blob: e60e19bc490954b0237331d09f78112046992f4d [file] [log] [blame]
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001/* Math module -- standard C math library functions, pi and e */
2
Christian Heimes53876d92008-04-19 00:31:39 +00003/* Here are some comments from Tim Peters, extracted from the
4 discussion attached to http://bugs.python.org/issue1640. They
5 describe the general aims of the math module with respect to
6 special values, IEEE-754 floating-point exceptions, and Python
7 exceptions.
8
9These are the "spirit of 754" rules:
10
111. If the mathematical result is a real number, but of magnitude too
12large to approximate by a machine float, overflow is signaled and the
13result is an infinity (with the appropriate sign).
14
152. If the mathematical result is a real number, but of magnitude too
16small to approximate by a machine float, underflow is signaled and the
17result is a zero (with the appropriate sign).
18
193. At a singularity (a value x such that the limit of f(y) as y
20approaches x exists and is an infinity), "divide by zero" is signaled
21and the result is an infinity (with the appropriate sign). This is
22complicated a little by that the left-side and right-side limits may
23not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
24from the positive or negative directions. In that specific case, the
25sign of the zero determines the result of 1/0.
26
274. At a point where a function has no defined result in the extended
28reals (i.e., the reals plus an infinity or two), invalid operation is
29signaled and a NaN is returned.
30
31And these are what Python has historically /tried/ to do (but not
32always successfully, as platform libm behavior varies a lot):
33
34For #1, raise OverflowError.
35
36For #2, return a zero (with the appropriate sign if that happens by
37accident ;-)).
38
39For #3 and #4, raise ValueError. It may have made sense to raise
40Python's ZeroDivisionError in #3, but historically that's only been
41raised for division by zero and mod by zero.
42
43*/
44
45/*
46 In general, on an IEEE-754 platform the aim is to follow the C99
47 standard, including Annex 'F', whenever possible. Where the
48 standard recommends raising the 'divide-by-zero' or 'invalid'
49 floating-point exceptions, Python should raise a ValueError. Where
50 the standard recommends raising 'overflow', Python should raise an
51 OverflowError. In all other circumstances a value should be
52 returned.
53 */
54
Barry Warsaw8b43b191996-12-09 22:32:36 +000055#include "Python.h"
Mark Dickinson664b5112009-12-16 20:23:42 +000056#include "_math.h"
Guido van Rossum85a5fbb1990-10-14 12:07:46 +000057
Serhiy Storchakac9ea9332017-01-19 18:13:09 +020058#include "clinic/mathmodule.c.h"
59
60/*[clinic input]
61module math
62[clinic start generated code]*/
63/*[clinic end generated code: output=da39a3ee5e6b4b0d input=76bc7002685dd942]*/
64
65
Mark Dickinson12c4bdb2009-09-28 19:21:11 +000066/*
67 sin(pi*x), giving accurate results for all finite x (especially x
68 integral or close to an integer). This is here for use in the
69 reflection formula for the gamma function. It conforms to IEEE
70 754-2008 for finite arguments, but not for infinities or nans.
71*/
Tim Petersa40c7932001-09-05 22:36:56 +000072
Mark Dickinson12c4bdb2009-09-28 19:21:11 +000073static const double pi = 3.141592653589793238462643383279502884197;
Mark Dickinson9c91eb82010-07-07 16:17:31 +000074static const double logpi = 1.144729885849400174143427351353058711647;
Louie Lu7a264642017-03-31 01:05:10 +080075#if !defined(HAVE_ERF) || !defined(HAVE_ERFC)
76static const double sqrtpi = 1.772453850905516027298167483341145182798;
77#endif /* !defined(HAVE_ERF) || !defined(HAVE_ERFC) */
Mark Dickinson12c4bdb2009-09-28 19:21:11 +000078
Raymond Hettingercfd735e2019-01-29 20:39:53 -080079
80/* Version of PyFloat_AsDouble() with in-line fast paths
81 for exact floats and integers. Gives a substantial
82 speed improvement for extracting float arguments.
83*/
84
85#define ASSIGN_DOUBLE(target_var, obj, error_label) \
86 if (PyFloat_CheckExact(obj)) { \
87 target_var = PyFloat_AS_DOUBLE(obj); \
88 } \
89 else if (PyLong_CheckExact(obj)) { \
90 target_var = PyLong_AsDouble(obj); \
91 if (target_var == -1.0 && PyErr_Occurred()) { \
92 goto error_label; \
93 } \
94 } \
95 else { \
96 target_var = PyFloat_AsDouble(obj); \
97 if (target_var == -1.0 && PyErr_Occurred()) { \
98 goto error_label; \
99 } \
100 }
101
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000102static double
Dima Pasechnikf57cd822019-02-26 06:36:11 +0000103m_sinpi(double x)
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000104{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000105 double y, r;
106 int n;
107 /* this function should only ever be called for finite arguments */
108 assert(Py_IS_FINITE(x));
109 y = fmod(fabs(x), 2.0);
110 n = (int)round(2.0*y);
111 assert(0 <= n && n <= 4);
112 switch (n) {
113 case 0:
114 r = sin(pi*y);
115 break;
116 case 1:
117 r = cos(pi*(y-0.5));
118 break;
119 case 2:
120 /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give
121 -0.0 instead of 0.0 when y == 1.0. */
122 r = sin(pi*(1.0-y));
123 break;
124 case 3:
125 r = -cos(pi*(y-1.5));
126 break;
127 case 4:
128 r = sin(pi*(y-2.0));
129 break;
130 default:
Barry Warsawb2e57942017-09-14 18:13:16 -0700131 Py_UNREACHABLE();
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000132 }
133 return copysign(1.0, x)*r;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000134}
135
136/* Implementation of the real gamma function. In extensive but non-exhaustive
137 random tests, this function proved accurate to within <= 10 ulps across the
138 entire float domain. Note that accuracy may depend on the quality of the
139 system math functions, the pow function in particular. Special cases
140 follow C99 annex F. The parameters and method are tailored to platforms
141 whose double format is the IEEE 754 binary64 format.
142
143 Method: for x > 0.0 we use the Lanczos approximation with parameters N=13
144 and g=6.024680040776729583740234375; these parameters are amongst those
145 used by the Boost library. Following Boost (again), we re-express the
146 Lanczos sum as a rational function, and compute it that way. The
147 coefficients below were computed independently using MPFR, and have been
148 double-checked against the coefficients in the Boost source code.
149
150 For x < 0.0 we use the reflection formula.
151
152 There's one minor tweak that deserves explanation: Lanczos' formula for
153 Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5). For many x
154 values, x+g-0.5 can be represented exactly. However, in cases where it
155 can't be represented exactly the small error in x+g-0.5 can be magnified
156 significantly by the pow and exp calls, especially for large x. A cheap
157 correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error
158 involved in the computation of x+g-0.5 (that is, e = computed value of
159 x+g-0.5 - exact value of x+g-0.5). Here's the proof:
160
161 Correction factor
162 -----------------
163 Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754
164 double, and e is tiny. Then:
165
166 pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e)
167 = pow(y, x-0.5)/exp(y) * C,
168
169 where the correction_factor C is given by
170
171 C = pow(1-e/y, x-0.5) * exp(e)
172
173 Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so:
174
175 C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y
176
177 But y-(x-0.5) = g+e, and g+e ~ g. So we get C ~ 1 + e*g/y, and
178
179 pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y),
180
181 Note that for accuracy, when computing r*C it's better to do
182
183 r + e*g/y*r;
184
185 than
186
187 r * (1 + e*g/y);
188
189 since the addition in the latter throws away most of the bits of
190 information in e*g/y.
191*/
192
193#define LANCZOS_N 13
194static const double lanczos_g = 6.024680040776729583740234375;
195static const double lanczos_g_minus_half = 5.524680040776729583740234375;
196static const double lanczos_num_coeffs[LANCZOS_N] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000197 23531376880.410759688572007674451636754734846804940,
198 42919803642.649098768957899047001988850926355848959,
199 35711959237.355668049440185451547166705960488635843,
200 17921034426.037209699919755754458931112671403265390,
201 6039542586.3520280050642916443072979210699388420708,
202 1439720407.3117216736632230727949123939715485786772,
203 248874557.86205415651146038641322942321632125127801,
204 31426415.585400194380614231628318205362874684987640,
205 2876370.6289353724412254090516208496135991145378768,
206 186056.26539522349504029498971604569928220784236328,
207 8071.6720023658162106380029022722506138218516325024,
208 210.82427775157934587250973392071336271166969580291,
209 2.5066282746310002701649081771338373386264310793408
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000210};
211
212/* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */
213static const double lanczos_den_coeffs[LANCZOS_N] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000214 0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0,
215 13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0};
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000216
217/* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */
218#define NGAMMA_INTEGRAL 23
219static const double gamma_integral[NGAMMA_INTEGRAL] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000220 1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0,
221 3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0,
222 1307674368000.0, 20922789888000.0, 355687428096000.0,
223 6402373705728000.0, 121645100408832000.0, 2432902008176640000.0,
224 51090942171709440000.0, 1124000727777607680000.0,
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000225};
226
227/* Lanczos' sum L_g(x), for positive x */
228
229static double
230lanczos_sum(double x)
231{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000232 double num = 0.0, den = 0.0;
233 int i;
234 assert(x > 0.0);
235 /* evaluate the rational function lanczos_sum(x). For large
236 x, the obvious algorithm risks overflow, so we instead
237 rescale the denominator and numerator of the rational
238 function by x**(1-LANCZOS_N) and treat this as a
239 rational function in 1/x. This also reduces the error for
240 larger x values. The choice of cutoff point (5.0 below) is
241 somewhat arbitrary; in tests, smaller cutoff values than
242 this resulted in lower accuracy. */
243 if (x < 5.0) {
244 for (i = LANCZOS_N; --i >= 0; ) {
245 num = num * x + lanczos_num_coeffs[i];
246 den = den * x + lanczos_den_coeffs[i];
247 }
248 }
249 else {
250 for (i = 0; i < LANCZOS_N; i++) {
251 num = num / x + lanczos_num_coeffs[i];
252 den = den / x + lanczos_den_coeffs[i];
253 }
254 }
255 return num/den;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000256}
257
Mark Dickinsona5d0c7c2015-01-11 11:55:29 +0000258/* Constant for +infinity, generated in the same way as float('inf'). */
259
260static double
261m_inf(void)
262{
263#ifndef PY_NO_SHORT_FLOAT_REPR
264 return _Py_dg_infinity(0);
265#else
266 return Py_HUGE_VAL;
267#endif
268}
269
270/* Constant nan value, generated in the same way as float('nan'). */
271/* We don't currently assume that Py_NAN is defined everywhere. */
272
273#if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN)
274
275static double
276m_nan(void)
277{
278#ifndef PY_NO_SHORT_FLOAT_REPR
279 return _Py_dg_stdnan(0);
280#else
281 return Py_NAN;
282#endif
283}
284
285#endif
286
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000287static double
288m_tgamma(double x)
289{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000290 double absx, r, y, z, sqrtpow;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000291
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000292 /* special cases */
293 if (!Py_IS_FINITE(x)) {
294 if (Py_IS_NAN(x) || x > 0.0)
295 return x; /* tgamma(nan) = nan, tgamma(inf) = inf */
296 else {
297 errno = EDOM;
298 return Py_NAN; /* tgamma(-inf) = nan, invalid */
299 }
300 }
301 if (x == 0.0) {
302 errno = EDOM;
Mark Dickinson50203a62011-09-25 15:26:43 +0100303 /* tgamma(+-0.0) = +-inf, divide-by-zero */
304 return copysign(Py_HUGE_VAL, x);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000305 }
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000306
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000307 /* integer arguments */
308 if (x == floor(x)) {
309 if (x < 0.0) {
310 errno = EDOM; /* tgamma(n) = nan, invalid for */
311 return Py_NAN; /* negative integers n */
312 }
313 if (x <= NGAMMA_INTEGRAL)
314 return gamma_integral[(int)x - 1];
315 }
316 absx = fabs(x);
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000317
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000318 /* tiny arguments: tgamma(x) ~ 1/x for x near 0 */
319 if (absx < 1e-20) {
320 r = 1.0/x;
321 if (Py_IS_INFINITY(r))
322 errno = ERANGE;
323 return r;
324 }
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000325
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000326 /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for
327 x > 200, and underflows to +-0.0 for x < -200, not a negative
328 integer. */
329 if (absx > 200.0) {
330 if (x < 0.0) {
Dima Pasechnikf57cd822019-02-26 06:36:11 +0000331 return 0.0/m_sinpi(x);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000332 }
333 else {
334 errno = ERANGE;
335 return Py_HUGE_VAL;
336 }
337 }
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000338
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000339 y = absx + lanczos_g_minus_half;
340 /* compute error in sum */
341 if (absx > lanczos_g_minus_half) {
342 /* note: the correction can be foiled by an optimizing
343 compiler that (incorrectly) thinks that an expression like
344 a + b - a - b can be optimized to 0.0. This shouldn't
345 happen in a standards-conforming compiler. */
346 double q = y - absx;
347 z = q - lanczos_g_minus_half;
348 }
349 else {
350 double q = y - lanczos_g_minus_half;
351 z = q - absx;
352 }
353 z = z * lanczos_g / y;
354 if (x < 0.0) {
Dima Pasechnikf57cd822019-02-26 06:36:11 +0000355 r = -pi / m_sinpi(absx) / absx * exp(y) / lanczos_sum(absx);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000356 r -= z * r;
357 if (absx < 140.0) {
358 r /= pow(y, absx - 0.5);
359 }
360 else {
361 sqrtpow = pow(y, absx / 2.0 - 0.25);
362 r /= sqrtpow;
363 r /= sqrtpow;
364 }
365 }
366 else {
367 r = lanczos_sum(absx) / exp(y);
368 r += z * r;
369 if (absx < 140.0) {
370 r *= pow(y, absx - 0.5);
371 }
372 else {
373 sqrtpow = pow(y, absx / 2.0 - 0.25);
374 r *= sqrtpow;
375 r *= sqrtpow;
376 }
377 }
378 if (Py_IS_INFINITY(r))
379 errno = ERANGE;
380 return r;
Guido van Rossum8832b621991-12-16 15:44:24 +0000381}
382
Christian Heimes53876d92008-04-19 00:31:39 +0000383/*
Mark Dickinson05d2e082009-12-11 20:17:17 +0000384 lgamma: natural log of the absolute value of the Gamma function.
385 For large arguments, Lanczos' formula works extremely well here.
386*/
387
388static double
389m_lgamma(double x)
390{
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200391 double r;
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200392 double absx;
Mark Dickinson05d2e082009-12-11 20:17:17 +0000393
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000394 /* special cases */
395 if (!Py_IS_FINITE(x)) {
396 if (Py_IS_NAN(x))
397 return x; /* lgamma(nan) = nan */
398 else
399 return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */
400 }
Mark Dickinson05d2e082009-12-11 20:17:17 +0000401
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000402 /* integer arguments */
403 if (x == floor(x) && x <= 2.0) {
404 if (x <= 0.0) {
405 errno = EDOM; /* lgamma(n) = inf, divide-by-zero for */
406 return Py_HUGE_VAL; /* integers n <= 0 */
407 }
408 else {
409 return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */
410 }
411 }
Mark Dickinson05d2e082009-12-11 20:17:17 +0000412
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000413 absx = fabs(x);
414 /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */
415 if (absx < 1e-20)
416 return -log(absx);
Mark Dickinson05d2e082009-12-11 20:17:17 +0000417
Mark Dickinson9c91eb82010-07-07 16:17:31 +0000418 /* Lanczos' formula. We could save a fraction of a ulp in accuracy by
419 having a second set of numerator coefficients for lanczos_sum that
420 absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g
421 subtraction below; it's probably not worth it. */
422 r = log(lanczos_sum(absx)) - lanczos_g;
423 r += (absx - 0.5) * (log(absx + lanczos_g - 0.5) - 1);
424 if (x < 0.0)
425 /* Use reflection formula to get value for negative x. */
Dima Pasechnikf57cd822019-02-26 06:36:11 +0000426 r = logpi - log(fabs(m_sinpi(absx))) - log(absx) - r;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000427 if (Py_IS_INFINITY(r))
428 errno = ERANGE;
429 return r;
Mark Dickinson05d2e082009-12-11 20:17:17 +0000430}
431
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200432#if !defined(HAVE_ERF) || !defined(HAVE_ERFC)
433
Mark Dickinson45f992a2009-12-19 11:20:49 +0000434/*
435 Implementations of the error function erf(x) and the complementary error
436 function erfc(x).
437
Brett Cannon45adb312016-01-15 09:38:24 -0800438 Method: we use a series approximation for erf for small x, and a continued
439 fraction approximation for erfc(x) for larger x;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000440 combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x),
441 this gives us erf(x) and erfc(x) for all x.
442
443 The series expansion used is:
444
445 erf(x) = x*exp(-x*x)/sqrt(pi) * [
446 2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...]
447
448 The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k).
449 This series converges well for smallish x, but slowly for larger x.
450
451 The continued fraction expansion used is:
452
453 erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - )
454 3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...]
455
456 after the first term, the general term has the form:
457
458 k*(k-0.5)/(2*k+0.5 + x**2 - ...).
459
460 This expansion converges fast for larger x, but convergence becomes
461 infinitely slow as x approaches 0.0. The (somewhat naive) continued
462 fraction evaluation algorithm used below also risks overflow for large x;
463 but for large x, erfc(x) == 0.0 to within machine precision. (For
464 example, erfc(30.0) is approximately 2.56e-393).
465
466 Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and
467 continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) <
468 ERFC_CONTFRAC_CUTOFF. ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the
469 numbers of terms to use for the relevant expansions. */
470
471#define ERF_SERIES_CUTOFF 1.5
472#define ERF_SERIES_TERMS 25
473#define ERFC_CONTFRAC_CUTOFF 30.0
474#define ERFC_CONTFRAC_TERMS 50
475
476/*
477 Error function, via power series.
478
479 Given a finite float x, return an approximation to erf(x).
480 Converges reasonably fast for small x.
481*/
482
483static double
484m_erf_series(double x)
485{
Mark Dickinsonbcdf9da2010-06-13 10:52:38 +0000486 double x2, acc, fk, result;
487 int i, saved_errno;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000488
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000489 x2 = x * x;
490 acc = 0.0;
491 fk = (double)ERF_SERIES_TERMS + 0.5;
492 for (i = 0; i < ERF_SERIES_TERMS; i++) {
493 acc = 2.0 + x2 * acc / fk;
494 fk -= 1.0;
495 }
Mark Dickinsonbcdf9da2010-06-13 10:52:38 +0000496 /* Make sure the exp call doesn't affect errno;
497 see m_erfc_contfrac for more. */
498 saved_errno = errno;
499 result = acc * x * exp(-x2) / sqrtpi;
500 errno = saved_errno;
501 return result;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000502}
503
504/*
505 Complementary error function, via continued fraction expansion.
506
507 Given a positive float x, return an approximation to erfc(x). Converges
508 reasonably fast for x large (say, x > 2.0), and should be safe from
509 overflow if x and nterms are not too large. On an IEEE 754 machine, with x
510 <= 30.0, we're safe up to nterms = 100. For x >= 30.0, erfc(x) is smaller
511 than the smallest representable nonzero float. */
512
513static double
514m_erfc_contfrac(double x)
515{
Mark Dickinsonbcdf9da2010-06-13 10:52:38 +0000516 double x2, a, da, p, p_last, q, q_last, b, result;
517 int i, saved_errno;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000518
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000519 if (x >= ERFC_CONTFRAC_CUTOFF)
520 return 0.0;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000521
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000522 x2 = x*x;
523 a = 0.0;
524 da = 0.5;
525 p = 1.0; p_last = 0.0;
526 q = da + x2; q_last = 1.0;
527 for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) {
528 double temp;
529 a += da;
530 da += 2.0;
531 b = da + x2;
532 temp = p; p = b*p - a*p_last; p_last = temp;
533 temp = q; q = b*q - a*q_last; q_last = temp;
534 }
Mark Dickinsonbcdf9da2010-06-13 10:52:38 +0000535 /* Issue #8986: On some platforms, exp sets errno on underflow to zero;
536 save the current errno value so that we can restore it later. */
537 saved_errno = errno;
538 result = p / q * x * exp(-x2) / sqrtpi;
539 errno = saved_errno;
540 return result;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000541}
542
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200543#endif /* !defined(HAVE_ERF) || !defined(HAVE_ERFC) */
544
Mark Dickinson45f992a2009-12-19 11:20:49 +0000545/* Error function erf(x), for general x */
546
547static double
548m_erf(double x)
549{
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200550#ifdef HAVE_ERF
551 return erf(x);
552#else
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000553 double absx, cf;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000554
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000555 if (Py_IS_NAN(x))
556 return x;
557 absx = fabs(x);
558 if (absx < ERF_SERIES_CUTOFF)
559 return m_erf_series(x);
560 else {
561 cf = m_erfc_contfrac(absx);
562 return x > 0.0 ? 1.0 - cf : cf - 1.0;
563 }
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200564#endif
Mark Dickinson45f992a2009-12-19 11:20:49 +0000565}
566
567/* Complementary error function erfc(x), for general x. */
568
569static double
570m_erfc(double x)
571{
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200572#ifdef HAVE_ERFC
573 return erfc(x);
574#else
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000575 double absx, cf;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000576
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000577 if (Py_IS_NAN(x))
578 return x;
579 absx = fabs(x);
580 if (absx < ERF_SERIES_CUTOFF)
581 return 1.0 - m_erf_series(x);
582 else {
583 cf = m_erfc_contfrac(absx);
584 return x > 0.0 ? cf : 2.0 - cf;
585 }
Serhiy Storchaka97553fd2017-03-11 23:37:16 +0200586#endif
Mark Dickinson45f992a2009-12-19 11:20:49 +0000587}
Mark Dickinson05d2e082009-12-11 20:17:17 +0000588
589/*
Christian Heimese57950f2008-04-21 13:08:03 +0000590 wrapper for atan2 that deals directly with special cases before
591 delegating to the platform libm for the remaining cases. This
592 is necessary to get consistent behaviour across platforms.
593 Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
594 always follow C99.
595*/
596
597static double
598m_atan2(double y, double x)
599{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000600 if (Py_IS_NAN(x) || Py_IS_NAN(y))
601 return Py_NAN;
602 if (Py_IS_INFINITY(y)) {
603 if (Py_IS_INFINITY(x)) {
604 if (copysign(1., x) == 1.)
605 /* atan2(+-inf, +inf) == +-pi/4 */
606 return copysign(0.25*Py_MATH_PI, y);
607 else
608 /* atan2(+-inf, -inf) == +-pi*3/4 */
609 return copysign(0.75*Py_MATH_PI, y);
610 }
611 /* atan2(+-inf, x) == +-pi/2 for finite x */
612 return copysign(0.5*Py_MATH_PI, y);
613 }
614 if (Py_IS_INFINITY(x) || y == 0.) {
615 if (copysign(1., x) == 1.)
616 /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
617 return copysign(0., y);
618 else
619 /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
620 return copysign(Py_MATH_PI, y);
621 }
622 return atan2(y, x);
Christian Heimese57950f2008-04-21 13:08:03 +0000623}
624
Mark Dickinsona0ce3752017-04-05 18:34:27 +0100625
626/* IEEE 754-style remainder operation: x - n*y where n*y is the nearest
627 multiple of y to x, taking n even in the case of a tie. Assuming an IEEE 754
628 binary floating-point format, the result is always exact. */
629
630static double
631m_remainder(double x, double y)
632{
633 /* Deal with most common case first. */
634 if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) {
635 double absx, absy, c, m, r;
636
637 if (y == 0.0) {
638 return Py_NAN;
639 }
640
641 absx = fabs(x);
642 absy = fabs(y);
643 m = fmod(absx, absy);
644
645 /*
646 Warning: some subtlety here. What we *want* to know at this point is
647 whether the remainder m is less than, equal to, or greater than half
648 of absy. However, we can't do that comparison directly because we
Mark Dickinson01484702019-07-13 16:50:03 +0100649 can't be sure that 0.5*absy is representable (the multiplication
Mark Dickinsona0ce3752017-04-05 18:34:27 +0100650 might incur precision loss due to underflow). So instead we compare
651 m with the complement c = absy - m: m < 0.5*absy if and only if m <
652 c, and so on. The catch is that absy - m might also not be
653 representable, but it turns out that it doesn't matter:
654
655 - if m > 0.5*absy then absy - m is exactly representable, by
656 Sterbenz's lemma, so m > c
657 - if m == 0.5*absy then again absy - m is exactly representable
658 and m == c
659 - if m < 0.5*absy then either (i) 0.5*absy is exactly representable,
660 in which case 0.5*absy < absy - m, so 0.5*absy <= c and hence m <
661 c, or (ii) absy is tiny, either subnormal or in the lowest normal
662 binade. Then absy - m is exactly representable and again m < c.
663 */
664
665 c = absy - m;
666 if (m < c) {
667 r = m;
668 }
669 else if (m > c) {
670 r = -c;
671 }
672 else {
673 /*
674 Here absx is exactly halfway between two multiples of absy,
675 and we need to choose the even multiple. x now has the form
676
677 absx = n * absy + m
678
679 for some integer n (recalling that m = 0.5*absy at this point).
680 If n is even we want to return m; if n is odd, we need to
681 return -m.
682
683 So
684
685 0.5 * (absx - m) = (n/2) * absy
686
687 and now reducing modulo absy gives us:
688
689 | m, if n is odd
690 fmod(0.5 * (absx - m), absy) = |
691 | 0, if n is even
692
693 Now m - 2.0 * fmod(...) gives the desired result: m
694 if n is even, -m if m is odd.
695
696 Note that all steps in fmod(0.5 * (absx - m), absy)
697 will be computed exactly, with no rounding error
698 introduced.
699 */
700 assert(m == c);
701 r = m - 2.0 * fmod(0.5 * (absx - m), absy);
702 }
703 return copysign(1.0, x) * r;
704 }
705
706 /* Special values. */
707 if (Py_IS_NAN(x)) {
708 return x;
709 }
710 if (Py_IS_NAN(y)) {
711 return y;
712 }
713 if (Py_IS_INFINITY(x)) {
714 return Py_NAN;
715 }
716 assert(Py_IS_INFINITY(y));
717 return x;
718}
719
720
Christian Heimese57950f2008-04-21 13:08:03 +0000721/*
Mark Dickinsone675f082008-12-11 21:56:00 +0000722 Various platforms (Solaris, OpenBSD) do nonstandard things for log(0),
723 log(-ve), log(NaN). Here are wrappers for log and log10 that deal with
724 special values directly, passing positive non-special values through to
725 the system log/log10.
726 */
727
728static double
729m_log(double x)
730{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000731 if (Py_IS_FINITE(x)) {
732 if (x > 0.0)
733 return log(x);
734 errno = EDOM;
735 if (x == 0.0)
736 return -Py_HUGE_VAL; /* log(0) = -inf */
737 else
738 return Py_NAN; /* log(-ve) = nan */
739 }
740 else if (Py_IS_NAN(x))
741 return x; /* log(nan) = nan */
742 else if (x > 0.0)
743 return x; /* log(inf) = inf */
744 else {
745 errno = EDOM;
746 return Py_NAN; /* log(-inf) = nan */
747 }
Mark Dickinsone675f082008-12-11 21:56:00 +0000748}
749
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200750/*
751 log2: log to base 2.
752
753 Uses an algorithm that should:
Mark Dickinson83b8c0b2011-05-09 08:40:20 +0100754
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200755 (a) produce exact results for powers of 2, and
Mark Dickinson83b8c0b2011-05-09 08:40:20 +0100756 (b) give a monotonic log2 (for positive finite floats),
757 assuming that the system log is monotonic.
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200758*/
759
760static double
761m_log2(double x)
762{
763 if (!Py_IS_FINITE(x)) {
764 if (Py_IS_NAN(x))
765 return x; /* log2(nan) = nan */
766 else if (x > 0.0)
767 return x; /* log2(+inf) = +inf */
768 else {
769 errno = EDOM;
770 return Py_NAN; /* log2(-inf) = nan, invalid-operation */
771 }
772 }
773
774 if (x > 0.0) {
Victor Stinner8f9f8d62011-05-09 12:45:41 +0200775#ifdef HAVE_LOG2
776 return log2(x);
777#else
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200778 double m;
779 int e;
780 m = frexp(x, &e);
781 /* We want log2(m * 2**e) == log(m) / log(2) + e. Care is needed when
782 * x is just greater than 1.0: in that case e is 1, log(m) is negative,
783 * and we get significant cancellation error from the addition of
784 * log(m) / log(2) to e. The slight rewrite of the expression below
785 * avoids this problem.
786 */
787 if (x >= 1.0) {
788 return log(2.0 * m) / log(2.0) + (e - 1);
789 }
790 else {
791 return log(m) / log(2.0) + e;
792 }
Victor Stinner8f9f8d62011-05-09 12:45:41 +0200793#endif
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200794 }
795 else if (x == 0.0) {
796 errno = EDOM;
797 return -Py_HUGE_VAL; /* log2(0) = -inf, divide-by-zero */
798 }
799 else {
800 errno = EDOM;
Mark Dickinson23442582011-05-09 08:05:00 +0100801 return Py_NAN; /* log2(-inf) = nan, invalid-operation */
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200802 }
803}
804
Mark Dickinsone675f082008-12-11 21:56:00 +0000805static double
806m_log10(double x)
807{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000808 if (Py_IS_FINITE(x)) {
809 if (x > 0.0)
810 return log10(x);
811 errno = EDOM;
812 if (x == 0.0)
813 return -Py_HUGE_VAL; /* log10(0) = -inf */
814 else
815 return Py_NAN; /* log10(-ve) = nan */
816 }
817 else if (Py_IS_NAN(x))
818 return x; /* log10(nan) = nan */
819 else if (x > 0.0)
820 return x; /* log10(inf) = inf */
821 else {
822 errno = EDOM;
823 return Py_NAN; /* log10(-inf) = nan */
824 }
Mark Dickinsone675f082008-12-11 21:56:00 +0000825}
826
827
Serhiy Storchakac9ea9332017-01-19 18:13:09 +0200828/*[clinic input]
829math.gcd
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300830
Serhiy Storchakac9ea9332017-01-19 18:13:09 +0200831 x as a: object
832 y as b: object
833 /
834
835greatest common divisor of x and y
836[clinic start generated code]*/
837
838static PyObject *
839math_gcd_impl(PyObject *module, PyObject *a, PyObject *b)
840/*[clinic end generated code: output=7b2e0c151bd7a5d8 input=c2691e57fb2a98fa]*/
841{
842 PyObject *g;
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300843
844 a = PyNumber_Index(a);
845 if (a == NULL)
846 return NULL;
847 b = PyNumber_Index(b);
848 if (b == NULL) {
849 Py_DECREF(a);
850 return NULL;
851 }
852 g = _PyLong_GCD(a, b);
853 Py_DECREF(a);
854 Py_DECREF(b);
855 return g;
856}
857
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300858
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000859/* Call is_error when errno != 0, and where x is the result libm
860 * returned. is_error will usually set up an exception and return
861 * true (1), but may return false (0) without setting up an exception.
862 */
863static int
864is_error(double x)
865{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000866 int result = 1; /* presumption of guilt */
867 assert(errno); /* non-zero errno is a precondition for calling */
868 if (errno == EDOM)
869 PyErr_SetString(PyExc_ValueError, "math domain error");
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000870
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000871 else if (errno == ERANGE) {
872 /* ANSI C generally requires libm functions to set ERANGE
873 * on overflow, but also generally *allows* them to set
874 * ERANGE on underflow too. There's no consistency about
875 * the latter across platforms.
876 * Alas, C99 never requires that errno be set.
877 * Here we suppress the underflow errors (libm functions
878 * should return a zero on underflow, and +- HUGE_VAL on
879 * overflow, so testing the result for zero suffices to
880 * distinguish the cases).
881 *
882 * On some platforms (Ubuntu/ia64) it seems that errno can be
883 * set to ERANGE for subnormal results that do *not* underflow
884 * to zero. So to be safe, we'll ignore ERANGE whenever the
885 * function result is less than one in absolute value.
886 */
887 if (fabs(x) < 1.0)
888 result = 0;
889 else
890 PyErr_SetString(PyExc_OverflowError,
891 "math range error");
892 }
893 else
894 /* Unexpected math error */
895 PyErr_SetFromErrno(PyExc_ValueError);
896 return result;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000897}
898
Mark Dickinsone675f082008-12-11 21:56:00 +0000899/*
Christian Heimes53876d92008-04-19 00:31:39 +0000900 math_1 is used to wrap a libm function f that takes a double
Serhiy Storchakac9ea9332017-01-19 18:13:09 +0200901 argument and returns a double.
Christian Heimes53876d92008-04-19 00:31:39 +0000902
903 The error reporting follows these rules, which are designed to do
904 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
905 platforms.
906
907 - a NaN result from non-NaN inputs causes ValueError to be raised
908 - an infinite result from finite inputs causes OverflowError to be
909 raised if can_overflow is 1, or raises ValueError if can_overflow
910 is 0.
911 - if the result is finite and errno == EDOM then ValueError is
912 raised
913 - if the result is finite and nonzero and errno == ERANGE then
914 OverflowError is raised
915
916 The last rule is used to catch overflow on platforms which follow
917 C89 but for which HUGE_VAL is not an infinity.
918
919 For the majority of one-argument functions these rules are enough
920 to ensure that Python's functions behave as specified in 'Annex F'
921 of the C99 standard, with the 'invalid' and 'divide-by-zero'
922 floating-point exceptions mapping to Python's ValueError and the
923 'overflow' floating-point exception mapping to OverflowError.
924 math_1 only works for functions that don't have singularities *and*
925 the possibility of overflow; fortunately, that covers everything we
926 care about right now.
927*/
928
Barry Warsaw8b43b191996-12-09 22:32:36 +0000929static PyObject *
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000930math_1_to_whatever(PyObject *arg, double (*func) (double),
Christian Heimes53876d92008-04-19 00:31:39 +0000931 PyObject *(*from_double_func) (double),
932 int can_overflow)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000933{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000934 double x, r;
935 x = PyFloat_AsDouble(arg);
936 if (x == -1.0 && PyErr_Occurred())
937 return NULL;
938 errno = 0;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000939 r = (*func)(x);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000940 if (Py_IS_NAN(r) && !Py_IS_NAN(x)) {
941 PyErr_SetString(PyExc_ValueError,
942 "math domain error"); /* invalid arg */
943 return NULL;
944 }
945 if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) {
Benjamin Peterson2354a752012-03-13 16:13:09 -0500946 if (can_overflow)
947 PyErr_SetString(PyExc_OverflowError,
948 "math range error"); /* overflow */
949 else
950 PyErr_SetString(PyExc_ValueError,
951 "math domain error"); /* singularity */
952 return NULL;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000953 }
954 if (Py_IS_FINITE(r) && errno && is_error(r))
955 /* this branch unnecessary on most platforms */
956 return NULL;
Mark Dickinsonde429622008-05-01 00:19:23 +0000957
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000958 return (*from_double_func)(r);
Christian Heimes53876d92008-04-19 00:31:39 +0000959}
960
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000961/* variant of math_1, to be used when the function being wrapped is known to
962 set errno properly (that is, errno = EDOM for invalid or divide-by-zero,
963 errno = ERANGE for overflow). */
964
965static PyObject *
966math_1a(PyObject *arg, double (*func) (double))
967{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000968 double x, r;
969 x = PyFloat_AsDouble(arg);
970 if (x == -1.0 && PyErr_Occurred())
971 return NULL;
972 errno = 0;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000973 r = (*func)(x);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000974 if (errno && is_error(r))
975 return NULL;
976 return PyFloat_FromDouble(r);
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000977}
978
Christian Heimes53876d92008-04-19 00:31:39 +0000979/*
980 math_2 is used to wrap a libm function f that takes two double
981 arguments and returns a double.
982
983 The error reporting follows these rules, which are designed to do
984 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
985 platforms.
986
987 - a NaN result from non-NaN inputs causes ValueError to be raised
988 - an infinite result from finite inputs causes OverflowError to be
989 raised.
990 - if the result is finite and errno == EDOM then ValueError is
991 raised
992 - if the result is finite and nonzero and errno == ERANGE then
993 OverflowError is raised
994
995 The last rule is used to catch overflow on platforms which follow
996 C89 but for which HUGE_VAL is not an infinity.
997
998 For most two-argument functions (copysign, fmod, hypot, atan2)
999 these rules are enough to ensure that Python's functions behave as
1000 specified in 'Annex F' of the C99 standard, with the 'invalid' and
1001 'divide-by-zero' floating-point exceptions mapping to Python's
1002 ValueError and the 'overflow' floating-point exception mapping to
1003 OverflowError.
1004*/
1005
1006static PyObject *
1007math_1(PyObject *arg, double (*func) (double), int can_overflow)
1008{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001009 return math_1_to_whatever(arg, func, PyFloat_FromDouble, can_overflow);
Jeffrey Yasskinc2155832008-01-05 20:03:11 +00001010}
1011
1012static PyObject *
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02001013math_2(PyObject *const *args, Py_ssize_t nargs,
1014 double (*func) (double, double), const char *funcname)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001015{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001016 double x, y, r;
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02001017 if (!_PyArg_CheckPositional(funcname, nargs, 2, 2))
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001018 return NULL;
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02001019 x = PyFloat_AsDouble(args[0]);
1020 y = PyFloat_AsDouble(args[1]);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001021 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
1022 return NULL;
1023 errno = 0;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001024 r = (*func)(x, y);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001025 if (Py_IS_NAN(r)) {
1026 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
1027 errno = EDOM;
1028 else
1029 errno = 0;
1030 }
1031 else if (Py_IS_INFINITY(r)) {
1032 if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
1033 errno = ERANGE;
1034 else
1035 errno = 0;
1036 }
1037 if (errno && is_error(r))
1038 return NULL;
1039 else
1040 return PyFloat_FromDouble(r);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001041}
1042
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001043#define FUNC1(funcname, func, can_overflow, docstring) \
1044 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
1045 return math_1(args, func, can_overflow); \
1046 }\
1047 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001048
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001049#define FUNC1A(funcname, func, docstring) \
1050 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
1051 return math_1a(args, func); \
1052 }\
1053 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Mark Dickinson12c4bdb2009-09-28 19:21:11 +00001054
Fred Drake40c48682000-07-03 18:11:56 +00001055#define FUNC2(funcname, func, docstring) \
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02001056 static PyObject * math_##funcname(PyObject *self, PyObject *const *args, Py_ssize_t nargs) { \
1057 return math_2(args, nargs, func, #funcname); \
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001058 }\
1059 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001060
Christian Heimes53876d92008-04-19 00:31:39 +00001061FUNC1(acos, acos, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001062 "acos($module, x, /)\n--\n\n"
Giovanni Cappellottodc3f99f2019-07-13 09:59:55 -04001063 "Return the arc cosine (measured in radians) of x.\n\n"
1064 "The result is between 0 and pi.")
Mark Dickinsonf3718592009-12-21 15:27:41 +00001065FUNC1(acosh, m_acosh, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001066 "acosh($module, x, /)\n--\n\n"
1067 "Return the inverse hyperbolic cosine of x.")
Christian Heimes53876d92008-04-19 00:31:39 +00001068FUNC1(asin, asin, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001069 "asin($module, x, /)\n--\n\n"
Giovanni Cappellottodc3f99f2019-07-13 09:59:55 -04001070 "Return the arc sine (measured in radians) of x.\n\n"
1071 "The result is between -pi/2 and pi/2.")
Mark Dickinsonf3718592009-12-21 15:27:41 +00001072FUNC1(asinh, m_asinh, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001073 "asinh($module, x, /)\n--\n\n"
1074 "Return the inverse hyperbolic sine of x.")
Christian Heimes53876d92008-04-19 00:31:39 +00001075FUNC1(atan, atan, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001076 "atan($module, x, /)\n--\n\n"
Giovanni Cappellottodc3f99f2019-07-13 09:59:55 -04001077 "Return the arc tangent (measured in radians) of x.\n\n"
1078 "The result is between -pi/2 and pi/2.")
Christian Heimese57950f2008-04-21 13:08:03 +00001079FUNC2(atan2, m_atan2,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001080 "atan2($module, y, x, /)\n--\n\n"
1081 "Return the arc tangent (measured in radians) of y/x.\n\n"
Tim Petersfe71f812001-08-07 22:10:00 +00001082 "Unlike atan(y/x), the signs of both x and y are considered.")
Mark Dickinsonf3718592009-12-21 15:27:41 +00001083FUNC1(atanh, m_atanh, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001084 "atanh($module, x, /)\n--\n\n"
1085 "Return the inverse hyperbolic tangent of x.")
Guido van Rossum13e05de2007-08-23 22:56:55 +00001086
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001087/*[clinic input]
1088math.ceil
1089
1090 x as number: object
1091 /
1092
1093Return the ceiling of x as an Integral.
1094
1095This is the smallest integer >= x.
1096[clinic start generated code]*/
1097
1098static PyObject *
1099math_ceil(PyObject *module, PyObject *number)
1100/*[clinic end generated code: output=6c3b8a78bc201c67 input=2725352806399cab]*/
1101{
Benjamin Petersonce798522012-01-22 11:24:29 -05001102 _Py_IDENTIFIER(__ceil__);
Guido van Rossum13e05de2007-08-23 22:56:55 +00001103
Serhiy Storchaka5fd5cb82019-11-16 18:00:57 +02001104 if (!PyFloat_CheckExact(number)) {
1105 PyObject *method = _PyObject_LookupSpecial(number, &PyId___ceil__);
1106 if (method != NULL) {
1107 PyObject *result = _PyObject_CallNoArg(method);
1108 Py_DECREF(method);
1109 return result;
1110 }
Benjamin Petersonf751bc92010-07-02 13:46:42 +00001111 if (PyErr_Occurred())
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001112 return NULL;
Benjamin Petersonf751bc92010-07-02 13:46:42 +00001113 }
Serhiy Storchaka5fd5cb82019-11-16 18:00:57 +02001114 double x = PyFloat_AsDouble(number);
1115 if (x == -1.0 && PyErr_Occurred())
1116 return NULL;
1117
1118 return PyLong_FromDouble(ceil(x));
Guido van Rossum13e05de2007-08-23 22:56:55 +00001119}
1120
Christian Heimes072c0f12008-01-03 23:01:04 +00001121FUNC2(copysign, copysign,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001122 "copysign($module, x, y, /)\n--\n\n"
1123 "Return a float with the magnitude (absolute value) of x but the sign of y.\n\n"
1124 "On platforms that support signed zeros, copysign(1.0, -0.0)\n"
1125 "returns -1.0.\n")
Christian Heimes53876d92008-04-19 00:31:39 +00001126FUNC1(cos, cos, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001127 "cos($module, x, /)\n--\n\n"
1128 "Return the cosine of x (measured in radians).")
Christian Heimes53876d92008-04-19 00:31:39 +00001129FUNC1(cosh, cosh, 1,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001130 "cosh($module, x, /)\n--\n\n"
1131 "Return the hyperbolic cosine of x.")
Mark Dickinson45f992a2009-12-19 11:20:49 +00001132FUNC1A(erf, m_erf,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001133 "erf($module, x, /)\n--\n\n"
1134 "Error function at x.")
Mark Dickinson45f992a2009-12-19 11:20:49 +00001135FUNC1A(erfc, m_erfc,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001136 "erfc($module, x, /)\n--\n\n"
1137 "Complementary error function at x.")
Christian Heimes53876d92008-04-19 00:31:39 +00001138FUNC1(exp, exp, 1,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001139 "exp($module, x, /)\n--\n\n"
1140 "Return e raised to the power of x.")
Mark Dickinson664b5112009-12-16 20:23:42 +00001141FUNC1(expm1, m_expm1, 1,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001142 "expm1($module, x, /)\n--\n\n"
1143 "Return exp(x)-1.\n\n"
Mark Dickinson664b5112009-12-16 20:23:42 +00001144 "This function avoids the loss of precision involved in the direct "
1145 "evaluation of exp(x)-1 for small x.")
Christian Heimes53876d92008-04-19 00:31:39 +00001146FUNC1(fabs, fabs, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001147 "fabs($module, x, /)\n--\n\n"
1148 "Return the absolute value of the float x.")
Guido van Rossum13e05de2007-08-23 22:56:55 +00001149
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001150/*[clinic input]
1151math.floor
1152
1153 x as number: object
1154 /
1155
1156Return the floor of x as an Integral.
1157
1158This is the largest integer <= x.
1159[clinic start generated code]*/
1160
1161static PyObject *
1162math_floor(PyObject *module, PyObject *number)
1163/*[clinic end generated code: output=c6a65c4884884b8a input=63af6b5d7ebcc3d6]*/
1164{
Benjamin Petersonce798522012-01-22 11:24:29 -05001165 _Py_IDENTIFIER(__floor__);
Guido van Rossum13e05de2007-08-23 22:56:55 +00001166
Serhiy Storchaka5fd5cb82019-11-16 18:00:57 +02001167 if (!PyFloat_CheckExact(number)) {
1168 PyObject *method = _PyObject_LookupSpecial(number, &PyId___floor__);
1169 if (method != NULL) {
1170 PyObject *result = _PyObject_CallNoArg(method);
1171 Py_DECREF(method);
1172 return result;
1173 }
Benjamin Peterson8bb9cde2010-07-01 15:16:55 +00001174 if (PyErr_Occurred())
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001175 return NULL;
Benjamin Peterson8bb9cde2010-07-01 15:16:55 +00001176 }
Serhiy Storchaka5fd5cb82019-11-16 18:00:57 +02001177 double x = PyFloat_AsDouble(number);
1178 if (x == -1.0 && PyErr_Occurred())
1179 return NULL;
1180
1181 return PyLong_FromDouble(floor(x));
Guido van Rossum13e05de2007-08-23 22:56:55 +00001182}
1183
Mark Dickinson12c4bdb2009-09-28 19:21:11 +00001184FUNC1A(gamma, m_tgamma,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001185 "gamma($module, x, /)\n--\n\n"
1186 "Gamma function at x.")
Mark Dickinson05d2e082009-12-11 20:17:17 +00001187FUNC1A(lgamma, m_lgamma,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001188 "lgamma($module, x, /)\n--\n\n"
1189 "Natural logarithm of absolute value of Gamma function at x.")
Mark Dickinsonbe64d952010-07-07 16:21:29 +00001190FUNC1(log1p, m_log1p, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001191 "log1p($module, x, /)\n--\n\n"
1192 "Return the natural logarithm of 1+x (base e).\n\n"
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001193 "The result is computed in a way which is accurate for x near zero.")
Mark Dickinsona0ce3752017-04-05 18:34:27 +01001194FUNC2(remainder, m_remainder,
1195 "remainder($module, x, y, /)\n--\n\n"
1196 "Difference between x and the closest integer multiple of y.\n\n"
1197 "Return x - n*y where n*y is the closest integer multiple of y.\n"
1198 "In the case where x is exactly halfway between two multiples of\n"
1199 "y, the nearest even value of n is used. The result is always exact.")
Christian Heimes53876d92008-04-19 00:31:39 +00001200FUNC1(sin, sin, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001201 "sin($module, x, /)\n--\n\n"
1202 "Return the sine of x (measured in radians).")
Christian Heimes53876d92008-04-19 00:31:39 +00001203FUNC1(sinh, sinh, 1,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001204 "sinh($module, x, /)\n--\n\n"
1205 "Return the hyperbolic sine of x.")
Christian Heimes53876d92008-04-19 00:31:39 +00001206FUNC1(sqrt, sqrt, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001207 "sqrt($module, x, /)\n--\n\n"
1208 "Return the square root of x.")
Christian Heimes53876d92008-04-19 00:31:39 +00001209FUNC1(tan, tan, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001210 "tan($module, x, /)\n--\n\n"
1211 "Return the tangent of x (measured in radians).")
Christian Heimes53876d92008-04-19 00:31:39 +00001212FUNC1(tanh, tanh, 0,
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001213 "tanh($module, x, /)\n--\n\n"
1214 "Return the hyperbolic tangent of x.")
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001215
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001216/* Precision summation function as msum() by Raymond Hettinger in
1217 <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
1218 enhanced with the exact partials sum and roundoff from Mark
1219 Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
1220 See those links for more details, proofs and other references.
1221
1222 Note 1: IEEE 754R floating point semantics are assumed,
1223 but the current implementation does not re-establish special
1224 value semantics across iterations (i.e. handling -Inf + Inf).
1225
1226 Note 2: No provision is made for intermediate overflow handling;
Georg Brandlf78e02b2008-06-10 17:40:04 +00001227 therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001228 sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
1229 overflow of the first partial sum.
1230
Benjamin Petersonfea6a942008-07-02 16:11:42 +00001231 Note 3: The intermediate values lo, yr, and hi are declared volatile so
1232 aggressive compilers won't algebraically reduce lo to always be exactly 0.0.
Georg Brandlf78e02b2008-06-10 17:40:04 +00001233 Also, the volatile declaration forces the values to be stored in memory as
1234 regular doubles instead of extended long precision (80-bit) values. This
Benjamin Petersonfea6a942008-07-02 16:11:42 +00001235 prevents double rounding because any addition or subtraction of two doubles
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001236 can be resolved exactly into double-sized hi and lo values. As long as the
Georg Brandlf78e02b2008-06-10 17:40:04 +00001237 hi value gets forced into a double before yr and lo are computed, the extra
1238 bits in downstream extended precision operations (x87 for example) will be
1239 exactly zero and therefore can be losslessly stored back into a double,
1240 thereby preventing double rounding.
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001241
1242 Note 4: A similar implementation is in Modules/cmathmodule.c.
1243 Be sure to update both when making changes.
1244
Serhiy Storchakaa60c2fe2015-03-12 21:56:08 +02001245 Note 5: The signature of math.fsum() differs from builtins.sum()
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001246 because the start argument doesn't make sense in the context of
1247 accurate summation. Since the partials table is collapsed before
1248 returning a result, sum(seq2, start=sum(seq1)) may not equal the
1249 accurate result returned by sum(itertools.chain(seq1, seq2)).
1250*/
1251
1252#define NUM_PARTIALS 32 /* initial partials array size, on stack */
1253
1254/* Extend the partials array p[] by doubling its size. */
1255static int /* non-zero on error */
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001256_fsum_realloc(double **p_ptr, Py_ssize_t n,
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001257 double *ps, Py_ssize_t *m_ptr)
1258{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001259 void *v = NULL;
1260 Py_ssize_t m = *m_ptr;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001261
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001262 m += m; /* double */
Victor Stinner049e5092014-08-17 22:20:00 +02001263 if (n < m && (size_t)m < ((size_t)PY_SSIZE_T_MAX / sizeof(double))) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001264 double *p = *p_ptr;
1265 if (p == ps) {
1266 v = PyMem_Malloc(sizeof(double) * m);
1267 if (v != NULL)
1268 memcpy(v, ps, sizeof(double) * n);
1269 }
1270 else
1271 v = PyMem_Realloc(p, sizeof(double) * m);
1272 }
1273 if (v == NULL) { /* size overflow or no memory */
1274 PyErr_SetString(PyExc_MemoryError, "math.fsum partials");
1275 return 1;
1276 }
1277 *p_ptr = (double*) v;
1278 *m_ptr = m;
1279 return 0;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001280}
1281
1282/* Full precision summation of a sequence of floats.
1283
1284 def msum(iterable):
1285 partials = [] # sorted, non-overlapping partial sums
1286 for x in iterable:
Mark Dickinsonfdb0acc2010-06-25 20:22:24 +00001287 i = 0
1288 for y in partials:
1289 if abs(x) < abs(y):
1290 x, y = y, x
1291 hi = x + y
1292 lo = y - (hi - x)
1293 if lo:
1294 partials[i] = lo
1295 i += 1
1296 x = hi
1297 partials[i:] = [x]
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001298 return sum_exact(partials)
1299
1300 Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo
1301 are exactly equal to x+y. The inner loop applies hi/lo summation to each
1302 partial so that the list of partial sums remains exact.
1303
1304 Sum_exact() adds the partial sums exactly and correctly rounds the final
1305 result (using the round-half-to-even rule). The items in partials remain
1306 non-zero, non-special, non-overlapping and strictly increasing in
1307 magnitude, but possibly not all having the same sign.
1308
1309 Depends on IEEE 754 arithmetic guarantees and half-even rounding.
1310*/
1311
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001312/*[clinic input]
1313math.fsum
1314
1315 seq: object
1316 /
1317
1318Return an accurate floating point sum of values in the iterable seq.
1319
1320Assumes IEEE-754 floating point arithmetic.
1321[clinic start generated code]*/
1322
1323static PyObject *
1324math_fsum(PyObject *module, PyObject *seq)
1325/*[clinic end generated code: output=ba5c672b87fe34fc input=c51b7d8caf6f6e82]*/
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001326{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001327 PyObject *item, *iter, *sum = NULL;
1328 Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
1329 double x, y, t, ps[NUM_PARTIALS], *p = ps;
1330 double xsave, special_sum = 0.0, inf_sum = 0.0;
1331 volatile double hi, yr, lo;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001332
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001333 iter = PyObject_GetIter(seq);
1334 if (iter == NULL)
1335 return NULL;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001336
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001337 for(;;) { /* for x in iterable */
1338 assert(0 <= n && n <= m);
1339 assert((m == NUM_PARTIALS && p == ps) ||
1340 (m > NUM_PARTIALS && p != NULL));
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001341
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001342 item = PyIter_Next(iter);
1343 if (item == NULL) {
1344 if (PyErr_Occurred())
1345 goto _fsum_error;
1346 break;
1347 }
Raymond Hettingercfd735e2019-01-29 20:39:53 -08001348 ASSIGN_DOUBLE(x, item, error_with_item);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001349 Py_DECREF(item);
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001350
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001351 xsave = x;
1352 for (i = j = 0; j < n; j++) { /* for y in partials */
1353 y = p[j];
1354 if (fabs(x) < fabs(y)) {
1355 t = x; x = y; y = t;
1356 }
1357 hi = x + y;
1358 yr = hi - x;
1359 lo = y - yr;
1360 if (lo != 0.0)
1361 p[i++] = lo;
1362 x = hi;
1363 }
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001364
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001365 n = i; /* ps[i:] = [x] */
1366 if (x != 0.0) {
1367 if (! Py_IS_FINITE(x)) {
1368 /* a nonfinite x could arise either as
1369 a result of intermediate overflow, or
1370 as a result of a nan or inf in the
1371 summands */
1372 if (Py_IS_FINITE(xsave)) {
1373 PyErr_SetString(PyExc_OverflowError,
1374 "intermediate overflow in fsum");
1375 goto _fsum_error;
1376 }
1377 if (Py_IS_INFINITY(xsave))
1378 inf_sum += xsave;
1379 special_sum += xsave;
1380 /* reset partials */
1381 n = 0;
1382 }
1383 else if (n >= m && _fsum_realloc(&p, n, ps, &m))
1384 goto _fsum_error;
1385 else
1386 p[n++] = x;
1387 }
1388 }
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001389
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001390 if (special_sum != 0.0) {
1391 if (Py_IS_NAN(inf_sum))
1392 PyErr_SetString(PyExc_ValueError,
1393 "-inf + inf in fsum");
1394 else
1395 sum = PyFloat_FromDouble(special_sum);
1396 goto _fsum_error;
1397 }
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001398
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001399 hi = 0.0;
1400 if (n > 0) {
1401 hi = p[--n];
1402 /* sum_exact(ps, hi) from the top, stop when the sum becomes
1403 inexact. */
1404 while (n > 0) {
1405 x = hi;
1406 y = p[--n];
1407 assert(fabs(y) < fabs(x));
1408 hi = x + y;
1409 yr = hi - x;
1410 lo = y - yr;
1411 if (lo != 0.0)
1412 break;
1413 }
1414 /* Make half-even rounding work across multiple partials.
1415 Needed so that sum([1e-16, 1, 1e16]) will round-up the last
1416 digit to two instead of down to zero (the 1e-16 makes the 1
1417 slightly closer to two). With a potential 1 ULP rounding
1418 error fixed-up, math.fsum() can guarantee commutativity. */
1419 if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
1420 (lo > 0.0 && p[n-1] > 0.0))) {
1421 y = lo * 2.0;
1422 x = hi + y;
1423 yr = x - hi;
1424 if (y == yr)
1425 hi = x;
1426 }
1427 }
1428 sum = PyFloat_FromDouble(hi);
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001429
Raymond Hettingercfd735e2019-01-29 20:39:53 -08001430 _fsum_error:
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001431 Py_DECREF(iter);
1432 if (p != ps)
1433 PyMem_Free(p);
1434 return sum;
Raymond Hettingercfd735e2019-01-29 20:39:53 -08001435
1436 error_with_item:
1437 Py_DECREF(item);
1438 goto _fsum_error;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001439}
1440
1441#undef NUM_PARTIALS
1442
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001443
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001444/* Return the smallest integer k such that n < 2**k, or 0 if n == 0.
1445 * Equivalent to floor(lg(x))+1. Also equivalent to: bitwidth_of_type -
1446 * count_leading_zero_bits(x)
1447 */
1448
1449/* XXX: This routine does more or less the same thing as
1450 * bits_in_digit() in Objects/longobject.c. Someday it would be nice to
1451 * consolidate them. On BSD, there's a library function called fls()
1452 * that we could use, and GCC provides __builtin_clz().
1453 */
1454
1455static unsigned long
1456bit_length(unsigned long n)
1457{
1458 unsigned long len = 0;
1459 while (n != 0) {
1460 ++len;
1461 n >>= 1;
1462 }
1463 return len;
1464}
1465
1466static unsigned long
1467count_set_bits(unsigned long n)
1468{
1469 unsigned long count = 0;
1470 while (n != 0) {
1471 ++count;
1472 n &= n - 1; /* clear least significant bit */
1473 }
1474 return count;
1475}
1476
Mark Dickinson73934b92019-05-18 12:29:50 +01001477/* Integer square root
1478
1479Given a nonnegative integer `n`, we want to compute the largest integer
1480`a` for which `a * a <= n`, or equivalently the integer part of the exact
1481square root of `n`.
1482
1483We use an adaptive-precision pure-integer version of Newton's iteration. Given
1484a positive integer `n`, the algorithm produces at each iteration an integer
1485approximation `a` to the square root of `n >> s` for some even integer `s`,
1486with `s` decreasing as the iterations progress. On the final iteration, `s` is
1487zero and we have an approximation to the square root of `n` itself.
1488
1489At every step, the approximation `a` is strictly within 1.0 of the true square
1490root, so we have
1491
1492 (a - 1)**2 < (n >> s) < (a + 1)**2
1493
1494After the final iteration, a check-and-correct step is needed to determine
1495whether `a` or `a - 1` gives the desired integer square root of `n`.
1496
1497The algorithm is remarkable in its simplicity. There's no need for a
1498per-iteration check-and-correct step, and termination is straightforward: the
1499number of iterations is known in advance (it's exactly `floor(log2(log2(n)))`
1500for `n > 1`). The only tricky part of the correctness proof is in establishing
1501that the bound `(a - 1)**2 < (n >> s) < (a + 1)**2` is maintained from one
1502iteration to the next. A sketch of the proof of this is given below.
1503
1504In addition to the proof sketch, a formal, computer-verified proof
1505of correctness (using Lean) of an equivalent recursive algorithm can be found
1506here:
1507
1508 https://github.com/mdickinson/snippets/blob/master/proofs/isqrt/src/isqrt.lean
1509
1510
1511Here's Python code equivalent to the C implementation below:
1512
1513 def isqrt(n):
1514 """
1515 Return the integer part of the square root of the input.
1516 """
1517 n = operator.index(n)
1518
1519 if n < 0:
1520 raise ValueError("isqrt() argument must be nonnegative")
1521 if n == 0:
1522 return 0
1523
1524 c = (n.bit_length() - 1) // 2
1525 a = 1
1526 d = 0
1527 for s in reversed(range(c.bit_length())):
Mark Dickinson2dfeaa92019-06-16 17:53:21 +01001528 # Loop invariant: (a-1)**2 < (n >> 2*(c - d)) < (a+1)**2
Mark Dickinson73934b92019-05-18 12:29:50 +01001529 e = d
1530 d = c >> s
1531 a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
Mark Dickinson73934b92019-05-18 12:29:50 +01001532
1533 return a - (a*a > n)
1534
1535
1536Sketch of proof of correctness
1537------------------------------
1538
1539The delicate part of the correctness proof is showing that the loop invariant
1540is preserved from one iteration to the next. That is, just before the line
1541
1542 a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
1543
1544is executed in the above code, we know that
1545
1546 (1) (a - 1)**2 < (n >> 2*(c - e)) < (a + 1)**2.
1547
1548(since `e` is always the value of `d` from the previous iteration). We must
1549prove that after that line is executed, we have
1550
1551 (a - 1)**2 < (n >> 2*(c - d)) < (a + 1)**2
1552
Min ho Kimf7d72e42019-07-06 07:39:32 +10001553To facilitate the proof, we make some changes of notation. Write `m` for
Mark Dickinson73934b92019-05-18 12:29:50 +01001554`n >> 2*(c-d)`, and write `b` for the new value of `a`, so
1555
1556 b = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
1557
1558or equivalently:
1559
1560 (2) b = (a << d - e - 1) + (m >> d - e + 1) // a
1561
1562Then we can rewrite (1) as:
1563
1564 (3) (a - 1)**2 < (m >> 2*(d - e)) < (a + 1)**2
1565
1566and we must show that (b - 1)**2 < m < (b + 1)**2.
1567
1568From this point on, we switch to mathematical notation, so `/` means exact
1569division rather than integer division and `^` is used for exponentiation. We
1570use the `√` symbol for the exact square root. In (3), we can remove the
1571implicit floor operation to give:
1572
1573 (4) (a - 1)^2 < m / 4^(d - e) < (a + 1)^2
1574
1575Taking square roots throughout (4), scaling by `2^(d-e)`, and rearranging gives
1576
1577 (5) 0 <= | 2^(d-e)a - √m | < 2^(d-e)
1578
1579Squaring and dividing through by `2^(d-e+1) a` gives
1580
1581 (6) 0 <= 2^(d-e-1) a + m / (2^(d-e+1) a) - √m < 2^(d-e-1) / a
1582
1583We'll show below that `2^(d-e-1) <= a`. Given that, we can replace the
1584right-hand side of (6) with `1`, and now replacing the central
1585term `m / (2^(d-e+1) a)` with its floor in (6) gives
1586
1587 (7) -1 < 2^(d-e-1) a + m // 2^(d-e+1) a - √m < 1
1588
1589Or equivalently, from (2):
1590
1591 (7) -1 < b - √m < 1
1592
1593and rearranging gives that `(b-1)^2 < m < (b+1)^2`, which is what we needed
1594to prove.
1595
1596We're not quite done: we still have to prove the inequality `2^(d - e - 1) <=
1597a` that was used to get line (7) above. From the definition of `c`, we have
1598`4^c <= n`, which implies
1599
1600 (8) 4^d <= m
1601
1602also, since `e == d >> 1`, `d` is at most `2e + 1`, from which it follows
1603that `2d - 2e - 1 <= d` and hence that
1604
1605 (9) 4^(2d - 2e - 1) <= m
1606
1607Dividing both sides by `4^(d - e)` gives
1608
1609 (10) 4^(d - e - 1) <= m / 4^(d - e)
1610
1611But we know from (4) that `m / 4^(d-e) < (a + 1)^2`, hence
1612
1613 (11) 4^(d - e - 1) < (a + 1)^2
1614
1615Now taking square roots of both sides and observing that both `2^(d-e-1)` and
1616`a` are integers gives `2^(d - e - 1) <= a`, which is what we needed. This
1617completes the proof sketch.
1618
1619*/
1620
Mark Dickinson5c08ce92019-05-19 17:51:56 +01001621
1622/* Approximate square root of a large 64-bit integer.
1623
1624 Given `n` satisfying `2**62 <= n < 2**64`, return `a`
1625 satisfying `(a - 1)**2 < n < (a + 1)**2`. */
1626
1627static uint64_t
1628_approximate_isqrt(uint64_t n)
1629{
1630 uint32_t u = 1U + (n >> 62);
1631 u = (u << 1) + (n >> 59) / u;
1632 u = (u << 3) + (n >> 53) / u;
1633 u = (u << 7) + (n >> 41) / u;
1634 return (u << 15) + (n >> 17) / u;
1635}
1636
Mark Dickinson73934b92019-05-18 12:29:50 +01001637/*[clinic input]
1638math.isqrt
1639
1640 n: object
1641 /
1642
1643Return the integer part of the square root of the input.
1644[clinic start generated code]*/
1645
1646static PyObject *
1647math_isqrt(PyObject *module, PyObject *n)
1648/*[clinic end generated code: output=35a6f7f980beab26 input=5b6e7ae4fa6c43d6]*/
1649{
Mark Dickinson5c08ce92019-05-19 17:51:56 +01001650 int a_too_large, c_bit_length;
Mark Dickinson73934b92019-05-18 12:29:50 +01001651 size_t c, d;
Mark Dickinson5c08ce92019-05-19 17:51:56 +01001652 uint64_t m, u;
Mark Dickinson73934b92019-05-18 12:29:50 +01001653 PyObject *a = NULL, *b;
1654
1655 n = PyNumber_Index(n);
1656 if (n == NULL) {
1657 return NULL;
1658 }
1659
1660 if (_PyLong_Sign(n) < 0) {
1661 PyErr_SetString(
1662 PyExc_ValueError,
1663 "isqrt() argument must be nonnegative");
1664 goto error;
1665 }
1666 if (_PyLong_Sign(n) == 0) {
1667 Py_DECREF(n);
1668 return PyLong_FromLong(0);
1669 }
1670
Mark Dickinson5c08ce92019-05-19 17:51:56 +01001671 /* c = (n.bit_length() - 1) // 2 */
Mark Dickinson73934b92019-05-18 12:29:50 +01001672 c = _PyLong_NumBits(n);
1673 if (c == (size_t)(-1)) {
1674 goto error;
1675 }
1676 c = (c - 1U) / 2U;
1677
Mark Dickinson5c08ce92019-05-19 17:51:56 +01001678 /* Fast path: if c <= 31 then n < 2**64 and we can compute directly with a
1679 fast, almost branch-free algorithm. In the final correction, we use `u*u
1680 - 1 >= m` instead of the simpler `u*u > m` in order to get the correct
1681 result in the corner case where `u=2**32`. */
1682 if (c <= 31U) {
1683 m = (uint64_t)PyLong_AsUnsignedLongLong(n);
1684 Py_DECREF(n);
1685 if (m == (uint64_t)(-1) && PyErr_Occurred()) {
1686 return NULL;
1687 }
1688 u = _approximate_isqrt(m << (62U - 2U*c)) >> (31U - c);
1689 u -= u * u - 1U >= m;
1690 return PyLong_FromUnsignedLongLong((unsigned long long)u);
Mark Dickinson73934b92019-05-18 12:29:50 +01001691 }
1692
Mark Dickinson5c08ce92019-05-19 17:51:56 +01001693 /* Slow path: n >= 2**64. We perform the first five iterations in C integer
1694 arithmetic, then switch to using Python long integers. */
1695
1696 /* From n >= 2**64 it follows that c.bit_length() >= 6. */
1697 c_bit_length = 6;
1698 while ((c >> c_bit_length) > 0U) {
1699 ++c_bit_length;
1700 }
1701
1702 /* Initialise d and a. */
1703 d = c >> (c_bit_length - 5);
1704 b = _PyLong_Rshift(n, 2U*c - 62U);
1705 if (b == NULL) {
1706 goto error;
1707 }
1708 m = (uint64_t)PyLong_AsUnsignedLongLong(b);
1709 Py_DECREF(b);
1710 if (m == (uint64_t)(-1) && PyErr_Occurred()) {
1711 goto error;
1712 }
1713 u = _approximate_isqrt(m) >> (31U - d);
1714 a = PyLong_FromUnsignedLongLong((unsigned long long)u);
Mark Dickinson73934b92019-05-18 12:29:50 +01001715 if (a == NULL) {
1716 goto error;
1717 }
Mark Dickinson5c08ce92019-05-19 17:51:56 +01001718
1719 for (int s = c_bit_length - 6; s >= 0; --s) {
Serhiy Storchakaa5119e72019-05-19 14:14:38 +03001720 PyObject *q;
Mark Dickinson73934b92019-05-18 12:29:50 +01001721 size_t e = d;
1722
1723 d = c >> s;
1724
1725 /* q = (n >> 2*c - e - d + 1) // a */
Serhiy Storchakaa5119e72019-05-19 14:14:38 +03001726 q = _PyLong_Rshift(n, 2U*c - d - e + 1U);
Mark Dickinson73934b92019-05-18 12:29:50 +01001727 if (q == NULL) {
1728 goto error;
1729 }
1730 Py_SETREF(q, PyNumber_FloorDivide(q, a));
1731 if (q == NULL) {
1732 goto error;
1733 }
1734
1735 /* a = (a << d - 1 - e) + q */
Serhiy Storchakaa5119e72019-05-19 14:14:38 +03001736 Py_SETREF(a, _PyLong_Lshift(a, d - 1U - e));
Mark Dickinson73934b92019-05-18 12:29:50 +01001737 if (a == NULL) {
1738 Py_DECREF(q);
1739 goto error;
1740 }
1741 Py_SETREF(a, PyNumber_Add(a, q));
1742 Py_DECREF(q);
1743 if (a == NULL) {
1744 goto error;
1745 }
1746 }
1747
1748 /* The correct result is either a or a - 1. Figure out which, and
1749 decrement a if necessary. */
1750
1751 /* a_too_large = n < a * a */
1752 b = PyNumber_Multiply(a, a);
1753 if (b == NULL) {
1754 goto error;
1755 }
1756 a_too_large = PyObject_RichCompareBool(n, b, Py_LT);
1757 Py_DECREF(b);
1758 if (a_too_large == -1) {
1759 goto error;
1760 }
1761
1762 if (a_too_large) {
1763 Py_SETREF(a, PyNumber_Subtract(a, _PyLong_One));
1764 }
1765 Py_DECREF(n);
1766 return a;
1767
1768 error:
1769 Py_XDECREF(a);
1770 Py_DECREF(n);
1771 return NULL;
1772}
1773
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001774/* Divide-and-conquer factorial algorithm
1775 *
Raymond Hettinger15f44ab2016-08-30 10:47:49 -07001776 * Based on the formula and pseudo-code provided at:
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001777 * http://www.luschny.de/math/factorial/binarysplitfact.html
1778 *
1779 * Faster algorithms exist, but they're more complicated and depend on
Ezio Melotti9527afd2010-07-08 15:03:02 +00001780 * a fast prime factorization algorithm.
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001781 *
1782 * Notes on the algorithm
1783 * ----------------------
1784 *
1785 * factorial(n) is written in the form 2**k * m, with m odd. k and m are
1786 * computed separately, and then combined using a left shift.
1787 *
1788 * The function factorial_odd_part computes the odd part m (i.e., the greatest
1789 * odd divisor) of factorial(n), using the formula:
1790 *
1791 * factorial_odd_part(n) =
1792 *
1793 * product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j
1794 *
1795 * Example: factorial_odd_part(20) =
1796 *
1797 * (1) *
1798 * (1) *
1799 * (1 * 3 * 5) *
1800 * (1 * 3 * 5 * 7 * 9)
1801 * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
1802 *
1803 * Here i goes from large to small: the first term corresponds to i=4 (any
1804 * larger i gives an empty product), and the last term corresponds to i=0.
1805 * Each term can be computed from the last by multiplying by the extra odd
1806 * numbers required: e.g., to get from the penultimate term to the last one,
1807 * we multiply by (11 * 13 * 15 * 17 * 19).
1808 *
1809 * To see a hint of why this formula works, here are the same numbers as above
1810 * but with the even parts (i.e., the appropriate powers of 2) included. For
1811 * each subterm in the product for i, we multiply that subterm by 2**i:
1812 *
1813 * factorial(20) =
1814 *
1815 * (16) *
1816 * (8) *
1817 * (4 * 12 * 20) *
1818 * (2 * 6 * 10 * 14 * 18) *
1819 * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
1820 *
1821 * The factorial_partial_product function computes the product of all odd j in
1822 * range(start, stop) for given start and stop. It's used to compute the
1823 * partial products like (11 * 13 * 15 * 17 * 19) in the example above. It
1824 * operates recursively, repeatedly splitting the range into two roughly equal
1825 * pieces until the subranges are small enough to be computed using only C
1826 * integer arithmetic.
1827 *
1828 * The two-valuation k (i.e., the exponent of the largest power of 2 dividing
1829 * the factorial) is computed independently in the main math_factorial
1830 * function. By standard results, its value is:
1831 *
1832 * two_valuation = n//2 + n//4 + n//8 + ....
1833 *
1834 * It can be shown (e.g., by complete induction on n) that two_valuation is
1835 * equal to n - count_set_bits(n), where count_set_bits(n) gives the number of
1836 * '1'-bits in the binary expansion of n.
1837 */
1838
1839/* factorial_partial_product: Compute product(range(start, stop, 2)) using
1840 * divide and conquer. Assumes start and stop are odd and stop > start.
1841 * max_bits must be >= bit_length(stop - 2). */
1842
1843static PyObject *
1844factorial_partial_product(unsigned long start, unsigned long stop,
1845 unsigned long max_bits)
1846{
1847 unsigned long midpoint, num_operands;
1848 PyObject *left = NULL, *right = NULL, *result = NULL;
1849
1850 /* If the return value will fit an unsigned long, then we can
1851 * multiply in a tight, fast loop where each multiply is O(1).
1852 * Compute an upper bound on the number of bits required to store
1853 * the answer.
1854 *
1855 * Storing some integer z requires floor(lg(z))+1 bits, which is
1856 * conveniently the value returned by bit_length(z). The
1857 * product x*y will require at most
1858 * bit_length(x) + bit_length(y) bits to store, based
1859 * on the idea that lg product = lg x + lg y.
1860 *
1861 * We know that stop - 2 is the largest number to be multiplied. From
1862 * there, we have: bit_length(answer) <= num_operands *
1863 * bit_length(stop - 2)
1864 */
1865
1866 num_operands = (stop - start) / 2;
1867 /* The "num_operands <= 8 * SIZEOF_LONG" check guards against the
1868 * unlikely case of an overflow in num_operands * max_bits. */
1869 if (num_operands <= 8 * SIZEOF_LONG &&
1870 num_operands * max_bits <= 8 * SIZEOF_LONG) {
1871 unsigned long j, total;
1872 for (total = start, j = start + 2; j < stop; j += 2)
1873 total *= j;
1874 return PyLong_FromUnsignedLong(total);
1875 }
1876
1877 /* find midpoint of range(start, stop), rounded up to next odd number. */
1878 midpoint = (start + num_operands) | 1;
1879 left = factorial_partial_product(start, midpoint,
1880 bit_length(midpoint - 2));
1881 if (left == NULL)
1882 goto error;
1883 right = factorial_partial_product(midpoint, stop, max_bits);
1884 if (right == NULL)
1885 goto error;
1886 result = PyNumber_Multiply(left, right);
1887
1888 error:
1889 Py_XDECREF(left);
1890 Py_XDECREF(right);
1891 return result;
1892}
1893
1894/* factorial_odd_part: compute the odd part of factorial(n). */
1895
1896static PyObject *
1897factorial_odd_part(unsigned long n)
1898{
1899 long i;
1900 unsigned long v, lower, upper;
1901 PyObject *partial, *tmp, *inner, *outer;
1902
1903 inner = PyLong_FromLong(1);
1904 if (inner == NULL)
1905 return NULL;
1906 outer = inner;
1907 Py_INCREF(outer);
1908
1909 upper = 3;
1910 for (i = bit_length(n) - 2; i >= 0; i--) {
1911 v = n >> i;
1912 if (v <= 2)
1913 continue;
1914 lower = upper;
1915 /* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */
1916 upper = (v + 1) | 1;
1917 /* Here inner is the product of all odd integers j in the range (0,
1918 n/2**(i+1)]. The factorial_partial_product call below gives the
1919 product of all odd integers j in the range (n/2**(i+1), n/2**i]. */
1920 partial = factorial_partial_product(lower, upper, bit_length(upper-2));
1921 /* inner *= partial */
1922 if (partial == NULL)
1923 goto error;
1924 tmp = PyNumber_Multiply(inner, partial);
1925 Py_DECREF(partial);
1926 if (tmp == NULL)
1927 goto error;
1928 Py_DECREF(inner);
1929 inner = tmp;
1930 /* Now inner is the product of all odd integers j in the range (0,
1931 n/2**i], giving the inner product in the formula above. */
1932
1933 /* outer *= inner; */
1934 tmp = PyNumber_Multiply(outer, inner);
1935 if (tmp == NULL)
1936 goto error;
1937 Py_DECREF(outer);
1938 outer = tmp;
1939 }
Mark Dickinson76464492012-10-25 10:46:28 +01001940 Py_DECREF(inner);
1941 return outer;
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001942
1943 error:
1944 Py_DECREF(outer);
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001945 Py_DECREF(inner);
Mark Dickinson76464492012-10-25 10:46:28 +01001946 return NULL;
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001947}
1948
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001949
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001950/* Lookup table for small factorial values */
1951
1952static const unsigned long SmallFactorials[] = {
1953 1, 1, 2, 6, 24, 120, 720, 5040, 40320,
1954 362880, 3628800, 39916800, 479001600,
1955#if SIZEOF_LONG >= 8
1956 6227020800, 87178291200, 1307674368000,
1957 20922789888000, 355687428096000, 6402373705728000,
1958 121645100408832000, 2432902008176640000
1959#endif
1960};
1961
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001962/*[clinic input]
1963math.factorial
1964
1965 x as arg: object
1966 /
1967
1968Find x!.
1969
1970Raise a ValueError if x is negative or non-integral.
1971[clinic start generated code]*/
1972
Barry Warsaw8b43b191996-12-09 22:32:36 +00001973static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001974math_factorial(PyObject *module, PyObject *arg)
1975/*[clinic end generated code: output=6686f26fae00e9ca input=6d1c8105c0d91fb4]*/
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001976{
Serhiy Storchakaa5119e72019-05-19 14:14:38 +03001977 long x, two_valuation;
Mark Dickinson5990d282014-04-10 09:29:39 -04001978 int overflow;
Serhiy Storchakaa5119e72019-05-19 14:14:38 +03001979 PyObject *result, *odd_part, *pyint_form;
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001980
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001981 if (PyFloat_Check(arg)) {
Serhiy Storchaka231aad32019-06-17 16:57:27 +03001982 if (PyErr_WarnEx(PyExc_DeprecationWarning,
1983 "Using factorial() with floats is deprecated",
1984 1) < 0)
1985 {
1986 return NULL;
1987 }
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001988 PyObject *lx;
1989 double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg);
1990 if (!(Py_IS_FINITE(dx) && dx == floor(dx))) {
1991 PyErr_SetString(PyExc_ValueError,
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001992 "factorial() only accepts integral values");
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001993 return NULL;
1994 }
1995 lx = PyLong_FromDouble(dx);
1996 if (lx == NULL)
1997 return NULL;
Mark Dickinson5990d282014-04-10 09:29:39 -04001998 x = PyLong_AsLongAndOverflow(lx, &overflow);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001999 Py_DECREF(lx);
2000 }
Pablo Galindoe9ba3702018-09-03 22:20:06 +01002001 else {
2002 pyint_form = PyNumber_Index(arg);
2003 if (pyint_form == NULL) {
2004 return NULL;
2005 }
2006 x = PyLong_AsLongAndOverflow(pyint_form, &overflow);
2007 Py_DECREF(pyint_form);
2008 }
Georg Brandlc28e1fa2008-06-10 19:20:26 +00002009
Mark Dickinson5990d282014-04-10 09:29:39 -04002010 if (x == -1 && PyErr_Occurred()) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002011 return NULL;
Mark Dickinson5990d282014-04-10 09:29:39 -04002012 }
2013 else if (overflow == 1) {
2014 PyErr_Format(PyExc_OverflowError,
2015 "factorial() argument should not exceed %ld",
2016 LONG_MAX);
2017 return NULL;
2018 }
2019 else if (overflow == -1 || x < 0) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002020 PyErr_SetString(PyExc_ValueError,
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00002021 "factorial() not defined for negative values");
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002022 return NULL;
2023 }
Georg Brandlc28e1fa2008-06-10 19:20:26 +00002024
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00002025 /* use lookup table if x is small */
Victor Stinner63941882011-09-29 00:42:28 +02002026 if (x < (long)Py_ARRAY_LENGTH(SmallFactorials))
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00002027 return PyLong_FromUnsignedLong(SmallFactorials[x]);
2028
2029 /* else express in the form odd_part * 2**two_valuation, and compute as
2030 odd_part << two_valuation. */
2031 odd_part = factorial_odd_part(x);
2032 if (odd_part == NULL)
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002033 return NULL;
Serhiy Storchakaa5119e72019-05-19 14:14:38 +03002034 two_valuation = x - count_set_bits(x);
2035 result = _PyLong_Lshift(odd_part, two_valuation);
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00002036 Py_DECREF(odd_part);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002037 return result;
Georg Brandlc28e1fa2008-06-10 19:20:26 +00002038}
2039
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002040
2041/*[clinic input]
2042math.trunc
2043
2044 x: object
2045 /
2046
2047Truncates the Real x to the nearest Integral toward 0.
2048
2049Uses the __trunc__ magic method.
2050[clinic start generated code]*/
Georg Brandlc28e1fa2008-06-10 19:20:26 +00002051
2052static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002053math_trunc(PyObject *module, PyObject *x)
2054/*[clinic end generated code: output=34b9697b707e1031 input=2168b34e0a09134d]*/
Christian Heimes400adb02008-02-01 08:12:03 +00002055{
Benjamin Petersonce798522012-01-22 11:24:29 -05002056 _Py_IDENTIFIER(__trunc__);
Benjamin Petersonb0125892010-07-02 13:35:17 +00002057 PyObject *trunc, *result;
Christian Heimes400adb02008-02-01 08:12:03 +00002058
Serhiy Storchaka5fd5cb82019-11-16 18:00:57 +02002059 if (PyFloat_CheckExact(x)) {
2060 return PyFloat_Type.tp_as_number->nb_int(x);
2061 }
2062
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002063 if (Py_TYPE(x)->tp_dict == NULL) {
2064 if (PyType_Ready(Py_TYPE(x)) < 0)
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002065 return NULL;
2066 }
Christian Heimes400adb02008-02-01 08:12:03 +00002067
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002068 trunc = _PyObject_LookupSpecial(x, &PyId___trunc__);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002069 if (trunc == NULL) {
Benjamin Peterson8bb9cde2010-07-01 15:16:55 +00002070 if (!PyErr_Occurred())
2071 PyErr_Format(PyExc_TypeError,
2072 "type %.100s doesn't define __trunc__ method",
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002073 Py_TYPE(x)->tp_name);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002074 return NULL;
2075 }
Victor Stinnerf17c3de2016-12-06 18:46:19 +01002076 result = _PyObject_CallNoArg(trunc);
Benjamin Petersonb0125892010-07-02 13:35:17 +00002077 Py_DECREF(trunc);
2078 return result;
Christian Heimes400adb02008-02-01 08:12:03 +00002079}
2080
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002081
2082/*[clinic input]
2083math.frexp
2084
2085 x: double
2086 /
2087
2088Return the mantissa and exponent of x, as pair (m, e).
2089
2090m is a float and e is an int, such that x = m * 2.**e.
2091If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.
2092[clinic start generated code]*/
Christian Heimes400adb02008-02-01 08:12:03 +00002093
2094static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002095math_frexp_impl(PyObject *module, double x)
2096/*[clinic end generated code: output=03e30d252a15ad4a input=96251c9e208bc6e9]*/
Guido van Rossumd18ad581991-10-24 14:57:21 +00002097{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002098 int i;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002099 /* deal with special cases directly, to sidestep platform
2100 differences */
2101 if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
2102 i = 0;
2103 }
2104 else {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002105 x = frexp(x, &i);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002106 }
2107 return Py_BuildValue("(di)", x, i);
Guido van Rossumd18ad581991-10-24 14:57:21 +00002108}
2109
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002110
2111/*[clinic input]
2112math.ldexp
2113
2114 x: double
2115 i: object
2116 /
2117
2118Return x * (2**i).
2119
2120This is essentially the inverse of frexp().
2121[clinic start generated code]*/
Guido van Rossumc6e22901998-12-04 19:26:43 +00002122
Barry Warsaw8b43b191996-12-09 22:32:36 +00002123static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002124math_ldexp_impl(PyObject *module, double x, PyObject *i)
2125/*[clinic end generated code: output=b6892f3c2df9cc6a input=17d5970c1a40a8c1]*/
Guido van Rossumd18ad581991-10-24 14:57:21 +00002126{
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002127 double r;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002128 long exp;
2129 int overflow;
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00002130
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002131 if (PyLong_Check(i)) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002132 /* on overflow, replace exponent with either LONG_MAX
2133 or LONG_MIN, depending on the sign. */
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002134 exp = PyLong_AsLongAndOverflow(i, &overflow);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002135 if (exp == -1 && PyErr_Occurred())
2136 return NULL;
2137 if (overflow)
2138 exp = overflow < 0 ? LONG_MIN : LONG_MAX;
2139 }
2140 else {
2141 PyErr_SetString(PyExc_TypeError,
Serhiy Storchaka95949422013-08-27 19:40:23 +03002142 "Expected an int as second argument to ldexp.");
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002143 return NULL;
2144 }
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00002145
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002146 if (x == 0. || !Py_IS_FINITE(x)) {
2147 /* NaNs, zeros and infinities are returned unchanged */
2148 r = x;
2149 errno = 0;
2150 } else if (exp > INT_MAX) {
2151 /* overflow */
2152 r = copysign(Py_HUGE_VAL, x);
2153 errno = ERANGE;
2154 } else if (exp < INT_MIN) {
2155 /* underflow to +-0 */
2156 r = copysign(0., x);
2157 errno = 0;
2158 } else {
2159 errno = 0;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002160 r = ldexp(x, (int)exp);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002161 if (Py_IS_INFINITY(r))
2162 errno = ERANGE;
2163 }
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00002164
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002165 if (errno && is_error(r))
2166 return NULL;
2167 return PyFloat_FromDouble(r);
Guido van Rossumd18ad581991-10-24 14:57:21 +00002168}
2169
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002170
2171/*[clinic input]
2172math.modf
2173
2174 x: double
2175 /
2176
2177Return the fractional and integer parts of x.
2178
2179Both results carry the sign of x and are floats.
2180[clinic start generated code]*/
Guido van Rossumc6e22901998-12-04 19:26:43 +00002181
Barry Warsaw8b43b191996-12-09 22:32:36 +00002182static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002183math_modf_impl(PyObject *module, double x)
2184/*[clinic end generated code: output=90cee0260014c3c0 input=b4cfb6786afd9035]*/
Guido van Rossumd18ad581991-10-24 14:57:21 +00002185{
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002186 double y;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002187 /* some platforms don't do the right thing for NaNs and
2188 infinities, so we take care of special cases directly. */
2189 if (!Py_IS_FINITE(x)) {
2190 if (Py_IS_INFINITY(x))
2191 return Py_BuildValue("(dd)", copysign(0., x), x);
2192 else if (Py_IS_NAN(x))
2193 return Py_BuildValue("(dd)", x, x);
2194 }
Christian Heimesa342c012008-04-20 21:01:16 +00002195
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002196 errno = 0;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002197 x = modf(x, &y);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002198 return Py_BuildValue("(dd)", x, y);
Guido van Rossumd18ad581991-10-24 14:57:21 +00002199}
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00002200
Guido van Rossumc6e22901998-12-04 19:26:43 +00002201
Serhiy Storchaka95949422013-08-27 19:40:23 +03002202/* A decent logarithm is easy to compute even for huge ints, but libm can't
Tim Peters78526162001-09-05 00:53:45 +00002203 do that by itself -- loghelper can. func is log or log10, and name is
Serhiy Storchaka95949422013-08-27 19:40:23 +03002204 "log" or "log10". Note that overflow of the result isn't possible: an int
Mark Dickinson6ecd9e52010-01-02 15:33:56 +00002205 can contain no more than INT_MAX * SHIFT bits, so has value certainly less
2206 than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
Tim Peters78526162001-09-05 00:53:45 +00002207 small enough to fit in an IEEE single. log and log10 are even smaller.
Serhiy Storchaka95949422013-08-27 19:40:23 +03002208 However, intermediate overflow is possible for an int if the number of bits
2209 in that int is larger than PY_SSIZE_T_MAX. */
Tim Peters78526162001-09-05 00:53:45 +00002210
2211static PyObject*
Serhiy Storchakaef1585e2015-12-25 20:01:53 +02002212loghelper(PyObject* arg, double (*func)(double), const char *funcname)
Tim Peters78526162001-09-05 00:53:45 +00002213{
Serhiy Storchaka95949422013-08-27 19:40:23 +03002214 /* If it is int, do it ourselves. */
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002215 if (PyLong_Check(arg)) {
Mark Dickinsonc6037172010-09-29 19:06:36 +00002216 double x, result;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002217 Py_ssize_t e;
Mark Dickinsonc6037172010-09-29 19:06:36 +00002218
2219 /* Negative or zero inputs give a ValueError. */
2220 if (Py_SIZE(arg) <= 0) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002221 PyErr_SetString(PyExc_ValueError,
2222 "math domain error");
2223 return NULL;
2224 }
Mark Dickinsonfa41e602010-09-28 07:22:27 +00002225
Mark Dickinsonc6037172010-09-29 19:06:36 +00002226 x = PyLong_AsDouble(arg);
2227 if (x == -1.0 && PyErr_Occurred()) {
2228 if (!PyErr_ExceptionMatches(PyExc_OverflowError))
2229 return NULL;
2230 /* Here the conversion to double overflowed, but it's possible
2231 to compute the log anyway. Clear the exception and continue. */
2232 PyErr_Clear();
2233 x = _PyLong_Frexp((PyLongObject *)arg, &e);
2234 if (x == -1.0 && PyErr_Occurred())
2235 return NULL;
2236 /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */
2237 result = func(x) + func(2.0) * e;
2238 }
2239 else
2240 /* Successfully converted x to a double. */
2241 result = func(x);
2242 return PyFloat_FromDouble(result);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002243 }
Tim Peters78526162001-09-05 00:53:45 +00002244
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002245 /* Else let libm handle it by itself. */
2246 return math_1(arg, func, 0);
Tim Peters78526162001-09-05 00:53:45 +00002247}
2248
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002249
2250/*[clinic input]
2251math.log
2252
2253 x: object
2254 [
2255 base: object(c_default="NULL") = math.e
2256 ]
2257 /
2258
2259Return the logarithm of x to the given base.
2260
2261If the base not specified, returns the natural logarithm (base e) of x.
2262[clinic start generated code]*/
2263
Tim Peters78526162001-09-05 00:53:45 +00002264static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002265math_log_impl(PyObject *module, PyObject *x, int group_right_1,
2266 PyObject *base)
2267/*[clinic end generated code: output=7b5a39e526b73fc9 input=0f62d5726cbfebbd]*/
Tim Peters78526162001-09-05 00:53:45 +00002268{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002269 PyObject *num, *den;
2270 PyObject *ans;
Raymond Hettinger866964c2002-12-14 19:51:34 +00002271
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002272 num = loghelper(x, m_log, "log");
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002273 if (num == NULL || base == NULL)
2274 return num;
Raymond Hettinger866964c2002-12-14 19:51:34 +00002275
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002276 den = loghelper(base, m_log, "log");
2277 if (den == NULL) {
2278 Py_DECREF(num);
2279 return NULL;
2280 }
Raymond Hettinger866964c2002-12-14 19:51:34 +00002281
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002282 ans = PyNumber_TrueDivide(num, den);
2283 Py_DECREF(num);
2284 Py_DECREF(den);
2285 return ans;
Tim Peters78526162001-09-05 00:53:45 +00002286}
2287
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002288
2289/*[clinic input]
2290math.log2
2291
2292 x: object
2293 /
2294
2295Return the base 2 logarithm of x.
2296[clinic start generated code]*/
Tim Peters78526162001-09-05 00:53:45 +00002297
2298static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002299math_log2(PyObject *module, PyObject *x)
2300/*[clinic end generated code: output=5425899a4d5d6acb input=08321262bae4f39b]*/
Victor Stinnerfa0e3d52011-05-09 01:01:09 +02002301{
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002302 return loghelper(x, m_log2, "log2");
Victor Stinnerfa0e3d52011-05-09 01:01:09 +02002303}
2304
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002305
2306/*[clinic input]
2307math.log10
2308
2309 x: object
2310 /
2311
2312Return the base 10 logarithm of x.
2313[clinic start generated code]*/
Victor Stinnerfa0e3d52011-05-09 01:01:09 +02002314
2315static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002316math_log10(PyObject *module, PyObject *x)
2317/*[clinic end generated code: output=be72a64617df9c6f input=b2469d02c6469e53]*/
Tim Peters78526162001-09-05 00:53:45 +00002318{
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002319 return loghelper(x, m_log10, "log10");
Tim Peters78526162001-09-05 00:53:45 +00002320}
2321
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002322
2323/*[clinic input]
2324math.fmod
2325
2326 x: double
2327 y: double
2328 /
2329
2330Return fmod(x, y), according to platform C.
2331
2332x % y may differ.
2333[clinic start generated code]*/
Tim Peters78526162001-09-05 00:53:45 +00002334
Christian Heimes53876d92008-04-19 00:31:39 +00002335static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002336math_fmod_impl(PyObject *module, double x, double y)
2337/*[clinic end generated code: output=7559d794343a27b5 input=4f84caa8cfc26a03]*/
Christian Heimes53876d92008-04-19 00:31:39 +00002338{
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002339 double r;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002340 /* fmod(x, +/-Inf) returns x for finite x. */
2341 if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
2342 return PyFloat_FromDouble(x);
2343 errno = 0;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002344 r = fmod(x, y);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002345 if (Py_IS_NAN(r)) {
2346 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
2347 errno = EDOM;
2348 else
2349 errno = 0;
2350 }
2351 if (errno && is_error(r))
2352 return NULL;
2353 else
2354 return PyFloat_FromDouble(r);
Christian Heimes53876d92008-04-19 00:31:39 +00002355}
2356
Raymond Hettinger13990742018-08-11 11:26:36 -07002357/*
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002358Given an *n* length *vec* of values and a value *max*, compute:
Raymond Hettinger13990742018-08-11 11:26:36 -07002359
Raymond Hettingerc630e102018-08-11 18:39:05 -07002360 max * sqrt(sum((x / max) ** 2 for x in vec))
Raymond Hettinger13990742018-08-11 11:26:36 -07002361
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002362The value of the *max* variable must be non-negative and
Raymond Hettinger216aaaa2018-11-09 01:06:02 -08002363equal to the absolute value of the largest magnitude
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002364entry in the vector. If n==0, then *max* should be 0.0.
2365If an infinity is present in the vec, *max* should be INF.
Raymond Hettingerc630e102018-08-11 18:39:05 -07002366
2367The *found_nan* variable indicates whether some member of
2368the *vec* is a NaN.
Raymond Hettinger21786f52018-08-28 22:47:24 -07002369
2370To improve accuracy and to increase the number of cases where
2371vector_norm() is commutative, we use a variant of Neumaier
2372summation specialized to exploit that we always know that
2373|csum| >= |x|.
2374
2375The *csum* variable tracks the cumulative sum and *frac* tracks
2376the cumulative fractional errors at each step. Since this
2377variant assumes that |csum| >= |x| at each step, we establish
2378the precondition by starting the accumulation from 1.0 which
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002379represents the largest possible value of (x/max)**2.
2380
2381After the loop is finished, the initial 1.0 is subtracted out
2382for a net zero effect on the final sum. Since *csum* will be
2383greater than 1.0, the subtraction of 1.0 will not cause
2384fractional digits to be dropped from *csum*.
Raymond Hettinger21786f52018-08-28 22:47:24 -07002385
Raymond Hettinger13990742018-08-11 11:26:36 -07002386*/
2387
2388static inline double
Raymond Hettingerc630e102018-08-11 18:39:05 -07002389vector_norm(Py_ssize_t n, double *vec, double max, int found_nan)
Raymond Hettinger13990742018-08-11 11:26:36 -07002390{
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002391 double x, csum = 1.0, oldcsum, frac = 0.0;
Raymond Hettinger13990742018-08-11 11:26:36 -07002392 Py_ssize_t i;
2393
Raymond Hettingerc630e102018-08-11 18:39:05 -07002394 if (Py_IS_INFINITY(max)) {
2395 return max;
2396 }
2397 if (found_nan) {
2398 return Py_NAN;
2399 }
Raymond Hettingerf3267142018-09-02 13:34:21 -07002400 if (max == 0.0 || n <= 1) {
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002401 return max;
Raymond Hettinger13990742018-08-11 11:26:36 -07002402 }
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002403 for (i=0 ; i < n ; i++) {
Raymond Hettinger13990742018-08-11 11:26:36 -07002404 x = vec[i];
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002405 assert(Py_IS_FINITE(x) && fabs(x) <= max);
Raymond Hettinger13990742018-08-11 11:26:36 -07002406 x /= max;
Raymond Hettinger21786f52018-08-28 22:47:24 -07002407 x = x*x;
Raymond Hettinger13990742018-08-11 11:26:36 -07002408 oldcsum = csum;
2409 csum += x;
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002410 assert(csum >= x);
Raymond Hettinger21786f52018-08-28 22:47:24 -07002411 frac += (oldcsum - csum) + x;
Raymond Hettinger13990742018-08-11 11:26:36 -07002412 }
Raymond Hettinger745c0f32018-08-31 11:22:13 -07002413 return max * sqrt(csum - 1.0 + frac);
Raymond Hettinger13990742018-08-11 11:26:36 -07002414}
2415
Raymond Hettingerc630e102018-08-11 18:39:05 -07002416#define NUM_STACK_ELEMS 16
2417
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002418/*[clinic input]
2419math.dist
2420
Raymond Hettinger6b5f1b42019-07-27 14:04:29 -07002421 p: object
2422 q: object
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002423 /
2424
2425Return the Euclidean distance between two points p and q.
2426
Raymond Hettinger6b5f1b42019-07-27 14:04:29 -07002427The points should be specified as sequences (or iterables) of
2428coordinates. Both inputs must have the same dimension.
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002429
2430Roughly equivalent to:
2431 sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))
2432[clinic start generated code]*/
2433
2434static PyObject *
2435math_dist_impl(PyObject *module, PyObject *p, PyObject *q)
Raymond Hettinger6b5f1b42019-07-27 14:04:29 -07002436/*[clinic end generated code: output=56bd9538d06bbcfe input=74e85e1b6092e68e]*/
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002437{
2438 PyObject *item;
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002439 double max = 0.0;
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002440 double x, px, qx, result;
2441 Py_ssize_t i, m, n;
Raymond Hettinger6b5f1b42019-07-27 14:04:29 -07002442 int found_nan = 0, p_allocated = 0, q_allocated = 0;
Raymond Hettingerc630e102018-08-11 18:39:05 -07002443 double diffs_on_stack[NUM_STACK_ELEMS];
2444 double *diffs = diffs_on_stack;
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002445
Raymond Hettinger6b5f1b42019-07-27 14:04:29 -07002446 if (!PyTuple_Check(p)) {
2447 p = PySequence_Tuple(p);
2448 if (p == NULL) {
2449 return NULL;
2450 }
2451 p_allocated = 1;
2452 }
2453 if (!PyTuple_Check(q)) {
2454 q = PySequence_Tuple(q);
2455 if (q == NULL) {
2456 if (p_allocated) {
2457 Py_DECREF(p);
2458 }
2459 return NULL;
2460 }
2461 q_allocated = 1;
2462 }
2463
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002464 m = PyTuple_GET_SIZE(p);
2465 n = PyTuple_GET_SIZE(q);
2466 if (m != n) {
2467 PyErr_SetString(PyExc_ValueError,
2468 "both points must have the same number of dimensions");
2469 return NULL;
2470
2471 }
Raymond Hettingerc630e102018-08-11 18:39:05 -07002472 if (n > NUM_STACK_ELEMS) {
2473 diffs = (double *) PyObject_Malloc(n * sizeof(double));
2474 if (diffs == NULL) {
Zackery Spytz4c49da02018-12-07 03:11:30 -07002475 return PyErr_NoMemory();
Raymond Hettingerc630e102018-08-11 18:39:05 -07002476 }
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002477 }
2478 for (i=0 ; i<n ; i++) {
2479 item = PyTuple_GET_ITEM(p, i);
Raymond Hettingercfd735e2019-01-29 20:39:53 -08002480 ASSIGN_DOUBLE(px, item, error_exit);
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002481 item = PyTuple_GET_ITEM(q, i);
Raymond Hettingercfd735e2019-01-29 20:39:53 -08002482 ASSIGN_DOUBLE(qx, item, error_exit);
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002483 x = fabs(px - qx);
2484 diffs[i] = x;
2485 found_nan |= Py_IS_NAN(x);
2486 if (x > max) {
2487 max = x;
2488 }
2489 }
Raymond Hettingerc630e102018-08-11 18:39:05 -07002490 result = vector_norm(n, diffs, max, found_nan);
2491 if (diffs != diffs_on_stack) {
2492 PyObject_Free(diffs);
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002493 }
Raymond Hettinger6b5f1b42019-07-27 14:04:29 -07002494 if (p_allocated) {
2495 Py_DECREF(p);
2496 }
2497 if (q_allocated) {
2498 Py_DECREF(q);
2499 }
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002500 return PyFloat_FromDouble(result);
Raymond Hettingerc630e102018-08-11 18:39:05 -07002501
2502 error_exit:
2503 if (diffs != diffs_on_stack) {
2504 PyObject_Free(diffs);
2505 }
Raymond Hettinger6b5f1b42019-07-27 14:04:29 -07002506 if (p_allocated) {
2507 Py_DECREF(p);
2508 }
2509 if (q_allocated) {
2510 Py_DECREF(q);
2511 }
Raymond Hettingerc630e102018-08-11 18:39:05 -07002512 return NULL;
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07002513}
2514
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002515/* AC: cannot convert yet, waiting for *args support */
Christian Heimes53876d92008-04-19 00:31:39 +00002516static PyObject *
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02002517math_hypot(PyObject *self, PyObject *const *args, Py_ssize_t nargs)
Christian Heimes53876d92008-04-19 00:31:39 +00002518{
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02002519 Py_ssize_t i;
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002520 PyObject *item;
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002521 double max = 0.0;
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002522 double x, result;
2523 int found_nan = 0;
Raymond Hettingerc630e102018-08-11 18:39:05 -07002524 double coord_on_stack[NUM_STACK_ELEMS];
2525 double *coordinates = coord_on_stack;
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002526
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02002527 if (nargs > NUM_STACK_ELEMS) {
2528 coordinates = (double *) PyObject_Malloc(nargs * sizeof(double));
Zackery Spytz4c49da02018-12-07 03:11:30 -07002529 if (coordinates == NULL) {
2530 return PyErr_NoMemory();
2531 }
Raymond Hettingerc630e102018-08-11 18:39:05 -07002532 }
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02002533 for (i = 0; i < nargs; i++) {
2534 item = args[i];
Raymond Hettingercfd735e2019-01-29 20:39:53 -08002535 ASSIGN_DOUBLE(x, item, error_exit);
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002536 x = fabs(x);
2537 coordinates[i] = x;
2538 found_nan |= Py_IS_NAN(x);
2539 if (x > max) {
2540 max = x;
2541 }
2542 }
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02002543 result = vector_norm(nargs, coordinates, max, found_nan);
Raymond Hettingerc630e102018-08-11 18:39:05 -07002544 if (coordinates != coord_on_stack) {
2545 PyObject_Free(coordinates);
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002546 }
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002547 return PyFloat_FromDouble(result);
Raymond Hettingerc630e102018-08-11 18:39:05 -07002548
2549 error_exit:
2550 if (coordinates != coord_on_stack) {
2551 PyObject_Free(coordinates);
2552 }
2553 return NULL;
Christian Heimes53876d92008-04-19 00:31:39 +00002554}
2555
Raymond Hettingerc630e102018-08-11 18:39:05 -07002556#undef NUM_STACK_ELEMS
2557
Raymond Hettingerc6dabe32018-07-28 07:48:04 -07002558PyDoc_STRVAR(math_hypot_doc,
2559 "hypot(*coordinates) -> value\n\n\
2560Multidimensional Euclidean distance from the origin to a point.\n\
2561\n\
2562Roughly equivalent to:\n\
2563 sqrt(sum(x**2 for x in coordinates))\n\
2564\n\
2565For a two dimensional point (x, y), gives the hypotenuse\n\
2566using the Pythagorean theorem: sqrt(x*x + y*y).\n\
2567\n\
2568For example, the hypotenuse of a 3/4/5 right triangle is:\n\
2569\n\
2570 >>> hypot(3.0, 4.0)\n\
2571 5.0\n\
2572");
Christian Heimes53876d92008-04-19 00:31:39 +00002573
2574/* pow can't use math_2, but needs its own wrapper: the problem is
2575 that an infinite result can arise either as a result of overflow
2576 (in which case OverflowError should be raised) or as a result of
2577 e.g. 0.**-5. (for which ValueError needs to be raised.)
2578*/
2579
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002580/*[clinic input]
2581math.pow
Christian Heimes53876d92008-04-19 00:31:39 +00002582
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002583 x: double
2584 y: double
2585 /
2586
2587Return x**y (x to the power of y).
2588[clinic start generated code]*/
2589
2590static PyObject *
2591math_pow_impl(PyObject *module, double x, double y)
2592/*[clinic end generated code: output=fff93e65abccd6b0 input=c26f1f6075088bfd]*/
2593{
2594 double r;
2595 int odd_y;
Christian Heimesa342c012008-04-20 21:01:16 +00002596
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002597 /* deal directly with IEEE specials, to cope with problems on various
2598 platforms whose semantics don't exactly match C99 */
2599 r = 0.; /* silence compiler warning */
2600 if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
2601 errno = 0;
2602 if (Py_IS_NAN(x))
2603 r = y == 0. ? 1. : x; /* NaN**0 = 1 */
2604 else if (Py_IS_NAN(y))
2605 r = x == 1. ? 1. : y; /* 1**NaN = 1 */
2606 else if (Py_IS_INFINITY(x)) {
2607 odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
2608 if (y > 0.)
2609 r = odd_y ? x : fabs(x);
2610 else if (y == 0.)
2611 r = 1.;
2612 else /* y < 0. */
2613 r = odd_y ? copysign(0., x) : 0.;
2614 }
2615 else if (Py_IS_INFINITY(y)) {
2616 if (fabs(x) == 1.0)
2617 r = 1.;
2618 else if (y > 0. && fabs(x) > 1.0)
2619 r = y;
2620 else if (y < 0. && fabs(x) < 1.0) {
2621 r = -y; /* result is +inf */
2622 if (x == 0.) /* 0**-inf: divide-by-zero */
2623 errno = EDOM;
2624 }
2625 else
2626 r = 0.;
2627 }
2628 }
2629 else {
2630 /* let libm handle finite**finite */
2631 errno = 0;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002632 r = pow(x, y);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002633 /* a NaN result should arise only from (-ve)**(finite
2634 non-integer); in this case we want to raise ValueError. */
2635 if (!Py_IS_FINITE(r)) {
2636 if (Py_IS_NAN(r)) {
2637 errno = EDOM;
2638 }
2639 /*
2640 an infinite result here arises either from:
2641 (A) (+/-0.)**negative (-> divide-by-zero)
2642 (B) overflow of x**y with x and y finite
2643 */
2644 else if (Py_IS_INFINITY(r)) {
2645 if (x == 0.)
2646 errno = EDOM;
2647 else
2648 errno = ERANGE;
2649 }
2650 }
2651 }
Christian Heimes53876d92008-04-19 00:31:39 +00002652
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002653 if (errno && is_error(r))
2654 return NULL;
2655 else
2656 return PyFloat_FromDouble(r);
Christian Heimes53876d92008-04-19 00:31:39 +00002657}
2658
Christian Heimes53876d92008-04-19 00:31:39 +00002659
Christian Heimes072c0f12008-01-03 23:01:04 +00002660static const double degToRad = Py_MATH_PI / 180.0;
2661static const double radToDeg = 180.0 / Py_MATH_PI;
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002662
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002663/*[clinic input]
2664math.degrees
2665
2666 x: double
2667 /
2668
2669Convert angle x from radians to degrees.
2670[clinic start generated code]*/
2671
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002672static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002673math_degrees_impl(PyObject *module, double x)
2674/*[clinic end generated code: output=7fea78b294acd12f input=81e016555d6e3660]*/
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002675{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002676 return PyFloat_FromDouble(x * radToDeg);
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002677}
2678
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002679
2680/*[clinic input]
2681math.radians
2682
2683 x: double
2684 /
2685
2686Convert angle x from degrees to radians.
2687[clinic start generated code]*/
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002688
2689static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002690math_radians_impl(PyObject *module, double x)
2691/*[clinic end generated code: output=34daa47caf9b1590 input=91626fc489fe3d63]*/
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002692{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002693 return PyFloat_FromDouble(x * degToRad);
Raymond Hettingerd6f22672002-05-13 03:56:10 +00002694}
2695
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002696
2697/*[clinic input]
2698math.isfinite
2699
2700 x: double
2701 /
2702
2703Return True if x is neither an infinity nor a NaN, and False otherwise.
2704[clinic start generated code]*/
Tim Peters78526162001-09-05 00:53:45 +00002705
Christian Heimes072c0f12008-01-03 23:01:04 +00002706static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002707math_isfinite_impl(PyObject *module, double x)
2708/*[clinic end generated code: output=8ba1f396440c9901 input=46967d254812e54a]*/
Mark Dickinson8e0c9962010-07-11 17:38:24 +00002709{
Mark Dickinson8e0c9962010-07-11 17:38:24 +00002710 return PyBool_FromLong((long)Py_IS_FINITE(x));
2711}
2712
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002713
2714/*[clinic input]
2715math.isnan
2716
2717 x: double
2718 /
2719
2720Return True if x is a NaN (not a number), and False otherwise.
2721[clinic start generated code]*/
Mark Dickinson8e0c9962010-07-11 17:38:24 +00002722
2723static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002724math_isnan_impl(PyObject *module, double x)
2725/*[clinic end generated code: output=f537b4d6df878c3e input=935891e66083f46a]*/
Christian Heimes072c0f12008-01-03 23:01:04 +00002726{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002727 return PyBool_FromLong((long)Py_IS_NAN(x));
Christian Heimes072c0f12008-01-03 23:01:04 +00002728}
2729
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002730
2731/*[clinic input]
2732math.isinf
2733
2734 x: double
2735 /
2736
2737Return True if x is a positive or negative infinity, and False otherwise.
2738[clinic start generated code]*/
Christian Heimes072c0f12008-01-03 23:01:04 +00002739
2740static PyObject *
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002741math_isinf_impl(PyObject *module, double x)
2742/*[clinic end generated code: output=9f00cbec4de7b06b input=32630e4212cf961f]*/
Christian Heimes072c0f12008-01-03 23:01:04 +00002743{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002744 return PyBool_FromLong((long)Py_IS_INFINITY(x));
Christian Heimes072c0f12008-01-03 23:01:04 +00002745}
2746
Christian Heimes072c0f12008-01-03 23:01:04 +00002747
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002748/*[clinic input]
2749math.isclose -> bool
2750
2751 a: double
2752 b: double
2753 *
2754 rel_tol: double = 1e-09
2755 maximum difference for being considered "close", relative to the
2756 magnitude of the input values
2757 abs_tol: double = 0.0
2758 maximum difference for being considered "close", regardless of the
2759 magnitude of the input values
2760
2761Determine whether two floating point numbers are close in value.
2762
2763Return True if a is close in value to b, and False otherwise.
2764
2765For the values to be considered close, the difference between them
2766must be smaller than at least one of the tolerances.
2767
2768-inf, inf and NaN behave similarly to the IEEE 754 Standard. That
2769is, NaN is not close to anything, even itself. inf and -inf are
2770only close to themselves.
2771[clinic start generated code]*/
2772
2773static int
2774math_isclose_impl(PyObject *module, double a, double b, double rel_tol,
2775 double abs_tol)
2776/*[clinic end generated code: output=b73070207511952d input=f28671871ea5bfba]*/
Tal Einatd5519ed2015-05-31 22:05:00 +03002777{
Tal Einatd5519ed2015-05-31 22:05:00 +03002778 double diff = 0.0;
Tal Einatd5519ed2015-05-31 22:05:00 +03002779
2780 /* sanity check on the inputs */
2781 if (rel_tol < 0.0 || abs_tol < 0.0 ) {
2782 PyErr_SetString(PyExc_ValueError,
2783 "tolerances must be non-negative");
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002784 return -1;
Tal Einatd5519ed2015-05-31 22:05:00 +03002785 }
2786
2787 if ( a == b ) {
2788 /* short circuit exact equality -- needed to catch two infinities of
2789 the same sign. And perhaps speeds things up a bit sometimes.
2790 */
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002791 return 1;
Tal Einatd5519ed2015-05-31 22:05:00 +03002792 }
2793
2794 /* This catches the case of two infinities of opposite sign, or
2795 one infinity and one finite number. Two infinities of opposite
2796 sign would otherwise have an infinite relative tolerance.
2797 Two infinities of the same sign are caught by the equality check
2798 above.
2799 */
2800
2801 if (Py_IS_INFINITY(a) || Py_IS_INFINITY(b)) {
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002802 return 0;
Tal Einatd5519ed2015-05-31 22:05:00 +03002803 }
2804
2805 /* now do the regular computation
2806 this is essentially the "weak" test from the Boost library
2807 */
2808
2809 diff = fabs(b - a);
2810
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02002811 return (((diff <= fabs(rel_tol * b)) ||
2812 (diff <= fabs(rel_tol * a))) ||
2813 (diff <= abs_tol));
Tal Einatd5519ed2015-05-31 22:05:00 +03002814}
2815
Pablo Galindo04114112019-03-09 19:18:08 +00002816static inline int
2817_check_long_mult_overflow(long a, long b) {
2818
2819 /* From Python2's int_mul code:
2820
2821 Integer overflow checking for * is painful: Python tried a couple ways, but
2822 they didn't work on all platforms, or failed in endcases (a product of
2823 -sys.maxint-1 has been a particular pain).
2824
2825 Here's another way:
2826
2827 The native long product x*y is either exactly right or *way* off, being
2828 just the last n bits of the true product, where n is the number of bits
2829 in a long (the delivered product is the true product plus i*2**n for
2830 some integer i).
2831
2832 The native double product (double)x * (double)y is subject to three
2833 rounding errors: on a sizeof(long)==8 box, each cast to double can lose
2834 info, and even on a sizeof(long)==4 box, the multiplication can lose info.
2835 But, unlike the native long product, it's not in *range* trouble: even
2836 if sizeof(long)==32 (256-bit longs), the product easily fits in the
2837 dynamic range of a double. So the leading 50 (or so) bits of the double
2838 product are correct.
2839
2840 We check these two ways against each other, and declare victory if they're
2841 approximately the same. Else, because the native long product is the only
2842 one that can lose catastrophic amounts of information, it's the native long
2843 product that must have overflowed.
2844
2845 */
2846
2847 long longprod = (long)((unsigned long)a * b);
2848 double doubleprod = (double)a * (double)b;
2849 double doubled_longprod = (double)longprod;
2850
2851 if (doubled_longprod == doubleprod) {
2852 return 0;
2853 }
2854
2855 const double diff = doubled_longprod - doubleprod;
2856 const double absdiff = diff >= 0.0 ? diff : -diff;
2857 const double absprod = doubleprod >= 0.0 ? doubleprod : -doubleprod;
2858
2859 if (32.0 * absdiff <= absprod) {
2860 return 0;
2861 }
2862
2863 return 1;
2864}
Tal Einatd5519ed2015-05-31 22:05:00 +03002865
Pablo Galindobc098512019-02-07 07:04:02 +00002866/*[clinic input]
2867math.prod
2868
2869 iterable: object
2870 /
2871 *
2872 start: object(c_default="NULL") = 1
2873
2874Calculate the product of all the elements in the input iterable.
2875
2876The default start value for the product is 1.
2877
2878When the iterable is empty, return the start value. This function is
2879intended specifically for use with numeric values and may reject
2880non-numeric types.
2881[clinic start generated code]*/
2882
2883static PyObject *
2884math_prod_impl(PyObject *module, PyObject *iterable, PyObject *start)
2885/*[clinic end generated code: output=36153bedac74a198 input=4c5ab0682782ed54]*/
2886{
2887 PyObject *result = start;
2888 PyObject *temp, *item, *iter;
2889
2890 iter = PyObject_GetIter(iterable);
2891 if (iter == NULL) {
2892 return NULL;
2893 }
2894
2895 if (result == NULL) {
2896 result = PyLong_FromLong(1);
2897 if (result == NULL) {
2898 Py_DECREF(iter);
2899 return NULL;
2900 }
2901 } else {
2902 Py_INCREF(result);
2903 }
2904#ifndef SLOW_PROD
2905 /* Fast paths for integers keeping temporary products in C.
2906 * Assumes all inputs are the same type.
2907 * If the assumption fails, default to use PyObjects instead.
2908 */
2909 if (PyLong_CheckExact(result)) {
2910 int overflow;
2911 long i_result = PyLong_AsLongAndOverflow(result, &overflow);
2912 /* If this already overflowed, don't even enter the loop. */
2913 if (overflow == 0) {
2914 Py_DECREF(result);
2915 result = NULL;
2916 }
2917 /* Loop over all the items in the iterable until we finish, we overflow
2918 * or we found a non integer element */
2919 while(result == NULL) {
2920 item = PyIter_Next(iter);
2921 if (item == NULL) {
2922 Py_DECREF(iter);
2923 if (PyErr_Occurred()) {
2924 return NULL;
2925 }
2926 return PyLong_FromLong(i_result);
2927 }
2928 if (PyLong_CheckExact(item)) {
2929 long b = PyLong_AsLongAndOverflow(item, &overflow);
Pablo Galindo04114112019-03-09 19:18:08 +00002930 if (overflow == 0 && !_check_long_mult_overflow(i_result, b)) {
2931 long x = i_result * b;
Pablo Galindobc098512019-02-07 07:04:02 +00002932 i_result = x;
2933 Py_DECREF(item);
2934 continue;
2935 }
2936 }
2937 /* Either overflowed or is not an int.
2938 * Restore real objects and process normally */
2939 result = PyLong_FromLong(i_result);
2940 if (result == NULL) {
2941 Py_DECREF(item);
2942 Py_DECREF(iter);
2943 return NULL;
2944 }
2945 temp = PyNumber_Multiply(result, item);
2946 Py_DECREF(result);
2947 Py_DECREF(item);
2948 result = temp;
2949 if (result == NULL) {
2950 Py_DECREF(iter);
2951 return NULL;
2952 }
2953 }
2954 }
2955
2956 /* Fast paths for floats keeping temporary products in C.
2957 * Assumes all inputs are the same type.
2958 * If the assumption fails, default to use PyObjects instead.
2959 */
2960 if (PyFloat_CheckExact(result)) {
2961 double f_result = PyFloat_AS_DOUBLE(result);
2962 Py_DECREF(result);
2963 result = NULL;
2964 while(result == NULL) {
2965 item = PyIter_Next(iter);
2966 if (item == NULL) {
2967 Py_DECREF(iter);
2968 if (PyErr_Occurred()) {
2969 return NULL;
2970 }
2971 return PyFloat_FromDouble(f_result);
2972 }
2973 if (PyFloat_CheckExact(item)) {
2974 f_result *= PyFloat_AS_DOUBLE(item);
2975 Py_DECREF(item);
2976 continue;
2977 }
2978 if (PyLong_CheckExact(item)) {
2979 long value;
2980 int overflow;
2981 value = PyLong_AsLongAndOverflow(item, &overflow);
2982 if (!overflow) {
2983 f_result *= (double)value;
2984 Py_DECREF(item);
2985 continue;
2986 }
2987 }
2988 result = PyFloat_FromDouble(f_result);
2989 if (result == NULL) {
2990 Py_DECREF(item);
2991 Py_DECREF(iter);
2992 return NULL;
2993 }
2994 temp = PyNumber_Multiply(result, item);
2995 Py_DECREF(result);
2996 Py_DECREF(item);
2997 result = temp;
2998 if (result == NULL) {
2999 Py_DECREF(iter);
3000 return NULL;
3001 }
3002 }
3003 }
3004#endif
3005 /* Consume rest of the iterable (if any) that could not be handled
3006 * by specialized functions above.*/
3007 for(;;) {
3008 item = PyIter_Next(iter);
3009 if (item == NULL) {
3010 /* error, or end-of-sequence */
3011 if (PyErr_Occurred()) {
3012 Py_DECREF(result);
3013 result = NULL;
3014 }
3015 break;
3016 }
3017 temp = PyNumber_Multiply(result, item);
3018 Py_DECREF(result);
3019 Py_DECREF(item);
3020 result = temp;
3021 if (result == NULL)
3022 break;
3023 }
3024 Py_DECREF(iter);
3025 return result;
3026}
3027
3028
Yash Aggarwal4a686502019-06-01 12:51:27 +05303029/*[clinic input]
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003030math.perm
3031
3032 n: object
Raymond Hettingere119b3d2019-06-08 08:58:11 -07003033 k: object = None
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003034 /
3035
3036Number of ways to choose k items from n items without repetition and with order.
3037
Raymond Hettinger963eb0f2019-06-04 01:23:06 -07003038Evaluates to n! / (n - k)! when k <= n and evaluates
3039to zero when k > n.
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003040
Raymond Hettingere119b3d2019-06-08 08:58:11 -07003041If k is not specified or is None, then k defaults to n
3042and the function returns n!.
3043
Raymond Hettinger963eb0f2019-06-04 01:23:06 -07003044Raises TypeError if either of the arguments are not integers.
3045Raises ValueError if either of the arguments are negative.
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003046[clinic start generated code]*/
3047
3048static PyObject *
3049math_perm_impl(PyObject *module, PyObject *n, PyObject *k)
Raymond Hettingere119b3d2019-06-08 08:58:11 -07003050/*[clinic end generated code: output=e021a25469653e23 input=5311c5a00f359b53]*/
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003051{
3052 PyObject *result = NULL, *factor = NULL;
3053 int overflow, cmp;
3054 long long i, factors;
3055
Raymond Hettingere119b3d2019-06-08 08:58:11 -07003056 if (k == Py_None) {
3057 return math_factorial(module, n);
3058 }
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003059 n = PyNumber_Index(n);
3060 if (n == NULL) {
3061 return NULL;
3062 }
3063 if (!PyLong_CheckExact(n)) {
3064 Py_SETREF(n, _PyLong_Copy((PyLongObject *)n));
3065 if (n == NULL) {
3066 return NULL;
3067 }
3068 }
3069 k = PyNumber_Index(k);
3070 if (k == NULL) {
3071 Py_DECREF(n);
3072 return NULL;
3073 }
3074 if (!PyLong_CheckExact(k)) {
3075 Py_SETREF(k, _PyLong_Copy((PyLongObject *)k));
3076 if (k == NULL) {
3077 Py_DECREF(n);
3078 return NULL;
3079 }
3080 }
3081
3082 if (Py_SIZE(n) < 0) {
3083 PyErr_SetString(PyExc_ValueError,
3084 "n must be a non-negative integer");
3085 goto error;
3086 }
Mark Dickinson45e04112019-06-16 11:06:06 +01003087 if (Py_SIZE(k) < 0) {
3088 PyErr_SetString(PyExc_ValueError,
3089 "k must be a non-negative integer");
3090 goto error;
3091 }
3092
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003093 cmp = PyObject_RichCompareBool(n, k, Py_LT);
3094 if (cmp != 0) {
3095 if (cmp > 0) {
Raymond Hettinger963eb0f2019-06-04 01:23:06 -07003096 result = PyLong_FromLong(0);
3097 goto done;
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003098 }
3099 goto error;
3100 }
3101
3102 factors = PyLong_AsLongLongAndOverflow(k, &overflow);
3103 if (overflow > 0) {
3104 PyErr_Format(PyExc_OverflowError,
3105 "k must not exceed %lld",
3106 LLONG_MAX);
3107 goto error;
3108 }
Mark Dickinson45e04112019-06-16 11:06:06 +01003109 else if (factors == -1) {
3110 /* k is nonnegative, so a return value of -1 can only indicate error */
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003111 goto error;
3112 }
3113
3114 if (factors == 0) {
3115 result = PyLong_FromLong(1);
3116 goto done;
3117 }
3118
3119 result = n;
3120 Py_INCREF(result);
3121 if (factors == 1) {
3122 goto done;
3123 }
3124
3125 factor = n;
3126 Py_INCREF(factor);
3127 for (i = 1; i < factors; ++i) {
3128 Py_SETREF(factor, PyNumber_Subtract(factor, _PyLong_One));
3129 if (factor == NULL) {
3130 goto error;
3131 }
3132 Py_SETREF(result, PyNumber_Multiply(result, factor));
3133 if (result == NULL) {
3134 goto error;
3135 }
3136 }
3137 Py_DECREF(factor);
3138
3139done:
3140 Py_DECREF(n);
3141 Py_DECREF(k);
3142 return result;
3143
3144error:
3145 Py_XDECREF(factor);
3146 Py_XDECREF(result);
3147 Py_DECREF(n);
3148 Py_DECREF(k);
3149 return NULL;
3150}
3151
3152
3153/*[clinic input]
Yash Aggarwal4a686502019-06-01 12:51:27 +05303154math.comb
3155
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003156 n: object
3157 k: object
3158 /
Yash Aggarwal4a686502019-06-01 12:51:27 +05303159
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003160Number of ways to choose k items from n items without repetition and without order.
Yash Aggarwal4a686502019-06-01 12:51:27 +05303161
Raymond Hettinger963eb0f2019-06-04 01:23:06 -07003162Evaluates to n! / (k! * (n - k)!) when k <= n and evaluates
3163to zero when k > n.
Yash Aggarwal4a686502019-06-01 12:51:27 +05303164
Raymond Hettinger963eb0f2019-06-04 01:23:06 -07003165Also called the binomial coefficient because it is equivalent
3166to the coefficient of k-th term in polynomial expansion of the
3167expression (1 + x)**n.
3168
3169Raises TypeError if either of the arguments are not integers.
3170Raises ValueError if either of the arguments are negative.
Yash Aggarwal4a686502019-06-01 12:51:27 +05303171
3172[clinic start generated code]*/
3173
3174static PyObject *
3175math_comb_impl(PyObject *module, PyObject *n, PyObject *k)
Raymond Hettinger963eb0f2019-06-04 01:23:06 -07003176/*[clinic end generated code: output=bd2cec8d854f3493 input=9a05315af2518709]*/
Yash Aggarwal4a686502019-06-01 12:51:27 +05303177{
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003178 PyObject *result = NULL, *factor = NULL, *temp;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303179 int overflow, cmp;
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003180 long long i, factors;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303181
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003182 n = PyNumber_Index(n);
3183 if (n == NULL) {
3184 return NULL;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303185 }
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003186 if (!PyLong_CheckExact(n)) {
3187 Py_SETREF(n, _PyLong_Copy((PyLongObject *)n));
3188 if (n == NULL) {
3189 return NULL;
3190 }
3191 }
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003192 k = PyNumber_Index(k);
3193 if (k == NULL) {
3194 Py_DECREF(n);
3195 return NULL;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303196 }
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003197 if (!PyLong_CheckExact(k)) {
3198 Py_SETREF(k, _PyLong_Copy((PyLongObject *)k));
3199 if (k == NULL) {
3200 Py_DECREF(n);
3201 return NULL;
3202 }
3203 }
Yash Aggarwal4a686502019-06-01 12:51:27 +05303204
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003205 if (Py_SIZE(n) < 0) {
3206 PyErr_SetString(PyExc_ValueError,
3207 "n must be a non-negative integer");
3208 goto error;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303209 }
Mark Dickinson45e04112019-06-16 11:06:06 +01003210 if (Py_SIZE(k) < 0) {
3211 PyErr_SetString(PyExc_ValueError,
3212 "k must be a non-negative integer");
3213 goto error;
3214 }
3215
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003216 /* k = min(k, n - k) */
3217 temp = PyNumber_Subtract(n, k);
3218 if (temp == NULL) {
3219 goto error;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303220 }
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003221 if (Py_SIZE(temp) < 0) {
3222 Py_DECREF(temp);
Raymond Hettinger963eb0f2019-06-04 01:23:06 -07003223 result = PyLong_FromLong(0);
3224 goto done;
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003225 }
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003226 cmp = PyObject_RichCompareBool(temp, k, Py_LT);
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003227 if (cmp > 0) {
3228 Py_SETREF(k, temp);
Yash Aggarwal4a686502019-06-01 12:51:27 +05303229 }
3230 else {
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003231 Py_DECREF(temp);
3232 if (cmp < 0) {
3233 goto error;
3234 }
Yash Aggarwal4a686502019-06-01 12:51:27 +05303235 }
3236
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003237 factors = PyLong_AsLongLongAndOverflow(k, &overflow);
3238 if (overflow > 0) {
Yash Aggarwal4a686502019-06-01 12:51:27 +05303239 PyErr_Format(PyExc_OverflowError,
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003240 "min(n - k, k) must not exceed %lld",
Yash Aggarwal4a686502019-06-01 12:51:27 +05303241 LLONG_MAX);
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003242 goto error;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303243 }
Mark Dickinson45e04112019-06-16 11:06:06 +01003244 if (factors == -1) {
3245 /* k is nonnegative, so a return value of -1 can only indicate error */
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003246 goto error;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303247 }
3248
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003249 if (factors == 0) {
3250 result = PyLong_FromLong(1);
3251 goto done;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303252 }
3253
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003254 result = n;
3255 Py_INCREF(result);
3256 if (factors == 1) {
3257 goto done;
Yash Aggarwal4a686502019-06-01 12:51:27 +05303258 }
3259
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003260 factor = n;
3261 Py_INCREF(factor);
3262 for (i = 1; i < factors; ++i) {
3263 Py_SETREF(factor, PyNumber_Subtract(factor, _PyLong_One));
3264 if (factor == NULL) {
3265 goto error;
3266 }
3267 Py_SETREF(result, PyNumber_Multiply(result, factor));
3268 if (result == NULL) {
3269 goto error;
3270 }
Yash Aggarwal4a686502019-06-01 12:51:27 +05303271
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003272 temp = PyLong_FromUnsignedLongLong((unsigned long long)i + 1);
3273 if (temp == NULL) {
3274 goto error;
3275 }
3276 Py_SETREF(result, PyNumber_FloorDivide(result, temp));
3277 Py_DECREF(temp);
3278 if (result == NULL) {
3279 goto error;
3280 }
3281 }
3282 Py_DECREF(factor);
Yash Aggarwal4a686502019-06-01 12:51:27 +05303283
Serhiy Storchaka2b843ac2019-06-01 22:09:02 +03003284done:
3285 Py_DECREF(n);
3286 Py_DECREF(k);
3287 return result;
3288
3289error:
3290 Py_XDECREF(factor);
3291 Py_XDECREF(result);
3292 Py_DECREF(n);
3293 Py_DECREF(k);
Yash Aggarwal4a686502019-06-01 12:51:27 +05303294 return NULL;
3295}
3296
3297
Barry Warsaw8b43b191996-12-09 22:32:36 +00003298static PyMethodDef math_methods[] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003299 {"acos", math_acos, METH_O, math_acos_doc},
3300 {"acosh", math_acosh, METH_O, math_acosh_doc},
3301 {"asin", math_asin, METH_O, math_asin_doc},
3302 {"asinh", math_asinh, METH_O, math_asinh_doc},
3303 {"atan", math_atan, METH_O, math_atan_doc},
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02003304 {"atan2", (PyCFunction)(void(*)(void))math_atan2, METH_FASTCALL, math_atan2_doc},
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003305 {"atanh", math_atanh, METH_O, math_atanh_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003306 MATH_CEIL_METHODDEF
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02003307 {"copysign", (PyCFunction)(void(*)(void))math_copysign, METH_FASTCALL, math_copysign_doc},
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003308 {"cos", math_cos, METH_O, math_cos_doc},
3309 {"cosh", math_cosh, METH_O, math_cosh_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003310 MATH_DEGREES_METHODDEF
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -07003311 MATH_DIST_METHODDEF
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003312 {"erf", math_erf, METH_O, math_erf_doc},
3313 {"erfc", math_erfc, METH_O, math_erfc_doc},
3314 {"exp", math_exp, METH_O, math_exp_doc},
3315 {"expm1", math_expm1, METH_O, math_expm1_doc},
3316 {"fabs", math_fabs, METH_O, math_fabs_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003317 MATH_FACTORIAL_METHODDEF
3318 MATH_FLOOR_METHODDEF
3319 MATH_FMOD_METHODDEF
3320 MATH_FREXP_METHODDEF
3321 MATH_FSUM_METHODDEF
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003322 {"gamma", math_gamma, METH_O, math_gamma_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003323 MATH_GCD_METHODDEF
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02003324 {"hypot", (PyCFunction)(void(*)(void))math_hypot, METH_FASTCALL, math_hypot_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003325 MATH_ISCLOSE_METHODDEF
3326 MATH_ISFINITE_METHODDEF
3327 MATH_ISINF_METHODDEF
3328 MATH_ISNAN_METHODDEF
Mark Dickinson73934b92019-05-18 12:29:50 +01003329 MATH_ISQRT_METHODDEF
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003330 MATH_LDEXP_METHODDEF
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003331 {"lgamma", math_lgamma, METH_O, math_lgamma_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003332 MATH_LOG_METHODDEF
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003333 {"log1p", math_log1p, METH_O, math_log1p_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003334 MATH_LOG10_METHODDEF
3335 MATH_LOG2_METHODDEF
3336 MATH_MODF_METHODDEF
3337 MATH_POW_METHODDEF
3338 MATH_RADIANS_METHODDEF
Serhiy Storchakad0d3e992019-01-12 08:26:34 +02003339 {"remainder", (PyCFunction)(void(*)(void))math_remainder, METH_FASTCALL, math_remainder_doc},
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003340 {"sin", math_sin, METH_O, math_sin_doc},
3341 {"sinh", math_sinh, METH_O, math_sinh_doc},
3342 {"sqrt", math_sqrt, METH_O, math_sqrt_doc},
3343 {"tan", math_tan, METH_O, math_tan_doc},
3344 {"tanh", math_tanh, METH_O, math_tanh_doc},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02003345 MATH_TRUNC_METHODDEF
Pablo Galindobc098512019-02-07 07:04:02 +00003346 MATH_PROD_METHODDEF
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +03003347 MATH_PERM_METHODDEF
Yash Aggarwal4a686502019-06-01 12:51:27 +05303348 MATH_COMB_METHODDEF
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003349 {NULL, NULL} /* sentinel */
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00003350};
3351
Guido van Rossumc6e22901998-12-04 19:26:43 +00003352
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00003353PyDoc_STRVAR(module_doc,
Ned Batchelder6faad352019-05-17 05:59:14 -04003354"This module provides access to the mathematical functions\n"
3355"defined by the C standard.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00003356
Martin v. Löwis1a214512008-06-11 05:26:20 +00003357
3358static struct PyModuleDef mathmodule = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003359 PyModuleDef_HEAD_INIT,
3360 "math",
3361 module_doc,
3362 -1,
3363 math_methods,
3364 NULL,
3365 NULL,
3366 NULL,
3367 NULL
Martin v. Löwis1a214512008-06-11 05:26:20 +00003368};
3369
Mark Hammondfe51c6d2002-08-02 02:27:13 +00003370PyMODINIT_FUNC
Martin v. Löwis1a214512008-06-11 05:26:20 +00003371PyInit_math(void)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00003372{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003373 PyObject *m;
Tim Petersfe71f812001-08-07 22:10:00 +00003374
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003375 m = PyModule_Create(&mathmodule);
3376 if (m == NULL)
3377 goto finally;
Barry Warsawfc93f751996-12-17 00:47:03 +00003378
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003379 PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI));
3380 PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
Guido van Rossum0a891d72016-08-15 09:12:52 -07003381 PyModule_AddObject(m, "tau", PyFloat_FromDouble(Py_MATH_TAU)); /* 2pi */
Mark Dickinsona5d0c7c2015-01-11 11:55:29 +00003382 PyModule_AddObject(m, "inf", PyFloat_FromDouble(m_inf()));
3383#if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN)
3384 PyModule_AddObject(m, "nan", PyFloat_FromDouble(m_nan()));
3385#endif
Barry Warsawfc93f751996-12-17 00:47:03 +00003386
Mark Dickinsona5d0c7c2015-01-11 11:55:29 +00003387 finally:
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00003388 return m;
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00003389}