blob: bfce41a7f4c4f648154b04062349d70b237cd357 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001:mod:`math` --- Mathematical functions
2======================================
3
4.. module:: math
5 :synopsis: Mathematical functions (sin() etc.).
6
Łukasz Langa288234f2013-01-18 13:40:43 +01007.. testsetup::
8
9 from math import fsum
Georg Brandl116aa622007-08-15 14:28:22 +000010
Terry Jan Reedyfa089b92016-06-11 15:02:54 -040011--------------
12
Ned Batchelder6faad352019-05-17 05:59:14 -040013This module provides access to the mathematical functions defined by the C
14standard.
Georg Brandl116aa622007-08-15 14:28:22 +000015
16These functions cannot be used with complex numbers; use the functions of the
17same name from the :mod:`cmath` module if you require support for complex
18numbers. The distinction between functions which support complex numbers and
19those which don't is made since most users do not want to learn quite as much
20mathematics as required to understand complex numbers. Receiving an exception
21instead of a complex result allows earlier detection of the unexpected complex
22number used as a parameter, so that the programmer can determine how and why it
23was generated in the first place.
24
25The following functions are provided by this module. Except when explicitly
26noted otherwise, all return values are floats.
27
Georg Brandl116aa622007-08-15 14:28:22 +000028
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +000029Number-theoretic and representation functions
30---------------------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +000031
32.. function:: ceil(x)
33
Georg Brandl2a033732008-04-05 17:37:09 +000034 Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
35 If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
Serhiy Storchakabfdcd432013-10-13 23:09:14 +030036 :class:`~numbers.Integral` value.
Christian Heimes072c0f12008-01-03 23:01:04 +000037
38
Raymond Hettingerb7fade42019-06-01 15:01:46 -070039.. function:: comb(n, k)
40
41 Return the number of ways to choose *k* items from *n* items without repetition
42 and without order.
43
Raymond Hettinger963eb0f2019-06-04 01:23:06 -070044 Evaluates to ``n! / (k! * (n - k)!)`` when ``k <= n`` and evaluates
45 to zero when ``k > n``.
Raymond Hettingerb7fade42019-06-01 15:01:46 -070046
Raymond Hettinger963eb0f2019-06-04 01:23:06 -070047 Also called the binomial coefficient because it is equivalent
48 to the coefficient of k-th term in polynomial expansion of the
49 expression ``(1 + x) ** n``.
50
Raymond Hettinger8f4bbb52019-06-04 03:40:23 -070051 Raises :exc:`TypeError` if either of the arguments are not integers.
Raymond Hettinger963eb0f2019-06-04 01:23:06 -070052 Raises :exc:`ValueError` if either of the arguments are negative.
Raymond Hettingerb7fade42019-06-01 15:01:46 -070053
54 .. versionadded:: 3.8
55
56
Christian Heimes072c0f12008-01-03 23:01:04 +000057.. function:: copysign(x, y)
58
Andrew Kuchling8cb1ec32014-02-16 11:11:25 -050059 Return a float with the magnitude (absolute value) of *x* but the sign of
60 *y*. On platforms that support signed zeros, ``copysign(1.0, -0.0)``
61 returns *-1.0*.
Christian Heimes072c0f12008-01-03 23:01:04 +000062
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030063
Georg Brandl116aa622007-08-15 14:28:22 +000064.. function:: fabs(x)
65
66 Return the absolute value of *x*.
67
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030068
Georg Brandlc28e1fa2008-06-10 19:20:26 +000069.. function:: factorial(x)
70
Akshay Sharma46126712019-05-31 22:11:17 +053071 Return *x* factorial as an integer. Raises :exc:`ValueError` if *x* is not integral or
Georg Brandlc28e1fa2008-06-10 19:20:26 +000072 is negative.
Georg Brandl116aa622007-08-15 14:28:22 +000073
Serhiy Storchaka231aad32019-06-17 16:57:27 +030074 .. deprecated:: 3.9
75 Accepting floats with integral values (like ``5.0``) is deprecated.
76
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030077
Georg Brandl116aa622007-08-15 14:28:22 +000078.. function:: floor(x)
79
Georg Brandl2a033732008-04-05 17:37:09 +000080 Return the floor of *x*, the largest integer less than or equal to *x*.
81 If *x* is not a float, delegates to ``x.__floor__()``, which should return an
Serhiy Storchakabfdcd432013-10-13 23:09:14 +030082 :class:`~numbers.Integral` value.
Georg Brandl116aa622007-08-15 14:28:22 +000083
84
85.. function:: fmod(x, y)
86
87 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
88 Python expression ``x % y`` may not return the same result. The intent of the C
89 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
90 precision) equal to ``x - n*y`` for some integer *n* such that the result has
91 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
92 returns a result with the sign of *y* instead, and may not be exactly computable
93 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
94 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
95 represented exactly as a float, and rounds to the surprising ``1e100``. For
96 this reason, function :func:`fmod` is generally preferred when working with
97 floats, while Python's ``x % y`` is preferred when working with integers.
98
99
100.. function:: frexp(x)
101
102 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
103 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
104 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
105 apart" the internal representation of a float in a portable way.
106
107
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000108.. function:: fsum(iterable)
109
110 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettingerf3936f82009-02-19 05:48:05 +0000111 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000112
Raymond Hettingerf3936f82009-02-19 05:48:05 +0000113 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
Mark Dickinson5a55b612009-06-28 20:59:42 +0000114 0.9999999999999999
Raymond Hettingerf3936f82009-02-19 05:48:05 +0000115 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
116 1.0
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000117
Raymond Hettingerf3936f82009-02-19 05:48:05 +0000118 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
119 typical case where the rounding mode is half-even. On some non-Windows
120 builds, the underlying C library uses extended precision addition and may
121 occasionally double-round an intermediate sum causing it to be off in its
122 least significant bit.
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000123
Raymond Hettinger477be822009-02-19 06:44:30 +0000124 For further discussion and two alternative approaches, see the `ASPN cookbook
125 recipes for accurate floating point summation
Georg Brandl5d941342016-02-26 19:37:12 +0100126 <https://code.activestate.com/recipes/393090/>`_\.
Raymond Hettinger477be822009-02-19 06:44:30 +0000127
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000128
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300129.. function:: gcd(a, b)
130
131 Return the greatest common divisor of the integers *a* and *b*. If either
132 *a* or *b* is nonzero, then the value of ``gcd(a, b)`` is the largest
133 positive integer that divides both *a* and *b*. ``gcd(0, 0)`` returns
134 ``0``.
135
Benjamin Petersone960d182015-05-12 17:24:17 -0400136 .. versionadded:: 3.5
137
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300138
Tal Einatd5519ed2015-05-31 22:05:00 +0300139.. function:: isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
140
141 Return ``True`` if the values *a* and *b* are close to each other and
142 ``False`` otherwise.
143
144 Whether or not two values are considered close is determined according to
145 given absolute and relative tolerances.
146
147 *rel_tol* is the relative tolerance -- it is the maximum allowed difference
148 between *a* and *b*, relative to the larger absolute value of *a* or *b*.
149 For example, to set a tolerance of 5%, pass ``rel_tol=0.05``. The default
150 tolerance is ``1e-09``, which assures that the two values are the same
151 within about 9 decimal digits. *rel_tol* must be greater than zero.
152
153 *abs_tol* is the minimum absolute tolerance -- useful for comparisons near
154 zero. *abs_tol* must be at least zero.
155
156 If no errors occur, the result will be:
157 ``abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)``.
158
159 The IEEE 754 special values of ``NaN``, ``inf``, and ``-inf`` will be
160 handled according to IEEE rules. Specifically, ``NaN`` is not considered
161 close to any other value, including ``NaN``. ``inf`` and ``-inf`` are only
162 considered close to themselves.
163
164 .. versionadded:: 3.5
165
166 .. seealso::
167
168 :pep:`485` -- A function for testing approximate equality
169
170
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000171.. function:: isfinite(x)
172
173 Return ``True`` if *x* is neither an infinity nor a NaN, and
174 ``False`` otherwise. (Note that ``0.0`` *is* considered finite.)
175
Mark Dickinsonc7622422010-07-11 19:47:37 +0000176 .. versionadded:: 3.2
177
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000178
Christian Heimes072c0f12008-01-03 23:01:04 +0000179.. function:: isinf(x)
180
Mark Dickinsonc7622422010-07-11 19:47:37 +0000181 Return ``True`` if *x* is a positive or negative infinity, and
182 ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000183
Christian Heimes072c0f12008-01-03 23:01:04 +0000184
185.. function:: isnan(x)
186
Mark Dickinsonc7622422010-07-11 19:47:37 +0000187 Return ``True`` if *x* is a NaN (not a number), and ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000188
Christian Heimes072c0f12008-01-03 23:01:04 +0000189
Mark Dickinson73934b92019-05-18 12:29:50 +0100190.. function:: isqrt(n)
191
192 Return the integer square root of the nonnegative integer *n*. This is the
193 floor of the exact square root of *n*, or equivalently the greatest integer
194 *a* such that *a*\ ² |nbsp| ≤ |nbsp| *n*.
195
196 For some applications, it may be more convenient to have the least integer
197 *a* such that *n* |nbsp| ≤ |nbsp| *a*\ ², or in other words the ceiling of
198 the exact square root of *n*. For positive *n*, this can be computed using
199 ``a = 1 + isqrt(n - 1)``.
200
201 .. versionadded:: 3.8
202
203
Georg Brandl116aa622007-08-15 14:28:22 +0000204.. function:: ldexp(x, i)
205
206 Return ``x * (2**i)``. This is essentially the inverse of function
207 :func:`frexp`.
208
209
210.. function:: modf(x)
211
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000212 Return the fractional and integer parts of *x*. Both results carry the sign
213 of *x* and are floats.
Georg Brandl116aa622007-08-15 14:28:22 +0000214
Christian Heimes400adb02008-02-01 08:12:03 +0000215
Raymond Hettingere119b3d2019-06-08 08:58:11 -0700216.. function:: perm(n, k=None)
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +0300217
218 Return the number of ways to choose *k* items from *n* items
219 without repetition and with order.
220
Raymond Hettinger963eb0f2019-06-04 01:23:06 -0700221 Evaluates to ``n! / (n - k)!`` when ``k <= n`` and evaluates
222 to zero when ``k > n``.
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +0300223
Raymond Hettingere119b3d2019-06-08 08:58:11 -0700224 If *k* is not specified or is None, then *k* defaults to *n*
225 and the function returns ``n!``.
226
Raymond Hettinger8f4bbb52019-06-04 03:40:23 -0700227 Raises :exc:`TypeError` if either of the arguments are not integers.
Raymond Hettinger963eb0f2019-06-04 01:23:06 -0700228 Raises :exc:`ValueError` if either of the arguments are negative.
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +0300229
230 .. versionadded:: 3.8
231
232
Pablo Galindobc098512019-02-07 07:04:02 +0000233.. function:: prod(iterable, *, start=1)
234
235 Calculate the product of all the elements in the input *iterable*.
236 The default *start* value for the product is ``1``.
237
238 When the iterable is empty, return the start value. This function is
239 intended specifically for use with numeric values and may reject
240 non-numeric types.
241
242 .. versionadded:: 3.8
243
244
Mark Dickinsona0ce3752017-04-05 18:34:27 +0100245.. function:: remainder(x, y)
246
247 Return the IEEE 754-style remainder of *x* with respect to *y*. For
248 finite *x* and finite nonzero *y*, this is the difference ``x - n*y``,
249 where ``n`` is the closest integer to the exact value of the quotient ``x /
250 y``. If ``x / y`` is exactly halfway between two consecutive integers, the
251 nearest *even* integer is used for ``n``. The remainder ``r = remainder(x,
252 y)`` thus always satisfies ``abs(r) <= 0.5 * abs(y)``.
253
254 Special cases follow IEEE 754: in particular, ``remainder(x, math.inf)`` is
255 *x* for any finite *x*, and ``remainder(x, 0)`` and
256 ``remainder(math.inf, x)`` raise :exc:`ValueError` for any non-NaN *x*.
257 If the result of the remainder operation is zero, that zero will have
258 the same sign as *x*.
259
260 On platforms using IEEE 754 binary floating-point, the result of this
261 operation is always exactly representable: no rounding error is introduced.
262
263 .. versionadded:: 3.7
264
265
Christian Heimes400adb02008-02-01 08:12:03 +0000266.. function:: trunc(x)
267
Serhiy Storchakabfdcd432013-10-13 23:09:14 +0300268 Return the :class:`~numbers.Real` value *x* truncated to an
269 :class:`~numbers.Integral` (usually an integer). Delegates to
Eric Appelt308eab92018-03-10 02:44:12 -0600270 :meth:`x.__trunc__() <object.__trunc__>`.
Christian Heimes400adb02008-02-01 08:12:03 +0000271
Christian Heimes400adb02008-02-01 08:12:03 +0000272
Georg Brandl116aa622007-08-15 14:28:22 +0000273Note that :func:`frexp` and :func:`modf` have a different call/return pattern
274than their C equivalents: they take a single argument and return a pair of
275values, rather than returning their second return value through an 'output
276parameter' (there is no such thing in Python).
277
278For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
279floating-point numbers of sufficiently large magnitude are exact integers.
280Python floats typically carry no more than 53 bits of precision (the same as the
281platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
282necessarily has no fractional bits.
283
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000284
285Power and logarithmic functions
286-------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000287
Georg Brandl116aa622007-08-15 14:28:22 +0000288.. function:: exp(x)
289
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300290 Return *e* raised to the power *x*, where *e* = 2.718281... is the base
291 of natural logarithms. This is usually more accurate than ``math.e ** x``
292 or ``pow(math.e, x)``.
293
Georg Brandl116aa622007-08-15 14:28:22 +0000294
Mark Dickinson664b5112009-12-16 20:23:42 +0000295.. function:: expm1(x)
296
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300297 Return *e* raised to the power *x*, minus 1. Here *e* is the base of natural
298 logarithms. For small floats *x*, the subtraction in ``exp(x) - 1``
Raymond Hettinger1081d482011-03-31 12:04:53 -0700299 can result in a `significant loss of precision
Georg Brandl5d941342016-02-26 19:37:12 +0100300 <https://en.wikipedia.org/wiki/Loss_of_significance>`_\; the :func:`expm1`
Raymond Hettinger1081d482011-03-31 12:04:53 -0700301 function provides a way to compute this quantity to full precision::
Mark Dickinson664b5112009-12-16 20:23:42 +0000302
303 >>> from math import exp, expm1
304 >>> exp(1e-5) - 1 # gives result accurate to 11 places
305 1.0000050000069649e-05
306 >>> expm1(1e-5) # result accurate to full precision
307 1.0000050000166668e-05
308
Mark Dickinson45f992a2009-12-19 11:20:49 +0000309 .. versionadded:: 3.2
310
Mark Dickinson664b5112009-12-16 20:23:42 +0000311
Georg Brandl116aa622007-08-15 14:28:22 +0000312.. function:: log(x[, base])
313
Georg Brandla6053b42009-09-01 08:11:14 +0000314 With one argument, return the natural logarithm of *x* (to base *e*).
315
316 With two arguments, return the logarithm of *x* to the given *base*,
317 calculated as ``log(x)/log(base)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000318
Georg Brandl116aa622007-08-15 14:28:22 +0000319
Christian Heimes53876d92008-04-19 00:31:39 +0000320.. function:: log1p(x)
321
322 Return the natural logarithm of *1+x* (base *e*). The
323 result is calculated in a way which is accurate for *x* near zero.
324
Christian Heimes53876d92008-04-19 00:31:39 +0000325
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200326.. function:: log2(x)
327
Benjamin Petersoneaee1382011-05-08 19:48:08 -0500328 Return the base-2 logarithm of *x*. This is usually more accurate than
329 ``log(x, 2)``.
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200330
331 .. versionadded:: 3.3
332
Victor Stinner9415afc2011-09-21 03:35:18 +0200333 .. seealso::
334
335 :meth:`int.bit_length` returns the number of bits necessary to represent
336 an integer in binary, excluding the sign and leading zeros.
337
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200338
Georg Brandl116aa622007-08-15 14:28:22 +0000339.. function:: log10(x)
340
Georg Brandla6053b42009-09-01 08:11:14 +0000341 Return the base-10 logarithm of *x*. This is usually more accurate
342 than ``log(x, 10)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000343
344
345.. function:: pow(x, y)
346
Christian Heimesa342c012008-04-20 21:01:16 +0000347 Return ``x`` raised to the power ``y``. Exceptional cases follow
348 Annex 'F' of the C99 standard as far as possible. In particular,
349 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
350 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
351 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
352 is undefined, and raises :exc:`ValueError`.
Christian Heimes53876d92008-04-19 00:31:39 +0000353
Ezio Melotti739d5492013-02-23 04:53:44 +0200354 Unlike the built-in ``**`` operator, :func:`math.pow` converts both
355 its arguments to type :class:`float`. Use ``**`` or the built-in
356 :func:`pow` function for computing exact integer powers.
357
Georg Brandl116aa622007-08-15 14:28:22 +0000358
359.. function:: sqrt(x)
360
361 Return the square root of *x*.
362
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300363
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000364Trigonometric functions
365-----------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000366
Georg Brandl116aa622007-08-15 14:28:22 +0000367.. function:: acos(x)
368
369 Return the arc cosine of *x*, in radians.
370
371
372.. function:: asin(x)
373
374 Return the arc sine of *x*, in radians.
375
376
377.. function:: atan(x)
378
379 Return the arc tangent of *x*, in radians.
380
381
382.. function:: atan2(y, x)
383
384 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
385 The vector in the plane from the origin to point ``(x, y)`` makes this angle
386 with the positive X axis. The point of :func:`atan2` is that the signs of both
387 inputs are known to it, so it can compute the correct quadrant for the angle.
Mark Dickinson603b7532010-04-06 19:55:03 +0000388 For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
Georg Brandl116aa622007-08-15 14:28:22 +0000389 -1)`` is ``-3*pi/4``.
390
391
392.. function:: cos(x)
393
394 Return the cosine of *x* radians.
395
396
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -0700397.. function:: dist(p, q)
398
399 Return the Euclidean distance between two points *p* and *q*, each
400 given as a tuple of coordinates. The two tuples must be the same size.
401
402 Roughly equivalent to::
403
404 sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))
405
406 .. versionadded:: 3.8
407
408
Raymond Hettingerc6dabe32018-07-28 07:48:04 -0700409.. function:: hypot(*coordinates)
Georg Brandl116aa622007-08-15 14:28:22 +0000410
Raymond Hettingerc6dabe32018-07-28 07:48:04 -0700411 Return the Euclidean norm, ``sqrt(sum(x**2 for x in coordinates))``.
412 This is the length of the vector from the origin to the point
413 given by the coordinates.
414
415 For a two dimensional point ``(x, y)``, this is equivalent to computing
416 the hypotenuse of a right triangle using the Pythagorean theorem,
417 ``sqrt(x*x + y*y)``.
418
419 .. versionchanged:: 3.8
420 Added support for n-dimensional points. Formerly, only the two
421 dimensional case was supported.
Georg Brandl116aa622007-08-15 14:28:22 +0000422
423
424.. function:: sin(x)
425
426 Return the sine of *x* radians.
427
428
429.. function:: tan(x)
430
431 Return the tangent of *x* radians.
432
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300433
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000434Angular conversion
435------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000436
Georg Brandl116aa622007-08-15 14:28:22 +0000437.. function:: degrees(x)
438
Benjamin Peterson19a3f172015-05-12 19:15:53 -0400439 Convert angle *x* from radians to degrees.
Georg Brandl116aa622007-08-15 14:28:22 +0000440
441
442.. function:: radians(x)
443
Benjamin Peterson19a3f172015-05-12 19:15:53 -0400444 Convert angle *x* from degrees to radians.
Georg Brandl116aa622007-08-15 14:28:22 +0000445
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300446
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000447Hyperbolic functions
448--------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000449
Georg Brandl5d941342016-02-26 19:37:12 +0100450`Hyperbolic functions <https://en.wikipedia.org/wiki/Hyperbolic_function>`_
Raymond Hettinger1081d482011-03-31 12:04:53 -0700451are analogs of trigonometric functions that are based on hyperbolas
452instead of circles.
Georg Brandl116aa622007-08-15 14:28:22 +0000453
Christian Heimesa342c012008-04-20 21:01:16 +0000454.. function:: acosh(x)
455
456 Return the inverse hyperbolic cosine of *x*.
457
Christian Heimesa342c012008-04-20 21:01:16 +0000458
459.. function:: asinh(x)
460
461 Return the inverse hyperbolic sine of *x*.
462
Christian Heimesa342c012008-04-20 21:01:16 +0000463
464.. function:: atanh(x)
465
466 Return the inverse hyperbolic tangent of *x*.
467
Christian Heimesa342c012008-04-20 21:01:16 +0000468
Georg Brandl116aa622007-08-15 14:28:22 +0000469.. function:: cosh(x)
470
471 Return the hyperbolic cosine of *x*.
472
473
474.. function:: sinh(x)
475
476 Return the hyperbolic sine of *x*.
477
478
479.. function:: tanh(x)
480
481 Return the hyperbolic tangent of *x*.
482
Christian Heimes53876d92008-04-19 00:31:39 +0000483
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000484Special functions
485-----------------
486
Mark Dickinson45f992a2009-12-19 11:20:49 +0000487.. function:: erf(x)
488
Georg Brandl5d941342016-02-26 19:37:12 +0100489 Return the `error function <https://en.wikipedia.org/wiki/Error_function>`_ at
Raymond Hettinger1081d482011-03-31 12:04:53 -0700490 *x*.
491
492 The :func:`erf` function can be used to compute traditional statistical
493 functions such as the `cumulative standard normal distribution
Georg Brandl5d941342016-02-26 19:37:12 +0100494 <https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function>`_::
Raymond Hettinger1081d482011-03-31 12:04:53 -0700495
496 def phi(x):
497 'Cumulative distribution function for the standard normal distribution'
498 return (1.0 + erf(x / sqrt(2.0))) / 2.0
Mark Dickinson45f992a2009-12-19 11:20:49 +0000499
500 .. versionadded:: 3.2
501
502
503.. function:: erfc(x)
504
Raymond Hettinger1081d482011-03-31 12:04:53 -0700505 Return the complementary error function at *x*. The `complementary error
Georg Brandl5d941342016-02-26 19:37:12 +0100506 function <https://en.wikipedia.org/wiki/Error_function>`_ is defined as
Raymond Hettinger12e6c252011-03-31 13:59:24 -0700507 ``1.0 - erf(x)``. It is used for large values of *x* where a subtraction
508 from one would cause a `loss of significance
Georg Brandl5d941342016-02-26 19:37:12 +0100509 <https://en.wikipedia.org/wiki/Loss_of_significance>`_\.
Mark Dickinson45f992a2009-12-19 11:20:49 +0000510
511 .. versionadded:: 3.2
512
513
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000514.. function:: gamma(x)
515
Georg Brandl5d941342016-02-26 19:37:12 +0100516 Return the `Gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ at
Raymond Hettinger12e6c252011-03-31 13:59:24 -0700517 *x*.
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000518
Mark Dickinson56e09662009-10-01 16:13:29 +0000519 .. versionadded:: 3.2
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000520
521
Mark Dickinson05d2e082009-12-11 20:17:17 +0000522.. function:: lgamma(x)
523
524 Return the natural logarithm of the absolute value of the Gamma
525 function at *x*.
526
Mark Dickinson45f992a2009-12-19 11:20:49 +0000527 .. versionadded:: 3.2
Mark Dickinson05d2e082009-12-11 20:17:17 +0000528
529
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000530Constants
Mark Dickinson60fe6b02009-06-02 12:53:15 +0000531---------
Georg Brandl116aa622007-08-15 14:28:22 +0000532
533.. data:: pi
534
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300535 The mathematical constant *π* = 3.141592..., to available precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000536
537
538.. data:: e
539
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300540 The mathematical constant *e* = 2.718281..., to available precision.
541
Georg Brandl116aa622007-08-15 14:28:22 +0000542
Guido van Rossum0a891d72016-08-15 09:12:52 -0700543.. data:: tau
544
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300545 The mathematical constant *τ* = 6.283185..., to available precision.
546 Tau is a circle constant equal to 2\ *π*, the ratio of a circle's circumference to
Guido van Rossum0a891d72016-08-15 09:12:52 -0700547 its radius. To learn more about Tau, check out Vi Hart's video `Pi is (still)
548 Wrong <https://www.youtube.com/watch?v=jG7vhMMXagQ>`_, and start celebrating
Sanyam Khurana338cd832018-01-20 05:55:37 +0530549 `Tau day <https://tauday.com/>`_ by eating twice as much pie!
Christian Heimes53876d92008-04-19 00:31:39 +0000550
Georg Brandl4770d6e2016-08-16 07:08:46 +0200551 .. versionadded:: 3.6
552
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300553
Mark Dickinsona5d0c7c2015-01-11 11:55:29 +0000554.. data:: inf
555
556 A floating-point positive infinity. (For negative infinity, use
557 ``-math.inf``.) Equivalent to the output of ``float('inf')``.
558
559 .. versionadded:: 3.5
560
561
562.. data:: nan
563
564 A floating-point "not a number" (NaN) value. Equivalent to the output of
565 ``float('nan')``.
566
567 .. versionadded:: 3.5
568
569
Georg Brandl495f7b52009-10-27 15:28:25 +0000570.. impl-detail::
Georg Brandl116aa622007-08-15 14:28:22 +0000571
572 The :mod:`math` module consists mostly of thin wrappers around the platform C
Mark Dickinson603b7532010-04-06 19:55:03 +0000573 math library functions. Behavior in exceptional cases follows Annex F of
574 the C99 standard where appropriate. The current implementation will raise
575 :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
576 (where C99 Annex F recommends signaling invalid operation or divide-by-zero),
577 and :exc:`OverflowError` for results that overflow (for example,
Benjamin Peterson08bf91c2010-04-11 16:12:57 +0000578 ``exp(1000.0)``). A NaN will not be returned from any of the functions
579 above unless one or more of the input arguments was a NaN; in that case,
580 most functions will return a NaN, but (again following C99 Annex F) there
Mark Dickinson603b7532010-04-06 19:55:03 +0000581 are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
582 ``hypot(float('nan'), float('inf'))``.
Georg Brandl116aa622007-08-15 14:28:22 +0000583
Mark Dickinson42dfeec2010-04-06 22:13:37 +0000584 Note that Python makes no effort to distinguish signaling NaNs from
585 quiet NaNs, and behavior for signaling NaNs remains unspecified.
586 Typical behavior is to treat all NaNs as though they were quiet.
Christian Heimes53876d92008-04-19 00:31:39 +0000587
Georg Brandl116aa622007-08-15 14:28:22 +0000588
589.. seealso::
590
591 Module :mod:`cmath`
592 Complex number versions of many of these functions.
Mark Dickinson73934b92019-05-18 12:29:50 +0100593
594.. |nbsp| unicode:: 0xA0
595 :trim: