blob: 760d814f27a8c45dec1515e91f164f076b9e6b85 [file] [log] [blame]
ztenghui7b4516e2014-01-07 10:42:55 -08001/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
ztenghui512e6432014-09-10 13:08:20 -070017// The highest z value can't be higher than (CASTER_Z_CAP_RATIO * light.z)
ztenghuic50a03d2014-08-21 13:47:54 -070018#define CASTER_Z_CAP_RATIO 0.95f
ztenghui512e6432014-09-10 13:08:20 -070019
20// When there is no umbra, then just fake the umbra using
21// centroid * (1 - FAKE_UMBRA_SIZE_RATIO) + outline * FAKE_UMBRA_SIZE_RATIO
22#define FAKE_UMBRA_SIZE_RATIO 0.05f
23
24// When the polygon is about 90 vertices, the penumbra + umbra can reach 270 rays.
25// That is consider pretty fine tessllated polygon so far.
26// This is just to prevent using too much some memory when edge slicing is not
27// needed any more.
28#define FINE_TESSELLATED_POLYGON_RAY_NUMBER 270
29/**
30 * Extra vertices for the corner for smoother corner.
31 * Only for outer loop.
32 * Note that we use such extra memory to avoid an extra loop.
33 */
34// For half circle, we could add EXTRA_VERTEX_PER_PI vertices.
35// Set to 1 if we don't want to have any.
36#define SPOT_EXTRA_CORNER_VERTEX_PER_PI 18
37
38// For the whole polygon, the sum of all the deltas b/t normals is 2 * M_PI,
39// therefore, the maximum number of extra vertices will be twice bigger.
40#define SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER (2 * SPOT_EXTRA_CORNER_VERTEX_PER_PI)
41
42// For each RADIANS_DIVISOR, we would allocate one more vertex b/t the normals.
43#define SPOT_CORNER_RADIANS_DIVISOR (M_PI / SPOT_EXTRA_CORNER_VERTEX_PER_PI)
44
Chris Craik138c21f2016-04-28 16:59:42 -070045#define PENUMBRA_ALPHA 0.0f
46#define UMBRA_ALPHA 1.0f
ztenghui7b4516e2014-01-07 10:42:55 -080047
Chris Craik9db58c02015-08-19 15:19:18 -070048#include "SpotShadow.h"
49
50#include "ShadowTessellator.h"
51#include "Vertex.h"
52#include "VertexBuffer.h"
53#include "utils/MathUtils.h"
54
John Reck1e4209e2015-07-01 09:54:47 -070055#include <algorithm>
ztenghui7b4516e2014-01-07 10:42:55 -080056#include <math.h>
ztenghuif5ca8b42014-01-27 15:53:28 -080057#include <stdlib.h>
ztenghui7b4516e2014-01-07 10:42:55 -080058#include <utils/Log.h>
59
ztenghuic50a03d2014-08-21 13:47:54 -070060// TODO: After we settle down the new algorithm, we can remove the old one and
61// its utility functions.
62// Right now, we still need to keep it for comparison purpose and future expansion.
ztenghui7b4516e2014-01-07 10:42:55 -080063namespace android {
64namespace uirenderer {
65
ztenghui9122b1b2014-10-03 11:21:11 -070066static const float EPSILON = 1e-7;
Chris Craik726118b2014-03-07 18:27:49 -080067
ztenghui7b4516e2014-01-07 10:42:55 -080068/**
ztenghuic50a03d2014-08-21 13:47:54 -070069 * For each polygon's vertex, the light center will project it to the receiver
70 * as one of the outline vertex.
71 * For each outline vertex, we need to store the position and normal.
72 * Normal here is defined against the edge by the current vertex and the next vertex.
73 */
74struct OutlineData {
75 Vector2 position;
76 Vector2 normal;
77 float radius;
78};
79
80/**
ztenghui512e6432014-09-10 13:08:20 -070081 * For each vertex, we need to keep track of its angle, whether it is penumbra or
82 * umbra, and its corresponding vertex index.
83 */
84struct SpotShadow::VertexAngleData {
85 // The angle to the vertex from the centroid.
86 float mAngle;
87 // True is the vertex comes from penumbra, otherwise it comes from umbra.
88 bool mIsPenumbra;
89 // The index of the vertex described by this data.
90 int mVertexIndex;
91 void set(float angle, bool isPenumbra, int index) {
92 mAngle = angle;
93 mIsPenumbra = isPenumbra;
94 mVertexIndex = index;
95 }
96};
97
98/**
Chris Craik726118b2014-03-07 18:27:49 -080099 * Calculate the angle between and x and a y coordinate.
100 * The atan2 range from -PI to PI.
ztenghui7b4516e2014-01-07 10:42:55 -0800101 */
Chris Craikb79a3e32014-03-11 12:20:17 -0700102static float angle(const Vector2& point, const Vector2& center) {
Chris Craik726118b2014-03-07 18:27:49 -0800103 return atan2(point.y - center.y, point.x - center.x);
104}
105
106/**
107 * Calculate the intersection of a ray with the line segment defined by two points.
108 *
109 * Returns a negative value in error conditions.
110
111 * @param rayOrigin The start of the ray
112 * @param dx The x vector of the ray
113 * @param dy The y vector of the ray
114 * @param p1 The first point defining the line segment
115 * @param p2 The second point defining the line segment
116 * @return The distance along the ray if it intersects with the line segment, negative if otherwise
117 */
Chris Craikb79a3e32014-03-11 12:20:17 -0700118static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy,
Chris Craik726118b2014-03-07 18:27:49 -0800119 const Vector2& p1, const Vector2& p2) {
120 // The math below is derived from solving this formula, basically the
121 // intersection point should stay on both the ray and the edge of (p1, p2).
122 // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
123
ztenghui9122b1b2014-10-03 11:21:11 -0700124 float divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
Chris Craik726118b2014-03-07 18:27:49 -0800125 if (divisor == 0) return -1.0f; // error, invalid divisor
126
127#if DEBUG_SHADOW
ztenghui9122b1b2014-10-03 11:21:11 -0700128 float interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
ztenghui99af9422014-03-14 14:35:54 -0700129 if (interpVal < 0 || interpVal > 1) {
130 ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
131 }
Chris Craik726118b2014-03-07 18:27:49 -0800132#endif
133
ztenghui9122b1b2014-10-03 11:21:11 -0700134 float distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
Chris Craik726118b2014-03-07 18:27:49 -0800135 rayOrigin.x * (p2.y - p1.y)) / divisor;
136
137 return distance; // may be negative in error cases
ztenghui7b4516e2014-01-07 10:42:55 -0800138}
139
140/**
ztenghui7b4516e2014-01-07 10:42:55 -0800141 * Sort points by their X coordinates
142 *
143 * @param points the points as a Vector2 array.
144 * @param pointsLength the number of vertices of the polygon.
145 */
146void SpotShadow::xsort(Vector2* points, int pointsLength) {
John Reck1e4209e2015-07-01 09:54:47 -0700147 auto cmp = [](const Vector2& a, const Vector2& b) -> bool {
148 return a.x < b.x;
149 };
150 std::sort(points, points + pointsLength, cmp);
ztenghui7b4516e2014-01-07 10:42:55 -0800151}
152
153/**
154 * compute the convex hull of a collection of Points
155 *
156 * @param points the points as a Vector2 array.
157 * @param pointsLength the number of vertices of the polygon.
158 * @param retPoly pre allocated array of floats to put the vertices
159 * @return the number of points in the polygon 0 if no intersection
160 */
161int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
162 xsort(points, pointsLength);
163 int n = pointsLength;
164 Vector2 lUpper[n];
165 lUpper[0] = points[0];
166 lUpper[1] = points[1];
167
168 int lUpperSize = 2;
169
170 for (int i = 2; i < n; i++) {
171 lUpper[lUpperSize] = points[i];
172 lUpperSize++;
173
ztenghuif5ca8b42014-01-27 15:53:28 -0800174 while (lUpperSize > 2 && !ccw(
175 lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y,
176 lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y,
177 lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
ztenghui7b4516e2014-01-07 10:42:55 -0800178 // Remove the middle point of the three last
179 lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
180 lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
181 lUpperSize--;
182 }
183 }
184
185 Vector2 lLower[n];
186 lLower[0] = points[n - 1];
187 lLower[1] = points[n - 2];
188
189 int lLowerSize = 2;
190
191 for (int i = n - 3; i >= 0; i--) {
192 lLower[lLowerSize] = points[i];
193 lLowerSize++;
194
ztenghuif5ca8b42014-01-27 15:53:28 -0800195 while (lLowerSize > 2 && !ccw(
196 lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y,
197 lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y,
198 lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
ztenghui7b4516e2014-01-07 10:42:55 -0800199 // Remove the middle point of the three last
200 lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
201 lLowerSize--;
202 }
203 }
ztenghui7b4516e2014-01-07 10:42:55 -0800204
Chris Craik726118b2014-03-07 18:27:49 -0800205 // output points in CW ordering
206 const int total = lUpperSize + lLowerSize - 2;
207 int outIndex = total - 1;
ztenghui7b4516e2014-01-07 10:42:55 -0800208 for (int i = 0; i < lUpperSize; i++) {
Chris Craik726118b2014-03-07 18:27:49 -0800209 retPoly[outIndex] = lUpper[i];
210 outIndex--;
ztenghui7b4516e2014-01-07 10:42:55 -0800211 }
212
213 for (int i = 1; i < lLowerSize - 1; i++) {
Chris Craik726118b2014-03-07 18:27:49 -0800214 retPoly[outIndex] = lLower[i];
215 outIndex--;
ztenghui7b4516e2014-01-07 10:42:55 -0800216 }
217 // TODO: Add test harness which verify that all the points are inside the hull.
Chris Craik726118b2014-03-07 18:27:49 -0800218 return total;
ztenghui7b4516e2014-01-07 10:42:55 -0800219}
220
221/**
ztenghuif5ca8b42014-01-27 15:53:28 -0800222 * Test whether the 3 points form a counter clockwise turn.
ztenghui7b4516e2014-01-07 10:42:55 -0800223 *
ztenghui7b4516e2014-01-07 10:42:55 -0800224 * @return true if a right hand turn
225 */
ztenghui9122b1b2014-10-03 11:21:11 -0700226bool SpotShadow::ccw(float ax, float ay, float bx, float by,
227 float cx, float cy) {
ztenghui7b4516e2014-01-07 10:42:55 -0800228 return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
229}
230
231/**
ztenghui7b4516e2014-01-07 10:42:55 -0800232 * Sort points about a center point
233 *
234 * @param poly The in and out polyogon as a Vector2 array.
235 * @param polyLength The number of vertices of the polygon.
236 * @param center the center ctr[0] = x , ctr[1] = y to sort around.
237 */
238void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
239 quicksortCirc(poly, 0, polyLength - 1, center);
240}
241
242/**
ztenghui7b4516e2014-01-07 10:42:55 -0800243 * Swap points pointed to by i and j
244 */
245void SpotShadow::swap(Vector2* points, int i, int j) {
246 Vector2 temp = points[i];
247 points[i] = points[j];
248 points[j] = temp;
249}
250
251/**
252 * quick sort implementation about the center.
253 */
254void SpotShadow::quicksortCirc(Vector2* points, int low, int high,
255 const Vector2& center) {
256 int i = low, j = high;
257 int p = low + (high - low) / 2;
258 float pivot = angle(points[p], center);
259 while (i <= j) {
Chris Craik726118b2014-03-07 18:27:49 -0800260 while (angle(points[i], center) > pivot) {
ztenghui7b4516e2014-01-07 10:42:55 -0800261 i++;
262 }
Chris Craik726118b2014-03-07 18:27:49 -0800263 while (angle(points[j], center) < pivot) {
ztenghui7b4516e2014-01-07 10:42:55 -0800264 j--;
265 }
266
267 if (i <= j) {
268 swap(points, i, j);
269 i++;
270 j--;
271 }
272 }
273 if (low < j) quicksortCirc(points, low, j, center);
274 if (i < high) quicksortCirc(points, i, high, center);
275}
276
277/**
ztenghui7b4516e2014-01-07 10:42:55 -0800278 * Test whether a point is inside the polygon.
279 *
280 * @param testPoint the point to test
281 * @param poly the polygon
282 * @return true if the testPoint is inside the poly.
283 */
284bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint,
285 const Vector2* poly, int len) {
286 bool c = false;
ztenghui9122b1b2014-10-03 11:21:11 -0700287 float testx = testPoint.x;
288 float testy = testPoint.y;
ztenghui7b4516e2014-01-07 10:42:55 -0800289 for (int i = 0, j = len - 1; i < len; j = i++) {
ztenghui9122b1b2014-10-03 11:21:11 -0700290 float startX = poly[j].x;
291 float startY = poly[j].y;
292 float endX = poly[i].x;
293 float endY = poly[i].y;
ztenghui7b4516e2014-01-07 10:42:55 -0800294
ztenghui512e6432014-09-10 13:08:20 -0700295 if (((endY > testy) != (startY > testy))
296 && (testx < (startX - endX) * (testy - endY)
ztenghui7b4516e2014-01-07 10:42:55 -0800297 / (startY - endY) + endX)) {
298 c = !c;
299 }
300 }
301 return c;
302}
303
304/**
305 * Make the polygon turn clockwise.
306 *
307 * @param polygon the polygon as a Vector2 array.
308 * @param len the number of points of the polygon
309 */
310void SpotShadow::makeClockwise(Vector2* polygon, int len) {
Chris Craikd41c4d82015-01-05 15:51:13 -0800311 if (polygon == nullptr || len == 0) {
ztenghui7b4516e2014-01-07 10:42:55 -0800312 return;
313 }
ztenghui2e023f32014-04-28 16:43:13 -0700314 if (!ShadowTessellator::isClockwise(polygon, len)) {
ztenghui7b4516e2014-01-07 10:42:55 -0800315 reverse(polygon, len);
316 }
317}
318
319/**
ztenghui7b4516e2014-01-07 10:42:55 -0800320 * Reverse the polygon
321 *
322 * @param polygon the polygon as a Vector2 array
323 * @param len the number of points of the polygon
324 */
325void SpotShadow::reverse(Vector2* polygon, int len) {
326 int n = len / 2;
327 for (int i = 0; i < n; i++) {
328 Vector2 tmp = polygon[i];
329 int k = len - 1 - i;
330 polygon[i] = polygon[k];
331 polygon[k] = tmp;
332 }
333}
334
335/**
ztenghui7b4516e2014-01-07 10:42:55 -0800336 * Compute a horizontal circular polygon about point (x , y , height) of radius
337 * (size)
338 *
339 * @param points number of the points of the output polygon.
340 * @param lightCenter the center of the light.
341 * @param size the light size.
342 * @param ret result polygon.
343 */
344void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter,
345 float size, Vector3* ret) {
346 // TODO: Caching all the sin / cos values and store them in a look up table.
347 for (int i = 0; i < points; i++) {
ztenghui9122b1b2014-10-03 11:21:11 -0700348 float angle = 2 * i * M_PI / points;
Chris Craik726118b2014-03-07 18:27:49 -0800349 ret[i].x = cosf(angle) * size + lightCenter.x;
350 ret[i].y = sinf(angle) * size + lightCenter.y;
ztenghui7b4516e2014-01-07 10:42:55 -0800351 ret[i].z = lightCenter.z;
352 }
353}
354
355/**
ztenghui512e6432014-09-10 13:08:20 -0700356 * From light center, project one vertex to the z=0 surface and get the outline.
ztenghui7b4516e2014-01-07 10:42:55 -0800357 *
ztenghui512e6432014-09-10 13:08:20 -0700358 * @param outline The result which is the outline position.
359 * @param lightCenter The center of light.
360 * @param polyVertex The input polygon's vertex.
361 *
362 * @return float The ratio of (polygon.z / light.z - polygon.z)
ztenghui7b4516e2014-01-07 10:42:55 -0800363 */
ztenghuic50a03d2014-08-21 13:47:54 -0700364float SpotShadow::projectCasterToOutline(Vector2& outline,
365 const Vector3& lightCenter, const Vector3& polyVertex) {
366 float lightToPolyZ = lightCenter.z - polyVertex.z;
367 float ratioZ = CASTER_Z_CAP_RATIO;
368 if (lightToPolyZ != 0) {
369 // If any caster's vertex is almost above the light, we just keep it as 95%
370 // of the height of the light.
ztenghui3bd3fa12014-08-25 14:42:27 -0700371 ratioZ = MathUtils::clamp(polyVertex.z / lightToPolyZ, 0.0f, CASTER_Z_CAP_RATIO);
ztenghuic50a03d2014-08-21 13:47:54 -0700372 }
373
374 outline.x = polyVertex.x - ratioZ * (lightCenter.x - polyVertex.x);
375 outline.y = polyVertex.y - ratioZ * (lightCenter.y - polyVertex.y);
376 return ratioZ;
377}
378
379/**
380 * Generate the shadow spot light of shape lightPoly and a object poly
381 *
382 * @param isCasterOpaque whether the caster is opaque
383 * @param lightCenter the center of the light
384 * @param lightSize the radius of the light
385 * @param poly x,y,z vertexes of a convex polygon that occludes the light source
386 * @param polyLength number of vertexes of the occluding polygon
387 * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
388 * empty strip if error.
389 */
390void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter,
391 float lightSize, const Vector3* poly, int polyLength, const Vector3& polyCentroid,
392 VertexBuffer& shadowTriangleStrip) {
ztenghui3bd3fa12014-08-25 14:42:27 -0700393 if (CC_UNLIKELY(lightCenter.z <= 0)) {
394 ALOGW("Relative Light Z is not positive. No spot shadow!");
395 return;
396 }
ztenghui512e6432014-09-10 13:08:20 -0700397 if (CC_UNLIKELY(polyLength < 3)) {
398#if DEBUG_SHADOW
399 ALOGW("Invalid polygon length. No spot shadow!");
400#endif
401 return;
402 }
ztenghuic50a03d2014-08-21 13:47:54 -0700403 OutlineData outlineData[polyLength];
404 Vector2 outlineCentroid;
405 // Calculate the projected outline for each polygon's vertices from the light center.
406 //
407 // O Light
408 // /
409 // /
410 // . Polygon vertex
411 // /
412 // /
413 // O Outline vertices
414 //
415 // Ratio = (Poly - Outline) / (Light - Poly)
416 // Outline.x = Poly.x - Ratio * (Light.x - Poly.x)
417 // Outline's radius / Light's radius = Ratio
418
419 // Compute the last outline vertex to make sure we can get the normal and outline
420 // in one single loop.
421 projectCasterToOutline(outlineData[polyLength - 1].position, lightCenter,
422 poly[polyLength - 1]);
423
424 // Take the outline's polygon, calculate the normal for each outline edge.
425 int currentNormalIndex = polyLength - 1;
426 int nextNormalIndex = 0;
427
428 for (int i = 0; i < polyLength; i++) {
429 float ratioZ = projectCasterToOutline(outlineData[i].position,
430 lightCenter, poly[i]);
431 outlineData[i].radius = ratioZ * lightSize;
432
433 outlineData[currentNormalIndex].normal = ShadowTessellator::calculateNormal(
434 outlineData[currentNormalIndex].position,
435 outlineData[nextNormalIndex].position);
436 currentNormalIndex = (currentNormalIndex + 1) % polyLength;
437 nextNormalIndex++;
438 }
439
440 projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid);
441
442 int penumbraIndex = 0;
ztenghui512e6432014-09-10 13:08:20 -0700443 // Then each polygon's vertex produce at minmal 2 penumbra vertices.
444 // Since the size can be dynamic here, we keep track of the size and update
445 // the real size at the end.
446 int allocatedPenumbraLength = 2 * polyLength + SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER;
447 Vector2 penumbra[allocatedPenumbraLength];
448 int totalExtraCornerSliceNumber = 0;
ztenghuic50a03d2014-08-21 13:47:54 -0700449
450 Vector2 umbra[polyLength];
ztenghuic50a03d2014-08-21 13:47:54 -0700451
ztenghui512e6432014-09-10 13:08:20 -0700452 // When centroid is covered by all circles from outline, then we consider
453 // the umbra is invalid, and we will tune down the shadow strength.
ztenghuic50a03d2014-08-21 13:47:54 -0700454 bool hasValidUmbra = true;
ztenghui512e6432014-09-10 13:08:20 -0700455 // We need the minimal of RaitoVI to decrease the spot shadow strength accordingly.
456 float minRaitoVI = FLT_MAX;
ztenghuic50a03d2014-08-21 13:47:54 -0700457
458 for (int i = 0; i < polyLength; i++) {
459 // Generate all the penumbra's vertices only using the (outline vertex + normal * radius)
460 // There is no guarantee that the penumbra is still convex, but for
461 // each outline vertex, it will connect to all its corresponding penumbra vertices as
462 // triangle fans. And for neighber penumbra vertex, it will be a trapezoid.
463 //
464 // Penumbra Vertices marked as Pi
465 // Outline Vertices marked as Vi
466 // (P3)
467 // (P2) | ' (P4)
468 // (P1)' | | '
469 // ' | | '
470 // (P0) ------------------------------------------------(P5)
471 // | (V0) |(V1)
472 // | |
473 // | |
474 // | |
475 // | |
476 // | |
477 // | |
478 // | |
479 // | |
480 // (V3)-----------------------------------(V2)
481 int preNormalIndex = (i + polyLength - 1) % polyLength;
ztenghuic50a03d2014-08-21 13:47:54 -0700482
ztenghui512e6432014-09-10 13:08:20 -0700483 const Vector2& previousNormal = outlineData[preNormalIndex].normal;
484 const Vector2& currentNormal = outlineData[i].normal;
485
486 // Depending on how roundness we want for each corner, we can subdivide
ztenghuic50a03d2014-08-21 13:47:54 -0700487 // further here and/or introduce some heuristic to decide how much the
488 // subdivision should be.
ztenghui512e6432014-09-10 13:08:20 -0700489 int currentExtraSliceNumber = ShadowTessellator::getExtraVertexNumber(
490 previousNormal, currentNormal, SPOT_CORNER_RADIANS_DIVISOR);
ztenghuic50a03d2014-08-21 13:47:54 -0700491
ztenghui512e6432014-09-10 13:08:20 -0700492 int currentCornerSliceNumber = 1 + currentExtraSliceNumber;
493 totalExtraCornerSliceNumber += currentExtraSliceNumber;
494#if DEBUG_SHADOW
495 ALOGD("currentExtraSliceNumber should be %d", currentExtraSliceNumber);
496 ALOGD("currentCornerSliceNumber should be %d", currentCornerSliceNumber);
497 ALOGD("totalCornerSliceNumber is %d", totalExtraCornerSliceNumber);
498#endif
499 if (CC_UNLIKELY(totalExtraCornerSliceNumber > SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER)) {
500 currentCornerSliceNumber = 1;
501 }
502 for (int k = 0; k <= currentCornerSliceNumber; k++) {
503 Vector2 avgNormal =
504 (previousNormal * (currentCornerSliceNumber - k) + currentNormal * k) /
505 currentCornerSliceNumber;
506 avgNormal.normalize();
507 penumbra[penumbraIndex++] = outlineData[i].position +
508 avgNormal * outlineData[i].radius;
509 }
ztenghuic50a03d2014-08-21 13:47:54 -0700510
ztenghuic50a03d2014-08-21 13:47:54 -0700511
512 // Compute the umbra by the intersection from the outline's centroid!
513 //
514 // (V) ------------------------------------
515 // | ' |
516 // | ' |
517 // | ' (I) |
518 // | ' |
519 // | ' (C) |
520 // | |
521 // | |
522 // | |
523 // | |
524 // ------------------------------------
525 //
526 // Connect a line b/t the outline vertex (V) and the centroid (C), it will
527 // intersect with the outline vertex's circle at point (I).
528 // Now, ratioVI = VI / VC, ratioIC = IC / VC
529 // Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI;
530 //
ztenghui512e6432014-09-10 13:08:20 -0700531 // When all of the outline circles cover the the outline centroid, (like I is
ztenghuic50a03d2014-08-21 13:47:54 -0700532 // on the other side of C), there is no real umbra any more, so we just fake
533 // a small area around the centroid as the umbra, and tune down the spot
534 // shadow's umbra strength to simulate the effect the whole shadow will
535 // become lighter in this case.
536 // The ratio can be simulated by using the inverse of maximum of ratioVI for
537 // all (V).
ztenghui512e6432014-09-10 13:08:20 -0700538 float distOutline = (outlineData[i].position - outlineCentroid).length();
ztenghui3bd3fa12014-08-25 14:42:27 -0700539 if (CC_UNLIKELY(distOutline == 0)) {
ztenghuic50a03d2014-08-21 13:47:54 -0700540 // If the outline has 0 area, then there is no spot shadow anyway.
541 ALOGW("Outline has 0 area, no spot shadow!");
542 return;
543 }
ztenghui512e6432014-09-10 13:08:20 -0700544
545 float ratioVI = outlineData[i].radius / distOutline;
Chris Craik9db58c02015-08-19 15:19:18 -0700546 minRaitoVI = std::min(minRaitoVI, ratioVI);
ztenghui512e6432014-09-10 13:08:20 -0700547 if (ratioVI >= (1 - FAKE_UMBRA_SIZE_RATIO)) {
548 ratioVI = (1 - FAKE_UMBRA_SIZE_RATIO);
ztenghuic50a03d2014-08-21 13:47:54 -0700549 }
550 // When we know we don't have valid umbra, don't bother to compute the
551 // values below. But we can't skip the loop yet since we want to know the
552 // maximum ratio.
ztenghui512e6432014-09-10 13:08:20 -0700553 float ratioIC = 1 - ratioVI;
554 umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI;
ztenghuic50a03d2014-08-21 13:47:54 -0700555 }
556
ztenghui512e6432014-09-10 13:08:20 -0700557 hasValidUmbra = (minRaitoVI <= 1.0);
ztenghuic50a03d2014-08-21 13:47:54 -0700558 float shadowStrengthScale = 1.0;
559 if (!hasValidUmbra) {
ztenghui512e6432014-09-10 13:08:20 -0700560#if DEBUG_SHADOW
ztenghuic50a03d2014-08-21 13:47:54 -0700561 ALOGW("The object is too close to the light or too small, no real umbra!");
ztenghui512e6432014-09-10 13:08:20 -0700562#endif
ztenghuic50a03d2014-08-21 13:47:54 -0700563 for (int i = 0; i < polyLength; i++) {
564 umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO +
ztenghui512e6432014-09-10 13:08:20 -0700565 outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO);
ztenghuic50a03d2014-08-21 13:47:54 -0700566 }
ztenghui512e6432014-09-10 13:08:20 -0700567 shadowStrengthScale = 1.0 / minRaitoVI;
ztenghuic50a03d2014-08-21 13:47:54 -0700568 }
569
ztenghui512e6432014-09-10 13:08:20 -0700570 int penumbraLength = penumbraIndex;
571 int umbraLength = polyLength;
572
ztenghuic50a03d2014-08-21 13:47:54 -0700573#if DEBUG_SHADOW
ztenghui512e6432014-09-10 13:08:20 -0700574 ALOGD("penumbraLength is %d , allocatedPenumbraLength %d", penumbraLength, allocatedPenumbraLength);
ztenghuic50a03d2014-08-21 13:47:54 -0700575 dumpPolygon(poly, polyLength, "input poly");
ztenghuic50a03d2014-08-21 13:47:54 -0700576 dumpPolygon(penumbra, penumbraLength, "penumbra");
ztenghui512e6432014-09-10 13:08:20 -0700577 dumpPolygon(umbra, umbraLength, "umbra");
ztenghuic50a03d2014-08-21 13:47:54 -0700578 ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale);
579#endif
580
ztenghui512e6432014-09-10 13:08:20 -0700581 // The penumbra and umbra needs to be in convex shape to keep consistency
582 // and quality.
583 // Since we are still shooting rays to penumbra, it needs to be convex.
584 // Umbra can be represented as a fan from the centroid, but visually umbra
585 // looks nicer when it is convex.
586 Vector2 finalUmbra[umbraLength];
587 Vector2 finalPenumbra[penumbraLength];
588 int finalUmbraLength = hull(umbra, umbraLength, finalUmbra);
589 int finalPenumbraLength = hull(penumbra, penumbraLength, finalPenumbra);
590
591 generateTriangleStrip(isCasterOpaque, shadowStrengthScale, finalPenumbra,
592 finalPenumbraLength, finalUmbra, finalUmbraLength, poly, polyLength,
593 shadowTriangleStrip, outlineCentroid);
594
ztenghuic50a03d2014-08-21 13:47:54 -0700595}
596
ztenghui7b4516e2014-01-07 10:42:55 -0800597/**
ztenghui7b4516e2014-01-07 10:42:55 -0800598 * This is only for experimental purpose.
599 * After intersections are calculated, we could smooth the polygon if needed.
600 * So far, we don't think it is more appealing yet.
601 *
602 * @param level The level of smoothness.
603 * @param rays The total number of rays.
604 * @param rayDist (In and Out) The distance for each ray.
605 *
606 */
607void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
608 for (int k = 0; k < level; k++) {
609 for (int i = 0; i < rays; i++) {
610 float p1 = rayDist[(rays - 1 + i) % rays];
611 float p2 = rayDist[i];
612 float p3 = rayDist[(i + 1) % rays];
613 rayDist[i] = (p1 + p2 * 2 + p3) / 4;
614 }
615 }
616}
617
ztenghuid2dcd6f2014-10-29 16:04:29 -0700618// Index pair is meant for storing the tessellation information for the penumbra
619// area. One index must come from exterior tangent of the circles, the other one
620// must come from the interior tangent of the circles.
621struct IndexPair {
622 int outerIndex;
623 int innerIndex;
624};
ztenghui512e6432014-09-10 13:08:20 -0700625
ztenghuid2dcd6f2014-10-29 16:04:29 -0700626// For one penumbra vertex, find the cloest umbra vertex and return its index.
627inline int getClosestUmbraIndex(const Vector2& pivot, const Vector2* polygon, int polygonLength) {
628 float minLengthSquared = FLT_MAX;
ztenghui512e6432014-09-10 13:08:20 -0700629 int resultIndex = -1;
ztenghuid2dcd6f2014-10-29 16:04:29 -0700630 bool hasDecreased = false;
631 // Starting with some negative offset, assuming both umbra and penumbra are starting
632 // at the same angle, this can help to find the result faster.
633 // Normally, loop 3 times, we can find the closest point.
634 int offset = polygonLength - 2;
635 for (int i = 0; i < polygonLength; i++) {
636 int currentIndex = (i + offset) % polygonLength;
637 float currentLengthSquared = (pivot - polygon[currentIndex]).lengthSquared();
638 if (currentLengthSquared < minLengthSquared) {
639 if (minLengthSquared != FLT_MAX) {
640 hasDecreased = true;
ztenghui512e6432014-09-10 13:08:20 -0700641 }
ztenghuid2dcd6f2014-10-29 16:04:29 -0700642 minLengthSquared = currentLengthSquared;
643 resultIndex = currentIndex;
644 } else if (currentLengthSquared > minLengthSquared && hasDecreased) {
645 // Early break b/c we have found the closet one and now the length
646 // is increasing again.
647 break;
ztenghui512e6432014-09-10 13:08:20 -0700648 }
649 }
ztenghuid2dcd6f2014-10-29 16:04:29 -0700650 if(resultIndex == -1) {
651 ALOGE("resultIndex is -1, the polygon must be invalid!");
652 resultIndex = 0;
ztenghui512e6432014-09-10 13:08:20 -0700653 }
654 return resultIndex;
655}
656
ztenghui39320632014-11-12 10:56:15 -0800657// Allow some epsilon here since the later ray intersection did allow for some small
658// floating point error, when the intersection point is slightly outside the segment.
ztenghuid2dcd6f2014-10-29 16:04:29 -0700659inline bool sameDirections(bool isPositiveCross, float a, float b) {
660 if (isPositiveCross) {
ztenghui39320632014-11-12 10:56:15 -0800661 return a >= -EPSILON && b >= -EPSILON;
ztenghuid2dcd6f2014-10-29 16:04:29 -0700662 } else {
ztenghui39320632014-11-12 10:56:15 -0800663 return a <= EPSILON && b <= EPSILON;
ztenghui512e6432014-09-10 13:08:20 -0700664 }
ztenghuid2dcd6f2014-10-29 16:04:29 -0700665}
ztenghui512e6432014-09-10 13:08:20 -0700666
ztenghuid2dcd6f2014-10-29 16:04:29 -0700667// Find the right polygon edge to shoot the ray at.
668inline int findPolyIndex(bool isPositiveCross, int startPolyIndex, const Vector2& umbraDir,
669 const Vector2* polyToCentroid, int polyLength) {
670 // Make sure we loop with a bound.
671 for (int i = 0; i < polyLength; i++) {
672 int currentIndex = (i + startPolyIndex) % polyLength;
673 const Vector2& currentToCentroid = polyToCentroid[currentIndex];
674 const Vector2& nextToCentroid = polyToCentroid[(currentIndex + 1) % polyLength];
ztenghui512e6432014-09-10 13:08:20 -0700675
ztenghuid2dcd6f2014-10-29 16:04:29 -0700676 float currentCrossUmbra = currentToCentroid.cross(umbraDir);
677 float umbraCrossNext = umbraDir.cross(nextToCentroid);
678 if (sameDirections(isPositiveCross, currentCrossUmbra, umbraCrossNext)) {
ztenghui512e6432014-09-10 13:08:20 -0700679#if DEBUG_SHADOW
ztenghuid2dcd6f2014-10-29 16:04:29 -0700680 ALOGD("findPolyIndex loop %d times , index %d", i, currentIndex );
ztenghui512e6432014-09-10 13:08:20 -0700681#endif
ztenghuid2dcd6f2014-10-29 16:04:29 -0700682 return currentIndex;
ztenghui512e6432014-09-10 13:08:20 -0700683 }
ztenghuid2dcd6f2014-10-29 16:04:29 -0700684 }
685 LOG_ALWAYS_FATAL("Can't find the right polygon's edge from startPolyIndex %d", startPolyIndex);
686 return -1;
687}
ztenghui512e6432014-09-10 13:08:20 -0700688
ztenghuid2dcd6f2014-10-29 16:04:29 -0700689// Generate the index pair for penumbra / umbra vertices, and more penumbra vertices
690// if needed.
691inline void genNewPenumbraAndPairWithUmbra(const Vector2* penumbra, int penumbraLength,
692 const Vector2* umbra, int umbraLength, Vector2* newPenumbra, int& newPenumbraIndex,
693 IndexPair* verticesPair, int& verticesPairIndex) {
694 // In order to keep everything in just one loop, we need to pre-compute the
695 // closest umbra vertex for the last penumbra vertex.
696 int previousClosestUmbraIndex = getClosestUmbraIndex(penumbra[penumbraLength - 1],
697 umbra, umbraLength);
698 for (int i = 0; i < penumbraLength; i++) {
699 const Vector2& currentPenumbraVertex = penumbra[i];
700 // For current penumbra vertex, starting from previousClosestUmbraIndex,
701 // then check the next one until the distance increase.
702 // The last one before the increase is the umbra vertex we need to pair with.
ztenghui39320632014-11-12 10:56:15 -0800703 float currentLengthSquared =
704 (currentPenumbraVertex - umbra[previousClosestUmbraIndex]).lengthSquared();
705 int currentClosestUmbraIndex = previousClosestUmbraIndex;
ztenghuid2dcd6f2014-10-29 16:04:29 -0700706 int indexDelta = 0;
707 for (int j = 1; j < umbraLength; j++) {
708 int newUmbraIndex = (previousClosestUmbraIndex + j) % umbraLength;
709 float newLengthSquared = (currentPenumbraVertex - umbra[newUmbraIndex]).lengthSquared();
710 if (newLengthSquared > currentLengthSquared) {
ztenghui39320632014-11-12 10:56:15 -0800711 // currentClosestUmbraIndex is the umbra vertex's index which has
712 // currently found smallest distance, so we can simply break here.
ztenghuid2dcd6f2014-10-29 16:04:29 -0700713 break;
714 } else {
715 currentLengthSquared = newLengthSquared;
716 indexDelta++;
ztenghui39320632014-11-12 10:56:15 -0800717 currentClosestUmbraIndex = newUmbraIndex;
ztenghui512e6432014-09-10 13:08:20 -0700718 }
ztenghuid2dcd6f2014-10-29 16:04:29 -0700719 }
ztenghuid2dcd6f2014-10-29 16:04:29 -0700720
721 if (indexDelta > 1) {
722 // For those umbra don't have penumbra, generate new penumbra vertices by interpolation.
723 //
724 // Assuming Pi for penumbra vertices, and Ui for umbra vertices.
725 // In the case like below P1 paired with U1 and P2 paired with U5.
726 // U2 to U4 are unpaired umbra vertices.
727 //
728 // P1 P2
729 // | |
730 // U1 U2 U3 U4 U5
731 //
732 // We will need to generate 3 more penumbra vertices P1.1, P1.2, P1.3
733 // to pair with U2 to U4.
734 //
735 // P1 P1.1 P1.2 P1.3 P2
736 // | | | | |
737 // U1 U2 U3 U4 U5
738 //
739 // That distance ratio b/t Ui to U1 and Ui to U5 decides its paired penumbra
740 // vertex's location.
741 int newPenumbraNumber = indexDelta - 1;
742
Keith Moka1f56312015-11-10 16:52:05 -0800743 float accumulatedDeltaLength[indexDelta];
ztenghuid2dcd6f2014-10-29 16:04:29 -0700744 float totalDeltaLength = 0;
745
746 // To save time, cache the previous umbra vertex info outside the loop
747 // and update each loop.
748 Vector2 previousClosestUmbra = umbra[previousClosestUmbraIndex];
749 Vector2 skippedUmbra;
750 // Use umbra data to precompute the length b/t unpaired umbra vertices,
751 // and its ratio against the total length.
752 for (int k = 0; k < indexDelta; k++) {
753 int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
754 skippedUmbra = umbra[skippedUmbraIndex];
755 float currentDeltaLength = (skippedUmbra - previousClosestUmbra).length();
756
757 totalDeltaLength += currentDeltaLength;
758 accumulatedDeltaLength[k] = totalDeltaLength;
759
760 previousClosestUmbra = skippedUmbra;
761 }
762
763 const Vector2& previousPenumbra = penumbra[(i + penumbraLength - 1) % penumbraLength];
764 // Then for each unpaired umbra vertex, create a new penumbra by the ratio,
765 // and pair them togehter.
766 for (int k = 0; k < newPenumbraNumber; k++) {
767 float weightForCurrentPenumbra = 1.0f;
768 if (totalDeltaLength != 0.0f) {
769 weightForCurrentPenumbra = accumulatedDeltaLength[k] / totalDeltaLength;
770 }
771 float weightForPreviousPenumbra = 1.0f - weightForCurrentPenumbra;
772
773 Vector2 interpolatedPenumbra = currentPenumbraVertex * weightForCurrentPenumbra +
774 previousPenumbra * weightForPreviousPenumbra;
775
776 int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
Andreas Gampeedaecc12014-11-10 20:54:07 -0800777 verticesPair[verticesPairIndex].outerIndex = newPenumbraIndex;
778 verticesPair[verticesPairIndex].innerIndex = skippedUmbraIndex;
779 verticesPairIndex++;
ztenghuid2dcd6f2014-10-29 16:04:29 -0700780 newPenumbra[newPenumbraIndex++] = interpolatedPenumbra;
781 }
782 }
Andreas Gampeedaecc12014-11-10 20:54:07 -0800783 verticesPair[verticesPairIndex].outerIndex = newPenumbraIndex;
784 verticesPair[verticesPairIndex].innerIndex = currentClosestUmbraIndex;
785 verticesPairIndex++;
ztenghuid2dcd6f2014-10-29 16:04:29 -0700786 newPenumbra[newPenumbraIndex++] = currentPenumbraVertex;
787
788 previousClosestUmbraIndex = currentClosestUmbraIndex;
789 }
790}
791
792// Precompute all the polygon's vector, return true if the reference cross product is positive.
793inline bool genPolyToCentroid(const Vector2* poly2d, int polyLength,
794 const Vector2& centroid, Vector2* polyToCentroid) {
795 for (int j = 0; j < polyLength; j++) {
796 polyToCentroid[j] = poly2d[j] - centroid;
ztenghui39320632014-11-12 10:56:15 -0800797 // Normalize these vectors such that we can use epsilon comparison after
798 // computing their cross products with another normalized vector.
799 polyToCentroid[j].normalize();
ztenghuid2dcd6f2014-10-29 16:04:29 -0700800 }
801 float refCrossProduct = 0;
802 for (int j = 0; j < polyLength; j++) {
803 refCrossProduct = polyToCentroid[j].cross(polyToCentroid[(j + 1) % polyLength]);
804 if (refCrossProduct != 0) {
805 break;
ztenghui512e6432014-09-10 13:08:20 -0700806 }
807 }
808
ztenghuid2dcd6f2014-10-29 16:04:29 -0700809 return refCrossProduct > 0;
810}
ztenghui512e6432014-09-10 13:08:20 -0700811
ztenghuid2dcd6f2014-10-29 16:04:29 -0700812// For one umbra vertex, shoot an ray from centroid to it.
813// If the ray hit the polygon first, then return the intersection point as the
814// closer vertex.
815inline Vector2 getCloserVertex(const Vector2& umbraVertex, const Vector2& centroid,
816 const Vector2* poly2d, int polyLength, const Vector2* polyToCentroid,
817 bool isPositiveCross, int& previousPolyIndex) {
818 Vector2 umbraToCentroid = umbraVertex - centroid;
819 float distanceToUmbra = umbraToCentroid.length();
820 umbraToCentroid = umbraToCentroid / distanceToUmbra;
821
822 // previousPolyIndex is updated for each item such that we can minimize the
823 // looping inside findPolyIndex();
824 previousPolyIndex = findPolyIndex(isPositiveCross, previousPolyIndex,
825 umbraToCentroid, polyToCentroid, polyLength);
826
827 float dx = umbraToCentroid.x;
828 float dy = umbraToCentroid.y;
829 float distanceToIntersectPoly = rayIntersectPoints(centroid, dx, dy,
830 poly2d[previousPolyIndex], poly2d[(previousPolyIndex + 1) % polyLength]);
831 if (distanceToIntersectPoly < 0) {
832 distanceToIntersectPoly = 0;
833 }
834
835 // Pick the closer one as the occluded area vertex.
836 Vector2 closerVertex;
837 if (distanceToIntersectPoly < distanceToUmbra) {
838 closerVertex.x = centroid.x + dx * distanceToIntersectPoly;
839 closerVertex.y = centroid.y + dy * distanceToIntersectPoly;
840 } else {
841 closerVertex = umbraVertex;
842 }
843
844 return closerVertex;
ztenghui512e6432014-09-10 13:08:20 -0700845}
846
847/**
848 * Generate a triangle strip given two convex polygon
849**/
Andreas Gampe64bb4132014-11-22 00:35:09 +0000850void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale,
ztenghui512e6432014-09-10 13:08:20 -0700851 Vector2* penumbra, int penumbraLength, Vector2* umbra, int umbraLength,
852 const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip,
853 const Vector2& centroid) {
ztenghui512e6432014-09-10 13:08:20 -0700854 bool hasOccludedUmbraArea = false;
855 Vector2 poly2d[polyLength];
856
857 if (isCasterOpaque) {
858 for (int i = 0; i < polyLength; i++) {
859 poly2d[i].x = poly[i].x;
860 poly2d[i].y = poly[i].y;
861 }
862 // Make sure the centroid is inside the umbra, otherwise, fall back to the
863 // approach as if there is no occluded umbra area.
864 if (testPointInsidePolygon(centroid, poly2d, polyLength)) {
865 hasOccludedUmbraArea = true;
866 }
867 }
868
ztenghuid2dcd6f2014-10-29 16:04:29 -0700869 // For each penumbra vertex, find its corresponding closest umbra vertex index.
870 //
871 // Penumbra Vertices marked as Pi
872 // Umbra Vertices marked as Ui
873 // (P3)
874 // (P2) | ' (P4)
875 // (P1)' | | '
876 // ' | | '
877 // (P0) ------------------------------------------------(P5)
878 // | (U0) |(U1)
879 // | |
880 // | |(U2) (P5.1)
881 // | |
882 // | |
883 // | |
884 // | |
885 // | |
886 // | |
887 // (U4)-----------------------------------(U3) (P6)
888 //
889 // At least, like P0, P1, P2, they will find the matching umbra as U0.
890 // If we jump over some umbra vertex without matching penumbra vertex, then
891 // we will generate some new penumbra vertex by interpolation. Like P6 is
892 // matching U3, but U2 is not matched with any penumbra vertex.
893 // So interpolate P5.1 out and match U2.
894 // In this way, every umbra vertex will have a matching penumbra vertex.
895 //
896 // The total pair number can be as high as umbraLength + penumbraLength.
897 const int maxNewPenumbraLength = umbraLength + penumbraLength;
898 IndexPair verticesPair[maxNewPenumbraLength];
899 int verticesPairIndex = 0;
900
901 // Cache all the existing penumbra vertices and newly interpolated vertices into a
902 // a new array.
903 Vector2 newPenumbra[maxNewPenumbraLength];
904 int newPenumbraIndex = 0;
905
906 // For each penumbra vertex, find its closet umbra vertex by comparing the
907 // neighbor umbra vertices.
908 genNewPenumbraAndPairWithUmbra(penumbra, penumbraLength, umbra, umbraLength, newPenumbra,
909 newPenumbraIndex, verticesPair, verticesPairIndex);
910 ShadowTessellator::checkOverflow(verticesPairIndex, maxNewPenumbraLength, "Spot pair");
911 ShadowTessellator::checkOverflow(newPenumbraIndex, maxNewPenumbraLength, "Spot new penumbra");
912#if DEBUG_SHADOW
913 for (int i = 0; i < umbraLength; i++) {
914 ALOGD("umbra i %d, [%f, %f]", i, umbra[i].x, umbra[i].y);
ztenghui512e6432014-09-10 13:08:20 -0700915 }
ztenghuid2dcd6f2014-10-29 16:04:29 -0700916 for (int i = 0; i < newPenumbraIndex; i++) {
917 ALOGD("new penumbra i %d, [%f, %f]", i, newPenumbra[i].x, newPenumbra[i].y);
918 }
919 for (int i = 0; i < verticesPairIndex; i++) {
920 ALOGD("index i %d, [%d, %d]", i, verticesPair[i].outerIndex, verticesPair[i].innerIndex);
921 }
922#endif
ztenghui512e6432014-09-10 13:08:20 -0700923
ztenghuid2dcd6f2014-10-29 16:04:29 -0700924 // For the size of vertex buffer, we need 3 rings, one has newPenumbraSize,
925 // one has umbraLength, the last one has at most umbraLength.
926 //
927 // For the size of index buffer, the umbra area needs (2 * umbraLength + 2).
928 // The penumbra one can vary a bit, but it is bounded by (2 * verticesPairIndex + 2).
929 // And 2 more for jumping between penumbra to umbra.
930 const int newPenumbraLength = newPenumbraIndex;
931 const int totalVertexCount = newPenumbraLength + umbraLength * 2;
932 const int totalIndexCount = 2 * umbraLength + 2 * verticesPairIndex + 6;
ztenghui512e6432014-09-10 13:08:20 -0700933 AlphaVertex* shadowVertices =
934 shadowTriangleStrip.alloc<AlphaVertex>(totalVertexCount);
935 uint16_t* indexBuffer =
936 shadowTriangleStrip.allocIndices<uint16_t>(totalIndexCount);
ztenghui512e6432014-09-10 13:08:20 -0700937 int vertexBufferIndex = 0;
ztenghuid2dcd6f2014-10-29 16:04:29 -0700938 int indexBufferIndex = 0;
ztenghui512e6432014-09-10 13:08:20 -0700939
ztenghuid2dcd6f2014-10-29 16:04:29 -0700940 // Fill the IB and VB for the penumbra area.
941 for (int i = 0; i < newPenumbraLength; i++) {
942 AlphaVertex::set(&shadowVertices[vertexBufferIndex++], newPenumbra[i].x,
Chris Craik138c21f2016-04-28 16:59:42 -0700943 newPenumbra[i].y, PENUMBRA_ALPHA);
ztenghuid2dcd6f2014-10-29 16:04:29 -0700944 }
945 for (int i = 0; i < umbraLength; i++) {
946 AlphaVertex::set(&shadowVertices[vertexBufferIndex++], umbra[i].x, umbra[i].y,
Chris Craik138c21f2016-04-28 16:59:42 -0700947 UMBRA_ALPHA);
ztenghui512e6432014-09-10 13:08:20 -0700948 }
949
ztenghuid2dcd6f2014-10-29 16:04:29 -0700950 for (int i = 0; i < verticesPairIndex; i++) {
951 indexBuffer[indexBufferIndex++] = verticesPair[i].outerIndex;
952 // All umbra index need to be offseted by newPenumbraSize.
953 indexBuffer[indexBufferIndex++] = verticesPair[i].innerIndex + newPenumbraLength;
954 }
955 indexBuffer[indexBufferIndex++] = verticesPair[0].outerIndex;
956 indexBuffer[indexBufferIndex++] = verticesPair[0].innerIndex + newPenumbraLength;
ztenghui512e6432014-09-10 13:08:20 -0700957
ztenghuid2dcd6f2014-10-29 16:04:29 -0700958 // Now fill the IB and VB for the umbra area.
959 // First duplicated the index from previous strip and the first one for the
960 // degenerated triangles.
961 indexBuffer[indexBufferIndex] = indexBuffer[indexBufferIndex - 1];
962 indexBufferIndex++;
963 indexBuffer[indexBufferIndex++] = newPenumbraLength + 0;
964 // Save the first VB index for umbra area in order to close the loop.
965 int savedStartIndex = vertexBufferIndex;
966
ztenghui512e6432014-09-10 13:08:20 -0700967 if (hasOccludedUmbraArea) {
ztenghuid2dcd6f2014-10-29 16:04:29 -0700968 // Precompute all the polygon's vector, and the reference cross product,
969 // in order to find the right polygon edge for the ray to intersect.
970 Vector2 polyToCentroid[polyLength];
971 bool isPositiveCross = genPolyToCentroid(poly2d, polyLength, centroid, polyToCentroid);
ztenghui512e6432014-09-10 13:08:20 -0700972
ztenghuid2dcd6f2014-10-29 16:04:29 -0700973 // Because both the umbra and polygon are going in the same direction,
974 // we can save the previous polygon index to make sure we have less polygon
975 // vertex to compute for each ray.
976 int previousPolyIndex = 0;
977 for (int i = 0; i < umbraLength; i++) {
978 // Shoot a ray from centroid to each umbra vertices and pick the one with
979 // shorter distance to the centroid, b/t the umbra vertex or the intersection point.
980 Vector2 closerVertex = getCloserVertex(umbra[i], centroid, poly2d, polyLength,
981 polyToCentroid, isPositiveCross, previousPolyIndex);
982
983 // We already stored the umbra vertices, just need to add the occlued umbra's ones.
984 indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
985 indexBuffer[indexBufferIndex++] = vertexBufferIndex;
986 AlphaVertex::set(&shadowVertices[vertexBufferIndex++],
Chris Craik138c21f2016-04-28 16:59:42 -0700987 closerVertex.x, closerVertex.y, UMBRA_ALPHA);
ztenghui512e6432014-09-10 13:08:20 -0700988 }
ztenghui512e6432014-09-10 13:08:20 -0700989 } else {
ztenghuid2dcd6f2014-10-29 16:04:29 -0700990 // If there is no occluded umbra at all, then draw the triangle fan
991 // starting from the centroid to all umbra vertices.
ztenghui512e6432014-09-10 13:08:20 -0700992 int lastCentroidIndex = vertexBufferIndex;
993 AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid.x,
Chris Craik138c21f2016-04-28 16:59:42 -0700994 centroid.y, UMBRA_ALPHA);
ztenghuid2dcd6f2014-10-29 16:04:29 -0700995 for (int i = 0; i < umbraLength; i++) {
996 indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
ztenghui512e6432014-09-10 13:08:20 -0700997 indexBuffer[indexBufferIndex++] = lastCentroidIndex;
998 }
ztenghui512e6432014-09-10 13:08:20 -0700999 }
ztenghuid2dcd6f2014-10-29 16:04:29 -07001000 // Closing the umbra area triangle's loop here.
1001 indexBuffer[indexBufferIndex++] = newPenumbraLength;
1002 indexBuffer[indexBufferIndex++] = savedStartIndex;
ztenghui512e6432014-09-10 13:08:20 -07001003
1004 // At the end, update the real index and vertex buffer size.
1005 shadowTriangleStrip.updateVertexCount(vertexBufferIndex);
1006 shadowTriangleStrip.updateIndexCount(indexBufferIndex);
1007 ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Spot Vertex Buffer");
1008 ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Spot Index Buffer");
1009
Chris Craik117bdbc2015-02-05 10:12:38 -08001010 shadowTriangleStrip.setMeshFeatureFlags(VertexBuffer::kAlpha | VertexBuffer::kIndices);
ztenghui512e6432014-09-10 13:08:20 -07001011 shadowTriangleStrip.computeBounds<AlphaVertex>();
1012}
1013
ztenghuif5ca8b42014-01-27 15:53:28 -08001014#if DEBUG_SHADOW
1015
1016#define TEST_POINT_NUMBER 128
ztenghuif5ca8b42014-01-27 15:53:28 -08001017/**
1018 * Calculate the bounds for generating random test points.
1019 */
1020void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
ztenghui512e6432014-09-10 13:08:20 -07001021 Vector2& upperBound) {
ztenghuif5ca8b42014-01-27 15:53:28 -08001022 if (inVector.x < lowerBound.x) {
1023 lowerBound.x = inVector.x;
1024 }
1025
1026 if (inVector.y < lowerBound.y) {
1027 lowerBound.y = inVector.y;
1028 }
1029
1030 if (inVector.x > upperBound.x) {
1031 upperBound.x = inVector.x;
1032 }
1033
1034 if (inVector.y > upperBound.y) {
1035 upperBound.y = inVector.y;
1036 }
1037}
1038
1039/**
1040 * For debug purpose, when things go wrong, dump the whole polygon data.
1041 */
ztenghuic50a03d2014-08-21 13:47:54 -07001042void SpotShadow::dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
1043 for (int i = 0; i < polyLength; i++) {
1044 ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
1045 }
1046}
1047
1048/**
1049 * For debug purpose, when things go wrong, dump the whole polygon data.
1050 */
1051void SpotShadow::dumpPolygon(const Vector3* poly, int polyLength, const char* polyName) {
ztenghuif5ca8b42014-01-27 15:53:28 -08001052 for (int i = 0; i < polyLength; i++) {
Teng-Hui Zhu8d0ec382015-10-01 16:49:16 -07001053 ALOGD("polygon %s i %d x %f y %f z %f", polyName, i, poly[i].x, poly[i].y, poly[i].z);
ztenghuif5ca8b42014-01-27 15:53:28 -08001054 }
1055}
1056
1057/**
1058 * Test whether the polygon is convex.
1059 */
1060bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength,
1061 const char* name) {
1062 bool isConvex = true;
1063 for (int i = 0; i < polygonLength; i++) {
1064 Vector2 start = polygon[i];
1065 Vector2 middle = polygon[(i + 1) % polygonLength];
1066 Vector2 end = polygon[(i + 2) % polygonLength];
1067
ztenghui9122b1b2014-10-03 11:21:11 -07001068 float delta = (float(middle.x) - start.x) * (float(end.y) - start.y) -
1069 (float(middle.y) - start.y) * (float(end.x) - start.x);
ztenghuif5ca8b42014-01-27 15:53:28 -08001070 bool isCCWOrCoLinear = (delta >= EPSILON);
1071
1072 if (isCCWOrCoLinear) {
ztenghui50ecf842014-03-11 16:52:30 -07001073 ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
ztenghuif5ca8b42014-01-27 15:53:28 -08001074 "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
1075 name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
1076 isConvex = false;
1077 break;
1078 }
1079 }
1080 return isConvex;
1081}
1082
1083/**
1084 * Test whether or not the polygon (intersection) is within the 2 input polygons.
1085 * Using Marte Carlo method, we generate a random point, and if it is inside the
1086 * intersection, then it must be inside both source polygons.
1087 */
1088void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length,
1089 const Vector2* poly2, int poly2Length,
1090 const Vector2* intersection, int intersectionLength) {
1091 // Find the min and max of x and y.
ztenghuic50a03d2014-08-21 13:47:54 -07001092 Vector2 lowerBound = {FLT_MAX, FLT_MAX};
1093 Vector2 upperBound = {-FLT_MAX, -FLT_MAX};
ztenghuif5ca8b42014-01-27 15:53:28 -08001094 for (int i = 0; i < poly1Length; i++) {
1095 updateBound(poly1[i], lowerBound, upperBound);
1096 }
1097 for (int i = 0; i < poly2Length; i++) {
1098 updateBound(poly2[i], lowerBound, upperBound);
1099 }
1100
1101 bool dumpPoly = false;
1102 for (int k = 0; k < TEST_POINT_NUMBER; k++) {
1103 // Generate a random point between minX, minY and maxX, maxY.
ztenghui9122b1b2014-10-03 11:21:11 -07001104 float randomX = rand() / float(RAND_MAX);
1105 float randomY = rand() / float(RAND_MAX);
ztenghuif5ca8b42014-01-27 15:53:28 -08001106
1107 Vector2 testPoint;
1108 testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
1109 testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
1110
1111 // If the random point is in both poly 1 and 2, then it must be intersection.
1112 if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
1113 if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
1114 dumpPoly = true;
ztenghui50ecf842014-03-11 16:52:30 -07001115 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
ztenghui512e6432014-09-10 13:08:20 -07001116 " not in the poly1",
ztenghuif5ca8b42014-01-27 15:53:28 -08001117 testPoint.x, testPoint.y);
1118 }
1119
1120 if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
1121 dumpPoly = true;
ztenghui50ecf842014-03-11 16:52:30 -07001122 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
ztenghui512e6432014-09-10 13:08:20 -07001123 " not in the poly2",
ztenghuif5ca8b42014-01-27 15:53:28 -08001124 testPoint.x, testPoint.y);
1125 }
1126 }
1127 }
1128
1129 if (dumpPoly) {
1130 dumpPolygon(intersection, intersectionLength, "intersection");
1131 for (int i = 1; i < intersectionLength; i++) {
1132 Vector2 delta = intersection[i] - intersection[i - 1];
1133 ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
1134 }
1135
1136 dumpPolygon(poly1, poly1Length, "poly 1");
1137 dumpPolygon(poly2, poly2Length, "poly 2");
1138 }
1139}
1140#endif
1141
ztenghui7b4516e2014-01-07 10:42:55 -08001142}; // namespace uirenderer
1143}; // namespace android