blob: 4c36887f6285dad795b1f24f2bb1ad8968d32699 [file] [log] [blame]
Chris Lattner233f7dc2002-08-12 21:17:25 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner8a2a3112001-12-14 16:52:21 +00009//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohman844731a2008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Chris Lattner8a2a3112001-12-14 16:52:21 +000013//
14// This pass combines things like:
Chris Lattner318bf792007-03-18 22:51:34 +000015// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
Chris Lattner8a2a3112001-12-14 16:52:21 +000017// into:
Chris Lattner318bf792007-03-18 22:51:34 +000018// %Z = add i32 %X, 2
Chris Lattner8a2a3112001-12-14 16:52:21 +000019//
20// This is a simple worklist driven algorithm.
21//
Chris Lattner065a6162003-09-10 05:29:43 +000022// This pass guarantees that the following canonicalizations are performed on
Chris Lattner2cd91962003-07-23 21:41:57 +000023// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
Chris Lattnerdf17af12003-08-12 21:53:41 +000025// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
Reid Spencere4d87aa2006-12-23 06:05:41 +000027// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
Chris Lattnere92d2f42003-08-13 04:18:28 +000029// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
Chris Lattnerbac32862004-11-14 19:13:23 +000032// ... etc.
Chris Lattner2cd91962003-07-23 21:41:57 +000033//
Chris Lattner8a2a3112001-12-14 16:52:21 +000034//===----------------------------------------------------------------------===//
35
Chris Lattner022103b2002-05-07 20:03:00 +000036#include "llvm/Transforms/Scalar.h"
Chris Lattnerac8f2fd2010-01-04 07:12:23 +000037#include "InstCombine.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000038#include "llvm-c/Initialization.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/Statistic.h"
41#include "llvm/ADT/StringSwitch.h"
Chris Lattner79066fa2007-01-30 23:46:24 +000042#include "llvm/Analysis/ConstantFolding.h"
Chris Lattner9dbb4292009-11-09 23:28:39 +000043#include "llvm/Analysis/InstructionSimplify.h"
Victor Hernandezf006b182009-10-27 20:05:49 +000044#include "llvm/Analysis/MemoryBuiltins.h"
Stephen Hines36b56882014-04-23 16:57:46 -070045#include "llvm/IR/CFG.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000046#include "llvm/IR/DataLayout.h"
Stephen Hines36b56882014-04-23 16:57:46 -070047#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000048#include "llvm/IR/IntrinsicInst.h"
Stephen Hines36b56882014-04-23 16:57:46 -070049#include "llvm/IR/PatternMatch.h"
50#include "llvm/IR/ValueHandle.h"
Meador Inge2920a712012-11-13 04:16:17 +000051#include "llvm/Support/CommandLine.h"
Chris Lattnerea1c4542004-12-08 23:43:58 +000052#include "llvm/Support/Debug.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000053#include "llvm/Target/TargetLibraryInfo.h"
54#include "llvm/Transforms/Utils/Local.h"
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +000055#include <algorithm>
Torok Edwin3eaee312008-04-20 08:33:11 +000056#include <climits>
Chris Lattner67b1e1b2003-12-07 01:24:23 +000057using namespace llvm;
Chris Lattneracd1f0f2004-07-30 07:50:03 +000058using namespace llvm::PatternMatch;
Brian Gaeked0fde302003-11-11 22:41:34 +000059
Stephen Hinesdce4a402014-05-29 02:49:00 -070060#define DEBUG_TYPE "instcombine"
61
Chris Lattner0e5f4992006-12-19 21:40:18 +000062STATISTIC(NumCombined , "Number of insts combined");
63STATISTIC(NumConstProp, "Number of constant folds");
64STATISTIC(NumDeadInst , "Number of dead inst eliminated");
Chris Lattner0e5f4992006-12-19 21:40:18 +000065STATISTIC(NumSunkInst , "Number of instructions sunk");
Duncan Sands37bf92b2010-12-22 13:36:08 +000066STATISTIC(NumExpand, "Number of expansions");
Duncan Sandsa3c44a52010-12-22 09:40:51 +000067STATISTIC(NumFactor , "Number of factorizations");
68STATISTIC(NumReassoc , "Number of reassociations");
Chris Lattnera92f6962002-10-01 22:38:41 +000069
Meador Inge2920a712012-11-13 04:16:17 +000070static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
71 cl::init(false),
72 cl::desc("Enable unsafe double to float "
73 "shrinking for math lib calls"));
74
Owen Anderson74cfb0c2010-10-07 20:04:55 +000075// Initialization Routines
76void llvm::initializeInstCombine(PassRegistry &Registry) {
77 initializeInstCombinerPass(Registry);
78}
79
80void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
81 initializeInstCombine(*unwrap(R));
82}
Chris Lattnerdd841ae2002-04-18 17:39:14 +000083
Dan Gohman844731a2008-05-13 00:00:25 +000084char InstCombiner::ID = 0;
Chad Rosier00737bd2011-12-01 21:29:16 +000085INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine",
86 "Combine redundant instructions", false, false)
87INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
88INITIALIZE_PASS_END(InstCombiner, "instcombine",
Owen Andersonce665bd2010-10-07 22:25:06 +000089 "Combine redundant instructions", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +000090
Chris Lattnere0b4b722010-01-04 07:17:19 +000091void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnere0b4b722010-01-04 07:17:19 +000092 AU.setPreservesCFG();
Chad Rosier3d925d22011-11-29 23:57:10 +000093 AU.addRequired<TargetLibraryInfo>();
Chris Lattnere0b4b722010-01-04 07:17:19 +000094}
95
96
Nuno Lopes5c525b52012-05-22 17:19:09 +000097Value *InstCombiner::EmitGEPOffset(User *GEP) {
Micah Villmow3574eca2012-10-08 16:38:25 +000098 return llvm::EmitGEPOffset(Builder, *getDataLayout(), GEP);
Nuno Lopes5c525b52012-05-22 17:19:09 +000099}
100
Chris Lattnerc22d4d12009-11-10 07:23:37 +0000101/// ShouldChangeType - Return true if it is desirable to convert a computation
102/// from 'From' to 'To'. We don't want to convert from a legal to an illegal
103/// type for example, or from a smaller to a larger illegal type.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000104bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
Duncan Sands1df98592010-02-16 11:11:14 +0000105 assert(From->isIntegerTy() && To->isIntegerTy());
Jakub Staszak58c1da82012-05-06 13:52:31 +0000106
Stephen Hines36b56882014-04-23 16:57:46 -0700107 // If we don't have DL, we don't know if the source/dest are legal.
108 if (!DL) return false;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000109
Chris Lattnerc22d4d12009-11-10 07:23:37 +0000110 unsigned FromWidth = From->getPrimitiveSizeInBits();
111 unsigned ToWidth = To->getPrimitiveSizeInBits();
Stephen Hines36b56882014-04-23 16:57:46 -0700112 bool FromLegal = DL->isLegalInteger(FromWidth);
113 bool ToLegal = DL->isLegalInteger(ToWidth);
Jakub Staszak58c1da82012-05-06 13:52:31 +0000114
Chris Lattnerc22d4d12009-11-10 07:23:37 +0000115 // If this is a legal integer from type, and the result would be an illegal
116 // type, don't do the transformation.
117 if (FromLegal && !ToLegal)
118 return false;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000119
Chris Lattnerc22d4d12009-11-10 07:23:37 +0000120 // Otherwise, if both are illegal, do not increase the size of the result. We
121 // do allow things like i160 -> i64, but not i64 -> i160.
122 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
123 return false;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000124
Chris Lattnerc22d4d12009-11-10 07:23:37 +0000125 return true;
126}
127
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000128// Return true, if No Signed Wrap should be maintained for I.
129// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
130// where both B and C should be ConstantInts, results in a constant that does
131// not overflow. This function only handles the Add and Sub opcodes. For
132// all other opcodes, the function conservatively returns false.
133static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
134 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
135 if (!OBO || !OBO->hasNoSignedWrap()) {
136 return false;
137 }
138
139 // We reason about Add and Sub Only.
140 Instruction::BinaryOps Opcode = I.getOpcode();
Jakub Staszak58c1da82012-05-06 13:52:31 +0000141 if (Opcode != Instruction::Add &&
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000142 Opcode != Instruction::Sub) {
143 return false;
144 }
145
146 ConstantInt *CB = dyn_cast<ConstantInt>(B);
147 ConstantInt *CC = dyn_cast<ConstantInt>(C);
148
149 if (!CB || !CC) {
150 return false;
151 }
152
153 const APInt &BVal = CB->getValue();
154 const APInt &CVal = CC->getValue();
155 bool Overflow = false;
156
157 if (Opcode == Instruction::Add) {
158 BVal.sadd_ov(CVal, Overflow);
159 } else {
160 BVal.ssub_ov(CVal, Overflow);
161 }
162
163 return !Overflow;
164}
165
Michael Ilseman0fae64f2013-02-07 01:40:15 +0000166/// Conservatively clears subclassOptionalData after a reassociation or
167/// commutation. We preserve fast-math flags when applicable as they can be
168/// preserved.
169static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
170 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
171 if (!FPMO) {
172 I.clearSubclassOptionalData();
173 return;
174 }
175
176 FastMathFlags FMF = I.getFastMathFlags();
177 I.clearSubclassOptionalData();
178 I.setFastMathFlags(FMF);
179}
180
Duncan Sands096aa792010-11-13 15:10:37 +0000181/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
182/// operators which are associative or commutative:
183//
184// Commutative operators:
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000185//
Chris Lattner4f98c562003-03-10 21:43:22 +0000186// 1. Order operands such that they are listed from right (least complex) to
187// left (most complex). This puts constants before unary operators before
188// binary operators.
189//
Duncan Sands096aa792010-11-13 15:10:37 +0000190// Associative operators:
Chris Lattner4f98c562003-03-10 21:43:22 +0000191//
Duncan Sands096aa792010-11-13 15:10:37 +0000192// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
193// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
194//
195// Associative and commutative operators:
196//
197// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
198// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
199// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
200// if C1 and C2 are constants.
201//
202bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +0000203 Instruction::BinaryOps Opcode = I.getOpcode();
Duncan Sands096aa792010-11-13 15:10:37 +0000204 bool Changed = false;
Chris Lattnerc8802d22003-03-11 00:12:48 +0000205
Duncan Sands096aa792010-11-13 15:10:37 +0000206 do {
207 // Order operands such that they are listed from right (least complex) to
208 // left (most complex). This puts constants before unary operators before
209 // binary operators.
210 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
211 getComplexity(I.getOperand(1)))
212 Changed = !I.swapOperands();
213
214 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
215 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
216
217 if (I.isAssociative()) {
218 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
219 if (Op0 && Op0->getOpcode() == Opcode) {
220 Value *A = Op0->getOperand(0);
221 Value *B = Op0->getOperand(1);
222 Value *C = I.getOperand(1);
223
224 // Does "B op C" simplify?
Stephen Hines36b56882014-04-23 16:57:46 -0700225 if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) {
Duncan Sands096aa792010-11-13 15:10:37 +0000226 // It simplifies to V. Form "A op V".
227 I.setOperand(0, A);
228 I.setOperand(1, V);
Dan Gohman5195b712011-02-02 02:05:46 +0000229 // Conservatively clear the optional flags, since they may not be
230 // preserved by the reassociation.
Nick Lewycky7f0170c2011-08-14 03:41:33 +0000231 if (MaintainNoSignedWrap(I, B, C) &&
Bill Wendling56cb2292012-07-19 00:11:40 +0000232 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
Nick Lewycky7f0170c2011-08-14 03:41:33 +0000233 // Note: this is only valid because SimplifyBinOp doesn't look at
234 // the operands to Op0.
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000235 I.clearSubclassOptionalData();
236 I.setHasNoSignedWrap(true);
237 } else {
Michael Ilseman0fae64f2013-02-07 01:40:15 +0000238 ClearSubclassDataAfterReassociation(I);
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000239 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000240
Duncan Sands096aa792010-11-13 15:10:37 +0000241 Changed = true;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000242 ++NumReassoc;
Duncan Sands096aa792010-11-13 15:10:37 +0000243 continue;
Misha Brukmanfd939082005-04-21 23:48:37 +0000244 }
Duncan Sands096aa792010-11-13 15:10:37 +0000245 }
246
247 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
248 if (Op1 && Op1->getOpcode() == Opcode) {
249 Value *A = I.getOperand(0);
250 Value *B = Op1->getOperand(0);
251 Value *C = Op1->getOperand(1);
252
253 // Does "A op B" simplify?
Stephen Hines36b56882014-04-23 16:57:46 -0700254 if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) {
Duncan Sands096aa792010-11-13 15:10:37 +0000255 // It simplifies to V. Form "V op C".
256 I.setOperand(0, V);
257 I.setOperand(1, C);
Dan Gohman5195b712011-02-02 02:05:46 +0000258 // Conservatively clear the optional flags, since they may not be
259 // preserved by the reassociation.
Michael Ilseman0fae64f2013-02-07 01:40:15 +0000260 ClearSubclassDataAfterReassociation(I);
Duncan Sands096aa792010-11-13 15:10:37 +0000261 Changed = true;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000262 ++NumReassoc;
Duncan Sands096aa792010-11-13 15:10:37 +0000263 continue;
264 }
265 }
Chris Lattner4f98c562003-03-10 21:43:22 +0000266 }
Duncan Sands096aa792010-11-13 15:10:37 +0000267
268 if (I.isAssociative() && I.isCommutative()) {
269 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
270 if (Op0 && Op0->getOpcode() == Opcode) {
271 Value *A = Op0->getOperand(0);
272 Value *B = Op0->getOperand(1);
273 Value *C = I.getOperand(1);
274
275 // Does "C op A" simplify?
Stephen Hines36b56882014-04-23 16:57:46 -0700276 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
Duncan Sands096aa792010-11-13 15:10:37 +0000277 // It simplifies to V. Form "V op B".
278 I.setOperand(0, V);
279 I.setOperand(1, B);
Dan Gohman5195b712011-02-02 02:05:46 +0000280 // Conservatively clear the optional flags, since they may not be
281 // preserved by the reassociation.
Michael Ilseman0fae64f2013-02-07 01:40:15 +0000282 ClearSubclassDataAfterReassociation(I);
Duncan Sands096aa792010-11-13 15:10:37 +0000283 Changed = true;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000284 ++NumReassoc;
Duncan Sands096aa792010-11-13 15:10:37 +0000285 continue;
286 }
287 }
288
289 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
290 if (Op1 && Op1->getOpcode() == Opcode) {
291 Value *A = I.getOperand(0);
292 Value *B = Op1->getOperand(0);
293 Value *C = Op1->getOperand(1);
294
295 // Does "C op A" simplify?
Stephen Hines36b56882014-04-23 16:57:46 -0700296 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
Duncan Sands096aa792010-11-13 15:10:37 +0000297 // It simplifies to V. Form "B op V".
298 I.setOperand(0, B);
299 I.setOperand(1, V);
Dan Gohman5195b712011-02-02 02:05:46 +0000300 // Conservatively clear the optional flags, since they may not be
301 // preserved by the reassociation.
Michael Ilseman0fae64f2013-02-07 01:40:15 +0000302 ClearSubclassDataAfterReassociation(I);
Duncan Sands096aa792010-11-13 15:10:37 +0000303 Changed = true;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000304 ++NumReassoc;
Duncan Sands096aa792010-11-13 15:10:37 +0000305 continue;
306 }
307 }
308
309 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
310 // if C1 and C2 are constants.
311 if (Op0 && Op1 &&
312 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
313 isa<Constant>(Op0->getOperand(1)) &&
314 isa<Constant>(Op1->getOperand(1)) &&
315 Op0->hasOneUse() && Op1->hasOneUse()) {
316 Value *A = Op0->getOperand(0);
317 Constant *C1 = cast<Constant>(Op0->getOperand(1));
318 Value *B = Op1->getOperand(0);
319 Constant *C2 = cast<Constant>(Op1->getOperand(1));
320
321 Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000322 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
Stephen Hines36b56882014-04-23 16:57:46 -0700323 if (isa<FPMathOperator>(New)) {
324 FastMathFlags Flags = I.getFastMathFlags();
325 Flags &= Op0->getFastMathFlags();
326 Flags &= Op1->getFastMathFlags();
327 New->setFastMathFlags(Flags);
328 }
Eli Friedmana311c342011-05-27 00:19:40 +0000329 InsertNewInstWith(New, I);
Eli Friedmane6f364b2011-05-18 23:58:37 +0000330 New->takeName(Op1);
Duncan Sands096aa792010-11-13 15:10:37 +0000331 I.setOperand(0, New);
332 I.setOperand(1, Folded);
Dan Gohman5195b712011-02-02 02:05:46 +0000333 // Conservatively clear the optional flags, since they may not be
334 // preserved by the reassociation.
Michael Ilseman0fae64f2013-02-07 01:40:15 +0000335 ClearSubclassDataAfterReassociation(I);
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000336
Duncan Sands096aa792010-11-13 15:10:37 +0000337 Changed = true;
338 continue;
339 }
340 }
341
342 // No further simplifications.
343 return Changed;
344 } while (1);
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000345}
Chris Lattner8a2a3112001-12-14 16:52:21 +0000346
Duncan Sands5057f382010-11-23 14:23:47 +0000347/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
Duncan Sandsc2b1c0b2010-11-23 15:25:34 +0000348/// "(X LOp Y) ROp (X LOp Z)".
Duncan Sands5057f382010-11-23 14:23:47 +0000349static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
350 Instruction::BinaryOps ROp) {
351 switch (LOp) {
352 default:
353 return false;
354
355 case Instruction::And:
356 // And distributes over Or and Xor.
357 switch (ROp) {
358 default:
359 return false;
360 case Instruction::Or:
361 case Instruction::Xor:
362 return true;
363 }
364
365 case Instruction::Mul:
366 // Multiplication distributes over addition and subtraction.
367 switch (ROp) {
368 default:
369 return false;
370 case Instruction::Add:
371 case Instruction::Sub:
372 return true;
373 }
374
375 case Instruction::Or:
376 // Or distributes over And.
377 switch (ROp) {
378 default:
379 return false;
380 case Instruction::And:
381 return true;
382 }
383 }
384}
385
386/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
387/// "(X ROp Z) LOp (Y ROp Z)".
388static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
389 Instruction::BinaryOps ROp) {
390 if (Instruction::isCommutative(ROp))
391 return LeftDistributesOverRight(ROp, LOp);
392 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
393 // but this requires knowing that the addition does not overflow and other
394 // such subtleties.
395 return false;
396}
397
Duncan Sands37bf92b2010-12-22 13:36:08 +0000398/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
399/// which some other binary operation distributes over either by factorizing
400/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
401/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
402/// a win). Returns the simplified value, or null if it didn't simplify.
403Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
404 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
405 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
406 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
407 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
Duncan Sands5057f382010-11-23 14:23:47 +0000408
Duncan Sands37bf92b2010-12-22 13:36:08 +0000409 // Factorization.
410 if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
411 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
412 // a common term.
413 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
414 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
415 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
Duncan Sands5057f382010-11-23 14:23:47 +0000416
Duncan Sands37bf92b2010-12-22 13:36:08 +0000417 // Does "X op' Y" always equal "Y op' X"?
418 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
Duncan Sands5057f382010-11-23 14:23:47 +0000419
Duncan Sands37bf92b2010-12-22 13:36:08 +0000420 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
421 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
422 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
423 // commutative case, "(A op' B) op (C op' A)"?
424 if (A == C || (InnerCommutative && A == D)) {
425 if (A != C)
426 std::swap(C, D);
427 // Consider forming "A op' (B op D)".
428 // If "B op D" simplifies then it can be formed with no cost.
Stephen Hines36b56882014-04-23 16:57:46 -0700429 Value *V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
Duncan Sands37bf92b2010-12-22 13:36:08 +0000430 // If "B op D" doesn't simplify then only go on if both of the existing
431 // operations "A op' B" and "C op' D" will be zapped as no longer used.
432 if (!V && Op0->hasOneUse() && Op1->hasOneUse())
433 V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
434 if (V) {
435 ++NumFactor;
436 V = Builder->CreateBinOp(InnerOpcode, A, V);
437 V->takeName(&I);
438 return V;
439 }
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000440 }
Duncan Sands5057f382010-11-23 14:23:47 +0000441
Duncan Sands37bf92b2010-12-22 13:36:08 +0000442 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
443 if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
444 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
445 // commutative case, "(A op' B) op (B op' D)"?
446 if (B == D || (InnerCommutative && B == C)) {
447 if (B != D)
448 std::swap(C, D);
449 // Consider forming "(A op C) op' B".
450 // If "A op C" simplifies then it can be formed with no cost.
Stephen Hines36b56882014-04-23 16:57:46 -0700451 Value *V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
Duncan Sands37bf92b2010-12-22 13:36:08 +0000452 // If "A op C" doesn't simplify then only go on if both of the existing
453 // operations "A op' B" and "C op' D" will be zapped as no longer used.
454 if (!V && Op0->hasOneUse() && Op1->hasOneUse())
455 V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
456 if (V) {
457 ++NumFactor;
458 V = Builder->CreateBinOp(InnerOpcode, V, B);
459 V->takeName(&I);
460 return V;
461 }
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000462 }
Duncan Sands37bf92b2010-12-22 13:36:08 +0000463 }
464
465 // Expansion.
466 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
467 // The instruction has the form "(A op' B) op C". See if expanding it out
468 // to "(A op C) op' (B op C)" results in simplifications.
469 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
470 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
471
472 // Do "A op C" and "B op C" both simplify?
Stephen Hines36b56882014-04-23 16:57:46 -0700473 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL))
474 if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) {
Duncan Sands37bf92b2010-12-22 13:36:08 +0000475 // They do! Return "L op' R".
476 ++NumExpand;
477 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
478 if ((L == A && R == B) ||
479 (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
480 return Op0;
481 // Otherwise return "L op' R" if it simplifies.
Stephen Hines36b56882014-04-23 16:57:46 -0700482 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
Duncan Sands37bf92b2010-12-22 13:36:08 +0000483 return V;
484 // Otherwise, create a new instruction.
485 C = Builder->CreateBinOp(InnerOpcode, L, R);
486 C->takeName(&I);
487 return C;
488 }
489 }
490
491 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
492 // The instruction has the form "A op (B op' C)". See if expanding it out
493 // to "(A op B) op' (A op C)" results in simplifications.
494 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
495 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
496
497 // Do "A op B" and "A op C" both simplify?
Stephen Hines36b56882014-04-23 16:57:46 -0700498 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL))
499 if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) {
Duncan Sands37bf92b2010-12-22 13:36:08 +0000500 // They do! Return "L op' R".
501 ++NumExpand;
502 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
503 if ((L == B && R == C) ||
504 (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
505 return Op1;
506 // Otherwise return "L op' R" if it simplifies.
Stephen Hines36b56882014-04-23 16:57:46 -0700507 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
Duncan Sands37bf92b2010-12-22 13:36:08 +0000508 return V;
509 // Otherwise, create a new instruction.
510 A = Builder->CreateBinOp(InnerOpcode, L, R);
511 A->takeName(&I);
512 return A;
513 }
514 }
Duncan Sands5057f382010-11-23 14:23:47 +0000515
Stephen Hinesdce4a402014-05-29 02:49:00 -0700516 return nullptr;
Duncan Sands5057f382010-11-23 14:23:47 +0000517}
518
Chris Lattner8d969642003-03-10 23:06:50 +0000519// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
520// if the LHS is a constant zero (which is the 'negate' form).
Chris Lattnerb35dde12002-05-06 16:49:18 +0000521//
Chris Lattner02446fc2010-01-04 07:37:31 +0000522Value *InstCombiner::dyn_castNegVal(Value *V) const {
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000523 if (BinaryOperator::isNeg(V))
Chris Lattnera1df33c2005-04-24 07:30:14 +0000524 return BinaryOperator::getNegArgument(V);
Chris Lattner8d969642003-03-10 23:06:50 +0000525
Chris Lattner0ce85802004-12-14 20:08:06 +0000526 // Constants can be considered to be negated values if they can be folded.
527 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
Owen Andersonbaf3c402009-07-29 18:55:55 +0000528 return ConstantExpr::getNeg(C);
Nick Lewycky18b3da62008-05-23 04:54:45 +0000529
Chris Lattner7302d802012-02-06 21:56:39 +0000530 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
531 if (C->getType()->getElementType()->isIntegerTy())
Owen Andersonbaf3c402009-07-29 18:55:55 +0000532 return ConstantExpr::getNeg(C);
Nick Lewycky18b3da62008-05-23 04:54:45 +0000533
Stephen Hinesdce4a402014-05-29 02:49:00 -0700534 return nullptr;
Chris Lattnerb35dde12002-05-06 16:49:18 +0000535}
536
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000537// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
538// instruction if the LHS is a constant negative zero (which is the 'negate'
539// form).
540//
Shuxin Yang935e35d2013-01-09 00:13:41 +0000541Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
542 if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000543 return BinaryOperator::getFNegArgument(V);
544
545 // Constants can be considered to be negated values if they can be folded.
546 if (ConstantFP *C = dyn_cast<ConstantFP>(V))
Owen Andersonbaf3c402009-07-29 18:55:55 +0000547 return ConstantExpr::getFNeg(C);
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000548
Chris Lattner7302d802012-02-06 21:56:39 +0000549 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
550 if (C->getType()->getElementType()->isFloatingPointTy())
Owen Andersonbaf3c402009-07-29 18:55:55 +0000551 return ConstantExpr::getFNeg(C);
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000552
Stephen Hinesdce4a402014-05-29 02:49:00 -0700553 return nullptr;
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000554}
555
Chris Lattner6e7ba452005-01-01 16:22:27 +0000556static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
Chris Lattner2eefe512004-04-09 19:05:30 +0000557 InstCombiner *IC) {
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000558 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
Chris Lattner2345d1d2009-08-30 20:01:10 +0000559 return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000560 }
Chris Lattner6e7ba452005-01-01 16:22:27 +0000561
Chris Lattner2eefe512004-04-09 19:05:30 +0000562 // Figure out if the constant is the left or the right argument.
Chris Lattner6e7ba452005-01-01 16:22:27 +0000563 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
564 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
Chris Lattner564a7272003-08-13 19:01:45 +0000565
Chris Lattner2eefe512004-04-09 19:05:30 +0000566 if (Constant *SOC = dyn_cast<Constant>(SO)) {
567 if (ConstIsRHS)
Owen Andersonbaf3c402009-07-29 18:55:55 +0000568 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
569 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
Chris Lattner2eefe512004-04-09 19:05:30 +0000570 }
571
572 Value *Op0 = SO, *Op1 = ConstOperand;
573 if (!ConstIsRHS)
574 std::swap(Op0, Op1);
Jakub Staszak58c1da82012-05-06 13:52:31 +0000575
Stephen Hines36b56882014-04-23 16:57:46 -0700576 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) {
577 Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
Chris Lattner74381062009-08-30 07:44:24 +0000578 SO->getName()+".op");
Stephen Hines36b56882014-04-23 16:57:46 -0700579 Instruction *FPInst = dyn_cast<Instruction>(RI);
580 if (FPInst && isa<FPMathOperator>(FPInst))
581 FPInst->copyFastMathFlags(BO);
582 return RI;
583 }
Chris Lattner74381062009-08-30 07:44:24 +0000584 if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
585 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
586 SO->getName()+".cmp");
587 if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
588 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
589 SO->getName()+".cmp");
590 llvm_unreachable("Unknown binary instruction type!");
Chris Lattner6e7ba452005-01-01 16:22:27 +0000591}
592
593// FoldOpIntoSelect - Given an instruction with a select as one operand and a
594// constant as the other operand, try to fold the binary operator into the
595// select arguments. This also works for Cast instructions, which obviously do
596// not have a second operand.
Chris Lattner80f43d32010-01-04 07:53:58 +0000597Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
Chris Lattner6e7ba452005-01-01 16:22:27 +0000598 // Don't modify shared select instructions
Stephen Hinesdce4a402014-05-29 02:49:00 -0700599 if (!SI->hasOneUse()) return nullptr;
Chris Lattner6e7ba452005-01-01 16:22:27 +0000600 Value *TV = SI->getOperand(1);
601 Value *FV = SI->getOperand(2);
602
603 if (isa<Constant>(TV) || isa<Constant>(FV)) {
Chris Lattner956db272005-04-21 05:43:13 +0000604 // Bool selects with constant operands can be folded to logical ops.
Stephen Hinesdce4a402014-05-29 02:49:00 -0700605 if (SI->getType()->isIntegerTy(1)) return nullptr;
Chris Lattner956db272005-04-21 05:43:13 +0000606
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000607 // If it's a bitcast involving vectors, make sure it has the same number of
608 // elements on both sides.
609 if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000610 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
611 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000612
613 // Verify that either both or neither are vectors.
Stephen Hinesdce4a402014-05-29 02:49:00 -0700614 if ((SrcTy == nullptr) != (DestTy == nullptr)) return nullptr;
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000615 // If vectors, verify that they have the same number of elements.
616 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
Stephen Hinesdce4a402014-05-29 02:49:00 -0700617 return nullptr;
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000618 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000619
Chris Lattner80f43d32010-01-04 07:53:58 +0000620 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
621 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
Chris Lattner6e7ba452005-01-01 16:22:27 +0000622
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000623 return SelectInst::Create(SI->getCondition(),
624 SelectTrueVal, SelectFalseVal);
Chris Lattner6e7ba452005-01-01 16:22:27 +0000625 }
Stephen Hinesdce4a402014-05-29 02:49:00 -0700626 return nullptr;
Chris Lattner2eefe512004-04-09 19:05:30 +0000627}
628
Chris Lattner4e998b22004-09-29 05:07:12 +0000629
Chris Lattner5d1704d2009-09-27 19:57:57 +0000630/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
631/// has a PHI node as operand #0, see if we can fold the instruction into the
632/// PHI (which is only possible if all operands to the PHI are constants).
Chris Lattner213cd612009-09-27 20:46:36 +0000633///
Chris Lattner9922ccf2011-01-16 05:14:26 +0000634Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
Chris Lattner4e998b22004-09-29 05:07:12 +0000635 PHINode *PN = cast<PHINode>(I.getOperand(0));
Chris Lattnerbac32862004-11-14 19:13:23 +0000636 unsigned NumPHIValues = PN->getNumIncomingValues();
Chris Lattner5aac8322011-01-16 04:37:29 +0000637 if (NumPHIValues == 0)
Stephen Hinesdce4a402014-05-29 02:49:00 -0700638 return nullptr;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000639
Chris Lattner084fe622011-01-21 05:08:26 +0000640 // We normally only transform phis with a single use. However, if a PHI has
641 // multiple uses and they are all the same operation, we can fold *all* of the
642 // uses into the PHI.
Chris Lattner192228e2011-01-16 05:28:59 +0000643 if (!PN->hasOneUse()) {
644 // Walk the use list for the instruction, comparing them to I.
Stephen Hines36b56882014-04-23 16:57:46 -0700645 for (User *U : PN->users()) {
646 Instruction *UI = cast<Instruction>(U);
647 if (UI != &I && !I.isIdenticalTo(UI))
Stephen Hinesdce4a402014-05-29 02:49:00 -0700648 return nullptr;
Chris Lattnercd151d22011-01-21 05:29:50 +0000649 }
Chris Lattner192228e2011-01-16 05:28:59 +0000650 // Otherwise, we can replace *all* users with the new PHI we form.
651 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000652
Chris Lattner5d1704d2009-09-27 19:57:57 +0000653 // Check to see if all of the operands of the PHI are simple constants
654 // (constantint/constantfp/undef). If there is one non-constant value,
Chris Lattnerc6df8f42009-09-27 20:18:49 +0000655 // remember the BB it is in. If there is more than one or if *it* is a PHI,
656 // bail out. We don't do arbitrary constant expressions here because moving
657 // their computation can be expensive without a cost model.
Stephen Hinesdce4a402014-05-29 02:49:00 -0700658 BasicBlock *NonConstBB = nullptr;
Chris Lattner5aac8322011-01-16 04:37:29 +0000659 for (unsigned i = 0; i != NumPHIValues; ++i) {
660 Value *InVal = PN->getIncomingValue(i);
661 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
662 continue;
663
Stephen Hinesdce4a402014-05-29 02:49:00 -0700664 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi.
665 if (NonConstBB) return nullptr; // More than one non-const value.
Jakub Staszak58c1da82012-05-06 13:52:31 +0000666
Chris Lattner5aac8322011-01-16 04:37:29 +0000667 NonConstBB = PN->getIncomingBlock(i);
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000668
669 // If the InVal is an invoke at the end of the pred block, then we can't
670 // insert a computation after it without breaking the edge.
671 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
672 if (II->getParent() == NonConstBB)
Stephen Hinesdce4a402014-05-29 02:49:00 -0700673 return nullptr;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000674
Chris Lattnercd151d22011-01-21 05:29:50 +0000675 // If the incoming non-constant value is in I's block, we will remove one
676 // instruction, but insert another equivalent one, leading to infinite
677 // instcombine.
678 if (NonConstBB == I.getParent())
Stephen Hinesdce4a402014-05-29 02:49:00 -0700679 return nullptr;
Chris Lattner5aac8322011-01-16 04:37:29 +0000680 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000681
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000682 // If there is exactly one non-constant value, we can insert a copy of the
683 // operation in that block. However, if this is a critical edge, we would be
684 // inserting the computation one some other paths (e.g. inside a loop). Only
685 // do this if the pred block is unconditionally branching into the phi block.
Stephen Hinesdce4a402014-05-29 02:49:00 -0700686 if (NonConstBB != nullptr) {
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000687 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
Stephen Hinesdce4a402014-05-29 02:49:00 -0700688 if (!BI || !BI->isUnconditional()) return nullptr;
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000689 }
Chris Lattner4e998b22004-09-29 05:07:12 +0000690
691 // Okay, we can do the transformation: create the new PHI node.
Eli Friedmane6f364b2011-05-18 23:58:37 +0000692 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
Chris Lattner857eb572009-10-21 23:41:58 +0000693 InsertNewInstBefore(NewPN, *PN);
694 NewPN->takeName(PN);
Jakub Staszak58c1da82012-05-06 13:52:31 +0000695
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000696 // If we are going to have to insert a new computation, do so right before the
697 // predecessors terminator.
698 if (NonConstBB)
699 Builder->SetInsertPoint(NonConstBB->getTerminator());
Jakub Staszak58c1da82012-05-06 13:52:31 +0000700
Chris Lattner4e998b22004-09-29 05:07:12 +0000701 // Next, add all of the operands to the PHI.
Chris Lattner5d1704d2009-09-27 19:57:57 +0000702 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
703 // We only currently try to fold the condition of a select when it is a phi,
704 // not the true/false values.
Chris Lattnerc6df8f42009-09-27 20:18:49 +0000705 Value *TrueV = SI->getTrueValue();
706 Value *FalseV = SI->getFalseValue();
Chris Lattner3ddfb212009-09-28 06:49:44 +0000707 BasicBlock *PhiTransBB = PN->getParent();
Chris Lattner5d1704d2009-09-27 19:57:57 +0000708 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerc6df8f42009-09-27 20:18:49 +0000709 BasicBlock *ThisBB = PN->getIncomingBlock(i);
Chris Lattner3ddfb212009-09-28 06:49:44 +0000710 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
711 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
Stephen Hinesdce4a402014-05-29 02:49:00 -0700712 Value *InV = nullptr;
Bill Wendling7b703752013-12-06 22:12:13 +0000713 // Beware of ConstantExpr: it may eventually evaluate to getNullValue,
714 // even if currently isNullValue gives false.
715 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
716 if (InC && !isa<ConstantExpr>(InC))
Chris Lattnerc6df8f42009-09-27 20:18:49 +0000717 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000718 else
719 InV = Builder->CreateSelect(PN->getIncomingValue(i),
720 TrueVInPred, FalseVInPred, "phitmp");
Chris Lattnerc6df8f42009-09-27 20:18:49 +0000721 NewPN->addIncoming(InV, ThisBB);
Chris Lattner5d1704d2009-09-27 19:57:57 +0000722 }
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000723 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
724 Constant *C = cast<Constant>(I.getOperand(1));
725 for (unsigned i = 0; i != NumPHIValues; ++i) {
Stephen Hinesdce4a402014-05-29 02:49:00 -0700726 Value *InV = nullptr;
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000727 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
728 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
729 else if (isa<ICmpInst>(CI))
730 InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
731 C, "phitmp");
732 else
733 InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
734 C, "phitmp");
735 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
736 }
Chris Lattner5d1704d2009-09-27 19:57:57 +0000737 } else if (I.getNumOperands() == 2) {
Chris Lattner4e998b22004-09-29 05:07:12 +0000738 Constant *C = cast<Constant>(I.getOperand(1));
Chris Lattnerbac32862004-11-14 19:13:23 +0000739 for (unsigned i = 0; i != NumPHIValues; ++i) {
Stephen Hinesdce4a402014-05-29 02:49:00 -0700740 Value *InV = nullptr;
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000741 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
742 InV = ConstantExpr::get(I.getOpcode(), InC, C);
743 else
744 InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
745 PN->getIncomingValue(i), C, "phitmp");
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000746 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner4e998b22004-09-29 05:07:12 +0000747 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000748 } else {
Reid Spencer3da59db2006-11-27 01:05:10 +0000749 CastInst *CI = cast<CastInst>(&I);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000750 Type *RetTy = CI->getType();
Chris Lattnerbac32862004-11-14 19:13:23 +0000751 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000752 Value *InV;
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000753 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
Owen Andersonbaf3c402009-07-29 18:55:55 +0000754 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
Jakub Staszak58c1da82012-05-06 13:52:31 +0000755 else
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000756 InV = Builder->CreateCast(CI->getOpcode(),
757 PN->getIncomingValue(i), I.getType(), "phitmp");
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000758 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner4e998b22004-09-29 05:07:12 +0000759 }
760 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000761
Stephen Hines36b56882014-04-23 16:57:46 -0700762 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
Chris Lattner192228e2011-01-16 05:28:59 +0000763 Instruction *User = cast<Instruction>(*UI++);
764 if (User == &I) continue;
765 ReplaceInstUsesWith(*User, NewPN);
766 EraseInstFromFunction(*User);
767 }
Chris Lattner4e998b22004-09-29 05:07:12 +0000768 return ReplaceInstUsesWith(I, NewPN);
769}
770
Matt Arsenault8e3367e2013-08-19 22:17:40 +0000771/// FindElementAtOffset - Given a pointer type and a constant offset, determine
772/// whether or not there is a sequence of GEP indices into the pointed type that
773/// will land us at the specified offset. If so, fill them into NewIndices and
774/// return the resultant element type, otherwise return null.
775Type *InstCombiner::FindElementAtOffset(Type *PtrTy, int64_t Offset,
776 SmallVectorImpl<Value*> &NewIndices) {
777 assert(PtrTy->isPtrOrPtrVectorTy());
778
Stephen Hines36b56882014-04-23 16:57:46 -0700779 if (!DL)
Stephen Hinesdce4a402014-05-29 02:49:00 -0700780 return nullptr;
Matt Arsenault8e3367e2013-08-19 22:17:40 +0000781
782 Type *Ty = PtrTy->getPointerElementType();
783 if (!Ty->isSized())
Stephen Hinesdce4a402014-05-29 02:49:00 -0700784 return nullptr;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000785
Chris Lattner46cd5a12009-01-09 05:44:56 +0000786 // Start with the index over the outer type. Note that the type size
787 // might be zero (even if the offset isn't zero) if the indexed type
788 // is something like [0 x {int, int}]
Stephen Hines36b56882014-04-23 16:57:46 -0700789 Type *IntPtrTy = DL->getIntPtrType(PtrTy);
Chris Lattner46cd5a12009-01-09 05:44:56 +0000790 int64_t FirstIdx = 0;
Stephen Hines36b56882014-04-23 16:57:46 -0700791 if (int64_t TySize = DL->getTypeAllocSize(Ty)) {
Chris Lattner46cd5a12009-01-09 05:44:56 +0000792 FirstIdx = Offset/TySize;
Chris Lattner31a69cb2009-01-11 20:41:36 +0000793 Offset -= FirstIdx*TySize;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000794
Benjamin Kramer028dba32013-01-23 17:52:29 +0000795 // Handle hosts where % returns negative instead of values [0..TySize).
796 if (Offset < 0) {
797 --FirstIdx;
798 Offset += TySize;
799 assert(Offset >= 0);
800 }
Chris Lattner46cd5a12009-01-09 05:44:56 +0000801 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
802 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000803
Owen Andersoneed707b2009-07-24 23:12:02 +0000804 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
Jakub Staszak58c1da82012-05-06 13:52:31 +0000805
Chris Lattner46cd5a12009-01-09 05:44:56 +0000806 // Index into the types. If we fail, set OrigBase to null.
807 while (Offset) {
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000808 // Indexing into tail padding between struct/array elements.
Stephen Hines36b56882014-04-23 16:57:46 -0700809 if (uint64_t(Offset*8) >= DL->getTypeSizeInBits(Ty))
Stephen Hinesdce4a402014-05-29 02:49:00 -0700810 return nullptr;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000811
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000812 if (StructType *STy = dyn_cast<StructType>(Ty)) {
Stephen Hines36b56882014-04-23 16:57:46 -0700813 const StructLayout *SL = DL->getStructLayout(STy);
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000814 assert(Offset < (int64_t)SL->getSizeInBytes() &&
815 "Offset must stay within the indexed type");
Jakub Staszak58c1da82012-05-06 13:52:31 +0000816
Chris Lattner46cd5a12009-01-09 05:44:56 +0000817 unsigned Elt = SL->getElementContainingOffset(Offset);
Chris Lattner4de84762010-01-04 07:02:48 +0000818 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
819 Elt));
Jakub Staszak58c1da82012-05-06 13:52:31 +0000820
Chris Lattner46cd5a12009-01-09 05:44:56 +0000821 Offset -= SL->getElementOffset(Elt);
822 Ty = STy->getElementType(Elt);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000823 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
Stephen Hines36b56882014-04-23 16:57:46 -0700824 uint64_t EltSize = DL->getTypeAllocSize(AT->getElementType());
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000825 assert(EltSize && "Cannot index into a zero-sized array");
Owen Andersoneed707b2009-07-24 23:12:02 +0000826 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000827 Offset %= EltSize;
Chris Lattner1c412d92009-01-11 20:23:52 +0000828 Ty = AT->getElementType();
Chris Lattner46cd5a12009-01-09 05:44:56 +0000829 } else {
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000830 // Otherwise, we can't index into the middle of this atomic type, bail.
Stephen Hinesdce4a402014-05-29 02:49:00 -0700831 return nullptr;
Chris Lattner46cd5a12009-01-09 05:44:56 +0000832 }
833 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000834
Chris Lattner3914f722009-01-24 01:00:13 +0000835 return Ty;
Chris Lattner46cd5a12009-01-09 05:44:56 +0000836}
837
Rafael Espindola592ad6a2011-07-31 04:43:41 +0000838static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
839 // If this GEP has only 0 indices, it is the same pointer as
840 // Src. If Src is not a trivial GEP too, don't combine
841 // the indices.
842 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
843 !Src.hasOneUse())
844 return false;
845 return true;
846}
Chris Lattner473945d2002-05-06 18:06:38 +0000847
Duncan Sandsbbc70162012-10-23 08:28:26 +0000848/// Descale - Return a value X such that Val = X * Scale, or null if none. If
849/// the multiplication is known not to overflow then NoSignedWrap is set.
850Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
851 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
852 assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
853 Scale.getBitWidth() && "Scale not compatible with value!");
854
855 // If Val is zero or Scale is one then Val = Val * Scale.
856 if (match(Val, m_Zero()) || Scale == 1) {
857 NoSignedWrap = true;
858 return Val;
859 }
860
861 // If Scale is zero then it does not divide Val.
862 if (Scale.isMinValue())
Stephen Hinesdce4a402014-05-29 02:49:00 -0700863 return nullptr;
Duncan Sandsbbc70162012-10-23 08:28:26 +0000864
865 // Look through chains of multiplications, searching for a constant that is
866 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
867 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
868 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
869 // down from Val:
870 //
871 // Val = M1 * X || Analysis starts here and works down
872 // M1 = M2 * Y || Doesn't descend into terms with more
873 // M2 = Z * 4 \/ than one use
874 //
875 // Then to modify a term at the bottom:
876 //
877 // Val = M1 * X
878 // M1 = Z * Y || Replaced M2 with Z
879 //
880 // Then to work back up correcting nsw flags.
881
882 // Op - the term we are currently analyzing. Starts at Val then drills down.
883 // Replaced with its descaled value before exiting from the drill down loop.
884 Value *Op = Val;
885
886 // Parent - initially null, but after drilling down notes where Op came from.
887 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
888 // 0'th operand of Val.
889 std::pair<Instruction*, unsigned> Parent;
890
891 // RequireNoSignedWrap - Set if the transform requires a descaling at deeper
892 // levels that doesn't overflow.
893 bool RequireNoSignedWrap = false;
894
895 // logScale - log base 2 of the scale. Negative if not a power of 2.
896 int32_t logScale = Scale.exactLogBase2();
897
898 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
899
900 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
901 // If Op is a constant divisible by Scale then descale to the quotient.
902 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
903 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
904 if (!Remainder.isMinValue())
905 // Not divisible by Scale.
Stephen Hinesdce4a402014-05-29 02:49:00 -0700906 return nullptr;
Duncan Sandsbbc70162012-10-23 08:28:26 +0000907 // Replace with the quotient in the parent.
908 Op = ConstantInt::get(CI->getType(), Quotient);
909 NoSignedWrap = true;
910 break;
911 }
912
913 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
914
915 if (BO->getOpcode() == Instruction::Mul) {
916 // Multiplication.
917 NoSignedWrap = BO->hasNoSignedWrap();
918 if (RequireNoSignedWrap && !NoSignedWrap)
Stephen Hinesdce4a402014-05-29 02:49:00 -0700919 return nullptr;
Duncan Sandsbbc70162012-10-23 08:28:26 +0000920
921 // There are three cases for multiplication: multiplication by exactly
922 // the scale, multiplication by a constant different to the scale, and
923 // multiplication by something else.
924 Value *LHS = BO->getOperand(0);
925 Value *RHS = BO->getOperand(1);
926
927 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
928 // Multiplication by a constant.
929 if (CI->getValue() == Scale) {
930 // Multiplication by exactly the scale, replace the multiplication
931 // by its left-hand side in the parent.
932 Op = LHS;
933 break;
934 }
935
936 // Otherwise drill down into the constant.
937 if (!Op->hasOneUse())
Stephen Hinesdce4a402014-05-29 02:49:00 -0700938 return nullptr;
Duncan Sandsbbc70162012-10-23 08:28:26 +0000939
940 Parent = std::make_pair(BO, 1);
941 continue;
942 }
943
944 // Multiplication by something else. Drill down into the left-hand side
945 // since that's where the reassociate pass puts the good stuff.
946 if (!Op->hasOneUse())
Stephen Hinesdce4a402014-05-29 02:49:00 -0700947 return nullptr;
Duncan Sandsbbc70162012-10-23 08:28:26 +0000948
949 Parent = std::make_pair(BO, 0);
950 continue;
951 }
952
953 if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
954 isa<ConstantInt>(BO->getOperand(1))) {
955 // Multiplication by a power of 2.
956 NoSignedWrap = BO->hasNoSignedWrap();
957 if (RequireNoSignedWrap && !NoSignedWrap)
Stephen Hinesdce4a402014-05-29 02:49:00 -0700958 return nullptr;
Duncan Sandsbbc70162012-10-23 08:28:26 +0000959
960 Value *LHS = BO->getOperand(0);
961 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
962 getLimitedValue(Scale.getBitWidth());
963 // Op = LHS << Amt.
964
965 if (Amt == logScale) {
966 // Multiplication by exactly the scale, replace the multiplication
967 // by its left-hand side in the parent.
968 Op = LHS;
969 break;
970 }
971 if (Amt < logScale || !Op->hasOneUse())
Stephen Hinesdce4a402014-05-29 02:49:00 -0700972 return nullptr;
Duncan Sandsbbc70162012-10-23 08:28:26 +0000973
974 // Multiplication by more than the scale. Reduce the multiplying amount
975 // by the scale in the parent.
976 Parent = std::make_pair(BO, 1);
977 Op = ConstantInt::get(BO->getType(), Amt - logScale);
978 break;
979 }
980 }
981
982 if (!Op->hasOneUse())
Stephen Hinesdce4a402014-05-29 02:49:00 -0700983 return nullptr;
Duncan Sandsbbc70162012-10-23 08:28:26 +0000984
985 if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
986 if (Cast->getOpcode() == Instruction::SExt) {
987 // Op is sign-extended from a smaller type, descale in the smaller type.
988 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
989 APInt SmallScale = Scale.trunc(SmallSize);
990 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
991 // descale Op as (sext Y) * Scale. In order to have
992 // sext (Y * SmallScale) = (sext Y) * Scale
993 // some conditions need to hold however: SmallScale must sign-extend to
994 // Scale and the multiplication Y * SmallScale should not overflow.
995 if (SmallScale.sext(Scale.getBitWidth()) != Scale)
996 // SmallScale does not sign-extend to Scale.
Stephen Hinesdce4a402014-05-29 02:49:00 -0700997 return nullptr;
Duncan Sandsbbc70162012-10-23 08:28:26 +0000998 assert(SmallScale.exactLogBase2() == logScale);
999 // Require that Y * SmallScale must not overflow.
1000 RequireNoSignedWrap = true;
1001
1002 // Drill down through the cast.
1003 Parent = std::make_pair(Cast, 0);
1004 Scale = SmallScale;
1005 continue;
1006 }
1007
Duncan Sandsf1ec4e42012-10-23 09:07:02 +00001008 if (Cast->getOpcode() == Instruction::Trunc) {
Duncan Sandsbbc70162012-10-23 08:28:26 +00001009 // Op is truncated from a larger type, descale in the larger type.
1010 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
1011 // trunc (Y * sext Scale) = (trunc Y) * Scale
1012 // always holds. However (trunc Y) * Scale may overflow even if
1013 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1014 // from this point up in the expression (see later).
1015 if (RequireNoSignedWrap)
Stephen Hinesdce4a402014-05-29 02:49:00 -07001016 return nullptr;
Duncan Sandsbbc70162012-10-23 08:28:26 +00001017
1018 // Drill down through the cast.
1019 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1020 Parent = std::make_pair(Cast, 0);
1021 Scale = Scale.sext(LargeSize);
1022 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1023 logScale = -1;
1024 assert(Scale.exactLogBase2() == logScale);
1025 continue;
1026 }
1027 }
1028
1029 // Unsupported expression, bail out.
Stephen Hinesdce4a402014-05-29 02:49:00 -07001030 return nullptr;
Duncan Sandsbbc70162012-10-23 08:28:26 +00001031 }
1032
1033 // We know that we can successfully descale, so from here on we can safely
1034 // modify the IR. Op holds the descaled version of the deepest term in the
1035 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1036 // not to overflow.
1037
1038 if (!Parent.first)
1039 // The expression only had one term.
1040 return Op;
1041
1042 // Rewrite the parent using the descaled version of its operand.
1043 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1044 assert(Op != Parent.first->getOperand(Parent.second) &&
1045 "Descaling was a no-op?");
1046 Parent.first->setOperand(Parent.second, Op);
1047 Worklist.Add(Parent.first);
1048
1049 // Now work back up the expression correcting nsw flags. The logic is based
1050 // on the following observation: if X * Y is known not to overflow as a signed
1051 // multiplication, and Y is replaced by a value Z with smaller absolute value,
1052 // then X * Z will not overflow as a signed multiplication either. As we work
1053 // our way up, having NoSignedWrap 'true' means that the descaled value at the
1054 // current level has strictly smaller absolute value than the original.
1055 Instruction *Ancestor = Parent.first;
1056 do {
1057 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1058 // If the multiplication wasn't nsw then we can't say anything about the
1059 // value of the descaled multiplication, and we have to clear nsw flags
1060 // from this point on up.
1061 bool OpNoSignedWrap = BO->hasNoSignedWrap();
1062 NoSignedWrap &= OpNoSignedWrap;
1063 if (NoSignedWrap != OpNoSignedWrap) {
1064 BO->setHasNoSignedWrap(NoSignedWrap);
1065 Worklist.Add(Ancestor);
1066 }
1067 } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1068 // The fact that the descaled input to the trunc has smaller absolute
1069 // value than the original input doesn't tell us anything useful about
1070 // the absolute values of the truncations.
1071 NoSignedWrap = false;
1072 }
1073 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1074 "Failed to keep proper track of nsw flags while drilling down?");
1075
1076 if (Ancestor == Val)
1077 // Got to the top, all done!
1078 return Val;
1079
1080 // Move up one level in the expression.
1081 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
Stephen Hines36b56882014-04-23 16:57:46 -07001082 Ancestor = Ancestor->user_back();
Duncan Sandsbbc70162012-10-23 08:28:26 +00001083 } while (1);
1084}
1085
Stephen Hinesdce4a402014-05-29 02:49:00 -07001086/// \brief Creates node of binary operation with the same attributes as the
1087/// specified one but with other operands.
1088static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS,
1089 InstCombiner::BuilderTy *B) {
1090 Value *BORes = B->CreateBinOp(Inst.getOpcode(), LHS, RHS);
1091 if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BORes)) {
1092 if (isa<OverflowingBinaryOperator>(NewBO)) {
1093 NewBO->setHasNoSignedWrap(Inst.hasNoSignedWrap());
1094 NewBO->setHasNoUnsignedWrap(Inst.hasNoUnsignedWrap());
1095 }
1096 if (isa<PossiblyExactOperator>(NewBO))
1097 NewBO->setIsExact(Inst.isExact());
1098 }
1099 return BORes;
1100}
1101
1102/// \brief Makes transformation of binary operation specific for vector types.
1103/// \param Inst Binary operator to transform.
1104/// \return Pointer to node that must replace the original binary operator, or
1105/// null pointer if no transformation was made.
1106Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) {
1107 if (!Inst.getType()->isVectorTy()) return nullptr;
1108
1109 unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements();
1110 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1111 assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth);
1112 assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth);
1113
1114 // If both arguments of binary operation are shuffles, which use the same
1115 // mask and shuffle within a single vector, it is worthwhile to move the
1116 // shuffle after binary operation:
1117 // Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m)
1118 if (isa<ShuffleVectorInst>(LHS) && isa<ShuffleVectorInst>(RHS)) {
1119 ShuffleVectorInst *LShuf = cast<ShuffleVectorInst>(LHS);
1120 ShuffleVectorInst *RShuf = cast<ShuffleVectorInst>(RHS);
1121 if (isa<UndefValue>(LShuf->getOperand(1)) &&
1122 isa<UndefValue>(RShuf->getOperand(1)) &&
1123 LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType() &&
1124 LShuf->getMask() == RShuf->getMask()) {
1125 Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0),
1126 RShuf->getOperand(0), Builder);
1127 Value *Res = Builder->CreateShuffleVector(NewBO,
1128 UndefValue::get(NewBO->getType()), LShuf->getMask());
1129 return Res;
1130 }
1131 }
1132
1133 // If one argument is a shuffle within one vector, the other is a constant,
1134 // try moving the shuffle after the binary operation.
1135 ShuffleVectorInst *Shuffle = nullptr;
1136 Constant *C1 = nullptr;
1137 if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS);
1138 if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS);
1139 if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS);
1140 if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS);
1141 if (Shuffle && C1 && isa<UndefValue>(Shuffle->getOperand(1)) &&
1142 Shuffle->getType() == Shuffle->getOperand(0)->getType()) {
1143 SmallVector<int, 16> ShMask = Shuffle->getShuffleMask();
1144 // Find constant C2 that has property:
1145 // shuffle(C2, ShMask) = C1
1146 // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>)
1147 // reorder is not possible.
1148 SmallVector<Constant*, 16> C2M(VWidth,
1149 UndefValue::get(C1->getType()->getScalarType()));
1150 bool MayChange = true;
1151 for (unsigned I = 0; I < VWidth; ++I) {
1152 if (ShMask[I] >= 0) {
1153 assert(ShMask[I] < (int)VWidth);
1154 if (!isa<UndefValue>(C2M[ShMask[I]])) {
1155 MayChange = false;
1156 break;
1157 }
1158 C2M[ShMask[I]] = C1->getAggregateElement(I);
1159 }
1160 }
1161 if (MayChange) {
1162 Constant *C2 = ConstantVector::get(C2M);
1163 Value *NewLHS, *NewRHS;
1164 if (isa<Constant>(LHS)) {
1165 NewLHS = C2;
1166 NewRHS = Shuffle->getOperand(0);
1167 } else {
1168 NewLHS = Shuffle->getOperand(0);
1169 NewRHS = C2;
1170 }
1171 Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder);
1172 Value *Res = Builder->CreateShuffleVector(NewBO,
1173 UndefValue::get(Inst.getType()), Shuffle->getMask());
1174 return Res;
1175 }
1176 }
1177
1178 return nullptr;
1179}
1180
Chris Lattner7e708292002-06-25 16:13:24 +00001181Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001182 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1183
Stephen Hines36b56882014-04-23 16:57:46 -07001184 if (Value *V = SimplifyGEPInst(Ops, DL))
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001185 return ReplaceInstUsesWith(GEP, V);
1186
Chris Lattner620ce142004-05-07 22:09:22 +00001187 Value *PtrOp = GEP.getOperand(0);
Chris Lattnerc6bd1952004-02-22 05:25:17 +00001188
Duncan Sandsa63395a2010-11-22 16:32:50 +00001189 // Eliminate unneeded casts for indices, and replace indices which displace
1190 // by multiples of a zero size type with zero.
Stephen Hines36b56882014-04-23 16:57:46 -07001191 if (DL) {
Chris Lattnerccf4b342009-08-30 04:49:01 +00001192 bool MadeChange = false;
Stephen Hines36b56882014-04-23 16:57:46 -07001193 Type *IntPtrTy = DL->getIntPtrType(GEP.getPointerOperandType());
Duncan Sandsa63395a2010-11-22 16:32:50 +00001194
Chris Lattnerccf4b342009-08-30 04:49:01 +00001195 gep_type_iterator GTI = gep_type_begin(GEP);
1196 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
1197 I != E; ++I, ++GTI) {
Duncan Sandsa63395a2010-11-22 16:32:50 +00001198 // Skip indices into struct types.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001199 SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
Duncan Sandsa63395a2010-11-22 16:32:50 +00001200 if (!SeqTy) continue;
1201
1202 // If the element type has zero size then any index over it is equivalent
1203 // to an index of zero, so replace it with zero if it is not zero already.
1204 if (SeqTy->getElementType()->isSized() &&
Stephen Hines36b56882014-04-23 16:57:46 -07001205 DL->getTypeAllocSize(SeqTy->getElementType()) == 0)
Duncan Sandsa63395a2010-11-22 16:32:50 +00001206 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1207 *I = Constant::getNullValue(IntPtrTy);
1208 MadeChange = true;
1209 }
1210
Nadav Rotem16087692011-12-05 06:29:09 +00001211 Type *IndexTy = (*I)->getType();
Duncan Sandsc5b969a2012-11-03 11:44:17 +00001212 if (IndexTy != IntPtrTy) {
Duncan Sandsa63395a2010-11-22 16:32:50 +00001213 // If we are using a wider index than needed for this platform, shrink
1214 // it to what we need. If narrower, sign-extend it to what we need.
1215 // This explicit cast can make subsequent optimizations more obvious.
1216 *I = Builder->CreateIntCast(*I, IntPtrTy, true);
1217 MadeChange = true;
1218 }
Chris Lattner28977af2004-04-05 01:30:19 +00001219 }
Chris Lattnerccf4b342009-08-30 04:49:01 +00001220 if (MadeChange) return &GEP;
Chris Lattnerdb9654e2007-03-25 20:43:09 +00001221 }
Chris Lattner28977af2004-04-05 01:30:19 +00001222
Chris Lattner90ac28c2002-08-02 19:29:35 +00001223 // Combine Indices - If the source pointer to this getelementptr instruction
1224 // is a getelementptr instruction, combine the indices of the two
1225 // getelementptr instructions into a single instruction.
1226 //
Dan Gohmand6aa02d2009-07-28 01:40:03 +00001227 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
Rafael Espindola592ad6a2011-07-31 04:43:41 +00001228 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
Stephen Hinesdce4a402014-05-29 02:49:00 -07001229 return nullptr;
Rafael Espindolab5a12dd2011-07-11 03:43:47 +00001230
Duncan Sandsbbc70162012-10-23 08:28:26 +00001231 // Note that if our source is a gep chain itself then we wait for that
Chris Lattner620ce142004-05-07 22:09:22 +00001232 // chain to be resolved before we perform this transformation. This
1233 // avoids us creating a TON of code in some cases.
Rafael Espindola592ad6a2011-07-31 04:43:41 +00001234 if (GEPOperator *SrcGEP =
1235 dyn_cast<GEPOperator>(Src->getOperand(0)))
1236 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
Stephen Hinesdce4a402014-05-29 02:49:00 -07001237 return nullptr; // Wait until our source is folded to completion.
Chris Lattner620ce142004-05-07 22:09:22 +00001238
Chris Lattner72588fc2007-02-15 22:48:32 +00001239 SmallVector<Value*, 8> Indices;
Chris Lattner620ce142004-05-07 22:09:22 +00001240
1241 // Find out whether the last index in the source GEP is a sequential idx.
1242 bool EndsWithSequential = false;
Chris Lattnerab984842009-08-30 05:30:55 +00001243 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1244 I != E; ++I)
Duncan Sands1df98592010-02-16 11:11:14 +00001245 EndsWithSequential = !(*I)->isStructTy();
Misha Brukmanfd939082005-04-21 23:48:37 +00001246
Chris Lattner90ac28c2002-08-02 19:29:35 +00001247 // Can we combine the two pointer arithmetics offsets?
Chris Lattner620ce142004-05-07 22:09:22 +00001248 if (EndsWithSequential) {
Chris Lattnerdecd0812003-03-05 22:33:14 +00001249 // Replace: gep (gep %P, long B), long A, ...
1250 // With: T = long A+B; gep %P, T, ...
1251 //
Chris Lattnerf9b91bb2009-08-30 05:08:50 +00001252 Value *Sum;
1253 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1254 Value *GO1 = GEP.getOperand(1);
Owen Andersona7235ea2009-07-31 20:28:14 +00001255 if (SO1 == Constant::getNullValue(SO1->getType())) {
Chris Lattner28977af2004-04-05 01:30:19 +00001256 Sum = GO1;
Owen Andersona7235ea2009-07-31 20:28:14 +00001257 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
Chris Lattner28977af2004-04-05 01:30:19 +00001258 Sum = SO1;
1259 } else {
Chris Lattnerab984842009-08-30 05:30:55 +00001260 // If they aren't the same type, then the input hasn't been processed
1261 // by the loop above yet (which canonicalizes sequential index types to
1262 // intptr_t). Just avoid transforming this until the input has been
1263 // normalized.
1264 if (SO1->getType() != GO1->getType())
Stephen Hinesdce4a402014-05-29 02:49:00 -07001265 return nullptr;
Chris Lattnerf925cbd2009-08-30 18:50:58 +00001266 Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Chris Lattner28977af2004-04-05 01:30:19 +00001267 }
Chris Lattner620ce142004-05-07 22:09:22 +00001268
Chris Lattnerab984842009-08-30 05:30:55 +00001269 // Update the GEP in place if possible.
Chris Lattnerf9b91bb2009-08-30 05:08:50 +00001270 if (Src->getNumOperands() == 2) {
1271 GEP.setOperand(0, Src->getOperand(0));
Chris Lattner620ce142004-05-07 22:09:22 +00001272 GEP.setOperand(1, Sum);
1273 return &GEP;
Chris Lattner620ce142004-05-07 22:09:22 +00001274 }
Chris Lattnerab984842009-08-30 05:30:55 +00001275 Indices.append(Src->op_begin()+1, Src->op_end()-1);
Chris Lattnerccf4b342009-08-30 04:49:01 +00001276 Indices.push_back(Sum);
Chris Lattnerab984842009-08-30 05:30:55 +00001277 Indices.append(GEP.op_begin()+2, GEP.op_end());
Misha Brukmanfd939082005-04-21 23:48:37 +00001278 } else if (isa<Constant>(*GEP.idx_begin()) &&
Chris Lattner28977af2004-04-05 01:30:19 +00001279 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
Chris Lattnerf9b91bb2009-08-30 05:08:50 +00001280 Src->getNumOperands() != 1) {
Chris Lattner90ac28c2002-08-02 19:29:35 +00001281 // Otherwise we can do the fold if the first index of the GEP is a zero
Chris Lattnerab984842009-08-30 05:30:55 +00001282 Indices.append(Src->op_begin()+1, Src->op_end());
1283 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
Chris Lattner90ac28c2002-08-02 19:29:35 +00001284 }
1285
Dan Gohmanf8dbee72009-09-07 23:54:19 +00001286 if (!Indices.empty())
Chris Lattner948cdeb2010-01-05 07:42:10 +00001287 return (GEP.isInBounds() && Src->isInBounds()) ?
Jay Foada9203102011-07-25 09:48:08 +00001288 GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
1289 GEP.getName()) :
1290 GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
Chris Lattner6e24d832009-08-30 05:00:50 +00001291 }
Nadav Rotem0286ca82011-04-05 14:29:52 +00001292
Benjamin Kramer4c332fa2013-09-20 14:38:44 +00001293 // Canonicalize (gep i8* X, -(ptrtoint Y)) to (sub (ptrtoint X), (ptrtoint Y))
1294 // The GEP pattern is emitted by the SCEV expander for certain kinds of
1295 // pointer arithmetic.
Stephen Hines36b56882014-04-23 16:57:46 -07001296 if (DL && GEP.getNumIndices() == 1 &&
Matt Arsenault1df59ef2013-10-03 18:15:57 +00001297 match(GEP.getOperand(1), m_Neg(m_PtrToInt(m_Value())))) {
1298 unsigned AS = GEP.getPointerAddressSpace();
1299 if (GEP.getType() == Builder->getInt8PtrTy(AS) &&
1300 GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
Stephen Hines36b56882014-04-23 16:57:46 -07001301 DL->getPointerSizeInBits(AS)) {
Matt Arsenault1df59ef2013-10-03 18:15:57 +00001302 Operator *Index = cast<Operator>(GEP.getOperand(1));
1303 Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
1304 Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
1305 return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
1306 }
Benjamin Kramer4c332fa2013-09-20 14:38:44 +00001307 }
1308
Chris Lattnerf9b91bb2009-08-30 05:08:50 +00001309 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
Chris Lattner948cdeb2010-01-05 07:42:10 +00001310 Value *StrippedPtr = PtrOp->stripPointerCasts();
Nadav Rotemc71108b2012-03-26 20:39:18 +00001311 PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
1312
Nadav Rotem02f0a492012-03-26 21:00:53 +00001313 // We do not handle pointer-vector geps here.
1314 if (!StrippedPtrTy)
Stephen Hinesdce4a402014-05-29 02:49:00 -07001315 return nullptr;
Nadav Rotem02f0a492012-03-26 21:00:53 +00001316
Stephen Hines36b56882014-04-23 16:57:46 -07001317 if (StrippedPtr != PtrOp) {
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001318 bool HasZeroPointerIndex = false;
1319 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1320 HasZeroPointerIndex = C->isZero();
Nadav Rotem0286ca82011-04-05 14:29:52 +00001321
Chris Lattner963f4ba2009-08-30 20:36:46 +00001322 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1323 // into : GEP [10 x i8]* X, i32 0, ...
1324 //
1325 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1326 // into : GEP i8* X, ...
Nadav Rotem0286ca82011-04-05 14:29:52 +00001327 //
Chris Lattner963f4ba2009-08-30 20:36:46 +00001328 // This occurs when the program declares an array extern like "int X[];"
Chris Lattner6e24d832009-08-30 05:00:50 +00001329 if (HasZeroPointerIndex) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001330 PointerType *CPTy = cast<PointerType>(PtrOp->getType());
1331 if (ArrayType *CATy =
Duncan Sands5b7cfb02009-03-02 09:18:21 +00001332 dyn_cast<ArrayType>(CPTy->getElementType())) {
1333 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
Chris Lattner948cdeb2010-01-05 07:42:10 +00001334 if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
Duncan Sands5b7cfb02009-03-02 09:18:21 +00001335 // -> GEP i8* X, ...
Chris Lattner948cdeb2010-01-05 07:42:10 +00001336 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1337 GetElementPtrInst *Res =
Jay Foada9203102011-07-25 09:48:08 +00001338 GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
Chris Lattner948cdeb2010-01-05 07:42:10 +00001339 Res->setIsInBounds(GEP.isInBounds());
Stephen Hinesdce4a402014-05-29 02:49:00 -07001340 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
1341 return Res;
1342 // Insert Res, and create an addrspacecast.
1343 // e.g.,
1344 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
1345 // ->
1346 // %0 = GEP i8 addrspace(1)* X, ...
1347 // addrspacecast i8 addrspace(1)* %0 to i8*
1348 return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType());
Chris Lattner963f4ba2009-08-30 20:36:46 +00001349 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001350
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001351 if (ArrayType *XATy =
Chris Lattner948cdeb2010-01-05 07:42:10 +00001352 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
Duncan Sands5b7cfb02009-03-02 09:18:21 +00001353 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
Chris Lattnereed48272005-09-13 00:40:14 +00001354 if (CATy->getElementType() == XATy->getElementType()) {
Duncan Sands5b7cfb02009-03-02 09:18:21 +00001355 // -> GEP [10 x i8]* X, i32 0, ...
Chris Lattnereed48272005-09-13 00:40:14 +00001356 // At this point, we know that the cast source type is a pointer
1357 // to an array of the same type as the destination pointer
1358 // array. Because the array type is never stepped over (there
1359 // is a leading zero) we can fold the cast into this GEP.
Stephen Hinesdce4a402014-05-29 02:49:00 -07001360 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
1361 GEP.setOperand(0, StrippedPtr);
1362 return &GEP;
1363 }
1364 // Cannot replace the base pointer directly because StrippedPtr's
1365 // address space is different. Instead, create a new GEP followed by
1366 // an addrspacecast.
1367 // e.g.,
1368 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
1369 // i32 0, ...
1370 // ->
1371 // %0 = GEP [10 x i8] addrspace(1)* X, ...
1372 // addrspacecast i8 addrspace(1)* %0 to i8*
1373 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
1374 Value *NewGEP = GEP.isInBounds() ?
1375 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
1376 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
1377 return new AddrSpaceCastInst(NewGEP, GEP.getType());
Chris Lattnereed48272005-09-13 00:40:14 +00001378 }
Duncan Sands5b7cfb02009-03-02 09:18:21 +00001379 }
1380 }
Chris Lattnereed48272005-09-13 00:40:14 +00001381 } else if (GEP.getNumOperands() == 2) {
1382 // Transform things like:
Wojciech Matyjewiczed223252007-12-12 15:21:32 +00001383 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1384 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001385 Type *SrcElTy = StrippedPtrTy->getElementType();
Matt Arsenault3ea117e2013-08-14 00:24:34 +00001386 Type *ResElTy = PtrOp->getType()->getPointerElementType();
Stephen Hines36b56882014-04-23 16:57:46 -07001387 if (DL && SrcElTy->isArrayTy() &&
1388 DL->getTypeAllocSize(SrcElTy->getArrayElementType()) ==
1389 DL->getTypeAllocSize(ResElTy)) {
1390 Type *IdxType = DL->getIntPtrType(GEP.getType());
Matt Arsenaultfdc26602013-08-14 00:24:38 +00001391 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
Chris Lattner948cdeb2010-01-05 07:42:10 +00001392 Value *NewGEP = GEP.isInBounds() ?
Jay Foad0a2a60a2011-07-22 08:16:57 +00001393 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
1394 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
Stephen Hines36b56882014-04-23 16:57:46 -07001395
Reid Spencer3da59db2006-11-27 01:05:10 +00001396 // V and GEP are both pointer types --> BitCast
Stephen Hines36b56882014-04-23 16:57:46 -07001397 if (StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace())
1398 return new BitCastInst(NewGEP, GEP.getType());
1399 return new AddrSpaceCastInst(NewGEP, GEP.getType());
Chris Lattnerc6bd1952004-02-22 05:25:17 +00001400 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001401
Chris Lattner7835cdd2005-09-13 18:36:04 +00001402 // Transform things like:
Duncan Sandsbbc70162012-10-23 08:28:26 +00001403 // %V = mul i64 %N, 4
1404 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1405 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
Stephen Hines36b56882014-04-23 16:57:46 -07001406 if (DL && ResElTy->isSized() && SrcElTy->isSized()) {
Duncan Sandsbbc70162012-10-23 08:28:26 +00001407 // Check that changing the type amounts to dividing the index by a scale
1408 // factor.
Stephen Hines36b56882014-04-23 16:57:46 -07001409 uint64_t ResSize = DL->getTypeAllocSize(ResElTy);
1410 uint64_t SrcSize = DL->getTypeAllocSize(SrcElTy);
Duncan Sandsbbc70162012-10-23 08:28:26 +00001411 if (ResSize && SrcSize % ResSize == 0) {
1412 Value *Idx = GEP.getOperand(1);
1413 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1414 uint64_t Scale = SrcSize / ResSize;
1415
1416 // Earlier transforms ensure that the index has type IntPtrType, which
1417 // considerably simplifies the logic by eliminating implicit casts.
Stephen Hines36b56882014-04-23 16:57:46 -07001418 assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) &&
Duncan Sandsbbc70162012-10-23 08:28:26 +00001419 "Index not cast to pointer width?");
1420
1421 bool NSW;
1422 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1423 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1424 // If the multiplication NewIdx * Scale may overflow then the new
1425 // GEP may not be "inbounds".
1426 Value *NewGEP = GEP.isInBounds() && NSW ?
1427 Builder->CreateInBoundsGEP(StrippedPtr, NewIdx, GEP.getName()) :
1428 Builder->CreateGEP(StrippedPtr, NewIdx, GEP.getName());
Stephen Hines36b56882014-04-23 16:57:46 -07001429
Duncan Sandsbbc70162012-10-23 08:28:26 +00001430 // The NewGEP must be pointer typed, so must the old one -> BitCast
Stephen Hines36b56882014-04-23 16:57:46 -07001431 if (StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace())
1432 return new BitCastInst(NewGEP, GEP.getType());
1433 return new AddrSpaceCastInst(NewGEP, GEP.getType());
Duncan Sandsbbc70162012-10-23 08:28:26 +00001434 }
1435 }
1436 }
1437
1438 // Similarly, transform things like:
Wojciech Matyjewiczed223252007-12-12 15:21:32 +00001439 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Chris Lattner7835cdd2005-09-13 18:36:04 +00001440 // (where tmp = 8*tmp2) into:
Wojciech Matyjewiczed223252007-12-12 15:21:32 +00001441 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Stephen Hines36b56882014-04-23 16:57:46 -07001442 if (DL && ResElTy->isSized() && SrcElTy->isSized() &&
Duncan Sandsbbc70162012-10-23 08:28:26 +00001443 SrcElTy->isArrayTy()) {
1444 // Check that changing to the array element type amounts to dividing the
1445 // index by a scale factor.
Stephen Hines36b56882014-04-23 16:57:46 -07001446 uint64_t ResSize = DL->getTypeAllocSize(ResElTy);
Matt Arsenault3ea117e2013-08-14 00:24:34 +00001447 uint64_t ArrayEltSize
Stephen Hines36b56882014-04-23 16:57:46 -07001448 = DL->getTypeAllocSize(SrcElTy->getArrayElementType());
Duncan Sandsbbc70162012-10-23 08:28:26 +00001449 if (ResSize && ArrayEltSize % ResSize == 0) {
1450 Value *Idx = GEP.getOperand(1);
1451 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1452 uint64_t Scale = ArrayEltSize / ResSize;
Jakub Staszak58c1da82012-05-06 13:52:31 +00001453
Duncan Sandsbbc70162012-10-23 08:28:26 +00001454 // Earlier transforms ensure that the index has type IntPtrType, which
1455 // considerably simplifies the logic by eliminating implicit casts.
Stephen Hines36b56882014-04-23 16:57:46 -07001456 assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) &&
Duncan Sandsbbc70162012-10-23 08:28:26 +00001457 "Index not cast to pointer width?");
1458
1459 bool NSW;
1460 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1461 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1462 // If the multiplication NewIdx * Scale may overflow then the new
1463 // GEP may not be "inbounds".
Matt Arsenaultfdc26602013-08-14 00:24:38 +00001464 Value *Off[2] = {
Stephen Hines36b56882014-04-23 16:57:46 -07001465 Constant::getNullValue(DL->getIntPtrType(GEP.getType())),
Matt Arsenaultfdc26602013-08-14 00:24:38 +00001466 NewIdx
1467 };
1468
Duncan Sandsbbc70162012-10-23 08:28:26 +00001469 Value *NewGEP = GEP.isInBounds() && NSW ?
1470 Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) :
1471 Builder->CreateGEP(StrippedPtr, Off, GEP.getName());
1472 // The NewGEP must be pointer typed, so must the old one -> BitCast
Stephen Hines36b56882014-04-23 16:57:46 -07001473 if (StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace())
1474 return new BitCastInst(NewGEP, GEP.getType());
1475 return new AddrSpaceCastInst(NewGEP, GEP.getType());
Chris Lattner7835cdd2005-09-13 18:36:04 +00001476 }
1477 }
Chris Lattner7835cdd2005-09-13 18:36:04 +00001478 }
Chris Lattnerc6bd1952004-02-22 05:25:17 +00001479 }
Chris Lattner8a2a3112001-12-14 16:52:21 +00001480 }
Nadav Rotem0286ca82011-04-05 14:29:52 +00001481
Stephen Hines36b56882014-04-23 16:57:46 -07001482 if (!DL)
Stephen Hinesdce4a402014-05-29 02:49:00 -07001483 return nullptr;
Matt Arsenaultc4ad9822013-08-19 22:17:34 +00001484
Chris Lattner46cd5a12009-01-09 05:44:56 +00001485 /// See if we can simplify:
Chris Lattner873ff012009-08-30 05:55:36 +00001486 /// X = bitcast A* to B*
Chris Lattner46cd5a12009-01-09 05:44:56 +00001487 /// Y = gep X, <...constant indices...>
1488 /// into a gep of the original struct. This is important for SROA and alias
1489 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
Chris Lattner58407792009-01-09 04:53:57 +00001490 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
Matt Arsenaultc4ad9822013-08-19 22:17:34 +00001491 Value *Operand = BCI->getOperand(0);
1492 PointerType *OpType = cast<PointerType>(Operand->getType());
Stephen Hines36b56882014-04-23 16:57:46 -07001493 unsigned OffsetBits = DL->getPointerTypeSizeInBits(OpType);
Matt Arsenaultc4ad9822013-08-19 22:17:34 +00001494 APInt Offset(OffsetBits, 0);
1495 if (!isa<BitCastInst>(Operand) &&
Stephen Hines36b56882014-04-23 16:57:46 -07001496 GEP.accumulateConstantOffset(*DL, Offset) &&
Nadav Rotem0286ca82011-04-05 14:29:52 +00001497 StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1498
Chris Lattner46cd5a12009-01-09 05:44:56 +00001499 // If this GEP instruction doesn't move the pointer, just replace the GEP
1500 // with a bitcast of the real input to the dest type.
Nuno Lopes98281a22012-12-30 16:25:48 +00001501 if (!Offset) {
Chris Lattner46cd5a12009-01-09 05:44:56 +00001502 // If the bitcast is of an allocation, and the allocation will be
1503 // converted to match the type of the cast, don't touch this.
Matt Arsenaultc4ad9822013-08-19 22:17:34 +00001504 if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) {
Chris Lattner46cd5a12009-01-09 05:44:56 +00001505 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1506 if (Instruction *I = visitBitCast(*BCI)) {
1507 if (I != BCI) {
1508 I->takeName(BCI);
1509 BCI->getParent()->getInstList().insert(BCI, I);
1510 ReplaceInstUsesWith(*BCI, I);
1511 }
1512 return &GEP;
Chris Lattner58407792009-01-09 04:53:57 +00001513 }
Chris Lattner58407792009-01-09 04:53:57 +00001514 }
Matt Arsenaultc4ad9822013-08-19 22:17:34 +00001515 return new BitCastInst(Operand, GEP.getType());
Chris Lattner58407792009-01-09 04:53:57 +00001516 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001517
Chris Lattner46cd5a12009-01-09 05:44:56 +00001518 // Otherwise, if the offset is non-zero, we need to find out if there is a
1519 // field at Offset in 'A's type. If so, we can pull the cast through the
1520 // GEP.
1521 SmallVector<Value*, 8> NewIndices;
Matt Arsenault8e3367e2013-08-19 22:17:40 +00001522 if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
Chris Lattner948cdeb2010-01-05 07:42:10 +00001523 Value *NGEP = GEP.isInBounds() ?
Matt Arsenaultc4ad9822013-08-19 22:17:34 +00001524 Builder->CreateInBoundsGEP(Operand, NewIndices) :
1525 Builder->CreateGEP(Operand, NewIndices);
Jakub Staszak58c1da82012-05-06 13:52:31 +00001526
Chris Lattnerf925cbd2009-08-30 18:50:58 +00001527 if (NGEP->getType() == GEP.getType())
1528 return ReplaceInstUsesWith(GEP, NGEP);
Chris Lattner46cd5a12009-01-09 05:44:56 +00001529 NGEP->takeName(&GEP);
1530 return new BitCastInst(NGEP, GEP.getType());
1531 }
Chris Lattner58407792009-01-09 04:53:57 +00001532 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001533 }
1534
Stephen Hinesdce4a402014-05-29 02:49:00 -07001535 return nullptr;
Chris Lattner8a2a3112001-12-14 16:52:21 +00001536}
1537
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001538static bool
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00001539isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1540 const TargetLibraryInfo *TLI) {
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001541 SmallVector<Instruction*, 4> Worklist;
1542 Worklist.push_back(AI);
Nick Lewyckyd8030c72011-08-02 22:08:01 +00001543
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001544 do {
1545 Instruction *PI = Worklist.pop_back_val();
Stephen Hines36b56882014-04-23 16:57:46 -07001546 for (User *U : PI->users()) {
1547 Instruction *I = cast<Instruction>(U);
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001548 switch (I->getOpcode()) {
1549 default:
1550 // Give up the moment we see something we can't handle.
Nuno Lopes99694582012-07-06 23:09:25 +00001551 return false;
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001552
1553 case Instruction::BitCast:
1554 case Instruction::GetElementPtr:
1555 Users.push_back(I);
1556 Worklist.push_back(I);
1557 continue;
1558
1559 case Instruction::ICmp: {
1560 ICmpInst *ICI = cast<ICmpInst>(I);
1561 // We can fold eq/ne comparisons with null to false/true, respectively.
1562 if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
1563 return false;
1564 Users.push_back(I);
1565 continue;
1566 }
1567
1568 case Instruction::Call:
1569 // Ignore no-op and store intrinsics.
1570 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1571 switch (II->getIntrinsicID()) {
1572 default:
1573 return false;
1574
1575 case Intrinsic::memmove:
1576 case Intrinsic::memcpy:
1577 case Intrinsic::memset: {
1578 MemIntrinsic *MI = cast<MemIntrinsic>(II);
1579 if (MI->isVolatile() || MI->getRawDest() != PI)
1580 return false;
1581 }
1582 // fall through
1583 case Intrinsic::dbg_declare:
1584 case Intrinsic::dbg_value:
1585 case Intrinsic::invariant_start:
1586 case Intrinsic::invariant_end:
1587 case Intrinsic::lifetime_start:
1588 case Intrinsic::lifetime_end:
1589 case Intrinsic::objectsize:
1590 Users.push_back(I);
1591 continue;
1592 }
1593 }
1594
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00001595 if (isFreeCall(I, TLI)) {
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001596 Users.push_back(I);
1597 continue;
1598 }
1599 return false;
1600
1601 case Instruction::Store: {
1602 StoreInst *SI = cast<StoreInst>(I);
1603 if (SI->isVolatile() || SI->getPointerOperand() != PI)
1604 return false;
1605 Users.push_back(I);
1606 continue;
1607 }
1608 }
1609 llvm_unreachable("missing a return?");
Nuno Lopes99694582012-07-06 23:09:25 +00001610 }
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001611 } while (!Worklist.empty());
Duncan Sands1d9b9732010-05-27 19:09:06 +00001612 return true;
1613}
1614
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001615Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
Duncan Sands1d9b9732010-05-27 19:09:06 +00001616 // If we have a malloc call which is only used in any amount of comparisons
1617 // to null and free calls, delete the calls and replace the comparisons with
1618 // true or false as appropriate.
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001619 SmallVector<WeakVH, 64> Users;
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00001620 if (isAllocSiteRemovable(&MI, Users, TLI)) {
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001621 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1622 Instruction *I = cast_or_null<Instruction>(&*Users[i]);
1623 if (!I) continue;
Duncan Sands1d9b9732010-05-27 19:09:06 +00001624
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001625 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
Nick Lewyckyd8030c72011-08-02 22:08:01 +00001626 ReplaceInstUsesWith(*C,
1627 ConstantInt::get(Type::getInt1Ty(C->getContext()),
1628 C->isFalseWhenEqual()));
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001629 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
Nick Lewyckyd8030c72011-08-02 22:08:01 +00001630 ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
Nuno Lopes99694582012-07-06 23:09:25 +00001631 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1632 if (II->getIntrinsicID() == Intrinsic::objectsize) {
1633 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1634 uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
1635 ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
1636 }
Duncan Sands1d9b9732010-05-27 19:09:06 +00001637 }
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001638 EraseInstFromFunction(*I);
Duncan Sands1d9b9732010-05-27 19:09:06 +00001639 }
Nuno Lopes2b3e9582012-06-21 21:25:05 +00001640
1641 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
Nuno Lopesc363c742012-06-28 22:31:24 +00001642 // Replace invoke with a NOP intrinsic to maintain the original CFG
Nuno Lopes3769fe12012-06-25 17:11:47 +00001643 Module *M = II->getParent()->getParent()->getParent();
Nuno Lopesc363c742012-06-28 22:31:24 +00001644 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
1645 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
Dmitri Gribenko5c332db2013-05-05 00:40:33 +00001646 None, "", II->getParent());
Nuno Lopes2b3e9582012-06-21 21:25:05 +00001647 }
Duncan Sands1d9b9732010-05-27 19:09:06 +00001648 return EraseInstFromFunction(MI);
1649 }
Stephen Hinesdce4a402014-05-29 02:49:00 -07001650 return nullptr;
Duncan Sands1d9b9732010-05-27 19:09:06 +00001651}
1652
Quentin Colombet637582e2013-01-07 18:37:41 +00001653/// \brief Move the call to free before a NULL test.
1654///
1655/// Check if this free is accessed after its argument has been test
1656/// against NULL (property 0).
1657/// If yes, it is legal to move this call in its predecessor block.
1658///
1659/// The move is performed only if the block containing the call to free
1660/// will be removed, i.e.:
1661/// 1. it has only one predecessor P, and P has two successors
1662/// 2. it contains the call and an unconditional branch
1663/// 3. its successor is the same as its predecessor's successor
1664///
1665/// The profitability is out-of concern here and this function should
1666/// be called only if the caller knows this transformation would be
1667/// profitable (e.g., for code size).
1668static Instruction *
1669tryToMoveFreeBeforeNullTest(CallInst &FI) {
1670 Value *Op = FI.getArgOperand(0);
1671 BasicBlock *FreeInstrBB = FI.getParent();
1672 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
1673
1674 // Validate part of constraint #1: Only one predecessor
1675 // FIXME: We can extend the number of predecessor, but in that case, we
1676 // would duplicate the call to free in each predecessor and it may
1677 // not be profitable even for code size.
1678 if (!PredBB)
Stephen Hinesdce4a402014-05-29 02:49:00 -07001679 return nullptr;
Quentin Colombet637582e2013-01-07 18:37:41 +00001680
1681 // Validate constraint #2: Does this block contains only the call to
1682 // free and an unconditional branch?
1683 // FIXME: We could check if we can speculate everything in the
1684 // predecessor block
1685 if (FreeInstrBB->size() != 2)
Stephen Hinesdce4a402014-05-29 02:49:00 -07001686 return nullptr;
Quentin Colombet637582e2013-01-07 18:37:41 +00001687 BasicBlock *SuccBB;
1688 if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
Stephen Hinesdce4a402014-05-29 02:49:00 -07001689 return nullptr;
Quentin Colombet637582e2013-01-07 18:37:41 +00001690
1691 // Validate the rest of constraint #1 by matching on the pred branch.
1692 TerminatorInst *TI = PredBB->getTerminator();
1693 BasicBlock *TrueBB, *FalseBB;
1694 ICmpInst::Predicate Pred;
1695 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
Stephen Hinesdce4a402014-05-29 02:49:00 -07001696 return nullptr;
Quentin Colombet637582e2013-01-07 18:37:41 +00001697 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
Stephen Hinesdce4a402014-05-29 02:49:00 -07001698 return nullptr;
Quentin Colombet637582e2013-01-07 18:37:41 +00001699
1700 // Validate constraint #3: Ensure the null case just falls through.
1701 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
Stephen Hinesdce4a402014-05-29 02:49:00 -07001702 return nullptr;
Quentin Colombet637582e2013-01-07 18:37:41 +00001703 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
1704 "Broken CFG: missing edge from predecessor to successor");
1705
1706 FI.moveBefore(TI);
1707 return &FI;
1708}
Duncan Sands1d9b9732010-05-27 19:09:06 +00001709
1710
Gabor Greif91697372010-06-24 12:21:15 +00001711Instruction *InstCombiner::visitFree(CallInst &FI) {
1712 Value *Op = FI.getArgOperand(0);
Victor Hernandez66284e02009-10-24 04:23:03 +00001713
1714 // free undef -> unreachable.
1715 if (isa<UndefValue>(Op)) {
1716 // Insert a new store to null because we cannot modify the CFG here.
Eli Friedmane6f364b2011-05-18 23:58:37 +00001717 Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
1718 UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
Victor Hernandez66284e02009-10-24 04:23:03 +00001719 return EraseInstFromFunction(FI);
1720 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001721
Victor Hernandez66284e02009-10-24 04:23:03 +00001722 // If we have 'free null' delete the instruction. This can happen in stl code
1723 // when lots of inlining happens.
1724 if (isa<ConstantPointerNull>(Op))
1725 return EraseInstFromFunction(FI);
1726
Quentin Colombet637582e2013-01-07 18:37:41 +00001727 // If we optimize for code size, try to move the call to free before the null
1728 // test so that simplify cfg can remove the empty block and dead code
1729 // elimination the branch. I.e., helps to turn something like:
1730 // if (foo) free(foo);
1731 // into
1732 // free(foo);
1733 if (MinimizeSize)
1734 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
1735 return I;
1736
Stephen Hinesdce4a402014-05-29 02:49:00 -07001737 return nullptr;
Victor Hernandez66284e02009-10-24 04:23:03 +00001738}
Chris Lattner67b1e1b2003-12-07 01:24:23 +00001739
Chris Lattner3284d1f2007-04-15 00:07:55 +00001740
Chris Lattner2f503e62005-01-31 05:36:43 +00001741
Chris Lattnerc4d10eb2003-06-04 04:46:00 +00001742Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
1743 // Change br (not X), label True, label False to: br X, label False, True
Stephen Hinesdce4a402014-05-29 02:49:00 -07001744 Value *X = nullptr;
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001745 BasicBlock *TrueDest;
1746 BasicBlock *FalseDest;
Dan Gohman4ae51262009-08-12 16:23:25 +00001747 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001748 !isa<Constant>(X)) {
1749 // Swap Destinations and condition...
1750 BI.setCondition(X);
Chandler Carruth602650c2011-10-17 01:11:57 +00001751 BI.swapSuccessors();
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001752 return &BI;
1753 }
1754
Stephen Hines36b56882014-04-23 16:57:46 -07001755 // Canonicalize fcmp_one -> fcmp_oeq
Reid Spencere4d87aa2006-12-23 06:05:41 +00001756 FCmpInst::Predicate FPred; Value *Y;
Jakub Staszak58c1da82012-05-06 13:52:31 +00001757 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
Chris Lattner7a1e9242009-08-30 06:13:40 +00001758 TrueDest, FalseDest)) &&
1759 BI.getCondition()->hasOneUse())
1760 if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
1761 FPred == FCmpInst::FCMP_OGE) {
1762 FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
1763 Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
Jakub Staszak58c1da82012-05-06 13:52:31 +00001764
Chris Lattner7a1e9242009-08-30 06:13:40 +00001765 // Swap Destinations and condition.
Chandler Carruth602650c2011-10-17 01:11:57 +00001766 BI.swapSuccessors();
Chris Lattner7a1e9242009-08-30 06:13:40 +00001767 Worklist.Add(Cond);
Reid Spencere4d87aa2006-12-23 06:05:41 +00001768 return &BI;
1769 }
1770
Stephen Hines36b56882014-04-23 16:57:46 -07001771 // Canonicalize icmp_ne -> icmp_eq
Reid Spencere4d87aa2006-12-23 06:05:41 +00001772 ICmpInst::Predicate IPred;
1773 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
Chris Lattner7a1e9242009-08-30 06:13:40 +00001774 TrueDest, FalseDest)) &&
1775 BI.getCondition()->hasOneUse())
1776 if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
1777 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
1778 IPred == ICmpInst::ICMP_SGE) {
1779 ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
1780 Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
1781 // Swap Destinations and condition.
Chandler Carruth602650c2011-10-17 01:11:57 +00001782 BI.swapSuccessors();
Chris Lattner7a1e9242009-08-30 06:13:40 +00001783 Worklist.Add(Cond);
Chris Lattner40f5d702003-06-04 05:10:11 +00001784 return &BI;
1785 }
Misha Brukmanfd939082005-04-21 23:48:37 +00001786
Stephen Hinesdce4a402014-05-29 02:49:00 -07001787 return nullptr;
Chris Lattnerc4d10eb2003-06-04 04:46:00 +00001788}
Chris Lattner0864acf2002-11-04 16:18:53 +00001789
Chris Lattner46238a62004-07-03 00:26:11 +00001790Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
1791 Value *Cond = SI.getCondition();
1792 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
1793 if (I->getOpcode() == Instruction::Add)
1794 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1795 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
Eli Friedmanbb5a7442011-09-29 20:21:17 +00001796 // Skip the first item since that's the default case.
Stepan Dyatkovskiy3d3abe02012-03-11 06:09:17 +00001797 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
Stepan Dyatkovskiyc10fa6c2012-03-08 07:06:20 +00001798 i != e; ++i) {
1799 ConstantInt* CaseVal = i.getCaseValue();
Eli Friedmanbb5a7442011-09-29 20:21:17 +00001800 Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal),
1801 AddRHS);
1802 assert(isa<ConstantInt>(NewCaseVal) &&
1803 "Result of expression should be constant");
Stepan Dyatkovskiyc10fa6c2012-03-08 07:06:20 +00001804 i.setValue(cast<ConstantInt>(NewCaseVal));
Eli Friedmanbb5a7442011-09-29 20:21:17 +00001805 }
1806 SI.setCondition(I->getOperand(0));
Chris Lattner7a1e9242009-08-30 06:13:40 +00001807 Worklist.Add(I);
Chris Lattner46238a62004-07-03 00:26:11 +00001808 return &SI;
1809 }
1810 }
Stephen Hinesdce4a402014-05-29 02:49:00 -07001811 return nullptr;
Chris Lattner46238a62004-07-03 00:26:11 +00001812}
1813
Matthijs Kooijmana9012ec2008-06-11 14:05:05 +00001814Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001815 Value *Agg = EV.getAggregateOperand();
Matthijs Kooijmana9012ec2008-06-11 14:05:05 +00001816
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001817 if (!EV.hasIndices())
1818 return ReplaceInstUsesWith(EV, Agg);
1819
1820 if (Constant *C = dyn_cast<Constant>(Agg)) {
Chris Lattnerd59ae902012-01-26 02:32:04 +00001821 if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
1822 if (EV.getNumIndices() == 0)
1823 return ReplaceInstUsesWith(EV, C2);
1824 // Extract the remaining indices out of the constant indexed by the
1825 // first index
1826 return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001827 }
Stephen Hinesdce4a402014-05-29 02:49:00 -07001828 return nullptr; // Can't handle other constants
Chris Lattnerd59ae902012-01-26 02:32:04 +00001829 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001830
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001831 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
1832 // We're extracting from an insertvalue instruction, compare the indices
1833 const unsigned *exti, *exte, *insi, *inse;
1834 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
1835 exte = EV.idx_end(), inse = IV->idx_end();
1836 exti != exte && insi != inse;
1837 ++exti, ++insi) {
1838 if (*insi != *exti)
1839 // The insert and extract both reference distinctly different elements.
1840 // This means the extract is not influenced by the insert, and we can
1841 // replace the aggregate operand of the extract with the aggregate
1842 // operand of the insert. i.e., replace
1843 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1844 // %E = extractvalue { i32, { i32 } } %I, 0
1845 // with
1846 // %E = extractvalue { i32, { i32 } } %A, 0
1847 return ExtractValueInst::Create(IV->getAggregateOperand(),
Jay Foadfc6d3a42011-07-13 10:26:04 +00001848 EV.getIndices());
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001849 }
1850 if (exti == exte && insi == inse)
1851 // Both iterators are at the end: Index lists are identical. Replace
1852 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1853 // %C = extractvalue { i32, { i32 } } %B, 1, 0
1854 // with "i32 42"
1855 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
1856 if (exti == exte) {
1857 // The extract list is a prefix of the insert list. i.e. replace
1858 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1859 // %E = extractvalue { i32, { i32 } } %I, 1
1860 // with
1861 // %X = extractvalue { i32, { i32 } } %A, 1
1862 // %E = insertvalue { i32 } %X, i32 42, 0
1863 // by switching the order of the insert and extract (though the
1864 // insertvalue should be left in, since it may have other uses).
Chris Lattnerf925cbd2009-08-30 18:50:58 +00001865 Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
Jay Foadfc6d3a42011-07-13 10:26:04 +00001866 EV.getIndices());
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001867 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
Frits van Bommel39b5abf2011-07-18 12:00:32 +00001868 makeArrayRef(insi, inse));
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001869 }
1870 if (insi == inse)
1871 // The insert list is a prefix of the extract list
1872 // We can simply remove the common indices from the extract and make it
1873 // operate on the inserted value instead of the insertvalue result.
1874 // i.e., replace
1875 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1876 // %E = extractvalue { i32, { i32 } } %I, 1, 0
1877 // with
1878 // %E extractvalue { i32 } { i32 42 }, 0
Jakub Staszak58c1da82012-05-06 13:52:31 +00001879 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
Frits van Bommel39b5abf2011-07-18 12:00:32 +00001880 makeArrayRef(exti, exte));
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001881 }
Chris Lattner7e606e22009-11-09 07:07:56 +00001882 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
1883 // We're extracting from an intrinsic, see if we're the only user, which
1884 // allows us to simplify multiple result intrinsics to simpler things that
Gabor Greif91697372010-06-24 12:21:15 +00001885 // just get one value.
Chris Lattner7e606e22009-11-09 07:07:56 +00001886 if (II->hasOneUse()) {
1887 // Check if we're grabbing the overflow bit or the result of a 'with
1888 // overflow' intrinsic. If it's the latter we can remove the intrinsic
1889 // and replace it with a traditional binary instruction.
1890 switch (II->getIntrinsicID()) {
1891 case Intrinsic::uadd_with_overflow:
1892 case Intrinsic::sadd_with_overflow:
1893 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif91697372010-06-24 12:21:15 +00001894 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedman3e22cb92011-05-18 00:32:01 +00001895 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner7e606e22009-11-09 07:07:56 +00001896 EraseInstFromFunction(*II);
1897 return BinaryOperator::CreateAdd(LHS, RHS);
1898 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001899
Chris Lattner74b64612010-12-19 19:43:52 +00001900 // If the normal result of the add is dead, and the RHS is a constant,
1901 // we can transform this into a range comparison.
1902 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
Chris Lattnerf2a97ed2010-12-19 23:24:04 +00001903 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
1904 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
1905 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
1906 ConstantExpr::getNot(CI));
Chris Lattner7e606e22009-11-09 07:07:56 +00001907 break;
1908 case Intrinsic::usub_with_overflow:
1909 case Intrinsic::ssub_with_overflow:
1910 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif91697372010-06-24 12:21:15 +00001911 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedman3e22cb92011-05-18 00:32:01 +00001912 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner7e606e22009-11-09 07:07:56 +00001913 EraseInstFromFunction(*II);
1914 return BinaryOperator::CreateSub(LHS, RHS);
1915 }
1916 break;
1917 case Intrinsic::umul_with_overflow:
1918 case Intrinsic::smul_with_overflow:
1919 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif91697372010-06-24 12:21:15 +00001920 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedman3e22cb92011-05-18 00:32:01 +00001921 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner7e606e22009-11-09 07:07:56 +00001922 EraseInstFromFunction(*II);
1923 return BinaryOperator::CreateMul(LHS, RHS);
1924 }
1925 break;
1926 default:
1927 break;
1928 }
1929 }
1930 }
Frits van Bommel34ceb4d2010-11-29 21:56:20 +00001931 if (LoadInst *L = dyn_cast<LoadInst>(Agg))
1932 // If the (non-volatile) load only has one use, we can rewrite this to a
1933 // load from a GEP. This reduces the size of the load.
1934 // FIXME: If a load is used only by extractvalue instructions then this
1935 // could be done regardless of having multiple uses.
Eli Friedmancc4a0432011-08-15 22:09:40 +00001936 if (L->isSimple() && L->hasOneUse()) {
Frits van Bommel34ceb4d2010-11-29 21:56:20 +00001937 // extractvalue has integer indices, getelementptr has Value*s. Convert.
1938 SmallVector<Value*, 4> Indices;
1939 // Prefix an i32 0 since we need the first element.
1940 Indices.push_back(Builder->getInt32(0));
1941 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
1942 I != E; ++I)
1943 Indices.push_back(Builder->getInt32(*I));
1944
1945 // We need to insert these at the location of the old load, not at that of
1946 // the extractvalue.
1947 Builder->SetInsertPoint(L->getParent(), L);
Jay Foad0a2a60a2011-07-22 08:16:57 +00001948 Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
Frits van Bommel34ceb4d2010-11-29 21:56:20 +00001949 // Returning the load directly will cause the main loop to insert it in
1950 // the wrong spot, so use ReplaceInstUsesWith().
1951 return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
1952 }
1953 // We could simplify extracts from other values. Note that nested extracts may
1954 // already be simplified implicitly by the above: extract (extract (insert) )
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001955 // will be translated into extract ( insert ( extract ) ) first and then just
Frits van Bommel34ceb4d2010-11-29 21:56:20 +00001956 // the value inserted, if appropriate. Similarly for extracts from single-use
1957 // loads: extract (extract (load)) will be translated to extract (load (gep))
1958 // and if again single-use then via load (gep (gep)) to load (gep).
1959 // However, double extracts from e.g. function arguments or return values
1960 // aren't handled yet.
Stephen Hinesdce4a402014-05-29 02:49:00 -07001961 return nullptr;
Matthijs Kooijmana9012ec2008-06-11 14:05:05 +00001962}
1963
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00001964enum Personality_Type {
1965 Unknown_Personality,
1966 GNU_Ada_Personality,
Bill Wendling76f267d2011-10-17 21:20:24 +00001967 GNU_CXX_Personality,
1968 GNU_ObjC_Personality
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00001969};
1970
1971/// RecognizePersonality - See if the given exception handling personality
1972/// function is one that we understand. If so, return a description of it;
1973/// otherwise return Unknown_Personality.
1974static Personality_Type RecognizePersonality(Value *Pers) {
1975 Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
1976 if (!F)
1977 return Unknown_Personality;
1978 return StringSwitch<Personality_Type>(F->getName())
1979 .Case("__gnat_eh_personality", GNU_Ada_Personality)
Bill Wendling76f267d2011-10-17 21:20:24 +00001980 .Case("__gxx_personality_v0", GNU_CXX_Personality)
1981 .Case("__objc_personality_v0", GNU_ObjC_Personality)
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00001982 .Default(Unknown_Personality);
1983}
1984
1985/// isCatchAll - Return 'true' if the given typeinfo will match anything.
1986static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
1987 switch (Personality) {
1988 case Unknown_Personality:
1989 return false;
1990 case GNU_Ada_Personality:
1991 // While __gnat_all_others_value will match any Ada exception, it doesn't
1992 // match foreign exceptions (or didn't, before gcc-4.7).
1993 return false;
1994 case GNU_CXX_Personality:
Bill Wendling76f267d2011-10-17 21:20:24 +00001995 case GNU_ObjC_Personality:
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00001996 return TypeInfo->isNullValue();
1997 }
1998 llvm_unreachable("Unknown personality!");
1999}
2000
2001static bool shorter_filter(const Value *LHS, const Value *RHS) {
2002 return
2003 cast<ArrayType>(LHS->getType())->getNumElements()
2004 <
2005 cast<ArrayType>(RHS->getType())->getNumElements();
2006}
2007
2008Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
2009 // The logic here should be correct for any real-world personality function.
2010 // However if that turns out not to be true, the offending logic can always
2011 // be conditioned on the personality function, like the catch-all logic is.
2012 Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());
2013
2014 // Simplify the list of clauses, eg by removing repeated catch clauses
2015 // (these are often created by inlining).
2016 bool MakeNewInstruction = false; // If true, recreate using the following:
2017 SmallVector<Value *, 16> NewClauses; // - Clauses for the new instruction;
2018 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
2019
2020 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
2021 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
2022 bool isLastClause = i + 1 == e;
2023 if (LI.isCatch(i)) {
2024 // A catch clause.
2025 Value *CatchClause = LI.getClause(i);
2026 Constant *TypeInfo = cast<Constant>(CatchClause->stripPointerCasts());
2027
2028 // If we already saw this clause, there is no point in having a second
2029 // copy of it.
2030 if (AlreadyCaught.insert(TypeInfo)) {
2031 // This catch clause was not already seen.
2032 NewClauses.push_back(CatchClause);
2033 } else {
2034 // Repeated catch clause - drop the redundant copy.
2035 MakeNewInstruction = true;
2036 }
2037
2038 // If this is a catch-all then there is no point in keeping any following
2039 // clauses or marking the landingpad as having a cleanup.
2040 if (isCatchAll(Personality, TypeInfo)) {
2041 if (!isLastClause)
2042 MakeNewInstruction = true;
2043 CleanupFlag = false;
2044 break;
2045 }
2046 } else {
2047 // A filter clause. If any of the filter elements were already caught
2048 // then they can be dropped from the filter. It is tempting to try to
2049 // exploit the filter further by saying that any typeinfo that does not
2050 // occur in the filter can't be caught later (and thus can be dropped).
2051 // However this would be wrong, since typeinfos can match without being
2052 // equal (for example if one represents a C++ class, and the other some
2053 // class derived from it).
2054 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
2055 Value *FilterClause = LI.getClause(i);
2056 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
2057 unsigned NumTypeInfos = FilterType->getNumElements();
2058
2059 // An empty filter catches everything, so there is no point in keeping any
2060 // following clauses or marking the landingpad as having a cleanup. By
2061 // dealing with this case here the following code is made a bit simpler.
2062 if (!NumTypeInfos) {
2063 NewClauses.push_back(FilterClause);
2064 if (!isLastClause)
2065 MakeNewInstruction = true;
2066 CleanupFlag = false;
2067 break;
2068 }
2069
2070 bool MakeNewFilter = false; // If true, make a new filter.
2071 SmallVector<Constant *, 16> NewFilterElts; // New elements.
2072 if (isa<ConstantAggregateZero>(FilterClause)) {
2073 // Not an empty filter - it contains at least one null typeinfo.
2074 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
2075 Constant *TypeInfo =
2076 Constant::getNullValue(FilterType->getElementType());
2077 // If this typeinfo is a catch-all then the filter can never match.
2078 if (isCatchAll(Personality, TypeInfo)) {
2079 // Throw the filter away.
2080 MakeNewInstruction = true;
2081 continue;
2082 }
2083
2084 // There is no point in having multiple copies of this typeinfo, so
2085 // discard all but the first copy if there is more than one.
2086 NewFilterElts.push_back(TypeInfo);
2087 if (NumTypeInfos > 1)
2088 MakeNewFilter = true;
2089 } else {
2090 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
2091 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
2092 NewFilterElts.reserve(NumTypeInfos);
2093
2094 // Remove any filter elements that were already caught or that already
2095 // occurred in the filter. While there, see if any of the elements are
2096 // catch-alls. If so, the filter can be discarded.
2097 bool SawCatchAll = false;
2098 for (unsigned j = 0; j != NumTypeInfos; ++j) {
2099 Value *Elt = Filter->getOperand(j);
2100 Constant *TypeInfo = cast<Constant>(Elt->stripPointerCasts());
2101 if (isCatchAll(Personality, TypeInfo)) {
2102 // This element is a catch-all. Bail out, noting this fact.
2103 SawCatchAll = true;
2104 break;
2105 }
2106 if (AlreadyCaught.count(TypeInfo))
2107 // Already caught by an earlier clause, so having it in the filter
2108 // is pointless.
2109 continue;
2110 // There is no point in having multiple copies of the same typeinfo in
2111 // a filter, so only add it if we didn't already.
2112 if (SeenInFilter.insert(TypeInfo))
2113 NewFilterElts.push_back(cast<Constant>(Elt));
2114 }
2115 // A filter containing a catch-all cannot match anything by definition.
2116 if (SawCatchAll) {
2117 // Throw the filter away.
2118 MakeNewInstruction = true;
2119 continue;
2120 }
2121
2122 // If we dropped something from the filter, make a new one.
2123 if (NewFilterElts.size() < NumTypeInfos)
2124 MakeNewFilter = true;
2125 }
2126 if (MakeNewFilter) {
2127 FilterType = ArrayType::get(FilterType->getElementType(),
2128 NewFilterElts.size());
2129 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
2130 MakeNewInstruction = true;
2131 }
2132
2133 NewClauses.push_back(FilterClause);
2134
2135 // If the new filter is empty then it will catch everything so there is
2136 // no point in keeping any following clauses or marking the landingpad
2137 // as having a cleanup. The case of the original filter being empty was
2138 // already handled above.
2139 if (MakeNewFilter && !NewFilterElts.size()) {
2140 assert(MakeNewInstruction && "New filter but not a new instruction!");
2141 CleanupFlag = false;
2142 break;
2143 }
2144 }
2145 }
2146
2147 // If several filters occur in a row then reorder them so that the shortest
2148 // filters come first (those with the smallest number of elements). This is
2149 // advantageous because shorter filters are more likely to match, speeding up
2150 // unwinding, but mostly because it increases the effectiveness of the other
2151 // filter optimizations below.
2152 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
2153 unsigned j;
2154 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2155 for (j = i; j != e; ++j)
2156 if (!isa<ArrayType>(NewClauses[j]->getType()))
2157 break;
2158
2159 // Check whether the filters are already sorted by length. We need to know
2160 // if sorting them is actually going to do anything so that we only make a
2161 // new landingpad instruction if it does.
2162 for (unsigned k = i; k + 1 < j; ++k)
2163 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2164 // Not sorted, so sort the filters now. Doing an unstable sort would be
2165 // correct too but reordering filters pointlessly might confuse users.
2166 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2167 shorter_filter);
2168 MakeNewInstruction = true;
2169 break;
2170 }
2171
2172 // Look for the next batch of filters.
2173 i = j + 1;
2174 }
2175
2176 // If typeinfos matched if and only if equal, then the elements of a filter L
2177 // that occurs later than a filter F could be replaced by the intersection of
2178 // the elements of F and L. In reality two typeinfos can match without being
2179 // equal (for example if one represents a C++ class, and the other some class
2180 // derived from it) so it would be wrong to perform this transform in general.
2181 // However the transform is correct and useful if F is a subset of L. In that
2182 // case L can be replaced by F, and thus removed altogether since repeating a
2183 // filter is pointless. So here we look at all pairs of filters F and L where
2184 // L follows F in the list of clauses, and remove L if every element of F is
2185 // an element of L. This can occur when inlining C++ functions with exception
2186 // specifications.
2187 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2188 // Examine each filter in turn.
2189 Value *Filter = NewClauses[i];
2190 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2191 if (!FTy)
2192 // Not a filter - skip it.
2193 continue;
2194 unsigned FElts = FTy->getNumElements();
2195 // Examine each filter following this one. Doing this backwards means that
2196 // we don't have to worry about filters disappearing under us when removed.
2197 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2198 Value *LFilter = NewClauses[j];
2199 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2200 if (!LTy)
2201 // Not a filter - skip it.
2202 continue;
2203 // If Filter is a subset of LFilter, i.e. every element of Filter is also
2204 // an element of LFilter, then discard LFilter.
Craig Topper6227d5c2013-07-04 01:31:24 +00002205 SmallVectorImpl<Value *>::iterator J = NewClauses.begin() + j;
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00002206 // If Filter is empty then it is a subset of LFilter.
2207 if (!FElts) {
2208 // Discard LFilter.
2209 NewClauses.erase(J);
2210 MakeNewInstruction = true;
2211 // Move on to the next filter.
2212 continue;
2213 }
2214 unsigned LElts = LTy->getNumElements();
2215 // If Filter is longer than LFilter then it cannot be a subset of it.
2216 if (FElts > LElts)
2217 // Move on to the next filter.
2218 continue;
2219 // At this point we know that LFilter has at least one element.
2220 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002221 // Filter is a subset of LFilter iff Filter contains only zeros (as we
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00002222 // already know that Filter is not longer than LFilter).
2223 if (isa<ConstantAggregateZero>(Filter)) {
2224 assert(FElts <= LElts && "Should have handled this case earlier!");
2225 // Discard LFilter.
2226 NewClauses.erase(J);
2227 MakeNewInstruction = true;
2228 }
2229 // Move on to the next filter.
2230 continue;
2231 }
2232 ConstantArray *LArray = cast<ConstantArray>(LFilter);
2233 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
2234 // Since Filter is non-empty and contains only zeros, it is a subset of
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002235 // LFilter iff LFilter contains a zero.
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00002236 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
2237 for (unsigned l = 0; l != LElts; ++l)
2238 if (LArray->getOperand(l)->isNullValue()) {
2239 // LFilter contains a zero - discard it.
2240 NewClauses.erase(J);
2241 MakeNewInstruction = true;
2242 break;
2243 }
2244 // Move on to the next filter.
2245 continue;
2246 }
2247 // At this point we know that both filters are ConstantArrays. Loop over
2248 // operands to see whether every element of Filter is also an element of
2249 // LFilter. Since filters tend to be short this is probably faster than
2250 // using a method that scales nicely.
2251 ConstantArray *FArray = cast<ConstantArray>(Filter);
2252 bool AllFound = true;
2253 for (unsigned f = 0; f != FElts; ++f) {
2254 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
2255 AllFound = false;
2256 for (unsigned l = 0; l != LElts; ++l) {
2257 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
2258 if (LTypeInfo == FTypeInfo) {
2259 AllFound = true;
2260 break;
2261 }
2262 }
2263 if (!AllFound)
2264 break;
2265 }
2266 if (AllFound) {
2267 // Discard LFilter.
2268 NewClauses.erase(J);
2269 MakeNewInstruction = true;
2270 }
2271 // Move on to the next filter.
2272 }
2273 }
2274
2275 // If we changed any of the clauses, replace the old landingpad instruction
2276 // with a new one.
2277 if (MakeNewInstruction) {
2278 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
2279 LI.getPersonalityFn(),
2280 NewClauses.size());
2281 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
2282 NLI->addClause(NewClauses[i]);
2283 // A landing pad with no clauses must have the cleanup flag set. It is
2284 // theoretically possible, though highly unlikely, that we eliminated all
2285 // clauses. If so, force the cleanup flag to true.
2286 if (NewClauses.empty())
2287 CleanupFlag = true;
2288 NLI->setCleanup(CleanupFlag);
2289 return NLI;
2290 }
2291
2292 // Even if none of the clauses changed, we may nonetheless have understood
2293 // that the cleanup flag is pointless. Clear it if so.
2294 if (LI.isCleanup() != CleanupFlag) {
2295 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
2296 LI.setCleanup(CleanupFlag);
2297 return &LI;
2298 }
2299
Stephen Hinesdce4a402014-05-29 02:49:00 -07002300 return nullptr;
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00002301}
2302
Chris Lattnera844fc4c2006-04-10 22:45:52 +00002303
Robert Bocchino1d7456d2006-01-13 22:48:06 +00002304
Chris Lattnerea1c4542004-12-08 23:43:58 +00002305
2306/// TryToSinkInstruction - Try to move the specified instruction from its
2307/// current block into the beginning of DestBlock, which can only happen if it's
2308/// safe to move the instruction past all of the instructions between it and the
2309/// end of its block.
2310static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
2311 assert(I->hasOneUse() && "Invariants didn't hold!");
2312
Bill Wendling9d6070f2011-08-15 21:14:31 +00002313 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Bill Wendlingc9b2a982011-08-17 20:36:44 +00002314 if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
2315 isa<TerminatorInst>(I))
Chris Lattnerbfc538c2008-05-09 15:07:33 +00002316 return false;
Misha Brukmanfd939082005-04-21 23:48:37 +00002317
Chris Lattnerea1c4542004-12-08 23:43:58 +00002318 // Do not sink alloca instructions out of the entry block.
Dan Gohmanecb7a772007-03-22 16:38:57 +00002319 if (isa<AllocaInst>(I) && I->getParent() ==
2320 &DestBlock->getParent()->getEntryBlock())
Chris Lattnerea1c4542004-12-08 23:43:58 +00002321 return false;
2322
Chris Lattner96a52a62004-12-09 07:14:34 +00002323 // We can only sink load instructions if there is nothing between the load and
2324 // the end of block that could change the value.
Chris Lattner2539e332008-05-08 17:37:37 +00002325 if (I->mayReadFromMemory()) {
2326 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Chris Lattner96a52a62004-12-09 07:14:34 +00002327 Scan != E; ++Scan)
2328 if (Scan->mayWriteToMemory())
2329 return false;
Chris Lattner96a52a62004-12-09 07:14:34 +00002330 }
Chris Lattnerea1c4542004-12-08 23:43:58 +00002331
Bill Wendling5b6f42f2011-08-16 20:45:24 +00002332 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
Chris Lattner4bc5f802005-08-08 19:11:57 +00002333 I->moveBefore(InsertPos);
Chris Lattnerea1c4542004-12-08 23:43:58 +00002334 ++NumSunkInst;
2335 return true;
2336}
2337
Chris Lattnerf4f5a772006-05-10 19:00:36 +00002338
2339/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
2340/// all reachable code to the worklist.
2341///
2342/// This has a couple of tricks to make the code faster and more powerful. In
2343/// particular, we constant fold and DCE instructions as we go, to avoid adding
2344/// them to the worklist (this significantly speeds up instcombine on code where
2345/// many instructions are dead or constant). Additionally, if we find a branch
2346/// whose condition is a known constant, we only visit the reachable successors.
2347///
Jakub Staszak58c1da82012-05-06 13:52:31 +00002348static bool AddReachableCodeToWorklist(BasicBlock *BB,
Chris Lattner1f87a582007-02-15 19:41:52 +00002349 SmallPtrSet<BasicBlock*, 64> &Visited,
Chris Lattnerdbab3862007-03-02 21:28:56 +00002350 InstCombiner &IC,
Stephen Hines36b56882014-04-23 16:57:46 -07002351 const DataLayout *DL,
Chad Rosier00737bd2011-12-01 21:29:16 +00002352 const TargetLibraryInfo *TLI) {
Chris Lattner2ee743b2009-10-15 04:59:28 +00002353 bool MadeIRChange = false;
Chris Lattner2806dff2008-08-15 04:03:01 +00002354 SmallVector<BasicBlock*, 256> Worklist;
Chris Lattner2c7718a2007-03-23 19:17:18 +00002355 Worklist.push_back(BB);
Chris Lattnerf4f5a772006-05-10 19:00:36 +00002356
Benjamin Kramera53fe602010-10-23 17:10:24 +00002357 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
Eli Friedmana4d4aeb2011-05-24 18:52:07 +00002358 DenseMap<ConstantExpr*, Constant*> FoldedConstants;
2359
Dan Gohman321a8132010-01-05 16:27:25 +00002360 do {
2361 BB = Worklist.pop_back_val();
Jakub Staszak58c1da82012-05-06 13:52:31 +00002362
Chris Lattner2c7718a2007-03-23 19:17:18 +00002363 // We have now visited this block! If we've already been here, ignore it.
2364 if (!Visited.insert(BB)) continue;
Devang Patel7fe1dec2008-11-19 18:56:50 +00002365
Chris Lattner2c7718a2007-03-23 19:17:18 +00002366 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
2367 Instruction *Inst = BBI++;
Jakub Staszak58c1da82012-05-06 13:52:31 +00002368
Chris Lattner2c7718a2007-03-23 19:17:18 +00002369 // DCE instruction if trivially dead.
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00002370 if (isInstructionTriviallyDead(Inst, TLI)) {
Chris Lattner2c7718a2007-03-23 19:17:18 +00002371 ++NumDeadInst;
Matt Arsenault596aa122013-09-05 19:48:28 +00002372 DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
Chris Lattner2c7718a2007-03-23 19:17:18 +00002373 Inst->eraseFromParent();
2374 continue;
2375 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00002376
Chris Lattner2c7718a2007-03-23 19:17:18 +00002377 // ConstantProp instruction if trivially constant.
Chris Lattnere2cc1ad2009-10-15 04:13:44 +00002378 if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
Stephen Hines36b56882014-04-23 16:57:46 -07002379 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
Matt Arsenault596aa122013-09-05 19:48:28 +00002380 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
Chris Lattnere2cc1ad2009-10-15 04:13:44 +00002381 << *Inst << '\n');
2382 Inst->replaceAllUsesWith(C);
2383 ++NumConstProp;
2384 Inst->eraseFromParent();
2385 continue;
2386 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00002387
Stephen Hines36b56882014-04-23 16:57:46 -07002388 if (DL) {
Chris Lattner2ee743b2009-10-15 04:59:28 +00002389 // See if we can constant fold its operands.
2390 for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
2391 i != e; ++i) {
2392 ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
Stephen Hinesdce4a402014-05-29 02:49:00 -07002393 if (CE == nullptr) continue;
Eli Friedmana4d4aeb2011-05-24 18:52:07 +00002394
2395 Constant*& FoldRes = FoldedConstants[CE];
2396 if (!FoldRes)
Stephen Hines36b56882014-04-23 16:57:46 -07002397 FoldRes = ConstantFoldConstantExpression(CE, DL, TLI);
Eli Friedmana4d4aeb2011-05-24 18:52:07 +00002398 if (!FoldRes)
2399 FoldRes = CE;
2400
2401 if (FoldRes != CE) {
2402 *i = FoldRes;
Chris Lattner2ee743b2009-10-15 04:59:28 +00002403 MadeIRChange = true;
2404 }
2405 }
2406 }
Devang Patel7fe1dec2008-11-19 18:56:50 +00002407
Chris Lattner67f7d542009-10-12 03:58:40 +00002408 InstrsForInstCombineWorklist.push_back(Inst);
Chris Lattnerf4f5a772006-05-10 19:00:36 +00002409 }
Chris Lattner2c7718a2007-03-23 19:17:18 +00002410
2411 // Recursively visit successors. If this is a branch or switch on a
2412 // constant, only visit the reachable successor.
2413 TerminatorInst *TI = BB->getTerminator();
2414 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2415 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
2416 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewycky91436992008-03-09 08:50:23 +00002417 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Nick Lewycky280a6e62008-04-25 16:53:59 +00002418 Worklist.push_back(ReachableBB);
Chris Lattner2c7718a2007-03-23 19:17:18 +00002419 continue;
2420 }
2421 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2422 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
2423 // See if this is an explicit destination.
Stepan Dyatkovskiy3d3abe02012-03-11 06:09:17 +00002424 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
Stepan Dyatkovskiyc10fa6c2012-03-08 07:06:20 +00002425 i != e; ++i)
2426 if (i.getCaseValue() == Cond) {
2427 BasicBlock *ReachableBB = i.getCaseSuccessor();
Nick Lewycky280a6e62008-04-25 16:53:59 +00002428 Worklist.push_back(ReachableBB);
Chris Lattner2c7718a2007-03-23 19:17:18 +00002429 continue;
2430 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00002431
Chris Lattner2c7718a2007-03-23 19:17:18 +00002432 // Otherwise it is the default destination.
Stepan Dyatkovskiy24473122012-02-01 07:49:51 +00002433 Worklist.push_back(SI->getDefaultDest());
Chris Lattner2c7718a2007-03-23 19:17:18 +00002434 continue;
2435 }
2436 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00002437
Chris Lattner2c7718a2007-03-23 19:17:18 +00002438 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
2439 Worklist.push_back(TI->getSuccessor(i));
Dan Gohman321a8132010-01-05 16:27:25 +00002440 } while (!Worklist.empty());
Jakub Staszak58c1da82012-05-06 13:52:31 +00002441
Chris Lattner67f7d542009-10-12 03:58:40 +00002442 // Once we've found all of the instructions to add to instcombine's worklist,
2443 // add them in reverse order. This way instcombine will visit from the top
2444 // of the function down. This jives well with the way that it adds all uses
2445 // of instructions to the worklist after doing a transformation, thus avoiding
2446 // some N^2 behavior in pathological cases.
2447 IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
2448 InstrsForInstCombineWorklist.size());
Jakub Staszak58c1da82012-05-06 13:52:31 +00002449
Chris Lattner2ee743b2009-10-15 04:59:28 +00002450 return MadeIRChange;
Chris Lattnerf4f5a772006-05-10 19:00:36 +00002451}
2452
Chris Lattnerec9c3582007-03-03 02:04:50 +00002453bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
Chris Lattnerb0b822c2009-08-31 06:57:37 +00002454 MadeIRChange = false;
Jakub Staszak58c1da82012-05-06 13:52:31 +00002455
Matt Arsenault596aa122013-09-05 19:48:28 +00002456 DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
Benjamin Kramera7b0cb72011-11-15 16:27:03 +00002457 << F.getName() << "\n");
Chris Lattner8a2a3112001-12-14 16:52:21 +00002458
Chris Lattnerb3d59702005-07-07 20:40:38 +00002459 {
Chris Lattnerf4f5a772006-05-10 19:00:36 +00002460 // Do a depth-first traversal of the function, populate the worklist with
2461 // the reachable instructions. Ignore blocks that are not reachable. Keep
2462 // track of which blocks we visit.
Chris Lattner1f87a582007-02-15 19:41:52 +00002463 SmallPtrSet<BasicBlock*, 64> Visited;
Stephen Hines36b56882014-04-23 16:57:46 -07002464 MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, DL,
Chad Rosier00737bd2011-12-01 21:29:16 +00002465 TLI);
Jeff Cohen00b168892005-07-27 06:12:32 +00002466
Chris Lattnerb3d59702005-07-07 20:40:38 +00002467 // Do a quick scan over the function. If we find any blocks that are
2468 // unreachable, remove any instructions inside of them. This prevents
2469 // the instcombine code from having to deal with some bad special cases.
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00002470 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2471 if (Visited.count(BB)) continue;
2472
Bill Wendlinga2684682011-09-04 09:43:36 +00002473 // Delete the instructions backwards, as it has a reduced likelihood of
2474 // having to update as many def-use and use-def chains.
2475 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2476 while (EndInst != BB->begin()) {
2477 // Delete the next to last instruction.
2478 BasicBlock::iterator I = EndInst;
2479 Instruction *Inst = --I;
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00002480 if (!Inst->use_empty())
2481 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
Bill Wendlinga2684682011-09-04 09:43:36 +00002482 if (isa<LandingPadInst>(Inst)) {
2483 EndInst = Inst;
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00002484 continue;
Bill Wendlinga2684682011-09-04 09:43:36 +00002485 }
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00002486 if (!isa<DbgInfoIntrinsic>(Inst)) {
2487 ++NumDeadInst;
2488 MadeIRChange = true;
Chris Lattnerb3d59702005-07-07 20:40:38 +00002489 }
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00002490 Inst->eraseFromParent();
Chris Lattnerb3d59702005-07-07 20:40:38 +00002491 }
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00002492 }
Chris Lattnerb3d59702005-07-07 20:40:38 +00002493 }
Chris Lattner8a2a3112001-12-14 16:52:21 +00002494
Chris Lattner873ff012009-08-30 05:55:36 +00002495 while (!Worklist.isEmpty()) {
2496 Instruction *I = Worklist.RemoveOne();
Stephen Hinesdce4a402014-05-29 02:49:00 -07002497 if (I == nullptr) continue; // skip null values.
Chris Lattner8a2a3112001-12-14 16:52:21 +00002498
Chris Lattner8c8c66a2006-05-11 17:11:52 +00002499 // Check to see if we can DCE the instruction.
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00002500 if (isInstructionTriviallyDead(I, TLI)) {
Matt Arsenault596aa122013-09-05 19:48:28 +00002501 DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
Chris Lattner7a1e9242009-08-30 06:13:40 +00002502 EraseInstFromFunction(*I);
2503 ++NumDeadInst;
Chris Lattnerb0b822c2009-08-31 06:57:37 +00002504 MadeIRChange = true;
Chris Lattner4bb7c022003-10-06 17:11:01 +00002505 continue;
2506 }
Chris Lattner62b14df2002-09-02 04:59:56 +00002507
Chris Lattner8c8c66a2006-05-11 17:11:52 +00002508 // Instruction isn't dead, see if we can constant propagate it.
Chris Lattnere2cc1ad2009-10-15 04:13:44 +00002509 if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
Stephen Hines36b56882014-04-23 16:57:46 -07002510 if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) {
Matt Arsenault596aa122013-09-05 19:48:28 +00002511 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
Chris Lattnerad5fec12005-01-28 19:32:01 +00002512
Chris Lattnere2cc1ad2009-10-15 04:13:44 +00002513 // Add operands to the worklist.
2514 ReplaceInstUsesWith(*I, C);
2515 ++NumConstProp;
2516 EraseInstFromFunction(*I);
2517 MadeIRChange = true;
2518 continue;
2519 }
Chris Lattner4bb7c022003-10-06 17:11:01 +00002520
Chris Lattnerea1c4542004-12-08 23:43:58 +00002521 // See if we can trivially sink this instruction to a successor basic block.
Dan Gohmanfc74abf2008-07-23 00:34:11 +00002522 if (I->hasOneUse()) {
Chris Lattnerea1c4542004-12-08 23:43:58 +00002523 BasicBlock *BB = I->getParent();
Stephen Hines36b56882014-04-23 16:57:46 -07002524 Instruction *UserInst = cast<Instruction>(*I->user_begin());
Chris Lattner8db2cd12009-10-14 15:21:58 +00002525 BasicBlock *UserParent;
Jakub Staszak58c1da82012-05-06 13:52:31 +00002526
Chris Lattner8db2cd12009-10-14 15:21:58 +00002527 // Get the block the use occurs in.
2528 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
Stephen Hines36b56882014-04-23 16:57:46 -07002529 UserParent = PN->getIncomingBlock(*I->use_begin());
Chris Lattner8db2cd12009-10-14 15:21:58 +00002530 else
2531 UserParent = UserInst->getParent();
Jakub Staszak58c1da82012-05-06 13:52:31 +00002532
Chris Lattnerea1c4542004-12-08 23:43:58 +00002533 if (UserParent != BB) {
2534 bool UserIsSuccessor = false;
2535 // See if the user is one of our successors.
2536 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2537 if (*SI == UserParent) {
2538 UserIsSuccessor = true;
2539 break;
2540 }
2541
2542 // If the user is one of our immediate successors, and if that successor
2543 // only has us as a predecessors (we'd have to split the critical edge
2544 // otherwise), we can keep going.
Chris Lattner8db2cd12009-10-14 15:21:58 +00002545 if (UserIsSuccessor && UserParent->getSinglePredecessor())
Chris Lattnerea1c4542004-12-08 23:43:58 +00002546 // Okay, the CFG is simple enough, try to sink this instruction.
Chris Lattnerb0b822c2009-08-31 06:57:37 +00002547 MadeIRChange |= TryToSinkInstruction(I, UserParent);
Chris Lattnerea1c4542004-12-08 23:43:58 +00002548 }
2549 }
2550
Chris Lattner74381062009-08-30 07:44:24 +00002551 // Now that we have an instruction, try combining it to simplify it.
2552 Builder->SetInsertPoint(I->getParent(), I);
Eli Friedmanef819d02011-05-18 01:28:27 +00002553 Builder->SetCurrentDebugLocation(I->getDebugLoc());
Jakub Staszak58c1da82012-05-06 13:52:31 +00002554
Reid Spencera9b81012007-03-26 17:44:01 +00002555#ifndef NDEBUG
2556 std::string OrigI;
2557#endif
Chris Lattnerbdff5482009-08-23 04:37:46 +00002558 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
Matt Arsenault596aa122013-09-05 19:48:28 +00002559 DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
Jeffrey Yasskin43069632009-10-08 00:12:24 +00002560
Chris Lattner90ac28c2002-08-02 19:29:35 +00002561 if (Instruction *Result = visit(*I)) {
Chris Lattner3dec1f22002-05-10 15:38:35 +00002562 ++NumCombined;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002563 // Should we replace the old instruction with a new one?
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +00002564 if (Result != I) {
Matt Arsenault596aa122013-09-05 19:48:28 +00002565 DEBUG(dbgs() << "IC: Old = " << *I << '\n'
Jim Grosbache2999b42011-10-05 20:44:29 +00002566 << " New = " << *Result << '\n');
2567
Eli Friedmana311c342011-05-27 00:19:40 +00002568 if (!I->getDebugLoc().isUnknown())
2569 Result->setDebugLoc(I->getDebugLoc());
Chris Lattnerf523d062004-06-09 05:08:07 +00002570 // Everything uses the new instruction now.
2571 I->replaceAllUsesWith(Result);
2572
Jim Grosbach35d9da32011-10-05 20:53:43 +00002573 // Move the name to the new instruction first.
2574 Result->takeName(I);
2575
Jim Grosbache2999b42011-10-05 20:44:29 +00002576 // Push the new instruction and any users onto the worklist.
2577 Worklist.Add(Result);
2578 Worklist.AddUsersToWorkList(*Result);
2579
Chris Lattner4bb7c022003-10-06 17:11:01 +00002580 // Insert the new instruction into the basic block...
2581 BasicBlock *InstParent = I->getParent();
Chris Lattnerbac32862004-11-14 19:13:23 +00002582 BasicBlock::iterator InsertPos = I;
2583
Eli Friedman049260d2011-11-01 04:49:29 +00002584 // If we replace a PHI with something that isn't a PHI, fix up the
2585 // insertion point.
2586 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2587 InsertPos = InstParent->getFirstInsertionPt();
Chris Lattnerbac32862004-11-14 19:13:23 +00002588
2589 InstParent->getInstList().insert(InsertPos, Result);
Chris Lattner4bb7c022003-10-06 17:11:01 +00002590
Chris Lattner7a1e9242009-08-30 06:13:40 +00002591 EraseInstFromFunction(*I);
Chris Lattner7e708292002-06-25 16:13:24 +00002592 } else {
Evan Chengc7baf682007-03-27 16:44:48 +00002593#ifndef NDEBUG
Matt Arsenault596aa122013-09-05 19:48:28 +00002594 DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
Chris Lattnerbdff5482009-08-23 04:37:46 +00002595 << " New = " << *I << '\n');
Evan Chengc7baf682007-03-27 16:44:48 +00002596#endif
Chris Lattner0cea42a2004-03-13 23:54:27 +00002597
Chris Lattner90ac28c2002-08-02 19:29:35 +00002598 // If the instruction was modified, it's possible that it is now dead.
2599 // if so, remove it.
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00002600 if (isInstructionTriviallyDead(I, TLI)) {
Chris Lattner7a1e9242009-08-30 06:13:40 +00002601 EraseInstFromFunction(*I);
Chris Lattnerf523d062004-06-09 05:08:07 +00002602 } else {
Chris Lattner7a1e9242009-08-30 06:13:40 +00002603 Worklist.Add(I);
Chris Lattnere5ecdb52009-08-30 06:22:51 +00002604 Worklist.AddUsersToWorkList(*I);
Chris Lattner90ac28c2002-08-02 19:29:35 +00002605 }
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +00002606 }
Chris Lattnerb0b822c2009-08-31 06:57:37 +00002607 MadeIRChange = true;
Chris Lattner8a2a3112001-12-14 16:52:21 +00002608 }
2609 }
2610
Chris Lattner873ff012009-08-30 05:55:36 +00002611 Worklist.Zap();
Chris Lattnerb0b822c2009-08-31 06:57:37 +00002612 return MadeIRChange;
Chris Lattnerbd0ef772002-02-26 21:46:54 +00002613}
2614
Meador Ingeb69bf6b2012-11-11 03:51:43 +00002615namespace {
2616class InstCombinerLibCallSimplifier : public LibCallSimplifier {
2617 InstCombiner *IC;
2618public:
Stephen Hines36b56882014-04-23 16:57:46 -07002619 InstCombinerLibCallSimplifier(const DataLayout *DL,
Meador Ingeb69bf6b2012-11-11 03:51:43 +00002620 const TargetLibraryInfo *TLI,
2621 InstCombiner *IC)
Stephen Hines36b56882014-04-23 16:57:46 -07002622 : LibCallSimplifier(DL, TLI, UnsafeFPShrink) {
Meador Ingeb69bf6b2012-11-11 03:51:43 +00002623 this->IC = IC;
2624 }
2625
2626 /// replaceAllUsesWith - override so that instruction replacement
2627 /// can be defined in terms of the instruction combiner framework.
Stephen Hines36b56882014-04-23 16:57:46 -07002628 void replaceAllUsesWith(Instruction *I, Value *With) const override {
Meador Ingeb69bf6b2012-11-11 03:51:43 +00002629 IC->ReplaceInstUsesWith(*I, With);
2630 }
2631};
2632}
Chris Lattnerec9c3582007-03-03 02:04:50 +00002633
2634bool InstCombiner::runOnFunction(Function &F) {
Stephen Hines36b56882014-04-23 16:57:46 -07002635 if (skipOptnoneFunction(F))
2636 return false;
2637
2638 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
Stephen Hinesdce4a402014-05-29 02:49:00 -07002639 DL = DLP ? &DLP->getDataLayout() : nullptr;
Chad Rosier00737bd2011-12-01 21:29:16 +00002640 TLI = &getAnalysis<TargetLibraryInfo>();
Quentin Colombet637582e2013-01-07 18:37:41 +00002641 // Minimizing size?
2642 MinimizeSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
2643 Attribute::MinSize);
Jakub Staszak58c1da82012-05-06 13:52:31 +00002644
Chris Lattner74381062009-08-30 07:44:24 +00002645 /// Builder - This is an IRBuilder that automatically inserts new
2646 /// instructions into the worklist when they are created.
Jakub Staszak58c1da82012-05-06 13:52:31 +00002647 IRBuilder<true, TargetFolder, InstCombineIRInserter>
Stephen Hines36b56882014-04-23 16:57:46 -07002648 TheBuilder(F.getContext(), TargetFolder(DL),
Chris Lattner74381062009-08-30 07:44:24 +00002649 InstCombineIRInserter(Worklist));
2650 Builder = &TheBuilder;
Jakub Staszak58c1da82012-05-06 13:52:31 +00002651
Stephen Hines36b56882014-04-23 16:57:46 -07002652 InstCombinerLibCallSimplifier TheSimplifier(DL, TLI, this);
Meador Inge5e890452012-10-13 16:45:24 +00002653 Simplifier = &TheSimplifier;
2654
Chris Lattnerec9c3582007-03-03 02:04:50 +00002655 bool EverMadeChange = false;
2656
Devang Patel813c9a02011-03-17 22:18:16 +00002657 // Lower dbg.declare intrinsics otherwise their value may be clobbered
2658 // by instcombiner.
2659 EverMadeChange = LowerDbgDeclare(F);
2660
Chris Lattnerec9c3582007-03-03 02:04:50 +00002661 // Iterate while there is work to do.
2662 unsigned Iteration = 0;
Bill Wendlinga6c31122008-05-14 22:45:20 +00002663 while (DoOneIteration(F, Iteration++))
Chris Lattnerec9c3582007-03-03 02:04:50 +00002664 EverMadeChange = true;
Jakub Staszak58c1da82012-05-06 13:52:31 +00002665
Stephen Hinesdce4a402014-05-29 02:49:00 -07002666 Builder = nullptr;
Chris Lattnerec9c3582007-03-03 02:04:50 +00002667 return EverMadeChange;
2668}
2669
Brian Gaeke96d4bf72004-07-27 17:43:21 +00002670FunctionPass *llvm::createInstructionCombiningPass() {
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002671 return new InstCombiner();
Chris Lattnerbd0ef772002-02-26 21:46:54 +00002672}