blob: 5775008f0c30bb7c3053720326f924a9704be91e [file] [log] [blame]
Tim Northover3b0846e2014-05-24 12:50:23 +00001//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AArch64TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AArch64ISelLowering.h"
Tim Northover3c55cca2014-11-27 21:02:42 +000015#include "AArch64CallingConvention.h"
Benjamin Kramer1f8930e2014-07-25 11:42:14 +000016#include "AArch64MachineFunctionInfo.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000017#include "AArch64PerfectShuffle.h"
18#include "AArch64Subtarget.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000019#include "AArch64TargetMachine.h"
20#include "AArch64TargetObjectFile.h"
21#include "MCTargetDesc/AArch64AddressingModes.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/Intrinsics.h"
29#include "llvm/IR/Type.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Target/TargetOptions.h"
35using namespace llvm;
36
37#define DEBUG_TYPE "aarch64-lower"
38
39STATISTIC(NumTailCalls, "Number of tail calls");
40STATISTIC(NumShiftInserts, "Number of vector shift inserts");
41
Alexey Samsonovf17f03e2014-08-19 18:40:39 +000042namespace {
Tim Northover3b0846e2014-05-24 12:50:23 +000043enum AlignMode {
44 StrictAlign,
45 NoStrictAlign
46};
Alexey Samsonovf17f03e2014-08-19 18:40:39 +000047}
Tim Northover3b0846e2014-05-24 12:50:23 +000048
49static cl::opt<AlignMode>
50Align(cl::desc("Load/store alignment support"),
51 cl::Hidden, cl::init(NoStrictAlign),
52 cl::values(
53 clEnumValN(StrictAlign, "aarch64-strict-align",
54 "Disallow all unaligned memory accesses"),
55 clEnumValN(NoStrictAlign, "aarch64-no-strict-align",
56 "Allow unaligned memory accesses"),
57 clEnumValEnd));
58
59// Place holder until extr generation is tested fully.
60static cl::opt<bool>
61EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden,
62 cl::desc("Allow AArch64 (or (shift)(shift))->extract"),
63 cl::init(true));
64
65static cl::opt<bool>
66EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
67 cl::desc("Allow AArch64 SLI/SRI formation"),
68 cl::init(false));
69
Tim Northover3b0846e2014-05-24 12:50:23 +000070
Eric Christopherf12e1ab2014-10-03 00:42:41 +000071AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM)
Aditya Nandakumar30531552014-11-13 21:29:21 +000072 : TargetLowering(TM) {
Tim Northover3b0846e2014-05-24 12:50:23 +000073 Subtarget = &TM.getSubtarget<AArch64Subtarget>();
74
75 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
76 // we have to make something up. Arbitrarily, choose ZeroOrOne.
77 setBooleanContents(ZeroOrOneBooleanContent);
78 // When comparing vectors the result sets the different elements in the
79 // vector to all-one or all-zero.
80 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
81
82 // Set up the register classes.
83 addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
84 addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
85
86 if (Subtarget->hasFPARMv8()) {
87 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
88 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
89 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
90 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
91 }
92
93 if (Subtarget->hasNEON()) {
94 addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
95 addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
96 // Someone set us up the NEON.
97 addDRTypeForNEON(MVT::v2f32);
98 addDRTypeForNEON(MVT::v8i8);
99 addDRTypeForNEON(MVT::v4i16);
100 addDRTypeForNEON(MVT::v2i32);
101 addDRTypeForNEON(MVT::v1i64);
102 addDRTypeForNEON(MVT::v1f64);
Oliver Stannard89d15422014-08-27 16:16:04 +0000103 addDRTypeForNEON(MVT::v4f16);
Tim Northover3b0846e2014-05-24 12:50:23 +0000104
105 addQRTypeForNEON(MVT::v4f32);
106 addQRTypeForNEON(MVT::v2f64);
107 addQRTypeForNEON(MVT::v16i8);
108 addQRTypeForNEON(MVT::v8i16);
109 addQRTypeForNEON(MVT::v4i32);
110 addQRTypeForNEON(MVT::v2i64);
Oliver Stannard89d15422014-08-27 16:16:04 +0000111 addQRTypeForNEON(MVT::v8f16);
Tim Northover3b0846e2014-05-24 12:50:23 +0000112 }
113
114 // Compute derived properties from the register classes
115 computeRegisterProperties();
116
117 // Provide all sorts of operation actions
118 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
119 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
120 setOperationAction(ISD::SETCC, MVT::i32, Custom);
121 setOperationAction(ISD::SETCC, MVT::i64, Custom);
122 setOperationAction(ISD::SETCC, MVT::f32, Custom);
123 setOperationAction(ISD::SETCC, MVT::f64, Custom);
124 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
125 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
126 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
127 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
128 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
129 setOperationAction(ISD::SELECT, MVT::i32, Custom);
130 setOperationAction(ISD::SELECT, MVT::i64, Custom);
131 setOperationAction(ISD::SELECT, MVT::f32, Custom);
132 setOperationAction(ISD::SELECT, MVT::f64, Custom);
133 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
134 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
135 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
136 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
137 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
138 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
139
140 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
141 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
142 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
143
144 setOperationAction(ISD::FREM, MVT::f32, Expand);
145 setOperationAction(ISD::FREM, MVT::f64, Expand);
146 setOperationAction(ISD::FREM, MVT::f80, Expand);
147
148 // Custom lowering hooks are needed for XOR
149 // to fold it into CSINC/CSINV.
150 setOperationAction(ISD::XOR, MVT::i32, Custom);
151 setOperationAction(ISD::XOR, MVT::i64, Custom);
152
153 // Virtually no operation on f128 is legal, but LLVM can't expand them when
154 // there's a valid register class, so we need custom operations in most cases.
155 setOperationAction(ISD::FABS, MVT::f128, Expand);
156 setOperationAction(ISD::FADD, MVT::f128, Custom);
157 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
158 setOperationAction(ISD::FCOS, MVT::f128, Expand);
159 setOperationAction(ISD::FDIV, MVT::f128, Custom);
160 setOperationAction(ISD::FMA, MVT::f128, Expand);
161 setOperationAction(ISD::FMUL, MVT::f128, Custom);
162 setOperationAction(ISD::FNEG, MVT::f128, Expand);
163 setOperationAction(ISD::FPOW, MVT::f128, Expand);
164 setOperationAction(ISD::FREM, MVT::f128, Expand);
165 setOperationAction(ISD::FRINT, MVT::f128, Expand);
166 setOperationAction(ISD::FSIN, MVT::f128, Expand);
167 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
168 setOperationAction(ISD::FSQRT, MVT::f128, Expand);
169 setOperationAction(ISD::FSUB, MVT::f128, Custom);
170 setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
171 setOperationAction(ISD::SETCC, MVT::f128, Custom);
172 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
173 setOperationAction(ISD::SELECT, MVT::f128, Custom);
174 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
175 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
176
177 // Lowering for many of the conversions is actually specified by the non-f128
178 // type. The LowerXXX function will be trivial when f128 isn't involved.
179 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
180 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
181 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
182 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
183 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
184 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
185 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
186 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
187 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
188 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
189 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
190 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
191 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
192 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
193
194 // Variable arguments.
195 setOperationAction(ISD::VASTART, MVT::Other, Custom);
196 setOperationAction(ISD::VAARG, MVT::Other, Custom);
197 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
198 setOperationAction(ISD::VAEND, MVT::Other, Expand);
199
200 // Variable-sized objects.
201 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
202 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
203 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
204
205 // Exception handling.
206 // FIXME: These are guesses. Has this been defined yet?
207 setExceptionPointerRegister(AArch64::X0);
208 setExceptionSelectorRegister(AArch64::X1);
209
210 // Constant pool entries
211 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
212
213 // BlockAddress
214 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
215
216 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
217 setOperationAction(ISD::ADDC, MVT::i32, Custom);
218 setOperationAction(ISD::ADDE, MVT::i32, Custom);
219 setOperationAction(ISD::SUBC, MVT::i32, Custom);
220 setOperationAction(ISD::SUBE, MVT::i32, Custom);
221 setOperationAction(ISD::ADDC, MVT::i64, Custom);
222 setOperationAction(ISD::ADDE, MVT::i64, Custom);
223 setOperationAction(ISD::SUBC, MVT::i64, Custom);
224 setOperationAction(ISD::SUBE, MVT::i64, Custom);
225
226 // AArch64 lacks both left-rotate and popcount instructions.
227 setOperationAction(ISD::ROTL, MVT::i32, Expand);
228 setOperationAction(ISD::ROTL, MVT::i64, Expand);
229
230 // AArch64 doesn't have {U|S}MUL_LOHI.
231 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
232 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
233
234
235 // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero
236 // counterparts, which AArch64 supports directly.
237 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
238 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
239 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
240 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
241
242 setOperationAction(ISD::CTPOP, MVT::i32, Custom);
243 setOperationAction(ISD::CTPOP, MVT::i64, Custom);
244
245 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
246 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
247 setOperationAction(ISD::SREM, MVT::i32, Expand);
248 setOperationAction(ISD::SREM, MVT::i64, Expand);
249 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
250 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
251 setOperationAction(ISD::UREM, MVT::i32, Expand);
252 setOperationAction(ISD::UREM, MVT::i64, Expand);
253
254 // Custom lower Add/Sub/Mul with overflow.
255 setOperationAction(ISD::SADDO, MVT::i32, Custom);
256 setOperationAction(ISD::SADDO, MVT::i64, Custom);
257 setOperationAction(ISD::UADDO, MVT::i32, Custom);
258 setOperationAction(ISD::UADDO, MVT::i64, Custom);
259 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
260 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
261 setOperationAction(ISD::USUBO, MVT::i32, Custom);
262 setOperationAction(ISD::USUBO, MVT::i64, Custom);
263 setOperationAction(ISD::SMULO, MVT::i32, Custom);
264 setOperationAction(ISD::SMULO, MVT::i64, Custom);
265 setOperationAction(ISD::UMULO, MVT::i32, Custom);
266 setOperationAction(ISD::UMULO, MVT::i64, Custom);
267
268 setOperationAction(ISD::FSIN, MVT::f32, Expand);
269 setOperationAction(ISD::FSIN, MVT::f64, Expand);
270 setOperationAction(ISD::FCOS, MVT::f32, Expand);
271 setOperationAction(ISD::FCOS, MVT::f64, Expand);
272 setOperationAction(ISD::FPOW, MVT::f32, Expand);
273 setOperationAction(ISD::FPOW, MVT::f64, Expand);
274 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
275 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
276
Oliver Stannardf5469be2014-08-18 14:22:39 +0000277 // f16 is storage-only, so we promote operations to f32 if we know this is
278 // valid, and ignore them otherwise. The operations not mentioned here will
279 // fail to select, but this is not a major problem as no source language
280 // should be emitting native f16 operations yet.
281 setOperationAction(ISD::FADD, MVT::f16, Promote);
282 setOperationAction(ISD::FDIV, MVT::f16, Promote);
283 setOperationAction(ISD::FMUL, MVT::f16, Promote);
284 setOperationAction(ISD::FSUB, MVT::f16, Promote);
285
Oliver Stannard89d15422014-08-27 16:16:04 +0000286 // v4f16 is also a storage-only type, so promote it to v4f32 when that is
287 // known to be safe.
288 setOperationAction(ISD::FADD, MVT::v4f16, Promote);
289 setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
290 setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
291 setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
292 setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote);
293 setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote);
294 AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
295 AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
296 AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
297 AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
298 AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32);
299 AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32);
300
301 // Expand all other v4f16 operations.
302 // FIXME: We could generate better code by promoting some operations to
303 // a pair of v4f32s
304 setOperationAction(ISD::FABS, MVT::v4f16, Expand);
305 setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
306 setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
307 setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
308 setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
309 setOperationAction(ISD::FMA, MVT::v4f16, Expand);
310 setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
311 setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
312 setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
313 setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
314 setOperationAction(ISD::FREM, MVT::v4f16, Expand);
315 setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
316 setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
317 setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
318 setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
319 setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
320 setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
321 setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
322 setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
323 setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
324 setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
325 setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
326 setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
327 setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
328 setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
329 setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
330
331
332 // v8f16 is also a storage-only type, so expand it.
333 setOperationAction(ISD::FABS, MVT::v8f16, Expand);
334 setOperationAction(ISD::FADD, MVT::v8f16, Expand);
335 setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
336 setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
337 setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
338 setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
339 setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
340 setOperationAction(ISD::FMA, MVT::v8f16, Expand);
341 setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
342 setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
343 setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
344 setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
345 setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
346 setOperationAction(ISD::FREM, MVT::v8f16, Expand);
347 setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
348 setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
349 setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
350 setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
351 setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
352 setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
353 setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
354 setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
355 setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
356 setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
357 setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
358 setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
359 setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
360 setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
361 setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
362 setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
363 setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
364
Tim Northover3b0846e2014-05-24 12:50:23 +0000365 // AArch64 has implementations of a lot of rounding-like FP operations.
366 static MVT RoundingTypes[] = { MVT::f32, MVT::f64};
367 for (unsigned I = 0; I < array_lengthof(RoundingTypes); ++I) {
368 MVT Ty = RoundingTypes[I];
369 setOperationAction(ISD::FFLOOR, Ty, Legal);
370 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
371 setOperationAction(ISD::FCEIL, Ty, Legal);
372 setOperationAction(ISD::FRINT, Ty, Legal);
373 setOperationAction(ISD::FTRUNC, Ty, Legal);
374 setOperationAction(ISD::FROUND, Ty, Legal);
375 }
376
377 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
378
379 if (Subtarget->isTargetMachO()) {
380 // For iOS, we don't want to the normal expansion of a libcall to
381 // sincos. We want to issue a libcall to __sincos_stret to avoid memory
382 // traffic.
383 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
384 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
385 } else {
386 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
387 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
388 }
389
Juergen Ributzka23266502014-12-10 19:43:32 +0000390 // Make floating-point constants legal for the large code model, so they don't
391 // become loads from the constant pool.
392 if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
393 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
394 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
395 }
396
Tim Northover3b0846e2014-05-24 12:50:23 +0000397 // AArch64 does not have floating-point extending loads, i1 sign-extending
398 // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000399 for (MVT VT : MVT::fp_valuetypes()) {
400 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
401 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
402 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
403 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
404 }
405 for (MVT VT : MVT::integer_valuetypes())
406 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
407
Tim Northover3b0846e2014-05-24 12:50:23 +0000408 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
409 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
410 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
411 setTruncStoreAction(MVT::f128, MVT::f80, Expand);
412 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
413 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
414 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
Tim Northoverf8bfe212014-07-18 13:07:05 +0000415
416 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
417 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
418
Tim Northover3b0846e2014-05-24 12:50:23 +0000419 // Indexed loads and stores are supported.
420 for (unsigned im = (unsigned)ISD::PRE_INC;
421 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
422 setIndexedLoadAction(im, MVT::i8, Legal);
423 setIndexedLoadAction(im, MVT::i16, Legal);
424 setIndexedLoadAction(im, MVT::i32, Legal);
425 setIndexedLoadAction(im, MVT::i64, Legal);
426 setIndexedLoadAction(im, MVT::f64, Legal);
427 setIndexedLoadAction(im, MVT::f32, Legal);
428 setIndexedStoreAction(im, MVT::i8, Legal);
429 setIndexedStoreAction(im, MVT::i16, Legal);
430 setIndexedStoreAction(im, MVT::i32, Legal);
431 setIndexedStoreAction(im, MVT::i64, Legal);
432 setIndexedStoreAction(im, MVT::f64, Legal);
433 setIndexedStoreAction(im, MVT::f32, Legal);
434 }
435
436 // Trap.
437 setOperationAction(ISD::TRAP, MVT::Other, Legal);
438
439 // We combine OR nodes for bitfield operations.
440 setTargetDAGCombine(ISD::OR);
441
442 // Vector add and sub nodes may conceal a high-half opportunity.
443 // Also, try to fold ADD into CSINC/CSINV..
444 setTargetDAGCombine(ISD::ADD);
445 setTargetDAGCombine(ISD::SUB);
446
447 setTargetDAGCombine(ISD::XOR);
448 setTargetDAGCombine(ISD::SINT_TO_FP);
449 setTargetDAGCombine(ISD::UINT_TO_FP);
450
451 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
452
453 setTargetDAGCombine(ISD::ANY_EXTEND);
454 setTargetDAGCombine(ISD::ZERO_EXTEND);
455 setTargetDAGCombine(ISD::SIGN_EXTEND);
456 setTargetDAGCombine(ISD::BITCAST);
457 setTargetDAGCombine(ISD::CONCAT_VECTORS);
458 setTargetDAGCombine(ISD::STORE);
459
460 setTargetDAGCombine(ISD::MUL);
461
462 setTargetDAGCombine(ISD::SELECT);
463 setTargetDAGCombine(ISD::VSELECT);
464
465 setTargetDAGCombine(ISD::INTRINSIC_VOID);
466 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
467 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
468
469 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
470 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
471 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
472
473 setStackPointerRegisterToSaveRestore(AArch64::SP);
474
475 setSchedulingPreference(Sched::Hybrid);
476
477 // Enable TBZ/TBNZ
478 MaskAndBranchFoldingIsLegal = true;
479
480 setMinFunctionAlignment(2);
481
482 RequireStrictAlign = (Align == StrictAlign);
483
484 setHasExtractBitsInsn(true);
485
486 if (Subtarget->hasNEON()) {
487 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
488 // silliness like this:
489 setOperationAction(ISD::FABS, MVT::v1f64, Expand);
490 setOperationAction(ISD::FADD, MVT::v1f64, Expand);
491 setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
492 setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
493 setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
494 setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
495 setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
496 setOperationAction(ISD::FMA, MVT::v1f64, Expand);
497 setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
498 setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
499 setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
500 setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
501 setOperationAction(ISD::FREM, MVT::v1f64, Expand);
502 setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
503 setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
504 setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
505 setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
506 setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
507 setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
508 setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
509 setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
510 setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
511 setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
512 setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
513 setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
514
515 setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
516 setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
517 setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
518 setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
519 setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
520
521 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
522
523 // AArch64 doesn't have a direct vector ->f32 conversion instructions for
524 // elements smaller than i32, so promote the input to i32 first.
525 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
526 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
527 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
528 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
529 // Similarly, there is no direct i32 -> f64 vector conversion instruction.
530 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
531 setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
532 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
533 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
534
535 // AArch64 doesn't have MUL.2d:
536 setOperationAction(ISD::MUL, MVT::v2i64, Expand);
Chad Rosierd9d0f862014-10-08 02:31:24 +0000537 // Custom handling for some quad-vector types to detect MULL.
538 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
539 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
540 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
541
Tim Northover3b0846e2014-05-24 12:50:23 +0000542 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
543 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
544 // Likewise, narrowing and extending vector loads/stores aren't handled
545 // directly.
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000546 for (MVT VT : MVT::vector_valuetypes()) {
547 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000548
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000549 setOperationAction(ISD::MULHS, VT, Expand);
550 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
551 setOperationAction(ISD::MULHU, VT, Expand);
552 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000553
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000554 setOperationAction(ISD::BSWAP, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000555
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000556 for (MVT InnerVT : MVT::vector_valuetypes()) {
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000557 setTruncStoreAction(VT, InnerVT, Expand);
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000558 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
559 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
560 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
561 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000562 }
563
564 // AArch64 has implementations of a lot of rounding-like FP operations.
565 static MVT RoundingVecTypes[] = {MVT::v2f32, MVT::v4f32, MVT::v2f64 };
566 for (unsigned I = 0; I < array_lengthof(RoundingVecTypes); ++I) {
567 MVT Ty = RoundingVecTypes[I];
568 setOperationAction(ISD::FFLOOR, Ty, Legal);
569 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
570 setOperationAction(ISD::FCEIL, Ty, Legal);
571 setOperationAction(ISD::FRINT, Ty, Legal);
572 setOperationAction(ISD::FTRUNC, Ty, Legal);
573 setOperationAction(ISD::FROUND, Ty, Legal);
574 }
575 }
James Molloyf089ab72014-08-06 10:42:18 +0000576
577 // Prefer likely predicted branches to selects on out-of-order cores.
578 if (Subtarget->isCortexA57())
579 PredictableSelectIsExpensive = true;
Tim Northover3b0846e2014-05-24 12:50:23 +0000580}
581
582void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) {
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000583 if (VT == MVT::v2f32 || VT == MVT::v4f16) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000584 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
585 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32);
586
587 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
588 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32);
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000589 } else if (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000590 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
591 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64);
592
593 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
594 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64);
595 }
596
597 // Mark vector float intrinsics as expand.
598 if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
599 setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand);
600 setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand);
601 setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand);
602 setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand);
603 setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand);
604 setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand);
605 setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand);
606 setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand);
607 setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand);
608 }
609
610 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
611 setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
612 setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
613 setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
614 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom);
615 setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
616 setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
617 setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
618 setOperationAction(ISD::AND, VT.getSimpleVT(), Custom);
619 setOperationAction(ISD::OR, VT.getSimpleVT(), Custom);
620 setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
621 setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
622
623 setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
624 setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
625 setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand);
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000626 for (MVT InnerVT : MVT::all_valuetypes())
627 setLoadExtAction(ISD::EXTLOAD, InnerVT, VT.getSimpleVT(), Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000628
629 // CNT supports only B element sizes.
630 if (VT != MVT::v8i8 && VT != MVT::v16i8)
631 setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand);
632
633 setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
634 setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
635 setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
636 setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
637 setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
638
639 setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
640 setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
641
642 if (Subtarget->isLittleEndian()) {
643 for (unsigned im = (unsigned)ISD::PRE_INC;
644 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
645 setIndexedLoadAction(im, VT.getSimpleVT(), Legal);
646 setIndexedStoreAction(im, VT.getSimpleVT(), Legal);
647 }
648 }
649}
650
651void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
652 addRegisterClass(VT, &AArch64::FPR64RegClass);
653 addTypeForNEON(VT, MVT::v2i32);
654}
655
656void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
657 addRegisterClass(VT, &AArch64::FPR128RegClass);
658 addTypeForNEON(VT, MVT::v4i32);
659}
660
661EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
662 if (!VT.isVector())
663 return MVT::i32;
664 return VT.changeVectorElementTypeToInteger();
665}
666
667/// computeKnownBitsForTargetNode - Determine which of the bits specified in
668/// Mask are known to be either zero or one and return them in the
669/// KnownZero/KnownOne bitsets.
670void AArch64TargetLowering::computeKnownBitsForTargetNode(
671 const SDValue Op, APInt &KnownZero, APInt &KnownOne,
672 const SelectionDAG &DAG, unsigned Depth) const {
673 switch (Op.getOpcode()) {
674 default:
675 break;
676 case AArch64ISD::CSEL: {
677 APInt KnownZero2, KnownOne2;
678 DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
679 DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
680 KnownZero &= KnownZero2;
681 KnownOne &= KnownOne2;
682 break;
683 }
684 case ISD::INTRINSIC_W_CHAIN: {
685 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
686 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
687 switch (IntID) {
688 default: return;
689 case Intrinsic::aarch64_ldaxr:
690 case Intrinsic::aarch64_ldxr: {
691 unsigned BitWidth = KnownOne.getBitWidth();
692 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
693 unsigned MemBits = VT.getScalarType().getSizeInBits();
694 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
695 return;
696 }
697 }
698 break;
699 }
700 case ISD::INTRINSIC_WO_CHAIN:
701 case ISD::INTRINSIC_VOID: {
702 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
703 switch (IntNo) {
704 default:
705 break;
706 case Intrinsic::aarch64_neon_umaxv:
707 case Intrinsic::aarch64_neon_uminv: {
708 // Figure out the datatype of the vector operand. The UMINV instruction
709 // will zero extend the result, so we can mark as known zero all the
710 // bits larger than the element datatype. 32-bit or larget doesn't need
711 // this as those are legal types and will be handled by isel directly.
712 MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
713 unsigned BitWidth = KnownZero.getBitWidth();
714 if (VT == MVT::v8i8 || VT == MVT::v16i8) {
715 assert(BitWidth >= 8 && "Unexpected width!");
716 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
717 KnownZero |= Mask;
718 } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
719 assert(BitWidth >= 16 && "Unexpected width!");
720 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
721 KnownZero |= Mask;
722 }
723 break;
724 } break;
725 }
726 }
727 }
728}
729
730MVT AArch64TargetLowering::getScalarShiftAmountTy(EVT LHSTy) const {
731 return MVT::i64;
732}
733
734unsigned AArch64TargetLowering::getMaximalGlobalOffset() const {
735 // FIXME: On AArch64, this depends on the type.
Tim Northover21feb2e2014-07-01 19:47:09 +0000736 // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes().
Tim Northover3b0846e2014-05-24 12:50:23 +0000737 // and the offset has to be a multiple of the related size in bytes.
738 return 4095;
739}
740
741FastISel *
742AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
743 const TargetLibraryInfo *libInfo) const {
744 return AArch64::createFastISel(funcInfo, libInfo);
745}
746
747const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
748 switch (Opcode) {
749 default:
750 return nullptr;
751 case AArch64ISD::CALL: return "AArch64ISD::CALL";
752 case AArch64ISD::ADRP: return "AArch64ISD::ADRP";
753 case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow";
754 case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot";
755 case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG";
756 case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND";
757 case AArch64ISD::CSEL: return "AArch64ISD::CSEL";
758 case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL";
759 case AArch64ISD::CSINV: return "AArch64ISD::CSINV";
760 case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG";
761 case AArch64ISD::CSINC: return "AArch64ISD::CSINC";
762 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
763 case AArch64ISD::TLSDESC_CALL: return "AArch64ISD::TLSDESC_CALL";
764 case AArch64ISD::ADC: return "AArch64ISD::ADC";
765 case AArch64ISD::SBC: return "AArch64ISD::SBC";
766 case AArch64ISD::ADDS: return "AArch64ISD::ADDS";
767 case AArch64ISD::SUBS: return "AArch64ISD::SUBS";
768 case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
769 case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
770 case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
771 case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
772 case AArch64ISD::FMIN: return "AArch64ISD::FMIN";
773 case AArch64ISD::FMAX: return "AArch64ISD::FMAX";
774 case AArch64ISD::DUP: return "AArch64ISD::DUP";
775 case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8";
776 case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16";
777 case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32";
778 case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64";
779 case AArch64ISD::MOVI: return "AArch64ISD::MOVI";
780 case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift";
781 case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit";
782 case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl";
783 case AArch64ISD::FMOV: return "AArch64ISD::FMOV";
784 case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift";
785 case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl";
786 case AArch64ISD::BICi: return "AArch64ISD::BICi";
787 case AArch64ISD::ORRi: return "AArch64ISD::ORRi";
788 case AArch64ISD::BSL: return "AArch64ISD::BSL";
789 case AArch64ISD::NEG: return "AArch64ISD::NEG";
790 case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
791 case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1";
792 case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2";
793 case AArch64ISD::UZP1: return "AArch64ISD::UZP1";
794 case AArch64ISD::UZP2: return "AArch64ISD::UZP2";
795 case AArch64ISD::TRN1: return "AArch64ISD::TRN1";
796 case AArch64ISD::TRN2: return "AArch64ISD::TRN2";
797 case AArch64ISD::REV16: return "AArch64ISD::REV16";
798 case AArch64ISD::REV32: return "AArch64ISD::REV32";
799 case AArch64ISD::REV64: return "AArch64ISD::REV64";
800 case AArch64ISD::EXT: return "AArch64ISD::EXT";
801 case AArch64ISD::VSHL: return "AArch64ISD::VSHL";
802 case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR";
803 case AArch64ISD::VASHR: return "AArch64ISD::VASHR";
804 case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ";
805 case AArch64ISD::CMGE: return "AArch64ISD::CMGE";
806 case AArch64ISD::CMGT: return "AArch64ISD::CMGT";
807 case AArch64ISD::CMHI: return "AArch64ISD::CMHI";
808 case AArch64ISD::CMHS: return "AArch64ISD::CMHS";
809 case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ";
810 case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE";
811 case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT";
812 case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz";
813 case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz";
814 case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz";
815 case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz";
816 case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz";
817 case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz";
818 case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz";
819 case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz";
820 case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz";
821 case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz";
822 case AArch64ISD::NOT: return "AArch64ISD::NOT";
823 case AArch64ISD::BIT: return "AArch64ISD::BIT";
824 case AArch64ISD::CBZ: return "AArch64ISD::CBZ";
825 case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ";
826 case AArch64ISD::TBZ: return "AArch64ISD::TBZ";
827 case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ";
828 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
829 case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
830 case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
Asiri Rathnayake530b3ed2014-10-01 09:59:45 +0000831 case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST";
Tim Northover3b0846e2014-05-24 12:50:23 +0000832 case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
833 case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
834 case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
835 case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I";
836 case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I";
837 case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
838 case AArch64ISD::LD2post: return "AArch64ISD::LD2post";
839 case AArch64ISD::LD3post: return "AArch64ISD::LD3post";
840 case AArch64ISD::LD4post: return "AArch64ISD::LD4post";
841 case AArch64ISD::ST2post: return "AArch64ISD::ST2post";
842 case AArch64ISD::ST3post: return "AArch64ISD::ST3post";
843 case AArch64ISD::ST4post: return "AArch64ISD::ST4post";
844 case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post";
845 case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post";
846 case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post";
847 case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post";
848 case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post";
849 case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post";
850 case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost";
851 case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost";
852 case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost";
853 case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost";
854 case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost";
855 case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost";
856 case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost";
857 case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost";
858 case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
859 case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
860 case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
Chad Rosierd9d0f862014-10-08 02:31:24 +0000861 case AArch64ISD::SMULL: return "AArch64ISD::SMULL";
862 case AArch64ISD::UMULL: return "AArch64ISD::UMULL";
Tim Northover3b0846e2014-05-24 12:50:23 +0000863 }
864}
865
866MachineBasicBlock *
867AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
868 MachineBasicBlock *MBB) const {
869 // We materialise the F128CSEL pseudo-instruction as some control flow and a
870 // phi node:
871
872 // OrigBB:
873 // [... previous instrs leading to comparison ...]
874 // b.ne TrueBB
875 // b EndBB
876 // TrueBB:
877 // ; Fallthrough
878 // EndBB:
879 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
880
Tim Northover3b0846e2014-05-24 12:50:23 +0000881 MachineFunction *MF = MBB->getParent();
Eric Christopher6c901622015-01-28 03:51:33 +0000882 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +0000883 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
884 DebugLoc DL = MI->getDebugLoc();
885 MachineFunction::iterator It = MBB;
886 ++It;
887
888 unsigned DestReg = MI->getOperand(0).getReg();
889 unsigned IfTrueReg = MI->getOperand(1).getReg();
890 unsigned IfFalseReg = MI->getOperand(2).getReg();
891 unsigned CondCode = MI->getOperand(3).getImm();
892 bool NZCVKilled = MI->getOperand(4).isKill();
893
894 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
895 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
896 MF->insert(It, TrueBB);
897 MF->insert(It, EndBB);
898
899 // Transfer rest of current basic-block to EndBB
900 EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
901 MBB->end());
902 EndBB->transferSuccessorsAndUpdatePHIs(MBB);
903
904 BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
905 BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
906 MBB->addSuccessor(TrueBB);
907 MBB->addSuccessor(EndBB);
908
909 // TrueBB falls through to the end.
910 TrueBB->addSuccessor(EndBB);
911
912 if (!NZCVKilled) {
913 TrueBB->addLiveIn(AArch64::NZCV);
914 EndBB->addLiveIn(AArch64::NZCV);
915 }
916
917 BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
918 .addReg(IfTrueReg)
919 .addMBB(TrueBB)
920 .addReg(IfFalseReg)
921 .addMBB(MBB);
922
923 MI->eraseFromParent();
924 return EndBB;
925}
926
927MachineBasicBlock *
928AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
929 MachineBasicBlock *BB) const {
930 switch (MI->getOpcode()) {
931 default:
932#ifndef NDEBUG
933 MI->dump();
934#endif
Craig Topper35b2f752014-06-19 06:10:58 +0000935 llvm_unreachable("Unexpected instruction for custom inserter!");
Tim Northover3b0846e2014-05-24 12:50:23 +0000936
937 case AArch64::F128CSEL:
938 return EmitF128CSEL(MI, BB);
939
940 case TargetOpcode::STACKMAP:
941 case TargetOpcode::PATCHPOINT:
942 return emitPatchPoint(MI, BB);
943 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000944}
945
946//===----------------------------------------------------------------------===//
947// AArch64 Lowering private implementation.
948//===----------------------------------------------------------------------===//
949
950//===----------------------------------------------------------------------===//
951// Lowering Code
952//===----------------------------------------------------------------------===//
953
954/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
955/// CC
956static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
957 switch (CC) {
958 default:
959 llvm_unreachable("Unknown condition code!");
960 case ISD::SETNE:
961 return AArch64CC::NE;
962 case ISD::SETEQ:
963 return AArch64CC::EQ;
964 case ISD::SETGT:
965 return AArch64CC::GT;
966 case ISD::SETGE:
967 return AArch64CC::GE;
968 case ISD::SETLT:
969 return AArch64CC::LT;
970 case ISD::SETLE:
971 return AArch64CC::LE;
972 case ISD::SETUGT:
973 return AArch64CC::HI;
974 case ISD::SETUGE:
975 return AArch64CC::HS;
976 case ISD::SETULT:
977 return AArch64CC::LO;
978 case ISD::SETULE:
979 return AArch64CC::LS;
980 }
981}
982
983/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
984static void changeFPCCToAArch64CC(ISD::CondCode CC,
985 AArch64CC::CondCode &CondCode,
986 AArch64CC::CondCode &CondCode2) {
987 CondCode2 = AArch64CC::AL;
988 switch (CC) {
989 default:
990 llvm_unreachable("Unknown FP condition!");
991 case ISD::SETEQ:
992 case ISD::SETOEQ:
993 CondCode = AArch64CC::EQ;
994 break;
995 case ISD::SETGT:
996 case ISD::SETOGT:
997 CondCode = AArch64CC::GT;
998 break;
999 case ISD::SETGE:
1000 case ISD::SETOGE:
1001 CondCode = AArch64CC::GE;
1002 break;
1003 case ISD::SETOLT:
1004 CondCode = AArch64CC::MI;
1005 break;
1006 case ISD::SETOLE:
1007 CondCode = AArch64CC::LS;
1008 break;
1009 case ISD::SETONE:
1010 CondCode = AArch64CC::MI;
1011 CondCode2 = AArch64CC::GT;
1012 break;
1013 case ISD::SETO:
1014 CondCode = AArch64CC::VC;
1015 break;
1016 case ISD::SETUO:
1017 CondCode = AArch64CC::VS;
1018 break;
1019 case ISD::SETUEQ:
1020 CondCode = AArch64CC::EQ;
1021 CondCode2 = AArch64CC::VS;
1022 break;
1023 case ISD::SETUGT:
1024 CondCode = AArch64CC::HI;
1025 break;
1026 case ISD::SETUGE:
1027 CondCode = AArch64CC::PL;
1028 break;
1029 case ISD::SETLT:
1030 case ISD::SETULT:
1031 CondCode = AArch64CC::LT;
1032 break;
1033 case ISD::SETLE:
1034 case ISD::SETULE:
1035 CondCode = AArch64CC::LE;
1036 break;
1037 case ISD::SETNE:
1038 case ISD::SETUNE:
1039 CondCode = AArch64CC::NE;
1040 break;
1041 }
1042}
1043
1044/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1045/// CC usable with the vector instructions. Fewer operations are available
1046/// without a real NZCV register, so we have to use less efficient combinations
1047/// to get the same effect.
1048static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1049 AArch64CC::CondCode &CondCode,
1050 AArch64CC::CondCode &CondCode2,
1051 bool &Invert) {
1052 Invert = false;
1053 switch (CC) {
1054 default:
1055 // Mostly the scalar mappings work fine.
1056 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1057 break;
1058 case ISD::SETUO:
1059 Invert = true; // Fallthrough
1060 case ISD::SETO:
1061 CondCode = AArch64CC::MI;
1062 CondCode2 = AArch64CC::GE;
1063 break;
1064 case ISD::SETUEQ:
1065 case ISD::SETULT:
1066 case ISD::SETULE:
1067 case ISD::SETUGT:
1068 case ISD::SETUGE:
1069 // All of the compare-mask comparisons are ordered, but we can switch
1070 // between the two by a double inversion. E.g. ULE == !OGT.
1071 Invert = true;
1072 changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
1073 break;
1074 }
1075}
1076
1077static bool isLegalArithImmed(uint64_t C) {
1078 // Matches AArch64DAGToDAGISel::SelectArithImmed().
1079 return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1080}
1081
1082static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1083 SDLoc dl, SelectionDAG &DAG) {
1084 EVT VT = LHS.getValueType();
1085
1086 if (VT.isFloatingPoint())
1087 return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
1088
1089 // The CMP instruction is just an alias for SUBS, and representing it as
1090 // SUBS means that it's possible to get CSE with subtract operations.
1091 // A later phase can perform the optimization of setting the destination
1092 // register to WZR/XZR if it ends up being unused.
1093 unsigned Opcode = AArch64ISD::SUBS;
1094
1095 if (RHS.getOpcode() == ISD::SUB && isa<ConstantSDNode>(RHS.getOperand(0)) &&
1096 cast<ConstantSDNode>(RHS.getOperand(0))->getZExtValue() == 0 &&
1097 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1098 // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
1099 // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
1100 // can be set differently by this operation. It comes down to whether
1101 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1102 // everything is fine. If not then the optimization is wrong. Thus general
1103 // comparisons are only valid if op2 != 0.
1104
1105 // So, finally, the only LLVM-native comparisons that don't mention C and V
1106 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1107 // the absence of information about op2.
1108 Opcode = AArch64ISD::ADDS;
1109 RHS = RHS.getOperand(1);
1110 } else if (LHS.getOpcode() == ISD::AND && isa<ConstantSDNode>(RHS) &&
1111 cast<ConstantSDNode>(RHS)->getZExtValue() == 0 &&
1112 !isUnsignedIntSetCC(CC)) {
1113 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1114 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1115 // of the signed comparisons.
1116 Opcode = AArch64ISD::ANDS;
1117 RHS = LHS.getOperand(1);
1118 LHS = LHS.getOperand(0);
1119 }
1120
1121 return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS)
1122 .getValue(1);
1123}
1124
1125static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1126 SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) {
David Xuee978202014-08-28 04:59:53 +00001127 SDValue Cmp;
1128 AArch64CC::CondCode AArch64CC;
Tim Northover3b0846e2014-05-24 12:50:23 +00001129 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1130 EVT VT = RHS.getValueType();
1131 uint64_t C = RHSC->getZExtValue();
1132 if (!isLegalArithImmed(C)) {
1133 // Constant does not fit, try adjusting it by one?
1134 switch (CC) {
1135 default:
1136 break;
1137 case ISD::SETLT:
1138 case ISD::SETGE:
1139 if ((VT == MVT::i32 && C != 0x80000000 &&
1140 isLegalArithImmed((uint32_t)(C - 1))) ||
1141 (VT == MVT::i64 && C != 0x80000000ULL &&
1142 isLegalArithImmed(C - 1ULL))) {
1143 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1144 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1145 RHS = DAG.getConstant(C, VT);
1146 }
1147 break;
1148 case ISD::SETULT:
1149 case ISD::SETUGE:
1150 if ((VT == MVT::i32 && C != 0 &&
1151 isLegalArithImmed((uint32_t)(C - 1))) ||
1152 (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1153 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1154 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1155 RHS = DAG.getConstant(C, VT);
1156 }
1157 break;
1158 case ISD::SETLE:
1159 case ISD::SETGT:
Oliver Stannard269a275c2014-11-03 15:28:40 +00001160 if ((VT == MVT::i32 && C != INT32_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001161 isLegalArithImmed((uint32_t)(C + 1))) ||
Oliver Stannard269a275c2014-11-03 15:28:40 +00001162 (VT == MVT::i64 && C != INT64_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001163 isLegalArithImmed(C + 1ULL))) {
1164 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1165 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1166 RHS = DAG.getConstant(C, VT);
1167 }
1168 break;
1169 case ISD::SETULE:
1170 case ISD::SETUGT:
Oliver Stannard269a275c2014-11-03 15:28:40 +00001171 if ((VT == MVT::i32 && C != UINT32_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001172 isLegalArithImmed((uint32_t)(C + 1))) ||
Oliver Stannard269a275c2014-11-03 15:28:40 +00001173 (VT == MVT::i64 && C != UINT64_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001174 isLegalArithImmed(C + 1ULL))) {
1175 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1176 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1177 RHS = DAG.getConstant(C, VT);
1178 }
1179 break;
1180 }
1181 }
1182 }
David Xuee978202014-08-28 04:59:53 +00001183 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
1184 // For the i8 operand, the largest immediate is 255, so this can be easily
1185 // encoded in the compare instruction. For the i16 operand, however, the
1186 // largest immediate cannot be encoded in the compare.
1187 // Therefore, use a sign extending load and cmn to avoid materializing the -1
1188 // constant. For example,
1189 // movz w1, #65535
1190 // ldrh w0, [x0, #0]
1191 // cmp w0, w1
1192 // >
1193 // ldrsh w0, [x0, #0]
1194 // cmn w0, #1
1195 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
1196 // if and only if (sext LHS) == (sext RHS). The checks are in place to ensure
1197 // both the LHS and RHS are truely zero extended and to make sure the
1198 // transformation is profitable.
1199 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
1200 if ((cast<ConstantSDNode>(RHS)->getZExtValue() >> 16 == 0) &&
1201 isa<LoadSDNode>(LHS)) {
1202 if (cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
1203 cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
1204 LHS.getNode()->hasNUsesOfValue(1, 0)) {
1205 int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
1206 if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
1207 SDValue SExt =
1208 DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
1209 DAG.getValueType(MVT::i16));
1210 Cmp = emitComparison(SExt,
1211 DAG.getConstant(ValueofRHS, RHS.getValueType()),
1212 CC, dl, DAG);
1213 AArch64CC = changeIntCCToAArch64CC(CC);
1214 AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
1215 return Cmp;
1216 }
1217 }
1218 }
1219 }
1220 Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
1221 AArch64CC = changeIntCCToAArch64CC(CC);
Tim Northover3b0846e2014-05-24 12:50:23 +00001222 AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
1223 return Cmp;
1224}
1225
1226static std::pair<SDValue, SDValue>
1227getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
1228 assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
1229 "Unsupported value type");
1230 SDValue Value, Overflow;
1231 SDLoc DL(Op);
1232 SDValue LHS = Op.getOperand(0);
1233 SDValue RHS = Op.getOperand(1);
1234 unsigned Opc = 0;
1235 switch (Op.getOpcode()) {
1236 default:
1237 llvm_unreachable("Unknown overflow instruction!");
1238 case ISD::SADDO:
1239 Opc = AArch64ISD::ADDS;
1240 CC = AArch64CC::VS;
1241 break;
1242 case ISD::UADDO:
1243 Opc = AArch64ISD::ADDS;
1244 CC = AArch64CC::HS;
1245 break;
1246 case ISD::SSUBO:
1247 Opc = AArch64ISD::SUBS;
1248 CC = AArch64CC::VS;
1249 break;
1250 case ISD::USUBO:
1251 Opc = AArch64ISD::SUBS;
1252 CC = AArch64CC::LO;
1253 break;
1254 // Multiply needs a little bit extra work.
1255 case ISD::SMULO:
1256 case ISD::UMULO: {
1257 CC = AArch64CC::NE;
1258 bool IsSigned = (Op.getOpcode() == ISD::SMULO) ? true : false;
1259 if (Op.getValueType() == MVT::i32) {
1260 unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1261 // For a 32 bit multiply with overflow check we want the instruction
1262 // selector to generate a widening multiply (SMADDL/UMADDL). For that we
1263 // need to generate the following pattern:
1264 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
1265 LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
1266 RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
1267 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1268 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
1269 DAG.getConstant(0, MVT::i64));
1270 // On AArch64 the upper 32 bits are always zero extended for a 32 bit
1271 // operation. We need to clear out the upper 32 bits, because we used a
1272 // widening multiply that wrote all 64 bits. In the end this should be a
1273 // noop.
1274 Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
1275 if (IsSigned) {
1276 // The signed overflow check requires more than just a simple check for
1277 // any bit set in the upper 32 bits of the result. These bits could be
1278 // just the sign bits of a negative number. To perform the overflow
1279 // check we have to arithmetic shift right the 32nd bit of the result by
1280 // 31 bits. Then we compare the result to the upper 32 bits.
1281 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
1282 DAG.getConstant(32, MVT::i64));
1283 UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
1284 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
1285 DAG.getConstant(31, MVT::i64));
1286 // It is important that LowerBits is last, otherwise the arithmetic
1287 // shift will not be folded into the compare (SUBS).
1288 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
1289 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1290 .getValue(1);
1291 } else {
1292 // The overflow check for unsigned multiply is easy. We only need to
1293 // check if any of the upper 32 bits are set. This can be done with a
1294 // CMP (shifted register). For that we need to generate the following
1295 // pattern:
1296 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
1297 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
1298 DAG.getConstant(32, MVT::i64));
1299 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1300 Overflow =
1301 DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
1302 UpperBits).getValue(1);
1303 }
1304 break;
1305 }
1306 assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
1307 // For the 64 bit multiply
1308 Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1309 if (IsSigned) {
1310 SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
1311 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
1312 DAG.getConstant(63, MVT::i64));
1313 // It is important that LowerBits is last, otherwise the arithmetic
1314 // shift will not be folded into the compare (SUBS).
1315 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1316 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1317 .getValue(1);
1318 } else {
1319 SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
1320 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1321 Overflow =
1322 DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
1323 UpperBits).getValue(1);
1324 }
1325 break;
1326 }
1327 } // switch (...)
1328
1329 if (Opc) {
1330 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
1331
1332 // Emit the AArch64 operation with overflow check.
1333 Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
1334 Overflow = Value.getValue(1);
1335 }
1336 return std::make_pair(Value, Overflow);
1337}
1338
1339SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
1340 RTLIB::Libcall Call) const {
1341 SmallVector<SDValue, 2> Ops;
1342 for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i)
1343 Ops.push_back(Op.getOperand(i));
1344
1345 return makeLibCall(DAG, Call, MVT::f128, &Ops[0], Ops.size(), false,
1346 SDLoc(Op)).first;
1347}
1348
1349static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
1350 SDValue Sel = Op.getOperand(0);
1351 SDValue Other = Op.getOperand(1);
1352
1353 // If neither operand is a SELECT_CC, give up.
1354 if (Sel.getOpcode() != ISD::SELECT_CC)
1355 std::swap(Sel, Other);
1356 if (Sel.getOpcode() != ISD::SELECT_CC)
1357 return Op;
1358
1359 // The folding we want to perform is:
1360 // (xor x, (select_cc a, b, cc, 0, -1) )
1361 // -->
1362 // (csel x, (xor x, -1), cc ...)
1363 //
1364 // The latter will get matched to a CSINV instruction.
1365
1366 ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
1367 SDValue LHS = Sel.getOperand(0);
1368 SDValue RHS = Sel.getOperand(1);
1369 SDValue TVal = Sel.getOperand(2);
1370 SDValue FVal = Sel.getOperand(3);
1371 SDLoc dl(Sel);
1372
1373 // FIXME: This could be generalized to non-integer comparisons.
1374 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
1375 return Op;
1376
1377 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
1378 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
1379
1380 // The the values aren't constants, this isn't the pattern we're looking for.
1381 if (!CFVal || !CTVal)
1382 return Op;
1383
1384 // We can commute the SELECT_CC by inverting the condition. This
1385 // might be needed to make this fit into a CSINV pattern.
1386 if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
1387 std::swap(TVal, FVal);
1388 std::swap(CTVal, CFVal);
1389 CC = ISD::getSetCCInverse(CC, true);
1390 }
1391
1392 // If the constants line up, perform the transform!
1393 if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
1394 SDValue CCVal;
1395 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
1396
1397 FVal = Other;
1398 TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
1399 DAG.getConstant(-1ULL, Other.getValueType()));
1400
1401 return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
1402 CCVal, Cmp);
1403 }
1404
1405 return Op;
1406}
1407
1408static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
1409 EVT VT = Op.getValueType();
1410
1411 // Let legalize expand this if it isn't a legal type yet.
1412 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
1413 return SDValue();
1414
1415 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
1416
1417 unsigned Opc;
1418 bool ExtraOp = false;
1419 switch (Op.getOpcode()) {
1420 default:
Craig Topper2a30d782014-06-18 05:05:13 +00001421 llvm_unreachable("Invalid code");
Tim Northover3b0846e2014-05-24 12:50:23 +00001422 case ISD::ADDC:
1423 Opc = AArch64ISD::ADDS;
1424 break;
1425 case ISD::SUBC:
1426 Opc = AArch64ISD::SUBS;
1427 break;
1428 case ISD::ADDE:
1429 Opc = AArch64ISD::ADCS;
1430 ExtraOp = true;
1431 break;
1432 case ISD::SUBE:
1433 Opc = AArch64ISD::SBCS;
1434 ExtraOp = true;
1435 break;
1436 }
1437
1438 if (!ExtraOp)
1439 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
1440 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
1441 Op.getOperand(2));
1442}
1443
1444static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
1445 // Let legalize expand this if it isn't a legal type yet.
1446 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
1447 return SDValue();
1448
1449 AArch64CC::CondCode CC;
1450 // The actual operation that sets the overflow or carry flag.
1451 SDValue Value, Overflow;
1452 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
1453
1454 // We use 0 and 1 as false and true values.
1455 SDValue TVal = DAG.getConstant(1, MVT::i32);
1456 SDValue FVal = DAG.getConstant(0, MVT::i32);
1457
1458 // We use an inverted condition, because the conditional select is inverted
1459 // too. This will allow it to be selected to a single instruction:
1460 // CSINC Wd, WZR, WZR, invert(cond).
1461 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), MVT::i32);
1462 Overflow = DAG.getNode(AArch64ISD::CSEL, SDLoc(Op), MVT::i32, FVal, TVal,
1463 CCVal, Overflow);
1464
1465 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
1466 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow);
1467}
1468
1469// Prefetch operands are:
1470// 1: Address to prefetch
1471// 2: bool isWrite
1472// 3: int locality (0 = no locality ... 3 = extreme locality)
1473// 4: bool isDataCache
1474static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
1475 SDLoc DL(Op);
1476 unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1477 unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
Yi Konge56de692014-08-05 12:46:47 +00001478 unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00001479
1480 bool IsStream = !Locality;
1481 // When the locality number is set
1482 if (Locality) {
1483 // The front-end should have filtered out the out-of-range values
1484 assert(Locality <= 3 && "Prefetch locality out-of-range");
1485 // The locality degree is the opposite of the cache speed.
1486 // Put the number the other way around.
1487 // The encoding starts at 0 for level 1
1488 Locality = 3 - Locality;
1489 }
1490
1491 // built the mask value encoding the expected behavior.
1492 unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
Yi Konge56de692014-08-05 12:46:47 +00001493 (!IsData << 3) | // IsDataCache bit
Tim Northover3b0846e2014-05-24 12:50:23 +00001494 (Locality << 1) | // Cache level bits
1495 (unsigned)IsStream; // Stream bit
1496 return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
1497 DAG.getConstant(PrfOp, MVT::i32), Op.getOperand(1));
1498}
1499
1500SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
1501 SelectionDAG &DAG) const {
1502 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1503
1504 RTLIB::Libcall LC;
1505 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1506
1507 return LowerF128Call(Op, DAG, LC);
1508}
1509
1510SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
1511 SelectionDAG &DAG) const {
1512 if (Op.getOperand(0).getValueType() != MVT::f128) {
1513 // It's legal except when f128 is involved
1514 return Op;
1515 }
1516
1517 RTLIB::Libcall LC;
1518 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1519
1520 // FP_ROUND node has a second operand indicating whether it is known to be
1521 // precise. That doesn't take part in the LibCall so we can't directly use
1522 // LowerF128Call.
1523 SDValue SrcVal = Op.getOperand(0);
1524 return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
1525 /*isSigned*/ false, SDLoc(Op)).first;
1526}
1527
1528static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1529 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1530 // Any additional optimization in this function should be recorded
1531 // in the cost tables.
1532 EVT InVT = Op.getOperand(0).getValueType();
1533 EVT VT = Op.getValueType();
1534
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001535 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001536 SDLoc dl(Op);
1537 SDValue Cv =
1538 DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
1539 Op.getOperand(0));
1540 return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001541 }
1542
1543 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001544 SDLoc dl(Op);
Oliver Stannard89d15422014-08-27 16:16:04 +00001545 MVT ExtVT =
1546 MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
1547 VT.getVectorNumElements());
1548 SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
Tim Northover3b0846e2014-05-24 12:50:23 +00001549 return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
1550 }
1551
1552 // Type changing conversions are illegal.
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001553 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00001554}
1555
1556SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
1557 SelectionDAG &DAG) const {
1558 if (Op.getOperand(0).getValueType().isVector())
1559 return LowerVectorFP_TO_INT(Op, DAG);
1560
1561 if (Op.getOperand(0).getValueType() != MVT::f128) {
1562 // It's legal except when f128 is involved
1563 return Op;
1564 }
1565
1566 RTLIB::Libcall LC;
1567 if (Op.getOpcode() == ISD::FP_TO_SINT)
1568 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1569 else
1570 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1571
1572 SmallVector<SDValue, 2> Ops;
1573 for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i)
1574 Ops.push_back(Op.getOperand(i));
1575
1576 return makeLibCall(DAG, LC, Op.getValueType(), &Ops[0], Ops.size(), false,
1577 SDLoc(Op)).first;
1578}
1579
1580static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1581 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1582 // Any additional optimization in this function should be recorded
1583 // in the cost tables.
1584 EVT VT = Op.getValueType();
1585 SDLoc dl(Op);
1586 SDValue In = Op.getOperand(0);
1587 EVT InVT = In.getValueType();
1588
Tim Northoveref0d7602014-06-15 09:27:06 +00001589 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1590 MVT CastVT =
1591 MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
1592 InVT.getVectorNumElements());
1593 In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
1594 return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0));
Tim Northover3b0846e2014-05-24 12:50:23 +00001595 }
1596
Tim Northoveref0d7602014-06-15 09:27:06 +00001597 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
1598 unsigned CastOpc =
1599 Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1600 EVT CastVT = VT.changeVectorElementTypeToInteger();
1601 In = DAG.getNode(CastOpc, dl, CastVT, In);
1602 return DAG.getNode(Op.getOpcode(), dl, VT, In);
Tim Northover3b0846e2014-05-24 12:50:23 +00001603 }
1604
Tim Northoveref0d7602014-06-15 09:27:06 +00001605 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00001606}
1607
1608SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
1609 SelectionDAG &DAG) const {
1610 if (Op.getValueType().isVector())
1611 return LowerVectorINT_TO_FP(Op, DAG);
1612
1613 // i128 conversions are libcalls.
1614 if (Op.getOperand(0).getValueType() == MVT::i128)
1615 return SDValue();
1616
1617 // Other conversions are legal, unless it's to the completely software-based
1618 // fp128.
1619 if (Op.getValueType() != MVT::f128)
1620 return Op;
1621
1622 RTLIB::Libcall LC;
1623 if (Op.getOpcode() == ISD::SINT_TO_FP)
1624 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1625 else
1626 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1627
1628 return LowerF128Call(Op, DAG, LC);
1629}
1630
1631SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
1632 SelectionDAG &DAG) const {
1633 // For iOS, we want to call an alternative entry point: __sincos_stret,
1634 // which returns the values in two S / D registers.
1635 SDLoc dl(Op);
1636 SDValue Arg = Op.getOperand(0);
1637 EVT ArgVT = Arg.getValueType();
1638 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1639
1640 ArgListTy Args;
1641 ArgListEntry Entry;
1642
1643 Entry.Node = Arg;
1644 Entry.Ty = ArgTy;
1645 Entry.isSExt = false;
1646 Entry.isZExt = false;
1647 Args.push_back(Entry);
1648
1649 const char *LibcallName =
1650 (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
1651 SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
1652
Reid Kleckner343c3952014-11-20 23:51:47 +00001653 StructType *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
Tim Northover3b0846e2014-05-24 12:50:23 +00001654 TargetLowering::CallLoweringInfo CLI(DAG);
1655 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
Juergen Ributzka3bd03c72014-07-01 22:01:54 +00001656 .setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args), 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00001657
1658 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1659 return CallResult.first;
1660}
1661
Tim Northoverf8bfe212014-07-18 13:07:05 +00001662static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
1663 if (Op.getValueType() != MVT::f16)
1664 return SDValue();
1665
1666 assert(Op.getOperand(0).getValueType() == MVT::i16);
1667 SDLoc DL(Op);
1668
1669 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
1670 Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
1671 return SDValue(
1672 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
1673 DAG.getTargetConstant(AArch64::hsub, MVT::i32)),
1674 0);
1675}
1676
Chad Rosierd9d0f862014-10-08 02:31:24 +00001677static EVT getExtensionTo64Bits(const EVT &OrigVT) {
1678 if (OrigVT.getSizeInBits() >= 64)
1679 return OrigVT;
1680
1681 assert(OrigVT.isSimple() && "Expecting a simple value type");
1682
1683 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
1684 switch (OrigSimpleTy) {
1685 default: llvm_unreachable("Unexpected Vector Type");
1686 case MVT::v2i8:
1687 case MVT::v2i16:
1688 return MVT::v2i32;
1689 case MVT::v4i8:
1690 return MVT::v4i16;
1691 }
1692}
1693
1694static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
1695 const EVT &OrigTy,
1696 const EVT &ExtTy,
1697 unsigned ExtOpcode) {
1698 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
1699 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
1700 // 64-bits we need to insert a new extension so that it will be 64-bits.
1701 assert(ExtTy.is128BitVector() && "Unexpected extension size");
1702 if (OrigTy.getSizeInBits() >= 64)
1703 return N;
1704
1705 // Must extend size to at least 64 bits to be used as an operand for VMULL.
1706 EVT NewVT = getExtensionTo64Bits(OrigTy);
1707
1708 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
1709}
1710
1711static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
1712 bool isSigned) {
1713 EVT VT = N->getValueType(0);
1714
1715 if (N->getOpcode() != ISD::BUILD_VECTOR)
1716 return false;
1717
1718 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1719 SDNode *Elt = N->getOperand(i).getNode();
1720 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
1721 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
1722 unsigned HalfSize = EltSize / 2;
1723 if (isSigned) {
1724 if (!isIntN(HalfSize, C->getSExtValue()))
1725 return false;
1726 } else {
1727 if (!isUIntN(HalfSize, C->getZExtValue()))
1728 return false;
1729 }
1730 continue;
1731 }
1732 return false;
1733 }
1734
1735 return true;
1736}
1737
1738static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
1739 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
1740 return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
1741 N->getOperand(0)->getValueType(0),
1742 N->getValueType(0),
1743 N->getOpcode());
1744
1745 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
1746 EVT VT = N->getValueType(0);
1747 unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
1748 unsigned NumElts = VT.getVectorNumElements();
1749 MVT TruncVT = MVT::getIntegerVT(EltSize);
1750 SmallVector<SDValue, 8> Ops;
1751 for (unsigned i = 0; i != NumElts; ++i) {
1752 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
1753 const APInt &CInt = C->getAPIntValue();
1754 // Element types smaller than 32 bits are not legal, so use i32 elements.
1755 // The values are implicitly truncated so sext vs. zext doesn't matter.
1756 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
1757 }
1758 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
1759 MVT::getVectorVT(TruncVT, NumElts), Ops);
1760}
1761
1762static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
1763 if (N->getOpcode() == ISD::SIGN_EXTEND)
1764 return true;
1765 if (isExtendedBUILD_VECTOR(N, DAG, true))
1766 return true;
1767 return false;
1768}
1769
1770static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
1771 if (N->getOpcode() == ISD::ZERO_EXTEND)
1772 return true;
1773 if (isExtendedBUILD_VECTOR(N, DAG, false))
1774 return true;
1775 return false;
1776}
1777
1778static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
1779 unsigned Opcode = N->getOpcode();
1780 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
1781 SDNode *N0 = N->getOperand(0).getNode();
1782 SDNode *N1 = N->getOperand(1).getNode();
1783 return N0->hasOneUse() && N1->hasOneUse() &&
1784 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
1785 }
1786 return false;
1787}
1788
1789static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
1790 unsigned Opcode = N->getOpcode();
1791 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
1792 SDNode *N0 = N->getOperand(0).getNode();
1793 SDNode *N1 = N->getOperand(1).getNode();
1794 return N0->hasOneUse() && N1->hasOneUse() &&
1795 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
1796 }
1797 return false;
1798}
1799
1800static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
1801 // Multiplications are only custom-lowered for 128-bit vectors so that
1802 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
1803 EVT VT = Op.getValueType();
1804 assert(VT.is128BitVector() && VT.isInteger() &&
1805 "unexpected type for custom-lowering ISD::MUL");
1806 SDNode *N0 = Op.getOperand(0).getNode();
1807 SDNode *N1 = Op.getOperand(1).getNode();
1808 unsigned NewOpc = 0;
1809 bool isMLA = false;
1810 bool isN0SExt = isSignExtended(N0, DAG);
1811 bool isN1SExt = isSignExtended(N1, DAG);
1812 if (isN0SExt && isN1SExt)
1813 NewOpc = AArch64ISD::SMULL;
1814 else {
1815 bool isN0ZExt = isZeroExtended(N0, DAG);
1816 bool isN1ZExt = isZeroExtended(N1, DAG);
1817 if (isN0ZExt && isN1ZExt)
1818 NewOpc = AArch64ISD::UMULL;
1819 else if (isN1SExt || isN1ZExt) {
1820 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
1821 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
1822 if (isN1SExt && isAddSubSExt(N0, DAG)) {
1823 NewOpc = AArch64ISD::SMULL;
1824 isMLA = true;
1825 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
1826 NewOpc = AArch64ISD::UMULL;
1827 isMLA = true;
1828 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
1829 std::swap(N0, N1);
1830 NewOpc = AArch64ISD::UMULL;
1831 isMLA = true;
1832 }
1833 }
1834
1835 if (!NewOpc) {
1836 if (VT == MVT::v2i64)
1837 // Fall through to expand this. It is not legal.
1838 return SDValue();
1839 else
1840 // Other vector multiplications are legal.
1841 return Op;
1842 }
1843 }
1844
1845 // Legalize to a S/UMULL instruction
1846 SDLoc DL(Op);
1847 SDValue Op0;
1848 SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
1849 if (!isMLA) {
1850 Op0 = skipExtensionForVectorMULL(N0, DAG);
1851 assert(Op0.getValueType().is64BitVector() &&
1852 Op1.getValueType().is64BitVector() &&
1853 "unexpected types for extended operands to VMULL");
1854 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
1855 }
1856 // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
1857 // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
1858 // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
1859 SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
1860 SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
1861 EVT Op1VT = Op1.getValueType();
1862 return DAG.getNode(N0->getOpcode(), DL, VT,
1863 DAG.getNode(NewOpc, DL, VT,
1864 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
1865 DAG.getNode(NewOpc, DL, VT,
1866 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
1867}
Tim Northoverf8bfe212014-07-18 13:07:05 +00001868
Tim Northover3b0846e2014-05-24 12:50:23 +00001869SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
1870 SelectionDAG &DAG) const {
1871 switch (Op.getOpcode()) {
1872 default:
1873 llvm_unreachable("unimplemented operand");
1874 return SDValue();
Tim Northoverf8bfe212014-07-18 13:07:05 +00001875 case ISD::BITCAST:
1876 return LowerBITCAST(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00001877 case ISD::GlobalAddress:
1878 return LowerGlobalAddress(Op, DAG);
1879 case ISD::GlobalTLSAddress:
1880 return LowerGlobalTLSAddress(Op, DAG);
1881 case ISD::SETCC:
1882 return LowerSETCC(Op, DAG);
1883 case ISD::BR_CC:
1884 return LowerBR_CC(Op, DAG);
1885 case ISD::SELECT:
1886 return LowerSELECT(Op, DAG);
1887 case ISD::SELECT_CC:
1888 return LowerSELECT_CC(Op, DAG);
1889 case ISD::JumpTable:
1890 return LowerJumpTable(Op, DAG);
1891 case ISD::ConstantPool:
1892 return LowerConstantPool(Op, DAG);
1893 case ISD::BlockAddress:
1894 return LowerBlockAddress(Op, DAG);
1895 case ISD::VASTART:
1896 return LowerVASTART(Op, DAG);
1897 case ISD::VACOPY:
1898 return LowerVACOPY(Op, DAG);
1899 case ISD::VAARG:
1900 return LowerVAARG(Op, DAG);
1901 case ISD::ADDC:
1902 case ISD::ADDE:
1903 case ISD::SUBC:
1904 case ISD::SUBE:
1905 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
1906 case ISD::SADDO:
1907 case ISD::UADDO:
1908 case ISD::SSUBO:
1909 case ISD::USUBO:
1910 case ISD::SMULO:
1911 case ISD::UMULO:
1912 return LowerXALUO(Op, DAG);
1913 case ISD::FADD:
1914 return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
1915 case ISD::FSUB:
1916 return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
1917 case ISD::FMUL:
1918 return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
1919 case ISD::FDIV:
1920 return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
1921 case ISD::FP_ROUND:
1922 return LowerFP_ROUND(Op, DAG);
1923 case ISD::FP_EXTEND:
1924 return LowerFP_EXTEND(Op, DAG);
1925 case ISD::FRAMEADDR:
1926 return LowerFRAMEADDR(Op, DAG);
1927 case ISD::RETURNADDR:
1928 return LowerRETURNADDR(Op, DAG);
1929 case ISD::INSERT_VECTOR_ELT:
1930 return LowerINSERT_VECTOR_ELT(Op, DAG);
1931 case ISD::EXTRACT_VECTOR_ELT:
1932 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
1933 case ISD::BUILD_VECTOR:
1934 return LowerBUILD_VECTOR(Op, DAG);
1935 case ISD::VECTOR_SHUFFLE:
1936 return LowerVECTOR_SHUFFLE(Op, DAG);
1937 case ISD::EXTRACT_SUBVECTOR:
1938 return LowerEXTRACT_SUBVECTOR(Op, DAG);
1939 case ISD::SRA:
1940 case ISD::SRL:
1941 case ISD::SHL:
1942 return LowerVectorSRA_SRL_SHL(Op, DAG);
1943 case ISD::SHL_PARTS:
1944 return LowerShiftLeftParts(Op, DAG);
1945 case ISD::SRL_PARTS:
1946 case ISD::SRA_PARTS:
1947 return LowerShiftRightParts(Op, DAG);
1948 case ISD::CTPOP:
1949 return LowerCTPOP(Op, DAG);
1950 case ISD::FCOPYSIGN:
1951 return LowerFCOPYSIGN(Op, DAG);
1952 case ISD::AND:
1953 return LowerVectorAND(Op, DAG);
1954 case ISD::OR:
1955 return LowerVectorOR(Op, DAG);
1956 case ISD::XOR:
1957 return LowerXOR(Op, DAG);
1958 case ISD::PREFETCH:
1959 return LowerPREFETCH(Op, DAG);
1960 case ISD::SINT_TO_FP:
1961 case ISD::UINT_TO_FP:
1962 return LowerINT_TO_FP(Op, DAG);
1963 case ISD::FP_TO_SINT:
1964 case ISD::FP_TO_UINT:
1965 return LowerFP_TO_INT(Op, DAG);
1966 case ISD::FSINCOS:
1967 return LowerFSINCOS(Op, DAG);
Chad Rosierd9d0f862014-10-08 02:31:24 +00001968 case ISD::MUL:
1969 return LowerMUL(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00001970 }
1971}
1972
1973/// getFunctionAlignment - Return the Log2 alignment of this function.
1974unsigned AArch64TargetLowering::getFunctionAlignment(const Function *F) const {
1975 return 2;
1976}
1977
1978//===----------------------------------------------------------------------===//
1979// Calling Convention Implementation
1980//===----------------------------------------------------------------------===//
1981
1982#include "AArch64GenCallingConv.inc"
1983
Robin Morisset039781e2014-08-29 21:53:01 +00001984/// Selects the correct CCAssignFn for a given CallingConvention value.
Tim Northover3b0846e2014-05-24 12:50:23 +00001985CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1986 bool IsVarArg) const {
1987 switch (CC) {
1988 default:
1989 llvm_unreachable("Unsupported calling convention.");
1990 case CallingConv::WebKit_JS:
1991 return CC_AArch64_WebKit_JS;
Greg Fitzgeraldfa78d082015-01-19 17:40:05 +00001992 case CallingConv::GHC:
1993 return CC_AArch64_GHC;
Tim Northover3b0846e2014-05-24 12:50:23 +00001994 case CallingConv::C:
1995 case CallingConv::Fast:
1996 if (!Subtarget->isTargetDarwin())
1997 return CC_AArch64_AAPCS;
1998 return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
1999 }
2000}
2001
2002SDValue AArch64TargetLowering::LowerFormalArguments(
2003 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2004 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2005 SmallVectorImpl<SDValue> &InVals) const {
2006 MachineFunction &MF = DAG.getMachineFunction();
2007 MachineFrameInfo *MFI = MF.getFrameInfo();
2008
2009 // Assign locations to all of the incoming arguments.
2010 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002011 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2012 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002013
2014 // At this point, Ins[].VT may already be promoted to i32. To correctly
2015 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2016 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2017 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
2018 // we use a special version of AnalyzeFormalArguments to pass in ValVT and
2019 // LocVT.
2020 unsigned NumArgs = Ins.size();
2021 Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2022 unsigned CurArgIdx = 0;
2023 for (unsigned i = 0; i != NumArgs; ++i) {
2024 MVT ValVT = Ins[i].VT;
2025 std::advance(CurOrigArg, Ins[i].OrigArgIndex - CurArgIdx);
2026 CurArgIdx = Ins[i].OrigArgIndex;
2027
2028 // Get type of the original argument.
2029 EVT ActualVT = getValueType(CurOrigArg->getType(), /*AllowUnknown*/ true);
2030 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
2031 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
Tim Northover3b0846e2014-05-24 12:50:23 +00002032 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
Tim Northover47e003c2014-05-26 17:21:53 +00002033 ValVT = MVT::i8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002034 else if (ActualMVT == MVT::i16)
Tim Northover47e003c2014-05-26 17:21:53 +00002035 ValVT = MVT::i16;
Tim Northover3b0846e2014-05-24 12:50:23 +00002036
2037 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2038 bool Res =
Tim Northover47e003c2014-05-26 17:21:53 +00002039 AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00002040 assert(!Res && "Call operand has unhandled type");
2041 (void)Res;
2042 }
2043 assert(ArgLocs.size() == Ins.size());
2044 SmallVector<SDValue, 16> ArgValues;
2045 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2046 CCValAssign &VA = ArgLocs[i];
2047
2048 if (Ins[i].Flags.isByVal()) {
2049 // Byval is used for HFAs in the PCS, but the system should work in a
2050 // non-compliant manner for larger structs.
2051 EVT PtrTy = getPointerTy();
2052 int Size = Ins[i].Flags.getByValSize();
2053 unsigned NumRegs = (Size + 7) / 8;
2054
2055 // FIXME: This works on big-endian for composite byvals, which are the common
2056 // case. It should also work for fundamental types too.
2057 unsigned FrameIdx =
2058 MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
2059 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
2060 InVals.push_back(FrameIdxN);
2061
2062 continue;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002063 }
2064
2065 if (VA.isRegLoc()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00002066 // Arguments stored in registers.
2067 EVT RegVT = VA.getLocVT();
2068
2069 SDValue ArgValue;
2070 const TargetRegisterClass *RC;
2071
2072 if (RegVT == MVT::i32)
2073 RC = &AArch64::GPR32RegClass;
2074 else if (RegVT == MVT::i64)
2075 RC = &AArch64::GPR64RegClass;
Oliver Stannard6eda6ff2014-07-11 13:33:46 +00002076 else if (RegVT == MVT::f16)
2077 RC = &AArch64::FPR16RegClass;
Tim Northover3b0846e2014-05-24 12:50:23 +00002078 else if (RegVT == MVT::f32)
2079 RC = &AArch64::FPR32RegClass;
2080 else if (RegVT == MVT::f64 || RegVT.is64BitVector())
2081 RC = &AArch64::FPR64RegClass;
2082 else if (RegVT == MVT::f128 || RegVT.is128BitVector())
2083 RC = &AArch64::FPR128RegClass;
2084 else
2085 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2086
2087 // Transform the arguments in physical registers into virtual ones.
2088 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2089 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2090
2091 // If this is an 8, 16 or 32-bit value, it is really passed promoted
2092 // to 64 bits. Insert an assert[sz]ext to capture this, then
2093 // truncate to the right size.
2094 switch (VA.getLocInfo()) {
2095 default:
2096 llvm_unreachable("Unknown loc info!");
2097 case CCValAssign::Full:
2098 break;
2099 case CCValAssign::BCvt:
2100 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
2101 break;
Tim Northover47e003c2014-05-26 17:21:53 +00002102 case CCValAssign::AExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00002103 case CCValAssign::SExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00002104 case CCValAssign::ZExt:
Tim Northover47e003c2014-05-26 17:21:53 +00002105 // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
2106 // nodes after our lowering.
2107 assert(RegVT == Ins[i].VT && "incorrect register location selected");
Tim Northover3b0846e2014-05-24 12:50:23 +00002108 break;
2109 }
2110
2111 InVals.push_back(ArgValue);
2112
2113 } else { // VA.isRegLoc()
2114 assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
2115 unsigned ArgOffset = VA.getLocMemOffset();
Amara Emerson82da7d02014-08-15 14:29:57 +00002116 unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002117
2118 uint32_t BEAlign = 0;
Tim Northover293d4142014-12-03 17:49:26 +00002119 if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
2120 !Ins[i].Flags.isInConsecutiveRegs())
Tim Northover3b0846e2014-05-24 12:50:23 +00002121 BEAlign = 8 - ArgSize;
2122
2123 int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
2124
2125 // Create load nodes to retrieve arguments from the stack.
2126 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2127 SDValue ArgValue;
2128
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002129 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
Tim Northover47e003c2014-05-26 17:21:53 +00002130 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002131 MVT MemVT = VA.getValVT();
2132
Tim Northover47e003c2014-05-26 17:21:53 +00002133 switch (VA.getLocInfo()) {
2134 default:
2135 break;
Tim Northover6890add2014-06-03 13:54:53 +00002136 case CCValAssign::BCvt:
2137 MemVT = VA.getLocVT();
2138 break;
Tim Northover47e003c2014-05-26 17:21:53 +00002139 case CCValAssign::SExt:
2140 ExtType = ISD::SEXTLOAD;
2141 break;
2142 case CCValAssign::ZExt:
2143 ExtType = ISD::ZEXTLOAD;
2144 break;
2145 case CCValAssign::AExt:
2146 ExtType = ISD::EXTLOAD;
2147 break;
Tim Northover3b0846e2014-05-24 12:50:23 +00002148 }
2149
Tim Northover6890add2014-06-03 13:54:53 +00002150 ArgValue = DAG.getExtLoad(ExtType, DL, VA.getLocVT(), Chain, FIN,
Tim Northover47e003c2014-05-26 17:21:53 +00002151 MachinePointerInfo::getFixedStack(FI),
Benjamin Kramer2e52f022014-10-04 22:44:29 +00002152 MemVT, false, false, false, 0);
Tim Northover47e003c2014-05-26 17:21:53 +00002153
Tim Northover3b0846e2014-05-24 12:50:23 +00002154 InVals.push_back(ArgValue);
2155 }
2156 }
2157
2158 // varargs
2159 if (isVarArg) {
2160 if (!Subtarget->isTargetDarwin()) {
2161 // The AAPCS variadic function ABI is identical to the non-variadic
2162 // one. As a result there may be more arguments in registers and we should
2163 // save them for future reference.
2164 saveVarArgRegisters(CCInfo, DAG, DL, Chain);
2165 }
2166
2167 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2168 // This will point to the next argument passed via stack.
2169 unsigned StackOffset = CCInfo.getNextStackOffset();
2170 // We currently pass all varargs at 8-byte alignment.
2171 StackOffset = ((StackOffset + 7) & ~7);
2172 AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
2173 }
2174
2175 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2176 unsigned StackArgSize = CCInfo.getNextStackOffset();
2177 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2178 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
2179 // This is a non-standard ABI so by fiat I say we're allowed to make full
2180 // use of the stack area to be popped, which must be aligned to 16 bytes in
2181 // any case:
2182 StackArgSize = RoundUpToAlignment(StackArgSize, 16);
2183
2184 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
2185 // a multiple of 16.
2186 FuncInfo->setArgumentStackToRestore(StackArgSize);
2187
2188 // This realignment carries over to the available bytes below. Our own
2189 // callers will guarantee the space is free by giving an aligned value to
2190 // CALLSEQ_START.
2191 }
2192 // Even if we're not expected to free up the space, it's useful to know how
2193 // much is there while considering tail calls (because we can reuse it).
2194 FuncInfo->setBytesInStackArgArea(StackArgSize);
2195
2196 return Chain;
2197}
2198
2199void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
2200 SelectionDAG &DAG, SDLoc DL,
2201 SDValue &Chain) const {
2202 MachineFunction &MF = DAG.getMachineFunction();
2203 MachineFrameInfo *MFI = MF.getFrameInfo();
2204 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2205
2206 SmallVector<SDValue, 8> MemOps;
2207
2208 static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
2209 AArch64::X3, AArch64::X4, AArch64::X5,
2210 AArch64::X6, AArch64::X7 };
2211 static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
2212 unsigned FirstVariadicGPR =
2213 CCInfo.getFirstUnallocated(GPRArgRegs, NumGPRArgRegs);
2214
2215 unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
2216 int GPRIdx = 0;
2217 if (GPRSaveSize != 0) {
2218 GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
2219
2220 SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
2221
2222 for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
2223 unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
2224 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
2225 SDValue Store =
2226 DAG.getStore(Val.getValue(1), DL, Val, FIN,
2227 MachinePointerInfo::getStack(i * 8), false, false, 0);
2228 MemOps.push_back(Store);
2229 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
2230 DAG.getConstant(8, getPointerTy()));
2231 }
2232 }
2233 FuncInfo->setVarArgsGPRIndex(GPRIdx);
2234 FuncInfo->setVarArgsGPRSize(GPRSaveSize);
2235
2236 if (Subtarget->hasFPARMv8()) {
2237 static const MCPhysReg FPRArgRegs[] = {
2238 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
2239 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
2240 static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
2241 unsigned FirstVariadicFPR =
2242 CCInfo.getFirstUnallocated(FPRArgRegs, NumFPRArgRegs);
2243
2244 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
2245 int FPRIdx = 0;
2246 if (FPRSaveSize != 0) {
2247 FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
2248
2249 SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
2250
2251 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
2252 unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
2253 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
2254
2255 SDValue Store =
2256 DAG.getStore(Val.getValue(1), DL, Val, FIN,
2257 MachinePointerInfo::getStack(i * 16), false, false, 0);
2258 MemOps.push_back(Store);
2259 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
2260 DAG.getConstant(16, getPointerTy()));
2261 }
2262 }
2263 FuncInfo->setVarArgsFPRIndex(FPRIdx);
2264 FuncInfo->setVarArgsFPRSize(FPRSaveSize);
2265 }
2266
2267 if (!MemOps.empty()) {
2268 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2269 }
2270}
2271
2272/// LowerCallResult - Lower the result values of a call into the
2273/// appropriate copies out of appropriate physical registers.
2274SDValue AArch64TargetLowering::LowerCallResult(
2275 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
2276 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2277 SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2278 SDValue ThisVal) const {
2279 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2280 ? RetCC_AArch64_WebKit_JS
2281 : RetCC_AArch64_AAPCS;
2282 // Assign locations to each value returned by this call.
2283 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002284 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2285 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002286 CCInfo.AnalyzeCallResult(Ins, RetCC);
2287
2288 // Copy all of the result registers out of their specified physreg.
2289 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2290 CCValAssign VA = RVLocs[i];
2291
2292 // Pass 'this' value directly from the argument to return value, to avoid
2293 // reg unit interference
2294 if (i == 0 && isThisReturn) {
2295 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
2296 "unexpected return calling convention register assignment");
2297 InVals.push_back(ThisVal);
2298 continue;
2299 }
2300
2301 SDValue Val =
2302 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2303 Chain = Val.getValue(1);
2304 InFlag = Val.getValue(2);
2305
2306 switch (VA.getLocInfo()) {
2307 default:
2308 llvm_unreachable("Unknown loc info!");
2309 case CCValAssign::Full:
2310 break;
2311 case CCValAssign::BCvt:
2312 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2313 break;
2314 }
2315
2316 InVals.push_back(Val);
2317 }
2318
2319 return Chain;
2320}
2321
2322bool AArch64TargetLowering::isEligibleForTailCallOptimization(
2323 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2324 bool isCalleeStructRet, bool isCallerStructRet,
2325 const SmallVectorImpl<ISD::OutputArg> &Outs,
2326 const SmallVectorImpl<SDValue> &OutVals,
2327 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2328 // For CallingConv::C this function knows whether the ABI needs
2329 // changing. That's not true for other conventions so they will have to opt in
2330 // manually.
2331 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
2332 return false;
2333
2334 const MachineFunction &MF = DAG.getMachineFunction();
2335 const Function *CallerF = MF.getFunction();
2336 CallingConv::ID CallerCC = CallerF->getCallingConv();
2337 bool CCMatch = CallerCC == CalleeCC;
2338
2339 // Byval parameters hand the function a pointer directly into the stack area
2340 // we want to reuse during a tail call. Working around this *is* possible (see
2341 // X86) but less efficient and uglier in LowerCall.
2342 for (Function::const_arg_iterator i = CallerF->arg_begin(),
2343 e = CallerF->arg_end();
2344 i != e; ++i)
2345 if (i->hasByValAttr())
2346 return false;
2347
2348 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2349 if (IsTailCallConvention(CalleeCC) && CCMatch)
2350 return true;
2351 return false;
2352 }
2353
Oliver Stannard12993dd2014-08-18 12:42:15 +00002354 // Externally-defined functions with weak linkage should not be
2355 // tail-called on AArch64 when the OS does not support dynamic
2356 // pre-emption of symbols, as the AAELF spec requires normal calls
2357 // to undefined weak functions to be replaced with a NOP or jump to the
2358 // next instruction. The behaviour of branch instructions in this
2359 // situation (as used for tail calls) is implementation-defined, so we
2360 // cannot rely on the linker replacing the tail call with a return.
2361 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2362 const GlobalValue *GV = G->getGlobal();
Saleem Abdulrasool67f72992015-01-03 21:35:00 +00002363 const Triple TT(getTargetMachine().getTargetTriple());
2364 if (GV->hasExternalWeakLinkage() &&
2365 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
Oliver Stannard12993dd2014-08-18 12:42:15 +00002366 return false;
2367 }
2368
Tim Northover3b0846e2014-05-24 12:50:23 +00002369 // Now we search for cases where we can use a tail call without changing the
2370 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
2371 // concept.
2372
2373 // I want anyone implementing a new calling convention to think long and hard
2374 // about this assert.
2375 assert((!isVarArg || CalleeCC == CallingConv::C) &&
2376 "Unexpected variadic calling convention");
2377
2378 if (isVarArg && !Outs.empty()) {
2379 // At least two cases here: if caller is fastcc then we can't have any
2380 // memory arguments (we'd be expected to clean up the stack afterwards). If
2381 // caller is C then we could potentially use its argument area.
2382
2383 // FIXME: for now we take the most conservative of these in both cases:
2384 // disallow all variadic memory operands.
2385 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002386 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2387 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002388
2389 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
2390 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2391 if (!ArgLocs[i].isRegLoc())
2392 return false;
2393 }
2394
2395 // If the calling conventions do not match, then we'd better make sure the
2396 // results are returned in the same way as what the caller expects.
2397 if (!CCMatch) {
2398 SmallVector<CCValAssign, 16> RVLocs1;
Eric Christopherb5217502014-08-06 18:45:26 +00002399 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
2400 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002401 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg));
2402
2403 SmallVector<CCValAssign, 16> RVLocs2;
Eric Christopherb5217502014-08-06 18:45:26 +00002404 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
2405 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002406 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg));
2407
2408 if (RVLocs1.size() != RVLocs2.size())
2409 return false;
2410 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2411 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2412 return false;
2413 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2414 return false;
2415 if (RVLocs1[i].isRegLoc()) {
2416 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2417 return false;
2418 } else {
2419 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2420 return false;
2421 }
2422 }
2423 }
2424
2425 // Nothing more to check if the callee is taking no arguments
2426 if (Outs.empty())
2427 return true;
2428
2429 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002430 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2431 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002432
2433 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2434
2435 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2436
2437 // If the stack arguments for this call would fit into our own save area then
2438 // the call can be made tail.
2439 return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
2440}
2441
2442SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
2443 SelectionDAG &DAG,
2444 MachineFrameInfo *MFI,
2445 int ClobberedFI) const {
2446 SmallVector<SDValue, 8> ArgChains;
2447 int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
2448 int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
2449
2450 // Include the original chain at the beginning of the list. When this is
2451 // used by target LowerCall hooks, this helps legalize find the
2452 // CALLSEQ_BEGIN node.
2453 ArgChains.push_back(Chain);
2454
2455 // Add a chain value for each stack argument corresponding
2456 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
2457 UE = DAG.getEntryNode().getNode()->use_end();
2458 U != UE; ++U)
2459 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2460 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2461 if (FI->getIndex() < 0) {
2462 int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
2463 int64_t InLastByte = InFirstByte;
2464 InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
2465
2466 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
2467 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
2468 ArgChains.push_back(SDValue(L, 1));
2469 }
2470
2471 // Build a tokenfactor for all the chains.
2472 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
2473}
2474
2475bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
2476 bool TailCallOpt) const {
2477 return CallCC == CallingConv::Fast && TailCallOpt;
2478}
2479
2480bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
2481 return CallCC == CallingConv::Fast;
2482}
2483
2484/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
2485/// and add input and output parameter nodes.
2486SDValue
2487AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
2488 SmallVectorImpl<SDValue> &InVals) const {
2489 SelectionDAG &DAG = CLI.DAG;
2490 SDLoc &DL = CLI.DL;
2491 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2492 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2493 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2494 SDValue Chain = CLI.Chain;
2495 SDValue Callee = CLI.Callee;
2496 bool &IsTailCall = CLI.IsTailCall;
2497 CallingConv::ID CallConv = CLI.CallConv;
2498 bool IsVarArg = CLI.IsVarArg;
2499
2500 MachineFunction &MF = DAG.getMachineFunction();
2501 bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2502 bool IsThisReturn = false;
2503
2504 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2505 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2506 bool IsSibCall = false;
2507
2508 if (IsTailCall) {
2509 // Check if it's really possible to do a tail call.
2510 IsTailCall = isEligibleForTailCallOptimization(
2511 Callee, CallConv, IsVarArg, IsStructRet,
2512 MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG);
2513 if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2514 report_fatal_error("failed to perform tail call elimination on a call "
2515 "site marked musttail");
2516
2517 // A sibling call is one where we're under the usual C ABI and not planning
2518 // to change that but can still do a tail call:
2519 if (!TailCallOpt && IsTailCall)
2520 IsSibCall = true;
2521
2522 if (IsTailCall)
2523 ++NumTailCalls;
2524 }
2525
2526 // Analyze operands of the call, assigning locations to each operand.
2527 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002528 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
2529 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002530
2531 if (IsVarArg) {
2532 // Handle fixed and variable vector arguments differently.
2533 // Variable vector arguments always go into memory.
2534 unsigned NumArgs = Outs.size();
2535
2536 for (unsigned i = 0; i != NumArgs; ++i) {
2537 MVT ArgVT = Outs[i].VT;
2538 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2539 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
2540 /*IsVarArg=*/ !Outs[i].IsFixed);
2541 bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2542 assert(!Res && "Call operand has unhandled type");
2543 (void)Res;
2544 }
2545 } else {
2546 // At this point, Outs[].VT may already be promoted to i32. To correctly
2547 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2548 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2549 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
2550 // we use a special version of AnalyzeCallOperands to pass in ValVT and
2551 // LocVT.
2552 unsigned NumArgs = Outs.size();
2553 for (unsigned i = 0; i != NumArgs; ++i) {
2554 MVT ValVT = Outs[i].VT;
2555 // Get type of the original argument.
2556 EVT ActualVT = getValueType(CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
2557 /*AllowUnknown*/ true);
2558 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
2559 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2560 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
Tim Northover3b0846e2014-05-24 12:50:23 +00002561 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
Tim Northover47e003c2014-05-26 17:21:53 +00002562 ValVT = MVT::i8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002563 else if (ActualMVT == MVT::i16)
Tim Northover47e003c2014-05-26 17:21:53 +00002564 ValVT = MVT::i16;
Tim Northover3b0846e2014-05-24 12:50:23 +00002565
2566 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
Tim Northover47e003c2014-05-26 17:21:53 +00002567 bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00002568 assert(!Res && "Call operand has unhandled type");
2569 (void)Res;
2570 }
2571 }
2572
2573 // Get a count of how many bytes are to be pushed on the stack.
2574 unsigned NumBytes = CCInfo.getNextStackOffset();
2575
2576 if (IsSibCall) {
2577 // Since we're not changing the ABI to make this a tail call, the memory
2578 // operands are already available in the caller's incoming argument space.
2579 NumBytes = 0;
2580 }
2581
2582 // FPDiff is the byte offset of the call's argument area from the callee's.
2583 // Stores to callee stack arguments will be placed in FixedStackSlots offset
2584 // by this amount for a tail call. In a sibling call it must be 0 because the
2585 // caller will deallocate the entire stack and the callee still expects its
2586 // arguments to begin at SP+0. Completely unused for non-tail calls.
2587 int FPDiff = 0;
2588
2589 if (IsTailCall && !IsSibCall) {
2590 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
2591
2592 // Since callee will pop argument stack as a tail call, we must keep the
2593 // popped size 16-byte aligned.
2594 NumBytes = RoundUpToAlignment(NumBytes, 16);
2595
2596 // FPDiff will be negative if this tail call requires more space than we
2597 // would automatically have in our incoming argument space. Positive if we
2598 // can actually shrink the stack.
2599 FPDiff = NumReusableBytes - NumBytes;
2600
2601 // The stack pointer must be 16-byte aligned at all times it's used for a
2602 // memory operation, which in practice means at *all* times and in
2603 // particular across call boundaries. Therefore our own arguments started at
2604 // a 16-byte aligned SP and the delta applied for the tail call should
2605 // satisfy the same constraint.
2606 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
2607 }
2608
2609 // Adjust the stack pointer for the new arguments...
2610 // These operations are automatically eliminated by the prolog/epilog pass
2611 if (!IsSibCall)
2612 Chain =
2613 DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), DL);
2614
2615 SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, getPointerTy());
2616
2617 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2618 SmallVector<SDValue, 8> MemOpChains;
2619
2620 // Walk the register/memloc assignments, inserting copies/loads.
2621 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
2622 ++i, ++realArgIdx) {
2623 CCValAssign &VA = ArgLocs[i];
2624 SDValue Arg = OutVals[realArgIdx];
2625 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2626
2627 // Promote the value if needed.
2628 switch (VA.getLocInfo()) {
2629 default:
2630 llvm_unreachable("Unknown loc info!");
2631 case CCValAssign::Full:
2632 break;
2633 case CCValAssign::SExt:
2634 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2635 break;
2636 case CCValAssign::ZExt:
2637 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2638 break;
2639 case CCValAssign::AExt:
Tim Northover68ae5032014-05-26 17:22:07 +00002640 if (Outs[realArgIdx].ArgVT == MVT::i1) {
2641 // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
2642 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2643 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
2644 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002645 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2646 break;
2647 case CCValAssign::BCvt:
2648 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2649 break;
2650 case CCValAssign::FPExt:
2651 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2652 break;
2653 }
2654
2655 if (VA.isRegLoc()) {
2656 if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
2657 assert(VA.getLocVT() == MVT::i64 &&
2658 "unexpected calling convention register assignment");
2659 assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
2660 "unexpected use of 'returned'");
2661 IsThisReturn = true;
2662 }
2663 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2664 } else {
2665 assert(VA.isMemLoc());
2666
2667 SDValue DstAddr;
2668 MachinePointerInfo DstInfo;
2669
2670 // FIXME: This works on big-endian for composite byvals, which are the
2671 // common case. It should also work for fundamental types too.
2672 uint32_t BEAlign = 0;
2673 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
Amara Emerson82da7d02014-08-15 14:29:57 +00002674 : VA.getValVT().getSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00002675 OpSize = (OpSize + 7) / 8;
Tim Northover293d4142014-12-03 17:49:26 +00002676 if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
2677 !Flags.isInConsecutiveRegs()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00002678 if (OpSize < 8)
2679 BEAlign = 8 - OpSize;
2680 }
2681 unsigned LocMemOffset = VA.getLocMemOffset();
2682 int32_t Offset = LocMemOffset + BEAlign;
2683 SDValue PtrOff = DAG.getIntPtrConstant(Offset);
2684 PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2685
2686 if (IsTailCall) {
2687 Offset = Offset + FPDiff;
2688 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2689
2690 DstAddr = DAG.getFrameIndex(FI, getPointerTy());
2691 DstInfo = MachinePointerInfo::getFixedStack(FI);
2692
2693 // Make sure any stack arguments overlapping with where we're storing
2694 // are loaded before this eventual operation. Otherwise they'll be
2695 // clobbered.
2696 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
2697 } else {
2698 SDValue PtrOff = DAG.getIntPtrConstant(Offset);
2699
2700 DstAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2701 DstInfo = MachinePointerInfo::getStack(LocMemOffset);
2702 }
2703
2704 if (Outs[i].Flags.isByVal()) {
2705 SDValue SizeNode =
2706 DAG.getConstant(Outs[i].Flags.getByValSize(), MVT::i64);
2707 SDValue Cpy = DAG.getMemcpy(
2708 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
Jim Grosbach8e810ba2014-08-11 22:42:28 +00002709 /*isVol = */ false,
2710 /*AlwaysInline = */ false, DstInfo, MachinePointerInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +00002711
2712 MemOpChains.push_back(Cpy);
2713 } else {
2714 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
2715 // promoted to a legal register type i32, we should truncate Arg back to
2716 // i1/i8/i16.
Tim Northover6890add2014-06-03 13:54:53 +00002717 if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
2718 VA.getValVT() == MVT::i16)
2719 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
Tim Northover3b0846e2014-05-24 12:50:23 +00002720
2721 SDValue Store =
2722 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0);
2723 MemOpChains.push_back(Store);
2724 }
2725 }
2726 }
2727
2728 if (!MemOpChains.empty())
2729 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2730
2731 // Build a sequence of copy-to-reg nodes chained together with token chain
2732 // and flag operands which copy the outgoing args into the appropriate regs.
2733 SDValue InFlag;
2734 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2735 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
2736 RegsToPass[i].second, InFlag);
2737 InFlag = Chain.getValue(1);
2738 }
2739
2740 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2741 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2742 // node so that legalize doesn't hack it.
2743 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
2744 Subtarget->isTargetMachO()) {
2745 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2746 const GlobalValue *GV = G->getGlobal();
2747 bool InternalLinkage = GV->hasInternalLinkage();
2748 if (InternalLinkage)
2749 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2750 else {
2751 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0,
2752 AArch64II::MO_GOT);
2753 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2754 }
2755 } else if (ExternalSymbolSDNode *S =
2756 dyn_cast<ExternalSymbolSDNode>(Callee)) {
2757 const char *Sym = S->getSymbol();
2758 Callee =
2759 DAG.getTargetExternalSymbol(Sym, getPointerTy(), AArch64II::MO_GOT);
2760 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2761 }
2762 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2763 const GlobalValue *GV = G->getGlobal();
2764 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2765 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2766 const char *Sym = S->getSymbol();
2767 Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), 0);
2768 }
2769
2770 // We don't usually want to end the call-sequence here because we would tidy
2771 // the frame up *after* the call, however in the ABI-changing tail-call case
2772 // we've carefully laid out the parameters so that when sp is reset they'll be
2773 // in the correct location.
2774 if (IsTailCall && !IsSibCall) {
2775 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2776 DAG.getIntPtrConstant(0, true), InFlag, DL);
2777 InFlag = Chain.getValue(1);
2778 }
2779
2780 std::vector<SDValue> Ops;
2781 Ops.push_back(Chain);
2782 Ops.push_back(Callee);
2783
2784 if (IsTailCall) {
2785 // Each tail call may have to adjust the stack by a different amount, so
2786 // this information must travel along with the operation for eventual
2787 // consumption by emitEpilogue.
2788 Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
2789 }
2790
2791 // Add argument registers to the end of the list so that they are known live
2792 // into the call.
2793 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2794 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2795 RegsToPass[i].second.getValueType()));
2796
2797 // Add a register mask operand representing the call-preserved registers.
2798 const uint32_t *Mask;
Eric Christopher6c901622015-01-28 03:51:33 +00002799 const AArch64RegisterInfo *TRI = static_cast<const AArch64RegisterInfo *>(
2800 MF.getSubtarget().getRegisterInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +00002801 if (IsThisReturn) {
2802 // For 'this' returns, use the X0-preserving mask if applicable
Eric Christopher6c901622015-01-28 03:51:33 +00002803 Mask = TRI->getThisReturnPreservedMask(CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00002804 if (!Mask) {
2805 IsThisReturn = false;
Eric Christopher6c901622015-01-28 03:51:33 +00002806 Mask = TRI->getCallPreservedMask(CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00002807 }
2808 } else
Eric Christopher6c901622015-01-28 03:51:33 +00002809 Mask = TRI->getCallPreservedMask(CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00002810
2811 assert(Mask && "Missing call preserved mask for calling convention");
2812 Ops.push_back(DAG.getRegisterMask(Mask));
2813
2814 if (InFlag.getNode())
2815 Ops.push_back(InFlag);
2816
2817 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2818
2819 // If we're doing a tall call, use a TC_RETURN here rather than an
2820 // actual call instruction.
2821 if (IsTailCall)
2822 return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
2823
2824 // Returns a chain and a flag for retval copy to use.
2825 Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
2826 InFlag = Chain.getValue(1);
2827
2828 uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt)
2829 ? RoundUpToAlignment(NumBytes, 16)
2830 : 0;
2831
2832 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2833 DAG.getIntPtrConstant(CalleePopBytes, true),
2834 InFlag, DL);
2835 if (!Ins.empty())
2836 InFlag = Chain.getValue(1);
2837
2838 // Handle result values, copying them out of physregs into vregs that we
2839 // return.
2840 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2841 InVals, IsThisReturn,
2842 IsThisReturn ? OutVals[0] : SDValue());
2843}
2844
2845bool AArch64TargetLowering::CanLowerReturn(
2846 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
2847 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
2848 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2849 ? RetCC_AArch64_WebKit_JS
2850 : RetCC_AArch64_AAPCS;
2851 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002852 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
Tim Northover3b0846e2014-05-24 12:50:23 +00002853 return CCInfo.CheckReturn(Outs, RetCC);
2854}
2855
2856SDValue
2857AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2858 bool isVarArg,
2859 const SmallVectorImpl<ISD::OutputArg> &Outs,
2860 const SmallVectorImpl<SDValue> &OutVals,
2861 SDLoc DL, SelectionDAG &DAG) const {
2862 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2863 ? RetCC_AArch64_WebKit_JS
2864 : RetCC_AArch64_AAPCS;
2865 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002866 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2867 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002868 CCInfo.AnalyzeReturn(Outs, RetCC);
2869
2870 // Copy the result values into the output registers.
2871 SDValue Flag;
2872 SmallVector<SDValue, 4> RetOps(1, Chain);
2873 for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
2874 ++i, ++realRVLocIdx) {
2875 CCValAssign &VA = RVLocs[i];
2876 assert(VA.isRegLoc() && "Can only return in registers!");
2877 SDValue Arg = OutVals[realRVLocIdx];
2878
2879 switch (VA.getLocInfo()) {
2880 default:
2881 llvm_unreachable("Unknown loc info!");
2882 case CCValAssign::Full:
Tim Northover68ae5032014-05-26 17:22:07 +00002883 if (Outs[i].ArgVT == MVT::i1) {
2884 // AAPCS requires i1 to be zero-extended to i8 by the producer of the
2885 // value. This is strictly redundant on Darwin (which uses "zeroext
2886 // i1"), but will be optimised out before ISel.
2887 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2888 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2889 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002890 break;
2891 case CCValAssign::BCvt:
2892 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2893 break;
2894 }
2895
2896 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2897 Flag = Chain.getValue(1);
2898 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2899 }
2900
2901 RetOps[0] = Chain; // Update chain.
2902
2903 // Add the flag if we have it.
2904 if (Flag.getNode())
2905 RetOps.push_back(Flag);
2906
2907 return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
2908}
2909
2910//===----------------------------------------------------------------------===//
2911// Other Lowering Code
2912//===----------------------------------------------------------------------===//
2913
2914SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
2915 SelectionDAG &DAG) const {
2916 EVT PtrVT = getPointerTy();
2917 SDLoc DL(Op);
Asiri Rathnayake369c0302014-09-10 13:54:38 +00002918 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
2919 const GlobalValue *GV = GN->getGlobal();
Tim Northover3b0846e2014-05-24 12:50:23 +00002920 unsigned char OpFlags =
2921 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
2922
2923 assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
2924 "unexpected offset in global node");
2925
2926 // This also catched the large code model case for Darwin.
2927 if ((OpFlags & AArch64II::MO_GOT) != 0) {
2928 SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2929 // FIXME: Once remat is capable of dealing with instructions with register
2930 // operands, expand this into two nodes instead of using a wrapper node.
2931 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
2932 }
2933
Asiri Rathnayake369c0302014-09-10 13:54:38 +00002934 if ((OpFlags & AArch64II::MO_CONSTPOOL) != 0) {
2935 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
2936 "use of MO_CONSTPOOL only supported on small model");
2937 SDValue Hi = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, AArch64II::MO_PAGE);
2938 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
2939 unsigned char LoFlags = AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
2940 SDValue Lo = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, LoFlags);
2941 SDValue PoolAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
2942 SDValue GlobalAddr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), PoolAddr,
2943 MachinePointerInfo::getConstantPool(),
2944 /*isVolatile=*/ false,
2945 /*isNonTemporal=*/ true,
2946 /*isInvariant=*/ true, 8);
2947 if (GN->getOffset() != 0)
2948 return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalAddr,
2949 DAG.getConstant(GN->getOffset(), PtrVT));
2950 return GlobalAddr;
2951 }
2952
Tim Northover3b0846e2014-05-24 12:50:23 +00002953 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2954 const unsigned char MO_NC = AArch64II::MO_NC;
2955 return DAG.getNode(
2956 AArch64ISD::WrapperLarge, DL, PtrVT,
2957 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
2958 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
2959 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
2960 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
2961 } else {
2962 // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
2963 // the only correct model on Darwin.
2964 SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2965 OpFlags | AArch64II::MO_PAGE);
2966 unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
2967 SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
2968
2969 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
2970 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
2971 }
2972}
2973
2974/// \brief Convert a TLS address reference into the correct sequence of loads
2975/// and calls to compute the variable's address (for Darwin, currently) and
2976/// return an SDValue containing the final node.
2977
2978/// Darwin only has one TLS scheme which must be capable of dealing with the
2979/// fully general situation, in the worst case. This means:
2980/// + "extern __thread" declaration.
2981/// + Defined in a possibly unknown dynamic library.
2982///
2983/// The general system is that each __thread variable has a [3 x i64] descriptor
2984/// which contains information used by the runtime to calculate the address. The
2985/// only part of this the compiler needs to know about is the first xword, which
2986/// contains a function pointer that must be called with the address of the
2987/// entire descriptor in "x0".
2988///
2989/// Since this descriptor may be in a different unit, in general even the
2990/// descriptor must be accessed via an indirect load. The "ideal" code sequence
2991/// is:
2992/// adrp x0, _var@TLVPPAGE
2993/// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
2994/// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
2995/// ; the function pointer
2996/// blr x1 ; Uses descriptor address in x0
2997/// ; Address of _var is now in x0.
2998///
2999/// If the address of _var's descriptor *is* known to the linker, then it can
3000/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
3001/// a slight efficiency gain.
3002SDValue
3003AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
3004 SelectionDAG &DAG) const {
3005 assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
3006
3007 SDLoc DL(Op);
3008 MVT PtrVT = getPointerTy();
3009 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3010
3011 SDValue TLVPAddr =
3012 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3013 SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
3014
3015 // The first entry in the descriptor is a function pointer that we must call
3016 // to obtain the address of the variable.
3017 SDValue Chain = DAG.getEntryNode();
3018 SDValue FuncTLVGet =
3019 DAG.getLoad(MVT::i64, DL, Chain, DescAddr, MachinePointerInfo::getGOT(),
3020 false, true, true, 8);
3021 Chain = FuncTLVGet.getValue(1);
3022
3023 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3024 MFI->setAdjustsStack(true);
3025
3026 // TLS calls preserve all registers except those that absolutely must be
3027 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3028 // silly).
Eric Christopher6c901622015-01-28 03:51:33 +00003029 const uint32_t *Mask =
3030 static_cast<const AArch64RegisterInfo *>(
3031 DAG.getSubtarget().getRegisterInfo())->getTLSCallPreservedMask();
Tim Northover3b0846e2014-05-24 12:50:23 +00003032
3033 // Finally, we can make the call. This is just a degenerate version of a
3034 // normal AArch64 call node: x0 takes the address of the descriptor, and
3035 // returns the address of the variable in this thread.
3036 Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
3037 Chain =
3038 DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3039 Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
3040 DAG.getRegisterMask(Mask), Chain.getValue(1));
3041 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
3042}
3043
3044/// When accessing thread-local variables under either the general-dynamic or
3045/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
3046/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
3047/// is a function pointer to carry out the resolution. This function takes the
3048/// address of the descriptor in X0 and returns the TPIDR_EL0 offset in X0. All
3049/// other registers (except LR, NZCV) are preserved.
3050///
3051/// Thus, the ideal call sequence on AArch64 is:
3052///
3053/// adrp x0, :tlsdesc:thread_var
3054/// ldr x8, [x0, :tlsdesc_lo12:thread_var]
3055/// add x0, x0, :tlsdesc_lo12:thread_var
3056/// .tlsdesccall thread_var
3057/// blr x8
3058/// (TPIDR_EL0 offset now in x0).
3059///
3060/// The ".tlsdesccall" directive instructs the assembler to insert a particular
3061/// relocation to help the linker relax this sequence if it turns out to be too
3062/// conservative.
3063///
3064/// FIXME: we currently produce an extra, duplicated, ADRP instruction, but this
3065/// is harmless.
3066SDValue AArch64TargetLowering::LowerELFTLSDescCall(SDValue SymAddr,
3067 SDValue DescAddr, SDLoc DL,
3068 SelectionDAG &DAG) const {
3069 EVT PtrVT = getPointerTy();
3070
3071 // The function we need to call is simply the first entry in the GOT for this
3072 // descriptor, load it in preparation.
3073 SDValue Func = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, SymAddr);
3074
3075 // TLS calls preserve all registers except those that absolutely must be
3076 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3077 // silly).
Eric Christopher6c901622015-01-28 03:51:33 +00003078 const uint32_t *Mask =
3079 static_cast<const AArch64RegisterInfo *>(
3080 DAG.getSubtarget().getRegisterInfo())->getTLSCallPreservedMask();
Tim Northover3b0846e2014-05-24 12:50:23 +00003081
3082 // The function takes only one argument: the address of the descriptor itself
3083 // in X0.
3084 SDValue Glue, Chain;
3085 Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
3086 Glue = Chain.getValue(1);
3087
3088 // We're now ready to populate the argument list, as with a normal call:
3089 SmallVector<SDValue, 6> Ops;
3090 Ops.push_back(Chain);
3091 Ops.push_back(Func);
3092 Ops.push_back(SymAddr);
3093 Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
3094 Ops.push_back(DAG.getRegisterMask(Mask));
3095 Ops.push_back(Glue);
3096
3097 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3098 Chain = DAG.getNode(AArch64ISD::TLSDESC_CALL, DL, NodeTys, Ops);
3099 Glue = Chain.getValue(1);
3100
3101 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
3102}
3103
3104SDValue
3105AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
3106 SelectionDAG &DAG) const {
3107 assert(Subtarget->isTargetELF() && "This function expects an ELF target");
3108 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
3109 "ELF TLS only supported in small memory model");
3110 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3111
3112 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
3113
3114 SDValue TPOff;
3115 EVT PtrVT = getPointerTy();
3116 SDLoc DL(Op);
3117 const GlobalValue *GV = GA->getGlobal();
3118
3119 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
3120
3121 if (Model == TLSModel::LocalExec) {
3122 SDValue HiVar = DAG.getTargetGlobalAddress(
3123 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
3124 SDValue LoVar = DAG.getTargetGlobalAddress(
3125 GV, DL, PtrVT, 0,
3126 AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
3127
3128 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
3129 DAG.getTargetConstant(16, MVT::i32)),
3130 0);
3131 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar,
3132 DAG.getTargetConstant(0, MVT::i32)),
3133 0);
3134 } else if (Model == TLSModel::InitialExec) {
3135 TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3136 TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
3137 } else if (Model == TLSModel::LocalDynamic) {
3138 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
3139 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
3140 // the beginning of the module's TLS region, followed by a DTPREL offset
3141 // calculation.
3142
3143 // These accesses will need deduplicating if there's more than one.
3144 AArch64FunctionInfo *MFI =
3145 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3146 MFI->incNumLocalDynamicTLSAccesses();
3147
3148 // Accesses used in this sequence go via the TLS descriptor which lives in
3149 // the GOT. Prepare an address we can use to handle this.
3150 SDValue HiDesc = DAG.getTargetExternalSymbol(
3151 "_TLS_MODULE_BASE_", PtrVT, AArch64II::MO_TLS | AArch64II::MO_PAGE);
3152 SDValue LoDesc = DAG.getTargetExternalSymbol(
3153 "_TLS_MODULE_BASE_", PtrVT,
3154 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3155
3156 // First argument to the descriptor call is the address of the descriptor
3157 // itself.
3158 SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc);
3159 DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
3160
3161 // The call needs a relocation too for linker relaxation. It doesn't make
3162 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3163 // the address.
3164 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
3165 AArch64II::MO_TLS);
3166
3167 // Now we can calculate the offset from TPIDR_EL0 to this module's
3168 // thread-local area.
3169 TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
3170
3171 // Now use :dtprel_whatever: operations to calculate this variable's offset
3172 // in its thread-storage area.
3173 SDValue HiVar = DAG.getTargetGlobalAddress(
3174 GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
3175 SDValue LoVar = DAG.getTargetGlobalAddress(
3176 GV, DL, MVT::i64, 0,
3177 AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
3178
3179 SDValue DTPOff =
3180 SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
3181 DAG.getTargetConstant(16, MVT::i32)),
3182 0);
3183 DTPOff =
3184 SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, DTPOff, LoVar,
3185 DAG.getTargetConstant(0, MVT::i32)),
3186 0);
3187
3188 TPOff = DAG.getNode(ISD::ADD, DL, PtrVT, TPOff, DTPOff);
3189 } else if (Model == TLSModel::GeneralDynamic) {
3190 // Accesses used in this sequence go via the TLS descriptor which lives in
3191 // the GOT. Prepare an address we can use to handle this.
3192 SDValue HiDesc = DAG.getTargetGlobalAddress(
3193 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGE);
3194 SDValue LoDesc = DAG.getTargetGlobalAddress(
3195 GV, DL, PtrVT, 0,
3196 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3197
3198 // First argument to the descriptor call is the address of the descriptor
3199 // itself.
3200 SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc);
3201 DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
3202
3203 // The call needs a relocation too for linker relaxation. It doesn't make
3204 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3205 // the address.
3206 SDValue SymAddr =
3207 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3208
3209 // Finally we can make a call to calculate the offset from tpidr_el0.
3210 TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
3211 } else
3212 llvm_unreachable("Unsupported ELF TLS access model");
3213
3214 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
3215}
3216
3217SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
3218 SelectionDAG &DAG) const {
3219 if (Subtarget->isTargetDarwin())
3220 return LowerDarwinGlobalTLSAddress(Op, DAG);
3221 else if (Subtarget->isTargetELF())
3222 return LowerELFGlobalTLSAddress(Op, DAG);
3223
3224 llvm_unreachable("Unexpected platform trying to use TLS");
3225}
3226SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3227 SDValue Chain = Op.getOperand(0);
3228 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3229 SDValue LHS = Op.getOperand(2);
3230 SDValue RHS = Op.getOperand(3);
3231 SDValue Dest = Op.getOperand(4);
3232 SDLoc dl(Op);
3233
3234 // Handle f128 first, since lowering it will result in comparing the return
3235 // value of a libcall against zero, which is just what the rest of LowerBR_CC
3236 // is expecting to deal with.
3237 if (LHS.getValueType() == MVT::f128) {
3238 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3239
3240 // If softenSetCCOperands returned a scalar, we need to compare the result
3241 // against zero to select between true and false values.
3242 if (!RHS.getNode()) {
3243 RHS = DAG.getConstant(0, LHS.getValueType());
3244 CC = ISD::SETNE;
3245 }
3246 }
3247
3248 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
3249 // instruction.
3250 unsigned Opc = LHS.getOpcode();
3251 if (LHS.getResNo() == 1 && isa<ConstantSDNode>(RHS) &&
3252 cast<ConstantSDNode>(RHS)->isOne() &&
3253 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3254 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3255 assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
3256 "Unexpected condition code.");
3257 // Only lower legal XALUO ops.
3258 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
3259 return SDValue();
3260
3261 // The actual operation with overflow check.
3262 AArch64CC::CondCode OFCC;
3263 SDValue Value, Overflow;
3264 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
3265
3266 if (CC == ISD::SETNE)
3267 OFCC = getInvertedCondCode(OFCC);
3268 SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
3269
3270 return DAG.getNode(AArch64ISD::BRCOND, SDLoc(LHS), MVT::Other, Chain, Dest,
3271 CCVal, Overflow);
3272 }
3273
3274 if (LHS.getValueType().isInteger()) {
3275 assert((LHS.getValueType() == RHS.getValueType()) &&
3276 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3277
3278 // If the RHS of the comparison is zero, we can potentially fold this
3279 // to a specialized branch.
3280 const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
3281 if (RHSC && RHSC->getZExtValue() == 0) {
3282 if (CC == ISD::SETEQ) {
3283 // See if we can use a TBZ to fold in an AND as well.
3284 // TBZ has a smaller branch displacement than CBZ. If the offset is
3285 // out of bounds, a late MI-layer pass rewrites branches.
3286 // 403.gcc is an example that hits this case.
3287 if (LHS.getOpcode() == ISD::AND &&
3288 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3289 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3290 SDValue Test = LHS.getOperand(0);
3291 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003292 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
3293 DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
3294 }
3295
3296 return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
3297 } else if (CC == ISD::SETNE) {
3298 // See if we can use a TBZ to fold in an AND as well.
3299 // TBZ has a smaller branch displacement than CBZ. If the offset is
3300 // out of bounds, a late MI-layer pass rewrites branches.
3301 // 403.gcc is an example that hits this case.
3302 if (LHS.getOpcode() == ISD::AND &&
3303 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3304 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3305 SDValue Test = LHS.getOperand(0);
3306 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003307 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
3308 DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
3309 }
3310
3311 return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
Chad Rosier579c02c2014-08-01 14:48:56 +00003312 } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
3313 // Don't combine AND since emitComparison converts the AND to an ANDS
3314 // (a.k.a. TST) and the test in the test bit and branch instruction
3315 // becomes redundant. This would also increase register pressure.
3316 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3317 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
3318 DAG.getConstant(Mask, MVT::i64), Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003319 }
3320 }
Chad Rosier579c02c2014-08-01 14:48:56 +00003321 if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
3322 LHS.getOpcode() != ISD::AND) {
3323 // Don't combine AND since emitComparison converts the AND to an ANDS
3324 // (a.k.a. TST) and the test in the test bit and branch instruction
3325 // becomes redundant. This would also increase register pressure.
3326 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3327 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
3328 DAG.getConstant(Mask, MVT::i64), Dest);
3329 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003330
3331 SDValue CCVal;
3332 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3333 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3334 Cmp);
3335 }
3336
3337 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3338
3339 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3340 // clean. Some of them require two branches to implement.
3341 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3342 AArch64CC::CondCode CC1, CC2;
3343 changeFPCCToAArch64CC(CC, CC1, CC2);
3344 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3345 SDValue BR1 =
3346 DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
3347 if (CC2 != AArch64CC::AL) {
3348 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3349 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
3350 Cmp);
3351 }
3352
3353 return BR1;
3354}
3355
3356SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
3357 SelectionDAG &DAG) const {
3358 EVT VT = Op.getValueType();
3359 SDLoc DL(Op);
3360
3361 SDValue In1 = Op.getOperand(0);
3362 SDValue In2 = Op.getOperand(1);
3363 EVT SrcVT = In2.getValueType();
3364 if (SrcVT != VT) {
3365 if (SrcVT == MVT::f32 && VT == MVT::f64)
3366 In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
3367 else if (SrcVT == MVT::f64 && VT == MVT::f32)
3368 In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0));
3369 else
3370 // FIXME: Src type is different, bail out for now. Can VT really be a
3371 // vector type?
3372 return SDValue();
3373 }
3374
3375 EVT VecVT;
3376 EVT EltVT;
3377 SDValue EltMask, VecVal1, VecVal2;
3378 if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
3379 EltVT = MVT::i32;
3380 VecVT = MVT::v4i32;
3381 EltMask = DAG.getConstant(0x80000000ULL, EltVT);
3382
3383 if (!VT.isVector()) {
3384 VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3385 DAG.getUNDEF(VecVT), In1);
3386 VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3387 DAG.getUNDEF(VecVT), In2);
3388 } else {
3389 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3390 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3391 }
3392 } else if (VT == MVT::f64 || VT == MVT::v2f64) {
3393 EltVT = MVT::i64;
3394 VecVT = MVT::v2i64;
3395
3396 // We want to materialize a mask with the the high bit set, but the AdvSIMD
3397 // immediate moves cannot materialize that in a single instruction for
3398 // 64-bit elements. Instead, materialize zero and then negate it.
3399 EltMask = DAG.getConstant(0, EltVT);
3400
3401 if (!VT.isVector()) {
3402 VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3403 DAG.getUNDEF(VecVT), In1);
3404 VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3405 DAG.getUNDEF(VecVT), In2);
3406 } else {
3407 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3408 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3409 }
3410 } else {
3411 llvm_unreachable("Invalid type for copysign!");
3412 }
3413
3414 std::vector<SDValue> BuildVectorOps;
3415 for (unsigned i = 0; i < VecVT.getVectorNumElements(); ++i)
3416 BuildVectorOps.push_back(EltMask);
3417
3418 SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, BuildVectorOps);
3419
3420 // If we couldn't materialize the mask above, then the mask vector will be
3421 // the zero vector, and we need to negate it here.
3422 if (VT == MVT::f64 || VT == MVT::v2f64) {
3423 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
3424 BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
3425 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
3426 }
3427
3428 SDValue Sel =
3429 DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
3430
3431 if (VT == MVT::f32)
3432 return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
3433 else if (VT == MVT::f64)
3434 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
3435 else
3436 return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
3437}
3438
3439SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
3440 if (DAG.getMachineFunction().getFunction()->getAttributes().hasAttribute(
3441 AttributeSet::FunctionIndex, Attribute::NoImplicitFloat))
3442 return SDValue();
3443
Weiming Zhao7a2d1562014-11-19 00:29:14 +00003444 if (!Subtarget->hasNEON())
3445 return SDValue();
3446
Tim Northover3b0846e2014-05-24 12:50:23 +00003447 // While there is no integer popcount instruction, it can
3448 // be more efficiently lowered to the following sequence that uses
3449 // AdvSIMD registers/instructions as long as the copies to/from
3450 // the AdvSIMD registers are cheap.
3451 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
3452 // CNT V0.8B, V0.8B // 8xbyte pop-counts
3453 // ADDV B0, V0.8B // sum 8xbyte pop-counts
3454 // UMOV X0, V0.B[0] // copy byte result back to integer reg
3455 SDValue Val = Op.getOperand(0);
3456 SDLoc DL(Op);
3457 EVT VT = Op.getValueType();
3458 SDValue ZeroVec = DAG.getUNDEF(MVT::v8i8);
3459
3460 SDValue VecVal;
3461 if (VT == MVT::i32) {
3462 VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
3463 VecVal = DAG.getTargetInsertSubreg(AArch64::ssub, DL, MVT::v8i8, ZeroVec,
3464 VecVal);
3465 } else {
3466 VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
3467 }
3468
3469 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, VecVal);
3470 SDValue UaddLV = DAG.getNode(
3471 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
3472 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, MVT::i32), CtPop);
3473
3474 if (VT == MVT::i64)
3475 UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
3476 return UaddLV;
3477}
3478
3479SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3480
3481 if (Op.getValueType().isVector())
3482 return LowerVSETCC(Op, DAG);
3483
3484 SDValue LHS = Op.getOperand(0);
3485 SDValue RHS = Op.getOperand(1);
3486 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3487 SDLoc dl(Op);
3488
3489 // We chose ZeroOrOneBooleanContents, so use zero and one.
3490 EVT VT = Op.getValueType();
3491 SDValue TVal = DAG.getConstant(1, VT);
3492 SDValue FVal = DAG.getConstant(0, VT);
3493
3494 // Handle f128 first, since one possible outcome is a normal integer
3495 // comparison which gets picked up by the next if statement.
3496 if (LHS.getValueType() == MVT::f128) {
3497 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3498
3499 // If softenSetCCOperands returned a scalar, use it.
3500 if (!RHS.getNode()) {
3501 assert(LHS.getValueType() == Op.getValueType() &&
3502 "Unexpected setcc expansion!");
3503 return LHS;
3504 }
3505 }
3506
3507 if (LHS.getValueType().isInteger()) {
3508 SDValue CCVal;
3509 SDValue Cmp =
3510 getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
3511
3512 // Note that we inverted the condition above, so we reverse the order of
3513 // the true and false operands here. This will allow the setcc to be
3514 // matched to a single CSINC instruction.
3515 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
3516 }
3517
3518 // Now we know we're dealing with FP values.
3519 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3520
3521 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3522 // and do the comparison.
3523 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3524
3525 AArch64CC::CondCode CC1, CC2;
3526 changeFPCCToAArch64CC(CC, CC1, CC2);
3527 if (CC2 == AArch64CC::AL) {
3528 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
3529 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3530
3531 // Note that we inverted the condition above, so we reverse the order of
3532 // the true and false operands here. This will allow the setcc to be
3533 // matched to a single CSINC instruction.
3534 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
3535 } else {
3536 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
3537 // totally clean. Some of them require two CSELs to implement. As is in
3538 // this case, we emit the first CSEL and then emit a second using the output
3539 // of the first as the RHS. We're effectively OR'ing the two CC's together.
3540
3541 // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
3542 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3543 SDValue CS1 =
3544 DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3545
3546 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3547 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3548 }
3549}
3550
3551/// A SELECT_CC operation is really some kind of max or min if both values being
3552/// compared are, in some sense, equal to the results in either case. However,
3553/// it is permissible to compare f32 values and produce directly extended f64
3554/// values.
3555///
3556/// Extending the comparison operands would also be allowed, but is less likely
3557/// to happen in practice since their use is right here. Note that truncate
3558/// operations would *not* be semantically equivalent.
3559static bool selectCCOpsAreFMaxCompatible(SDValue Cmp, SDValue Result) {
3560 if (Cmp == Result)
3561 return true;
3562
3563 ConstantFPSDNode *CCmp = dyn_cast<ConstantFPSDNode>(Cmp);
3564 ConstantFPSDNode *CResult = dyn_cast<ConstantFPSDNode>(Result);
3565 if (CCmp && CResult && Cmp.getValueType() == MVT::f32 &&
3566 Result.getValueType() == MVT::f64) {
3567 bool Lossy;
3568 APFloat CmpVal = CCmp->getValueAPF();
3569 CmpVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Lossy);
3570 return CResult->getValueAPF().bitwiseIsEqual(CmpVal);
3571 }
3572
3573 return Result->getOpcode() == ISD::FP_EXTEND && Result->getOperand(0) == Cmp;
3574}
3575
3576SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
3577 SelectionDAG &DAG) const {
3578 SDValue CC = Op->getOperand(0);
3579 SDValue TVal = Op->getOperand(1);
3580 SDValue FVal = Op->getOperand(2);
3581 SDLoc DL(Op);
3582
3583 unsigned Opc = CC.getOpcode();
3584 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
3585 // instruction.
3586 if (CC.getResNo() == 1 &&
3587 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3588 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3589 // Only lower legal XALUO ops.
3590 if (!DAG.getTargetLoweringInfo().isTypeLegal(CC->getValueType(0)))
3591 return SDValue();
3592
3593 AArch64CC::CondCode OFCC;
3594 SDValue Value, Overflow;
3595 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CC.getValue(0), DAG);
3596 SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
3597
3598 return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
3599 CCVal, Overflow);
3600 }
3601
3602 if (CC.getOpcode() == ISD::SETCC)
3603 return DAG.getSelectCC(DL, CC.getOperand(0), CC.getOperand(1), TVal, FVal,
3604 cast<CondCodeSDNode>(CC.getOperand(2))->get());
3605 else
3606 return DAG.getSelectCC(DL, CC, DAG.getConstant(0, CC.getValueType()), TVal,
3607 FVal, ISD::SETNE);
3608}
3609
3610SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
3611 SelectionDAG &DAG) const {
3612 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3613 SDValue LHS = Op.getOperand(0);
3614 SDValue RHS = Op.getOperand(1);
3615 SDValue TVal = Op.getOperand(2);
3616 SDValue FVal = Op.getOperand(3);
3617 SDLoc dl(Op);
3618
3619 // Handle f128 first, because it will result in a comparison of some RTLIB
3620 // call result against zero.
3621 if (LHS.getValueType() == MVT::f128) {
3622 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3623
3624 // If softenSetCCOperands returned a scalar, we need to compare the result
3625 // against zero to select between true and false values.
3626 if (!RHS.getNode()) {
3627 RHS = DAG.getConstant(0, LHS.getValueType());
3628 CC = ISD::SETNE;
3629 }
3630 }
3631
3632 // Handle integers first.
3633 if (LHS.getValueType().isInteger()) {
3634 assert((LHS.getValueType() == RHS.getValueType()) &&
3635 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3636
3637 unsigned Opcode = AArch64ISD::CSEL;
3638
3639 // If both the TVal and the FVal are constants, see if we can swap them in
3640 // order to for a CSINV or CSINC out of them.
3641 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
3642 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
3643
3644 if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
3645 std::swap(TVal, FVal);
3646 std::swap(CTVal, CFVal);
3647 CC = ISD::getSetCCInverse(CC, true);
3648 } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
3649 std::swap(TVal, FVal);
3650 std::swap(CTVal, CFVal);
3651 CC = ISD::getSetCCInverse(CC, true);
3652 } else if (TVal.getOpcode() == ISD::XOR) {
3653 // If TVal is a NOT we want to swap TVal and FVal so that we can match
3654 // with a CSINV rather than a CSEL.
3655 ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(1));
3656
3657 if (CVal && CVal->isAllOnesValue()) {
3658 std::swap(TVal, FVal);
3659 std::swap(CTVal, CFVal);
3660 CC = ISD::getSetCCInverse(CC, true);
3661 }
3662 } else if (TVal.getOpcode() == ISD::SUB) {
3663 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
3664 // that we can match with a CSNEG rather than a CSEL.
3665 ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(0));
3666
3667 if (CVal && CVal->isNullValue()) {
3668 std::swap(TVal, FVal);
3669 std::swap(CTVal, CFVal);
3670 CC = ISD::getSetCCInverse(CC, true);
3671 }
3672 } else if (CTVal && CFVal) {
3673 const int64_t TrueVal = CTVal->getSExtValue();
3674 const int64_t FalseVal = CFVal->getSExtValue();
3675 bool Swap = false;
3676
3677 // If both TVal and FVal are constants, see if FVal is the
3678 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
3679 // instead of a CSEL in that case.
3680 if (TrueVal == ~FalseVal) {
3681 Opcode = AArch64ISD::CSINV;
3682 } else if (TrueVal == -FalseVal) {
3683 Opcode = AArch64ISD::CSNEG;
3684 } else if (TVal.getValueType() == MVT::i32) {
3685 // If our operands are only 32-bit wide, make sure we use 32-bit
3686 // arithmetic for the check whether we can use CSINC. This ensures that
3687 // the addition in the check will wrap around properly in case there is
3688 // an overflow (which would not be the case if we do the check with
3689 // 64-bit arithmetic).
3690 const uint32_t TrueVal32 = CTVal->getZExtValue();
3691 const uint32_t FalseVal32 = CFVal->getZExtValue();
3692
3693 if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
3694 Opcode = AArch64ISD::CSINC;
3695
3696 if (TrueVal32 > FalseVal32) {
3697 Swap = true;
3698 }
3699 }
3700 // 64-bit check whether we can use CSINC.
3701 } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
3702 Opcode = AArch64ISD::CSINC;
3703
3704 if (TrueVal > FalseVal) {
3705 Swap = true;
3706 }
3707 }
3708
3709 // Swap TVal and FVal if necessary.
3710 if (Swap) {
3711 std::swap(TVal, FVal);
3712 std::swap(CTVal, CFVal);
3713 CC = ISD::getSetCCInverse(CC, true);
3714 }
3715
3716 if (Opcode != AArch64ISD::CSEL) {
3717 // Drop FVal since we can get its value by simply inverting/negating
3718 // TVal.
3719 FVal = TVal;
3720 }
3721 }
3722
3723 SDValue CCVal;
3724 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3725
3726 EVT VT = Op.getValueType();
3727 return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
3728 }
3729
3730 // Now we know we're dealing with FP values.
3731 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3732 assert(LHS.getValueType() == RHS.getValueType());
3733 EVT VT = Op.getValueType();
3734
3735 // Try to match this select into a max/min operation, which have dedicated
3736 // opcode in the instruction set.
3737 // FIXME: This is not correct in the presence of NaNs, so we only enable this
3738 // in no-NaNs mode.
3739 if (getTargetMachine().Options.NoNaNsFPMath) {
3740 SDValue MinMaxLHS = TVal, MinMaxRHS = FVal;
3741 if (selectCCOpsAreFMaxCompatible(LHS, MinMaxRHS) &&
3742 selectCCOpsAreFMaxCompatible(RHS, MinMaxLHS)) {
3743 CC = ISD::getSetCCSwappedOperands(CC);
3744 std::swap(MinMaxLHS, MinMaxRHS);
3745 }
3746
3747 if (selectCCOpsAreFMaxCompatible(LHS, MinMaxLHS) &&
3748 selectCCOpsAreFMaxCompatible(RHS, MinMaxRHS)) {
3749 switch (CC) {
3750 default:
3751 break;
3752 case ISD::SETGT:
3753 case ISD::SETGE:
3754 case ISD::SETUGT:
3755 case ISD::SETUGE:
3756 case ISD::SETOGT:
3757 case ISD::SETOGE:
3758 return DAG.getNode(AArch64ISD::FMAX, dl, VT, MinMaxLHS, MinMaxRHS);
3759 break;
3760 case ISD::SETLT:
3761 case ISD::SETLE:
3762 case ISD::SETULT:
3763 case ISD::SETULE:
3764 case ISD::SETOLT:
3765 case ISD::SETOLE:
3766 return DAG.getNode(AArch64ISD::FMIN, dl, VT, MinMaxLHS, MinMaxRHS);
3767 break;
3768 }
3769 }
3770 }
3771
3772 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3773 // and do the comparison.
3774 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3775
3776 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3777 // clean. Some of them require two CSELs to implement.
3778 AArch64CC::CondCode CC1, CC2;
3779 changeFPCCToAArch64CC(CC, CC1, CC2);
3780 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3781 SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3782
3783 // If we need a second CSEL, emit it, using the output of the first as the
3784 // RHS. We're effectively OR'ing the two CC's together.
3785 if (CC2 != AArch64CC::AL) {
3786 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3787 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3788 }
3789
3790 // Otherwise, return the output of the first CSEL.
3791 return CS1;
3792}
3793
3794SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
3795 SelectionDAG &DAG) const {
3796 // Jump table entries as PC relative offsets. No additional tweaking
3797 // is necessary here. Just get the address of the jump table.
3798 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3799 EVT PtrVT = getPointerTy();
3800 SDLoc DL(Op);
3801
3802 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3803 !Subtarget->isTargetMachO()) {
3804 const unsigned char MO_NC = AArch64II::MO_NC;
3805 return DAG.getNode(
3806 AArch64ISD::WrapperLarge, DL, PtrVT,
3807 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
3808 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
3809 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
3810 DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3811 AArch64II::MO_G0 | MO_NC));
3812 }
3813
3814 SDValue Hi =
3815 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
3816 SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3817 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3818 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3819 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3820}
3821
3822SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
3823 SelectionDAG &DAG) const {
3824 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3825 EVT PtrVT = getPointerTy();
3826 SDLoc DL(Op);
3827
3828 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3829 // Use the GOT for the large code model on iOS.
3830 if (Subtarget->isTargetMachO()) {
3831 SDValue GotAddr = DAG.getTargetConstantPool(
3832 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3833 AArch64II::MO_GOT);
3834 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
3835 }
3836
3837 const unsigned char MO_NC = AArch64II::MO_NC;
3838 return DAG.getNode(
3839 AArch64ISD::WrapperLarge, DL, PtrVT,
3840 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3841 CP->getOffset(), AArch64II::MO_G3),
3842 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3843 CP->getOffset(), AArch64II::MO_G2 | MO_NC),
3844 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3845 CP->getOffset(), AArch64II::MO_G1 | MO_NC),
3846 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3847 CP->getOffset(), AArch64II::MO_G0 | MO_NC));
3848 } else {
3849 // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
3850 // ELF, the only valid one on Darwin.
3851 SDValue Hi =
3852 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3853 CP->getOffset(), AArch64II::MO_PAGE);
3854 SDValue Lo = DAG.getTargetConstantPool(
3855 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3856 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3857
3858 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3859 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3860 }
3861}
3862
3863SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
3864 SelectionDAG &DAG) const {
3865 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
3866 EVT PtrVT = getPointerTy();
3867 SDLoc DL(Op);
3868 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3869 !Subtarget->isTargetMachO()) {
3870 const unsigned char MO_NC = AArch64II::MO_NC;
3871 return DAG.getNode(
3872 AArch64ISD::WrapperLarge, DL, PtrVT,
3873 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
3874 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
3875 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
3876 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
3877 } else {
3878 SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
3879 SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
3880 AArch64II::MO_NC);
3881 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3882 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3883 }
3884}
3885
3886SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
3887 SelectionDAG &DAG) const {
3888 AArch64FunctionInfo *FuncInfo =
3889 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3890
3891 SDLoc DL(Op);
3892 SDValue FR =
3893 DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3894 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3895 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3896 MachinePointerInfo(SV), false, false, 0);
3897}
3898
3899SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
3900 SelectionDAG &DAG) const {
3901 // The layout of the va_list struct is specified in the AArch64 Procedure Call
3902 // Standard, section B.3.
3903 MachineFunction &MF = DAG.getMachineFunction();
3904 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3905 SDLoc DL(Op);
3906
3907 SDValue Chain = Op.getOperand(0);
3908 SDValue VAList = Op.getOperand(1);
3909 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3910 SmallVector<SDValue, 4> MemOps;
3911
3912 // void *__stack at offset 0
3913 SDValue Stack =
3914 DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3915 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
3916 MachinePointerInfo(SV), false, false, 8));
3917
3918 // void *__gr_top at offset 8
3919 int GPRSize = FuncInfo->getVarArgsGPRSize();
3920 if (GPRSize > 0) {
3921 SDValue GRTop, GRTopAddr;
3922
3923 GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3924 DAG.getConstant(8, getPointerTy()));
3925
3926 GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), getPointerTy());
3927 GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
3928 DAG.getConstant(GPRSize, getPointerTy()));
3929
3930 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
3931 MachinePointerInfo(SV, 8), false, false, 8));
3932 }
3933
3934 // void *__vr_top at offset 16
3935 int FPRSize = FuncInfo->getVarArgsFPRSize();
3936 if (FPRSize > 0) {
3937 SDValue VRTop, VRTopAddr;
3938 VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3939 DAG.getConstant(16, getPointerTy()));
3940
3941 VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), getPointerTy());
3942 VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
3943 DAG.getConstant(FPRSize, getPointerTy()));
3944
3945 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
3946 MachinePointerInfo(SV, 16), false, false, 8));
3947 }
3948
3949 // int __gr_offs at offset 24
3950 SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3951 DAG.getConstant(24, getPointerTy()));
3952 MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
3953 GROffsAddr, MachinePointerInfo(SV, 24), false,
3954 false, 4));
3955
3956 // int __vr_offs at offset 28
3957 SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3958 DAG.getConstant(28, getPointerTy()));
3959 MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
3960 VROffsAddr, MachinePointerInfo(SV, 28), false,
3961 false, 4));
3962
3963 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3964}
3965
3966SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
3967 SelectionDAG &DAG) const {
3968 return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
3969 : LowerAAPCS_VASTART(Op, DAG);
3970}
3971
3972SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
3973 SelectionDAG &DAG) const {
3974 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
3975 // pointer.
3976 unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
3977 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3978 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3979
3980 return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op), Op.getOperand(1),
3981 Op.getOperand(2), DAG.getConstant(VaListSize, MVT::i32),
3982 8, false, false, MachinePointerInfo(DestSV),
3983 MachinePointerInfo(SrcSV));
3984}
3985
3986SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3987 assert(Subtarget->isTargetDarwin() &&
3988 "automatic va_arg instruction only works on Darwin");
3989
3990 const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3991 EVT VT = Op.getValueType();
3992 SDLoc DL(Op);
3993 SDValue Chain = Op.getOperand(0);
3994 SDValue Addr = Op.getOperand(1);
3995 unsigned Align = Op.getConstantOperandVal(3);
3996
3997 SDValue VAList = DAG.getLoad(getPointerTy(), DL, Chain, Addr,
3998 MachinePointerInfo(V), false, false, false, 0);
3999 Chain = VAList.getValue(1);
4000
4001 if (Align > 8) {
4002 assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
4003 VAList = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
4004 DAG.getConstant(Align - 1, getPointerTy()));
4005 VAList = DAG.getNode(ISD::AND, DL, getPointerTy(), VAList,
4006 DAG.getConstant(-(int64_t)Align, getPointerTy()));
4007 }
4008
4009 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
4010 uint64_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
4011
4012 // Scalar integer and FP values smaller than 64 bits are implicitly extended
4013 // up to 64 bits. At the very least, we have to increase the striding of the
4014 // vaargs list to match this, and for FP values we need to introduce
4015 // FP_ROUND nodes as well.
4016 if (VT.isInteger() && !VT.isVector())
4017 ArgSize = 8;
4018 bool NeedFPTrunc = false;
4019 if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
4020 ArgSize = 8;
4021 NeedFPTrunc = true;
4022 }
4023
4024 // Increment the pointer, VAList, to the next vaarg
4025 SDValue VANext = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
4026 DAG.getConstant(ArgSize, getPointerTy()));
4027 // Store the incremented VAList to the legalized pointer
4028 SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
4029 false, false, 0);
4030
4031 // Load the actual argument out of the pointer VAList
4032 if (NeedFPTrunc) {
4033 // Load the value as an f64.
4034 SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
4035 MachinePointerInfo(), false, false, false, 0);
4036 // Round the value down to an f32.
4037 SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
4038 DAG.getIntPtrConstant(1));
4039 SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
4040 // Merge the rounded value with the chain output of the load.
4041 return DAG.getMergeValues(Ops, DL);
4042 }
4043
4044 return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
4045 false, false, 0);
4046}
4047
4048SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
4049 SelectionDAG &DAG) const {
4050 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4051 MFI->setFrameAddressIsTaken(true);
4052
4053 EVT VT = Op.getValueType();
4054 SDLoc DL(Op);
4055 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4056 SDValue FrameAddr =
4057 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
4058 while (Depth--)
4059 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
4060 MachinePointerInfo(), false, false, false, 0);
4061 return FrameAddr;
4062}
4063
4064// FIXME? Maybe this could be a TableGen attribute on some registers and
4065// this table could be generated automatically from RegInfo.
4066unsigned AArch64TargetLowering::getRegisterByName(const char* RegName,
4067 EVT VT) const {
4068 unsigned Reg = StringSwitch<unsigned>(RegName)
4069 .Case("sp", AArch64::SP)
4070 .Default(0);
4071 if (Reg)
4072 return Reg;
4073 report_fatal_error("Invalid register name global variable");
4074}
4075
4076SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
4077 SelectionDAG &DAG) const {
4078 MachineFunction &MF = DAG.getMachineFunction();
4079 MachineFrameInfo *MFI = MF.getFrameInfo();
4080 MFI->setReturnAddressIsTaken(true);
4081
4082 EVT VT = Op.getValueType();
4083 SDLoc DL(Op);
4084 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4085 if (Depth) {
4086 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
4087 SDValue Offset = DAG.getConstant(8, getPointerTy());
4088 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4089 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4090 MachinePointerInfo(), false, false, false, 0);
4091 }
4092
4093 // Return LR, which contains the return address. Mark it an implicit live-in.
4094 unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
4095 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
4096}
4097
4098/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
4099/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4100SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
4101 SelectionDAG &DAG) const {
4102 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4103 EVT VT = Op.getValueType();
4104 unsigned VTBits = VT.getSizeInBits();
4105 SDLoc dl(Op);
4106 SDValue ShOpLo = Op.getOperand(0);
4107 SDValue ShOpHi = Op.getOperand(1);
4108 SDValue ShAmt = Op.getOperand(2);
4109 SDValue ARMcc;
4110 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
4111
4112 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
4113
4114 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
4115 DAG.getConstant(VTBits, MVT::i64), ShAmt);
4116 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
4117 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
4118 DAG.getConstant(VTBits, MVT::i64));
4119 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
4120
4121 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
4122 ISD::SETGE, dl, DAG);
4123 SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
4124
4125 SDValue FalseValLo = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4126 SDValue TrueValLo = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
4127 SDValue Lo =
4128 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
4129
4130 // AArch64 shifts larger than the register width are wrapped rather than
4131 // clamped, so we can't just emit "hi >> x".
4132 SDValue FalseValHi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
4133 SDValue TrueValHi = Opc == ISD::SRA
4134 ? DAG.getNode(Opc, dl, VT, ShOpHi,
4135 DAG.getConstant(VTBits - 1, MVT::i64))
4136 : DAG.getConstant(0, VT);
4137 SDValue Hi =
4138 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValHi, FalseValHi, CCVal, Cmp);
4139
4140 SDValue Ops[2] = { Lo, Hi };
4141 return DAG.getMergeValues(Ops, dl);
4142}
4143
4144/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
4145/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4146SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
4147 SelectionDAG &DAG) const {
4148 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4149 EVT VT = Op.getValueType();
4150 unsigned VTBits = VT.getSizeInBits();
4151 SDLoc dl(Op);
4152 SDValue ShOpLo = Op.getOperand(0);
4153 SDValue ShOpHi = Op.getOperand(1);
4154 SDValue ShAmt = Op.getOperand(2);
4155 SDValue ARMcc;
4156
4157 assert(Op.getOpcode() == ISD::SHL_PARTS);
4158 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
4159 DAG.getConstant(VTBits, MVT::i64), ShAmt);
4160 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
4161 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
4162 DAG.getConstant(VTBits, MVT::i64));
4163 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
4164 SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
4165
4166 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4167
4168 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
4169 ISD::SETGE, dl, DAG);
4170 SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
4171 SDValue Hi =
4172 DAG.getNode(AArch64ISD::CSEL, dl, VT, Tmp3, FalseVal, CCVal, Cmp);
4173
4174 // AArch64 shifts of larger than register sizes are wrapped rather than
4175 // clamped, so we can't just emit "lo << a" if a is too big.
4176 SDValue TrueValLo = DAG.getConstant(0, VT);
4177 SDValue FalseValLo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4178 SDValue Lo =
4179 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
4180
4181 SDValue Ops[2] = { Lo, Hi };
4182 return DAG.getMergeValues(Ops, dl);
4183}
4184
4185bool AArch64TargetLowering::isOffsetFoldingLegal(
4186 const GlobalAddressSDNode *GA) const {
4187 // The AArch64 target doesn't support folding offsets into global addresses.
4188 return false;
4189}
4190
4191bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4192 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
4193 // FIXME: We should be able to handle f128 as well with a clever lowering.
4194 if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
4195 return true;
4196
4197 if (VT == MVT::f64)
4198 return AArch64_AM::getFP64Imm(Imm) != -1;
4199 else if (VT == MVT::f32)
4200 return AArch64_AM::getFP32Imm(Imm) != -1;
4201 return false;
4202}
4203
4204//===----------------------------------------------------------------------===//
4205// AArch64 Optimization Hooks
4206//===----------------------------------------------------------------------===//
4207
4208//===----------------------------------------------------------------------===//
4209// AArch64 Inline Assembly Support
4210//===----------------------------------------------------------------------===//
4211
4212// Table of Constraints
4213// TODO: This is the current set of constraints supported by ARM for the
4214// compiler, not all of them may make sense, e.g. S may be difficult to support.
4215//
4216// r - A general register
4217// w - An FP/SIMD register of some size in the range v0-v31
4218// x - An FP/SIMD register of some size in the range v0-v15
4219// I - Constant that can be used with an ADD instruction
4220// J - Constant that can be used with a SUB instruction
4221// K - Constant that can be used with a 32-bit logical instruction
4222// L - Constant that can be used with a 64-bit logical instruction
4223// M - Constant that can be used as a 32-bit MOV immediate
4224// N - Constant that can be used as a 64-bit MOV immediate
4225// Q - A memory reference with base register and no offset
4226// S - A symbolic address
4227// Y - Floating point constant zero
4228// Z - Integer constant zero
4229//
4230// Note that general register operands will be output using their 64-bit x
4231// register name, whatever the size of the variable, unless the asm operand
4232// is prefixed by the %w modifier. Floating-point and SIMD register operands
4233// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
4234// %q modifier.
4235
4236/// getConstraintType - Given a constraint letter, return the type of
4237/// constraint it is for this target.
4238AArch64TargetLowering::ConstraintType
4239AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
4240 if (Constraint.size() == 1) {
4241 switch (Constraint[0]) {
4242 default:
4243 break;
4244 case 'z':
4245 return C_Other;
4246 case 'x':
4247 case 'w':
4248 return C_RegisterClass;
4249 // An address with a single base register. Due to the way we
4250 // currently handle addresses it is the same as 'r'.
4251 case 'Q':
4252 return C_Memory;
4253 }
4254 }
4255 return TargetLowering::getConstraintType(Constraint);
4256}
4257
4258/// Examine constraint type and operand type and determine a weight value.
4259/// This object must already have been set up with the operand type
4260/// and the current alternative constraint selected.
4261TargetLowering::ConstraintWeight
4262AArch64TargetLowering::getSingleConstraintMatchWeight(
4263 AsmOperandInfo &info, const char *constraint) const {
4264 ConstraintWeight weight = CW_Invalid;
4265 Value *CallOperandVal = info.CallOperandVal;
4266 // If we don't have a value, we can't do a match,
4267 // but allow it at the lowest weight.
4268 if (!CallOperandVal)
4269 return CW_Default;
4270 Type *type = CallOperandVal->getType();
4271 // Look at the constraint type.
4272 switch (*constraint) {
4273 default:
4274 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
4275 break;
4276 case 'x':
4277 case 'w':
4278 if (type->isFloatingPointTy() || type->isVectorTy())
4279 weight = CW_Register;
4280 break;
4281 case 'z':
4282 weight = CW_Constant;
4283 break;
4284 }
4285 return weight;
4286}
4287
4288std::pair<unsigned, const TargetRegisterClass *>
4289AArch64TargetLowering::getRegForInlineAsmConstraint(
4290 const std::string &Constraint, MVT VT) const {
4291 if (Constraint.size() == 1) {
4292 switch (Constraint[0]) {
4293 case 'r':
4294 if (VT.getSizeInBits() == 64)
4295 return std::make_pair(0U, &AArch64::GPR64commonRegClass);
4296 return std::make_pair(0U, &AArch64::GPR32commonRegClass);
4297 case 'w':
4298 if (VT == MVT::f32)
4299 return std::make_pair(0U, &AArch64::FPR32RegClass);
4300 if (VT.getSizeInBits() == 64)
4301 return std::make_pair(0U, &AArch64::FPR64RegClass);
4302 if (VT.getSizeInBits() == 128)
4303 return std::make_pair(0U, &AArch64::FPR128RegClass);
4304 break;
4305 // The instructions that this constraint is designed for can
4306 // only take 128-bit registers so just use that regclass.
4307 case 'x':
4308 if (VT.getSizeInBits() == 128)
4309 return std::make_pair(0U, &AArch64::FPR128_loRegClass);
4310 break;
4311 }
4312 }
4313 if (StringRef("{cc}").equals_lower(Constraint))
4314 return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
4315
4316 // Use the default implementation in TargetLowering to convert the register
4317 // constraint into a member of a register class.
4318 std::pair<unsigned, const TargetRegisterClass *> Res;
4319 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4320
4321 // Not found as a standard register?
4322 if (!Res.second) {
4323 unsigned Size = Constraint.size();
4324 if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
4325 tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
4326 const std::string Reg =
4327 std::string(&Constraint[2], &Constraint[Size - 1]);
4328 int RegNo = atoi(Reg.c_str());
4329 if (RegNo >= 0 && RegNo <= 31) {
4330 // v0 - v31 are aliases of q0 - q31.
4331 // By default we'll emit v0-v31 for this unless there's a modifier where
4332 // we'll emit the correct register as well.
4333 Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
4334 Res.second = &AArch64::FPR128RegClass;
4335 }
4336 }
4337 }
4338
4339 return Res;
4340}
4341
4342/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4343/// vector. If it is invalid, don't add anything to Ops.
4344void AArch64TargetLowering::LowerAsmOperandForConstraint(
4345 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
4346 SelectionDAG &DAG) const {
4347 SDValue Result;
4348
4349 // Currently only support length 1 constraints.
4350 if (Constraint.length() != 1)
4351 return;
4352
4353 char ConstraintLetter = Constraint[0];
4354 switch (ConstraintLetter) {
4355 default:
4356 break;
4357
4358 // This set of constraints deal with valid constants for various instructions.
4359 // Validate and return a target constant for them if we can.
4360 case 'z': {
4361 // 'z' maps to xzr or wzr so it needs an input of 0.
4362 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4363 if (!C || C->getZExtValue() != 0)
4364 return;
4365
4366 if (Op.getValueType() == MVT::i64)
4367 Result = DAG.getRegister(AArch64::XZR, MVT::i64);
4368 else
4369 Result = DAG.getRegister(AArch64::WZR, MVT::i32);
4370 break;
4371 }
4372
4373 case 'I':
4374 case 'J':
4375 case 'K':
4376 case 'L':
4377 case 'M':
4378 case 'N':
4379 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4380 if (!C)
4381 return;
4382
4383 // Grab the value and do some validation.
4384 uint64_t CVal = C->getZExtValue();
4385 switch (ConstraintLetter) {
4386 // The I constraint applies only to simple ADD or SUB immediate operands:
4387 // i.e. 0 to 4095 with optional shift by 12
4388 // The J constraint applies only to ADD or SUB immediates that would be
4389 // valid when negated, i.e. if [an add pattern] were to be output as a SUB
4390 // instruction [or vice versa], in other words -1 to -4095 with optional
4391 // left shift by 12.
4392 case 'I':
4393 if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
4394 break;
4395 return;
4396 case 'J': {
4397 uint64_t NVal = -C->getSExtValue();
Tim Northover2c46beb2014-07-27 07:10:29 +00004398 if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
4399 CVal = C->getSExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00004400 break;
Tim Northover2c46beb2014-07-27 07:10:29 +00004401 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004402 return;
4403 }
4404 // The K and L constraints apply *only* to logical immediates, including
4405 // what used to be the MOVI alias for ORR (though the MOVI alias has now
4406 // been removed and MOV should be used). So these constraints have to
4407 // distinguish between bit patterns that are valid 32-bit or 64-bit
4408 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
4409 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
4410 // versa.
4411 case 'K':
4412 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4413 break;
4414 return;
4415 case 'L':
4416 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4417 break;
4418 return;
4419 // The M and N constraints are a superset of K and L respectively, for use
4420 // with the MOV (immediate) alias. As well as the logical immediates they
4421 // also match 32 or 64-bit immediates that can be loaded either using a
4422 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
4423 // (M) or 64-bit 0x1234000000000000 (N) etc.
4424 // As a note some of this code is liberally stolen from the asm parser.
4425 case 'M': {
4426 if (!isUInt<32>(CVal))
4427 return;
4428 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4429 break;
4430 if ((CVal & 0xFFFF) == CVal)
4431 break;
4432 if ((CVal & 0xFFFF0000ULL) == CVal)
4433 break;
4434 uint64_t NCVal = ~(uint32_t)CVal;
4435 if ((NCVal & 0xFFFFULL) == NCVal)
4436 break;
4437 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4438 break;
4439 return;
4440 }
4441 case 'N': {
4442 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4443 break;
4444 if ((CVal & 0xFFFFULL) == CVal)
4445 break;
4446 if ((CVal & 0xFFFF0000ULL) == CVal)
4447 break;
4448 if ((CVal & 0xFFFF00000000ULL) == CVal)
4449 break;
4450 if ((CVal & 0xFFFF000000000000ULL) == CVal)
4451 break;
4452 uint64_t NCVal = ~CVal;
4453 if ((NCVal & 0xFFFFULL) == NCVal)
4454 break;
4455 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4456 break;
4457 if ((NCVal & 0xFFFF00000000ULL) == NCVal)
4458 break;
4459 if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
4460 break;
4461 return;
4462 }
4463 default:
4464 return;
4465 }
4466
4467 // All assembler immediates are 64-bit integers.
4468 Result = DAG.getTargetConstant(CVal, MVT::i64);
4469 break;
4470 }
4471
4472 if (Result.getNode()) {
4473 Ops.push_back(Result);
4474 return;
4475 }
4476
4477 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4478}
4479
4480//===----------------------------------------------------------------------===//
4481// AArch64 Advanced SIMD Support
4482//===----------------------------------------------------------------------===//
4483
4484/// WidenVector - Given a value in the V64 register class, produce the
4485/// equivalent value in the V128 register class.
4486static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
4487 EVT VT = V64Reg.getValueType();
4488 unsigned NarrowSize = VT.getVectorNumElements();
4489 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4490 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
4491 SDLoc DL(V64Reg);
4492
4493 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
4494 V64Reg, DAG.getConstant(0, MVT::i32));
4495}
4496
4497/// getExtFactor - Determine the adjustment factor for the position when
4498/// generating an "extract from vector registers" instruction.
4499static unsigned getExtFactor(SDValue &V) {
4500 EVT EltType = V.getValueType().getVectorElementType();
4501 return EltType.getSizeInBits() / 8;
4502}
4503
4504/// NarrowVector - Given a value in the V128 register class, produce the
4505/// equivalent value in the V64 register class.
4506static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
4507 EVT VT = V128Reg.getValueType();
4508 unsigned WideSize = VT.getVectorNumElements();
4509 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4510 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
4511 SDLoc DL(V128Reg);
4512
4513 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
4514}
4515
4516// Gather data to see if the operation can be modelled as a
4517// shuffle in combination with VEXTs.
4518SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
4519 SelectionDAG &DAG) const {
Kevin Qinf0ec9af2014-06-18 05:54:42 +00004520 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00004521 SDLoc dl(Op);
4522 EVT VT = Op.getValueType();
4523 unsigned NumElts = VT.getVectorNumElements();
4524
Tim Northover7324e842014-07-24 15:39:55 +00004525 struct ShuffleSourceInfo {
4526 SDValue Vec;
4527 unsigned MinElt;
4528 unsigned MaxElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00004529
Tim Northover7324e842014-07-24 15:39:55 +00004530 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
4531 // be compatible with the shuffle we intend to construct. As a result
4532 // ShuffleVec will be some sliding window into the original Vec.
4533 SDValue ShuffleVec;
4534
4535 // Code should guarantee that element i in Vec starts at element "WindowBase
4536 // + i * WindowScale in ShuffleVec".
4537 int WindowBase;
4538 int WindowScale;
4539
4540 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
4541 ShuffleSourceInfo(SDValue Vec)
4542 : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
4543 WindowScale(1) {}
4544 };
4545
4546 // First gather all vectors used as an immediate source for this BUILD_VECTOR
4547 // node.
4548 SmallVector<ShuffleSourceInfo, 2> Sources;
Tim Northover3b0846e2014-05-24 12:50:23 +00004549 for (unsigned i = 0; i < NumElts; ++i) {
4550 SDValue V = Op.getOperand(i);
4551 if (V.getOpcode() == ISD::UNDEF)
4552 continue;
4553 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4554 // A shuffle can only come from building a vector from various
4555 // elements of other vectors.
4556 return SDValue();
4557 }
4558
Tim Northover7324e842014-07-24 15:39:55 +00004559 // Add this element source to the list if it's not already there.
Tim Northover3b0846e2014-05-24 12:50:23 +00004560 SDValue SourceVec = V.getOperand(0);
Tim Northover7324e842014-07-24 15:39:55 +00004561 auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
4562 if (Source == Sources.end())
James Molloyf497d552014-10-17 17:06:31 +00004563 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
Tim Northover3b0846e2014-05-24 12:50:23 +00004564
Tim Northover7324e842014-07-24 15:39:55 +00004565 // Update the minimum and maximum lane number seen.
4566 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4567 Source->MinElt = std::min(Source->MinElt, EltNo);
4568 Source->MaxElt = std::max(Source->MaxElt, EltNo);
Tim Northover3b0846e2014-05-24 12:50:23 +00004569 }
4570
4571 // Currently only do something sane when at most two source vectors
Tim Northover7324e842014-07-24 15:39:55 +00004572 // are involved.
4573 if (Sources.size() > 2)
Tim Northover3b0846e2014-05-24 12:50:23 +00004574 return SDValue();
4575
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004576 // Find out the smallest element size among result and two sources, and use
4577 // it as element size to build the shuffle_vector.
4578 EVT SmallestEltTy = VT.getVectorElementType();
Tim Northover7324e842014-07-24 15:39:55 +00004579 for (auto &Source : Sources) {
4580 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004581 if (SrcEltTy.bitsLT(SmallestEltTy)) {
4582 SmallestEltTy = SrcEltTy;
4583 }
4584 }
4585 unsigned ResMultiplier =
4586 VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004587 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
4588 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00004589
Tim Northover7324e842014-07-24 15:39:55 +00004590 // If the source vector is too wide or too narrow, we may nevertheless be able
4591 // to construct a compatible shuffle either by concatenating it with UNDEF or
4592 // extracting a suitable range of elements.
4593 for (auto &Src : Sources) {
4594 EVT SrcVT = Src.ShuffleVec.getValueType();
Kevin Qinf0ec9af2014-06-18 05:54:42 +00004595
Tim Northover7324e842014-07-24 15:39:55 +00004596 if (SrcVT.getSizeInBits() == VT.getSizeInBits())
Tim Northover3b0846e2014-05-24 12:50:23 +00004597 continue;
Tim Northover7324e842014-07-24 15:39:55 +00004598
4599 // This stage of the search produces a source with the same element type as
4600 // the original, but with a total width matching the BUILD_VECTOR output.
4601 EVT EltVT = SrcVT.getVectorElementType();
James Molloyf497d552014-10-17 17:06:31 +00004602 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
4603 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
Tim Northover7324e842014-07-24 15:39:55 +00004604
4605 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
4606 assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00004607 // We can pad out the smaller vector for free, so if it's part of a
4608 // shuffle...
Tim Northover7324e842014-07-24 15:39:55 +00004609 Src.ShuffleVec =
4610 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
4611 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004612 continue;
4613 }
4614
Tim Northover7324e842014-07-24 15:39:55 +00004615 assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00004616
James Molloyf497d552014-10-17 17:06:31 +00004617 if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004618 // Span too large for a VEXT to cope
4619 return SDValue();
4620 }
4621
James Molloyf497d552014-10-17 17:06:31 +00004622 if (Src.MinElt >= NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004623 // The extraction can just take the second half
Tim Northover7324e842014-07-24 15:39:55 +00004624 Src.ShuffleVec =
4625 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Tim Northover5e84fe32014-12-06 00:33:37 +00004626 DAG.getConstant(NumSrcElts, MVT::i64));
James Molloyf497d552014-10-17 17:06:31 +00004627 Src.WindowBase = -NumSrcElts;
4628 } else if (Src.MaxElt < NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004629 // The extraction can just take the first half
Tim Northover5e84fe32014-12-06 00:33:37 +00004630 Src.ShuffleVec =
4631 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
4632 DAG.getConstant(0, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00004633 } else {
4634 // An actual VEXT is needed
Tim Northover5e84fe32014-12-06 00:33:37 +00004635 SDValue VEXTSrc1 =
4636 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
4637 DAG.getConstant(0, MVT::i64));
Tim Northover7324e842014-07-24 15:39:55 +00004638 SDValue VEXTSrc2 =
4639 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Tim Northover5e84fe32014-12-06 00:33:37 +00004640 DAG.getConstant(NumSrcElts, MVT::i64));
Tim Northover7324e842014-07-24 15:39:55 +00004641 unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
4642
4643 Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004644 VEXTSrc2, DAG.getConstant(Imm, MVT::i32));
Tim Northover7324e842014-07-24 15:39:55 +00004645 Src.WindowBase = -Src.MinElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00004646 }
4647 }
4648
Tim Northover7324e842014-07-24 15:39:55 +00004649 // Another possible incompatibility occurs from the vector element types. We
4650 // can fix this by bitcasting the source vectors to the same type we intend
4651 // for the shuffle.
4652 for (auto &Src : Sources) {
4653 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
4654 if (SrcEltTy == SmallestEltTy)
4655 continue;
4656 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
4657 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
4658 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
4659 Src.WindowBase *= Src.WindowScale;
4660 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004661
Tim Northover7324e842014-07-24 15:39:55 +00004662 // Final sanity check before we try to actually produce a shuffle.
4663 DEBUG(
4664 for (auto Src : Sources)
4665 assert(Src.ShuffleVec.getValueType() == ShuffleVT);
4666 );
4667
4668 // The stars all align, our next step is to produce the mask for the shuffle.
4669 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
4670 int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004671 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004672 SDValue Entry = Op.getOperand(i);
Tim Northover7324e842014-07-24 15:39:55 +00004673 if (Entry.getOpcode() == ISD::UNDEF)
4674 continue;
Tim Northover3b0846e2014-05-24 12:50:23 +00004675
Tim Northover7324e842014-07-24 15:39:55 +00004676 auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
4677 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
4678
4679 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
4680 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
4681 // segment.
4682 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
4683 int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
4684 VT.getVectorElementType().getSizeInBits());
4685 int LanesDefined = BitsDefined / BitsPerShuffleLane;
4686
4687 // This source is expected to fill ResMultiplier lanes of the final shuffle,
4688 // starting at the appropriate offset.
4689 int *LaneMask = &Mask[i * ResMultiplier];
4690
4691 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
4692 ExtractBase += NumElts * (Src - Sources.begin());
4693 for (int j = 0; j < LanesDefined; ++j)
4694 LaneMask[j] = ExtractBase + j;
Tim Northover3b0846e2014-05-24 12:50:23 +00004695 }
4696
4697 // Final check before we try to produce nonsense...
Tim Northover7324e842014-07-24 15:39:55 +00004698 if (!isShuffleMaskLegal(Mask, ShuffleVT))
4699 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00004700
Tim Northover7324e842014-07-24 15:39:55 +00004701 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
4702 for (unsigned i = 0; i < Sources.size(); ++i)
4703 ShuffleOps[i] = Sources[i].ShuffleVec;
4704
4705 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
4706 ShuffleOps[1], &Mask[0]);
4707 return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
Tim Northover3b0846e2014-05-24 12:50:23 +00004708}
4709
4710// check if an EXT instruction can handle the shuffle mask when the
4711// vector sources of the shuffle are the same.
4712static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
4713 unsigned NumElts = VT.getVectorNumElements();
4714
4715 // Assume that the first shuffle index is not UNDEF. Fail if it is.
4716 if (M[0] < 0)
4717 return false;
4718
4719 Imm = M[0];
4720
4721 // If this is a VEXT shuffle, the immediate value is the index of the first
4722 // element. The other shuffle indices must be the successive elements after
4723 // the first one.
4724 unsigned ExpectedElt = Imm;
4725 for (unsigned i = 1; i < NumElts; ++i) {
4726 // Increment the expected index. If it wraps around, just follow it
4727 // back to index zero and keep going.
4728 ++ExpectedElt;
4729 if (ExpectedElt == NumElts)
4730 ExpectedElt = 0;
4731
4732 if (M[i] < 0)
4733 continue; // ignore UNDEF indices
4734 if (ExpectedElt != static_cast<unsigned>(M[i]))
4735 return false;
4736 }
4737
4738 return true;
4739}
4740
4741// check if an EXT instruction can handle the shuffle mask when the
4742// vector sources of the shuffle are different.
4743static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
4744 unsigned &Imm) {
4745 // Look for the first non-undef element.
4746 const int *FirstRealElt = std::find_if(M.begin(), M.end(),
4747 [](int Elt) {return Elt >= 0;});
4748
4749 // Benefit form APInt to handle overflow when calculating expected element.
4750 unsigned NumElts = VT.getVectorNumElements();
4751 unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
4752 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
4753 // The following shuffle indices must be the successive elements after the
4754 // first real element.
4755 const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
4756 [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
4757 if (FirstWrongElt != M.end())
4758 return false;
4759
4760 // The index of an EXT is the first element if it is not UNDEF.
4761 // Watch out for the beginning UNDEFs. The EXT index should be the expected
4762 // value of the first element. E.g.
4763 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
4764 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
4765 // ExpectedElt is the last mask index plus 1.
4766 Imm = ExpectedElt.getZExtValue();
4767
4768 // There are two difference cases requiring to reverse input vectors.
4769 // For example, for vector <4 x i32> we have the following cases,
4770 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
4771 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
4772 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
4773 // to reverse two input vectors.
4774 if (Imm < NumElts)
4775 ReverseEXT = true;
4776 else
4777 Imm -= NumElts;
4778
4779 return true;
4780}
4781
4782/// isREVMask - Check if a vector shuffle corresponds to a REV
4783/// instruction with the specified blocksize. (The order of the elements
4784/// within each block of the vector is reversed.)
4785static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
4786 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
4787 "Only possible block sizes for REV are: 16, 32, 64");
4788
4789 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4790 if (EltSz == 64)
4791 return false;
4792
4793 unsigned NumElts = VT.getVectorNumElements();
4794 unsigned BlockElts = M[0] + 1;
4795 // If the first shuffle index is UNDEF, be optimistic.
4796 if (M[0] < 0)
4797 BlockElts = BlockSize / EltSz;
4798
4799 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
4800 return false;
4801
4802 for (unsigned i = 0; i < NumElts; ++i) {
4803 if (M[i] < 0)
4804 continue; // ignore UNDEF indices
4805 if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
4806 return false;
4807 }
4808
4809 return true;
4810}
4811
4812static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4813 unsigned NumElts = VT.getVectorNumElements();
4814 WhichResult = (M[0] == 0 ? 0 : 1);
4815 unsigned Idx = WhichResult * NumElts / 2;
4816 for (unsigned i = 0; i != NumElts; i += 2) {
4817 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4818 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
4819 return false;
4820 Idx += 1;
4821 }
4822
4823 return true;
4824}
4825
4826static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4827 unsigned NumElts = VT.getVectorNumElements();
4828 WhichResult = (M[0] == 0 ? 0 : 1);
4829 for (unsigned i = 0; i != NumElts; ++i) {
4830 if (M[i] < 0)
4831 continue; // ignore UNDEF indices
4832 if ((unsigned)M[i] != 2 * i + WhichResult)
4833 return false;
4834 }
4835
4836 return true;
4837}
4838
4839static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4840 unsigned NumElts = VT.getVectorNumElements();
4841 WhichResult = (M[0] == 0 ? 0 : 1);
4842 for (unsigned i = 0; i < NumElts; i += 2) {
4843 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4844 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
4845 return false;
4846 }
4847 return true;
4848}
4849
4850/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
4851/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4852/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
4853static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4854 unsigned NumElts = VT.getVectorNumElements();
4855 WhichResult = (M[0] == 0 ? 0 : 1);
4856 unsigned Idx = WhichResult * NumElts / 2;
4857 for (unsigned i = 0; i != NumElts; i += 2) {
4858 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4859 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
4860 return false;
4861 Idx += 1;
4862 }
4863
4864 return true;
4865}
4866
4867/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
4868/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4869/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
4870static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4871 unsigned Half = VT.getVectorNumElements() / 2;
4872 WhichResult = (M[0] == 0 ? 0 : 1);
4873 for (unsigned j = 0; j != 2; ++j) {
4874 unsigned Idx = WhichResult;
4875 for (unsigned i = 0; i != Half; ++i) {
4876 int MIdx = M[i + j * Half];
4877 if (MIdx >= 0 && (unsigned)MIdx != Idx)
4878 return false;
4879 Idx += 2;
4880 }
4881 }
4882
4883 return true;
4884}
4885
4886/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
4887/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4888/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
4889static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4890 unsigned NumElts = VT.getVectorNumElements();
4891 WhichResult = (M[0] == 0 ? 0 : 1);
4892 for (unsigned i = 0; i < NumElts; i += 2) {
4893 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4894 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
4895 return false;
4896 }
4897 return true;
4898}
4899
4900static bool isINSMask(ArrayRef<int> M, int NumInputElements,
4901 bool &DstIsLeft, int &Anomaly) {
4902 if (M.size() != static_cast<size_t>(NumInputElements))
4903 return false;
4904
4905 int NumLHSMatch = 0, NumRHSMatch = 0;
4906 int LastLHSMismatch = -1, LastRHSMismatch = -1;
4907
4908 for (int i = 0; i < NumInputElements; ++i) {
4909 if (M[i] == -1) {
4910 ++NumLHSMatch;
4911 ++NumRHSMatch;
4912 continue;
4913 }
4914
4915 if (M[i] == i)
4916 ++NumLHSMatch;
4917 else
4918 LastLHSMismatch = i;
4919
4920 if (M[i] == i + NumInputElements)
4921 ++NumRHSMatch;
4922 else
4923 LastRHSMismatch = i;
4924 }
4925
4926 if (NumLHSMatch == NumInputElements - 1) {
4927 DstIsLeft = true;
4928 Anomaly = LastLHSMismatch;
4929 return true;
4930 } else if (NumRHSMatch == NumInputElements - 1) {
4931 DstIsLeft = false;
4932 Anomaly = LastRHSMismatch;
4933 return true;
4934 }
4935
4936 return false;
4937}
4938
4939static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
4940 if (VT.getSizeInBits() != 128)
4941 return false;
4942
4943 unsigned NumElts = VT.getVectorNumElements();
4944
4945 for (int I = 0, E = NumElts / 2; I != E; I++) {
4946 if (Mask[I] != I)
4947 return false;
4948 }
4949
4950 int Offset = NumElts / 2;
4951 for (int I = NumElts / 2, E = NumElts; I != E; I++) {
4952 if (Mask[I] != I + SplitLHS * Offset)
4953 return false;
4954 }
4955
4956 return true;
4957}
4958
4959static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
4960 SDLoc DL(Op);
4961 EVT VT = Op.getValueType();
4962 SDValue V0 = Op.getOperand(0);
4963 SDValue V1 = Op.getOperand(1);
4964 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
4965
4966 if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
4967 VT.getVectorElementType() != V1.getValueType().getVectorElementType())
4968 return SDValue();
4969
4970 bool SplitV0 = V0.getValueType().getSizeInBits() == 128;
4971
4972 if (!isConcatMask(Mask, VT, SplitV0))
4973 return SDValue();
4974
4975 EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
4976 VT.getVectorNumElements() / 2);
4977 if (SplitV0) {
4978 V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
4979 DAG.getConstant(0, MVT::i64));
4980 }
4981 if (V1.getValueType().getSizeInBits() == 128) {
4982 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
4983 DAG.getConstant(0, MVT::i64));
4984 }
4985 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
4986}
4987
4988/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4989/// the specified operations to build the shuffle.
4990static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4991 SDValue RHS, SelectionDAG &DAG,
4992 SDLoc dl) {
4993 unsigned OpNum = (PFEntry >> 26) & 0x0F;
4994 unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
4995 unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
4996
4997 enum {
4998 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4999 OP_VREV,
5000 OP_VDUP0,
5001 OP_VDUP1,
5002 OP_VDUP2,
5003 OP_VDUP3,
5004 OP_VEXT1,
5005 OP_VEXT2,
5006 OP_VEXT3,
5007 OP_VUZPL, // VUZP, left result
5008 OP_VUZPR, // VUZP, right result
5009 OP_VZIPL, // VZIP, left result
5010 OP_VZIPR, // VZIP, right result
5011 OP_VTRNL, // VTRN, left result
5012 OP_VTRNR // VTRN, right result
5013 };
5014
5015 if (OpNum == OP_COPY) {
5016 if (LHSID == (1 * 9 + 2) * 9 + 3)
5017 return LHS;
5018 assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
5019 return RHS;
5020 }
5021
5022 SDValue OpLHS, OpRHS;
5023 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5024 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5025 EVT VT = OpLHS.getValueType();
5026
5027 switch (OpNum) {
5028 default:
5029 llvm_unreachable("Unknown shuffle opcode!");
5030 case OP_VREV:
5031 // VREV divides the vector in half and swaps within the half.
5032 if (VT.getVectorElementType() == MVT::i32 ||
5033 VT.getVectorElementType() == MVT::f32)
5034 return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
5035 // vrev <4 x i16> -> REV32
Oliver Stannard89d15422014-08-27 16:16:04 +00005036 if (VT.getVectorElementType() == MVT::i16 ||
5037 VT.getVectorElementType() == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005038 return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
5039 // vrev <4 x i8> -> REV16
5040 assert(VT.getVectorElementType() == MVT::i8);
5041 return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
5042 case OP_VDUP0:
5043 case OP_VDUP1:
5044 case OP_VDUP2:
5045 case OP_VDUP3: {
5046 EVT EltTy = VT.getVectorElementType();
5047 unsigned Opcode;
5048 if (EltTy == MVT::i8)
5049 Opcode = AArch64ISD::DUPLANE8;
5050 else if (EltTy == MVT::i16)
5051 Opcode = AArch64ISD::DUPLANE16;
5052 else if (EltTy == MVT::i32 || EltTy == MVT::f32)
5053 Opcode = AArch64ISD::DUPLANE32;
5054 else if (EltTy == MVT::i64 || EltTy == MVT::f64)
5055 Opcode = AArch64ISD::DUPLANE64;
5056 else
5057 llvm_unreachable("Invalid vector element type?");
5058
5059 if (VT.getSizeInBits() == 64)
5060 OpLHS = WidenVector(OpLHS, DAG);
5061 SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, MVT::i64);
5062 return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
5063 }
5064 case OP_VEXT1:
5065 case OP_VEXT2:
5066 case OP_VEXT3: {
5067 unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
5068 return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
5069 DAG.getConstant(Imm, MVT::i32));
5070 }
5071 case OP_VUZPL:
5072 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
5073 OpRHS);
5074 case OP_VUZPR:
5075 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
5076 OpRHS);
5077 case OP_VZIPL:
5078 return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
5079 OpRHS);
5080 case OP_VZIPR:
5081 return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
5082 OpRHS);
5083 case OP_VTRNL:
5084 return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
5085 OpRHS);
5086 case OP_VTRNR:
5087 return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
5088 OpRHS);
5089 }
5090}
5091
5092static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
5093 SelectionDAG &DAG) {
5094 // Check to see if we can use the TBL instruction.
5095 SDValue V1 = Op.getOperand(0);
5096 SDValue V2 = Op.getOperand(1);
5097 SDLoc DL(Op);
5098
5099 EVT EltVT = Op.getValueType().getVectorElementType();
5100 unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
5101
5102 SmallVector<SDValue, 8> TBLMask;
5103 for (int Val : ShuffleMask) {
5104 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
5105 unsigned Offset = Byte + Val * BytesPerElt;
5106 TBLMask.push_back(DAG.getConstant(Offset, MVT::i32));
5107 }
5108 }
5109
5110 MVT IndexVT = MVT::v8i8;
5111 unsigned IndexLen = 8;
5112 if (Op.getValueType().getSizeInBits() == 128) {
5113 IndexVT = MVT::v16i8;
5114 IndexLen = 16;
5115 }
5116
5117 SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
5118 SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
5119
5120 SDValue Shuffle;
5121 if (V2.getNode()->getOpcode() == ISD::UNDEF) {
5122 if (IndexLen == 8)
5123 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
5124 Shuffle = DAG.getNode(
5125 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5126 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
5127 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5128 makeArrayRef(TBLMask.data(), IndexLen)));
5129 } else {
5130 if (IndexLen == 8) {
5131 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
5132 Shuffle = DAG.getNode(
5133 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5134 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
5135 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5136 makeArrayRef(TBLMask.data(), IndexLen)));
5137 } else {
5138 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
5139 // cannot currently represent the register constraints on the input
5140 // table registers.
5141 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
5142 // DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5143 // &TBLMask[0], IndexLen));
5144 Shuffle = DAG.getNode(
5145 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5146 DAG.getConstant(Intrinsic::aarch64_neon_tbl2, MVT::i32), V1Cst, V2Cst,
5147 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5148 makeArrayRef(TBLMask.data(), IndexLen)));
5149 }
5150 }
5151 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
5152}
5153
5154static unsigned getDUPLANEOp(EVT EltType) {
5155 if (EltType == MVT::i8)
5156 return AArch64ISD::DUPLANE8;
Oliver Stannard89d15422014-08-27 16:16:04 +00005157 if (EltType == MVT::i16 || EltType == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005158 return AArch64ISD::DUPLANE16;
5159 if (EltType == MVT::i32 || EltType == MVT::f32)
5160 return AArch64ISD::DUPLANE32;
5161 if (EltType == MVT::i64 || EltType == MVT::f64)
5162 return AArch64ISD::DUPLANE64;
5163
5164 llvm_unreachable("Invalid vector element type?");
5165}
5166
5167SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5168 SelectionDAG &DAG) const {
5169 SDLoc dl(Op);
5170 EVT VT = Op.getValueType();
5171
5172 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
5173
5174 // Convert shuffles that are directly supported on NEON to target-specific
5175 // DAG nodes, instead of keeping them as shuffles and matching them again
5176 // during code selection. This is more efficient and avoids the possibility
5177 // of inconsistencies between legalization and selection.
5178 ArrayRef<int> ShuffleMask = SVN->getMask();
5179
5180 SDValue V1 = Op.getOperand(0);
5181 SDValue V2 = Op.getOperand(1);
5182
5183 if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0],
5184 V1.getValueType().getSimpleVT())) {
5185 int Lane = SVN->getSplatIndex();
5186 // If this is undef splat, generate it via "just" vdup, if possible.
5187 if (Lane == -1)
5188 Lane = 0;
5189
5190 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
5191 return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
5192 V1.getOperand(0));
5193 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
5194 // constant. If so, we can just reference the lane's definition directly.
5195 if (V1.getOpcode() == ISD::BUILD_VECTOR &&
5196 !isa<ConstantSDNode>(V1.getOperand(Lane)))
5197 return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
5198
5199 // Otherwise, duplicate from the lane of the input vector.
5200 unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
5201
5202 // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
5203 // to make a vector of the same size as this SHUFFLE. We can ignore the
5204 // extract entirely, and canonicalise the concat using WidenVector.
5205 if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
5206 Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
5207 V1 = V1.getOperand(0);
5208 } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
5209 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
5210 Lane -= Idx * VT.getVectorNumElements() / 2;
5211 V1 = WidenVector(V1.getOperand(Idx), DAG);
5212 } else if (VT.getSizeInBits() == 64)
5213 V1 = WidenVector(V1, DAG);
5214
5215 return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, MVT::i64));
5216 }
5217
5218 if (isREVMask(ShuffleMask, VT, 64))
5219 return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
5220 if (isREVMask(ShuffleMask, VT, 32))
5221 return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
5222 if (isREVMask(ShuffleMask, VT, 16))
5223 return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
5224
5225 bool ReverseEXT = false;
5226 unsigned Imm;
5227 if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
5228 if (ReverseEXT)
5229 std::swap(V1, V2);
5230 Imm *= getExtFactor(V1);
5231 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
5232 DAG.getConstant(Imm, MVT::i32));
5233 } else if (V2->getOpcode() == ISD::UNDEF &&
5234 isSingletonEXTMask(ShuffleMask, VT, Imm)) {
5235 Imm *= getExtFactor(V1);
5236 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
5237 DAG.getConstant(Imm, MVT::i32));
5238 }
5239
5240 unsigned WhichResult;
5241 if (isZIPMask(ShuffleMask, VT, WhichResult)) {
5242 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5243 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5244 }
5245 if (isUZPMask(ShuffleMask, VT, WhichResult)) {
5246 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5247 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5248 }
5249 if (isTRNMask(ShuffleMask, VT, WhichResult)) {
5250 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5251 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5252 }
5253
5254 if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5255 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5256 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5257 }
5258 if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5259 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5260 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5261 }
5262 if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5263 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5264 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5265 }
5266
5267 SDValue Concat = tryFormConcatFromShuffle(Op, DAG);
5268 if (Concat.getNode())
5269 return Concat;
5270
5271 bool DstIsLeft;
5272 int Anomaly;
5273 int NumInputElements = V1.getValueType().getVectorNumElements();
5274 if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
5275 SDValue DstVec = DstIsLeft ? V1 : V2;
5276 SDValue DstLaneV = DAG.getConstant(Anomaly, MVT::i64);
5277
5278 SDValue SrcVec = V1;
5279 int SrcLane = ShuffleMask[Anomaly];
5280 if (SrcLane >= NumInputElements) {
5281 SrcVec = V2;
5282 SrcLane -= VT.getVectorNumElements();
5283 }
5284 SDValue SrcLaneV = DAG.getConstant(SrcLane, MVT::i64);
5285
5286 EVT ScalarVT = VT.getVectorElementType();
Oliver Stannard89d15422014-08-27 16:16:04 +00005287
5288 if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00005289 ScalarVT = MVT::i32;
5290
5291 return DAG.getNode(
5292 ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
5293 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
5294 DstLaneV);
5295 }
5296
5297 // If the shuffle is not directly supported and it has 4 elements, use
5298 // the PerfectShuffle-generated table to synthesize it from other shuffles.
5299 unsigned NumElts = VT.getVectorNumElements();
5300 if (NumElts == 4) {
5301 unsigned PFIndexes[4];
5302 for (unsigned i = 0; i != 4; ++i) {
5303 if (ShuffleMask[i] < 0)
5304 PFIndexes[i] = 8;
5305 else
5306 PFIndexes[i] = ShuffleMask[i];
5307 }
5308
5309 // Compute the index in the perfect shuffle table.
5310 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
5311 PFIndexes[2] * 9 + PFIndexes[3];
5312 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5313 unsigned Cost = (PFEntry >> 30);
5314
5315 if (Cost <= 4)
5316 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5317 }
5318
5319 return GenerateTBL(Op, ShuffleMask, DAG);
5320}
5321
5322static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
5323 APInt &UndefBits) {
5324 EVT VT = BVN->getValueType(0);
5325 APInt SplatBits, SplatUndef;
5326 unsigned SplatBitSize;
5327 bool HasAnyUndefs;
5328 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5329 unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
5330
5331 for (unsigned i = 0; i < NumSplats; ++i) {
5332 CnstBits <<= SplatBitSize;
5333 UndefBits <<= SplatBitSize;
5334 CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
5335 UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
5336 }
5337
5338 return true;
5339 }
5340
5341 return false;
5342}
5343
5344SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
5345 SelectionDAG &DAG) const {
5346 BuildVectorSDNode *BVN =
5347 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5348 SDValue LHS = Op.getOperand(0);
5349 SDLoc dl(Op);
5350 EVT VT = Op.getValueType();
5351
5352 if (!BVN)
5353 return Op;
5354
5355 APInt CnstBits(VT.getSizeInBits(), 0);
5356 APInt UndefBits(VT.getSizeInBits(), 0);
5357 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5358 // We only have BIC vector immediate instruction, which is and-not.
5359 CnstBits = ~CnstBits;
5360
5361 // We make use of a little bit of goto ickiness in order to avoid having to
5362 // duplicate the immediate matching logic for the undef toggled case.
5363 bool SecondTry = false;
5364 AttemptModImm:
5365
5366 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5367 CnstBits = CnstBits.zextOrTrunc(64);
5368 uint64_t CnstVal = CnstBits.getZExtValue();
5369
5370 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5371 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5372 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5373 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5374 DAG.getConstant(CnstVal, MVT::i32),
5375 DAG.getConstant(0, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005376 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005377 }
5378
5379 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5380 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5381 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5382 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5383 DAG.getConstant(CnstVal, MVT::i32),
5384 DAG.getConstant(8, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005385 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005386 }
5387
5388 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5389 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5390 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5391 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5392 DAG.getConstant(CnstVal, MVT::i32),
5393 DAG.getConstant(16, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005394 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005395 }
5396
5397 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5398 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5399 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5400 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5401 DAG.getConstant(CnstVal, MVT::i32),
5402 DAG.getConstant(24, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005403 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005404 }
5405
5406 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5407 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5408 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5409 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5410 DAG.getConstant(CnstVal, MVT::i32),
5411 DAG.getConstant(0, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005412 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005413 }
5414
5415 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5416 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5417 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5418 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5419 DAG.getConstant(CnstVal, MVT::i32),
5420 DAG.getConstant(8, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005421 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005422 }
5423 }
5424
5425 if (SecondTry)
5426 goto FailedModImm;
5427 SecondTry = true;
5428 CnstBits = ~UndefBits;
5429 goto AttemptModImm;
5430 }
5431
5432// We can always fall back to a non-immediate AND.
5433FailedModImm:
5434 return Op;
5435}
5436
5437// Specialized code to quickly find if PotentialBVec is a BuildVector that
5438// consists of only the same constant int value, returned in reference arg
5439// ConstVal
5440static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
5441 uint64_t &ConstVal) {
5442 BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
5443 if (!Bvec)
5444 return false;
5445 ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
5446 if (!FirstElt)
5447 return false;
5448 EVT VT = Bvec->getValueType(0);
5449 unsigned NumElts = VT.getVectorNumElements();
5450 for (unsigned i = 1; i < NumElts; ++i)
5451 if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
5452 return false;
5453 ConstVal = FirstElt->getZExtValue();
5454 return true;
5455}
5456
5457static unsigned getIntrinsicID(const SDNode *N) {
5458 unsigned Opcode = N->getOpcode();
5459 switch (Opcode) {
5460 default:
5461 return Intrinsic::not_intrinsic;
5462 case ISD::INTRINSIC_WO_CHAIN: {
5463 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5464 if (IID < Intrinsic::num_intrinsics)
5465 return IID;
5466 return Intrinsic::not_intrinsic;
5467 }
5468 }
5469}
5470
5471// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
5472// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
5473// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
5474// Also, logical shift right -> sri, with the same structure.
5475static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
5476 EVT VT = N->getValueType(0);
5477
5478 if (!VT.isVector())
5479 return SDValue();
5480
5481 SDLoc DL(N);
5482
5483 // Is the first op an AND?
5484 const SDValue And = N->getOperand(0);
5485 if (And.getOpcode() != ISD::AND)
5486 return SDValue();
5487
5488 // Is the second op an shl or lshr?
5489 SDValue Shift = N->getOperand(1);
5490 // This will have been turned into: AArch64ISD::VSHL vector, #shift
5491 // or AArch64ISD::VLSHR vector, #shift
5492 unsigned ShiftOpc = Shift.getOpcode();
5493 if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
5494 return SDValue();
5495 bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
5496
5497 // Is the shift amount constant?
5498 ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
5499 if (!C2node)
5500 return SDValue();
5501
5502 // Is the and mask vector all constant?
5503 uint64_t C1;
5504 if (!isAllConstantBuildVector(And.getOperand(1), C1))
5505 return SDValue();
5506
5507 // Is C1 == ~C2, taking into account how much one can shift elements of a
5508 // particular size?
5509 uint64_t C2 = C2node->getZExtValue();
5510 unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
5511 if (C2 > ElemSizeInBits)
5512 return SDValue();
5513 unsigned ElemMask = (1 << ElemSizeInBits) - 1;
5514 if ((C1 & ElemMask) != (~C2 & ElemMask))
5515 return SDValue();
5516
5517 SDValue X = And.getOperand(0);
5518 SDValue Y = Shift.getOperand(0);
5519
5520 unsigned Intrin =
5521 IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
5522 SDValue ResultSLI =
5523 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
5524 DAG.getConstant(Intrin, MVT::i32), X, Y, Shift.getOperand(1));
5525
5526 DEBUG(dbgs() << "aarch64-lower: transformed: \n");
5527 DEBUG(N->dump(&DAG));
5528 DEBUG(dbgs() << "into: \n");
5529 DEBUG(ResultSLI->dump(&DAG));
5530
5531 ++NumShiftInserts;
5532 return ResultSLI;
5533}
5534
5535SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
5536 SelectionDAG &DAG) const {
5537 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
5538 if (EnableAArch64SlrGeneration) {
5539 SDValue Res = tryLowerToSLI(Op.getNode(), DAG);
5540 if (Res.getNode())
5541 return Res;
5542 }
5543
5544 BuildVectorSDNode *BVN =
5545 dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
5546 SDValue LHS = Op.getOperand(1);
5547 SDLoc dl(Op);
5548 EVT VT = Op.getValueType();
5549
5550 // OR commutes, so try swapping the operands.
5551 if (!BVN) {
5552 LHS = Op.getOperand(0);
5553 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5554 }
5555 if (!BVN)
5556 return Op;
5557
5558 APInt CnstBits(VT.getSizeInBits(), 0);
5559 APInt UndefBits(VT.getSizeInBits(), 0);
5560 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5561 // We make use of a little bit of goto ickiness in order to avoid having to
5562 // duplicate the immediate matching logic for the undef toggled case.
5563 bool SecondTry = false;
5564 AttemptModImm:
5565
5566 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5567 CnstBits = CnstBits.zextOrTrunc(64);
5568 uint64_t CnstVal = CnstBits.getZExtValue();
5569
5570 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5571 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5572 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5573 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5574 DAG.getConstant(CnstVal, MVT::i32),
5575 DAG.getConstant(0, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005576 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005577 }
5578
5579 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5580 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5581 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5582 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5583 DAG.getConstant(CnstVal, MVT::i32),
5584 DAG.getConstant(8, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005585 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005586 }
5587
5588 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5589 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5590 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5591 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5592 DAG.getConstant(CnstVal, MVT::i32),
5593 DAG.getConstant(16, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005594 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005595 }
5596
5597 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5598 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5599 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5600 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5601 DAG.getConstant(CnstVal, MVT::i32),
5602 DAG.getConstant(24, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005603 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005604 }
5605
5606 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5607 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5608 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5609 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5610 DAG.getConstant(CnstVal, MVT::i32),
5611 DAG.getConstant(0, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005612 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005613 }
5614
5615 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5616 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5617 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5618 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5619 DAG.getConstant(CnstVal, MVT::i32),
5620 DAG.getConstant(8, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005621 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005622 }
5623 }
5624
5625 if (SecondTry)
5626 goto FailedModImm;
5627 SecondTry = true;
5628 CnstBits = UndefBits;
5629 goto AttemptModImm;
5630 }
5631
5632// We can always fall back to a non-immediate OR.
5633FailedModImm:
5634 return Op;
5635}
5636
Kevin Qin4473c192014-07-07 02:45:40 +00005637// Normalize the operands of BUILD_VECTOR. The value of constant operands will
5638// be truncated to fit element width.
5639static SDValue NormalizeBuildVector(SDValue Op,
5640 SelectionDAG &DAG) {
5641 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00005642 SDLoc dl(Op);
5643 EVT VT = Op.getValueType();
Kevin Qin4473c192014-07-07 02:45:40 +00005644 EVT EltTy= VT.getVectorElementType();
5645
5646 if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
5647 return Op;
5648
5649 SmallVector<SDValue, 16> Ops;
5650 for (unsigned I = 0, E = VT.getVectorNumElements(); I != E; ++I) {
5651 SDValue Lane = Op.getOperand(I);
5652 if (Lane.getOpcode() == ISD::Constant) {
5653 APInt LowBits(EltTy.getSizeInBits(),
5654 cast<ConstantSDNode>(Lane)->getZExtValue());
5655 Lane = DAG.getConstant(LowBits.getZExtValue(), MVT::i32);
5656 }
5657 Ops.push_back(Lane);
5658 }
5659 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
5660}
5661
5662SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
5663 SelectionDAG &DAG) const {
5664 SDLoc dl(Op);
5665 EVT VT = Op.getValueType();
5666 Op = NormalizeBuildVector(Op, DAG);
5667 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
Tim Northover3b0846e2014-05-24 12:50:23 +00005668
5669 APInt CnstBits(VT.getSizeInBits(), 0);
5670 APInt UndefBits(VT.getSizeInBits(), 0);
5671 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5672 // We make use of a little bit of goto ickiness in order to avoid having to
5673 // duplicate the immediate matching logic for the undef toggled case.
5674 bool SecondTry = false;
5675 AttemptModImm:
5676
5677 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5678 CnstBits = CnstBits.zextOrTrunc(64);
5679 uint64_t CnstVal = CnstBits.getZExtValue();
5680
5681 // Certain magic vector constants (used to express things like NOT
5682 // and NEG) are passed through unmodified. This allows codegen patterns
5683 // for these operations to match. Special-purpose patterns will lower
5684 // these immediates to MOVIs if it proves necessary.
5685 if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
5686 return Op;
5687
5688 // The many faces of MOVI...
5689 if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
5690 CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
5691 if (VT.getSizeInBits() == 128) {
5692 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
5693 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005694 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005695 }
5696
5697 // Support the V64 version via subregister insertion.
5698 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
5699 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005700 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005701 }
5702
5703 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5704 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5705 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5706 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5707 DAG.getConstant(CnstVal, MVT::i32),
5708 DAG.getConstant(0, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005709 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005710 }
5711
5712 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5713 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5714 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5715 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5716 DAG.getConstant(CnstVal, MVT::i32),
5717 DAG.getConstant(8, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005718 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005719 }
5720
5721 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5722 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5723 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5724 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5725 DAG.getConstant(CnstVal, MVT::i32),
5726 DAG.getConstant(16, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005727 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005728 }
5729
5730 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5731 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5732 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5733 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5734 DAG.getConstant(CnstVal, MVT::i32),
5735 DAG.getConstant(24, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005736 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005737 }
5738
5739 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5740 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5741 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5742 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5743 DAG.getConstant(CnstVal, MVT::i32),
5744 DAG.getConstant(0, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005745 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005746 }
5747
5748 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5749 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5750 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5751 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5752 DAG.getConstant(CnstVal, MVT::i32),
5753 DAG.getConstant(8, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005754 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005755 }
5756
5757 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5758 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5759 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5760 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
5761 DAG.getConstant(CnstVal, MVT::i32),
5762 DAG.getConstant(264, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005763 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005764 }
5765
5766 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5767 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5768 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5769 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
5770 DAG.getConstant(CnstVal, MVT::i32),
5771 DAG.getConstant(272, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005772 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005773 }
5774
5775 if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
5776 CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
5777 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
5778 SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
5779 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005780 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005781 }
5782
5783 // The few faces of FMOV...
5784 if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
5785 CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
5786 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
5787 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
5788 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005789 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005790 }
5791
5792 if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
5793 VT.getSizeInBits() == 128) {
5794 CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
5795 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
5796 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005797 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005798 }
5799
5800 // The many faces of MVNI...
5801 CnstVal = ~CnstVal;
5802 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5803 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5804 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5805 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5806 DAG.getConstant(CnstVal, MVT::i32),
5807 DAG.getConstant(0, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005808 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005809 }
5810
5811 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5812 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5813 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5814 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5815 DAG.getConstant(CnstVal, MVT::i32),
5816 DAG.getConstant(8, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005817 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005818 }
5819
5820 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5821 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5822 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5823 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5824 DAG.getConstant(CnstVal, MVT::i32),
5825 DAG.getConstant(16, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005826 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005827 }
5828
5829 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5830 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5831 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5832 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5833 DAG.getConstant(CnstVal, MVT::i32),
5834 DAG.getConstant(24, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005835 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005836 }
5837
5838 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5839 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5840 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5841 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5842 DAG.getConstant(CnstVal, MVT::i32),
5843 DAG.getConstant(0, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005844 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005845 }
5846
5847 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5848 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5849 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5850 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5851 DAG.getConstant(CnstVal, MVT::i32),
5852 DAG.getConstant(8, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005853 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005854 }
5855
5856 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5857 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5858 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5859 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
5860 DAG.getConstant(CnstVal, MVT::i32),
5861 DAG.getConstant(264, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005862 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005863 }
5864
5865 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5866 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5867 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5868 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
5869 DAG.getConstant(CnstVal, MVT::i32),
5870 DAG.getConstant(272, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005871 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005872 }
5873 }
5874
5875 if (SecondTry)
5876 goto FailedModImm;
5877 SecondTry = true;
5878 CnstBits = UndefBits;
5879 goto AttemptModImm;
5880 }
5881FailedModImm:
5882
5883 // Scan through the operands to find some interesting properties we can
5884 // exploit:
5885 // 1) If only one value is used, we can use a DUP, or
5886 // 2) if only the low element is not undef, we can just insert that, or
5887 // 3) if only one constant value is used (w/ some non-constant lanes),
5888 // we can splat the constant value into the whole vector then fill
5889 // in the non-constant lanes.
5890 // 4) FIXME: If different constant values are used, but we can intelligently
5891 // select the values we'll be overwriting for the non-constant
5892 // lanes such that we can directly materialize the vector
5893 // some other way (MOVI, e.g.), we can be sneaky.
5894 unsigned NumElts = VT.getVectorNumElements();
5895 bool isOnlyLowElement = true;
5896 bool usesOnlyOneValue = true;
5897 bool usesOnlyOneConstantValue = true;
5898 bool isConstant = true;
5899 unsigned NumConstantLanes = 0;
5900 SDValue Value;
5901 SDValue ConstantValue;
5902 for (unsigned i = 0; i < NumElts; ++i) {
5903 SDValue V = Op.getOperand(i);
5904 if (V.getOpcode() == ISD::UNDEF)
5905 continue;
5906 if (i > 0)
5907 isOnlyLowElement = false;
5908 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
5909 isConstant = false;
5910
5911 if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
5912 ++NumConstantLanes;
5913 if (!ConstantValue.getNode())
5914 ConstantValue = V;
5915 else if (ConstantValue != V)
5916 usesOnlyOneConstantValue = false;
5917 }
5918
5919 if (!Value.getNode())
5920 Value = V;
5921 else if (V != Value)
5922 usesOnlyOneValue = false;
5923 }
5924
5925 if (!Value.getNode())
5926 return DAG.getUNDEF(VT);
5927
5928 if (isOnlyLowElement)
5929 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
5930
5931 // Use DUP for non-constant splats. For f32 constant splats, reduce to
5932 // i32 and try again.
5933 if (usesOnlyOneValue) {
5934 if (!isConstant) {
5935 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5936 Value.getValueType() != VT)
5937 return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
5938
5939 // This is actually a DUPLANExx operation, which keeps everything vectory.
5940
5941 // DUPLANE works on 128-bit vectors, widen it if necessary.
5942 SDValue Lane = Value.getOperand(1);
5943 Value = Value.getOperand(0);
5944 if (Value.getValueType().getSizeInBits() == 64)
5945 Value = WidenVector(Value, DAG);
5946
5947 unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
5948 return DAG.getNode(Opcode, dl, VT, Value, Lane);
5949 }
5950
5951 if (VT.getVectorElementType().isFloatingPoint()) {
5952 SmallVector<SDValue, 8> Ops;
5953 MVT NewType =
5954 (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5955 for (unsigned i = 0; i < NumElts; ++i)
5956 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
5957 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
5958 SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
5959 Val = LowerBUILD_VECTOR(Val, DAG);
5960 if (Val.getNode())
5961 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5962 }
5963 }
5964
5965 // If there was only one constant value used and for more than one lane,
5966 // start by splatting that value, then replace the non-constant lanes. This
5967 // is better than the default, which will perform a separate initialization
5968 // for each lane.
5969 if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
5970 SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
5971 // Now insert the non-constant lanes.
5972 for (unsigned i = 0; i < NumElts; ++i) {
5973 SDValue V = Op.getOperand(i);
5974 SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
5975 if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
5976 // Note that type legalization likely mucked about with the VT of the
5977 // source operand, so we may have to convert it here before inserting.
5978 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
5979 }
5980 }
5981 return Val;
5982 }
5983
5984 // If all elements are constants and the case above didn't get hit, fall back
5985 // to the default expansion, which will generate a load from the constant
5986 // pool.
5987 if (isConstant)
5988 return SDValue();
5989
5990 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
5991 if (NumElts >= 4) {
5992 SDValue shuffle = ReconstructShuffle(Op, DAG);
5993 if (shuffle != SDValue())
5994 return shuffle;
5995 }
5996
5997 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
5998 // know the default expansion would otherwise fall back on something even
5999 // worse. For a vector with one or two non-undef values, that's
6000 // scalar_to_vector for the elements followed by a shuffle (provided the
6001 // shuffle is valid for the target) and materialization element by element
6002 // on the stack followed by a load for everything else.
6003 if (!isConstant && !usesOnlyOneValue) {
6004 SDValue Vec = DAG.getUNDEF(VT);
6005 SDValue Op0 = Op.getOperand(0);
6006 unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
6007 unsigned i = 0;
6008 // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
6009 // a) Avoid a RMW dependency on the full vector register, and
6010 // b) Allow the register coalescer to fold away the copy if the
6011 // value is already in an S or D register.
6012 if (Op0.getOpcode() != ISD::UNDEF && (ElemSize == 32 || ElemSize == 64)) {
6013 unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
6014 MachineSDNode *N =
6015 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
6016 DAG.getTargetConstant(SubIdx, MVT::i32));
6017 Vec = SDValue(N, 0);
6018 ++i;
6019 }
6020 for (; i < NumElts; ++i) {
6021 SDValue V = Op.getOperand(i);
6022 if (V.getOpcode() == ISD::UNDEF)
6023 continue;
6024 SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
6025 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
6026 }
6027 return Vec;
6028 }
6029
6030 // Just use the default expansion. We failed to find a better alternative.
6031 return SDValue();
6032}
6033
6034SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
6035 SelectionDAG &DAG) const {
6036 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
6037
Tim Northovere4b8e132014-07-15 10:00:26 +00006038 // Check for non-constant or out of range lane.
6039 EVT VT = Op.getOperand(0).getValueType();
6040 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
6041 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00006042 return SDValue();
6043
Tim Northover3b0846e2014-05-24 12:50:23 +00006044
6045 // Insertion/extraction are legal for V128 types.
6046 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00006047 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6048 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006049 return Op;
6050
6051 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00006052 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006053 return SDValue();
6054
6055 // For V64 types, we perform insertion by expanding the value
6056 // to a V128 type and perform the insertion on that.
6057 SDLoc DL(Op);
6058 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6059 EVT WideTy = WideVec.getValueType();
6060
6061 SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
6062 Op.getOperand(1), Op.getOperand(2));
6063 // Re-narrow the resultant vector.
6064 return NarrowVector(Node, DAG);
6065}
6066
6067SDValue
6068AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6069 SelectionDAG &DAG) const {
6070 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
6071
Tim Northovere4b8e132014-07-15 10:00:26 +00006072 // Check for non-constant or out of range lane.
6073 EVT VT = Op.getOperand(0).getValueType();
6074 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6075 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00006076 return SDValue();
6077
Tim Northover3b0846e2014-05-24 12:50:23 +00006078
6079 // Insertion/extraction are legal for V128 types.
6080 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00006081 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6082 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006083 return Op;
6084
6085 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00006086 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006087 return SDValue();
6088
6089 // For V64 types, we perform extraction by expanding the value
6090 // to a V128 type and perform the extraction on that.
6091 SDLoc DL(Op);
6092 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6093 EVT WideTy = WideVec.getValueType();
6094
6095 EVT ExtrTy = WideTy.getVectorElementType();
6096 if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
6097 ExtrTy = MVT::i32;
6098
6099 // For extractions, we just return the result directly.
6100 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
6101 Op.getOperand(1));
6102}
6103
6104SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
6105 SelectionDAG &DAG) const {
6106 EVT VT = Op.getOperand(0).getValueType();
6107 SDLoc dl(Op);
6108 // Just in case...
6109 if (!VT.isVector())
6110 return SDValue();
6111
6112 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6113 if (!Cst)
6114 return SDValue();
6115 unsigned Val = Cst->getZExtValue();
6116
6117 unsigned Size = Op.getValueType().getSizeInBits();
6118 if (Val == 0) {
6119 switch (Size) {
6120 case 8:
6121 return DAG.getTargetExtractSubreg(AArch64::bsub, dl, Op.getValueType(),
6122 Op.getOperand(0));
6123 case 16:
6124 return DAG.getTargetExtractSubreg(AArch64::hsub, dl, Op.getValueType(),
6125 Op.getOperand(0));
6126 case 32:
6127 return DAG.getTargetExtractSubreg(AArch64::ssub, dl, Op.getValueType(),
6128 Op.getOperand(0));
6129 case 64:
6130 return DAG.getTargetExtractSubreg(AArch64::dsub, dl, Op.getValueType(),
6131 Op.getOperand(0));
6132 default:
6133 llvm_unreachable("Unexpected vector type in extract_subvector!");
6134 }
6135 }
6136 // If this is extracting the upper 64-bits of a 128-bit vector, we match
6137 // that directly.
6138 if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
6139 return Op;
6140
6141 return SDValue();
6142}
6143
6144bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
6145 EVT VT) const {
6146 if (VT.getVectorNumElements() == 4 &&
6147 (VT.is128BitVector() || VT.is64BitVector())) {
6148 unsigned PFIndexes[4];
6149 for (unsigned i = 0; i != 4; ++i) {
6150 if (M[i] < 0)
6151 PFIndexes[i] = 8;
6152 else
6153 PFIndexes[i] = M[i];
6154 }
6155
6156 // Compute the index in the perfect shuffle table.
6157 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
6158 PFIndexes[2] * 9 + PFIndexes[3];
6159 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6160 unsigned Cost = (PFEntry >> 30);
6161
6162 if (Cost <= 4)
6163 return true;
6164 }
6165
6166 bool DummyBool;
6167 int DummyInt;
6168 unsigned DummyUnsigned;
6169
6170 return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
6171 isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
6172 isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
6173 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
6174 isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
6175 isZIPMask(M, VT, DummyUnsigned) ||
6176 isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
6177 isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
6178 isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
6179 isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
6180 isConcatMask(M, VT, VT.getSizeInBits() == 128));
6181}
6182
6183/// getVShiftImm - Check if this is a valid build_vector for the immediate
6184/// operand of a vector shift operation, where all the elements of the
6185/// build_vector must have the same constant integer value.
6186static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6187 // Ignore bit_converts.
6188 while (Op.getOpcode() == ISD::BITCAST)
6189 Op = Op.getOperand(0);
6190 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6191 APInt SplatBits, SplatUndef;
6192 unsigned SplatBitSize;
6193 bool HasAnyUndefs;
6194 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
6195 HasAnyUndefs, ElementBits) ||
6196 SplatBitSize > ElementBits)
6197 return false;
6198 Cnt = SplatBits.getSExtValue();
6199 return true;
6200}
6201
6202/// isVShiftLImm - Check if this is a valid build_vector for the immediate
6203/// operand of a vector shift left operation. That value must be in the range:
6204/// 0 <= Value < ElementBits for a left shift; or
6205/// 0 <= Value <= ElementBits for a long left shift.
6206static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6207 assert(VT.isVector() && "vector shift count is not a vector type");
6208 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6209 if (!getVShiftImm(Op, ElementBits, Cnt))
6210 return false;
6211 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6212}
6213
6214/// isVShiftRImm - Check if this is a valid build_vector for the immediate
6215/// operand of a vector shift right operation. For a shift opcode, the value
6216/// is positive, but for an intrinsic the value count must be negative. The
6217/// absolute value must be in the range:
6218/// 1 <= |Value| <= ElementBits for a right shift; or
6219/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
6220static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
6221 int64_t &Cnt) {
6222 assert(VT.isVector() && "vector shift count is not a vector type");
6223 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6224 if (!getVShiftImm(Op, ElementBits, Cnt))
6225 return false;
6226 if (isIntrinsic)
6227 Cnt = -Cnt;
6228 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6229}
6230
6231SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
6232 SelectionDAG &DAG) const {
6233 EVT VT = Op.getValueType();
6234 SDLoc DL(Op);
6235 int64_t Cnt;
6236
6237 if (!Op.getOperand(1).getValueType().isVector())
6238 return Op;
6239 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6240
6241 switch (Op.getOpcode()) {
6242 default:
6243 llvm_unreachable("unexpected shift opcode");
6244
6245 case ISD::SHL:
6246 if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
6247 return DAG.getNode(AArch64ISD::VSHL, SDLoc(Op), VT, Op.getOperand(0),
6248 DAG.getConstant(Cnt, MVT::i32));
6249 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6250 DAG.getConstant(Intrinsic::aarch64_neon_ushl, MVT::i32),
6251 Op.getOperand(0), Op.getOperand(1));
6252 case ISD::SRA:
6253 case ISD::SRL:
6254 // Right shift immediate
6255 if (isVShiftRImm(Op.getOperand(1), VT, false, false, Cnt) &&
6256 Cnt < EltSize) {
6257 unsigned Opc =
6258 (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
6259 return DAG.getNode(Opc, SDLoc(Op), VT, Op.getOperand(0),
6260 DAG.getConstant(Cnt, MVT::i32));
6261 }
6262
6263 // Right shift register. Note, there is not a shift right register
6264 // instruction, but the shift left register instruction takes a signed
6265 // value, where negative numbers specify a right shift.
6266 unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
6267 : Intrinsic::aarch64_neon_ushl;
6268 // negate the shift amount
6269 SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
6270 SDValue NegShiftLeft =
6271 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6272 DAG.getConstant(Opc, MVT::i32), Op.getOperand(0), NegShift);
6273 return NegShiftLeft;
6274 }
6275
6276 return SDValue();
6277}
6278
6279static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
6280 AArch64CC::CondCode CC, bool NoNans, EVT VT,
6281 SDLoc dl, SelectionDAG &DAG) {
6282 EVT SrcVT = LHS.getValueType();
6283
6284 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
6285 APInt CnstBits(VT.getSizeInBits(), 0);
6286 APInt UndefBits(VT.getSizeInBits(), 0);
6287 bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
6288 bool IsZero = IsCnst && (CnstBits == 0);
6289
6290 if (SrcVT.getVectorElementType().isFloatingPoint()) {
6291 switch (CC) {
6292 default:
6293 return SDValue();
6294 case AArch64CC::NE: {
6295 SDValue Fcmeq;
6296 if (IsZero)
6297 Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6298 else
6299 Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6300 return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
6301 }
6302 case AArch64CC::EQ:
6303 if (IsZero)
6304 return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6305 return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6306 case AArch64CC::GE:
6307 if (IsZero)
6308 return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
6309 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
6310 case AArch64CC::GT:
6311 if (IsZero)
6312 return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
6313 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
6314 case AArch64CC::LS:
6315 if (IsZero)
6316 return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
6317 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
6318 case AArch64CC::LT:
6319 if (!NoNans)
6320 return SDValue();
6321 // If we ignore NaNs then we can use to the MI implementation.
6322 // Fallthrough.
6323 case AArch64CC::MI:
6324 if (IsZero)
6325 return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
6326 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
6327 }
6328 }
6329
6330 switch (CC) {
6331 default:
6332 return SDValue();
6333 case AArch64CC::NE: {
6334 SDValue Cmeq;
6335 if (IsZero)
6336 Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6337 else
6338 Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6339 return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
6340 }
6341 case AArch64CC::EQ:
6342 if (IsZero)
6343 return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6344 return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6345 case AArch64CC::GE:
6346 if (IsZero)
6347 return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
6348 return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
6349 case AArch64CC::GT:
6350 if (IsZero)
6351 return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
6352 return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
6353 case AArch64CC::LE:
6354 if (IsZero)
6355 return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
6356 return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
6357 case AArch64CC::LS:
6358 return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
6359 case AArch64CC::LO:
6360 return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
6361 case AArch64CC::LT:
6362 if (IsZero)
6363 return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
6364 return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
6365 case AArch64CC::HI:
6366 return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
6367 case AArch64CC::HS:
6368 return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
6369 }
6370}
6371
6372SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
6373 SelectionDAG &DAG) const {
6374 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6375 SDValue LHS = Op.getOperand(0);
6376 SDValue RHS = Op.getOperand(1);
6377 SDLoc dl(Op);
6378
6379 if (LHS.getValueType().getVectorElementType().isInteger()) {
6380 assert(LHS.getValueType() == RHS.getValueType());
6381 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
6382 return EmitVectorComparison(LHS, RHS, AArch64CC, false, Op.getValueType(),
6383 dl, DAG);
6384 }
6385
6386 assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
6387 LHS.getValueType().getVectorElementType() == MVT::f64);
6388
6389 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
6390 // clean. Some of them require two branches to implement.
6391 AArch64CC::CondCode CC1, CC2;
6392 bool ShouldInvert;
6393 changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
6394
6395 bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
6396 SDValue Cmp =
6397 EmitVectorComparison(LHS, RHS, CC1, NoNaNs, Op.getValueType(), dl, DAG);
6398 if (!Cmp.getNode())
6399 return SDValue();
6400
6401 if (CC2 != AArch64CC::AL) {
6402 SDValue Cmp2 =
6403 EmitVectorComparison(LHS, RHS, CC2, NoNaNs, Op.getValueType(), dl, DAG);
6404 if (!Cmp2.getNode())
6405 return SDValue();
6406
6407 Cmp = DAG.getNode(ISD::OR, dl, Cmp.getValueType(), Cmp, Cmp2);
6408 }
6409
6410 if (ShouldInvert)
6411 return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
6412
6413 return Cmp;
6414}
6415
6416/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
6417/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
6418/// specified in the intrinsic calls.
6419bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
6420 const CallInst &I,
6421 unsigned Intrinsic) const {
6422 switch (Intrinsic) {
6423 case Intrinsic::aarch64_neon_ld2:
6424 case Intrinsic::aarch64_neon_ld3:
6425 case Intrinsic::aarch64_neon_ld4:
6426 case Intrinsic::aarch64_neon_ld1x2:
6427 case Intrinsic::aarch64_neon_ld1x3:
6428 case Intrinsic::aarch64_neon_ld1x4:
6429 case Intrinsic::aarch64_neon_ld2lane:
6430 case Intrinsic::aarch64_neon_ld3lane:
6431 case Intrinsic::aarch64_neon_ld4lane:
6432 case Intrinsic::aarch64_neon_ld2r:
6433 case Intrinsic::aarch64_neon_ld3r:
6434 case Intrinsic::aarch64_neon_ld4r: {
6435 Info.opc = ISD::INTRINSIC_W_CHAIN;
6436 // Conservatively set memVT to the entire set of vectors loaded.
6437 uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
6438 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6439 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6440 Info.offset = 0;
6441 Info.align = 0;
6442 Info.vol = false; // volatile loads with NEON intrinsics not supported
6443 Info.readMem = true;
6444 Info.writeMem = false;
6445 return true;
6446 }
6447 case Intrinsic::aarch64_neon_st2:
6448 case Intrinsic::aarch64_neon_st3:
6449 case Intrinsic::aarch64_neon_st4:
6450 case Intrinsic::aarch64_neon_st1x2:
6451 case Intrinsic::aarch64_neon_st1x3:
6452 case Intrinsic::aarch64_neon_st1x4:
6453 case Intrinsic::aarch64_neon_st2lane:
6454 case Intrinsic::aarch64_neon_st3lane:
6455 case Intrinsic::aarch64_neon_st4lane: {
6456 Info.opc = ISD::INTRINSIC_VOID;
6457 // Conservatively set memVT to the entire set of vectors stored.
6458 unsigned NumElts = 0;
6459 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
6460 Type *ArgTy = I.getArgOperand(ArgI)->getType();
6461 if (!ArgTy->isVectorTy())
6462 break;
6463 NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
6464 }
6465 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6466 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6467 Info.offset = 0;
6468 Info.align = 0;
6469 Info.vol = false; // volatile stores with NEON intrinsics not supported
6470 Info.readMem = false;
6471 Info.writeMem = true;
6472 return true;
6473 }
6474 case Intrinsic::aarch64_ldaxr:
6475 case Intrinsic::aarch64_ldxr: {
6476 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
6477 Info.opc = ISD::INTRINSIC_W_CHAIN;
6478 Info.memVT = MVT::getVT(PtrTy->getElementType());
6479 Info.ptrVal = I.getArgOperand(0);
6480 Info.offset = 0;
6481 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
6482 Info.vol = true;
6483 Info.readMem = true;
6484 Info.writeMem = false;
6485 return true;
6486 }
6487 case Intrinsic::aarch64_stlxr:
6488 case Intrinsic::aarch64_stxr: {
6489 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
6490 Info.opc = ISD::INTRINSIC_W_CHAIN;
6491 Info.memVT = MVT::getVT(PtrTy->getElementType());
6492 Info.ptrVal = I.getArgOperand(1);
6493 Info.offset = 0;
6494 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
6495 Info.vol = true;
6496 Info.readMem = false;
6497 Info.writeMem = true;
6498 return true;
6499 }
6500 case Intrinsic::aarch64_ldaxp:
6501 case Intrinsic::aarch64_ldxp: {
6502 Info.opc = ISD::INTRINSIC_W_CHAIN;
6503 Info.memVT = MVT::i128;
6504 Info.ptrVal = I.getArgOperand(0);
6505 Info.offset = 0;
6506 Info.align = 16;
6507 Info.vol = true;
6508 Info.readMem = true;
6509 Info.writeMem = false;
6510 return true;
6511 }
6512 case Intrinsic::aarch64_stlxp:
6513 case Intrinsic::aarch64_stxp: {
6514 Info.opc = ISD::INTRINSIC_W_CHAIN;
6515 Info.memVT = MVT::i128;
6516 Info.ptrVal = I.getArgOperand(2);
6517 Info.offset = 0;
6518 Info.align = 16;
6519 Info.vol = true;
6520 Info.readMem = false;
6521 Info.writeMem = true;
6522 return true;
6523 }
6524 default:
6525 break;
6526 }
6527
6528 return false;
6529}
6530
6531// Truncations from 64-bit GPR to 32-bit GPR is free.
6532bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
6533 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6534 return false;
6535 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6536 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006537 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006538}
6539bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006540 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006541 return false;
6542 unsigned NumBits1 = VT1.getSizeInBits();
6543 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006544 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006545}
6546
6547// All 32-bit GPR operations implicitly zero the high-half of the corresponding
6548// 64-bit GPR.
6549bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
6550 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6551 return false;
6552 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6553 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006554 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006555}
6556bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006557 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006558 return false;
6559 unsigned NumBits1 = VT1.getSizeInBits();
6560 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006561 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006562}
6563
6564bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
6565 EVT VT1 = Val.getValueType();
6566 if (isZExtFree(VT1, VT2)) {
6567 return true;
6568 }
6569
6570 if (Val.getOpcode() != ISD::LOAD)
6571 return false;
6572
6573 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
Hao Liu40914502014-05-29 09:19:07 +00006574 return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
6575 VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
6576 VT1.getSizeInBits() <= 32);
Tim Northover3b0846e2014-05-24 12:50:23 +00006577}
6578
6579bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType,
6580 unsigned &RequiredAligment) const {
6581 if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
6582 return false;
6583 // Cyclone supports unaligned accesses.
6584 RequiredAligment = 0;
6585 unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
6586 return NumBits == 32 || NumBits == 64;
6587}
6588
6589bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
6590 unsigned &RequiredAligment) const {
6591 if (!LoadedType.isSimple() ||
6592 (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
6593 return false;
6594 // Cyclone supports unaligned accesses.
6595 RequiredAligment = 0;
6596 unsigned NumBits = LoadedType.getSizeInBits();
6597 return NumBits == 32 || NumBits == 64;
6598}
6599
6600static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
6601 unsigned AlignCheck) {
6602 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
6603 (DstAlign == 0 || DstAlign % AlignCheck == 0));
6604}
6605
6606EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
6607 unsigned SrcAlign, bool IsMemset,
6608 bool ZeroMemset,
6609 bool MemcpyStrSrc,
6610 MachineFunction &MF) const {
6611 // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
6612 // instruction to materialize the v2i64 zero and one store (with restrictive
6613 // addressing mode). Just do two i64 store of zero-registers.
6614 bool Fast;
6615 const Function *F = MF.getFunction();
6616 if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
6617 !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
6618 Attribute::NoImplicitFloat) &&
6619 (memOpAlign(SrcAlign, DstAlign, 16) ||
Matt Arsenault6f2a5262014-07-27 17:46:40 +00006620 (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast)))
Tim Northover3b0846e2014-05-24 12:50:23 +00006621 return MVT::f128;
6622
6623 return Size >= 8 ? MVT::i64 : MVT::i32;
6624}
6625
6626// 12-bit optionally shifted immediates are legal for adds.
6627bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
6628 if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0))
6629 return true;
6630 return false;
6631}
6632
6633// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
6634// immediates is the same as for an add or a sub.
6635bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
6636 if (Immed < 0)
6637 Immed *= -1;
6638 return isLegalAddImmediate(Immed);
6639}
6640
6641/// isLegalAddressingMode - Return true if the addressing mode represented
6642/// by AM is legal for this target, for a load/store of the specified type.
6643bool AArch64TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6644 Type *Ty) const {
6645 // AArch64 has five basic addressing modes:
6646 // reg
6647 // reg + 9-bit signed offset
6648 // reg + SIZE_IN_BYTES * 12-bit unsigned offset
6649 // reg1 + reg2
6650 // reg + SIZE_IN_BYTES * reg
6651
6652 // No global is ever allowed as a base.
6653 if (AM.BaseGV)
6654 return false;
6655
6656 // No reg+reg+imm addressing.
6657 if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
6658 return false;
6659
6660 // check reg + imm case:
6661 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
6662 uint64_t NumBytes = 0;
6663 if (Ty->isSized()) {
6664 uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty);
6665 NumBytes = NumBits / 8;
6666 if (!isPowerOf2_64(NumBits))
6667 NumBytes = 0;
6668 }
6669
6670 if (!AM.Scale) {
6671 int64_t Offset = AM.BaseOffs;
6672
6673 // 9-bit signed offset
6674 if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
6675 return true;
6676
6677 // 12-bit unsigned offset
6678 unsigned shift = Log2_64(NumBytes);
6679 if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
6680 // Must be a multiple of NumBytes (NumBytes is a power of 2)
6681 (Offset >> shift) << shift == Offset)
6682 return true;
6683 return false;
6684 }
6685
6686 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
6687
6688 if (!AM.Scale || AM.Scale == 1 ||
6689 (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
6690 return true;
6691 return false;
6692}
6693
6694int AArch64TargetLowering::getScalingFactorCost(const AddrMode &AM,
6695 Type *Ty) const {
6696 // Scaling factors are not free at all.
6697 // Operands | Rt Latency
6698 // -------------------------------------------
6699 // Rt, [Xn, Xm] | 4
6700 // -------------------------------------------
6701 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
6702 // Rt, [Xn, Wm, <extend> #imm] |
6703 if (isLegalAddressingMode(AM, Ty))
6704 // Scale represents reg2 * scale, thus account for 1 if
6705 // it is not equal to 0 or 1.
6706 return AM.Scale != 0 && AM.Scale != 1;
6707 return -1;
6708}
6709
6710bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
6711 VT = VT.getScalarType();
6712
6713 if (!VT.isSimple())
6714 return false;
6715
6716 switch (VT.getSimpleVT().SimpleTy) {
6717 case MVT::f32:
6718 case MVT::f64:
6719 return true;
6720 default:
6721 break;
6722 }
6723
6724 return false;
6725}
6726
6727const MCPhysReg *
6728AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
6729 // LR is a callee-save register, but we must treat it as clobbered by any call
6730 // site. Hence we include LR in the scratch registers, which are in turn added
6731 // as implicit-defs for stackmaps and patchpoints.
6732 static const MCPhysReg ScratchRegs[] = {
6733 AArch64::X16, AArch64::X17, AArch64::LR, 0
6734 };
6735 return ScratchRegs;
6736}
6737
6738bool
6739AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
6740 EVT VT = N->getValueType(0);
6741 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
6742 // it with shift to let it be lowered to UBFX.
6743 if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
6744 isa<ConstantSDNode>(N->getOperand(1))) {
6745 uint64_t TruncMask = N->getConstantOperandVal(1);
6746 if (isMask_64(TruncMask) &&
6747 N->getOperand(0).getOpcode() == ISD::SRL &&
6748 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
6749 return false;
6750 }
6751 return true;
6752}
6753
6754bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
6755 Type *Ty) const {
6756 assert(Ty->isIntegerTy());
6757
6758 unsigned BitSize = Ty->getPrimitiveSizeInBits();
6759 if (BitSize == 0)
6760 return false;
6761
6762 int64_t Val = Imm.getSExtValue();
6763 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
6764 return true;
6765
6766 if ((int64_t)Val < 0)
6767 Val = ~Val;
6768 if (BitSize == 32)
6769 Val &= (1LL << 32) - 1;
6770
6771 unsigned LZ = countLeadingZeros((uint64_t)Val);
6772 unsigned Shift = (63 - LZ) / 16;
6773 // MOVZ is free so return true for one or fewer MOVK.
6774 return (Shift < 3) ? true : false;
6775}
6776
6777// Generate SUBS and CSEL for integer abs.
6778static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
6779 EVT VT = N->getValueType(0);
6780
6781 SDValue N0 = N->getOperand(0);
6782 SDValue N1 = N->getOperand(1);
6783 SDLoc DL(N);
6784
6785 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
6786 // and change it to SUB and CSEL.
6787 if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
6788 N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
6789 N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
6790 if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
6791 if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
6792 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
6793 N0.getOperand(0));
6794 // Generate SUBS & CSEL.
6795 SDValue Cmp =
6796 DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
6797 N0.getOperand(0), DAG.getConstant(0, VT));
6798 return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
6799 DAG.getConstant(AArch64CC::PL, MVT::i32),
6800 SDValue(Cmp.getNode(), 1));
6801 }
6802 return SDValue();
6803}
6804
6805// performXorCombine - Attempts to handle integer ABS.
6806static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
6807 TargetLowering::DAGCombinerInfo &DCI,
6808 const AArch64Subtarget *Subtarget) {
6809 if (DCI.isBeforeLegalizeOps())
6810 return SDValue();
6811
6812 return performIntegerAbsCombine(N, DAG);
6813}
6814
Chad Rosier17020f92014-07-23 14:57:52 +00006815SDValue
6816AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
6817 SelectionDAG &DAG,
6818 std::vector<SDNode *> *Created) const {
6819 // fold (sdiv X, pow2)
6820 EVT VT = N->getValueType(0);
6821 if ((VT != MVT::i32 && VT != MVT::i64) ||
6822 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
6823 return SDValue();
6824
6825 SDLoc DL(N);
6826 SDValue N0 = N->getOperand(0);
6827 unsigned Lg2 = Divisor.countTrailingZeros();
6828 SDValue Zero = DAG.getConstant(0, VT);
Juergen Ributzka03a06112014-10-16 16:41:15 +00006829 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, VT);
Chad Rosier17020f92014-07-23 14:57:52 +00006830
6831 // Add (N0 < 0) ? Pow2 - 1 : 0;
6832 SDValue CCVal;
6833 SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
6834 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
6835 SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
6836
6837 if (Created) {
6838 Created->push_back(Cmp.getNode());
6839 Created->push_back(Add.getNode());
6840 Created->push_back(CSel.getNode());
6841 }
6842
6843 // Divide by pow2.
6844 SDValue SRA =
6845 DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, MVT::i64));
6846
6847 // If we're dividing by a positive value, we're done. Otherwise, we must
6848 // negate the result.
6849 if (Divisor.isNonNegative())
6850 return SRA;
6851
6852 if (Created)
6853 Created->push_back(SRA.getNode());
6854 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT), SRA);
6855}
6856
Tim Northover3b0846e2014-05-24 12:50:23 +00006857static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
6858 TargetLowering::DAGCombinerInfo &DCI,
6859 const AArch64Subtarget *Subtarget) {
6860 if (DCI.isBeforeLegalizeOps())
6861 return SDValue();
6862
6863 // Multiplication of a power of two plus/minus one can be done more
6864 // cheaply as as shift+add/sub. For now, this is true unilaterally. If
6865 // future CPUs have a cheaper MADD instruction, this may need to be
6866 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
6867 // 64-bit is 5 cycles, so this is always a win.
6868 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6869 APInt Value = C->getAPIntValue();
6870 EVT VT = N->getValueType(0);
Chad Rosiere6b87612014-06-30 14:51:14 +00006871 if (Value.isNonNegative()) {
6872 // (mul x, 2^N + 1) => (add (shl x, N), x)
6873 APInt VM1 = Value - 1;
6874 if (VM1.isPowerOf2()) {
6875 SDValue ShiftedVal =
6876 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6877 DAG.getConstant(VM1.logBase2(), MVT::i64));
6878 return DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal,
6879 N->getOperand(0));
6880 }
6881 // (mul x, 2^N - 1) => (sub (shl x, N), x)
6882 APInt VP1 = Value + 1;
6883 if (VP1.isPowerOf2()) {
6884 SDValue ShiftedVal =
6885 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6886 DAG.getConstant(VP1.logBase2(), MVT::i64));
6887 return DAG.getNode(ISD::SUB, SDLoc(N), VT, ShiftedVal,
6888 N->getOperand(0));
6889 }
6890 } else {
6891 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
6892 APInt VNM1 = -Value - 1;
6893 if (VNM1.isPowerOf2()) {
6894 SDValue ShiftedVal =
6895 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6896 DAG.getConstant(VNM1.logBase2(), MVT::i64));
6897 SDValue Add =
6898 DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal, N->getOperand(0));
6899 return DAG.getNode(ISD::SUB, SDLoc(N), VT, DAG.getConstant(0, VT), Add);
6900 }
6901 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
6902 APInt VNP1 = -Value + 1;
6903 if (VNP1.isPowerOf2()) {
6904 SDValue ShiftedVal =
6905 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6906 DAG.getConstant(VNP1.logBase2(), MVT::i64));
6907 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N->getOperand(0),
6908 ShiftedVal);
6909 }
Chad Rosierd96e9f12014-06-09 01:25:51 +00006910 }
Tim Northover3b0846e2014-05-24 12:50:23 +00006911 }
6912 return SDValue();
6913}
6914
Jim Grosbachf7502c42014-07-18 00:40:52 +00006915static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
6916 SelectionDAG &DAG) {
6917 // Take advantage of vector comparisons producing 0 or -1 in each lane to
6918 // optimize away operation when it's from a constant.
6919 //
6920 // The general transformation is:
6921 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
6922 // AND(VECTOR_CMP(x,y), constant2)
6923 // constant2 = UNARYOP(constant)
6924
Jim Grosbach8f6f0852014-07-23 20:41:38 +00006925 // Early exit if this isn't a vector operation, the operand of the
6926 // unary operation isn't a bitwise AND, or if the sizes of the operations
6927 // aren't the same.
Jim Grosbachf7502c42014-07-18 00:40:52 +00006928 EVT VT = N->getValueType(0);
6929 if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
Jim Grosbach8f6f0852014-07-23 20:41:38 +00006930 N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
6931 VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
Jim Grosbachf7502c42014-07-18 00:40:52 +00006932 return SDValue();
6933
Jim Grosbach724e4382014-07-23 20:41:43 +00006934 // Now check that the other operand of the AND is a constant. We could
Jim Grosbachf7502c42014-07-18 00:40:52 +00006935 // make the transformation for non-constant splats as well, but it's unclear
6936 // that would be a benefit as it would not eliminate any operations, just
6937 // perform one more step in scalar code before moving to the vector unit.
6938 if (BuildVectorSDNode *BV =
6939 dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
Jim Grosbach724e4382014-07-23 20:41:43 +00006940 // Bail out if the vector isn't a constant.
6941 if (!BV->isConstant())
Jim Grosbachf7502c42014-07-18 00:40:52 +00006942 return SDValue();
6943
6944 // Everything checks out. Build up the new and improved node.
6945 SDLoc DL(N);
6946 EVT IntVT = BV->getValueType(0);
6947 // Create a new constant of the appropriate type for the transformed
6948 // DAG.
6949 SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
6950 // The AND node needs bitcasts to/from an integer vector type around it.
6951 SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
6952 SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
6953 N->getOperand(0)->getOperand(0), MaskConst);
6954 SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
6955 return Res;
6956 }
6957
6958 return SDValue();
6959}
6960
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00006961static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
6962 const AArch64Subtarget *Subtarget) {
Jim Grosbachf7502c42014-07-18 00:40:52 +00006963 // First try to optimize away the conversion when it's conditionally from
6964 // a constant. Vectors only.
6965 SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG);
6966 if (Res != SDValue())
6967 return Res;
6968
Tim Northover3b0846e2014-05-24 12:50:23 +00006969 EVT VT = N->getValueType(0);
6970 if (VT != MVT::f32 && VT != MVT::f64)
6971 return SDValue();
Jim Grosbachf7502c42014-07-18 00:40:52 +00006972
Tim Northover3b0846e2014-05-24 12:50:23 +00006973 // Only optimize when the source and destination types have the same width.
6974 if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
6975 return SDValue();
6976
6977 // If the result of an integer load is only used by an integer-to-float
6978 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
6979 // This eliminates an "integer-to-vector-move UOP and improve throughput.
6980 SDValue N0 = N->getOperand(0);
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00006981 if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
Tim Northover3b0846e2014-05-24 12:50:23 +00006982 // Do not change the width of a volatile load.
6983 !cast<LoadSDNode>(N0)->isVolatile()) {
6984 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6985 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
6986 LN0->getPointerInfo(), LN0->isVolatile(),
6987 LN0->isNonTemporal(), LN0->isInvariant(),
6988 LN0->getAlignment());
6989
6990 // Make sure successors of the original load stay after it by updating them
6991 // to use the new Chain.
6992 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
6993
6994 unsigned Opcode =
6995 (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
6996 return DAG.getNode(Opcode, SDLoc(N), VT, Load);
6997 }
6998
6999 return SDValue();
7000}
7001
7002/// An EXTR instruction is made up of two shifts, ORed together. This helper
7003/// searches for and classifies those shifts.
7004static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
7005 bool &FromHi) {
7006 if (N.getOpcode() == ISD::SHL)
7007 FromHi = false;
7008 else if (N.getOpcode() == ISD::SRL)
7009 FromHi = true;
7010 else
7011 return false;
7012
7013 if (!isa<ConstantSDNode>(N.getOperand(1)))
7014 return false;
7015
7016 ShiftAmount = N->getConstantOperandVal(1);
7017 Src = N->getOperand(0);
7018 return true;
7019}
7020
7021/// EXTR instruction extracts a contiguous chunk of bits from two existing
7022/// registers viewed as a high/low pair. This function looks for the pattern:
7023/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
7024/// EXTR. Can't quite be done in TableGen because the two immediates aren't
7025/// independent.
7026static SDValue tryCombineToEXTR(SDNode *N,
7027 TargetLowering::DAGCombinerInfo &DCI) {
7028 SelectionDAG &DAG = DCI.DAG;
7029 SDLoc DL(N);
7030 EVT VT = N->getValueType(0);
7031
7032 assert(N->getOpcode() == ISD::OR && "Unexpected root");
7033
7034 if (VT != MVT::i32 && VT != MVT::i64)
7035 return SDValue();
7036
7037 SDValue LHS;
7038 uint32_t ShiftLHS = 0;
7039 bool LHSFromHi = 0;
7040 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
7041 return SDValue();
7042
7043 SDValue RHS;
7044 uint32_t ShiftRHS = 0;
7045 bool RHSFromHi = 0;
7046 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
7047 return SDValue();
7048
7049 // If they're both trying to come from the high part of the register, they're
7050 // not really an EXTR.
7051 if (LHSFromHi == RHSFromHi)
7052 return SDValue();
7053
7054 if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
7055 return SDValue();
7056
7057 if (LHSFromHi) {
7058 std::swap(LHS, RHS);
7059 std::swap(ShiftLHS, ShiftRHS);
7060 }
7061
7062 return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
7063 DAG.getConstant(ShiftRHS, MVT::i64));
7064}
7065
7066static SDValue tryCombineToBSL(SDNode *N,
7067 TargetLowering::DAGCombinerInfo &DCI) {
7068 EVT VT = N->getValueType(0);
7069 SelectionDAG &DAG = DCI.DAG;
7070 SDLoc DL(N);
7071
7072 if (!VT.isVector())
7073 return SDValue();
7074
7075 SDValue N0 = N->getOperand(0);
7076 if (N0.getOpcode() != ISD::AND)
7077 return SDValue();
7078
7079 SDValue N1 = N->getOperand(1);
7080 if (N1.getOpcode() != ISD::AND)
7081 return SDValue();
7082
7083 // We only have to look for constant vectors here since the general, variable
7084 // case can be handled in TableGen.
7085 unsigned Bits = VT.getVectorElementType().getSizeInBits();
7086 uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
7087 for (int i = 1; i >= 0; --i)
7088 for (int j = 1; j >= 0; --j) {
7089 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
7090 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
7091 if (!BVN0 || !BVN1)
7092 continue;
7093
7094 bool FoundMatch = true;
7095 for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
7096 ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
7097 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
7098 if (!CN0 || !CN1 ||
7099 CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
7100 FoundMatch = false;
7101 break;
7102 }
7103 }
7104
7105 if (FoundMatch)
7106 return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
7107 N0->getOperand(1 - i), N1->getOperand(1 - j));
7108 }
7109
7110 return SDValue();
7111}
7112
7113static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
7114 const AArch64Subtarget *Subtarget) {
7115 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
7116 if (!EnableAArch64ExtrGeneration)
7117 return SDValue();
7118 SelectionDAG &DAG = DCI.DAG;
7119 EVT VT = N->getValueType(0);
7120
7121 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7122 return SDValue();
7123
7124 SDValue Res = tryCombineToEXTR(N, DCI);
7125 if (Res.getNode())
7126 return Res;
7127
7128 Res = tryCombineToBSL(N, DCI);
7129 if (Res.getNode())
7130 return Res;
7131
7132 return SDValue();
7133}
7134
7135static SDValue performBitcastCombine(SDNode *N,
7136 TargetLowering::DAGCombinerInfo &DCI,
7137 SelectionDAG &DAG) {
7138 // Wait 'til after everything is legalized to try this. That way we have
7139 // legal vector types and such.
7140 if (DCI.isBeforeLegalizeOps())
7141 return SDValue();
7142
7143 // Remove extraneous bitcasts around an extract_subvector.
7144 // For example,
7145 // (v4i16 (bitconvert
7146 // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
7147 // becomes
7148 // (extract_subvector ((v8i16 ...), (i64 4)))
7149
7150 // Only interested in 64-bit vectors as the ultimate result.
7151 EVT VT = N->getValueType(0);
7152 if (!VT.isVector())
7153 return SDValue();
7154 if (VT.getSimpleVT().getSizeInBits() != 64)
7155 return SDValue();
7156 // Is the operand an extract_subvector starting at the beginning or halfway
7157 // point of the vector? A low half may also come through as an
7158 // EXTRACT_SUBREG, so look for that, too.
7159 SDValue Op0 = N->getOperand(0);
7160 if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
7161 !(Op0->isMachineOpcode() &&
7162 Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
7163 return SDValue();
7164 uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
7165 if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
7166 if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
7167 return SDValue();
7168 } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
7169 if (idx != AArch64::dsub)
7170 return SDValue();
7171 // The dsub reference is equivalent to a lane zero subvector reference.
7172 idx = 0;
7173 }
7174 // Look through the bitcast of the input to the extract.
7175 if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
7176 return SDValue();
7177 SDValue Source = Op0->getOperand(0)->getOperand(0);
7178 // If the source type has twice the number of elements as our destination
7179 // type, we know this is an extract of the high or low half of the vector.
7180 EVT SVT = Source->getValueType(0);
7181 if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
7182 return SDValue();
7183
7184 DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
7185
7186 // Create the simplified form to just extract the low or high half of the
7187 // vector directly rather than bothering with the bitcasts.
7188 SDLoc dl(N);
7189 unsigned NumElements = VT.getVectorNumElements();
7190 if (idx) {
7191 SDValue HalfIdx = DAG.getConstant(NumElements, MVT::i64);
7192 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
7193 } else {
7194 SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, MVT::i32);
7195 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
7196 Source, SubReg),
7197 0);
7198 }
7199}
7200
7201static SDValue performConcatVectorsCombine(SDNode *N,
7202 TargetLowering::DAGCombinerInfo &DCI,
7203 SelectionDAG &DAG) {
7204 // Wait 'til after everything is legalized to try this. That way we have
7205 // legal vector types and such.
7206 if (DCI.isBeforeLegalizeOps())
7207 return SDValue();
7208
7209 SDLoc dl(N);
7210 EVT VT = N->getValueType(0);
7211
7212 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
7213 // splat. The indexed instructions are going to be expecting a DUPLANE64, so
7214 // canonicalise to that.
7215 if (N->getOperand(0) == N->getOperand(1) && VT.getVectorNumElements() == 2) {
7216 assert(VT.getVectorElementType().getSizeInBits() == 64);
7217 return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT,
7218 WidenVector(N->getOperand(0), DAG),
7219 DAG.getConstant(0, MVT::i64));
7220 }
7221
7222 // Canonicalise concat_vectors so that the right-hand vector has as few
7223 // bit-casts as possible before its real operation. The primary matching
7224 // destination for these operations will be the narrowing "2" instructions,
7225 // which depend on the operation being performed on this right-hand vector.
7226 // For example,
7227 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
7228 // becomes
7229 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
7230
7231 SDValue Op1 = N->getOperand(1);
7232 if (Op1->getOpcode() != ISD::BITCAST)
7233 return SDValue();
7234 SDValue RHS = Op1->getOperand(0);
7235 MVT RHSTy = RHS.getValueType().getSimpleVT();
7236 // If the RHS is not a vector, this is not the pattern we're looking for.
7237 if (!RHSTy.isVector())
7238 return SDValue();
7239
7240 DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
7241
7242 MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
7243 RHSTy.getVectorNumElements() * 2);
7244 return DAG.getNode(
7245 ISD::BITCAST, dl, VT,
7246 DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
7247 DAG.getNode(ISD::BITCAST, dl, RHSTy, N->getOperand(0)), RHS));
7248}
7249
7250static SDValue tryCombineFixedPointConvert(SDNode *N,
7251 TargetLowering::DAGCombinerInfo &DCI,
7252 SelectionDAG &DAG) {
7253 // Wait 'til after everything is legalized to try this. That way we have
7254 // legal vector types and such.
7255 if (DCI.isBeforeLegalizeOps())
7256 return SDValue();
7257 // Transform a scalar conversion of a value from a lane extract into a
7258 // lane extract of a vector conversion. E.g., from foo1 to foo2:
7259 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
7260 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
7261 //
7262 // The second form interacts better with instruction selection and the
7263 // register allocator to avoid cross-class register copies that aren't
7264 // coalescable due to a lane reference.
7265
7266 // Check the operand and see if it originates from a lane extract.
7267 SDValue Op1 = N->getOperand(1);
7268 if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7269 // Yep, no additional predication needed. Perform the transform.
7270 SDValue IID = N->getOperand(0);
7271 SDValue Shift = N->getOperand(2);
7272 SDValue Vec = Op1.getOperand(0);
7273 SDValue Lane = Op1.getOperand(1);
7274 EVT ResTy = N->getValueType(0);
7275 EVT VecResTy;
7276 SDLoc DL(N);
7277
7278 // The vector width should be 128 bits by the time we get here, even
7279 // if it started as 64 bits (the extract_vector handling will have
7280 // done so).
7281 assert(Vec.getValueType().getSizeInBits() == 128 &&
7282 "unexpected vector size on extract_vector_elt!");
7283 if (Vec.getValueType() == MVT::v4i32)
7284 VecResTy = MVT::v4f32;
7285 else if (Vec.getValueType() == MVT::v2i64)
7286 VecResTy = MVT::v2f64;
7287 else
Craig Topper2a30d782014-06-18 05:05:13 +00007288 llvm_unreachable("unexpected vector type!");
Tim Northover3b0846e2014-05-24 12:50:23 +00007289
7290 SDValue Convert =
7291 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
7292 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
7293 }
7294 return SDValue();
7295}
7296
7297// AArch64 high-vector "long" operations are formed by performing the non-high
7298// version on an extract_subvector of each operand which gets the high half:
7299//
7300// (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
7301//
7302// However, there are cases which don't have an extract_high explicitly, but
7303// have another operation that can be made compatible with one for free. For
7304// example:
7305//
7306// (dupv64 scalar) --> (extract_high (dup128 scalar))
7307//
7308// This routine does the actual conversion of such DUPs, once outer routines
7309// have determined that everything else is in order.
7310static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
7311 // We can handle most types of duplicate, but the lane ones have an extra
7312 // operand saying *which* lane, so we need to know.
7313 bool IsDUPLANE;
7314 switch (N.getOpcode()) {
7315 case AArch64ISD::DUP:
7316 IsDUPLANE = false;
7317 break;
7318 case AArch64ISD::DUPLANE8:
7319 case AArch64ISD::DUPLANE16:
7320 case AArch64ISD::DUPLANE32:
7321 case AArch64ISD::DUPLANE64:
7322 IsDUPLANE = true;
7323 break;
7324 default:
7325 return SDValue();
7326 }
7327
7328 MVT NarrowTy = N.getSimpleValueType();
7329 if (!NarrowTy.is64BitVector())
7330 return SDValue();
7331
7332 MVT ElementTy = NarrowTy.getVectorElementType();
7333 unsigned NumElems = NarrowTy.getVectorNumElements();
7334 MVT NewDUPVT = MVT::getVectorVT(ElementTy, NumElems * 2);
7335
7336 SDValue NewDUP;
7337 if (IsDUPLANE)
7338 NewDUP = DAG.getNode(N.getOpcode(), SDLoc(N), NewDUPVT, N.getOperand(0),
7339 N.getOperand(1));
7340 else
7341 NewDUP = DAG.getNode(AArch64ISD::DUP, SDLoc(N), NewDUPVT, N.getOperand(0));
7342
7343 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N.getNode()), NarrowTy,
7344 NewDUP, DAG.getConstant(NumElems, MVT::i64));
7345}
7346
7347static bool isEssentiallyExtractSubvector(SDValue N) {
7348 if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
7349 return true;
7350
7351 return N.getOpcode() == ISD::BITCAST &&
7352 N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
7353}
7354
7355/// \brief Helper structure to keep track of ISD::SET_CC operands.
7356struct GenericSetCCInfo {
7357 const SDValue *Opnd0;
7358 const SDValue *Opnd1;
7359 ISD::CondCode CC;
7360};
7361
7362/// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
7363struct AArch64SetCCInfo {
7364 const SDValue *Cmp;
7365 AArch64CC::CondCode CC;
7366};
7367
7368/// \brief Helper structure to keep track of SetCC information.
7369union SetCCInfo {
7370 GenericSetCCInfo Generic;
7371 AArch64SetCCInfo AArch64;
7372};
7373
7374/// \brief Helper structure to be able to read SetCC information. If set to
7375/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
7376/// GenericSetCCInfo.
7377struct SetCCInfoAndKind {
7378 SetCCInfo Info;
7379 bool IsAArch64;
7380};
7381
7382/// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
7383/// an
7384/// AArch64 lowered one.
7385/// \p SetCCInfo is filled accordingly.
7386/// \post SetCCInfo is meanginfull only when this function returns true.
7387/// \return True when Op is a kind of SET_CC operation.
7388static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
7389 // If this is a setcc, this is straight forward.
7390 if (Op.getOpcode() == ISD::SETCC) {
7391 SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
7392 SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
7393 SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7394 SetCCInfo.IsAArch64 = false;
7395 return true;
7396 }
7397 // Otherwise, check if this is a matching csel instruction.
7398 // In other words:
7399 // - csel 1, 0, cc
7400 // - csel 0, 1, !cc
7401 if (Op.getOpcode() != AArch64ISD::CSEL)
7402 return false;
7403 // Set the information about the operands.
7404 // TODO: we want the operands of the Cmp not the csel
7405 SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
7406 SetCCInfo.IsAArch64 = true;
7407 SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
7408 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
7409
7410 // Check that the operands matches the constraints:
7411 // (1) Both operands must be constants.
7412 // (2) One must be 1 and the other must be 0.
7413 ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
7414 ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7415
7416 // Check (1).
7417 if (!TValue || !FValue)
7418 return false;
7419
7420 // Check (2).
7421 if (!TValue->isOne()) {
7422 // Update the comparison when we are interested in !cc.
7423 std::swap(TValue, FValue);
7424 SetCCInfo.Info.AArch64.CC =
7425 AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
7426 }
7427 return TValue->isOne() && FValue->isNullValue();
7428}
7429
7430// Returns true if Op is setcc or zext of setcc.
7431static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
7432 if (isSetCC(Op, Info))
7433 return true;
7434 return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
7435 isSetCC(Op->getOperand(0), Info));
7436}
7437
7438// The folding we want to perform is:
7439// (add x, [zext] (setcc cc ...) )
7440// -->
7441// (csel x, (add x, 1), !cc ...)
7442//
7443// The latter will get matched to a CSINC instruction.
7444static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
7445 assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
7446 SDValue LHS = Op->getOperand(0);
7447 SDValue RHS = Op->getOperand(1);
7448 SetCCInfoAndKind InfoAndKind;
7449
7450 // If neither operand is a SET_CC, give up.
7451 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
7452 std::swap(LHS, RHS);
7453 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
7454 return SDValue();
7455 }
7456
7457 // FIXME: This could be generatized to work for FP comparisons.
7458 EVT CmpVT = InfoAndKind.IsAArch64
7459 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
7460 : InfoAndKind.Info.Generic.Opnd0->getValueType();
7461 if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
7462 return SDValue();
7463
7464 SDValue CCVal;
7465 SDValue Cmp;
7466 SDLoc dl(Op);
7467 if (InfoAndKind.IsAArch64) {
7468 CCVal = DAG.getConstant(
7469 AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), MVT::i32);
7470 Cmp = *InfoAndKind.Info.AArch64.Cmp;
7471 } else
7472 Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
7473 *InfoAndKind.Info.Generic.Opnd1,
7474 ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
7475 CCVal, DAG, dl);
7476
7477 EVT VT = Op->getValueType(0);
7478 LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, VT));
7479 return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
7480}
7481
7482// The basic add/sub long vector instructions have variants with "2" on the end
7483// which act on the high-half of their inputs. They are normally matched by
7484// patterns like:
7485//
7486// (add (zeroext (extract_high LHS)),
7487// (zeroext (extract_high RHS)))
7488// -> uaddl2 vD, vN, vM
7489//
7490// However, if one of the extracts is something like a duplicate, this
7491// instruction can still be used profitably. This function puts the DAG into a
7492// more appropriate form for those patterns to trigger.
7493static SDValue performAddSubLongCombine(SDNode *N,
7494 TargetLowering::DAGCombinerInfo &DCI,
7495 SelectionDAG &DAG) {
7496 if (DCI.isBeforeLegalizeOps())
7497 return SDValue();
7498
7499 MVT VT = N->getSimpleValueType(0);
7500 if (!VT.is128BitVector()) {
7501 if (N->getOpcode() == ISD::ADD)
7502 return performSetccAddFolding(N, DAG);
7503 return SDValue();
7504 }
7505
7506 // Make sure both branches are extended in the same way.
7507 SDValue LHS = N->getOperand(0);
7508 SDValue RHS = N->getOperand(1);
7509 if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
7510 LHS.getOpcode() != ISD::SIGN_EXTEND) ||
7511 LHS.getOpcode() != RHS.getOpcode())
7512 return SDValue();
7513
7514 unsigned ExtType = LHS.getOpcode();
7515
7516 // It's not worth doing if at least one of the inputs isn't already an
7517 // extract, but we don't know which it'll be so we have to try both.
7518 if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
7519 RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
7520 if (!RHS.getNode())
7521 return SDValue();
7522
7523 RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
7524 } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
7525 LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
7526 if (!LHS.getNode())
7527 return SDValue();
7528
7529 LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
7530 }
7531
7532 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
7533}
7534
7535// Massage DAGs which we can use the high-half "long" operations on into
7536// something isel will recognize better. E.g.
7537//
7538// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
7539// (aarch64_neon_umull (extract_high (v2i64 vec)))
7540// (extract_high (v2i64 (dup128 scalar)))))
7541//
7542static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
7543 TargetLowering::DAGCombinerInfo &DCI,
7544 SelectionDAG &DAG) {
7545 if (DCI.isBeforeLegalizeOps())
7546 return SDValue();
7547
7548 SDValue LHS = N->getOperand(1);
7549 SDValue RHS = N->getOperand(2);
7550 assert(LHS.getValueType().is64BitVector() &&
7551 RHS.getValueType().is64BitVector() &&
7552 "unexpected shape for long operation");
7553
7554 // Either node could be a DUP, but it's not worth doing both of them (you'd
7555 // just as well use the non-high version) so look for a corresponding extract
7556 // operation on the other "wing".
7557 if (isEssentiallyExtractSubvector(LHS)) {
7558 RHS = tryExtendDUPToExtractHigh(RHS, DAG);
7559 if (!RHS.getNode())
7560 return SDValue();
7561 } else if (isEssentiallyExtractSubvector(RHS)) {
7562 LHS = tryExtendDUPToExtractHigh(LHS, DAG);
7563 if (!LHS.getNode())
7564 return SDValue();
7565 }
7566
7567 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
7568 N->getOperand(0), LHS, RHS);
7569}
7570
7571static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
7572 MVT ElemTy = N->getSimpleValueType(0).getScalarType();
7573 unsigned ElemBits = ElemTy.getSizeInBits();
7574
7575 int64_t ShiftAmount;
7576 if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
7577 APInt SplatValue, SplatUndef;
7578 unsigned SplatBitSize;
7579 bool HasAnyUndefs;
7580 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
7581 HasAnyUndefs, ElemBits) ||
7582 SplatBitSize != ElemBits)
7583 return SDValue();
7584
7585 ShiftAmount = SplatValue.getSExtValue();
7586 } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
7587 ShiftAmount = CVN->getSExtValue();
7588 } else
7589 return SDValue();
7590
7591 unsigned Opcode;
7592 bool IsRightShift;
7593 switch (IID) {
7594 default:
7595 llvm_unreachable("Unknown shift intrinsic");
7596 case Intrinsic::aarch64_neon_sqshl:
7597 Opcode = AArch64ISD::SQSHL_I;
7598 IsRightShift = false;
7599 break;
7600 case Intrinsic::aarch64_neon_uqshl:
7601 Opcode = AArch64ISD::UQSHL_I;
7602 IsRightShift = false;
7603 break;
7604 case Intrinsic::aarch64_neon_srshl:
7605 Opcode = AArch64ISD::SRSHR_I;
7606 IsRightShift = true;
7607 break;
7608 case Intrinsic::aarch64_neon_urshl:
7609 Opcode = AArch64ISD::URSHR_I;
7610 IsRightShift = true;
7611 break;
7612 case Intrinsic::aarch64_neon_sqshlu:
7613 Opcode = AArch64ISD::SQSHLU_I;
7614 IsRightShift = false;
7615 break;
7616 }
7617
7618 if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits)
7619 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
7620 DAG.getConstant(-ShiftAmount, MVT::i32));
James Molloy1e3b5a42014-06-16 10:39:21 +00007621 else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits)
Tim Northover3b0846e2014-05-24 12:50:23 +00007622 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
7623 DAG.getConstant(ShiftAmount, MVT::i32));
7624
7625 return SDValue();
7626}
7627
7628// The CRC32[BH] instructions ignore the high bits of their data operand. Since
7629// the intrinsics must be legal and take an i32, this means there's almost
7630// certainly going to be a zext in the DAG which we can eliminate.
7631static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
7632 SDValue AndN = N->getOperand(2);
7633 if (AndN.getOpcode() != ISD::AND)
7634 return SDValue();
7635
7636 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
7637 if (!CMask || CMask->getZExtValue() != Mask)
7638 return SDValue();
7639
7640 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
7641 N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
7642}
7643
7644static SDValue performIntrinsicCombine(SDNode *N,
7645 TargetLowering::DAGCombinerInfo &DCI,
7646 const AArch64Subtarget *Subtarget) {
7647 SelectionDAG &DAG = DCI.DAG;
7648 unsigned IID = getIntrinsicID(N);
7649 switch (IID) {
7650 default:
7651 break;
7652 case Intrinsic::aarch64_neon_vcvtfxs2fp:
7653 case Intrinsic::aarch64_neon_vcvtfxu2fp:
7654 return tryCombineFixedPointConvert(N, DCI, DAG);
7655 break;
7656 case Intrinsic::aarch64_neon_fmax:
7657 return DAG.getNode(AArch64ISD::FMAX, SDLoc(N), N->getValueType(0),
7658 N->getOperand(1), N->getOperand(2));
7659 case Intrinsic::aarch64_neon_fmin:
7660 return DAG.getNode(AArch64ISD::FMIN, SDLoc(N), N->getValueType(0),
7661 N->getOperand(1), N->getOperand(2));
7662 case Intrinsic::aarch64_neon_smull:
7663 case Intrinsic::aarch64_neon_umull:
7664 case Intrinsic::aarch64_neon_pmull:
7665 case Intrinsic::aarch64_neon_sqdmull:
7666 return tryCombineLongOpWithDup(IID, N, DCI, DAG);
7667 case Intrinsic::aarch64_neon_sqshl:
7668 case Intrinsic::aarch64_neon_uqshl:
7669 case Intrinsic::aarch64_neon_sqshlu:
7670 case Intrinsic::aarch64_neon_srshl:
7671 case Intrinsic::aarch64_neon_urshl:
7672 return tryCombineShiftImm(IID, N, DAG);
7673 case Intrinsic::aarch64_crc32b:
7674 case Intrinsic::aarch64_crc32cb:
7675 return tryCombineCRC32(0xff, N, DAG);
7676 case Intrinsic::aarch64_crc32h:
7677 case Intrinsic::aarch64_crc32ch:
7678 return tryCombineCRC32(0xffff, N, DAG);
7679 }
7680 return SDValue();
7681}
7682
7683static SDValue performExtendCombine(SDNode *N,
7684 TargetLowering::DAGCombinerInfo &DCI,
7685 SelectionDAG &DAG) {
7686 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
7687 // we can convert that DUP into another extract_high (of a bigger DUP), which
7688 // helps the backend to decide that an sabdl2 would be useful, saving a real
7689 // extract_high operation.
7690 if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
7691 N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
7692 SDNode *ABDNode = N->getOperand(0).getNode();
7693 unsigned IID = getIntrinsicID(ABDNode);
7694 if (IID == Intrinsic::aarch64_neon_sabd ||
7695 IID == Intrinsic::aarch64_neon_uabd) {
7696 SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
7697 if (!NewABD.getNode())
7698 return SDValue();
7699
7700 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
7701 NewABD);
7702 }
7703 }
7704
7705 // This is effectively a custom type legalization for AArch64.
7706 //
7707 // Type legalization will split an extend of a small, legal, type to a larger
7708 // illegal type by first splitting the destination type, often creating
7709 // illegal source types, which then get legalized in isel-confusing ways,
7710 // leading to really terrible codegen. E.g.,
7711 // %result = v8i32 sext v8i8 %value
7712 // becomes
7713 // %losrc = extract_subreg %value, ...
7714 // %hisrc = extract_subreg %value, ...
7715 // %lo = v4i32 sext v4i8 %losrc
7716 // %hi = v4i32 sext v4i8 %hisrc
7717 // Things go rapidly downhill from there.
7718 //
7719 // For AArch64, the [sz]ext vector instructions can only go up one element
7720 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
7721 // take two instructions.
7722 //
7723 // This implies that the most efficient way to do the extend from v8i8
7724 // to two v4i32 values is to first extend the v8i8 to v8i16, then do
7725 // the normal splitting to happen for the v8i16->v8i32.
7726
7727 // This is pre-legalization to catch some cases where the default
7728 // type legalization will create ill-tempered code.
7729 if (!DCI.isBeforeLegalizeOps())
7730 return SDValue();
7731
7732 // We're only interested in cleaning things up for non-legal vector types
7733 // here. If both the source and destination are legal, things will just
7734 // work naturally without any fiddling.
7735 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7736 EVT ResVT = N->getValueType(0);
7737 if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
7738 return SDValue();
7739 // If the vector type isn't a simple VT, it's beyond the scope of what
7740 // we're worried about here. Let legalization do its thing and hope for
7741 // the best.
Jim Grosbachec2b0d02014-08-28 22:08:28 +00007742 SDValue Src = N->getOperand(0);
7743 EVT SrcVT = Src->getValueType(0);
7744 if (!ResVT.isSimple() || !SrcVT.isSimple())
Tim Northover3b0846e2014-05-24 12:50:23 +00007745 return SDValue();
7746
Tim Northover3b0846e2014-05-24 12:50:23 +00007747 // If the source VT is a 64-bit vector, we can play games and get the
7748 // better results we want.
7749 if (SrcVT.getSizeInBits() != 64)
7750 return SDValue();
7751
7752 unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
7753 unsigned ElementCount = SrcVT.getVectorNumElements();
7754 SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
7755 SDLoc DL(N);
7756 Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
7757
7758 // Now split the rest of the operation into two halves, each with a 64
7759 // bit source.
7760 EVT LoVT, HiVT;
7761 SDValue Lo, Hi;
7762 unsigned NumElements = ResVT.getVectorNumElements();
7763 assert(!(NumElements & 1) && "Splitting vector, but not in half!");
7764 LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
7765 ResVT.getVectorElementType(), NumElements / 2);
7766
7767 EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
7768 LoVT.getVectorNumElements());
7769 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
Tim Northover5e84fe32014-12-06 00:33:37 +00007770 DAG.getConstant(0, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007771 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
Tim Northover5e84fe32014-12-06 00:33:37 +00007772 DAG.getConstant(InNVT.getVectorNumElements(), MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007773 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
7774 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
7775
7776 // Now combine the parts back together so we still have a single result
7777 // like the combiner expects.
7778 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
7779}
7780
7781/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
7782/// value. The load store optimizer pass will merge them to store pair stores.
7783/// This has better performance than a splat of the scalar followed by a split
7784/// vector store. Even if the stores are not merged it is four stores vs a dup,
7785/// followed by an ext.b and two stores.
7786static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
7787 SDValue StVal = St->getValue();
7788 EVT VT = StVal.getValueType();
7789
7790 // Don't replace floating point stores, they possibly won't be transformed to
7791 // stp because of the store pair suppress pass.
7792 if (VT.isFloatingPoint())
7793 return SDValue();
7794
7795 // Check for insert vector elements.
7796 if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
7797 return SDValue();
7798
7799 // We can express a splat as store pair(s) for 2 or 4 elements.
7800 unsigned NumVecElts = VT.getVectorNumElements();
7801 if (NumVecElts != 4 && NumVecElts != 2)
7802 return SDValue();
7803 SDValue SplatVal = StVal.getOperand(1);
7804 unsigned RemainInsertElts = NumVecElts - 1;
7805
7806 // Check that this is a splat.
7807 while (--RemainInsertElts) {
7808 SDValue NextInsertElt = StVal.getOperand(0);
7809 if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
7810 return SDValue();
7811 if (NextInsertElt.getOperand(1) != SplatVal)
7812 return SDValue();
7813 StVal = NextInsertElt;
7814 }
7815 unsigned OrigAlignment = St->getAlignment();
7816 unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
7817 unsigned Alignment = std::min(OrigAlignment, EltOffset);
7818
7819 // Create scalar stores. This is at least as good as the code sequence for a
7820 // split unaligned store wich is a dup.s, ext.b, and two stores.
7821 // Most of the time the three stores should be replaced by store pair
7822 // instructions (stp).
7823 SDLoc DL(St);
7824 SDValue BasePtr = St->getBasePtr();
7825 SDValue NewST1 =
7826 DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
7827 St->isVolatile(), St->isNonTemporal(), St->getAlignment());
7828
7829 unsigned Offset = EltOffset;
7830 while (--NumVecElts) {
7831 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
7832 DAG.getConstant(Offset, MVT::i64));
7833 NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
7834 St->getPointerInfo(), St->isVolatile(),
7835 St->isNonTemporal(), Alignment);
7836 Offset += EltOffset;
7837 }
7838 return NewST1;
7839}
7840
7841static SDValue performSTORECombine(SDNode *N,
7842 TargetLowering::DAGCombinerInfo &DCI,
7843 SelectionDAG &DAG,
7844 const AArch64Subtarget *Subtarget) {
7845 if (!DCI.isBeforeLegalize())
7846 return SDValue();
7847
7848 StoreSDNode *S = cast<StoreSDNode>(N);
7849 if (S->isVolatile())
7850 return SDValue();
7851
7852 // Cyclone has bad performance on unaligned 16B stores when crossing line and
7853 // page boundries. We want to split such stores.
7854 if (!Subtarget->isCyclone())
7855 return SDValue();
7856
7857 // Don't split at Oz.
7858 MachineFunction &MF = DAG.getMachineFunction();
7859 bool IsMinSize = MF.getFunction()->getAttributes().hasAttribute(
7860 AttributeSet::FunctionIndex, Attribute::MinSize);
7861 if (IsMinSize)
7862 return SDValue();
7863
7864 SDValue StVal = S->getValue();
7865 EVT VT = StVal.getValueType();
7866
7867 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
7868 // those up regresses performance on micro-benchmarks and olden/bh.
7869 if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
7870 return SDValue();
7871
7872 // Split unaligned 16B stores. They are terrible for performance.
7873 // Don't split stores with alignment of 1 or 2. Code that uses clang vector
7874 // extensions can use this to mark that it does not want splitting to happen
7875 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
7876 // eliminating alignment hazards is only 1 in 8 for alignment of 2.
7877 if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
7878 S->getAlignment() <= 2)
7879 return SDValue();
7880
7881 // If we get a splat of a scalar convert this vector store to a store of
7882 // scalars. They will be merged into store pairs thereby removing two
7883 // instructions.
7884 SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S);
7885 if (ReplacedSplat != SDValue())
7886 return ReplacedSplat;
7887
7888 SDLoc DL(S);
7889 unsigned NumElts = VT.getVectorNumElements() / 2;
7890 // Split VT into two.
7891 EVT HalfVT =
7892 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
7893 SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
Tim Northover5e84fe32014-12-06 00:33:37 +00007894 DAG.getConstant(0, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007895 SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
Tim Northover5e84fe32014-12-06 00:33:37 +00007896 DAG.getConstant(NumElts, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007897 SDValue BasePtr = S->getBasePtr();
7898 SDValue NewST1 =
7899 DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
7900 S->isVolatile(), S->isNonTemporal(), S->getAlignment());
7901 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
7902 DAG.getConstant(8, MVT::i64));
7903 return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
7904 S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
7905 S->getAlignment());
7906}
7907
7908/// Target-specific DAG combine function for post-increment LD1 (lane) and
7909/// post-increment LD1R.
7910static SDValue performPostLD1Combine(SDNode *N,
7911 TargetLowering::DAGCombinerInfo &DCI,
7912 bool IsLaneOp) {
7913 if (DCI.isBeforeLegalizeOps())
7914 return SDValue();
7915
7916 SelectionDAG &DAG = DCI.DAG;
7917 EVT VT = N->getValueType(0);
7918
7919 unsigned LoadIdx = IsLaneOp ? 1 : 0;
7920 SDNode *LD = N->getOperand(LoadIdx).getNode();
7921 // If it is not LOAD, can not do such combine.
7922 if (LD->getOpcode() != ISD::LOAD)
7923 return SDValue();
7924
7925 LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
7926 EVT MemVT = LoadSDN->getMemoryVT();
7927 // Check if memory operand is the same type as the vector element.
7928 if (MemVT != VT.getVectorElementType())
7929 return SDValue();
7930
7931 // Check if there are other uses. If so, do not combine as it will introduce
7932 // an extra load.
7933 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
7934 ++UI) {
7935 if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
7936 continue;
7937 if (*UI != N)
7938 return SDValue();
7939 }
7940
7941 SDValue Addr = LD->getOperand(1);
7942 SDValue Vector = N->getOperand(0);
7943 // Search for a use of the address operand that is an increment.
7944 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
7945 Addr.getNode()->use_end(); UI != UE; ++UI) {
7946 SDNode *User = *UI;
7947 if (User->getOpcode() != ISD::ADD
7948 || UI.getUse().getResNo() != Addr.getResNo())
7949 continue;
7950
7951 // Check that the add is independent of the load. Otherwise, folding it
7952 // would create a cycle.
7953 if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
7954 continue;
7955 // Also check that add is not used in the vector operand. This would also
7956 // create a cycle.
7957 if (User->isPredecessorOf(Vector.getNode()))
7958 continue;
7959
7960 // If the increment is a constant, it must match the memory ref size.
7961 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7962 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7963 uint32_t IncVal = CInc->getZExtValue();
7964 unsigned NumBytes = VT.getScalarSizeInBits() / 8;
7965 if (IncVal != NumBytes)
7966 continue;
7967 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
7968 }
7969
7970 SmallVector<SDValue, 8> Ops;
7971 Ops.push_back(LD->getOperand(0)); // Chain
7972 if (IsLaneOp) {
7973 Ops.push_back(Vector); // The vector to be inserted
7974 Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
7975 }
7976 Ops.push_back(Addr);
7977 Ops.push_back(Inc);
7978
7979 EVT Tys[3] = { VT, MVT::i64, MVT::Other };
Craig Toppere1d12942014-08-27 05:25:25 +00007980 SDVTList SDTys = DAG.getVTList(Tys);
Tim Northover3b0846e2014-05-24 12:50:23 +00007981 unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
7982 SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
7983 MemVT,
7984 LoadSDN->getMemOperand());
7985
7986 // Update the uses.
7987 std::vector<SDValue> NewResults;
7988 NewResults.push_back(SDValue(LD, 0)); // The result of load
7989 NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain
7990 DCI.CombineTo(LD, NewResults);
7991 DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
7992 DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
7993
7994 break;
7995 }
7996 return SDValue();
7997}
7998
7999/// Target-specific DAG combine function for NEON load/store intrinsics
8000/// to merge base address updates.
8001static SDValue performNEONPostLDSTCombine(SDNode *N,
8002 TargetLowering::DAGCombinerInfo &DCI,
8003 SelectionDAG &DAG) {
8004 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8005 return SDValue();
8006
8007 unsigned AddrOpIdx = N->getNumOperands() - 1;
8008 SDValue Addr = N->getOperand(AddrOpIdx);
8009
8010 // Search for a use of the address operand that is an increment.
8011 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
8012 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
8013 SDNode *User = *UI;
8014 if (User->getOpcode() != ISD::ADD ||
8015 UI.getUse().getResNo() != Addr.getResNo())
8016 continue;
8017
8018 // Check that the add is independent of the load/store. Otherwise, folding
8019 // it would create a cycle.
8020 if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
8021 continue;
8022
8023 // Find the new opcode for the updating load/store.
8024 bool IsStore = false;
8025 bool IsLaneOp = false;
8026 bool IsDupOp = false;
8027 unsigned NewOpc = 0;
8028 unsigned NumVecs = 0;
8029 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8030 switch (IntNo) {
8031 default: llvm_unreachable("unexpected intrinsic for Neon base update");
8032 case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
8033 NumVecs = 2; break;
8034 case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
8035 NumVecs = 3; break;
8036 case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
8037 NumVecs = 4; break;
8038 case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
8039 NumVecs = 2; IsStore = true; break;
8040 case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
8041 NumVecs = 3; IsStore = true; break;
8042 case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
8043 NumVecs = 4; IsStore = true; break;
8044 case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
8045 NumVecs = 2; break;
8046 case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
8047 NumVecs = 3; break;
8048 case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
8049 NumVecs = 4; break;
8050 case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
8051 NumVecs = 2; IsStore = true; break;
8052 case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
8053 NumVecs = 3; IsStore = true; break;
8054 case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
8055 NumVecs = 4; IsStore = true; break;
8056 case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
8057 NumVecs = 2; IsDupOp = true; break;
8058 case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
8059 NumVecs = 3; IsDupOp = true; break;
8060 case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
8061 NumVecs = 4; IsDupOp = true; break;
8062 case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
8063 NumVecs = 2; IsLaneOp = true; break;
8064 case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
8065 NumVecs = 3; IsLaneOp = true; break;
8066 case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
8067 NumVecs = 4; IsLaneOp = true; break;
8068 case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
8069 NumVecs = 2; IsStore = true; IsLaneOp = true; break;
8070 case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
8071 NumVecs = 3; IsStore = true; IsLaneOp = true; break;
8072 case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
8073 NumVecs = 4; IsStore = true; IsLaneOp = true; break;
8074 }
8075
8076 EVT VecTy;
8077 if (IsStore)
8078 VecTy = N->getOperand(2).getValueType();
8079 else
8080 VecTy = N->getValueType(0);
8081
8082 // If the increment is a constant, it must match the memory ref size.
8083 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8084 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8085 uint32_t IncVal = CInc->getZExtValue();
8086 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
8087 if (IsLaneOp || IsDupOp)
8088 NumBytes /= VecTy.getVectorNumElements();
8089 if (IncVal != NumBytes)
8090 continue;
8091 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
8092 }
8093 SmallVector<SDValue, 8> Ops;
8094 Ops.push_back(N->getOperand(0)); // Incoming chain
8095 // Load lane and store have vector list as input.
8096 if (IsLaneOp || IsStore)
8097 for (unsigned i = 2; i < AddrOpIdx; ++i)
8098 Ops.push_back(N->getOperand(i));
8099 Ops.push_back(Addr); // Base register
8100 Ops.push_back(Inc);
8101
8102 // Return Types.
8103 EVT Tys[6];
8104 unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
8105 unsigned n;
8106 for (n = 0; n < NumResultVecs; ++n)
8107 Tys[n] = VecTy;
8108 Tys[n++] = MVT::i64; // Type of write back register
8109 Tys[n] = MVT::Other; // Type of the chain
Craig Toppere1d12942014-08-27 05:25:25 +00008110 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
Tim Northover3b0846e2014-05-24 12:50:23 +00008111
8112 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
8113 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
8114 MemInt->getMemoryVT(),
8115 MemInt->getMemOperand());
8116
8117 // Update the uses.
8118 std::vector<SDValue> NewResults;
8119 for (unsigned i = 0; i < NumResultVecs; ++i) {
8120 NewResults.push_back(SDValue(UpdN.getNode(), i));
8121 }
8122 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
8123 DCI.CombineTo(N, NewResults);
8124 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
8125
8126 break;
8127 }
8128 return SDValue();
8129}
8130
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008131// Checks to see if the value is the prescribed width and returns information
8132// about its extension mode.
8133static
8134bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
8135 ExtType = ISD::NON_EXTLOAD;
8136 switch(V.getNode()->getOpcode()) {
8137 default:
8138 return false;
8139 case ISD::LOAD: {
8140 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
8141 if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
8142 || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
8143 ExtType = LoadNode->getExtensionType();
8144 return true;
8145 }
8146 return false;
8147 }
8148 case ISD::AssertSext: {
8149 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
8150 if ((TypeNode->getVT() == MVT::i8 && width == 8)
8151 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
8152 ExtType = ISD::SEXTLOAD;
8153 return true;
8154 }
8155 return false;
8156 }
8157 case ISD::AssertZext: {
8158 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
8159 if ((TypeNode->getVT() == MVT::i8 && width == 8)
8160 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
8161 ExtType = ISD::ZEXTLOAD;
8162 return true;
8163 }
8164 return false;
8165 }
8166 case ISD::Constant:
8167 case ISD::TargetConstant: {
Reid Kleckner39ad7c92014-08-29 22:14:26 +00008168 if (std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
Aaron Ballman8ca53882014-09-02 12:19:02 +00008169 1LL << (width - 1))
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008170 return true;
8171 return false;
8172 }
8173 }
8174
8175 return true;
8176}
8177
8178// This function does a whole lot of voodoo to determine if the tests are
8179// equivalent without and with a mask. Essentially what happens is that given a
8180// DAG resembling:
8181//
8182// +-------------+ +-------------+ +-------------+ +-------------+
8183// | Input | | AddConstant | | CompConstant| | CC |
8184// +-------------+ +-------------+ +-------------+ +-------------+
8185// | | | |
8186// V V | +----------+
8187// +-------------+ +----+ | |
8188// | ADD | |0xff| | |
8189// +-------------+ +----+ | |
8190// | | | |
8191// V V | |
8192// +-------------+ | |
8193// | AND | | |
8194// +-------------+ | |
8195// | | |
8196// +-----+ | |
8197// | | |
8198// V V V
8199// +-------------+
8200// | CMP |
8201// +-------------+
8202//
8203// The AND node may be safely removed for some combinations of inputs. In
8204// particular we need to take into account the extension type of the Input,
8205// the exact values of AddConstant, CompConstant, and CC, along with the nominal
8206// width of the input (this can work for any width inputs, the above graph is
8207// specific to 8 bits.
8208//
8209// The specific equations were worked out by generating output tables for each
8210// AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
8211// problem was simplified by working with 4 bit inputs, which means we only
8212// needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
8213// extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
8214// patterns present in both extensions (0,7). For every distinct set of
8215// AddConstant and CompConstants bit patterns we can consider the masked and
8216// unmasked versions to be equivalent if the result of this function is true for
8217// all 16 distinct bit patterns of for the current extension type of Input (w0).
8218//
8219// sub w8, w0, w1
8220// and w10, w8, #0x0f
8221// cmp w8, w2
8222// cset w9, AArch64CC
8223// cmp w10, w2
8224// cset w11, AArch64CC
8225// cmp w9, w11
8226// cset w0, eq
8227// ret
8228//
8229// Since the above function shows when the outputs are equivalent it defines
8230// when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
8231// would be expensive to run during compiles. The equations below were written
8232// in a test harness that confirmed they gave equivalent outputs to the above
8233// for all inputs function, so they can be used determine if the removal is
8234// legal instead.
8235//
8236// isEquivalentMaskless() is the code for testing if the AND can be removed
8237// factored out of the DAG recognition as the DAG can take several forms.
8238
8239static
8240bool isEquivalentMaskless(unsigned CC, unsigned width,
8241 ISD::LoadExtType ExtType, signed AddConstant,
8242 signed CompConstant) {
8243 // By being careful about our equations and only writing the in term
8244 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
8245 // make them generally applicable to all bit widths.
8246 signed MaxUInt = (1 << width);
8247
8248 // For the purposes of these comparisons sign extending the type is
8249 // equivalent to zero extending the add and displacing it by half the integer
8250 // width. Provided we are careful and make sure our equations are valid over
8251 // the whole range we can just adjust the input and avoid writing equations
8252 // for sign extended inputs.
8253 if (ExtType == ISD::SEXTLOAD)
8254 AddConstant -= (1 << (width-1));
8255
8256 switch(CC) {
8257 case AArch64CC::LE:
8258 case AArch64CC::GT: {
8259 if ((AddConstant == 0) ||
8260 (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
8261 (AddConstant >= 0 && CompConstant < 0) ||
8262 (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
8263 return true;
8264 } break;
8265 case AArch64CC::LT:
8266 case AArch64CC::GE: {
8267 if ((AddConstant == 0) ||
8268 (AddConstant >= 0 && CompConstant <= 0) ||
8269 (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
8270 return true;
8271 } break;
8272 case AArch64CC::HI:
8273 case AArch64CC::LS: {
8274 if ((AddConstant >= 0 && CompConstant < 0) ||
8275 (AddConstant <= 0 && CompConstant >= -1 &&
8276 CompConstant < AddConstant + MaxUInt))
8277 return true;
8278 } break;
8279 case AArch64CC::PL:
8280 case AArch64CC::MI: {
8281 if ((AddConstant == 0) ||
8282 (AddConstant > 0 && CompConstant <= 0) ||
8283 (AddConstant < 0 && CompConstant <= AddConstant))
8284 return true;
8285 } break;
8286 case AArch64CC::LO:
8287 case AArch64CC::HS: {
8288 if ((AddConstant >= 0 && CompConstant <= 0) ||
8289 (AddConstant <= 0 && CompConstant >= 0 &&
8290 CompConstant <= AddConstant + MaxUInt))
8291 return true;
8292 } break;
8293 case AArch64CC::EQ:
8294 case AArch64CC::NE: {
8295 if ((AddConstant > 0 && CompConstant < 0) ||
8296 (AddConstant < 0 && CompConstant >= 0 &&
8297 CompConstant < AddConstant + MaxUInt) ||
8298 (AddConstant >= 0 && CompConstant >= 0 &&
8299 CompConstant >= AddConstant) ||
8300 (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
8301
8302 return true;
8303 } break;
8304 case AArch64CC::VS:
8305 case AArch64CC::VC:
8306 case AArch64CC::AL:
8307 case AArch64CC::NV:
8308 return true;
8309 case AArch64CC::Invalid:
8310 break;
8311 }
8312
8313 return false;
8314}
8315
8316static
8317SDValue performCONDCombine(SDNode *N,
8318 TargetLowering::DAGCombinerInfo &DCI,
8319 SelectionDAG &DAG, unsigned CCIndex,
8320 unsigned CmpIndex) {
8321 unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
8322 SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
8323 unsigned CondOpcode = SubsNode->getOpcode();
8324
8325 if (CondOpcode != AArch64ISD::SUBS)
8326 return SDValue();
8327
8328 // There is a SUBS feeding this condition. Is it fed by a mask we can
8329 // use?
8330
8331 SDNode *AndNode = SubsNode->getOperand(0).getNode();
8332 unsigned MaskBits = 0;
8333
8334 if (AndNode->getOpcode() != ISD::AND)
8335 return SDValue();
8336
8337 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
8338 uint32_t CNV = CN->getZExtValue();
8339 if (CNV == 255)
8340 MaskBits = 8;
8341 else if (CNV == 65535)
8342 MaskBits = 16;
8343 }
8344
8345 if (!MaskBits)
8346 return SDValue();
8347
8348 SDValue AddValue = AndNode->getOperand(0);
8349
8350 if (AddValue.getOpcode() != ISD::ADD)
8351 return SDValue();
8352
8353 // The basic dag structure is correct, grab the inputs and validate them.
8354
8355 SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
8356 SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
8357 SDValue SubsInputValue = SubsNode->getOperand(1);
8358
8359 // The mask is present and the provenance of all the values is a smaller type,
8360 // lets see if the mask is superfluous.
8361
8362 if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
8363 !isa<ConstantSDNode>(SubsInputValue.getNode()))
8364 return SDValue();
8365
8366 ISD::LoadExtType ExtType;
8367
8368 if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
8369 !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
8370 !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
8371 return SDValue();
8372
8373 if(!isEquivalentMaskless(CC, MaskBits, ExtType,
8374 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
8375 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
8376 return SDValue();
8377
8378 // The AND is not necessary, remove it.
8379
8380 SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
8381 SubsNode->getValueType(1));
8382 SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
8383
8384 SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
8385 DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
8386
8387 return SDValue(N, 0);
8388}
8389
Tim Northover3b0846e2014-05-24 12:50:23 +00008390// Optimize compare with zero and branch.
8391static SDValue performBRCONDCombine(SDNode *N,
8392 TargetLowering::DAGCombinerInfo &DCI,
8393 SelectionDAG &DAG) {
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008394 SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3);
8395 if (NV.getNode())
8396 N = NV.getNode();
Tim Northover3b0846e2014-05-24 12:50:23 +00008397 SDValue Chain = N->getOperand(0);
8398 SDValue Dest = N->getOperand(1);
8399 SDValue CCVal = N->getOperand(2);
8400 SDValue Cmp = N->getOperand(3);
8401
8402 assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
8403 unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
8404 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
8405 return SDValue();
8406
8407 unsigned CmpOpc = Cmp.getOpcode();
8408 if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
8409 return SDValue();
8410
8411 // Only attempt folding if there is only one use of the flag and no use of the
8412 // value.
8413 if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
8414 return SDValue();
8415
8416 SDValue LHS = Cmp.getOperand(0);
8417 SDValue RHS = Cmp.getOperand(1);
8418
8419 assert(LHS.getValueType() == RHS.getValueType() &&
8420 "Expected the value type to be the same for both operands!");
8421 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
8422 return SDValue();
8423
8424 if (isa<ConstantSDNode>(LHS) && cast<ConstantSDNode>(LHS)->isNullValue())
8425 std::swap(LHS, RHS);
8426
8427 if (!isa<ConstantSDNode>(RHS) || !cast<ConstantSDNode>(RHS)->isNullValue())
8428 return SDValue();
8429
8430 if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
8431 LHS.getOpcode() == ISD::SRL)
8432 return SDValue();
8433
8434 // Fold the compare into the branch instruction.
8435 SDValue BR;
8436 if (CC == AArch64CC::EQ)
8437 BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
8438 else
8439 BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
8440
8441 // Do not add new nodes to DAG combiner worklist.
8442 DCI.CombineTo(N, BR, false);
8443
8444 return SDValue();
8445}
8446
8447// vselect (v1i1 setcc) ->
8448// vselect (v1iXX setcc) (XX is the size of the compared operand type)
8449// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
8450// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
8451// such VSELECT.
8452static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
8453 SDValue N0 = N->getOperand(0);
8454 EVT CCVT = N0.getValueType();
8455
8456 if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
8457 CCVT.getVectorElementType() != MVT::i1)
8458 return SDValue();
8459
8460 EVT ResVT = N->getValueType(0);
8461 EVT CmpVT = N0.getOperand(0).getValueType();
8462 // Only combine when the result type is of the same size as the compared
8463 // operands.
8464 if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
8465 return SDValue();
8466
8467 SDValue IfTrue = N->getOperand(1);
8468 SDValue IfFalse = N->getOperand(2);
8469 SDValue SetCC =
8470 DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
8471 N0.getOperand(0), N0.getOperand(1),
8472 cast<CondCodeSDNode>(N0.getOperand(2))->get());
8473 return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
8474 IfTrue, IfFalse);
8475}
8476
8477/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
8478/// the compare-mask instructions rather than going via NZCV, even if LHS and
8479/// RHS are really scalar. This replaces any scalar setcc in the above pattern
8480/// with a vector one followed by a DUP shuffle on the result.
8481static SDValue performSelectCombine(SDNode *N, SelectionDAG &DAG) {
8482 SDValue N0 = N->getOperand(0);
8483 EVT ResVT = N->getValueType(0);
Tim Northover3c0915e2014-08-29 15:34:58 +00008484
8485 if (N0.getOpcode() != ISD::SETCC || N0.getValueType() != MVT::i1)
8486 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00008487
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008488 // If NumMaskElts == 0, the comparison is larger than select result. The
8489 // largest real NEON comparison is 64-bits per lane, which means the result is
8490 // at most 32-bits and an illegal vector. Just bail out for now.
Tim Northover3c0915e2014-08-29 15:34:58 +00008491 EVT SrcVT = N0.getOperand(0).getValueType();
Ahmed Bougachad0ce0582014-12-01 20:59:00 +00008492
8493 // Don't try to do this optimization when the setcc itself has i1 operands.
8494 // There are no legal vectors of i1, so this would be pointless.
8495 if (SrcVT == MVT::i1)
8496 return SDValue();
8497
Tim Northover3c0915e2014-08-29 15:34:58 +00008498 int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008499 if (!ResVT.isVector() || NumMaskElts == 0)
Tim Northover3b0846e2014-05-24 12:50:23 +00008500 return SDValue();
8501
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008502 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00008503 EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
8504
8505 // First perform a vector comparison, where lane 0 is the one we're interested
8506 // in.
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008507 SDLoc DL(N0);
Tim Northover3b0846e2014-05-24 12:50:23 +00008508 SDValue LHS =
8509 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
8510 SDValue RHS =
8511 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
8512 SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
8513
8514 // Now duplicate the comparison mask we want across all other lanes.
8515 SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
8516 SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data());
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008517 Mask = DAG.getNode(ISD::BITCAST, DL,
8518 ResVT.changeVectorElementTypeToInteger(), Mask);
Tim Northover3b0846e2014-05-24 12:50:23 +00008519
8520 return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
8521}
8522
8523SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
8524 DAGCombinerInfo &DCI) const {
8525 SelectionDAG &DAG = DCI.DAG;
8526 switch (N->getOpcode()) {
8527 default:
8528 break;
8529 case ISD::ADD:
8530 case ISD::SUB:
8531 return performAddSubLongCombine(N, DCI, DAG);
8532 case ISD::XOR:
8533 return performXorCombine(N, DAG, DCI, Subtarget);
8534 case ISD::MUL:
8535 return performMulCombine(N, DAG, DCI, Subtarget);
8536 case ISD::SINT_TO_FP:
8537 case ISD::UINT_TO_FP:
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00008538 return performIntToFpCombine(N, DAG, Subtarget);
Tim Northover3b0846e2014-05-24 12:50:23 +00008539 case ISD::OR:
8540 return performORCombine(N, DCI, Subtarget);
8541 case ISD::INTRINSIC_WO_CHAIN:
8542 return performIntrinsicCombine(N, DCI, Subtarget);
8543 case ISD::ANY_EXTEND:
8544 case ISD::ZERO_EXTEND:
8545 case ISD::SIGN_EXTEND:
8546 return performExtendCombine(N, DCI, DAG);
8547 case ISD::BITCAST:
8548 return performBitcastCombine(N, DCI, DAG);
8549 case ISD::CONCAT_VECTORS:
8550 return performConcatVectorsCombine(N, DCI, DAG);
8551 case ISD::SELECT:
8552 return performSelectCombine(N, DAG);
8553 case ISD::VSELECT:
8554 return performVSelectCombine(N, DCI.DAG);
8555 case ISD::STORE:
8556 return performSTORECombine(N, DCI, DAG, Subtarget);
8557 case AArch64ISD::BRCOND:
8558 return performBRCONDCombine(N, DCI, DAG);
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008559 case AArch64ISD::CSEL:
8560 return performCONDCombine(N, DCI, DAG, 2, 3);
Tim Northover3b0846e2014-05-24 12:50:23 +00008561 case AArch64ISD::DUP:
8562 return performPostLD1Combine(N, DCI, false);
8563 case ISD::INSERT_VECTOR_ELT:
8564 return performPostLD1Combine(N, DCI, true);
8565 case ISD::INTRINSIC_VOID:
8566 case ISD::INTRINSIC_W_CHAIN:
8567 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
8568 case Intrinsic::aarch64_neon_ld2:
8569 case Intrinsic::aarch64_neon_ld3:
8570 case Intrinsic::aarch64_neon_ld4:
8571 case Intrinsic::aarch64_neon_ld1x2:
8572 case Intrinsic::aarch64_neon_ld1x3:
8573 case Intrinsic::aarch64_neon_ld1x4:
8574 case Intrinsic::aarch64_neon_ld2lane:
8575 case Intrinsic::aarch64_neon_ld3lane:
8576 case Intrinsic::aarch64_neon_ld4lane:
8577 case Intrinsic::aarch64_neon_ld2r:
8578 case Intrinsic::aarch64_neon_ld3r:
8579 case Intrinsic::aarch64_neon_ld4r:
8580 case Intrinsic::aarch64_neon_st2:
8581 case Intrinsic::aarch64_neon_st3:
8582 case Intrinsic::aarch64_neon_st4:
8583 case Intrinsic::aarch64_neon_st1x2:
8584 case Intrinsic::aarch64_neon_st1x3:
8585 case Intrinsic::aarch64_neon_st1x4:
8586 case Intrinsic::aarch64_neon_st2lane:
8587 case Intrinsic::aarch64_neon_st3lane:
8588 case Intrinsic::aarch64_neon_st4lane:
8589 return performNEONPostLDSTCombine(N, DCI, DAG);
8590 default:
8591 break;
8592 }
8593 }
8594 return SDValue();
8595}
8596
8597// Check if the return value is used as only a return value, as otherwise
8598// we can't perform a tail-call. In particular, we need to check for
8599// target ISD nodes that are returns and any other "odd" constructs
8600// that the generic analysis code won't necessarily catch.
8601bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
8602 SDValue &Chain) const {
8603 if (N->getNumValues() != 1)
8604 return false;
8605 if (!N->hasNUsesOfValue(1, 0))
8606 return false;
8607
8608 SDValue TCChain = Chain;
8609 SDNode *Copy = *N->use_begin();
8610 if (Copy->getOpcode() == ISD::CopyToReg) {
8611 // If the copy has a glue operand, we conservatively assume it isn't safe to
8612 // perform a tail call.
8613 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
8614 MVT::Glue)
8615 return false;
8616 TCChain = Copy->getOperand(0);
8617 } else if (Copy->getOpcode() != ISD::FP_EXTEND)
8618 return false;
8619
8620 bool HasRet = false;
8621 for (SDNode *Node : Copy->uses()) {
8622 if (Node->getOpcode() != AArch64ISD::RET_FLAG)
8623 return false;
8624 HasRet = true;
8625 }
8626
8627 if (!HasRet)
8628 return false;
8629
8630 Chain = TCChain;
8631 return true;
8632}
8633
8634// Return whether the an instruction can potentially be optimized to a tail
8635// call. This will cause the optimizers to attempt to move, or duplicate,
8636// return instructions to help enable tail call optimizations for this
8637// instruction.
8638bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
8639 if (!CI->isTailCall())
8640 return false;
8641
8642 return true;
8643}
8644
8645bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
8646 SDValue &Offset,
8647 ISD::MemIndexedMode &AM,
8648 bool &IsInc,
8649 SelectionDAG &DAG) const {
8650 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
8651 return false;
8652
8653 Base = Op->getOperand(0);
8654 // All of the indexed addressing mode instructions take a signed
8655 // 9 bit immediate offset.
8656 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
8657 int64_t RHSC = (int64_t)RHS->getZExtValue();
8658 if (RHSC >= 256 || RHSC <= -256)
8659 return false;
8660 IsInc = (Op->getOpcode() == ISD::ADD);
8661 Offset = Op->getOperand(1);
8662 return true;
8663 }
8664 return false;
8665}
8666
8667bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
8668 SDValue &Offset,
8669 ISD::MemIndexedMode &AM,
8670 SelectionDAG &DAG) const {
8671 EVT VT;
8672 SDValue Ptr;
8673 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8674 VT = LD->getMemoryVT();
8675 Ptr = LD->getBasePtr();
8676 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8677 VT = ST->getMemoryVT();
8678 Ptr = ST->getBasePtr();
8679 } else
8680 return false;
8681
8682 bool IsInc;
8683 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
8684 return false;
8685 AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
8686 return true;
8687}
8688
8689bool AArch64TargetLowering::getPostIndexedAddressParts(
8690 SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
8691 ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
8692 EVT VT;
8693 SDValue Ptr;
8694 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8695 VT = LD->getMemoryVT();
8696 Ptr = LD->getBasePtr();
8697 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8698 VT = ST->getMemoryVT();
8699 Ptr = ST->getBasePtr();
8700 } else
8701 return false;
8702
8703 bool IsInc;
8704 if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
8705 return false;
8706 // Post-indexing updates the base, so it's not a valid transform
8707 // if that's not the same as the load's pointer.
8708 if (Ptr != Base)
8709 return false;
8710 AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
8711 return true;
8712}
8713
Tim Northoverf8bfe212014-07-18 13:07:05 +00008714static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
8715 SelectionDAG &DAG) {
Tim Northoverf8bfe212014-07-18 13:07:05 +00008716 SDLoc DL(N);
8717 SDValue Op = N->getOperand(0);
Ahmed Bougacha87946322014-12-01 20:52:32 +00008718
8719 if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
8720 return;
8721
Tim Northoverf8bfe212014-07-18 13:07:05 +00008722 Op = SDValue(
8723 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
8724 DAG.getUNDEF(MVT::i32), Op,
8725 DAG.getTargetConstant(AArch64::hsub, MVT::i32)),
8726 0);
8727 Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
8728 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
8729}
8730
Tim Northover3b0846e2014-05-24 12:50:23 +00008731void AArch64TargetLowering::ReplaceNodeResults(
8732 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
8733 switch (N->getOpcode()) {
8734 default:
8735 llvm_unreachable("Don't know how to custom expand this");
Tim Northoverf8bfe212014-07-18 13:07:05 +00008736 case ISD::BITCAST:
8737 ReplaceBITCASTResults(N, Results, DAG);
8738 return;
Tim Northover3b0846e2014-05-24 12:50:23 +00008739 case ISD::FP_TO_UINT:
8740 case ISD::FP_TO_SINT:
8741 assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
8742 // Let normal code take care of it by not adding anything to Results.
8743 return;
8744 }
8745}
8746
Akira Hatanakae5b6e0d2014-07-25 19:31:34 +00008747bool AArch64TargetLowering::useLoadStackGuardNode() const {
8748 return true;
8749}
8750
Hao Liu44e5d7a2014-11-21 06:39:58 +00008751bool AArch64TargetLowering::combineRepeatedFPDivisors(unsigned NumUsers) const {
8752 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
8753 // reciprocal if there are three or more FDIVs.
8754 return NumUsers > 2;
8755}
8756
Chandler Carruth9d010ff2014-07-03 00:23:43 +00008757TargetLoweringBase::LegalizeTypeAction
8758AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
8759 MVT SVT = VT.getSimpleVT();
8760 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
8761 // v4i16, v2i32 instead of to promote.
8762 if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
8763 || SVT == MVT::v1f32)
8764 return TypeWidenVector;
8765
8766 return TargetLoweringBase::getPreferredVectorAction(VT);
8767}
8768
Robin Morisseted3d48f2014-09-03 21:29:59 +00008769// Loads and stores less than 128-bits are already atomic; ones above that
8770// are doomed anyway, so defer to the default libcall and blame the OS when
8771// things go wrong.
8772bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
8773 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
8774 return Size == 128;
8775}
8776
8777// Loads and stores less than 128-bits are already atomic; ones above that
8778// are doomed anyway, so defer to the default libcall and blame the OS when
8779// things go wrong.
8780bool AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
8781 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
8782 return Size == 128;
8783}
8784
8785// For the real atomic operations, we have ldxr/stxr up to 128 bits,
8786bool AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
8787 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
8788 return Size <= 128;
8789}
8790
Robin Morisset25c8e312014-09-17 00:06:58 +00008791bool AArch64TargetLowering::hasLoadLinkedStoreConditional() const {
8792 return true;
8793}
8794
Tim Northover3b0846e2014-05-24 12:50:23 +00008795Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
8796 AtomicOrdering Ord) const {
8797 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
8798 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
Robin Morissetb155f522014-08-18 16:48:58 +00008799 bool IsAcquire = isAtLeastAcquire(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +00008800
8801 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
8802 // intrinsic must return {i64, i64} and we have to recombine them into a
8803 // single i128 here.
8804 if (ValTy->getPrimitiveSizeInBits() == 128) {
8805 Intrinsic::ID Int =
8806 IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
8807 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int);
8808
8809 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
8810 Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
8811
8812 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
8813 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
8814 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
8815 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
8816 return Builder.CreateOr(
8817 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
8818 }
8819
8820 Type *Tys[] = { Addr->getType() };
8821 Intrinsic::ID Int =
8822 IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
8823 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys);
8824
8825 return Builder.CreateTruncOrBitCast(
8826 Builder.CreateCall(Ldxr, Addr),
8827 cast<PointerType>(Addr->getType())->getElementType());
8828}
8829
8830Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
8831 Value *Val, Value *Addr,
8832 AtomicOrdering Ord) const {
8833 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Robin Morissetb155f522014-08-18 16:48:58 +00008834 bool IsRelease = isAtLeastRelease(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +00008835
8836 // Since the intrinsics must have legal type, the i128 intrinsics take two
8837 // parameters: "i64, i64". We must marshal Val into the appropriate form
8838 // before the call.
8839 if (Val->getType()->getPrimitiveSizeInBits() == 128) {
8840 Intrinsic::ID Int =
8841 IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
8842 Function *Stxr = Intrinsic::getDeclaration(M, Int);
8843 Type *Int64Ty = Type::getInt64Ty(M->getContext());
8844
8845 Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
8846 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
8847 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
8848 return Builder.CreateCall3(Stxr, Lo, Hi, Addr);
8849 }
8850
8851 Intrinsic::ID Int =
8852 IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
8853 Type *Tys[] = { Addr->getType() };
8854 Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
8855
8856 return Builder.CreateCall2(
8857 Stxr, Builder.CreateZExtOrBitCast(
8858 Val, Stxr->getFunctionType()->getParamType(0)),
8859 Addr);
8860}
Tim Northover3c55cca2014-11-27 21:02:42 +00008861
8862bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
8863 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
8864 return Ty->isArrayTy();
8865}