blob: a4e177ee0b57d97cbbd583d06420053114f0d73f [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001
Raymond Hettinger13a70752008-02-10 07:21:09 +00002:mod:`decimal` --- Decimal fixed point and floating point arithmetic
3====================================================================
Georg Brandl8ec7f652007-08-15 14:28:01 +00004
5.. module:: decimal
6 :synopsis: Implementation of the General Decimal Arithmetic Specification.
7
8
9.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
10.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
11.. moduleauthor:: Raymond Hettinger <python at rcn.com>
12.. moduleauthor:: Aahz <aahz at pobox.com>
13.. moduleauthor:: Tim Peters <tim.one at comcast.net>
14
15
16.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
17
Georg Brandl8ec7f652007-08-15 14:28:01 +000018.. versionadded:: 2.4
19
Georg Brandl9f662322008-03-22 11:47:10 +000020.. import modules for testing inline doctests with the Sphinx doctest builder
Georg Brandl17baef02008-03-22 10:56:23 +000021.. testsetup:: *
22
Georg Brandl9f662322008-03-22 11:47:10 +000023 import decimal
24 import math
Georg Brandl17baef02008-03-22 10:56:23 +000025 from decimal import *
Georg Brandl9f662322008-03-22 11:47:10 +000026 # make sure each group gets a fresh context
27 setcontext(Context())
Georg Brandl17baef02008-03-22 10:56:23 +000028
Georg Brandl8ec7f652007-08-15 14:28:01 +000029The :mod:`decimal` module provides support for decimal floating point
Facundo Batista7c82a3e92007-09-14 18:58:34 +000030arithmetic. It offers several advantages over the :class:`float` datatype:
Georg Brandl8ec7f652007-08-15 14:28:01 +000031
Raymond Hettinger13a70752008-02-10 07:21:09 +000032* Decimal "is based on a floating-point model which was designed with people
33 in mind, and necessarily has a paramount guiding principle -- computers must
34 provide an arithmetic that works in the same way as the arithmetic that
35 people learn at school." -- excerpt from the decimal arithmetic specification.
36
Georg Brandl8ec7f652007-08-15 14:28:01 +000037* Decimal numbers can be represented exactly. In contrast, numbers like
Terry Jan Reedy4ba76b62012-01-13 23:41:31 -050038 :const:`1.1` and :const:`2.2` do not have exact representations in binary
Mark Dickinson6b87f112009-11-24 14:27:02 +000039 floating point. End users typically would not expect ``1.1 + 2.2`` to display
40 as :const:`3.3000000000000003` as it does with binary floating point.
Georg Brandl8ec7f652007-08-15 14:28:01 +000041
42* The exactness carries over into arithmetic. In decimal floating point, ``0.1
Facundo Batista7c82a3e92007-09-14 18:58:34 +000043 + 0.1 + 0.1 - 0.3`` is exactly equal to zero. In binary floating point, the result
Georg Brandl8ec7f652007-08-15 14:28:01 +000044 is :const:`5.5511151231257827e-017`. While near to zero, the differences
45 prevent reliable equality testing and differences can accumulate. For this
Raymond Hettinger13a70752008-02-10 07:21:09 +000046 reason, decimal is preferred in accounting applications which have strict
Georg Brandl8ec7f652007-08-15 14:28:01 +000047 equality invariants.
48
49* The decimal module incorporates a notion of significant places so that ``1.30
50 + 1.20`` is :const:`2.50`. The trailing zero is kept to indicate significance.
51 This is the customary presentation for monetary applications. For
52 multiplication, the "schoolbook" approach uses all the figures in the
53 multiplicands. For instance, ``1.3 * 1.2`` gives :const:`1.56` while ``1.30 *
54 1.20`` gives :const:`1.5600`.
55
56* Unlike hardware based binary floating point, the decimal module has a user
Facundo Batista7c82a3e92007-09-14 18:58:34 +000057 alterable precision (defaulting to 28 places) which can be as large as needed for
Georg Brandl17baef02008-03-22 10:56:23 +000058 a given problem:
Georg Brandl8ec7f652007-08-15 14:28:01 +000059
Mark Dickinson03335172010-11-07 11:29:03 +000060 >>> from decimal import *
Georg Brandl8ec7f652007-08-15 14:28:01 +000061 >>> getcontext().prec = 6
62 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +000063 Decimal('0.142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +000064 >>> getcontext().prec = 28
65 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +000066 Decimal('0.1428571428571428571428571429')
Georg Brandl8ec7f652007-08-15 14:28:01 +000067
68* Both binary and decimal floating point are implemented in terms of published
69 standards. While the built-in float type exposes only a modest portion of its
70 capabilities, the decimal module exposes all required parts of the standard.
71 When needed, the programmer has full control over rounding and signal handling.
Raymond Hettinger13a70752008-02-10 07:21:09 +000072 This includes an option to enforce exact arithmetic by using exceptions
73 to block any inexact operations.
74
75* The decimal module was designed to support "without prejudice, both exact
76 unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
77 and rounded floating-point arithmetic." -- excerpt from the decimal
78 arithmetic specification.
Georg Brandl8ec7f652007-08-15 14:28:01 +000079
80The module design is centered around three concepts: the decimal number, the
81context for arithmetic, and signals.
82
83A decimal number is immutable. It has a sign, coefficient digits, and an
84exponent. To preserve significance, the coefficient digits do not truncate
Facundo Batista7c82a3e92007-09-14 18:58:34 +000085trailing zeros. Decimals also include special values such as
Georg Brandl8ec7f652007-08-15 14:28:01 +000086:const:`Infinity`, :const:`-Infinity`, and :const:`NaN`. The standard also
87differentiates :const:`-0` from :const:`+0`.
88
89The context for arithmetic is an environment specifying precision, rounding
90rules, limits on exponents, flags indicating the results of operations, and trap
91enablers which determine whether signals are treated as exceptions. Rounding
92options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
93:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
Facundo Batista7c82a3e92007-09-14 18:58:34 +000094:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
Georg Brandl8ec7f652007-08-15 14:28:01 +000095
96Signals are groups of exceptional conditions arising during the course of
97computation. Depending on the needs of the application, signals may be ignored,
98considered as informational, or treated as exceptions. The signals in the
99decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
100:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
101:const:`Overflow`, and :const:`Underflow`.
102
103For each signal there is a flag and a trap enabler. When a signal is
Mark Dickinson1840c1a2008-05-03 18:23:14 +0000104encountered, its flag is set to one, then, if the trap enabler is
Georg Brandl8ec7f652007-08-15 14:28:01 +0000105set to one, an exception is raised. Flags are sticky, so the user needs to
106reset them before monitoring a calculation.
107
108
109.. seealso::
110
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000111 * IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
Raymond Hettingerf345a212009-03-10 01:07:30 +0000112 Specification <http://speleotrove.com/decimal/>`_.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000113
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000114 * IEEE standard 854-1987, `Unofficial IEEE 854 Text
Mark Dickinsonff6672f2008-02-07 01:14:23 +0000115 <http://754r.ucbtest.org/standards/854.pdf>`_.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000116
Georg Brandlb19be572007-12-29 10:57:00 +0000117.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000118
119
120.. _decimal-tutorial:
121
122Quick-start Tutorial
123--------------------
124
125The usual start to using decimals is importing the module, viewing the current
126context with :func:`getcontext` and, if necessary, setting new values for
Georg Brandl9f662322008-03-22 11:47:10 +0000127precision, rounding, or enabled traps::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000128
129 >>> from decimal import *
130 >>> getcontext()
131 Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Georg Brandl9f662322008-03-22 11:47:10 +0000132 capitals=1, flags=[], traps=[Overflow, DivisionByZero,
133 InvalidOperation])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000134
135 >>> getcontext().prec = 7 # Set a new precision
136
Mark Dickinsonb1affc52010-04-04 22:09:21 +0000137Decimal instances can be constructed from integers, strings, floats, or tuples.
138Construction from an integer or a float performs an exact conversion of the
139value of that integer or float. Decimal numbers include special values such as
Georg Brandl8ec7f652007-08-15 14:28:01 +0000140:const:`NaN` which stands for "Not a number", positive and negative
Georg Brandl17baef02008-03-22 10:56:23 +0000141:const:`Infinity`, and :const:`-0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000142
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000143 >>> getcontext().prec = 28
Georg Brandl8ec7f652007-08-15 14:28:01 +0000144 >>> Decimal(10)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000145 Decimal('10')
146 >>> Decimal('3.14')
147 Decimal('3.14')
Mark Dickinsonb1affc52010-04-04 22:09:21 +0000148 >>> Decimal(3.14)
149 Decimal('3.140000000000000124344978758017532527446746826171875')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000150 >>> Decimal((0, (3, 1, 4), -2))
Raymond Hettingerabe32372008-02-14 02:41:22 +0000151 Decimal('3.14')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000152 >>> Decimal(str(2.0 ** 0.5))
Raymond Hettingerabe32372008-02-14 02:41:22 +0000153 Decimal('1.41421356237')
154 >>> Decimal(2) ** Decimal('0.5')
155 Decimal('1.414213562373095048801688724')
156 >>> Decimal('NaN')
157 Decimal('NaN')
158 >>> Decimal('-Infinity')
159 Decimal('-Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000160
161The significance of a new Decimal is determined solely by the number of digits
162input. Context precision and rounding only come into play during arithmetic
Georg Brandl17baef02008-03-22 10:56:23 +0000163operations.
164
165.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +0000166
167 >>> getcontext().prec = 6
168 >>> Decimal('3.0')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000169 Decimal('3.0')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000170 >>> Decimal('3.1415926535')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000171 Decimal('3.1415926535')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000172 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000173 Decimal('5.85987')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000174 >>> getcontext().rounding = ROUND_UP
175 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000176 Decimal('5.85988')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000177
178Decimals interact well with much of the rest of Python. Here is a small decimal
Georg Brandl9f662322008-03-22 11:47:10 +0000179floating point flying circus:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000180
Georg Brandl838b4b02008-03-22 13:07:06 +0000181.. doctest::
182 :options: +NORMALIZE_WHITESPACE
183
Georg Brandl8ec7f652007-08-15 14:28:01 +0000184 >>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split())
185 >>> max(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000186 Decimal('9.25')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000187 >>> min(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000188 Decimal('0.03')
Georg Brandl838b4b02008-03-22 13:07:06 +0000189 >>> sorted(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000190 [Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
191 Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
Georg Brandl8ec7f652007-08-15 14:28:01 +0000192 >>> sum(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000193 Decimal('19.29')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000194 >>> a,b,c = data[:3]
195 >>> str(a)
196 '1.34'
197 >>> float(a)
Mark Dickinson6b87f112009-11-24 14:27:02 +0000198 1.34
Georg Brandl8ec7f652007-08-15 14:28:01 +0000199 >>> round(a, 1) # round() first converts to binary floating point
200 1.3
201 >>> int(a)
202 1
203 >>> a * 5
Raymond Hettingerabe32372008-02-14 02:41:22 +0000204 Decimal('6.70')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000205 >>> a * b
Raymond Hettingerabe32372008-02-14 02:41:22 +0000206 Decimal('2.5058')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000207 >>> c % a
Raymond Hettingerabe32372008-02-14 02:41:22 +0000208 Decimal('0.77')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000209
Georg Brandl9f662322008-03-22 11:47:10 +0000210And some mathematical functions are also available to Decimal:
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000211
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000212 >>> getcontext().prec = 28
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000213 >>> Decimal(2).sqrt()
Raymond Hettingerabe32372008-02-14 02:41:22 +0000214 Decimal('1.414213562373095048801688724')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000215 >>> Decimal(1).exp()
Raymond Hettingerabe32372008-02-14 02:41:22 +0000216 Decimal('2.718281828459045235360287471')
217 >>> Decimal('10').ln()
218 Decimal('2.302585092994045684017991455')
219 >>> Decimal('10').log10()
220 Decimal('1')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000221
Georg Brandl8ec7f652007-08-15 14:28:01 +0000222The :meth:`quantize` method rounds a number to a fixed exponent. This method is
223useful for monetary applications that often round results to a fixed number of
Georg Brandl9f662322008-03-22 11:47:10 +0000224places:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000225
226 >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000227 Decimal('7.32')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000228 >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000229 Decimal('8')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000230
231As shown above, the :func:`getcontext` function accesses the current context and
232allows the settings to be changed. This approach meets the needs of most
233applications.
234
235For more advanced work, it may be useful to create alternate contexts using the
236Context() constructor. To make an alternate active, use the :func:`setcontext`
237function.
238
239In accordance with the standard, the :mod:`Decimal` module provides two ready to
240use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
241former is especially useful for debugging because many of the traps are
Georg Brandl9f662322008-03-22 11:47:10 +0000242enabled:
243
244.. doctest:: newcontext
245 :options: +NORMALIZE_WHITESPACE
Georg Brandl8ec7f652007-08-15 14:28:01 +0000246
247 >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
248 >>> setcontext(myothercontext)
249 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000250 Decimal('0.142857142857142857142857142857142857142857142857142857142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000251
252 >>> ExtendedContext
253 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
254 capitals=1, flags=[], traps=[])
255 >>> setcontext(ExtendedContext)
256 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000257 Decimal('0.142857143')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000258 >>> Decimal(42) / Decimal(0)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000259 Decimal('Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000260
261 >>> setcontext(BasicContext)
262 >>> Decimal(42) / Decimal(0)
263 Traceback (most recent call last):
264 File "<pyshell#143>", line 1, in -toplevel-
265 Decimal(42) / Decimal(0)
266 DivisionByZero: x / 0
267
268Contexts also have signal flags for monitoring exceptional conditions
269encountered during computations. The flags remain set until explicitly cleared,
270so it is best to clear the flags before each set of monitored computations by
271using the :meth:`clear_flags` method. ::
272
273 >>> setcontext(ExtendedContext)
274 >>> getcontext().clear_flags()
275 >>> Decimal(355) / Decimal(113)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000276 Decimal('3.14159292')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000277 >>> getcontext()
278 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Georg Brandl9f662322008-03-22 11:47:10 +0000279 capitals=1, flags=[Rounded, Inexact], traps=[])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000280
281The *flags* entry shows that the rational approximation to :const:`Pi` was
282rounded (digits beyond the context precision were thrown away) and that the
283result is inexact (some of the discarded digits were non-zero).
284
285Individual traps are set using the dictionary in the :attr:`traps` field of a
Georg Brandl9f662322008-03-22 11:47:10 +0000286context:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000287
Georg Brandl9f662322008-03-22 11:47:10 +0000288.. doctest:: newcontext
289
290 >>> setcontext(ExtendedContext)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000291 >>> Decimal(1) / Decimal(0)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000292 Decimal('Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000293 >>> getcontext().traps[DivisionByZero] = 1
294 >>> Decimal(1) / Decimal(0)
295 Traceback (most recent call last):
296 File "<pyshell#112>", line 1, in -toplevel-
297 Decimal(1) / Decimal(0)
298 DivisionByZero: x / 0
299
300Most programs adjust the current context only once, at the beginning of the
301program. And, in many applications, data is converted to :class:`Decimal` with
302a single cast inside a loop. With context set and decimals created, the bulk of
303the program manipulates the data no differently than with other Python numeric
304types.
305
Georg Brandlb19be572007-12-29 10:57:00 +0000306.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000307
308
309.. _decimal-decimal:
310
311Decimal objects
312---------------
313
314
315.. class:: Decimal([value [, context]])
316
Georg Brandlb19be572007-12-29 10:57:00 +0000317 Construct a new :class:`Decimal` object based from *value*.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000318
Raymond Hettingered171ab2010-04-02 18:39:24 +0000319 *value* can be an integer, string, tuple, :class:`float`, or another :class:`Decimal`
Raymond Hettingerabe32372008-02-14 02:41:22 +0000320 object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000321 string, it should conform to the decimal numeric string syntax after leading
322 and trailing whitespace characters are removed::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000323
324 sign ::= '+' | '-'
325 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
326 indicator ::= 'e' | 'E'
327 digits ::= digit [digit]...
328 decimal-part ::= digits '.' [digits] | ['.'] digits
329 exponent-part ::= indicator [sign] digits
330 infinity ::= 'Infinity' | 'Inf'
331 nan ::= 'NaN' [digits] | 'sNaN' [digits]
332 numeric-value ::= decimal-part [exponent-part] | infinity
Georg Brandlc62ef8b2009-01-03 20:55:06 +0000333 numeric-string ::= [sign] numeric-value | [sign] nan
Georg Brandl8ec7f652007-08-15 14:28:01 +0000334
Mark Dickinson4326ad82009-08-02 10:59:36 +0000335 If *value* is a unicode string then other Unicode decimal digits
336 are also permitted where ``digit`` appears above. These include
337 decimal digits from various other alphabets (for example,
338 Arabic-Indic and Devanāgarī digits) along with the fullwidth digits
339 ``u'\uff10'`` through ``u'\uff19'``.
340
Georg Brandl8ec7f652007-08-15 14:28:01 +0000341 If *value* is a :class:`tuple`, it should have three components, a sign
342 (:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of
343 digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
Raymond Hettingerabe32372008-02-14 02:41:22 +0000344 returns ``Decimal('1.414')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000345
Raymond Hettingered171ab2010-04-02 18:39:24 +0000346 If *value* is a :class:`float`, the binary floating point value is losslessly
347 converted to its exact decimal equivalent. This conversion can often require
Mark Dickinsonb1affc52010-04-04 22:09:21 +0000348 53 or more digits of precision. For example, ``Decimal(float('1.1'))``
349 converts to
350 ``Decimal('1.100000000000000088817841970012523233890533447265625')``.
Raymond Hettingered171ab2010-04-02 18:39:24 +0000351
Georg Brandl8ec7f652007-08-15 14:28:01 +0000352 The *context* precision does not affect how many digits are stored. That is
353 determined exclusively by the number of digits in *value*. For example,
Raymond Hettingerabe32372008-02-14 02:41:22 +0000354 ``Decimal('3.00000')`` records all five zeros even if the context precision is
Georg Brandl8ec7f652007-08-15 14:28:01 +0000355 only three.
356
357 The purpose of the *context* argument is determining what to do if *value* is a
358 malformed string. If the context traps :const:`InvalidOperation`, an exception
359 is raised; otherwise, the constructor returns a new Decimal with the value of
360 :const:`NaN`.
361
362 Once constructed, :class:`Decimal` objects are immutable.
363
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000364 .. versionchanged:: 2.6
365 leading and trailing whitespace characters are permitted when
366 creating a Decimal instance from a string.
367
Mark Dickinsonb1affc52010-04-04 22:09:21 +0000368 .. versionchanged:: 2.7
Ezio Melotti6f65d2d2010-04-04 23:21:53 +0000369 The argument to the constructor is now permitted to be a :class:`float` instance.
Mark Dickinsonb1affc52010-04-04 22:09:21 +0000370
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000371 Decimal floating point objects share many properties with the other built-in
372 numeric types such as :class:`float` and :class:`int`. All of the usual math
373 operations and special methods apply. Likewise, decimal objects can be
374 copied, pickled, printed, used as dictionary keys, used as set elements,
375 compared, sorted, and coerced to another type (such as :class:`float` or
376 :class:`long`).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000377
Mark Dickinson99d80962010-04-02 08:53:22 +0000378 Decimal objects cannot generally be combined with floats in
379 arithmetic operations: an attempt to add a :class:`Decimal` to a
380 :class:`float`, for example, will raise a :exc:`TypeError`.
381 There's one exception to this rule: it's possible to use Python's
382 comparison operators to compare a :class:`float` instance ``x``
383 with a :class:`Decimal` instance ``y``. Without this exception,
384 comparisons between :class:`Decimal` and :class:`float` instances
385 would follow the general rules for comparing objects of different
386 types described in the :ref:`expressions` section of the reference
387 manual, leading to confusing results.
388
389 .. versionchanged:: 2.7
390 A comparison between a :class:`float` instance ``x`` and a
391 :class:`Decimal` instance ``y`` now returns a result based on
392 the values of ``x`` and ``y``. In earlier versions ``x < y``
393 returned the same (arbitrary) result for any :class:`Decimal`
394 instance ``x`` and any :class:`float` instance ``y``.
395
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000396 In addition to the standard numeric properties, decimal floating point
397 objects also have a number of specialized methods:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000398
399
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000400 .. method:: adjusted()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000401
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000402 Return the adjusted exponent after shifting out the coefficient's
403 rightmost digits until only the lead digit remains:
404 ``Decimal('321e+5').adjusted()`` returns seven. Used for determining the
405 position of the most significant digit with respect to the decimal point.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000406
407
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000408 .. method:: as_tuple()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000409
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000410 Return a :term:`named tuple` representation of the number:
411 ``DecimalTuple(sign, digits, exponent)``.
Georg Brandle3c3db52008-01-11 09:55:53 +0000412
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000413 .. versionchanged:: 2.6
414 Use a named tuple.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000415
416
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000417 .. method:: canonical()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000418
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000419 Return the canonical encoding of the argument. Currently, the encoding of
420 a :class:`Decimal` instance is always canonical, so this operation returns
421 its argument unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000422
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000423 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000424
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000425 .. method:: compare(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000426
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000427 Compare the values of two Decimal instances. This operation behaves in
428 the same way as the usual comparison method :meth:`__cmp__`, except that
429 :meth:`compare` returns a Decimal instance rather than an integer, and if
430 either operand is a NaN then the result is a NaN::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000431
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000432 a or b is a NaN ==> Decimal('NaN')
433 a < b ==> Decimal('-1')
434 a == b ==> Decimal('0')
435 a > b ==> Decimal('1')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000436
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000437 .. method:: compare_signal(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000438
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000439 This operation is identical to the :meth:`compare` method, except that all
440 NaNs signal. That is, if neither operand is a signaling NaN then any
441 quiet NaN operand is treated as though it were a signaling NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000442
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000443 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000444
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000445 .. method:: compare_total(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000446
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000447 Compare two operands using their abstract representation rather than their
448 numerical value. Similar to the :meth:`compare` method, but the result
449 gives a total ordering on :class:`Decimal` instances. Two
450 :class:`Decimal` instances with the same numeric value but different
451 representations compare unequal in this ordering:
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000452
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000453 >>> Decimal('12.0').compare_total(Decimal('12'))
454 Decimal('-1')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000455
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000456 Quiet and signaling NaNs are also included in the total ordering. The
457 result of this function is ``Decimal('0')`` if both operands have the same
458 representation, ``Decimal('-1')`` if the first operand is lower in the
459 total order than the second, and ``Decimal('1')`` if the first operand is
460 higher in the total order than the second operand. See the specification
461 for details of the total order.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000462
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000463 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000464
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000465 .. method:: compare_total_mag(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000466
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000467 Compare two operands using their abstract representation rather than their
468 value as in :meth:`compare_total`, but ignoring the sign of each operand.
469 ``x.compare_total_mag(y)`` is equivalent to
470 ``x.copy_abs().compare_total(y.copy_abs())``.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000471
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000472 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000473
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000474 .. method:: conjugate()
475
476 Just returns self, this method is only to comply with the Decimal
477 Specification.
478
479 .. versionadded:: 2.6
480
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000481 .. method:: copy_abs()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000482
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000483 Return the absolute value of the argument. This operation is unaffected
484 by the context and is quiet: no flags are changed and no rounding is
485 performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000486
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000487 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000488
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000489 .. method:: copy_negate()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000490
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000491 Return the negation of the argument. This operation is unaffected by the
492 context and is quiet: no flags are changed and no rounding is performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000493
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000494 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000495
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000496 .. method:: copy_sign(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000497
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000498 Return a copy of the first operand with the sign set to be the same as the
499 sign of the second operand. For example:
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000500
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000501 >>> Decimal('2.3').copy_sign(Decimal('-1.5'))
502 Decimal('-2.3')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000503
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000504 This operation is unaffected by the context and is quiet: no flags are
505 changed and no rounding is performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000506
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000507 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000508
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000509 .. method:: exp([context])
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000510
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000511 Return the value of the (natural) exponential function ``e**x`` at the
512 given number. The result is correctly rounded using the
513 :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000514
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000515 >>> Decimal(1).exp()
516 Decimal('2.718281828459045235360287471')
517 >>> Decimal(321).exp()
518 Decimal('2.561702493119680037517373933E+139')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000519
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000520 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000521
Raymond Hettingerf4d85972009-01-03 19:02:23 +0000522 .. method:: from_float(f)
523
524 Classmethod that converts a float to a decimal number, exactly.
525
526 Note `Decimal.from_float(0.1)` is not the same as `Decimal('0.1')`.
527 Since 0.1 is not exactly representable in binary floating point, the
528 value is stored as the nearest representable value which is
529 `0x1.999999999999ap-4`. That equivalent value in decimal is
530 `0.1000000000000000055511151231257827021181583404541015625`.
531
Mark Dickinsonb1affc52010-04-04 22:09:21 +0000532 .. note:: From Python 2.7 onwards, a :class:`Decimal` instance
533 can also be constructed directly from a :class:`float`.
534
Raymond Hettingerf4d85972009-01-03 19:02:23 +0000535 .. doctest::
536
537 >>> Decimal.from_float(0.1)
538 Decimal('0.1000000000000000055511151231257827021181583404541015625')
539 >>> Decimal.from_float(float('nan'))
540 Decimal('NaN')
541 >>> Decimal.from_float(float('inf'))
542 Decimal('Infinity')
543 >>> Decimal.from_float(float('-inf'))
544 Decimal('-Infinity')
545
546 .. versionadded:: 2.7
547
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000548 .. method:: fma(other, third[, context])
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000549
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000550 Fused multiply-add. Return self*other+third with no rounding of the
551 intermediate product self*other.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000552
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000553 >>> Decimal(2).fma(3, 5)
554 Decimal('11')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000555
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000556 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000557
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000558 .. method:: is_canonical()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000559
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000560 Return :const:`True` if the argument is canonical and :const:`False`
561 otherwise. Currently, a :class:`Decimal` instance is always canonical, so
562 this operation always returns :const:`True`.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000563
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000564 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000565
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000566 .. method:: is_finite()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000567
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000568 Return :const:`True` if the argument is a finite number, and
569 :const:`False` if the argument is an infinity or a NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000570
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000571 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000572
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000573 .. method:: is_infinite()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000574
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000575 Return :const:`True` if the argument is either positive or negative
576 infinity and :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000577
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000578 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000579
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000580 .. method:: is_nan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000581
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000582 Return :const:`True` if the argument is a (quiet or signaling) NaN and
583 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000584
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000585 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000586
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000587 .. method:: is_normal()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000588
Raymond Hettingereecd1dc62009-03-10 04:40:24 +0000589 Return :const:`True` if the argument is a *normal* finite non-zero
590 number with an adjusted exponent greater than or equal to *Emin*.
591 Return :const:`False` if the argument is zero, subnormal, infinite or a
592 NaN. Note, the term *normal* is used here in a different sense with
593 the :meth:`normalize` method which is used to create canonical values.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000594
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000595 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000596
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000597 .. method:: is_qnan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000598
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000599 Return :const:`True` if the argument is a quiet NaN, and
600 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000601
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000602 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000603
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000604 .. method:: is_signed()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000605
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000606 Return :const:`True` if the argument has a negative sign and
607 :const:`False` otherwise. Note that zeros and NaNs can both carry signs.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000608
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000609 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000610
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000611 .. method:: is_snan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000612
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000613 Return :const:`True` if the argument is a signaling NaN and :const:`False`
614 otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000615
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000616 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000617
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000618 .. method:: is_subnormal()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000619
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000620 Return :const:`True` if the argument is subnormal, and :const:`False`
Raymond Hettingereecd1dc62009-03-10 04:40:24 +0000621 otherwise. A number is subnormal is if it is nonzero, finite, and has an
622 adjusted exponent less than *Emin*.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000623
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000624 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000625
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000626 .. method:: is_zero()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000627
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000628 Return :const:`True` if the argument is a (positive or negative) zero and
629 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000630
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000631 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000632
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000633 .. method:: ln([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000634
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000635 Return the natural (base e) logarithm of the operand. The result is
636 correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000637
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000638 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000639
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000640 .. method:: log10([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000641
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000642 Return the base ten logarithm of the operand. The result is correctly
643 rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000644
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000645 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000646
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000647 .. method:: logb([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000648
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000649 For a nonzero number, return the adjusted exponent of its operand as a
650 :class:`Decimal` instance. If the operand is a zero then
651 ``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
652 is raised. If the operand is an infinity then ``Decimal('Infinity')`` is
653 returned.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000654
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000655 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000656
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000657 .. method:: logical_and(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000658
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000659 :meth:`logical_and` is a logical operation which takes two *logical
660 operands* (see :ref:`logical_operands_label`). The result is the
661 digit-wise ``and`` of the two operands.
662
663 .. versionadded:: 2.6
664
Georg Brandl3d5c87a2009-06-30 16:15:43 +0000665 .. method:: logical_invert([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000666
Georg Brandl3d5c87a2009-06-30 16:15:43 +0000667 :meth:`logical_invert` is a logical operation. The
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000668 result is the digit-wise inversion of the operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000669
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000670 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000671
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000672 .. method:: logical_or(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000673
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000674 :meth:`logical_or` is a logical operation which takes two *logical
675 operands* (see :ref:`logical_operands_label`). The result is the
676 digit-wise ``or`` of the two operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000677
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000678 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000679
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000680 .. method:: logical_xor(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000681
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000682 :meth:`logical_xor` is a logical operation which takes two *logical
683 operands* (see :ref:`logical_operands_label`). The result is the
684 digit-wise exclusive or of the two operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000685
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000686 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000687
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000688 .. method:: max(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000689
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000690 Like ``max(self, other)`` except that the context rounding rule is applied
691 before returning and that :const:`NaN` values are either signaled or
692 ignored (depending on the context and whether they are signaling or
693 quiet).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000694
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000695 .. method:: max_mag(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000696
Georg Brandl9fa61bb2009-07-26 14:19:57 +0000697 Similar to the :meth:`.max` method, but the comparison is done using the
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000698 absolute values of the operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000699
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000700 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000701
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000702 .. method:: min(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000703
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000704 Like ``min(self, other)`` except that the context rounding rule is applied
705 before returning and that :const:`NaN` values are either signaled or
706 ignored (depending on the context and whether they are signaling or
707 quiet).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000708
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000709 .. method:: min_mag(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000710
Georg Brandl9fa61bb2009-07-26 14:19:57 +0000711 Similar to the :meth:`.min` method, but the comparison is done using the
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000712 absolute values of the operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000713
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000714 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000715
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000716 .. method:: next_minus([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000717
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000718 Return the largest number representable in the given context (or in the
719 current thread's context if no context is given) that is smaller than the
720 given operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000721
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000722 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000723
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000724 .. method:: next_plus([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000725
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000726 Return the smallest number representable in the given context (or in the
727 current thread's context if no context is given) that is larger than the
728 given operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000729
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000730 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000731
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000732 .. method:: next_toward(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000733
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000734 If the two operands are unequal, return the number closest to the first
735 operand in the direction of the second operand. If both operands are
736 numerically equal, return a copy of the first operand with the sign set to
737 be the same as the sign of the second operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000738
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000739 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000740
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000741 .. method:: normalize([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000742
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000743 Normalize the number by stripping the rightmost trailing zeros and
744 converting any result equal to :const:`Decimal('0')` to
Senthil Kumaran6f18b982011-07-04 12:50:02 -0700745 :const:`Decimal('0e0')`. Used for producing canonical values for attributes
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000746 of an equivalence class. For example, ``Decimal('32.100')`` and
747 ``Decimal('0.321000e+2')`` both normalize to the equivalent value
748 ``Decimal('32.1')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000749
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000750 .. method:: number_class([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000751
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000752 Return a string describing the *class* of the operand. The returned value
753 is one of the following ten strings.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000754
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000755 * ``"-Infinity"``, indicating that the operand is negative infinity.
756 * ``"-Normal"``, indicating that the operand is a negative normal number.
757 * ``"-Subnormal"``, indicating that the operand is negative and subnormal.
758 * ``"-Zero"``, indicating that the operand is a negative zero.
759 * ``"+Zero"``, indicating that the operand is a positive zero.
760 * ``"+Subnormal"``, indicating that the operand is positive and subnormal.
761 * ``"+Normal"``, indicating that the operand is a positive normal number.
762 * ``"+Infinity"``, indicating that the operand is positive infinity.
763 * ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
764 * ``"sNaN"``, indicating that the operand is a signaling NaN.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000765
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000766 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000767
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000768 .. method:: quantize(exp[, rounding[, context[, watchexp]]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000769
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000770 Return a value equal to the first operand after rounding and having the
771 exponent of the second operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000772
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000773 >>> Decimal('1.41421356').quantize(Decimal('1.000'))
774 Decimal('1.414')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000775
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000776 Unlike other operations, if the length of the coefficient after the
777 quantize operation would be greater than precision, then an
778 :const:`InvalidOperation` is signaled. This guarantees that, unless there
779 is an error condition, the quantized exponent is always equal to that of
780 the right-hand operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000781
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000782 Also unlike other operations, quantize never signals Underflow, even if
783 the result is subnormal and inexact.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000784
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000785 If the exponent of the second operand is larger than that of the first
786 then rounding may be necessary. In this case, the rounding mode is
787 determined by the ``rounding`` argument if given, else by the given
788 ``context`` argument; if neither argument is given the rounding mode of
789 the current thread's context is used.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000790
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000791 If *watchexp* is set (default), then an error is returned whenever the
792 resulting exponent is greater than :attr:`Emax` or less than
793 :attr:`Etiny`.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000794
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000795 .. method:: radix()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000796
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000797 Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
798 class does all its arithmetic. Included for compatibility with the
799 specification.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000800
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000801 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000802
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000803 .. method:: remainder_near(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000804
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000805 Compute the modulo as either a positive or negative value depending on
806 which is closest to zero. For instance, ``Decimal(10).remainder_near(6)``
807 returns ``Decimal('-2')`` which is closer to zero than ``Decimal('4')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000808
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000809 If both are equally close, the one chosen will have the same sign as
810 *self*.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000811
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000812 .. method:: rotate(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000813
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000814 Return the result of rotating the digits of the first operand by an amount
815 specified by the second operand. The second operand must be an integer in
816 the range -precision through precision. The absolute value of the second
817 operand gives the number of places to rotate. If the second operand is
818 positive then rotation is to the left; otherwise rotation is to the right.
819 The coefficient of the first operand is padded on the left with zeros to
820 length precision if necessary. The sign and exponent of the first operand
821 are unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000822
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000823 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000824
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000825 .. method:: same_quantum(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000826
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000827 Test whether self and other have the same exponent or whether both are
828 :const:`NaN`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000829
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000830 .. method:: scaleb(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000831
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000832 Return the first operand with exponent adjusted by the second.
833 Equivalently, return the first operand multiplied by ``10**other``. The
834 second operand must be an integer.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000835
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000836 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000837
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000838 .. method:: shift(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000839
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000840 Return the result of shifting the digits of the first operand by an amount
841 specified by the second operand. The second operand must be an integer in
842 the range -precision through precision. The absolute value of the second
843 operand gives the number of places to shift. If the second operand is
844 positive then the shift is to the left; otherwise the shift is to the
845 right. Digits shifted into the coefficient are zeros. The sign and
846 exponent of the first operand are unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000847
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000848 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000849
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000850 .. method:: sqrt([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000851
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000852 Return the square root of the argument to full precision.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000853
854
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000855 .. method:: to_eng_string([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000856
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000857 Convert to an engineering-type string.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000858
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000859 Engineering notation has an exponent which is a multiple of 3, so there
860 are up to 3 digits left of the decimal place. For example, converts
861 ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``
Georg Brandl8ec7f652007-08-15 14:28:01 +0000862
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000863 .. method:: to_integral([rounding[, context]])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000864
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000865 Identical to the :meth:`to_integral_value` method. The ``to_integral``
866 name has been kept for compatibility with older versions.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000867
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000868 .. method:: to_integral_exact([rounding[, context]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000869
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000870 Round to the nearest integer, signaling :const:`Inexact` or
871 :const:`Rounded` as appropriate if rounding occurs. The rounding mode is
872 determined by the ``rounding`` parameter if given, else by the given
873 ``context``. If neither parameter is given then the rounding mode of the
874 current context is used.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000875
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000876 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000877
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000878 .. method:: to_integral_value([rounding[, context]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000879
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000880 Round to the nearest integer without signaling :const:`Inexact` or
881 :const:`Rounded`. If given, applies *rounding*; otherwise, uses the
882 rounding method in either the supplied *context* or the current context.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000883
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000884 .. versionchanged:: 2.6
885 renamed from ``to_integral`` to ``to_integral_value``. The old name
886 remains valid for compatibility.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000887
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000888.. _logical_operands_label:
889
890Logical operands
891^^^^^^^^^^^^^^^^
892
893The :meth:`logical_and`, :meth:`logical_invert`, :meth:`logical_or`,
894and :meth:`logical_xor` methods expect their arguments to be *logical
895operands*. A *logical operand* is a :class:`Decimal` instance whose
896exponent and sign are both zero, and whose digits are all either
897:const:`0` or :const:`1`.
898
Georg Brandlb19be572007-12-29 10:57:00 +0000899.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000900
901
902.. _decimal-context:
903
904Context objects
905---------------
906
907Contexts are environments for arithmetic operations. They govern precision, set
908rules for rounding, determine which signals are treated as exceptions, and limit
909the range for exponents.
910
911Each thread has its own current context which is accessed or changed using the
912:func:`getcontext` and :func:`setcontext` functions:
913
914
915.. function:: getcontext()
916
917 Return the current context for the active thread.
918
919
920.. function:: setcontext(c)
921
922 Set the current context for the active thread to *c*.
923
924Beginning with Python 2.5, you can also use the :keyword:`with` statement and
925the :func:`localcontext` function to temporarily change the active context.
926
927
928.. function:: localcontext([c])
929
930 Return a context manager that will set the current context for the active thread
931 to a copy of *c* on entry to the with-statement and restore the previous context
932 when exiting the with-statement. If no context is specified, a copy of the
933 current context is used.
934
935 .. versionadded:: 2.5
936
937 For example, the following code sets the current decimal precision to 42 places,
938 performs a calculation, and then automatically restores the previous context::
939
Georg Brandl8ec7f652007-08-15 14:28:01 +0000940 from decimal import localcontext
941
942 with localcontext() as ctx:
943 ctx.prec = 42 # Perform a high precision calculation
944 s = calculate_something()
945 s = +s # Round the final result back to the default precision
946
Raymond Hettinger56f5c382012-05-11 12:50:11 -0700947 with localcontext(BasicContext): # temporarily use the BasicContext
948 print Decimal(1) / Decimal(7)
949 print Decimal(355) / Decimal(113)
950
Georg Brandl8ec7f652007-08-15 14:28:01 +0000951New contexts can also be created using the :class:`Context` constructor
952described below. In addition, the module provides three pre-made contexts:
953
954
955.. class:: BasicContext
956
957 This is a standard context defined by the General Decimal Arithmetic
958 Specification. Precision is set to nine. Rounding is set to
959 :const:`ROUND_HALF_UP`. All flags are cleared. All traps are enabled (treated
960 as exceptions) except :const:`Inexact`, :const:`Rounded`, and
961 :const:`Subnormal`.
962
963 Because many of the traps are enabled, this context is useful for debugging.
964
965
966.. class:: ExtendedContext
967
968 This is a standard context defined by the General Decimal Arithmetic
969 Specification. Precision is set to nine. Rounding is set to
970 :const:`ROUND_HALF_EVEN`. All flags are cleared. No traps are enabled (so that
971 exceptions are not raised during computations).
972
Mark Dickinson3a94ee02008-02-10 15:19:58 +0000973 Because the traps are disabled, this context is useful for applications that
Georg Brandl8ec7f652007-08-15 14:28:01 +0000974 prefer to have result value of :const:`NaN` or :const:`Infinity` instead of
975 raising exceptions. This allows an application to complete a run in the
976 presence of conditions that would otherwise halt the program.
977
978
979.. class:: DefaultContext
980
981 This context is used by the :class:`Context` constructor as a prototype for new
982 contexts. Changing a field (such a precision) has the effect of changing the
Stefan Krah3d08d882010-05-29 12:54:35 +0000983 default for new contexts created by the :class:`Context` constructor.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000984
985 This context is most useful in multi-threaded environments. Changing one of the
986 fields before threads are started has the effect of setting system-wide
987 defaults. Changing the fields after threads have started is not recommended as
988 it would require thread synchronization to prevent race conditions.
989
990 In single threaded environments, it is preferable to not use this context at
991 all. Instead, simply create contexts explicitly as described below.
992
993 The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps
994 for Overflow, InvalidOperation, and DivisionByZero.
995
996In addition to the three supplied contexts, new contexts can be created with the
997:class:`Context` constructor.
998
999
1000.. class:: Context(prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capitals=1)
1001
1002 Creates a new context. If a field is not specified or is :const:`None`, the
1003 default values are copied from the :const:`DefaultContext`. If the *flags*
1004 field is not specified or is :const:`None`, all flags are cleared.
1005
1006 The *prec* field is a positive integer that sets the precision for arithmetic
1007 operations in the context.
1008
1009 The *rounding* option is one of:
1010
1011 * :const:`ROUND_CEILING` (towards :const:`Infinity`),
1012 * :const:`ROUND_DOWN` (towards zero),
1013 * :const:`ROUND_FLOOR` (towards :const:`-Infinity`),
1014 * :const:`ROUND_HALF_DOWN` (to nearest with ties going towards zero),
1015 * :const:`ROUND_HALF_EVEN` (to nearest with ties going to nearest even integer),
1016 * :const:`ROUND_HALF_UP` (to nearest with ties going away from zero), or
1017 * :const:`ROUND_UP` (away from zero).
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001018 * :const:`ROUND_05UP` (away from zero if last digit after rounding towards zero
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001019 would have been 0 or 5; otherwise towards zero)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001020
1021 The *traps* and *flags* fields list any signals to be set. Generally, new
1022 contexts should only set traps and leave the flags clear.
1023
1024 The *Emin* and *Emax* fields are integers specifying the outer limits allowable
1025 for exponents.
1026
1027 The *capitals* field is either :const:`0` or :const:`1` (the default). If set to
1028 :const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
1029 lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
1030
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001031 .. versionchanged:: 2.6
1032 The :const:`ROUND_05UP` rounding mode was added.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001033
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001034 The :class:`Context` class defines several general purpose methods as well as
1035 a large number of methods for doing arithmetic directly in a given context.
1036 In addition, for each of the :class:`Decimal` methods described above (with
1037 the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
Mark Dickinson6d8effb2010-02-18 14:27:02 +00001038 a corresponding :class:`Context` method. For example, for a :class:`Context`
1039 instance ``C`` and :class:`Decimal` instance ``x``, ``C.exp(x)`` is
1040 equivalent to ``x.exp(context=C)``. Each :class:`Context` method accepts a
1041 Python integer (an instance of :class:`int` or :class:`long`) anywhere that a
1042 Decimal instance is accepted.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001043
1044
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001045 .. method:: clear_flags()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001046
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001047 Resets all of the flags to :const:`0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001048
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001049 .. method:: copy()
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001050
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001051 Return a duplicate of the context.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001052
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001053 .. method:: copy_decimal(num)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001054
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001055 Return a copy of the Decimal instance num.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001056
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001057 .. method:: create_decimal(num)
Georg Brandl9f662322008-03-22 11:47:10 +00001058
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001059 Creates a new Decimal instance from *num* but using *self* as
1060 context. Unlike the :class:`Decimal` constructor, the context precision,
1061 rounding method, flags, and traps are applied to the conversion.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001062
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001063 This is useful because constants are often given to a greater precision
1064 than is needed by the application. Another benefit is that rounding
1065 immediately eliminates unintended effects from digits beyond the current
1066 precision. In the following example, using unrounded inputs means that
1067 adding zero to a sum can change the result:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001068
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001069 .. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001070
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001071 >>> getcontext().prec = 3
1072 >>> Decimal('3.4445') + Decimal('1.0023')
1073 Decimal('4.45')
1074 >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
1075 Decimal('4.44')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001076
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001077 This method implements the to-number operation of the IBM specification.
1078 If the argument is a string, no leading or trailing whitespace is
1079 permitted.
1080
Georg Brandlaa5bb322009-01-03 19:44:48 +00001081 .. method:: create_decimal_from_float(f)
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001082
1083 Creates a new Decimal instance from a float *f* but rounding using *self*
Georg Brandla24067e2009-01-03 20:15:14 +00001084 as the context. Unlike the :meth:`Decimal.from_float` class method,
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001085 the context precision, rounding method, flags, and traps are applied to
1086 the conversion.
1087
1088 .. doctest::
1089
Georg Brandlaa5bb322009-01-03 19:44:48 +00001090 >>> context = Context(prec=5, rounding=ROUND_DOWN)
1091 >>> context.create_decimal_from_float(math.pi)
1092 Decimal('3.1415')
1093 >>> context = Context(prec=5, traps=[Inexact])
1094 >>> context.create_decimal_from_float(math.pi)
1095 Traceback (most recent call last):
1096 ...
1097 Inexact: None
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001098
1099 .. versionadded:: 2.7
1100
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001101 .. method:: Etiny()
1102
1103 Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
1104 value for subnormal results. When underflow occurs, the exponent is set
1105 to :const:`Etiny`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001106
1107
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001108 .. method:: Etop()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001109
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001110 Returns a value equal to ``Emax - prec + 1``.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001111
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001112 The usual approach to working with decimals is to create :class:`Decimal`
1113 instances and then apply arithmetic operations which take place within the
1114 current context for the active thread. An alternative approach is to use
1115 context methods for calculating within a specific context. The methods are
1116 similar to those for the :class:`Decimal` class and are only briefly
1117 recounted here.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001118
1119
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001120 .. method:: abs(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001121
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001122 Returns the absolute value of *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001123
1124
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001125 .. method:: add(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001126
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001127 Return the sum of *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001128
1129
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001130 .. method:: canonical(x)
1131
1132 Returns the same Decimal object *x*.
1133
1134
1135 .. method:: compare(x, y)
1136
1137 Compares *x* and *y* numerically.
1138
1139
1140 .. method:: compare_signal(x, y)
1141
1142 Compares the values of the two operands numerically.
1143
1144
1145 .. method:: compare_total(x, y)
1146
1147 Compares two operands using their abstract representation.
1148
1149
1150 .. method:: compare_total_mag(x, y)
1151
1152 Compares two operands using their abstract representation, ignoring sign.
1153
1154
1155 .. method:: copy_abs(x)
1156
1157 Returns a copy of *x* with the sign set to 0.
1158
1159
1160 .. method:: copy_negate(x)
1161
1162 Returns a copy of *x* with the sign inverted.
1163
1164
1165 .. method:: copy_sign(x, y)
1166
1167 Copies the sign from *y* to *x*.
1168
1169
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001170 .. method:: divide(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001171
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001172 Return *x* divided by *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001173
1174
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001175 .. method:: divide_int(x, y)
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001176
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001177 Return *x* divided by *y*, truncated to an integer.
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001178
1179
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001180 .. method:: divmod(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001181
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001182 Divides two numbers and returns the integer part of the result.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001183
1184
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001185 .. method:: exp(x)
1186
1187 Returns `e ** x`.
1188
1189
1190 .. method:: fma(x, y, z)
1191
1192 Returns *x* multiplied by *y*, plus *z*.
1193
1194
1195 .. method:: is_canonical(x)
1196
1197 Returns True if *x* is canonical; otherwise returns False.
1198
1199
1200 .. method:: is_finite(x)
1201
1202 Returns True if *x* is finite; otherwise returns False.
1203
1204
1205 .. method:: is_infinite(x)
1206
1207 Returns True if *x* is infinite; otherwise returns False.
1208
1209
1210 .. method:: is_nan(x)
1211
1212 Returns True if *x* is a qNaN or sNaN; otherwise returns False.
1213
1214
1215 .. method:: is_normal(x)
1216
1217 Returns True if *x* is a normal number; otherwise returns False.
1218
1219
1220 .. method:: is_qnan(x)
1221
1222 Returns True if *x* is a quiet NaN; otherwise returns False.
1223
1224
1225 .. method:: is_signed(x)
1226
1227 Returns True if *x* is negative; otherwise returns False.
1228
1229
1230 .. method:: is_snan(x)
1231
1232 Returns True if *x* is a signaling NaN; otherwise returns False.
1233
1234
1235 .. method:: is_subnormal(x)
1236
1237 Returns True if *x* is subnormal; otherwise returns False.
1238
1239
1240 .. method:: is_zero(x)
1241
1242 Returns True if *x* is a zero; otherwise returns False.
1243
1244
1245 .. method:: ln(x)
1246
1247 Returns the natural (base e) logarithm of *x*.
1248
1249
1250 .. method:: log10(x)
1251
1252 Returns the base 10 logarithm of *x*.
1253
1254
1255 .. method:: logb(x)
1256
1257 Returns the exponent of the magnitude of the operand's MSD.
1258
1259
1260 .. method:: logical_and(x, y)
1261
Georg Brandle92818f2009-01-03 20:47:01 +00001262 Applies the logical operation *and* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001263
1264
1265 .. method:: logical_invert(x)
1266
1267 Invert all the digits in *x*.
1268
1269
1270 .. method:: logical_or(x, y)
1271
Georg Brandle92818f2009-01-03 20:47:01 +00001272 Applies the logical operation *or* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001273
1274
1275 .. method:: logical_xor(x, y)
1276
Georg Brandle92818f2009-01-03 20:47:01 +00001277 Applies the logical operation *xor* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001278
1279
1280 .. method:: max(x, y)
1281
1282 Compares two values numerically and returns the maximum.
1283
1284
1285 .. method:: max_mag(x, y)
1286
1287 Compares the values numerically with their sign ignored.
1288
1289
1290 .. method:: min(x, y)
1291
1292 Compares two values numerically and returns the minimum.
1293
1294
1295 .. method:: min_mag(x, y)
1296
1297 Compares the values numerically with their sign ignored.
1298
1299
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001300 .. method:: minus(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001301
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001302 Minus corresponds to the unary prefix minus operator in Python.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001303
1304
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001305 .. method:: multiply(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001306
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001307 Return the product of *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001308
1309
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001310 .. method:: next_minus(x)
1311
1312 Returns the largest representable number smaller than *x*.
1313
1314
1315 .. method:: next_plus(x)
1316
1317 Returns the smallest representable number larger than *x*.
1318
1319
1320 .. method:: next_toward(x, y)
1321
1322 Returns the number closest to *x*, in direction towards *y*.
1323
1324
1325 .. method:: normalize(x)
1326
1327 Reduces *x* to its simplest form.
1328
1329
1330 .. method:: number_class(x)
1331
1332 Returns an indication of the class of *x*.
1333
1334
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001335 .. method:: plus(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001336
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001337 Plus corresponds to the unary prefix plus operator in Python. This
1338 operation applies the context precision and rounding, so it is *not* an
1339 identity operation.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001340
1341
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001342 .. method:: power(x, y[, modulo])
Georg Brandl8ec7f652007-08-15 14:28:01 +00001343
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001344 Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001345
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001346 With two arguments, compute ``x**y``. If ``x`` is negative then ``y``
1347 must be integral. The result will be inexact unless ``y`` is integral and
1348 the result is finite and can be expressed exactly in 'precision' digits.
1349 The result should always be correctly rounded, using the rounding mode of
1350 the current thread's context.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001351
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001352 With three arguments, compute ``(x**y) % modulo``. For the three argument
1353 form, the following restrictions on the arguments hold:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001354
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001355 - all three arguments must be integral
1356 - ``y`` must be nonnegative
1357 - at least one of ``x`` or ``y`` must be nonzero
1358 - ``modulo`` must be nonzero and have at most 'precision' digits
Georg Brandl8ec7f652007-08-15 14:28:01 +00001359
Mark Dickinsonf5be4e62010-02-22 15:40:28 +00001360 The value resulting from ``Context.power(x, y, modulo)`` is
1361 equal to the value that would be obtained by computing ``(x**y)
1362 % modulo`` with unbounded precision, but is computed more
1363 efficiently. The exponent of the result is zero, regardless of
1364 the exponents of ``x``, ``y`` and ``modulo``. The result is
1365 always exact.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001366
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001367 .. versionchanged:: 2.6
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001368 ``y`` may now be nonintegral in ``x**y``.
1369 Stricter requirements for the three-argument version.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001370
1371
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001372 .. method:: quantize(x, y)
1373
1374 Returns a value equal to *x* (rounded), having the exponent of *y*.
1375
1376
1377 .. method:: radix()
1378
1379 Just returns 10, as this is Decimal, :)
1380
1381
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001382 .. method:: remainder(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001383
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001384 Returns the remainder from integer division.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001385
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001386 The sign of the result, if non-zero, is the same as that of the original
1387 dividend.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001388
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001389 .. method:: remainder_near(x, y)
1390
Georg Brandle92818f2009-01-03 20:47:01 +00001391 Returns ``x - y * n``, where *n* is the integer nearest the exact value
1392 of ``x / y`` (if the result is 0 then its sign will be the sign of *x*).
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001393
1394
1395 .. method:: rotate(x, y)
1396
1397 Returns a rotated copy of *x*, *y* times.
1398
1399
1400 .. method:: same_quantum(x, y)
1401
1402 Returns True if the two operands have the same exponent.
1403
1404
1405 .. method:: scaleb (x, y)
1406
1407 Returns the first operand after adding the second value its exp.
1408
1409
1410 .. method:: shift(x, y)
1411
1412 Returns a shifted copy of *x*, *y* times.
1413
1414
1415 .. method:: sqrt(x)
1416
1417 Square root of a non-negative number to context precision.
1418
1419
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001420 .. method:: subtract(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001421
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001422 Return the difference between *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001423
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001424
1425 .. method:: to_eng_string(x)
1426
1427 Converts a number to a string, using scientific notation.
1428
1429
1430 .. method:: to_integral_exact(x)
1431
1432 Rounds to an integer.
1433
1434
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001435 .. method:: to_sci_string(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001436
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001437 Converts a number to a string using scientific notation.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001438
Georg Brandlb19be572007-12-29 10:57:00 +00001439.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001440
1441
1442.. _decimal-signals:
1443
1444Signals
1445-------
1446
1447Signals represent conditions that arise during computation. Each corresponds to
1448one context flag and one context trap enabler.
1449
Mark Dickinson1840c1a2008-05-03 18:23:14 +00001450The context flag is set whenever the condition is encountered. After the
Georg Brandl8ec7f652007-08-15 14:28:01 +00001451computation, flags may be checked for informational purposes (for instance, to
1452determine whether a computation was exact). After checking the flags, be sure to
1453clear all flags before starting the next computation.
1454
1455If the context's trap enabler is set for the signal, then the condition causes a
1456Python exception to be raised. For example, if the :class:`DivisionByZero` trap
1457is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
1458condition.
1459
1460
1461.. class:: Clamped
1462
1463 Altered an exponent to fit representation constraints.
1464
1465 Typically, clamping occurs when an exponent falls outside the context's
1466 :attr:`Emin` and :attr:`Emax` limits. If possible, the exponent is reduced to
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001467 fit by adding zeros to the coefficient.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001468
1469
1470.. class:: DecimalException
1471
1472 Base class for other signals and a subclass of :exc:`ArithmeticError`.
1473
1474
1475.. class:: DivisionByZero
1476
1477 Signals the division of a non-infinite number by zero.
1478
1479 Can occur with division, modulo division, or when raising a number to a negative
1480 power. If this signal is not trapped, returns :const:`Infinity` or
1481 :const:`-Infinity` with the sign determined by the inputs to the calculation.
1482
1483
1484.. class:: Inexact
1485
1486 Indicates that rounding occurred and the result is not exact.
1487
1488 Signals when non-zero digits were discarded during rounding. The rounded result
1489 is returned. The signal flag or trap is used to detect when results are
1490 inexact.
1491
1492
1493.. class:: InvalidOperation
1494
1495 An invalid operation was performed.
1496
1497 Indicates that an operation was requested that does not make sense. If not
1498 trapped, returns :const:`NaN`. Possible causes include::
1499
1500 Infinity - Infinity
1501 0 * Infinity
1502 Infinity / Infinity
1503 x % 0
1504 Infinity % x
1505 x._rescale( non-integer )
1506 sqrt(-x) and x > 0
1507 0 ** 0
1508 x ** (non-integer)
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001509 x ** Infinity
Georg Brandl8ec7f652007-08-15 14:28:01 +00001510
1511
1512.. class:: Overflow
1513
1514 Numerical overflow.
1515
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001516 Indicates the exponent is larger than :attr:`Emax` after rounding has
1517 occurred. If not trapped, the result depends on the rounding mode, either
1518 pulling inward to the largest representable finite number or rounding outward
1519 to :const:`Infinity`. In either case, :class:`Inexact` and :class:`Rounded`
1520 are also signaled.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001521
1522
1523.. class:: Rounded
1524
1525 Rounding occurred though possibly no information was lost.
1526
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001527 Signaled whenever rounding discards digits; even if those digits are zero
1528 (such as rounding :const:`5.00` to :const:`5.0`). If not trapped, returns
1529 the result unchanged. This signal is used to detect loss of significant
1530 digits.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001531
1532
1533.. class:: Subnormal
1534
1535 Exponent was lower than :attr:`Emin` prior to rounding.
1536
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001537 Occurs when an operation result is subnormal (the exponent is too small). If
1538 not trapped, returns the result unchanged.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001539
1540
1541.. class:: Underflow
1542
1543 Numerical underflow with result rounded to zero.
1544
1545 Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
1546 and :class:`Subnormal` are also signaled.
1547
1548The following table summarizes the hierarchy of signals::
1549
1550 exceptions.ArithmeticError(exceptions.StandardError)
1551 DecimalException
1552 Clamped
1553 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
1554 Inexact
1555 Overflow(Inexact, Rounded)
1556 Underflow(Inexact, Rounded, Subnormal)
1557 InvalidOperation
1558 Rounded
1559 Subnormal
1560
Georg Brandlb19be572007-12-29 10:57:00 +00001561.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001562
1563
1564.. _decimal-notes:
1565
1566Floating Point Notes
1567--------------------
1568
1569
1570Mitigating round-off error with increased precision
1571^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1572
1573The use of decimal floating point eliminates decimal representation error
1574(making it possible to represent :const:`0.1` exactly); however, some operations
1575can still incur round-off error when non-zero digits exceed the fixed precision.
1576
1577The effects of round-off error can be amplified by the addition or subtraction
1578of nearly offsetting quantities resulting in loss of significance. Knuth
1579provides two instructive examples where rounded floating point arithmetic with
1580insufficient precision causes the breakdown of the associative and distributive
Georg Brandl9f662322008-03-22 11:47:10 +00001581properties of addition:
1582
1583.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001584
1585 # Examples from Seminumerical Algorithms, Section 4.2.2.
1586 >>> from decimal import Decimal, getcontext
1587 >>> getcontext().prec = 8
1588
1589 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1590 >>> (u + v) + w
Raymond Hettingerabe32372008-02-14 02:41:22 +00001591 Decimal('9.5111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001592 >>> u + (v + w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001593 Decimal('10')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001594
1595 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1596 >>> (u*v) + (u*w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001597 Decimal('0.01')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001598 >>> u * (v+w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001599 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001600
1601The :mod:`decimal` module makes it possible to restore the identities by
Georg Brandl9f662322008-03-22 11:47:10 +00001602expanding the precision sufficiently to avoid loss of significance:
1603
1604.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001605
1606 >>> getcontext().prec = 20
1607 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1608 >>> (u + v) + w
Raymond Hettingerabe32372008-02-14 02:41:22 +00001609 Decimal('9.51111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001610 >>> u + (v + w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001611 Decimal('9.51111111')
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001612 >>>
Georg Brandl8ec7f652007-08-15 14:28:01 +00001613 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1614 >>> (u*v) + (u*w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001615 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001616 >>> u * (v+w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001617 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001618
1619
1620Special values
1621^^^^^^^^^^^^^^
1622
1623The number system for the :mod:`decimal` module provides special values
1624including :const:`NaN`, :const:`sNaN`, :const:`-Infinity`, :const:`Infinity`,
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001625and two zeros, :const:`+0` and :const:`-0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001626
1627Infinities can be constructed directly with: ``Decimal('Infinity')``. Also,
1628they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
1629not trapped. Likewise, when the :exc:`Overflow` signal is not trapped, infinity
1630can result from rounding beyond the limits of the largest representable number.
1631
1632The infinities are signed (affine) and can be used in arithmetic operations
1633where they get treated as very large, indeterminate numbers. For instance,
1634adding a constant to infinity gives another infinite result.
1635
1636Some operations are indeterminate and return :const:`NaN`, or if the
1637:exc:`InvalidOperation` signal is trapped, raise an exception. For example,
1638``0/0`` returns :const:`NaN` which means "not a number". This variety of
1639:const:`NaN` is quiet and, once created, will flow through other computations
1640always resulting in another :const:`NaN`. This behavior can be useful for a
1641series of computations that occasionally have missing inputs --- it allows the
1642calculation to proceed while flagging specific results as invalid.
1643
1644A variant is :const:`sNaN` which signals rather than remaining quiet after every
1645operation. This is a useful return value when an invalid result needs to
1646interrupt a calculation for special handling.
1647
Mark Dickinson2fc92632008-02-06 22:10:50 +00001648The behavior of Python's comparison operators can be a little surprising where a
1649:const:`NaN` is involved. A test for equality where one of the operands is a
1650quiet or signaling :const:`NaN` always returns :const:`False` (even when doing
1651``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
Mark Dickinsonbafa9422008-02-06 22:25:16 +00001652:const:`True`. An attempt to compare two Decimals using any of the ``<``,
Mark Dickinson00c2e652008-02-07 01:42:06 +00001653``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
1654if either operand is a :const:`NaN`, and return :const:`False` if this signal is
Mark Dickinson3a94ee02008-02-10 15:19:58 +00001655not trapped. Note that the General Decimal Arithmetic specification does not
Mark Dickinson00c2e652008-02-07 01:42:06 +00001656specify the behavior of direct comparisons; these rules for comparisons
1657involving a :const:`NaN` were taken from the IEEE 854 standard (see Table 3 in
1658section 5.7). To ensure strict standards-compliance, use the :meth:`compare`
Mark Dickinson2fc92632008-02-06 22:10:50 +00001659and :meth:`compare-signal` methods instead.
1660
Georg Brandl8ec7f652007-08-15 14:28:01 +00001661The signed zeros can result from calculations that underflow. They keep the sign
1662that would have resulted if the calculation had been carried out to greater
1663precision. Since their magnitude is zero, both positive and negative zeros are
1664treated as equal and their sign is informational.
1665
1666In addition to the two signed zeros which are distinct yet equal, there are
1667various representations of zero with differing precisions yet equivalent in
1668value. This takes a bit of getting used to. For an eye accustomed to
1669normalized floating point representations, it is not immediately obvious that
Georg Brandl9f662322008-03-22 11:47:10 +00001670the following calculation returns a value equal to zero:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001671
1672 >>> 1 / Decimal('Infinity')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001673 Decimal('0E-1000000026')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001674
Georg Brandlb19be572007-12-29 10:57:00 +00001675.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001676
1677
1678.. _decimal-threads:
1679
1680Working with threads
1681--------------------
1682
1683The :func:`getcontext` function accesses a different :class:`Context` object for
1684each thread. Having separate thread contexts means that threads may make
1685changes (such as ``getcontext.prec=10``) without interfering with other threads.
1686
1687Likewise, the :func:`setcontext` function automatically assigns its target to
1688the current thread.
1689
1690If :func:`setcontext` has not been called before :func:`getcontext`, then
1691:func:`getcontext` will automatically create a new context for use in the
1692current thread.
1693
1694The new context is copied from a prototype context called *DefaultContext*. To
1695control the defaults so that each thread will use the same values throughout the
1696application, directly modify the *DefaultContext* object. This should be done
1697*before* any threads are started so that there won't be a race condition between
1698threads calling :func:`getcontext`. For example::
1699
1700 # Set applicationwide defaults for all threads about to be launched
1701 DefaultContext.prec = 12
1702 DefaultContext.rounding = ROUND_DOWN
1703 DefaultContext.traps = ExtendedContext.traps.copy()
1704 DefaultContext.traps[InvalidOperation] = 1
1705 setcontext(DefaultContext)
1706
1707 # Afterwards, the threads can be started
1708 t1.start()
1709 t2.start()
1710 t3.start()
1711 . . .
1712
Georg Brandlb19be572007-12-29 10:57:00 +00001713.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001714
1715
1716.. _decimal-recipes:
1717
1718Recipes
1719-------
1720
1721Here are a few recipes that serve as utility functions and that demonstrate ways
1722to work with the :class:`Decimal` class::
1723
1724 def moneyfmt(value, places=2, curr='', sep=',', dp='.',
1725 pos='', neg='-', trailneg=''):
1726 """Convert Decimal to a money formatted string.
1727
1728 places: required number of places after the decimal point
1729 curr: optional currency symbol before the sign (may be blank)
1730 sep: optional grouping separator (comma, period, space, or blank)
1731 dp: decimal point indicator (comma or period)
1732 only specify as blank when places is zero
1733 pos: optional sign for positive numbers: '+', space or blank
1734 neg: optional sign for negative numbers: '-', '(', space or blank
1735 trailneg:optional trailing minus indicator: '-', ')', space or blank
1736
1737 >>> d = Decimal('-1234567.8901')
1738 >>> moneyfmt(d, curr='$')
1739 '-$1,234,567.89'
1740 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
1741 '1.234.568-'
1742 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
1743 '($1,234,567.89)'
1744 >>> moneyfmt(Decimal(123456789), sep=' ')
1745 '123 456 789.00'
1746 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
Raymond Hettinger5eaffc42008-04-17 10:48:31 +00001747 '<0.02>'
Georg Brandl8ec7f652007-08-15 14:28:01 +00001748
1749 """
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001750 q = Decimal(10) ** -places # 2 places --> '0.01'
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001751 sign, digits, exp = value.quantize(q).as_tuple()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001752 result = []
1753 digits = map(str, digits)
1754 build, next = result.append, digits.pop
1755 if sign:
1756 build(trailneg)
1757 for i in range(places):
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001758 build(next() if digits else '0')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001759 build(dp)
Raymond Hettinger5eaffc42008-04-17 10:48:31 +00001760 if not digits:
1761 build('0')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001762 i = 0
1763 while digits:
1764 build(next())
1765 i += 1
1766 if i == 3 and digits:
1767 i = 0
1768 build(sep)
1769 build(curr)
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001770 build(neg if sign else pos)
1771 return ''.join(reversed(result))
Georg Brandl8ec7f652007-08-15 14:28:01 +00001772
1773 def pi():
1774 """Compute Pi to the current precision.
1775
1776 >>> print pi()
1777 3.141592653589793238462643383
1778
1779 """
1780 getcontext().prec += 2 # extra digits for intermediate steps
1781 three = Decimal(3) # substitute "three=3.0" for regular floats
1782 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1783 while s != lasts:
1784 lasts = s
1785 n, na = n+na, na+8
1786 d, da = d+da, da+32
1787 t = (t * n) / d
1788 s += t
1789 getcontext().prec -= 2
1790 return +s # unary plus applies the new precision
1791
1792 def exp(x):
1793 """Return e raised to the power of x. Result type matches input type.
1794
1795 >>> print exp(Decimal(1))
1796 2.718281828459045235360287471
1797 >>> print exp(Decimal(2))
1798 7.389056098930650227230427461
1799 >>> print exp(2.0)
1800 7.38905609893
1801 >>> print exp(2+0j)
1802 (7.38905609893+0j)
1803
1804 """
1805 getcontext().prec += 2
1806 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1807 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001808 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001809 i += 1
1810 fact *= i
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001811 num *= x
1812 s += num / fact
1813 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001814 return +s
1815
1816 def cos(x):
1817 """Return the cosine of x as measured in radians.
1818
1819 >>> print cos(Decimal('0.5'))
1820 0.8775825618903727161162815826
1821 >>> print cos(0.5)
1822 0.87758256189
1823 >>> print cos(0.5+0j)
1824 (0.87758256189+0j)
1825
1826 """
1827 getcontext().prec += 2
1828 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1829 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001830 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001831 i += 2
1832 fact *= i * (i-1)
1833 num *= x * x
1834 sign *= -1
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001835 s += num / fact * sign
1836 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001837 return +s
1838
1839 def sin(x):
1840 """Return the sine of x as measured in radians.
1841
1842 >>> print sin(Decimal('0.5'))
1843 0.4794255386042030002732879352
1844 >>> print sin(0.5)
1845 0.479425538604
1846 >>> print sin(0.5+0j)
1847 (0.479425538604+0j)
1848
1849 """
1850 getcontext().prec += 2
1851 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1852 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001853 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001854 i += 2
1855 fact *= i * (i-1)
1856 num *= x * x
1857 sign *= -1
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001858 s += num / fact * sign
1859 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001860 return +s
1861
1862
Georg Brandlb19be572007-12-29 10:57:00 +00001863.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001864
1865
1866.. _decimal-faq:
1867
1868Decimal FAQ
1869-----------
1870
1871Q. It is cumbersome to type ``decimal.Decimal('1234.5')``. Is there a way to
1872minimize typing when using the interactive interpreter?
1873
Georg Brandl9f662322008-03-22 11:47:10 +00001874A. Some users abbreviate the constructor to just a single letter:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001875
1876 >>> D = decimal.Decimal
1877 >>> D('1.23') + D('3.45')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001878 Decimal('4.68')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001879
1880Q. In a fixed-point application with two decimal places, some inputs have many
1881places and need to be rounded. Others are not supposed to have excess digits
1882and need to be validated. What methods should be used?
1883
1884A. The :meth:`quantize` method rounds to a fixed number of decimal places. If
Georg Brandl9f662322008-03-22 11:47:10 +00001885the :const:`Inexact` trap is set, it is also useful for validation:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001886
1887 >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
1888
1889 >>> # Round to two places
Raymond Hettingerabe32372008-02-14 02:41:22 +00001890 >>> Decimal('3.214').quantize(TWOPLACES)
1891 Decimal('3.21')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001892
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001893 >>> # Validate that a number does not exceed two places
Raymond Hettingerabe32372008-02-14 02:41:22 +00001894 >>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
1895 Decimal('3.21')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001896
Raymond Hettingerabe32372008-02-14 02:41:22 +00001897 >>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Georg Brandl8ec7f652007-08-15 14:28:01 +00001898 Traceback (most recent call last):
1899 ...
Georg Brandlf6dab952009-04-28 21:48:35 +00001900 Inexact: None
Georg Brandl8ec7f652007-08-15 14:28:01 +00001901
1902Q. Once I have valid two place inputs, how do I maintain that invariant
1903throughout an application?
1904
Raymond Hettinger46314812008-02-14 10:46:57 +00001905A. Some operations like addition, subtraction, and multiplication by an integer
1906will automatically preserve fixed point. Others operations, like division and
1907non-integer multiplication, will change the number of decimal places and need to
Georg Brandl9f662322008-03-22 11:47:10 +00001908be followed-up with a :meth:`quantize` step:
Raymond Hettinger46314812008-02-14 10:46:57 +00001909
1910 >>> a = Decimal('102.72') # Initial fixed-point values
1911 >>> b = Decimal('3.17')
1912 >>> a + b # Addition preserves fixed-point
1913 Decimal('105.89')
1914 >>> a - b
1915 Decimal('99.55')
1916 >>> a * 42 # So does integer multiplication
1917 Decimal('4314.24')
1918 >>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
1919 Decimal('325.62')
Raymond Hettinger27a90d92008-02-14 11:01:10 +00001920 >>> (b / a).quantize(TWOPLACES) # And quantize division
Raymond Hettinger46314812008-02-14 10:46:57 +00001921 Decimal('0.03')
1922
1923In developing fixed-point applications, it is convenient to define functions
Georg Brandl9f662322008-03-22 11:47:10 +00001924to handle the :meth:`quantize` step:
Raymond Hettinger46314812008-02-14 10:46:57 +00001925
Raymond Hettinger27a90d92008-02-14 11:01:10 +00001926 >>> def mul(x, y, fp=TWOPLACES):
1927 ... return (x * y).quantize(fp)
1928 >>> def div(x, y, fp=TWOPLACES):
1929 ... return (x / y).quantize(fp)
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001930
Raymond Hettinger46314812008-02-14 10:46:57 +00001931 >>> mul(a, b) # Automatically preserve fixed-point
1932 Decimal('325.62')
1933 >>> div(b, a)
1934 Decimal('0.03')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001935
1936Q. There are many ways to express the same value. The numbers :const:`200`,
1937:const:`200.000`, :const:`2E2`, and :const:`.02E+4` all have the same value at
1938various precisions. Is there a way to transform them to a single recognizable
1939canonical value?
1940
1941A. The :meth:`normalize` method maps all equivalent values to a single
Georg Brandl9f662322008-03-22 11:47:10 +00001942representative:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001943
1944 >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
1945 >>> [v.normalize() for v in values]
Raymond Hettingerabe32372008-02-14 02:41:22 +00001946 [Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001947
1948Q. Some decimal values always print with exponential notation. Is there a way
1949to get a non-exponential representation?
1950
1951A. For some values, exponential notation is the only way to express the number
1952of significant places in the coefficient. For example, expressing
1953:const:`5.0E+3` as :const:`5000` keeps the value constant but cannot show the
1954original's two-place significance.
1955
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001956If an application does not care about tracking significance, it is easy to
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001957remove the exponent and trailing zeros, losing significance, but keeping the
1958value unchanged::
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001959
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001960 def remove_exponent(d):
1961 '''Remove exponent and trailing zeros.
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001962
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001963 >>> remove_exponent(Decimal('5E+3'))
1964 Decimal('5000')
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001965
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001966 '''
1967 return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001968
Raymond Hettingered171ab2010-04-02 18:39:24 +00001969Q. Is there a way to convert a regular float to a :class:`Decimal`?
Georg Brandl9f662322008-03-22 11:47:10 +00001970
Mark Dickinsonb1affc52010-04-04 22:09:21 +00001971A. Yes, any binary floating point number can be exactly expressed as a
Raymond Hettingered171ab2010-04-02 18:39:24 +00001972Decimal though an exact conversion may take more precision than intuition would
1973suggest:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001974
Raymond Hettingered171ab2010-04-02 18:39:24 +00001975.. doctest::
Georg Brandl8ec7f652007-08-15 14:28:01 +00001976
Raymond Hettingered171ab2010-04-02 18:39:24 +00001977 >>> Decimal(math.pi)
1978 Decimal('3.141592653589793115997963468544185161590576171875')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001979
1980Q. Within a complex calculation, how can I make sure that I haven't gotten a
1981spurious result because of insufficient precision or rounding anomalies.
1982
1983A. The decimal module makes it easy to test results. A best practice is to
1984re-run calculations using greater precision and with various rounding modes.
1985Widely differing results indicate insufficient precision, rounding mode issues,
1986ill-conditioned inputs, or a numerically unstable algorithm.
1987
1988Q. I noticed that context precision is applied to the results of operations but
1989not to the inputs. Is there anything to watch out for when mixing values of
1990different precisions?
1991
1992A. Yes. The principle is that all values are considered to be exact and so is
1993the arithmetic on those values. Only the results are rounded. The advantage
1994for inputs is that "what you type is what you get". A disadvantage is that the
Georg Brandl9f662322008-03-22 11:47:10 +00001995results can look odd if you forget that the inputs haven't been rounded:
1996
1997.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001998
1999 >>> getcontext().prec = 3
Georg Brandl9f662322008-03-22 11:47:10 +00002000 >>> Decimal('3.104') + Decimal('2.104')
Raymond Hettingerabe32372008-02-14 02:41:22 +00002001 Decimal('5.21')
Georg Brandl9f662322008-03-22 11:47:10 +00002002 >>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Raymond Hettingerabe32372008-02-14 02:41:22 +00002003 Decimal('5.20')
Georg Brandl8ec7f652007-08-15 14:28:01 +00002004
2005The solution is either to increase precision or to force rounding of inputs
Georg Brandl9f662322008-03-22 11:47:10 +00002006using the unary plus operation:
2007
2008.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00002009
2010 >>> getcontext().prec = 3
2011 >>> +Decimal('1.23456789') # unary plus triggers rounding
Raymond Hettingerabe32372008-02-14 02:41:22 +00002012 Decimal('1.23')
Georg Brandl8ec7f652007-08-15 14:28:01 +00002013
2014Alternatively, inputs can be rounded upon creation using the
Georg Brandl9f662322008-03-22 11:47:10 +00002015:meth:`Context.create_decimal` method:
Georg Brandl8ec7f652007-08-15 14:28:01 +00002016
2017 >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Raymond Hettingerabe32372008-02-14 02:41:22 +00002018 Decimal('1.2345')
Georg Brandl8ec7f652007-08-15 14:28:01 +00002019