blob: 6f57d0be629bf51a8fe6bf2d9af2a6d04ced437d [file] [log] [blame]
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001.. _advanced:
2
3Advanced topics
4###############
5
Wenzel Jakob93296692015-10-13 23:21:54 +02006For brevity, the rest of this chapter assumes that the following two lines are
7present:
8
9.. code-block:: cpp
10
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020011 #include <pybind11/pybind11.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020012
Wenzel Jakob10e62e12015-10-15 22:46:07 +020013 namespace py = pybind11;
Wenzel Jakob93296692015-10-13 23:21:54 +020014
Wenzel Jakobde3ad072016-02-02 11:38:21 +010015Exporting constants and mutable objects
16=======================================
17
18To expose a C++ constant, use the ``attr`` function to register it in a module
19as shown below. The ``int_`` class is one of many small wrapper objects defined
20in ``pybind11/pytypes.h``. General objects (including integers) can also be
21converted using the function ``cast``.
22
23.. code-block:: cpp
24
25 PYBIND11_PLUGIN(example) {
26 py::module m("example", "pybind11 example plugin");
27 m.attr("MY_CONSTANT") = py::int_(123);
28 m.attr("MY_CONSTANT_2") = py::cast(new MyObject());
29 }
30
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020031Operator overloading
32====================
33
Wenzel Jakob93296692015-10-13 23:21:54 +020034Suppose that we're given the following ``Vector2`` class with a vector addition
35and scalar multiplication operation, all implemented using overloaded operators
36in C++.
37
38.. code-block:: cpp
39
40 class Vector2 {
41 public:
42 Vector2(float x, float y) : x(x), y(y) { }
43
Wenzel Jakob93296692015-10-13 23:21:54 +020044 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
45 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
46 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
47 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
48
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020049 friend Vector2 operator*(float f, const Vector2 &v) {
50 return Vector2(f * v.x, f * v.y);
51 }
Wenzel Jakob93296692015-10-13 23:21:54 +020052
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020053 std::string toString() const {
54 return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
55 }
Wenzel Jakob93296692015-10-13 23:21:54 +020056 private:
57 float x, y;
58 };
59
60The following snippet shows how the above operators can be conveniently exposed
61to Python.
62
63.. code-block:: cpp
64
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020065 #include <pybind11/operators.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020066
Wenzel Jakobb1b71402015-10-18 16:48:30 +020067 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020068 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +020069
70 py::class_<Vector2>(m, "Vector2")
71 .def(py::init<float, float>())
72 .def(py::self + py::self)
73 .def(py::self += py::self)
74 .def(py::self *= float())
75 .def(float() * py::self)
76 .def("__repr__", &Vector2::toString);
77
78 return m.ptr();
79 }
80
81Note that a line like
82
83.. code-block:: cpp
84
85 .def(py::self * float())
86
87is really just short hand notation for
88
89.. code-block:: cpp
90
91 .def("__mul__", [](const Vector2 &a, float b) {
92 return a * b;
93 })
94
95This can be useful for exposing additional operators that don't exist on the
96C++ side, or to perform other types of customization.
97
98.. note::
99
100 To use the more convenient ``py::self`` notation, the additional
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200101 header file :file:`pybind11/operators.h` must be included.
Wenzel Jakob93296692015-10-13 23:21:54 +0200102
103.. seealso::
104
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400105 The file :file:`example/example-operator-overloading.cpp` contains a
106 complete example that demonstrates how to work with overloaded operators in
107 more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200108
109Callbacks and passing anonymous functions
110=========================================
111
112The C++11 standard brought lambda functions and the generic polymorphic
113function wrapper ``std::function<>`` to the C++ programming language, which
114enable powerful new ways of working with functions. Lambda functions come in
115two flavors: stateless lambda function resemble classic function pointers that
116link to an anonymous piece of code, while stateful lambda functions
117additionally depend on captured variables that are stored in an anonymous
118*lambda closure object*.
119
120Here is a simple example of a C++ function that takes an arbitrary function
121(stateful or stateless) with signature ``int -> int`` as an argument and runs
122it with the value 10.
123
124.. code-block:: cpp
125
126 int func_arg(const std::function<int(int)> &f) {
127 return f(10);
128 }
129
130The example below is more involved: it takes a function of signature ``int -> int``
131and returns another function of the same kind. The return value is a stateful
132lambda function, which stores the value ``f`` in the capture object and adds 1 to
133its return value upon execution.
134
135.. code-block:: cpp
136
137 std::function<int(int)> func_ret(const std::function<int(int)> &f) {
138 return [f](int i) {
139 return f(i) + 1;
140 };
141 }
142
Brad Harmon835fc062016-06-16 13:19:15 -0500143This example demonstrates using python named parameters in C++ callbacks which
144requires using ``py::cpp_function`` as a wrapper. Usage is similar to defining
145methods of classes:
146
147.. code-block:: cpp
148
149 py::cpp_function func_cpp() {
150 return py::cpp_function([](int i) { return i+1; },
151 py::arg("number"));
152 }
153
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200154After including the extra header file :file:`pybind11/functional.h`, it is almost
Brad Harmon835fc062016-06-16 13:19:15 -0500155trivial to generate binding code for all of these functions.
Wenzel Jakob93296692015-10-13 23:21:54 +0200156
157.. code-block:: cpp
158
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200159 #include <pybind11/functional.h>
Wenzel Jakob93296692015-10-13 23:21:54 +0200160
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200161 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200162 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200163
164 m.def("func_arg", &func_arg);
165 m.def("func_ret", &func_ret);
Brad Harmon835fc062016-06-16 13:19:15 -0500166 m.def("func_cpp", &func_cpp);
Wenzel Jakob93296692015-10-13 23:21:54 +0200167
168 return m.ptr();
169 }
170
171The following interactive session shows how to call them from Python.
172
Wenzel Jakob99279f72016-06-03 11:19:29 +0200173.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200174
175 $ python
176 >>> import example
177 >>> def square(i):
178 ... return i * i
179 ...
180 >>> example.func_arg(square)
181 100L
182 >>> square_plus_1 = example.func_ret(square)
183 >>> square_plus_1(4)
184 17L
Brad Harmon835fc062016-06-16 13:19:15 -0500185 >>> plus_1 = func_cpp()
186 >>> plus_1(number=43)
187 44L
Wenzel Jakob93296692015-10-13 23:21:54 +0200188
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100189.. warning::
190
191 Keep in mind that passing a function from C++ to Python (or vice versa)
192 will instantiate a piece of wrapper code that translates function
Wenzel Jakob954b7932016-07-10 10:13:18 +0200193 invocations between the two languages. Naturally, this translation
194 increases the computational cost of each function call somewhat. A
195 problematic situation can arise when a function is copied back and forth
196 between Python and C++ many times in a row, in which case the underlying
197 wrappers will accumulate correspondingly. The resulting long sequence of
198 C++ -> Python -> C++ -> ... roundtrips can significantly decrease
199 performance.
200
201 There is one exception: pybind11 detects case where a stateless function
202 (i.e. a function pointer or a lambda function without captured variables)
203 is passed as an argument to another C++ function exposed in Python. In this
204 case, there is no overhead. Pybind11 will extract the underlying C++
205 function pointer from the wrapped function to sidestep a potential C++ ->
206 Python -> C++ roundtrip. This is demonstrated in Example 5.
207
208.. note::
209
210 This functionality is very useful when generating bindings for callbacks in
211 C++ libraries (e.g. GUI libraries, asynchronous networking libraries, etc.).
212
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400213 The file :file:`example/example-callbacks.cpp` contains a complete example
214 that demonstrates how to work with callbacks and anonymous functions in
215 more detail.
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100216
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200217Overriding virtual functions in Python
218======================================
219
Wenzel Jakob93296692015-10-13 23:21:54 +0200220Suppose that a C++ class or interface has a virtual function that we'd like to
221to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
222given as a specific example of how one would do this with traditional C++
223code).
224
225.. code-block:: cpp
226
227 class Animal {
228 public:
229 virtual ~Animal() { }
230 virtual std::string go(int n_times) = 0;
231 };
232
233 class Dog : public Animal {
234 public:
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400235 std::string go(int n_times) override {
Wenzel Jakob93296692015-10-13 23:21:54 +0200236 std::string result;
237 for (int i=0; i<n_times; ++i)
238 result += "woof! ";
239 return result;
240 }
241 };
242
243Let's also suppose that we are given a plain function which calls the
244function ``go()`` on an arbitrary ``Animal`` instance.
245
246.. code-block:: cpp
247
248 std::string call_go(Animal *animal) {
249 return animal->go(3);
250 }
251
252Normally, the binding code for these classes would look as follows:
253
254.. code-block:: cpp
255
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200256 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200257 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200258
259 py::class_<Animal> animal(m, "Animal");
260 animal
261 .def("go", &Animal::go);
262
263 py::class_<Dog>(m, "Dog", animal)
264 .def(py::init<>());
265
266 m.def("call_go", &call_go);
267
268 return m.ptr();
269 }
270
271However, these bindings are impossible to extend: ``Animal`` is not
272constructible, and we clearly require some kind of "trampoline" that
273redirects virtual calls back to Python.
274
275Defining a new type of ``Animal`` from within Python is possible but requires a
276helper class that is defined as follows:
277
278.. code-block:: cpp
279
280 class PyAnimal : public Animal {
281 public:
282 /* Inherit the constructors */
283 using Animal::Animal;
284
285 /* Trampoline (need one for each virtual function) */
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400286 std::string go(int n_times) override {
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200287 PYBIND11_OVERLOAD_PURE(
Wenzel Jakob93296692015-10-13 23:21:54 +0200288 std::string, /* Return type */
289 Animal, /* Parent class */
290 go, /* Name of function */
291 n_times /* Argument(s) */
292 );
293 }
294 };
295
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200296The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
297functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
Wenzel Jakob0d3fc352016-07-08 10:52:10 +0200298a default implementation.
Wenzel Jakob1e3be732016-05-24 23:42:05 +0200299
300There are also two alternate macros :func:`PYBIND11_OVERLOAD_PURE_NAME` and
301:func:`PYBIND11_OVERLOAD_NAME` which take a string-valued name argument
302after the *Name of the function* slot. This is useful when the C++ and Python
303versions of the function have different names, e.g. ``operator()`` vs ``__call__``.
304
305The binding code also needs a few minor adaptations (highlighted):
Wenzel Jakob93296692015-10-13 23:21:54 +0200306
307.. code-block:: cpp
308 :emphasize-lines: 4,6,7
309
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200310 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200311 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200312
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200313 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal /* <--- trampoline*/> animal(m, "Animal");
Wenzel Jakob93296692015-10-13 23:21:54 +0200314 animal
Wenzel Jakob93296692015-10-13 23:21:54 +0200315 .def(py::init<>())
316 .def("go", &Animal::go);
317
318 py::class_<Dog>(m, "Dog", animal)
319 .def(py::init<>());
320
321 m.def("call_go", &call_go);
322
323 return m.ptr();
324 }
325
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200326Importantly, pybind11 is made aware of the trampoline trampoline helper class
327by specifying it as the *third* template argument to :class:`class_`. The
328second argument with the unique pointer is simply the default holder type used
329by pybind11. Following this, we are able to define a constructor as usual.
Wenzel Jakob93296692015-10-13 23:21:54 +0200330
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400331Note, however, that the above is sufficient for allowing python classes to
332extend ``Animal``, but not ``Dog``: see ref:`virtual_and_inheritance` for the
333necessary steps required to providing proper overload support for inherited
334classes.
335
Wenzel Jakob93296692015-10-13 23:21:54 +0200336The Python session below shows how to override ``Animal::go`` and invoke it via
337a virtual method call.
338
Wenzel Jakob99279f72016-06-03 11:19:29 +0200339.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200340
341 >>> from example import *
342 >>> d = Dog()
343 >>> call_go(d)
344 u'woof! woof! woof! '
345 >>> class Cat(Animal):
346 ... def go(self, n_times):
347 ... return "meow! " * n_times
348 ...
349 >>> c = Cat()
350 >>> call_go(c)
351 u'meow! meow! meow! '
352
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200353Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakobbd986fe2016-05-21 10:48:30 +0200354
Wenzel Jakob93296692015-10-13 23:21:54 +0200355.. seealso::
356
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400357 The file :file:`example/example-virtual-functions.cpp` contains a complete
358 example that demonstrates how to override virtual functions using pybind11
359 in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200360
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400361.. _virtual_and_inheritance:
362
363Combining virtual functions and inheritance
364===========================================
365
366When combining virtual methods with inheritance, you need to be sure to provide
367an override for each method for which you want to allow overrides from derived
368python classes. For example, suppose we extend the above ``Animal``/``Dog``
369example as follows:
370
371.. code-block:: cpp
372 class Animal {
373 public:
374 virtual std::string go(int n_times) = 0;
375 virtual std::string name() { return "unknown"; }
376 };
377 class Dog : public class Animal {
378 public:
379 std::string go(int n_times) override {
380 std::string result;
381 for (int i=0; i<n_times; ++i)
382 result += bark() + " ";
383 return result;
384 }
385 virtual std::string bark() { return "woof!"; }
386 };
387
388then the trampoline class for ``Animal`` must, as described in the previous
389section, override ``go()`` and ``name()``, but in order to allow python code to
390inherit properly from ``Dog``, we also need a trampoline class for ``Dog`` that
391overrides both the added ``bark()`` method *and* the ``go()`` and ``name()``
392methods inherited from ``Animal`` (even though ``Dog`` doesn't directly
393override the ``name()`` method):
394
395.. code-block:: cpp
396 class PyAnimal : public Animal {
397 public:
398 using Animal::Animal; // Inherit constructors
399 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Animal, go, n_times); }
400 std::string name() override { PYBIND11_OVERLOAD(std::string, Animal, name, ); }
401 };
402 class PyDog : public Dog {
403 public:
404 using Dog::Dog; // Inherit constructors
405 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Dog, go, n_times); }
406 std::string name() override { PYBIND11_OVERLOAD(std::string, Dog, name, ); }
407 std::string bark() override { PYBIND11_OVERLOAD(std::string, Dog, bark, ); }
408 };
409
410A registered class derived from a pybind11-registered class with virtual
411methods requires a similar trampoline class, *even if* it doesn't explicitly
412declare or override any virtual methods itself:
413
414.. code-block:: cpp
415 class Husky : public Dog {};
416 class PyHusky : public Husky {
417 using Dog::Dog; // Inherit constructors
418 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Husky, go, n_times); }
419 std::string name() override { PYBIND11_OVERLOAD(std::string, Husky, name, ); }
420 std::string bark() override { PYBIND11_OVERLOAD(std::string, Husky, bark, ); }
421 };
422
423There is, however, a technique that can be used to avoid this duplication
424(which can be especially helpful for a base class with several virtual
425methods). The technique involves using template trampoline classes, as
426follows:
427
428.. code-block:: cpp
429 template <class AnimalBase = Animal> class PyAnimal : public AnimalBase {
430 using AnimalBase::AnimalBase; // Inherit constructors
431 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, AnimalBase, go, n_times); }
432 std::string name() override { PYBIND11_OVERLOAD(std::string, AnimalBase, name, ); }
433 };
434 template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> {
435 using PyAnimal<DogBase>::PyAnimal; // Inherit constructors
436 // Override PyAnimal's pure virtual go() with a non-pure one:
437 std::string go(int n_times) override { PYBIND11_OVERLOAD(std::string, DogBase, go, n_times); }
438 std::string bark() override { PYBIND11_OVERLOAD(std::string, DogBase, bark, ); }
439 };
440
441This technique has the advantage of requiring just one trampoline method to be
442declared per virtual method and pure virtual method override. It does,
443however, require the compiler to generate at least as many methods (and
444possibly more, if both pure virtual and overridden pure virtual methods are
445exposed, as above).
446
447The classes are then registered with pybind11 using:
448
449.. code-block:: cpp
450 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal<>> animal(m, "Animal");
451 py::class_<Dog, std::unique_ptr<Dog>, PyDog<>> dog(m, "Dog");
452 py::class_<Husky, std::unique_ptr<Husky>, PyDog<Husky>> husky(m, "Husky");
453 // ... add animal, dog, husky definitions
454
455Note that ``Husky`` did not require a dedicated trampoline template class at
456all, since it neither declares any new virtual methods nor provides any pure
457virtual method implementations.
458
459With either the repeated-virtuals or templated trampoline methods in place, you
460can now create a python class that inherits from ``Dog``:
461
462.. code-block:: python
463
464 class ShihTzu(Dog):
465 def bark(self):
466 return "yip!"
467
468.. seealso::
469
470 See the file :file:`example-virtual-functions.cpp` for complete examples
471 using both the duplication and templated trampoline approaches.
472
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200473.. _macro_notes:
474
475General notes regarding convenience macros
476==========================================
477
478pybind11 provides a few convenience macros such as
479:func:`PYBIND11_MAKE_OPAQUE` and :func:`PYBIND11_DECLARE_HOLDER_TYPE`, and
480``PYBIND11_OVERLOAD_*``. Since these are "just" macros that are evaluated
481in the preprocessor (which has no concept of types), they *will* get confused
482by commas in a template argument such as ``PYBIND11_OVERLOAD(MyReturnValue<T1,
483T2>, myFunc)``. In this case, the preprocessor assumes that the comma indicates
484the beginnning of the next parameter. Use a ``typedef`` to bind the template to
485another name and use it in the macro to avoid this problem.
486
487
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100488Global Interpreter Lock (GIL)
489=============================
490
491The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
492used to acquire and release the global interpreter lock in the body of a C++
493function call. In this way, long-running C++ code can be parallelized using
494multiple Python threads. Taking the previous section as an example, this could
495be realized as follows (important changes highlighted):
496
497.. code-block:: cpp
498 :emphasize-lines: 8,9,33,34
499
500 class PyAnimal : public Animal {
501 public:
502 /* Inherit the constructors */
503 using Animal::Animal;
504
505 /* Trampoline (need one for each virtual function) */
506 std::string go(int n_times) {
507 /* Acquire GIL before calling Python code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100508 py::gil_scoped_acquire acquire;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100509
510 PYBIND11_OVERLOAD_PURE(
511 std::string, /* Return type */
512 Animal, /* Parent class */
513 go, /* Name of function */
514 n_times /* Argument(s) */
515 );
516 }
517 };
518
519 PYBIND11_PLUGIN(example) {
520 py::module m("example", "pybind11 example plugin");
521
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200522 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal> animal(m, "Animal");
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100523 animal
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100524 .def(py::init<>())
525 .def("go", &Animal::go);
526
527 py::class_<Dog>(m, "Dog", animal)
528 .def(py::init<>());
529
530 m.def("call_go", [](Animal *animal) -> std::string {
531 /* Release GIL before calling into (potentially long-running) C++ code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100532 py::gil_scoped_release release;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100533 return call_go(animal);
534 });
535
536 return m.ptr();
537 }
538
Wenzel Jakob93296692015-10-13 23:21:54 +0200539Passing STL data structures
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200540===========================
541
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200542When including the additional header file :file:`pybind11/stl.h`, conversions
Wenzel Jakob978e3762016-04-07 18:00:41 +0200543between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>``
544and the Python ``list``, ``set`` and ``dict`` data structures are automatically
545enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported
546out of the box with just the core :file:`pybind11/pybind11.h` header.
Wenzel Jakob93296692015-10-13 23:21:54 +0200547
548.. note::
549
Wenzel Jakob44db04f2015-12-14 12:40:45 +0100550 Arbitrary nesting of any of these types is supported.
Wenzel Jakob93296692015-10-13 23:21:54 +0200551
552.. seealso::
553
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400554 The file :file:`example/example-python-types.cpp` contains a complete
555 example that demonstrates how to pass STL data types in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200556
Wenzel Jakobb2825952016-04-13 23:33:00 +0200557Binding sequence data types, iterators, the slicing protocol, etc.
558==================================================================
Wenzel Jakob93296692015-10-13 23:21:54 +0200559
560Please refer to the supplemental example for details.
561
562.. seealso::
563
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400564 The file :file:`example/example-sequences-and-iterators.cpp` contains a
565 complete example that shows how to bind a sequence data type, including
566 length queries (``__len__``), iterators (``__iter__``), the slicing
567 protocol and other kinds of useful operations.
Wenzel Jakob93296692015-10-13 23:21:54 +0200568
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200569Return value policies
570=====================
571
Wenzel Jakob93296692015-10-13 23:21:54 +0200572Python and C++ use wildly different ways of managing the memory and lifetime of
573objects managed by them. This can lead to issues when creating bindings for
574functions that return a non-trivial type. Just by looking at the type
575information, it is not clear whether Python should take charge of the returned
576value and eventually free its resources, or if this is handled on the C++ side.
577For this reason, pybind11 provides a several `return value policy` annotations
578that can be passed to the :func:`module::def` and :func:`class_::def`
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100579functions. The default policy is :enum:`return_value_policy::automatic`.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200580
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200581.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
582
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200583+--------------------------------------------------+----------------------------------------------------------------------------+
584| Return value policy | Description |
585+==================================================+============================================================================+
586| :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy |
587| | :enum:`return_value_policy::take_ownership` when the return value is a |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200588| | pointer. Otherwise, it uses :enum:`return_value::move` or |
589| | :enum:`return_value::copy` for rvalue and lvalue references, respectively. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200590| | See below for a description of what all of these different policies do. |
591+--------------------------------------------------+----------------------------------------------------------------------------+
592| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
Wenzel Jakob37e1f612016-06-22 14:29:13 +0200593| | return value is a pointer. This is the default conversion policy for |
594| | function arguments when calling Python functions manually from C++ code |
595| | (i.e. via handle::operator()). You probably won't need to use this. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200596+--------------------------------------------------+----------------------------------------------------------------------------+
597| :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
598| | ownership. Python will call the destructor and delete operator when the |
599| | object's reference count reaches zero. Undefined behavior ensues when the |
Wenzel Jakobf53e3002016-06-30 14:59:23 +0200600| | C++ side does the same. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200601+--------------------------------------------------+----------------------------------------------------------------------------+
602| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
603| | This policy is comparably safe because the lifetimes of the two instances |
604| | are decoupled. |
605+--------------------------------------------------+----------------------------------------------------------------------------+
606| :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
607| | that will be owned by Python. This policy is comparably safe because the |
608| | lifetimes of the two instances (move source and destination) are decoupled.|
609+--------------------------------------------------+----------------------------------------------------------------------------+
610| :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
611| | responsible for managing the object's lifetime and deallocating it when |
612| | it is no longer used. Warning: undefined behavior will ensue when the C++ |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200613| | side deletes an object that is still referenced and used by Python. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200614+--------------------------------------------------+----------------------------------------------------------------------------+
Jason Rhinelanderf2ecd892016-08-10 12:08:04 -0400615| :enum:`return_value_policy::reference_internal` | Like :enum:`return_value_policy::reference` but additionally applies a |
616| | :class:`keep_alive<0,1>()` call policy (described next) that keeps the |
617| | ``this`` argument of the function or property from being garbage collected |
618| | as long as the return value remains referenced. See the |
619| | :class:`keep_alive` call policy (described next) for details. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200620+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200621
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200622.. warning::
623
Jason Rhinelanderefc2aa72016-08-10 11:38:33 -0400624 Code with invalid return value policies might access unitialized memory or
625 free data structures multiple times, which can lead to hard-to-debug
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200626 non-determinism and segmentation faults, hence it is worth spending the
627 time to understand all the different options in the table above.
628
Jason Rhinelanderefc2aa72016-08-10 11:38:33 -0400629One important aspect of the above policies is that they only apply to instances
630which pybind11 has *not* seen before, in which case the policy clarifies
631essential questions about the return value's lifetime and ownership. When
632pybind11 knows the instance already (as identified by its type and address in
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200633memory), it will return the existing Python object wrapper rather than creating
Jason Rhinelanderefc2aa72016-08-10 11:38:33 -0400634a copy.
nafur717df752016-06-28 18:07:11 +0200635
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200636.. note::
637
638 The next section on :ref:`call_policies` discusses *call policies* that can be
639 specified *in addition* to a return value policy from the list above. Call
640 policies indicate reference relationships that can involve both return values
641 and parameters of functions.
642
643.. note::
644
645 As an alternative to elaborate call policies and lifetime management logic,
646 consider using smart pointers (see the section on :ref:`smart_pointers` for
647 details). Smart pointers can tell whether an object is still referenced from
648 C++ or Python, which generally eliminates the kinds of inconsistencies that
649 can lead to crashes or undefined behavior. For functions returning smart
650 pointers, it is not necessary to specify a return value policy.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100651
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200652.. _call_policies:
653
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100654Additional call policies
655========================
656
657In addition to the above return value policies, further `call policies` can be
658specified to indicate dependencies between parameters. There is currently just
659one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
660argument with index ``Patient`` should be kept alive at least until the
661argument with index ``Nurse`` is freed by the garbage collector; argument
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200662indices start at one, while zero refers to the return value. For methods, index
663one refers to the implicit ``this`` pointer, while regular arguments begin at
664index two. Arbitrarily many call policies can be specified.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100665
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200666Consider the following example: the binding code for a list append operation
667that ties the lifetime of the newly added element to the underlying container
668might be declared as follows:
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100669
670.. code-block:: cpp
671
672 py::class_<List>(m, "List")
673 .def("append", &List::append, py::keep_alive<1, 2>());
674
675.. note::
676
677 ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
678 Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
679 0) policies from Boost.Python.
680
Wenzel Jakob61587162016-01-18 22:38:52 +0100681.. seealso::
682
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400683 The file :file:`example/example-keep-alive.cpp` contains a complete example
684 that demonstrates using :class:`keep_alive` in more detail.
Wenzel Jakob61587162016-01-18 22:38:52 +0100685
Wenzel Jakob93296692015-10-13 23:21:54 +0200686Implicit type conversions
687=========================
688
689Suppose that instances of two types ``A`` and ``B`` are used in a project, and
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200690that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
Wenzel Jakob93296692015-10-13 23:21:54 +0200691could be a fixed and an arbitrary precision number type).
692
693.. code-block:: cpp
694
695 py::class_<A>(m, "A")
696 /// ... members ...
697
698 py::class_<B>(m, "B")
699 .def(py::init<A>())
700 /// ... members ...
701
702 m.def("func",
703 [](const B &) { /* .... */ }
704 );
705
706To invoke the function ``func`` using a variable ``a`` containing an ``A``
707instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
708will automatically apply an implicit type conversion, which makes it possible
709to directly write ``func(a)``.
710
711In this situation (i.e. where ``B`` has a constructor that converts from
712``A``), the following statement enables similar implicit conversions on the
713Python side:
714
715.. code-block:: cpp
716
717 py::implicitly_convertible<A, B>();
718
Wenzel Jakob3eeea6f2016-06-30 18:10:28 +0200719.. note::
720
721 Implicit conversions from ``A`` to ``B`` only work when ``B`` is a custom
722 data type that is exposed to Python via pybind11.
723
Wenzel Jakobf88af0c2016-06-22 13:52:31 +0200724.. _static_properties:
725
726Static properties
727=================
728
729The section on :ref:`properties` discussed the creation of instance properties
730that are implemented in terms of C++ getters and setters.
731
732Static properties can also be created in a similar way to expose getters and
733setters of static class attributes. It is important to note that the implicit
734``self`` argument also exists in this case and is used to pass the Python
735``type`` subclass instance. This parameter will often not be needed by the C++
736side, and the following example illustrates how to instantiate a lambda getter
737function that ignores it:
738
739.. code-block:: cpp
740
741 py::class_<Foo>(m, "Foo")
742 .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
743
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200744Unique pointers
745===============
746
747Given a class ``Example`` with Python bindings, it's possible to return
748instances wrapped in C++11 unique pointers, like so
749
750.. code-block:: cpp
751
752 std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }
753
754.. code-block:: cpp
755
756 m.def("create_example", &create_example);
757
758In other words, there is nothing special that needs to be done. While returning
759unique pointers in this way is allowed, it is *illegal* to use them as function
760arguments. For instance, the following function signature cannot be processed
761by pybind11.
762
763.. code-block:: cpp
764
765 void do_something_with_example(std::unique_ptr<Example> ex) { ... }
766
767The above signature would imply that Python needs to give up ownership of an
768object that is passed to this function, which is generally not possible (for
769instance, the object might be referenced elsewhere).
770
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200771.. _smart_pointers:
772
Wenzel Jakob93296692015-10-13 23:21:54 +0200773Smart pointers
774==============
775
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200776This section explains how to pass values that are wrapped in "smart" pointer
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200777types with internal reference counting. For the simpler C++11 unique pointers,
778refer to the previous section.
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200779
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200780The binding generator for classes, :class:`class_`, takes an optional second
Wenzel Jakob93296692015-10-13 23:21:54 +0200781template type, which denotes a special *holder* type that is used to manage
782references to the object. When wrapping a type named ``Type``, the default
783value of this template parameter is ``std::unique_ptr<Type>``, which means that
784the object is deallocated when Python's reference count goes to zero.
785
Wenzel Jakob1853b652015-10-18 15:38:50 +0200786It is possible to switch to other types of reference counting wrappers or smart
787pointers, which is useful in codebases that rely on them. For instance, the
788following snippet causes ``std::shared_ptr`` to be used instead.
Wenzel Jakob93296692015-10-13 23:21:54 +0200789
790.. code-block:: cpp
791
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100792 py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100793
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100794Note that any particular class can only be associated with a single holder type.
Wenzel Jakob93296692015-10-13 23:21:54 +0200795
Wenzel Jakob1853b652015-10-18 15:38:50 +0200796To enable transparent conversions for functions that take shared pointers as an
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100797argument or that return them, a macro invocation similar to the following must
Wenzel Jakob1853b652015-10-18 15:38:50 +0200798be declared at the top level before any binding code:
799
800.. code-block:: cpp
801
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200802 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
Wenzel Jakob1853b652015-10-18 15:38:50 +0200803
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100804.. note::
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100805
806 The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
807 placeholder name that is used as a template parameter of the second
808 argument. Thus, feel free to use any identifier, but use it consistently on
809 both sides; also, don't use the name of a type that already exists in your
810 codebase.
811
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100812One potential stumbling block when using holder types is that they need to be
813applied consistently. Can you guess what's broken about the following binding
814code?
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100815
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100816.. code-block:: cpp
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100817
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100818 class Child { };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100819
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100820 class Parent {
821 public:
822 Parent() : child(std::make_shared<Child>()) { }
823 Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
824 private:
825 std::shared_ptr<Child> child;
826 };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100827
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100828 PYBIND11_PLUGIN(example) {
829 py::module m("example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100830
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100831 py::class_<Child, std::shared_ptr<Child>>(m, "Child");
832
833 py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
834 .def(py::init<>())
835 .def("get_child", &Parent::get_child);
836
837 return m.ptr();
838 }
839
840The following Python code will cause undefined behavior (and likely a
841segmentation fault).
842
843.. code-block:: python
844
845 from example import Parent
846 print(Parent().get_child())
847
848The problem is that ``Parent::get_child()`` returns a pointer to an instance of
849``Child``, but the fact that this instance is already managed by
850``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
851pybind11 will create a second independent ``std::shared_ptr<...>`` that also
852claims ownership of the pointer. In the end, the object will be freed **twice**
853since these shared pointers have no way of knowing about each other.
854
855There are two ways to resolve this issue:
856
8571. For types that are managed by a smart pointer class, never use raw pointers
858 in function arguments or return values. In other words: always consistently
859 wrap pointers into their designated holder types (such as
860 ``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
861 should be modified as follows:
862
863.. code-block:: cpp
864
865 std::shared_ptr<Child> get_child() { return child; }
866
8672. Adjust the definition of ``Child`` by specifying
868 ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
869 base class. This adds a small bit of information to ``Child`` that allows
870 pybind11 to realize that there is already an existing
871 ``std::shared_ptr<...>`` and communicate with it. In this case, the
872 declaration of ``Child`` should look as follows:
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100873
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100874.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
875
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100876.. code-block:: cpp
877
878 class Child : public std::enable_shared_from_this<Child> { };
879
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200880
881Please take a look at the :ref:`macro_notes` before using this feature.
882
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100883.. seealso::
884
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400885 The file :file:`example/example-smart-ptr.cpp` contains a complete example
886 that demonstrates how to work with custom reference-counting holder types
887 in more detail.
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100888
Wenzel Jakob93296692015-10-13 23:21:54 +0200889.. _custom_constructors:
890
891Custom constructors
892===================
893
894The syntax for binding constructors was previously introduced, but it only
895works when a constructor with the given parameters actually exists on the C++
896side. To extend this to more general cases, let's take a look at what actually
897happens under the hood: the following statement
898
899.. code-block:: cpp
900
901 py::class_<Example>(m, "Example")
902 .def(py::init<int>());
903
904is short hand notation for
905
906.. code-block:: cpp
907
908 py::class_<Example>(m, "Example")
909 .def("__init__",
910 [](Example &instance, int arg) {
911 new (&instance) Example(arg);
912 }
913 );
914
915In other words, :func:`init` creates an anonymous function that invokes an
916in-place constructor. Memory allocation etc. is already take care of beforehand
917within pybind11.
918
Pim Schellart5a7d17f2016-06-17 17:35:59 -0400919.. _catching_and_throwing_exceptions:
920
Wenzel Jakob93296692015-10-13 23:21:54 +0200921Catching and throwing exceptions
922================================
923
924When C++ code invoked from Python throws an ``std::exception``, it is
925automatically converted into a Python ``Exception``. pybind11 defines multiple
926special exception classes that will map to different types of Python
927exceptions:
928
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200929.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
930
Wenzel Jakob978e3762016-04-07 18:00:41 +0200931+--------------------------------------+------------------------------+
932| C++ exception type | Python exception type |
933+======================================+==============================+
934| :class:`std::exception` | ``RuntimeError`` |
935+--------------------------------------+------------------------------+
936| :class:`std::bad_alloc` | ``MemoryError`` |
937+--------------------------------------+------------------------------+
938| :class:`std::domain_error` | ``ValueError`` |
939+--------------------------------------+------------------------------+
940| :class:`std::invalid_argument` | ``ValueError`` |
941+--------------------------------------+------------------------------+
942| :class:`std::length_error` | ``ValueError`` |
943+--------------------------------------+------------------------------+
944| :class:`std::out_of_range` | ``ValueError`` |
945+--------------------------------------+------------------------------+
946| :class:`std::range_error` | ``ValueError`` |
947+--------------------------------------+------------------------------+
948| :class:`pybind11::stop_iteration` | ``StopIteration`` (used to |
949| | implement custom iterators) |
950+--------------------------------------+------------------------------+
951| :class:`pybind11::index_error` | ``IndexError`` (used to |
952| | indicate out of bounds |
953| | accesses in ``__getitem__``, |
954| | ``__setitem__``, etc.) |
955+--------------------------------------+------------------------------+
Sergey Lyskova95bde12016-05-08 19:31:55 -0400956| :class:`pybind11::value_error` | ``ValueError`` (used to |
957| | indicate wrong value passed |
958| | in ``container.remove(...)`` |
959+--------------------------------------+------------------------------+
Wenzel Jakob978e3762016-04-07 18:00:41 +0200960| :class:`pybind11::error_already_set` | Indicates that the Python |
961| | exception flag has already |
962| | been initialized |
963+--------------------------------------+------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200964
965When a Python function invoked from C++ throws an exception, it is converted
966into a C++ exception of type :class:`error_already_set` whose string payload
967contains a textual summary.
968
969There is also a special exception :class:`cast_error` that is thrown by
970:func:`handle::call` when the input arguments cannot be converted to Python
971objects.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200972
Pim Schellart5a7d17f2016-06-17 17:35:59 -0400973Registering custom exception translators
974========================================
975
976If the default exception conversion policy described
977:ref:`above <catching_and_throwing_exceptions>`
978is insufficient, pybind11 also provides support for registering custom
979exception translators.
980
981The function ``register_exception_translator(translator)`` takes a stateless
982callable (e.g. a function pointer or a lambda function without captured
983variables) with the following call signature: ``void(std::exception_ptr)``.
984
985When a C++ exception is thrown, registered exception translators are tried
986in reverse order of registration (i.e. the last registered translator gets
987a first shot at handling the exception).
988
989Inside the translator, ``std::rethrow_exception`` should be used within
990a try block to re-throw the exception. A catch clause can then use
991``PyErr_SetString`` to set a Python exception as demonstrated
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400992in :file:`example-custom-exceptions.cpp``.
Pim Schellart5a7d17f2016-06-17 17:35:59 -0400993
994This example also demonstrates how to create custom exception types
995with ``py::exception``.
996
997The following example demonstrates this for a hypothetical exception class
998``MyCustomException``:
999
1000.. code-block:: cpp
1001
1002 py::register_exception_translator([](std::exception_ptr p) {
1003 try {
1004 if (p) std::rethrow_exception(p);
1005 } catch (const MyCustomException &e) {
1006 PyErr_SetString(PyExc_RuntimeError, e.what());
1007 }
1008 });
1009
1010Multiple exceptions can be handled by a single translator. If the exception is
1011not caught by the current translator, the previously registered one gets a
1012chance.
1013
1014If none of the registered exception translators is able to handle the
1015exception, it is handled by the default converter as described in the previous
1016section.
1017
1018.. note::
1019
1020 You must either call ``PyErr_SetString`` for every exception caught in a
1021 custom exception translator. Failure to do so will cause Python to crash
1022 with ``SystemError: error return without exception set``.
1023
1024 Exceptions that you do not plan to handle should simply not be caught.
1025
1026 You may also choose to explicity (re-)throw the exception to delegate it to
1027 the other existing exception translators.
1028
1029 The ``py::exception`` wrapper for creating custom exceptions cannot (yet)
1030 be used as a ``py::base``.
1031
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001032.. _opaque:
1033
1034Treating STL data structures as opaque objects
1035==============================================
1036
1037pybind11 heavily relies on a template matching mechanism to convert parameters
1038and return values that are constructed from STL data types such as vectors,
1039linked lists, hash tables, etc. This even works in a recursive manner, for
1040instance to deal with lists of hash maps of pairs of elementary and custom
1041types, etc.
1042
1043However, a fundamental limitation of this approach is that internal conversions
1044between Python and C++ types involve a copy operation that prevents
1045pass-by-reference semantics. What does this mean?
1046
1047Suppose we bind the following function
1048
1049.. code-block:: cpp
1050
1051 void append_1(std::vector<int> &v) {
1052 v.push_back(1);
1053 }
1054
1055and call it from Python, the following happens:
1056
Wenzel Jakob99279f72016-06-03 11:19:29 +02001057.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001058
1059 >>> v = [5, 6]
1060 >>> append_1(v)
1061 >>> print(v)
1062 [5, 6]
1063
1064As you can see, when passing STL data structures by reference, modifications
1065are not propagated back the Python side. A similar situation arises when
1066exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
1067functions:
1068
1069.. code-block:: cpp
1070
1071 /* ... definition ... */
1072
1073 class MyClass {
1074 std::vector<int> contents;
1075 };
1076
1077 /* ... binding code ... */
1078
1079 py::class_<MyClass>(m, "MyClass")
1080 .def(py::init<>)
1081 .def_readwrite("contents", &MyClass::contents);
1082
1083In this case, properties can be read and written in their entirety. However, an
1084``append`` operaton involving such a list type has no effect:
1085
Wenzel Jakob99279f72016-06-03 11:19:29 +02001086.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001087
1088 >>> m = MyClass()
1089 >>> m.contents = [5, 6]
1090 >>> print(m.contents)
1091 [5, 6]
1092 >>> m.contents.append(7)
1093 >>> print(m.contents)
1094 [5, 6]
1095
1096To deal with both of the above situations, pybind11 provides a macro named
1097``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based conversion
1098machinery of types, thus rendering them *opaque*. The contents of opaque
1099objects are never inspected or extracted, hence they can be passed by
1100reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
1101the declaration
1102
1103.. code-block:: cpp
1104
1105 PYBIND11_MAKE_OPAQUE(std::vector<int>);
1106
1107before any binding code (e.g. invocations to ``class_::def()``, etc.). This
1108macro must be specified at the top level, since instantiates a partial template
1109overload. If your binding code consists of multiple compilation units, it must
1110be present in every file preceding any usage of ``std::vector<int>``. Opaque
1111types must also have a corresponding ``class_`` declaration to associate them
1112with a name in Python, and to define a set of available operations:
1113
1114.. code-block:: cpp
1115
1116 py::class_<std::vector<int>>(m, "IntVector")
1117 .def(py::init<>())
1118 .def("clear", &std::vector<int>::clear)
1119 .def("pop_back", &std::vector<int>::pop_back)
1120 .def("__len__", [](const std::vector<int> &v) { return v.size(); })
1121 .def("__iter__", [](std::vector<int> &v) {
1122 return py::make_iterator(v.begin(), v.end());
1123 }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
1124 // ....
1125
Wenzel Jakob9bb97c12016-06-03 11:19:41 +02001126Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001127
1128.. seealso::
1129
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001130 The file :file:`example/example-opaque-types.cpp` contains a complete
1131 example that demonstrates how to create and expose opaque types using
1132 pybind11 in more detail.
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001133
1134.. _eigen:
1135
1136Transparent conversion of dense and sparse Eigen data types
1137===========================================================
1138
1139Eigen [#f1]_ is C++ header-based library for dense and sparse linear algebra. Due to
1140its popularity and widespread adoption, pybind11 provides transparent
1141conversion support between Eigen and Scientific Python linear algebra data types.
1142
1143Specifically, when including the optional header file :file:`pybind11/eigen.h`,
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001144pybind11 will automatically and transparently convert
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001145
11461. Static and dynamic Eigen dense vectors and matrices to instances of
1147 ``numpy.ndarray`` (and vice versa).
1148
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040011492. Returned matrix expressions such as blocks (including columns or rows) and
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001150 diagonals will be converted to ``numpy.ndarray`` of the expression
1151 values.
1152
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040011533. Returned matrix-like objects such as Eigen::DiagonalMatrix or
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001154 Eigen::SelfAdjointView will be converted to ``numpy.ndarray`` containing the
1155 expressed value.
1156
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040011574. Eigen sparse vectors and matrices to instances of
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001158 ``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` (and vice versa).
1159
1160This makes it possible to bind most kinds of functions that rely on these types.
1161One major caveat are functions that take Eigen matrices *by reference* and modify
1162them somehow, in which case the information won't be propagated to the caller.
1163
1164.. code-block:: cpp
1165
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001166 /* The Python bindings of these functions won't replicate
1167 the intended effect of modifying the function arguments */
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001168 void scale_by_2(Eigen::Vector3f &v) {
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001169 v *= 2;
1170 }
1171 void scale_by_2(Eigen::Ref<Eigen::MatrixXd> &v) {
1172 v *= 2;
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001173 }
1174
1175To see why this is, refer to the section on :ref:`opaque` (although that
1176section specifically covers STL data types, the underlying issue is the same).
1177The next two sections discuss an efficient alternative for exposing the
1178underlying native Eigen types as opaque objects in a way that still integrates
1179with NumPy and SciPy.
1180
1181.. [#f1] http://eigen.tuxfamily.org
1182
1183.. seealso::
1184
1185 The file :file:`example/eigen.cpp` contains a complete example that
1186 shows how to pass Eigen sparse and dense data types in more detail.
1187
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001188Buffer protocol
1189===============
1190
1191Python supports an extremely general and convenient approach for exchanging
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001192data between plugin libraries. Types can expose a buffer view [#f2]_, which
1193provides fast direct access to the raw internal data representation. Suppose we
1194want to bind the following simplistic Matrix class:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001195
1196.. code-block:: cpp
1197
1198 class Matrix {
1199 public:
1200 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
1201 m_data = new float[rows*cols];
1202 }
1203 float *data() { return m_data; }
1204 size_t rows() const { return m_rows; }
1205 size_t cols() const { return m_cols; }
1206 private:
1207 size_t m_rows, m_cols;
1208 float *m_data;
1209 };
1210
1211The following binding code exposes the ``Matrix`` contents as a buffer object,
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001212making it possible to cast Matrices into NumPy arrays. It is even possible to
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001213completely avoid copy operations with Python expressions like
1214``np.array(matrix_instance, copy = False)``.
1215
1216.. code-block:: cpp
1217
1218 py::class_<Matrix>(m, "Matrix")
1219 .def_buffer([](Matrix &m) -> py::buffer_info {
1220 return py::buffer_info(
Wenzel Jakob876eeab2016-05-04 22:22:48 +02001221 m.data(), /* Pointer to buffer */
1222 sizeof(float), /* Size of one scalar */
1223 py::format_descriptor<float>::value, /* Python struct-style format descriptor */
1224 2, /* Number of dimensions */
1225 { m.rows(), m.cols() }, /* Buffer dimensions */
1226 { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001227 sizeof(float) }
1228 );
1229 });
1230
1231The snippet above binds a lambda function, which can create ``py::buffer_info``
1232description records on demand describing a given matrix. The contents of
1233``py::buffer_info`` mirror the Python buffer protocol specification.
1234
1235.. code-block:: cpp
1236
1237 struct buffer_info {
1238 void *ptr;
1239 size_t itemsize;
1240 std::string format;
1241 int ndim;
1242 std::vector<size_t> shape;
1243 std::vector<size_t> strides;
1244 };
1245
1246To create a C++ function that can take a Python buffer object as an argument,
1247simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
1248in a great variety of configurations, hence some safety checks are usually
1249necessary in the function body. Below, you can see an basic example on how to
1250define a custom constructor for the Eigen double precision matrix
1251(``Eigen::MatrixXd``) type, which supports initialization from compatible
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001252buffer objects (e.g. a NumPy matrix).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001253
1254.. code-block:: cpp
1255
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001256 /* Bind MatrixXd (or some other Eigen type) to Python */
1257 typedef Eigen::MatrixXd Matrix;
1258
1259 typedef Matrix::Scalar Scalar;
1260 constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
1261
1262 py::class_<Matrix>(m, "Matrix")
1263 .def("__init__", [](Matrix &m, py::buffer b) {
Wenzel Jakobe7628532016-05-05 10:04:44 +02001264 typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
Wenzel Jakobe7628532016-05-05 10:04:44 +02001265
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001266 /* Request a buffer descriptor from Python */
1267 py::buffer_info info = b.request();
1268
1269 /* Some sanity checks ... */
Wenzel Jakobe7628532016-05-05 10:04:44 +02001270 if (info.format != py::format_descriptor<Scalar>::value)
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001271 throw std::runtime_error("Incompatible format: expected a double array!");
1272
1273 if (info.ndim != 2)
1274 throw std::runtime_error("Incompatible buffer dimension!");
1275
Wenzel Jakobe7628532016-05-05 10:04:44 +02001276 auto strides = Strides(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001277 info.strides[rowMajor ? 0 : 1] / sizeof(Scalar),
1278 info.strides[rowMajor ? 1 : 0] / sizeof(Scalar));
Wenzel Jakobe7628532016-05-05 10:04:44 +02001279
1280 auto map = Eigen::Map<Matrix, 0, Strides>(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001281 static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
Wenzel Jakobe7628532016-05-05 10:04:44 +02001282
1283 new (&m) Matrix(map);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001284 });
1285
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001286For reference, the ``def_buffer()`` call for this Eigen data type should look
1287as follows:
1288
1289.. code-block:: cpp
1290
1291 .def_buffer([](Matrix &m) -> py::buffer_info {
1292 return py::buffer_info(
1293 m.data(), /* Pointer to buffer */
1294 sizeof(Scalar), /* Size of one scalar */
1295 /* Python struct-style format descriptor */
1296 py::format_descriptor<Scalar>::value,
1297 /* Number of dimensions */
1298 2,
1299 /* Buffer dimensions */
1300 { (size_t) m.rows(),
1301 (size_t) m.cols() },
1302 /* Strides (in bytes) for each index */
1303 { sizeof(Scalar) * (rowMajor ? m.cols() : 1),
1304 sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
1305 );
1306 })
1307
1308For a much easier approach of binding Eigen types (although with some
1309limitations), refer to the section on :ref:`eigen`.
1310
Wenzel Jakob93296692015-10-13 23:21:54 +02001311.. seealso::
1312
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001313 The file :file:`example/example-buffers.cpp` contains a complete example
1314 that demonstrates using the buffer protocol with pybind11 in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +02001315
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001316.. [#f2] http://docs.python.org/3/c-api/buffer.html
Wenzel Jakob978e3762016-04-07 18:00:41 +02001317
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001318NumPy support
1319=============
1320
1321By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
1322restrict the function so that it only accepts NumPy arrays (rather than any
Wenzel Jakob978e3762016-04-07 18:00:41 +02001323type of Python object satisfying the buffer protocol).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001324
1325In many situations, we want to define a function which only accepts a NumPy
Wenzel Jakob93296692015-10-13 23:21:54 +02001326array of a certain data type. This is possible via the ``py::array_t<T>``
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001327template. For instance, the following function requires the argument to be a
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001328NumPy array containing double precision values.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001329
1330.. code-block:: cpp
1331
Wenzel Jakob93296692015-10-13 23:21:54 +02001332 void f(py::array_t<double> array);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001333
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001334When it is invoked with a different type (e.g. an integer or a list of
1335integers), the binding code will attempt to cast the input into a NumPy array
1336of the requested type. Note that this feature requires the
1337:file:``pybind11/numpy.h`` header to be included.
1338
1339Data in NumPy arrays is not guaranteed to packed in a dense manner;
1340furthermore, entries can be separated by arbitrary column and row strides.
1341Sometimes, it can be useful to require a function to only accept dense arrays
1342using either the C (row-major) or Fortran (column-major) ordering. This can be
1343accomplished via a second template argument with values ``py::array::c_style``
1344or ``py::array::f_style``.
1345
1346.. code-block:: cpp
1347
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001348 void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001349
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001350The ``py::array::forcecast`` argument is the default value of the second
1351template paramenter, and it ensures that non-conforming arguments are converted
1352into an array satisfying the specified requirements instead of trying the next
1353function overload.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001354
1355Vectorizing functions
1356=====================
1357
1358Suppose we want to bind a function with the following signature to Python so
1359that it can process arbitrary NumPy array arguments (vectors, matrices, general
1360N-D arrays) in addition to its normal arguments:
1361
1362.. code-block:: cpp
1363
1364 double my_func(int x, float y, double z);
1365
Wenzel Jakob8f4eb002015-10-15 18:13:33 +02001366After including the ``pybind11/numpy.h`` header, this is extremely simple:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001367
1368.. code-block:: cpp
1369
1370 m.def("vectorized_func", py::vectorize(my_func));
1371
1372Invoking the function like below causes 4 calls to be made to ``my_func`` with
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001373each of the array elements. The significant advantage of this compared to
Wenzel Jakob978e3762016-04-07 18:00:41 +02001374solutions like ``numpy.vectorize()`` is that the loop over the elements runs
1375entirely on the C++ side and can be crunched down into a tight, optimized loop
1376by the compiler. The result is returned as a NumPy array of type
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001377``numpy.dtype.float64``.
1378
Wenzel Jakob99279f72016-06-03 11:19:29 +02001379.. code-block:: pycon
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001380
1381 >>> x = np.array([[1, 3],[5, 7]])
1382 >>> y = np.array([[2, 4],[6, 8]])
1383 >>> z = 3
1384 >>> result = vectorized_func(x, y, z)
1385
1386The scalar argument ``z`` is transparently replicated 4 times. The input
1387arrays ``x`` and ``y`` are automatically converted into the right types (they
1388are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
1389``numpy.dtype.float32``, respectively)
1390
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001391Sometimes we might want to explicitly exclude an argument from the vectorization
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001392because it makes little sense to wrap it in a NumPy array. For instance,
1393suppose the function signature was
1394
1395.. code-block:: cpp
1396
1397 double my_func(int x, float y, my_custom_type *z);
1398
1399This can be done with a stateful Lambda closure:
1400
1401.. code-block:: cpp
1402
1403 // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
1404 m.def("vectorized_func",
Wenzel Jakob93296692015-10-13 23:21:54 +02001405 [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001406 auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
1407 return py::vectorize(stateful_closure)(x, y);
1408 }
1409 );
1410
Wenzel Jakob61587162016-01-18 22:38:52 +01001411In cases where the computation is too complicated to be reduced to
1412``vectorize``, it will be necessary to create and access the buffer contents
1413manually. The following snippet contains a complete example that shows how this
1414works (the code is somewhat contrived, since it could have been done more
1415simply using ``vectorize``).
1416
1417.. code-block:: cpp
1418
1419 #include <pybind11/pybind11.h>
1420 #include <pybind11/numpy.h>
1421
1422 namespace py = pybind11;
1423
1424 py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
1425 auto buf1 = input1.request(), buf2 = input2.request();
1426
1427 if (buf1.ndim != 1 || buf2.ndim != 1)
1428 throw std::runtime_error("Number of dimensions must be one");
1429
1430 if (buf1.shape[0] != buf2.shape[0])
1431 throw std::runtime_error("Input shapes must match");
1432
1433 auto result = py::array(py::buffer_info(
1434 nullptr, /* Pointer to data (nullptr -> ask NumPy to allocate!) */
1435 sizeof(double), /* Size of one item */
Wenzel Jakobf38f3592016-07-19 17:48:42 +02001436 py::format_descriptor<double>::value, /* Buffer format */
Wenzel Jakob61587162016-01-18 22:38:52 +01001437 buf1.ndim, /* How many dimensions? */
1438 { buf1.shape[0] }, /* Number of elements for each dimension */
1439 { sizeof(double) } /* Strides for each dimension */
1440 ));
1441
1442 auto buf3 = result.request();
1443
1444 double *ptr1 = (double *) buf1.ptr,
1445 *ptr2 = (double *) buf2.ptr,
1446 *ptr3 = (double *) buf3.ptr;
1447
1448 for (size_t idx = 0; idx < buf1.shape[0]; idx++)
1449 ptr3[idx] = ptr1[idx] + ptr2[idx];
1450
1451 return result;
1452 }
1453
1454 PYBIND11_PLUGIN(test) {
1455 py::module m("test");
1456 m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
1457 return m.ptr();
1458 }
1459
Wenzel Jakob93296692015-10-13 23:21:54 +02001460.. seealso::
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001461
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001462 The file :file:`example/example-numpy-vectorize.cpp` contains a complete
1463 example that demonstrates using :func:`vectorize` in more detail.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001464
Wenzel Jakob93296692015-10-13 23:21:54 +02001465Functions taking Python objects as arguments
1466============================================
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001467
Wenzel Jakob93296692015-10-13 23:21:54 +02001468pybind11 exposes all major Python types using thin C++ wrapper classes. These
1469wrapper classes can also be used as parameters of functions in bindings, which
1470makes it possible to directly work with native Python types on the C++ side.
1471For instance, the following statement iterates over a Python ``dict``:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001472
Wenzel Jakob93296692015-10-13 23:21:54 +02001473.. code-block:: cpp
1474
1475 void print_dict(py::dict dict) {
1476 /* Easily interact with Python types */
1477 for (auto item : dict)
1478 std::cout << "key=" << item.first << ", "
1479 << "value=" << item.second << std::endl;
1480 }
1481
1482Available types include :class:`handle`, :class:`object`, :class:`bool_`,
Wenzel Jakob27e8e102016-01-17 22:36:37 +01001483:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001484:class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
1485:class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
1486:class:`array`, and :class:`array_t`.
Wenzel Jakob93296692015-10-13 23:21:54 +02001487
Wenzel Jakob436b7312015-10-20 01:04:30 +02001488In this kind of mixed code, it is often necessary to convert arbitrary C++
1489types to Python, which can be done using :func:`cast`:
1490
1491.. code-block:: cpp
1492
1493 MyClass *cls = ..;
1494 py::object obj = py::cast(cls);
1495
1496The reverse direction uses the following syntax:
1497
1498.. code-block:: cpp
1499
1500 py::object obj = ...;
1501 MyClass *cls = obj.cast<MyClass *>();
1502
1503When conversion fails, both directions throw the exception :class:`cast_error`.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001504It is also possible to call python functions via ``operator()``.
1505
1506.. code-block:: cpp
1507
1508 py::function f = <...>;
1509 py::object result_py = f(1234, "hello", some_instance);
1510 MyClass &result = result_py.cast<MyClass>();
1511
1512The special ``f(*args)`` and ``f(*args, **kwargs)`` syntax is also supported to
1513supply arbitrary argument and keyword lists, although these cannot be mixed
1514with other parameters.
1515
1516.. code-block:: cpp
1517
1518 py::function f = <...>;
1519 py::tuple args = py::make_tuple(1234);
1520 py::dict kwargs;
1521 kwargs["y"] = py::cast(5678);
1522 py::object result = f(*args, **kwargs);
Wenzel Jakob436b7312015-10-20 01:04:30 +02001523
Wenzel Jakob93296692015-10-13 23:21:54 +02001524.. seealso::
1525
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001526 The file :file:`example/example-python-types.cpp` contains a complete
1527 example that demonstrates passing native Python types in more detail. The
1528 file :file:`example/example-arg-keywords-and-defaults.cpp` discusses usage
1529 of ``args`` and ``kwargs``.
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001530
1531Default arguments revisited
1532===========================
1533
1534The section on :ref:`default_args` previously discussed basic usage of default
1535arguments using pybind11. One noteworthy aspect of their implementation is that
1536default arguments are converted to Python objects right at declaration time.
1537Consider the following example:
1538
1539.. code-block:: cpp
1540
1541 py::class_<MyClass>("MyClass")
1542 .def("myFunction", py::arg("arg") = SomeType(123));
1543
1544In this case, pybind11 must already be set up to deal with values of the type
1545``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
1546exception will be thrown.
1547
1548Another aspect worth highlighting is that the "preview" of the default argument
1549in the function signature is generated using the object's ``__repr__`` method.
1550If not available, the signature may not be very helpful, e.g.:
1551
Wenzel Jakob99279f72016-06-03 11:19:29 +02001552.. code-block:: pycon
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001553
1554 FUNCTIONS
1555 ...
1556 | myFunction(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +01001557 | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001558 ...
1559
1560The first way of addressing this is by defining ``SomeType.__repr__``.
1561Alternatively, it is possible to specify the human-readable preview of the
1562default argument manually using the ``arg_t`` notation:
1563
1564.. code-block:: cpp
1565
1566 py::class_<MyClass>("MyClass")
1567 .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
1568
Wenzel Jakobc769fce2016-03-03 12:03:30 +01001569Sometimes it may be necessary to pass a null pointer value as a default
1570argument. In this case, remember to cast it to the underlying type in question,
1571like so:
1572
1573.. code-block:: cpp
1574
1575 py::class_<MyClass>("MyClass")
1576 .def("myFunction", py::arg("arg") = (SomeType *) nullptr);
1577
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001578Binding functions that accept arbitrary numbers of arguments and keywords arguments
1579===================================================================================
1580
1581Python provides a useful mechanism to define functions that accept arbitrary
1582numbers of arguments and keyword arguments:
1583
1584.. code-block:: cpp
1585
1586 def generic(*args, **kwargs):
1587 # .. do something with args and kwargs
1588
1589Such functions can also be created using pybind11:
1590
1591.. code-block:: cpp
1592
1593 void generic(py::args args, py::kwargs kwargs) {
1594 /// .. do something with args
1595 if (kwargs)
1596 /// .. do something with kwargs
1597 }
1598
1599 /// Binding code
1600 m.def("generic", &generic);
1601
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001602(See ``example/example-arg-keywords-and-defaults.cpp``). The class ``py::args``
1603derives from ``py::list`` and ``py::kwargs`` derives from ``py::dict`` Note
1604that the ``kwargs`` argument is invalid if no keyword arguments were actually
1605provided. Please refer to the other examples for details on how to iterate
1606over these, and on how to cast their entries into C++ objects.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001607
Wenzel Jakob3764e282016-08-01 23:34:48 +02001608.. warning::
1609
1610 Unlike Python, pybind11 does not allow combining normal parameters with the
1611 ``args`` / ``kwargs`` special parameters.
1612
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001613Partitioning code over multiple extension modules
1614=================================================
1615
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001616It's straightforward to split binding code over multiple extension modules,
1617while referencing types that are declared elsewhere. Everything "just" works
1618without any special precautions. One exception to this rule occurs when
1619extending a type declared in another extension module. Recall the basic example
1620from Section :ref:`inheritance`.
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001621
1622.. code-block:: cpp
1623
1624 py::class_<Pet> pet(m, "Pet");
1625 pet.def(py::init<const std::string &>())
1626 .def_readwrite("name", &Pet::name);
1627
1628 py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
1629 .def(py::init<const std::string &>())
1630 .def("bark", &Dog::bark);
1631
1632Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
1633whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
1634course that the variable ``pet`` is not available anymore though it is needed
1635to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
1636However, it can be acquired as follows:
1637
1638.. code-block:: cpp
1639
1640 py::object pet = (py::object) py::module::import("basic").attr("Pet");
1641
1642 py::class_<Dog>(m, "Dog", pet)
1643 .def(py::init<const std::string &>())
1644 .def("bark", &Dog::bark);
1645
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001646Alternatively, we can rely on the ``base`` tag, which performs an automated
1647lookup of the corresponding Python type. However, this also requires invoking
1648the ``import`` function once to ensure that the pybind11 binding code of the
1649module ``basic`` has been executed.
1650
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001651.. code-block:: cpp
1652
1653 py::module::import("basic");
1654
1655 py::class_<Dog>(m, "Dog", py::base<Pet>())
1656 .def(py::init<const std::string &>())
1657 .def("bark", &Dog::bark);
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001658
Wenzel Jakob978e3762016-04-07 18:00:41 +02001659Naturally, both methods will fail when there are cyclic dependencies.
1660
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001661Note that compiling code which has its default symbol visibility set to
1662*hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the
1663ability to access types defined in another extension module. Workarounds
1664include changing the global symbol visibility (not recommended, because it will
1665lead unnecessarily large binaries) or manually exporting types that are
1666accessed by multiple extension modules:
1667
1668.. code-block:: cpp
1669
1670 #ifdef _WIN32
1671 # define EXPORT_TYPE __declspec(dllexport)
1672 #else
1673 # define EXPORT_TYPE __attribute__ ((visibility("default")))
1674 #endif
1675
1676 class EXPORT_TYPE Dog : public Animal {
1677 ...
1678 };
1679
1680
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001681Pickling support
1682================
1683
1684Python's ``pickle`` module provides a powerful facility to serialize and
1685de-serialize a Python object graph into a binary data stream. To pickle and
Wenzel Jakob3d0e6ff2016-04-13 11:48:10 +02001686unpickle C++ classes using pybind11, two additional functions must be provided.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001687Suppose the class in question has the following signature:
1688
1689.. code-block:: cpp
1690
1691 class Pickleable {
1692 public:
1693 Pickleable(const std::string &value) : m_value(value) { }
1694 const std::string &value() const { return m_value; }
1695
1696 void setExtra(int extra) { m_extra = extra; }
1697 int extra() const { return m_extra; }
1698 private:
1699 std::string m_value;
1700 int m_extra = 0;
1701 };
1702
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001703The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f3]_
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001704looks as follows:
1705
1706.. code-block:: cpp
1707
1708 py::class_<Pickleable>(m, "Pickleable")
1709 .def(py::init<std::string>())
1710 .def("value", &Pickleable::value)
1711 .def("extra", &Pickleable::extra)
1712 .def("setExtra", &Pickleable::setExtra)
1713 .def("__getstate__", [](const Pickleable &p) {
1714 /* Return a tuple that fully encodes the state of the object */
1715 return py::make_tuple(p.value(), p.extra());
1716 })
1717 .def("__setstate__", [](Pickleable &p, py::tuple t) {
1718 if (t.size() != 2)
1719 throw std::runtime_error("Invalid state!");
1720
Wenzel Jakobd40885a2016-04-13 13:30:05 +02001721 /* Invoke the in-place constructor. Note that this is needed even
1722 when the object just has a trivial default constructor */
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001723 new (&p) Pickleable(t[0].cast<std::string>());
1724
1725 /* Assign any additional state */
1726 p.setExtra(t[1].cast<int>());
1727 });
1728
1729An instance can now be pickled as follows:
1730
1731.. code-block:: python
1732
1733 try:
1734 import cPickle as pickle # Use cPickle on Python 2.7
1735 except ImportError:
1736 import pickle
1737
1738 p = Pickleable("test_value")
1739 p.setExtra(15)
Wenzel Jakob81e09752016-04-30 23:13:03 +02001740 data = pickle.dumps(p, 2)
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001741
Wenzel Jakob81e09752016-04-30 23:13:03 +02001742Note that only the cPickle module is supported on Python 2.7. The second
1743argument to ``dumps`` is also crucial: it selects the pickle protocol version
17442, since the older version 1 is not supported. Newer versions are also fine—for
1745instance, specify ``-1`` to always use the latest available version. Beware:
1746failure to follow these instructions will cause important pybind11 memory
1747allocation routines to be skipped during unpickling, which will likely lead to
1748memory corruption and/or segmentation faults.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001749
1750.. seealso::
1751
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001752 The file :file:`example/example-pickling.cpp` contains a complete example
1753 that demonstrates how to pickle and unpickle types using pybind11 in more
1754 detail.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001755
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001756.. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001757
1758Generating documentation using Sphinx
1759=====================================
1760
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001761Sphinx [#f4]_ has the ability to inspect the signatures and documentation
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001762strings in pybind11-based extension modules to automatically generate beautiful
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001763documentation in a variety formats. The python_example repository [#f5]_ contains a
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001764simple example repository which uses this approach.
1765
1766There are two potential gotchas when using this approach: first, make sure that
1767the resulting strings do not contain any :kbd:`TAB` characters, which break the
1768docstring parsing routines. You may want to use C++11 raw string literals,
1769which are convenient for multi-line comments. Conveniently, any excess
1770indentation will be automatically be removed by Sphinx. However, for this to
1771work, it is important that all lines are indented consistently, i.e.:
1772
1773.. code-block:: cpp
1774
1775 // ok
1776 m.def("foo", &foo, R"mydelimiter(
1777 The foo function
1778
1779 Parameters
1780 ----------
1781 )mydelimiter");
1782
1783 // *not ok*
1784 m.def("foo", &foo, R"mydelimiter(The foo function
1785
1786 Parameters
1787 ----------
1788 )mydelimiter");
1789
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001790.. [#f4] http://www.sphinx-doc.org
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001791.. [#f5] http://github.com/pybind/python_example
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001792
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001793Evaluating Python expressions from strings and files
1794====================================================
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001795
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001796pybind11 provides the :func:`eval` and :func:`eval_file` functions to evaluate
1797Python expressions and statements. The following example illustrates how they
1798can be used.
1799
1800Both functions accept a template parameter that describes how the argument
1801should be interpreted. Possible choices include ``eval_expr`` (isolated
1802expression), ``eval_single_statement`` (a single statement, return value is
1803always ``none``), and ``eval_statements`` (sequence of statements, return value
1804is always ``none``).
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001805
1806.. code-block:: cpp
1807
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001808 // At beginning of file
1809 #include <pybind11/eval.h>
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001810
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001811 ...
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001812
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001813 // Evaluate in scope of main module
1814 py::object scope = py::module::import("__main__").attr("__dict__");
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001815
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001816 // Evaluate an isolated expression
1817 int result = py::eval("my_variable + 10", scope).cast<int>();
1818
1819 // Evaluate a sequence of statements
1820 py::eval<py::eval_statements>(
1821 "print('Hello')\n"
1822 "print('world!');",
1823 scope);
1824
1825 // Evaluate the statements in an separate Python file on disk
1826 py::eval_file("script.py", scope);
1827