blob: a13bc2b6f5325673a8819e7b31d13def6c6f2cc9 [file] [log] [blame]
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001.. _advanced:
2
3Advanced topics
4###############
5
Wenzel Jakob93296692015-10-13 23:21:54 +02006For brevity, the rest of this chapter assumes that the following two lines are
7present:
8
9.. code-block:: cpp
10
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020011 #include <pybind11/pybind11.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020012
Wenzel Jakob10e62e12015-10-15 22:46:07 +020013 namespace py = pybind11;
Wenzel Jakob93296692015-10-13 23:21:54 +020014
Wenzel Jakobde3ad072016-02-02 11:38:21 +010015Exporting constants and mutable objects
16=======================================
17
18To expose a C++ constant, use the ``attr`` function to register it in a module
19as shown below. The ``int_`` class is one of many small wrapper objects defined
20in ``pybind11/pytypes.h``. General objects (including integers) can also be
21converted using the function ``cast``.
22
23.. code-block:: cpp
24
25 PYBIND11_PLUGIN(example) {
26 py::module m("example", "pybind11 example plugin");
27 m.attr("MY_CONSTANT") = py::int_(123);
28 m.attr("MY_CONSTANT_2") = py::cast(new MyObject());
29 }
30
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020031Operator overloading
32====================
33
Wenzel Jakob93296692015-10-13 23:21:54 +020034Suppose that we're given the following ``Vector2`` class with a vector addition
35and scalar multiplication operation, all implemented using overloaded operators
36in C++.
37
38.. code-block:: cpp
39
40 class Vector2 {
41 public:
42 Vector2(float x, float y) : x(x), y(y) { }
43
Wenzel Jakob93296692015-10-13 23:21:54 +020044 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
45 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
46 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
47 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
48
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020049 friend Vector2 operator*(float f, const Vector2 &v) {
50 return Vector2(f * v.x, f * v.y);
51 }
Wenzel Jakob93296692015-10-13 23:21:54 +020052
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020053 std::string toString() const {
54 return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
55 }
Wenzel Jakob93296692015-10-13 23:21:54 +020056 private:
57 float x, y;
58 };
59
60The following snippet shows how the above operators can be conveniently exposed
61to Python.
62
63.. code-block:: cpp
64
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020065 #include <pybind11/operators.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020066
Wenzel Jakobb1b71402015-10-18 16:48:30 +020067 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020068 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +020069
70 py::class_<Vector2>(m, "Vector2")
71 .def(py::init<float, float>())
72 .def(py::self + py::self)
73 .def(py::self += py::self)
74 .def(py::self *= float())
75 .def(float() * py::self)
76 .def("__repr__", &Vector2::toString);
77
78 return m.ptr();
79 }
80
81Note that a line like
82
83.. code-block:: cpp
84
85 .def(py::self * float())
86
87is really just short hand notation for
88
89.. code-block:: cpp
90
91 .def("__mul__", [](const Vector2 &a, float b) {
92 return a * b;
93 })
94
95This can be useful for exposing additional operators that don't exist on the
96C++ side, or to perform other types of customization.
97
98.. note::
99
100 To use the more convenient ``py::self`` notation, the additional
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200101 header file :file:`pybind11/operators.h` must be included.
Wenzel Jakob93296692015-10-13 23:21:54 +0200102
103.. seealso::
104
105 The file :file:`example/example3.cpp` contains a complete example that
106 demonstrates how to work with overloaded operators in more detail.
107
108Callbacks and passing anonymous functions
109=========================================
110
111The C++11 standard brought lambda functions and the generic polymorphic
112function wrapper ``std::function<>`` to the C++ programming language, which
113enable powerful new ways of working with functions. Lambda functions come in
114two flavors: stateless lambda function resemble classic function pointers that
115link to an anonymous piece of code, while stateful lambda functions
116additionally depend on captured variables that are stored in an anonymous
117*lambda closure object*.
118
119Here is a simple example of a C++ function that takes an arbitrary function
120(stateful or stateless) with signature ``int -> int`` as an argument and runs
121it with the value 10.
122
123.. code-block:: cpp
124
125 int func_arg(const std::function<int(int)> &f) {
126 return f(10);
127 }
128
129The example below is more involved: it takes a function of signature ``int -> int``
130and returns another function of the same kind. The return value is a stateful
131lambda function, which stores the value ``f`` in the capture object and adds 1 to
132its return value upon execution.
133
134.. code-block:: cpp
135
136 std::function<int(int)> func_ret(const std::function<int(int)> &f) {
137 return [f](int i) {
138 return f(i) + 1;
139 };
140 }
141
Brad Harmon835fc062016-06-16 13:19:15 -0500142This example demonstrates using python named parameters in C++ callbacks which
143requires using ``py::cpp_function`` as a wrapper. Usage is similar to defining
144methods of classes:
145
146.. code-block:: cpp
147
148 py::cpp_function func_cpp() {
149 return py::cpp_function([](int i) { return i+1; },
150 py::arg("number"));
151 }
152
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200153After including the extra header file :file:`pybind11/functional.h`, it is almost
Brad Harmon835fc062016-06-16 13:19:15 -0500154trivial to generate binding code for all of these functions.
Wenzel Jakob93296692015-10-13 23:21:54 +0200155
156.. code-block:: cpp
157
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200158 #include <pybind11/functional.h>
Wenzel Jakob93296692015-10-13 23:21:54 +0200159
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200160 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200161 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200162
163 m.def("func_arg", &func_arg);
164 m.def("func_ret", &func_ret);
Brad Harmon835fc062016-06-16 13:19:15 -0500165 m.def("func_cpp", &func_cpp);
Wenzel Jakob93296692015-10-13 23:21:54 +0200166
167 return m.ptr();
168 }
169
170The following interactive session shows how to call them from Python.
171
Wenzel Jakob99279f72016-06-03 11:19:29 +0200172.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200173
174 $ python
175 >>> import example
176 >>> def square(i):
177 ... return i * i
178 ...
179 >>> example.func_arg(square)
180 100L
181 >>> square_plus_1 = example.func_ret(square)
182 >>> square_plus_1(4)
183 17L
Brad Harmon835fc062016-06-16 13:19:15 -0500184 >>> plus_1 = func_cpp()
185 >>> plus_1(number=43)
186 44L
Wenzel Jakob93296692015-10-13 23:21:54 +0200187
188.. note::
189
190 This functionality is very useful when generating bindings for callbacks in
191 C++ libraries (e.g. a graphical user interface library).
192
193 The file :file:`example/example5.cpp` contains a complete example that
194 demonstrates how to work with callbacks and anonymous functions in more detail.
195
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100196.. warning::
197
198 Keep in mind that passing a function from C++ to Python (or vice versa)
199 will instantiate a piece of wrapper code that translates function
200 invocations between the two languages. Copying the same function back and
201 forth between Python and C++ many times in a row will cause these wrappers
202 to accumulate, which can decrease performance.
203
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200204Overriding virtual functions in Python
205======================================
206
Wenzel Jakob93296692015-10-13 23:21:54 +0200207Suppose that a C++ class or interface has a virtual function that we'd like to
208to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
209given as a specific example of how one would do this with traditional C++
210code).
211
212.. code-block:: cpp
213
214 class Animal {
215 public:
216 virtual ~Animal() { }
217 virtual std::string go(int n_times) = 0;
218 };
219
220 class Dog : public Animal {
221 public:
222 std::string go(int n_times) {
223 std::string result;
224 for (int i=0; i<n_times; ++i)
225 result += "woof! ";
226 return result;
227 }
228 };
229
230Let's also suppose that we are given a plain function which calls the
231function ``go()`` on an arbitrary ``Animal`` instance.
232
233.. code-block:: cpp
234
235 std::string call_go(Animal *animal) {
236 return animal->go(3);
237 }
238
239Normally, the binding code for these classes would look as follows:
240
241.. code-block:: cpp
242
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200243 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200244 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200245
246 py::class_<Animal> animal(m, "Animal");
247 animal
248 .def("go", &Animal::go);
249
250 py::class_<Dog>(m, "Dog", animal)
251 .def(py::init<>());
252
253 m.def("call_go", &call_go);
254
255 return m.ptr();
256 }
257
258However, these bindings are impossible to extend: ``Animal`` is not
259constructible, and we clearly require some kind of "trampoline" that
260redirects virtual calls back to Python.
261
262Defining a new type of ``Animal`` from within Python is possible but requires a
263helper class that is defined as follows:
264
265.. code-block:: cpp
266
267 class PyAnimal : public Animal {
268 public:
269 /* Inherit the constructors */
270 using Animal::Animal;
271
272 /* Trampoline (need one for each virtual function) */
273 std::string go(int n_times) {
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200274 PYBIND11_OVERLOAD_PURE(
Wenzel Jakob93296692015-10-13 23:21:54 +0200275 std::string, /* Return type */
276 Animal, /* Parent class */
277 go, /* Name of function */
278 n_times /* Argument(s) */
279 );
280 }
281 };
282
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200283The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
284functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
Wenzel Jakob1e3be732016-05-24 23:42:05 +0200285a default implementation.
286
287There are also two alternate macros :func:`PYBIND11_OVERLOAD_PURE_NAME` and
288:func:`PYBIND11_OVERLOAD_NAME` which take a string-valued name argument
289after the *Name of the function* slot. This is useful when the C++ and Python
290versions of the function have different names, e.g. ``operator()`` vs ``__call__``.
291
292The binding code also needs a few minor adaptations (highlighted):
Wenzel Jakob93296692015-10-13 23:21:54 +0200293
294.. code-block:: cpp
295 :emphasize-lines: 4,6,7
296
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200297 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200298 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200299
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200300 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal /* <--- trampoline*/> animal(m, "Animal");
Wenzel Jakob93296692015-10-13 23:21:54 +0200301 animal
Wenzel Jakob93296692015-10-13 23:21:54 +0200302 .def(py::init<>())
303 .def("go", &Animal::go);
304
305 py::class_<Dog>(m, "Dog", animal)
306 .def(py::init<>());
307
308 m.def("call_go", &call_go);
309
310 return m.ptr();
311 }
312
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200313Importantly, pybind11 is made aware of the trampoline trampoline helper class
314by specifying it as the *third* template argument to :class:`class_`. The
315second argument with the unique pointer is simply the default holder type used
316by pybind11. Following this, we are able to define a constructor as usual.
Wenzel Jakob93296692015-10-13 23:21:54 +0200317
318The Python session below shows how to override ``Animal::go`` and invoke it via
319a virtual method call.
320
Wenzel Jakob99279f72016-06-03 11:19:29 +0200321.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200322
323 >>> from example import *
324 >>> d = Dog()
325 >>> call_go(d)
326 u'woof! woof! woof! '
327 >>> class Cat(Animal):
328 ... def go(self, n_times):
329 ... return "meow! " * n_times
330 ...
331 >>> c = Cat()
332 >>> call_go(c)
333 u'meow! meow! meow! '
334
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200335Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakobbd986fe2016-05-21 10:48:30 +0200336
Wenzel Jakob93296692015-10-13 23:21:54 +0200337.. seealso::
338
339 The file :file:`example/example12.cpp` contains a complete example that
340 demonstrates how to override virtual functions using pybind11 in more
341 detail.
342
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100343
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200344.. _macro_notes:
345
346General notes regarding convenience macros
347==========================================
348
349pybind11 provides a few convenience macros such as
350:func:`PYBIND11_MAKE_OPAQUE` and :func:`PYBIND11_DECLARE_HOLDER_TYPE`, and
351``PYBIND11_OVERLOAD_*``. Since these are "just" macros that are evaluated
352in the preprocessor (which has no concept of types), they *will* get confused
353by commas in a template argument such as ``PYBIND11_OVERLOAD(MyReturnValue<T1,
354T2>, myFunc)``. In this case, the preprocessor assumes that the comma indicates
355the beginnning of the next parameter. Use a ``typedef`` to bind the template to
356another name and use it in the macro to avoid this problem.
357
358
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100359Global Interpreter Lock (GIL)
360=============================
361
362The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
363used to acquire and release the global interpreter lock in the body of a C++
364function call. In this way, long-running C++ code can be parallelized using
365multiple Python threads. Taking the previous section as an example, this could
366be realized as follows (important changes highlighted):
367
368.. code-block:: cpp
369 :emphasize-lines: 8,9,33,34
370
371 class PyAnimal : public Animal {
372 public:
373 /* Inherit the constructors */
374 using Animal::Animal;
375
376 /* Trampoline (need one for each virtual function) */
377 std::string go(int n_times) {
378 /* Acquire GIL before calling Python code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100379 py::gil_scoped_acquire acquire;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100380
381 PYBIND11_OVERLOAD_PURE(
382 std::string, /* Return type */
383 Animal, /* Parent class */
384 go, /* Name of function */
385 n_times /* Argument(s) */
386 );
387 }
388 };
389
390 PYBIND11_PLUGIN(example) {
391 py::module m("example", "pybind11 example plugin");
392
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200393 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal> animal(m, "Animal");
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100394 animal
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100395 .def(py::init<>())
396 .def("go", &Animal::go);
397
398 py::class_<Dog>(m, "Dog", animal)
399 .def(py::init<>());
400
401 m.def("call_go", [](Animal *animal) -> std::string {
402 /* Release GIL before calling into (potentially long-running) C++ code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100403 py::gil_scoped_release release;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100404 return call_go(animal);
405 });
406
407 return m.ptr();
408 }
409
Wenzel Jakob93296692015-10-13 23:21:54 +0200410Passing STL data structures
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200411===========================
412
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200413When including the additional header file :file:`pybind11/stl.h`, conversions
Wenzel Jakob978e3762016-04-07 18:00:41 +0200414between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>``
415and the Python ``list``, ``set`` and ``dict`` data structures are automatically
416enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported
417out of the box with just the core :file:`pybind11/pybind11.h` header.
Wenzel Jakob93296692015-10-13 23:21:54 +0200418
419.. note::
420
Wenzel Jakob44db04f2015-12-14 12:40:45 +0100421 Arbitrary nesting of any of these types is supported.
Wenzel Jakob93296692015-10-13 23:21:54 +0200422
423.. seealso::
424
425 The file :file:`example/example2.cpp` contains a complete example that
426 demonstrates how to pass STL data types in more detail.
427
Wenzel Jakobb2825952016-04-13 23:33:00 +0200428Binding sequence data types, iterators, the slicing protocol, etc.
429==================================================================
Wenzel Jakob93296692015-10-13 23:21:54 +0200430
431Please refer to the supplemental example for details.
432
433.. seealso::
434
435 The file :file:`example/example6.cpp` contains a complete example that
436 shows how to bind a sequence data type, including length queries
437 (``__len__``), iterators (``__iter__``), the slicing protocol and other
438 kinds of useful operations.
439
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200440Return value policies
441=====================
442
Wenzel Jakob93296692015-10-13 23:21:54 +0200443Python and C++ use wildly different ways of managing the memory and lifetime of
444objects managed by them. This can lead to issues when creating bindings for
445functions that return a non-trivial type. Just by looking at the type
446information, it is not clear whether Python should take charge of the returned
447value and eventually free its resources, or if this is handled on the C++ side.
448For this reason, pybind11 provides a several `return value policy` annotations
449that can be passed to the :func:`module::def` and :func:`class_::def`
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100450functions. The default policy is :enum:`return_value_policy::automatic`.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200451
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200452.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
453
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200454+--------------------------------------------------+----------------------------------------------------------------------------+
455| Return value policy | Description |
456+==================================================+============================================================================+
457| :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy |
458| | :enum:`return_value_policy::take_ownership` when the return value is a |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200459| | pointer. Otherwise, it uses :enum:`return_value::move` or |
460| | :enum:`return_value::copy` for rvalue and lvalue references, respectively. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200461| | See below for a description of what all of these different policies do. |
462+--------------------------------------------------+----------------------------------------------------------------------------+
463| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
Wenzel Jakob37e1f612016-06-22 14:29:13 +0200464| | return value is a pointer. This is the default conversion policy for |
465| | function arguments when calling Python functions manually from C++ code |
466| | (i.e. via handle::operator()). You probably won't need to use this. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200467+--------------------------------------------------+----------------------------------------------------------------------------+
468| :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
469| | ownership. Python will call the destructor and delete operator when the |
470| | object's reference count reaches zero. Undefined behavior ensues when the |
Wenzel Jakobf53e3002016-06-30 14:59:23 +0200471| | C++ side does the same. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200472+--------------------------------------------------+----------------------------------------------------------------------------+
473| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
474| | This policy is comparably safe because the lifetimes of the two instances |
475| | are decoupled. |
476+--------------------------------------------------+----------------------------------------------------------------------------+
477| :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
478| | that will be owned by Python. This policy is comparably safe because the |
479| | lifetimes of the two instances (move source and destination) are decoupled.|
480+--------------------------------------------------+----------------------------------------------------------------------------+
481| :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
482| | responsible for managing the object's lifetime and deallocating it when |
483| | it is no longer used. Warning: undefined behavior will ensue when the C++ |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200484| | side deletes an object that is still referenced and used by Python. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200485+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200486| :enum:`return_value_policy::reference_internal` | This policy only applies to methods and properties. It references the |
487| | object without taking ownership similar to the above |
488| | :enum:`return_value_policy::reference` policy. In contrast to that policy, |
489| | the function or property's implicit ``this`` argument (called the *parent*)|
490| | is considered to be the the owner of the return value (the *child*). |
491| | pybind11 then couples the lifetime of the parent to the child via a |
492| | reference relationship that ensures that the parent cannot be garbage |
493| | collected while Python is still using the child. More advanced variations |
494| | of this scheme are also possible using combinations of |
495| | :enum:`return_value_policy::reference` and the :class:`keep_alive` call |
496| | policy described next. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200497+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200498
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200499The following example snippet shows a use case of the
Wenzel Jakob93296692015-10-13 23:21:54 +0200500:enum:`return_value_policy::reference_internal` policy.
501
502.. code-block:: cpp
503
504 class Example {
505 public:
506 Internal &get_internal() { return internal; }
507 private:
508 Internal internal;
509 };
510
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200511 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200512 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200513
514 py::class_<Example>(m, "Example")
515 .def(py::init<>())
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200516 .def("get_internal", &Example::get_internal, "Return the internal data",
517 py::return_value_policy::reference_internal);
Wenzel Jakob93296692015-10-13 23:21:54 +0200518
519 return m.ptr();
520 }
521
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200522.. warning::
523
524 Code with invalid call policies might access unitialized memory or free
525 data structures multiple times, which can lead to hard-to-debug
526 non-determinism and segmentation faults, hence it is worth spending the
527 time to understand all the different options in the table above.
528
Wenzel Jakobf53e3002016-06-30 14:59:23 +0200529 It is worth highlighting one common issue where a method (e.g. a getter)
530 returns a reference (or pointer) to the first attribute of a class. In this
531 case, the class and attribute will be located at the same address in
532 memory, which pybind11 will recongnize and return the parent instance
533 instead of creating a new Python object that represents the attribute.
534 Here, the :enum:`return_value_policy::reference_internal` policy should be
535 used rather than relying on the automatic one.
nafur717df752016-06-28 18:07:11 +0200536
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200537.. note::
538
539 The next section on :ref:`call_policies` discusses *call policies* that can be
540 specified *in addition* to a return value policy from the list above. Call
541 policies indicate reference relationships that can involve both return values
542 and parameters of functions.
543
544.. note::
545
546 As an alternative to elaborate call policies and lifetime management logic,
547 consider using smart pointers (see the section on :ref:`smart_pointers` for
548 details). Smart pointers can tell whether an object is still referenced from
549 C++ or Python, which generally eliminates the kinds of inconsistencies that
550 can lead to crashes or undefined behavior. For functions returning smart
551 pointers, it is not necessary to specify a return value policy.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100552
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200553.. _call_policies:
554
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100555Additional call policies
556========================
557
558In addition to the above return value policies, further `call policies` can be
559specified to indicate dependencies between parameters. There is currently just
560one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
561argument with index ``Patient`` should be kept alive at least until the
562argument with index ``Nurse`` is freed by the garbage collector; argument
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200563indices start at one, while zero refers to the return value. For methods, index
564one refers to the implicit ``this`` pointer, while regular arguments begin at
565index two. Arbitrarily many call policies can be specified.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100566
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200567Consider the following example: the binding code for a list append operation
568that ties the lifetime of the newly added element to the underlying container
569might be declared as follows:
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100570
571.. code-block:: cpp
572
573 py::class_<List>(m, "List")
574 .def("append", &List::append, py::keep_alive<1, 2>());
575
576.. note::
577
578 ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
579 Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
580 0) policies from Boost.Python.
581
Wenzel Jakob61587162016-01-18 22:38:52 +0100582.. seealso::
583
584 The file :file:`example/example13.cpp` contains a complete example that
585 demonstrates using :class:`keep_alive` in more detail.
586
Wenzel Jakob93296692015-10-13 23:21:54 +0200587Implicit type conversions
588=========================
589
590Suppose that instances of two types ``A`` and ``B`` are used in a project, and
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200591that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
Wenzel Jakob93296692015-10-13 23:21:54 +0200592could be a fixed and an arbitrary precision number type).
593
594.. code-block:: cpp
595
596 py::class_<A>(m, "A")
597 /// ... members ...
598
599 py::class_<B>(m, "B")
600 .def(py::init<A>())
601 /// ... members ...
602
603 m.def("func",
604 [](const B &) { /* .... */ }
605 );
606
607To invoke the function ``func`` using a variable ``a`` containing an ``A``
608instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
609will automatically apply an implicit type conversion, which makes it possible
610to directly write ``func(a)``.
611
612In this situation (i.e. where ``B`` has a constructor that converts from
613``A``), the following statement enables similar implicit conversions on the
614Python side:
615
616.. code-block:: cpp
617
618 py::implicitly_convertible<A, B>();
619
Wenzel Jakob3eeea6f2016-06-30 18:10:28 +0200620.. note::
621
622 Implicit conversions from ``A`` to ``B`` only work when ``B`` is a custom
623 data type that is exposed to Python via pybind11.
624
Wenzel Jakobf88af0c2016-06-22 13:52:31 +0200625.. _static_properties:
626
627Static properties
628=================
629
630The section on :ref:`properties` discussed the creation of instance properties
631that are implemented in terms of C++ getters and setters.
632
633Static properties can also be created in a similar way to expose getters and
634setters of static class attributes. It is important to note that the implicit
635``self`` argument also exists in this case and is used to pass the Python
636``type`` subclass instance. This parameter will often not be needed by the C++
637side, and the following example illustrates how to instantiate a lambda getter
638function that ignores it:
639
640.. code-block:: cpp
641
642 py::class_<Foo>(m, "Foo")
643 .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
644
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200645Unique pointers
646===============
647
648Given a class ``Example`` with Python bindings, it's possible to return
649instances wrapped in C++11 unique pointers, like so
650
651.. code-block:: cpp
652
653 std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }
654
655.. code-block:: cpp
656
657 m.def("create_example", &create_example);
658
659In other words, there is nothing special that needs to be done. While returning
660unique pointers in this way is allowed, it is *illegal* to use them as function
661arguments. For instance, the following function signature cannot be processed
662by pybind11.
663
664.. code-block:: cpp
665
666 void do_something_with_example(std::unique_ptr<Example> ex) { ... }
667
668The above signature would imply that Python needs to give up ownership of an
669object that is passed to this function, which is generally not possible (for
670instance, the object might be referenced elsewhere).
671
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200672.. _smart_pointers:
673
Wenzel Jakob93296692015-10-13 23:21:54 +0200674Smart pointers
675==============
676
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200677This section explains how to pass values that are wrapped in "smart" pointer
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200678types with internal reference counting. For the simpler C++11 unique pointers,
679refer to the previous section.
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200680
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200681The binding generator for classes, :class:`class_`, takes an optional second
Wenzel Jakob93296692015-10-13 23:21:54 +0200682template type, which denotes a special *holder* type that is used to manage
683references to the object. When wrapping a type named ``Type``, the default
684value of this template parameter is ``std::unique_ptr<Type>``, which means that
685the object is deallocated when Python's reference count goes to zero.
686
Wenzel Jakob1853b652015-10-18 15:38:50 +0200687It is possible to switch to other types of reference counting wrappers or smart
688pointers, which is useful in codebases that rely on them. For instance, the
689following snippet causes ``std::shared_ptr`` to be used instead.
Wenzel Jakob93296692015-10-13 23:21:54 +0200690
691.. code-block:: cpp
692
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100693 py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100694
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100695Note that any particular class can only be associated with a single holder type.
Wenzel Jakob93296692015-10-13 23:21:54 +0200696
Wenzel Jakob1853b652015-10-18 15:38:50 +0200697To enable transparent conversions for functions that take shared pointers as an
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100698argument or that return them, a macro invocation similar to the following must
Wenzel Jakob1853b652015-10-18 15:38:50 +0200699be declared at the top level before any binding code:
700
701.. code-block:: cpp
702
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200703 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
Wenzel Jakob1853b652015-10-18 15:38:50 +0200704
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100705.. note::
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100706
707 The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
708 placeholder name that is used as a template parameter of the second
709 argument. Thus, feel free to use any identifier, but use it consistently on
710 both sides; also, don't use the name of a type that already exists in your
711 codebase.
712
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100713One potential stumbling block when using holder types is that they need to be
714applied consistently. Can you guess what's broken about the following binding
715code?
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100716
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100717.. code-block:: cpp
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100718
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100719 class Child { };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100720
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100721 class Parent {
722 public:
723 Parent() : child(std::make_shared<Child>()) { }
724 Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
725 private:
726 std::shared_ptr<Child> child;
727 };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100728
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100729 PYBIND11_PLUGIN(example) {
730 py::module m("example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100731
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100732 py::class_<Child, std::shared_ptr<Child>>(m, "Child");
733
734 py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
735 .def(py::init<>())
736 .def("get_child", &Parent::get_child);
737
738 return m.ptr();
739 }
740
741The following Python code will cause undefined behavior (and likely a
742segmentation fault).
743
744.. code-block:: python
745
746 from example import Parent
747 print(Parent().get_child())
748
749The problem is that ``Parent::get_child()`` returns a pointer to an instance of
750``Child``, but the fact that this instance is already managed by
751``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
752pybind11 will create a second independent ``std::shared_ptr<...>`` that also
753claims ownership of the pointer. In the end, the object will be freed **twice**
754since these shared pointers have no way of knowing about each other.
755
756There are two ways to resolve this issue:
757
7581. For types that are managed by a smart pointer class, never use raw pointers
759 in function arguments or return values. In other words: always consistently
760 wrap pointers into their designated holder types (such as
761 ``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
762 should be modified as follows:
763
764.. code-block:: cpp
765
766 std::shared_ptr<Child> get_child() { return child; }
767
7682. Adjust the definition of ``Child`` by specifying
769 ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
770 base class. This adds a small bit of information to ``Child`` that allows
771 pybind11 to realize that there is already an existing
772 ``std::shared_ptr<...>`` and communicate with it. In this case, the
773 declaration of ``Child`` should look as follows:
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100774
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100775.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
776
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100777.. code-block:: cpp
778
779 class Child : public std::enable_shared_from_this<Child> { };
780
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200781
782Please take a look at the :ref:`macro_notes` before using this feature.
783
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100784.. seealso::
785
786 The file :file:`example/example8.cpp` contains a complete example that
787 demonstrates how to work with custom reference-counting holder types in
788 more detail.
789
Wenzel Jakob93296692015-10-13 23:21:54 +0200790.. _custom_constructors:
791
792Custom constructors
793===================
794
795The syntax for binding constructors was previously introduced, but it only
796works when a constructor with the given parameters actually exists on the C++
797side. To extend this to more general cases, let's take a look at what actually
798happens under the hood: the following statement
799
800.. code-block:: cpp
801
802 py::class_<Example>(m, "Example")
803 .def(py::init<int>());
804
805is short hand notation for
806
807.. code-block:: cpp
808
809 py::class_<Example>(m, "Example")
810 .def("__init__",
811 [](Example &instance, int arg) {
812 new (&instance) Example(arg);
813 }
814 );
815
816In other words, :func:`init` creates an anonymous function that invokes an
817in-place constructor. Memory allocation etc. is already take care of beforehand
818within pybind11.
819
820Catching and throwing exceptions
821================================
822
823When C++ code invoked from Python throws an ``std::exception``, it is
824automatically converted into a Python ``Exception``. pybind11 defines multiple
825special exception classes that will map to different types of Python
826exceptions:
827
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200828.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
829
Wenzel Jakob978e3762016-04-07 18:00:41 +0200830+--------------------------------------+------------------------------+
831| C++ exception type | Python exception type |
832+======================================+==============================+
833| :class:`std::exception` | ``RuntimeError`` |
834+--------------------------------------+------------------------------+
835| :class:`std::bad_alloc` | ``MemoryError`` |
836+--------------------------------------+------------------------------+
837| :class:`std::domain_error` | ``ValueError`` |
838+--------------------------------------+------------------------------+
839| :class:`std::invalid_argument` | ``ValueError`` |
840+--------------------------------------+------------------------------+
841| :class:`std::length_error` | ``ValueError`` |
842+--------------------------------------+------------------------------+
843| :class:`std::out_of_range` | ``ValueError`` |
844+--------------------------------------+------------------------------+
845| :class:`std::range_error` | ``ValueError`` |
846+--------------------------------------+------------------------------+
847| :class:`pybind11::stop_iteration` | ``StopIteration`` (used to |
848| | implement custom iterators) |
849+--------------------------------------+------------------------------+
850| :class:`pybind11::index_error` | ``IndexError`` (used to |
851| | indicate out of bounds |
852| | accesses in ``__getitem__``, |
853| | ``__setitem__``, etc.) |
854+--------------------------------------+------------------------------+
Sergey Lyskova95bde12016-05-08 19:31:55 -0400855| :class:`pybind11::value_error` | ``ValueError`` (used to |
856| | indicate wrong value passed |
857| | in ``container.remove(...)`` |
858+--------------------------------------+------------------------------+
Wenzel Jakob978e3762016-04-07 18:00:41 +0200859| :class:`pybind11::error_already_set` | Indicates that the Python |
860| | exception flag has already |
861| | been initialized |
862+--------------------------------------+------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200863
864When a Python function invoked from C++ throws an exception, it is converted
865into a C++ exception of type :class:`error_already_set` whose string payload
866contains a textual summary.
867
868There is also a special exception :class:`cast_error` that is thrown by
869:func:`handle::call` when the input arguments cannot be converted to Python
870objects.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200871
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200872.. _opaque:
873
874Treating STL data structures as opaque objects
875==============================================
876
877pybind11 heavily relies on a template matching mechanism to convert parameters
878and return values that are constructed from STL data types such as vectors,
879linked lists, hash tables, etc. This even works in a recursive manner, for
880instance to deal with lists of hash maps of pairs of elementary and custom
881types, etc.
882
883However, a fundamental limitation of this approach is that internal conversions
884between Python and C++ types involve a copy operation that prevents
885pass-by-reference semantics. What does this mean?
886
887Suppose we bind the following function
888
889.. code-block:: cpp
890
891 void append_1(std::vector<int> &v) {
892 v.push_back(1);
893 }
894
895and call it from Python, the following happens:
896
Wenzel Jakob99279f72016-06-03 11:19:29 +0200897.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200898
899 >>> v = [5, 6]
900 >>> append_1(v)
901 >>> print(v)
902 [5, 6]
903
904As you can see, when passing STL data structures by reference, modifications
905are not propagated back the Python side. A similar situation arises when
906exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
907functions:
908
909.. code-block:: cpp
910
911 /* ... definition ... */
912
913 class MyClass {
914 std::vector<int> contents;
915 };
916
917 /* ... binding code ... */
918
919 py::class_<MyClass>(m, "MyClass")
920 .def(py::init<>)
921 .def_readwrite("contents", &MyClass::contents);
922
923In this case, properties can be read and written in their entirety. However, an
924``append`` operaton involving such a list type has no effect:
925
Wenzel Jakob99279f72016-06-03 11:19:29 +0200926.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200927
928 >>> m = MyClass()
929 >>> m.contents = [5, 6]
930 >>> print(m.contents)
931 [5, 6]
932 >>> m.contents.append(7)
933 >>> print(m.contents)
934 [5, 6]
935
936To deal with both of the above situations, pybind11 provides a macro named
937``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based conversion
938machinery of types, thus rendering them *opaque*. The contents of opaque
939objects are never inspected or extracted, hence they can be passed by
940reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
941the declaration
942
943.. code-block:: cpp
944
945 PYBIND11_MAKE_OPAQUE(std::vector<int>);
946
947before any binding code (e.g. invocations to ``class_::def()``, etc.). This
948macro must be specified at the top level, since instantiates a partial template
949overload. If your binding code consists of multiple compilation units, it must
950be present in every file preceding any usage of ``std::vector<int>``. Opaque
951types must also have a corresponding ``class_`` declaration to associate them
952with a name in Python, and to define a set of available operations:
953
954.. code-block:: cpp
955
956 py::class_<std::vector<int>>(m, "IntVector")
957 .def(py::init<>())
958 .def("clear", &std::vector<int>::clear)
959 .def("pop_back", &std::vector<int>::pop_back)
960 .def("__len__", [](const std::vector<int> &v) { return v.size(); })
961 .def("__iter__", [](std::vector<int> &v) {
962 return py::make_iterator(v.begin(), v.end());
963 }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
964 // ....
965
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200966Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200967
968.. seealso::
969
970 The file :file:`example/example14.cpp` contains a complete example that
971 demonstrates how to create and expose opaque types using pybind11 in more
972 detail.
973
974.. _eigen:
975
976Transparent conversion of dense and sparse Eigen data types
977===========================================================
978
979Eigen [#f1]_ is C++ header-based library for dense and sparse linear algebra. Due to
980its popularity and widespread adoption, pybind11 provides transparent
981conversion support between Eigen and Scientific Python linear algebra data types.
982
983Specifically, when including the optional header file :file:`pybind11/eigen.h`,
Wenzel Jakob178c8a82016-05-10 15:59:01 +0100984pybind11 will automatically and transparently convert
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200985
9861. Static and dynamic Eigen dense vectors and matrices to instances of
987 ``numpy.ndarray`` (and vice versa).
988
9891. Eigen sparse vectors and matrices to instances of
990 ``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` (and vice versa).
991
992This makes it possible to bind most kinds of functions that rely on these types.
993One major caveat are functions that take Eigen matrices *by reference* and modify
994them somehow, in which case the information won't be propagated to the caller.
995
996.. code-block:: cpp
997
998 /* The Python bindings of this function won't replicate
999 the intended effect of modifying the function argument */
1000 void scale_by_2(Eigen::Vector3f &v) {
1001 v *= 2;
1002 }
1003
1004To see why this is, refer to the section on :ref:`opaque` (although that
1005section specifically covers STL data types, the underlying issue is the same).
1006The next two sections discuss an efficient alternative for exposing the
1007underlying native Eigen types as opaque objects in a way that still integrates
1008with NumPy and SciPy.
1009
1010.. [#f1] http://eigen.tuxfamily.org
1011
1012.. seealso::
1013
1014 The file :file:`example/eigen.cpp` contains a complete example that
1015 shows how to pass Eigen sparse and dense data types in more detail.
1016
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001017Buffer protocol
1018===============
1019
1020Python supports an extremely general and convenient approach for exchanging
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001021data between plugin libraries. Types can expose a buffer view [#f2]_, which
1022provides fast direct access to the raw internal data representation. Suppose we
1023want to bind the following simplistic Matrix class:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001024
1025.. code-block:: cpp
1026
1027 class Matrix {
1028 public:
1029 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
1030 m_data = new float[rows*cols];
1031 }
1032 float *data() { return m_data; }
1033 size_t rows() const { return m_rows; }
1034 size_t cols() const { return m_cols; }
1035 private:
1036 size_t m_rows, m_cols;
1037 float *m_data;
1038 };
1039
1040The following binding code exposes the ``Matrix`` contents as a buffer object,
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001041making it possible to cast Matrices into NumPy arrays. It is even possible to
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001042completely avoid copy operations with Python expressions like
1043``np.array(matrix_instance, copy = False)``.
1044
1045.. code-block:: cpp
1046
1047 py::class_<Matrix>(m, "Matrix")
1048 .def_buffer([](Matrix &m) -> py::buffer_info {
1049 return py::buffer_info(
Wenzel Jakob876eeab2016-05-04 22:22:48 +02001050 m.data(), /* Pointer to buffer */
1051 sizeof(float), /* Size of one scalar */
1052 py::format_descriptor<float>::value, /* Python struct-style format descriptor */
1053 2, /* Number of dimensions */
1054 { m.rows(), m.cols() }, /* Buffer dimensions */
1055 { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001056 sizeof(float) }
1057 );
1058 });
1059
1060The snippet above binds a lambda function, which can create ``py::buffer_info``
1061description records on demand describing a given matrix. The contents of
1062``py::buffer_info`` mirror the Python buffer protocol specification.
1063
1064.. code-block:: cpp
1065
1066 struct buffer_info {
1067 void *ptr;
1068 size_t itemsize;
1069 std::string format;
1070 int ndim;
1071 std::vector<size_t> shape;
1072 std::vector<size_t> strides;
1073 };
1074
1075To create a C++ function that can take a Python buffer object as an argument,
1076simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
1077in a great variety of configurations, hence some safety checks are usually
1078necessary in the function body. Below, you can see an basic example on how to
1079define a custom constructor for the Eigen double precision matrix
1080(``Eigen::MatrixXd``) type, which supports initialization from compatible
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001081buffer objects (e.g. a NumPy matrix).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001082
1083.. code-block:: cpp
1084
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001085 /* Bind MatrixXd (or some other Eigen type) to Python */
1086 typedef Eigen::MatrixXd Matrix;
1087
1088 typedef Matrix::Scalar Scalar;
1089 constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
1090
1091 py::class_<Matrix>(m, "Matrix")
1092 .def("__init__", [](Matrix &m, py::buffer b) {
Wenzel Jakobe7628532016-05-05 10:04:44 +02001093 typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
Wenzel Jakobe7628532016-05-05 10:04:44 +02001094
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001095 /* Request a buffer descriptor from Python */
1096 py::buffer_info info = b.request();
1097
1098 /* Some sanity checks ... */
Wenzel Jakobe7628532016-05-05 10:04:44 +02001099 if (info.format != py::format_descriptor<Scalar>::value)
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001100 throw std::runtime_error("Incompatible format: expected a double array!");
1101
1102 if (info.ndim != 2)
1103 throw std::runtime_error("Incompatible buffer dimension!");
1104
Wenzel Jakobe7628532016-05-05 10:04:44 +02001105 auto strides = Strides(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001106 info.strides[rowMajor ? 0 : 1] / sizeof(Scalar),
1107 info.strides[rowMajor ? 1 : 0] / sizeof(Scalar));
Wenzel Jakobe7628532016-05-05 10:04:44 +02001108
1109 auto map = Eigen::Map<Matrix, 0, Strides>(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001110 static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
Wenzel Jakobe7628532016-05-05 10:04:44 +02001111
1112 new (&m) Matrix(map);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001113 });
1114
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001115For reference, the ``def_buffer()`` call for this Eigen data type should look
1116as follows:
1117
1118.. code-block:: cpp
1119
1120 .def_buffer([](Matrix &m) -> py::buffer_info {
1121 return py::buffer_info(
1122 m.data(), /* Pointer to buffer */
1123 sizeof(Scalar), /* Size of one scalar */
1124 /* Python struct-style format descriptor */
1125 py::format_descriptor<Scalar>::value,
1126 /* Number of dimensions */
1127 2,
1128 /* Buffer dimensions */
1129 { (size_t) m.rows(),
1130 (size_t) m.cols() },
1131 /* Strides (in bytes) for each index */
1132 { sizeof(Scalar) * (rowMajor ? m.cols() : 1),
1133 sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
1134 );
1135 })
1136
1137For a much easier approach of binding Eigen types (although with some
1138limitations), refer to the section on :ref:`eigen`.
1139
Wenzel Jakob93296692015-10-13 23:21:54 +02001140.. seealso::
1141
1142 The file :file:`example/example7.cpp` contains a complete example that
1143 demonstrates using the buffer protocol with pybind11 in more detail.
1144
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001145.. [#f2] http://docs.python.org/3/c-api/buffer.html
Wenzel Jakob978e3762016-04-07 18:00:41 +02001146
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001147NumPy support
1148=============
1149
1150By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
1151restrict the function so that it only accepts NumPy arrays (rather than any
Wenzel Jakob978e3762016-04-07 18:00:41 +02001152type of Python object satisfying the buffer protocol).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001153
1154In many situations, we want to define a function which only accepts a NumPy
Wenzel Jakob93296692015-10-13 23:21:54 +02001155array of a certain data type. This is possible via the ``py::array_t<T>``
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001156template. For instance, the following function requires the argument to be a
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001157NumPy array containing double precision values.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001158
1159.. code-block:: cpp
1160
Wenzel Jakob93296692015-10-13 23:21:54 +02001161 void f(py::array_t<double> array);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001162
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001163When it is invoked with a different type (e.g. an integer or a list of
1164integers), the binding code will attempt to cast the input into a NumPy array
1165of the requested type. Note that this feature requires the
1166:file:``pybind11/numpy.h`` header to be included.
1167
1168Data in NumPy arrays is not guaranteed to packed in a dense manner;
1169furthermore, entries can be separated by arbitrary column and row strides.
1170Sometimes, it can be useful to require a function to only accept dense arrays
1171using either the C (row-major) or Fortran (column-major) ordering. This can be
1172accomplished via a second template argument with values ``py::array::c_style``
1173or ``py::array::f_style``.
1174
1175.. code-block:: cpp
1176
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001177 void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001178
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001179The ``py::array::forcecast`` argument is the default value of the second
1180template paramenter, and it ensures that non-conforming arguments are converted
1181into an array satisfying the specified requirements instead of trying the next
1182function overload.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001183
1184Vectorizing functions
1185=====================
1186
1187Suppose we want to bind a function with the following signature to Python so
1188that it can process arbitrary NumPy array arguments (vectors, matrices, general
1189N-D arrays) in addition to its normal arguments:
1190
1191.. code-block:: cpp
1192
1193 double my_func(int x, float y, double z);
1194
Wenzel Jakob8f4eb002015-10-15 18:13:33 +02001195After including the ``pybind11/numpy.h`` header, this is extremely simple:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001196
1197.. code-block:: cpp
1198
1199 m.def("vectorized_func", py::vectorize(my_func));
1200
1201Invoking the function like below causes 4 calls to be made to ``my_func`` with
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001202each of the array elements. The significant advantage of this compared to
Wenzel Jakob978e3762016-04-07 18:00:41 +02001203solutions like ``numpy.vectorize()`` is that the loop over the elements runs
1204entirely on the C++ side and can be crunched down into a tight, optimized loop
1205by the compiler. The result is returned as a NumPy array of type
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001206``numpy.dtype.float64``.
1207
Wenzel Jakob99279f72016-06-03 11:19:29 +02001208.. code-block:: pycon
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001209
1210 >>> x = np.array([[1, 3],[5, 7]])
1211 >>> y = np.array([[2, 4],[6, 8]])
1212 >>> z = 3
1213 >>> result = vectorized_func(x, y, z)
1214
1215The scalar argument ``z`` is transparently replicated 4 times. The input
1216arrays ``x`` and ``y`` are automatically converted into the right types (they
1217are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
1218``numpy.dtype.float32``, respectively)
1219
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001220Sometimes we might want to explicitly exclude an argument from the vectorization
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001221because it makes little sense to wrap it in a NumPy array. For instance,
1222suppose the function signature was
1223
1224.. code-block:: cpp
1225
1226 double my_func(int x, float y, my_custom_type *z);
1227
1228This can be done with a stateful Lambda closure:
1229
1230.. code-block:: cpp
1231
1232 // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
1233 m.def("vectorized_func",
Wenzel Jakob93296692015-10-13 23:21:54 +02001234 [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001235 auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
1236 return py::vectorize(stateful_closure)(x, y);
1237 }
1238 );
1239
Wenzel Jakob61587162016-01-18 22:38:52 +01001240In cases where the computation is too complicated to be reduced to
1241``vectorize``, it will be necessary to create and access the buffer contents
1242manually. The following snippet contains a complete example that shows how this
1243works (the code is somewhat contrived, since it could have been done more
1244simply using ``vectorize``).
1245
1246.. code-block:: cpp
1247
1248 #include <pybind11/pybind11.h>
1249 #include <pybind11/numpy.h>
1250
1251 namespace py = pybind11;
1252
1253 py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
1254 auto buf1 = input1.request(), buf2 = input2.request();
1255
1256 if (buf1.ndim != 1 || buf2.ndim != 1)
1257 throw std::runtime_error("Number of dimensions must be one");
1258
1259 if (buf1.shape[0] != buf2.shape[0])
1260 throw std::runtime_error("Input shapes must match");
1261
1262 auto result = py::array(py::buffer_info(
1263 nullptr, /* Pointer to data (nullptr -> ask NumPy to allocate!) */
1264 sizeof(double), /* Size of one item */
Nils Wernerf7048f22016-05-19 11:17:17 +02001265 py::format_descriptor<double>::value(), /* Buffer format */
Wenzel Jakob61587162016-01-18 22:38:52 +01001266 buf1.ndim, /* How many dimensions? */
1267 { buf1.shape[0] }, /* Number of elements for each dimension */
1268 { sizeof(double) } /* Strides for each dimension */
1269 ));
1270
1271 auto buf3 = result.request();
1272
1273 double *ptr1 = (double *) buf1.ptr,
1274 *ptr2 = (double *) buf2.ptr,
1275 *ptr3 = (double *) buf3.ptr;
1276
1277 for (size_t idx = 0; idx < buf1.shape[0]; idx++)
1278 ptr3[idx] = ptr1[idx] + ptr2[idx];
1279
1280 return result;
1281 }
1282
1283 PYBIND11_PLUGIN(test) {
1284 py::module m("test");
1285 m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
1286 return m.ptr();
1287 }
1288
Wenzel Jakob93296692015-10-13 23:21:54 +02001289.. seealso::
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001290
Wenzel Jakob93296692015-10-13 23:21:54 +02001291 The file :file:`example/example10.cpp` contains a complete example that
1292 demonstrates using :func:`vectorize` in more detail.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001293
Wenzel Jakob93296692015-10-13 23:21:54 +02001294Functions taking Python objects as arguments
1295============================================
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001296
Wenzel Jakob93296692015-10-13 23:21:54 +02001297pybind11 exposes all major Python types using thin C++ wrapper classes. These
1298wrapper classes can also be used as parameters of functions in bindings, which
1299makes it possible to directly work with native Python types on the C++ side.
1300For instance, the following statement iterates over a Python ``dict``:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001301
Wenzel Jakob93296692015-10-13 23:21:54 +02001302.. code-block:: cpp
1303
1304 void print_dict(py::dict dict) {
1305 /* Easily interact with Python types */
1306 for (auto item : dict)
1307 std::cout << "key=" << item.first << ", "
1308 << "value=" << item.second << std::endl;
1309 }
1310
1311Available types include :class:`handle`, :class:`object`, :class:`bool_`,
Wenzel Jakob27e8e102016-01-17 22:36:37 +01001312:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001313:class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
1314:class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
1315:class:`array`, and :class:`array_t`.
Wenzel Jakob93296692015-10-13 23:21:54 +02001316
Wenzel Jakob436b7312015-10-20 01:04:30 +02001317In this kind of mixed code, it is often necessary to convert arbitrary C++
1318types to Python, which can be done using :func:`cast`:
1319
1320.. code-block:: cpp
1321
1322 MyClass *cls = ..;
1323 py::object obj = py::cast(cls);
1324
1325The reverse direction uses the following syntax:
1326
1327.. code-block:: cpp
1328
1329 py::object obj = ...;
1330 MyClass *cls = obj.cast<MyClass *>();
1331
1332When conversion fails, both directions throw the exception :class:`cast_error`.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001333It is also possible to call python functions via ``operator()``.
1334
1335.. code-block:: cpp
1336
1337 py::function f = <...>;
1338 py::object result_py = f(1234, "hello", some_instance);
1339 MyClass &result = result_py.cast<MyClass>();
1340
1341The special ``f(*args)`` and ``f(*args, **kwargs)`` syntax is also supported to
1342supply arbitrary argument and keyword lists, although these cannot be mixed
1343with other parameters.
1344
1345.. code-block:: cpp
1346
1347 py::function f = <...>;
1348 py::tuple args = py::make_tuple(1234);
1349 py::dict kwargs;
1350 kwargs["y"] = py::cast(5678);
1351 py::object result = f(*args, **kwargs);
Wenzel Jakob436b7312015-10-20 01:04:30 +02001352
Wenzel Jakob93296692015-10-13 23:21:54 +02001353.. seealso::
1354
1355 The file :file:`example/example2.cpp` contains a complete example that
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001356 demonstrates passing native Python types in more detail. The file
1357 :file:`example/example11.cpp` discusses usage of ``args`` and ``kwargs``.
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001358
1359Default arguments revisited
1360===========================
1361
1362The section on :ref:`default_args` previously discussed basic usage of default
1363arguments using pybind11. One noteworthy aspect of their implementation is that
1364default arguments are converted to Python objects right at declaration time.
1365Consider the following example:
1366
1367.. code-block:: cpp
1368
1369 py::class_<MyClass>("MyClass")
1370 .def("myFunction", py::arg("arg") = SomeType(123));
1371
1372In this case, pybind11 must already be set up to deal with values of the type
1373``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
1374exception will be thrown.
1375
1376Another aspect worth highlighting is that the "preview" of the default argument
1377in the function signature is generated using the object's ``__repr__`` method.
1378If not available, the signature may not be very helpful, e.g.:
1379
Wenzel Jakob99279f72016-06-03 11:19:29 +02001380.. code-block:: pycon
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001381
1382 FUNCTIONS
1383 ...
1384 | myFunction(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +01001385 | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001386 ...
1387
1388The first way of addressing this is by defining ``SomeType.__repr__``.
1389Alternatively, it is possible to specify the human-readable preview of the
1390default argument manually using the ``arg_t`` notation:
1391
1392.. code-block:: cpp
1393
1394 py::class_<MyClass>("MyClass")
1395 .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
1396
Wenzel Jakobc769fce2016-03-03 12:03:30 +01001397Sometimes it may be necessary to pass a null pointer value as a default
1398argument. In this case, remember to cast it to the underlying type in question,
1399like so:
1400
1401.. code-block:: cpp
1402
1403 py::class_<MyClass>("MyClass")
1404 .def("myFunction", py::arg("arg") = (SomeType *) nullptr);
1405
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001406Binding functions that accept arbitrary numbers of arguments and keywords arguments
1407===================================================================================
1408
1409Python provides a useful mechanism to define functions that accept arbitrary
1410numbers of arguments and keyword arguments:
1411
1412.. code-block:: cpp
1413
1414 def generic(*args, **kwargs):
1415 # .. do something with args and kwargs
1416
1417Such functions can also be created using pybind11:
1418
1419.. code-block:: cpp
1420
1421 void generic(py::args args, py::kwargs kwargs) {
1422 /// .. do something with args
1423 if (kwargs)
1424 /// .. do something with kwargs
1425 }
1426
1427 /// Binding code
1428 m.def("generic", &generic);
1429
1430(See ``example/example11.cpp``). The class ``py::args`` derives from
1431``py::list`` and ``py::kwargs`` derives from ``py::dict`` Note that the
1432``kwargs`` argument is invalid if no keyword arguments were actually provided.
1433Please refer to the other examples for details on how to iterate over these,
1434and on how to cast their entries into C++ objects.
1435
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001436Partitioning code over multiple extension modules
1437=================================================
1438
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001439It's straightforward to split binding code over multiple extension modules,
1440while referencing types that are declared elsewhere. Everything "just" works
1441without any special precautions. One exception to this rule occurs when
1442extending a type declared in another extension module. Recall the basic example
1443from Section :ref:`inheritance`.
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001444
1445.. code-block:: cpp
1446
1447 py::class_<Pet> pet(m, "Pet");
1448 pet.def(py::init<const std::string &>())
1449 .def_readwrite("name", &Pet::name);
1450
1451 py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
1452 .def(py::init<const std::string &>())
1453 .def("bark", &Dog::bark);
1454
1455Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
1456whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
1457course that the variable ``pet`` is not available anymore though it is needed
1458to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
1459However, it can be acquired as follows:
1460
1461.. code-block:: cpp
1462
1463 py::object pet = (py::object) py::module::import("basic").attr("Pet");
1464
1465 py::class_<Dog>(m, "Dog", pet)
1466 .def(py::init<const std::string &>())
1467 .def("bark", &Dog::bark);
1468
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001469Alternatively, we can rely on the ``base`` tag, which performs an automated
1470lookup of the corresponding Python type. However, this also requires invoking
1471the ``import`` function once to ensure that the pybind11 binding code of the
1472module ``basic`` has been executed.
1473
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001474.. code-block:: cpp
1475
1476 py::module::import("basic");
1477
1478 py::class_<Dog>(m, "Dog", py::base<Pet>())
1479 .def(py::init<const std::string &>())
1480 .def("bark", &Dog::bark);
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001481
Wenzel Jakob978e3762016-04-07 18:00:41 +02001482Naturally, both methods will fail when there are cyclic dependencies.
1483
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001484Note that compiling code which has its default symbol visibility set to
1485*hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the
1486ability to access types defined in another extension module. Workarounds
1487include changing the global symbol visibility (not recommended, because it will
1488lead unnecessarily large binaries) or manually exporting types that are
1489accessed by multiple extension modules:
1490
1491.. code-block:: cpp
1492
1493 #ifdef _WIN32
1494 # define EXPORT_TYPE __declspec(dllexport)
1495 #else
1496 # define EXPORT_TYPE __attribute__ ((visibility("default")))
1497 #endif
1498
1499 class EXPORT_TYPE Dog : public Animal {
1500 ...
1501 };
1502
1503
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001504Pickling support
1505================
1506
1507Python's ``pickle`` module provides a powerful facility to serialize and
1508de-serialize a Python object graph into a binary data stream. To pickle and
Wenzel Jakob3d0e6ff2016-04-13 11:48:10 +02001509unpickle C++ classes using pybind11, two additional functions must be provided.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001510Suppose the class in question has the following signature:
1511
1512.. code-block:: cpp
1513
1514 class Pickleable {
1515 public:
1516 Pickleable(const std::string &value) : m_value(value) { }
1517 const std::string &value() const { return m_value; }
1518
1519 void setExtra(int extra) { m_extra = extra; }
1520 int extra() const { return m_extra; }
1521 private:
1522 std::string m_value;
1523 int m_extra = 0;
1524 };
1525
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001526The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f3]_
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001527looks as follows:
1528
1529.. code-block:: cpp
1530
1531 py::class_<Pickleable>(m, "Pickleable")
1532 .def(py::init<std::string>())
1533 .def("value", &Pickleable::value)
1534 .def("extra", &Pickleable::extra)
1535 .def("setExtra", &Pickleable::setExtra)
1536 .def("__getstate__", [](const Pickleable &p) {
1537 /* Return a tuple that fully encodes the state of the object */
1538 return py::make_tuple(p.value(), p.extra());
1539 })
1540 .def("__setstate__", [](Pickleable &p, py::tuple t) {
1541 if (t.size() != 2)
1542 throw std::runtime_error("Invalid state!");
1543
Wenzel Jakobd40885a2016-04-13 13:30:05 +02001544 /* Invoke the in-place constructor. Note that this is needed even
1545 when the object just has a trivial default constructor */
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001546 new (&p) Pickleable(t[0].cast<std::string>());
1547
1548 /* Assign any additional state */
1549 p.setExtra(t[1].cast<int>());
1550 });
1551
1552An instance can now be pickled as follows:
1553
1554.. code-block:: python
1555
1556 try:
1557 import cPickle as pickle # Use cPickle on Python 2.7
1558 except ImportError:
1559 import pickle
1560
1561 p = Pickleable("test_value")
1562 p.setExtra(15)
Wenzel Jakob81e09752016-04-30 23:13:03 +02001563 data = pickle.dumps(p, 2)
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001564
Wenzel Jakob81e09752016-04-30 23:13:03 +02001565Note that only the cPickle module is supported on Python 2.7. The second
1566argument to ``dumps`` is also crucial: it selects the pickle protocol version
15672, since the older version 1 is not supported. Newer versions are also fine—for
1568instance, specify ``-1`` to always use the latest available version. Beware:
1569failure to follow these instructions will cause important pybind11 memory
1570allocation routines to be skipped during unpickling, which will likely lead to
1571memory corruption and/or segmentation faults.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001572
1573.. seealso::
1574
1575 The file :file:`example/example15.cpp` contains a complete example that
1576 demonstrates how to pickle and unpickle types using pybind11 in more detail.
1577
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001578.. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001579
1580Generating documentation using Sphinx
1581=====================================
1582
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001583Sphinx [#f4]_ has the ability to inspect the signatures and documentation
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001584strings in pybind11-based extension modules to automatically generate beautiful
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001585documentation in a variety formats. The python_example repository [#f5]_ contains a
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001586simple example repository which uses this approach.
1587
1588There are two potential gotchas when using this approach: first, make sure that
1589the resulting strings do not contain any :kbd:`TAB` characters, which break the
1590docstring parsing routines. You may want to use C++11 raw string literals,
1591which are convenient for multi-line comments. Conveniently, any excess
1592indentation will be automatically be removed by Sphinx. However, for this to
1593work, it is important that all lines are indented consistently, i.e.:
1594
1595.. code-block:: cpp
1596
1597 // ok
1598 m.def("foo", &foo, R"mydelimiter(
1599 The foo function
1600
1601 Parameters
1602 ----------
1603 )mydelimiter");
1604
1605 // *not ok*
1606 m.def("foo", &foo, R"mydelimiter(The foo function
1607
1608 Parameters
1609 ----------
1610 )mydelimiter");
1611
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001612.. [#f4] http://www.sphinx-doc.org
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001613.. [#f5] http://github.com/pybind/python_example
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001614
1615Calling Python from C++
1616=======================
1617
1618Pybind11 also allows to call python code from C++. Note that this code assumes, that the intepreter is already initialized.
1619
1620.. code-block:: cpp
1621
1622 // get the main module, so we can access and declare stuff
1623 py::module main_module = py::module::import("__main__");
1624
1625 //get the main namespace, so I can declare variables
1626 py::object main_namespace = main_module.attr("__dict__");
1627
1628 //now execute code
1629 py::exec(
1630 "print('Hello World1!')\n"
1631 "print('Other Data');",
1632 main_namespace);
1633
1634 //execute a single statement
1635 py::exec_statement("x=42", main_namespace);
1636
1637 //ok, now I want to get the result of a statement, we'll use x in this example
1638 py::object res = py::eval("x");
1639 std:cout << "Yielded: " << res.cast<int>() << std::endl;
1640
1641 //or we can execute a file within the same content
1642 py::exec_file("my_script.py", main_namespace);
1643