blob: 9054f912e0f1ac29bce20e9d4ae55f713f82b3bb [file] [log] [blame]
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001.. _advanced:
2
3Advanced topics
4###############
5
Wenzel Jakob93296692015-10-13 23:21:54 +02006For brevity, the rest of this chapter assumes that the following two lines are
7present:
8
9.. code-block:: cpp
10
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020011 #include <pybind11/pybind11.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020012
Wenzel Jakob10e62e12015-10-15 22:46:07 +020013 namespace py = pybind11;
Wenzel Jakob93296692015-10-13 23:21:54 +020014
Wenzel Jakobde3ad072016-02-02 11:38:21 +010015Exporting constants and mutable objects
16=======================================
17
18To expose a C++ constant, use the ``attr`` function to register it in a module
19as shown below. The ``int_`` class is one of many small wrapper objects defined
20in ``pybind11/pytypes.h``. General objects (including integers) can also be
21converted using the function ``cast``.
22
23.. code-block:: cpp
24
25 PYBIND11_PLUGIN(example) {
26 py::module m("example", "pybind11 example plugin");
27 m.attr("MY_CONSTANT") = py::int_(123);
28 m.attr("MY_CONSTANT_2") = py::cast(new MyObject());
29 }
30
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020031Operator overloading
32====================
33
Wenzel Jakob93296692015-10-13 23:21:54 +020034Suppose that we're given the following ``Vector2`` class with a vector addition
35and scalar multiplication operation, all implemented using overloaded operators
36in C++.
37
38.. code-block:: cpp
39
40 class Vector2 {
41 public:
42 Vector2(float x, float y) : x(x), y(y) { }
43
Wenzel Jakob93296692015-10-13 23:21:54 +020044 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
45 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
46 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
47 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
48
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020049 friend Vector2 operator*(float f, const Vector2 &v) {
50 return Vector2(f * v.x, f * v.y);
51 }
Wenzel Jakob93296692015-10-13 23:21:54 +020052
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020053 std::string toString() const {
54 return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
55 }
Wenzel Jakob93296692015-10-13 23:21:54 +020056 private:
57 float x, y;
58 };
59
60The following snippet shows how the above operators can be conveniently exposed
61to Python.
62
63.. code-block:: cpp
64
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020065 #include <pybind11/operators.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020066
Wenzel Jakobb1b71402015-10-18 16:48:30 +020067 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020068 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +020069
70 py::class_<Vector2>(m, "Vector2")
71 .def(py::init<float, float>())
72 .def(py::self + py::self)
73 .def(py::self += py::self)
74 .def(py::self *= float())
75 .def(float() * py::self)
76 .def("__repr__", &Vector2::toString);
77
78 return m.ptr();
79 }
80
81Note that a line like
82
83.. code-block:: cpp
84
85 .def(py::self * float())
86
87is really just short hand notation for
88
89.. code-block:: cpp
90
91 .def("__mul__", [](const Vector2 &a, float b) {
92 return a * b;
93 })
94
95This can be useful for exposing additional operators that don't exist on the
96C++ side, or to perform other types of customization.
97
98.. note::
99
100 To use the more convenient ``py::self`` notation, the additional
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200101 header file :file:`pybind11/operators.h` must be included.
Wenzel Jakob93296692015-10-13 23:21:54 +0200102
103.. seealso::
104
105 The file :file:`example/example3.cpp` contains a complete example that
106 demonstrates how to work with overloaded operators in more detail.
107
108Callbacks and passing anonymous functions
109=========================================
110
111The C++11 standard brought lambda functions and the generic polymorphic
112function wrapper ``std::function<>`` to the C++ programming language, which
113enable powerful new ways of working with functions. Lambda functions come in
114two flavors: stateless lambda function resemble classic function pointers that
115link to an anonymous piece of code, while stateful lambda functions
116additionally depend on captured variables that are stored in an anonymous
117*lambda closure object*.
118
119Here is a simple example of a C++ function that takes an arbitrary function
120(stateful or stateless) with signature ``int -> int`` as an argument and runs
121it with the value 10.
122
123.. code-block:: cpp
124
125 int func_arg(const std::function<int(int)> &f) {
126 return f(10);
127 }
128
129The example below is more involved: it takes a function of signature ``int -> int``
130and returns another function of the same kind. The return value is a stateful
131lambda function, which stores the value ``f`` in the capture object and adds 1 to
132its return value upon execution.
133
134.. code-block:: cpp
135
136 std::function<int(int)> func_ret(const std::function<int(int)> &f) {
137 return [f](int i) {
138 return f(i) + 1;
139 };
140 }
141
Brad Harmon835fc062016-06-16 13:19:15 -0500142This example demonstrates using python named parameters in C++ callbacks which
143requires using ``py::cpp_function`` as a wrapper. Usage is similar to defining
144methods of classes:
145
146.. code-block:: cpp
147
148 py::cpp_function func_cpp() {
149 return py::cpp_function([](int i) { return i+1; },
150 py::arg("number"));
151 }
152
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200153After including the extra header file :file:`pybind11/functional.h`, it is almost
Brad Harmon835fc062016-06-16 13:19:15 -0500154trivial to generate binding code for all of these functions.
Wenzel Jakob93296692015-10-13 23:21:54 +0200155
156.. code-block:: cpp
157
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200158 #include <pybind11/functional.h>
Wenzel Jakob93296692015-10-13 23:21:54 +0200159
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200160 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200161 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200162
163 m.def("func_arg", &func_arg);
164 m.def("func_ret", &func_ret);
Brad Harmon835fc062016-06-16 13:19:15 -0500165 m.def("func_cpp", &func_cpp);
Wenzel Jakob93296692015-10-13 23:21:54 +0200166
167 return m.ptr();
168 }
169
170The following interactive session shows how to call them from Python.
171
Wenzel Jakob99279f72016-06-03 11:19:29 +0200172.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200173
174 $ python
175 >>> import example
176 >>> def square(i):
177 ... return i * i
178 ...
179 >>> example.func_arg(square)
180 100L
181 >>> square_plus_1 = example.func_ret(square)
182 >>> square_plus_1(4)
183 17L
Brad Harmon835fc062016-06-16 13:19:15 -0500184 >>> plus_1 = func_cpp()
185 >>> plus_1(number=43)
186 44L
Wenzel Jakob93296692015-10-13 23:21:54 +0200187
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100188.. warning::
189
190 Keep in mind that passing a function from C++ to Python (or vice versa)
191 will instantiate a piece of wrapper code that translates function
Wenzel Jakob954b7932016-07-10 10:13:18 +0200192 invocations between the two languages. Naturally, this translation
193 increases the computational cost of each function call somewhat. A
194 problematic situation can arise when a function is copied back and forth
195 between Python and C++ many times in a row, in which case the underlying
196 wrappers will accumulate correspondingly. The resulting long sequence of
197 C++ -> Python -> C++ -> ... roundtrips can significantly decrease
198 performance.
199
200 There is one exception: pybind11 detects case where a stateless function
201 (i.e. a function pointer or a lambda function without captured variables)
202 is passed as an argument to another C++ function exposed in Python. In this
203 case, there is no overhead. Pybind11 will extract the underlying C++
204 function pointer from the wrapped function to sidestep a potential C++ ->
205 Python -> C++ roundtrip. This is demonstrated in Example 5.
206
207.. note::
208
209 This functionality is very useful when generating bindings for callbacks in
210 C++ libraries (e.g. GUI libraries, asynchronous networking libraries, etc.).
211
212 The file :file:`example/example5.cpp` contains a complete example that
213 demonstrates how to work with callbacks and anonymous functions in more detail.
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100214
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200215Overriding virtual functions in Python
216======================================
217
Wenzel Jakob93296692015-10-13 23:21:54 +0200218Suppose that a C++ class or interface has a virtual function that we'd like to
219to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
220given as a specific example of how one would do this with traditional C++
221code).
222
223.. code-block:: cpp
224
225 class Animal {
226 public:
227 virtual ~Animal() { }
228 virtual std::string go(int n_times) = 0;
229 };
230
231 class Dog : public Animal {
232 public:
233 std::string go(int n_times) {
234 std::string result;
235 for (int i=0; i<n_times; ++i)
236 result += "woof! ";
237 return result;
238 }
239 };
240
241Let's also suppose that we are given a plain function which calls the
242function ``go()`` on an arbitrary ``Animal`` instance.
243
244.. code-block:: cpp
245
246 std::string call_go(Animal *animal) {
247 return animal->go(3);
248 }
249
250Normally, the binding code for these classes would look as follows:
251
252.. code-block:: cpp
253
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200254 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200255 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200256
257 py::class_<Animal> animal(m, "Animal");
258 animal
259 .def("go", &Animal::go);
260
261 py::class_<Dog>(m, "Dog", animal)
262 .def(py::init<>());
263
264 m.def("call_go", &call_go);
265
266 return m.ptr();
267 }
268
269However, these bindings are impossible to extend: ``Animal`` is not
270constructible, and we clearly require some kind of "trampoline" that
271redirects virtual calls back to Python.
272
273Defining a new type of ``Animal`` from within Python is possible but requires a
274helper class that is defined as follows:
275
276.. code-block:: cpp
277
278 class PyAnimal : public Animal {
279 public:
280 /* Inherit the constructors */
281 using Animal::Animal;
282
283 /* Trampoline (need one for each virtual function) */
284 std::string go(int n_times) {
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200285 PYBIND11_OVERLOAD_PURE(
Wenzel Jakob93296692015-10-13 23:21:54 +0200286 std::string, /* Return type */
287 Animal, /* Parent class */
288 go, /* Name of function */
289 n_times /* Argument(s) */
290 );
291 }
292 };
293
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200294The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
295functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
Wenzel Jakob0d3fc352016-07-08 10:52:10 +0200296a default implementation.
Wenzel Jakob1e3be732016-05-24 23:42:05 +0200297
298There are also two alternate macros :func:`PYBIND11_OVERLOAD_PURE_NAME` and
299:func:`PYBIND11_OVERLOAD_NAME` which take a string-valued name argument
300after the *Name of the function* slot. This is useful when the C++ and Python
301versions of the function have different names, e.g. ``operator()`` vs ``__call__``.
302
303The binding code also needs a few minor adaptations (highlighted):
Wenzel Jakob93296692015-10-13 23:21:54 +0200304
305.. code-block:: cpp
306 :emphasize-lines: 4,6,7
307
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200308 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200309 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200310
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200311 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal /* <--- trampoline*/> animal(m, "Animal");
Wenzel Jakob93296692015-10-13 23:21:54 +0200312 animal
Wenzel Jakob93296692015-10-13 23:21:54 +0200313 .def(py::init<>())
314 .def("go", &Animal::go);
315
316 py::class_<Dog>(m, "Dog", animal)
317 .def(py::init<>());
318
319 m.def("call_go", &call_go);
320
321 return m.ptr();
322 }
323
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200324Importantly, pybind11 is made aware of the trampoline trampoline helper class
325by specifying it as the *third* template argument to :class:`class_`. The
326second argument with the unique pointer is simply the default holder type used
327by pybind11. Following this, we are able to define a constructor as usual.
Wenzel Jakob93296692015-10-13 23:21:54 +0200328
329The Python session below shows how to override ``Animal::go`` and invoke it via
330a virtual method call.
331
Wenzel Jakob99279f72016-06-03 11:19:29 +0200332.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200333
334 >>> from example import *
335 >>> d = Dog()
336 >>> call_go(d)
337 u'woof! woof! woof! '
338 >>> class Cat(Animal):
339 ... def go(self, n_times):
340 ... return "meow! " * n_times
341 ...
342 >>> c = Cat()
343 >>> call_go(c)
344 u'meow! meow! meow! '
345
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200346Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakobbd986fe2016-05-21 10:48:30 +0200347
Wenzel Jakob93296692015-10-13 23:21:54 +0200348.. seealso::
349
350 The file :file:`example/example12.cpp` contains a complete example that
351 demonstrates how to override virtual functions using pybind11 in more
352 detail.
353
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100354
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200355.. _macro_notes:
356
357General notes regarding convenience macros
358==========================================
359
360pybind11 provides a few convenience macros such as
361:func:`PYBIND11_MAKE_OPAQUE` and :func:`PYBIND11_DECLARE_HOLDER_TYPE`, and
362``PYBIND11_OVERLOAD_*``. Since these are "just" macros that are evaluated
363in the preprocessor (which has no concept of types), they *will* get confused
364by commas in a template argument such as ``PYBIND11_OVERLOAD(MyReturnValue<T1,
365T2>, myFunc)``. In this case, the preprocessor assumes that the comma indicates
366the beginnning of the next parameter. Use a ``typedef`` to bind the template to
367another name and use it in the macro to avoid this problem.
368
369
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100370Global Interpreter Lock (GIL)
371=============================
372
373The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
374used to acquire and release the global interpreter lock in the body of a C++
375function call. In this way, long-running C++ code can be parallelized using
376multiple Python threads. Taking the previous section as an example, this could
377be realized as follows (important changes highlighted):
378
379.. code-block:: cpp
380 :emphasize-lines: 8,9,33,34
381
382 class PyAnimal : public Animal {
383 public:
384 /* Inherit the constructors */
385 using Animal::Animal;
386
387 /* Trampoline (need one for each virtual function) */
388 std::string go(int n_times) {
389 /* Acquire GIL before calling Python code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100390 py::gil_scoped_acquire acquire;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100391
392 PYBIND11_OVERLOAD_PURE(
393 std::string, /* Return type */
394 Animal, /* Parent class */
395 go, /* Name of function */
396 n_times /* Argument(s) */
397 );
398 }
399 };
400
401 PYBIND11_PLUGIN(example) {
402 py::module m("example", "pybind11 example plugin");
403
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200404 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal> animal(m, "Animal");
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100405 animal
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100406 .def(py::init<>())
407 .def("go", &Animal::go);
408
409 py::class_<Dog>(m, "Dog", animal)
410 .def(py::init<>());
411
412 m.def("call_go", [](Animal *animal) -> std::string {
413 /* Release GIL before calling into (potentially long-running) C++ code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100414 py::gil_scoped_release release;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100415 return call_go(animal);
416 });
417
418 return m.ptr();
419 }
420
Wenzel Jakob93296692015-10-13 23:21:54 +0200421Passing STL data structures
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200422===========================
423
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200424When including the additional header file :file:`pybind11/stl.h`, conversions
Wenzel Jakob978e3762016-04-07 18:00:41 +0200425between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>``
426and the Python ``list``, ``set`` and ``dict`` data structures are automatically
427enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported
428out of the box with just the core :file:`pybind11/pybind11.h` header.
Wenzel Jakob93296692015-10-13 23:21:54 +0200429
430.. note::
431
Wenzel Jakob44db04f2015-12-14 12:40:45 +0100432 Arbitrary nesting of any of these types is supported.
Wenzel Jakob93296692015-10-13 23:21:54 +0200433
434.. seealso::
435
436 The file :file:`example/example2.cpp` contains a complete example that
437 demonstrates how to pass STL data types in more detail.
438
Wenzel Jakobb2825952016-04-13 23:33:00 +0200439Binding sequence data types, iterators, the slicing protocol, etc.
440==================================================================
Wenzel Jakob93296692015-10-13 23:21:54 +0200441
442Please refer to the supplemental example for details.
443
444.. seealso::
445
446 The file :file:`example/example6.cpp` contains a complete example that
447 shows how to bind a sequence data type, including length queries
448 (``__len__``), iterators (``__iter__``), the slicing protocol and other
449 kinds of useful operations.
450
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200451Return value policies
452=====================
453
Wenzel Jakob93296692015-10-13 23:21:54 +0200454Python and C++ use wildly different ways of managing the memory and lifetime of
455objects managed by them. This can lead to issues when creating bindings for
456functions that return a non-trivial type. Just by looking at the type
457information, it is not clear whether Python should take charge of the returned
458value and eventually free its resources, or if this is handled on the C++ side.
459For this reason, pybind11 provides a several `return value policy` annotations
460that can be passed to the :func:`module::def` and :func:`class_::def`
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100461functions. The default policy is :enum:`return_value_policy::automatic`.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200462
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200463.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
464
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200465+--------------------------------------------------+----------------------------------------------------------------------------+
466| Return value policy | Description |
467+==================================================+============================================================================+
468| :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy |
469| | :enum:`return_value_policy::take_ownership` when the return value is a |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200470| | pointer. Otherwise, it uses :enum:`return_value::move` or |
471| | :enum:`return_value::copy` for rvalue and lvalue references, respectively. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200472| | See below for a description of what all of these different policies do. |
473+--------------------------------------------------+----------------------------------------------------------------------------+
474| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
Wenzel Jakob37e1f612016-06-22 14:29:13 +0200475| | return value is a pointer. This is the default conversion policy for |
476| | function arguments when calling Python functions manually from C++ code |
477| | (i.e. via handle::operator()). You probably won't need to use this. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200478+--------------------------------------------------+----------------------------------------------------------------------------+
479| :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
480| | ownership. Python will call the destructor and delete operator when the |
481| | object's reference count reaches zero. Undefined behavior ensues when the |
Wenzel Jakobf53e3002016-06-30 14:59:23 +0200482| | C++ side does the same. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200483+--------------------------------------------------+----------------------------------------------------------------------------+
484| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
485| | This policy is comparably safe because the lifetimes of the two instances |
486| | are decoupled. |
487+--------------------------------------------------+----------------------------------------------------------------------------+
488| :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
489| | that will be owned by Python. This policy is comparably safe because the |
490| | lifetimes of the two instances (move source and destination) are decoupled.|
491+--------------------------------------------------+----------------------------------------------------------------------------+
492| :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
493| | responsible for managing the object's lifetime and deallocating it when |
494| | it is no longer used. Warning: undefined behavior will ensue when the C++ |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200495| | side deletes an object that is still referenced and used by Python. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200496+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200497| :enum:`return_value_policy::reference_internal` | This policy only applies to methods and properties. It references the |
498| | object without taking ownership similar to the above |
499| | :enum:`return_value_policy::reference` policy. In contrast to that policy, |
500| | the function or property's implicit ``this`` argument (called the *parent*)|
501| | is considered to be the the owner of the return value (the *child*). |
502| | pybind11 then couples the lifetime of the parent to the child via a |
503| | reference relationship that ensures that the parent cannot be garbage |
504| | collected while Python is still using the child. More advanced variations |
505| | of this scheme are also possible using combinations of |
506| | :enum:`return_value_policy::reference` and the :class:`keep_alive` call |
507| | policy described next. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200508+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200509
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200510The following example snippet shows a use case of the
Wenzel Jakob93296692015-10-13 23:21:54 +0200511:enum:`return_value_policy::reference_internal` policy.
512
513.. code-block:: cpp
514
515 class Example {
516 public:
517 Internal &get_internal() { return internal; }
518 private:
519 Internal internal;
520 };
521
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200522 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200523 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200524
525 py::class_<Example>(m, "Example")
526 .def(py::init<>())
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200527 .def("get_internal", &Example::get_internal, "Return the internal data",
528 py::return_value_policy::reference_internal);
Wenzel Jakob93296692015-10-13 23:21:54 +0200529
530 return m.ptr();
531 }
532
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200533.. warning::
534
535 Code with invalid call policies might access unitialized memory or free
536 data structures multiple times, which can lead to hard-to-debug
537 non-determinism and segmentation faults, hence it is worth spending the
538 time to understand all the different options in the table above.
539
Wenzel Jakobf53e3002016-06-30 14:59:23 +0200540 It is worth highlighting one common issue where a method (e.g. a getter)
541 returns a reference (or pointer) to the first attribute of a class. In this
542 case, the class and attribute will be located at the same address in
543 memory, which pybind11 will recongnize and return the parent instance
544 instead of creating a new Python object that represents the attribute.
545 Here, the :enum:`return_value_policy::reference_internal` policy should be
546 used rather than relying on the automatic one.
nafur717df752016-06-28 18:07:11 +0200547
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200548.. note::
549
550 The next section on :ref:`call_policies` discusses *call policies* that can be
551 specified *in addition* to a return value policy from the list above. Call
552 policies indicate reference relationships that can involve both return values
553 and parameters of functions.
554
555.. note::
556
557 As an alternative to elaborate call policies and lifetime management logic,
558 consider using smart pointers (see the section on :ref:`smart_pointers` for
559 details). Smart pointers can tell whether an object is still referenced from
560 C++ or Python, which generally eliminates the kinds of inconsistencies that
561 can lead to crashes or undefined behavior. For functions returning smart
562 pointers, it is not necessary to specify a return value policy.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100563
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200564.. _call_policies:
565
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100566Additional call policies
567========================
568
569In addition to the above return value policies, further `call policies` can be
570specified to indicate dependencies between parameters. There is currently just
571one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
572argument with index ``Patient`` should be kept alive at least until the
573argument with index ``Nurse`` is freed by the garbage collector; argument
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200574indices start at one, while zero refers to the return value. For methods, index
575one refers to the implicit ``this`` pointer, while regular arguments begin at
576index two. Arbitrarily many call policies can be specified.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100577
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200578Consider the following example: the binding code for a list append operation
579that ties the lifetime of the newly added element to the underlying container
580might be declared as follows:
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100581
582.. code-block:: cpp
583
584 py::class_<List>(m, "List")
585 .def("append", &List::append, py::keep_alive<1, 2>());
586
587.. note::
588
589 ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
590 Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
591 0) policies from Boost.Python.
592
Wenzel Jakob61587162016-01-18 22:38:52 +0100593.. seealso::
594
595 The file :file:`example/example13.cpp` contains a complete example that
596 demonstrates using :class:`keep_alive` in more detail.
597
Wenzel Jakob93296692015-10-13 23:21:54 +0200598Implicit type conversions
599=========================
600
601Suppose that instances of two types ``A`` and ``B`` are used in a project, and
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200602that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
Wenzel Jakob93296692015-10-13 23:21:54 +0200603could be a fixed and an arbitrary precision number type).
604
605.. code-block:: cpp
606
607 py::class_<A>(m, "A")
608 /// ... members ...
609
610 py::class_<B>(m, "B")
611 .def(py::init<A>())
612 /// ... members ...
613
614 m.def("func",
615 [](const B &) { /* .... */ }
616 );
617
618To invoke the function ``func`` using a variable ``a`` containing an ``A``
619instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
620will automatically apply an implicit type conversion, which makes it possible
621to directly write ``func(a)``.
622
623In this situation (i.e. where ``B`` has a constructor that converts from
624``A``), the following statement enables similar implicit conversions on the
625Python side:
626
627.. code-block:: cpp
628
629 py::implicitly_convertible<A, B>();
630
Wenzel Jakob3eeea6f2016-06-30 18:10:28 +0200631.. note::
632
633 Implicit conversions from ``A`` to ``B`` only work when ``B`` is a custom
634 data type that is exposed to Python via pybind11.
635
Wenzel Jakobf88af0c2016-06-22 13:52:31 +0200636.. _static_properties:
637
638Static properties
639=================
640
641The section on :ref:`properties` discussed the creation of instance properties
642that are implemented in terms of C++ getters and setters.
643
644Static properties can also be created in a similar way to expose getters and
645setters of static class attributes. It is important to note that the implicit
646``self`` argument also exists in this case and is used to pass the Python
647``type`` subclass instance. This parameter will often not be needed by the C++
648side, and the following example illustrates how to instantiate a lambda getter
649function that ignores it:
650
651.. code-block:: cpp
652
653 py::class_<Foo>(m, "Foo")
654 .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
655
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200656Unique pointers
657===============
658
659Given a class ``Example`` with Python bindings, it's possible to return
660instances wrapped in C++11 unique pointers, like so
661
662.. code-block:: cpp
663
664 std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }
665
666.. code-block:: cpp
667
668 m.def("create_example", &create_example);
669
670In other words, there is nothing special that needs to be done. While returning
671unique pointers in this way is allowed, it is *illegal* to use them as function
672arguments. For instance, the following function signature cannot be processed
673by pybind11.
674
675.. code-block:: cpp
676
677 void do_something_with_example(std::unique_ptr<Example> ex) { ... }
678
679The above signature would imply that Python needs to give up ownership of an
680object that is passed to this function, which is generally not possible (for
681instance, the object might be referenced elsewhere).
682
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200683.. _smart_pointers:
684
Wenzel Jakob93296692015-10-13 23:21:54 +0200685Smart pointers
686==============
687
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200688This section explains how to pass values that are wrapped in "smart" pointer
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200689types with internal reference counting. For the simpler C++11 unique pointers,
690refer to the previous section.
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200691
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200692The binding generator for classes, :class:`class_`, takes an optional second
Wenzel Jakob93296692015-10-13 23:21:54 +0200693template type, which denotes a special *holder* type that is used to manage
694references to the object. When wrapping a type named ``Type``, the default
695value of this template parameter is ``std::unique_ptr<Type>``, which means that
696the object is deallocated when Python's reference count goes to zero.
697
Wenzel Jakob1853b652015-10-18 15:38:50 +0200698It is possible to switch to other types of reference counting wrappers or smart
699pointers, which is useful in codebases that rely on them. For instance, the
700following snippet causes ``std::shared_ptr`` to be used instead.
Wenzel Jakob93296692015-10-13 23:21:54 +0200701
702.. code-block:: cpp
703
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100704 py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100705
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100706Note that any particular class can only be associated with a single holder type.
Wenzel Jakob93296692015-10-13 23:21:54 +0200707
Wenzel Jakob1853b652015-10-18 15:38:50 +0200708To enable transparent conversions for functions that take shared pointers as an
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100709argument or that return them, a macro invocation similar to the following must
Wenzel Jakob1853b652015-10-18 15:38:50 +0200710be declared at the top level before any binding code:
711
712.. code-block:: cpp
713
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200714 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
Wenzel Jakob1853b652015-10-18 15:38:50 +0200715
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100716.. note::
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100717
718 The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
719 placeholder name that is used as a template parameter of the second
720 argument. Thus, feel free to use any identifier, but use it consistently on
721 both sides; also, don't use the name of a type that already exists in your
722 codebase.
723
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100724One potential stumbling block when using holder types is that they need to be
725applied consistently. Can you guess what's broken about the following binding
726code?
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100727
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100728.. code-block:: cpp
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100729
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100730 class Child { };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100731
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100732 class Parent {
733 public:
734 Parent() : child(std::make_shared<Child>()) { }
735 Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
736 private:
737 std::shared_ptr<Child> child;
738 };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100739
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100740 PYBIND11_PLUGIN(example) {
741 py::module m("example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100742
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100743 py::class_<Child, std::shared_ptr<Child>>(m, "Child");
744
745 py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
746 .def(py::init<>())
747 .def("get_child", &Parent::get_child);
748
749 return m.ptr();
750 }
751
752The following Python code will cause undefined behavior (and likely a
753segmentation fault).
754
755.. code-block:: python
756
757 from example import Parent
758 print(Parent().get_child())
759
760The problem is that ``Parent::get_child()`` returns a pointer to an instance of
761``Child``, but the fact that this instance is already managed by
762``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
763pybind11 will create a second independent ``std::shared_ptr<...>`` that also
764claims ownership of the pointer. In the end, the object will be freed **twice**
765since these shared pointers have no way of knowing about each other.
766
767There are two ways to resolve this issue:
768
7691. For types that are managed by a smart pointer class, never use raw pointers
770 in function arguments or return values. In other words: always consistently
771 wrap pointers into their designated holder types (such as
772 ``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
773 should be modified as follows:
774
775.. code-block:: cpp
776
777 std::shared_ptr<Child> get_child() { return child; }
778
7792. Adjust the definition of ``Child`` by specifying
780 ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
781 base class. This adds a small bit of information to ``Child`` that allows
782 pybind11 to realize that there is already an existing
783 ``std::shared_ptr<...>`` and communicate with it. In this case, the
784 declaration of ``Child`` should look as follows:
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100785
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100786.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
787
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100788.. code-block:: cpp
789
790 class Child : public std::enable_shared_from_this<Child> { };
791
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200792
793Please take a look at the :ref:`macro_notes` before using this feature.
794
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100795.. seealso::
796
797 The file :file:`example/example8.cpp` contains a complete example that
798 demonstrates how to work with custom reference-counting holder types in
799 more detail.
800
Wenzel Jakob93296692015-10-13 23:21:54 +0200801.. _custom_constructors:
802
803Custom constructors
804===================
805
806The syntax for binding constructors was previously introduced, but it only
807works when a constructor with the given parameters actually exists on the C++
808side. To extend this to more general cases, let's take a look at what actually
809happens under the hood: the following statement
810
811.. code-block:: cpp
812
813 py::class_<Example>(m, "Example")
814 .def(py::init<int>());
815
816is short hand notation for
817
818.. code-block:: cpp
819
820 py::class_<Example>(m, "Example")
821 .def("__init__",
822 [](Example &instance, int arg) {
823 new (&instance) Example(arg);
824 }
825 );
826
827In other words, :func:`init` creates an anonymous function that invokes an
828in-place constructor. Memory allocation etc. is already take care of beforehand
829within pybind11.
830
Pim Schellart5a7d17f2016-06-17 17:35:59 -0400831.. _catching_and_throwing_exceptions:
832
Wenzel Jakob93296692015-10-13 23:21:54 +0200833Catching and throwing exceptions
834================================
835
836When C++ code invoked from Python throws an ``std::exception``, it is
837automatically converted into a Python ``Exception``. pybind11 defines multiple
838special exception classes that will map to different types of Python
839exceptions:
840
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200841.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
842
Wenzel Jakob978e3762016-04-07 18:00:41 +0200843+--------------------------------------+------------------------------+
844| C++ exception type | Python exception type |
845+======================================+==============================+
846| :class:`std::exception` | ``RuntimeError`` |
847+--------------------------------------+------------------------------+
848| :class:`std::bad_alloc` | ``MemoryError`` |
849+--------------------------------------+------------------------------+
850| :class:`std::domain_error` | ``ValueError`` |
851+--------------------------------------+------------------------------+
852| :class:`std::invalid_argument` | ``ValueError`` |
853+--------------------------------------+------------------------------+
854| :class:`std::length_error` | ``ValueError`` |
855+--------------------------------------+------------------------------+
856| :class:`std::out_of_range` | ``ValueError`` |
857+--------------------------------------+------------------------------+
858| :class:`std::range_error` | ``ValueError`` |
859+--------------------------------------+------------------------------+
860| :class:`pybind11::stop_iteration` | ``StopIteration`` (used to |
861| | implement custom iterators) |
862+--------------------------------------+------------------------------+
863| :class:`pybind11::index_error` | ``IndexError`` (used to |
864| | indicate out of bounds |
865| | accesses in ``__getitem__``, |
866| | ``__setitem__``, etc.) |
867+--------------------------------------+------------------------------+
Sergey Lyskova95bde12016-05-08 19:31:55 -0400868| :class:`pybind11::value_error` | ``ValueError`` (used to |
869| | indicate wrong value passed |
870| | in ``container.remove(...)`` |
871+--------------------------------------+------------------------------+
Wenzel Jakob978e3762016-04-07 18:00:41 +0200872| :class:`pybind11::error_already_set` | Indicates that the Python |
873| | exception flag has already |
874| | been initialized |
875+--------------------------------------+------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200876
877When a Python function invoked from C++ throws an exception, it is converted
878into a C++ exception of type :class:`error_already_set` whose string payload
879contains a textual summary.
880
881There is also a special exception :class:`cast_error` that is thrown by
882:func:`handle::call` when the input arguments cannot be converted to Python
883objects.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200884
Pim Schellart5a7d17f2016-06-17 17:35:59 -0400885Registering custom exception translators
886========================================
887
888If the default exception conversion policy described
889:ref:`above <catching_and_throwing_exceptions>`
890is insufficient, pybind11 also provides support for registering custom
891exception translators.
892
893The function ``register_exception_translator(translator)`` takes a stateless
894callable (e.g. a function pointer or a lambda function without captured
895variables) with the following call signature: ``void(std::exception_ptr)``.
896
897When a C++ exception is thrown, registered exception translators are tried
898in reverse order of registration (i.e. the last registered translator gets
899a first shot at handling the exception).
900
901Inside the translator, ``std::rethrow_exception`` should be used within
902a try block to re-throw the exception. A catch clause can then use
903``PyErr_SetString`` to set a Python exception as demonstrated
904in :file:`example19.cpp``.
905
906This example also demonstrates how to create custom exception types
907with ``py::exception``.
908
909The following example demonstrates this for a hypothetical exception class
910``MyCustomException``:
911
912.. code-block:: cpp
913
914 py::register_exception_translator([](std::exception_ptr p) {
915 try {
916 if (p) std::rethrow_exception(p);
917 } catch (const MyCustomException &e) {
918 PyErr_SetString(PyExc_RuntimeError, e.what());
919 }
920 });
921
922Multiple exceptions can be handled by a single translator. If the exception is
923not caught by the current translator, the previously registered one gets a
924chance.
925
926If none of the registered exception translators is able to handle the
927exception, it is handled by the default converter as described in the previous
928section.
929
930.. note::
931
932 You must either call ``PyErr_SetString`` for every exception caught in a
933 custom exception translator. Failure to do so will cause Python to crash
934 with ``SystemError: error return without exception set``.
935
936 Exceptions that you do not plan to handle should simply not be caught.
937
938 You may also choose to explicity (re-)throw the exception to delegate it to
939 the other existing exception translators.
940
941 The ``py::exception`` wrapper for creating custom exceptions cannot (yet)
942 be used as a ``py::base``.
943
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200944.. _opaque:
945
946Treating STL data structures as opaque objects
947==============================================
948
949pybind11 heavily relies on a template matching mechanism to convert parameters
950and return values that are constructed from STL data types such as vectors,
951linked lists, hash tables, etc. This even works in a recursive manner, for
952instance to deal with lists of hash maps of pairs of elementary and custom
953types, etc.
954
955However, a fundamental limitation of this approach is that internal conversions
956between Python and C++ types involve a copy operation that prevents
957pass-by-reference semantics. What does this mean?
958
959Suppose we bind the following function
960
961.. code-block:: cpp
962
963 void append_1(std::vector<int> &v) {
964 v.push_back(1);
965 }
966
967and call it from Python, the following happens:
968
Wenzel Jakob99279f72016-06-03 11:19:29 +0200969.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200970
971 >>> v = [5, 6]
972 >>> append_1(v)
973 >>> print(v)
974 [5, 6]
975
976As you can see, when passing STL data structures by reference, modifications
977are not propagated back the Python side. A similar situation arises when
978exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
979functions:
980
981.. code-block:: cpp
982
983 /* ... definition ... */
984
985 class MyClass {
986 std::vector<int> contents;
987 };
988
989 /* ... binding code ... */
990
991 py::class_<MyClass>(m, "MyClass")
992 .def(py::init<>)
993 .def_readwrite("contents", &MyClass::contents);
994
995In this case, properties can be read and written in their entirety. However, an
996``append`` operaton involving such a list type has no effect:
997
Wenzel Jakob99279f72016-06-03 11:19:29 +0200998.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +0200999
1000 >>> m = MyClass()
1001 >>> m.contents = [5, 6]
1002 >>> print(m.contents)
1003 [5, 6]
1004 >>> m.contents.append(7)
1005 >>> print(m.contents)
1006 [5, 6]
1007
1008To deal with both of the above situations, pybind11 provides a macro named
1009``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based conversion
1010machinery of types, thus rendering them *opaque*. The contents of opaque
1011objects are never inspected or extracted, hence they can be passed by
1012reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
1013the declaration
1014
1015.. code-block:: cpp
1016
1017 PYBIND11_MAKE_OPAQUE(std::vector<int>);
1018
1019before any binding code (e.g. invocations to ``class_::def()``, etc.). This
1020macro must be specified at the top level, since instantiates a partial template
1021overload. If your binding code consists of multiple compilation units, it must
1022be present in every file preceding any usage of ``std::vector<int>``. Opaque
1023types must also have a corresponding ``class_`` declaration to associate them
1024with a name in Python, and to define a set of available operations:
1025
1026.. code-block:: cpp
1027
1028 py::class_<std::vector<int>>(m, "IntVector")
1029 .def(py::init<>())
1030 .def("clear", &std::vector<int>::clear)
1031 .def("pop_back", &std::vector<int>::pop_back)
1032 .def("__len__", [](const std::vector<int> &v) { return v.size(); })
1033 .def("__iter__", [](std::vector<int> &v) {
1034 return py::make_iterator(v.begin(), v.end());
1035 }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
1036 // ....
1037
Wenzel Jakob9bb97c12016-06-03 11:19:41 +02001038Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001039
1040.. seealso::
1041
1042 The file :file:`example/example14.cpp` contains a complete example that
1043 demonstrates how to create and expose opaque types using pybind11 in more
1044 detail.
1045
1046.. _eigen:
1047
1048Transparent conversion of dense and sparse Eigen data types
1049===========================================================
1050
1051Eigen [#f1]_ is C++ header-based library for dense and sparse linear algebra. Due to
1052its popularity and widespread adoption, pybind11 provides transparent
1053conversion support between Eigen and Scientific Python linear algebra data types.
1054
1055Specifically, when including the optional header file :file:`pybind11/eigen.h`,
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001056pybind11 will automatically and transparently convert
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001057
10581. Static and dynamic Eigen dense vectors and matrices to instances of
1059 ``numpy.ndarray`` (and vice versa).
1060
10611. Eigen sparse vectors and matrices to instances of
1062 ``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` (and vice versa).
1063
1064This makes it possible to bind most kinds of functions that rely on these types.
1065One major caveat are functions that take Eigen matrices *by reference* and modify
1066them somehow, in which case the information won't be propagated to the caller.
1067
1068.. code-block:: cpp
1069
1070 /* The Python bindings of this function won't replicate
1071 the intended effect of modifying the function argument */
1072 void scale_by_2(Eigen::Vector3f &v) {
1073 v *= 2;
1074 }
1075
1076To see why this is, refer to the section on :ref:`opaque` (although that
1077section specifically covers STL data types, the underlying issue is the same).
1078The next two sections discuss an efficient alternative for exposing the
1079underlying native Eigen types as opaque objects in a way that still integrates
1080with NumPy and SciPy.
1081
1082.. [#f1] http://eigen.tuxfamily.org
1083
1084.. seealso::
1085
1086 The file :file:`example/eigen.cpp` contains a complete example that
1087 shows how to pass Eigen sparse and dense data types in more detail.
1088
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001089Buffer protocol
1090===============
1091
1092Python supports an extremely general and convenient approach for exchanging
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001093data between plugin libraries. Types can expose a buffer view [#f2]_, which
1094provides fast direct access to the raw internal data representation. Suppose we
1095want to bind the following simplistic Matrix class:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001096
1097.. code-block:: cpp
1098
1099 class Matrix {
1100 public:
1101 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
1102 m_data = new float[rows*cols];
1103 }
1104 float *data() { return m_data; }
1105 size_t rows() const { return m_rows; }
1106 size_t cols() const { return m_cols; }
1107 private:
1108 size_t m_rows, m_cols;
1109 float *m_data;
1110 };
1111
1112The following binding code exposes the ``Matrix`` contents as a buffer object,
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001113making it possible to cast Matrices into NumPy arrays. It is even possible to
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001114completely avoid copy operations with Python expressions like
1115``np.array(matrix_instance, copy = False)``.
1116
1117.. code-block:: cpp
1118
1119 py::class_<Matrix>(m, "Matrix")
1120 .def_buffer([](Matrix &m) -> py::buffer_info {
1121 return py::buffer_info(
Wenzel Jakob876eeab2016-05-04 22:22:48 +02001122 m.data(), /* Pointer to buffer */
1123 sizeof(float), /* Size of one scalar */
1124 py::format_descriptor<float>::value, /* Python struct-style format descriptor */
1125 2, /* Number of dimensions */
1126 { m.rows(), m.cols() }, /* Buffer dimensions */
1127 { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001128 sizeof(float) }
1129 );
1130 });
1131
1132The snippet above binds a lambda function, which can create ``py::buffer_info``
1133description records on demand describing a given matrix. The contents of
1134``py::buffer_info`` mirror the Python buffer protocol specification.
1135
1136.. code-block:: cpp
1137
1138 struct buffer_info {
1139 void *ptr;
1140 size_t itemsize;
1141 std::string format;
1142 int ndim;
1143 std::vector<size_t> shape;
1144 std::vector<size_t> strides;
1145 };
1146
1147To create a C++ function that can take a Python buffer object as an argument,
1148simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
1149in a great variety of configurations, hence some safety checks are usually
1150necessary in the function body. Below, you can see an basic example on how to
1151define a custom constructor for the Eigen double precision matrix
1152(``Eigen::MatrixXd``) type, which supports initialization from compatible
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001153buffer objects (e.g. a NumPy matrix).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001154
1155.. code-block:: cpp
1156
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001157 /* Bind MatrixXd (or some other Eigen type) to Python */
1158 typedef Eigen::MatrixXd Matrix;
1159
1160 typedef Matrix::Scalar Scalar;
1161 constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
1162
1163 py::class_<Matrix>(m, "Matrix")
1164 .def("__init__", [](Matrix &m, py::buffer b) {
Wenzel Jakobe7628532016-05-05 10:04:44 +02001165 typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
Wenzel Jakobe7628532016-05-05 10:04:44 +02001166
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001167 /* Request a buffer descriptor from Python */
1168 py::buffer_info info = b.request();
1169
1170 /* Some sanity checks ... */
Wenzel Jakobe7628532016-05-05 10:04:44 +02001171 if (info.format != py::format_descriptor<Scalar>::value)
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001172 throw std::runtime_error("Incompatible format: expected a double array!");
1173
1174 if (info.ndim != 2)
1175 throw std::runtime_error("Incompatible buffer dimension!");
1176
Wenzel Jakobe7628532016-05-05 10:04:44 +02001177 auto strides = Strides(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001178 info.strides[rowMajor ? 0 : 1] / sizeof(Scalar),
1179 info.strides[rowMajor ? 1 : 0] / sizeof(Scalar));
Wenzel Jakobe7628532016-05-05 10:04:44 +02001180
1181 auto map = Eigen::Map<Matrix, 0, Strides>(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001182 static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
Wenzel Jakobe7628532016-05-05 10:04:44 +02001183
1184 new (&m) Matrix(map);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001185 });
1186
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001187For reference, the ``def_buffer()`` call for this Eigen data type should look
1188as follows:
1189
1190.. code-block:: cpp
1191
1192 .def_buffer([](Matrix &m) -> py::buffer_info {
1193 return py::buffer_info(
1194 m.data(), /* Pointer to buffer */
1195 sizeof(Scalar), /* Size of one scalar */
1196 /* Python struct-style format descriptor */
1197 py::format_descriptor<Scalar>::value,
1198 /* Number of dimensions */
1199 2,
1200 /* Buffer dimensions */
1201 { (size_t) m.rows(),
1202 (size_t) m.cols() },
1203 /* Strides (in bytes) for each index */
1204 { sizeof(Scalar) * (rowMajor ? m.cols() : 1),
1205 sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
1206 );
1207 })
1208
1209For a much easier approach of binding Eigen types (although with some
1210limitations), refer to the section on :ref:`eigen`.
1211
Wenzel Jakob93296692015-10-13 23:21:54 +02001212.. seealso::
1213
1214 The file :file:`example/example7.cpp` contains a complete example that
1215 demonstrates using the buffer protocol with pybind11 in more detail.
1216
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001217.. [#f2] http://docs.python.org/3/c-api/buffer.html
Wenzel Jakob978e3762016-04-07 18:00:41 +02001218
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001219NumPy support
1220=============
1221
1222By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
1223restrict the function so that it only accepts NumPy arrays (rather than any
Wenzel Jakob978e3762016-04-07 18:00:41 +02001224type of Python object satisfying the buffer protocol).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001225
1226In many situations, we want to define a function which only accepts a NumPy
Wenzel Jakob93296692015-10-13 23:21:54 +02001227array of a certain data type. This is possible via the ``py::array_t<T>``
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001228template. For instance, the following function requires the argument to be a
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001229NumPy array containing double precision values.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001230
1231.. code-block:: cpp
1232
Wenzel Jakob93296692015-10-13 23:21:54 +02001233 void f(py::array_t<double> array);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001234
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001235When it is invoked with a different type (e.g. an integer or a list of
1236integers), the binding code will attempt to cast the input into a NumPy array
1237of the requested type. Note that this feature requires the
1238:file:``pybind11/numpy.h`` header to be included.
1239
1240Data in NumPy arrays is not guaranteed to packed in a dense manner;
1241furthermore, entries can be separated by arbitrary column and row strides.
1242Sometimes, it can be useful to require a function to only accept dense arrays
1243using either the C (row-major) or Fortran (column-major) ordering. This can be
1244accomplished via a second template argument with values ``py::array::c_style``
1245or ``py::array::f_style``.
1246
1247.. code-block:: cpp
1248
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001249 void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001250
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001251The ``py::array::forcecast`` argument is the default value of the second
1252template paramenter, and it ensures that non-conforming arguments are converted
1253into an array satisfying the specified requirements instead of trying the next
1254function overload.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001255
1256Vectorizing functions
1257=====================
1258
1259Suppose we want to bind a function with the following signature to Python so
1260that it can process arbitrary NumPy array arguments (vectors, matrices, general
1261N-D arrays) in addition to its normal arguments:
1262
1263.. code-block:: cpp
1264
1265 double my_func(int x, float y, double z);
1266
Wenzel Jakob8f4eb002015-10-15 18:13:33 +02001267After including the ``pybind11/numpy.h`` header, this is extremely simple:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001268
1269.. code-block:: cpp
1270
1271 m.def("vectorized_func", py::vectorize(my_func));
1272
1273Invoking the function like below causes 4 calls to be made to ``my_func`` with
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001274each of the array elements. The significant advantage of this compared to
Wenzel Jakob978e3762016-04-07 18:00:41 +02001275solutions like ``numpy.vectorize()`` is that the loop over the elements runs
1276entirely on the C++ side and can be crunched down into a tight, optimized loop
1277by the compiler. The result is returned as a NumPy array of type
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001278``numpy.dtype.float64``.
1279
Wenzel Jakob99279f72016-06-03 11:19:29 +02001280.. code-block:: pycon
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001281
1282 >>> x = np.array([[1, 3],[5, 7]])
1283 >>> y = np.array([[2, 4],[6, 8]])
1284 >>> z = 3
1285 >>> result = vectorized_func(x, y, z)
1286
1287The scalar argument ``z`` is transparently replicated 4 times. The input
1288arrays ``x`` and ``y`` are automatically converted into the right types (they
1289are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
1290``numpy.dtype.float32``, respectively)
1291
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001292Sometimes we might want to explicitly exclude an argument from the vectorization
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001293because it makes little sense to wrap it in a NumPy array. For instance,
1294suppose the function signature was
1295
1296.. code-block:: cpp
1297
1298 double my_func(int x, float y, my_custom_type *z);
1299
1300This can be done with a stateful Lambda closure:
1301
1302.. code-block:: cpp
1303
1304 // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
1305 m.def("vectorized_func",
Wenzel Jakob93296692015-10-13 23:21:54 +02001306 [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001307 auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
1308 return py::vectorize(stateful_closure)(x, y);
1309 }
1310 );
1311
Wenzel Jakob61587162016-01-18 22:38:52 +01001312In cases where the computation is too complicated to be reduced to
1313``vectorize``, it will be necessary to create and access the buffer contents
1314manually. The following snippet contains a complete example that shows how this
1315works (the code is somewhat contrived, since it could have been done more
1316simply using ``vectorize``).
1317
1318.. code-block:: cpp
1319
1320 #include <pybind11/pybind11.h>
1321 #include <pybind11/numpy.h>
1322
1323 namespace py = pybind11;
1324
1325 py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
1326 auto buf1 = input1.request(), buf2 = input2.request();
1327
1328 if (buf1.ndim != 1 || buf2.ndim != 1)
1329 throw std::runtime_error("Number of dimensions must be one");
1330
1331 if (buf1.shape[0] != buf2.shape[0])
1332 throw std::runtime_error("Input shapes must match");
1333
1334 auto result = py::array(py::buffer_info(
1335 nullptr, /* Pointer to data (nullptr -> ask NumPy to allocate!) */
1336 sizeof(double), /* Size of one item */
Nils Wernerf7048f22016-05-19 11:17:17 +02001337 py::format_descriptor<double>::value(), /* Buffer format */
Wenzel Jakob61587162016-01-18 22:38:52 +01001338 buf1.ndim, /* How many dimensions? */
1339 { buf1.shape[0] }, /* Number of elements for each dimension */
1340 { sizeof(double) } /* Strides for each dimension */
1341 ));
1342
1343 auto buf3 = result.request();
1344
1345 double *ptr1 = (double *) buf1.ptr,
1346 *ptr2 = (double *) buf2.ptr,
1347 *ptr3 = (double *) buf3.ptr;
1348
1349 for (size_t idx = 0; idx < buf1.shape[0]; idx++)
1350 ptr3[idx] = ptr1[idx] + ptr2[idx];
1351
1352 return result;
1353 }
1354
1355 PYBIND11_PLUGIN(test) {
1356 py::module m("test");
1357 m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
1358 return m.ptr();
1359 }
1360
Wenzel Jakob93296692015-10-13 23:21:54 +02001361.. seealso::
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001362
Wenzel Jakob93296692015-10-13 23:21:54 +02001363 The file :file:`example/example10.cpp` contains a complete example that
1364 demonstrates using :func:`vectorize` in more detail.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001365
Wenzel Jakob93296692015-10-13 23:21:54 +02001366Functions taking Python objects as arguments
1367============================================
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001368
Wenzel Jakob93296692015-10-13 23:21:54 +02001369pybind11 exposes all major Python types using thin C++ wrapper classes. These
1370wrapper classes can also be used as parameters of functions in bindings, which
1371makes it possible to directly work with native Python types on the C++ side.
1372For instance, the following statement iterates over a Python ``dict``:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001373
Wenzel Jakob93296692015-10-13 23:21:54 +02001374.. code-block:: cpp
1375
1376 void print_dict(py::dict dict) {
1377 /* Easily interact with Python types */
1378 for (auto item : dict)
1379 std::cout << "key=" << item.first << ", "
1380 << "value=" << item.second << std::endl;
1381 }
1382
1383Available types include :class:`handle`, :class:`object`, :class:`bool_`,
Wenzel Jakob27e8e102016-01-17 22:36:37 +01001384:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001385:class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
1386:class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
1387:class:`array`, and :class:`array_t`.
Wenzel Jakob93296692015-10-13 23:21:54 +02001388
Wenzel Jakob436b7312015-10-20 01:04:30 +02001389In this kind of mixed code, it is often necessary to convert arbitrary C++
1390types to Python, which can be done using :func:`cast`:
1391
1392.. code-block:: cpp
1393
1394 MyClass *cls = ..;
1395 py::object obj = py::cast(cls);
1396
1397The reverse direction uses the following syntax:
1398
1399.. code-block:: cpp
1400
1401 py::object obj = ...;
1402 MyClass *cls = obj.cast<MyClass *>();
1403
1404When conversion fails, both directions throw the exception :class:`cast_error`.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001405It is also possible to call python functions via ``operator()``.
1406
1407.. code-block:: cpp
1408
1409 py::function f = <...>;
1410 py::object result_py = f(1234, "hello", some_instance);
1411 MyClass &result = result_py.cast<MyClass>();
1412
1413The special ``f(*args)`` and ``f(*args, **kwargs)`` syntax is also supported to
1414supply arbitrary argument and keyword lists, although these cannot be mixed
1415with other parameters.
1416
1417.. code-block:: cpp
1418
1419 py::function f = <...>;
1420 py::tuple args = py::make_tuple(1234);
1421 py::dict kwargs;
1422 kwargs["y"] = py::cast(5678);
1423 py::object result = f(*args, **kwargs);
Wenzel Jakob436b7312015-10-20 01:04:30 +02001424
Wenzel Jakob93296692015-10-13 23:21:54 +02001425.. seealso::
1426
1427 The file :file:`example/example2.cpp` contains a complete example that
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001428 demonstrates passing native Python types in more detail. The file
1429 :file:`example/example11.cpp` discusses usage of ``args`` and ``kwargs``.
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001430
1431Default arguments revisited
1432===========================
1433
1434The section on :ref:`default_args` previously discussed basic usage of default
1435arguments using pybind11. One noteworthy aspect of their implementation is that
1436default arguments are converted to Python objects right at declaration time.
1437Consider the following example:
1438
1439.. code-block:: cpp
1440
1441 py::class_<MyClass>("MyClass")
1442 .def("myFunction", py::arg("arg") = SomeType(123));
1443
1444In this case, pybind11 must already be set up to deal with values of the type
1445``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
1446exception will be thrown.
1447
1448Another aspect worth highlighting is that the "preview" of the default argument
1449in the function signature is generated using the object's ``__repr__`` method.
1450If not available, the signature may not be very helpful, e.g.:
1451
Wenzel Jakob99279f72016-06-03 11:19:29 +02001452.. code-block:: pycon
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001453
1454 FUNCTIONS
1455 ...
1456 | myFunction(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +01001457 | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001458 ...
1459
1460The first way of addressing this is by defining ``SomeType.__repr__``.
1461Alternatively, it is possible to specify the human-readable preview of the
1462default argument manually using the ``arg_t`` notation:
1463
1464.. code-block:: cpp
1465
1466 py::class_<MyClass>("MyClass")
1467 .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
1468
Wenzel Jakobc769fce2016-03-03 12:03:30 +01001469Sometimes it may be necessary to pass a null pointer value as a default
1470argument. In this case, remember to cast it to the underlying type in question,
1471like so:
1472
1473.. code-block:: cpp
1474
1475 py::class_<MyClass>("MyClass")
1476 .def("myFunction", py::arg("arg") = (SomeType *) nullptr);
1477
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001478Binding functions that accept arbitrary numbers of arguments and keywords arguments
1479===================================================================================
1480
1481Python provides a useful mechanism to define functions that accept arbitrary
1482numbers of arguments and keyword arguments:
1483
1484.. code-block:: cpp
1485
1486 def generic(*args, **kwargs):
1487 # .. do something with args and kwargs
1488
1489Such functions can also be created using pybind11:
1490
1491.. code-block:: cpp
1492
1493 void generic(py::args args, py::kwargs kwargs) {
1494 /// .. do something with args
1495 if (kwargs)
1496 /// .. do something with kwargs
1497 }
1498
1499 /// Binding code
1500 m.def("generic", &generic);
1501
1502(See ``example/example11.cpp``). The class ``py::args`` derives from
1503``py::list`` and ``py::kwargs`` derives from ``py::dict`` Note that the
1504``kwargs`` argument is invalid if no keyword arguments were actually provided.
1505Please refer to the other examples for details on how to iterate over these,
1506and on how to cast their entries into C++ objects.
1507
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001508Partitioning code over multiple extension modules
1509=================================================
1510
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001511It's straightforward to split binding code over multiple extension modules,
1512while referencing types that are declared elsewhere. Everything "just" works
1513without any special precautions. One exception to this rule occurs when
1514extending a type declared in another extension module. Recall the basic example
1515from Section :ref:`inheritance`.
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001516
1517.. code-block:: cpp
1518
1519 py::class_<Pet> pet(m, "Pet");
1520 pet.def(py::init<const std::string &>())
1521 .def_readwrite("name", &Pet::name);
1522
1523 py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
1524 .def(py::init<const std::string &>())
1525 .def("bark", &Dog::bark);
1526
1527Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
1528whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
1529course that the variable ``pet`` is not available anymore though it is needed
1530to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
1531However, it can be acquired as follows:
1532
1533.. code-block:: cpp
1534
1535 py::object pet = (py::object) py::module::import("basic").attr("Pet");
1536
1537 py::class_<Dog>(m, "Dog", pet)
1538 .def(py::init<const std::string &>())
1539 .def("bark", &Dog::bark);
1540
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001541Alternatively, we can rely on the ``base`` tag, which performs an automated
1542lookup of the corresponding Python type. However, this also requires invoking
1543the ``import`` function once to ensure that the pybind11 binding code of the
1544module ``basic`` has been executed.
1545
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001546.. code-block:: cpp
1547
1548 py::module::import("basic");
1549
1550 py::class_<Dog>(m, "Dog", py::base<Pet>())
1551 .def(py::init<const std::string &>())
1552 .def("bark", &Dog::bark);
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001553
Wenzel Jakob978e3762016-04-07 18:00:41 +02001554Naturally, both methods will fail when there are cyclic dependencies.
1555
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001556Note that compiling code which has its default symbol visibility set to
1557*hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the
1558ability to access types defined in another extension module. Workarounds
1559include changing the global symbol visibility (not recommended, because it will
1560lead unnecessarily large binaries) or manually exporting types that are
1561accessed by multiple extension modules:
1562
1563.. code-block:: cpp
1564
1565 #ifdef _WIN32
1566 # define EXPORT_TYPE __declspec(dllexport)
1567 #else
1568 # define EXPORT_TYPE __attribute__ ((visibility("default")))
1569 #endif
1570
1571 class EXPORT_TYPE Dog : public Animal {
1572 ...
1573 };
1574
1575
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001576Pickling support
1577================
1578
1579Python's ``pickle`` module provides a powerful facility to serialize and
1580de-serialize a Python object graph into a binary data stream. To pickle and
Wenzel Jakob3d0e6ff2016-04-13 11:48:10 +02001581unpickle C++ classes using pybind11, two additional functions must be provided.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001582Suppose the class in question has the following signature:
1583
1584.. code-block:: cpp
1585
1586 class Pickleable {
1587 public:
1588 Pickleable(const std::string &value) : m_value(value) { }
1589 const std::string &value() const { return m_value; }
1590
1591 void setExtra(int extra) { m_extra = extra; }
1592 int extra() const { return m_extra; }
1593 private:
1594 std::string m_value;
1595 int m_extra = 0;
1596 };
1597
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001598The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f3]_
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001599looks as follows:
1600
1601.. code-block:: cpp
1602
1603 py::class_<Pickleable>(m, "Pickleable")
1604 .def(py::init<std::string>())
1605 .def("value", &Pickleable::value)
1606 .def("extra", &Pickleable::extra)
1607 .def("setExtra", &Pickleable::setExtra)
1608 .def("__getstate__", [](const Pickleable &p) {
1609 /* Return a tuple that fully encodes the state of the object */
1610 return py::make_tuple(p.value(), p.extra());
1611 })
1612 .def("__setstate__", [](Pickleable &p, py::tuple t) {
1613 if (t.size() != 2)
1614 throw std::runtime_error("Invalid state!");
1615
Wenzel Jakobd40885a2016-04-13 13:30:05 +02001616 /* Invoke the in-place constructor. Note that this is needed even
1617 when the object just has a trivial default constructor */
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001618 new (&p) Pickleable(t[0].cast<std::string>());
1619
1620 /* Assign any additional state */
1621 p.setExtra(t[1].cast<int>());
1622 });
1623
1624An instance can now be pickled as follows:
1625
1626.. code-block:: python
1627
1628 try:
1629 import cPickle as pickle # Use cPickle on Python 2.7
1630 except ImportError:
1631 import pickle
1632
1633 p = Pickleable("test_value")
1634 p.setExtra(15)
Wenzel Jakob81e09752016-04-30 23:13:03 +02001635 data = pickle.dumps(p, 2)
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001636
Wenzel Jakob81e09752016-04-30 23:13:03 +02001637Note that only the cPickle module is supported on Python 2.7. The second
1638argument to ``dumps`` is also crucial: it selects the pickle protocol version
16392, since the older version 1 is not supported. Newer versions are also fine—for
1640instance, specify ``-1`` to always use the latest available version. Beware:
1641failure to follow these instructions will cause important pybind11 memory
1642allocation routines to be skipped during unpickling, which will likely lead to
1643memory corruption and/or segmentation faults.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001644
1645.. seealso::
1646
1647 The file :file:`example/example15.cpp` contains a complete example that
1648 demonstrates how to pickle and unpickle types using pybind11 in more detail.
1649
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001650.. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001651
1652Generating documentation using Sphinx
1653=====================================
1654
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001655Sphinx [#f4]_ has the ability to inspect the signatures and documentation
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001656strings in pybind11-based extension modules to automatically generate beautiful
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001657documentation in a variety formats. The python_example repository [#f5]_ contains a
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001658simple example repository which uses this approach.
1659
1660There are two potential gotchas when using this approach: first, make sure that
1661the resulting strings do not contain any :kbd:`TAB` characters, which break the
1662docstring parsing routines. You may want to use C++11 raw string literals,
1663which are convenient for multi-line comments. Conveniently, any excess
1664indentation will be automatically be removed by Sphinx. However, for this to
1665work, it is important that all lines are indented consistently, i.e.:
1666
1667.. code-block:: cpp
1668
1669 // ok
1670 m.def("foo", &foo, R"mydelimiter(
1671 The foo function
1672
1673 Parameters
1674 ----------
1675 )mydelimiter");
1676
1677 // *not ok*
1678 m.def("foo", &foo, R"mydelimiter(The foo function
1679
1680 Parameters
1681 ----------
1682 )mydelimiter");
1683
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001684.. [#f4] http://www.sphinx-doc.org
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001685.. [#f5] http://github.com/pybind/python_example
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001686
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001687Evaluating Python expressions from strings and files
1688====================================================
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001689
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001690pybind11 provides the :func:`eval` and :func:`eval_file` functions to evaluate
1691Python expressions and statements. The following example illustrates how they
1692can be used.
1693
1694Both functions accept a template parameter that describes how the argument
1695should be interpreted. Possible choices include ``eval_expr`` (isolated
1696expression), ``eval_single_statement`` (a single statement, return value is
1697always ``none``), and ``eval_statements`` (sequence of statements, return value
1698is always ``none``).
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001699
1700.. code-block:: cpp
1701
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001702 // At beginning of file
1703 #include <pybind11/eval.h>
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001704
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001705 ...
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001706
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001707 // Evaluate in scope of main module
1708 py::object scope = py::module::import("__main__").attr("__dict__");
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001709
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001710 // Evaluate an isolated expression
1711 int result = py::eval("my_variable + 10", scope).cast<int>();
1712
1713 // Evaluate a sequence of statements
1714 py::eval<py::eval_statements>(
1715 "print('Hello')\n"
1716 "print('world!');",
1717 scope);
1718
1719 // Evaluate the statements in an separate Python file on disk
1720 py::eval_file("script.py", scope);
1721