blob: bd598e277bcabd16e51d78734bbbbfe7f5971cd3 [file] [log] [blame]
Arnold Schwaighofera70fe792007-10-12 21:53:12 +00001//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
Evan Cheng75184a92007-12-11 01:46:18 +000026#include "llvm/ADT/BitVector.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000027#include "llvm/ADT/VectorExtras.h"
28#include "llvm/Analysis/ScalarEvolutionExpressions.h"
29#include "llvm/CodeGen/CallingConvLower.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000033#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000034#include "llvm/CodeGen/SelectionDAG.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000035#include "llvm/Support/MathExtras.h"
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +000036#include "llvm/Support/Debug.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000037#include "llvm/Target/TargetOptions.h"
Evan Cheng75184a92007-12-11 01:46:18 +000038#include "llvm/ADT/SmallSet.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000039#include "llvm/ADT/StringExtras.h"
Duncan Sandsd8455ca2007-07-27 20:02:49 +000040#include "llvm/ParameterAttributes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000041using namespace llvm;
42
43X86TargetLowering::X86TargetLowering(TargetMachine &TM)
44 : TargetLowering(TM) {
45 Subtarget = &TM.getSubtarget<X86Subtarget>();
Dale Johannesene0e0fd02007-09-23 14:52:20 +000046 X86ScalarSSEf64 = Subtarget->hasSSE2();
47 X86ScalarSSEf32 = Subtarget->hasSSE1();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000048 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +000049
Dan Gohmanf17a25c2007-07-18 16:29:46 +000050
51 RegInfo = TM.getRegisterInfo();
52
53 // Set up the TargetLowering object.
54
55 // X86 is weird, it always uses i8 for shift amounts and setcc results.
56 setShiftAmountType(MVT::i8);
57 setSetCCResultType(MVT::i8);
58 setSetCCResultContents(ZeroOrOneSetCCResult);
59 setSchedulingPreference(SchedulingForRegPressure);
60 setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0
61 setStackPointerRegisterToSaveRestore(X86StackPtr);
62
63 if (Subtarget->isTargetDarwin()) {
64 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
65 setUseUnderscoreSetJmp(false);
66 setUseUnderscoreLongJmp(false);
67 } else if (Subtarget->isTargetMingw()) {
68 // MS runtime is weird: it exports _setjmp, but longjmp!
69 setUseUnderscoreSetJmp(true);
70 setUseUnderscoreLongJmp(false);
71 } else {
72 setUseUnderscoreSetJmp(true);
73 setUseUnderscoreLongJmp(true);
74 }
75
76 // Set up the register classes.
77 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
78 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
79 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
80 if (Subtarget->is64Bit())
81 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
82
83 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
84
85 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
86 // operation.
87 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
88 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
89 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
90
91 if (Subtarget->is64Bit()) {
92 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
93 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
94 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +000095 if (X86ScalarSSEf64)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000096 // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
97 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand);
98 else
99 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
100 }
101
102 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
103 // this operation.
104 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
105 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
106 // SSE has no i16 to fp conversion, only i32
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000107 if (X86ScalarSSEf32) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000108 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000109 // f32 and f64 cases are Legal, f80 case is not
110 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
111 } else {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000112 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
113 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
114 }
115
Dale Johannesen958b08b2007-09-19 23:55:34 +0000116 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
117 // are Legal, f80 is custom lowered.
118 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
119 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000120
121 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
122 // this operation.
123 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
124 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
125
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000126 if (X86ScalarSSEf32) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000128 // f32 and f64 cases are Legal, f80 case is not
129 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000130 } else {
131 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
132 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
133 }
134
135 // Handle FP_TO_UINT by promoting the destination to a larger signed
136 // conversion.
137 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
138 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
139 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
140
141 if (Subtarget->is64Bit()) {
142 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
143 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
144 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000145 if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000146 // Expand FP_TO_UINT into a select.
147 // FIXME: We would like to use a Custom expander here eventually to do
148 // the optimal thing for SSE vs. the default expansion in the legalizer.
149 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
150 else
151 // With SSE3 we can use fisttpll to convert to a signed i64.
152 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
153 }
154
155 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000156 if (!X86ScalarSSEf64) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000157 setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand);
158 setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand);
159 }
160
Dan Gohman5a199552007-10-08 18:33:35 +0000161 // Scalar integer multiply, multiply-high, divide, and remainder are
162 // lowered to use operations that produce two results, to match the
163 // available instructions. This exposes the two-result form to trivial
164 // CSE, which is able to combine x/y and x%y into a single instruction,
165 // for example. The single-result multiply instructions are introduced
166 // in X86ISelDAGToDAG.cpp, after CSE, for uses where the the high part
167 // is not needed.
168 setOperationAction(ISD::MUL , MVT::i8 , Expand);
169 setOperationAction(ISD::MULHS , MVT::i8 , Expand);
170 setOperationAction(ISD::MULHU , MVT::i8 , Expand);
171 setOperationAction(ISD::SDIV , MVT::i8 , Expand);
172 setOperationAction(ISD::UDIV , MVT::i8 , Expand);
173 setOperationAction(ISD::SREM , MVT::i8 , Expand);
174 setOperationAction(ISD::UREM , MVT::i8 , Expand);
175 setOperationAction(ISD::MUL , MVT::i16 , Expand);
176 setOperationAction(ISD::MULHS , MVT::i16 , Expand);
177 setOperationAction(ISD::MULHU , MVT::i16 , Expand);
178 setOperationAction(ISD::SDIV , MVT::i16 , Expand);
179 setOperationAction(ISD::UDIV , MVT::i16 , Expand);
180 setOperationAction(ISD::SREM , MVT::i16 , Expand);
181 setOperationAction(ISD::UREM , MVT::i16 , Expand);
182 setOperationAction(ISD::MUL , MVT::i32 , Expand);
183 setOperationAction(ISD::MULHS , MVT::i32 , Expand);
184 setOperationAction(ISD::MULHU , MVT::i32 , Expand);
185 setOperationAction(ISD::SDIV , MVT::i32 , Expand);
186 setOperationAction(ISD::UDIV , MVT::i32 , Expand);
187 setOperationAction(ISD::SREM , MVT::i32 , Expand);
188 setOperationAction(ISD::UREM , MVT::i32 , Expand);
189 setOperationAction(ISD::MUL , MVT::i64 , Expand);
190 setOperationAction(ISD::MULHS , MVT::i64 , Expand);
191 setOperationAction(ISD::MULHU , MVT::i64 , Expand);
192 setOperationAction(ISD::SDIV , MVT::i64 , Expand);
193 setOperationAction(ISD::UDIV , MVT::i64 , Expand);
194 setOperationAction(ISD::SREM , MVT::i64 , Expand);
195 setOperationAction(ISD::UREM , MVT::i64 , Expand);
Dan Gohman242a5ba2007-09-25 18:23:27 +0000196
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000197 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
198 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
199 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
200 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
201 setOperationAction(ISD::MEMMOVE , MVT::Other, Expand);
202 if (Subtarget->is64Bit())
Christopher Lamb0a7c8662007-08-10 21:48:46 +0000203 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
204 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
205 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000206 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
207 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
208 setOperationAction(ISD::FREM , MVT::f64 , Expand);
Anton Korobeynikovfbe230e2007-11-16 01:31:51 +0000209 setOperationAction(ISD::FLT_ROUNDS , MVT::i32 , Custom);
210
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000211 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
Evan Cheng48679f42007-12-14 02:13:44 +0000212 setOperationAction(ISD::CTTZ , MVT::i8 , Custom);
213 setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000214 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
Evan Cheng48679f42007-12-14 02:13:44 +0000215 setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
216 setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000217 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
Evan Cheng48679f42007-12-14 02:13:44 +0000218 setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
219 setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000220 if (Subtarget->is64Bit()) {
221 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
Evan Cheng48679f42007-12-14 02:13:44 +0000222 setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
223 setOperationAction(ISD::CTLZ , MVT::i64 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000224 }
225
226 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
227 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
228
229 // These should be promoted to a larger select which is supported.
230 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
231 setOperationAction(ISD::SELECT , MVT::i8 , Promote);
232 // X86 wants to expand cmov itself.
233 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
234 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
235 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
236 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000237 setOperationAction(ISD::SELECT , MVT::f80 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000238 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
239 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
240 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
241 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
242 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000243 setOperationAction(ISD::SETCC , MVT::f80 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000244 if (Subtarget->is64Bit()) {
245 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
246 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
247 }
248 // X86 ret instruction may pop stack.
249 setOperationAction(ISD::RET , MVT::Other, Custom);
250 if (!Subtarget->is64Bit())
251 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
252
253 // Darwin ABI issue.
254 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
255 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
256 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
257 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
258 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
259 if (Subtarget->is64Bit()) {
260 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
261 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
262 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
263 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
264 }
265 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
266 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
267 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
268 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
269 // X86 wants to expand memset / memcpy itself.
270 setOperationAction(ISD::MEMSET , MVT::Other, Custom);
271 setOperationAction(ISD::MEMCPY , MVT::Other, Custom);
272
Dan Gohman21442852007-09-25 15:10:49 +0000273 // Use the default ISD::LOCATION expansion.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000274 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000275 // FIXME - use subtarget debug flags
276 if (!Subtarget->isTargetDarwin() &&
277 !Subtarget->isTargetELF() &&
278 !Subtarget->isTargetCygMing())
279 setOperationAction(ISD::LABEL, MVT::Other, Expand);
280
281 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
282 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
283 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
284 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
285 if (Subtarget->is64Bit()) {
286 // FIXME: Verify
287 setExceptionPointerRegister(X86::RAX);
288 setExceptionSelectorRegister(X86::RDX);
289 } else {
290 setExceptionPointerRegister(X86::EAX);
291 setExceptionSelectorRegister(X86::EDX);
292 }
Anton Korobeynikov23ca9c52007-09-03 00:36:06 +0000293 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000294
Duncan Sands7407a9f2007-09-11 14:10:23 +0000295 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
Duncan Sandsd8455ca2007-07-27 20:02:49 +0000296
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000297 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
298 setOperationAction(ISD::VASTART , MVT::Other, Custom);
299 setOperationAction(ISD::VAARG , MVT::Other, Expand);
300 setOperationAction(ISD::VAEND , MVT::Other, Expand);
301 if (Subtarget->is64Bit())
302 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
303 else
304 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
305
306 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
307 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
308 if (Subtarget->is64Bit())
309 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
310 if (Subtarget->isTargetCygMing())
311 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
312 else
313 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
314
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000315 if (X86ScalarSSEf64) {
316 // f32 and f64 use SSE.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000317 // Set up the FP register classes.
318 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
319 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
320
321 // Use ANDPD to simulate FABS.
322 setOperationAction(ISD::FABS , MVT::f64, Custom);
323 setOperationAction(ISD::FABS , MVT::f32, Custom);
324
325 // Use XORP to simulate FNEG.
326 setOperationAction(ISD::FNEG , MVT::f64, Custom);
327 setOperationAction(ISD::FNEG , MVT::f32, Custom);
328
329 // Use ANDPD and ORPD to simulate FCOPYSIGN.
330 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
331 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
332
333 // We don't support sin/cos/fmod
334 setOperationAction(ISD::FSIN , MVT::f64, Expand);
335 setOperationAction(ISD::FCOS , MVT::f64, Expand);
336 setOperationAction(ISD::FREM , MVT::f64, Expand);
337 setOperationAction(ISD::FSIN , MVT::f32, Expand);
338 setOperationAction(ISD::FCOS , MVT::f32, Expand);
339 setOperationAction(ISD::FREM , MVT::f32, Expand);
340
341 // Expand FP immediates into loads from the stack, except for the special
342 // cases we handle.
343 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
344 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000345 addLegalFPImmediate(APFloat(+0.0)); // xorpd
346 addLegalFPImmediate(APFloat(+0.0f)); // xorps
Dale Johannesen8f83a6b2007-08-09 01:04:01 +0000347
348 // Conversions to long double (in X87) go through memory.
349 setConvertAction(MVT::f32, MVT::f80, Expand);
350 setConvertAction(MVT::f64, MVT::f80, Expand);
351
352 // Conversions from long double (in X87) go through memory.
353 setConvertAction(MVT::f80, MVT::f32, Expand);
354 setConvertAction(MVT::f80, MVT::f64, Expand);
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000355 } else if (X86ScalarSSEf32) {
356 // Use SSE for f32, x87 for f64.
357 // Set up the FP register classes.
358 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
359 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
360
361 // Use ANDPS to simulate FABS.
362 setOperationAction(ISD::FABS , MVT::f32, Custom);
363
364 // Use XORP to simulate FNEG.
365 setOperationAction(ISD::FNEG , MVT::f32, Custom);
366
367 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
368
369 // Use ANDPS and ORPS to simulate FCOPYSIGN.
370 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
371 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
372
373 // We don't support sin/cos/fmod
374 setOperationAction(ISD::FSIN , MVT::f32, Expand);
375 setOperationAction(ISD::FCOS , MVT::f32, Expand);
376 setOperationAction(ISD::FREM , MVT::f32, Expand);
377
378 // Expand FP immediates into loads from the stack, except for the special
379 // cases we handle.
380 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
381 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
382 addLegalFPImmediate(APFloat(+0.0f)); // xorps
383 addLegalFPImmediate(APFloat(+0.0)); // FLD0
384 addLegalFPImmediate(APFloat(+1.0)); // FLD1
385 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
386 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
387
388 // SSE->x87 conversions go through memory.
389 setConvertAction(MVT::f32, MVT::f64, Expand);
390 setConvertAction(MVT::f32, MVT::f80, Expand);
391
392 // x87->SSE truncations need to go through memory.
393 setConvertAction(MVT::f80, MVT::f32, Expand);
394 setConvertAction(MVT::f64, MVT::f32, Expand);
395 // And x87->x87 truncations also.
396 setConvertAction(MVT::f80, MVT::f64, Expand);
397
398 if (!UnsafeFPMath) {
399 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
400 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
401 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000402 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000403 // f32 and f64 in x87.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000404 // Set up the FP register classes.
405 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
406 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
407
408 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
409 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
410 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
411 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
Dale Johannesen8f83a6b2007-08-09 01:04:01 +0000412
413 // Floating truncations need to go through memory.
414 setConvertAction(MVT::f80, MVT::f32, Expand);
415 setConvertAction(MVT::f64, MVT::f32, Expand);
416 setConvertAction(MVT::f80, MVT::f64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000417
418 if (!UnsafeFPMath) {
419 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
420 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
421 }
422
423 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
424 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000425 addLegalFPImmediate(APFloat(+0.0)); // FLD0
426 addLegalFPImmediate(APFloat(+1.0)); // FLD1
427 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
428 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000429 addLegalFPImmediate(APFloat(+0.0f)); // FLD0
430 addLegalFPImmediate(APFloat(+1.0f)); // FLD1
431 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
432 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000433 }
434
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000435 // Long double always uses X87.
436 addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000437 setOperationAction(ISD::UNDEF, MVT::f80, Expand);
438 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
439 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
Dale Johannesen7f1076b2007-09-26 21:10:55 +0000440 if (!UnsafeFPMath) {
441 setOperationAction(ISD::FSIN , MVT::f80 , Expand);
442 setOperationAction(ISD::FCOS , MVT::f80 , Expand);
443 }
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000444
Dan Gohman2f7b1982007-10-11 23:21:31 +0000445 // Always use a library call for pow.
446 setOperationAction(ISD::FPOW , MVT::f32 , Expand);
447 setOperationAction(ISD::FPOW , MVT::f64 , Expand);
448 setOperationAction(ISD::FPOW , MVT::f80 , Expand);
449
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000450 // First set operation action for all vector types to expand. Then we
451 // will selectively turn on ones that can be effectively codegen'd.
452 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
453 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
454 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
455 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
456 setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
457 setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
458 setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
459 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
460 setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
461 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
462 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
463 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
464 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
465 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
466 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
467 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Expand);
468 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
469 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
470 setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
471 setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
472 setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
473 setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
474 setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
475 setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
476 setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
Dan Gohman5a199552007-10-08 18:33:35 +0000477 setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
478 setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
479 setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
480 setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
Dan Gohman2f7b1982007-10-11 23:21:31 +0000481 setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
Dan Gohman1d2dc2c2007-10-12 14:09:42 +0000482 setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
483 setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
484 setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
Dan Gohman5b9d6412007-12-12 22:21:26 +0000485 setOperationAction(ISD::SHL, (MVT::ValueType)VT, Expand);
486 setOperationAction(ISD::SRA, (MVT::ValueType)VT, Expand);
487 setOperationAction(ISD::SRL, (MVT::ValueType)VT, Expand);
488 setOperationAction(ISD::ROTL, (MVT::ValueType)VT, Expand);
489 setOperationAction(ISD::ROTR, (MVT::ValueType)VT, Expand);
490 setOperationAction(ISD::BSWAP, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000491 }
492
493 if (Subtarget->hasMMX()) {
494 addRegisterClass(MVT::v8i8, X86::VR64RegisterClass);
495 addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
496 addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
497 addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
498
499 // FIXME: add MMX packed arithmetics
500
501 setOperationAction(ISD::ADD, MVT::v8i8, Legal);
502 setOperationAction(ISD::ADD, MVT::v4i16, Legal);
503 setOperationAction(ISD::ADD, MVT::v2i32, Legal);
504 setOperationAction(ISD::ADD, MVT::v1i64, Legal);
505
506 setOperationAction(ISD::SUB, MVT::v8i8, Legal);
507 setOperationAction(ISD::SUB, MVT::v4i16, Legal);
508 setOperationAction(ISD::SUB, MVT::v2i32, Legal);
Dale Johannesen6b65c332007-10-30 01:18:38 +0000509 setOperationAction(ISD::SUB, MVT::v1i64, Legal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000510
511 setOperationAction(ISD::MULHS, MVT::v4i16, Legal);
512 setOperationAction(ISD::MUL, MVT::v4i16, Legal);
513
514 setOperationAction(ISD::AND, MVT::v8i8, Promote);
515 AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64);
516 setOperationAction(ISD::AND, MVT::v4i16, Promote);
517 AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64);
518 setOperationAction(ISD::AND, MVT::v2i32, Promote);
519 AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64);
520 setOperationAction(ISD::AND, MVT::v1i64, Legal);
521
522 setOperationAction(ISD::OR, MVT::v8i8, Promote);
523 AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64);
524 setOperationAction(ISD::OR, MVT::v4i16, Promote);
525 AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64);
526 setOperationAction(ISD::OR, MVT::v2i32, Promote);
527 AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64);
528 setOperationAction(ISD::OR, MVT::v1i64, Legal);
529
530 setOperationAction(ISD::XOR, MVT::v8i8, Promote);
531 AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64);
532 setOperationAction(ISD::XOR, MVT::v4i16, Promote);
533 AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64);
534 setOperationAction(ISD::XOR, MVT::v2i32, Promote);
535 AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64);
536 setOperationAction(ISD::XOR, MVT::v1i64, Legal);
537
538 setOperationAction(ISD::LOAD, MVT::v8i8, Promote);
539 AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64);
540 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
541 AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64);
542 setOperationAction(ISD::LOAD, MVT::v2i32, Promote);
543 AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64);
544 setOperationAction(ISD::LOAD, MVT::v1i64, Legal);
545
546 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
547 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
548 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
549 setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
550
551 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
552 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
553 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
554 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
555
556 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom);
557 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom);
558 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Custom);
559 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom);
560 }
561
562 if (Subtarget->hasSSE1()) {
563 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
564
565 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
566 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
567 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
568 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
569 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
570 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000571 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
572 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
573 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
574 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
575 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
576 }
577
578 if (Subtarget->hasSSE2()) {
579 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
580 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
581 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
582 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
583 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
584
585 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
586 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
587 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
588 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
589 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
590 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
591 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
592 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
593 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
594 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
595 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
596 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
597 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
598 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
599 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000600
601 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
602 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
603 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
604 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
605 // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
606 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
607
608 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
609 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
Nate Begemanc16406d2007-12-11 01:41:33 +0000610 // Do not attempt to custom lower non-power-of-2 vectors
611 if (!isPowerOf2_32(MVT::getVectorNumElements(VT)))
612 continue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000613 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Custom);
614 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Custom);
615 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Custom);
616 }
617 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
618 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
619 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
620 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
621 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
Dale Johannesen2ff963d2007-10-31 00:32:36 +0000622 if (Subtarget->is64Bit())
623 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000624
625 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
626 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
627 setOperationAction(ISD::AND, (MVT::ValueType)VT, Promote);
628 AddPromotedToType (ISD::AND, (MVT::ValueType)VT, MVT::v2i64);
629 setOperationAction(ISD::OR, (MVT::ValueType)VT, Promote);
630 AddPromotedToType (ISD::OR, (MVT::ValueType)VT, MVT::v2i64);
631 setOperationAction(ISD::XOR, (MVT::ValueType)VT, Promote);
632 AddPromotedToType (ISD::XOR, (MVT::ValueType)VT, MVT::v2i64);
633 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Promote);
634 AddPromotedToType (ISD::LOAD, (MVT::ValueType)VT, MVT::v2i64);
635 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
636 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
637 }
638
639 // Custom lower v2i64 and v2f64 selects.
640 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
641 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
642 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
643 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
644 }
645
646 // We want to custom lower some of our intrinsics.
647 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
648
649 // We have target-specific dag combine patterns for the following nodes:
650 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
651 setTargetDAGCombine(ISD::SELECT);
652
653 computeRegisterProperties();
654
655 // FIXME: These should be based on subtarget info. Plus, the values should
656 // be smaller when we are in optimizing for size mode.
657 maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
658 maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
659 maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
660 allowUnalignedMemoryAccesses = true; // x86 supports it!
661}
662
663
Evan Cheng6fb06762007-11-09 01:32:10 +0000664/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
665/// jumptable.
666SDOperand X86TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
667 SelectionDAG &DAG) const {
668 if (usesGlobalOffsetTable())
669 return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
670 if (!Subtarget->isPICStyleRIPRel())
671 return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy());
672 return Table;
673}
674
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000675//===----------------------------------------------------------------------===//
676// Return Value Calling Convention Implementation
677//===----------------------------------------------------------------------===//
678
679#include "X86GenCallingConv.inc"
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000680
681/// GetPossiblePreceedingTailCall - Get preceeding X86ISD::TAILCALL node if it
682/// exists skip possible ISD:TokenFactor.
683static SDOperand GetPossiblePreceedingTailCall(SDOperand Chain) {
684 if (Chain.getOpcode()==X86ISD::TAILCALL) {
685 return Chain;
686 } else if (Chain.getOpcode()==ISD::TokenFactor) {
687 if (Chain.getNumOperands() &&
688 Chain.getOperand(0).getOpcode()==X86ISD::TAILCALL)
689 return Chain.getOperand(0);
690 }
691 return Chain;
692}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000693
694/// LowerRET - Lower an ISD::RET node.
695SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
696 assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
697
698 SmallVector<CCValAssign, 16> RVLocs;
699 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
700 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
701 CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
702 CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000703
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000704 // If this is the first return lowered for this function, add the regs to the
705 // liveout set for the function.
Chris Lattner1b989192007-12-31 04:13:23 +0000706 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000707 for (unsigned i = 0; i != RVLocs.size(); ++i)
708 if (RVLocs[i].isRegLoc())
Chris Lattner1b989192007-12-31 04:13:23 +0000709 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000710 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000711 SDOperand Chain = Op.getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000712
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000713 // Handle tail call return.
714 Chain = GetPossiblePreceedingTailCall(Chain);
715 if (Chain.getOpcode() == X86ISD::TAILCALL) {
716 SDOperand TailCall = Chain;
717 SDOperand TargetAddress = TailCall.getOperand(1);
718 SDOperand StackAdjustment = TailCall.getOperand(2);
719 assert ( ((TargetAddress.getOpcode() == ISD::Register &&
720 (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX ||
721 cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
722 TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
723 TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
724 "Expecting an global address, external symbol, or register");
725 assert( StackAdjustment.getOpcode() == ISD::Constant &&
726 "Expecting a const value");
727
728 SmallVector<SDOperand,8> Operands;
729 Operands.push_back(Chain.getOperand(0));
730 Operands.push_back(TargetAddress);
731 Operands.push_back(StackAdjustment);
732 // Copy registers used by the call. Last operand is a flag so it is not
733 // copied.
Arnold Schwaighofer10202b32007-10-16 09:05:00 +0000734 for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000735 Operands.push_back(Chain.getOperand(i));
736 }
Arnold Schwaighofer10202b32007-10-16 09:05:00 +0000737 return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
738 Operands.size());
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000739 }
740
741 // Regular return.
742 SDOperand Flag;
743
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000744 // Copy the result values into the output registers.
745 if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
746 RVLocs[0].getLocReg() != X86::ST0) {
747 for (unsigned i = 0; i != RVLocs.size(); ++i) {
748 CCValAssign &VA = RVLocs[i];
749 assert(VA.isRegLoc() && "Can only return in registers!");
750 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
751 Flag);
752 Flag = Chain.getValue(1);
753 }
754 } else {
755 // We need to handle a destination of ST0 specially, because it isn't really
756 // a register.
757 SDOperand Value = Op.getOperand(1);
758
759 // If this is an FP return with ScalarSSE, we need to move the value from
760 // an XMM register onto the fp-stack.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000761 if ((X86ScalarSSEf32 && RVLocs[0].getValVT()==MVT::f32) ||
762 (X86ScalarSSEf64 && RVLocs[0].getValVT()==MVT::f64)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000763 SDOperand MemLoc;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000764
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000765 // If this is a load into a scalarsse value, don't store the loaded value
766 // back to the stack, only to reload it: just replace the scalar-sse load.
767 if (ISD::isNON_EXTLoad(Value.Val) &&
768 (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
769 Chain = Value.getOperand(0);
770 MemLoc = Value.getOperand(1);
771 } else {
772 // Spill the value to memory and reload it into top of stack.
773 unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
774 MachineFunction &MF = DAG.getMachineFunction();
775 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
776 MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
777 Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
778 }
779 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
780 SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
781 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
782 Chain = Value.getValue(1);
783 }
784
785 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
786 SDOperand Ops[] = { Chain, Value };
787 Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
788 Flag = Chain.getValue(1);
789 }
790
791 SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
792 if (Flag.Val)
793 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
794 else
795 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
796}
797
798
799/// LowerCallResult - Lower the result values of an ISD::CALL into the
800/// appropriate copies out of appropriate physical registers. This assumes that
801/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
802/// being lowered. The returns a SDNode with the same number of values as the
803/// ISD::CALL.
804SDNode *X86TargetLowering::
805LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
806 unsigned CallingConv, SelectionDAG &DAG) {
807
808 // Assign locations to each value returned by this call.
809 SmallVector<CCValAssign, 16> RVLocs;
810 bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
811 CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
812 CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
813
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000814 SmallVector<SDOperand, 8> ResultVals;
815
816 // Copy all of the result registers out of their specified physreg.
817 if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
818 for (unsigned i = 0; i != RVLocs.size(); ++i) {
819 Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
820 RVLocs[i].getValVT(), InFlag).getValue(1);
821 InFlag = Chain.getValue(2);
822 ResultVals.push_back(Chain.getValue(0));
823 }
824 } else {
825 // Copies from the FP stack are special, as ST0 isn't a valid register
826 // before the fp stackifier runs.
827
828 // Copy ST0 into an RFP register with FP_GET_RESULT.
829 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
830 SDOperand GROps[] = { Chain, InFlag };
831 SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
832 Chain = RetVal.getValue(1);
833 InFlag = RetVal.getValue(2);
834
835 // If we are using ScalarSSE, store ST(0) to the stack and reload it into
836 // an XMM register.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000837 if ((X86ScalarSSEf32 && RVLocs[0].getValVT() == MVT::f32) ||
838 (X86ScalarSSEf64 && RVLocs[0].getValVT() == MVT::f64)) {
Chris Lattner40758732007-12-29 06:41:28 +0000839 SDOperand StoreLoc;
840 const Value *SrcVal = 0;
841 int SrcValOffset = 0;
Chris Lattner8b815c22007-12-29 06:57:38 +0000842 MVT::ValueType RetStoreVT = RVLocs[0].getValVT();
Chris Lattner40758732007-12-29 06:41:28 +0000843
844 // Determine where to store the value. If the call result is directly
845 // used by a store, see if we can store directly into the location. In
846 // this case, we'll end up producing a fst + movss[load] + movss[store] to
847 // the same location, and the two movss's will be nuked as dead. This
848 // optimizes common things like "*D = atof(..)" to not need an
849 // intermediate stack slot.
850 if (SDOperand(TheCall, 0).hasOneUse() &&
851 SDOperand(TheCall, 1).hasOneUse()) {
Chris Lattner8b815c22007-12-29 06:57:38 +0000852 // In addition to direct uses, we also support a FP_ROUND that uses the
853 // value, if it is directly stored somewhere.
854 SDNode *User = *TheCall->use_begin();
855 if (User->getOpcode() == ISD::FP_ROUND && User->hasOneUse())
856 User = *User->use_begin();
857
Chris Lattner40758732007-12-29 06:41:28 +0000858 // Ok, we have one use of the value and one use of the chain. See if
859 // they are the same node: a store.
Chris Lattner8b815c22007-12-29 06:57:38 +0000860 if (StoreSDNode *N = dyn_cast<StoreSDNode>(User)) {
861 // Verify that the value being stored is either the call or a
862 // truncation of the call.
863 SDNode *StoreVal = N->getValue().Val;
864 if (StoreVal == TheCall)
865 ; // ok.
866 else if (StoreVal->getOpcode() == ISD::FP_ROUND &&
867 StoreVal->hasOneUse() &&
868 StoreVal->getOperand(0).Val == TheCall)
869 ; // ok.
870 else
871 N = 0; // not ok.
872
873 if (N && N->getChain().Val == TheCall &&
Chris Lattner40758732007-12-29 06:41:28 +0000874 !N->isVolatile() && !N->isTruncatingStore() &&
875 N->getAddressingMode() == ISD::UNINDEXED) {
876 StoreLoc = N->getBasePtr();
877 SrcVal = N->getSrcValue();
878 SrcValOffset = N->getSrcValueOffset();
Chris Lattner8b815c22007-12-29 06:57:38 +0000879 RetStoreVT = N->getValue().getValueType();
Chris Lattner40758732007-12-29 06:41:28 +0000880 }
881 }
882 }
883
884 // If we weren't able to optimize the result, just create a temporary
885 // stack slot.
886 if (StoreLoc.Val == 0) {
887 MachineFunction &MF = DAG.getMachineFunction();
888 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
889 StoreLoc = DAG.getFrameIndex(SSFI, getPointerTy());
890 }
891
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000892 // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
893 // shouldn't be necessary except that RFP cannot be live across
Chris Lattner40758732007-12-29 06:41:28 +0000894 // multiple blocks (which could happen if a select gets lowered into
895 // multiple blocks and scheduled in between them). When stackifier is
896 // fixed, they can be uncoupled.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000897 SDOperand Ops[] = {
Chris Lattner8b815c22007-12-29 06:57:38 +0000898 Chain, RetVal, StoreLoc, DAG.getValueType(RetStoreVT), InFlag
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000899 };
900 Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
Chris Lattner8b815c22007-12-29 06:57:38 +0000901 RetVal = DAG.getLoad(RetStoreVT, Chain,
Chris Lattner40758732007-12-29 06:41:28 +0000902 StoreLoc, SrcVal, SrcValOffset);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000903 Chain = RetVal.getValue(1);
Chris Lattner8b815c22007-12-29 06:57:38 +0000904
905 // If we optimized a truncate, then extend the result back to its desired
906 // type.
907 if (RVLocs[0].getValVT() != RetStoreVT)
908 RetVal = DAG.getNode(ISD::FP_EXTEND, RVLocs[0].getValVT(), RetVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000909 }
910 ResultVals.push_back(RetVal);
911 }
912
913 // Merge everything together with a MERGE_VALUES node.
914 ResultVals.push_back(Chain);
915 return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
916 &ResultVals[0], ResultVals.size()).Val;
917}
918
919
920//===----------------------------------------------------------------------===//
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000921// C & StdCall & Fast Calling Convention implementation
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000922//===----------------------------------------------------------------------===//
923// StdCall calling convention seems to be standard for many Windows' API
924// routines and around. It differs from C calling convention just a little:
925// callee should clean up the stack, not caller. Symbols should be also
926// decorated in some fancy way :) It doesn't support any vector arguments.
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000927// For info on fast calling convention see Fast Calling Convention (tail call)
928// implementation LowerX86_32FastCCCallTo.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000929
930/// AddLiveIn - This helper function adds the specified physical register to the
931/// MachineFunction as a live in value. It also creates a corresponding virtual
932/// register for it.
933static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
934 const TargetRegisterClass *RC) {
935 assert(RC->contains(PReg) && "Not the correct regclass!");
Chris Lattner1b989192007-12-31 04:13:23 +0000936 unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
937 MF.getRegInfo().addLiveIn(PReg, VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000938 return VReg;
939}
940
Gordon Henriksen18ace102008-01-05 16:56:59 +0000941// Determines whether a CALL node uses struct return semantics.
942static bool CallIsStructReturn(SDOperand Op) {
943 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
944 if (!NumOps)
945 return false;
946
947 ConstantSDNode *Flags = cast<ConstantSDNode>(Op.getOperand(6));
948 return Flags->getValue() & ISD::ParamFlags::StructReturn;
949}
950
951// Determines whether a FORMAL_ARGUMENTS node uses struct return semantics.
952static bool ArgsAreStructReturn(SDOperand Op) {
953 unsigned NumArgs = Op.Val->getNumValues() - 1;
954 if (!NumArgs)
955 return false;
956
957 ConstantSDNode *Flags = cast<ConstantSDNode>(Op.getOperand(3));
958 return Flags->getValue() & ISD::ParamFlags::StructReturn;
959}
960
961// Determines whether a CALL or FORMAL_ARGUMENTS node requires the callee to pop
962// its own arguments. Callee pop is necessary to support tail calls.
963bool X86TargetLowering::IsCalleePop(SDOperand Op) {
964 bool IsVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
965 if (IsVarArg)
966 return false;
967
968 switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
969 default:
970 return false;
971 case CallingConv::X86_StdCall:
972 return !Subtarget->is64Bit();
973 case CallingConv::X86_FastCall:
974 return !Subtarget->is64Bit();
975 case CallingConv::Fast:
976 return PerformTailCallOpt;
977 }
978}
979
980// Selects the correct CCAssignFn for a CALL or FORMAL_ARGUMENTS node.
981CCAssignFn *X86TargetLowering::CCAssignFnForNode(SDOperand Op) const {
982 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
983
984 if (Subtarget->is64Bit())
985 if (CC == CallingConv::Fast && PerformTailCallOpt)
986 return CC_X86_64_TailCall;
987 else
988 return CC_X86_64_C;
989
990 if (CC == CallingConv::X86_FastCall)
991 return CC_X86_32_FastCall;
992 else if (CC == CallingConv::Fast && PerformTailCallOpt)
993 return CC_X86_32_TailCall;
994 else
995 return CC_X86_32_C;
996}
997
998// Selects the appropriate decoration to apply to a MachineFunction containing a
999// given FORMAL_ARGUMENTS node.
1000NameDecorationStyle
1001X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDOperand Op) {
1002 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1003 if (CC == CallingConv::X86_FastCall)
1004 return FastCall;
1005 else if (CC == CallingConv::X86_StdCall)
1006 return StdCall;
1007 return None;
1008}
1009
Rafael Espindola03cbeb72007-09-14 15:48:13 +00001010SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
1011 const CCValAssign &VA,
1012 MachineFrameInfo *MFI,
1013 SDOperand Root, unsigned i) {
1014 // Create the nodes corresponding to a load from this parameter slot.
1015 int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
1016 VA.getLocMemOffset());
1017 SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1018
1019 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
1020
1021 if (Flags & ISD::ParamFlags::ByVal)
1022 return FIN;
1023 else
1024 return DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0);
1025}
1026
Gordon Henriksen18ace102008-01-05 16:56:59 +00001027SDOperand
1028X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001029 MachineFunction &MF = DAG.getMachineFunction();
Gordon Henriksen18ace102008-01-05 16:56:59 +00001030 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1031
1032 const Function* Fn = MF.getFunction();
1033 if (Fn->hasExternalLinkage() &&
1034 Subtarget->isTargetCygMing() &&
1035 Fn->getName() == "main")
1036 FuncInfo->setForceFramePointer(true);
1037
1038 // Decorate the function name.
1039 FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1040
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001041 MachineFrameInfo *MFI = MF.getFrameInfo();
1042 SDOperand Root = Op.getOperand(0);
1043 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001044 unsigned CC = MF.getFunction()->getCallingConv();
Gordon Henriksen18ace102008-01-05 16:56:59 +00001045 bool Is64Bit = Subtarget->is64Bit();
Gordon Henriksen6bbcc672008-01-03 16:47:34 +00001046
1047 assert(!(isVarArg && CC == CallingConv::Fast) &&
1048 "Var args not supported with calling convention fastcc");
1049
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001050 // Assign locations to all of the incoming arguments.
1051 SmallVector<CCValAssign, 16> ArgLocs;
Gordon Henriksen6bbcc672008-01-03 16:47:34 +00001052 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
Gordon Henriksen18ace102008-01-05 16:56:59 +00001053 CCInfo.AnalyzeFormalArguments(Op.Val, CCAssignFnForNode(Op));
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001054
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001055 SmallVector<SDOperand, 8> ArgValues;
1056 unsigned LastVal = ~0U;
1057 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1058 CCValAssign &VA = ArgLocs[i];
1059 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1060 // places.
1061 assert(VA.getValNo() != LastVal &&
1062 "Don't support value assigned to multiple locs yet");
1063 LastVal = VA.getValNo();
1064
1065 if (VA.isRegLoc()) {
1066 MVT::ValueType RegVT = VA.getLocVT();
1067 TargetRegisterClass *RC;
1068 if (RegVT == MVT::i32)
1069 RC = X86::GR32RegisterClass;
Gordon Henriksen18ace102008-01-05 16:56:59 +00001070 else if (Is64Bit && RegVT == MVT::i64)
1071 RC = X86::GR64RegisterClass;
1072 else if (Is64Bit && RegVT == MVT::f32)
1073 RC = X86::FR32RegisterClass;
1074 else if (Is64Bit && RegVT == MVT::f64)
1075 RC = X86::FR64RegisterClass;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001076 else {
1077 assert(MVT::isVector(RegVT));
Gordon Henriksen18ace102008-01-05 16:56:59 +00001078 if (Is64Bit && MVT::getSizeInBits(RegVT) == 64) {
1079 RC = X86::GR64RegisterClass; // MMX values are passed in GPRs.
1080 RegVT = MVT::i64;
1081 } else
1082 RC = X86::VR128RegisterClass;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001083 }
Gordon Henriksen6bbcc672008-01-03 16:47:34 +00001084
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001085 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1086 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1087
1088 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1089 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1090 // right size.
1091 if (VA.getLocInfo() == CCValAssign::SExt)
1092 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1093 DAG.getValueType(VA.getValVT()));
1094 else if (VA.getLocInfo() == CCValAssign::ZExt)
1095 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1096 DAG.getValueType(VA.getValVT()));
1097
1098 if (VA.getLocInfo() != CCValAssign::Full)
1099 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1100
Gordon Henriksen18ace102008-01-05 16:56:59 +00001101 // Handle MMX values passed in GPRs.
1102 if (Is64Bit && RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1103 MVT::getSizeInBits(RegVT) == 64)
1104 ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1105
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001106 ArgValues.push_back(ArgValue);
1107 } else {
1108 assert(VA.isMemLoc());
Rafael Espindola03cbeb72007-09-14 15:48:13 +00001109 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001110 }
1111 }
Gordon Henriksen6bbcc672008-01-03 16:47:34 +00001112
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001113 unsigned StackSize = CCInfo.getNextStackOffset();
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001114 // align stack specially for tail calls
Gordon Henriksen6bbcc672008-01-03 16:47:34 +00001115 if (CC == CallingConv::Fast)
1116 StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001117
1118 // If the function takes variable number of arguments, make a frame index for
1119 // the start of the first vararg value... for expansion of llvm.va_start.
Gordon Henriksen6bbcc672008-01-03 16:47:34 +00001120 if (isVarArg) {
Gordon Henriksen18ace102008-01-05 16:56:59 +00001121 if (Is64Bit || CC != CallingConv::X86_FastCall) {
1122 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1123 }
1124 if (Is64Bit) {
1125 static const unsigned GPR64ArgRegs[] = {
1126 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1127 };
1128 static const unsigned XMMArgRegs[] = {
1129 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1130 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1131 };
1132
1133 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1134 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1135
1136 // For X86-64, if there are vararg parameters that are passed via
1137 // registers, then we must store them to their spots on the stack so they
1138 // may be loaded by deferencing the result of va_next.
1139 VarArgsGPOffset = NumIntRegs * 8;
1140 VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1141 RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1142
1143 // Store the integer parameter registers.
1144 SmallVector<SDOperand, 8> MemOps;
1145 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1146 SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1147 DAG.getConstant(VarArgsGPOffset,
1148 getPointerTy()));
1149 for (; NumIntRegs != 6; ++NumIntRegs) {
1150 unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1151 X86::GR64RegisterClass);
1152 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1153 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1154 MemOps.push_back(Store);
1155 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1156 DAG.getConstant(8, getPointerTy()));
1157 }
1158
1159 // Now store the XMM (fp + vector) parameter registers.
1160 FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1161 DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1162 for (; NumXMMRegs != 8; ++NumXMMRegs) {
1163 unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1164 X86::VR128RegisterClass);
1165 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1166 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1167 MemOps.push_back(Store);
1168 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1169 DAG.getConstant(16, getPointerTy()));
1170 }
1171 if (!MemOps.empty())
1172 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1173 &MemOps[0], MemOps.size());
1174 }
Gordon Henriksen6bbcc672008-01-03 16:47:34 +00001175 }
Gordon Henriksen18ace102008-01-05 16:56:59 +00001176
1177 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1178 // arguments and the arguments after the retaddr has been pushed are
1179 // aligned.
1180 if (!Is64Bit && CC == CallingConv::X86_FastCall &&
1181 !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() &&
1182 (StackSize & 7) == 0)
1183 StackSize += 4;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001184
Gordon Henriksen6bbcc672008-01-03 16:47:34 +00001185 ArgValues.push_back(Root);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001186
Gordon Henriksen18ace102008-01-05 16:56:59 +00001187 // Some CCs need callee pop.
1188 if (IsCalleePop(Op)) {
1189 BytesToPopOnReturn = StackSize; // Callee pops everything.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001190 BytesCallerReserves = 0;
1191 } else {
1192 BytesToPopOnReturn = 0; // Callee pops nothing.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001193 // If this is an sret function, the return should pop the hidden pointer.
Gordon Henriksen18ace102008-01-05 16:56:59 +00001194 if (!Is64Bit && ArgsAreStructReturn(Op))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001195 BytesToPopOnReturn = 4;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001196 BytesCallerReserves = StackSize;
1197 }
Gordon Henriksen6bbcc672008-01-03 16:47:34 +00001198
Gordon Henriksen18ace102008-01-05 16:56:59 +00001199 if (!Is64Bit) {
1200 RegSaveFrameIndex = 0xAAAAAAA; // RegSaveFrameIndex is X86-64 only.
1201 if (CC == CallingConv::X86_FastCall)
1202 VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs.
1203 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001204
Anton Korobeynikove844e472007-08-15 17:12:32 +00001205 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001206
1207 // Return the new list of results.
1208 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1209 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1210}
1211
Evan Chengbc077bf2008-01-10 00:09:10 +00001212SDOperand
1213X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1214 const SDOperand &StackPtr,
1215 const CCValAssign &VA,
1216 SDOperand Chain,
1217 SDOperand Arg) {
1218 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1219 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1220 SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1221 unsigned Flags = cast<ConstantSDNode>(FlagsOp)->getValue();
1222 if (Flags & ISD::ParamFlags::ByVal) {
1223 unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1224 ISD::ParamFlags::ByValAlignOffs);
1225
1226 unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1227 ISD::ParamFlags::ByValSizeOffs;
1228
1229 SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1230 SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
1231 SDOperand AlwaysInline = DAG.getConstant(1, MVT::i32);
1232
1233 return DAG.getMemcpy(Chain, PtrOff, Arg, SizeNode, AlignNode,
1234 AlwaysInline);
1235 } else {
1236 return DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1237 }
1238}
1239
Gordon Henriksen18ace102008-01-05 16:56:59 +00001240SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
1241 MachineFunction &MF = DAG.getMachineFunction();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001242 SDOperand Chain = Op.getOperand(0);
Gordon Henriksen18ace102008-01-05 16:56:59 +00001243 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001244 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
Gordon Henriksen18ace102008-01-05 16:56:59 +00001245 bool IsTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0
1246 && CC == CallingConv::Fast && PerformTailCallOpt;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001247 SDOperand Callee = Op.getOperand(4);
Gordon Henriksen18ace102008-01-05 16:56:59 +00001248 bool Is64Bit = Subtarget->is64Bit();
Gordon Henriksen6bbcc672008-01-03 16:47:34 +00001249
1250 assert(!(isVarArg && CC == CallingConv::Fast) &&
1251 "Var args not supported with calling convention fastcc");
1252
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001253 // Analyze operands of the call, assigning locations to each operand.
1254 SmallVector<CCValAssign, 16> ArgLocs;
1255 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
Gordon Henriksen18ace102008-01-05 16:56:59 +00001256 CCInfo.AnalyzeCallOperands(Op.Val, CCAssignFnForNode(Op));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001257
1258 // Get a count of how many bytes are to be pushed on the stack.
1259 unsigned NumBytes = CCInfo.getNextStackOffset();
Gordon Henriksen6bbcc672008-01-03 16:47:34 +00001260 if (CC == CallingConv::Fast)
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001261 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001262
Gordon Henriksen18ace102008-01-05 16:56:59 +00001263 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1264 // arguments and the arguments after the retaddr has been pushed are aligned.
1265 if (!Is64Bit && CC == CallingConv::X86_FastCall &&
1266 !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() &&
1267 (NumBytes & 7) == 0)
1268 NumBytes += 4;
1269
1270 int FPDiff = 0;
1271 if (IsTailCall) {
1272 // Lower arguments at fp - stackoffset + fpdiff.
1273 unsigned NumBytesCallerPushed =
1274 MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1275 FPDiff = NumBytesCallerPushed - NumBytes;
1276
1277 // Set the delta of movement of the returnaddr stackslot.
1278 // But only set if delta is greater than previous delta.
1279 if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1280 MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1281 }
1282
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001283 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1284
Gordon Henriksen18ace102008-01-05 16:56:59 +00001285 SDOperand RetAddrFrIdx, NewRetAddrFrIdx;
1286 if (IsTailCall) {
1287 // Adjust the Return address stack slot.
1288 if (FPDiff) {
1289 MVT::ValueType VT = Is64Bit ? MVT::i64 : MVT::i32;
1290 RetAddrFrIdx = getReturnAddressFrameIndex(DAG);
1291 // Load the "old" Return address.
1292 RetAddrFrIdx =
1293 DAG.getLoad(VT, Chain,RetAddrFrIdx, NULL, 0);
1294 // Calculate the new stack slot for the return address.
1295 int SlotSize = Is64Bit ? 8 : 4;
1296 int NewReturnAddrFI =
1297 MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1298 NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1299 Chain = SDOperand(RetAddrFrIdx.Val, 1);
1300 }
1301 }
1302
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001303 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1304 SmallVector<SDOperand, 8> MemOpChains;
1305
1306 SDOperand StackPtr;
1307
1308 // Walk the register/memloc assignments, inserting copies/loads.
Gordon Henriksen18ace102008-01-05 16:56:59 +00001309 // For tail calls, lower arguments first to the stack slot where they would
1310 // normally - in case of a normal function call - be.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001311 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1312 CCValAssign &VA = ArgLocs[i];
1313 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1314
1315 // Promote the value if needed.
1316 switch (VA.getLocInfo()) {
1317 default: assert(0 && "Unknown loc info!");
1318 case CCValAssign::Full: break;
1319 case CCValAssign::SExt:
1320 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1321 break;
1322 case CCValAssign::ZExt:
1323 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1324 break;
1325 case CCValAssign::AExt:
1326 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1327 break;
1328 }
1329
1330 if (VA.isRegLoc()) {
1331 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1332 } else {
1333 assert(VA.isMemLoc());
1334 if (StackPtr.Val == 0)
1335 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindola007b7142007-09-21 15:50:22 +00001336
1337 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1338 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001339 }
1340 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001341
1342 if (!MemOpChains.empty())
1343 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1344 &MemOpChains[0], MemOpChains.size());
1345
1346 // Build a sequence of copy-to-reg nodes chained together with token chain
1347 // and flag operands which copy the outgoing args into registers.
1348 SDOperand InFlag;
1349 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1350 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1351 InFlag);
1352 InFlag = Chain.getValue(1);
1353 }
Gordon Henriksen18ace102008-01-05 16:56:59 +00001354
1355 if (IsTailCall)
1356 InFlag = SDOperand(); // ??? Isn't this nuking the preceding loop's output?
1357
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001358 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1359 // GOT pointer.
Gordon Henriksen18ace102008-01-05 16:56:59 +00001360 // Does not work with tail call since ebx is not restored correctly by
1361 // tailcaller. TODO: at least for x86 - verify for x86-64
1362 if (!IsTailCall && !Is64Bit &&
1363 getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001364 Subtarget->isPICStyleGOT()) {
1365 Chain = DAG.getCopyToReg(Chain, X86::EBX,
1366 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1367 InFlag);
1368 InFlag = Chain.getValue(1);
1369 }
Gordon Henriksen6bbcc672008-01-03 16:47:34 +00001370
Gordon Henriksen18ace102008-01-05 16:56:59 +00001371 if (Is64Bit && isVarArg) {
1372 // From AMD64 ABI document:
1373 // For calls that may call functions that use varargs or stdargs
1374 // (prototype-less calls or calls to functions containing ellipsis (...) in
1375 // the declaration) %al is used as hidden argument to specify the number
1376 // of SSE registers used. The contents of %al do not need to match exactly
1377 // the number of registers, but must be an ubound on the number of SSE
1378 // registers used and is in the range 0 - 8 inclusive.
1379
1380 // Count the number of XMM registers allocated.
1381 static const unsigned XMMArgRegs[] = {
1382 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1383 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1384 };
1385 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1386
1387 Chain = DAG.getCopyToReg(Chain, X86::AL,
1388 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1389 InFlag = Chain.getValue(1);
1390 }
1391
1392 // Copy from stack slots to stack slot of a tail called function. This needs
1393 // to be done because if we would lower the arguments directly to their real
1394 // stack slot we might end up overwriting each other.
1395 // TODO: To make this more efficient (sometimes saving a store/load) we could
1396 // analyse the arguments and emit this store/load/store sequence only for
1397 // arguments which would be overwritten otherwise.
1398 if (IsTailCall) {
1399 SmallVector<SDOperand, 8> MemOpChains2;
1400 SDOperand PtrOff;
1401 SDOperand FIN;
1402 int FI = 0;
1403 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1404 CCValAssign &VA = ArgLocs[i];
1405 if (!VA.isRegLoc()) {
1406 SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1407 unsigned Flags = cast<ConstantSDNode>(FlagsOp)->getValue();
1408
1409 // Get source stack slot.
1410 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(),
1411 getPointerTy());
1412 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1413 // Create frame index.
1414 int32_t Offset = VA.getLocMemOffset()+FPDiff;
1415 uint32_t OpSize = (MVT::getSizeInBits(VA.getLocVT())+7)/8;
1416 FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1417 FIN = DAG.getFrameIndex(FI, MVT::i32);
1418 if (Flags & ISD::ParamFlags::ByVal) {
1419 // Copy relative to framepointer.
1420 unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1421 ISD::ParamFlags::ByValAlignOffs);
1422
1423 unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1424 ISD::ParamFlags::ByValSizeOffs;
1425
1426 SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1427 SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
1428 SDOperand AlwaysInline = DAG.getConstant(1, MVT::i1);
1429
1430 MemOpChains2.push_back(DAG.getMemcpy(Chain, FIN, PtrOff, SizeNode,
1431 AlignNode,AlwaysInline));
1432 } else {
1433 SDOperand LoadedArg = DAG.getLoad(VA.getValVT(), Chain, PtrOff,
1434 NULL, 0);
1435 // Store relative to framepointer.
1436 MemOpChains2.push_back(DAG.getStore(Chain, LoadedArg, FIN, NULL, 0));
1437 }
1438 }
1439 }
1440
1441 if (!MemOpChains2.empty())
1442 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1443 &MemOpChains2[0], MemOpChains.size());
1444
1445 // Store the return address to the appropriate stack slot.
1446 if (FPDiff)
1447 Chain = DAG.getStore(Chain,RetAddrFrIdx, NewRetAddrFrIdx, NULL, 0);
1448 }
1449
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001450 // If the callee is a GlobalAddress node (quite common, every direct call is)
1451 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1452 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1453 // We should use extra load for direct calls to dllimported functions in
1454 // non-JIT mode.
Gordon Henriksen18ace102008-01-05 16:56:59 +00001455 if ((IsTailCall || !Is64Bit ||
1456 getTargetMachine().getCodeModel() != CodeModel::Large)
1457 && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1458 getTargetMachine(), true))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001459 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
Gordon Henriksen6bbcc672008-01-03 16:47:34 +00001460 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
Gordon Henriksen18ace102008-01-05 16:56:59 +00001461 if (IsTailCall || !Is64Bit ||
1462 getTargetMachine().getCodeModel() != CodeModel::Large)
1463 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1464 } else if (IsTailCall) {
1465 assert(Callee.getOpcode() == ISD::LOAD &&
1466 "Function destination must be loaded into virtual register");
1467 unsigned Opc = Is64Bit ? X86::R9 : X86::ECX;
1468
1469 Chain = DAG.getCopyToReg(Chain,
1470 DAG.getRegister(Opc, getPointerTy()) ,
1471 Callee,InFlag);
1472 Callee = DAG.getRegister(Opc, getPointerTy());
1473 // Add register as live out.
1474 DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
Gordon Henriksen6bbcc672008-01-03 16:47:34 +00001475 }
1476
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001477 // Returns a chain & a flag for retval copy to use.
1478 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1479 SmallVector<SDOperand, 8> Ops;
Gordon Henriksen18ace102008-01-05 16:56:59 +00001480
1481 if (IsTailCall) {
1482 Ops.push_back(Chain);
1483 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1484 Ops.push_back(DAG.getConstant(0, getPointerTy()));
1485 if (InFlag.Val)
1486 Ops.push_back(InFlag);
1487 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1488 InFlag = Chain.getValue(1);
1489
1490 // Returns a chain & a flag for retval copy to use.
1491 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1492 Ops.clear();
1493 }
1494
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001495 Ops.push_back(Chain);
1496 Ops.push_back(Callee);
1497
Gordon Henriksen18ace102008-01-05 16:56:59 +00001498 if (IsTailCall)
1499 Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001500
1501 // Add an implicit use GOT pointer in EBX.
Gordon Henriksen18ace102008-01-05 16:56:59 +00001502 if (!IsTailCall && !Is64Bit &&
1503 getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001504 Subtarget->isPICStyleGOT())
1505 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
Gordon Henriksen6bbcc672008-01-03 16:47:34 +00001506
Gordon Henriksen18ace102008-01-05 16:56:59 +00001507 // Add argument registers to the end of the list so that they are known live
1508 // into the call.
Evan Chenge14fc242008-01-07 23:08:23 +00001509 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1510 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1511 RegsToPass[i].second.getValueType()));
Gordon Henriksen18ace102008-01-05 16:56:59 +00001512
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001513 if (InFlag.Val)
1514 Ops.push_back(InFlag);
Gordon Henriksen6bbcc672008-01-03 16:47:34 +00001515
Gordon Henriksen18ace102008-01-05 16:56:59 +00001516 if (IsTailCall) {
1517 assert(InFlag.Val &&
1518 "Flag must be set. Depend on flag being set in LowerRET");
1519 Chain = DAG.getNode(X86ISD::TAILCALL,
1520 Op.Val->getVTList(), &Ops[0], Ops.size());
1521
1522 return SDOperand(Chain.Val, Op.ResNo);
1523 }
1524
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001525 Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001526 InFlag = Chain.getValue(1);
1527
1528 // Create the CALLSEQ_END node.
Gordon Henriksen18ace102008-01-05 16:56:59 +00001529 unsigned NumBytesForCalleeToPush;
1530 if (IsCalleePop(Op))
1531 NumBytesForCalleeToPush = NumBytes; // Callee pops everything
1532 else if (!Is64Bit && CallIsStructReturn(Op))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001533 // If this is is a call to a struct-return function, the callee
1534 // pops the hidden struct pointer, so we have to push it back.
1535 // This is common for Darwin/X86, Linux & Mingw32 targets.
Gordon Henriksen6bbcc672008-01-03 16:47:34 +00001536 NumBytesForCalleeToPush = 4;
Gordon Henriksen18ace102008-01-05 16:56:59 +00001537 else
Gordon Henriksen6bbcc672008-01-03 16:47:34 +00001538 NumBytesForCalleeToPush = 0; // Callee pops nothing.
Gordon Henriksen18ace102008-01-05 16:56:59 +00001539
Gordon Henriksen6bbcc672008-01-03 16:47:34 +00001540 // Returns a flag for retval copy to use.
Bill Wendling22f8deb2007-11-13 00:44:25 +00001541 Chain = DAG.getCALLSEQ_END(Chain,
1542 DAG.getConstant(NumBytes, getPointerTy()),
1543 DAG.getConstant(NumBytesForCalleeToPush,
1544 getPointerTy()),
1545 InFlag);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001546 InFlag = Chain.getValue(1);
1547
1548 // Handle result values, copying them out of physregs into vregs that we
1549 // return.
1550 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1551}
1552
1553
1554//===----------------------------------------------------------------------===//
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001555// Fast Calling Convention (tail call) implementation
1556//===----------------------------------------------------------------------===//
1557
1558// Like std call, callee cleans arguments, convention except that ECX is
1559// reserved for storing the tail called function address. Only 2 registers are
1560// free for argument passing (inreg). Tail call optimization is performed
1561// provided:
1562// * tailcallopt is enabled
1563// * caller/callee are fastcc
1564// * elf/pic is disabled OR
1565// * elf/pic enabled + callee is in module + callee has
1566// visibility protected or hidden
Arnold Schwaighofer373e8652007-10-12 21:30:57 +00001567// To keep the stack aligned according to platform abi the function
1568// GetAlignedArgumentStackSize ensures that argument delta is always multiples
1569// of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001570// If a tail called function callee has more arguments than the caller the
1571// caller needs to make sure that there is room to move the RETADDR to. This is
Arnold Schwaighofer373e8652007-10-12 21:30:57 +00001572// achieved by reserving an area the size of the argument delta right after the
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001573// original REtADDR, but before the saved framepointer or the spilled registers
1574// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1575// stack layout:
1576// arg1
1577// arg2
1578// RETADDR
1579// [ new RETADDR
1580// move area ]
1581// (possible EBP)
1582// ESI
1583// EDI
1584// local1 ..
1585
1586/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1587/// for a 16 byte align requirement.
1588unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1589 SelectionDAG& DAG) {
1590 if (PerformTailCallOpt) {
1591 MachineFunction &MF = DAG.getMachineFunction();
1592 const TargetMachine &TM = MF.getTarget();
1593 const TargetFrameInfo &TFI = *TM.getFrameInfo();
1594 unsigned StackAlignment = TFI.getStackAlignment();
1595 uint64_t AlignMask = StackAlignment - 1;
1596 int64_t Offset = StackSize;
1597 unsigned SlotSize = Subtarget->is64Bit() ? 8 : 4;
1598 if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1599 // Number smaller than 12 so just add the difference.
1600 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1601 } else {
1602 // Mask out lower bits, add stackalignment once plus the 12 bytes.
1603 Offset = ((~AlignMask) & Offset) + StackAlignment +
1604 (StackAlignment-SlotSize);
1605 }
1606 StackSize = Offset;
1607 }
1608 return StackSize;
1609}
1610
1611/// IsEligibleForTailCallElimination - Check to see whether the next instruction
Evan Chenge7a87392007-11-02 01:26:22 +00001612/// following the call is a return. A function is eligible if caller/callee
1613/// calling conventions match, currently only fastcc supports tail calls, and
1614/// the function CALL is immediatly followed by a RET.
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001615bool X86TargetLowering::IsEligibleForTailCallOptimization(SDOperand Call,
1616 SDOperand Ret,
1617 SelectionDAG& DAG) const {
Evan Chenge7a87392007-11-02 01:26:22 +00001618 if (!PerformTailCallOpt)
1619 return false;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001620
1621 // Check whether CALL node immediatly preceeds the RET node and whether the
1622 // return uses the result of the node or is a void return.
Evan Chenge7a87392007-11-02 01:26:22 +00001623 unsigned NumOps = Ret.getNumOperands();
1624 if ((NumOps == 1 &&
1625 (Ret.getOperand(0) == SDOperand(Call.Val,1) ||
1626 Ret.getOperand(0) == SDOperand(Call.Val,0))) ||
Evan Cheng26c0e982007-11-02 17:45:40 +00001627 (NumOps > 1 &&
Evan Chenge7a87392007-11-02 01:26:22 +00001628 Ret.getOperand(0) == SDOperand(Call.Val,Call.Val->getNumValues()-1) &&
1629 Ret.getOperand(1) == SDOperand(Call.Val,0))) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001630 MachineFunction &MF = DAG.getMachineFunction();
1631 unsigned CallerCC = MF.getFunction()->getCallingConv();
1632 unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1633 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1634 SDOperand Callee = Call.getOperand(4);
1635 // On elf/pic %ebx needs to be livein.
Evan Chenge7a87392007-11-02 01:26:22 +00001636 if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1637 !Subtarget->isPICStyleGOT())
1638 return true;
1639
1640 // Can only do local tail calls with PIC.
Gordon Henriksen18ace102008-01-05 16:56:59 +00001641 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1642 return G->getGlobal()->hasHiddenVisibility()
1643 || G->getGlobal()->hasProtectedVisibility();
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001644 }
1645 }
Evan Chenge7a87392007-11-02 01:26:22 +00001646
1647 return false;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001648}
1649
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001650//===----------------------------------------------------------------------===//
1651// Other Lowering Hooks
1652//===----------------------------------------------------------------------===//
1653
1654
1655SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
Anton Korobeynikove844e472007-08-15 17:12:32 +00001656 MachineFunction &MF = DAG.getMachineFunction();
1657 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1658 int ReturnAddrIndex = FuncInfo->getRAIndex();
1659
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001660 if (ReturnAddrIndex == 0) {
1661 // Set up a frame object for the return address.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001662 if (Subtarget->is64Bit())
1663 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1664 else
1665 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
Anton Korobeynikove844e472007-08-15 17:12:32 +00001666
1667 FuncInfo->setRAIndex(ReturnAddrIndex);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001668 }
1669
1670 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1671}
1672
1673
1674
1675/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1676/// specific condition code. It returns a false if it cannot do a direct
1677/// translation. X86CC is the translated CondCode. LHS/RHS are modified as
1678/// needed.
1679static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1680 unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1681 SelectionDAG &DAG) {
1682 X86CC = X86::COND_INVALID;
1683 if (!isFP) {
1684 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1685 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1686 // X > -1 -> X == 0, jump !sign.
1687 RHS = DAG.getConstant(0, RHS.getValueType());
1688 X86CC = X86::COND_NS;
1689 return true;
1690 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1691 // X < 0 -> X == 0, jump on sign.
1692 X86CC = X86::COND_S;
1693 return true;
Dan Gohman37b34262007-09-17 14:49:27 +00001694 } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
1695 // X < 1 -> X <= 0
1696 RHS = DAG.getConstant(0, RHS.getValueType());
1697 X86CC = X86::COND_LE;
1698 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001699 }
1700 }
1701
1702 switch (SetCCOpcode) {
1703 default: break;
1704 case ISD::SETEQ: X86CC = X86::COND_E; break;
1705 case ISD::SETGT: X86CC = X86::COND_G; break;
1706 case ISD::SETGE: X86CC = X86::COND_GE; break;
1707 case ISD::SETLT: X86CC = X86::COND_L; break;
1708 case ISD::SETLE: X86CC = X86::COND_LE; break;
1709 case ISD::SETNE: X86CC = X86::COND_NE; break;
1710 case ISD::SETULT: X86CC = X86::COND_B; break;
1711 case ISD::SETUGT: X86CC = X86::COND_A; break;
1712 case ISD::SETULE: X86CC = X86::COND_BE; break;
1713 case ISD::SETUGE: X86CC = X86::COND_AE; break;
1714 }
1715 } else {
1716 // On a floating point condition, the flags are set as follows:
1717 // ZF PF CF op
1718 // 0 | 0 | 0 | X > Y
1719 // 0 | 0 | 1 | X < Y
1720 // 1 | 0 | 0 | X == Y
1721 // 1 | 1 | 1 | unordered
1722 bool Flip = false;
1723 switch (SetCCOpcode) {
1724 default: break;
1725 case ISD::SETUEQ:
1726 case ISD::SETEQ: X86CC = X86::COND_E; break;
1727 case ISD::SETOLT: Flip = true; // Fallthrough
1728 case ISD::SETOGT:
1729 case ISD::SETGT: X86CC = X86::COND_A; break;
1730 case ISD::SETOLE: Flip = true; // Fallthrough
1731 case ISD::SETOGE:
1732 case ISD::SETGE: X86CC = X86::COND_AE; break;
1733 case ISD::SETUGT: Flip = true; // Fallthrough
1734 case ISD::SETULT:
1735 case ISD::SETLT: X86CC = X86::COND_B; break;
1736 case ISD::SETUGE: Flip = true; // Fallthrough
1737 case ISD::SETULE:
1738 case ISD::SETLE: X86CC = X86::COND_BE; break;
1739 case ISD::SETONE:
1740 case ISD::SETNE: X86CC = X86::COND_NE; break;
1741 case ISD::SETUO: X86CC = X86::COND_P; break;
1742 case ISD::SETO: X86CC = X86::COND_NP; break;
1743 }
1744 if (Flip)
1745 std::swap(LHS, RHS);
1746 }
1747
1748 return X86CC != X86::COND_INVALID;
1749}
1750
1751/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1752/// code. Current x86 isa includes the following FP cmov instructions:
1753/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1754static bool hasFPCMov(unsigned X86CC) {
1755 switch (X86CC) {
1756 default:
1757 return false;
1758 case X86::COND_B:
1759 case X86::COND_BE:
1760 case X86::COND_E:
1761 case X86::COND_P:
1762 case X86::COND_A:
1763 case X86::COND_AE:
1764 case X86::COND_NE:
1765 case X86::COND_NP:
1766 return true;
1767 }
1768}
1769
1770/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return
1771/// true if Op is undef or if its value falls within the specified range (L, H].
1772static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1773 if (Op.getOpcode() == ISD::UNDEF)
1774 return true;
1775
1776 unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1777 return (Val >= Low && Val < Hi);
1778}
1779
1780/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return
1781/// true if Op is undef or if its value equal to the specified value.
1782static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1783 if (Op.getOpcode() == ISD::UNDEF)
1784 return true;
1785 return cast<ConstantSDNode>(Op)->getValue() == Val;
1786}
1787
1788/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1789/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1790bool X86::isPSHUFDMask(SDNode *N) {
1791 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1792
Dan Gohman7dc19012007-08-02 21:17:01 +00001793 if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001794 return false;
1795
1796 // Check if the value doesn't reference the second vector.
1797 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1798 SDOperand Arg = N->getOperand(i);
1799 if (Arg.getOpcode() == ISD::UNDEF) continue;
1800 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
Dan Gohman7dc19012007-08-02 21:17:01 +00001801 if (cast<ConstantSDNode>(Arg)->getValue() >= e)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001802 return false;
1803 }
1804
1805 return true;
1806}
1807
1808/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
1809/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
1810bool X86::isPSHUFHWMask(SDNode *N) {
1811 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1812
1813 if (N->getNumOperands() != 8)
1814 return false;
1815
1816 // Lower quadword copied in order.
1817 for (unsigned i = 0; i != 4; ++i) {
1818 SDOperand Arg = N->getOperand(i);
1819 if (Arg.getOpcode() == ISD::UNDEF) continue;
1820 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1821 if (cast<ConstantSDNode>(Arg)->getValue() != i)
1822 return false;
1823 }
1824
1825 // Upper quadword shuffled.
1826 for (unsigned i = 4; i != 8; ++i) {
1827 SDOperand Arg = N->getOperand(i);
1828 if (Arg.getOpcode() == ISD::UNDEF) continue;
1829 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1830 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1831 if (Val < 4 || Val > 7)
1832 return false;
1833 }
1834
1835 return true;
1836}
1837
1838/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
1839/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
1840bool X86::isPSHUFLWMask(SDNode *N) {
1841 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1842
1843 if (N->getNumOperands() != 8)
1844 return false;
1845
1846 // Upper quadword copied in order.
1847 for (unsigned i = 4; i != 8; ++i)
1848 if (!isUndefOrEqual(N->getOperand(i), i))
1849 return false;
1850
1851 // Lower quadword shuffled.
1852 for (unsigned i = 0; i != 4; ++i)
1853 if (!isUndefOrInRange(N->getOperand(i), 0, 4))
1854 return false;
1855
1856 return true;
1857}
1858
1859/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
1860/// specifies a shuffle of elements that is suitable for input to SHUFP*.
1861static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
1862 if (NumElems != 2 && NumElems != 4) return false;
1863
1864 unsigned Half = NumElems / 2;
1865 for (unsigned i = 0; i < Half; ++i)
1866 if (!isUndefOrInRange(Elems[i], 0, NumElems))
1867 return false;
1868 for (unsigned i = Half; i < NumElems; ++i)
1869 if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
1870 return false;
1871
1872 return true;
1873}
1874
1875bool X86::isSHUFPMask(SDNode *N) {
1876 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1877 return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
1878}
1879
1880/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
1881/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
1882/// half elements to come from vector 1 (which would equal the dest.) and
1883/// the upper half to come from vector 2.
1884static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
1885 if (NumOps != 2 && NumOps != 4) return false;
1886
1887 unsigned Half = NumOps / 2;
1888 for (unsigned i = 0; i < Half; ++i)
1889 if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
1890 return false;
1891 for (unsigned i = Half; i < NumOps; ++i)
1892 if (!isUndefOrInRange(Ops[i], 0, NumOps))
1893 return false;
1894 return true;
1895}
1896
1897static bool isCommutedSHUFP(SDNode *N) {
1898 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1899 return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
1900}
1901
1902/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
1903/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
1904bool X86::isMOVHLPSMask(SDNode *N) {
1905 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1906
1907 if (N->getNumOperands() != 4)
1908 return false;
1909
1910 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
1911 return isUndefOrEqual(N->getOperand(0), 6) &&
1912 isUndefOrEqual(N->getOperand(1), 7) &&
1913 isUndefOrEqual(N->getOperand(2), 2) &&
1914 isUndefOrEqual(N->getOperand(3), 3);
1915}
1916
1917/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
1918/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
1919/// <2, 3, 2, 3>
1920bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
1921 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1922
1923 if (N->getNumOperands() != 4)
1924 return false;
1925
1926 // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
1927 return isUndefOrEqual(N->getOperand(0), 2) &&
1928 isUndefOrEqual(N->getOperand(1), 3) &&
1929 isUndefOrEqual(N->getOperand(2), 2) &&
1930 isUndefOrEqual(N->getOperand(3), 3);
1931}
1932
1933/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
1934/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
1935bool X86::isMOVLPMask(SDNode *N) {
1936 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1937
1938 unsigned NumElems = N->getNumOperands();
1939 if (NumElems != 2 && NumElems != 4)
1940 return false;
1941
1942 for (unsigned i = 0; i < NumElems/2; ++i)
1943 if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
1944 return false;
1945
1946 for (unsigned i = NumElems/2; i < NumElems; ++i)
1947 if (!isUndefOrEqual(N->getOperand(i), i))
1948 return false;
1949
1950 return true;
1951}
1952
1953/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
1954/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
1955/// and MOVLHPS.
1956bool X86::isMOVHPMask(SDNode *N) {
1957 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1958
1959 unsigned NumElems = N->getNumOperands();
1960 if (NumElems != 2 && NumElems != 4)
1961 return false;
1962
1963 for (unsigned i = 0; i < NumElems/2; ++i)
1964 if (!isUndefOrEqual(N->getOperand(i), i))
1965 return false;
1966
1967 for (unsigned i = 0; i < NumElems/2; ++i) {
1968 SDOperand Arg = N->getOperand(i + NumElems/2);
1969 if (!isUndefOrEqual(Arg, i + NumElems))
1970 return false;
1971 }
1972
1973 return true;
1974}
1975
1976/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
1977/// specifies a shuffle of elements that is suitable for input to UNPCKL.
1978bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
1979 bool V2IsSplat = false) {
1980 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1981 return false;
1982
1983 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1984 SDOperand BitI = Elts[i];
1985 SDOperand BitI1 = Elts[i+1];
1986 if (!isUndefOrEqual(BitI, j))
1987 return false;
1988 if (V2IsSplat) {
1989 if (isUndefOrEqual(BitI1, NumElts))
1990 return false;
1991 } else {
1992 if (!isUndefOrEqual(BitI1, j + NumElts))
1993 return false;
1994 }
1995 }
1996
1997 return true;
1998}
1999
2000bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2001 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2002 return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2003}
2004
2005/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2006/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2007bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
2008 bool V2IsSplat = false) {
2009 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2010 return false;
2011
2012 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2013 SDOperand BitI = Elts[i];
2014 SDOperand BitI1 = Elts[i+1];
2015 if (!isUndefOrEqual(BitI, j + NumElts/2))
2016 return false;
2017 if (V2IsSplat) {
2018 if (isUndefOrEqual(BitI1, NumElts))
2019 return false;
2020 } else {
2021 if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2022 return false;
2023 }
2024 }
2025
2026 return true;
2027}
2028
2029bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2030 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2031 return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2032}
2033
2034/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2035/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2036/// <0, 0, 1, 1>
2037bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2038 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2039
2040 unsigned NumElems = N->getNumOperands();
2041 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2042 return false;
2043
2044 for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2045 SDOperand BitI = N->getOperand(i);
2046 SDOperand BitI1 = N->getOperand(i+1);
2047
2048 if (!isUndefOrEqual(BitI, j))
2049 return false;
2050 if (!isUndefOrEqual(BitI1, j))
2051 return false;
2052 }
2053
2054 return true;
2055}
2056
2057/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2058/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2059/// <2, 2, 3, 3>
2060bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2061 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2062
2063 unsigned NumElems = N->getNumOperands();
2064 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2065 return false;
2066
2067 for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2068 SDOperand BitI = N->getOperand(i);
2069 SDOperand BitI1 = N->getOperand(i + 1);
2070
2071 if (!isUndefOrEqual(BitI, j))
2072 return false;
2073 if (!isUndefOrEqual(BitI1, j))
2074 return false;
2075 }
2076
2077 return true;
2078}
2079
2080/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2081/// specifies a shuffle of elements that is suitable for input to MOVSS,
2082/// MOVSD, and MOVD, i.e. setting the lowest element.
2083static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
Evan Cheng62cdc642007-12-06 22:14:22 +00002084 if (NumElts != 2 && NumElts != 4)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002085 return false;
2086
2087 if (!isUndefOrEqual(Elts[0], NumElts))
2088 return false;
2089
2090 for (unsigned i = 1; i < NumElts; ++i) {
2091 if (!isUndefOrEqual(Elts[i], i))
2092 return false;
2093 }
2094
2095 return true;
2096}
2097
2098bool X86::isMOVLMask(SDNode *N) {
2099 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2100 return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2101}
2102
2103/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2104/// of what x86 movss want. X86 movs requires the lowest element to be lowest
2105/// element of vector 2 and the other elements to come from vector 1 in order.
2106static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
2107 bool V2IsSplat = false,
2108 bool V2IsUndef = false) {
2109 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2110 return false;
2111
2112 if (!isUndefOrEqual(Ops[0], 0))
2113 return false;
2114
2115 for (unsigned i = 1; i < NumOps; ++i) {
2116 SDOperand Arg = Ops[i];
2117 if (!(isUndefOrEqual(Arg, i+NumOps) ||
2118 (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2119 (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2120 return false;
2121 }
2122
2123 return true;
2124}
2125
2126static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2127 bool V2IsUndef = false) {
2128 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2129 return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2130 V2IsSplat, V2IsUndef);
2131}
2132
2133/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2134/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2135bool X86::isMOVSHDUPMask(SDNode *N) {
2136 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2137
2138 if (N->getNumOperands() != 4)
2139 return false;
2140
2141 // Expect 1, 1, 3, 3
2142 for (unsigned i = 0; i < 2; ++i) {
2143 SDOperand Arg = N->getOperand(i);
2144 if (Arg.getOpcode() == ISD::UNDEF) continue;
2145 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2146 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2147 if (Val != 1) return false;
2148 }
2149
2150 bool HasHi = false;
2151 for (unsigned i = 2; i < 4; ++i) {
2152 SDOperand Arg = N->getOperand(i);
2153 if (Arg.getOpcode() == ISD::UNDEF) continue;
2154 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2155 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2156 if (Val != 3) return false;
2157 HasHi = true;
2158 }
2159
2160 // Don't use movshdup if it can be done with a shufps.
2161 return HasHi;
2162}
2163
2164/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2165/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2166bool X86::isMOVSLDUPMask(SDNode *N) {
2167 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2168
2169 if (N->getNumOperands() != 4)
2170 return false;
2171
2172 // Expect 0, 0, 2, 2
2173 for (unsigned i = 0; i < 2; ++i) {
2174 SDOperand Arg = N->getOperand(i);
2175 if (Arg.getOpcode() == ISD::UNDEF) continue;
2176 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2177 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2178 if (Val != 0) return false;
2179 }
2180
2181 bool HasHi = false;
2182 for (unsigned i = 2; i < 4; ++i) {
2183 SDOperand Arg = N->getOperand(i);
2184 if (Arg.getOpcode() == ISD::UNDEF) continue;
2185 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2186 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2187 if (Val != 2) return false;
2188 HasHi = true;
2189 }
2190
2191 // Don't use movshdup if it can be done with a shufps.
2192 return HasHi;
2193}
2194
2195/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2196/// specifies a identity operation on the LHS or RHS.
2197static bool isIdentityMask(SDNode *N, bool RHS = false) {
2198 unsigned NumElems = N->getNumOperands();
2199 for (unsigned i = 0; i < NumElems; ++i)
2200 if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2201 return false;
2202 return true;
2203}
2204
2205/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2206/// a splat of a single element.
2207static bool isSplatMask(SDNode *N) {
2208 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2209
2210 // This is a splat operation if each element of the permute is the same, and
2211 // if the value doesn't reference the second vector.
2212 unsigned NumElems = N->getNumOperands();
2213 SDOperand ElementBase;
2214 unsigned i = 0;
2215 for (; i != NumElems; ++i) {
2216 SDOperand Elt = N->getOperand(i);
2217 if (isa<ConstantSDNode>(Elt)) {
2218 ElementBase = Elt;
2219 break;
2220 }
2221 }
2222
2223 if (!ElementBase.Val)
2224 return false;
2225
2226 for (; i != NumElems; ++i) {
2227 SDOperand Arg = N->getOperand(i);
2228 if (Arg.getOpcode() == ISD::UNDEF) continue;
2229 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2230 if (Arg != ElementBase) return false;
2231 }
2232
2233 // Make sure it is a splat of the first vector operand.
2234 return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2235}
2236
2237/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2238/// a splat of a single element and it's a 2 or 4 element mask.
2239bool X86::isSplatMask(SDNode *N) {
2240 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2241
2242 // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2243 if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2244 return false;
2245 return ::isSplatMask(N);
2246}
2247
2248/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2249/// specifies a splat of zero element.
2250bool X86::isSplatLoMask(SDNode *N) {
2251 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2252
2253 for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2254 if (!isUndefOrEqual(N->getOperand(i), 0))
2255 return false;
2256 return true;
2257}
2258
2259/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2260/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2261/// instructions.
2262unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2263 unsigned NumOperands = N->getNumOperands();
2264 unsigned Shift = (NumOperands == 4) ? 2 : 1;
2265 unsigned Mask = 0;
2266 for (unsigned i = 0; i < NumOperands; ++i) {
2267 unsigned Val = 0;
2268 SDOperand Arg = N->getOperand(NumOperands-i-1);
2269 if (Arg.getOpcode() != ISD::UNDEF)
2270 Val = cast<ConstantSDNode>(Arg)->getValue();
2271 if (Val >= NumOperands) Val -= NumOperands;
2272 Mask |= Val;
2273 if (i != NumOperands - 1)
2274 Mask <<= Shift;
2275 }
2276
2277 return Mask;
2278}
2279
2280/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2281/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2282/// instructions.
2283unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2284 unsigned Mask = 0;
2285 // 8 nodes, but we only care about the last 4.
2286 for (unsigned i = 7; i >= 4; --i) {
2287 unsigned Val = 0;
2288 SDOperand Arg = N->getOperand(i);
2289 if (Arg.getOpcode() != ISD::UNDEF)
2290 Val = cast<ConstantSDNode>(Arg)->getValue();
2291 Mask |= (Val - 4);
2292 if (i != 4)
2293 Mask <<= 2;
2294 }
2295
2296 return Mask;
2297}
2298
2299/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2300/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2301/// instructions.
2302unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2303 unsigned Mask = 0;
2304 // 8 nodes, but we only care about the first 4.
2305 for (int i = 3; i >= 0; --i) {
2306 unsigned Val = 0;
2307 SDOperand Arg = N->getOperand(i);
2308 if (Arg.getOpcode() != ISD::UNDEF)
2309 Val = cast<ConstantSDNode>(Arg)->getValue();
2310 Mask |= Val;
2311 if (i != 0)
2312 Mask <<= 2;
2313 }
2314
2315 return Mask;
2316}
2317
2318/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2319/// specifies a 8 element shuffle that can be broken into a pair of
2320/// PSHUFHW and PSHUFLW.
2321static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2322 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2323
2324 if (N->getNumOperands() != 8)
2325 return false;
2326
2327 // Lower quadword shuffled.
2328 for (unsigned i = 0; i != 4; ++i) {
2329 SDOperand Arg = N->getOperand(i);
2330 if (Arg.getOpcode() == ISD::UNDEF) continue;
2331 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2332 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
Evan Cheng75184a92007-12-11 01:46:18 +00002333 if (Val >= 4)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002334 return false;
2335 }
2336
2337 // Upper quadword shuffled.
2338 for (unsigned i = 4; i != 8; ++i) {
2339 SDOperand Arg = N->getOperand(i);
2340 if (Arg.getOpcode() == ISD::UNDEF) continue;
2341 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2342 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2343 if (Val < 4 || Val > 7)
2344 return false;
2345 }
2346
2347 return true;
2348}
2349
Chris Lattnere6aa3862007-11-25 00:24:49 +00002350/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002351/// values in ther permute mask.
2352static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2353 SDOperand &V2, SDOperand &Mask,
2354 SelectionDAG &DAG) {
2355 MVT::ValueType VT = Op.getValueType();
2356 MVT::ValueType MaskVT = Mask.getValueType();
2357 MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2358 unsigned NumElems = Mask.getNumOperands();
2359 SmallVector<SDOperand, 8> MaskVec;
2360
2361 for (unsigned i = 0; i != NumElems; ++i) {
2362 SDOperand Arg = Mask.getOperand(i);
2363 if (Arg.getOpcode() == ISD::UNDEF) {
2364 MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2365 continue;
2366 }
2367 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2368 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2369 if (Val < NumElems)
2370 MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2371 else
2372 MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2373 }
2374
2375 std::swap(V1, V2);
Evan Chengfca29242007-12-07 08:07:39 +00002376 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002377 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2378}
2379
Evan Chenga6769df2007-12-07 21:30:01 +00002380/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2381/// the two vector operands have swapped position.
Evan Chengfca29242007-12-07 08:07:39 +00002382static
2383SDOperand CommuteVectorShuffleMask(SDOperand Mask, SelectionDAG &DAG) {
2384 MVT::ValueType MaskVT = Mask.getValueType();
2385 MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2386 unsigned NumElems = Mask.getNumOperands();
2387 SmallVector<SDOperand, 8> MaskVec;
2388 for (unsigned i = 0; i != NumElems; ++i) {
2389 SDOperand Arg = Mask.getOperand(i);
2390 if (Arg.getOpcode() == ISD::UNDEF) {
2391 MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2392 continue;
2393 }
2394 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2395 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2396 if (Val < NumElems)
2397 MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2398 else
2399 MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2400 }
2401 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2402}
2403
2404
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002405/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2406/// match movhlps. The lower half elements should come from upper half of
2407/// V1 (and in order), and the upper half elements should come from the upper
2408/// half of V2 (and in order).
2409static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2410 unsigned NumElems = Mask->getNumOperands();
2411 if (NumElems != 4)
2412 return false;
2413 for (unsigned i = 0, e = 2; i != e; ++i)
2414 if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2415 return false;
2416 for (unsigned i = 2; i != 4; ++i)
2417 if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2418 return false;
2419 return true;
2420}
2421
2422/// isScalarLoadToVector - Returns true if the node is a scalar load that
2423/// is promoted to a vector.
2424static inline bool isScalarLoadToVector(SDNode *N) {
2425 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2426 N = N->getOperand(0).Val;
2427 return ISD::isNON_EXTLoad(N);
2428 }
2429 return false;
2430}
2431
2432/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2433/// match movlp{s|d}. The lower half elements should come from lower half of
2434/// V1 (and in order), and the upper half elements should come from the upper
2435/// half of V2 (and in order). And since V1 will become the source of the
2436/// MOVLP, it must be either a vector load or a scalar load to vector.
2437static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2438 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2439 return false;
2440 // Is V2 is a vector load, don't do this transformation. We will try to use
2441 // load folding shufps op.
2442 if (ISD::isNON_EXTLoad(V2))
2443 return false;
2444
2445 unsigned NumElems = Mask->getNumOperands();
2446 if (NumElems != 2 && NumElems != 4)
2447 return false;
2448 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2449 if (!isUndefOrEqual(Mask->getOperand(i), i))
2450 return false;
2451 for (unsigned i = NumElems/2; i != NumElems; ++i)
2452 if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2453 return false;
2454 return true;
2455}
2456
2457/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2458/// all the same.
2459static bool isSplatVector(SDNode *N) {
2460 if (N->getOpcode() != ISD::BUILD_VECTOR)
2461 return false;
2462
2463 SDOperand SplatValue = N->getOperand(0);
2464 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2465 if (N->getOperand(i) != SplatValue)
2466 return false;
2467 return true;
2468}
2469
2470/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2471/// to an undef.
2472static bool isUndefShuffle(SDNode *N) {
2473 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2474 return false;
2475
2476 SDOperand V1 = N->getOperand(0);
2477 SDOperand V2 = N->getOperand(1);
2478 SDOperand Mask = N->getOperand(2);
2479 unsigned NumElems = Mask.getNumOperands();
2480 for (unsigned i = 0; i != NumElems; ++i) {
2481 SDOperand Arg = Mask.getOperand(i);
2482 if (Arg.getOpcode() != ISD::UNDEF) {
2483 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2484 if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2485 return false;
2486 else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2487 return false;
2488 }
2489 }
2490 return true;
2491}
2492
2493/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2494/// constant +0.0.
2495static inline bool isZeroNode(SDOperand Elt) {
2496 return ((isa<ConstantSDNode>(Elt) &&
2497 cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2498 (isa<ConstantFPSDNode>(Elt) &&
Dale Johannesendf8a8312007-08-31 04:03:46 +00002499 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002500}
2501
2502/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2503/// to an zero vector.
2504static bool isZeroShuffle(SDNode *N) {
2505 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2506 return false;
2507
2508 SDOperand V1 = N->getOperand(0);
2509 SDOperand V2 = N->getOperand(1);
2510 SDOperand Mask = N->getOperand(2);
2511 unsigned NumElems = Mask.getNumOperands();
2512 for (unsigned i = 0; i != NumElems; ++i) {
2513 SDOperand Arg = Mask.getOperand(i);
Chris Lattnere6aa3862007-11-25 00:24:49 +00002514 if (Arg.getOpcode() == ISD::UNDEF)
2515 continue;
2516
2517 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2518 if (Idx < NumElems) {
2519 unsigned Opc = V1.Val->getOpcode();
2520 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.Val))
2521 continue;
2522 if (Opc != ISD::BUILD_VECTOR ||
2523 !isZeroNode(V1.Val->getOperand(Idx)))
2524 return false;
2525 } else if (Idx >= NumElems) {
2526 unsigned Opc = V2.Val->getOpcode();
2527 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.Val))
2528 continue;
2529 if (Opc != ISD::BUILD_VECTOR ||
2530 !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2531 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002532 }
2533 }
2534 return true;
2535}
2536
2537/// getZeroVector - Returns a vector of specified type with all zero elements.
2538///
2539static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2540 assert(MVT::isVector(VT) && "Expected a vector type");
Chris Lattnere6aa3862007-11-25 00:24:49 +00002541
2542 // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2543 // type. This ensures they get CSE'd.
2544 SDOperand Cst = DAG.getTargetConstant(0, MVT::i32);
2545 SDOperand Vec;
2546 if (MVT::getSizeInBits(VT) == 64) // MMX
2547 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2548 else // SSE
2549 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2550 return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002551}
2552
Chris Lattnere6aa3862007-11-25 00:24:49 +00002553/// getOnesVector - Returns a vector of specified type with all bits set.
2554///
2555static SDOperand getOnesVector(MVT::ValueType VT, SelectionDAG &DAG) {
2556 assert(MVT::isVector(VT) && "Expected a vector type");
2557
2558 // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2559 // type. This ensures they get CSE'd.
2560 SDOperand Cst = DAG.getTargetConstant(~0U, MVT::i32);
2561 SDOperand Vec;
2562 if (MVT::getSizeInBits(VT) == 64) // MMX
2563 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2564 else // SSE
2565 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2566 return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2567}
2568
2569
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002570/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2571/// that point to V2 points to its first element.
2572static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2573 assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2574
2575 bool Changed = false;
2576 SmallVector<SDOperand, 8> MaskVec;
2577 unsigned NumElems = Mask.getNumOperands();
2578 for (unsigned i = 0; i != NumElems; ++i) {
2579 SDOperand Arg = Mask.getOperand(i);
2580 if (Arg.getOpcode() != ISD::UNDEF) {
2581 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2582 if (Val > NumElems) {
2583 Arg = DAG.getConstant(NumElems, Arg.getValueType());
2584 Changed = true;
2585 }
2586 }
2587 MaskVec.push_back(Arg);
2588 }
2589
2590 if (Changed)
2591 Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2592 &MaskVec[0], MaskVec.size());
2593 return Mask;
2594}
2595
2596/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2597/// operation of specified width.
2598static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2599 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2600 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2601
2602 SmallVector<SDOperand, 8> MaskVec;
2603 MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2604 for (unsigned i = 1; i != NumElems; ++i)
2605 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2606 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2607}
2608
2609/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2610/// of specified width.
2611static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2612 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2613 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2614 SmallVector<SDOperand, 8> MaskVec;
2615 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2616 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2617 MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2618 }
2619 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2620}
2621
2622/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2623/// of specified width.
2624static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2625 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2626 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2627 unsigned Half = NumElems/2;
2628 SmallVector<SDOperand, 8> MaskVec;
2629 for (unsigned i = 0; i != Half; ++i) {
2630 MaskVec.push_back(DAG.getConstant(i + Half, BaseVT));
2631 MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2632 }
2633 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2634}
2635
2636/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2637///
2638static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2639 SDOperand V1 = Op.getOperand(0);
2640 SDOperand Mask = Op.getOperand(2);
2641 MVT::ValueType VT = Op.getValueType();
2642 unsigned NumElems = Mask.getNumOperands();
2643 Mask = getUnpacklMask(NumElems, DAG);
2644 while (NumElems != 4) {
2645 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2646 NumElems >>= 1;
2647 }
2648 V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2649
Chris Lattnere6aa3862007-11-25 00:24:49 +00002650 Mask = getZeroVector(MVT::v4i32, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002651 SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2652 DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2653 return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2654}
2655
2656/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
Chris Lattnere6aa3862007-11-25 00:24:49 +00002657/// vector of zero or undef vector. This produces a shuffle where the low
2658/// element of V2 is swizzled into the zero/undef vector, landing at element
2659/// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002660static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2661 unsigned NumElems, unsigned Idx,
2662 bool isZero, SelectionDAG &DAG) {
2663 SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2664 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2665 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
Chris Lattnere6aa3862007-11-25 00:24:49 +00002666 SmallVector<SDOperand, 16> MaskVec;
2667 for (unsigned i = 0; i != NumElems; ++i)
2668 if (i == Idx) // If this is the insertion idx, put the low elt of V2 here.
2669 MaskVec.push_back(DAG.getConstant(NumElems, EVT));
2670 else
2671 MaskVec.push_back(DAG.getConstant(i, EVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002672 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2673 &MaskVec[0], MaskVec.size());
2674 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2675}
2676
2677/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2678///
2679static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2680 unsigned NumNonZero, unsigned NumZero,
2681 SelectionDAG &DAG, TargetLowering &TLI) {
2682 if (NumNonZero > 8)
2683 return SDOperand();
2684
2685 SDOperand V(0, 0);
2686 bool First = true;
2687 for (unsigned i = 0; i < 16; ++i) {
2688 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2689 if (ThisIsNonZero && First) {
2690 if (NumZero)
2691 V = getZeroVector(MVT::v8i16, DAG);
2692 else
2693 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2694 First = false;
2695 }
2696
2697 if ((i & 1) != 0) {
2698 SDOperand ThisElt(0, 0), LastElt(0, 0);
2699 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2700 if (LastIsNonZero) {
2701 LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2702 }
2703 if (ThisIsNonZero) {
2704 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2705 ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2706 ThisElt, DAG.getConstant(8, MVT::i8));
2707 if (LastIsNonZero)
2708 ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2709 } else
2710 ThisElt = LastElt;
2711
2712 if (ThisElt.Val)
2713 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2714 DAG.getConstant(i/2, TLI.getPointerTy()));
2715 }
2716 }
2717
2718 return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2719}
2720
2721/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2722///
2723static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2724 unsigned NumNonZero, unsigned NumZero,
2725 SelectionDAG &DAG, TargetLowering &TLI) {
2726 if (NumNonZero > 4)
2727 return SDOperand();
2728
2729 SDOperand V(0, 0);
2730 bool First = true;
2731 for (unsigned i = 0; i < 8; ++i) {
2732 bool isNonZero = (NonZeros & (1 << i)) != 0;
2733 if (isNonZero) {
2734 if (First) {
2735 if (NumZero)
2736 V = getZeroVector(MVT::v8i16, DAG);
2737 else
2738 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2739 First = false;
2740 }
2741 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2742 DAG.getConstant(i, TLI.getPointerTy()));
2743 }
2744 }
2745
2746 return V;
2747}
2748
2749SDOperand
2750X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
Chris Lattnere6aa3862007-11-25 00:24:49 +00002751 // All zero's are handled with pxor, all one's are handled with pcmpeqd.
2752 if (ISD::isBuildVectorAllZeros(Op.Val) || ISD::isBuildVectorAllOnes(Op.Val)) {
2753 // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
2754 // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
2755 // eliminated on x86-32 hosts.
2756 if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
2757 return Op;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002758
Chris Lattnere6aa3862007-11-25 00:24:49 +00002759 if (ISD::isBuildVectorAllOnes(Op.Val))
2760 return getOnesVector(Op.getValueType(), DAG);
2761 return getZeroVector(Op.getValueType(), DAG);
2762 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002763
2764 MVT::ValueType VT = Op.getValueType();
2765 MVT::ValueType EVT = MVT::getVectorElementType(VT);
2766 unsigned EVTBits = MVT::getSizeInBits(EVT);
2767
2768 unsigned NumElems = Op.getNumOperands();
2769 unsigned NumZero = 0;
2770 unsigned NumNonZero = 0;
2771 unsigned NonZeros = 0;
Evan Chengc1073492007-12-12 06:45:40 +00002772 bool HasNonImms = false;
Evan Cheng75184a92007-12-11 01:46:18 +00002773 SmallSet<SDOperand, 8> Values;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002774 for (unsigned i = 0; i < NumElems; ++i) {
2775 SDOperand Elt = Op.getOperand(i);
Evan Chengc1073492007-12-12 06:45:40 +00002776 if (Elt.getOpcode() == ISD::UNDEF)
2777 continue;
2778 Values.insert(Elt);
2779 if (Elt.getOpcode() != ISD::Constant &&
2780 Elt.getOpcode() != ISD::ConstantFP)
2781 HasNonImms = true;
2782 if (isZeroNode(Elt))
2783 NumZero++;
2784 else {
2785 NonZeros |= (1 << i);
2786 NumNonZero++;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002787 }
2788 }
2789
2790 if (NumNonZero == 0) {
Chris Lattnere6aa3862007-11-25 00:24:49 +00002791 // All undef vector. Return an UNDEF. All zero vectors were handled above.
2792 return DAG.getNode(ISD::UNDEF, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002793 }
2794
2795 // Splat is obviously ok. Let legalizer expand it to a shuffle.
2796 if (Values.size() == 1)
2797 return SDOperand();
2798
2799 // Special case for single non-zero element.
Evan Chengc1073492007-12-12 06:45:40 +00002800 if (NumNonZero == 1 && NumElems <= 4) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002801 unsigned Idx = CountTrailingZeros_32(NonZeros);
2802 SDOperand Item = Op.getOperand(Idx);
2803 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2804 if (Idx == 0)
2805 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2806 return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
2807 NumZero > 0, DAG);
Evan Chengc1073492007-12-12 06:45:40 +00002808 else if (!HasNonImms) // Otherwise, it's better to do a constpool load.
2809 return SDOperand();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002810
2811 if (EVTBits == 32) {
2812 // Turn it into a shuffle of zero and zero-extended scalar to vector.
2813 Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
2814 DAG);
2815 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2816 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2817 SmallVector<SDOperand, 8> MaskVec;
2818 for (unsigned i = 0; i < NumElems; i++)
2819 MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
2820 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2821 &MaskVec[0], MaskVec.size());
2822 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
2823 DAG.getNode(ISD::UNDEF, VT), Mask);
2824 }
2825 }
2826
Dan Gohman21463242007-07-24 22:55:08 +00002827 // A vector full of immediates; various special cases are already
2828 // handled, so this is best done with a single constant-pool load.
Evan Chengc1073492007-12-12 06:45:40 +00002829 if (!HasNonImms)
Dan Gohman21463242007-07-24 22:55:08 +00002830 return SDOperand();
2831
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002832 // Let legalizer expand 2-wide build_vectors.
2833 if (EVTBits == 64)
2834 return SDOperand();
2835
2836 // If element VT is < 32 bits, convert it to inserts into a zero vector.
2837 if (EVTBits == 8 && NumElems == 16) {
2838 SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
2839 *this);
2840 if (V.Val) return V;
2841 }
2842
2843 if (EVTBits == 16 && NumElems == 8) {
2844 SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
2845 *this);
2846 if (V.Val) return V;
2847 }
2848
2849 // If element VT is == 32 bits, turn it into a number of shuffles.
2850 SmallVector<SDOperand, 8> V;
2851 V.resize(NumElems);
2852 if (NumElems == 4 && NumZero > 0) {
2853 for (unsigned i = 0; i < 4; ++i) {
2854 bool isZero = !(NonZeros & (1 << i));
2855 if (isZero)
2856 V[i] = getZeroVector(VT, DAG);
2857 else
2858 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2859 }
2860
2861 for (unsigned i = 0; i < 2; ++i) {
2862 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
2863 default: break;
2864 case 0:
2865 V[i] = V[i*2]; // Must be a zero vector.
2866 break;
2867 case 1:
2868 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
2869 getMOVLMask(NumElems, DAG));
2870 break;
2871 case 2:
2872 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2873 getMOVLMask(NumElems, DAG));
2874 break;
2875 case 3:
2876 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2877 getUnpacklMask(NumElems, DAG));
2878 break;
2879 }
2880 }
2881
2882 // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
2883 // clears the upper bits.
2884 // FIXME: we can do the same for v4f32 case when we know both parts of
2885 // the lower half come from scalar_to_vector (loadf32). We should do
2886 // that in post legalizer dag combiner with target specific hooks.
2887 if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
2888 return V[0];
2889 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2890 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2891 SmallVector<SDOperand, 8> MaskVec;
2892 bool Reverse = (NonZeros & 0x3) == 2;
2893 for (unsigned i = 0; i < 2; ++i)
2894 if (Reverse)
2895 MaskVec.push_back(DAG.getConstant(1-i, EVT));
2896 else
2897 MaskVec.push_back(DAG.getConstant(i, EVT));
2898 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
2899 for (unsigned i = 0; i < 2; ++i)
2900 if (Reverse)
2901 MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
2902 else
2903 MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
2904 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2905 &MaskVec[0], MaskVec.size());
2906 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
2907 }
2908
2909 if (Values.size() > 2) {
2910 // Expand into a number of unpckl*.
2911 // e.g. for v4f32
2912 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
2913 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
2914 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
2915 SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
2916 for (unsigned i = 0; i < NumElems; ++i)
2917 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2918 NumElems >>= 1;
2919 while (NumElems != 0) {
2920 for (unsigned i = 0; i < NumElems; ++i)
2921 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
2922 UnpckMask);
2923 NumElems >>= 1;
2924 }
2925 return V[0];
2926 }
2927
2928 return SDOperand();
2929}
2930
Evan Chengfca29242007-12-07 08:07:39 +00002931static
2932SDOperand LowerVECTOR_SHUFFLEv8i16(SDOperand V1, SDOperand V2,
2933 SDOperand PermMask, SelectionDAG &DAG,
2934 TargetLowering &TLI) {
Evan Cheng75184a92007-12-11 01:46:18 +00002935 SDOperand NewV;
Evan Chengfca29242007-12-07 08:07:39 +00002936 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(8);
2937 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
Evan Cheng75184a92007-12-11 01:46:18 +00002938 MVT::ValueType PtrVT = TLI.getPointerTy();
2939 SmallVector<SDOperand, 8> MaskElts(PermMask.Val->op_begin(),
2940 PermMask.Val->op_end());
2941
2942 // First record which half of which vector the low elements come from.
2943 SmallVector<unsigned, 4> LowQuad(4);
2944 for (unsigned i = 0; i < 4; ++i) {
2945 SDOperand Elt = MaskElts[i];
2946 if (Elt.getOpcode() == ISD::UNDEF)
2947 continue;
2948 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
2949 int QuadIdx = EltIdx / 4;
2950 ++LowQuad[QuadIdx];
2951 }
2952 int BestLowQuad = -1;
2953 unsigned MaxQuad = 1;
2954 for (unsigned i = 0; i < 4; ++i) {
2955 if (LowQuad[i] > MaxQuad) {
2956 BestLowQuad = i;
2957 MaxQuad = LowQuad[i];
2958 }
Evan Chengfca29242007-12-07 08:07:39 +00002959 }
2960
Evan Cheng75184a92007-12-11 01:46:18 +00002961 // Record which half of which vector the high elements come from.
2962 SmallVector<unsigned, 4> HighQuad(4);
2963 for (unsigned i = 4; i < 8; ++i) {
2964 SDOperand Elt = MaskElts[i];
2965 if (Elt.getOpcode() == ISD::UNDEF)
2966 continue;
2967 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
2968 int QuadIdx = EltIdx / 4;
2969 ++HighQuad[QuadIdx];
2970 }
2971 int BestHighQuad = -1;
2972 MaxQuad = 1;
2973 for (unsigned i = 0; i < 4; ++i) {
2974 if (HighQuad[i] > MaxQuad) {
2975 BestHighQuad = i;
2976 MaxQuad = HighQuad[i];
2977 }
2978 }
2979
2980 // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it.
2981 if (BestLowQuad != -1 || BestHighQuad != -1) {
2982 // First sort the 4 chunks in order using shufpd.
2983 SmallVector<SDOperand, 8> MaskVec;
2984 if (BestLowQuad != -1)
2985 MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32));
2986 else
2987 MaskVec.push_back(DAG.getConstant(0, MVT::i32));
2988 if (BestHighQuad != -1)
2989 MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32));
2990 else
2991 MaskVec.push_back(DAG.getConstant(1, MVT::i32));
2992 SDOperand Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2);
2993 NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
2994 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1),
2995 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask);
2996 NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV);
2997
2998 // Now sort high and low parts separately.
2999 BitVector InOrder(8);
3000 if (BestLowQuad != -1) {
3001 // Sort lower half in order using PSHUFLW.
3002 MaskVec.clear();
3003 bool AnyOutOrder = false;
3004 for (unsigned i = 0; i != 4; ++i) {
3005 SDOperand Elt = MaskElts[i];
3006 if (Elt.getOpcode() == ISD::UNDEF) {
3007 MaskVec.push_back(Elt);
3008 InOrder.set(i);
3009 } else {
3010 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3011 if (EltIdx != i)
3012 AnyOutOrder = true;
3013 MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT));
3014 // If this element is in the right place after this shuffle, then
3015 // remember it.
3016 if ((int)(EltIdx / 4) == BestLowQuad)
3017 InOrder.set(i);
3018 }
3019 }
3020 if (AnyOutOrder) {
3021 for (unsigned i = 4; i != 8; ++i)
3022 MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3023 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3024 NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3025 }
3026 }
3027
3028 if (BestHighQuad != -1) {
3029 // Sort high half in order using PSHUFHW if possible.
3030 MaskVec.clear();
3031 for (unsigned i = 0; i != 4; ++i)
3032 MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3033 bool AnyOutOrder = false;
3034 for (unsigned i = 4; i != 8; ++i) {
3035 SDOperand Elt = MaskElts[i];
3036 if (Elt.getOpcode() == ISD::UNDEF) {
3037 MaskVec.push_back(Elt);
3038 InOrder.set(i);
3039 } else {
3040 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3041 if (EltIdx != i)
3042 AnyOutOrder = true;
3043 MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT));
3044 // If this element is in the right place after this shuffle, then
3045 // remember it.
3046 if ((int)(EltIdx / 4) == BestHighQuad)
3047 InOrder.set(i);
3048 }
3049 }
3050 if (AnyOutOrder) {
3051 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3052 NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3053 }
3054 }
3055
3056 // The other elements are put in the right place using pextrw and pinsrw.
3057 for (unsigned i = 0; i != 8; ++i) {
3058 if (InOrder[i])
3059 continue;
3060 SDOperand Elt = MaskElts[i];
3061 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3062 if (EltIdx == i)
3063 continue;
3064 SDOperand ExtOp = (EltIdx < 8)
3065 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3066 DAG.getConstant(EltIdx, PtrVT))
3067 : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3068 DAG.getConstant(EltIdx - 8, PtrVT));
3069 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3070 DAG.getConstant(i, PtrVT));
3071 }
3072 return NewV;
3073 }
3074
3075 // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use
3076 ///as few as possible.
Evan Chengfca29242007-12-07 08:07:39 +00003077 // First, let's find out how many elements are already in the right order.
3078 unsigned V1InOrder = 0;
3079 unsigned V1FromV1 = 0;
3080 unsigned V2InOrder = 0;
3081 unsigned V2FromV2 = 0;
Evan Cheng75184a92007-12-11 01:46:18 +00003082 SmallVector<SDOperand, 8> V1Elts;
3083 SmallVector<SDOperand, 8> V2Elts;
Evan Chengfca29242007-12-07 08:07:39 +00003084 for (unsigned i = 0; i < 8; ++i) {
Evan Cheng75184a92007-12-11 01:46:18 +00003085 SDOperand Elt = MaskElts[i];
Evan Chengfca29242007-12-07 08:07:39 +00003086 if (Elt.getOpcode() == ISD::UNDEF) {
Evan Cheng75184a92007-12-11 01:46:18 +00003087 V1Elts.push_back(Elt);
3088 V2Elts.push_back(Elt);
Evan Chengfca29242007-12-07 08:07:39 +00003089 ++V1InOrder;
3090 ++V2InOrder;
Evan Cheng75184a92007-12-11 01:46:18 +00003091 continue;
3092 }
3093 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3094 if (EltIdx == i) {
3095 V1Elts.push_back(Elt);
3096 V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
3097 ++V1InOrder;
3098 } else if (EltIdx == i+8) {
3099 V1Elts.push_back(Elt);
3100 V2Elts.push_back(DAG.getConstant(i, MaskEVT));
3101 ++V2InOrder;
3102 } else if (EltIdx < 8) {
3103 V1Elts.push_back(Elt);
3104 ++V1FromV1;
Evan Chengfca29242007-12-07 08:07:39 +00003105 } else {
Evan Cheng75184a92007-12-11 01:46:18 +00003106 V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT));
3107 ++V2FromV2;
Evan Chengfca29242007-12-07 08:07:39 +00003108 }
3109 }
3110
3111 if (V2InOrder > V1InOrder) {
3112 PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3113 std::swap(V1, V2);
3114 std::swap(V1Elts, V2Elts);
3115 std::swap(V1FromV1, V2FromV2);
3116 }
3117
Evan Cheng75184a92007-12-11 01:46:18 +00003118 if ((V1FromV1 + V1InOrder) != 8) {
3119 // Some elements are from V2.
3120 if (V1FromV1) {
3121 // If there are elements that are from V1 but out of place,
3122 // then first sort them in place
3123 SmallVector<SDOperand, 8> MaskVec;
3124 for (unsigned i = 0; i < 8; ++i) {
3125 SDOperand Elt = V1Elts[i];
3126 if (Elt.getOpcode() == ISD::UNDEF) {
3127 MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3128 continue;
3129 }
3130 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3131 if (EltIdx >= 8)
3132 MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3133 else
3134 MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT));
3135 }
3136 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3137 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask);
Evan Chengfca29242007-12-07 08:07:39 +00003138 }
Evan Cheng75184a92007-12-11 01:46:18 +00003139
3140 NewV = V1;
3141 for (unsigned i = 0; i < 8; ++i) {
3142 SDOperand Elt = V1Elts[i];
3143 if (Elt.getOpcode() == ISD::UNDEF)
3144 continue;
3145 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3146 if (EltIdx < 8)
3147 continue;
3148 SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3149 DAG.getConstant(EltIdx - 8, PtrVT));
3150 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3151 DAG.getConstant(i, PtrVT));
3152 }
3153 return NewV;
3154 } else {
3155 // All elements are from V1.
3156 NewV = V1;
3157 for (unsigned i = 0; i < 8; ++i) {
3158 SDOperand Elt = V1Elts[i];
3159 if (Elt.getOpcode() == ISD::UNDEF)
3160 continue;
3161 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3162 SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3163 DAG.getConstant(EltIdx, PtrVT));
3164 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3165 DAG.getConstant(i, PtrVT));
3166 }
3167 return NewV;
3168 }
3169}
3170
Evan Cheng15e8f5a2007-12-15 03:00:47 +00003171/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3172/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3173/// done when every pair / quad of shuffle mask elements point to elements in
3174/// the right sequence. e.g.
Evan Cheng75184a92007-12-11 01:46:18 +00003175/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3176static
Evan Cheng15e8f5a2007-12-15 03:00:47 +00003177SDOperand RewriteAsNarrowerShuffle(SDOperand V1, SDOperand V2,
3178 MVT::ValueType VT,
Evan Cheng75184a92007-12-11 01:46:18 +00003179 SDOperand PermMask, SelectionDAG &DAG,
3180 TargetLowering &TLI) {
3181 unsigned NumElems = PermMask.getNumOperands();
Evan Cheng15e8f5a2007-12-15 03:00:47 +00003182 unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3183 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3184 MVT::ValueType NewVT = MaskVT;
3185 switch (VT) {
3186 case MVT::v4f32: NewVT = MVT::v2f64; break;
3187 case MVT::v4i32: NewVT = MVT::v2i64; break;
3188 case MVT::v8i16: NewVT = MVT::v4i32; break;
3189 case MVT::v16i8: NewVT = MVT::v4i32; break;
3190 default: assert(false && "Unexpected!");
3191 }
3192
3193 if (NewWidth == 2)
3194 if (MVT::isInteger(VT))
3195 NewVT = MVT::v2i64;
3196 else
3197 NewVT = MVT::v2f64;
3198 unsigned Scale = NumElems / NewWidth;
3199 SmallVector<SDOperand, 8> MaskVec;
Evan Cheng75184a92007-12-11 01:46:18 +00003200 for (unsigned i = 0; i < NumElems; i += Scale) {
3201 unsigned StartIdx = ~0U;
3202 for (unsigned j = 0; j < Scale; ++j) {
3203 SDOperand Elt = PermMask.getOperand(i+j);
3204 if (Elt.getOpcode() == ISD::UNDEF)
3205 continue;
3206 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3207 if (StartIdx == ~0U)
3208 StartIdx = EltIdx - (EltIdx % Scale);
3209 if (EltIdx != StartIdx + j)
3210 return SDOperand();
3211 }
3212 if (StartIdx == ~0U)
3213 MaskVec.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
3214 else
3215 MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MVT::i32));
Evan Chengfca29242007-12-07 08:07:39 +00003216 }
3217
Evan Cheng15e8f5a2007-12-15 03:00:47 +00003218 V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1);
3219 V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2);
3220 return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2,
3221 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3222 &MaskVec[0], MaskVec.size()));
Evan Chengfca29242007-12-07 08:07:39 +00003223}
3224
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003225SDOperand
3226X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
3227 SDOperand V1 = Op.getOperand(0);
3228 SDOperand V2 = Op.getOperand(1);
3229 SDOperand PermMask = Op.getOperand(2);
3230 MVT::ValueType VT = Op.getValueType();
3231 unsigned NumElems = PermMask.getNumOperands();
3232 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3233 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3234 bool V1IsSplat = false;
3235 bool V2IsSplat = false;
3236
3237 if (isUndefShuffle(Op.Val))
3238 return DAG.getNode(ISD::UNDEF, VT);
3239
3240 if (isZeroShuffle(Op.Val))
3241 return getZeroVector(VT, DAG);
3242
3243 if (isIdentityMask(PermMask.Val))
3244 return V1;
3245 else if (isIdentityMask(PermMask.Val, true))
3246 return V2;
3247
3248 if (isSplatMask(PermMask.Val)) {
3249 if (NumElems <= 4) return Op;
3250 // Promote it to a v4i32 splat.
3251 return PromoteSplat(Op, DAG);
3252 }
3253
Evan Cheng15e8f5a2007-12-15 03:00:47 +00003254 // If the shuffle can be profitably rewritten as a narrower shuffle, then
3255 // do it!
3256 if (VT == MVT::v8i16 || VT == MVT::v16i8) {
3257 SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3258 if (NewOp.Val)
3259 return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3260 } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
3261 // FIXME: Figure out a cleaner way to do this.
3262 // Try to make use of movq to zero out the top part.
3263 if (ISD::isBuildVectorAllZeros(V2.Val)) {
3264 SDOperand NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3265 if (NewOp.Val) {
3266 SDOperand NewV1 = NewOp.getOperand(0);
3267 SDOperand NewV2 = NewOp.getOperand(1);
3268 SDOperand NewMask = NewOp.getOperand(2);
3269 if (isCommutedMOVL(NewMask.Val, true, false)) {
3270 NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG);
3271 NewOp = DAG.getNode(ISD::VECTOR_SHUFFLE, NewOp.getValueType(),
3272 NewV1, NewV2, getMOVLMask(2, DAG));
3273 return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3274 }
3275 }
3276 } else if (ISD::isBuildVectorAllZeros(V1.Val)) {
3277 SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3278 if (NewOp.Val && X86::isMOVLMask(NewOp.getOperand(2).Val))
3279 return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3280 }
3281 }
3282
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003283 if (X86::isMOVLMask(PermMask.Val))
3284 return (V1IsUndef) ? V2 : Op;
3285
3286 if (X86::isMOVSHDUPMask(PermMask.Val) ||
3287 X86::isMOVSLDUPMask(PermMask.Val) ||
3288 X86::isMOVHLPSMask(PermMask.Val) ||
3289 X86::isMOVHPMask(PermMask.Val) ||
3290 X86::isMOVLPMask(PermMask.Val))
3291 return Op;
3292
3293 if (ShouldXformToMOVHLPS(PermMask.Val) ||
3294 ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3295 return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3296
3297 bool Commuted = false;
Chris Lattnere6aa3862007-11-25 00:24:49 +00003298 // FIXME: This should also accept a bitcast of a splat? Be careful, not
3299 // 1,1,1,1 -> v8i16 though.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003300 V1IsSplat = isSplatVector(V1.Val);
3301 V2IsSplat = isSplatVector(V2.Val);
Chris Lattnere6aa3862007-11-25 00:24:49 +00003302
3303 // Canonicalize the splat or undef, if present, to be on the RHS.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003304 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3305 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3306 std::swap(V1IsSplat, V2IsSplat);
3307 std::swap(V1IsUndef, V2IsUndef);
3308 Commuted = true;
3309 }
3310
Evan Cheng15e8f5a2007-12-15 03:00:47 +00003311 // FIXME: Figure out a cleaner way to do this.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003312 if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3313 if (V2IsUndef) return V1;
3314 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3315 if (V2IsSplat) {
3316 // V2 is a splat, so the mask may be malformed. That is, it may point
3317 // to any V2 element. The instruction selectior won't like this. Get
3318 // a corrected mask and commute to form a proper MOVS{S|D}.
3319 SDOperand NewMask = getMOVLMask(NumElems, DAG);
3320 if (NewMask.Val != PermMask.Val)
3321 Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3322 }
3323 return Op;
3324 }
3325
3326 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3327 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3328 X86::isUNPCKLMask(PermMask.Val) ||
3329 X86::isUNPCKHMask(PermMask.Val))
3330 return Op;
3331
3332 if (V2IsSplat) {
3333 // Normalize mask so all entries that point to V2 points to its first
3334 // element then try to match unpck{h|l} again. If match, return a
3335 // new vector_shuffle with the corrected mask.
3336 SDOperand NewMask = NormalizeMask(PermMask, DAG);
3337 if (NewMask.Val != PermMask.Val) {
3338 if (X86::isUNPCKLMask(PermMask.Val, true)) {
3339 SDOperand NewMask = getUnpacklMask(NumElems, DAG);
3340 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3341 } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3342 SDOperand NewMask = getUnpackhMask(NumElems, DAG);
3343 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3344 }
3345 }
3346 }
3347
3348 // Normalize the node to match x86 shuffle ops if needed
3349 if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3350 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3351
3352 if (Commuted) {
3353 // Commute is back and try unpck* again.
3354 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3355 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3356 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3357 X86::isUNPCKLMask(PermMask.Val) ||
3358 X86::isUNPCKHMask(PermMask.Val))
3359 return Op;
3360 }
3361
3362 // If VT is integer, try PSHUF* first, then SHUFP*.
3363 if (MVT::isInteger(VT)) {
Dan Gohman7dc19012007-08-02 21:17:01 +00003364 // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
3365 // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
3366 if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
3367 X86::isPSHUFDMask(PermMask.Val)) ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003368 X86::isPSHUFHWMask(PermMask.Val) ||
3369 X86::isPSHUFLWMask(PermMask.Val)) {
3370 if (V2.getOpcode() != ISD::UNDEF)
3371 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3372 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3373 return Op;
3374 }
3375
3376 if (X86::isSHUFPMask(PermMask.Val) &&
3377 MVT::getSizeInBits(VT) != 64) // Don't do this for MMX.
3378 return Op;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003379 } else {
3380 // Floating point cases in the other order.
3381 if (X86::isSHUFPMask(PermMask.Val))
3382 return Op;
3383 if (X86::isPSHUFDMask(PermMask.Val) ||
3384 X86::isPSHUFHWMask(PermMask.Val) ||
3385 X86::isPSHUFLWMask(PermMask.Val)) {
3386 if (V2.getOpcode() != ISD::UNDEF)
3387 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3388 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3389 return Op;
3390 }
3391 }
3392
Evan Cheng75184a92007-12-11 01:46:18 +00003393 // Handle v8i16 specifically since SSE can do byte extraction and insertion.
3394 if (VT == MVT::v8i16) {
3395 SDOperand NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this);
3396 if (NewOp.Val)
3397 return NewOp;
3398 }
3399
3400 // Handle all 4 wide cases with a number of shuffles.
3401 if (NumElems == 4 && MVT::getSizeInBits(VT) != 64) {
Evan Chengfca29242007-12-07 08:07:39 +00003402 // Don't do this for MMX.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003403 MVT::ValueType MaskVT = PermMask.getValueType();
3404 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3405 SmallVector<std::pair<int, int>, 8> Locs;
3406 Locs.reserve(NumElems);
Evan Cheng75184a92007-12-11 01:46:18 +00003407 SmallVector<SDOperand, 8> Mask1(NumElems,
3408 DAG.getNode(ISD::UNDEF, MaskEVT));
3409 SmallVector<SDOperand, 8> Mask2(NumElems,
3410 DAG.getNode(ISD::UNDEF, MaskEVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003411 unsigned NumHi = 0;
3412 unsigned NumLo = 0;
3413 // If no more than two elements come from either vector. This can be
3414 // implemented with two shuffles. First shuffle gather the elements.
3415 // The second shuffle, which takes the first shuffle as both of its
3416 // vector operands, put the elements into the right order.
3417 for (unsigned i = 0; i != NumElems; ++i) {
3418 SDOperand Elt = PermMask.getOperand(i);
3419 if (Elt.getOpcode() == ISD::UNDEF) {
3420 Locs[i] = std::make_pair(-1, -1);
3421 } else {
3422 unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3423 if (Val < NumElems) {
3424 Locs[i] = std::make_pair(0, NumLo);
3425 Mask1[NumLo] = Elt;
3426 NumLo++;
3427 } else {
3428 Locs[i] = std::make_pair(1, NumHi);
3429 if (2+NumHi < NumElems)
3430 Mask1[2+NumHi] = Elt;
3431 NumHi++;
3432 }
3433 }
3434 }
3435 if (NumLo <= 2 && NumHi <= 2) {
3436 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3437 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3438 &Mask1[0], Mask1.size()));
3439 for (unsigned i = 0; i != NumElems; ++i) {
3440 if (Locs[i].first == -1)
3441 continue;
3442 else {
3443 unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3444 Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3445 Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3446 }
3447 }
3448
3449 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3450 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3451 &Mask2[0], Mask2.size()));
3452 }
3453
3454 // Break it into (shuffle shuffle_hi, shuffle_lo).
3455 Locs.clear();
3456 SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3457 SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3458 SmallVector<SDOperand,8> *MaskPtr = &LoMask;
3459 unsigned MaskIdx = 0;
3460 unsigned LoIdx = 0;
3461 unsigned HiIdx = NumElems/2;
3462 for (unsigned i = 0; i != NumElems; ++i) {
3463 if (i == NumElems/2) {
3464 MaskPtr = &HiMask;
3465 MaskIdx = 1;
3466 LoIdx = 0;
3467 HiIdx = NumElems/2;
3468 }
3469 SDOperand Elt = PermMask.getOperand(i);
3470 if (Elt.getOpcode() == ISD::UNDEF) {
3471 Locs[i] = std::make_pair(-1, -1);
3472 } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3473 Locs[i] = std::make_pair(MaskIdx, LoIdx);
3474 (*MaskPtr)[LoIdx] = Elt;
3475 LoIdx++;
3476 } else {
3477 Locs[i] = std::make_pair(MaskIdx, HiIdx);
3478 (*MaskPtr)[HiIdx] = Elt;
3479 HiIdx++;
3480 }
3481 }
3482
3483 SDOperand LoShuffle =
3484 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3485 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3486 &LoMask[0], LoMask.size()));
3487 SDOperand HiShuffle =
3488 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3489 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3490 &HiMask[0], HiMask.size()));
3491 SmallVector<SDOperand, 8> MaskOps;
3492 for (unsigned i = 0; i != NumElems; ++i) {
3493 if (Locs[i].first == -1) {
3494 MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3495 } else {
3496 unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3497 MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3498 }
3499 }
3500 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3501 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3502 &MaskOps[0], MaskOps.size()));
3503 }
3504
3505 return SDOperand();
3506}
3507
3508SDOperand
3509X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3510 if (!isa<ConstantSDNode>(Op.getOperand(1)))
3511 return SDOperand();
3512
3513 MVT::ValueType VT = Op.getValueType();
3514 // TODO: handle v16i8.
3515 if (MVT::getSizeInBits(VT) == 16) {
Evan Cheng75184a92007-12-11 01:46:18 +00003516 SDOperand Vec = Op.getOperand(0);
3517 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3518 if (Idx == 0)
3519 return DAG.getNode(ISD::TRUNCATE, MVT::i16,
3520 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
3521 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec),
3522 Op.getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003523 // Transform it so it match pextrw which produces a 32-bit result.
3524 MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3525 SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3526 Op.getOperand(0), Op.getOperand(1));
3527 SDOperand Assert = DAG.getNode(ISD::AssertZext, EVT, Extract,
3528 DAG.getValueType(VT));
3529 return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3530 } else if (MVT::getSizeInBits(VT) == 32) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003531 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3532 if (Idx == 0)
3533 return Op;
3534 // SHUFPS the element to the lowest double word, then movss.
3535 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3536 SmallVector<SDOperand, 8> IdxVec;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00003537 IdxVec.
3538 push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3539 IdxVec.
3540 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3541 IdxVec.
3542 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3543 IdxVec.
3544 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003545 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3546 &IdxVec[0], IdxVec.size());
Evan Cheng75184a92007-12-11 01:46:18 +00003547 SDOperand Vec = Op.getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003548 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3549 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3550 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3551 DAG.getConstant(0, getPointerTy()));
3552 } else if (MVT::getSizeInBits(VT) == 64) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003553 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3554 if (Idx == 0)
3555 return Op;
3556
3557 // UNPCKHPD the element to the lowest double word, then movsd.
3558 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3559 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3560 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3561 SmallVector<SDOperand, 8> IdxVec;
3562 IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00003563 IdxVec.
3564 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003565 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3566 &IdxVec[0], IdxVec.size());
Evan Cheng75184a92007-12-11 01:46:18 +00003567 SDOperand Vec = Op.getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003568 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3569 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3570 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3571 DAG.getConstant(0, getPointerTy()));
3572 }
3573
3574 return SDOperand();
3575}
3576
3577SDOperand
3578X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003579 MVT::ValueType VT = Op.getValueType();
Evan Chenge12a7eb2007-12-12 07:55:34 +00003580 MVT::ValueType EVT = MVT::getVectorElementType(VT);
3581 if (EVT == MVT::i8)
3582 return SDOperand();
3583
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003584 SDOperand N0 = Op.getOperand(0);
3585 SDOperand N1 = Op.getOperand(1);
3586 SDOperand N2 = Op.getOperand(2);
Evan Chenge12a7eb2007-12-12 07:55:34 +00003587
3588 if (MVT::getSizeInBits(EVT) == 16) {
3589 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3590 // as its second argument.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003591 if (N1.getValueType() != MVT::i32)
3592 N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3593 if (N2.getValueType() != MVT::i32)
3594 N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
3595 return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003596 }
Nate Begeman9e1a41f2008-01-05 20:51:30 +00003597 return SDOperand();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003598}
3599
3600SDOperand
3601X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3602 SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3603 return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3604}
3605
3606// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3607// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3608// one of the above mentioned nodes. It has to be wrapped because otherwise
3609// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3610// be used to form addressing mode. These wrapped nodes will be selected
3611// into MOV32ri.
3612SDOperand
3613X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3614 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3615 SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3616 getPointerTy(),
3617 CP->getAlignment());
3618 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3619 // With PIC, the address is actually $g + Offset.
3620 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3621 !Subtarget->isPICStyleRIPRel()) {
3622 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3623 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3624 Result);
3625 }
3626
3627 return Result;
3628}
3629
3630SDOperand
3631X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3632 GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3633 SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3634 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3635 // With PIC, the address is actually $g + Offset.
3636 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3637 !Subtarget->isPICStyleRIPRel()) {
3638 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3639 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3640 Result);
3641 }
3642
3643 // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3644 // load the value at address GV, not the value of GV itself. This means that
3645 // the GlobalAddress must be in the base or index register of the address, not
3646 // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3647 // The same applies for external symbols during PIC codegen
3648 if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3649 Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3650
3651 return Result;
3652}
3653
3654// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3655static SDOperand
3656LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3657 const MVT::ValueType PtrVT) {
3658 SDOperand InFlag;
3659 SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3660 DAG.getNode(X86ISD::GlobalBaseReg,
3661 PtrVT), InFlag);
3662 InFlag = Chain.getValue(1);
3663
3664 // emit leal symbol@TLSGD(,%ebx,1), %eax
3665 SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3666 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3667 GA->getValueType(0),
3668 GA->getOffset());
3669 SDOperand Ops[] = { Chain, TGA, InFlag };
3670 SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3671 InFlag = Result.getValue(2);
3672 Chain = Result.getValue(1);
3673
3674 // call ___tls_get_addr. This function receives its argument in
3675 // the register EAX.
3676 Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3677 InFlag = Chain.getValue(1);
3678
3679 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3680 SDOperand Ops1[] = { Chain,
3681 DAG.getTargetExternalSymbol("___tls_get_addr",
3682 PtrVT),
3683 DAG.getRegister(X86::EAX, PtrVT),
3684 DAG.getRegister(X86::EBX, PtrVT),
3685 InFlag };
3686 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3687 InFlag = Chain.getValue(1);
3688
3689 return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3690}
3691
3692// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3693// "local exec" model.
3694static SDOperand
3695LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3696 const MVT::ValueType PtrVT) {
3697 // Get the Thread Pointer
3698 SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3699 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3700 // exec)
3701 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3702 GA->getValueType(0),
3703 GA->getOffset());
3704 SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3705
3706 if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3707 Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3708
3709 // The address of the thread local variable is the add of the thread
3710 // pointer with the offset of the variable.
3711 return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3712}
3713
3714SDOperand
3715X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3716 // TODO: implement the "local dynamic" model
3717 // TODO: implement the "initial exec"model for pic executables
3718 assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3719 "TLS not implemented for non-ELF and 64-bit targets");
3720 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3721 // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3722 // otherwise use the "Local Exec"TLS Model
3723 if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3724 return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3725 else
3726 return LowerToTLSExecModel(GA, DAG, getPointerTy());
3727}
3728
3729SDOperand
3730X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3731 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3732 SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3733 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3734 // With PIC, the address is actually $g + Offset.
3735 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3736 !Subtarget->isPICStyleRIPRel()) {
3737 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3738 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3739 Result);
3740 }
3741
3742 return Result;
3743}
3744
3745SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3746 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3747 SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3748 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3749 // With PIC, the address is actually $g + Offset.
3750 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3751 !Subtarget->isPICStyleRIPRel()) {
3752 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3753 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3754 Result);
3755 }
3756
3757 return Result;
3758}
3759
Chris Lattner62814a32007-10-17 06:02:13 +00003760/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
3761/// take a 2 x i32 value to shift plus a shift amount.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003762SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
Chris Lattner62814a32007-10-17 06:02:13 +00003763 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3764 "Not an i64 shift!");
3765 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3766 SDOperand ShOpLo = Op.getOperand(0);
3767 SDOperand ShOpHi = Op.getOperand(1);
3768 SDOperand ShAmt = Op.getOperand(2);
3769 SDOperand Tmp1 = isSRA ?
3770 DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3771 DAG.getConstant(0, MVT::i32);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003772
Chris Lattner62814a32007-10-17 06:02:13 +00003773 SDOperand Tmp2, Tmp3;
3774 if (Op.getOpcode() == ISD::SHL_PARTS) {
3775 Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3776 Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3777 } else {
3778 Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3779 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3780 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003781
Chris Lattner62814a32007-10-17 06:02:13 +00003782 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3783 SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3784 DAG.getConstant(32, MVT::i8));
3785 SDOperand Cond = DAG.getNode(X86ISD::CMP, MVT::i32,
3786 AndNode, DAG.getConstant(0, MVT::i8));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003787
Chris Lattner62814a32007-10-17 06:02:13 +00003788 SDOperand Hi, Lo;
3789 SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3790 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3791 SmallVector<SDOperand, 4> Ops;
3792 if (Op.getOpcode() == ISD::SHL_PARTS) {
3793 Ops.push_back(Tmp2);
3794 Ops.push_back(Tmp3);
3795 Ops.push_back(CC);
3796 Ops.push_back(Cond);
3797 Hi = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003798
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003799 Ops.clear();
Chris Lattner62814a32007-10-17 06:02:13 +00003800 Ops.push_back(Tmp3);
3801 Ops.push_back(Tmp1);
3802 Ops.push_back(CC);
3803 Ops.push_back(Cond);
3804 Lo = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
3805 } else {
3806 Ops.push_back(Tmp2);
3807 Ops.push_back(Tmp3);
3808 Ops.push_back(CC);
3809 Ops.push_back(Cond);
3810 Lo = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
3811
3812 Ops.clear();
3813 Ops.push_back(Tmp3);
3814 Ops.push_back(Tmp1);
3815 Ops.push_back(CC);
3816 Ops.push_back(Cond);
3817 Hi = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
3818 }
3819
3820 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3821 Ops.clear();
3822 Ops.push_back(Lo);
3823 Ops.push_back(Hi);
3824 return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003825}
3826
3827SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3828 assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3829 Op.getOperand(0).getValueType() >= MVT::i16 &&
3830 "Unknown SINT_TO_FP to lower!");
3831
3832 SDOperand Result;
3833 MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3834 unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3835 MachineFunction &MF = DAG.getMachineFunction();
3836 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3837 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3838 SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3839 StackSlot, NULL, 0);
3840
Dale Johannesen2fc20782007-09-14 22:26:36 +00003841 // These are really Legal; caller falls through into that case.
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003842 if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f32 && X86ScalarSSEf32)
3843 return Result;
3844 if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f64 && X86ScalarSSEf64)
Dale Johannesen2fc20782007-09-14 22:26:36 +00003845 return Result;
Dale Johannesen958b08b2007-09-19 23:55:34 +00003846 if (SrcVT==MVT::i64 && Op.getValueType() != MVT::f80 &&
3847 Subtarget->is64Bit())
3848 return Result;
Dale Johannesen2fc20782007-09-14 22:26:36 +00003849
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003850 // Build the FILD
3851 SDVTList Tys;
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003852 bool useSSE = (X86ScalarSSEf32 && Op.getValueType() == MVT::f32) ||
3853 (X86ScalarSSEf64 && Op.getValueType() == MVT::f64);
Dale Johannesen2fc20782007-09-14 22:26:36 +00003854 if (useSSE)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003855 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3856 else
3857 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
3858 SmallVector<SDOperand, 8> Ops;
3859 Ops.push_back(Chain);
3860 Ops.push_back(StackSlot);
3861 Ops.push_back(DAG.getValueType(SrcVT));
Dale Johannesen2fc20782007-09-14 22:26:36 +00003862 Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003863 Tys, &Ops[0], Ops.size());
3864
Dale Johannesen2fc20782007-09-14 22:26:36 +00003865 if (useSSE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003866 Chain = Result.getValue(1);
3867 SDOperand InFlag = Result.getValue(2);
3868
3869 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3870 // shouldn't be necessary except that RFP cannot be live across
3871 // multiple blocks. When stackifier is fixed, they can be uncoupled.
3872 MachineFunction &MF = DAG.getMachineFunction();
3873 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3874 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3875 Tys = DAG.getVTList(MVT::Other);
3876 SmallVector<SDOperand, 8> Ops;
3877 Ops.push_back(Chain);
3878 Ops.push_back(Result);
3879 Ops.push_back(StackSlot);
3880 Ops.push_back(DAG.getValueType(Op.getValueType()));
3881 Ops.push_back(InFlag);
3882 Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3883 Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3884 }
3885
3886 return Result;
3887}
3888
Chris Lattnerdfb947d2007-11-24 07:07:01 +00003889std::pair<SDOperand,SDOperand> X86TargetLowering::
3890FP_TO_SINTHelper(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003891 assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3892 "Unknown FP_TO_SINT to lower!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003893
Dale Johannesen2fc20782007-09-14 22:26:36 +00003894 // These are really Legal.
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003895 if (Op.getValueType() == MVT::i32 &&
3896 X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32)
Chris Lattnerdfb947d2007-11-24 07:07:01 +00003897 return std::make_pair(SDOperand(), SDOperand());
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003898 if (Op.getValueType() == MVT::i32 &&
3899 X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)
Chris Lattnerdfb947d2007-11-24 07:07:01 +00003900 return std::make_pair(SDOperand(), SDOperand());
Dale Johannesen958b08b2007-09-19 23:55:34 +00003901 if (Subtarget->is64Bit() &&
3902 Op.getValueType() == MVT::i64 &&
3903 Op.getOperand(0).getValueType() != MVT::f80)
Chris Lattnerdfb947d2007-11-24 07:07:01 +00003904 return std::make_pair(SDOperand(), SDOperand());
Dale Johannesen2fc20782007-09-14 22:26:36 +00003905
Evan Cheng05441e62007-10-15 20:11:21 +00003906 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3907 // stack slot.
3908 MachineFunction &MF = DAG.getMachineFunction();
3909 unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3910 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3911 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003912 unsigned Opc;
3913 switch (Op.getValueType()) {
Chris Lattnerdfb947d2007-11-24 07:07:01 +00003914 default: assert(0 && "Invalid FP_TO_SINT to lower!");
3915 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3916 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3917 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003918 }
3919
3920 SDOperand Chain = DAG.getEntryNode();
3921 SDOperand Value = Op.getOperand(0);
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003922 if ((X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32) ||
3923 (X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003924 assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3925 Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3926 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
3927 SDOperand Ops[] = {
3928 Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3929 };
3930 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3931 Chain = Value.getValue(1);
3932 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3933 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3934 }
3935
3936 // Build the FP_TO_INT*_IN_MEM
3937 SDOperand Ops[] = { Chain, Value, StackSlot };
3938 SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3939
Chris Lattnerdfb947d2007-11-24 07:07:01 +00003940 return std::make_pair(FIST, StackSlot);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003941}
3942
Chris Lattnerdfb947d2007-11-24 07:07:01 +00003943SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
Chris Lattnerdfb947d2007-11-24 07:07:01 +00003944 std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(Op, DAG);
3945 SDOperand FIST = Vals.first, StackSlot = Vals.second;
3946 if (FIST.Val == 0) return SDOperand();
3947
3948 // Load the result.
3949 return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3950}
3951
3952SDNode *X86TargetLowering::ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG) {
3953 std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(SDOperand(N, 0), DAG);
3954 SDOperand FIST = Vals.first, StackSlot = Vals.second;
3955 if (FIST.Val == 0) return 0;
3956
3957 // Return an i64 load from the stack slot.
3958 SDOperand Res = DAG.getLoad(MVT::i64, FIST, StackSlot, NULL, 0);
3959
3960 // Use a MERGE_VALUES node to drop the chain result value.
3961 return DAG.getNode(ISD::MERGE_VALUES, MVT::i64, Res).Val;
3962}
3963
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003964SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3965 MVT::ValueType VT = Op.getValueType();
3966 MVT::ValueType EltVT = VT;
3967 if (MVT::isVector(VT))
3968 EltVT = MVT::getVectorElementType(VT);
3969 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
3970 std::vector<Constant*> CV;
3971 if (EltVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003972 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003973 CV.push_back(C);
3974 CV.push_back(C);
3975 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003976 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003977 CV.push_back(C);
3978 CV.push_back(C);
3979 CV.push_back(C);
3980 CV.push_back(C);
3981 }
Dan Gohman11821702007-07-27 17:16:43 +00003982 Constant *C = ConstantVector::get(CV);
3983 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3984 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3985 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003986 return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3987}
3988
3989SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3990 MVT::ValueType VT = Op.getValueType();
3991 MVT::ValueType EltVT = VT;
Evan Cheng92b8f782007-07-19 23:36:01 +00003992 unsigned EltNum = 1;
3993 if (MVT::isVector(VT)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003994 EltVT = MVT::getVectorElementType(VT);
Evan Cheng92b8f782007-07-19 23:36:01 +00003995 EltNum = MVT::getVectorNumElements(VT);
3996 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003997 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
3998 std::vector<Constant*> CV;
3999 if (EltVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00004000 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004001 CV.push_back(C);
4002 CV.push_back(C);
4003 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00004004 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004005 CV.push_back(C);
4006 CV.push_back(C);
4007 CV.push_back(C);
4008 CV.push_back(C);
4009 }
Dan Gohman11821702007-07-27 17:16:43 +00004010 Constant *C = ConstantVector::get(CV);
4011 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4012 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4013 false, 16);
Evan Cheng92b8f782007-07-19 23:36:01 +00004014 if (MVT::isVector(VT)) {
Evan Cheng92b8f782007-07-19 23:36:01 +00004015 return DAG.getNode(ISD::BIT_CONVERT, VT,
4016 DAG.getNode(ISD::XOR, MVT::v2i64,
4017 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4018 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4019 } else {
Evan Cheng92b8f782007-07-19 23:36:01 +00004020 return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4021 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004022}
4023
4024SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
4025 SDOperand Op0 = Op.getOperand(0);
4026 SDOperand Op1 = Op.getOperand(1);
4027 MVT::ValueType VT = Op.getValueType();
4028 MVT::ValueType SrcVT = Op1.getValueType();
4029 const Type *SrcTy = MVT::getTypeForValueType(SrcVT);
4030
4031 // If second operand is smaller, extend it first.
4032 if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
4033 Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4034 SrcVT = VT;
Dale Johannesenb9de9f02007-09-06 18:13:44 +00004035 SrcTy = MVT::getTypeForValueType(SrcVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004036 }
Dale Johannesenfb0fa912007-10-21 01:07:44 +00004037 // And if it is bigger, shrink it first.
4038 if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4039 Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1);
4040 SrcVT = VT;
4041 SrcTy = MVT::getTypeForValueType(SrcVT);
4042 }
4043
4044 // At this point the operands and the result should have the same
4045 // type, and that won't be f80 since that is not custom lowered.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004046
4047 // First get the sign bit of second operand.
4048 std::vector<Constant*> CV;
4049 if (SrcVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00004050 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
4051 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004052 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00004053 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
4054 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4055 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4056 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004057 }
Dan Gohman11821702007-07-27 17:16:43 +00004058 Constant *C = ConstantVector::get(CV);
4059 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4060 SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0,
4061 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004062 SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4063
4064 // Shift sign bit right or left if the two operands have different types.
4065 if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4066 // Op0 is MVT::f32, Op1 is MVT::f64.
4067 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4068 SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4069 DAG.getConstant(32, MVT::i32));
4070 SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4071 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4072 DAG.getConstant(0, getPointerTy()));
4073 }
4074
4075 // Clear first operand sign bit.
4076 CV.clear();
4077 if (VT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00004078 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
4079 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004080 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00004081 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
4082 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4083 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4084 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004085 }
Dan Gohman11821702007-07-27 17:16:43 +00004086 C = ConstantVector::get(CV);
4087 CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4088 SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4089 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004090 SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
4091
4092 // Or the value with the sign bit.
4093 return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
4094}
4095
Evan Cheng621216e2007-09-29 00:00:36 +00004096SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
Evan Cheng950aac02007-09-25 01:57:46 +00004097 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
Evan Cheng6afec3d2007-09-26 00:45:55 +00004098 SDOperand Cond;
Evan Cheng950aac02007-09-25 01:57:46 +00004099 SDOperand Op0 = Op.getOperand(0);
4100 SDOperand Op1 = Op.getOperand(1);
4101 SDOperand CC = Op.getOperand(2);
4102 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4103 bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
4104 unsigned X86CC;
4105
Evan Cheng950aac02007-09-25 01:57:46 +00004106 if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
Evan Cheng6afec3d2007-09-26 00:45:55 +00004107 Op0, Op1, DAG)) {
Evan Cheng621216e2007-09-29 00:00:36 +00004108 Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4109 return DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004110 DAG.getConstant(X86CC, MVT::i8), Cond);
Evan Cheng6afec3d2007-09-26 00:45:55 +00004111 }
Evan Cheng950aac02007-09-25 01:57:46 +00004112
4113 assert(isFP && "Illegal integer SetCC!");
4114
Evan Cheng621216e2007-09-29 00:00:36 +00004115 Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
Evan Cheng950aac02007-09-25 01:57:46 +00004116 switch (SetCCOpcode) {
4117 default: assert(false && "Illegal floating point SetCC!");
4118 case ISD::SETOEQ: { // !PF & ZF
Evan Cheng621216e2007-09-29 00:00:36 +00004119 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004120 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00004121 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004122 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
4123 return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4124 }
4125 case ISD::SETUNE: { // PF | !ZF
Evan Cheng621216e2007-09-29 00:00:36 +00004126 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004127 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00004128 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004129 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
4130 return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4131 }
4132 }
4133}
4134
4135
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004136SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
4137 bool addTest = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004138 SDOperand Cond = Op.getOperand(0);
4139 SDOperand CC;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004140
4141 if (Cond.getOpcode() == ISD::SETCC)
Evan Cheng621216e2007-09-29 00:00:36 +00004142 Cond = LowerSETCC(Cond, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004143
Evan Cheng50d37ab2007-10-08 22:16:29 +00004144 // If condition flag is set by a X86ISD::CMP, then use it as the condition
4145 // setting operand in place of the X86ISD::SETCC.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004146 if (Cond.getOpcode() == X86ISD::SETCC) {
4147 CC = Cond.getOperand(0);
4148
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004149 SDOperand Cmp = Cond.getOperand(1);
4150 unsigned Opc = Cmp.getOpcode();
Evan Cheng50d37ab2007-10-08 22:16:29 +00004151 MVT::ValueType VT = Op.getValueType();
4152 bool IllegalFPCMov = false;
4153 if (VT == MVT::f32 && !X86ScalarSSEf32)
4154 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4155 else if (VT == MVT::f64 && !X86ScalarSSEf64)
4156 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
Dale Johannesen3b955db2007-10-16 18:09:08 +00004157 else if (VT == MVT::f80)
4158 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
Evan Cheng621216e2007-09-29 00:00:36 +00004159 if ((Opc == X86ISD::CMP ||
4160 Opc == X86ISD::COMI ||
4161 Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
Evan Cheng50d37ab2007-10-08 22:16:29 +00004162 Cond = Cmp;
Evan Cheng950aac02007-09-25 01:57:46 +00004163 addTest = false;
4164 }
4165 }
4166
4167 if (addTest) {
4168 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Evan Cheng50d37ab2007-10-08 22:16:29 +00004169 Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
Evan Cheng950aac02007-09-25 01:57:46 +00004170 }
4171
4172 const MVT::ValueType *VTs = DAG.getNodeValueTypes(Op.getValueType(),
4173 MVT::Flag);
4174 SmallVector<SDOperand, 4> Ops;
4175 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4176 // condition is true.
4177 Ops.push_back(Op.getOperand(2));
4178 Ops.push_back(Op.getOperand(1));
4179 Ops.push_back(CC);
4180 Ops.push_back(Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00004181 return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
Evan Cheng950aac02007-09-25 01:57:46 +00004182}
4183
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004184SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
4185 bool addTest = true;
4186 SDOperand Chain = Op.getOperand(0);
4187 SDOperand Cond = Op.getOperand(1);
4188 SDOperand Dest = Op.getOperand(2);
4189 SDOperand CC;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004190
4191 if (Cond.getOpcode() == ISD::SETCC)
Evan Cheng621216e2007-09-29 00:00:36 +00004192 Cond = LowerSETCC(Cond, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004193
Evan Cheng50d37ab2007-10-08 22:16:29 +00004194 // If condition flag is set by a X86ISD::CMP, then use it as the condition
4195 // setting operand in place of the X86ISD::SETCC.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004196 if (Cond.getOpcode() == X86ISD::SETCC) {
4197 CC = Cond.getOperand(0);
4198
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004199 SDOperand Cmp = Cond.getOperand(1);
4200 unsigned Opc = Cmp.getOpcode();
Evan Cheng621216e2007-09-29 00:00:36 +00004201 if (Opc == X86ISD::CMP ||
4202 Opc == X86ISD::COMI ||
4203 Opc == X86ISD::UCOMI) {
Evan Cheng50d37ab2007-10-08 22:16:29 +00004204 Cond = Cmp;
Evan Cheng950aac02007-09-25 01:57:46 +00004205 addTest = false;
4206 }
4207 }
4208
4209 if (addTest) {
4210 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Evan Cheng621216e2007-09-29 00:00:36 +00004211 Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
Evan Cheng950aac02007-09-25 01:57:46 +00004212 }
Evan Cheng621216e2007-09-29 00:00:36 +00004213 return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
Evan Cheng950aac02007-09-25 01:57:46 +00004214 Chain, Op.getOperand(2), CC, Cond);
4215}
4216
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004217
4218// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
4219// Calls to _alloca is needed to probe the stack when allocating more than 4k
4220// bytes in one go. Touching the stack at 4K increments is necessary to ensure
4221// that the guard pages used by the OS virtual memory manager are allocated in
4222// correct sequence.
4223SDOperand
4224X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
4225 SelectionDAG &DAG) {
4226 assert(Subtarget->isTargetCygMing() &&
4227 "This should be used only on Cygwin/Mingw targets");
4228
4229 // Get the inputs.
4230 SDOperand Chain = Op.getOperand(0);
4231 SDOperand Size = Op.getOperand(1);
4232 // FIXME: Ensure alignment here
4233
4234 SDOperand Flag;
4235
4236 MVT::ValueType IntPtr = getPointerTy();
4237 MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
4238
4239 Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
4240 Flag = Chain.getValue(1);
4241
4242 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4243 SDOperand Ops[] = { Chain,
4244 DAG.getTargetExternalSymbol("_alloca", IntPtr),
4245 DAG.getRegister(X86::EAX, IntPtr),
4246 Flag };
4247 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
4248 Flag = Chain.getValue(1);
4249
4250 Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
4251
4252 std::vector<MVT::ValueType> Tys;
4253 Tys.push_back(SPTy);
4254 Tys.push_back(MVT::Other);
4255 SDOperand Ops1[2] = { Chain.getValue(0), Chain };
4256 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
4257}
4258
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004259SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
4260 SDOperand InFlag(0, 0);
4261 SDOperand Chain = Op.getOperand(0);
4262 unsigned Align =
4263 (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4264 if (Align == 0) Align = 1;
4265
4266 ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
Rafael Espindola5d3e7622007-08-27 10:18:20 +00004267 // If not DWORD aligned or size is more than the threshold, call memset.
Rafael Espindolab2e7a6b2007-08-27 17:48:26 +00004268 // The libc version is likely to be faster for these cases. It can use the
4269 // address value and run time information about the CPU.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004270 if ((Align & 3) != 0 ||
Rafael Espindola7afa9b12007-10-31 11:52:06 +00004271 (I && I->getValue() > Subtarget->getMaxInlineSizeThreshold())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004272 MVT::ValueType IntPtr = getPointerTy();
4273 const Type *IntPtrTy = getTargetData()->getIntPtrType();
4274 TargetLowering::ArgListTy Args;
4275 TargetLowering::ArgListEntry Entry;
4276 Entry.Node = Op.getOperand(1);
4277 Entry.Ty = IntPtrTy;
4278 Args.push_back(Entry);
4279 // Extend the unsigned i8 argument to be an int value for the call.
4280 Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
4281 Entry.Ty = IntPtrTy;
4282 Args.push_back(Entry);
4283 Entry.Node = Op.getOperand(3);
4284 Args.push_back(Entry);
4285 std::pair<SDOperand,SDOperand> CallResult =
4286 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4287 DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
4288 return CallResult.second;
4289 }
4290
4291 MVT::ValueType AVT;
4292 SDOperand Count;
4293 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4294 unsigned BytesLeft = 0;
4295 bool TwoRepStos = false;
4296 if (ValC) {
4297 unsigned ValReg;
4298 uint64_t Val = ValC->getValue() & 255;
4299
4300 // If the value is a constant, then we can potentially use larger sets.
4301 switch (Align & 3) {
4302 case 2: // WORD aligned
4303 AVT = MVT::i16;
4304 ValReg = X86::AX;
4305 Val = (Val << 8) | Val;
4306 break;
4307 case 0: // DWORD aligned
4308 AVT = MVT::i32;
4309 ValReg = X86::EAX;
4310 Val = (Val << 8) | Val;
4311 Val = (Val << 16) | Val;
4312 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) { // QWORD aligned
4313 AVT = MVT::i64;
4314 ValReg = X86::RAX;
4315 Val = (Val << 32) | Val;
4316 }
4317 break;
4318 default: // Byte aligned
4319 AVT = MVT::i8;
4320 ValReg = X86::AL;
4321 Count = Op.getOperand(3);
4322 break;
4323 }
4324
4325 if (AVT > MVT::i8) {
4326 if (I) {
4327 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4328 Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4329 BytesLeft = I->getValue() % UBytes;
4330 } else {
4331 assert(AVT >= MVT::i32 &&
4332 "Do not use rep;stos if not at least DWORD aligned");
4333 Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4334 Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4335 TwoRepStos = true;
4336 }
4337 }
4338
4339 Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4340 InFlag);
4341 InFlag = Chain.getValue(1);
4342 } else {
4343 AVT = MVT::i8;
4344 Count = Op.getOperand(3);
4345 Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
4346 InFlag = Chain.getValue(1);
4347 }
4348
4349 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4350 Count, InFlag);
4351 InFlag = Chain.getValue(1);
4352 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4353 Op.getOperand(1), InFlag);
4354 InFlag = Chain.getValue(1);
4355
4356 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4357 SmallVector<SDOperand, 8> Ops;
4358 Ops.push_back(Chain);
4359 Ops.push_back(DAG.getValueType(AVT));
4360 Ops.push_back(InFlag);
4361 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4362
4363 if (TwoRepStos) {
4364 InFlag = Chain.getValue(1);
4365 Count = Op.getOperand(3);
4366 MVT::ValueType CVT = Count.getValueType();
4367 SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4368 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4369 Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4370 Left, InFlag);
4371 InFlag = Chain.getValue(1);
4372 Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4373 Ops.clear();
4374 Ops.push_back(Chain);
4375 Ops.push_back(DAG.getValueType(MVT::i8));
4376 Ops.push_back(InFlag);
4377 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4378 } else if (BytesLeft) {
4379 // Issue stores for the last 1 - 7 bytes.
4380 SDOperand Value;
4381 unsigned Val = ValC->getValue() & 255;
4382 unsigned Offset = I->getValue() - BytesLeft;
4383 SDOperand DstAddr = Op.getOperand(1);
4384 MVT::ValueType AddrVT = DstAddr.getValueType();
4385 if (BytesLeft >= 4) {
4386 Val = (Val << 8) | Val;
4387 Val = (Val << 16) | Val;
4388 Value = DAG.getConstant(Val, MVT::i32);
4389 Chain = DAG.getStore(Chain, Value,
4390 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4391 DAG.getConstant(Offset, AddrVT)),
4392 NULL, 0);
4393 BytesLeft -= 4;
4394 Offset += 4;
4395 }
4396 if (BytesLeft >= 2) {
4397 Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
4398 Chain = DAG.getStore(Chain, Value,
4399 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4400 DAG.getConstant(Offset, AddrVT)),
4401 NULL, 0);
4402 BytesLeft -= 2;
4403 Offset += 2;
4404 }
4405 if (BytesLeft == 1) {
4406 Value = DAG.getConstant(Val, MVT::i8);
4407 Chain = DAG.getStore(Chain, Value,
4408 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4409 DAG.getConstant(Offset, AddrVT)),
4410 NULL, 0);
4411 }
4412 }
4413
4414 return Chain;
4415}
4416
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004417SDOperand X86TargetLowering::LowerMEMCPYInline(SDOperand Chain,
4418 SDOperand Dest,
4419 SDOperand Source,
4420 unsigned Size,
4421 unsigned Align,
4422 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004423 MVT::ValueType AVT;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004424 unsigned BytesLeft = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004425 switch (Align & 3) {
4426 case 2: // WORD aligned
4427 AVT = MVT::i16;
4428 break;
4429 case 0: // DWORD aligned
4430 AVT = MVT::i32;
4431 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) // QWORD aligned
4432 AVT = MVT::i64;
4433 break;
4434 default: // Byte aligned
4435 AVT = MVT::i8;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004436 break;
4437 }
4438
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004439 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4440 SDOperand Count = DAG.getConstant(Size / UBytes, getPointerTy());
4441 BytesLeft = Size % UBytes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004442
4443 SDOperand InFlag(0, 0);
4444 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4445 Count, InFlag);
4446 InFlag = Chain.getValue(1);
4447 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004448 Dest, InFlag);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004449 InFlag = Chain.getValue(1);
4450 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004451 Source, InFlag);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004452 InFlag = Chain.getValue(1);
4453
4454 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4455 SmallVector<SDOperand, 8> Ops;
4456 Ops.push_back(Chain);
4457 Ops.push_back(DAG.getValueType(AVT));
4458 Ops.push_back(InFlag);
4459 Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4460
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004461 if (BytesLeft) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004462 // Issue loads and stores for the last 1 - 7 bytes.
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004463 unsigned Offset = Size - BytesLeft;
4464 SDOperand DstAddr = Dest;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004465 MVT::ValueType DstVT = DstAddr.getValueType();
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004466 SDOperand SrcAddr = Source;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004467 MVT::ValueType SrcVT = SrcAddr.getValueType();
4468 SDOperand Value;
4469 if (BytesLeft >= 4) {
4470 Value = DAG.getLoad(MVT::i32, Chain,
4471 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4472 DAG.getConstant(Offset, SrcVT)),
4473 NULL, 0);
4474 Chain = Value.getValue(1);
4475 Chain = DAG.getStore(Chain, Value,
4476 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4477 DAG.getConstant(Offset, DstVT)),
4478 NULL, 0);
4479 BytesLeft -= 4;
4480 Offset += 4;
4481 }
4482 if (BytesLeft >= 2) {
4483 Value = DAG.getLoad(MVT::i16, Chain,
4484 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4485 DAG.getConstant(Offset, SrcVT)),
4486 NULL, 0);
4487 Chain = Value.getValue(1);
4488 Chain = DAG.getStore(Chain, Value,
4489 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4490 DAG.getConstant(Offset, DstVT)),
4491 NULL, 0);
4492 BytesLeft -= 2;
4493 Offset += 2;
4494 }
4495
4496 if (BytesLeft == 1) {
4497 Value = DAG.getLoad(MVT::i8, Chain,
4498 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4499 DAG.getConstant(Offset, SrcVT)),
4500 NULL, 0);
4501 Chain = Value.getValue(1);
4502 Chain = DAG.getStore(Chain, Value,
4503 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4504 DAG.getConstant(Offset, DstVT)),
4505 NULL, 0);
4506 }
4507 }
4508
4509 return Chain;
4510}
4511
Chris Lattnerdfb947d2007-11-24 07:07:01 +00004512/// Expand the result of: i64,outchain = READCYCLECOUNTER inchain
4513SDNode *X86TargetLowering::ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004514 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
Chris Lattnerdfb947d2007-11-24 07:07:01 +00004515 SDOperand TheChain = N->getOperand(0);
4516 SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004517 if (Subtarget->is64Bit()) {
Chris Lattnerdfb947d2007-11-24 07:07:01 +00004518 SDOperand rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4519 SDOperand rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX,
4520 MVT::i64, rax.getValue(2));
4521 SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004522 DAG.getConstant(32, MVT::i8));
4523 SDOperand Ops[] = {
Chris Lattnerdfb947d2007-11-24 07:07:01 +00004524 DAG.getNode(ISD::OR, MVT::i64, rax, Tmp), rdx.getValue(1)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004525 };
4526
4527 Tys = DAG.getVTList(MVT::i64, MVT::Other);
Chris Lattnerdfb947d2007-11-24 07:07:01 +00004528 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004529 }
4530
Chris Lattnerdfb947d2007-11-24 07:07:01 +00004531 SDOperand eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4532 SDOperand edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX,
4533 MVT::i32, eax.getValue(2));
4534 // Use a buildpair to merge the two 32-bit values into a 64-bit one.
4535 SDOperand Ops[] = { eax, edx };
4536 Ops[0] = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2);
4537
4538 // Use a MERGE_VALUES to return the value and chain.
4539 Ops[1] = edx.getValue(1);
4540 Tys = DAG.getVTList(MVT::i64, MVT::Other);
4541 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004542}
4543
4544SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4545 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4546
4547 if (!Subtarget->is64Bit()) {
4548 // vastart just stores the address of the VarArgsFrameIndex slot into the
4549 // memory location argument.
4550 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4551 return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4552 SV->getOffset());
4553 }
4554
4555 // __va_list_tag:
4556 // gp_offset (0 - 6 * 8)
4557 // fp_offset (48 - 48 + 8 * 16)
4558 // overflow_arg_area (point to parameters coming in memory).
4559 // reg_save_area
4560 SmallVector<SDOperand, 8> MemOps;
4561 SDOperand FIN = Op.getOperand(1);
4562 // Store gp_offset
4563 SDOperand Store = DAG.getStore(Op.getOperand(0),
4564 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4565 FIN, SV->getValue(), SV->getOffset());
4566 MemOps.push_back(Store);
4567
4568 // Store fp_offset
4569 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4570 DAG.getConstant(4, getPointerTy()));
4571 Store = DAG.getStore(Op.getOperand(0),
4572 DAG.getConstant(VarArgsFPOffset, MVT::i32),
4573 FIN, SV->getValue(), SV->getOffset());
4574 MemOps.push_back(Store);
4575
4576 // Store ptr to overflow_arg_area
4577 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4578 DAG.getConstant(4, getPointerTy()));
4579 SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4580 Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4581 SV->getOffset());
4582 MemOps.push_back(Store);
4583
4584 // Store ptr to reg_save_area.
4585 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4586 DAG.getConstant(8, getPointerTy()));
4587 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4588 Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4589 SV->getOffset());
4590 MemOps.push_back(Store);
4591 return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4592}
4593
4594SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4595 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4596 SDOperand Chain = Op.getOperand(0);
4597 SDOperand DstPtr = Op.getOperand(1);
4598 SDOperand SrcPtr = Op.getOperand(2);
4599 SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
4600 SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
4601
4602 SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
4603 SrcSV->getValue(), SrcSV->getOffset());
4604 Chain = SrcPtr.getValue(1);
4605 for (unsigned i = 0; i < 3; ++i) {
4606 SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
4607 SrcSV->getValue(), SrcSV->getOffset());
4608 Chain = Val.getValue(1);
4609 Chain = DAG.getStore(Chain, Val, DstPtr,
4610 DstSV->getValue(), DstSV->getOffset());
4611 if (i == 2)
4612 break;
4613 SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4614 DAG.getConstant(8, getPointerTy()));
4615 DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4616 DAG.getConstant(8, getPointerTy()));
4617 }
4618 return Chain;
4619}
4620
4621SDOperand
4622X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4623 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4624 switch (IntNo) {
4625 default: return SDOperand(); // Don't custom lower most intrinsics.
4626 // Comparison intrinsics.
4627 case Intrinsic::x86_sse_comieq_ss:
4628 case Intrinsic::x86_sse_comilt_ss:
4629 case Intrinsic::x86_sse_comile_ss:
4630 case Intrinsic::x86_sse_comigt_ss:
4631 case Intrinsic::x86_sse_comige_ss:
4632 case Intrinsic::x86_sse_comineq_ss:
4633 case Intrinsic::x86_sse_ucomieq_ss:
4634 case Intrinsic::x86_sse_ucomilt_ss:
4635 case Intrinsic::x86_sse_ucomile_ss:
4636 case Intrinsic::x86_sse_ucomigt_ss:
4637 case Intrinsic::x86_sse_ucomige_ss:
4638 case Intrinsic::x86_sse_ucomineq_ss:
4639 case Intrinsic::x86_sse2_comieq_sd:
4640 case Intrinsic::x86_sse2_comilt_sd:
4641 case Intrinsic::x86_sse2_comile_sd:
4642 case Intrinsic::x86_sse2_comigt_sd:
4643 case Intrinsic::x86_sse2_comige_sd:
4644 case Intrinsic::x86_sse2_comineq_sd:
4645 case Intrinsic::x86_sse2_ucomieq_sd:
4646 case Intrinsic::x86_sse2_ucomilt_sd:
4647 case Intrinsic::x86_sse2_ucomile_sd:
4648 case Intrinsic::x86_sse2_ucomigt_sd:
4649 case Intrinsic::x86_sse2_ucomige_sd:
4650 case Intrinsic::x86_sse2_ucomineq_sd: {
4651 unsigned Opc = 0;
4652 ISD::CondCode CC = ISD::SETCC_INVALID;
4653 switch (IntNo) {
4654 default: break;
4655 case Intrinsic::x86_sse_comieq_ss:
4656 case Intrinsic::x86_sse2_comieq_sd:
4657 Opc = X86ISD::COMI;
4658 CC = ISD::SETEQ;
4659 break;
4660 case Intrinsic::x86_sse_comilt_ss:
4661 case Intrinsic::x86_sse2_comilt_sd:
4662 Opc = X86ISD::COMI;
4663 CC = ISD::SETLT;
4664 break;
4665 case Intrinsic::x86_sse_comile_ss:
4666 case Intrinsic::x86_sse2_comile_sd:
4667 Opc = X86ISD::COMI;
4668 CC = ISD::SETLE;
4669 break;
4670 case Intrinsic::x86_sse_comigt_ss:
4671 case Intrinsic::x86_sse2_comigt_sd:
4672 Opc = X86ISD::COMI;
4673 CC = ISD::SETGT;
4674 break;
4675 case Intrinsic::x86_sse_comige_ss:
4676 case Intrinsic::x86_sse2_comige_sd:
4677 Opc = X86ISD::COMI;
4678 CC = ISD::SETGE;
4679 break;
4680 case Intrinsic::x86_sse_comineq_ss:
4681 case Intrinsic::x86_sse2_comineq_sd:
4682 Opc = X86ISD::COMI;
4683 CC = ISD::SETNE;
4684 break;
4685 case Intrinsic::x86_sse_ucomieq_ss:
4686 case Intrinsic::x86_sse2_ucomieq_sd:
4687 Opc = X86ISD::UCOMI;
4688 CC = ISD::SETEQ;
4689 break;
4690 case Intrinsic::x86_sse_ucomilt_ss:
4691 case Intrinsic::x86_sse2_ucomilt_sd:
4692 Opc = X86ISD::UCOMI;
4693 CC = ISD::SETLT;
4694 break;
4695 case Intrinsic::x86_sse_ucomile_ss:
4696 case Intrinsic::x86_sse2_ucomile_sd:
4697 Opc = X86ISD::UCOMI;
4698 CC = ISD::SETLE;
4699 break;
4700 case Intrinsic::x86_sse_ucomigt_ss:
4701 case Intrinsic::x86_sse2_ucomigt_sd:
4702 Opc = X86ISD::UCOMI;
4703 CC = ISD::SETGT;
4704 break;
4705 case Intrinsic::x86_sse_ucomige_ss:
4706 case Intrinsic::x86_sse2_ucomige_sd:
4707 Opc = X86ISD::UCOMI;
4708 CC = ISD::SETGE;
4709 break;
4710 case Intrinsic::x86_sse_ucomineq_ss:
4711 case Intrinsic::x86_sse2_ucomineq_sd:
4712 Opc = X86ISD::UCOMI;
4713 CC = ISD::SETNE;
4714 break;
4715 }
4716
4717 unsigned X86CC;
4718 SDOperand LHS = Op.getOperand(1);
4719 SDOperand RHS = Op.getOperand(2);
4720 translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4721
Evan Cheng621216e2007-09-29 00:00:36 +00004722 SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
4723 SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
4724 DAG.getConstant(X86CC, MVT::i8), Cond);
4725 return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004726 }
4727 }
4728}
4729
4730SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4731 // Depths > 0 not supported yet!
4732 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4733 return SDOperand();
4734
4735 // Just load the return address
4736 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4737 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4738}
4739
4740SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4741 // Depths > 0 not supported yet!
4742 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4743 return SDOperand();
4744
4745 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4746 return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4747 DAG.getConstant(4, getPointerTy()));
4748}
4749
4750SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
4751 SelectionDAG &DAG) {
4752 // Is not yet supported on x86-64
4753 if (Subtarget->is64Bit())
4754 return SDOperand();
4755
4756 return DAG.getConstant(8, getPointerTy());
4757}
4758
4759SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
4760{
4761 assert(!Subtarget->is64Bit() &&
4762 "Lowering of eh_return builtin is not supported yet on x86-64");
4763
4764 MachineFunction &MF = DAG.getMachineFunction();
4765 SDOperand Chain = Op.getOperand(0);
4766 SDOperand Offset = Op.getOperand(1);
4767 SDOperand Handler = Op.getOperand(2);
4768
4769 SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
4770 getPointerTy());
4771
4772 SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
4773 DAG.getConstant(-4UL, getPointerTy()));
4774 StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
4775 Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
4776 Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
Chris Lattner1b989192007-12-31 04:13:23 +00004777 MF.getRegInfo().addLiveOut(X86::ECX);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004778
4779 return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
4780 Chain, DAG.getRegister(X86::ECX, getPointerTy()));
4781}
4782
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004783SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
4784 SelectionDAG &DAG) {
4785 SDOperand Root = Op.getOperand(0);
4786 SDOperand Trmp = Op.getOperand(1); // trampoline
4787 SDOperand FPtr = Op.getOperand(2); // nested function
4788 SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
4789
4790 SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4));
4791
4792 if (Subtarget->is64Bit()) {
4793 return SDOperand(); // not yet supported
4794 } else {
4795 Function *Func = (Function *)
4796 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
4797 unsigned CC = Func->getCallingConv();
Duncan Sands466eadd2007-08-29 19:01:20 +00004798 unsigned NestReg;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004799
4800 switch (CC) {
4801 default:
4802 assert(0 && "Unsupported calling convention");
4803 case CallingConv::C:
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004804 case CallingConv::X86_StdCall: {
4805 // Pass 'nest' parameter in ECX.
4806 // Must be kept in sync with X86CallingConv.td
Duncan Sands466eadd2007-08-29 19:01:20 +00004807 NestReg = X86::ECX;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004808
4809 // Check that ECX wasn't needed by an 'inreg' parameter.
4810 const FunctionType *FTy = Func->getFunctionType();
Duncan Sandsf5588dc2007-11-27 13:23:08 +00004811 const ParamAttrsList *Attrs = Func->getParamAttrs();
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004812
4813 if (Attrs && !Func->isVarArg()) {
4814 unsigned InRegCount = 0;
4815 unsigned Idx = 1;
4816
4817 for (FunctionType::param_iterator I = FTy->param_begin(),
4818 E = FTy->param_end(); I != E; ++I, ++Idx)
4819 if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
4820 // FIXME: should only count parameters that are lowered to integers.
4821 InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
4822
4823 if (InRegCount > 2) {
4824 cerr << "Nest register in use - reduce number of inreg parameters!\n";
4825 abort();
4826 }
4827 }
4828 break;
4829 }
4830 case CallingConv::X86_FastCall:
4831 // Pass 'nest' parameter in EAX.
4832 // Must be kept in sync with X86CallingConv.td
Duncan Sands466eadd2007-08-29 19:01:20 +00004833 NestReg = X86::EAX;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004834 break;
4835 }
4836
Duncan Sands466eadd2007-08-29 19:01:20 +00004837 const X86InstrInfo *TII =
4838 ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
4839
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004840 SDOperand OutChains[4];
4841 SDOperand Addr, Disp;
4842
4843 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
4844 Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
4845
Duncan Sands466eadd2007-08-29 19:01:20 +00004846 unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
Chris Lattnerd8559ce2007-12-16 20:26:54 +00004847 unsigned char N86Reg = ((X86RegisterInfo*)RegInfo)->getX86RegNum(NestReg);
Duncan Sands466eadd2007-08-29 19:01:20 +00004848 OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004849 Trmp, TrmpSV->getValue(), TrmpSV->getOffset());
4850
4851 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
4852 OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
4853 TrmpSV->getOffset() + 1, false, 1);
4854
Duncan Sands466eadd2007-08-29 19:01:20 +00004855 unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004856 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
4857 OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
4858 TrmpSV->getValue() + 5, TrmpSV->getOffset());
4859
4860 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
4861 OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(),
4862 TrmpSV->getOffset() + 6, false, 1);
4863
Duncan Sands7407a9f2007-09-11 14:10:23 +00004864 SDOperand Ops[] =
4865 { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
4866 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004867 }
4868}
4869
Anton Korobeynikovfbe230e2007-11-16 01:31:51 +00004870SDOperand X86TargetLowering::LowerFLT_ROUNDS(SDOperand Op, SelectionDAG &DAG) {
4871 /*
4872 The rounding mode is in bits 11:10 of FPSR, and has the following
4873 settings:
4874 00 Round to nearest
4875 01 Round to -inf
4876 10 Round to +inf
4877 11 Round to 0
4878
4879 FLT_ROUNDS, on the other hand, expects the following:
4880 -1 Undefined
4881 0 Round to 0
4882 1 Round to nearest
4883 2 Round to +inf
4884 3 Round to -inf
4885
4886 To perform the conversion, we do:
4887 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
4888 */
4889
4890 MachineFunction &MF = DAG.getMachineFunction();
4891 const TargetMachine &TM = MF.getTarget();
4892 const TargetFrameInfo &TFI = *TM.getFrameInfo();
4893 unsigned StackAlignment = TFI.getStackAlignment();
4894 MVT::ValueType VT = Op.getValueType();
4895
4896 // Save FP Control Word to stack slot
4897 int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
4898 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4899
4900 SDOperand Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other,
4901 DAG.getEntryNode(), StackSlot);
4902
4903 // Load FP Control Word from stack slot
4904 SDOperand CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0);
4905
4906 // Transform as necessary
4907 SDOperand CWD1 =
4908 DAG.getNode(ISD::SRL, MVT::i16,
4909 DAG.getNode(ISD::AND, MVT::i16,
4910 CWD, DAG.getConstant(0x800, MVT::i16)),
4911 DAG.getConstant(11, MVT::i8));
4912 SDOperand CWD2 =
4913 DAG.getNode(ISD::SRL, MVT::i16,
4914 DAG.getNode(ISD::AND, MVT::i16,
4915 CWD, DAG.getConstant(0x400, MVT::i16)),
4916 DAG.getConstant(9, MVT::i8));
4917
4918 SDOperand RetVal =
4919 DAG.getNode(ISD::AND, MVT::i16,
4920 DAG.getNode(ISD::ADD, MVT::i16,
4921 DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2),
4922 DAG.getConstant(1, MVT::i16)),
4923 DAG.getConstant(3, MVT::i16));
4924
4925
4926 return DAG.getNode((MVT::getSizeInBits(VT) < 16 ?
4927 ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
4928}
4929
Evan Cheng48679f42007-12-14 02:13:44 +00004930SDOperand X86TargetLowering::LowerCTLZ(SDOperand Op, SelectionDAG &DAG) {
4931 MVT::ValueType VT = Op.getValueType();
4932 MVT::ValueType OpVT = VT;
4933 unsigned NumBits = MVT::getSizeInBits(VT);
4934
4935 Op = Op.getOperand(0);
4936 if (VT == MVT::i8) {
Evan Cheng7cfbfe32007-12-14 08:30:15 +00004937 // Zero extend to i32 since there is not an i8 bsr.
Evan Cheng48679f42007-12-14 02:13:44 +00004938 OpVT = MVT::i32;
4939 Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
4940 }
Evan Cheng48679f42007-12-14 02:13:44 +00004941
Evan Cheng7cfbfe32007-12-14 08:30:15 +00004942 // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
4943 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
4944 Op = DAG.getNode(X86ISD::BSR, VTs, Op);
4945
4946 // If src is zero (i.e. bsr sets ZF), returns NumBits.
4947 SmallVector<SDOperand, 4> Ops;
4948 Ops.push_back(Op);
4949 Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
4950 Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
4951 Ops.push_back(Op.getValue(1));
4952 Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
4953
4954 // Finally xor with NumBits-1.
4955 Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
4956
Evan Cheng48679f42007-12-14 02:13:44 +00004957 if (VT == MVT::i8)
4958 Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
4959 return Op;
4960}
4961
4962SDOperand X86TargetLowering::LowerCTTZ(SDOperand Op, SelectionDAG &DAG) {
4963 MVT::ValueType VT = Op.getValueType();
4964 MVT::ValueType OpVT = VT;
Evan Cheng7cfbfe32007-12-14 08:30:15 +00004965 unsigned NumBits = MVT::getSizeInBits(VT);
Evan Cheng48679f42007-12-14 02:13:44 +00004966
4967 Op = Op.getOperand(0);
4968 if (VT == MVT::i8) {
4969 OpVT = MVT::i32;
4970 Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
4971 }
Evan Cheng7cfbfe32007-12-14 08:30:15 +00004972
4973 // Issue a bsf (scan bits forward) which also sets EFLAGS.
4974 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
4975 Op = DAG.getNode(X86ISD::BSF, VTs, Op);
4976
4977 // If src is zero (i.e. bsf sets ZF), returns NumBits.
4978 SmallVector<SDOperand, 4> Ops;
4979 Ops.push_back(Op);
4980 Ops.push_back(DAG.getConstant(NumBits, OpVT));
4981 Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
4982 Ops.push_back(Op.getValue(1));
4983 Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
4984
Evan Cheng48679f42007-12-14 02:13:44 +00004985 if (VT == MVT::i8)
4986 Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
4987 return Op;
4988}
4989
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004990/// LowerOperation - Provide custom lowering hooks for some operations.
4991///
4992SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4993 switch (Op.getOpcode()) {
4994 default: assert(0 && "Should not custom lower this!");
4995 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
4996 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4997 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4998 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
4999 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
5000 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
5001 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
5002 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
5003 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
5004 case ISD::SHL_PARTS:
5005 case ISD::SRA_PARTS:
5006 case ISD::SRL_PARTS: return LowerShift(Op, DAG);
5007 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
5008 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
5009 case ISD::FABS: return LowerFABS(Op, DAG);
5010 case ISD::FNEG: return LowerFNEG(Op, DAG);
5011 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
Evan Cheng621216e2007-09-29 00:00:36 +00005012 case ISD::SETCC: return LowerSETCC(Op, DAG);
5013 case ISD::SELECT: return LowerSELECT(Op, DAG);
5014 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005015 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
5016 case ISD::CALL: return LowerCALL(Op, DAG);
5017 case ISD::RET: return LowerRET(Op, DAG);
5018 case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
5019 case ISD::MEMSET: return LowerMEMSET(Op, DAG);
5020 case ISD::MEMCPY: return LowerMEMCPY(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005021 case ISD::VASTART: return LowerVASTART(Op, DAG);
5022 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
5023 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5024 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
5025 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
5026 case ISD::FRAME_TO_ARGS_OFFSET:
5027 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
5028 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
5029 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00005030 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
Anton Korobeynikovfbe230e2007-11-16 01:31:51 +00005031 case ISD::FLT_ROUNDS: return LowerFLT_ROUNDS(Op, DAG);
Evan Cheng48679f42007-12-14 02:13:44 +00005032 case ISD::CTLZ: return LowerCTLZ(Op, DAG);
5033 case ISD::CTTZ: return LowerCTTZ(Op, DAG);
Chris Lattnerdfb947d2007-11-24 07:07:01 +00005034
5035 // FIXME: REMOVE THIS WHEN LegalizeDAGTypes lands.
5036 case ISD::READCYCLECOUNTER:
5037 return SDOperand(ExpandREADCYCLECOUNTER(Op.Val, DAG), 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005038 }
Chris Lattnerdfb947d2007-11-24 07:07:01 +00005039}
5040
5041/// ExpandOperation - Provide custom lowering hooks for expanding operations.
5042SDNode *X86TargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
5043 switch (N->getOpcode()) {
5044 default: assert(0 && "Should not custom lower this!");
5045 case ISD::FP_TO_SINT: return ExpandFP_TO_SINT(N, DAG);
5046 case ISD::READCYCLECOUNTER: return ExpandREADCYCLECOUNTER(N, DAG);
5047 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005048}
5049
5050const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
5051 switch (Opcode) {
5052 default: return NULL;
Evan Cheng48679f42007-12-14 02:13:44 +00005053 case X86ISD::BSF: return "X86ISD::BSF";
5054 case X86ISD::BSR: return "X86ISD::BSR";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005055 case X86ISD::SHLD: return "X86ISD::SHLD";
5056 case X86ISD::SHRD: return "X86ISD::SHRD";
5057 case X86ISD::FAND: return "X86ISD::FAND";
5058 case X86ISD::FOR: return "X86ISD::FOR";
5059 case X86ISD::FXOR: return "X86ISD::FXOR";
5060 case X86ISD::FSRL: return "X86ISD::FSRL";
5061 case X86ISD::FILD: return "X86ISD::FILD";
5062 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
5063 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
5064 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
5065 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
5066 case X86ISD::FLD: return "X86ISD::FLD";
5067 case X86ISD::FST: return "X86ISD::FST";
5068 case X86ISD::FP_GET_RESULT: return "X86ISD::FP_GET_RESULT";
5069 case X86ISD::FP_SET_RESULT: return "X86ISD::FP_SET_RESULT";
5070 case X86ISD::CALL: return "X86ISD::CALL";
5071 case X86ISD::TAILCALL: return "X86ISD::TAILCALL";
5072 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
5073 case X86ISD::CMP: return "X86ISD::CMP";
5074 case X86ISD::COMI: return "X86ISD::COMI";
5075 case X86ISD::UCOMI: return "X86ISD::UCOMI";
5076 case X86ISD::SETCC: return "X86ISD::SETCC";
5077 case X86ISD::CMOV: return "X86ISD::CMOV";
5078 case X86ISD::BRCOND: return "X86ISD::BRCOND";
5079 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
5080 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
5081 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005082 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
5083 case X86ISD::Wrapper: return "X86ISD::Wrapper";
5084 case X86ISD::S2VEC: return "X86ISD::S2VEC";
5085 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
5086 case X86ISD::PINSRW: return "X86ISD::PINSRW";
5087 case X86ISD::FMAX: return "X86ISD::FMAX";
5088 case X86ISD::FMIN: return "X86ISD::FMIN";
5089 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
5090 case X86ISD::FRCP: return "X86ISD::FRCP";
5091 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
5092 case X86ISD::THREAD_POINTER: return "X86ISD::THREAD_POINTER";
5093 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00005094 case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
Anton Korobeynikovfbe230e2007-11-16 01:31:51 +00005095 case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005096 }
5097}
5098
5099// isLegalAddressingMode - Return true if the addressing mode represented
5100// by AM is legal for this target, for a load/store of the specified type.
5101bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
5102 const Type *Ty) const {
5103 // X86 supports extremely general addressing modes.
5104
5105 // X86 allows a sign-extended 32-bit immediate field as a displacement.
5106 if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
5107 return false;
5108
5109 if (AM.BaseGV) {
Evan Cheng6a1f3f12007-08-01 23:46:47 +00005110 // We can only fold this if we don't need an extra load.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005111 if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
5112 return false;
Evan Cheng6a1f3f12007-08-01 23:46:47 +00005113
5114 // X86-64 only supports addr of globals in small code model.
5115 if (Subtarget->is64Bit()) {
5116 if (getTargetMachine().getCodeModel() != CodeModel::Small)
5117 return false;
5118 // If lower 4G is not available, then we must use rip-relative addressing.
5119 if (AM.BaseOffs || AM.Scale > 1)
5120 return false;
5121 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005122 }
5123
5124 switch (AM.Scale) {
5125 case 0:
5126 case 1:
5127 case 2:
5128 case 4:
5129 case 8:
5130 // These scales always work.
5131 break;
5132 case 3:
5133 case 5:
5134 case 9:
5135 // These scales are formed with basereg+scalereg. Only accept if there is
5136 // no basereg yet.
5137 if (AM.HasBaseReg)
5138 return false;
5139 break;
5140 default: // Other stuff never works.
5141 return false;
5142 }
5143
5144 return true;
5145}
5146
5147
Evan Cheng27a820a2007-10-26 01:56:11 +00005148bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
5149 if (!Ty1->isInteger() || !Ty2->isInteger())
5150 return false;
Evan Cheng7f152602007-10-29 07:57:50 +00005151 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
5152 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
5153 if (NumBits1 <= NumBits2)
5154 return false;
5155 return Subtarget->is64Bit() || NumBits1 < 64;
Evan Cheng27a820a2007-10-26 01:56:11 +00005156}
5157
Evan Cheng9decb332007-10-29 19:58:20 +00005158bool X86TargetLowering::isTruncateFree(MVT::ValueType VT1,
5159 MVT::ValueType VT2) const {
5160 if (!MVT::isInteger(VT1) || !MVT::isInteger(VT2))
5161 return false;
5162 unsigned NumBits1 = MVT::getSizeInBits(VT1);
5163 unsigned NumBits2 = MVT::getSizeInBits(VT2);
5164 if (NumBits1 <= NumBits2)
5165 return false;
5166 return Subtarget->is64Bit() || NumBits1 < 64;
5167}
Evan Cheng27a820a2007-10-26 01:56:11 +00005168
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005169/// isShuffleMaskLegal - Targets can use this to indicate that they only
5170/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5171/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5172/// are assumed to be legal.
5173bool
5174X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
5175 // Only do shuffles on 128-bit vector types for now.
5176 if (MVT::getSizeInBits(VT) == 64) return false;
5177 return (Mask.Val->getNumOperands() <= 4 ||
5178 isIdentityMask(Mask.Val) ||
5179 isIdentityMask(Mask.Val, true) ||
5180 isSplatMask(Mask.Val) ||
5181 isPSHUFHW_PSHUFLWMask(Mask.Val) ||
5182 X86::isUNPCKLMask(Mask.Val) ||
5183 X86::isUNPCKHMask(Mask.Val) ||
5184 X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
5185 X86::isUNPCKH_v_undef_Mask(Mask.Val));
5186}
5187
5188bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
5189 MVT::ValueType EVT,
5190 SelectionDAG &DAG) const {
5191 unsigned NumElts = BVOps.size();
5192 // Only do shuffles on 128-bit vector types for now.
5193 if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
5194 if (NumElts == 2) return true;
5195 if (NumElts == 4) {
5196 return (isMOVLMask(&BVOps[0], 4) ||
5197 isCommutedMOVL(&BVOps[0], 4, true) ||
5198 isSHUFPMask(&BVOps[0], 4) ||
5199 isCommutedSHUFP(&BVOps[0], 4));
5200 }
5201 return false;
5202}
5203
5204//===----------------------------------------------------------------------===//
5205// X86 Scheduler Hooks
5206//===----------------------------------------------------------------------===//
5207
5208MachineBasicBlock *
5209X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
5210 MachineBasicBlock *BB) {
5211 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5212 switch (MI->getOpcode()) {
5213 default: assert(false && "Unexpected instr type to insert");
5214 case X86::CMOV_FR32:
5215 case X86::CMOV_FR64:
5216 case X86::CMOV_V4F32:
5217 case X86::CMOV_V2F64:
Evan Cheng621216e2007-09-29 00:00:36 +00005218 case X86::CMOV_V2I64: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005219 // To "insert" a SELECT_CC instruction, we actually have to insert the
5220 // diamond control-flow pattern. The incoming instruction knows the
5221 // destination vreg to set, the condition code register to branch on, the
5222 // true/false values to select between, and a branch opcode to use.
5223 const BasicBlock *LLVM_BB = BB->getBasicBlock();
5224 ilist<MachineBasicBlock>::iterator It = BB;
5225 ++It;
5226
5227 // thisMBB:
5228 // ...
5229 // TrueVal = ...
5230 // cmpTY ccX, r1, r2
5231 // bCC copy1MBB
5232 // fallthrough --> copy0MBB
5233 MachineBasicBlock *thisMBB = BB;
5234 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
5235 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
5236 unsigned Opc =
5237 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
5238 BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
5239 MachineFunction *F = BB->getParent();
5240 F->getBasicBlockList().insert(It, copy0MBB);
5241 F->getBasicBlockList().insert(It, sinkMBB);
5242 // Update machine-CFG edges by first adding all successors of the current
5243 // block to the new block which will contain the Phi node for the select.
5244 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
5245 e = BB->succ_end(); i != e; ++i)
5246 sinkMBB->addSuccessor(*i);
5247 // Next, remove all successors of the current block, and add the true
5248 // and fallthrough blocks as its successors.
5249 while(!BB->succ_empty())
5250 BB->removeSuccessor(BB->succ_begin());
5251 BB->addSuccessor(copy0MBB);
5252 BB->addSuccessor(sinkMBB);
5253
5254 // copy0MBB:
5255 // %FalseValue = ...
5256 // # fallthrough to sinkMBB
5257 BB = copy0MBB;
5258
5259 // Update machine-CFG edges
5260 BB->addSuccessor(sinkMBB);
5261
5262 // sinkMBB:
5263 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5264 // ...
5265 BB = sinkMBB;
5266 BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
5267 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
5268 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5269
5270 delete MI; // The pseudo instruction is gone now.
5271 return BB;
5272 }
5273
5274 case X86::FP32_TO_INT16_IN_MEM:
5275 case X86::FP32_TO_INT32_IN_MEM:
5276 case X86::FP32_TO_INT64_IN_MEM:
5277 case X86::FP64_TO_INT16_IN_MEM:
5278 case X86::FP64_TO_INT32_IN_MEM:
Dale Johannesen6d0e36a2007-08-07 01:17:37 +00005279 case X86::FP64_TO_INT64_IN_MEM:
5280 case X86::FP80_TO_INT16_IN_MEM:
5281 case X86::FP80_TO_INT32_IN_MEM:
5282 case X86::FP80_TO_INT64_IN_MEM: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005283 // Change the floating point control register to use "round towards zero"
5284 // mode when truncating to an integer value.
5285 MachineFunction *F = BB->getParent();
5286 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
5287 addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
5288
5289 // Load the old value of the high byte of the control word...
5290 unsigned OldCW =
Chris Lattner1b989192007-12-31 04:13:23 +00005291 F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005292 addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
5293
5294 // Set the high part to be round to zero...
5295 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
5296 .addImm(0xC7F);
5297
5298 // Reload the modified control word now...
5299 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5300
5301 // Restore the memory image of control word to original value
5302 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
5303 .addReg(OldCW);
5304
5305 // Get the X86 opcode to use.
5306 unsigned Opc;
5307 switch (MI->getOpcode()) {
5308 default: assert(0 && "illegal opcode!");
5309 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
5310 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
5311 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
5312 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
5313 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
5314 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
Dale Johannesen6d0e36a2007-08-07 01:17:37 +00005315 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
5316 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
5317 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005318 }
5319
5320 X86AddressMode AM;
5321 MachineOperand &Op = MI->getOperand(0);
5322 if (Op.isRegister()) {
5323 AM.BaseType = X86AddressMode::RegBase;
5324 AM.Base.Reg = Op.getReg();
5325 } else {
5326 AM.BaseType = X86AddressMode::FrameIndexBase;
Chris Lattner6017d482007-12-30 23:10:15 +00005327 AM.Base.FrameIndex = Op.getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005328 }
5329 Op = MI->getOperand(1);
5330 if (Op.isImmediate())
5331 AM.Scale = Op.getImm();
5332 Op = MI->getOperand(2);
5333 if (Op.isImmediate())
5334 AM.IndexReg = Op.getImm();
5335 Op = MI->getOperand(3);
5336 if (Op.isGlobalAddress()) {
5337 AM.GV = Op.getGlobal();
5338 } else {
5339 AM.Disp = Op.getImm();
5340 }
5341 addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
5342 .addReg(MI->getOperand(4).getReg());
5343
5344 // Reload the original control word now.
5345 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5346
5347 delete MI; // The pseudo instruction is gone now.
5348 return BB;
5349 }
5350 }
5351}
5352
5353//===----------------------------------------------------------------------===//
5354// X86 Optimization Hooks
5355//===----------------------------------------------------------------------===//
5356
5357void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
5358 uint64_t Mask,
5359 uint64_t &KnownZero,
5360 uint64_t &KnownOne,
5361 const SelectionDAG &DAG,
5362 unsigned Depth) const {
5363 unsigned Opc = Op.getOpcode();
5364 assert((Opc >= ISD::BUILTIN_OP_END ||
5365 Opc == ISD::INTRINSIC_WO_CHAIN ||
5366 Opc == ISD::INTRINSIC_W_CHAIN ||
5367 Opc == ISD::INTRINSIC_VOID) &&
5368 "Should use MaskedValueIsZero if you don't know whether Op"
5369 " is a target node!");
5370
5371 KnownZero = KnownOne = 0; // Don't know anything.
5372 switch (Opc) {
5373 default: break;
5374 case X86ISD::SETCC:
5375 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
5376 break;
5377 }
5378}
5379
5380/// getShuffleScalarElt - Returns the scalar element that will make up the ith
5381/// element of the result of the vector shuffle.
5382static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
5383 MVT::ValueType VT = N->getValueType(0);
5384 SDOperand PermMask = N->getOperand(2);
5385 unsigned NumElems = PermMask.getNumOperands();
5386 SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
5387 i %= NumElems;
5388 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5389 return (i == 0)
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00005390 ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005391 } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
5392 SDOperand Idx = PermMask.getOperand(i);
5393 if (Idx.getOpcode() == ISD::UNDEF)
5394 return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5395 return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
5396 }
5397 return SDOperand();
5398}
5399
5400/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
5401/// node is a GlobalAddress + an offset.
5402static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
5403 unsigned Opc = N->getOpcode();
5404 if (Opc == X86ISD::Wrapper) {
5405 if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
5406 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
5407 return true;
5408 }
5409 } else if (Opc == ISD::ADD) {
5410 SDOperand N1 = N->getOperand(0);
5411 SDOperand N2 = N->getOperand(1);
5412 if (isGAPlusOffset(N1.Val, GA, Offset)) {
5413 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
5414 if (V) {
5415 Offset += V->getSignExtended();
5416 return true;
5417 }
5418 } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
5419 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
5420 if (V) {
5421 Offset += V->getSignExtended();
5422 return true;
5423 }
5424 }
5425 }
5426 return false;
5427}
5428
5429/// isConsecutiveLoad - Returns true if N is loading from an address of Base
5430/// + Dist * Size.
5431static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
5432 MachineFrameInfo *MFI) {
5433 if (N->getOperand(0).Val != Base->getOperand(0).Val)
5434 return false;
5435
5436 SDOperand Loc = N->getOperand(1);
5437 SDOperand BaseLoc = Base->getOperand(1);
5438 if (Loc.getOpcode() == ISD::FrameIndex) {
5439 if (BaseLoc.getOpcode() != ISD::FrameIndex)
5440 return false;
Dan Gohman53491e92007-07-23 20:24:29 +00005441 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
5442 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005443 int FS = MFI->getObjectSize(FI);
5444 int BFS = MFI->getObjectSize(BFI);
5445 if (FS != BFS || FS != Size) return false;
5446 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
5447 } else {
5448 GlobalValue *GV1 = NULL;
5449 GlobalValue *GV2 = NULL;
5450 int64_t Offset1 = 0;
5451 int64_t Offset2 = 0;
5452 bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
5453 bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
5454 if (isGA1 && isGA2 && GV1 == GV2)
5455 return Offset1 == (Offset2 + Dist*Size);
5456 }
5457
5458 return false;
5459}
5460
5461static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
5462 const X86Subtarget *Subtarget) {
5463 GlobalValue *GV;
5464 int64_t Offset;
5465 if (isGAPlusOffset(Base, GV, Offset))
5466 return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
5467 else {
5468 assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
Dan Gohman53491e92007-07-23 20:24:29 +00005469 int BFI = cast<FrameIndexSDNode>(Base)->getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005470 if (BFI < 0)
5471 // Fixed objects do not specify alignment, however the offsets are known.
5472 return ((Subtarget->getStackAlignment() % 16) == 0 &&
5473 (MFI->getObjectOffset(BFI) % 16) == 0);
5474 else
5475 return MFI->getObjectAlignment(BFI) >= 16;
5476 }
5477 return false;
5478}
5479
5480
5481/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
5482/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
5483/// if the load addresses are consecutive, non-overlapping, and in the right
5484/// order.
5485static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
5486 const X86Subtarget *Subtarget) {
5487 MachineFunction &MF = DAG.getMachineFunction();
5488 MachineFrameInfo *MFI = MF.getFrameInfo();
5489 MVT::ValueType VT = N->getValueType(0);
5490 MVT::ValueType EVT = MVT::getVectorElementType(VT);
5491 SDOperand PermMask = N->getOperand(2);
5492 int NumElems = (int)PermMask.getNumOperands();
5493 SDNode *Base = NULL;
5494 for (int i = 0; i < NumElems; ++i) {
5495 SDOperand Idx = PermMask.getOperand(i);
5496 if (Idx.getOpcode() == ISD::UNDEF) {
5497 if (!Base) return SDOperand();
5498 } else {
5499 SDOperand Arg =
5500 getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
5501 if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
5502 return SDOperand();
5503 if (!Base)
5504 Base = Arg.Val;
5505 else if (!isConsecutiveLoad(Arg.Val, Base,
5506 i, MVT::getSizeInBits(EVT)/8,MFI))
5507 return SDOperand();
5508 }
5509 }
5510
5511 bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
Dan Gohman11821702007-07-27 17:16:43 +00005512 LoadSDNode *LD = cast<LoadSDNode>(Base);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005513 if (isAlign16) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005514 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
Dan Gohman11821702007-07-27 17:16:43 +00005515 LD->getSrcValueOffset(), LD->isVolatile());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005516 } else {
Dan Gohman11821702007-07-27 17:16:43 +00005517 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5518 LD->getSrcValueOffset(), LD->isVolatile(),
5519 LD->getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005520 }
5521}
5522
5523/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
5524static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
5525 const X86Subtarget *Subtarget) {
5526 SDOperand Cond = N->getOperand(0);
5527
5528 // If we have SSE[12] support, try to form min/max nodes.
5529 if (Subtarget->hasSSE2() &&
5530 (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
5531 if (Cond.getOpcode() == ISD::SETCC) {
5532 // Get the LHS/RHS of the select.
5533 SDOperand LHS = N->getOperand(1);
5534 SDOperand RHS = N->getOperand(2);
5535 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
5536
5537 unsigned Opcode = 0;
5538 if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
5539 switch (CC) {
5540 default: break;
5541 case ISD::SETOLE: // (X <= Y) ? X : Y -> min
5542 case ISD::SETULE:
5543 case ISD::SETLE:
5544 if (!UnsafeFPMath) break;
5545 // FALL THROUGH.
5546 case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min
5547 case ISD::SETLT:
5548 Opcode = X86ISD::FMIN;
5549 break;
5550
5551 case ISD::SETOGT: // (X > Y) ? X : Y -> max
5552 case ISD::SETUGT:
5553 case ISD::SETGT:
5554 if (!UnsafeFPMath) break;
5555 // FALL THROUGH.
5556 case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max
5557 case ISD::SETGE:
5558 Opcode = X86ISD::FMAX;
5559 break;
5560 }
5561 } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
5562 switch (CC) {
5563 default: break;
5564 case ISD::SETOGT: // (X > Y) ? Y : X -> min
5565 case ISD::SETUGT:
5566 case ISD::SETGT:
5567 if (!UnsafeFPMath) break;
5568 // FALL THROUGH.
5569 case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min
5570 case ISD::SETGE:
5571 Opcode = X86ISD::FMIN;
5572 break;
5573
5574 case ISD::SETOLE: // (X <= Y) ? Y : X -> max
5575 case ISD::SETULE:
5576 case ISD::SETLE:
5577 if (!UnsafeFPMath) break;
5578 // FALL THROUGH.
5579 case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max
5580 case ISD::SETLT:
5581 Opcode = X86ISD::FMAX;
5582 break;
5583 }
5584 }
5585
5586 if (Opcode)
5587 return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
5588 }
5589
5590 }
5591
5592 return SDOperand();
5593}
5594
5595
5596SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5597 DAGCombinerInfo &DCI) const {
5598 SelectionDAG &DAG = DCI.DAG;
5599 switch (N->getOpcode()) {
5600 default: break;
5601 case ISD::VECTOR_SHUFFLE:
5602 return PerformShuffleCombine(N, DAG, Subtarget);
5603 case ISD::SELECT:
5604 return PerformSELECTCombine(N, DAG, Subtarget);
5605 }
5606
5607 return SDOperand();
5608}
5609
5610//===----------------------------------------------------------------------===//
5611// X86 Inline Assembly Support
5612//===----------------------------------------------------------------------===//
5613
5614/// getConstraintType - Given a constraint letter, return the type of
5615/// constraint it is for this target.
5616X86TargetLowering::ConstraintType
5617X86TargetLowering::getConstraintType(const std::string &Constraint) const {
5618 if (Constraint.size() == 1) {
5619 switch (Constraint[0]) {
5620 case 'A':
5621 case 'r':
5622 case 'R':
5623 case 'l':
5624 case 'q':
5625 case 'Q':
5626 case 'x':
5627 case 'Y':
5628 return C_RegisterClass;
5629 default:
5630 break;
5631 }
5632 }
5633 return TargetLowering::getConstraintType(Constraint);
5634}
5635
Chris Lattnera531abc2007-08-25 00:47:38 +00005636/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5637/// vector. If it is invalid, don't add anything to Ops.
5638void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
5639 char Constraint,
5640 std::vector<SDOperand>&Ops,
5641 SelectionDAG &DAG) {
5642 SDOperand Result(0, 0);
5643
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005644 switch (Constraint) {
5645 default: break;
5646 case 'I':
5647 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
Chris Lattnera531abc2007-08-25 00:47:38 +00005648 if (C->getValue() <= 31) {
5649 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5650 break;
5651 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005652 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005653 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005654 case 'N':
5655 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
Chris Lattnera531abc2007-08-25 00:47:38 +00005656 if (C->getValue() <= 255) {
5657 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5658 break;
5659 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005660 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005661 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005662 case 'i': {
5663 // Literal immediates are always ok.
Chris Lattnera531abc2007-08-25 00:47:38 +00005664 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
5665 Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
5666 break;
5667 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005668
5669 // If we are in non-pic codegen mode, we allow the address of a global (with
5670 // an optional displacement) to be used with 'i'.
5671 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
5672 int64_t Offset = 0;
5673
5674 // Match either (GA) or (GA+C)
5675 if (GA) {
5676 Offset = GA->getOffset();
5677 } else if (Op.getOpcode() == ISD::ADD) {
5678 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5679 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5680 if (C && GA) {
5681 Offset = GA->getOffset()+C->getValue();
5682 } else {
5683 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5684 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5685 if (C && GA)
5686 Offset = GA->getOffset()+C->getValue();
5687 else
5688 C = 0, GA = 0;
5689 }
5690 }
5691
5692 if (GA) {
5693 // If addressing this global requires a load (e.g. in PIC mode), we can't
5694 // match.
5695 if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
5696 false))
Chris Lattnera531abc2007-08-25 00:47:38 +00005697 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005698
5699 Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5700 Offset);
Chris Lattnera531abc2007-08-25 00:47:38 +00005701 Result = Op;
5702 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005703 }
5704
5705 // Otherwise, not valid for this mode.
Chris Lattnera531abc2007-08-25 00:47:38 +00005706 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005707 }
5708 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005709
5710 if (Result.Val) {
5711 Ops.push_back(Result);
5712 return;
5713 }
5714 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005715}
5716
5717std::vector<unsigned> X86TargetLowering::
5718getRegClassForInlineAsmConstraint(const std::string &Constraint,
5719 MVT::ValueType VT) const {
5720 if (Constraint.size() == 1) {
5721 // FIXME: not handling fp-stack yet!
5722 switch (Constraint[0]) { // GCC X86 Constraint Letters
5723 default: break; // Unknown constraint letter
5724 case 'A': // EAX/EDX
5725 if (VT == MVT::i32 || VT == MVT::i64)
5726 return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5727 break;
5728 case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode)
5729 case 'Q': // Q_REGS
5730 if (VT == MVT::i32)
5731 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5732 else if (VT == MVT::i16)
5733 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5734 else if (VT == MVT::i8)
Evan Chengf85c10f2007-08-13 23:27:11 +00005735 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
Chris Lattner35032592007-11-04 06:51:12 +00005736 else if (VT == MVT::i64)
5737 return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
5738 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005739 }
5740 }
5741
5742 return std::vector<unsigned>();
5743}
5744
5745std::pair<unsigned, const TargetRegisterClass*>
5746X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5747 MVT::ValueType VT) const {
5748 // First, see if this is a constraint that directly corresponds to an LLVM
5749 // register class.
5750 if (Constraint.size() == 1) {
5751 // GCC Constraint Letters
5752 switch (Constraint[0]) {
5753 default: break;
5754 case 'r': // GENERAL_REGS
5755 case 'R': // LEGACY_REGS
5756 case 'l': // INDEX_REGS
5757 if (VT == MVT::i64 && Subtarget->is64Bit())
5758 return std::make_pair(0U, X86::GR64RegisterClass);
5759 if (VT == MVT::i32)
5760 return std::make_pair(0U, X86::GR32RegisterClass);
5761 else if (VT == MVT::i16)
5762 return std::make_pair(0U, X86::GR16RegisterClass);
5763 else if (VT == MVT::i8)
5764 return std::make_pair(0U, X86::GR8RegisterClass);
5765 break;
5766 case 'y': // MMX_REGS if MMX allowed.
5767 if (!Subtarget->hasMMX()) break;
5768 return std::make_pair(0U, X86::VR64RegisterClass);
5769 break;
5770 case 'Y': // SSE_REGS if SSE2 allowed
5771 if (!Subtarget->hasSSE2()) break;
5772 // FALL THROUGH.
5773 case 'x': // SSE_REGS if SSE1 allowed
5774 if (!Subtarget->hasSSE1()) break;
5775
5776 switch (VT) {
5777 default: break;
5778 // Scalar SSE types.
5779 case MVT::f32:
5780 case MVT::i32:
5781 return std::make_pair(0U, X86::FR32RegisterClass);
5782 case MVT::f64:
5783 case MVT::i64:
5784 return std::make_pair(0U, X86::FR64RegisterClass);
5785 // Vector types.
5786 case MVT::v16i8:
5787 case MVT::v8i16:
5788 case MVT::v4i32:
5789 case MVT::v2i64:
5790 case MVT::v4f32:
5791 case MVT::v2f64:
5792 return std::make_pair(0U, X86::VR128RegisterClass);
5793 }
5794 break;
5795 }
5796 }
5797
5798 // Use the default implementation in TargetLowering to convert the register
5799 // constraint into a member of a register class.
5800 std::pair<unsigned, const TargetRegisterClass*> Res;
5801 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5802
5803 // Not found as a standard register?
5804 if (Res.second == 0) {
5805 // GCC calls "st(0)" just plain "st".
5806 if (StringsEqualNoCase("{st}", Constraint)) {
5807 Res.first = X86::ST0;
Chris Lattner3cfe51b2007-09-24 05:27:37 +00005808 Res.second = X86::RFP80RegisterClass;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005809 }
5810
5811 return Res;
5812 }
5813
5814 // Otherwise, check to see if this is a register class of the wrong value
5815 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5816 // turn into {ax},{dx}.
5817 if (Res.second->hasType(VT))
5818 return Res; // Correct type already, nothing to do.
5819
5820 // All of the single-register GCC register classes map their values onto
5821 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
5822 // really want an 8-bit or 32-bit register, map to the appropriate register
5823 // class and return the appropriate register.
5824 if (Res.second != X86::GR16RegisterClass)
5825 return Res;
5826
5827 if (VT == MVT::i8) {
5828 unsigned DestReg = 0;
5829 switch (Res.first) {
5830 default: break;
5831 case X86::AX: DestReg = X86::AL; break;
5832 case X86::DX: DestReg = X86::DL; break;
5833 case X86::CX: DestReg = X86::CL; break;
5834 case X86::BX: DestReg = X86::BL; break;
5835 }
5836 if (DestReg) {
5837 Res.first = DestReg;
5838 Res.second = Res.second = X86::GR8RegisterClass;
5839 }
5840 } else if (VT == MVT::i32) {
5841 unsigned DestReg = 0;
5842 switch (Res.first) {
5843 default: break;
5844 case X86::AX: DestReg = X86::EAX; break;
5845 case X86::DX: DestReg = X86::EDX; break;
5846 case X86::CX: DestReg = X86::ECX; break;
5847 case X86::BX: DestReg = X86::EBX; break;
5848 case X86::SI: DestReg = X86::ESI; break;
5849 case X86::DI: DestReg = X86::EDI; break;
5850 case X86::BP: DestReg = X86::EBP; break;
5851 case X86::SP: DestReg = X86::ESP; break;
5852 }
5853 if (DestReg) {
5854 Res.first = DestReg;
5855 Res.second = Res.second = X86::GR32RegisterClass;
5856 }
5857 } else if (VT == MVT::i64) {
5858 unsigned DestReg = 0;
5859 switch (Res.first) {
5860 default: break;
5861 case X86::AX: DestReg = X86::RAX; break;
5862 case X86::DX: DestReg = X86::RDX; break;
5863 case X86::CX: DestReg = X86::RCX; break;
5864 case X86::BX: DestReg = X86::RBX; break;
5865 case X86::SI: DestReg = X86::RSI; break;
5866 case X86::DI: DestReg = X86::RDI; break;
5867 case X86::BP: DestReg = X86::RBP; break;
5868 case X86::SP: DestReg = X86::RSP; break;
5869 }
5870 if (DestReg) {
5871 Res.first = DestReg;
5872 Res.second = Res.second = X86::GR64RegisterClass;
5873 }
5874 }
5875
5876 return Res;
5877}