248 // different, bail out.
5249 return 0;
5250 }
5251
5252 // If one of the GEPs has all zero indices, recurse.
5253 bool AllZeros = true;
5254 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5255 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
5256 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
5257 AllZeros = false;
5258 break;
5259 }
5260 if (AllZeros)
5261 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
5262 ICmpInst::getSwappedPredicate(Cond), I);
5263
5264 // If the other GEP has all zero indices, recurse.
5265 AllZeros = true;
5266 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5267 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
5268 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
5269 AllZeros = false;
5270 break;
5271 }
5272 if (AllZeros)
5273 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
5274
5275 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
5276 // If the GEPs only differ by one index, compare it.
5277 unsigned NumDifferences = 0; // Keep track of # differences.
5278 unsigned DiffOperand = 0; // The operand that differs.
5279 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5280 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5281 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
5282 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
5283 // Irreconcilable differences.
5284 NumDifferences = 2;
5285 break;
5286 } else {
5287 if (NumDifferences++) break;
5288 DiffOperand = i;
5289 }
5290 }
5291
5292 if (NumDifferences == 0) // SAME GEP?
5293 return ReplaceInstUsesWith(I, // No comparison is needed here.
Nick Lewycky2de09a92007-09-06 02:40:25 +00005294 ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005295 ICmpInst::isTrueWhenEqual(Cond)));
Nick Lewycky2de09a92007-09-06 02:40:25 +00005296
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005297 else if (NumDifferences == 1) {
5298 Value *LHSV = GEPLHS->getOperand(DiffOperand);
5299 Value *RHSV = GEPRHS->getOperand(DiffOperand);
5300 // Make sure we do a signed comparison here.
5301 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
5302 }
5303 }
5304
5305 // Only lower this if the icmp is the only user of the GEP or if we expect
5306 // the result to fold to a constant!
5307 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
5308 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
5309 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
5310 Value *L = EmitGEPOffset(GEPLHS, I, *this);
5311 Value *R = EmitGEPOffset(GEPRHS, I, *this);
5312 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
5313 }
5314 }
5315 return 0;
5316}
5317
Chris Lattnere6b62d92008-05-19 20:18:56 +00005318/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
5319///
5320Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
5321 Instruction *LHSI,
5322 Constant *RHSC) {
5323 if (!isa<ConstantFP>(RHSC)) return 0;
5324 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5325
5326 // Get the width of the mantissa. We don't want to hack on conversions that
5327 // might lose information from the integer, e.g. "i64 -> float"
Chris Lattner9ce836b2008-05-19 21:17:23 +00005328 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
Chris Lattnere6b62d92008-05-19 20:18:56 +00005329 if (MantissaWidth == -1) return 0; // Unknown.
5330
5331 // Check to see that the input is converted from an integer type that is small
5332 // enough that preserves all bits. TODO: check here for "known" sign bits.
5333 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5334 unsigned InputSize = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
5335
5336 // If this is a uitofp instruction, we need an extra bit to hold the sign.
Bill Wendling20636df2008-11-09 04:26:50 +00005337 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5338 if (LHSUnsigned)
Chris Lattnere6b62d92008-05-19 20:18:56 +00005339 ++InputSize;
5340
5341 // If the conversion would lose info, don't hack on this.
5342 if ((int)InputSize > MantissaWidth)
5343 return 0;
5344
5345 // Otherwise, we can potentially simplify the comparison. We know that it
5346 // will always come through as an integer value and we know the constant is
5347 // not a NAN (it would have been previously simplified).
5348 assert(!RHS.isNaN() && "NaN comparison not already folded!");
5349
5350 ICmpInst::Predicate Pred;
5351 switch (I.getPredicate()) {
5352 default: assert(0 && "Unexpected predicate!");
5353 case FCmpInst::FCMP_UEQ:
Bill Wendling20636df2008-11-09 04:26:50 +00005354 case FCmpInst::FCMP_OEQ:
5355 Pred = ICmpInst::ICMP_EQ;
5356 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005357 case FCmpInst::FCMP_UGT:
Bill Wendling20636df2008-11-09 04:26:50 +00005358 case FCmpInst::FCMP_OGT:
5359 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5360 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005361 case FCmpInst::FCMP_UGE:
Bill Wendling20636df2008-11-09 04:26:50 +00005362 case FCmpInst::FCMP_OGE:
5363 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5364 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005365 case FCmpInst::FCMP_ULT:
Bill Wendling20636df2008-11-09 04:26:50 +00005366 case FCmpInst::FCMP_OLT:
5367 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5368 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005369 case FCmpInst::FCMP_ULE:
Bill Wendling20636df2008-11-09 04:26:50 +00005370 case FCmpInst::FCMP_OLE:
5371 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5372 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005373 case FCmpInst::FCMP_UNE:
Bill Wendling20636df2008-11-09 04:26:50 +00005374 case FCmpInst::FCMP_ONE:
5375 Pred = ICmpInst::ICMP_NE;
5376 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005377 case FCmpInst::FCMP_ORD:
5378 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5379 case FCmpInst::FCMP_UNO:
5380 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5381 }
5382
5383 const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5384
5385 // Now we know that the APFloat is a normal number, zero or inf.
5386
Chris Lattnerf13ff492008-05-20 03:50:52 +00005387 // See if the FP constant is too large for the integer. For example,
Chris Lattnere6b62d92008-05-19 20:18:56 +00005388 // comparing an i8 to 300.0.
5389 unsigned IntWidth = IntTy->getPrimitiveSizeInBits();
5390
Bill Wendling20636df2008-11-09 04:26:50 +00005391 if (!LHSUnsigned) {
5392 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
5393 // and large values.
5394 APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
5395 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5396 APFloat::rmNearestTiesToEven);
5397 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
5398 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
5399 Pred == ICmpInst::ICMP_SLE)
5400 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5401 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5402 }
5403 } else {
5404 // If the RHS value is > UnsignedMax, fold the comparison. This handles
5405 // +INF and large values.
5406 APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
5407 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5408 APFloat::rmNearestTiesToEven);
5409 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
5410 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
5411 Pred == ICmpInst::ICMP_ULE)
5412 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5413 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5414 }
Chris Lattnere6b62d92008-05-19 20:18:56 +00005415 }
5416
Bill Wendling20636df2008-11-09 04:26:50 +00005417 if (!LHSUnsigned) {
5418 // See if the RHS value is < SignedMin.
5419 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
5420 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5421 APFloat::rmNearestTiesToEven);
5422 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
5423 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5424 Pred == ICmpInst::ICMP_SGE)
5425 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5426 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5427 }
Chris Lattnere6b62d92008-05-19 20:18:56 +00005428 }
5429
Bill Wendling20636df2008-11-09 04:26:50 +00005430 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5431 // [0, UMAX], but it may still be fractional. See if it is fractional by
5432 // casting the FP value to the integer value and back, checking for equality.
5433 // Don't do this for zero, because -0.0 is not fractional.
Chris Lattnere6b62d92008-05-19 20:18:56 +00005434 Constant *RHSInt = ConstantExpr::getFPToSI(RHSC, IntTy);
5435 if (!RHS.isZero() &&
5436 ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) != RHSC) {
Bill Wendling20636df2008-11-09 04:26:50 +00005437 // If we had a comparison against a fractional value, we have to adjust the
5438 // compare predicate and sometimes the value. RHSC is rounded towards zero
5439 // at this point.
Chris Lattnere6b62d92008-05-19 20:18:56 +00005440 switch (Pred) {
5441 default: assert(0 && "Unexpected integer comparison!");
5442 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
5443 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5444 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
5445 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
Bill Wendling20636df2008-11-09 04:26:50 +00005446 case ICmpInst::ICMP_ULE:
5447 // (float)int <= 4.4 --> int <= 4
5448 // (float)int <= -4.4 --> false
5449 if (RHS.isNegative())
5450 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5451 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005452 case ICmpInst::ICMP_SLE:
5453 // (float)int <= 4.4 --> int <= 4
5454 // (float)int <= -4.4 --> int < -4
5455 if (RHS.isNegative())
5456 Pred = ICmpInst::ICMP_SLT;
5457 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005458 case ICmpInst::ICMP_ULT:
5459 // (float)int < -4.4 --> false
5460 // (float)int < 4.4 --> int <= 4
5461 if (RHS.isNegative())
5462 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5463 Pred = ICmpInst::ICMP_ULE;
5464 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005465 case ICmpInst::ICMP_SLT:
5466 // (float)int < -4.4 --> int < -4
5467 // (float)int < 4.4 --> int <= 4
5468 if (!RHS.isNegative())
5469 Pred = ICmpInst::ICMP_SLE;
5470 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005471 case ICmpInst::ICMP_UGT:
5472 // (float)int > 4.4 --> int > 4
5473 // (float)int > -4.4 --> true
5474 if (RHS.isNegative())
5475 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5476 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005477 case ICmpInst::ICMP_SGT:
5478 // (float)int > 4.4 --> int > 4
5479 // (float)int > -4.4 --> int >= -4
5480 if (RHS.isNegative())
5481 Pred = ICmpInst::ICMP_SGE;
5482 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005483 case ICmpInst::ICMP_UGE:
5484 // (float)int >= -4.4 --> true
5485 // (float)int >= 4.4 --> int > 4
5486 if (!RHS.isNegative())
5487 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5488 Pred = ICmpInst::ICMP_UGT;
5489 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005490 case ICmpInst::ICMP_SGE:
5491 // (float)int >= -4.4 --> int >= -4
5492 // (float)int >= 4.4 --> int > 4
5493 if (!RHS.isNegative())
5494 Pred = ICmpInst::ICMP_SGT;
5495 break;
5496 }
5497 }
5498
5499 // Lower this FP comparison into an appropriate integer version of the
5500 // comparison.
5501 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5502}
5503
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005504Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5505 bool Changed = SimplifyCompare(I);
5506 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5507
5508 // Fold trivial predicates.
5509 if (I.getPredicate() == FCmpInst::FCMP_FALSE)
5510 return ReplaceInstUsesWith(I, Constant::getNullValue(Type::Int1Ty));
5511 if (I.getPredicate() == FCmpInst::FCMP_TRUE)
5512 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5513
5514 // Simplify 'fcmp pred X, X'
5515 if (Op0 == Op1) {
5516 switch (I.getPredicate()) {
5517 default: assert(0 && "Unknown predicate!");
5518 case FCmpInst::FCMP_UEQ: // True if unordered or equal
5519 case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
5520 case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
5521 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5522 case FCmpInst::FCMP_OGT: // True if ordered and greater than
5523 case FCmpInst::FCMP_OLT: // True if ordered and less than
5524 case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
5525 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5526
5527 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
5528 case FCmpInst::FCMP_ULT: // True if unordered or less than
5529 case FCmpInst::FCMP_UGT: // True if unordered or greater than
5530 case FCmpInst::FCMP_UNE: // True if unordered or not equal
5531 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5532 I.setPredicate(FCmpInst::FCMP_UNO);
5533 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5534 return &I;
5535
5536 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
5537 case FCmpInst::FCMP_OEQ: // True if ordered and equal
5538 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
5539 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
5540 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5541 I.setPredicate(FCmpInst::FCMP_ORD);
5542 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5543 return &I;
5544 }
5545 }
5546
5547 if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
5548 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
5549
5550 // Handle fcmp with constant RHS
5551 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
Chris Lattnere6b62d92008-05-19 20:18:56 +00005552 // If the constant is a nan, see if we can fold the comparison based on it.
5553 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
5554 if (CFP->getValueAPF().isNaN()) {
5555 if (FCmpInst::isOrdered(I.getPredicate())) // True if ordered and...
5556 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
Chris Lattnerf13ff492008-05-20 03:50:52 +00005557 assert(FCmpInst::isUnordered(I.getPredicate()) &&
5558 "Comparison must be either ordered or unordered!");
5559 // True if unordered.
5560 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
Chris Lattnere6b62d92008-05-19 20:18:56 +00005561 }
5562 }
5563
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005564 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5565 switch (LHSI->getOpcode()) {
5566 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005567 // Only fold fcmp into the PHI if the phi and fcmp are in the same
5568 // block. If in the same block, we're encouraging jump threading. If
5569 // not, we are just pessimizing the code by making an i1 phi.
5570 if (LHSI->getParent() == I.getParent())
5571 if (Instruction *NV = FoldOpIntoPhi(I))
5572 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005573 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005574 case Instruction::SIToFP:
5575 case Instruction::UIToFP:
5576 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
5577 return NV;
5578 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005579 case Instruction::Select:
5580 // If either operand of the select is a constant, we can fold the
5581 // comparison into the select arms, which will cause one to be
5582 // constant folded and the select turned into a bitwise or.
5583 Value *Op1 = 0, *Op2 = 0;
5584 if (LHSI->hasOneUse()) {
5585 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5586 // Fold the known value into the constant operand.
5587 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5588 // Insert a new FCmp of the other select operand.
5589 Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5590 LHSI->getOperand(2), RHSC,
5591 I.getName()), I);
5592 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5593 // Fold the known value into the constant operand.
5594 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5595 // Insert a new FCmp of the other select operand.
5596 Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5597 LHSI->getOperand(1), RHSC,
5598 I.getName()), I);
5599 }
5600 }
5601
5602 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005603 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005604 break;
5605 }
5606 }
5607
5608 return Changed ? &I : 0;
5609}
5610
5611Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5612 bool Changed = SimplifyCompare(I);
5613 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5614 const Type *Ty = Op0->getType();
5615
5616 // icmp X, X
5617 if (Op0 == Op1)
5618 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005619 I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005620
5621 if (isa<UndefValue>(Op1)) // X icmp undef -> undef
5622 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
Christopher Lambf78cd322007-12-18 21:32:20 +00005623
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005624 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
5625 // addresses never equal each other! We already know that Op0 != Op1.
5626 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
5627 isa<ConstantPointerNull>(Op0)) &&
5628 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
5629 isa<ConstantPointerNull>(Op1)))
5630 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005631 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005632
5633 // icmp's with boolean values can always be turned into bitwise operations
5634 if (Ty == Type::Int1Ty) {
5635 switch (I.getPredicate()) {
5636 default: assert(0 && "Invalid icmp instruction!");
Chris Lattnera02893d2008-07-11 04:20:58 +00005637 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
Gabor Greifa645dd32008-05-16 19:29:10 +00005638 Instruction *Xor = BinaryOperator::CreateXor(Op0, Op1, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005639 InsertNewInstBefore(Xor, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005640 return BinaryOperator::CreateNot(Xor);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005641 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005642 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
Gabor Greifa645dd32008-05-16 19:29:10 +00005643 return BinaryOperator::CreateXor(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005644
5645 case ICmpInst::ICMP_UGT:
Chris Lattnera02893d2008-07-11 04:20:58 +00005646 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005647 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005648 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
Gabor Greifa645dd32008-05-16 19:29:10 +00005649 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005650 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005651 return BinaryOperator::CreateAnd(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005652 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005653 case ICmpInst::ICMP_SGT:
5654 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005655 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005656 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
5657 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5658 InsertNewInstBefore(Not, I);
5659 return BinaryOperator::CreateAnd(Not, Op0);
5660 }
5661 case ICmpInst::ICMP_UGE:
5662 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
5663 // FALL THROUGH
5664 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
Gabor Greifa645dd32008-05-16 19:29:10 +00005665 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005666 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005667 return BinaryOperator::CreateOr(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005668 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005669 case ICmpInst::ICMP_SGE:
5670 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
5671 // FALL THROUGH
5672 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
5673 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5674 InsertNewInstBefore(Not, I);
5675 return BinaryOperator::CreateOr(Not, Op0);
5676 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005677 }
5678 }
5679
Dan Gohman58c09632008-09-16 18:46:06 +00005680 // See if we are doing a comparison with a constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005681 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner3d816532008-07-11 04:09:09 +00005682 Value *A, *B;
Christopher Lambfa6b3102007-12-20 07:21:11 +00005683
Chris Lattnerbe6c54a2008-01-05 01:18:20 +00005684 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
5685 if (I.isEquality() && CI->isNullValue() &&
5686 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
5687 // (icmp cond A B) if cond is equality
5688 return new ICmpInst(I.getPredicate(), A, B);
Owen Anderson42f61ed2007-12-28 07:42:12 +00005689 }
Christopher Lambfa6b3102007-12-20 07:21:11 +00005690
Dan Gohman58c09632008-09-16 18:46:06 +00005691 // If we have an icmp le or icmp ge instruction, turn it into the
5692 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
5693 // them being folded in the code below.
Chris Lattner62d0f232008-07-11 05:08:55 +00005694 switch (I.getPredicate()) {
5695 default: break;
5696 case ICmpInst::ICMP_ULE:
5697 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
5698 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5699 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
5700 case ICmpInst::ICMP_SLE:
5701 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
5702 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5703 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
5704 case ICmpInst::ICMP_UGE:
5705 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
5706 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5707 return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
5708 case ICmpInst::ICMP_SGE:
5709 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
5710 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5711 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
5712 }
5713
Chris Lattnera1308652008-07-11 05:40:05 +00005714 // See if we can fold the comparison based on range information we can get
5715 // by checking whether bits are known to be zero or one in the input.
5716 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
5717 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5718
5719 // If this comparison is a normal comparison, it demands all
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005720 // bits, if it is a sign bit comparison, it only demands the sign bit.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005721 bool UnusedBit;
5722 bool isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
5723
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005724 if (SimplifyDemandedBits(Op0,
5725 isSignBit ? APInt::getSignBit(BitWidth)
5726 : APInt::getAllOnesValue(BitWidth),
5727 KnownZero, KnownOne, 0))
5728 return &I;
5729
5730 // Given the known and unknown bits, compute a range that the LHS could be
Chris Lattner62d0f232008-07-11 05:08:55 +00005731 // in. Compute the Min, Max and RHS values based on the known bits. For the
5732 // EQ and NE we use unsigned values.
5733 APInt Min(BitWidth, 0), Max(BitWidth, 0);
Chris Lattner62d0f232008-07-11 05:08:55 +00005734 if (ICmpInst::isSignedPredicate(I.getPredicate()))
5735 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min, Max);
5736 else
5737 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne,Min,Max);
5738
Chris Lattnera1308652008-07-11 05:40:05 +00005739 // If Min and Max are known to be the same, then SimplifyDemandedBits
5740 // figured out that the LHS is a constant. Just constant fold this now so
5741 // that code below can assume that Min != Max.
5742 if (Min == Max)
5743 return ReplaceInstUsesWith(I, ConstantExpr::getICmp(I.getPredicate(),
5744 ConstantInt::get(Min),
5745 CI));
5746
5747 // Based on the range information we know about the LHS, see if we can
5748 // simplify this comparison. For example, (x&4) < 8 is always true.
5749 const APInt &RHSVal = CI->getValue();
Chris Lattner62d0f232008-07-11 05:08:55 +00005750 switch (I.getPredicate()) { // LE/GE have been folded already.
5751 default: assert(0 && "Unknown icmp opcode!");
5752 case ICmpInst::ICMP_EQ:
5753 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5754 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5755 break;
5756 case ICmpInst::ICMP_NE:
5757 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5758 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5759 break;
5760 case ICmpInst::ICMP_ULT:
Chris Lattnera1308652008-07-11 05:40:05 +00005761 if (Max.ult(RHSVal)) // A <u C -> true iff max(A) < C
Chris Lattner62d0f232008-07-11 05:08:55 +00005762 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005763 if (Min.uge(RHSVal)) // A <u C -> false iff min(A) >= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005764 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005765 if (RHSVal == Max) // A <u MAX -> A != MAX
5766 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5767 if (RHSVal == Min+1) // A <u MIN+1 -> A == MIN
5768 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5769
5770 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
5771 if (CI->isMinValue(true))
5772 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
5773 ConstantInt::getAllOnesValue(Op0->getType()));
Chris Lattner62d0f232008-07-11 05:08:55 +00005774 break;
5775 case ICmpInst::ICMP_UGT:
Chris Lattnera1308652008-07-11 05:40:05 +00005776 if (Min.ugt(RHSVal)) // A >u C -> true iff min(A) > C
Chris Lattner62d0f232008-07-11 05:08:55 +00005777 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005778 if (Max.ule(RHSVal)) // A >u C -> false iff max(A) <= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005779 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005780
5781 if (RHSVal == Min) // A >u MIN -> A != MIN
5782 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5783 if (RHSVal == Max-1) // A >u MAX-1 -> A == MAX
5784 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5785
5786 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
5787 if (CI->isMaxValue(true))
5788 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
5789 ConstantInt::getNullValue(Op0->getType()));
Chris Lattner62d0f232008-07-11 05:08:55 +00005790 break;
5791 case ICmpInst::ICMP_SLT:
Chris Lattnera1308652008-07-11 05:40:05 +00005792 if (Max.slt(RHSVal)) // A <s C -> true iff max(A) < C
Chris Lattner62d0f232008-07-11 05:08:55 +00005793 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattner611b43e2008-07-11 06:40:29 +00005794 if (Min.sge(RHSVal)) // A <s C -> false iff min(A) >= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005795 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005796 if (RHSVal == Max) // A <s MAX -> A != MAX
5797 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
Chris Lattner3496f3e2008-07-11 06:36:01 +00005798 if (RHSVal == Min+1) // A <s MIN+1 -> A == MIN
Chris Lattner55ab3152008-07-11 06:38:16 +00005799 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
Chris Lattner62d0f232008-07-11 05:08:55 +00005800 break;
5801 case ICmpInst::ICMP_SGT:
Chris Lattnera1308652008-07-11 05:40:05 +00005802 if (Min.sgt(RHSVal)) // A >s C -> true iff min(A) > C
Chris Lattner62d0f232008-07-11 05:08:55 +00005803 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005804 if (Max.sle(RHSVal)) // A >s C -> false iff max(A) <= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005805 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005806
5807 if (RHSVal == Min) // A >s MIN -> A != MIN
5808 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5809 if (RHSVal == Max-1) // A >s MAX-1 -> A == MAX
5810 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
Chris Lattner62d0f232008-07-11 05:08:55 +00005811 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005812 }
Dan Gohman58c09632008-09-16 18:46:06 +00005813 }
5814
5815 // Test if the ICmpInst instruction is used exclusively by a select as
5816 // part of a minimum or maximum operation. If so, refrain from doing
5817 // any other folding. This helps out other analyses which understand
5818 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5819 // and CodeGen. And in this case, at least one of the comparison
5820 // operands has at least one user besides the compare (the select),
5821 // which would often largely negate the benefit of folding anyway.
5822 if (I.hasOneUse())
5823 if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
5824 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
5825 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
5826 return 0;
5827
5828 // See if we are doing a comparison between a constant and an instruction that
5829 // can be folded into the comparison.
5830 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005831 // Since the RHS is a ConstantInt (CI), if the left hand side is an
5832 // instruction, see if that instruction also has constants so that the
5833 // instruction can be folded into the icmp
5834 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5835 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
5836 return Res;
5837 }
5838
5839 // Handle icmp with constant (but not simple integer constant) RHS
5840 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5841 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5842 switch (LHSI->getOpcode()) {
5843 case Instruction::GetElementPtr:
5844 if (RHSC->isNullValue()) {
5845 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
5846 bool isAllZeros = true;
5847 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
5848 if (!isa<Constant>(LHSI->getOperand(i)) ||
5849 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
5850 isAllZeros = false;
5851 break;
5852 }
5853 if (isAllZeros)
5854 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
5855 Constant::getNullValue(LHSI->getOperand(0)->getType()));
5856 }
5857 break;
5858
5859 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005860 // Only fold icmp into the PHI if the phi and fcmp are in the same
5861 // block. If in the same block, we're encouraging jump threading. If
5862 // not, we are just pessimizing the code by making an i1 phi.
5863 if (LHSI->getParent() == I.getParent())
5864 if (Instruction *NV = FoldOpIntoPhi(I))
5865 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005866 break;
5867 case Instruction::Select: {
5868 // If either operand of the select is a constant, we can fold the
5869 // comparison into the select arms, which will cause one to be
5870 // constant folded and the select turned into a bitwise or.
5871 Value *Op1 = 0, *Op2 = 0;
5872 if (LHSI->hasOneUse()) {
5873 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5874 // Fold the known value into the constant operand.
5875 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5876 // Insert a new ICmp of the other select operand.
5877 Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5878 LHSI->getOperand(2), RHSC,
5879 I.getName()), I);
5880 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5881 // Fold the known value into the constant operand.
5882 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5883 // Insert a new ICmp of the other select operand.
5884 Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5885 LHSI->getOperand(1), RHSC,
5886 I.getName()), I);
5887 }
5888 }
5889
5890 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005891 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005892 break;
5893 }
5894 case Instruction::Malloc:
5895 // If we have (malloc != null), and if the malloc has a single use, we
5896 // can assume it is successful and remove the malloc.
5897 if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
5898 AddToWorkList(LHSI);
5899 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005900 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005901 }
5902 break;
5903 }
5904 }
5905
5906 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5907 if (User *GEP = dyn_castGetElementPtr(Op0))
5908 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
5909 return NI;
5910 if (User *GEP = dyn_castGetElementPtr(Op1))
5911 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
5912 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5913 return NI;
5914
5915 // Test to see if the operands of the icmp are casted versions of other
5916 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
5917 // now.
5918 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
5919 if (isa<PointerType>(Op0->getType()) &&
5920 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
5921 // We keep moving the cast from the left operand over to the right
5922 // operand, where it can often be eliminated completely.
5923 Op0 = CI->getOperand(0);
5924
5925 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
5926 // so eliminate it as well.
5927 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
5928 Op1 = CI2->getOperand(0);
5929
5930 // If Op1 is a constant, we can fold the cast into the constant.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00005931 if (Op0->getType() != Op1->getType()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005932 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
5933 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
5934 } else {
5935 // Otherwise, cast the RHS right before the icmp
Chris Lattner13c2d6e2008-01-13 22:23:22 +00005936 Op1 = InsertBitCastBefore(Op1, Op0->getType(), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005937 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00005938 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005939 return new ICmpInst(I.getPredicate(), Op0, Op1);
5940 }
5941 }
5942
5943 if (isa<CastInst>(Op0)) {
5944 // Handle the special case of: icmp (cast bool to X), <cst>
5945 // This comes up when you have code like
5946 // int X = A < B;
5947 // if (X) ...
5948 // For generality, we handle any zero-extension of any operand comparison
5949 // with a constant or another cast from the same type.
5950 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
5951 if (Instruction *R = visitICmpInstWithCastAndCast(I))
5952 return R;
5953 }
5954
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005955 // See if it's the same type of instruction on the left and right.
5956 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
5957 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005958 if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
5959 Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1) &&
5960 I.isEquality()) {
Nick Lewyckycfadfbd2008-09-03 06:24:21 +00005961 switch (Op0I->getOpcode()) {
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005962 default: break;
5963 case Instruction::Add:
5964 case Instruction::Sub:
5965 case Instruction::Xor:
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005966 // a+x icmp eq/ne b+x --> a icmp b
5967 return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
5968 Op1I->getOperand(0));
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005969 break;
5970 case Instruction::Mul:
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005971 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
5972 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
5973 // Mask = -1 >> count-trailing-zeros(Cst).
5974 if (!CI->isZero() && !CI->isOne()) {
5975 const APInt &AP = CI->getValue();
5976 ConstantInt *Mask = ConstantInt::get(
5977 APInt::getLowBitsSet(AP.getBitWidth(),
5978 AP.getBitWidth() -
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005979 AP.countTrailingZeros()));
Nick Lewycky58ecfb22008-08-21 05:56:10 +00005980 Instruction *And1 = BinaryOperator::CreateAnd(Op0I->getOperand(0),
5981 Mask);
5982 Instruction *And2 = BinaryOperator::CreateAnd(Op1I->getOperand(0),
5983 Mask);
5984 InsertNewInstBefore(And1, I);
5985 InsertNewInstBefore(And2, I);
5986 return new ICmpInst(I.getPredicate(), And1, And2);
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00005987 }
5988 }
5989 break;
5990 }
5991 }
5992 }
5993 }
5994
Chris Lattnera4e1eef2008-05-09 05:19:28 +00005995 // ~x < ~y --> y < x
5996 { Value *A, *B;
5997 if (match(Op0, m_Not(m_Value(A))) &&
5998 match(Op1, m_Not(m_Value(B))))
5999 return new ICmpInst(I.getPredicate(), B, A);
6000 }
6001
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006002 if (I.isEquality()) {
6003 Value *A, *B, *C, *D;
Chris Lattnera4e1eef2008-05-09 05:19:28 +00006004
6005 // -x == -y --> x == y
6006 if (match(Op0, m_Neg(m_Value(A))) &&
6007 match(Op1, m_Neg(m_Value(B))))
6008 return new ICmpInst(I.getPredicate(), A, B);
6009
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006010 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
6011 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
6012 Value *OtherVal = A == Op1 ? B : A;
6013 return new ICmpInst(I.getPredicate(), OtherVal,
6014 Constant::getNullValue(A->getType()));
6015 }
6016
6017 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
6018 // A^c1 == C^c2 --> A == C^(c1^c2)
6019 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
6020 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D))
6021 if (Op1->hasOneUse()) {
6022 Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue());
Gabor Greifa645dd32008-05-16 19:29:10 +00006023 Instruction *Xor = BinaryOperator::CreateXor(C, NC, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006024 return new ICmpInst(I.getPredicate(), A,
6025 InsertNewInstBefore(Xor, I));
6026 }
6027
6028 // A^B == A^D -> B == D
6029 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
6030 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
6031 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
6032 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
6033 }
6034 }
6035
6036 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
6037 (A == Op0 || B == Op0)) {
6038 // A == (A^B) -> B == 0
6039 Value *OtherVal = A == Op0 ? B : A;
6040 return new ICmpInst(I.getPredicate(), OtherVal,
6041 Constant::getNullValue(A->getType()));
6042 }
6043 if (match(Op0, m_Sub(m_Value(A), m_Value(B))) && A == Op1) {
6044 // (A-B) == A -> B == 0
6045 return new ICmpInst(I.getPredicate(), B,
6046 Constant::getNullValue(B->getType()));
6047 }
6048 if (match(Op1, m_Sub(m_Value(A), m_Value(B))) && A == Op0) {
6049 // A == (A-B) -> B == 0
6050 return new ICmpInst(I.getPredicate(), B,
6051 Constant::getNullValue(B->getType()));
6052 }
6053
6054 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
6055 if (Op0->hasOneUse() && Op1->hasOneUse() &&
6056 match(Op0, m_And(m_Value(A), m_Value(B))) &&
6057 match(Op1, m_And(m_Value(C), m_Value(D)))) {
6058 Value *X = 0, *Y = 0, *Z = 0;
6059
6060 if (A == C) {
6061 X = B; Y = D; Z = A;
6062 } else if (A == D) {
6063 X = B; Y = C; Z = A;
6064 } else if (B == C) {
6065 X = A; Y = D; Z = B;
6066 } else if (B == D) {
6067 X = A; Y = C; Z = B;
6068 }
6069
6070 if (X) { // Build (X^Y) & Z
Gabor Greifa645dd32008-05-16 19:29:10 +00006071 Op1 = InsertNewInstBefore(BinaryOperator::CreateXor(X, Y, "tmp"), I);
6072 Op1 = InsertNewInstBefore(BinaryOperator::CreateAnd(Op1, Z, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006073 I.setOperand(0, Op1);
6074 I.setOperand(1, Constant::getNullValue(Op1->getType()));
6075 return &I;
6076 }
6077 }
6078 }
6079 return Changed ? &I : 0;
6080}
6081
6082
6083/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
6084/// and CmpRHS are both known to be integer constants.
6085Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
6086 ConstantInt *DivRHS) {
6087 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
6088 const APInt &CmpRHSV = CmpRHS->getValue();
6089
6090 // FIXME: If the operand types don't match the type of the divide
6091 // then don't attempt this transform. The code below doesn't have the
6092 // logic to deal with a signed divide and an unsigned compare (and
6093 // vice versa). This is because (x /s C1) <s C2 produces different
6094 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
6095 // (x /u C1) <u C2. Simply casting the operands and result won't
6096 // work. :( The if statement below tests that condition and bails
6097 // if it finds it.
6098 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
6099 if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate())
6100 return 0;
6101 if (DivRHS->isZero())
6102 return 0; // The ProdOV computation fails on divide by zero.
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006103 if (DivIsSigned && DivRHS->isAllOnesValue())
6104 return 0; // The overflow computation also screws up here
6105 if (DivRHS->isOne())
6106 return 0; // Not worth bothering, and eliminates some funny cases
6107 // with INT_MIN.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006108
6109 // Compute Prod = CI * DivRHS. We are essentially solving an equation
6110 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
6111 // C2 (CI). By solving for X we can turn this into a range check
6112 // instead of computing a divide.
6113 ConstantInt *Prod = Multiply(CmpRHS, DivRHS);
6114
6115 // Determine if the product overflows by seeing if the product is
6116 // not equal to the divide. Make sure we do the same kind of divide
6117 // as in the LHS instruction that we're folding.
6118 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
6119 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
6120
6121 // Get the ICmp opcode
6122 ICmpInst::Predicate Pred = ICI.getPredicate();
6123
6124 // Figure out the interval that is being checked. For example, a comparison
6125 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
6126 // Compute this interval based on the constants involved and the signedness of
6127 // the compare/divide. This computes a half-open interval, keeping track of
6128 // whether either value in the interval overflows. After analysis each
6129 // overflow variable is set to 0 if it's corresponding bound variable is valid
6130 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
6131 int LoOverflow = 0, HiOverflow = 0;
6132 ConstantInt *LoBound = 0, *HiBound = 0;
6133
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006134 if (!DivIsSigned) { // udiv
6135 // e.g. X/5 op 3 --> [15, 20)
6136 LoBound = Prod;
6137 HiOverflow = LoOverflow = ProdOV;
6138 if (!HiOverflow)
6139 HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
Dan Gohman5dceed12008-02-13 22:09:18 +00006140 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006141 if (CmpRHSV == 0) { // (X / pos) op 0
6142 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
6143 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
6144 HiBound = DivRHS;
Dan Gohman5dceed12008-02-13 22:09:18 +00006145 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006146 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
6147 HiOverflow = LoOverflow = ProdOV;
6148 if (!HiOverflow)
6149 HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
6150 } else { // (X / pos) op neg
6151 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006152 HiBound = AddOne(Prod);
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006153 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
6154 if (!LoOverflow) {
6155 ConstantInt* DivNeg = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
6156 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg,
6157 true) ? -1 : 0;
6158 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006159 }
Dan Gohman5dceed12008-02-13 22:09:18 +00006160 } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006161 if (CmpRHSV == 0) { // (X / neg) op 0
6162 // e.g. X/-5 op 0 --> [-4, 5)
6163 LoBound = AddOne(DivRHS);
6164 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
6165 if (HiBound == DivRHS) { // -INTMIN = INTMIN
6166 HiOverflow = 1; // [INTMIN+1, overflow)
6167 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
6168 }
Dan Gohman5dceed12008-02-13 22:09:18 +00006169 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006170 // e.g. X/-5 op 3 --> [-19, -14)
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006171 HiBound = AddOne(Prod);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006172 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
6173 if (!LoOverflow)
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006174 LoOverflow = AddWithOverflow(LoBound, HiBound, DivRHS, true) ? -1 : 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006175 } else { // (X / neg) op neg
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006176 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
6177 LoOverflow = HiOverflow = ProdOV;
Dan Gohman45408ea2008-09-11 00:25:00 +00006178 if (!HiOverflow)
6179 HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006180 }
6181
6182 // Dividing by a negative swaps the condition. LT <-> GT
6183 Pred = ICmpInst::getSwappedPredicate(Pred);
6184 }
6185
6186 Value *X = DivI->getOperand(0);
6187 switch (Pred) {
6188 default: assert(0 && "Unhandled icmp opcode!");
6189 case ICmpInst::ICMP_EQ:
6190 if (LoOverflow && HiOverflow)
6191 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6192 else if (HiOverflow)
6193 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6194 ICmpInst::ICMP_UGE, X, LoBound);
6195 else if (LoOverflow)
6196 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6197 ICmpInst::ICMP_ULT, X, HiBound);
6198 else
6199 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
6200 case ICmpInst::ICMP_NE:
6201 if (LoOverflow && HiOverflow)
6202 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6203 else if (HiOverflow)
6204 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6205 ICmpInst::ICMP_ULT, X, LoBound);
6206 else if (LoOverflow)
6207 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6208 ICmpInst::ICMP_UGE, X, HiBound);
6209 else
6210 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
6211 case ICmpInst::ICMP_ULT:
6212 case ICmpInst::ICMP_SLT:
6213 if (LoOverflow == +1) // Low bound is greater than input range.
6214 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6215 if (LoOverflow == -1) // Low bound is less than input range.
6216 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6217 return new ICmpInst(Pred, X, LoBound);
6218 case ICmpInst::ICMP_UGT:
6219 case ICmpInst::ICMP_SGT:
6220 if (HiOverflow == +1) // High bound greater than input range.
6221 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6222 else if (HiOverflow == -1) // High bound less than input range.
6223 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6224 if (Pred == ICmpInst::ICMP_UGT)
6225 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
6226 else
6227 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
6228 }
6229}
6230
6231
6232/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
6233///
6234Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
6235 Instruction *LHSI,
6236 ConstantInt *RHS) {
6237 const APInt &RHSV = RHS->getValue();
6238
6239 switch (LHSI->getOpcode()) {
6240 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
6241 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
6242 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
6243 // fold the xor.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00006244 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
6245 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006246 Value *CompareVal = LHSI->getOperand(0);
6247
6248 // If the sign bit of the XorCST is not set, there is no change to
6249 // the operation, just stop using the Xor.
6250 if (!XorCST->getValue().isNegative()) {
6251 ICI.setOperand(0, CompareVal);
6252 AddToWorkList(LHSI);
6253 return &ICI;
6254 }
6255
6256 // Was the old condition true if the operand is positive?
6257 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
6258
6259 // If so, the new one isn't.
6260 isTrueIfPositive ^= true;
6261
6262 if (isTrueIfPositive)
6263 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS));
6264 else
6265 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS));
6266 }
6267 }
6268 break;
6269 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
6270 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
6271 LHSI->getOperand(0)->hasOneUse()) {
6272 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
6273
6274 // If the LHS is an AND of a truncating cast, we can widen the
6275 // and/compare to be the input width without changing the value
6276 // produced, eliminating a cast.
6277 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
6278 // We can do this transformation if either the AND constant does not
6279 // have its sign bit set or if it is an equality comparison.
6280 // Extending a relational comparison when we're checking the sign
6281 // bit would not work.
6282 if (Cast->hasOneUse() &&
Anton Korobeynikov6a4a9332008-02-20 12:07:57 +00006283 (ICI.isEquality() ||
6284 (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006285 uint32_t BitWidth =
6286 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
6287 APInt NewCST = AndCST->getValue();
6288 NewCST.zext(BitWidth);
6289 APInt NewCI = RHSV;
6290 NewCI.zext(BitWidth);
6291 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00006292 BinaryOperator::CreateAnd(Cast->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006293 ConstantInt::get(NewCST),LHSI->getName());
6294 InsertNewInstBefore(NewAnd, ICI);
6295 return new ICmpInst(ICI.getPredicate(), NewAnd,
6296 ConstantInt::get(NewCI));
6297 }
6298 }
6299
6300 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
6301 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
6302 // happens a LOT in code produced by the C front-end, for bitfield
6303 // access.
6304 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
6305 if (Shift && !Shift->isShift())
6306 Shift = 0;
6307
6308 ConstantInt *ShAmt;
6309 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
6310 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
6311 const Type *AndTy = AndCST->getType(); // Type of the and.
6312
6313 // We can fold this as long as we can't shift unknown bits
6314 // into the mask. This can only happen with signed shift
6315 // rights, as they sign-extend.
6316 if (ShAmt) {
6317 bool CanFold = Shift->isLogicalShift();
6318 if (!CanFold) {
6319 // To test for the bad case of the signed shr, see if any
6320 // of the bits shifted in could be tested after the mask.
6321 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
6322 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
6323
6324 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
6325 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
6326 AndCST->getValue()) == 0)
6327 CanFold = true;
6328 }
6329
6330 if (CanFold) {
6331 Constant *NewCst;
6332 if (Shift->getOpcode() == Instruction::Shl)
6333 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
6334 else
6335 NewCst = ConstantExpr::getShl(RHS, ShAmt);
6336
6337 // Check to see if we are shifting out any of the bits being
6338 // compared.
6339 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) {
6340 // If we shifted bits out, the fold is not going to work out.
6341 // As a special case, check to see if this means that the
6342 // result is always true or false now.
6343 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6344 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6345 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6346 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6347 } else {
6348 ICI.setOperand(1, NewCst);
6349 Constant *NewAndCST;
6350 if (Shift->getOpcode() == Instruction::Shl)
6351 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
6352 else
6353 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
6354 LHSI->setOperand(1, NewAndCST);
6355 LHSI->setOperand(0, Shift->getOperand(0));
6356 AddToWorkList(Shift); // Shift is dead.
6357 AddUsesToWorkList(ICI);
6358 return &ICI;
6359 }
6360 }
6361 }
6362
6363 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
6364 // preferable because it allows the C<<Y expression to be hoisted out
6365 // of a loop if Y is invariant and X is not.
6366 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
6367 ICI.isEquality() && !Shift->isArithmeticShift() &&
6368 isa<Instruction>(Shift->getOperand(0))) {
6369 // Compute C << Y.
6370 Value *NS;
6371 if (Shift->getOpcode() == Instruction::LShr) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006372 NS = BinaryOperator::CreateShl(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006373 Shift->getOperand(1), "tmp");
6374 } else {
6375 // Insert a logical shift.
Gabor Greifa645dd32008-05-16 19:29:10 +00006376 NS = BinaryOperator::CreateLShr(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006377 Shift->getOperand(1), "tmp");
6378 }
6379 InsertNewInstBefore(cast<Instruction>(NS), ICI);
6380
6381 // Compute X & (C << Y).
6382 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00006383 BinaryOperator::CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006384 InsertNewInstBefore(NewAnd, ICI);
6385
6386 ICI.setOperand(0, NewAnd);
6387 return &ICI;
6388 }
6389 }
6390 break;
6391
6392 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
6393 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6394 if (!ShAmt) break;
6395
6396 uint32_t TypeBits = RHSV.getBitWidth();
6397
6398 // Check that the shift amount is in range. If not, don't perform
6399 // undefined shifts. When the shift is visited it will be
6400 // simplified.
6401 if (ShAmt->uge(TypeBits))
6402 break;
6403
6404 if (ICI.isEquality()) {
6405 // If we are comparing against bits always shifted out, the
6406 // comparison cannot succeed.
6407 Constant *Comp =
6408 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt);
6409 if (Comp != RHS) {// Comparing against a bit that we know is zero.
6410 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6411 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6412 return ReplaceInstUsesWith(ICI, Cst);
6413 }
6414
6415 if (LHSI->hasOneUse()) {
6416 // Otherwise strength reduce the shift into an and.
6417 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
6418 Constant *Mask =
6419 ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal));
6420
6421 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006422 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006423 Mask, LHSI->getName()+".mask");
6424 Value *And = InsertNewInstBefore(AndI, ICI);
6425 return new ICmpInst(ICI.getPredicate(), And,
6426 ConstantInt::get(RHSV.lshr(ShAmtVal)));
6427 }
6428 }
6429
6430 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
6431 bool TrueIfSigned = false;
6432 if (LHSI->hasOneUse() &&
6433 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
6434 // (X << 31) <s 0 --> (X&1) != 0
6435 Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) <<
6436 (TypeBits-ShAmt->getZExtValue()-1));
6437 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006438 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006439 Mask, LHSI->getName()+".mask");
6440 Value *And = InsertNewInstBefore(AndI, ICI);
6441
6442 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
6443 And, Constant::getNullValue(And->getType()));
6444 }
6445 break;
6446 }
6447
6448 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
6449 case Instruction::AShr: {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006450 // Only handle equality comparisons of shift-by-constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006451 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
Chris Lattner5ee84f82008-03-21 05:19:58 +00006452 if (!ShAmt || !ICI.isEquality()) break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006453
Chris Lattner5ee84f82008-03-21 05:19:58 +00006454 // Check that the shift amount is in range. If not, don't perform
6455 // undefined shifts. When the shift is visited it will be
6456 // simplified.
6457 uint32_t TypeBits = RHSV.getBitWidth();
6458 if (ShAmt->uge(TypeBits))
6459 break;
6460
6461 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006462
Chris Lattner5ee84f82008-03-21 05:19:58 +00006463 // If we are comparing against bits always shifted out, the
6464 // comparison cannot succeed.
6465 APInt Comp = RHSV << ShAmtVal;
6466 if (LHSI->getOpcode() == Instruction::LShr)
6467 Comp = Comp.lshr(ShAmtVal);
6468 else
6469 Comp = Comp.ashr(ShAmtVal);
6470
6471 if (Comp != RHSV) { // Comparing against a bit that we know is zero.
6472 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6473 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6474 return ReplaceInstUsesWith(ICI, Cst);
6475 }
6476
6477 // Otherwise, check to see if the bits shifted out are known to be zero.
6478 // If so, we can compare against the unshifted value:
6479 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
Evan Chengfb9292a2008-04-23 00:38:06 +00006480 if (LHSI->hasOneUse() &&
6481 MaskedValueIsZero(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006482 APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
6483 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
6484 ConstantExpr::getShl(RHS, ShAmt));
6485 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006486
Evan Chengfb9292a2008-04-23 00:38:06 +00006487 if (LHSI->hasOneUse()) {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006488 // Otherwise strength reduce the shift into an and.
6489 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
6490 Constant *Mask = ConstantInt::get(Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006491
Chris Lattner5ee84f82008-03-21 05:19:58 +00006492 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006493 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006494 Mask, LHSI->getName()+".mask");
6495 Value *And = InsertNewInstBefore(AndI, ICI);
6496 return new ICmpInst(ICI.getPredicate(), And,
6497 ConstantExpr::getShl(RHS, ShAmt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006498 }
6499 break;
6500 }
6501
6502 case Instruction::SDiv:
6503 case Instruction::UDiv:
6504 // Fold: icmp pred ([us]div X, C1), C2 -> range test
6505 // Fold this div into the comparison, producing a range check.
6506 // Determine, based on the divide type, what the range is being
6507 // checked. If there is an overflow on the low or high side, remember
6508 // it, otherwise compute the range [low, hi) bounding the new value.
6509 // See: InsertRangeTest above for the kinds of replacements possible.
6510 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
6511 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
6512 DivRHS))
6513 return R;
6514 break;
Nick Lewycky0185bbf2008-02-03 16:33:09 +00006515
6516 case Instruction::Add:
6517 // Fold: icmp pred (add, X, C1), C2
6518
6519 if (!ICI.isEquality()) {
6520 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6521 if (!LHSC) break;
6522 const APInt &LHSV = LHSC->getValue();
6523
6524 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
6525 .subtract(LHSV);
6526
6527 if (ICI.isSignedPredicate()) {
6528 if (CR.getLower().isSignBit()) {
6529 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
6530 ConstantInt::get(CR.getUpper()));
6531 } else if (CR.getUpper().isSignBit()) {
6532 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
6533 ConstantInt::get(CR.getLower()));
6534 }
6535 } else {
6536 if (CR.getLower().isMinValue()) {
6537 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
6538 ConstantInt::get(CR.getUpper()));
6539 } else if (CR.getUpper().isMinValue()) {
6540 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
6541 ConstantInt::get(CR.getLower()));
6542 }
6543 }
6544 }
6545 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006546 }
6547
6548 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
6549 if (ICI.isEquality()) {
6550 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6551
6552 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
6553 // the second operand is a constant, simplify a bit.
6554 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
6555 switch (BO->getOpcode()) {
6556 case Instruction::SRem:
6557 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
6558 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
6559 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
6560 if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
6561 Instruction *NewRem =
Gabor Greifa645dd32008-05-16 19:29:10 +00006562 BinaryOperator::CreateURem(BO->getOperand(0), BO->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006563 BO->getName());
6564 InsertNewInstBefore(NewRem, ICI);
6565 return new ICmpInst(ICI.getPredicate(), NewRem,
6566 Constant::getNullValue(BO->getType()));
6567 }
6568 }
6569 break;
6570 case Instruction::Add:
6571 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
6572 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6573 if (BO->hasOneUse())
6574 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6575 Subtract(RHS, BOp1C));
6576 } else if (RHSV == 0) {
6577 // Replace ((add A, B) != 0) with (A != -B) if A or B is
6578 // efficiently invertible, or if the add has just this one use.
6579 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
6580
6581 if (Value *NegVal = dyn_castNegVal(BOp1))
6582 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
6583 else if (Value *NegVal = dyn_castNegVal(BOp0))
6584 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
6585 else if (BO->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006586 Instruction *Neg = BinaryOperator::CreateNeg(BOp1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006587 InsertNewInstBefore(Neg, ICI);
6588 Neg->takeName(BO);
6589 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
6590 }
6591 }
6592 break;
6593 case Instruction::Xor:
6594 // For the xor case, we can xor two constants together, eliminating
6595 // the explicit xor.
6596 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
6597 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6598 ConstantExpr::getXor(RHS, BOC));
6599
6600 // FALLTHROUGH
6601 case Instruction::Sub:
6602 // Replace (([sub|xor] A, B) != 0) with (A != B)
6603 if (RHSV == 0)
6604 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6605 BO->getOperand(1));
6606 break;
6607
6608 case Instruction::Or:
6609 // If bits are being or'd in that are not present in the constant we
6610 // are comparing against, then the comparison could never succeed!
6611 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
6612 Constant *NotCI = ConstantExpr::getNot(RHS);
6613 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
6614 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6615 isICMP_NE));
6616 }
6617 break;
6618
6619 case Instruction::And:
6620 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6621 // If bits are being compared against that are and'd out, then the
6622 // comparison can never succeed!
6623 if ((RHSV & ~BOC->getValue()) != 0)
6624 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6625 isICMP_NE));
6626
6627 // If we have ((X & C) == C), turn it into ((X & C) != 0).
6628 if (RHS == BOC && RHSV.isPowerOf2())
6629 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
6630 ICmpInst::ICMP_NE, LHSI,
6631 Constant::getNullValue(RHS->getType()));
6632
6633 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
Chris Lattner60813c22008-06-02 01:29:46 +00006634 if (BOC->getValue().isSignBit()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006635 Value *X = BO->getOperand(0);
6636 Constant *Zero = Constant::getNullValue(X->getType());
6637 ICmpInst::Predicate pred = isICMP_NE ?
6638 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
6639 return new ICmpInst(pred, X, Zero);
6640 }
6641
6642 // ((X & ~7) == 0) --> X < 8
6643 if (RHSV == 0 && isHighOnes(BOC)) {
6644 Value *X = BO->getOperand(0);
6645 Constant *NegX = ConstantExpr::getNeg(BOC);
6646 ICmpInst::Predicate pred = isICMP_NE ?
6647 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
6648 return new ICmpInst(pred, X, NegX);
6649 }
6650 }
6651 default: break;
6652 }
6653 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
6654 // Handle icmp {eq|ne} <intrinsic>, intcst.
6655 if (II->getIntrinsicID() == Intrinsic::bswap) {
6656 AddToWorkList(II);
6657 ICI.setOperand(0, II->getOperand(1));
6658 ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap()));
6659 return &ICI;
6660 }
6661 }
6662 } else { // Not a ICMP_EQ/ICMP_NE
6663 // If the LHS is a cast from an integral value of the same size,
6664 // then since we know the RHS is a constant, try to simlify.
6665 if (CastInst *Cast = dyn_cast<CastInst>(LHSI)) {
6666 Value *CastOp = Cast->getOperand(0);
6667 const Type *SrcTy = CastOp->getType();
6668 uint32_t SrcTySize = SrcTy->getPrimitiveSizeInBits();
6669 if (SrcTy->isInteger() &&
6670 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
6671 // If this is an unsigned comparison, try to make the comparison use
6672 // smaller constant values.
6673 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && RHSV.isSignBit()) {
6674 // X u< 128 => X s> -1
6675 return new ICmpInst(ICmpInst::ICMP_SGT, CastOp,
6676 ConstantInt::get(APInt::getAllOnesValue(SrcTySize)));
6677 } else if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
6678 RHSV == APInt::getSignedMaxValue(SrcTySize)) {
6679 // X u> 127 => X s< 0
6680 return new ICmpInst(ICmpInst::ICMP_SLT, CastOp,
6681 Constant::getNullValue(SrcTy));
6682 }
6683 }
6684 }
6685 }
6686 return 0;
6687}
6688
6689/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
6690/// We only handle extending casts so far.
6691///
6692Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
6693 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
6694 Value *LHSCIOp = LHSCI->getOperand(0);
6695 const Type *SrcTy = LHSCIOp->getType();
6696 const Type *DestTy = LHSCI->getType();
6697 Value *RHSCIOp;
6698
6699 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
6700 // integer type is the same size as the pointer type.
6701 if (LHSCI->getOpcode() == Instruction::PtrToInt &&
6702 getTargetData().getPointerSizeInBits() ==
6703 cast<IntegerType>(DestTy)->getBitWidth()) {
6704 Value *RHSOp = 0;
6705 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
6706 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
6707 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
6708 RHSOp = RHSC->getOperand(0);
6709 // If the pointer types don't match, insert a bitcast.
6710 if (LHSCIOp->getType() != RHSOp->getType())
Chris Lattner13c2d6e2008-01-13 22:23:22 +00006711 RHSOp = InsertBitCastBefore(RHSOp, LHSCIOp->getType(), ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006712 }
6713
6714 if (RHSOp)
6715 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
6716 }
6717
6718 // The code below only handles extension cast instructions, so far.
6719 // Enforce this.
6720 if (LHSCI->getOpcode() != Instruction::ZExt &&
6721 LHSCI->getOpcode() != Instruction::SExt)
6722 return 0;
6723
6724 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
6725 bool isSignedCmp = ICI.isSignedPredicate();
6726
6727 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
6728 // Not an extension from the same type?
6729 RHSCIOp = CI->getOperand(0);
6730 if (RHSCIOp->getType() != LHSCIOp->getType())
6731 return 0;
6732
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006733 // If the signedness of the two casts doesn't agree (i.e. one is a sext
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006734 // and the other is a zext), then we can't handle this.
6735 if (CI->getOpcode() != LHSCI->getOpcode())
6736 return 0;
6737
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006738 // Deal with equality cases early.
6739 if (ICI.isEquality())
6740 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6741
6742 // A signed comparison of sign extended values simplifies into a
6743 // signed comparison.
6744 if (isSignedCmp && isSignedExt)
6745 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6746
6747 // The other three cases all fold into an unsigned comparison.
6748 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006749 }
6750
6751 // If we aren't dealing with a constant on the RHS, exit early
6752 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
6753 if (!CI)
6754 return 0;
6755
6756 // Compute the constant that would happen if we truncated to SrcTy then
6757 // reextended to DestTy.
6758 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
6759 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
6760
6761 // If the re-extended constant didn't change...
6762 if (Res2 == CI) {
6763 // Make sure that sign of the Cmp and the sign of the Cast are the same.
6764 // For example, we might have:
6765 // %A = sext short %X to uint
6766 // %B = icmp ugt uint %A, 1330
6767 // It is incorrect to transform this into
6768 // %B = icmp ugt short %X, 1330
6769 // because %A may have negative value.
6770 //
Chris Lattner3d816532008-07-11 04:09:09 +00006771 // However, we allow this when the compare is EQ/NE, because they are
6772 // signless.
6773 if (isSignedExt == isSignedCmp || ICI.isEquality())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006774 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
Chris Lattner3d816532008-07-11 04:09:09 +00006775 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006776 }
6777
6778 // The re-extended constant changed so the constant cannot be represented
6779 // in the shorter type. Consequently, we cannot emit a simple comparison.
6780
6781 // First, handle some easy cases. We know the result cannot be equal at this
6782 // point so handle the ICI.isEquality() cases
6783 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6784 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6785 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6786 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6787
6788 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
6789 // should have been folded away previously and not enter in here.
6790 Value *Result;
6791 if (isSignedCmp) {
6792 // We're performing a signed comparison.
6793 if (cast<ConstantInt>(CI)->getValue().isNegative())
6794 Result = ConstantInt::getFalse(); // X < (small) --> false
6795 else
6796 Result = ConstantInt::getTrue(); // X < (large) --> true
6797 } else {
6798 // We're performing an unsigned comparison.
6799 if (isSignedExt) {
6800 // We're performing an unsigned comp with a sign extended value.
6801 // This is true if the input is >= 0. [aka >s -1]
6802 Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
6803 Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
6804 NegOne, ICI.getName()), ICI);
6805 } else {
6806 // Unsigned extend & unsigned compare -> always true.
6807 Result = ConstantInt::getTrue();
6808 }
6809 }
6810
6811 // Finally, return the value computed.
6812 if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
Chris Lattner3d816532008-07-11 04:09:09 +00006813 ICI.getPredicate() == ICmpInst::ICMP_SLT)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006814 return ReplaceInstUsesWith(ICI, Result);
Chris Lattner3d816532008-07-11 04:09:09 +00006815
6816 assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
6817 ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
6818 "ICmp should be folded!");
6819 if (Constant *CI = dyn_cast<Constant>(Result))
6820 return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
6821 return BinaryOperator::CreateNot(Result);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006822}
6823
6824Instruction *InstCombiner::visitShl(BinaryOperator &I) {
6825 return commonShiftTransforms(I);
6826}
6827
6828Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
6829 return commonShiftTransforms(I);
6830}
6831
6832Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
Chris Lattnere3c504f2007-12-06 01:59:46 +00006833 if (Instruction *R = commonShiftTransforms(I))
6834 return R;
6835
6836 Value *Op0 = I.getOperand(0);
6837
6838 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
6839 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
6840 if (CSI->isAllOnesValue())
6841 return ReplaceInstUsesWith(I, CSI);
6842
6843 // See if we can turn a signed shr into an unsigned shr.
Nate Begemanbb1ce942008-07-29 15:49:41 +00006844 if (!isa<VectorType>(I.getType()) &&
6845 MaskedValueIsZero(Op0,
Chris Lattnere3c504f2007-12-06 01:59:46 +00006846 APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())))
Gabor Greifa645dd32008-05-16 19:29:10 +00006847 return BinaryOperator::CreateLShr(Op0, I.getOperand(1));
Chris Lattnere3c504f2007-12-06 01:59:46 +00006848
6849 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006850}
6851
6852Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
6853 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
6854 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6855
6856 // shl X, 0 == X and shr X, 0 == X
6857 // shl 0, X == 0 and shr 0, X == 0
6858 if (Op1 == Constant::getNullValue(Op1->getType()) ||
6859 Op0 == Constant::getNullValue(Op0->getType()))
6860 return ReplaceInstUsesWith(I, Op0);
6861
6862 if (isa<UndefValue>(Op0)) {
6863 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
6864 return ReplaceInstUsesWith(I, Op0);
6865 else // undef << X -> 0, undef >>u X -> 0
6866 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6867 }
6868 if (isa<UndefValue>(Op1)) {
6869 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
6870 return ReplaceInstUsesWith(I, Op0);
6871 else // X << undef, X >>u undef -> 0
6872 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6873 }
6874
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006875 // Try to fold constant and into select arguments.
6876 if (isa<Constant>(Op0))
6877 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
6878 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6879 return R;
6880
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006881 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
6882 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
6883 return Res;
6884 return 0;
6885}
6886
6887Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
6888 BinaryOperator &I) {
6889 bool isLeftShift = I.getOpcode() == Instruction::Shl;
6890
6891 // See if we can simplify any instructions used by the instruction whose sole
6892 // purpose is to compute bits we don't care about.
6893 uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits();
6894 APInt KnownZero(TypeBits, 0), KnownOne(TypeBits, 0);
6895 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(TypeBits),
6896 KnownZero, KnownOne))
6897 return &I;
6898
6899 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
6900 // of a signed value.
6901 //
6902 if (Op1->uge(TypeBits)) {
6903 if (I.getOpcode() != Instruction::AShr)
6904 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
6905 else {
6906 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
6907 return &I;
6908 }
6909 }
6910
6911 // ((X*C1) << C2) == (X * (C1 << C2))
6912 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
6913 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
6914 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00006915 return BinaryOperator::CreateMul(BO->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006916 ConstantExpr::getShl(BOOp, Op1));
6917
6918 // Try to fold constant and into select arguments.
6919 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
6920 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6921 return R;
6922 if (isa<PHINode>(Op0))
6923 if (Instruction *NV = FoldOpIntoPhi(I))
6924 return NV;
6925
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006926 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
6927 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
6928 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
6929 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
6930 // place. Don't try to do this transformation in this case. Also, we
6931 // require that the input operand is a shift-by-constant so that we have
6932 // confidence that the shifts will get folded together. We could do this
6933 // xform in more cases, but it is unlikely to be profitable.
6934 if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
6935 isa<ConstantInt>(TrOp->getOperand(1))) {
6936 // Okay, we'll do this xform. Make the shift of shift.
6937 Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00006938 Instruction *NSh = BinaryOperator::Create(I.getOpcode(), TrOp, ShAmt,
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006939 I.getName());
6940 InsertNewInstBefore(NSh, I); // (shift2 (shift1 & 0x00FF), c2)
6941
6942 // For logical shifts, the truncation has the effect of making the high
6943 // part of the register be zeros. Emulate this by inserting an AND to
6944 // clear the top bits as needed. This 'and' will usually be zapped by
6945 // other xforms later if dead.
6946 unsigned SrcSize = TrOp->getType()->getPrimitiveSizeInBits();
6947 unsigned DstSize = TI->getType()->getPrimitiveSizeInBits();
6948 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
6949
6950 // The mask we constructed says what the trunc would do if occurring
6951 // between the shifts. We want to know the effect *after* the second
6952 // shift. We know that it is a logical shift by a constant, so adjust the
6953 // mask as appropriate.
6954 if (I.getOpcode() == Instruction::Shl)
6955 MaskV <<= Op1->getZExtValue();
6956 else {
6957 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
6958 MaskV = MaskV.lshr(Op1->getZExtValue());
6959 }
6960
Gabor Greifa645dd32008-05-16 19:29:10 +00006961 Instruction *And = BinaryOperator::CreateAnd(NSh, ConstantInt::get(MaskV),
Chris Lattnerc6d1f642007-12-22 09:07:47 +00006962 TI->getName());
6963 InsertNewInstBefore(And, I); // shift1 & 0x00FF
6964
6965 // Return the value truncated to the interesting size.
6966 return new TruncInst(And, I.getType());
6967 }
6968 }
6969
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006970 if (Op0->hasOneUse()) {
6971 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
6972 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6973 Value *V1, *V2;
6974 ConstantInt *CC;
6975 switch (Op0BO->getOpcode()) {
6976 default: break;
6977 case Instruction::Add:
6978 case Instruction::And:
6979 case Instruction::Or:
6980 case Instruction::Xor: {
6981 // These operators commute.
6982 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
6983 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
6984 match(Op0BO->getOperand(1),
6985 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006986 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006987 Op0BO->getOperand(0), Op1,
6988 Op0BO->getName());
6989 InsertNewInstBefore(YS, I); // (Y << C)
6990 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00006991 BinaryOperator::Create(Op0BO->getOpcode(), YS, V1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006992 Op0BO->getOperand(1)->getName());
6993 InsertNewInstBefore(X, I); // (X + (Y << C))
6994 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00006995 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006996 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
6997 }
6998
6999 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
7000 Value *Op0BOOp1 = Op0BO->getOperand(1);
7001 if (isLeftShift && Op0BOOp1->hasOneUse() &&
7002 match(Op0BOOp1,
7003 m_And(m_Shr(m_Value(V1), m_Value(V2)),m_ConstantInt(CC))) &&
7004 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse() &&
7005 V2 == Op1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007006 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007007 Op0BO->getOperand(0), Op1,
7008 Op0BO->getName());
7009 InsertNewInstBefore(YS, I); // (Y << C)
7010 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00007011 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007012 V1->getName()+".mask");
7013 InsertNewInstBefore(XM, I); // X & (CC << C)
7014
Gabor Greifa645dd32008-05-16 19:29:10 +00007015 return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007016 }
7017 }
7018
7019 // FALL THROUGH.
7020 case Instruction::Sub: {
7021 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
7022 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
7023 match(Op0BO->getOperand(0),
7024 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007025 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007026 Op0BO->getOperand(1), Op1,
7027 Op0BO->getName());
7028 InsertNewInstBefore(YS, I); // (Y << C)
7029 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00007030 BinaryOperator::Create(Op0BO->getOpcode(), V1, YS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007031 Op0BO->getOperand(0)->getName());
7032 InsertNewInstBefore(X, I); // (X + (Y << C))
7033 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00007034 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007035 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
7036 }
7037
7038 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
7039 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
7040 match(Op0BO->getOperand(0),
7041 m_And(m_Shr(m_Value(V1), m_Value(V2)),
7042 m_ConstantInt(CC))) && V2 == Op1 &&
7043 cast<BinaryOperator>(Op0BO->getOperand(0))
7044 ->getOperand(0)->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007045 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007046 Op0BO->getOperand(1), Op1,
7047 Op0BO->getName());
7048 InsertNewInstBefore(YS, I); // (Y << C)
7049 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00007050 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007051 V1->getName()+".mask");
7052 InsertNewInstBefore(XM, I); // X & (CC << C)
7053
Gabor Greifa645dd32008-05-16 19:29:10 +00007054 return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007055 }
7056
7057 break;
7058 }
7059 }
7060
7061
7062 // If the operand is an bitwise operator with a constant RHS, and the
7063 // shift is the only use, we can pull it out of the shift.
7064 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
7065 bool isValid = true; // Valid only for And, Or, Xor
7066 bool highBitSet = false; // Transform if high bit of constant set?
7067
7068 switch (Op0BO->getOpcode()) {
7069 default: isValid = false; break; // Do not perform transform!
7070 case Instruction::Add:
7071 isValid = isLeftShift;
7072 break;
7073 case Instruction::Or:
7074 case Instruction::Xor:
7075 highBitSet = false;
7076 break;
7077 case Instruction::And:
7078 highBitSet = true;
7079 break;
7080 }
7081
7082 // If this is a signed shift right, and the high bit is modified
7083 // by the logical operation, do not perform the transformation.
7084 // The highBitSet boolean indicates the value of the high bit of
7085 // the constant which would cause it to be modified for this
7086 // operation.
7087 //
Chris Lattner15b76e32007-12-06 06:25:04 +00007088 if (isValid && I.getOpcode() == Instruction::AShr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007089 isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007090
7091 if (isValid) {
7092 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
7093
7094 Instruction *NewShift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007095 BinaryOperator::Create(I.getOpcode(), Op0BO->getOperand(0), Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007096 InsertNewInstBefore(NewShift, I);
7097 NewShift->takeName(Op0BO);
7098
Gabor Greifa645dd32008-05-16 19:29:10 +00007099 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007100 NewRHS);
7101 }
7102 }
7103 }
7104 }
7105
7106 // Find out if this is a shift of a shift by a constant.
7107 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
7108 if (ShiftOp && !ShiftOp->isShift())
7109 ShiftOp = 0;
7110
7111 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
7112 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
7113 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
7114 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
7115 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
7116 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
7117 Value *X = ShiftOp->getOperand(0);
7118
7119 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
7120 if (AmtSum > TypeBits)
7121 AmtSum = TypeBits;
7122
7123 const IntegerType *Ty = cast<IntegerType>(I.getType());
7124
7125 // Check for (X << c1) << c2 and (X >> c1) >> c2
7126 if (I.getOpcode() == ShiftOp->getOpcode()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007127 return BinaryOperator::Create(I.getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007128 ConstantInt::get(Ty, AmtSum));
7129 } else if (ShiftOp->getOpcode() == Instruction::LShr &&
7130 I.getOpcode() == Instruction::AShr) {
7131 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
Gabor Greifa645dd32008-05-16 19:29:10 +00007132 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007133 } else if (ShiftOp->getOpcode() == Instruction::AShr &&
7134 I.getOpcode() == Instruction::LShr) {
7135 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
7136 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007137 BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007138 InsertNewInstBefore(Shift, I);
7139
7140 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007141 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007142 }
7143
7144 // Okay, if we get here, one shift must be left, and the other shift must be
7145 // right. See if the amounts are equal.
7146 if (ShiftAmt1 == ShiftAmt2) {
7147 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
7148 if (I.getOpcode() == Instruction::Shl) {
7149 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00007150 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007151 }
7152 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
7153 if (I.getOpcode() == Instruction::LShr) {
7154 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00007155 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007156 }
7157 // We can simplify ((X << C) >>s C) into a trunc + sext.
7158 // NOTE: we could do this for any C, but that would make 'unusual' integer
7159 // types. For now, just stick to ones well-supported by the code
7160 // generators.
7161 const Type *SExtType = 0;
7162 switch (Ty->getBitWidth() - ShiftAmt1) {
7163 case 1 :
7164 case 8 :
7165 case 16 :
7166 case 32 :
7167 case 64 :
7168 case 128:
7169 SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1);
7170 break;
7171 default: break;
7172 }
7173 if (SExtType) {
7174 Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
7175 InsertNewInstBefore(NewTrunc, I);
7176 return new SExtInst(NewTrunc, Ty);
7177 }
7178 // Otherwise, we can't handle it yet.
7179 } else if (ShiftAmt1 < ShiftAmt2) {
7180 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
7181
7182 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
7183 if (I.getOpcode() == Instruction::Shl) {
7184 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7185 ShiftOp->getOpcode() == Instruction::AShr);
7186 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007187 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007188 InsertNewInstBefore(Shift, I);
7189
7190 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007191 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007192 }
7193
7194 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
7195 if (I.getOpcode() == Instruction::LShr) {
7196 assert(ShiftOp->getOpcode() == Instruction::Shl);
7197 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007198 BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007199 InsertNewInstBefore(Shift, I);
7200
7201 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007202 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007203 }
7204
7205 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
7206 } else {
7207 assert(ShiftAmt2 < ShiftAmt1);
7208 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
7209
7210 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
7211 if (I.getOpcode() == Instruction::Shl) {
7212 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7213 ShiftOp->getOpcode() == Instruction::AShr);
7214 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007215 BinaryOperator::Create(ShiftOp->getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007216 ConstantInt::get(Ty, ShiftDiff));
7217 InsertNewInstBefore(Shift, I);
7218
7219 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007220 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007221 }
7222
7223 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
7224 if (I.getOpcode() == Instruction::LShr) {
7225 assert(ShiftOp->getOpcode() == Instruction::Shl);
7226 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007227 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007228 InsertNewInstBefore(Shift, I);
7229
7230 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007231 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007232 }
7233
7234 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
7235 }
7236 }
7237 return 0;
7238}
7239
7240
7241/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
7242/// expression. If so, decompose it, returning some value X, such that Val is
7243/// X*Scale+Offset.
7244///
7245static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
7246 int &Offset) {
7247 assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
7248 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
7249 Offset = CI->getZExtValue();
Chris Lattnerc59171a2007-10-12 05:30:59 +00007250 Scale = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007251 return ConstantInt::get(Type::Int32Ty, 0);
Chris Lattnerc59171a2007-10-12 05:30:59 +00007252 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
7253 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
7254 if (I->getOpcode() == Instruction::Shl) {
7255 // This is a value scaled by '1 << the shift amt'.
7256 Scale = 1U << RHS->getZExtValue();
7257 Offset = 0;
7258 return I->getOperand(0);
7259 } else if (I->getOpcode() == Instruction::Mul) {
7260 // This value is scaled by 'RHS'.
7261 Scale = RHS->getZExtValue();
7262 Offset = 0;
7263 return I->getOperand(0);
7264 } else if (I->getOpcode() == Instruction::Add) {
7265 // We have X+C. Check to see if we really have (X*C2)+C1,
7266 // where C1 is divisible by C2.
7267 unsigned SubScale;
7268 Value *SubVal =
7269 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
7270 Offset += RHS->getZExtValue();
7271 Scale = SubScale;
7272 return SubVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007273 }
7274 }
7275 }
7276
7277 // Otherwise, we can't look past this.
7278 Scale = 1;
7279 Offset = 0;
7280 return Val;
7281}
7282
7283
7284/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
7285/// try to eliminate the cast by moving the type information into the alloc.
7286Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
7287 AllocationInst &AI) {
7288 const PointerType *PTy = cast<PointerType>(CI.getType());
7289
7290 // Remove any uses of AI that are dead.
7291 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
7292
7293 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
7294 Instruction *User = cast<Instruction>(*UI++);
7295 if (isInstructionTriviallyDead(User)) {
7296 while (UI != E && *UI == User)
7297 ++UI; // If this instruction uses AI more than once, don't break UI.
7298
7299 ++NumDeadInst;
7300 DOUT << "IC: DCE: " << *User;
7301 EraseInstFromFunction(*User);
7302 }
7303 }
7304
7305 // Get the type really allocated and the type casted to.
7306 const Type *AllocElTy = AI.getAllocatedType();
7307 const Type *CastElTy = PTy->getElementType();
7308 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
7309
7310 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
7311 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
7312 if (CastElTyAlign < AllocElTyAlign) return 0;
7313
7314 // If the allocation has multiple uses, only promote it if we are strictly
7315 // increasing the alignment of the resultant allocation. If we keep it the
7316 // same, we open the door to infinite loops of various kinds.
7317 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
7318
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007319 uint64_t AllocElTySize = TD->getABITypeSize(AllocElTy);
7320 uint64_t CastElTySize = TD->getABITypeSize(CastElTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007321 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
7322
7323 // See if we can satisfy the modulus by pulling a scale out of the array
7324 // size argument.
7325 unsigned ArraySizeScale;
7326 int ArrayOffset;
7327 Value *NumElements = // See if the array size is a decomposable linear expr.
7328 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
7329
7330 // If we can now satisfy the modulus, by using a non-1 scale, we really can
7331 // do the xform.
7332 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
7333 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
7334
7335 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
7336 Value *Amt = 0;
7337 if (Scale == 1) {
7338 Amt = NumElements;
7339 } else {
7340 // If the allocation size is constant, form a constant mul expression
7341 Amt = ConstantInt::get(Type::Int32Ty, Scale);
7342 if (isa<ConstantInt>(NumElements))
7343 Amt = Multiply(cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
7344 // otherwise multiply the amount and the number of elements
7345 else if (Scale != 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007346 Instruction *Tmp = BinaryOperator::CreateMul(Amt, NumElements, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007347 Amt = InsertNewInstBefore(Tmp, AI);
7348 }
7349 }
7350
7351 if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
7352 Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true);
Gabor Greifa645dd32008-05-16 19:29:10 +00007353 Instruction *Tmp = BinaryOperator::CreateAdd(Amt, Off, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007354 Amt = InsertNewInstBefore(Tmp, AI);
7355 }
7356
7357 AllocationInst *New;
7358 if (isa<MallocInst>(AI))
7359 New = new MallocInst(CastElTy, Amt, AI.getAlignment());
7360 else
7361 New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
7362 InsertNewInstBefore(New, AI);
7363 New->takeName(&AI);
7364
7365 // If the allocation has multiple uses, insert a cast and change all things
7366 // that used it to use the new cast. This will also hack on CI, but it will
7367 // die soon.
7368 if (!AI.hasOneUse()) {
7369 AddUsesToWorkList(AI);
7370 // New is the allocation instruction, pointer typed. AI is the original
7371 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
7372 CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
7373 InsertNewInstBefore(NewCast, AI);
7374 AI.replaceAllUsesWith(NewCast);
7375 }
7376 return ReplaceInstUsesWith(CI, New);
7377}
7378
7379/// CanEvaluateInDifferentType - Return true if we can take the specified value
7380/// and return it as type Ty without inserting any new casts and without
7381/// changing the computed value. This is used by code that tries to decide
7382/// whether promoting or shrinking integer operations to wider or smaller types
7383/// will allow us to eliminate a truncate or extend.
7384///
7385/// This is a truncation operation if Ty is smaller than V->getType(), or an
7386/// extension operation if Ty is larger.
Chris Lattner4200c2062008-06-18 04:00:49 +00007387///
7388/// If CastOpc is a truncation, then Ty will be a type smaller than V. We
7389/// should return true if trunc(V) can be computed by computing V in the smaller
7390/// type. If V is an instruction, then trunc(inst(x,y)) can be computed as
7391/// inst(trunc(x),trunc(y)), which only makes sense if x and y can be
7392/// efficiently truncated.
7393///
7394/// If CastOpc is a sext or zext, we are asking if the low bits of the value can
7395/// bit computed in a larger type, which is then and'd or sext_in_reg'd to get
7396/// the final result.
Dan Gohman2d648bb2008-04-10 18:43:06 +00007397bool InstCombiner::CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
7398 unsigned CastOpc,
7399 int &NumCastsRemoved) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007400 // We can always evaluate constants in another type.
7401 if (isa<ConstantInt>(V))
7402 return true;
7403
7404 Instruction *I = dyn_cast<Instruction>(V);
7405 if (!I) return false;
7406
7407 const IntegerType *OrigTy = cast<IntegerType>(V->getType());
7408
Chris Lattneref70bb82007-08-02 06:11:14 +00007409 // If this is an extension or truncate, we can often eliminate it.
7410 if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7411 // If this is a cast from the destination type, we can trivially eliminate
7412 // it, and this will remove a cast overall.
7413 if (I->getOperand(0)->getType() == Ty) {
7414 // If the first operand is itself a cast, and is eliminable, do not count
7415 // this as an eliminable cast. We would prefer to eliminate those two
7416 // casts first.
Chris Lattner4200c2062008-06-18 04:00:49 +00007417 if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse())
Chris Lattneref70bb82007-08-02 06:11:14 +00007418 ++NumCastsRemoved;
7419 return true;
7420 }
7421 }
7422
7423 // We can't extend or shrink something that has multiple uses: doing so would
7424 // require duplicating the instruction in general, which isn't profitable.
7425 if (!I->hasOneUse()) return false;
7426
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007427 switch (I->getOpcode()) {
7428 case Instruction::Add:
7429 case Instruction::Sub:
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007430 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007431 case Instruction::And:
7432 case Instruction::Or:
7433 case Instruction::Xor:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007434 // These operators can all arbitrarily be extended or truncated.
Chris Lattneref70bb82007-08-02 06:11:14 +00007435 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7436 NumCastsRemoved) &&
7437 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
7438 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007439
7440 case Instruction::Shl:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007441 // If we are truncating the result of this SHL, and if it's a shift of a
7442 // constant amount, we can always perform a SHL in a smaller type.
7443 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7444 uint32_t BitWidth = Ty->getBitWidth();
7445 if (BitWidth < OrigTy->getBitWidth() &&
7446 CI->getLimitedValue(BitWidth) < BitWidth)
Chris Lattneref70bb82007-08-02 06:11:14 +00007447 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7448 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007449 }
7450 break;
7451 case Instruction::LShr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007452 // If this is a truncate of a logical shr, we can truncate it to a smaller
7453 // lshr iff we know that the bits we would otherwise be shifting in are
7454 // already zeros.
7455 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7456 uint32_t OrigBitWidth = OrigTy->getBitWidth();
7457 uint32_t BitWidth = Ty->getBitWidth();
7458 if (BitWidth < OrigBitWidth &&
7459 MaskedValueIsZero(I->getOperand(0),
7460 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
7461 CI->getLimitedValue(BitWidth) < BitWidth) {
Chris Lattneref70bb82007-08-02 06:11:14 +00007462 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7463 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007464 }
7465 }
7466 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007467 case Instruction::ZExt:
7468 case Instruction::SExt:
Chris Lattneref70bb82007-08-02 06:11:14 +00007469 case Instruction::Trunc:
7470 // If this is the same kind of case as our original (e.g. zext+zext), we
Chris Lattner9c909d22007-08-02 17:23:38 +00007471 // can safely replace it. Note that replacing it does not reduce the number
7472 // of casts in the input.
7473 if (I->getOpcode() == CastOpc)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007474 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007475 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007476 case Instruction::Select: {
7477 SelectInst *SI = cast<SelectInst>(I);
7478 return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc,
7479 NumCastsRemoved) &&
7480 CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc,
7481 NumCastsRemoved);
7482 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007483 case Instruction::PHI: {
7484 // We can change a phi if we can change all operands.
7485 PHINode *PN = cast<PHINode>(I);
7486 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
7487 if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc,
7488 NumCastsRemoved))
7489 return false;
7490 return true;
7491 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007492 default:
7493 // TODO: Can handle more cases here.
7494 break;
7495 }
7496
7497 return false;
7498}
7499
7500/// EvaluateInDifferentType - Given an expression that
7501/// CanEvaluateInDifferentType returns true for, actually insert the code to
7502/// evaluate the expression.
7503Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
7504 bool isSigned) {
7505 if (Constant *C = dyn_cast<Constant>(V))
7506 return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
7507
7508 // Otherwise, it must be an instruction.
7509 Instruction *I = cast<Instruction>(V);
7510 Instruction *Res = 0;
7511 switch (I->getOpcode()) {
7512 case Instruction::Add:
7513 case Instruction::Sub:
Nick Lewyckyc52646a2008-01-22 05:08:48 +00007514 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007515 case Instruction::And:
7516 case Instruction::Or:
7517 case Instruction::Xor:
7518 case Instruction::AShr:
7519 case Instruction::LShr:
7520 case Instruction::Shl: {
7521 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
7522 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Gabor Greifa645dd32008-05-16 19:29:10 +00007523 Res = BinaryOperator::Create((Instruction::BinaryOps)I->getOpcode(),
Chris Lattner4200c2062008-06-18 04:00:49 +00007524 LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007525 break;
7526 }
7527 case Instruction::Trunc:
7528 case Instruction::ZExt:
7529 case Instruction::SExt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007530 // If the source type of the cast is the type we're trying for then we can
Chris Lattneref70bb82007-08-02 06:11:14 +00007531 // just return the source. There's no need to insert it because it is not
7532 // new.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007533 if (I->getOperand(0)->getType() == Ty)
7534 return I->getOperand(0);
7535
Chris Lattner4200c2062008-06-18 04:00:49 +00007536 // Otherwise, must be the same type of cast, so just reinsert a new one.
Gabor Greifa645dd32008-05-16 19:29:10 +00007537 Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),
Chris Lattner4200c2062008-06-18 04:00:49 +00007538 Ty);
Chris Lattneref70bb82007-08-02 06:11:14 +00007539 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007540 case Instruction::Select: {
7541 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
7542 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
7543 Res = SelectInst::Create(I->getOperand(0), True, False);
7544 break;
7545 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007546 case Instruction::PHI: {
7547 PHINode *OPN = cast<PHINode>(I);
7548 PHINode *NPN = PHINode::Create(Ty);
7549 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
7550 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
7551 NPN->addIncoming(V, OPN->getIncomingBlock(i));
7552 }
7553 Res = NPN;
7554 break;
7555 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007556 default:
7557 // TODO: Can handle more cases here.
7558 assert(0 && "Unreachable!");
7559 break;
7560 }
7561
Chris Lattner4200c2062008-06-18 04:00:49 +00007562 Res->takeName(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007563 return InsertNewInstBefore(Res, *I);
7564}
7565
7566/// @brief Implement the transforms common to all CastInst visitors.
7567Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
7568 Value *Src = CI.getOperand(0);
7569
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007570 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
7571 // eliminate it now.
7572 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
7573 if (Instruction::CastOps opc =
7574 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
7575 // The first cast (CSrc) is eliminable so we need to fix up or replace
7576 // the second cast (CI). CSrc will then have a good chance of being dead.
Gabor Greifa645dd32008-05-16 19:29:10 +00007577 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007578 }
7579 }
7580
7581 // If we are casting a select then fold the cast into the select
7582 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
7583 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
7584 return NV;
7585
7586 // If we are casting a PHI then fold the cast into the PHI
7587 if (isa<PHINode>(Src))
7588 if (Instruction *NV = FoldOpIntoPhi(CI))
7589 return NV;
7590
7591 return 0;
7592}
7593
7594/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
7595Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
7596 Value *Src = CI.getOperand(0);
7597
7598 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
7599 // If casting the result of a getelementptr instruction with no offset, turn
7600 // this into a cast of the original pointer!
7601 if (GEP->hasAllZeroIndices()) {
7602 // Changing the cast operand is usually not a good idea but it is safe
7603 // here because the pointer operand is being replaced with another
7604 // pointer operand so the opcode doesn't need to change.
7605 AddToWorkList(GEP);
7606 CI.setOperand(0, GEP->getOperand(0));
7607 return &CI;
7608 }
7609
7610 // If the GEP has a single use, and the base pointer is a bitcast, and the
7611 // GEP computes a constant offset, see if we can convert these three
7612 // instructions into fewer. This typically happens with unions and other
7613 // non-type-safe code.
7614 if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
7615 if (GEP->hasAllConstantIndices()) {
7616 // We are guaranteed to get a constant from EmitGEPOffset.
7617 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this));
7618 int64_t Offset = OffsetV->getSExtValue();
7619
7620 // Get the base pointer input of the bitcast, and the type it points to.
7621 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
7622 const Type *GEPIdxTy =
7623 cast<PointerType>(OrigBase->getType())->getElementType();
7624 if (GEPIdxTy->isSized()) {
7625 SmallVector<Value*, 8> NewIndices;
7626
7627 // Start with the index over the outer type. Note that the type size
7628 // might be zero (even if the offset isn't zero) if the indexed type
7629 // is something like [0 x {int, int}]
7630 const Type *IntPtrTy = TD->getIntPtrType();
7631 int64_t FirstIdx = 0;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007632 if (int64_t TySize = TD->getABITypeSize(GEPIdxTy)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007633 FirstIdx = Offset/TySize;
7634 Offset %= TySize;
7635
7636 // Handle silly modulus not returning values values [0..TySize).
7637 if (Offset < 0) {
7638 --FirstIdx;
7639 Offset += TySize;
7640 assert(Offset >= 0);
7641 }
7642 assert((uint64_t)Offset < (uint64_t)TySize &&"Out of range offset");
7643 }
7644
7645 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
7646
7647 // Index into the types. If we fail, set OrigBase to null.
7648 while (Offset) {
7649 if (const StructType *STy = dyn_cast<StructType>(GEPIdxTy)) {
7650 const StructLayout *SL = TD->getStructLayout(STy);
7651 if (Offset < (int64_t)SL->getSizeInBytes()) {
7652 unsigned Elt = SL->getElementContainingOffset(Offset);
7653 NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt));
7654
7655 Offset -= SL->getElementOffset(Elt);
7656 GEPIdxTy = STy->getElementType(Elt);
7657 } else {
7658 // Otherwise, we can't index into this, bail out.
7659 Offset = 0;
7660 OrigBase = 0;
7661 }
7662 } else if (isa<ArrayType>(GEPIdxTy) || isa<VectorType>(GEPIdxTy)) {
7663 const SequentialType *STy = cast<SequentialType>(GEPIdxTy);
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007664 if (uint64_t EltSize = TD->getABITypeSize(STy->getElementType())){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007665 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
7666 Offset %= EltSize;
7667 } else {
7668 NewIndices.push_back(ConstantInt::get(IntPtrTy, 0));
7669 }
7670 GEPIdxTy = STy->getElementType();
7671 } else {
7672 // Otherwise, we can't index into this, bail out.
7673 Offset = 0;
7674 OrigBase = 0;
7675 }
7676 }
7677 if (OrigBase) {
7678 // If we were able to index down into an element, create the GEP
7679 // and bitcast the result. This eliminates one bitcast, potentially
7680 // two.
Gabor Greifd6da1d02008-04-06 20:25:17 +00007681 Instruction *NGEP = GetElementPtrInst::Create(OrigBase,
7682 NewIndices.begin(),
7683 NewIndices.end(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007684 InsertNewInstBefore(NGEP, CI);
7685 NGEP->takeName(GEP);
7686
7687 if (isa<BitCastInst>(CI))
7688 return new BitCastInst(NGEP, CI.getType());
7689 assert(isa<PtrToIntInst>(CI));
7690 return new PtrToIntInst(NGEP, CI.getType());
7691 }
7692 }
7693 }
7694 }
7695 }
7696
7697 return commonCastTransforms(CI);
7698}
7699
7700
7701
7702/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
7703/// integer types. This function implements the common transforms for all those
7704/// cases.
7705/// @brief Implement the transforms common to CastInst with integer operands
7706Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
7707 if (Instruction *Result = commonCastTransforms(CI))
7708 return Result;
7709
7710 Value *Src = CI.getOperand(0);
7711 const Type *SrcTy = Src->getType();
7712 const Type *DestTy = CI.getType();
7713 uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits();
7714 uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits();
7715
7716 // See if we can simplify any instructions used by the LHS whose sole
7717 // purpose is to compute bits we don't care about.
7718 APInt KnownZero(DestBitSize, 0), KnownOne(DestBitSize, 0);
7719 if (SimplifyDemandedBits(&CI, APInt::getAllOnesValue(DestBitSize),
7720 KnownZero, KnownOne))
7721 return &CI;
7722
7723 // If the source isn't an instruction or has more than one use then we
7724 // can't do anything more.
7725 Instruction *SrcI = dyn_cast<Instruction>(Src);
7726 if (!SrcI || !Src->hasOneUse())
7727 return 0;
7728
7729 // Attempt to propagate the cast into the instruction for int->int casts.
7730 int NumCastsRemoved = 0;
7731 if (!isa<BitCastInst>(CI) &&
7732 CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy),
Chris Lattneref70bb82007-08-02 06:11:14 +00007733 CI.getOpcode(), NumCastsRemoved)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007734 // If this cast is a truncate, evaluting in a different type always
Chris Lattneref70bb82007-08-02 06:11:14 +00007735 // eliminates the cast, so it is always a win. If this is a zero-extension,
7736 // we need to do an AND to maintain the clear top-part of the computation,
7737 // so we require that the input have eliminated at least one cast. If this
7738 // is a sign extension, we insert two new casts (to do the extension) so we
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007739 // require that two casts have been eliminated.
7740 bool DoXForm;
7741 switch (CI.getOpcode()) {
7742 default:
7743 // All the others use floating point so we shouldn't actually
7744 // get here because of the check above.
7745 assert(0 && "Unknown cast type");
7746 case Instruction::Trunc:
7747 DoXForm = true;
7748 break;
7749 case Instruction::ZExt:
7750 DoXForm = NumCastsRemoved >= 1;
7751 break;
7752 case Instruction::SExt:
7753 DoXForm = NumCastsRemoved >= 2;
7754 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007755 }
7756
7757 if (DoXForm) {
7758 Value *Res = EvaluateInDifferentType(SrcI, DestTy,
7759 CI.getOpcode() == Instruction::SExt);
7760 assert(Res->getType() == DestTy);
7761 switch (CI.getOpcode()) {
7762 default: assert(0 && "Unknown cast type!");
7763 case Instruction::Trunc:
7764 case Instruction::BitCast:
7765 // Just replace this cast with the result.
7766 return ReplaceInstUsesWith(CI, Res);
7767 case Instruction::ZExt: {
7768 // We need to emit an AND to clear the high bits.
7769 assert(SrcBitSize < DestBitSize && "Not a zext?");
7770 Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize,
7771 SrcBitSize));
Gabor Greifa645dd32008-05-16 19:29:10 +00007772 return BinaryOperator::CreateAnd(Res, C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007773 }
7774 case Instruction::SExt:
7775 // We need to emit a cast to truncate, then a cast to sext.
Gabor Greifa645dd32008-05-16 19:29:10 +00007776 return CastInst::Create(Instruction::SExt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007777 InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
7778 CI), DestTy);
7779 }
7780 }
7781 }
7782
7783 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
7784 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
7785
7786 switch (SrcI->getOpcode()) {
7787 case Instruction::Add:
7788 case Instruction::Mul:
7789 case Instruction::And:
7790 case Instruction::Or:
7791 case Instruction::Xor:
7792 // If we are discarding information, rewrite.
7793 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
7794 // Don't insert two casts if they cannot be eliminated. We allow
7795 // two casts to be inserted if the sizes are the same. This could
7796 // only be converting signedness, which is a noop.
7797 if (DestBitSize == SrcBitSize ||
7798 !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
7799 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7800 Instruction::CastOps opcode = CI.getOpcode();
7801 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
7802 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007803 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007804 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7805 }
7806 }
7807
7808 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
7809 if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
7810 SrcI->getOpcode() == Instruction::Xor &&
7811 Op1 == ConstantInt::getTrue() &&
7812 (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
7813 Value *New = InsertOperandCastBefore(Instruction::ZExt, Op0, DestTy, &CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007814 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007815 }
7816 break;
7817 case Instruction::SDiv:
7818 case Instruction::UDiv:
7819 case Instruction::SRem:
7820 case Instruction::URem:
7821 // If we are just changing the sign, rewrite.
7822 if (DestBitSize == SrcBitSize) {
7823 // Don't insert two casts if they cannot be eliminated. We allow
7824 // two casts to be inserted if the sizes are the same. This could
7825 // only be converting signedness, which is a noop.
7826 if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
7827 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7828 Value *Op0c = InsertOperandCastBefore(Instruction::BitCast,
7829 Op0, DestTy, SrcI);
7830 Value *Op1c = InsertOperandCastBefore(Instruction::BitCast,
7831 Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007832 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007833 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7834 }
7835 }
7836 break;
7837
7838 case Instruction::Shl:
7839 // Allow changing the sign of the source operand. Do not allow
7840 // changing the size of the shift, UNLESS the shift amount is a
7841 // constant. We must not change variable sized shifts to a smaller
7842 // size, because it is undefined to shift more bits out than exist
7843 // in the value.
7844 if (DestBitSize == SrcBitSize ||
7845 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
7846 Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
7847 Instruction::BitCast : Instruction::Trunc);
7848 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
7849 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007850 return BinaryOperator::CreateShl(Op0c, Op1c);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007851 }
7852 break;
7853 case Instruction::AShr:
7854 // If this is a signed shr, and if all bits shifted in are about to be
7855 // truncated off, turn it into an unsigned shr to allow greater
7856 // simplifications.
7857 if (DestBitSize < SrcBitSize &&
7858 isa<ConstantInt>(Op1)) {
7859 uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize);
7860 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
7861 // Insert the new logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00007862 return BinaryOperator::CreateLShr(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007863 }
7864 }
7865 break;
7866 }
7867 return 0;
7868}
7869
7870Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
7871 if (Instruction *Result = commonIntCastTransforms(CI))
7872 return Result;
7873
7874 Value *Src = CI.getOperand(0);
7875 const Type *Ty = CI.getType();
7876 uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits();
7877 uint32_t SrcBitWidth = cast<IntegerType>(Src->getType())->getBitWidth();
7878
7879 if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
7880 switch (SrcI->getOpcode()) {
7881 default: break;
7882 case Instruction::LShr:
7883 // We can shrink lshr to something smaller if we know the bits shifted in
7884 // are already zeros.
7885 if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
7886 uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
7887
7888 // Get a mask for the bits shifting in.
7889 APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
7890 Value* SrcIOp0 = SrcI->getOperand(0);
7891 if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
7892 if (ShAmt >= DestBitWidth) // All zeros.
7893 return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
7894
7895 // Okay, we can shrink this. Truncate the input, then return a new
7896 // shift.
7897 Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
7898 Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
7899 Ty, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007900 return BinaryOperator::CreateLShr(V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007901 }
7902 } else { // This is a variable shr.
7903
7904 // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is
7905 // more LLVM instructions, but allows '1 << Y' to be hoisted if
7906 // loop-invariant and CSE'd.
7907 if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
7908 Value *One = ConstantInt::get(SrcI->getType(), 1);
7909
7910 Value *V = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00007911 BinaryOperator::CreateShl(One, SrcI->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007912 "tmp"), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007913 V = InsertNewInstBefore(BinaryOperator::CreateAnd(V,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007914 SrcI->getOperand(0),
7915 "tmp"), CI);
7916 Value *Zero = Constant::getNullValue(V->getType());
7917 return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
7918 }
7919 }
7920 break;
7921 }
7922 }
7923
7924 return 0;
7925}
7926
Evan Chenge3779cf2008-03-24 00:21:34 +00007927/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
7928/// in order to eliminate the icmp.
7929Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
7930 bool DoXform) {
7931 // If we are just checking for a icmp eq of a single bit and zext'ing it
7932 // to an integer, then shift the bit to the appropriate place and then
7933 // cast to integer to avoid the comparison.
7934 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
7935 const APInt &Op1CV = Op1C->getValue();
7936
7937 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
7938 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
7939 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
7940 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
7941 if (!DoXform) return ICI;
7942
7943 Value *In = ICI->getOperand(0);
7944 Value *Sh = ConstantInt::get(In->getType(),
7945 In->getType()->getPrimitiveSizeInBits()-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007946 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In, Sh,
Evan Chenge3779cf2008-03-24 00:21:34 +00007947 In->getName()+".lobit"),
7948 CI);
7949 if (In->getType() != CI.getType())
Gabor Greifa645dd32008-05-16 19:29:10 +00007950 In = CastInst::CreateIntegerCast(In, CI.getType(),
Evan Chenge3779cf2008-03-24 00:21:34 +00007951 false/*ZExt*/, "tmp", &CI);
7952
7953 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
7954 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00007955 In = InsertNewInstBefore(BinaryOperator::CreateXor(In, One,
Evan Chenge3779cf2008-03-24 00:21:34 +00007956 In->getName()+".not"),
7957 CI);
7958 }
7959
7960 return ReplaceInstUsesWith(CI, In);
7961 }
7962
7963
7964
7965 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
7966 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
7967 // zext (X == 1) to i32 --> X iff X has only the low bit set.
7968 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
7969 // zext (X != 0) to i32 --> X iff X has only the low bit set.
7970 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
7971 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
7972 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
7973 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
7974 // This only works for EQ and NE
7975 ICI->isEquality()) {
7976 // If Op1C some other power of two, convert:
7977 uint32_t BitWidth = Op1C->getType()->getBitWidth();
7978 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
7979 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
7980 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
7981
7982 APInt KnownZeroMask(~KnownZero);
7983 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
7984 if (!DoXform) return ICI;
7985
7986 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
7987 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
7988 // (X&4) == 2 --> false
7989 // (X&4) != 2 --> true
7990 Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
7991 Res = ConstantExpr::getZExt(Res, CI.getType());
7992 return ReplaceInstUsesWith(CI, Res);
7993 }
7994
7995 uint32_t ShiftAmt = KnownZeroMask.logBase2();
7996 Value *In = ICI->getOperand(0);
7997 if (ShiftAmt) {
7998 // Perform a logical shr by shiftamt.
7999 // Insert the shift to put the result in the low bit.
Gabor Greifa645dd32008-05-16 19:29:10 +00008000 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In,
Evan Chenge3779cf2008-03-24 00:21:34 +00008001 ConstantInt::get(In->getType(), ShiftAmt),
8002 In->getName()+".lobit"), CI);
8003 }
8004
8005 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
8006 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008007 In = BinaryOperator::CreateXor(In, One, "tmp");
Evan Chenge3779cf2008-03-24 00:21:34 +00008008 InsertNewInstBefore(cast<Instruction>(In), CI);
8009 }
8010
8011 if (CI.getType() == In->getType())
8012 return ReplaceInstUsesWith(CI, In);
8013 else
Gabor Greifa645dd32008-05-16 19:29:10 +00008014 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
Evan Chenge3779cf2008-03-24 00:21:34 +00008015 }
8016 }
8017 }
8018
8019 return 0;
8020}
8021
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008022Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
8023 // If one of the common conversion will work ..
8024 if (Instruction *Result = commonIntCastTransforms(CI))
8025 return Result;
8026
8027 Value *Src = CI.getOperand(0);
8028
8029 // If this is a cast of a cast
8030 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
8031 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
8032 // types and if the sizes are just right we can convert this into a logical
8033 // 'and' which will be much cheaper than the pair of casts.
8034 if (isa<TruncInst>(CSrc)) {
8035 // Get the sizes of the types involved
8036 Value *A = CSrc->getOperand(0);
8037 uint32_t SrcSize = A->getType()->getPrimitiveSizeInBits();
8038 uint32_t MidSize = CSrc->getType()->getPrimitiveSizeInBits();
8039 uint32_t DstSize = CI.getType()->getPrimitiveSizeInBits();
8040 // If we're actually extending zero bits and the trunc is a no-op
8041 if (MidSize < DstSize && SrcSize == DstSize) {
8042 // Replace both of the casts with an And of the type mask.
8043 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
8044 Constant *AndConst = ConstantInt::get(AndValue);
8045 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +00008046 BinaryOperator::CreateAnd(CSrc->getOperand(0), AndConst);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008047 // Unfortunately, if the type changed, we need to cast it back.
8048 if (And->getType() != CI.getType()) {
8049 And->setName(CSrc->getName()+".mask");
8050 InsertNewInstBefore(And, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008051 And = CastInst::CreateIntegerCast(And, CI.getType(), false/*ZExt*/);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008052 }
8053 return And;
8054 }
8055 }
8056 }
8057
Evan Chenge3779cf2008-03-24 00:21:34 +00008058 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
8059 return transformZExtICmp(ICI, CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008060
Evan Chenge3779cf2008-03-24 00:21:34 +00008061 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
8062 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
8063 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
8064 // of the (zext icmp) will be transformed.
8065 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
8066 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
8067 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
8068 (transformZExtICmp(LHS, CI, false) ||
8069 transformZExtICmp(RHS, CI, false))) {
8070 Value *LCast = InsertCastBefore(Instruction::ZExt, LHS, CI.getType(), CI);
8071 Value *RCast = InsertCastBefore(Instruction::ZExt, RHS, CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008072 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008073 }
Evan Chenge3779cf2008-03-24 00:21:34 +00008074 }
8075
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008076 return 0;
8077}
8078
8079Instruction *InstCombiner::visitSExt(SExtInst &CI) {
8080 if (Instruction *I = commonIntCastTransforms(CI))
8081 return I;
8082
8083 Value *Src = CI.getOperand(0);
8084
Dan Gohman35b76162008-10-30 20:40:10 +00008085 // Canonicalize sign-extend from i1 to a select.
8086 if (Src->getType() == Type::Int1Ty)
8087 return SelectInst::Create(Src,
8088 ConstantInt::getAllOnesValue(CI.getType()),
8089 Constant::getNullValue(CI.getType()));
Dan Gohmanf0f12022008-05-20 21:01:12 +00008090
8091 // See if the value being truncated is already sign extended. If so, just
8092 // eliminate the trunc/sext pair.
8093 if (getOpcode(Src) == Instruction::Trunc) {
8094 Value *Op = cast<User>(Src)->getOperand(0);
8095 unsigned OpBits = cast<IntegerType>(Op->getType())->getBitWidth();
8096 unsigned MidBits = cast<IntegerType>(Src->getType())->getBitWidth();
8097 unsigned DestBits = cast<IntegerType>(CI.getType())->getBitWidth();
8098 unsigned NumSignBits = ComputeNumSignBits(Op);
8099
8100 if (OpBits == DestBits) {
8101 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
8102 // bits, it is already ready.
8103 if (NumSignBits > DestBits-MidBits)
8104 return ReplaceInstUsesWith(CI, Op);
8105 } else if (OpBits < DestBits) {
8106 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
8107 // bits, just sext from i32.
8108 if (NumSignBits > OpBits-MidBits)
8109 return new SExtInst(Op, CI.getType(), "tmp");
8110 } else {
8111 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
8112 // bits, just truncate to i32.
8113 if (NumSignBits > OpBits-MidBits)
8114 return new TruncInst(Op, CI.getType(), "tmp");
8115 }
8116 }
Chris Lattner8a2d0592008-08-06 07:35:52 +00008117
8118 // If the input is a shl/ashr pair of a same constant, then this is a sign
8119 // extension from a smaller value. If we could trust arbitrary bitwidth
8120 // integers, we could turn this into a truncate to the smaller bit and then
8121 // use a sext for the whole extension. Since we don't, look deeper and check
8122 // for a truncate. If the source and dest are the same type, eliminate the
8123 // trunc and extend and just do shifts. For example, turn:
8124 // %a = trunc i32 %i to i8
8125 // %b = shl i8 %a, 6
8126 // %c = ashr i8 %b, 6
8127 // %d = sext i8 %c to i32
8128 // into:
8129 // %a = shl i32 %i, 30
8130 // %d = ashr i32 %a, 30
8131 Value *A = 0;
8132 ConstantInt *BA = 0, *CA = 0;
8133 if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)),
8134 m_ConstantInt(CA))) &&
8135 BA == CA && isa<TruncInst>(A)) {
8136 Value *I = cast<TruncInst>(A)->getOperand(0);
8137 if (I->getType() == CI.getType()) {
8138 unsigned MidSize = Src->getType()->getPrimitiveSizeInBits();
8139 unsigned SrcDstSize = CI.getType()->getPrimitiveSizeInBits();
8140 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
8141 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
8142 I = InsertNewInstBefore(BinaryOperator::CreateShl(I, ShAmtV,
8143 CI.getName()), CI);
8144 return BinaryOperator::CreateAShr(I, ShAmtV);
8145 }
8146 }
8147
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008148 return 0;
8149}
8150
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008151/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
8152/// in the specified FP type without changing its value.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008153static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
Dale Johannesen6e547b42008-10-09 23:00:39 +00008154 bool losesInfo;
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008155 APFloat F = CFP->getValueAPF();
Dale Johannesen6e547b42008-10-09 23:00:39 +00008156 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
8157 if (!losesInfo)
Chris Lattner5e0610f2008-04-20 00:41:09 +00008158 return ConstantFP::get(F);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008159 return 0;
8160}
8161
8162/// LookThroughFPExtensions - If this is an fp extension instruction, look
8163/// through it until we get the source value.
8164static Value *LookThroughFPExtensions(Value *V) {
8165 if (Instruction *I = dyn_cast<Instruction>(V))
8166 if (I->getOpcode() == Instruction::FPExt)
8167 return LookThroughFPExtensions(I->getOperand(0));
8168
8169 // If this value is a constant, return the constant in the smallest FP type
8170 // that can accurately represent it. This allows us to turn
8171 // (float)((double)X+2.0) into x+2.0f.
8172 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
8173 if (CFP->getType() == Type::PPC_FP128Ty)
8174 return V; // No constant folding of this.
8175 // See if the value can be truncated to float and then reextended.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008176 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008177 return V;
8178 if (CFP->getType() == Type::DoubleTy)
8179 return V; // Won't shrink.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008180 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008181 return V;
8182 // Don't try to shrink to various long double types.
8183 }
8184
8185 return V;
8186}
8187
8188Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
8189 if (Instruction *I = commonCastTransforms(CI))
8190 return I;
8191
8192 // If we have fptrunc(add (fpextend x), (fpextend y)), where x and y are
8193 // smaller than the destination type, we can eliminate the truncate by doing
8194 // the add as the smaller type. This applies to add/sub/mul/div as well as
8195 // many builtins (sqrt, etc).
8196 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
8197 if (OpI && OpI->hasOneUse()) {
8198 switch (OpI->getOpcode()) {
8199 default: break;
8200 case Instruction::Add:
8201 case Instruction::Sub:
8202 case Instruction::Mul:
8203 case Instruction::FDiv:
8204 case Instruction::FRem:
8205 const Type *SrcTy = OpI->getType();
8206 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
8207 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
8208 if (LHSTrunc->getType() != SrcTy &&
8209 RHSTrunc->getType() != SrcTy) {
8210 unsigned DstSize = CI.getType()->getPrimitiveSizeInBits();
8211 // If the source types were both smaller than the destination type of
8212 // the cast, do this xform.
8213 if (LHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize &&
8214 RHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize) {
8215 LHSTrunc = InsertCastBefore(Instruction::FPExt, LHSTrunc,
8216 CI.getType(), CI);
8217 RHSTrunc = InsertCastBefore(Instruction::FPExt, RHSTrunc,
8218 CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008219 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008220 }
8221 }
8222 break;
8223 }
8224 }
8225 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008226}
8227
8228Instruction *InstCombiner::visitFPExt(CastInst &CI) {
8229 return commonCastTransforms(CI);
8230}
8231
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008232Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
Chris Lattner5f4d6912008-08-06 05:13:06 +00008233 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8234 if (OpI == 0)
8235 return commonCastTransforms(FI);
8236
8237 // fptoui(uitofp(X)) --> X
8238 // fptoui(sitofp(X)) --> X
8239 // This is safe if the intermediate type has enough bits in its mantissa to
8240 // accurately represent all values of X. For example, do not do this with
8241 // i64->float->i64. This is also safe for sitofp case, because any negative
8242 // 'X' value would cause an undefined result for the fptoui.
8243 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8244 OpI->getOperand(0)->getType() == FI.getType() &&
8245 (int)FI.getType()->getPrimitiveSizeInBits() < /*extra bit for sign */
8246 OpI->getType()->getFPMantissaWidth())
8247 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008248
8249 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008250}
8251
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008252Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
Chris Lattner5f4d6912008-08-06 05:13:06 +00008253 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8254 if (OpI == 0)
8255 return commonCastTransforms(FI);
8256
8257 // fptosi(sitofp(X)) --> X
8258 // fptosi(uitofp(X)) --> X
8259 // This is safe if the intermediate type has enough bits in its mantissa to
8260 // accurately represent all values of X. For example, do not do this with
8261 // i64->float->i64. This is also safe for sitofp case, because any negative
8262 // 'X' value would cause an undefined result for the fptoui.
8263 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8264 OpI->getOperand(0)->getType() == FI.getType() &&
8265 (int)FI.getType()->getPrimitiveSizeInBits() <=
8266 OpI->getType()->getFPMantissaWidth())
8267 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008268
8269 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008270}
8271
8272Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
8273 return commonCastTransforms(CI);
8274}
8275
8276Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
8277 return commonCastTransforms(CI);
8278}
8279
8280Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
8281 return commonPointerCastTransforms(CI);
8282}
8283
Chris Lattner7c1626482008-01-08 07:23:51 +00008284Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
8285 if (Instruction *I = commonCastTransforms(CI))
8286 return I;
8287
8288 const Type *DestPointee = cast<PointerType>(CI.getType())->getElementType();
8289 if (!DestPointee->isSized()) return 0;
8290
8291 // If this is inttoptr(add (ptrtoint x), cst), try to turn this into a GEP.
8292 ConstantInt *Cst;
8293 Value *X;
8294 if (match(CI.getOperand(0), m_Add(m_Cast<PtrToIntInst>(m_Value(X)),
8295 m_ConstantInt(Cst)))) {
8296 // If the source and destination operands have the same type, see if this
8297 // is a single-index GEP.
8298 if (X->getType() == CI.getType()) {
8299 // Get the size of the pointee type.
Bill Wendling9594af02008-03-14 05:12:19 +00008300 uint64_t Size = TD->getABITypeSize(DestPointee);
Chris Lattner7c1626482008-01-08 07:23:51 +00008301
8302 // Convert the constant to intptr type.
8303 APInt Offset = Cst->getValue();
8304 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8305
8306 // If Offset is evenly divisible by Size, we can do this xform.
8307 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8308 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
Gabor Greifd6da1d02008-04-06 20:25:17 +00008309 return GetElementPtrInst::Create(X, ConstantInt::get(Offset));
Chris Lattner7c1626482008-01-08 07:23:51 +00008310 }
8311 }
8312 // TODO: Could handle other cases, e.g. where add is indexing into field of
8313 // struct etc.
8314 } else if (CI.getOperand(0)->hasOneUse() &&
8315 match(CI.getOperand(0), m_Add(m_Value(X), m_ConstantInt(Cst)))) {
8316 // Otherwise, if this is inttoptr(add x, cst), try to turn this into an
8317 // "inttoptr+GEP" instead of "add+intptr".
8318
8319 // Get the size of the pointee type.
8320 uint64_t Size = TD->getABITypeSize(DestPointee);
8321
8322 // Convert the constant to intptr type.
8323 APInt Offset = Cst->getValue();
8324 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8325
8326 // If Offset is evenly divisible by Size, we can do this xform.
8327 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8328 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
8329
8330 Instruction *P = InsertNewInstBefore(new IntToPtrInst(X, CI.getType(),
8331 "tmp"), CI);
Gabor Greifd6da1d02008-04-06 20:25:17 +00008332 return GetElementPtrInst::Create(P, ConstantInt::get(Offset), "tmp");
Chris Lattner7c1626482008-01-08 07:23:51 +00008333 }
8334 }
8335 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008336}
8337
8338Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
8339 // If the operands are integer typed then apply the integer transforms,
8340 // otherwise just apply the common ones.
8341 Value *Src = CI.getOperand(0);
8342 const Type *SrcTy = Src->getType();
8343 const Type *DestTy = CI.getType();
8344
8345 if (SrcTy->isInteger() && DestTy->isInteger()) {
8346 if (Instruction *Result = commonIntCastTransforms(CI))
8347 return Result;
8348 } else if (isa<PointerType>(SrcTy)) {
8349 if (Instruction *I = commonPointerCastTransforms(CI))
8350 return I;
8351 } else {
8352 if (Instruction *Result = commonCastTransforms(CI))
8353 return Result;
8354 }
8355
8356
8357 // Get rid of casts from one type to the same type. These are useless and can
8358 // be replaced by the operand.
8359 if (DestTy == Src->getType())
8360 return ReplaceInstUsesWith(CI, Src);
8361
8362 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
8363 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
8364 const Type *DstElTy = DstPTy->getElementType();
8365 const Type *SrcElTy = SrcPTy->getElementType();
8366
Nate Begemandf5b3612008-03-31 00:22:16 +00008367 // If the address spaces don't match, don't eliminate the bitcast, which is
8368 // required for changing types.
8369 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
8370 return 0;
8371
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008372 // If we are casting a malloc or alloca to a pointer to a type of the same
8373 // size, rewrite the allocation instruction to allocate the "right" type.
8374 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
8375 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
8376 return V;
8377
8378 // If the source and destination are pointers, and this cast is equivalent
8379 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
8380 // This can enhance SROA and other transforms that want type-safe pointers.
8381 Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
8382 unsigned NumZeros = 0;
8383 while (SrcElTy != DstElTy &&
8384 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
8385 SrcElTy->getNumContainedTypes() /* not "{}" */) {
8386 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
8387 ++NumZeros;
8388 }
8389
8390 // If we found a path from the src to dest, create the getelementptr now.
8391 if (SrcElTy == DstElTy) {
8392 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
Gabor Greifd6da1d02008-04-06 20:25:17 +00008393 return GetElementPtrInst::Create(Src, Idxs.begin(), Idxs.end(), "",
8394 ((Instruction*) NULL));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008395 }
8396 }
8397
8398 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
8399 if (SVI->hasOneUse()) {
8400 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
8401 // a bitconvert to a vector with the same # elts.
8402 if (isa<VectorType>(DestTy) &&
Mon P Wangbff5d9c2008-11-10 04:46:22 +00008403 cast<VectorType>(DestTy)->getNumElements() ==
8404 SVI->getType()->getNumElements() &&
8405 SVI->getType()->getNumElements() ==
8406 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008407 CastInst *Tmp;
8408 // If either of the operands is a cast from CI.getType(), then
8409 // evaluating the shuffle in the casted destination's type will allow
8410 // us to eliminate at least one cast.
8411 if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
8412 Tmp->getOperand(0)->getType() == DestTy) ||
8413 ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
8414 Tmp->getOperand(0)->getType() == DestTy)) {
8415 Value *LHS = InsertOperandCastBefore(Instruction::BitCast,
8416 SVI->getOperand(0), DestTy, &CI);
8417 Value *RHS = InsertOperandCastBefore(Instruction::BitCast,
8418 SVI->getOperand(1), DestTy, &CI);
8419 // Return a new shuffle vector. Use the same element ID's, as we
8420 // know the vector types match #elts.
8421 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
8422 }
8423 }
8424 }
8425 }
8426 return 0;
8427}
8428
8429/// GetSelectFoldableOperands - We want to turn code that looks like this:
8430/// %C = or %A, %B
8431/// %D = select %cond, %C, %A
8432/// into:
8433/// %C = select %cond, %B, 0
8434/// %D = or %A, %C
8435///
8436/// Assuming that the specified instruction is an operand to the select, return
8437/// a bitmask indicating which operands of this instruction are foldable if they
8438/// equal the other incoming value of the select.
8439///
8440static unsigned GetSelectFoldableOperands(Instruction *I) {
8441 switch (I->getOpcode()) {
8442 case Instruction::Add:
8443 case Instruction::Mul:
8444 case Instruction::And:
8445 case Instruction::Or:
8446 case Instruction::Xor:
8447 return 3; // Can fold through either operand.
8448 case Instruction::Sub: // Can only fold on the amount subtracted.
8449 case Instruction::Shl: // Can only fold on the shift amount.
8450 case Instruction::LShr:
8451 case Instruction::AShr:
8452 return 1;
8453 default:
8454 return 0; // Cannot fold
8455 }
8456}
8457
8458/// GetSelectFoldableConstant - For the same transformation as the previous
8459/// function, return the identity constant that goes into the select.
8460static Constant *GetSelectFoldableConstant(Instruction *I) {
8461 switch (I->getOpcode()) {
8462 default: assert(0 && "This cannot happen!"); abort();
8463 case Instruction::Add:
8464 case Instruction::Sub:
8465 case Instruction::Or:
8466 case Instruction::Xor:
8467 case Instruction::Shl:
8468 case Instruction::LShr:
8469 case Instruction::AShr:
8470 return Constant::getNullValue(I->getType());
8471 case Instruction::And:
8472 return Constant::getAllOnesValue(I->getType());
8473 case Instruction::Mul:
8474 return ConstantInt::get(I->getType(), 1);
8475 }
8476}
8477
8478/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
8479/// have the same opcode and only one use each. Try to simplify this.
8480Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
8481 Instruction *FI) {
8482 if (TI->getNumOperands() == 1) {
8483 // If this is a non-volatile load or a cast from the same type,
8484 // merge.
8485 if (TI->isCast()) {
8486 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
8487 return 0;
8488 } else {
8489 return 0; // unknown unary op.
8490 }
8491
8492 // Fold this by inserting a select from the input values.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008493 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
8494 FI->getOperand(0), SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008495 InsertNewInstBefore(NewSI, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008496 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008497 TI->getType());
8498 }
8499
8500 // Only handle binary operators here.
8501 if (!isa<BinaryOperator>(TI))
8502 return 0;
8503
8504 // Figure out if the operations have any operands in common.
8505 Value *MatchOp, *OtherOpT, *OtherOpF;
8506 bool MatchIsOpZero;
8507 if (TI->getOperand(0) == FI->getOperand(0)) {
8508 MatchOp = TI->getOperand(0);
8509 OtherOpT = TI->getOperand(1);
8510 OtherOpF = FI->getOperand(1);
8511 MatchIsOpZero = true;
8512 } else if (TI->getOperand(1) == FI->getOperand(1)) {
8513 MatchOp = TI->getOperand(1);
8514 OtherOpT = TI->getOperand(0);
8515 OtherOpF = FI->getOperand(0);
8516 MatchIsOpZero = false;
8517 } else if (!TI->isCommutative()) {
8518 return 0;
8519 } else if (TI->getOperand(0) == FI->getOperand(1)) {
8520 MatchOp = TI->getOperand(0);
8521 OtherOpT = TI->getOperand(1);
8522 OtherOpF = FI->getOperand(0);
8523 MatchIsOpZero = true;
8524 } else if (TI->getOperand(1) == FI->getOperand(0)) {
8525 MatchOp = TI->getOperand(1);
8526 OtherOpT = TI->getOperand(0);
8527 OtherOpF = FI->getOperand(1);
8528 MatchIsOpZero = true;
8529 } else {
8530 return 0;
8531 }
8532
8533 // If we reach here, they do have operations in common.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008534 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
8535 OtherOpF, SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008536 InsertNewInstBefore(NewSI, SI);
8537
8538 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
8539 if (MatchIsOpZero)
Gabor Greifa645dd32008-05-16 19:29:10 +00008540 return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008541 else
Gabor Greifa645dd32008-05-16 19:29:10 +00008542 return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008543 }
8544 assert(0 && "Shouldn't get here");
8545 return 0;
8546}
8547
Dan Gohman58c09632008-09-16 18:46:06 +00008548/// visitSelectInstWithICmp - Visit a SelectInst that has an
8549/// ICmpInst as its first operand.
8550///
8551Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
8552 ICmpInst *ICI) {
8553 bool Changed = false;
8554 ICmpInst::Predicate Pred = ICI->getPredicate();
8555 Value *CmpLHS = ICI->getOperand(0);
8556 Value *CmpRHS = ICI->getOperand(1);
8557 Value *TrueVal = SI.getTrueValue();
8558 Value *FalseVal = SI.getFalseValue();
8559
8560 // Check cases where the comparison is with a constant that
8561 // can be adjusted to fit the min/max idiom. We may edit ICI in
8562 // place here, so make sure the select is the only user.
8563 if (ICI->hasOneUse())
Dan Gohman35b76162008-10-30 20:40:10 +00008564 if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
Dan Gohman58c09632008-09-16 18:46:06 +00008565 switch (Pred) {
8566 default: break;
8567 case ICmpInst::ICMP_ULT:
8568 case ICmpInst::ICMP_SLT: {
8569 // X < MIN ? T : F --> F
8570 if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
8571 return ReplaceInstUsesWith(SI, FalseVal);
8572 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
8573 Constant *AdjustedRHS = SubOne(CI);
8574 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8575 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8576 Pred = ICmpInst::getSwappedPredicate(Pred);
8577 CmpRHS = AdjustedRHS;
8578 std::swap(FalseVal, TrueVal);
8579 ICI->setPredicate(Pred);
8580 ICI->setOperand(1, CmpRHS);
8581 SI.setOperand(1, TrueVal);
8582 SI.setOperand(2, FalseVal);
8583 Changed = true;
8584 }
8585 break;
8586 }
8587 case ICmpInst::ICMP_UGT:
8588 case ICmpInst::ICMP_SGT: {
8589 // X > MAX ? T : F --> F
8590 if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
8591 return ReplaceInstUsesWith(SI, FalseVal);
8592 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
8593 Constant *AdjustedRHS = AddOne(CI);
8594 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8595 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8596 Pred = ICmpInst::getSwappedPredicate(Pred);
8597 CmpRHS = AdjustedRHS;
8598 std::swap(FalseVal, TrueVal);
8599 ICI->setPredicate(Pred);
8600 ICI->setOperand(1, CmpRHS);
8601 SI.setOperand(1, TrueVal);
8602 SI.setOperand(2, FalseVal);
8603 Changed = true;
8604 }
8605 break;
8606 }
8607 }
8608
Dan Gohman35b76162008-10-30 20:40:10 +00008609 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed
8610 // (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed
8611 CmpInst::Predicate Pred = ICI->getPredicate();
8612 if (match(TrueVal, m_ConstantInt(0)) &&
8613 match(FalseVal, m_ConstantInt(-1)))
8614 Pred = CmpInst::getInversePredicate(Pred);
8615 else if (!match(TrueVal, m_ConstantInt(-1)) ||
8616 !match(FalseVal, m_ConstantInt(0)))
8617 Pred = CmpInst::BAD_ICMP_PREDICATE;
8618 if (Pred != CmpInst::BAD_ICMP_PREDICATE) {
8619 // If we are just checking for a icmp eq of a single bit and zext'ing it
8620 // to an integer, then shift the bit to the appropriate place and then
8621 // cast to integer to avoid the comparison.
8622 const APInt &Op1CV = CI->getValue();
8623
8624 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
8625 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
8626 if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) ||
8627 (Pred == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
8628 Value *In = ICI->getOperand(0);
8629 Value *Sh = ConstantInt::get(In->getType(),
8630 In->getType()->getPrimitiveSizeInBits()-1);
8631 In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
8632 In->getName()+".lobit"),
8633 *ICI);
Dan Gohman47a60772008-11-02 00:17:33 +00008634 if (In->getType() != SI.getType())
8635 In = CastInst::CreateIntegerCast(In, SI.getType(),
Dan Gohman35b76162008-10-30 20:40:10 +00008636 true/*SExt*/, "tmp", ICI);
8637
8638 if (Pred == ICmpInst::ICMP_SGT)
8639 In = InsertNewInstBefore(BinaryOperator::CreateNot(In,
8640 In->getName()+".not"), *ICI);
8641
8642 return ReplaceInstUsesWith(SI, In);
8643 }
8644 }
8645 }
8646
Dan Gohman58c09632008-09-16 18:46:06 +00008647 if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
8648 // Transform (X == Y) ? X : Y -> Y
8649 if (Pred == ICmpInst::ICMP_EQ)
8650 return ReplaceInstUsesWith(SI, FalseVal);
8651 // Transform (X != Y) ? X : Y -> X
8652 if (Pred == ICmpInst::ICMP_NE)
8653 return ReplaceInstUsesWith(SI, TrueVal);
8654 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8655
8656 } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
8657 // Transform (X == Y) ? Y : X -> X
8658 if (Pred == ICmpInst::ICMP_EQ)
8659 return ReplaceInstUsesWith(SI, FalseVal);
8660 // Transform (X != Y) ? Y : X -> Y
8661 if (Pred == ICmpInst::ICMP_NE)
8662 return ReplaceInstUsesWith(SI, TrueVal);
8663 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8664 }
8665
8666 /// NOTE: if we wanted to, this is where to detect integer ABS
8667
8668 return Changed ? &SI : 0;
8669}
8670
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008671Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
8672 Value *CondVal = SI.getCondition();
8673 Value *TrueVal = SI.getTrueValue();
8674 Value *FalseVal = SI.getFalseValue();
8675
8676 // select true, X, Y -> X
8677 // select false, X, Y -> Y
8678 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
8679 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
8680
8681 // select C, X, X -> X
8682 if (TrueVal == FalseVal)
8683 return ReplaceInstUsesWith(SI, TrueVal);
8684
8685 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
8686 return ReplaceInstUsesWith(SI, FalseVal);
8687 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
8688 return ReplaceInstUsesWith(SI, TrueVal);
8689 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
8690 if (isa<Constant>(TrueVal))
8691 return ReplaceInstUsesWith(SI, TrueVal);
8692 else
8693 return ReplaceInstUsesWith(SI, FalseVal);
8694 }
8695
8696 if (SI.getType() == Type::Int1Ty) {
8697 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
8698 if (C->getZExtValue()) {
8699 // Change: A = select B, true, C --> A = or B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008700 return BinaryOperator::CreateOr(CondVal, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008701 } else {
8702 // Change: A = select B, false, C --> A = and !B, C
8703 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008704 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008705 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008706 return BinaryOperator::CreateAnd(NotCond, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008707 }
8708 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
8709 if (C->getZExtValue() == false) {
8710 // Change: A = select B, C, false --> A = and B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008711 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008712 } else {
8713 // Change: A = select B, C, true --> A = or !B, C
8714 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008715 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008716 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008717 return BinaryOperator::CreateOr(NotCond, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008718 }
8719 }
Chris Lattner53f85a72007-11-25 21:27:53 +00008720
8721 // select a, b, a -> a&b
8722 // select a, a, b -> a|b
8723 if (CondVal == TrueVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008724 return BinaryOperator::CreateOr(CondVal, FalseVal);
Chris Lattner53f85a72007-11-25 21:27:53 +00008725 else if (CondVal == FalseVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008726 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008727 }
8728
8729 // Selecting between two integer constants?
8730 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
8731 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
8732 // select C, 1, 0 -> zext C to int
8733 if (FalseValC->isZero() && TrueValC->getValue() == 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00008734 return CastInst::Create(Instruction::ZExt, CondVal, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008735 } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
8736 // select C, 0, 1 -> zext !C to int
8737 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008738 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008739 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008740 return CastInst::Create(Instruction::ZExt, NotCond, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008741 }
8742
8743 // FIXME: Turn select 0/-1 and -1/0 into sext from condition!
8744
8745 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
8746
8747 // (x <s 0) ? -1 : 0 -> ashr x, 31
8748 if (TrueValC->isAllOnesValue() && FalseValC->isZero())
8749 if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
8750 if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) {
8751 // The comparison constant and the result are not neccessarily the
8752 // same width. Make an all-ones value by inserting a AShr.
8753 Value *X = IC->getOperand(0);
8754 uint32_t Bits = X->getType()->getPrimitiveSizeInBits();
8755 Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008756 Instruction *SRA = BinaryOperator::Create(Instruction::AShr, X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008757 ShAmt, "ones");
8758 InsertNewInstBefore(SRA, SI);
8759
8760 // Finally, convert to the type of the select RHS. We figure out
8761 // if this requires a SExt, Trunc or BitCast based on the sizes.
8762 Instruction::CastOps opc = Instruction::BitCast;
8763 uint32_t SRASize = SRA->getType()->getPrimitiveSizeInBits();
8764 uint32_t SISize = SI.getType()->getPrimitiveSizeInBits();
8765 if (SRASize < SISize)
8766 opc = Instruction::SExt;
8767 else if (SRASize > SISize)
8768 opc = Instruction::Trunc;
Gabor Greifa645dd32008-05-16 19:29:10 +00008769 return CastInst::Create(opc, SRA, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008770 }
8771 }
8772
8773
8774 // If one of the constants is zero (we know they can't both be) and we
8775 // have an icmp instruction with zero, and we have an 'and' with the
8776 // non-constant value, eliminate this whole mess. This corresponds to
8777 // cases like this: ((X & 27) ? 27 : 0)
8778 if (TrueValC->isZero() || FalseValC->isZero())
8779 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
8780 cast<Constant>(IC->getOperand(1))->isNullValue())
8781 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
8782 if (ICA->getOpcode() == Instruction::And &&
8783 isa<ConstantInt>(ICA->getOperand(1)) &&
8784 (ICA->getOperand(1) == TrueValC ||
8785 ICA->getOperand(1) == FalseValC) &&
8786 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
8787 // Okay, now we know that everything is set up, we just don't
8788 // know whether we have a icmp_ne or icmp_eq and whether the
8789 // true or false val is the zero.
8790 bool ShouldNotVal = !TrueValC->isZero();
8791 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
8792 Value *V = ICA;
8793 if (ShouldNotVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008794 V = InsertNewInstBefore(BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008795 Instruction::Xor, V, ICA->getOperand(1)), SI);
8796 return ReplaceInstUsesWith(SI, V);
8797 }
8798 }
8799 }
8800
8801 // See if we are selecting two values based on a comparison of the two values.
8802 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
8803 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
8804 // Transform (X == Y) ? X : Y -> Y
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008805 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8806 // This is not safe in general for floating point:
8807 // consider X== -0, Y== +0.
8808 // It becomes safe if either operand is a nonzero constant.
8809 ConstantFP *CFPt, *CFPf;
8810 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8811 !CFPt->getValueAPF().isZero()) ||
8812 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8813 !CFPf->getValueAPF().isZero()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008814 return ReplaceInstUsesWith(SI, FalseVal);
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008815 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008816 // Transform (X != Y) ? X : Y -> X
8817 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8818 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman58c09632008-09-16 18:46:06 +00008819 // NOTE: if we wanted to, this is where to detect MIN/MAX
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008820
8821 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
8822 // Transform (X == Y) ? Y : X -> X
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008823 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8824 // This is not safe in general for floating point:
8825 // consider X== -0, Y== +0.
8826 // It becomes safe if either operand is a nonzero constant.
8827 ConstantFP *CFPt, *CFPf;
8828 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8829 !CFPt->getValueAPF().isZero()) ||
8830 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8831 !CFPf->getValueAPF().isZero()))
8832 return ReplaceInstUsesWith(SI, FalseVal);
8833 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008834 // Transform (X != Y) ? Y : X -> Y
8835 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8836 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman58c09632008-09-16 18:46:06 +00008837 // NOTE: if we wanted to, this is where to detect MIN/MAX
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008838 }
Dan Gohman58c09632008-09-16 18:46:06 +00008839 // NOTE: if we wanted to, this is where to detect ABS
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008840 }
8841
8842 // See if we are selecting two values based on a comparison of the two values.
Dan Gohman58c09632008-09-16 18:46:06 +00008843 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
8844 if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
8845 return Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008846
8847 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
8848 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
8849 if (TI->hasOneUse() && FI->hasOneUse()) {
8850 Instruction *AddOp = 0, *SubOp = 0;
8851
8852 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
8853 if (TI->getOpcode() == FI->getOpcode())
8854 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
8855 return IV;
8856
8857 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
8858 // even legal for FP.
8859 if (TI->getOpcode() == Instruction::Sub &&
8860 FI->getOpcode() == Instruction::Add) {
8861 AddOp = FI; SubOp = TI;
8862 } else if (FI->getOpcode() == Instruction::Sub &&
8863 TI->getOpcode() == Instruction::Add) {
8864 AddOp = TI; SubOp = FI;
8865 }
8866
8867 if (AddOp) {
8868 Value *OtherAddOp = 0;
8869 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
8870 OtherAddOp = AddOp->getOperand(1);
8871 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
8872 OtherAddOp = AddOp->getOperand(0);
8873 }
8874
8875 if (OtherAddOp) {
8876 // So at this point we know we have (Y -> OtherAddOp):
8877 // select C, (add X, Y), (sub X, Z)
8878 Value *NegVal; // Compute -Z
8879 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
8880 NegVal = ConstantExpr::getNeg(C);
8881 } else {
8882 NegVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00008883 BinaryOperator::CreateNeg(SubOp->getOperand(1), "tmp"), SI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008884 }
8885
8886 Value *NewTrueOp = OtherAddOp;
8887 Value *NewFalseOp = NegVal;
8888 if (AddOp != TI)
8889 std::swap(NewTrueOp, NewFalseOp);
8890 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008891 SelectInst::Create(CondVal, NewTrueOp,
8892 NewFalseOp, SI.getName() + ".p");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008893
8894 NewSel = InsertNewInstBefore(NewSel, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008895 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008896 }
8897 }
8898 }
8899
8900 // See if we can fold the select into one of our operands.
8901 if (SI.getType()->isInteger()) {
8902 // See the comment above GetSelectFoldableOperands for a description of the
8903 // transformation we are doing here.
8904 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
8905 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
8906 !isa<Constant>(FalseVal))
8907 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
8908 unsigned OpToFold = 0;
8909 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
8910 OpToFold = 1;
8911 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
8912 OpToFold = 2;
8913 }
8914
8915 if (OpToFold) {
8916 Constant *C = GetSelectFoldableConstant(TVI);
8917 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008918 SelectInst::Create(SI.getCondition(),
8919 TVI->getOperand(2-OpToFold), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008920 InsertNewInstBefore(NewSel, SI);
8921 NewSel->takeName(TVI);
8922 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00008923 return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008924 else {
8925 assert(0 && "Unknown instruction!!");
8926 }
8927 }
8928 }
8929
8930 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
8931 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
8932 !isa<Constant>(TrueVal))
8933 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
8934 unsigned OpToFold = 0;
8935 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
8936 OpToFold = 1;
8937 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
8938 OpToFold = 2;
8939 }
8940
8941 if (OpToFold) {
8942 Constant *C = GetSelectFoldableConstant(FVI);
8943 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008944 SelectInst::Create(SI.getCondition(), C,
8945 FVI->getOperand(2-OpToFold));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008946 InsertNewInstBefore(NewSel, SI);
8947 NewSel->takeName(FVI);
8948 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00008949 return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008950 else
8951 assert(0 && "Unknown instruction!!");
8952 }
8953 }
8954 }
8955
8956 if (BinaryOperator::isNot(CondVal)) {
8957 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
8958 SI.setOperand(1, FalseVal);
8959 SI.setOperand(2, TrueVal);
8960 return &SI;
8961 }
8962
8963 return 0;
8964}
8965
Dan Gohman2d648bb2008-04-10 18:43:06 +00008966/// EnforceKnownAlignment - If the specified pointer points to an object that
8967/// we control, modify the object's alignment to PrefAlign. This isn't
8968/// often possible though. If alignment is important, a more reliable approach
8969/// is to simply align all global variables and allocation instructions to
8970/// their preferred alignment from the beginning.
8971///
8972static unsigned EnforceKnownAlignment(Value *V,
8973 unsigned Align, unsigned PrefAlign) {
Chris Lattner47cf3452007-08-09 19:05:49 +00008974
Dan Gohman2d648bb2008-04-10 18:43:06 +00008975 User *U = dyn_cast<User>(V);
8976 if (!U) return Align;
8977
8978 switch (getOpcode(U)) {
8979 default: break;
8980 case Instruction::BitCast:
8981 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
8982 case Instruction::GetElementPtr: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008983 // If all indexes are zero, it is just the alignment of the base pointer.
8984 bool AllZeroOperands = true;
Gabor Greife92fbe22008-06-12 21:51:29 +00008985 for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
Gabor Greif17396002008-06-12 21:37:33 +00008986 if (!isa<Constant>(*i) ||
8987 !cast<Constant>(*i)->isNullValue()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008988 AllZeroOperands = false;
8989 break;
8990 }
Chris Lattner47cf3452007-08-09 19:05:49 +00008991
8992 if (AllZeroOperands) {
8993 // Treat this like a bitcast.
Dan Gohman2d648bb2008-04-10 18:43:06 +00008994 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
Chris Lattner47cf3452007-08-09 19:05:49 +00008995 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00008996 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008997 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00008998 }
8999
9000 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
9001 // If there is a large requested alignment and we can, bump up the alignment
9002 // of the global.
9003 if (!GV->isDeclaration()) {
9004 GV->setAlignment(PrefAlign);
9005 Align = PrefAlign;
9006 }
9007 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
9008 // If there is a requested alignment and if this is an alloca, round up. We
9009 // don't do this for malloc, because some systems can't respect the request.
9010 if (isa<AllocaInst>(AI)) {
9011 AI->setAlignment(PrefAlign);
9012 Align = PrefAlign;
9013 }
9014 }
9015
9016 return Align;
9017}
9018
9019/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
9020/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
9021/// and it is more than the alignment of the ultimate object, see if we can
9022/// increase the alignment of the ultimate object, making this check succeed.
9023unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
9024 unsigned PrefAlign) {
9025 unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
9026 sizeof(PrefAlign) * CHAR_BIT;
9027 APInt Mask = APInt::getAllOnesValue(BitWidth);
9028 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
9029 ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
9030 unsigned TrailZ = KnownZero.countTrailingOnes();
9031 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
9032
9033 if (PrefAlign > Align)
9034 Align = EnforceKnownAlignment(V, Align, PrefAlign);
9035
9036 // We don't need to make any adjustment.
9037 return Align;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009038}
9039
Chris Lattner00ae5132008-01-13 23:50:23 +00009040Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
Dan Gohman2d648bb2008-04-10 18:43:06 +00009041 unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
9042 unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
Chris Lattner00ae5132008-01-13 23:50:23 +00009043 unsigned MinAlign = std::min(DstAlign, SrcAlign);
9044 unsigned CopyAlign = MI->getAlignment()->getZExtValue();
9045
9046 if (CopyAlign < MinAlign) {
9047 MI->setAlignment(ConstantInt::get(Type::Int32Ty, MinAlign));
9048 return MI;
9049 }
9050
9051 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
9052 // load/store.
9053 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
9054 if (MemOpLength == 0) return 0;
9055
Chris Lattnerc669fb62008-01-14 00:28:35 +00009056 // Source and destination pointer types are always "i8*" for intrinsic. See
9057 // if the size is something we can handle with a single primitive load/store.
9058 // A single load+store correctly handles overlapping memory in the memmove
9059 // case.
Chris Lattner00ae5132008-01-13 23:50:23 +00009060 unsigned Size = MemOpLength->getZExtValue();
Chris Lattner5af8a912008-04-30 06:39:11 +00009061 if (Size == 0) return MI; // Delete this mem transfer.
9062
9063 if (Size > 8 || (Size&(Size-1)))
Chris Lattnerc669fb62008-01-14 00:28:35 +00009064 return 0; // If not 1/2/4/8 bytes, exit.
Chris Lattner00ae5132008-01-13 23:50:23 +00009065
Chris Lattnerc669fb62008-01-14 00:28:35 +00009066 // Use an integer load+store unless we can find something better.
Chris Lattner00ae5132008-01-13 23:50:23 +00009067 Type *NewPtrTy = PointerType::getUnqual(IntegerType::get(Size<<3));
Chris Lattnerc669fb62008-01-14 00:28:35 +00009068
9069 // Memcpy forces the use of i8* for the source and destination. That means
9070 // that if you're using memcpy to move one double around, you'll get a cast
9071 // from double* to i8*. We'd much rather use a double load+store rather than
9072 // an i64 load+store, here because this improves the odds that the source or
9073 // dest address will be promotable. See if we can find a better type than the
9074 // integer datatype.
9075 if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
9076 const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
9077 if (SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
9078 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
9079 // down through these levels if so.
Dan Gohmanb8e94f62008-05-23 01:52:21 +00009080 while (!SrcETy->isSingleValueType()) {
Chris Lattnerc669fb62008-01-14 00:28:35 +00009081 if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
9082 if (STy->getNumElements() == 1)
9083 SrcETy = STy->getElementType(0);
9084 else
9085 break;
9086 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
9087 if (ATy->getNumElements() == 1)
9088 SrcETy = ATy->getElementType();
9089 else
9090 break;
9091 } else
9092 break;
9093 }
9094
Dan Gohmanb8e94f62008-05-23 01:52:21 +00009095 if (SrcETy->isSingleValueType())
Chris Lattnerc669fb62008-01-14 00:28:35 +00009096 NewPtrTy = PointerType::getUnqual(SrcETy);
9097 }
9098 }
9099
9100
Chris Lattner00ae5132008-01-13 23:50:23 +00009101 // If the memcpy/memmove provides better alignment info than we can
9102 // infer, use it.
9103 SrcAlign = std::max(SrcAlign, CopyAlign);
9104 DstAlign = std::max(DstAlign, CopyAlign);
9105
9106 Value *Src = InsertBitCastBefore(MI->getOperand(2), NewPtrTy, *MI);
9107 Value *Dest = InsertBitCastBefore(MI->getOperand(1), NewPtrTy, *MI);
Chris Lattnerc669fb62008-01-14 00:28:35 +00009108 Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
9109 InsertNewInstBefore(L, *MI);
9110 InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
9111
9112 // Set the size of the copy to 0, it will be deleted on the next iteration.
9113 MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
9114 return MI;
Chris Lattner00ae5132008-01-13 23:50:23 +00009115}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009116
Chris Lattner5af8a912008-04-30 06:39:11 +00009117Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
9118 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
9119 if (MI->getAlignment()->getZExtValue() < Alignment) {
9120 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
9121 return MI;
9122 }
9123
9124 // Extract the length and alignment and fill if they are constant.
9125 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
9126 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
9127 if (!LenC || !FillC || FillC->getType() != Type::Int8Ty)
9128 return 0;
9129 uint64_t Len = LenC->getZExtValue();
9130 Alignment = MI->getAlignment()->getZExtValue();
9131
9132 // If the length is zero, this is a no-op
9133 if (Len == 0) return MI; // memset(d,c,0,a) -> noop
9134
9135 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
9136 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
9137 const Type *ITy = IntegerType::get(Len*8); // n=1 -> i8.
9138
9139 Value *Dest = MI->getDest();
9140 Dest = InsertBitCastBefore(Dest, PointerType::getUnqual(ITy), *MI);
9141
9142 // Alignment 0 is identity for alignment 1 for memset, but not store.
9143 if (Alignment == 0) Alignment = 1;
9144
9145 // Extract the fill value and store.
9146 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
9147 InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill), Dest, false,
9148 Alignment), *MI);
9149
9150 // Set the size of the copy to 0, it will be deleted on the next iteration.
9151 MI->setLength(Constant::getNullValue(LenC->getType()));
9152 return MI;
9153 }
9154
9155 return 0;
9156}
9157
9158
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009159/// visitCallInst - CallInst simplification. This mostly only handles folding
9160/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
9161/// the heavy lifting.
9162///
9163Instruction *InstCombiner::visitCallInst(CallInst &CI) {
9164 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
9165 if (!II) return visitCallSite(&CI);
9166
9167 // Intrinsics cannot occur in an invoke, so handle them here instead of in
9168 // visitCallSite.
9169 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
9170 bool Changed = false;
9171
9172 // memmove/cpy/set of zero bytes is a noop.
9173 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
9174 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
9175
9176 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
9177 if (CI->getZExtValue() == 1) {
9178 // Replace the instruction with just byte operations. We would
9179 // transform other cases to loads/stores, but we don't know if
9180 // alignment is sufficient.
9181 }
9182 }
9183
9184 // If we have a memmove and the source operation is a constant global,
9185 // then the source and dest pointers can't alias, so we can change this
9186 // into a call to memcpy.
Chris Lattner00ae5132008-01-13 23:50:23 +00009187 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009188 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
9189 if (GVSrc->isConstant()) {
9190 Module *M = CI.getParent()->getParent()->getParent();
Chris Lattner13c2d6e2008-01-13 22:23:22 +00009191 Intrinsic::ID MemCpyID;
9192 if (CI.getOperand(3)->getType() == Type::Int32Ty)
9193 MemCpyID = Intrinsic::memcpy_i32;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009194 else
Chris Lattner13c2d6e2008-01-13 22:23:22 +00009195 MemCpyID = Intrinsic::memcpy_i64;
9196 CI.setOperand(0, Intrinsic::getDeclaration(M, MemCpyID));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009197 Changed = true;
9198 }
Chris Lattner59b27d92008-05-28 05:30:41 +00009199
9200 // memmove(x,x,size) -> noop.
9201 if (MMI->getSource() == MMI->getDest())
9202 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009203 }
9204
9205 // If we can determine a pointer alignment that is bigger than currently
9206 // set, update the alignment.
9207 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
Chris Lattner00ae5132008-01-13 23:50:23 +00009208 if (Instruction *I = SimplifyMemTransfer(MI))
9209 return I;
Chris Lattner5af8a912008-04-30 06:39:11 +00009210 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
9211 if (Instruction *I = SimplifyMemSet(MSI))
9212 return I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009213 }
9214
9215 if (Changed) return II;
Chris Lattner989ba312008-06-18 04:33:20 +00009216 }
9217
9218 switch (II->getIntrinsicID()) {
9219 default: break;
9220 case Intrinsic::bswap:
9221 // bswap(bswap(x)) -> x
9222 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
9223 if (Operand->getIntrinsicID() == Intrinsic::bswap)
9224 return ReplaceInstUsesWith(CI, Operand->getOperand(1));
9225 break;
9226 case Intrinsic::ppc_altivec_lvx:
9227 case Intrinsic::ppc_altivec_lvxl:
9228 case Intrinsic::x86_sse_loadu_ps:
9229 case Intrinsic::x86_sse2_loadu_pd:
9230 case Intrinsic::x86_sse2_loadu_dq:
9231 // Turn PPC lvx -> load if the pointer is known aligned.
9232 // Turn X86 loadups -> load if the pointer is known aligned.
9233 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9234 Value *Ptr = InsertBitCastBefore(II->getOperand(1),
9235 PointerType::getUnqual(II->getType()),
9236 CI);
9237 return new LoadInst(Ptr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009238 }
Chris Lattner989ba312008-06-18 04:33:20 +00009239 break;
9240 case Intrinsic::ppc_altivec_stvx:
9241 case Intrinsic::ppc_altivec_stvxl:
9242 // Turn stvx -> store if the pointer is known aligned.
9243 if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
9244 const Type *OpPtrTy =
9245 PointerType::getUnqual(II->getOperand(1)->getType());
9246 Value *Ptr = InsertBitCastBefore(II->getOperand(2), OpPtrTy, CI);
9247 return new StoreInst(II->getOperand(1), Ptr);
9248 }
9249 break;
9250 case Intrinsic::x86_sse_storeu_ps:
9251 case Intrinsic::x86_sse2_storeu_pd:
9252 case Intrinsic::x86_sse2_storeu_dq:
Chris Lattner989ba312008-06-18 04:33:20 +00009253 // Turn X86 storeu -> store if the pointer is known aligned.
9254 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9255 const Type *OpPtrTy =
9256 PointerType::getUnqual(II->getOperand(2)->getType());
9257 Value *Ptr = InsertBitCastBefore(II->getOperand(1), OpPtrTy, CI);
9258 return new StoreInst(II->getOperand(2), Ptr);
9259 }
9260 break;
9261
9262 case Intrinsic::x86_sse_cvttss2si: {
9263 // These intrinsics only demands the 0th element of its input vector. If
9264 // we can simplify the input based on that, do so now.
9265 uint64_t UndefElts;
9266 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1,
9267 UndefElts)) {
9268 II->setOperand(1, V);
9269 return II;
9270 }
9271 break;
9272 }
9273
9274 case Intrinsic::ppc_altivec_vperm:
9275 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
9276 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
9277 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009278
Chris Lattner989ba312008-06-18 04:33:20 +00009279 // Check that all of the elements are integer constants or undefs.
9280 bool AllEltsOk = true;
9281 for (unsigned i = 0; i != 16; ++i) {
9282 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
9283 !isa<UndefValue>(Mask->getOperand(i))) {
9284 AllEltsOk = false;
9285 break;
9286 }
9287 }
9288
9289 if (AllEltsOk) {
9290 // Cast the input vectors to byte vectors.
9291 Value *Op0 =InsertBitCastBefore(II->getOperand(1),Mask->getType(),CI);
9292 Value *Op1 =InsertBitCastBefore(II->getOperand(2),Mask->getType(),CI);
9293 Value *Result = UndefValue::get(Op0->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009294
Chris Lattner989ba312008-06-18 04:33:20 +00009295 // Only extract each element once.
9296 Value *ExtractedElts[32];
9297 memset(ExtractedElts, 0, sizeof(ExtractedElts));
9298
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009299 for (unsigned i = 0; i != 16; ++i) {
Chris Lattner989ba312008-06-18 04:33:20 +00009300 if (isa<UndefValue>(Mask->getOperand(i)))
9301 continue;
9302 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
9303 Idx &= 31; // Match the hardware behavior.
9304
9305 if (ExtractedElts[Idx] == 0) {
9306 Instruction *Elt =
9307 new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
9308 InsertNewInstBefore(Elt, CI);
9309 ExtractedElts[Idx] = Elt;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009310 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009311
Chris Lattner989ba312008-06-18 04:33:20 +00009312 // Insert this value into the result vector.
9313 Result = InsertElementInst::Create(Result, ExtractedElts[Idx],
9314 i, "tmp");
9315 InsertNewInstBefore(cast<Instruction>(Result), CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009316 }
Chris Lattner989ba312008-06-18 04:33:20 +00009317 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009318 }
Chris Lattner989ba312008-06-18 04:33:20 +00009319 }
9320 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009321
Chris Lattner989ba312008-06-18 04:33:20 +00009322 case Intrinsic::stackrestore: {
9323 // If the save is right next to the restore, remove the restore. This can
9324 // happen when variable allocas are DCE'd.
9325 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
9326 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
9327 BasicBlock::iterator BI = SS;
9328 if (&*++BI == II)
9329 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009330 }
Chris Lattner989ba312008-06-18 04:33:20 +00009331 }
9332
9333 // Scan down this block to see if there is another stack restore in the
9334 // same block without an intervening call/alloca.
9335 BasicBlock::iterator BI = II;
9336 TerminatorInst *TI = II->getParent()->getTerminator();
9337 bool CannotRemove = false;
9338 for (++BI; &*BI != TI; ++BI) {
9339 if (isa<AllocaInst>(BI)) {
9340 CannotRemove = true;
9341 break;
9342 }
Chris Lattnera6b477c2008-06-25 05:59:28 +00009343 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
9344 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
9345 // If there is a stackrestore below this one, remove this one.
9346 if (II->getIntrinsicID() == Intrinsic::stackrestore)
9347 return EraseInstFromFunction(CI);
9348 // Otherwise, ignore the intrinsic.
9349 } else {
9350 // If we found a non-intrinsic call, we can't remove the stack
9351 // restore.
Chris Lattner416d91c2008-02-18 06:12:38 +00009352 CannotRemove = true;
9353 break;
9354 }
Chris Lattner989ba312008-06-18 04:33:20 +00009355 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009356 }
Chris Lattner989ba312008-06-18 04:33:20 +00009357
9358 // If the stack restore is in a return/unwind block and if there are no
9359 // allocas or calls between the restore and the return, nuke the restore.
9360 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
9361 return EraseInstFromFunction(CI);
9362 break;
9363 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009364 }
9365
9366 return visitCallSite(II);
9367}
9368
9369// InvokeInst simplification
9370//
9371Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
9372 return visitCallSite(&II);
9373}
9374
Dale Johannesen96021832008-04-25 21:16:07 +00009375/// isSafeToEliminateVarargsCast - If this cast does not affect the value
9376/// passed through the varargs area, we can eliminate the use of the cast.
Dale Johannesen35615462008-04-23 18:34:37 +00009377static bool isSafeToEliminateVarargsCast(const CallSite CS,
9378 const CastInst * const CI,
9379 const TargetData * const TD,
9380 const int ix) {
9381 if (!CI->isLosslessCast())
9382 return false;
9383
9384 // The size of ByVal arguments is derived from the type, so we
9385 // can't change to a type with a different size. If the size were
9386 // passed explicitly we could avoid this check.
Devang Pateld222f862008-09-25 21:00:45 +00009387 if (!CS.paramHasAttr(ix, Attribute::ByVal))
Dale Johannesen35615462008-04-23 18:34:37 +00009388 return true;
9389
9390 const Type* SrcTy =
9391 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
9392 const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
9393 if (!SrcTy->isSized() || !DstTy->isSized())
9394 return false;
9395 if (TD->getABITypeSize(SrcTy) != TD->getABITypeSize(DstTy))
9396 return false;
9397 return true;
9398}
9399
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009400// visitCallSite - Improvements for call and invoke instructions.
9401//
9402Instruction *InstCombiner::visitCallSite(CallSite CS) {
9403 bool Changed = false;
9404
9405 // If the callee is a constexpr cast of a function, attempt to move the cast
9406 // to the arguments of the call/invoke.
9407 if (transformConstExprCastCall(CS)) return 0;
9408
9409 Value *Callee = CS.getCalledValue();
9410
9411 if (Function *CalleeF = dyn_cast<Function>(Callee))
9412 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
9413 Instruction *OldCall = CS.getInstruction();
9414 // If the call and callee calling conventions don't match, this call must
9415 // be unreachable, as the call is undefined.
9416 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009417 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
9418 OldCall);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009419 if (!OldCall->use_empty())
9420 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
9421 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
9422 return EraseInstFromFunction(*OldCall);
9423 return 0;
9424 }
9425
9426 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
9427 // This instruction is not reachable, just remove it. We insert a store to
9428 // undef so that we know that this code is not reachable, despite the fact
9429 // that we can't modify the CFG here.
9430 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009431 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009432 CS.getInstruction());
9433
9434 if (!CS.getInstruction()->use_empty())
9435 CS.getInstruction()->
9436 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
9437
9438 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
9439 // Don't break the CFG, insert a dummy cond branch.
Gabor Greifd6da1d02008-04-06 20:25:17 +00009440 BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
9441 ConstantInt::getTrue(), II);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009442 }
9443 return EraseInstFromFunction(*CS.getInstruction());
9444 }
9445
Duncan Sands74833f22007-09-17 10:26:40 +00009446 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
9447 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
9448 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
9449 return transformCallThroughTrampoline(CS);
9450
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009451 const PointerType *PTy = cast<PointerType>(Callee->getType());
9452 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
9453 if (FTy->isVarArg()) {
Dale Johannesen502336c2008-04-23 01:03:05 +00009454 int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009455 // See if we can optimize any arguments passed through the varargs area of
9456 // the call.
9457 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
Dale Johannesen35615462008-04-23 18:34:37 +00009458 E = CS.arg_end(); I != E; ++I, ++ix) {
9459 CastInst *CI = dyn_cast<CastInst>(*I);
9460 if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
9461 *I = CI->getOperand(0);
9462 Changed = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009463 }
Dale Johannesen35615462008-04-23 18:34:37 +00009464 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009465 }
9466
Duncan Sands2937e352007-12-19 21:13:37 +00009467 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
Duncan Sands7868f3c2007-12-16 15:51:49 +00009468 // Inline asm calls cannot throw - mark them 'nounwind'.
Duncan Sands2937e352007-12-19 21:13:37 +00009469 CS.setDoesNotThrow();
Duncan Sands7868f3c2007-12-16 15:51:49 +00009470 Changed = true;
9471 }
9472
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009473 return Changed ? CS.getInstruction() : 0;
9474}
9475
9476// transformConstExprCastCall - If the callee is a constexpr cast of a function,
9477// attempt to move the cast to the arguments of the call/invoke.
9478//
9479bool InstCombiner::transformConstExprCastCall(CallSite CS) {
9480 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
9481 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
9482 if (CE->getOpcode() != Instruction::BitCast ||
9483 !isa<Function>(CE->getOperand(0)))
9484 return false;
9485 Function *Callee = cast<Function>(CE->getOperand(0));
9486 Instruction *Caller = CS.getInstruction();
Devang Pateld222f862008-09-25 21:00:45 +00009487 const AttrListPtr &CallerPAL = CS.getAttributes();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009488
9489 // Okay, this is a cast from a function to a different type. Unless doing so
9490 // would cause a type conversion of one of our arguments, change this call to
9491 // be a direct call with arguments casted to the appropriate types.
9492 //
9493 const FunctionType *FT = Callee->getFunctionType();
9494 const Type *OldRetTy = Caller->getType();
Duncan Sands7901ce12008-06-01 07:38:42 +00009495 const Type *NewRetTy = FT->getReturnType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009496
Duncan Sands7901ce12008-06-01 07:38:42 +00009497 if (isa<StructType>(NewRetTy))
Devang Pateld091d322008-03-11 18:04:06 +00009498 return false; // TODO: Handle multiple return values.
9499
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009500 // Check to see if we are changing the return type...
Duncan Sands7901ce12008-06-01 07:38:42 +00009501 if (OldRetTy != NewRetTy) {
Bill Wendlingd9644a42008-05-14 22:45:20 +00009502 if (Callee->isDeclaration() &&
Duncan Sands7901ce12008-06-01 07:38:42 +00009503 // Conversion is ok if changing from one pointer type to another or from
9504 // a pointer to an integer of the same size.
9505 !((isa<PointerType>(OldRetTy) || OldRetTy == TD->getIntPtrType()) &&
Duncan Sands886cadb2008-06-17 15:55:30 +00009506 (isa<PointerType>(NewRetTy) || NewRetTy == TD->getIntPtrType())))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009507 return false; // Cannot transform this return value.
9508
Duncan Sands5c489582008-01-06 10:12:28 +00009509 if (!Caller->use_empty() &&
Duncan Sands5c489582008-01-06 10:12:28 +00009510 // void -> non-void is handled specially
Duncan Sands7901ce12008-06-01 07:38:42 +00009511 NewRetTy != Type::VoidTy && !CastInst::isCastable(NewRetTy, OldRetTy))
Duncan Sands5c489582008-01-06 10:12:28 +00009512 return false; // Cannot transform this return value.
9513
Chris Lattner1c8733e2008-03-12 17:45:29 +00009514 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
Devang Patelf2a4a922008-09-26 22:53:05 +00009515 Attributes RAttrs = CallerPAL.getRetAttributes();
Devang Pateld222f862008-09-25 21:00:45 +00009516 if (RAttrs & Attribute::typeIncompatible(NewRetTy))
Duncan Sandsdbe97dc2008-01-07 17:16:06 +00009517 return false; // Attribute not compatible with transformed value.
9518 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009519
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009520 // If the callsite is an invoke instruction, and the return value is used by
9521 // a PHI node in a successor, we cannot change the return type of the call
9522 // because there is no place to put the cast instruction (without breaking
9523 // the critical edge). Bail out in this case.
9524 if (!Caller->use_empty())
9525 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
9526 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
9527 UI != E; ++UI)
9528 if (PHINode *PN = dyn_cast<PHINode>(*UI))
9529 if (PN->getParent() == II->getNormalDest() ||
9530 PN->getParent() == II->getUnwindDest())
9531 return false;
9532 }
9533
9534 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
9535 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
9536
9537 CallSite::arg_iterator AI = CS.arg_begin();
9538 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
9539 const Type *ParamTy = FT->getParamType(i);
9540 const Type *ActTy = (*AI)->getType();
Duncan Sands5c489582008-01-06 10:12:28 +00009541
9542 if (!CastInst::isCastable(ActTy, ParamTy))
Duncan Sandsc849e662008-01-06 18:27:01 +00009543 return false; // Cannot transform this parameter value.
9544
Devang Patelf2a4a922008-09-26 22:53:05 +00009545 if (CallerPAL.getParamAttributes(i + 1)
9546 & Attribute::typeIncompatible(ParamTy))
Chris Lattner1c8733e2008-03-12 17:45:29 +00009547 return false; // Attribute not compatible with transformed value.
Duncan Sands5c489582008-01-06 10:12:28 +00009548
Duncan Sands7901ce12008-06-01 07:38:42 +00009549 // Converting from one pointer type to another or between a pointer and an
9550 // integer of the same size is safe even if we do not have a body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009551 bool isConvertible = ActTy == ParamTy ||
Duncan Sands7901ce12008-06-01 07:38:42 +00009552 ((isa<PointerType>(ParamTy) || ParamTy == TD->getIntPtrType()) &&
9553 (isa<PointerType>(ActTy) || ActTy == TD->getIntPtrType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009554 if (Callee->isDeclaration() && !isConvertible) return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009555 }
9556
9557 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
9558 Callee->isDeclaration())
Chris Lattner1c8733e2008-03-12 17:45:29 +00009559 return false; // Do not delete arguments unless we have a function body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009560
Chris Lattner1c8733e2008-03-12 17:45:29 +00009561 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
9562 !CallerPAL.isEmpty())
Duncan Sandsc849e662008-01-06 18:27:01 +00009563 // In this case we have more arguments than the new function type, but we
Duncan Sands4ced1f82008-01-13 08:02:44 +00009564 // won't be dropping them. Check that these extra arguments have attributes
9565 // that are compatible with being a vararg call argument.
Chris Lattner1c8733e2008-03-12 17:45:29 +00009566 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
9567 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
Duncan Sands4ced1f82008-01-13 08:02:44 +00009568 break;
Devang Patele480dfa2008-09-23 23:03:40 +00009569 Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
Devang Pateld222f862008-09-25 21:00:45 +00009570 if (PAttrs & Attribute::VarArgsIncompatible)
Duncan Sands4ced1f82008-01-13 08:02:44 +00009571 return false;
9572 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009573
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009574 // Okay, we decided that this is a safe thing to do: go ahead and start
9575 // inserting cast instructions as necessary...
9576 std::vector<Value*> Args;
9577 Args.reserve(NumActualArgs);
Devang Pateld222f862008-09-25 21:00:45 +00009578 SmallVector<AttributeWithIndex, 8> attrVec;
Duncan Sandsc849e662008-01-06 18:27:01 +00009579 attrVec.reserve(NumCommonArgs);
9580
9581 // Get any return attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009582 Attributes RAttrs = CallerPAL.getRetAttributes();
Duncan Sandsc849e662008-01-06 18:27:01 +00009583
9584 // If the return value is not being used, the type may not be compatible
9585 // with the existing attributes. Wipe out any problematic attributes.
Devang Pateld222f862008-09-25 21:00:45 +00009586 RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
Duncan Sandsc849e662008-01-06 18:27:01 +00009587
9588 // Add the new return attributes.
9589 if (RAttrs)
Devang Pateld222f862008-09-25 21:00:45 +00009590 attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009591
9592 AI = CS.arg_begin();
9593 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
9594 const Type *ParamTy = FT->getParamType(i);
9595 if ((*AI)->getType() == ParamTy) {
9596 Args.push_back(*AI);
9597 } else {
9598 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
9599 false, ParamTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009600 CastInst *NewCast = CastInst::Create(opcode, *AI, ParamTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009601 Args.push_back(InsertNewInstBefore(NewCast, *Caller));
9602 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009603
9604 // Add any parameter attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009605 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Pateld222f862008-09-25 21:00:45 +00009606 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009607 }
9608
9609 // If the function takes more arguments than the call was taking, add them
9610 // now...
9611 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
9612 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
9613
9614 // If we are removing arguments to the function, emit an obnoxious warning...
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009615 if (FT->getNumParams() < NumActualArgs) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009616 if (!FT->isVarArg()) {
9617 cerr << "WARNING: While resolving call to function '"
9618 << Callee->getName() << "' arguments were dropped!\n";
9619 } else {
9620 // Add all of the arguments in their promoted form to the arg list...
9621 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
9622 const Type *PTy = getPromotedType((*AI)->getType());
9623 if (PTy != (*AI)->getType()) {
9624 // Must promote to pass through va_arg area!
9625 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
9626 PTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009627 Instruction *Cast = CastInst::Create(opcode, *AI, PTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009628 InsertNewInstBefore(Cast, *Caller);
9629 Args.push_back(Cast);
9630 } else {
9631 Args.push_back(*AI);
9632 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009633
Duncan Sands4ced1f82008-01-13 08:02:44 +00009634 // Add any parameter attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009635 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Pateld222f862008-09-25 21:00:45 +00009636 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Duncan Sands4ced1f82008-01-13 08:02:44 +00009637 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009638 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009639 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009640
Devang Patelf2a4a922008-09-26 22:53:05 +00009641 if (Attributes FnAttrs = CallerPAL.getFnAttributes())
9642 attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
9643
Duncan Sands7901ce12008-06-01 07:38:42 +00009644 if (NewRetTy == Type::VoidTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009645 Caller->setName(""); // Void type should not have a name.
9646
Devang Pateld222f862008-09-25 21:00:45 +00009647 const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),attrVec.end());
Duncan Sandsc849e662008-01-06 18:27:01 +00009648
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009649 Instruction *NC;
9650 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009651 NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009652 Args.begin(), Args.end(),
9653 Caller->getName(), Caller);
Reid Spencer6b0b09a2007-07-30 19:53:57 +00009654 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009655 cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009656 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009657 NC = CallInst::Create(Callee, Args.begin(), Args.end(),
9658 Caller->getName(), Caller);
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009659 CallInst *CI = cast<CallInst>(Caller);
9660 if (CI->isTailCall())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009661 cast<CallInst>(NC)->setTailCall();
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009662 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009663 cast<CallInst>(NC)->setAttributes(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009664 }
9665
9666 // Insert a cast of the return type as necessary.
9667 Value *NV = NC;
Duncan Sands5c489582008-01-06 10:12:28 +00009668 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009669 if (NV->getType() != Type::VoidTy) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009670 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
Duncan Sands5c489582008-01-06 10:12:28 +00009671 OldRetTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009672 NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009673
9674 // If this is an invoke instruction, we should insert it after the first
9675 // non-phi, instruction in the normal successor block.
9676 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Dan Gohman514277c2008-05-23 21:05:58 +00009677 BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009678 InsertNewInstBefore(NC, *I);
9679 } else {
9680 // Otherwise, it's a call, just insert cast right after the call instr
9681 InsertNewInstBefore(NC, *Caller);
9682 }
9683 AddUsersToWorkList(*Caller);
9684 } else {
9685 NV = UndefValue::get(Caller->getType());
9686 }
9687 }
9688
9689 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9690 Caller->replaceAllUsesWith(NV);
9691 Caller->eraseFromParent();
9692 RemoveFromWorkList(Caller);
9693 return true;
9694}
9695
Duncan Sands74833f22007-09-17 10:26:40 +00009696// transformCallThroughTrampoline - Turn a call to a function created by the
9697// init_trampoline intrinsic into a direct call to the underlying function.
9698//
9699Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
9700 Value *Callee = CS.getCalledValue();
9701 const PointerType *PTy = cast<PointerType>(Callee->getType());
9702 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Devang Pateld222f862008-09-25 21:00:45 +00009703 const AttrListPtr &Attrs = CS.getAttributes();
Duncan Sands48b81112008-01-14 19:52:09 +00009704
9705 // If the call already has the 'nest' attribute somewhere then give up -
9706 // otherwise 'nest' would occur twice after splicing in the chain.
Devang Pateld222f862008-09-25 21:00:45 +00009707 if (Attrs.hasAttrSomewhere(Attribute::Nest))
Duncan Sands48b81112008-01-14 19:52:09 +00009708 return 0;
Duncan Sands74833f22007-09-17 10:26:40 +00009709
9710 IntrinsicInst *Tramp =
9711 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
9712
Anton Korobeynikov48fc88f2008-05-07 22:54:15 +00009713 Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
Duncan Sands74833f22007-09-17 10:26:40 +00009714 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
9715 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
9716
Devang Pateld222f862008-09-25 21:00:45 +00009717 const AttrListPtr &NestAttrs = NestF->getAttributes();
Chris Lattner1c8733e2008-03-12 17:45:29 +00009718 if (!NestAttrs.isEmpty()) {
Duncan Sands74833f22007-09-17 10:26:40 +00009719 unsigned NestIdx = 1;
9720 const Type *NestTy = 0;
Devang Pateld222f862008-09-25 21:00:45 +00009721 Attributes NestAttr = Attribute::None;
Duncan Sands74833f22007-09-17 10:26:40 +00009722
9723 // Look for a parameter marked with the 'nest' attribute.
9724 for (FunctionType::param_iterator I = NestFTy->param_begin(),
9725 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
Devang Pateld222f862008-09-25 21:00:45 +00009726 if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
Duncan Sands74833f22007-09-17 10:26:40 +00009727 // Record the parameter type and any other attributes.
9728 NestTy = *I;
Devang Patelf2a4a922008-09-26 22:53:05 +00009729 NestAttr = NestAttrs.getParamAttributes(NestIdx);
Duncan Sands74833f22007-09-17 10:26:40 +00009730 break;
9731 }
9732
9733 if (NestTy) {
9734 Instruction *Caller = CS.getInstruction();
9735 std::vector<Value*> NewArgs;
9736 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
9737
Devang Pateld222f862008-09-25 21:00:45 +00009738 SmallVector<AttributeWithIndex, 8> NewAttrs;
Chris Lattner1c8733e2008-03-12 17:45:29 +00009739 NewAttrs.reserve(Attrs.getNumSlots() + 1);
Duncan Sands48b81112008-01-14 19:52:09 +00009740
Duncan Sands74833f22007-09-17 10:26:40 +00009741 // Insert the nest argument into the call argument list, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009742 // mean appending it. Likewise for attributes.
9743
Devang Patelf2a4a922008-09-26 22:53:05 +00009744 // Add any result attributes.
9745 if (Attributes Attr = Attrs.getRetAttributes())
Devang Pateld222f862008-09-25 21:00:45 +00009746 NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
Duncan Sands48b81112008-01-14 19:52:09 +00009747
Duncan Sands74833f22007-09-17 10:26:40 +00009748 {
9749 unsigned Idx = 1;
9750 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
9751 do {
9752 if (Idx == NestIdx) {
Duncan Sands48b81112008-01-14 19:52:09 +00009753 // Add the chain argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009754 Value *NestVal = Tramp->getOperand(3);
9755 if (NestVal->getType() != NestTy)
9756 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
9757 NewArgs.push_back(NestVal);
Devang Pateld222f862008-09-25 21:00:45 +00009758 NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
Duncan Sands74833f22007-09-17 10:26:40 +00009759 }
9760
9761 if (I == E)
9762 break;
9763
Duncan Sands48b81112008-01-14 19:52:09 +00009764 // Add the original argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009765 NewArgs.push_back(*I);
Devang Patelf2a4a922008-09-26 22:53:05 +00009766 if (Attributes Attr = Attrs.getParamAttributes(Idx))
Duncan Sands48b81112008-01-14 19:52:09 +00009767 NewAttrs.push_back
Devang Pateld222f862008-09-25 21:00:45 +00009768 (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
Duncan Sands74833f22007-09-17 10:26:40 +00009769
9770 ++Idx, ++I;
9771 } while (1);
9772 }
9773
Devang Patelf2a4a922008-09-26 22:53:05 +00009774 // Add any function attributes.
9775 if (Attributes Attr = Attrs.getFnAttributes())
9776 NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
9777
Duncan Sands74833f22007-09-17 10:26:40 +00009778 // The trampoline may have been bitcast to a bogus type (FTy).
9779 // Handle this by synthesizing a new function type, equal to FTy
Duncan Sands48b81112008-01-14 19:52:09 +00009780 // with the chain parameter inserted.
Duncan Sands74833f22007-09-17 10:26:40 +00009781
Duncan Sands74833f22007-09-17 10:26:40 +00009782 std::vector<const Type*> NewTypes;
Duncan Sands74833f22007-09-17 10:26:40 +00009783 NewTypes.reserve(FTy->getNumParams()+1);
9784
Duncan Sands74833f22007-09-17 10:26:40 +00009785 // Insert the chain's type into the list of parameter types, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009786 // mean appending it.
Duncan Sands74833f22007-09-17 10:26:40 +00009787 {
9788 unsigned Idx = 1;
9789 FunctionType::param_iterator I = FTy->param_begin(),
9790 E = FTy->param_end();
9791
9792 do {
Duncan Sands48b81112008-01-14 19:52:09 +00009793 if (Idx == NestIdx)
9794 // Add the chain's type.
Duncan Sands74833f22007-09-17 10:26:40 +00009795 NewTypes.push_back(NestTy);
Duncan Sands74833f22007-09-17 10:26:40 +00009796
9797 if (I == E)
9798 break;
9799
Duncan Sands48b81112008-01-14 19:52:09 +00009800 // Add the original type.
Duncan Sands74833f22007-09-17 10:26:40 +00009801 NewTypes.push_back(*I);
Duncan Sands74833f22007-09-17 10:26:40 +00009802
9803 ++Idx, ++I;
9804 } while (1);
9805 }
9806
9807 // Replace the trampoline call with a direct call. Let the generic
9808 // code sort out any function type mismatches.
9809 FunctionType *NewFTy =
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009810 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
Christopher Lambbb2f2222007-12-17 01:12:55 +00009811 Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ?
9812 NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy));
Devang Pateld222f862008-09-25 21:00:45 +00009813 const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),NewAttrs.end());
Duncan Sands74833f22007-09-17 10:26:40 +00009814
9815 Instruction *NewCaller;
9816 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009817 NewCaller = InvokeInst::Create(NewCallee,
9818 II->getNormalDest(), II->getUnwindDest(),
9819 NewArgs.begin(), NewArgs.end(),
9820 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009821 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009822 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009823 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009824 NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
9825 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009826 if (cast<CallInst>(Caller)->isTailCall())
9827 cast<CallInst>(NewCaller)->setTailCall();
9828 cast<CallInst>(NewCaller)->
9829 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009830 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009831 }
9832 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9833 Caller->replaceAllUsesWith(NewCaller);
9834 Caller->eraseFromParent();
9835 RemoveFromWorkList(Caller);
9836 return 0;
9837 }
9838 }
9839
9840 // Replace the trampoline call with a direct call. Since there is no 'nest'
9841 // parameter, there is no need to adjust the argument list. Let the generic
9842 // code sort out any function type mismatches.
9843 Constant *NewCallee =
9844 NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy);
9845 CS.setCalledFunction(NewCallee);
9846 return CS.getInstruction();
9847}
9848
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009849/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
9850/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
9851/// and a single binop.
9852Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
9853 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
9854 assert(isa<BinaryOperator>(FirstInst) || isa<GetElementPtrInst>(FirstInst) ||
9855 isa<CmpInst>(FirstInst));
9856 unsigned Opc = FirstInst->getOpcode();
9857 Value *LHSVal = FirstInst->getOperand(0);
9858 Value *RHSVal = FirstInst->getOperand(1);
9859
9860 const Type *LHSType = LHSVal->getType();
9861 const Type *RHSType = RHSVal->getType();
9862
9863 // Scan to see if all operands are the same opcode, all have one use, and all
9864 // kill their operands (i.e. the operands have one use).
9865 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
9866 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
9867 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
9868 // Verify type of the LHS matches so we don't fold cmp's of different
9869 // types or GEP's with different index types.
9870 I->getOperand(0)->getType() != LHSType ||
9871 I->getOperand(1)->getType() != RHSType)
9872 return 0;
9873
9874 // If they are CmpInst instructions, check their predicates
9875 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
9876 if (cast<CmpInst>(I)->getPredicate() !=
9877 cast<CmpInst>(FirstInst)->getPredicate())
9878 return 0;
9879
9880 // Keep track of which operand needs a phi node.
9881 if (I->getOperand(0) != LHSVal) LHSVal = 0;
9882 if (I->getOperand(1) != RHSVal) RHSVal = 0;
9883 }
9884
9885 // Otherwise, this is safe to transform, determine if it is profitable.
9886
9887 // If this is a GEP, and if the index (not the pointer) needs a PHI, bail out.
9888 // Indexes are often folded into load/store instructions, so we don't want to
9889 // hide them behind a phi.
9890 if (isa<GetElementPtrInst>(FirstInst) && RHSVal == 0)
9891 return 0;
9892
9893 Value *InLHS = FirstInst->getOperand(0);
9894 Value *InRHS = FirstInst->getOperand(1);
9895 PHINode *NewLHS = 0, *NewRHS = 0;
9896 if (LHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009897 NewLHS = PHINode::Create(LHSType,
9898 FirstInst->getOperand(0)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009899 NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
9900 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
9901 InsertNewInstBefore(NewLHS, PN);
9902 LHSVal = NewLHS;
9903 }
9904
9905 if (RHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009906 NewRHS = PHINode::Create(RHSType,
9907 FirstInst->getOperand(1)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009908 NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
9909 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
9910 InsertNewInstBefore(NewRHS, PN);
9911 RHSVal = NewRHS;
9912 }
9913
9914 // Add all operands to the new PHIs.
9915 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
9916 if (NewLHS) {
9917 Value *NewInLHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
9918 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
9919 }
9920 if (NewRHS) {
9921 Value *NewInRHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(1);
9922 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
9923 }
9924 }
9925
9926 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009927 return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009928 else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +00009929 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009930 RHSVal);
9931 else {
9932 assert(isa<GetElementPtrInst>(FirstInst));
Gabor Greifd6da1d02008-04-06 20:25:17 +00009933 return GetElementPtrInst::Create(LHSVal, RHSVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009934 }
9935}
9936
9937/// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
9938/// of the block that defines it. This means that it must be obvious the value
9939/// of the load is not changed from the point of the load to the end of the
9940/// block it is in.
9941///
9942/// Finally, it is safe, but not profitable, to sink a load targetting a
9943/// non-address-taken alloca. Doing so will cause us to not promote the alloca
9944/// to a register.
9945static bool isSafeToSinkLoad(LoadInst *L) {
9946 BasicBlock::iterator BBI = L, E = L->getParent()->end();
9947
9948 for (++BBI; BBI != E; ++BBI)
9949 if (BBI->mayWriteToMemory())
9950 return false;
9951
9952 // Check for non-address taken alloca. If not address-taken already, it isn't
9953 // profitable to do this xform.
9954 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
9955 bool isAddressTaken = false;
9956 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
9957 UI != E; ++UI) {
9958 if (isa<LoadInst>(UI)) continue;
9959 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
9960 // If storing TO the alloca, then the address isn't taken.
9961 if (SI->getOperand(1) == AI) continue;
9962 }
9963 isAddressTaken = true;
9964 break;
9965 }
9966
9967 if (!isAddressTaken)
9968 return false;
9969 }
9970
9971 return true;
9972}
9973
9974
9975// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
9976// operator and they all are only used by the PHI, PHI together their
9977// inputs, and do the operation once, to the result of the PHI.
9978Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
9979 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
9980
9981 // Scan the instruction, looking for input operations that can be folded away.
9982 // If all input operands to the phi are the same instruction (e.g. a cast from
9983 // the same type or "+42") we can pull the operation through the PHI, reducing
9984 // code size and simplifying code.
9985 Constant *ConstantOp = 0;
9986 const Type *CastSrcTy = 0;
9987 bool isVolatile = false;
9988 if (isa<CastInst>(FirstInst)) {
9989 CastSrcTy = FirstInst->getOperand(0)->getType();
9990 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
9991 // Can fold binop, compare or shift here if the RHS is a constant,
9992 // otherwise call FoldPHIArgBinOpIntoPHI.
9993 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
9994 if (ConstantOp == 0)
9995 return FoldPHIArgBinOpIntoPHI(PN);
9996 } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
9997 isVolatile = LI->isVolatile();
9998 // We can't sink the load if the loaded value could be modified between the
9999 // load and the PHI.
10000 if (LI->getParent() != PN.getIncomingBlock(0) ||
10001 !isSafeToSinkLoad(LI))
10002 return 0;
Chris Lattner2d9fdd82008-07-08 17:18:32 +000010003
10004 // If the PHI is of volatile loads and the load block has multiple
10005 // successors, sinking it would remove a load of the volatile value from
10006 // the path through the other successor.
10007 if (isVolatile &&
10008 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
10009 return 0;
10010
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010011 } else if (isa<GetElementPtrInst>(FirstInst)) {
10012 if (FirstInst->getNumOperands() == 2)
10013 return FoldPHIArgBinOpIntoPHI(PN);
10014 // Can't handle general GEPs yet.
10015 return 0;
10016 } else {
10017 return 0; // Cannot fold this operation.
10018 }
10019
10020 // Check to see if all arguments are the same operation.
10021 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10022 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
10023 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
10024 if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
10025 return 0;
10026 if (CastSrcTy) {
10027 if (I->getOperand(0)->getType() != CastSrcTy)
10028 return 0; // Cast operation must match.
10029 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
10030 // We can't sink the load if the loaded value could be modified between
10031 // the load and the PHI.
10032 if (LI->isVolatile() != isVolatile ||
10033 LI->getParent() != PN.getIncomingBlock(i) ||
10034 !isSafeToSinkLoad(LI))
10035 return 0;
Chris Lattnerf7867012008-04-29 17:28:22 +000010036
Chris Lattner2d9fdd82008-07-08 17:18:32 +000010037 // If the PHI is of volatile loads and the load block has multiple
10038 // successors, sinking it would remove a load of the volatile value from
10039 // the path through the other successor.
Chris Lattnerf7867012008-04-29 17:28:22 +000010040 if (isVolatile &&
10041 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
10042 return 0;
10043
10044
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010045 } else if (I->getOperand(1) != ConstantOp) {
10046 return 0;
10047 }
10048 }
10049
10050 // Okay, they are all the same operation. Create a new PHI node of the
10051 // correct type, and PHI together all of the LHS's of the instructions.
Gabor Greifd6da1d02008-04-06 20:25:17 +000010052 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
10053 PN.getName()+".in");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010054 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
10055
10056 Value *InVal = FirstInst->getOperand(0);
10057 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
10058
10059 // Add all operands to the new PHI.
10060 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10061 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
10062 if (NewInVal != InVal)
10063 InVal = 0;
10064 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
10065 }
10066
10067 Value *PhiVal;
10068 if (InVal) {
10069 // The new PHI unions all of the same values together. This is really
10070 // common, so we handle it intelligently here for compile-time speed.
10071 PhiVal = InVal;
10072 delete NewPN;
10073 } else {
10074 InsertNewInstBefore(NewPN, PN);
10075 PhiVal = NewPN;
10076 }
10077
10078 // Insert and return the new operation.
10079 if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010080 return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType());
Chris Lattnerfc984e92008-04-29 17:13:43 +000010081 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010082 return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +000010083 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010084 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010085 PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +000010086 assert(isa<LoadInst>(FirstInst) && "Unknown operation");
10087
10088 // If this was a volatile load that we are merging, make sure to loop through
10089 // and mark all the input loads as non-volatile. If we don't do this, we will
10090 // insert a new volatile load and the old ones will not be deletable.
10091 if (isVolatile)
10092 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
10093 cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
10094
10095 return new LoadInst(PhiVal, "", isVolatile);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010096}
10097
10098/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
10099/// that is dead.
10100static bool DeadPHICycle(PHINode *PN,
10101 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
10102 if (PN->use_empty()) return true;
10103 if (!PN->hasOneUse()) return false;
10104
10105 // Remember this node, and if we find the cycle, return.
10106 if (!PotentiallyDeadPHIs.insert(PN))
10107 return true;
Chris Lattneradf2e342007-08-28 04:23:55 +000010108
10109 // Don't scan crazily complex things.
10110 if (PotentiallyDeadPHIs.size() == 16)
10111 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010112
10113 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
10114 return DeadPHICycle(PU, PotentiallyDeadPHIs);
10115
10116 return false;
10117}
10118
Chris Lattner27b695d2007-11-06 21:52:06 +000010119/// PHIsEqualValue - Return true if this phi node is always equal to
10120/// NonPhiInVal. This happens with mutually cyclic phi nodes like:
10121/// z = some value; x = phi (y, z); y = phi (x, z)
10122static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
10123 SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
10124 // See if we already saw this PHI node.
10125 if (!ValueEqualPHIs.insert(PN))
10126 return true;
10127
10128 // Don't scan crazily complex things.
10129 if (ValueEqualPHIs.size() == 16)
10130 return false;
10131
10132 // Scan the operands to see if they are either phi nodes or are equal to
10133 // the value.
10134 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
10135 Value *Op = PN->getIncomingValue(i);
10136 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
10137 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
10138 return false;
10139 } else if (Op != NonPhiInVal)
10140 return false;
10141 }
10142
10143 return true;
10144}
10145
10146
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010147// PHINode simplification
10148//
10149Instruction *InstCombiner::visitPHINode(PHINode &PN) {
10150 // If LCSSA is around, don't mess with Phi nodes
10151 if (MustPreserveLCSSA) return 0;
10152
10153 if (Value *V = PN.hasConstantValue())
10154 return ReplaceInstUsesWith(PN, V);
10155
10156 // If all PHI operands are the same operation, pull them through the PHI,
10157 // reducing code size.
10158 if (isa<Instruction>(PN.getIncomingValue(0)) &&
10159 PN.getIncomingValue(0)->hasOneUse())
10160 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
10161 return Result;
10162
10163 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
10164 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
10165 // PHI)... break the cycle.
10166 if (PN.hasOneUse()) {
10167 Instruction *PHIUser = cast<Instruction>(PN.use_back());
10168 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
10169 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
10170 PotentiallyDeadPHIs.insert(&PN);
10171 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
10172 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10173 }
10174
10175 // If this phi has a single use, and if that use just computes a value for
10176 // the next iteration of a loop, delete the phi. This occurs with unused
10177 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
10178 // common case here is good because the only other things that catch this
10179 // are induction variable analysis (sometimes) and ADCE, which is only run
10180 // late.
10181 if (PHIUser->hasOneUse() &&
10182 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
10183 PHIUser->use_back() == &PN) {
10184 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10185 }
10186 }
10187
Chris Lattner27b695d2007-11-06 21:52:06 +000010188 // We sometimes end up with phi cycles that non-obviously end up being the
10189 // same value, for example:
10190 // z = some value; x = phi (y, z); y = phi (x, z)
10191 // where the phi nodes don't necessarily need to be in the same block. Do a
10192 // quick check to see if the PHI node only contains a single non-phi value, if
10193 // so, scan to see if the phi cycle is actually equal to that value.
10194 {
10195 unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
10196 // Scan for the first non-phi operand.
10197 while (InValNo != NumOperandVals &&
10198 isa<PHINode>(PN.getIncomingValue(InValNo)))
10199 ++InValNo;
10200
10201 if (InValNo != NumOperandVals) {
10202 Value *NonPhiInVal = PN.getOperand(InValNo);
10203
10204 // Scan the rest of the operands to see if there are any conflicts, if so
10205 // there is no need to recursively scan other phis.
10206 for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
10207 Value *OpVal = PN.getIncomingValue(InValNo);
10208 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
10209 break;
10210 }
10211
10212 // If we scanned over all operands, then we have one unique value plus
10213 // phi values. Scan PHI nodes to see if they all merge in each other or
10214 // the value.
10215 if (InValNo == NumOperandVals) {
10216 SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
10217 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
10218 return ReplaceInstUsesWith(PN, NonPhiInVal);
10219 }
10220 }
10221 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010222 return 0;
10223}
10224
10225static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
10226 Instruction *InsertPoint,
10227 InstCombiner *IC) {
10228 unsigned PtrSize = DTy->getPrimitiveSizeInBits();
10229 unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
10230 // We must cast correctly to the pointer type. Ensure that we
10231 // sign extend the integer value if it is smaller as this is
10232 // used for address computation.
10233 Instruction::CastOps opcode =
10234 (VTySize < PtrSize ? Instruction::SExt :
10235 (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
10236 return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
10237}
10238
10239
10240Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
10241 Value *PtrOp = GEP.getOperand(0);
10242 // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
10243 // If so, eliminate the noop.
10244 if (GEP.getNumOperands() == 1)
10245 return ReplaceInstUsesWith(GEP, PtrOp);
10246
10247 if (isa<UndefValue>(GEP.getOperand(0)))
10248 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
10249
10250 bool HasZeroPointerIndex = false;
10251 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
10252 HasZeroPointerIndex = C->isNullValue();
10253
10254 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
10255 return ReplaceInstUsesWith(GEP, PtrOp);
10256
10257 // Eliminate unneeded casts for indices.
10258 bool MadeChange = false;
10259
10260 gep_type_iterator GTI = gep_type_begin(GEP);
Gabor Greif17396002008-06-12 21:37:33 +000010261 for (User::op_iterator i = GEP.op_begin() + 1, e = GEP.op_end();
10262 i != e; ++i, ++GTI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010263 if (isa<SequentialType>(*GTI)) {
Gabor Greif17396002008-06-12 21:37:33 +000010264 if (CastInst *CI = dyn_cast<CastInst>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010265 if (CI->getOpcode() == Instruction::ZExt ||
10266 CI->getOpcode() == Instruction::SExt) {
10267 const Type *SrcTy = CI->getOperand(0)->getType();
10268 // We can eliminate a cast from i32 to i64 iff the target
10269 // is a 32-bit pointer target.
10270 if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
10271 MadeChange = true;
Gabor Greif17396002008-06-12 21:37:33 +000010272 *i = CI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010273 }
10274 }
10275 }
10276 // If we are using a wider index than needed for this platform, shrink it
Dan Gohman5d639ed2008-09-11 23:06:38 +000010277 // to what we need. If narrower, sign-extend it to what we need.
10278 // If the incoming value needs a cast instruction,
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010279 // insert it. This explicit cast can make subsequent optimizations more
10280 // obvious.
Gabor Greif17396002008-06-12 21:37:33 +000010281 Value *Op = *i;
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010282 if (TD->getTypeSizeInBits(Op->getType()) > TD->getPointerSizeInBits()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010283 if (Constant *C = dyn_cast<Constant>(Op)) {
Gabor Greif17396002008-06-12 21:37:33 +000010284 *i = ConstantExpr::getTrunc(C, TD->getIntPtrType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010285 MadeChange = true;
10286 } else {
10287 Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
10288 GEP);
Gabor Greif17396002008-06-12 21:37:33 +000010289 *i = Op;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010290 MadeChange = true;
10291 }
Dan Gohman5d639ed2008-09-11 23:06:38 +000010292 } else if (TD->getTypeSizeInBits(Op->getType()) < TD->getPointerSizeInBits()) {
10293 if (Constant *C = dyn_cast<Constant>(Op)) {
10294 *i = ConstantExpr::getSExt(C, TD->getIntPtrType());
10295 MadeChange = true;
10296 } else {
10297 Op = InsertCastBefore(Instruction::SExt, Op, TD->getIntPtrType(),
10298 GEP);
10299 *i = Op;
10300 MadeChange = true;
10301 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010302 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010303 }
10304 }
10305 if (MadeChange) return &GEP;
10306
10307 // If this GEP instruction doesn't move the pointer, and if the input operand
10308 // is a bitcast of another pointer, just replace the GEP with a bitcast of the
10309 // real input to the dest type.
Chris Lattnerc59171a2007-10-12 05:30:59 +000010310 if (GEP.hasAllZeroIndices()) {
10311 if (BitCastInst *BCI = dyn_cast<BitCastInst>(GEP.getOperand(0))) {
10312 // If the bitcast is of an allocation, and the allocation will be
10313 // converted to match the type of the cast, don't touch this.
10314 if (isa<AllocationInst>(BCI->getOperand(0))) {
10315 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
Chris Lattner551a5872007-10-12 18:05:47 +000010316 if (Instruction *I = visitBitCast(*BCI)) {
10317 if (I != BCI) {
10318 I->takeName(BCI);
10319 BCI->getParent()->getInstList().insert(BCI, I);
10320 ReplaceInstUsesWith(*BCI, I);
10321 }
Chris Lattnerc59171a2007-10-12 05:30:59 +000010322 return &GEP;
Chris Lattner551a5872007-10-12 18:05:47 +000010323 }
Chris Lattnerc59171a2007-10-12 05:30:59 +000010324 }
10325 return new BitCastInst(BCI->getOperand(0), GEP.getType());
10326 }
10327 }
10328
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010329 // Combine Indices - If the source pointer to this getelementptr instruction
10330 // is a getelementptr instruction, combine the indices of the two
10331 // getelementptr instructions into a single instruction.
10332 //
10333 SmallVector<Value*, 8> SrcGEPOperands;
10334 if (User *Src = dyn_castGetElementPtr(PtrOp))
10335 SrcGEPOperands.append(Src->op_begin(), Src->op_end());
10336
10337 if (!SrcGEPOperands.empty()) {
10338 // Note that if our source is a gep chain itself that we wait for that
10339 // chain to be resolved before we perform this transformation. This
10340 // avoids us creating a TON of code in some cases.
10341 //
10342 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
10343 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
10344 return 0; // Wait until our source is folded to completion.
10345
10346 SmallVector<Value*, 8> Indices;
10347
10348 // Find out whether the last index in the source GEP is a sequential idx.
10349 bool EndsWithSequential = false;
10350 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
10351 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
10352 EndsWithSequential = !isa<StructType>(*I);
10353
10354 // Can we combine the two pointer arithmetics offsets?
10355 if (EndsWithSequential) {
10356 // Replace: gep (gep %P, long B), long A, ...
10357 // With: T = long A+B; gep %P, T, ...
10358 //
10359 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
10360 if (SO1 == Constant::getNullValue(SO1->getType())) {
10361 Sum = GO1;
10362 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
10363 Sum = SO1;
10364 } else {
10365 // If they aren't the same type, convert both to an integer of the
10366 // target's pointer size.
10367 if (SO1->getType() != GO1->getType()) {
10368 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
10369 SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
10370 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
10371 GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
10372 } else {
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010373 unsigned PS = TD->getPointerSizeInBits();
10374 if (TD->getTypeSizeInBits(SO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010375 // Convert GO1 to SO1's type.
10376 GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
10377
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010378 } else if (TD->getTypeSizeInBits(GO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010379 // Convert SO1 to GO1's type.
10380 SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
10381 } else {
10382 const Type *PT = TD->getIntPtrType();
10383 SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
10384 GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
10385 }
10386 }
10387 }
10388 if (isa<Constant>(SO1) && isa<Constant>(GO1))
10389 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
10390 else {
Gabor Greifa645dd32008-05-16 19:29:10 +000010391 Sum = BinaryOperator::CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010392 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
10393 }
10394 }
10395
10396 // Recycle the GEP we already have if possible.
10397 if (SrcGEPOperands.size() == 2) {
10398 GEP.setOperand(0, SrcGEPOperands[0]);
10399 GEP.setOperand(1, Sum);
10400 return &GEP;
10401 } else {
10402 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10403 SrcGEPOperands.end()-1);
10404 Indices.push_back(Sum);
10405 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
10406 }
10407 } else if (isa<Constant>(*GEP.idx_begin()) &&
10408 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
10409 SrcGEPOperands.size() != 1) {
10410 // Otherwise we can do the fold if the first index of the GEP is a zero
10411 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10412 SrcGEPOperands.end());
10413 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
10414 }
10415
10416 if (!Indices.empty())
Gabor Greifd6da1d02008-04-06 20:25:17 +000010417 return GetElementPtrInst::Create(SrcGEPOperands[0], Indices.begin(),
10418 Indices.end(), GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010419
10420 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
10421 // GEP of global variable. If all of the indices for this GEP are
10422 // constants, we can promote this to a constexpr instead of an instruction.
10423
10424 // Scan for nonconstants...
10425 SmallVector<Constant*, 8> Indices;
10426 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
10427 for (; I != E && isa<Constant>(*I); ++I)
10428 Indices.push_back(cast<Constant>(*I));
10429
10430 if (I == E) { // If they are all constants...
10431 Constant *CE = ConstantExpr::getGetElementPtr(GV,
10432 &Indices[0],Indices.size());
10433
10434 // Replace all uses of the GEP with the new constexpr...
10435 return ReplaceInstUsesWith(GEP, CE);
10436 }
10437 } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
10438 if (!isa<PointerType>(X->getType())) {
10439 // Not interesting. Source pointer must be a cast from pointer.
10440 } else if (HasZeroPointerIndex) {
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010441 // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
10442 // into : GEP [10 x i8]* X, i32 0, ...
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010443 //
10444 // This occurs when the program declares an array extern like "int X[];"
10445 //
10446 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
10447 const PointerType *XTy = cast<PointerType>(X->getType());
10448 if (const ArrayType *XATy =
10449 dyn_cast<ArrayType>(XTy->getElementType()))
10450 if (const ArrayType *CATy =
10451 dyn_cast<ArrayType>(CPTy->getElementType()))
10452 if (CATy->getElementType() == XATy->getElementType()) {
10453 // At this point, we know that the cast source type is a pointer
10454 // to an array of the same type as the destination pointer
10455 // array. Because the array type is never stepped over (there
10456 // is a leading zero) we can fold the cast into this GEP.
10457 GEP.setOperand(0, X);
10458 return &GEP;
10459 }
10460 } else if (GEP.getNumOperands() == 2) {
10461 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010462 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
10463 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010464 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
10465 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
10466 if (isa<ArrayType>(SrcElTy) &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010467 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
10468 TD->getABITypeSize(ResElTy)) {
David Greene393be882007-09-04 15:46:09 +000010469 Value *Idx[2];
10470 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10471 Idx[1] = GEP.getOperand(1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010472 Value *V = InsertNewInstBefore(
Gabor Greifd6da1d02008-04-06 20:25:17 +000010473 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName()), GEP);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010474 // V and GEP are both pointer types --> BitCast
10475 return new BitCastInst(V, GEP.getType());
10476 }
10477
10478 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010479 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010480 // (where tmp = 8*tmp2) into:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010481 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010482
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010483 if (isa<ArrayType>(SrcElTy) && ResElTy == Type::Int8Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010484 uint64_t ArrayEltSize =
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010485 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010486
10487 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
10488 // allow either a mul, shift, or constant here.
10489 Value *NewIdx = 0;
10490 ConstantInt *Scale = 0;
10491 if (ArrayEltSize == 1) {
10492 NewIdx = GEP.getOperand(1);
10493 Scale = ConstantInt::get(NewIdx->getType(), 1);
10494 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
10495 NewIdx = ConstantInt::get(CI->getType(), 1);
10496 Scale = CI;
10497 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
10498 if (Inst->getOpcode() == Instruction::Shl &&
10499 isa<ConstantInt>(Inst->getOperand(1))) {
10500 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
10501 uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
10502 Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal);
10503 NewIdx = Inst->getOperand(0);
10504 } else if (Inst->getOpcode() == Instruction::Mul &&
10505 isa<ConstantInt>(Inst->getOperand(1))) {
10506 Scale = cast<ConstantInt>(Inst->getOperand(1));
10507 NewIdx = Inst->getOperand(0);
10508 }
10509 }
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010510
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010511 // If the index will be to exactly the right offset with the scale taken
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010512 // out, perform the transformation. Note, we don't know whether Scale is
10513 // signed or not. We'll use unsigned version of division/modulo
10514 // operation after making sure Scale doesn't have the sign bit set.
10515 if (Scale && Scale->getSExtValue() >= 0LL &&
10516 Scale->getZExtValue() % ArrayEltSize == 0) {
10517 Scale = ConstantInt::get(Scale->getType(),
10518 Scale->getZExtValue() / ArrayEltSize);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010519 if (Scale->getZExtValue() != 1) {
10520 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010521 false /*ZExt*/);
Gabor Greifa645dd32008-05-16 19:29:10 +000010522 Instruction *Sc = BinaryOperator::CreateMul(NewIdx, C, "idxscale");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010523 NewIdx = InsertNewInstBefore(Sc, GEP);
10524 }
10525
10526 // Insert the new GEP instruction.
David Greene393be882007-09-04 15:46:09 +000010527 Value *Idx[2];
10528 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10529 Idx[1] = NewIdx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010530 Instruction *NewGEP =
Gabor Greifd6da1d02008-04-06 20:25:17 +000010531 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010532 NewGEP = InsertNewInstBefore(NewGEP, GEP);
10533 // The NewGEP must be pointer typed, so must the old one -> BitCast
10534 return new BitCastInst(NewGEP, GEP.getType());
10535 }
10536 }
10537 }
10538 }
10539
10540 return 0;
10541}
10542
10543Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
10544 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010545 if (AI.isArrayAllocation()) { // Check C != 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010546 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
10547 const Type *NewTy =
10548 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
10549 AllocationInst *New = 0;
10550
10551 // Create and insert the replacement instruction...
10552 if (isa<MallocInst>(AI))
10553 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
10554 else {
10555 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
10556 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
10557 }
10558
10559 InsertNewInstBefore(New, AI);
10560
10561 // Scan to the end of the allocation instructions, to skip over a block of
10562 // allocas if possible...
10563 //
10564 BasicBlock::iterator It = New;
10565 while (isa<AllocationInst>(*It)) ++It;
10566
10567 // Now that I is pointing to the first non-allocation-inst in the block,
10568 // insert our getelementptr instruction...
10569 //
10570 Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
David Greene393be882007-09-04 15:46:09 +000010571 Value *Idx[2];
10572 Idx[0] = NullIdx;
10573 Idx[1] = NullIdx;
Gabor Greifd6da1d02008-04-06 20:25:17 +000010574 Value *V = GetElementPtrInst::Create(New, Idx, Idx + 2,
10575 New->getName()+".sub", It);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010576
10577 // Now make everything use the getelementptr instead of the original
10578 // allocation.
10579 return ReplaceInstUsesWith(AI, V);
10580 } else if (isa<UndefValue>(AI.getArraySize())) {
10581 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10582 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010583 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010584
10585 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
10586 // Note that we only do this for alloca's, because malloc should allocate and
10587 // return a unique pointer, even for a zero byte allocation.
10588 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010589 TD->getABITypeSize(AI.getAllocatedType()) == 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010590 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10591
10592 return 0;
10593}
10594
10595Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
10596 Value *Op = FI.getOperand(0);
10597
10598 // free undef -> unreachable.
10599 if (isa<UndefValue>(Op)) {
10600 // Insert a new store to null because we cannot modify the CFG here.
10601 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +000010602 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010603 return EraseInstFromFunction(FI);
10604 }
10605
10606 // If we have 'free null' delete the instruction. This can happen in stl code
10607 // when lots of inlining happens.
10608 if (isa<ConstantPointerNull>(Op))
10609 return EraseInstFromFunction(FI);
10610
10611 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
10612 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) {
10613 FI.setOperand(0, CI->getOperand(0));
10614 return &FI;
10615 }
10616
10617 // Change free (gep X, 0,0,0,0) into free(X)
10618 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10619 if (GEPI->hasAllZeroIndices()) {
10620 AddToWorkList(GEPI);
10621 FI.setOperand(0, GEPI->getOperand(0));
10622 return &FI;
10623 }
10624 }
10625
10626 // Change free(malloc) into nothing, if the malloc has a single use.
10627 if (MallocInst *MI = dyn_cast<MallocInst>(Op))
10628 if (MI->hasOneUse()) {
10629 EraseInstFromFunction(FI);
10630 return EraseInstFromFunction(*MI);
10631 }
10632
10633 return 0;
10634}
10635
10636
10637/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Devang Patela0f8ea82007-10-18 19:52:32 +000010638static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
Bill Wendling44a36ea2008-02-26 10:53:30 +000010639 const TargetData *TD) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010640 User *CI = cast<User>(LI.getOperand(0));
10641 Value *CastOp = CI->getOperand(0);
10642
Devang Patela0f8ea82007-10-18 19:52:32 +000010643 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
10644 // Instead of loading constant c string, use corresponding integer value
10645 // directly if string length is small enough.
Evan Cheng833501d2008-06-30 07:31:25 +000010646 std::string Str;
10647 if (GetConstantStringInfo(CE->getOperand(0), Str) && !Str.empty()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010648 unsigned len = Str.length();
10649 const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
10650 unsigned numBits = Ty->getPrimitiveSizeInBits();
10651 // Replace LI with immediate integer store.
10652 if ((numBits >> 3) == len + 1) {
Bill Wendling44a36ea2008-02-26 10:53:30 +000010653 APInt StrVal(numBits, 0);
10654 APInt SingleChar(numBits, 0);
10655 if (TD->isLittleEndian()) {
10656 for (signed i = len-1; i >= 0; i--) {
10657 SingleChar = (uint64_t) Str[i];
10658 StrVal = (StrVal << 8) | SingleChar;
10659 }
10660 } else {
10661 for (unsigned i = 0; i < len; i++) {
10662 SingleChar = (uint64_t) Str[i];
10663 StrVal = (StrVal << 8) | SingleChar;
10664 }
10665 // Append NULL at the end.
10666 SingleChar = 0;
10667 StrVal = (StrVal << 8) | SingleChar;
10668 }
10669 Value *NL = ConstantInt::get(StrVal);
10670 return IC.ReplaceInstUsesWith(LI, NL);
Devang Patela0f8ea82007-10-18 19:52:32 +000010671 }
10672 }
10673 }
10674
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010675 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10676 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10677 const Type *SrcPTy = SrcTy->getElementType();
10678
10679 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
10680 isa<VectorType>(DestPTy)) {
10681 // If the source is an array, the code below will not succeed. Check to
10682 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10683 // constants.
10684 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10685 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10686 if (ASrcTy->getNumElements() != 0) {
10687 Value *Idxs[2];
10688 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10689 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10690 SrcTy = cast<PointerType>(CastOp->getType());
10691 SrcPTy = SrcTy->getElementType();
10692 }
10693
10694 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
10695 isa<VectorType>(SrcPTy)) &&
10696 // Do not allow turning this into a load of an integer, which is then
10697 // casted to a pointer, this pessimizes pointer analysis a lot.
10698 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
10699 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10700 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10701
10702 // Okay, we are casting from one integer or pointer type to another of
10703 // the same size. Instead of casting the pointer before the load, cast
10704 // the result of the loaded value.
10705 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
10706 CI->getName(),
10707 LI.isVolatile()),LI);
10708 // Now cast the result of the load.
10709 return new BitCastInst(NewLoad, LI.getType());
10710 }
10711 }
10712 }
10713 return 0;
10714}
10715
10716/// isSafeToLoadUnconditionally - Return true if we know that executing a load
10717/// from this value cannot trap. If it is not obviously safe to load from the
10718/// specified pointer, we do a quick local scan of the basic block containing
10719/// ScanFrom, to determine if the address is already accessed.
10720static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010721 // If it is an alloca it is always safe to load from.
10722 if (isa<AllocaInst>(V)) return true;
10723
Duncan Sandse40a94a2007-09-19 10:25:38 +000010724 // If it is a global variable it is mostly safe to load from.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010725 if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
Duncan Sandse40a94a2007-09-19 10:25:38 +000010726 // Don't try to evaluate aliases. External weak GV can be null.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010727 return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010728
10729 // Otherwise, be a little bit agressive by scanning the local block where we
10730 // want to check to see if the pointer is already being loaded or stored
10731 // from/to. If so, the previous load or store would have already trapped,
10732 // so there is no harm doing an extra load (also, CSE will later eliminate
10733 // the load entirely).
10734 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
10735
10736 while (BBI != E) {
10737 --BBI;
10738
Chris Lattner476983a2008-06-20 05:12:56 +000010739 // If we see a free or a call (which might do a free) the pointer could be
10740 // marked invalid.
10741 if (isa<FreeInst>(BBI) || isa<CallInst>(BBI))
10742 return false;
10743
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010744 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
10745 if (LI->getOperand(0) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010746 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010747 if (SI->getOperand(1) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010748 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010749
10750 }
10751 return false;
10752}
10753
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010754/// equivalentAddressValues - Test if A and B will obviously have the same
10755/// value. This includes recognizing that %t0 and %t1 will have the same
10756/// value in code like this:
10757/// %t0 = getelementptr @a, 0, 3
10758/// store i32 0, i32* %t0
10759/// %t1 = getelementptr @a, 0, 3
10760/// %t2 = load i32* %t1
10761///
10762static bool equivalentAddressValues(Value *A, Value *B) {
10763 // Test if the values are trivially equivalent.
10764 if (A == B) return true;
10765
10766 // Test if the values come form identical arithmetic instructions.
10767 if (isa<BinaryOperator>(A) ||
10768 isa<CastInst>(A) ||
10769 isa<PHINode>(A) ||
10770 isa<GetElementPtrInst>(A))
10771 if (Instruction *BI = dyn_cast<Instruction>(B))
10772 if (cast<Instruction>(A)->isIdenticalTo(BI))
10773 return true;
10774
10775 // Otherwise they may not be equivalent.
10776 return false;
10777}
10778
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010779Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
10780 Value *Op = LI.getOperand(0);
10781
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010782 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000010783 unsigned KnownAlign = GetOrEnforceKnownAlignment(Op);
10784 if (KnownAlign >
10785 (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
10786 LI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010787 LI.setAlignment(KnownAlign);
10788
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010789 // load (cast X) --> cast (load X) iff safe
10790 if (isa<CastInst>(Op))
Devang Patela0f8ea82007-10-18 19:52:32 +000010791 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010792 return Res;
10793
10794 // None of the following transforms are legal for volatile loads.
10795 if (LI.isVolatile()) return 0;
10796
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010797 // Do really simple store-to-load forwarding and load CSE, to catch cases
10798 // where there are several consequtive memory accesses to the same location,
10799 // separated by a few arithmetic operations.
10800 BasicBlock::iterator BBI = &LI;
10801 for (unsigned ScanInsts = 6; BBI != LI.getParent()->begin() && ScanInsts;
10802 --ScanInsts) {
10803 --BBI;
10804
10805 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
10806 if (equivalentAddressValues(SI->getOperand(1), LI.getOperand(0)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010807 return ReplaceInstUsesWith(LI, SI->getOperand(0));
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010808 } else if (LoadInst *LIB = dyn_cast<LoadInst>(BBI)) {
10809 if (equivalentAddressValues(LIB->getOperand(0), LI.getOperand(0)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010810 return ReplaceInstUsesWith(LI, LIB);
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010811 }
10812
10813 // Don't skip over things that can modify memory.
10814 if (BBI->mayWriteToMemory())
10815 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010816 }
10817
Christopher Lamb2c175392007-12-29 07:56:53 +000010818 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10819 const Value *GEPI0 = GEPI->getOperand(0);
10820 // TODO: Consider a target hook for valid address spaces for this xform.
10821 if (isa<ConstantPointerNull>(GEPI0) &&
10822 cast<PointerType>(GEPI0->getType())->getAddressSpace() == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010823 // Insert a new store to null instruction before the load to indicate
10824 // that this code is not reachable. We do this instead of inserting
10825 // an unreachable instruction directly because we cannot modify the
10826 // CFG.
10827 new StoreInst(UndefValue::get(LI.getType()),
10828 Constant::getNullValue(Op->getType()), &LI);
10829 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10830 }
Christopher Lamb2c175392007-12-29 07:56:53 +000010831 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010832
10833 if (Constant *C = dyn_cast<Constant>(Op)) {
10834 // load null/undef -> undef
Christopher Lamb2c175392007-12-29 07:56:53 +000010835 // TODO: Consider a target hook for valid address spaces for this xform.
10836 if (isa<UndefValue>(C) || (C->isNullValue() &&
10837 cast<PointerType>(Op->getType())->getAddressSpace() == 0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010838 // Insert a new store to null instruction before the load to indicate that
10839 // this code is not reachable. We do this instead of inserting an
10840 // unreachable instruction directly because we cannot modify the CFG.
10841 new StoreInst(UndefValue::get(LI.getType()),
10842 Constant::getNullValue(Op->getType()), &LI);
10843 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10844 }
10845
10846 // Instcombine load (constant global) into the value loaded.
10847 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
10848 if (GV->isConstant() && !GV->isDeclaration())
10849 return ReplaceInstUsesWith(LI, GV->getInitializer());
10850
10851 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010852 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010853 if (CE->getOpcode() == Instruction::GetElementPtr) {
10854 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
10855 if (GV->isConstant() && !GV->isDeclaration())
10856 if (Constant *V =
10857 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
10858 return ReplaceInstUsesWith(LI, V);
10859 if (CE->getOperand(0)->isNullValue()) {
10860 // Insert a new store to null instruction before the load to indicate
10861 // that this code is not reachable. We do this instead of inserting
10862 // an unreachable instruction directly because we cannot modify the
10863 // CFG.
10864 new StoreInst(UndefValue::get(LI.getType()),
10865 Constant::getNullValue(Op->getType()), &LI);
10866 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10867 }
10868
10869 } else if (CE->isCast()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010870 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010871 return Res;
10872 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010873 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010874 }
Chris Lattner0270a112007-08-11 18:48:48 +000010875
10876 // If this load comes from anywhere in a constant global, and if the global
10877 // is all undef or zero, we know what it loads.
Duncan Sands52fb8732008-10-01 15:25:41 +000010878 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op->getUnderlyingObject())){
Chris Lattner0270a112007-08-11 18:48:48 +000010879 if (GV->isConstant() && GV->hasInitializer()) {
10880 if (GV->getInitializer()->isNullValue())
10881 return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
10882 else if (isa<UndefValue>(GV->getInitializer()))
10883 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10884 }
10885 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010886
10887 if (Op->hasOneUse()) {
10888 // Change select and PHI nodes to select values instead of addresses: this
10889 // helps alias analysis out a lot, allows many others simplifications, and
10890 // exposes redundancy in the code.
10891 //
10892 // Note that we cannot do the transformation unless we know that the
10893 // introduced loads cannot trap! Something like this is valid as long as
10894 // the condition is always false: load (select bool %C, int* null, int* %G),
10895 // but it would not be valid if we transformed it to load from null
10896 // unconditionally.
10897 //
10898 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
10899 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
10900 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
10901 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
10902 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
10903 SI->getOperand(1)->getName()+".val"), LI);
10904 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
10905 SI->getOperand(2)->getName()+".val"), LI);
Gabor Greifd6da1d02008-04-06 20:25:17 +000010906 return SelectInst::Create(SI->getCondition(), V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010907 }
10908
10909 // load (select (cond, null, P)) -> load P
10910 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
10911 if (C->isNullValue()) {
10912 LI.setOperand(0, SI->getOperand(2));
10913 return &LI;
10914 }
10915
10916 // load (select (cond, P, null)) -> load P
10917 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
10918 if (C->isNullValue()) {
10919 LI.setOperand(0, SI->getOperand(1));
10920 return &LI;
10921 }
10922 }
10923 }
10924 return 0;
10925}
10926
10927/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
10928/// when possible.
10929static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
10930 User *CI = cast<User>(SI.getOperand(1));
10931 Value *CastOp = CI->getOperand(0);
10932
10933 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10934 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10935 const Type *SrcPTy = SrcTy->getElementType();
10936
10937 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
10938 // If the source is an array, the code below will not succeed. Check to
10939 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10940 // constants.
10941 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10942 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10943 if (ASrcTy->getNumElements() != 0) {
10944 Value* Idxs[2];
10945 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10946 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10947 SrcTy = cast<PointerType>(CastOp->getType());
10948 SrcPTy = SrcTy->getElementType();
10949 }
10950
10951 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
10952 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10953 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10954
10955 // Okay, we are casting from one integer or pointer type to another of
10956 // the same size. Instead of casting the pointer before
10957 // the store, cast the value to be stored.
10958 Value *NewCast;
10959 Value *SIOp0 = SI.getOperand(0);
10960 Instruction::CastOps opcode = Instruction::BitCast;
10961 const Type* CastSrcTy = SIOp0->getType();
10962 const Type* CastDstTy = SrcPTy;
10963 if (isa<PointerType>(CastDstTy)) {
10964 if (CastSrcTy->isInteger())
10965 opcode = Instruction::IntToPtr;
10966 } else if (isa<IntegerType>(CastDstTy)) {
10967 if (isa<PointerType>(SIOp0->getType()))
10968 opcode = Instruction::PtrToInt;
10969 }
10970 if (Constant *C = dyn_cast<Constant>(SIOp0))
10971 NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
10972 else
10973 NewCast = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +000010974 CastInst::Create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010975 SI);
10976 return new StoreInst(NewCast, CastOp);
10977 }
10978 }
10979 }
10980 return 0;
10981}
10982
10983Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
10984 Value *Val = SI.getOperand(0);
10985 Value *Ptr = SI.getOperand(1);
10986
10987 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
10988 EraseInstFromFunction(SI);
10989 ++NumCombined;
10990 return 0;
10991 }
10992
10993 // If the RHS is an alloca with a single use, zapify the store, making the
10994 // alloca dead.
Chris Lattnera02bacc2008-04-29 04:58:38 +000010995 if (Ptr->hasOneUse() && !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010996 if (isa<AllocaInst>(Ptr)) {
10997 EraseInstFromFunction(SI);
10998 ++NumCombined;
10999 return 0;
11000 }
11001
11002 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
11003 if (isa<AllocaInst>(GEP->getOperand(0)) &&
11004 GEP->getOperand(0)->hasOneUse()) {
11005 EraseInstFromFunction(SI);
11006 ++NumCombined;
11007 return 0;
11008 }
11009 }
11010
Dan Gohman5c4d0e12007-07-20 16:34:21 +000011011 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000011012 unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr);
11013 if (KnownAlign >
11014 (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
11015 SI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000011016 SI.setAlignment(KnownAlign);
11017
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011018 // Do really simple DSE, to catch cases where there are several consequtive
11019 // stores to the same location, separated by a few arithmetic operations. This
11020 // situation often occurs with bitfield accesses.
11021 BasicBlock::iterator BBI = &SI;
11022 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
11023 --ScanInsts) {
11024 --BBI;
11025
11026 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
11027 // Prev store isn't volatile, and stores to the same location?
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000011028 if (!PrevSI->isVolatile() && equivalentAddressValues(PrevSI->getOperand(1),
11029 SI.getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011030 ++NumDeadStore;
11031 ++BBI;
11032 EraseInstFromFunction(*PrevSI);
11033 continue;
11034 }
11035 break;
11036 }
11037
11038 // If this is a load, we have to stop. However, if the loaded value is from
11039 // the pointer we're loading and is producing the pointer we're storing,
11040 // then *this* store is dead (X = load P; store X -> P).
11041 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000011042 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
11043 !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011044 EraseInstFromFunction(SI);
11045 ++NumCombined;
11046 return 0;
11047 }
11048 // Otherwise, this is a load from some other location. Stores before it
11049 // may not be dead.
11050 break;
11051 }
11052
11053 // Don't skip over loads or things that can modify memory.
Chris Lattner84504282008-05-08 17:20:30 +000011054 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011055 break;
11056 }
11057
11058
11059 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
11060
11061 // store X, null -> turns into 'unreachable' in SimplifyCFG
11062 if (isa<ConstantPointerNull>(Ptr)) {
11063 if (!isa<UndefValue>(Val)) {
11064 SI.setOperand(0, UndefValue::get(Val->getType()));
11065 if (Instruction *U = dyn_cast<Instruction>(Val))
11066 AddToWorkList(U); // Dropped a use.
11067 ++NumCombined;
11068 }
11069 return 0; // Do not modify these!
11070 }
11071
11072 // store undef, Ptr -> noop
11073 if (isa<UndefValue>(Val)) {
11074 EraseInstFromFunction(SI);
11075 ++NumCombined;
11076 return 0;
11077 }
11078
11079 // If the pointer destination is a cast, see if we can fold the cast into the
11080 // source instead.
11081 if (isa<CastInst>(Ptr))
11082 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11083 return Res;
11084 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
11085 if (CE->isCast())
11086 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11087 return Res;
11088
11089
11090 // If this store is the last instruction in the basic block, and if the block
11091 // ends with an unconditional branch, try to move it to the successor block.
11092 BBI = &SI; ++BBI;
11093 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
11094 if (BI->isUnconditional())
11095 if (SimplifyStoreAtEndOfBlock(SI))
11096 return 0; // xform done!
11097
11098 return 0;
11099}
11100
11101/// SimplifyStoreAtEndOfBlock - Turn things like:
11102/// if () { *P = v1; } else { *P = v2 }
11103/// into a phi node with a store in the successor.
11104///
11105/// Simplify things like:
11106/// *P = v1; if () { *P = v2; }
11107/// into a phi node with a store in the successor.
11108///
11109bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
11110 BasicBlock *StoreBB = SI.getParent();
11111
11112 // Check to see if the successor block has exactly two incoming edges. If
11113 // so, see if the other predecessor contains a store to the same location.
11114 // if so, insert a PHI node (if needed) and move the stores down.
11115 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
11116
11117 // Determine whether Dest has exactly two predecessors and, if so, compute
11118 // the other predecessor.
11119 pred_iterator PI = pred_begin(DestBB);
11120 BasicBlock *OtherBB = 0;
11121 if (*PI != StoreBB)
11122 OtherBB = *PI;
11123 ++PI;
11124 if (PI == pred_end(DestBB))
11125 return false;
11126
11127 if (*PI != StoreBB) {
11128 if (OtherBB)
11129 return false;
11130 OtherBB = *PI;
11131 }
11132 if (++PI != pred_end(DestBB))
11133 return false;
Eli Friedmanab39f9a2008-06-13 21:17:49 +000011134
11135 // Bail out if all the relevant blocks aren't distinct (this can happen,
11136 // for example, if SI is in an infinite loop)
11137 if (StoreBB == DestBB || OtherBB == DestBB)
11138 return false;
11139
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011140 // Verify that the other block ends in a branch and is not otherwise empty.
11141 BasicBlock::iterator BBI = OtherBB->getTerminator();
11142 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
11143 if (!OtherBr || BBI == OtherBB->begin())
11144 return false;
11145
11146 // If the other block ends in an unconditional branch, check for the 'if then
11147 // else' case. there is an instruction before the branch.
11148 StoreInst *OtherStore = 0;
11149 if (OtherBr->isUnconditional()) {
11150 // If this isn't a store, or isn't a store to the same location, bail out.
11151 --BBI;
11152 OtherStore = dyn_cast<StoreInst>(BBI);
11153 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1))
11154 return false;
11155 } else {
11156 // Otherwise, the other block ended with a conditional branch. If one of the
11157 // destinations is StoreBB, then we have the if/then case.
11158 if (OtherBr->getSuccessor(0) != StoreBB &&
11159 OtherBr->getSuccessor(1) != StoreBB)
11160 return false;
11161
11162 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
11163 // if/then triangle. See if there is a store to the same ptr as SI that
11164 // lives in OtherBB.
11165 for (;; --BBI) {
11166 // Check to see if we find the matching store.
11167 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
11168 if (OtherStore->getOperand(1) != SI.getOperand(1))
11169 return false;
11170 break;
11171 }
Eli Friedman3a311d52008-06-13 22:02:12 +000011172 // If we find something that may be using or overwriting the stored
11173 // value, or if we run out of instructions, we can't do the xform.
11174 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011175 BBI == OtherBB->begin())
11176 return false;
11177 }
11178
11179 // In order to eliminate the store in OtherBr, we have to
Eli Friedman3a311d52008-06-13 22:02:12 +000011180 // make sure nothing reads or overwrites the stored value in
11181 // StoreBB.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011182 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
11183 // FIXME: This should really be AA driven.
Eli Friedman3a311d52008-06-13 22:02:12 +000011184 if (I->mayReadFromMemory() || I->mayWriteToMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011185 return false;
11186 }
11187 }
11188
11189 // Insert a PHI node now if we need it.
11190 Value *MergedVal = OtherStore->getOperand(0);
11191 if (MergedVal != SI.getOperand(0)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +000011192 PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011193 PN->reserveOperandSpace(2);
11194 PN->addIncoming(SI.getOperand(0), SI.getParent());
11195 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
11196 MergedVal = InsertNewInstBefore(PN, DestBB->front());
11197 }
11198
11199 // Advance to a place where it is safe to insert the new store and
11200 // insert it.
Dan Gohman514277c2008-05-23 21:05:58 +000011201 BBI = DestBB->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011202 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
11203 OtherStore->isVolatile()), *BBI);
11204
11205 // Nuke the old stores.
11206 EraseInstFromFunction(SI);
11207 EraseInstFromFunction(*OtherStore);
11208 ++NumCombined;
11209 return true;
11210}
11211
11212
11213Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
11214 // Change br (not X), label True, label False to: br X, label False, True
11215 Value *X = 0;
11216 BasicBlock *TrueDest;
11217 BasicBlock *FalseDest;
11218 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
11219 !isa<Constant>(X)) {
11220 // Swap Destinations and condition...
11221 BI.setCondition(X);
11222 BI.setSuccessor(0, FalseDest);
11223 BI.setSuccessor(1, TrueDest);
11224 return &BI;
11225 }
11226
11227 // Cannonicalize fcmp_one -> fcmp_oeq
11228 FCmpInst::Predicate FPred; Value *Y;
11229 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
11230 TrueDest, FalseDest)))
11231 if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
11232 FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
11233 FCmpInst *I = cast<FCmpInst>(BI.getCondition());
11234 FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
11235 Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
11236 NewSCC->takeName(I);
11237 // Swap Destinations and condition...
11238 BI.setCondition(NewSCC);
11239 BI.setSuccessor(0, FalseDest);
11240 BI.setSuccessor(1, TrueDest);
11241 RemoveFromWorkList(I);
11242 I->eraseFromParent();
11243 AddToWorkList(NewSCC);
11244 return &BI;
11245 }
11246
11247 // Cannonicalize icmp_ne -> icmp_eq
11248 ICmpInst::Predicate IPred;
11249 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
11250 TrueDest, FalseDest)))
11251 if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
11252 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
11253 IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
11254 ICmpInst *I = cast<ICmpInst>(BI.getCondition());
11255 ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
11256 Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
11257 NewSCC->takeName(I);
11258 // Swap Destinations and condition...
11259 BI.setCondition(NewSCC);
11260 BI.setSuccessor(0, FalseDest);
11261 BI.setSuccessor(1, TrueDest);
11262 RemoveFromWorkList(I);
11263 I->eraseFromParent();;
11264 AddToWorkList(NewSCC);
11265 return &BI;
11266 }
11267
11268 return 0;
11269}
11270
11271Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
11272 Value *Cond = SI.getCondition();
11273 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
11274 if (I->getOpcode() == Instruction::Add)
11275 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
11276 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
11277 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
11278 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
11279 AddRHS));
11280 SI.setOperand(0, I->getOperand(0));
11281 AddToWorkList(I);
11282 return &SI;
11283 }
11284 }
11285 return 0;
11286}
11287
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011288Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
Matthijs Kooijman45e8eb42008-07-16 12:55:45 +000011289 Value *Agg = EV.getAggregateOperand();
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011290
Matthijs Kooijman45e8eb42008-07-16 12:55:45 +000011291 if (!EV.hasIndices())
11292 return ReplaceInstUsesWith(EV, Agg);
11293
11294 if (Constant *C = dyn_cast<Constant>(Agg)) {
11295 if (isa<UndefValue>(C))
11296 return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
11297
11298 if (isa<ConstantAggregateZero>(C))
11299 return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
11300
11301 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
11302 // Extract the element indexed by the first index out of the constant
11303 Value *V = C->getOperand(*EV.idx_begin());
11304 if (EV.getNumIndices() > 1)
11305 // Extract the remaining indices out of the constant indexed by the
11306 // first index
11307 return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
11308 else
11309 return ReplaceInstUsesWith(EV, V);
11310 }
11311 return 0; // Can't handle other constants
11312 }
11313 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
11314 // We're extracting from an insertvalue instruction, compare the indices
11315 const unsigned *exti, *exte, *insi, *inse;
11316 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
11317 exte = EV.idx_end(), inse = IV->idx_end();
11318 exti != exte && insi != inse;
11319 ++exti, ++insi) {
11320 if (*insi != *exti)
11321 // The insert and extract both reference distinctly different elements.
11322 // This means the extract is not influenced by the insert, and we can
11323 // replace the aggregate operand of the extract with the aggregate
11324 // operand of the insert. i.e., replace
11325 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11326 // %E = extractvalue { i32, { i32 } } %I, 0
11327 // with
11328 // %E = extractvalue { i32, { i32 } } %A, 0
11329 return ExtractValueInst::Create(IV->getAggregateOperand(),
11330 EV.idx_begin(), EV.idx_end());
11331 }
11332 if (exti == exte && insi == inse)
11333 // Both iterators are at the end: Index lists are identical. Replace
11334 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11335 // %C = extractvalue { i32, { i32 } } %B, 1, 0
11336 // with "i32 42"
11337 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
11338 if (exti == exte) {
11339 // The extract list is a prefix of the insert list. i.e. replace
11340 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11341 // %E = extractvalue { i32, { i32 } } %I, 1
11342 // with
11343 // %X = extractvalue { i32, { i32 } } %A, 1
11344 // %E = insertvalue { i32 } %X, i32 42, 0
11345 // by switching the order of the insert and extract (though the
11346 // insertvalue should be left in, since it may have other uses).
11347 Value *NewEV = InsertNewInstBefore(
11348 ExtractValueInst::Create(IV->getAggregateOperand(),
11349 EV.idx_begin(), EV.idx_end()),
11350 EV);
11351 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
11352 insi, inse);
11353 }
11354 if (insi == inse)
11355 // The insert list is a prefix of the extract list
11356 // We can simply remove the common indices from the extract and make it
11357 // operate on the inserted value instead of the insertvalue result.
11358 // i.e., replace
11359 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11360 // %E = extractvalue { i32, { i32 } } %I, 1, 0
11361 // with
11362 // %E extractvalue { i32 } { i32 42 }, 0
11363 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
11364 exti, exte);
11365 }
11366 // Can't simplify extracts from other values. Note that nested extracts are
11367 // already simplified implicitely by the above (extract ( extract (insert) )
11368 // will be translated into extract ( insert ( extract ) ) first and then just
11369 // the value inserted, if appropriate).
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011370 return 0;
11371}
11372
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011373/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
11374/// is to leave as a vector operation.
11375static bool CheapToScalarize(Value *V, bool isConstant) {
11376 if (isa<ConstantAggregateZero>(V))
11377 return true;
11378 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
11379 if (isConstant) return true;
11380 // If all elts are the same, we can extract.
11381 Constant *Op0 = C->getOperand(0);
11382 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11383 if (C->getOperand(i) != Op0)
11384 return false;
11385 return true;
11386 }
11387 Instruction *I = dyn_cast<Instruction>(V);
11388 if (!I) return false;
11389
11390 // Insert element gets simplified to the inserted element or is deleted if
11391 // this is constant idx extract element and its a constant idx insertelt.
11392 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
11393 isa<ConstantInt>(I->getOperand(2)))
11394 return true;
11395 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
11396 return true;
11397 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
11398 if (BO->hasOneUse() &&
11399 (CheapToScalarize(BO->getOperand(0), isConstant) ||
11400 CheapToScalarize(BO->getOperand(1), isConstant)))
11401 return true;
11402 if (CmpInst *CI = dyn_cast<CmpInst>(I))
11403 if (CI->hasOneUse() &&
11404 (CheapToScalarize(CI->getOperand(0), isConstant) ||
11405 CheapToScalarize(CI->getOperand(1), isConstant)))
11406 return true;
11407
11408 return false;
11409}
11410
11411/// Read and decode a shufflevector mask.
11412///
11413/// It turns undef elements into values that are larger than the number of
11414/// elements in the input.
11415static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
11416 unsigned NElts = SVI->getType()->getNumElements();
11417 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
11418 return std::vector<unsigned>(NElts, 0);
11419 if (isa<UndefValue>(SVI->getOperand(2)))
11420 return std::vector<unsigned>(NElts, 2*NElts);
11421
11422 std::vector<unsigned> Result;
11423 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
Gabor Greif17396002008-06-12 21:37:33 +000011424 for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i)
11425 if (isa<UndefValue>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011426 Result.push_back(NElts*2); // undef -> 8
11427 else
Gabor Greif17396002008-06-12 21:37:33 +000011428 Result.push_back(cast<ConstantInt>(*i)->getZExtValue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011429 return Result;
11430}
11431
11432/// FindScalarElement - Given a vector and an element number, see if the scalar
11433/// value is already around as a register, for example if it were inserted then
11434/// extracted from the vector.
11435static Value *FindScalarElement(Value *V, unsigned EltNo) {
11436 assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
11437 const VectorType *PTy = cast<VectorType>(V->getType());
11438 unsigned Width = PTy->getNumElements();
11439 if (EltNo >= Width) // Out of range access.
11440 return UndefValue::get(PTy->getElementType());
11441
11442 if (isa<UndefValue>(V))
11443 return UndefValue::get(PTy->getElementType());
11444 else if (isa<ConstantAggregateZero>(V))
11445 return Constant::getNullValue(PTy->getElementType());
11446 else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
11447 return CP->getOperand(EltNo);
11448 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
11449 // If this is an insert to a variable element, we don't know what it is.
11450 if (!isa<ConstantInt>(III->getOperand(2)))
11451 return 0;
11452 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
11453
11454 // If this is an insert to the element we are looking for, return the
11455 // inserted value.
11456 if (EltNo == IIElt)
11457 return III->getOperand(1);
11458
11459 // Otherwise, the insertelement doesn't modify the value, recurse on its
11460 // vector input.
11461 return FindScalarElement(III->getOperand(0), EltNo);
11462 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011463 unsigned LHSWidth =
11464 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011465 unsigned InEl = getShuffleMask(SVI)[EltNo];
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011466 if (InEl < LHSWidth)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011467 return FindScalarElement(SVI->getOperand(0), InEl);
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011468 else if (InEl < LHSWidth*2)
11469 return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011470 else
11471 return UndefValue::get(PTy->getElementType());
11472 }
11473
11474 // Otherwise, we don't know.
11475 return 0;
11476}
11477
11478Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011479 // If vector val is undef, replace extract with scalar undef.
11480 if (isa<UndefValue>(EI.getOperand(0)))
11481 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11482
11483 // If vector val is constant 0, replace extract with scalar 0.
11484 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
11485 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
11486
11487 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
Matthijs Kooijmandd3425f2008-06-11 09:00:12 +000011488 // If vector val is constant with all elements the same, replace EI with
11489 // that element. When the elements are not identical, we cannot replace yet
11490 // (we do that below, but only when the index is constant).
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011491 Constant *op0 = C->getOperand(0);
11492 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11493 if (C->getOperand(i) != op0) {
11494 op0 = 0;
11495 break;
11496 }
11497 if (op0)
11498 return ReplaceInstUsesWith(EI, op0);
11499 }
11500
11501 // If extracting a specified index from the vector, see if we can recursively
11502 // find a previously computed scalar that was inserted into the vector.
11503 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11504 unsigned IndexVal = IdxC->getZExtValue();
11505 unsigned VectorWidth =
11506 cast<VectorType>(EI.getOperand(0)->getType())->getNumElements();
11507
11508 // If this is extracting an invalid index, turn this into undef, to avoid
11509 // crashing the code below.
11510 if (IndexVal >= VectorWidth)
11511 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11512
11513 // This instruction only demands the single element from the input vector.
11514 // If the input vector has a single use, simplify it based on this use
11515 // property.
11516 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
11517 uint64_t UndefElts;
11518 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
11519 1 << IndexVal,
11520 UndefElts)) {
11521 EI.setOperand(0, V);
11522 return &EI;
11523 }
11524 }
11525
11526 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
11527 return ReplaceInstUsesWith(EI, Elt);
11528
11529 // If the this extractelement is directly using a bitcast from a vector of
11530 // the same number of elements, see if we can find the source element from
11531 // it. In this case, we will end up needing to bitcast the scalars.
11532 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
11533 if (const VectorType *VT =
11534 dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
11535 if (VT->getNumElements() == VectorWidth)
11536 if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
11537 return new BitCastInst(Elt, EI.getType());
11538 }
11539 }
11540
11541 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
11542 if (I->hasOneUse()) {
11543 // Push extractelement into predecessor operation if legal and
11544 // profitable to do so
11545 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
11546 bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
11547 if (CheapToScalarize(BO, isConstantElt)) {
11548 ExtractElementInst *newEI0 =
11549 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
11550 EI.getName()+".lhs");
11551 ExtractElementInst *newEI1 =
11552 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
11553 EI.getName()+".rhs");
11554 InsertNewInstBefore(newEI0, EI);
11555 InsertNewInstBefore(newEI1, EI);
Gabor Greifa645dd32008-05-16 19:29:10 +000011556 return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011557 }
11558 } else if (isa<LoadInst>(I)) {
Christopher Lambbb2f2222007-12-17 01:12:55 +000011559 unsigned AS =
11560 cast<PointerType>(I->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +000011561 Value *Ptr = InsertBitCastBefore(I->getOperand(0),
11562 PointerType::get(EI.getType(), AS),EI);
Gabor Greifb91ea9d2008-05-15 10:04:30 +000011563 GetElementPtrInst *GEP =
11564 GetElementPtrInst::Create(Ptr, EI.getOperand(1), I->getName()+".gep");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011565 InsertNewInstBefore(GEP, EI);
11566 return new LoadInst(GEP);
11567 }
11568 }
11569 if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
11570 // Extracting the inserted element?
11571 if (IE->getOperand(2) == EI.getOperand(1))
11572 return ReplaceInstUsesWith(EI, IE->getOperand(1));
11573 // If the inserted and extracted elements are constants, they must not
11574 // be the same value, extract from the pre-inserted value instead.
11575 if (isa<Constant>(IE->getOperand(2)) &&
11576 isa<Constant>(EI.getOperand(1))) {
11577 AddUsesToWorkList(EI);
11578 EI.setOperand(0, IE->getOperand(0));
11579 return &EI;
11580 }
11581 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
11582 // If this is extracting an element from a shufflevector, figure out where
11583 // it came from and extract from the appropriate input element instead.
11584 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11585 unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
11586 Value *Src;
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011587 unsigned LHSWidth =
11588 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
11589
11590 if (SrcIdx < LHSWidth)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011591 Src = SVI->getOperand(0);
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011592 else if (SrcIdx < LHSWidth*2) {
11593 SrcIdx -= LHSWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011594 Src = SVI->getOperand(1);
11595 } else {
11596 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11597 }
11598 return new ExtractElementInst(Src, SrcIdx);
11599 }
11600 }
11601 }
11602 return 0;
11603}
11604
11605/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
11606/// elements from either LHS or RHS, return the shuffle mask and true.
11607/// Otherwise, return false.
11608static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
11609 std::vector<Constant*> &Mask) {
11610 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
11611 "Invalid CollectSingleShuffleElements");
11612 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
11613
11614 if (isa<UndefValue>(V)) {
11615 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
11616 return true;
11617 } else if (V == LHS) {
11618 for (unsigned i = 0; i != NumElts; ++i)
11619 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11620 return true;
11621 } else if (V == RHS) {
11622 for (unsigned i = 0; i != NumElts; ++i)
11623 Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
11624 return true;
11625 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11626 // If this is an insert of an extract from some other vector, include it.
11627 Value *VecOp = IEI->getOperand(0);
11628 Value *ScalarOp = IEI->getOperand(1);
11629 Value *IdxOp = IEI->getOperand(2);
11630
11631 if (!isa<ConstantInt>(IdxOp))
11632 return false;
11633 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11634
11635 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
11636 // Okay, we can handle this if the vector we are insertinting into is
11637 // transitively ok.
11638 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11639 // If so, update the mask to reflect the inserted undef.
11640 Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
11641 return true;
11642 }
11643 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
11644 if (isa<ConstantInt>(EI->getOperand(1)) &&
11645 EI->getOperand(0)->getType() == V->getType()) {
11646 unsigned ExtractedIdx =
11647 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11648
11649 // This must be extracting from either LHS or RHS.
11650 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
11651 // Okay, we can handle this if the vector we are insertinting into is
11652 // transitively ok.
11653 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11654 // If so, update the mask to reflect the inserted value.
11655 if (EI->getOperand(0) == LHS) {
Mon P Wang6bf3c592008-08-20 02:23:25 +000011656 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011657 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11658 } else {
11659 assert(EI->getOperand(0) == RHS);
Mon P Wang6bf3c592008-08-20 02:23:25 +000011660 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011661 ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
11662
11663 }
11664 return true;
11665 }
11666 }
11667 }
11668 }
11669 }
11670 // TODO: Handle shufflevector here!
11671
11672 return false;
11673}
11674
11675/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
11676/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
11677/// that computes V and the LHS value of the shuffle.
11678static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
11679 Value *&RHS) {
11680 assert(isa<VectorType>(V->getType()) &&
11681 (RHS == 0 || V->getType() == RHS->getType()) &&
11682 "Invalid shuffle!");
11683 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
11684
11685 if (isa<UndefValue>(V)) {
11686 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
11687 return V;
11688 } else if (isa<ConstantAggregateZero>(V)) {
11689 Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
11690 return V;
11691 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11692 // If this is an insert of an extract from some other vector, include it.
11693 Value *VecOp = IEI->getOperand(0);
11694 Value *ScalarOp = IEI->getOperand(1);
11695 Value *IdxOp = IEI->getOperand(2);
11696
11697 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11698 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11699 EI->getOperand(0)->getType() == V->getType()) {
11700 unsigned ExtractedIdx =
11701 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11702 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11703
11704 // Either the extracted from or inserted into vector must be RHSVec,
11705 // otherwise we'd end up with a shuffle of three inputs.
11706 if (EI->getOperand(0) == RHS || RHS == 0) {
11707 RHS = EI->getOperand(0);
11708 Value *V = CollectShuffleElements(VecOp, Mask, RHS);
Mon P Wang6bf3c592008-08-20 02:23:25 +000011709 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011710 ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
11711 return V;
11712 }
11713
11714 if (VecOp == RHS) {
11715 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
11716 // Everything but the extracted element is replaced with the RHS.
11717 for (unsigned i = 0; i != NumElts; ++i) {
11718 if (i != InsertedIdx)
11719 Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
11720 }
11721 return V;
11722 }
11723
11724 // If this insertelement is a chain that comes from exactly these two
11725 // vectors, return the vector and the effective shuffle.
11726 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
11727 return EI->getOperand(0);
11728
11729 }
11730 }
11731 }
11732 // TODO: Handle shufflevector here!
11733
11734 // Otherwise, can't do anything fancy. Return an identity vector.
11735 for (unsigned i = 0; i != NumElts; ++i)
11736 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11737 return V;
11738}
11739
11740Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
11741 Value *VecOp = IE.getOperand(0);
11742 Value *ScalarOp = IE.getOperand(1);
11743 Value *IdxOp = IE.getOperand(2);
11744
11745 // Inserting an undef or into an undefined place, remove this.
11746 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
11747 ReplaceInstUsesWith(IE, VecOp);
11748
11749 // If the inserted element was extracted from some other vector, and if the
11750 // indexes are constant, try to turn this into a shufflevector operation.
11751 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11752 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11753 EI->getOperand(0)->getType() == IE.getType()) {
11754 unsigned NumVectorElts = IE.getType()->getNumElements();
11755 unsigned ExtractedIdx =
11756 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11757 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11758
11759 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
11760 return ReplaceInstUsesWith(IE, VecOp);
11761
11762 if (InsertedIdx >= NumVectorElts) // Out of range insert.
11763 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
11764
11765 // If we are extracting a value from a vector, then inserting it right
11766 // back into the same place, just use the input vector.
11767 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
11768 return ReplaceInstUsesWith(IE, VecOp);
11769
11770 // We could theoretically do this for ANY input. However, doing so could
11771 // turn chains of insertelement instructions into a chain of shufflevector
11772 // instructions, and right now we do not merge shufflevectors. As such,
11773 // only do this in a situation where it is clear that there is benefit.
11774 if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
11775 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
11776 // the values of VecOp, except then one read from EIOp0.
11777 // Build a new shuffle mask.
11778 std::vector<Constant*> Mask;
11779 if (isa<UndefValue>(VecOp))
11780 Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
11781 else {
11782 assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
11783 Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
11784 NumVectorElts));
11785 }
11786 Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11787 return new ShuffleVectorInst(EI->getOperand(0), VecOp,
11788 ConstantVector::get(Mask));
11789 }
11790
11791 // If this insertelement isn't used by some other insertelement, turn it
11792 // (and any insertelements it points to), into one big shuffle.
11793 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
11794 std::vector<Constant*> Mask;
11795 Value *RHS = 0;
11796 Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
11797 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
11798 // We now have a shuffle of LHS, RHS, Mask.
11799 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
11800 }
11801 }
11802 }
11803
11804 return 0;
11805}
11806
11807
11808Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
11809 Value *LHS = SVI.getOperand(0);
11810 Value *RHS = SVI.getOperand(1);
11811 std::vector<unsigned> Mask = getShuffleMask(&SVI);
11812
11813 bool MadeChange = false;
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011814
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011815 // Undefined shuffle mask -> undefined value.
11816 if (isa<UndefValue>(SVI.getOperand(2)))
11817 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011818
11819 uint64_t UndefElts;
11820 unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011821
11822 if (VWidth != cast<VectorType>(LHS->getType())->getNumElements())
11823 return 0;
11824
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011825 uint64_t AllOnesEltMask = ~0ULL >> (64-VWidth);
11826 if (VWidth <= 64 &&
Dan Gohman83b702d2008-09-11 22:47:57 +000011827 SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
11828 LHS = SVI.getOperand(0);
11829 RHS = SVI.getOperand(1);
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011830 MadeChange = true;
Dan Gohman83b702d2008-09-11 22:47:57 +000011831 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011832
11833 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
11834 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
11835 if (LHS == RHS || isa<UndefValue>(LHS)) {
11836 if (isa<UndefValue>(LHS) && LHS == RHS) {
11837 // shuffle(undef,undef,mask) -> undef.
11838 return ReplaceInstUsesWith(SVI, LHS);
11839 }
11840
11841 // Remap any references to RHS to use LHS.
11842 std::vector<Constant*> Elts;
11843 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11844 if (Mask[i] >= 2*e)
11845 Elts.push_back(UndefValue::get(Type::Int32Ty));
11846 else {
11847 if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
Dan Gohmanbba96b92008-08-06 18:17:32 +000011848 (Mask[i] < e && isa<UndefValue>(LHS))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011849 Mask[i] = 2*e; // Turn into undef.
Dan Gohmanbba96b92008-08-06 18:17:32 +000011850 Elts.push_back(UndefValue::get(Type::Int32Ty));
11851 } else {
Mon P Wang6bf3c592008-08-20 02:23:25 +000011852 Mask[i] = Mask[i] % e; // Force to LHS.
Dan Gohmanbba96b92008-08-06 18:17:32 +000011853 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
11854 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011855 }
11856 }
11857 SVI.setOperand(0, SVI.getOperand(1));
11858 SVI.setOperand(1, UndefValue::get(RHS->getType()));
11859 SVI.setOperand(2, ConstantVector::get(Elts));
11860 LHS = SVI.getOperand(0);
11861 RHS = SVI.getOperand(1);
11862 MadeChange = true;
11863 }
11864
11865 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
11866 bool isLHSID = true, isRHSID = true;
11867
11868 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11869 if (Mask[i] >= e*2) continue; // Ignore undef values.
11870 // Is this an identity shuffle of the LHS value?
11871 isLHSID &= (Mask[i] == i);
11872
11873 // Is this an identity shuffle of the RHS value?
11874 isRHSID &= (Mask[i]-e == i);
11875 }
11876
11877 // Eliminate identity shuffles.
11878 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
11879 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
11880
11881 // If the LHS is a shufflevector itself, see if we can combine it with this
11882 // one without producing an unusual shuffle. Here we are really conservative:
11883 // we are absolutely afraid of producing a shuffle mask not in the input
11884 // program, because the code gen may not be smart enough to turn a merged
11885 // shuffle into two specific shuffles: it may produce worse code. As such,
11886 // we only merge two shuffles if the result is one of the two input shuffle
11887 // masks. In this case, merging the shuffles just removes one instruction,
11888 // which we know is safe. This is good for things like turning:
11889 // (splat(splat)) -> splat.
11890 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
11891 if (isa<UndefValue>(RHS)) {
11892 std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
11893
11894 std::vector<unsigned> NewMask;
11895 for (unsigned i = 0, e = Mask.size(); i != e; ++i)
11896 if (Mask[i] >= 2*e)
11897 NewMask.push_back(2*e);
11898 else
11899 NewMask.push_back(LHSMask[Mask[i]]);
11900
11901 // If the result mask is equal to the src shuffle or this shuffle mask, do
11902 // the replacement.
11903 if (NewMask == LHSMask || NewMask == Mask) {
11904 std::vector<Constant*> Elts;
11905 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
11906 if (NewMask[i] >= e*2) {
11907 Elts.push_back(UndefValue::get(Type::Int32Ty));
11908 } else {
11909 Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
11910 }
11911 }
11912 return new ShuffleVectorInst(LHSSVI->getOperand(0),
11913 LHSSVI->getOperand(1),
11914 ConstantVector::get(Elts));
11915 }
11916 }
11917 }
11918
11919 return MadeChange ? &SVI : 0;
11920}
11921
11922
11923
11924
11925/// TryToSinkInstruction - Try to move the specified instruction from its
11926/// current block into the beginning of DestBlock, which can only happen if it's
11927/// safe to move the instruction past all of the instructions between it and the
11928/// end of its block.
11929static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
11930 assert(I->hasOneUse() && "Invariants didn't hold!");
11931
11932 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Chris Lattnercb19a1c2008-05-09 15:07:33 +000011933 if (isa<PHINode>(I) || I->mayWriteToMemory() || isa<TerminatorInst>(I))
11934 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011935
11936 // Do not sink alloca instructions out of the entry block.
11937 if (isa<AllocaInst>(I) && I->getParent() ==
11938 &DestBlock->getParent()->getEntryBlock())
11939 return false;
11940
11941 // We can only sink load instructions if there is nothing between the load and
11942 // the end of block that could change the value.
Chris Lattner0db40a62008-05-08 17:37:37 +000011943 if (I->mayReadFromMemory()) {
11944 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011945 Scan != E; ++Scan)
11946 if (Scan->mayWriteToMemory())
11947 return false;
11948 }
11949
Dan Gohman514277c2008-05-23 21:05:58 +000011950 BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011951
11952 I->moveBefore(InsertPos);
11953 ++NumSunkInst;
11954 return true;
11955}
11956
11957
11958/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
11959/// all reachable code to the worklist.
11960///
11961/// This has a couple of tricks to make the code faster and more powerful. In
11962/// particular, we constant fold and DCE instructions as we go, to avoid adding
11963/// them to the worklist (this significantly speeds up instcombine on code where
11964/// many instructions are dead or constant). Additionally, if we find a branch
11965/// whose condition is a known constant, we only visit the reachable successors.
11966///
11967static void AddReachableCodeToWorklist(BasicBlock *BB,
11968 SmallPtrSet<BasicBlock*, 64> &Visited,
11969 InstCombiner &IC,
11970 const TargetData *TD) {
Chris Lattnera06291a2008-08-15 04:03:01 +000011971 SmallVector<BasicBlock*, 256> Worklist;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011972 Worklist.push_back(BB);
11973
11974 while (!Worklist.empty()) {
11975 BB = Worklist.back();
11976 Worklist.pop_back();
11977
11978 // We have now visited this block! If we've already been here, ignore it.
11979 if (!Visited.insert(BB)) continue;
11980
11981 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
11982 Instruction *Inst = BBI++;
11983
11984 // DCE instruction if trivially dead.
11985 if (isInstructionTriviallyDead(Inst)) {
11986 ++NumDeadInst;
11987 DOUT << "IC: DCE: " << *Inst;
11988 Inst->eraseFromParent();
11989 continue;
11990 }
11991
11992 // ConstantProp instruction if trivially constant.
11993 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
11994 DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
11995 Inst->replaceAllUsesWith(C);
11996 ++NumConstProp;
11997 Inst->eraseFromParent();
11998 continue;
11999 }
Chris Lattnere0f462d2007-07-20 22:06:41 +000012000
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012001 IC.AddToWorkList(Inst);
12002 }
12003
12004 // Recursively visit successors. If this is a branch or switch on a
12005 // constant, only visit the reachable successor.
12006 TerminatorInst *TI = BB->getTerminator();
12007 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
12008 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
12009 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewyckyd551cf12008-03-09 08:50:23 +000012010 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000012011 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012012 continue;
12013 }
12014 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
12015 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
12016 // See if this is an explicit destination.
12017 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
12018 if (SI->getCaseValue(i) == Cond) {
Nick Lewyckyd551cf12008-03-09 08:50:23 +000012019 BasicBlock *ReachableBB = SI->getSuccessor(i);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000012020 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012021 continue;
12022 }
12023
12024 // Otherwise it is the default destination.
12025 Worklist.push_back(SI->getSuccessor(0));
12026 continue;
12027 }
12028 }
12029
12030 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
12031 Worklist.push_back(TI->getSuccessor(i));
12032 }
12033}
12034
12035bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
12036 bool Changed = false;
12037 TD = &getAnalysis<TargetData>();
12038
12039 DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
12040 << F.getNameStr() << "\n");
12041
12042 {
12043 // Do a depth-first traversal of the function, populate the worklist with
12044 // the reachable instructions. Ignore blocks that are not reachable. Keep
12045 // track of which blocks we visit.
12046 SmallPtrSet<BasicBlock*, 64> Visited;
12047 AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
12048
12049 // Do a quick scan over the function. If we find any blocks that are
12050 // unreachable, remove any instructions inside of them. This prevents
12051 // the instcombine code from having to deal with some bad special cases.
12052 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
12053 if (!Visited.count(BB)) {
12054 Instruction *Term = BB->getTerminator();
12055 while (Term != BB->begin()) { // Remove instrs bottom-up
12056 BasicBlock::iterator I = Term; --I;
12057
12058 DOUT << "IC: DCE: " << *I;
12059 ++NumDeadInst;
12060
12061 if (!I->use_empty())
12062 I->replaceAllUsesWith(UndefValue::get(I->getType()));
12063 I->eraseFromParent();
12064 }
12065 }
12066 }
12067
12068 while (!Worklist.empty()) {
12069 Instruction *I = RemoveOneFromWorkList();
12070 if (I == 0) continue; // skip null values.
12071
12072 // Check to see if we can DCE the instruction.
12073 if (isInstructionTriviallyDead(I)) {
12074 // Add operands to the worklist.
12075 if (I->getNumOperands() < 4)
12076 AddUsesToWorkList(*I);
12077 ++NumDeadInst;
12078
12079 DOUT << "IC: DCE: " << *I;
12080
12081 I->eraseFromParent();
12082 RemoveFromWorkList(I);
12083 continue;
12084 }
12085
12086 // Instruction isn't dead, see if we can constant propagate it.
12087 if (Constant *C = ConstantFoldInstruction(I, TD)) {
12088 DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
12089
12090 // Add operands to the worklist.
12091 AddUsesToWorkList(*I);
12092 ReplaceInstUsesWith(*I, C);
12093
12094 ++NumConstProp;
12095 I->eraseFromParent();
12096 RemoveFromWorkList(I);
12097 continue;
12098 }
12099
Nick Lewyckyadb67922008-05-25 20:56:15 +000012100 if (TD && I->getType()->getTypeID() == Type::VoidTyID) {
12101 // See if we can constant fold its operands.
12102 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
12103 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(i)) {
12104 if (Constant *NewC = ConstantFoldConstantExpression(CE, TD))
12105 i->set(NewC);
12106 }
12107 }
12108 }
12109
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012110 // See if we can trivially sink this instruction to a successor basic block.
Dan Gohman29474e92008-07-23 00:34:11 +000012111 if (I->hasOneUse()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012112 BasicBlock *BB = I->getParent();
12113 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
12114 if (UserParent != BB) {
12115 bool UserIsSuccessor = false;
12116 // See if the user is one of our successors.
12117 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
12118 if (*SI == UserParent) {
12119 UserIsSuccessor = true;
12120 break;
12121 }
12122
12123 // If the user is one of our immediate successors, and if that successor
12124 // only has us as a predecessors (we'd have to split the critical edge
12125 // otherwise), we can keep going.
12126 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
12127 next(pred_begin(UserParent)) == pred_end(UserParent))
12128 // Okay, the CFG is simple enough, try to sink this instruction.
12129 Changed |= TryToSinkInstruction(I, UserParent);
12130 }
12131 }
12132
12133 // Now that we have an instruction, try combining it to simplify it...
12134#ifndef NDEBUG
12135 std::string OrigI;
12136#endif
12137 DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str(););
12138 if (Instruction *Result = visit(*I)) {
12139 ++NumCombined;
12140 // Should we replace the old instruction with a new one?
12141 if (Result != I) {
12142 DOUT << "IC: Old = " << *I
12143 << " New = " << *Result;
12144
12145 // Everything uses the new instruction now.
12146 I->replaceAllUsesWith(Result);
12147
12148 // Push the new instruction and any users onto the worklist.
12149 AddToWorkList(Result);
12150 AddUsersToWorkList(*Result);
12151
12152 // Move the name to the new instruction first.
12153 Result->takeName(I);
12154
12155 // Insert the new instruction into the basic block...
12156 BasicBlock *InstParent = I->getParent();
12157 BasicBlock::iterator InsertPos = I;
12158
12159 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
12160 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
12161 ++InsertPos;
12162
12163 InstParent->getInstList().insert(InsertPos, Result);
12164
12165 // Make sure that we reprocess all operands now that we reduced their
12166 // use counts.
12167 AddUsesToWorkList(*I);
12168
12169 // Instructions can end up on the worklist more than once. Make sure
12170 // we do not process an instruction that has been deleted.
12171 RemoveFromWorkList(I);
12172
12173 // Erase the old instruction.
12174 InstParent->getInstList().erase(I);
12175 } else {
12176#ifndef NDEBUG
12177 DOUT << "IC: Mod = " << OrigI
12178 << " New = " << *I;
12179#endif
12180
12181 // If the instruction was modified, it's possible that it is now dead.
12182 // if so, remove it.
12183 if (isInstructionTriviallyDead(I)) {
12184 // Make sure we process all operands now that we are reducing their
12185 // use counts.
12186 AddUsesToWorkList(*I);
12187
12188 // Instructions may end up in the worklist more than once. Erase all
12189 // occurrences of this instruction.
12190 RemoveFromWorkList(I);
12191 I->eraseFromParent();
12192 } else {
12193 AddToWorkList(I);
12194 AddUsersToWorkList(*I);
12195 }
12196 }
12197 Changed = true;
12198 }
12199 }
12200
12201 assert(WorklistMap.empty() && "Worklist empty, but map not?");
Chris Lattnerb933ea62007-08-05 08:47:58 +000012202
12203 // Do an explicit clear, this shrinks the map if needed.
12204 WorklistMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012205 return Changed;
12206}
12207
12208
12209bool InstCombiner::runOnFunction(Function &F) {
12210 MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
12211
12212 bool EverMadeChange = false;
12213
12214 // Iterate while there is work to do.
12215 unsigned Iteration = 0;
Bill Wendlingd9644a42008-05-14 22:45:20 +000012216 while (DoOneIteration(F, Iteration++))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012217 EverMadeChange = true;
12218 return EverMadeChange;
12219}
12220
12221FunctionPass *llvm::createInstructionCombiningPass() {
12222 return new InstCombiner();
12223}
12224
Chris Lattner6297fc72008-08-11 22:06:05 +000012225