blob: a48ebd87bca373c76138042e4d378da8a8cc5f8b [file] [log] [blame]
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001.. _advanced:
2
3Advanced topics
4###############
5
Wenzel Jakob93296692015-10-13 23:21:54 +02006For brevity, the rest of this chapter assumes that the following two lines are
7present:
8
9.. code-block:: cpp
10
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020011 #include <pybind11/pybind11.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020012
Wenzel Jakob10e62e12015-10-15 22:46:07 +020013 namespace py = pybind11;
Wenzel Jakob93296692015-10-13 23:21:54 +020014
Wenzel Jakobde3ad072016-02-02 11:38:21 +010015Exporting constants and mutable objects
16=======================================
17
18To expose a C++ constant, use the ``attr`` function to register it in a module
19as shown below. The ``int_`` class is one of many small wrapper objects defined
20in ``pybind11/pytypes.h``. General objects (including integers) can also be
21converted using the function ``cast``.
22
23.. code-block:: cpp
24
25 PYBIND11_PLUGIN(example) {
26 py::module m("example", "pybind11 example plugin");
27 m.attr("MY_CONSTANT") = py::int_(123);
28 m.attr("MY_CONSTANT_2") = py::cast(new MyObject());
29 }
30
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020031Operator overloading
32====================
33
Wenzel Jakob93296692015-10-13 23:21:54 +020034Suppose that we're given the following ``Vector2`` class with a vector addition
35and scalar multiplication operation, all implemented using overloaded operators
36in C++.
37
38.. code-block:: cpp
39
40 class Vector2 {
41 public:
42 Vector2(float x, float y) : x(x), y(y) { }
43
Wenzel Jakob93296692015-10-13 23:21:54 +020044 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
45 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
46 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
47 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
48
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020049 friend Vector2 operator*(float f, const Vector2 &v) {
50 return Vector2(f * v.x, f * v.y);
51 }
Wenzel Jakob93296692015-10-13 23:21:54 +020052
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020053 std::string toString() const {
54 return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
55 }
Wenzel Jakob93296692015-10-13 23:21:54 +020056 private:
57 float x, y;
58 };
59
60The following snippet shows how the above operators can be conveniently exposed
61to Python.
62
63.. code-block:: cpp
64
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020065 #include <pybind11/operators.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020066
Wenzel Jakobb1b71402015-10-18 16:48:30 +020067 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020068 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +020069
70 py::class_<Vector2>(m, "Vector2")
71 .def(py::init<float, float>())
72 .def(py::self + py::self)
73 .def(py::self += py::self)
74 .def(py::self *= float())
75 .def(float() * py::self)
76 .def("__repr__", &Vector2::toString);
77
78 return m.ptr();
79 }
80
81Note that a line like
82
83.. code-block:: cpp
84
85 .def(py::self * float())
86
87is really just short hand notation for
88
89.. code-block:: cpp
90
91 .def("__mul__", [](const Vector2 &a, float b) {
92 return a * b;
93 })
94
95This can be useful for exposing additional operators that don't exist on the
96C++ side, or to perform other types of customization.
97
98.. note::
99
100 To use the more convenient ``py::self`` notation, the additional
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200101 header file :file:`pybind11/operators.h` must be included.
Wenzel Jakob93296692015-10-13 23:21:54 +0200102
103.. seealso::
104
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400105 The file :file:`example/example-operator-overloading.cpp` contains a
106 complete example that demonstrates how to work with overloaded operators in
107 more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200108
109Callbacks and passing anonymous functions
110=========================================
111
112The C++11 standard brought lambda functions and the generic polymorphic
113function wrapper ``std::function<>`` to the C++ programming language, which
114enable powerful new ways of working with functions. Lambda functions come in
115two flavors: stateless lambda function resemble classic function pointers that
116link to an anonymous piece of code, while stateful lambda functions
117additionally depend on captured variables that are stored in an anonymous
118*lambda closure object*.
119
120Here is a simple example of a C++ function that takes an arbitrary function
121(stateful or stateless) with signature ``int -> int`` as an argument and runs
122it with the value 10.
123
124.. code-block:: cpp
125
126 int func_arg(const std::function<int(int)> &f) {
127 return f(10);
128 }
129
130The example below is more involved: it takes a function of signature ``int -> int``
131and returns another function of the same kind. The return value is a stateful
132lambda function, which stores the value ``f`` in the capture object and adds 1 to
133its return value upon execution.
134
135.. code-block:: cpp
136
137 std::function<int(int)> func_ret(const std::function<int(int)> &f) {
138 return [f](int i) {
139 return f(i) + 1;
140 };
141 }
142
Brad Harmon835fc062016-06-16 13:19:15 -0500143This example demonstrates using python named parameters in C++ callbacks which
144requires using ``py::cpp_function`` as a wrapper. Usage is similar to defining
145methods of classes:
146
147.. code-block:: cpp
148
149 py::cpp_function func_cpp() {
150 return py::cpp_function([](int i) { return i+1; },
151 py::arg("number"));
152 }
153
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200154After including the extra header file :file:`pybind11/functional.h`, it is almost
Brad Harmon835fc062016-06-16 13:19:15 -0500155trivial to generate binding code for all of these functions.
Wenzel Jakob93296692015-10-13 23:21:54 +0200156
157.. code-block:: cpp
158
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200159 #include <pybind11/functional.h>
Wenzel Jakob93296692015-10-13 23:21:54 +0200160
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200161 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200162 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200163
164 m.def("func_arg", &func_arg);
165 m.def("func_ret", &func_ret);
Brad Harmon835fc062016-06-16 13:19:15 -0500166 m.def("func_cpp", &func_cpp);
Wenzel Jakob93296692015-10-13 23:21:54 +0200167
168 return m.ptr();
169 }
170
171The following interactive session shows how to call them from Python.
172
Wenzel Jakob99279f72016-06-03 11:19:29 +0200173.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200174
175 $ python
176 >>> import example
177 >>> def square(i):
178 ... return i * i
179 ...
180 >>> example.func_arg(square)
181 100L
182 >>> square_plus_1 = example.func_ret(square)
183 >>> square_plus_1(4)
184 17L
Brad Harmon835fc062016-06-16 13:19:15 -0500185 >>> plus_1 = func_cpp()
186 >>> plus_1(number=43)
187 44L
Wenzel Jakob93296692015-10-13 23:21:54 +0200188
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100189.. warning::
190
191 Keep in mind that passing a function from C++ to Python (or vice versa)
192 will instantiate a piece of wrapper code that translates function
Wenzel Jakob954b7932016-07-10 10:13:18 +0200193 invocations between the two languages. Naturally, this translation
194 increases the computational cost of each function call somewhat. A
195 problematic situation can arise when a function is copied back and forth
196 between Python and C++ many times in a row, in which case the underlying
197 wrappers will accumulate correspondingly. The resulting long sequence of
198 C++ -> Python -> C++ -> ... roundtrips can significantly decrease
199 performance.
200
201 There is one exception: pybind11 detects case where a stateless function
202 (i.e. a function pointer or a lambda function without captured variables)
203 is passed as an argument to another C++ function exposed in Python. In this
204 case, there is no overhead. Pybind11 will extract the underlying C++
205 function pointer from the wrapped function to sidestep a potential C++ ->
206 Python -> C++ roundtrip. This is demonstrated in Example 5.
207
208.. note::
209
210 This functionality is very useful when generating bindings for callbacks in
211 C++ libraries (e.g. GUI libraries, asynchronous networking libraries, etc.).
212
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400213 The file :file:`example/example-callbacks.cpp` contains a complete example
214 that demonstrates how to work with callbacks and anonymous functions in
215 more detail.
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100216
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200217Overriding virtual functions in Python
218======================================
219
Wenzel Jakob93296692015-10-13 23:21:54 +0200220Suppose that a C++ class or interface has a virtual function that we'd like to
221to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
222given as a specific example of how one would do this with traditional C++
223code).
224
225.. code-block:: cpp
226
227 class Animal {
228 public:
229 virtual ~Animal() { }
230 virtual std::string go(int n_times) = 0;
231 };
232
233 class Dog : public Animal {
234 public:
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400235 std::string go(int n_times) override {
Wenzel Jakob93296692015-10-13 23:21:54 +0200236 std::string result;
237 for (int i=0; i<n_times; ++i)
238 result += "woof! ";
239 return result;
240 }
241 };
242
243Let's also suppose that we are given a plain function which calls the
244function ``go()`` on an arbitrary ``Animal`` instance.
245
246.. code-block:: cpp
247
248 std::string call_go(Animal *animal) {
249 return animal->go(3);
250 }
251
252Normally, the binding code for these classes would look as follows:
253
254.. code-block:: cpp
255
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200256 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200257 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200258
259 py::class_<Animal> animal(m, "Animal");
260 animal
261 .def("go", &Animal::go);
262
263 py::class_<Dog>(m, "Dog", animal)
264 .def(py::init<>());
265
266 m.def("call_go", &call_go);
267
268 return m.ptr();
269 }
270
271However, these bindings are impossible to extend: ``Animal`` is not
272constructible, and we clearly require some kind of "trampoline" that
273redirects virtual calls back to Python.
274
275Defining a new type of ``Animal`` from within Python is possible but requires a
276helper class that is defined as follows:
277
278.. code-block:: cpp
279
280 class PyAnimal : public Animal {
281 public:
282 /* Inherit the constructors */
283 using Animal::Animal;
284
285 /* Trampoline (need one for each virtual function) */
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400286 std::string go(int n_times) override {
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200287 PYBIND11_OVERLOAD_PURE(
Wenzel Jakob93296692015-10-13 23:21:54 +0200288 std::string, /* Return type */
289 Animal, /* Parent class */
290 go, /* Name of function */
291 n_times /* Argument(s) */
292 );
293 }
294 };
295
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200296The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
297functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
Wenzel Jakob0d3fc352016-07-08 10:52:10 +0200298a default implementation.
Wenzel Jakob1e3be732016-05-24 23:42:05 +0200299
300There are also two alternate macros :func:`PYBIND11_OVERLOAD_PURE_NAME` and
301:func:`PYBIND11_OVERLOAD_NAME` which take a string-valued name argument
302after the *Name of the function* slot. This is useful when the C++ and Python
303versions of the function have different names, e.g. ``operator()`` vs ``__call__``.
304
305The binding code also needs a few minor adaptations (highlighted):
Wenzel Jakob93296692015-10-13 23:21:54 +0200306
307.. code-block:: cpp
308 :emphasize-lines: 4,6,7
309
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200310 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200311 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200312
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200313 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal /* <--- trampoline*/> animal(m, "Animal");
Wenzel Jakob93296692015-10-13 23:21:54 +0200314 animal
Wenzel Jakob93296692015-10-13 23:21:54 +0200315 .def(py::init<>())
316 .def("go", &Animal::go);
317
318 py::class_<Dog>(m, "Dog", animal)
319 .def(py::init<>());
320
321 m.def("call_go", &call_go);
322
323 return m.ptr();
324 }
325
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200326Importantly, pybind11 is made aware of the trampoline trampoline helper class
327by specifying it as the *third* template argument to :class:`class_`. The
328second argument with the unique pointer is simply the default holder type used
329by pybind11. Following this, we are able to define a constructor as usual.
Wenzel Jakob93296692015-10-13 23:21:54 +0200330
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400331Note, however, that the above is sufficient for allowing python classes to
332extend ``Animal``, but not ``Dog``: see ref:`virtual_and_inheritance` for the
333necessary steps required to providing proper overload support for inherited
334classes.
335
Wenzel Jakob93296692015-10-13 23:21:54 +0200336The Python session below shows how to override ``Animal::go`` and invoke it via
337a virtual method call.
338
Wenzel Jakob99279f72016-06-03 11:19:29 +0200339.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200340
341 >>> from example import *
342 >>> d = Dog()
343 >>> call_go(d)
344 u'woof! woof! woof! '
345 >>> class Cat(Animal):
346 ... def go(self, n_times):
347 ... return "meow! " * n_times
348 ...
349 >>> c = Cat()
350 >>> call_go(c)
351 u'meow! meow! meow! '
352
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200353Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakobbd986fe2016-05-21 10:48:30 +0200354
Wenzel Jakob93296692015-10-13 23:21:54 +0200355.. seealso::
356
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400357 The file :file:`example/example-virtual-functions.cpp` contains a complete
358 example that demonstrates how to override virtual functions using pybind11
359 in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200360
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400361.. _virtual_and_inheritance:
362
363Combining virtual functions and inheritance
364===========================================
365
366When combining virtual methods with inheritance, you need to be sure to provide
367an override for each method for which you want to allow overrides from derived
368python classes. For example, suppose we extend the above ``Animal``/``Dog``
369example as follows:
370
371.. code-block:: cpp
372 class Animal {
373 public:
374 virtual std::string go(int n_times) = 0;
375 virtual std::string name() { return "unknown"; }
376 };
377 class Dog : public class Animal {
378 public:
379 std::string go(int n_times) override {
380 std::string result;
381 for (int i=0; i<n_times; ++i)
382 result += bark() + " ";
383 return result;
384 }
385 virtual std::string bark() { return "woof!"; }
386 };
387
388then the trampoline class for ``Animal`` must, as described in the previous
389section, override ``go()`` and ``name()``, but in order to allow python code to
390inherit properly from ``Dog``, we also need a trampoline class for ``Dog`` that
391overrides both the added ``bark()`` method *and* the ``go()`` and ``name()``
392methods inherited from ``Animal`` (even though ``Dog`` doesn't directly
393override the ``name()`` method):
394
395.. code-block:: cpp
396 class PyAnimal : public Animal {
397 public:
398 using Animal::Animal; // Inherit constructors
399 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Animal, go, n_times); }
400 std::string name() override { PYBIND11_OVERLOAD(std::string, Animal, name, ); }
401 };
402 class PyDog : public Dog {
403 public:
404 using Dog::Dog; // Inherit constructors
405 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Dog, go, n_times); }
406 std::string name() override { PYBIND11_OVERLOAD(std::string, Dog, name, ); }
407 std::string bark() override { PYBIND11_OVERLOAD(std::string, Dog, bark, ); }
408 };
409
410A registered class derived from a pybind11-registered class with virtual
411methods requires a similar trampoline class, *even if* it doesn't explicitly
412declare or override any virtual methods itself:
413
414.. code-block:: cpp
415 class Husky : public Dog {};
416 class PyHusky : public Husky {
417 using Dog::Dog; // Inherit constructors
418 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Husky, go, n_times); }
419 std::string name() override { PYBIND11_OVERLOAD(std::string, Husky, name, ); }
420 std::string bark() override { PYBIND11_OVERLOAD(std::string, Husky, bark, ); }
421 };
422
423There is, however, a technique that can be used to avoid this duplication
424(which can be especially helpful for a base class with several virtual
425methods). The technique involves using template trampoline classes, as
426follows:
427
428.. code-block:: cpp
429 template <class AnimalBase = Animal> class PyAnimal : public AnimalBase {
430 using AnimalBase::AnimalBase; // Inherit constructors
431 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, AnimalBase, go, n_times); }
432 std::string name() override { PYBIND11_OVERLOAD(std::string, AnimalBase, name, ); }
433 };
434 template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> {
435 using PyAnimal<DogBase>::PyAnimal; // Inherit constructors
436 // Override PyAnimal's pure virtual go() with a non-pure one:
437 std::string go(int n_times) override { PYBIND11_OVERLOAD(std::string, DogBase, go, n_times); }
438 std::string bark() override { PYBIND11_OVERLOAD(std::string, DogBase, bark, ); }
439 };
440
441This technique has the advantage of requiring just one trampoline method to be
442declared per virtual method and pure virtual method override. It does,
443however, require the compiler to generate at least as many methods (and
444possibly more, if both pure virtual and overridden pure virtual methods are
445exposed, as above).
446
447The classes are then registered with pybind11 using:
448
449.. code-block:: cpp
450 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal<>> animal(m, "Animal");
451 py::class_<Dog, std::unique_ptr<Dog>, PyDog<>> dog(m, "Dog");
452 py::class_<Husky, std::unique_ptr<Husky>, PyDog<Husky>> husky(m, "Husky");
453 // ... add animal, dog, husky definitions
454
455Note that ``Husky`` did not require a dedicated trampoline template class at
456all, since it neither declares any new virtual methods nor provides any pure
457virtual method implementations.
458
459With either the repeated-virtuals or templated trampoline methods in place, you
460can now create a python class that inherits from ``Dog``:
461
462.. code-block:: python
463
464 class ShihTzu(Dog):
465 def bark(self):
466 return "yip!"
467
468.. seealso::
469
470 See the file :file:`example-virtual-functions.cpp` for complete examples
471 using both the duplication and templated trampoline approaches.
472
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200473.. _macro_notes:
474
475General notes regarding convenience macros
476==========================================
477
478pybind11 provides a few convenience macros such as
479:func:`PYBIND11_MAKE_OPAQUE` and :func:`PYBIND11_DECLARE_HOLDER_TYPE`, and
480``PYBIND11_OVERLOAD_*``. Since these are "just" macros that are evaluated
481in the preprocessor (which has no concept of types), they *will* get confused
482by commas in a template argument such as ``PYBIND11_OVERLOAD(MyReturnValue<T1,
483T2>, myFunc)``. In this case, the preprocessor assumes that the comma indicates
484the beginnning of the next parameter. Use a ``typedef`` to bind the template to
485another name and use it in the macro to avoid this problem.
486
487
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100488Global Interpreter Lock (GIL)
489=============================
490
491The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
492used to acquire and release the global interpreter lock in the body of a C++
493function call. In this way, long-running C++ code can be parallelized using
494multiple Python threads. Taking the previous section as an example, this could
495be realized as follows (important changes highlighted):
496
497.. code-block:: cpp
498 :emphasize-lines: 8,9,33,34
499
500 class PyAnimal : public Animal {
501 public:
502 /* Inherit the constructors */
503 using Animal::Animal;
504
505 /* Trampoline (need one for each virtual function) */
506 std::string go(int n_times) {
507 /* Acquire GIL before calling Python code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100508 py::gil_scoped_acquire acquire;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100509
510 PYBIND11_OVERLOAD_PURE(
511 std::string, /* Return type */
512 Animal, /* Parent class */
513 go, /* Name of function */
514 n_times /* Argument(s) */
515 );
516 }
517 };
518
519 PYBIND11_PLUGIN(example) {
520 py::module m("example", "pybind11 example plugin");
521
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200522 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal> animal(m, "Animal");
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100523 animal
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100524 .def(py::init<>())
525 .def("go", &Animal::go);
526
527 py::class_<Dog>(m, "Dog", animal)
528 .def(py::init<>());
529
530 m.def("call_go", [](Animal *animal) -> std::string {
531 /* Release GIL before calling into (potentially long-running) C++ code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100532 py::gil_scoped_release release;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100533 return call_go(animal);
534 });
535
536 return m.ptr();
537 }
538
Wenzel Jakob93296692015-10-13 23:21:54 +0200539Passing STL data structures
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200540===========================
541
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200542When including the additional header file :file:`pybind11/stl.h`, conversions
Wenzel Jakob978e3762016-04-07 18:00:41 +0200543between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>``
544and the Python ``list``, ``set`` and ``dict`` data structures are automatically
545enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported
546out of the box with just the core :file:`pybind11/pybind11.h` header.
Wenzel Jakob93296692015-10-13 23:21:54 +0200547
548.. note::
549
Wenzel Jakob44db04f2015-12-14 12:40:45 +0100550 Arbitrary nesting of any of these types is supported.
Wenzel Jakob93296692015-10-13 23:21:54 +0200551
552.. seealso::
553
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400554 The file :file:`example/example-python-types.cpp` contains a complete
555 example that demonstrates how to pass STL data types in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200556
Wenzel Jakobb2825952016-04-13 23:33:00 +0200557Binding sequence data types, iterators, the slicing protocol, etc.
558==================================================================
Wenzel Jakob93296692015-10-13 23:21:54 +0200559
560Please refer to the supplemental example for details.
561
562.. seealso::
563
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400564 The file :file:`example/example-sequences-and-iterators.cpp` contains a
565 complete example that shows how to bind a sequence data type, including
566 length queries (``__len__``), iterators (``__iter__``), the slicing
567 protocol and other kinds of useful operations.
Wenzel Jakob93296692015-10-13 23:21:54 +0200568
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200569Return value policies
570=====================
571
Wenzel Jakob93296692015-10-13 23:21:54 +0200572Python and C++ use wildly different ways of managing the memory and lifetime of
573objects managed by them. This can lead to issues when creating bindings for
574functions that return a non-trivial type. Just by looking at the type
575information, it is not clear whether Python should take charge of the returned
576value and eventually free its resources, or if this is handled on the C++ side.
577For this reason, pybind11 provides a several `return value policy` annotations
578that can be passed to the :func:`module::def` and :func:`class_::def`
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100579functions. The default policy is :enum:`return_value_policy::automatic`.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200580
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200581.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
582
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200583+--------------------------------------------------+----------------------------------------------------------------------------+
584| Return value policy | Description |
585+==================================================+============================================================================+
586| :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy |
587| | :enum:`return_value_policy::take_ownership` when the return value is a |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200588| | pointer. Otherwise, it uses :enum:`return_value::move` or |
589| | :enum:`return_value::copy` for rvalue and lvalue references, respectively. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200590| | See below for a description of what all of these different policies do. |
591+--------------------------------------------------+----------------------------------------------------------------------------+
592| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
Wenzel Jakob37e1f612016-06-22 14:29:13 +0200593| | return value is a pointer. This is the default conversion policy for |
594| | function arguments when calling Python functions manually from C++ code |
595| | (i.e. via handle::operator()). You probably won't need to use this. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200596+--------------------------------------------------+----------------------------------------------------------------------------+
597| :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
598| | ownership. Python will call the destructor and delete operator when the |
599| | object's reference count reaches zero. Undefined behavior ensues when the |
Wenzel Jakobf53e3002016-06-30 14:59:23 +0200600| | C++ side does the same. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200601+--------------------------------------------------+----------------------------------------------------------------------------+
602| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
603| | This policy is comparably safe because the lifetimes of the two instances |
604| | are decoupled. |
605+--------------------------------------------------+----------------------------------------------------------------------------+
606| :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
607| | that will be owned by Python. This policy is comparably safe because the |
608| | lifetimes of the two instances (move source and destination) are decoupled.|
609+--------------------------------------------------+----------------------------------------------------------------------------+
610| :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
611| | responsible for managing the object's lifetime and deallocating it when |
612| | it is no longer used. Warning: undefined behavior will ensue when the C++ |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200613| | side deletes an object that is still referenced and used by Python. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200614+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200615| :enum:`return_value_policy::reference_internal` | This policy only applies to methods and properties. It references the |
616| | object without taking ownership similar to the above |
617| | :enum:`return_value_policy::reference` policy. In contrast to that policy, |
618| | the function or property's implicit ``this`` argument (called the *parent*)|
619| | is considered to be the the owner of the return value (the *child*). |
620| | pybind11 then couples the lifetime of the parent to the child via a |
621| | reference relationship that ensures that the parent cannot be garbage |
622| | collected while Python is still using the child. More advanced variations |
623| | of this scheme are also possible using combinations of |
624| | :enum:`return_value_policy::reference` and the :class:`keep_alive` call |
625| | policy described next. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200626+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200627
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200628.. warning::
629
630 Code with invalid call policies might access unitialized memory or free
631 data structures multiple times, which can lead to hard-to-debug
632 non-determinism and segmentation faults, hence it is worth spending the
633 time to understand all the different options in the table above.
634
635One important aspect regarding the above policies is that they only apply to
636instances which pybind11 has *not* seen before, in which case the policy
637clarifies essential questions about the return value's lifetime and ownership.
638
639When pybind11 knows the instance already (as identified via its address in
640memory), it will return the existing Python object wrapper rather than creating
641a copy. This means that functions which merely cast a reference (or pointer)
642into a different type don't do what one would expect:
643
644.. code-block:: cpp
645
646 A &func(B &value) { return (A&) value; }
647
648The wrapped version of this function will return the original ``B`` instance.
649To force a cast, the argument should be returned by value.
650
651More common (and equally problematic) are cases where methods (e.g. getters)
652return a pointer or reference to the first attribute of a class.
653
654.. code-block:: cpp
655 :emphasize-lines: 3, 13
656
657 class Example {
658 public:
659 Internal &get_internal() { return internal; }
660 private:
661 Internal internal;
662 };
663
664 PYBIND11_PLUGIN(example) {
665 py::module m("example", "pybind11 example plugin");
666
667 py::class_<Example>(m, "Example")
668 .def(py::init<>())
669 .def("get_internal", &Example::get_internal); /* Note: don't do this! */
670
671 return m.ptr();
672 }
673
674As in the above casting example, the instance and its attribute will be located
675at the same address in memory, which pybind11 will recongnize and return the
676parent instance instead of creating a new Python object that represents the
677attribute. The special :enum:`return_value_policy::reference_internal` policy
678should be used in this case: it disables the same-address optimization and
679ensures that pybind11 returns a reference.
680The following example snippet shows the correct usage:
Wenzel Jakob93296692015-10-13 23:21:54 +0200681
682.. code-block:: cpp
683
684 class Example {
685 public:
686 Internal &get_internal() { return internal; }
687 private:
688 Internal internal;
689 };
690
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200691 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200692 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200693
694 py::class_<Example>(m, "Example")
695 .def(py::init<>())
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200696 .def("get_internal", &Example::get_internal, "Return the internal data",
697 py::return_value_policy::reference_internal);
Wenzel Jakob93296692015-10-13 23:21:54 +0200698
699 return m.ptr();
700 }
701
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200702
nafur717df752016-06-28 18:07:11 +0200703
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200704.. note::
705
706 The next section on :ref:`call_policies` discusses *call policies* that can be
707 specified *in addition* to a return value policy from the list above. Call
708 policies indicate reference relationships that can involve both return values
709 and parameters of functions.
710
711.. note::
712
713 As an alternative to elaborate call policies and lifetime management logic,
714 consider using smart pointers (see the section on :ref:`smart_pointers` for
715 details). Smart pointers can tell whether an object is still referenced from
716 C++ or Python, which generally eliminates the kinds of inconsistencies that
717 can lead to crashes or undefined behavior. For functions returning smart
718 pointers, it is not necessary to specify a return value policy.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100719
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200720.. _call_policies:
721
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100722Additional call policies
723========================
724
725In addition to the above return value policies, further `call policies` can be
726specified to indicate dependencies between parameters. There is currently just
727one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
728argument with index ``Patient`` should be kept alive at least until the
729argument with index ``Nurse`` is freed by the garbage collector; argument
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200730indices start at one, while zero refers to the return value. For methods, index
731one refers to the implicit ``this`` pointer, while regular arguments begin at
732index two. Arbitrarily many call policies can be specified.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100733
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200734Consider the following example: the binding code for a list append operation
735that ties the lifetime of the newly added element to the underlying container
736might be declared as follows:
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100737
738.. code-block:: cpp
739
740 py::class_<List>(m, "List")
741 .def("append", &List::append, py::keep_alive<1, 2>());
742
743.. note::
744
745 ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
746 Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
747 0) policies from Boost.Python.
748
Wenzel Jakob61587162016-01-18 22:38:52 +0100749.. seealso::
750
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400751 The file :file:`example/example-keep-alive.cpp` contains a complete example
752 that demonstrates using :class:`keep_alive` in more detail.
Wenzel Jakob61587162016-01-18 22:38:52 +0100753
Wenzel Jakob93296692015-10-13 23:21:54 +0200754Implicit type conversions
755=========================
756
757Suppose that instances of two types ``A`` and ``B`` are used in a project, and
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200758that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
Wenzel Jakob93296692015-10-13 23:21:54 +0200759could be a fixed and an arbitrary precision number type).
760
761.. code-block:: cpp
762
763 py::class_<A>(m, "A")
764 /// ... members ...
765
766 py::class_<B>(m, "B")
767 .def(py::init<A>())
768 /// ... members ...
769
770 m.def("func",
771 [](const B &) { /* .... */ }
772 );
773
774To invoke the function ``func`` using a variable ``a`` containing an ``A``
775instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
776will automatically apply an implicit type conversion, which makes it possible
777to directly write ``func(a)``.
778
779In this situation (i.e. where ``B`` has a constructor that converts from
780``A``), the following statement enables similar implicit conversions on the
781Python side:
782
783.. code-block:: cpp
784
785 py::implicitly_convertible<A, B>();
786
Wenzel Jakob3eeea6f2016-06-30 18:10:28 +0200787.. note::
788
789 Implicit conversions from ``A`` to ``B`` only work when ``B`` is a custom
790 data type that is exposed to Python via pybind11.
791
Wenzel Jakobf88af0c2016-06-22 13:52:31 +0200792.. _static_properties:
793
794Static properties
795=================
796
797The section on :ref:`properties` discussed the creation of instance properties
798that are implemented in terms of C++ getters and setters.
799
800Static properties can also be created in a similar way to expose getters and
801setters of static class attributes. It is important to note that the implicit
802``self`` argument also exists in this case and is used to pass the Python
803``type`` subclass instance. This parameter will often not be needed by the C++
804side, and the following example illustrates how to instantiate a lambda getter
805function that ignores it:
806
807.. code-block:: cpp
808
809 py::class_<Foo>(m, "Foo")
810 .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
811
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200812Unique pointers
813===============
814
815Given a class ``Example`` with Python bindings, it's possible to return
816instances wrapped in C++11 unique pointers, like so
817
818.. code-block:: cpp
819
820 std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }
821
822.. code-block:: cpp
823
824 m.def("create_example", &create_example);
825
826In other words, there is nothing special that needs to be done. While returning
827unique pointers in this way is allowed, it is *illegal* to use them as function
828arguments. For instance, the following function signature cannot be processed
829by pybind11.
830
831.. code-block:: cpp
832
833 void do_something_with_example(std::unique_ptr<Example> ex) { ... }
834
835The above signature would imply that Python needs to give up ownership of an
836object that is passed to this function, which is generally not possible (for
837instance, the object might be referenced elsewhere).
838
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200839.. _smart_pointers:
840
Wenzel Jakob93296692015-10-13 23:21:54 +0200841Smart pointers
842==============
843
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200844This section explains how to pass values that are wrapped in "smart" pointer
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200845types with internal reference counting. For the simpler C++11 unique pointers,
846refer to the previous section.
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200847
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200848The binding generator for classes, :class:`class_`, takes an optional second
Wenzel Jakob93296692015-10-13 23:21:54 +0200849template type, which denotes a special *holder* type that is used to manage
850references to the object. When wrapping a type named ``Type``, the default
851value of this template parameter is ``std::unique_ptr<Type>``, which means that
852the object is deallocated when Python's reference count goes to zero.
853
Wenzel Jakob1853b652015-10-18 15:38:50 +0200854It is possible to switch to other types of reference counting wrappers or smart
855pointers, which is useful in codebases that rely on them. For instance, the
856following snippet causes ``std::shared_ptr`` to be used instead.
Wenzel Jakob93296692015-10-13 23:21:54 +0200857
858.. code-block:: cpp
859
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100860 py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100861
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100862Note that any particular class can only be associated with a single holder type.
Wenzel Jakob93296692015-10-13 23:21:54 +0200863
Wenzel Jakob1853b652015-10-18 15:38:50 +0200864To enable transparent conversions for functions that take shared pointers as an
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100865argument or that return them, a macro invocation similar to the following must
Wenzel Jakob1853b652015-10-18 15:38:50 +0200866be declared at the top level before any binding code:
867
868.. code-block:: cpp
869
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200870 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
Wenzel Jakob1853b652015-10-18 15:38:50 +0200871
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100872.. note::
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100873
874 The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
875 placeholder name that is used as a template parameter of the second
876 argument. Thus, feel free to use any identifier, but use it consistently on
877 both sides; also, don't use the name of a type that already exists in your
878 codebase.
879
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100880One potential stumbling block when using holder types is that they need to be
881applied consistently. Can you guess what's broken about the following binding
882code?
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100883
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100884.. code-block:: cpp
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100885
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100886 class Child { };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100887
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100888 class Parent {
889 public:
890 Parent() : child(std::make_shared<Child>()) { }
891 Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
892 private:
893 std::shared_ptr<Child> child;
894 };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100895
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100896 PYBIND11_PLUGIN(example) {
897 py::module m("example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100898
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100899 py::class_<Child, std::shared_ptr<Child>>(m, "Child");
900
901 py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
902 .def(py::init<>())
903 .def("get_child", &Parent::get_child);
904
905 return m.ptr();
906 }
907
908The following Python code will cause undefined behavior (and likely a
909segmentation fault).
910
911.. code-block:: python
912
913 from example import Parent
914 print(Parent().get_child())
915
916The problem is that ``Parent::get_child()`` returns a pointer to an instance of
917``Child``, but the fact that this instance is already managed by
918``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
919pybind11 will create a second independent ``std::shared_ptr<...>`` that also
920claims ownership of the pointer. In the end, the object will be freed **twice**
921since these shared pointers have no way of knowing about each other.
922
923There are two ways to resolve this issue:
924
9251. For types that are managed by a smart pointer class, never use raw pointers
926 in function arguments or return values. In other words: always consistently
927 wrap pointers into their designated holder types (such as
928 ``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
929 should be modified as follows:
930
931.. code-block:: cpp
932
933 std::shared_ptr<Child> get_child() { return child; }
934
9352. Adjust the definition of ``Child`` by specifying
936 ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
937 base class. This adds a small bit of information to ``Child`` that allows
938 pybind11 to realize that there is already an existing
939 ``std::shared_ptr<...>`` and communicate with it. In this case, the
940 declaration of ``Child`` should look as follows:
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100941
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100942.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
943
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100944.. code-block:: cpp
945
946 class Child : public std::enable_shared_from_this<Child> { };
947
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200948
949Please take a look at the :ref:`macro_notes` before using this feature.
950
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100951.. seealso::
952
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400953 The file :file:`example/example-smart-ptr.cpp` contains a complete example
954 that demonstrates how to work with custom reference-counting holder types
955 in more detail.
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100956
Wenzel Jakob93296692015-10-13 23:21:54 +0200957.. _custom_constructors:
958
959Custom constructors
960===================
961
962The syntax for binding constructors was previously introduced, but it only
963works when a constructor with the given parameters actually exists on the C++
964side. To extend this to more general cases, let's take a look at what actually
965happens under the hood: the following statement
966
967.. code-block:: cpp
968
969 py::class_<Example>(m, "Example")
970 .def(py::init<int>());
971
972is short hand notation for
973
974.. code-block:: cpp
975
976 py::class_<Example>(m, "Example")
977 .def("__init__",
978 [](Example &instance, int arg) {
979 new (&instance) Example(arg);
980 }
981 );
982
983In other words, :func:`init` creates an anonymous function that invokes an
984in-place constructor. Memory allocation etc. is already take care of beforehand
985within pybind11.
986
Pim Schellart5a7d17f2016-06-17 17:35:59 -0400987.. _catching_and_throwing_exceptions:
988
Wenzel Jakob93296692015-10-13 23:21:54 +0200989Catching and throwing exceptions
990================================
991
992When C++ code invoked from Python throws an ``std::exception``, it is
993automatically converted into a Python ``Exception``. pybind11 defines multiple
994special exception classes that will map to different types of Python
995exceptions:
996
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200997.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
998
Wenzel Jakob978e3762016-04-07 18:00:41 +0200999+--------------------------------------+------------------------------+
1000| C++ exception type | Python exception type |
1001+======================================+==============================+
1002| :class:`std::exception` | ``RuntimeError`` |
1003+--------------------------------------+------------------------------+
1004| :class:`std::bad_alloc` | ``MemoryError`` |
1005+--------------------------------------+------------------------------+
1006| :class:`std::domain_error` | ``ValueError`` |
1007+--------------------------------------+------------------------------+
1008| :class:`std::invalid_argument` | ``ValueError`` |
1009+--------------------------------------+------------------------------+
1010| :class:`std::length_error` | ``ValueError`` |
1011+--------------------------------------+------------------------------+
1012| :class:`std::out_of_range` | ``ValueError`` |
1013+--------------------------------------+------------------------------+
1014| :class:`std::range_error` | ``ValueError`` |
1015+--------------------------------------+------------------------------+
1016| :class:`pybind11::stop_iteration` | ``StopIteration`` (used to |
1017| | implement custom iterators) |
1018+--------------------------------------+------------------------------+
1019| :class:`pybind11::index_error` | ``IndexError`` (used to |
1020| | indicate out of bounds |
1021| | accesses in ``__getitem__``, |
1022| | ``__setitem__``, etc.) |
1023+--------------------------------------+------------------------------+
Sergey Lyskova95bde12016-05-08 19:31:55 -04001024| :class:`pybind11::value_error` | ``ValueError`` (used to |
1025| | indicate wrong value passed |
1026| | in ``container.remove(...)`` |
1027+--------------------------------------+------------------------------+
Wenzel Jakob978e3762016-04-07 18:00:41 +02001028| :class:`pybind11::error_already_set` | Indicates that the Python |
1029| | exception flag has already |
1030| | been initialized |
1031+--------------------------------------+------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +02001032
1033When a Python function invoked from C++ throws an exception, it is converted
1034into a C++ exception of type :class:`error_already_set` whose string payload
1035contains a textual summary.
1036
1037There is also a special exception :class:`cast_error` that is thrown by
1038:func:`handle::call` when the input arguments cannot be converted to Python
1039objects.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001040
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001041Registering custom exception translators
1042========================================
1043
1044If the default exception conversion policy described
1045:ref:`above <catching_and_throwing_exceptions>`
1046is insufficient, pybind11 also provides support for registering custom
1047exception translators.
1048
1049The function ``register_exception_translator(translator)`` takes a stateless
1050callable (e.g. a function pointer or a lambda function without captured
1051variables) with the following call signature: ``void(std::exception_ptr)``.
1052
1053When a C++ exception is thrown, registered exception translators are tried
1054in reverse order of registration (i.e. the last registered translator gets
1055a first shot at handling the exception).
1056
1057Inside the translator, ``std::rethrow_exception`` should be used within
1058a try block to re-throw the exception. A catch clause can then use
1059``PyErr_SetString`` to set a Python exception as demonstrated
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001060in :file:`example-custom-exceptions.cpp``.
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001061
1062This example also demonstrates how to create custom exception types
1063with ``py::exception``.
1064
1065The following example demonstrates this for a hypothetical exception class
1066``MyCustomException``:
1067
1068.. code-block:: cpp
1069
1070 py::register_exception_translator([](std::exception_ptr p) {
1071 try {
1072 if (p) std::rethrow_exception(p);
1073 } catch (const MyCustomException &e) {
1074 PyErr_SetString(PyExc_RuntimeError, e.what());
1075 }
1076 });
1077
1078Multiple exceptions can be handled by a single translator. If the exception is
1079not caught by the current translator, the previously registered one gets a
1080chance.
1081
1082If none of the registered exception translators is able to handle the
1083exception, it is handled by the default converter as described in the previous
1084section.
1085
1086.. note::
1087
1088 You must either call ``PyErr_SetString`` for every exception caught in a
1089 custom exception translator. Failure to do so will cause Python to crash
1090 with ``SystemError: error return without exception set``.
1091
1092 Exceptions that you do not plan to handle should simply not be caught.
1093
1094 You may also choose to explicity (re-)throw the exception to delegate it to
1095 the other existing exception translators.
1096
1097 The ``py::exception`` wrapper for creating custom exceptions cannot (yet)
1098 be used as a ``py::base``.
1099
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001100.. _opaque:
1101
1102Treating STL data structures as opaque objects
1103==============================================
1104
1105pybind11 heavily relies on a template matching mechanism to convert parameters
1106and return values that are constructed from STL data types such as vectors,
1107linked lists, hash tables, etc. This even works in a recursive manner, for
1108instance to deal with lists of hash maps of pairs of elementary and custom
1109types, etc.
1110
1111However, a fundamental limitation of this approach is that internal conversions
1112between Python and C++ types involve a copy operation that prevents
1113pass-by-reference semantics. What does this mean?
1114
1115Suppose we bind the following function
1116
1117.. code-block:: cpp
1118
1119 void append_1(std::vector<int> &v) {
1120 v.push_back(1);
1121 }
1122
1123and call it from Python, the following happens:
1124
Wenzel Jakob99279f72016-06-03 11:19:29 +02001125.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001126
1127 >>> v = [5, 6]
1128 >>> append_1(v)
1129 >>> print(v)
1130 [5, 6]
1131
1132As you can see, when passing STL data structures by reference, modifications
1133are not propagated back the Python side. A similar situation arises when
1134exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
1135functions:
1136
1137.. code-block:: cpp
1138
1139 /* ... definition ... */
1140
1141 class MyClass {
1142 std::vector<int> contents;
1143 };
1144
1145 /* ... binding code ... */
1146
1147 py::class_<MyClass>(m, "MyClass")
1148 .def(py::init<>)
1149 .def_readwrite("contents", &MyClass::contents);
1150
1151In this case, properties can be read and written in their entirety. However, an
1152``append`` operaton involving such a list type has no effect:
1153
Wenzel Jakob99279f72016-06-03 11:19:29 +02001154.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001155
1156 >>> m = MyClass()
1157 >>> m.contents = [5, 6]
1158 >>> print(m.contents)
1159 [5, 6]
1160 >>> m.contents.append(7)
1161 >>> print(m.contents)
1162 [5, 6]
1163
1164To deal with both of the above situations, pybind11 provides a macro named
1165``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based conversion
1166machinery of types, thus rendering them *opaque*. The contents of opaque
1167objects are never inspected or extracted, hence they can be passed by
1168reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
1169the declaration
1170
1171.. code-block:: cpp
1172
1173 PYBIND11_MAKE_OPAQUE(std::vector<int>);
1174
1175before any binding code (e.g. invocations to ``class_::def()``, etc.). This
1176macro must be specified at the top level, since instantiates a partial template
1177overload. If your binding code consists of multiple compilation units, it must
1178be present in every file preceding any usage of ``std::vector<int>``. Opaque
1179types must also have a corresponding ``class_`` declaration to associate them
1180with a name in Python, and to define a set of available operations:
1181
1182.. code-block:: cpp
1183
1184 py::class_<std::vector<int>>(m, "IntVector")
1185 .def(py::init<>())
1186 .def("clear", &std::vector<int>::clear)
1187 .def("pop_back", &std::vector<int>::pop_back)
1188 .def("__len__", [](const std::vector<int> &v) { return v.size(); })
1189 .def("__iter__", [](std::vector<int> &v) {
1190 return py::make_iterator(v.begin(), v.end());
1191 }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
1192 // ....
1193
Wenzel Jakob9bb97c12016-06-03 11:19:41 +02001194Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001195
1196.. seealso::
1197
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001198 The file :file:`example/example-opaque-types.cpp` contains a complete
1199 example that demonstrates how to create and expose opaque types using
1200 pybind11 in more detail.
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001201
1202.. _eigen:
1203
1204Transparent conversion of dense and sparse Eigen data types
1205===========================================================
1206
1207Eigen [#f1]_ is C++ header-based library for dense and sparse linear algebra. Due to
1208its popularity and widespread adoption, pybind11 provides transparent
1209conversion support between Eigen and Scientific Python linear algebra data types.
1210
1211Specifically, when including the optional header file :file:`pybind11/eigen.h`,
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001212pybind11 will automatically and transparently convert
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001213
12141. Static and dynamic Eigen dense vectors and matrices to instances of
1215 ``numpy.ndarray`` (and vice versa).
1216
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040012172. Returned matrix expressions such as blocks (including columns or rows) and
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001218 diagonals will be converted to ``numpy.ndarray`` of the expression
1219 values.
1220
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040012213. Returned matrix-like objects such as Eigen::DiagonalMatrix or
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001222 Eigen::SelfAdjointView will be converted to ``numpy.ndarray`` containing the
1223 expressed value.
1224
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040012254. Eigen sparse vectors and matrices to instances of
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001226 ``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` (and vice versa).
1227
1228This makes it possible to bind most kinds of functions that rely on these types.
1229One major caveat are functions that take Eigen matrices *by reference* and modify
1230them somehow, in which case the information won't be propagated to the caller.
1231
1232.. code-block:: cpp
1233
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001234 /* The Python bindings of these functions won't replicate
1235 the intended effect of modifying the function arguments */
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001236 void scale_by_2(Eigen::Vector3f &v) {
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001237 v *= 2;
1238 }
1239 void scale_by_2(Eigen::Ref<Eigen::MatrixXd> &v) {
1240 v *= 2;
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001241 }
1242
1243To see why this is, refer to the section on :ref:`opaque` (although that
1244section specifically covers STL data types, the underlying issue is the same).
1245The next two sections discuss an efficient alternative for exposing the
1246underlying native Eigen types as opaque objects in a way that still integrates
1247with NumPy and SciPy.
1248
1249.. [#f1] http://eigen.tuxfamily.org
1250
1251.. seealso::
1252
1253 The file :file:`example/eigen.cpp` contains a complete example that
1254 shows how to pass Eigen sparse and dense data types in more detail.
1255
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001256Buffer protocol
1257===============
1258
1259Python supports an extremely general and convenient approach for exchanging
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001260data between plugin libraries. Types can expose a buffer view [#f2]_, which
1261provides fast direct access to the raw internal data representation. Suppose we
1262want to bind the following simplistic Matrix class:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001263
1264.. code-block:: cpp
1265
1266 class Matrix {
1267 public:
1268 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
1269 m_data = new float[rows*cols];
1270 }
1271 float *data() { return m_data; }
1272 size_t rows() const { return m_rows; }
1273 size_t cols() const { return m_cols; }
1274 private:
1275 size_t m_rows, m_cols;
1276 float *m_data;
1277 };
1278
1279The following binding code exposes the ``Matrix`` contents as a buffer object,
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001280making it possible to cast Matrices into NumPy arrays. It is even possible to
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001281completely avoid copy operations with Python expressions like
1282``np.array(matrix_instance, copy = False)``.
1283
1284.. code-block:: cpp
1285
1286 py::class_<Matrix>(m, "Matrix")
1287 .def_buffer([](Matrix &m) -> py::buffer_info {
1288 return py::buffer_info(
Wenzel Jakob876eeab2016-05-04 22:22:48 +02001289 m.data(), /* Pointer to buffer */
1290 sizeof(float), /* Size of one scalar */
1291 py::format_descriptor<float>::value, /* Python struct-style format descriptor */
1292 2, /* Number of dimensions */
1293 { m.rows(), m.cols() }, /* Buffer dimensions */
1294 { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001295 sizeof(float) }
1296 );
1297 });
1298
1299The snippet above binds a lambda function, which can create ``py::buffer_info``
1300description records on demand describing a given matrix. The contents of
1301``py::buffer_info`` mirror the Python buffer protocol specification.
1302
1303.. code-block:: cpp
1304
1305 struct buffer_info {
1306 void *ptr;
1307 size_t itemsize;
1308 std::string format;
1309 int ndim;
1310 std::vector<size_t> shape;
1311 std::vector<size_t> strides;
1312 };
1313
1314To create a C++ function that can take a Python buffer object as an argument,
1315simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
1316in a great variety of configurations, hence some safety checks are usually
1317necessary in the function body. Below, you can see an basic example on how to
1318define a custom constructor for the Eigen double precision matrix
1319(``Eigen::MatrixXd``) type, which supports initialization from compatible
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001320buffer objects (e.g. a NumPy matrix).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001321
1322.. code-block:: cpp
1323
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001324 /* Bind MatrixXd (or some other Eigen type) to Python */
1325 typedef Eigen::MatrixXd Matrix;
1326
1327 typedef Matrix::Scalar Scalar;
1328 constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
1329
1330 py::class_<Matrix>(m, "Matrix")
1331 .def("__init__", [](Matrix &m, py::buffer b) {
Wenzel Jakobe7628532016-05-05 10:04:44 +02001332 typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
Wenzel Jakobe7628532016-05-05 10:04:44 +02001333
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001334 /* Request a buffer descriptor from Python */
1335 py::buffer_info info = b.request();
1336
1337 /* Some sanity checks ... */
Wenzel Jakobe7628532016-05-05 10:04:44 +02001338 if (info.format != py::format_descriptor<Scalar>::value)
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001339 throw std::runtime_error("Incompatible format: expected a double array!");
1340
1341 if (info.ndim != 2)
1342 throw std::runtime_error("Incompatible buffer dimension!");
1343
Wenzel Jakobe7628532016-05-05 10:04:44 +02001344 auto strides = Strides(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001345 info.strides[rowMajor ? 0 : 1] / sizeof(Scalar),
1346 info.strides[rowMajor ? 1 : 0] / sizeof(Scalar));
Wenzel Jakobe7628532016-05-05 10:04:44 +02001347
1348 auto map = Eigen::Map<Matrix, 0, Strides>(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001349 static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
Wenzel Jakobe7628532016-05-05 10:04:44 +02001350
1351 new (&m) Matrix(map);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001352 });
1353
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001354For reference, the ``def_buffer()`` call for this Eigen data type should look
1355as follows:
1356
1357.. code-block:: cpp
1358
1359 .def_buffer([](Matrix &m) -> py::buffer_info {
1360 return py::buffer_info(
1361 m.data(), /* Pointer to buffer */
1362 sizeof(Scalar), /* Size of one scalar */
1363 /* Python struct-style format descriptor */
1364 py::format_descriptor<Scalar>::value,
1365 /* Number of dimensions */
1366 2,
1367 /* Buffer dimensions */
1368 { (size_t) m.rows(),
1369 (size_t) m.cols() },
1370 /* Strides (in bytes) for each index */
1371 { sizeof(Scalar) * (rowMajor ? m.cols() : 1),
1372 sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
1373 );
1374 })
1375
1376For a much easier approach of binding Eigen types (although with some
1377limitations), refer to the section on :ref:`eigen`.
1378
Wenzel Jakob93296692015-10-13 23:21:54 +02001379.. seealso::
1380
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001381 The file :file:`example/example-buffers.cpp` contains a complete example
1382 that demonstrates using the buffer protocol with pybind11 in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +02001383
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001384.. [#f2] http://docs.python.org/3/c-api/buffer.html
Wenzel Jakob978e3762016-04-07 18:00:41 +02001385
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001386NumPy support
1387=============
1388
1389By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
1390restrict the function so that it only accepts NumPy arrays (rather than any
Wenzel Jakob978e3762016-04-07 18:00:41 +02001391type of Python object satisfying the buffer protocol).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001392
1393In many situations, we want to define a function which only accepts a NumPy
Wenzel Jakob93296692015-10-13 23:21:54 +02001394array of a certain data type. This is possible via the ``py::array_t<T>``
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001395template. For instance, the following function requires the argument to be a
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001396NumPy array containing double precision values.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001397
1398.. code-block:: cpp
1399
Wenzel Jakob93296692015-10-13 23:21:54 +02001400 void f(py::array_t<double> array);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001401
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001402When it is invoked with a different type (e.g. an integer or a list of
1403integers), the binding code will attempt to cast the input into a NumPy array
1404of the requested type. Note that this feature requires the
1405:file:``pybind11/numpy.h`` header to be included.
1406
1407Data in NumPy arrays is not guaranteed to packed in a dense manner;
1408furthermore, entries can be separated by arbitrary column and row strides.
1409Sometimes, it can be useful to require a function to only accept dense arrays
1410using either the C (row-major) or Fortran (column-major) ordering. This can be
1411accomplished via a second template argument with values ``py::array::c_style``
1412or ``py::array::f_style``.
1413
1414.. code-block:: cpp
1415
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001416 void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001417
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001418The ``py::array::forcecast`` argument is the default value of the second
1419template paramenter, and it ensures that non-conforming arguments are converted
1420into an array satisfying the specified requirements instead of trying the next
1421function overload.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001422
1423Vectorizing functions
1424=====================
1425
1426Suppose we want to bind a function with the following signature to Python so
1427that it can process arbitrary NumPy array arguments (vectors, matrices, general
1428N-D arrays) in addition to its normal arguments:
1429
1430.. code-block:: cpp
1431
1432 double my_func(int x, float y, double z);
1433
Wenzel Jakob8f4eb002015-10-15 18:13:33 +02001434After including the ``pybind11/numpy.h`` header, this is extremely simple:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001435
1436.. code-block:: cpp
1437
1438 m.def("vectorized_func", py::vectorize(my_func));
1439
1440Invoking the function like below causes 4 calls to be made to ``my_func`` with
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001441each of the array elements. The significant advantage of this compared to
Wenzel Jakob978e3762016-04-07 18:00:41 +02001442solutions like ``numpy.vectorize()`` is that the loop over the elements runs
1443entirely on the C++ side and can be crunched down into a tight, optimized loop
1444by the compiler. The result is returned as a NumPy array of type
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001445``numpy.dtype.float64``.
1446
Wenzel Jakob99279f72016-06-03 11:19:29 +02001447.. code-block:: pycon
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001448
1449 >>> x = np.array([[1, 3],[5, 7]])
1450 >>> y = np.array([[2, 4],[6, 8]])
1451 >>> z = 3
1452 >>> result = vectorized_func(x, y, z)
1453
1454The scalar argument ``z`` is transparently replicated 4 times. The input
1455arrays ``x`` and ``y`` are automatically converted into the right types (they
1456are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
1457``numpy.dtype.float32``, respectively)
1458
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001459Sometimes we might want to explicitly exclude an argument from the vectorization
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001460because it makes little sense to wrap it in a NumPy array. For instance,
1461suppose the function signature was
1462
1463.. code-block:: cpp
1464
1465 double my_func(int x, float y, my_custom_type *z);
1466
1467This can be done with a stateful Lambda closure:
1468
1469.. code-block:: cpp
1470
1471 // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
1472 m.def("vectorized_func",
Wenzel Jakob93296692015-10-13 23:21:54 +02001473 [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001474 auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
1475 return py::vectorize(stateful_closure)(x, y);
1476 }
1477 );
1478
Wenzel Jakob61587162016-01-18 22:38:52 +01001479In cases where the computation is too complicated to be reduced to
1480``vectorize``, it will be necessary to create and access the buffer contents
1481manually. The following snippet contains a complete example that shows how this
1482works (the code is somewhat contrived, since it could have been done more
1483simply using ``vectorize``).
1484
1485.. code-block:: cpp
1486
1487 #include <pybind11/pybind11.h>
1488 #include <pybind11/numpy.h>
1489
1490 namespace py = pybind11;
1491
1492 py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
1493 auto buf1 = input1.request(), buf2 = input2.request();
1494
1495 if (buf1.ndim != 1 || buf2.ndim != 1)
1496 throw std::runtime_error("Number of dimensions must be one");
1497
1498 if (buf1.shape[0] != buf2.shape[0])
1499 throw std::runtime_error("Input shapes must match");
1500
1501 auto result = py::array(py::buffer_info(
1502 nullptr, /* Pointer to data (nullptr -> ask NumPy to allocate!) */
1503 sizeof(double), /* Size of one item */
Wenzel Jakobf38f3592016-07-19 17:48:42 +02001504 py::format_descriptor<double>::value, /* Buffer format */
Wenzel Jakob61587162016-01-18 22:38:52 +01001505 buf1.ndim, /* How many dimensions? */
1506 { buf1.shape[0] }, /* Number of elements for each dimension */
1507 { sizeof(double) } /* Strides for each dimension */
1508 ));
1509
1510 auto buf3 = result.request();
1511
1512 double *ptr1 = (double *) buf1.ptr,
1513 *ptr2 = (double *) buf2.ptr,
1514 *ptr3 = (double *) buf3.ptr;
1515
1516 for (size_t idx = 0; idx < buf1.shape[0]; idx++)
1517 ptr3[idx] = ptr1[idx] + ptr2[idx];
1518
1519 return result;
1520 }
1521
1522 PYBIND11_PLUGIN(test) {
1523 py::module m("test");
1524 m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
1525 return m.ptr();
1526 }
1527
Wenzel Jakob93296692015-10-13 23:21:54 +02001528.. seealso::
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001529
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001530 The file :file:`example/example-numpy-vectorize.cpp` contains a complete
1531 example that demonstrates using :func:`vectorize` in more detail.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001532
Wenzel Jakob93296692015-10-13 23:21:54 +02001533Functions taking Python objects as arguments
1534============================================
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001535
Wenzel Jakob93296692015-10-13 23:21:54 +02001536pybind11 exposes all major Python types using thin C++ wrapper classes. These
1537wrapper classes can also be used as parameters of functions in bindings, which
1538makes it possible to directly work with native Python types on the C++ side.
1539For instance, the following statement iterates over a Python ``dict``:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001540
Wenzel Jakob93296692015-10-13 23:21:54 +02001541.. code-block:: cpp
1542
1543 void print_dict(py::dict dict) {
1544 /* Easily interact with Python types */
1545 for (auto item : dict)
1546 std::cout << "key=" << item.first << ", "
1547 << "value=" << item.second << std::endl;
1548 }
1549
1550Available types include :class:`handle`, :class:`object`, :class:`bool_`,
Wenzel Jakob27e8e102016-01-17 22:36:37 +01001551:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001552:class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
1553:class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
1554:class:`array`, and :class:`array_t`.
Wenzel Jakob93296692015-10-13 23:21:54 +02001555
Wenzel Jakob436b7312015-10-20 01:04:30 +02001556In this kind of mixed code, it is often necessary to convert arbitrary C++
1557types to Python, which can be done using :func:`cast`:
1558
1559.. code-block:: cpp
1560
1561 MyClass *cls = ..;
1562 py::object obj = py::cast(cls);
1563
1564The reverse direction uses the following syntax:
1565
1566.. code-block:: cpp
1567
1568 py::object obj = ...;
1569 MyClass *cls = obj.cast<MyClass *>();
1570
1571When conversion fails, both directions throw the exception :class:`cast_error`.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001572It is also possible to call python functions via ``operator()``.
1573
1574.. code-block:: cpp
1575
1576 py::function f = <...>;
1577 py::object result_py = f(1234, "hello", some_instance);
1578 MyClass &result = result_py.cast<MyClass>();
1579
1580The special ``f(*args)`` and ``f(*args, **kwargs)`` syntax is also supported to
1581supply arbitrary argument and keyword lists, although these cannot be mixed
1582with other parameters.
1583
1584.. code-block:: cpp
1585
1586 py::function f = <...>;
1587 py::tuple args = py::make_tuple(1234);
1588 py::dict kwargs;
1589 kwargs["y"] = py::cast(5678);
1590 py::object result = f(*args, **kwargs);
Wenzel Jakob436b7312015-10-20 01:04:30 +02001591
Wenzel Jakob93296692015-10-13 23:21:54 +02001592.. seealso::
1593
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001594 The file :file:`example/example-python-types.cpp` contains a complete
1595 example that demonstrates passing native Python types in more detail. The
1596 file :file:`example/example-arg-keywords-and-defaults.cpp` discusses usage
1597 of ``args`` and ``kwargs``.
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001598
1599Default arguments revisited
1600===========================
1601
1602The section on :ref:`default_args` previously discussed basic usage of default
1603arguments using pybind11. One noteworthy aspect of their implementation is that
1604default arguments are converted to Python objects right at declaration time.
1605Consider the following example:
1606
1607.. code-block:: cpp
1608
1609 py::class_<MyClass>("MyClass")
1610 .def("myFunction", py::arg("arg") = SomeType(123));
1611
1612In this case, pybind11 must already be set up to deal with values of the type
1613``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
1614exception will be thrown.
1615
1616Another aspect worth highlighting is that the "preview" of the default argument
1617in the function signature is generated using the object's ``__repr__`` method.
1618If not available, the signature may not be very helpful, e.g.:
1619
Wenzel Jakob99279f72016-06-03 11:19:29 +02001620.. code-block:: pycon
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001621
1622 FUNCTIONS
1623 ...
1624 | myFunction(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +01001625 | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001626 ...
1627
1628The first way of addressing this is by defining ``SomeType.__repr__``.
1629Alternatively, it is possible to specify the human-readable preview of the
1630default argument manually using the ``arg_t`` notation:
1631
1632.. code-block:: cpp
1633
1634 py::class_<MyClass>("MyClass")
1635 .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
1636
Wenzel Jakobc769fce2016-03-03 12:03:30 +01001637Sometimes it may be necessary to pass a null pointer value as a default
1638argument. In this case, remember to cast it to the underlying type in question,
1639like so:
1640
1641.. code-block:: cpp
1642
1643 py::class_<MyClass>("MyClass")
1644 .def("myFunction", py::arg("arg") = (SomeType *) nullptr);
1645
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001646Binding functions that accept arbitrary numbers of arguments and keywords arguments
1647===================================================================================
1648
1649Python provides a useful mechanism to define functions that accept arbitrary
1650numbers of arguments and keyword arguments:
1651
1652.. code-block:: cpp
1653
1654 def generic(*args, **kwargs):
1655 # .. do something with args and kwargs
1656
1657Such functions can also be created using pybind11:
1658
1659.. code-block:: cpp
1660
1661 void generic(py::args args, py::kwargs kwargs) {
1662 /// .. do something with args
1663 if (kwargs)
1664 /// .. do something with kwargs
1665 }
1666
1667 /// Binding code
1668 m.def("generic", &generic);
1669
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001670(See ``example/example-arg-keywords-and-defaults.cpp``). The class ``py::args``
1671derives from ``py::list`` and ``py::kwargs`` derives from ``py::dict`` Note
1672that the ``kwargs`` argument is invalid if no keyword arguments were actually
1673provided. Please refer to the other examples for details on how to iterate
1674over these, and on how to cast their entries into C++ objects.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001675
Wenzel Jakob3764e282016-08-01 23:34:48 +02001676.. warning::
1677
1678 Unlike Python, pybind11 does not allow combining normal parameters with the
1679 ``args`` / ``kwargs`` special parameters.
1680
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001681Partitioning code over multiple extension modules
1682=================================================
1683
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001684It's straightforward to split binding code over multiple extension modules,
1685while referencing types that are declared elsewhere. Everything "just" works
1686without any special precautions. One exception to this rule occurs when
1687extending a type declared in another extension module. Recall the basic example
1688from Section :ref:`inheritance`.
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001689
1690.. code-block:: cpp
1691
1692 py::class_<Pet> pet(m, "Pet");
1693 pet.def(py::init<const std::string &>())
1694 .def_readwrite("name", &Pet::name);
1695
1696 py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
1697 .def(py::init<const std::string &>())
1698 .def("bark", &Dog::bark);
1699
1700Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
1701whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
1702course that the variable ``pet`` is not available anymore though it is needed
1703to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
1704However, it can be acquired as follows:
1705
1706.. code-block:: cpp
1707
1708 py::object pet = (py::object) py::module::import("basic").attr("Pet");
1709
1710 py::class_<Dog>(m, "Dog", pet)
1711 .def(py::init<const std::string &>())
1712 .def("bark", &Dog::bark);
1713
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001714Alternatively, we can rely on the ``base`` tag, which performs an automated
1715lookup of the corresponding Python type. However, this also requires invoking
1716the ``import`` function once to ensure that the pybind11 binding code of the
1717module ``basic`` has been executed.
1718
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001719.. code-block:: cpp
1720
1721 py::module::import("basic");
1722
1723 py::class_<Dog>(m, "Dog", py::base<Pet>())
1724 .def(py::init<const std::string &>())
1725 .def("bark", &Dog::bark);
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001726
Wenzel Jakob978e3762016-04-07 18:00:41 +02001727Naturally, both methods will fail when there are cyclic dependencies.
1728
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001729Note that compiling code which has its default symbol visibility set to
1730*hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the
1731ability to access types defined in another extension module. Workarounds
1732include changing the global symbol visibility (not recommended, because it will
1733lead unnecessarily large binaries) or manually exporting types that are
1734accessed by multiple extension modules:
1735
1736.. code-block:: cpp
1737
1738 #ifdef _WIN32
1739 # define EXPORT_TYPE __declspec(dllexport)
1740 #else
1741 # define EXPORT_TYPE __attribute__ ((visibility("default")))
1742 #endif
1743
1744 class EXPORT_TYPE Dog : public Animal {
1745 ...
1746 };
1747
1748
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001749Pickling support
1750================
1751
1752Python's ``pickle`` module provides a powerful facility to serialize and
1753de-serialize a Python object graph into a binary data stream. To pickle and
Wenzel Jakob3d0e6ff2016-04-13 11:48:10 +02001754unpickle C++ classes using pybind11, two additional functions must be provided.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001755Suppose the class in question has the following signature:
1756
1757.. code-block:: cpp
1758
1759 class Pickleable {
1760 public:
1761 Pickleable(const std::string &value) : m_value(value) { }
1762 const std::string &value() const { return m_value; }
1763
1764 void setExtra(int extra) { m_extra = extra; }
1765 int extra() const { return m_extra; }
1766 private:
1767 std::string m_value;
1768 int m_extra = 0;
1769 };
1770
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001771The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f3]_
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001772looks as follows:
1773
1774.. code-block:: cpp
1775
1776 py::class_<Pickleable>(m, "Pickleable")
1777 .def(py::init<std::string>())
1778 .def("value", &Pickleable::value)
1779 .def("extra", &Pickleable::extra)
1780 .def("setExtra", &Pickleable::setExtra)
1781 .def("__getstate__", [](const Pickleable &p) {
1782 /* Return a tuple that fully encodes the state of the object */
1783 return py::make_tuple(p.value(), p.extra());
1784 })
1785 .def("__setstate__", [](Pickleable &p, py::tuple t) {
1786 if (t.size() != 2)
1787 throw std::runtime_error("Invalid state!");
1788
Wenzel Jakobd40885a2016-04-13 13:30:05 +02001789 /* Invoke the in-place constructor. Note that this is needed even
1790 when the object just has a trivial default constructor */
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001791 new (&p) Pickleable(t[0].cast<std::string>());
1792
1793 /* Assign any additional state */
1794 p.setExtra(t[1].cast<int>());
1795 });
1796
1797An instance can now be pickled as follows:
1798
1799.. code-block:: python
1800
1801 try:
1802 import cPickle as pickle # Use cPickle on Python 2.7
1803 except ImportError:
1804 import pickle
1805
1806 p = Pickleable("test_value")
1807 p.setExtra(15)
Wenzel Jakob81e09752016-04-30 23:13:03 +02001808 data = pickle.dumps(p, 2)
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001809
Wenzel Jakob81e09752016-04-30 23:13:03 +02001810Note that only the cPickle module is supported on Python 2.7. The second
1811argument to ``dumps`` is also crucial: it selects the pickle protocol version
18122, since the older version 1 is not supported. Newer versions are also fine—for
1813instance, specify ``-1`` to always use the latest available version. Beware:
1814failure to follow these instructions will cause important pybind11 memory
1815allocation routines to be skipped during unpickling, which will likely lead to
1816memory corruption and/or segmentation faults.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001817
1818.. seealso::
1819
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001820 The file :file:`example/example-pickling.cpp` contains a complete example
1821 that demonstrates how to pickle and unpickle types using pybind11 in more
1822 detail.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001823
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001824.. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001825
1826Generating documentation using Sphinx
1827=====================================
1828
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001829Sphinx [#f4]_ has the ability to inspect the signatures and documentation
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001830strings in pybind11-based extension modules to automatically generate beautiful
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001831documentation in a variety formats. The python_example repository [#f5]_ contains a
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001832simple example repository which uses this approach.
1833
1834There are two potential gotchas when using this approach: first, make sure that
1835the resulting strings do not contain any :kbd:`TAB` characters, which break the
1836docstring parsing routines. You may want to use C++11 raw string literals,
1837which are convenient for multi-line comments. Conveniently, any excess
1838indentation will be automatically be removed by Sphinx. However, for this to
1839work, it is important that all lines are indented consistently, i.e.:
1840
1841.. code-block:: cpp
1842
1843 // ok
1844 m.def("foo", &foo, R"mydelimiter(
1845 The foo function
1846
1847 Parameters
1848 ----------
1849 )mydelimiter");
1850
1851 // *not ok*
1852 m.def("foo", &foo, R"mydelimiter(The foo function
1853
1854 Parameters
1855 ----------
1856 )mydelimiter");
1857
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001858.. [#f4] http://www.sphinx-doc.org
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001859.. [#f5] http://github.com/pybind/python_example
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001860
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001861Evaluating Python expressions from strings and files
1862====================================================
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001863
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001864pybind11 provides the :func:`eval` and :func:`eval_file` functions to evaluate
1865Python expressions and statements. The following example illustrates how they
1866can be used.
1867
1868Both functions accept a template parameter that describes how the argument
1869should be interpreted. Possible choices include ``eval_expr`` (isolated
1870expression), ``eval_single_statement`` (a single statement, return value is
1871always ``none``), and ``eval_statements`` (sequence of statements, return value
1872is always ``none``).
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001873
1874.. code-block:: cpp
1875
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001876 // At beginning of file
1877 #include <pybind11/eval.h>
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001878
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001879 ...
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001880
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001881 // Evaluate in scope of main module
1882 py::object scope = py::module::import("__main__").attr("__dict__");
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001883
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001884 // Evaluate an isolated expression
1885 int result = py::eval("my_variable + 10", scope).cast<int>();
1886
1887 // Evaluate a sequence of statements
1888 py::eval<py::eval_statements>(
1889 "print('Hello')\n"
1890 "print('world!');",
1891 scope);
1892
1893 // Evaluate the statements in an separate Python file on disk
1894 py::eval_file("script.py", scope);
1895