blob: 04ea60c51b078e46352798f21f3df0b918a00b9a [file] [log] [blame]
Tim Northover3b0846e2014-05-24 12:50:23 +00001//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AArch64TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AArch64ISelLowering.h"
Benjamin Kramer1f8930e2014-07-25 11:42:14 +000015#include "AArch64MachineFunctionInfo.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000016#include "AArch64PerfectShuffle.h"
17#include "AArch64Subtarget.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000018#include "AArch64TargetMachine.h"
19#include "AArch64TargetObjectFile.h"
20#include "MCTargetDesc/AArch64AddressingModes.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/IR/Function.h"
27#include "llvm/IR/Intrinsics.h"
28#include "llvm/IR/Type.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Target/TargetOptions.h"
34using namespace llvm;
35
36#define DEBUG_TYPE "aarch64-lower"
37
38STATISTIC(NumTailCalls, "Number of tail calls");
39STATISTIC(NumShiftInserts, "Number of vector shift inserts");
40
Alexey Samsonovf17f03e2014-08-19 18:40:39 +000041namespace {
Tim Northover3b0846e2014-05-24 12:50:23 +000042enum AlignMode {
43 StrictAlign,
44 NoStrictAlign
45};
Alexey Samsonovf17f03e2014-08-19 18:40:39 +000046}
Tim Northover3b0846e2014-05-24 12:50:23 +000047
48static cl::opt<AlignMode>
49Align(cl::desc("Load/store alignment support"),
50 cl::Hidden, cl::init(NoStrictAlign),
51 cl::values(
52 clEnumValN(StrictAlign, "aarch64-strict-align",
53 "Disallow all unaligned memory accesses"),
54 clEnumValN(NoStrictAlign, "aarch64-no-strict-align",
55 "Allow unaligned memory accesses"),
56 clEnumValEnd));
57
58// Place holder until extr generation is tested fully.
59static cl::opt<bool>
60EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden,
61 cl::desc("Allow AArch64 (or (shift)(shift))->extract"),
62 cl::init(true));
63
64static cl::opt<bool>
65EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
66 cl::desc("Allow AArch64 SLI/SRI formation"),
67 cl::init(false));
68
Tim Northover3b0846e2014-05-24 12:50:23 +000069
Eric Christopherf12e1ab2014-10-03 00:42:41 +000070AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM)
Aditya Nandakumar30531552014-11-13 21:29:21 +000071 : TargetLowering(TM) {
Tim Northover3b0846e2014-05-24 12:50:23 +000072 Subtarget = &TM.getSubtarget<AArch64Subtarget>();
73
74 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
75 // we have to make something up. Arbitrarily, choose ZeroOrOne.
76 setBooleanContents(ZeroOrOneBooleanContent);
77 // When comparing vectors the result sets the different elements in the
78 // vector to all-one or all-zero.
79 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
80
81 // Set up the register classes.
82 addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
83 addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
84
85 if (Subtarget->hasFPARMv8()) {
86 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
87 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
88 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
89 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
90 }
91
92 if (Subtarget->hasNEON()) {
93 addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
94 addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
95 // Someone set us up the NEON.
96 addDRTypeForNEON(MVT::v2f32);
97 addDRTypeForNEON(MVT::v8i8);
98 addDRTypeForNEON(MVT::v4i16);
99 addDRTypeForNEON(MVT::v2i32);
100 addDRTypeForNEON(MVT::v1i64);
101 addDRTypeForNEON(MVT::v1f64);
Oliver Stannard89d15422014-08-27 16:16:04 +0000102 addDRTypeForNEON(MVT::v4f16);
Tim Northover3b0846e2014-05-24 12:50:23 +0000103
104 addQRTypeForNEON(MVT::v4f32);
105 addQRTypeForNEON(MVT::v2f64);
106 addQRTypeForNEON(MVT::v16i8);
107 addQRTypeForNEON(MVT::v8i16);
108 addQRTypeForNEON(MVT::v4i32);
109 addQRTypeForNEON(MVT::v2i64);
Oliver Stannard89d15422014-08-27 16:16:04 +0000110 addQRTypeForNEON(MVT::v8f16);
Tim Northover3b0846e2014-05-24 12:50:23 +0000111 }
112
113 // Compute derived properties from the register classes
114 computeRegisterProperties();
115
116 // Provide all sorts of operation actions
117 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
118 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
119 setOperationAction(ISD::SETCC, MVT::i32, Custom);
120 setOperationAction(ISD::SETCC, MVT::i64, Custom);
121 setOperationAction(ISD::SETCC, MVT::f32, Custom);
122 setOperationAction(ISD::SETCC, MVT::f64, Custom);
123 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
124 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
125 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
126 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
127 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
128 setOperationAction(ISD::SELECT, MVT::i32, Custom);
129 setOperationAction(ISD::SELECT, MVT::i64, Custom);
130 setOperationAction(ISD::SELECT, MVT::f32, Custom);
131 setOperationAction(ISD::SELECT, MVT::f64, Custom);
132 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
133 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
134 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
135 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
136 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
137 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
138
139 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
140 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
141 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
142
143 setOperationAction(ISD::FREM, MVT::f32, Expand);
144 setOperationAction(ISD::FREM, MVT::f64, Expand);
145 setOperationAction(ISD::FREM, MVT::f80, Expand);
146
147 // Custom lowering hooks are needed for XOR
148 // to fold it into CSINC/CSINV.
149 setOperationAction(ISD::XOR, MVT::i32, Custom);
150 setOperationAction(ISD::XOR, MVT::i64, Custom);
151
152 // Virtually no operation on f128 is legal, but LLVM can't expand them when
153 // there's a valid register class, so we need custom operations in most cases.
154 setOperationAction(ISD::FABS, MVT::f128, Expand);
155 setOperationAction(ISD::FADD, MVT::f128, Custom);
156 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
157 setOperationAction(ISD::FCOS, MVT::f128, Expand);
158 setOperationAction(ISD::FDIV, MVT::f128, Custom);
159 setOperationAction(ISD::FMA, MVT::f128, Expand);
160 setOperationAction(ISD::FMUL, MVT::f128, Custom);
161 setOperationAction(ISD::FNEG, MVT::f128, Expand);
162 setOperationAction(ISD::FPOW, MVT::f128, Expand);
163 setOperationAction(ISD::FREM, MVT::f128, Expand);
164 setOperationAction(ISD::FRINT, MVT::f128, Expand);
165 setOperationAction(ISD::FSIN, MVT::f128, Expand);
166 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
167 setOperationAction(ISD::FSQRT, MVT::f128, Expand);
168 setOperationAction(ISD::FSUB, MVT::f128, Custom);
169 setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
170 setOperationAction(ISD::SETCC, MVT::f128, Custom);
171 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
172 setOperationAction(ISD::SELECT, MVT::f128, Custom);
173 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
174 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
175
176 // Lowering for many of the conversions is actually specified by the non-f128
177 // type. The LowerXXX function will be trivial when f128 isn't involved.
178 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
179 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
180 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
181 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
182 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
183 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
184 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
185 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
186 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
187 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
188 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
189 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
190 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
191 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
192
193 // Variable arguments.
194 setOperationAction(ISD::VASTART, MVT::Other, Custom);
195 setOperationAction(ISD::VAARG, MVT::Other, Custom);
196 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
197 setOperationAction(ISD::VAEND, MVT::Other, Expand);
198
199 // Variable-sized objects.
200 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
201 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
202 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
203
204 // Exception handling.
205 // FIXME: These are guesses. Has this been defined yet?
206 setExceptionPointerRegister(AArch64::X0);
207 setExceptionSelectorRegister(AArch64::X1);
208
209 // Constant pool entries
210 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
211
212 // BlockAddress
213 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
214
215 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
216 setOperationAction(ISD::ADDC, MVT::i32, Custom);
217 setOperationAction(ISD::ADDE, MVT::i32, Custom);
218 setOperationAction(ISD::SUBC, MVT::i32, Custom);
219 setOperationAction(ISD::SUBE, MVT::i32, Custom);
220 setOperationAction(ISD::ADDC, MVT::i64, Custom);
221 setOperationAction(ISD::ADDE, MVT::i64, Custom);
222 setOperationAction(ISD::SUBC, MVT::i64, Custom);
223 setOperationAction(ISD::SUBE, MVT::i64, Custom);
224
225 // AArch64 lacks both left-rotate and popcount instructions.
226 setOperationAction(ISD::ROTL, MVT::i32, Expand);
227 setOperationAction(ISD::ROTL, MVT::i64, Expand);
228
229 // AArch64 doesn't have {U|S}MUL_LOHI.
230 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
231 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
232
233
234 // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero
235 // counterparts, which AArch64 supports directly.
236 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
237 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
238 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
239 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
240
241 setOperationAction(ISD::CTPOP, MVT::i32, Custom);
242 setOperationAction(ISD::CTPOP, MVT::i64, Custom);
243
244 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
245 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
246 setOperationAction(ISD::SREM, MVT::i32, Expand);
247 setOperationAction(ISD::SREM, MVT::i64, Expand);
248 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
249 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
250 setOperationAction(ISD::UREM, MVT::i32, Expand);
251 setOperationAction(ISD::UREM, MVT::i64, Expand);
252
253 // Custom lower Add/Sub/Mul with overflow.
254 setOperationAction(ISD::SADDO, MVT::i32, Custom);
255 setOperationAction(ISD::SADDO, MVT::i64, Custom);
256 setOperationAction(ISD::UADDO, MVT::i32, Custom);
257 setOperationAction(ISD::UADDO, MVT::i64, Custom);
258 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
259 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
260 setOperationAction(ISD::USUBO, MVT::i32, Custom);
261 setOperationAction(ISD::USUBO, MVT::i64, Custom);
262 setOperationAction(ISD::SMULO, MVT::i32, Custom);
263 setOperationAction(ISD::SMULO, MVT::i64, Custom);
264 setOperationAction(ISD::UMULO, MVT::i32, Custom);
265 setOperationAction(ISD::UMULO, MVT::i64, Custom);
266
267 setOperationAction(ISD::FSIN, MVT::f32, Expand);
268 setOperationAction(ISD::FSIN, MVT::f64, Expand);
269 setOperationAction(ISD::FCOS, MVT::f32, Expand);
270 setOperationAction(ISD::FCOS, MVT::f64, Expand);
271 setOperationAction(ISD::FPOW, MVT::f32, Expand);
272 setOperationAction(ISD::FPOW, MVT::f64, Expand);
273 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
274 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
275
Oliver Stannardf5469be2014-08-18 14:22:39 +0000276 // f16 is storage-only, so we promote operations to f32 if we know this is
277 // valid, and ignore them otherwise. The operations not mentioned here will
278 // fail to select, but this is not a major problem as no source language
279 // should be emitting native f16 operations yet.
280 setOperationAction(ISD::FADD, MVT::f16, Promote);
281 setOperationAction(ISD::FDIV, MVT::f16, Promote);
282 setOperationAction(ISD::FMUL, MVT::f16, Promote);
283 setOperationAction(ISD::FSUB, MVT::f16, Promote);
284
Oliver Stannard89d15422014-08-27 16:16:04 +0000285 // v4f16 is also a storage-only type, so promote it to v4f32 when that is
286 // known to be safe.
287 setOperationAction(ISD::FADD, MVT::v4f16, Promote);
288 setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
289 setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
290 setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
291 setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote);
292 setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote);
293 AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
294 AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
295 AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
296 AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
297 AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32);
298 AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32);
299
300 // Expand all other v4f16 operations.
301 // FIXME: We could generate better code by promoting some operations to
302 // a pair of v4f32s
303 setOperationAction(ISD::FABS, MVT::v4f16, Expand);
304 setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
305 setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
306 setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
307 setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
308 setOperationAction(ISD::FMA, MVT::v4f16, Expand);
309 setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
310 setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
311 setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
312 setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
313 setOperationAction(ISD::FREM, MVT::v4f16, Expand);
314 setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
315 setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
316 setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
317 setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
318 setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
319 setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
320 setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
321 setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
322 setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
323 setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
324 setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
325 setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
326 setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
327 setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
328 setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
329
330
331 // v8f16 is also a storage-only type, so expand it.
332 setOperationAction(ISD::FABS, MVT::v8f16, Expand);
333 setOperationAction(ISD::FADD, MVT::v8f16, Expand);
334 setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
335 setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
336 setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
337 setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
338 setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
339 setOperationAction(ISD::FMA, MVT::v8f16, Expand);
340 setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
341 setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
342 setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
343 setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
344 setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
345 setOperationAction(ISD::FREM, MVT::v8f16, Expand);
346 setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
347 setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
348 setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
349 setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
350 setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
351 setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
352 setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
353 setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
354 setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
355 setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
356 setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
357 setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
358 setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
359 setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
360 setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
361 setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
362 setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
363
Tim Northover3b0846e2014-05-24 12:50:23 +0000364 // AArch64 has implementations of a lot of rounding-like FP operations.
365 static MVT RoundingTypes[] = { MVT::f32, MVT::f64};
366 for (unsigned I = 0; I < array_lengthof(RoundingTypes); ++I) {
367 MVT Ty = RoundingTypes[I];
368 setOperationAction(ISD::FFLOOR, Ty, Legal);
369 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
370 setOperationAction(ISD::FCEIL, Ty, Legal);
371 setOperationAction(ISD::FRINT, Ty, Legal);
372 setOperationAction(ISD::FTRUNC, Ty, Legal);
373 setOperationAction(ISD::FROUND, Ty, Legal);
374 }
375
376 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
377
378 if (Subtarget->isTargetMachO()) {
379 // For iOS, we don't want to the normal expansion of a libcall to
380 // sincos. We want to issue a libcall to __sincos_stret to avoid memory
381 // traffic.
382 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
383 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
384 } else {
385 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
386 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
387 }
388
389 // AArch64 does not have floating-point extending loads, i1 sign-extending
390 // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
Tim Northoverb94f0852014-07-18 13:01:31 +0000391 setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000392 setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
393 setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
394 setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
395 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Expand);
396 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
397 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
398 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
399 setTruncStoreAction(MVT::f128, MVT::f80, Expand);
400 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
401 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
402 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
Tim Northoverf8bfe212014-07-18 13:07:05 +0000403
404 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
405 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
406
Tim Northover3b0846e2014-05-24 12:50:23 +0000407 // Indexed loads and stores are supported.
408 for (unsigned im = (unsigned)ISD::PRE_INC;
409 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
410 setIndexedLoadAction(im, MVT::i8, Legal);
411 setIndexedLoadAction(im, MVT::i16, Legal);
412 setIndexedLoadAction(im, MVT::i32, Legal);
413 setIndexedLoadAction(im, MVT::i64, Legal);
414 setIndexedLoadAction(im, MVT::f64, Legal);
415 setIndexedLoadAction(im, MVT::f32, Legal);
416 setIndexedStoreAction(im, MVT::i8, Legal);
417 setIndexedStoreAction(im, MVT::i16, Legal);
418 setIndexedStoreAction(im, MVT::i32, Legal);
419 setIndexedStoreAction(im, MVT::i64, Legal);
420 setIndexedStoreAction(im, MVT::f64, Legal);
421 setIndexedStoreAction(im, MVT::f32, Legal);
422 }
423
424 // Trap.
425 setOperationAction(ISD::TRAP, MVT::Other, Legal);
426
427 // We combine OR nodes for bitfield operations.
428 setTargetDAGCombine(ISD::OR);
429
430 // Vector add and sub nodes may conceal a high-half opportunity.
431 // Also, try to fold ADD into CSINC/CSINV..
432 setTargetDAGCombine(ISD::ADD);
433 setTargetDAGCombine(ISD::SUB);
434
435 setTargetDAGCombine(ISD::XOR);
436 setTargetDAGCombine(ISD::SINT_TO_FP);
437 setTargetDAGCombine(ISD::UINT_TO_FP);
438
439 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
440
441 setTargetDAGCombine(ISD::ANY_EXTEND);
442 setTargetDAGCombine(ISD::ZERO_EXTEND);
443 setTargetDAGCombine(ISD::SIGN_EXTEND);
444 setTargetDAGCombine(ISD::BITCAST);
445 setTargetDAGCombine(ISD::CONCAT_VECTORS);
446 setTargetDAGCombine(ISD::STORE);
447
448 setTargetDAGCombine(ISD::MUL);
449
450 setTargetDAGCombine(ISD::SELECT);
451 setTargetDAGCombine(ISD::VSELECT);
452
453 setTargetDAGCombine(ISD::INTRINSIC_VOID);
454 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
455 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
456
457 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
458 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
459 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
460
461 setStackPointerRegisterToSaveRestore(AArch64::SP);
462
463 setSchedulingPreference(Sched::Hybrid);
464
465 // Enable TBZ/TBNZ
466 MaskAndBranchFoldingIsLegal = true;
467
468 setMinFunctionAlignment(2);
469
470 RequireStrictAlign = (Align == StrictAlign);
471
472 setHasExtractBitsInsn(true);
473
474 if (Subtarget->hasNEON()) {
475 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
476 // silliness like this:
477 setOperationAction(ISD::FABS, MVT::v1f64, Expand);
478 setOperationAction(ISD::FADD, MVT::v1f64, Expand);
479 setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
480 setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
481 setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
482 setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
483 setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
484 setOperationAction(ISD::FMA, MVT::v1f64, Expand);
485 setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
486 setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
487 setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
488 setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
489 setOperationAction(ISD::FREM, MVT::v1f64, Expand);
490 setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
491 setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
492 setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
493 setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
494 setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
495 setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
496 setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
497 setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
498 setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
499 setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
500 setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
501 setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
502
503 setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
504 setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
505 setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
506 setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
507 setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
508
509 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
510
511 // AArch64 doesn't have a direct vector ->f32 conversion instructions for
512 // elements smaller than i32, so promote the input to i32 first.
513 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
514 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
515 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
516 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
517 // Similarly, there is no direct i32 -> f64 vector conversion instruction.
518 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
519 setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
520 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
521 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
522
523 // AArch64 doesn't have MUL.2d:
524 setOperationAction(ISD::MUL, MVT::v2i64, Expand);
Chad Rosierd9d0f862014-10-08 02:31:24 +0000525 // Custom handling for some quad-vector types to detect MULL.
526 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
527 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
528 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
529
Tim Northover3b0846e2014-05-24 12:50:23 +0000530 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
531 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
532 // Likewise, narrowing and extending vector loads/stores aren't handled
533 // directly.
534 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
535 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
536
537 setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
538 Expand);
539
540 setOperationAction(ISD::MULHS, (MVT::SimpleValueType)VT, Expand);
541 setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
542 setOperationAction(ISD::MULHU, (MVT::SimpleValueType)VT, Expand);
543 setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
544
545 setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
546
547 for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
548 InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
549 setTruncStoreAction((MVT::SimpleValueType)VT,
550 (MVT::SimpleValueType)InnerVT, Expand);
551 setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
552 setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
553 setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
554 }
555
556 // AArch64 has implementations of a lot of rounding-like FP operations.
557 static MVT RoundingVecTypes[] = {MVT::v2f32, MVT::v4f32, MVT::v2f64 };
558 for (unsigned I = 0; I < array_lengthof(RoundingVecTypes); ++I) {
559 MVT Ty = RoundingVecTypes[I];
560 setOperationAction(ISD::FFLOOR, Ty, Legal);
561 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
562 setOperationAction(ISD::FCEIL, Ty, Legal);
563 setOperationAction(ISD::FRINT, Ty, Legal);
564 setOperationAction(ISD::FTRUNC, Ty, Legal);
565 setOperationAction(ISD::FROUND, Ty, Legal);
566 }
567 }
James Molloyf089ab72014-08-06 10:42:18 +0000568
569 // Prefer likely predicted branches to selects on out-of-order cores.
570 if (Subtarget->isCortexA57())
571 PredictableSelectIsExpensive = true;
Tim Northover3b0846e2014-05-24 12:50:23 +0000572}
573
574void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) {
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000575 if (VT == MVT::v2f32 || VT == MVT::v4f16) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000576 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
577 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32);
578
579 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
580 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32);
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000581 } else if (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000582 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
583 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64);
584
585 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
586 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64);
587 }
588
589 // Mark vector float intrinsics as expand.
590 if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
591 setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand);
592 setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand);
593 setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand);
594 setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand);
595 setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand);
596 setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand);
597 setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand);
598 setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand);
599 setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand);
600 }
601
602 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
603 setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
604 setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
605 setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
606 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom);
607 setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
608 setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
609 setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
610 setOperationAction(ISD::AND, VT.getSimpleVT(), Custom);
611 setOperationAction(ISD::OR, VT.getSimpleVT(), Custom);
612 setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
613 setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
614
615 setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
616 setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
617 setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand);
618 setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
619
620 // CNT supports only B element sizes.
621 if (VT != MVT::v8i8 && VT != MVT::v16i8)
622 setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand);
623
624 setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
625 setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
626 setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
627 setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
628 setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
629
630 setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
631 setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
632
633 if (Subtarget->isLittleEndian()) {
634 for (unsigned im = (unsigned)ISD::PRE_INC;
635 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
636 setIndexedLoadAction(im, VT.getSimpleVT(), Legal);
637 setIndexedStoreAction(im, VT.getSimpleVT(), Legal);
638 }
639 }
640}
641
642void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
643 addRegisterClass(VT, &AArch64::FPR64RegClass);
644 addTypeForNEON(VT, MVT::v2i32);
645}
646
647void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
648 addRegisterClass(VT, &AArch64::FPR128RegClass);
649 addTypeForNEON(VT, MVT::v4i32);
650}
651
652EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
653 if (!VT.isVector())
654 return MVT::i32;
655 return VT.changeVectorElementTypeToInteger();
656}
657
658/// computeKnownBitsForTargetNode - Determine which of the bits specified in
659/// Mask are known to be either zero or one and return them in the
660/// KnownZero/KnownOne bitsets.
661void AArch64TargetLowering::computeKnownBitsForTargetNode(
662 const SDValue Op, APInt &KnownZero, APInt &KnownOne,
663 const SelectionDAG &DAG, unsigned Depth) const {
664 switch (Op.getOpcode()) {
665 default:
666 break;
667 case AArch64ISD::CSEL: {
668 APInt KnownZero2, KnownOne2;
669 DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
670 DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
671 KnownZero &= KnownZero2;
672 KnownOne &= KnownOne2;
673 break;
674 }
675 case ISD::INTRINSIC_W_CHAIN: {
676 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
677 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
678 switch (IntID) {
679 default: return;
680 case Intrinsic::aarch64_ldaxr:
681 case Intrinsic::aarch64_ldxr: {
682 unsigned BitWidth = KnownOne.getBitWidth();
683 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
684 unsigned MemBits = VT.getScalarType().getSizeInBits();
685 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
686 return;
687 }
688 }
689 break;
690 }
691 case ISD::INTRINSIC_WO_CHAIN:
692 case ISD::INTRINSIC_VOID: {
693 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
694 switch (IntNo) {
695 default:
696 break;
697 case Intrinsic::aarch64_neon_umaxv:
698 case Intrinsic::aarch64_neon_uminv: {
699 // Figure out the datatype of the vector operand. The UMINV instruction
700 // will zero extend the result, so we can mark as known zero all the
701 // bits larger than the element datatype. 32-bit or larget doesn't need
702 // this as those are legal types and will be handled by isel directly.
703 MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
704 unsigned BitWidth = KnownZero.getBitWidth();
705 if (VT == MVT::v8i8 || VT == MVT::v16i8) {
706 assert(BitWidth >= 8 && "Unexpected width!");
707 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
708 KnownZero |= Mask;
709 } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
710 assert(BitWidth >= 16 && "Unexpected width!");
711 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
712 KnownZero |= Mask;
713 }
714 break;
715 } break;
716 }
717 }
718 }
719}
720
721MVT AArch64TargetLowering::getScalarShiftAmountTy(EVT LHSTy) const {
722 return MVT::i64;
723}
724
725unsigned AArch64TargetLowering::getMaximalGlobalOffset() const {
726 // FIXME: On AArch64, this depends on the type.
Tim Northover21feb2e2014-07-01 19:47:09 +0000727 // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes().
Tim Northover3b0846e2014-05-24 12:50:23 +0000728 // and the offset has to be a multiple of the related size in bytes.
729 return 4095;
730}
731
732FastISel *
733AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
734 const TargetLibraryInfo *libInfo) const {
735 return AArch64::createFastISel(funcInfo, libInfo);
736}
737
738const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
739 switch (Opcode) {
740 default:
741 return nullptr;
742 case AArch64ISD::CALL: return "AArch64ISD::CALL";
743 case AArch64ISD::ADRP: return "AArch64ISD::ADRP";
744 case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow";
745 case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot";
746 case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG";
747 case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND";
748 case AArch64ISD::CSEL: return "AArch64ISD::CSEL";
749 case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL";
750 case AArch64ISD::CSINV: return "AArch64ISD::CSINV";
751 case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG";
752 case AArch64ISD::CSINC: return "AArch64ISD::CSINC";
753 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
754 case AArch64ISD::TLSDESC_CALL: return "AArch64ISD::TLSDESC_CALL";
755 case AArch64ISD::ADC: return "AArch64ISD::ADC";
756 case AArch64ISD::SBC: return "AArch64ISD::SBC";
757 case AArch64ISD::ADDS: return "AArch64ISD::ADDS";
758 case AArch64ISD::SUBS: return "AArch64ISD::SUBS";
759 case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
760 case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
761 case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
762 case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
763 case AArch64ISD::FMIN: return "AArch64ISD::FMIN";
764 case AArch64ISD::FMAX: return "AArch64ISD::FMAX";
765 case AArch64ISD::DUP: return "AArch64ISD::DUP";
766 case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8";
767 case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16";
768 case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32";
769 case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64";
770 case AArch64ISD::MOVI: return "AArch64ISD::MOVI";
771 case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift";
772 case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit";
773 case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl";
774 case AArch64ISD::FMOV: return "AArch64ISD::FMOV";
775 case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift";
776 case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl";
777 case AArch64ISD::BICi: return "AArch64ISD::BICi";
778 case AArch64ISD::ORRi: return "AArch64ISD::ORRi";
779 case AArch64ISD::BSL: return "AArch64ISD::BSL";
780 case AArch64ISD::NEG: return "AArch64ISD::NEG";
781 case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
782 case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1";
783 case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2";
784 case AArch64ISD::UZP1: return "AArch64ISD::UZP1";
785 case AArch64ISD::UZP2: return "AArch64ISD::UZP2";
786 case AArch64ISD::TRN1: return "AArch64ISD::TRN1";
787 case AArch64ISD::TRN2: return "AArch64ISD::TRN2";
788 case AArch64ISD::REV16: return "AArch64ISD::REV16";
789 case AArch64ISD::REV32: return "AArch64ISD::REV32";
790 case AArch64ISD::REV64: return "AArch64ISD::REV64";
791 case AArch64ISD::EXT: return "AArch64ISD::EXT";
792 case AArch64ISD::VSHL: return "AArch64ISD::VSHL";
793 case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR";
794 case AArch64ISD::VASHR: return "AArch64ISD::VASHR";
795 case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ";
796 case AArch64ISD::CMGE: return "AArch64ISD::CMGE";
797 case AArch64ISD::CMGT: return "AArch64ISD::CMGT";
798 case AArch64ISD::CMHI: return "AArch64ISD::CMHI";
799 case AArch64ISD::CMHS: return "AArch64ISD::CMHS";
800 case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ";
801 case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE";
802 case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT";
803 case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz";
804 case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz";
805 case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz";
806 case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz";
807 case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz";
808 case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz";
809 case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz";
810 case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz";
811 case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz";
812 case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz";
813 case AArch64ISD::NOT: return "AArch64ISD::NOT";
814 case AArch64ISD::BIT: return "AArch64ISD::BIT";
815 case AArch64ISD::CBZ: return "AArch64ISD::CBZ";
816 case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ";
817 case AArch64ISD::TBZ: return "AArch64ISD::TBZ";
818 case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ";
819 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
820 case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
821 case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
Asiri Rathnayake530b3ed2014-10-01 09:59:45 +0000822 case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST";
Tim Northover3b0846e2014-05-24 12:50:23 +0000823 case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
824 case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
825 case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
826 case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I";
827 case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I";
828 case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
829 case AArch64ISD::LD2post: return "AArch64ISD::LD2post";
830 case AArch64ISD::LD3post: return "AArch64ISD::LD3post";
831 case AArch64ISD::LD4post: return "AArch64ISD::LD4post";
832 case AArch64ISD::ST2post: return "AArch64ISD::ST2post";
833 case AArch64ISD::ST3post: return "AArch64ISD::ST3post";
834 case AArch64ISD::ST4post: return "AArch64ISD::ST4post";
835 case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post";
836 case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post";
837 case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post";
838 case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post";
839 case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post";
840 case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post";
841 case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost";
842 case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost";
843 case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost";
844 case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost";
845 case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost";
846 case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost";
847 case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost";
848 case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost";
849 case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
850 case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
851 case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
Chad Rosierd9d0f862014-10-08 02:31:24 +0000852 case AArch64ISD::SMULL: return "AArch64ISD::SMULL";
853 case AArch64ISD::UMULL: return "AArch64ISD::UMULL";
Tim Northover3b0846e2014-05-24 12:50:23 +0000854 }
855}
856
857MachineBasicBlock *
858AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
859 MachineBasicBlock *MBB) const {
860 // We materialise the F128CSEL pseudo-instruction as some control flow and a
861 // phi node:
862
863 // OrigBB:
864 // [... previous instrs leading to comparison ...]
865 // b.ne TrueBB
866 // b EndBB
867 // TrueBB:
868 // ; Fallthrough
869 // EndBB:
870 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
871
Eric Christopherd9134482014-08-04 21:25:23 +0000872 const TargetInstrInfo *TII =
873 getTargetMachine().getSubtargetImpl()->getInstrInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +0000874 MachineFunction *MF = MBB->getParent();
875 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
876 DebugLoc DL = MI->getDebugLoc();
877 MachineFunction::iterator It = MBB;
878 ++It;
879
880 unsigned DestReg = MI->getOperand(0).getReg();
881 unsigned IfTrueReg = MI->getOperand(1).getReg();
882 unsigned IfFalseReg = MI->getOperand(2).getReg();
883 unsigned CondCode = MI->getOperand(3).getImm();
884 bool NZCVKilled = MI->getOperand(4).isKill();
885
886 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
887 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
888 MF->insert(It, TrueBB);
889 MF->insert(It, EndBB);
890
891 // Transfer rest of current basic-block to EndBB
892 EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
893 MBB->end());
894 EndBB->transferSuccessorsAndUpdatePHIs(MBB);
895
896 BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
897 BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
898 MBB->addSuccessor(TrueBB);
899 MBB->addSuccessor(EndBB);
900
901 // TrueBB falls through to the end.
902 TrueBB->addSuccessor(EndBB);
903
904 if (!NZCVKilled) {
905 TrueBB->addLiveIn(AArch64::NZCV);
906 EndBB->addLiveIn(AArch64::NZCV);
907 }
908
909 BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
910 .addReg(IfTrueReg)
911 .addMBB(TrueBB)
912 .addReg(IfFalseReg)
913 .addMBB(MBB);
914
915 MI->eraseFromParent();
916 return EndBB;
917}
918
919MachineBasicBlock *
920AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
921 MachineBasicBlock *BB) const {
922 switch (MI->getOpcode()) {
923 default:
924#ifndef NDEBUG
925 MI->dump();
926#endif
Craig Topper35b2f752014-06-19 06:10:58 +0000927 llvm_unreachable("Unexpected instruction for custom inserter!");
Tim Northover3b0846e2014-05-24 12:50:23 +0000928
929 case AArch64::F128CSEL:
930 return EmitF128CSEL(MI, BB);
931
932 case TargetOpcode::STACKMAP:
933 case TargetOpcode::PATCHPOINT:
934 return emitPatchPoint(MI, BB);
935 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000936}
937
938//===----------------------------------------------------------------------===//
939// AArch64 Lowering private implementation.
940//===----------------------------------------------------------------------===//
941
942//===----------------------------------------------------------------------===//
943// Lowering Code
944//===----------------------------------------------------------------------===//
945
946/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
947/// CC
948static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
949 switch (CC) {
950 default:
951 llvm_unreachable("Unknown condition code!");
952 case ISD::SETNE:
953 return AArch64CC::NE;
954 case ISD::SETEQ:
955 return AArch64CC::EQ;
956 case ISD::SETGT:
957 return AArch64CC::GT;
958 case ISD::SETGE:
959 return AArch64CC::GE;
960 case ISD::SETLT:
961 return AArch64CC::LT;
962 case ISD::SETLE:
963 return AArch64CC::LE;
964 case ISD::SETUGT:
965 return AArch64CC::HI;
966 case ISD::SETUGE:
967 return AArch64CC::HS;
968 case ISD::SETULT:
969 return AArch64CC::LO;
970 case ISD::SETULE:
971 return AArch64CC::LS;
972 }
973}
974
975/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
976static void changeFPCCToAArch64CC(ISD::CondCode CC,
977 AArch64CC::CondCode &CondCode,
978 AArch64CC::CondCode &CondCode2) {
979 CondCode2 = AArch64CC::AL;
980 switch (CC) {
981 default:
982 llvm_unreachable("Unknown FP condition!");
983 case ISD::SETEQ:
984 case ISD::SETOEQ:
985 CondCode = AArch64CC::EQ;
986 break;
987 case ISD::SETGT:
988 case ISD::SETOGT:
989 CondCode = AArch64CC::GT;
990 break;
991 case ISD::SETGE:
992 case ISD::SETOGE:
993 CondCode = AArch64CC::GE;
994 break;
995 case ISD::SETOLT:
996 CondCode = AArch64CC::MI;
997 break;
998 case ISD::SETOLE:
999 CondCode = AArch64CC::LS;
1000 break;
1001 case ISD::SETONE:
1002 CondCode = AArch64CC::MI;
1003 CondCode2 = AArch64CC::GT;
1004 break;
1005 case ISD::SETO:
1006 CondCode = AArch64CC::VC;
1007 break;
1008 case ISD::SETUO:
1009 CondCode = AArch64CC::VS;
1010 break;
1011 case ISD::SETUEQ:
1012 CondCode = AArch64CC::EQ;
1013 CondCode2 = AArch64CC::VS;
1014 break;
1015 case ISD::SETUGT:
1016 CondCode = AArch64CC::HI;
1017 break;
1018 case ISD::SETUGE:
1019 CondCode = AArch64CC::PL;
1020 break;
1021 case ISD::SETLT:
1022 case ISD::SETULT:
1023 CondCode = AArch64CC::LT;
1024 break;
1025 case ISD::SETLE:
1026 case ISD::SETULE:
1027 CondCode = AArch64CC::LE;
1028 break;
1029 case ISD::SETNE:
1030 case ISD::SETUNE:
1031 CondCode = AArch64CC::NE;
1032 break;
1033 }
1034}
1035
1036/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1037/// CC usable with the vector instructions. Fewer operations are available
1038/// without a real NZCV register, so we have to use less efficient combinations
1039/// to get the same effect.
1040static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1041 AArch64CC::CondCode &CondCode,
1042 AArch64CC::CondCode &CondCode2,
1043 bool &Invert) {
1044 Invert = false;
1045 switch (CC) {
1046 default:
1047 // Mostly the scalar mappings work fine.
1048 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1049 break;
1050 case ISD::SETUO:
1051 Invert = true; // Fallthrough
1052 case ISD::SETO:
1053 CondCode = AArch64CC::MI;
1054 CondCode2 = AArch64CC::GE;
1055 break;
1056 case ISD::SETUEQ:
1057 case ISD::SETULT:
1058 case ISD::SETULE:
1059 case ISD::SETUGT:
1060 case ISD::SETUGE:
1061 // All of the compare-mask comparisons are ordered, but we can switch
1062 // between the two by a double inversion. E.g. ULE == !OGT.
1063 Invert = true;
1064 changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
1065 break;
1066 }
1067}
1068
1069static bool isLegalArithImmed(uint64_t C) {
1070 // Matches AArch64DAGToDAGISel::SelectArithImmed().
1071 return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1072}
1073
1074static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1075 SDLoc dl, SelectionDAG &DAG) {
1076 EVT VT = LHS.getValueType();
1077
1078 if (VT.isFloatingPoint())
1079 return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
1080
1081 // The CMP instruction is just an alias for SUBS, and representing it as
1082 // SUBS means that it's possible to get CSE with subtract operations.
1083 // A later phase can perform the optimization of setting the destination
1084 // register to WZR/XZR if it ends up being unused.
1085 unsigned Opcode = AArch64ISD::SUBS;
1086
1087 if (RHS.getOpcode() == ISD::SUB && isa<ConstantSDNode>(RHS.getOperand(0)) &&
1088 cast<ConstantSDNode>(RHS.getOperand(0))->getZExtValue() == 0 &&
1089 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1090 // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
1091 // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
1092 // can be set differently by this operation. It comes down to whether
1093 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1094 // everything is fine. If not then the optimization is wrong. Thus general
1095 // comparisons are only valid if op2 != 0.
1096
1097 // So, finally, the only LLVM-native comparisons that don't mention C and V
1098 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1099 // the absence of information about op2.
1100 Opcode = AArch64ISD::ADDS;
1101 RHS = RHS.getOperand(1);
1102 } else if (LHS.getOpcode() == ISD::AND && isa<ConstantSDNode>(RHS) &&
1103 cast<ConstantSDNode>(RHS)->getZExtValue() == 0 &&
1104 !isUnsignedIntSetCC(CC)) {
1105 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1106 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1107 // of the signed comparisons.
1108 Opcode = AArch64ISD::ANDS;
1109 RHS = LHS.getOperand(1);
1110 LHS = LHS.getOperand(0);
1111 }
1112
1113 return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS)
1114 .getValue(1);
1115}
1116
1117static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1118 SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) {
David Xuee978202014-08-28 04:59:53 +00001119 SDValue Cmp;
1120 AArch64CC::CondCode AArch64CC;
Tim Northover3b0846e2014-05-24 12:50:23 +00001121 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1122 EVT VT = RHS.getValueType();
1123 uint64_t C = RHSC->getZExtValue();
1124 if (!isLegalArithImmed(C)) {
1125 // Constant does not fit, try adjusting it by one?
1126 switch (CC) {
1127 default:
1128 break;
1129 case ISD::SETLT:
1130 case ISD::SETGE:
1131 if ((VT == MVT::i32 && C != 0x80000000 &&
1132 isLegalArithImmed((uint32_t)(C - 1))) ||
1133 (VT == MVT::i64 && C != 0x80000000ULL &&
1134 isLegalArithImmed(C - 1ULL))) {
1135 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1136 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1137 RHS = DAG.getConstant(C, VT);
1138 }
1139 break;
1140 case ISD::SETULT:
1141 case ISD::SETUGE:
1142 if ((VT == MVT::i32 && C != 0 &&
1143 isLegalArithImmed((uint32_t)(C - 1))) ||
1144 (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1145 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1146 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1147 RHS = DAG.getConstant(C, VT);
1148 }
1149 break;
1150 case ISD::SETLE:
1151 case ISD::SETGT:
Oliver Stannard269a275c2014-11-03 15:28:40 +00001152 if ((VT == MVT::i32 && C != INT32_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001153 isLegalArithImmed((uint32_t)(C + 1))) ||
Oliver Stannard269a275c2014-11-03 15:28:40 +00001154 (VT == MVT::i64 && C != INT64_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001155 isLegalArithImmed(C + 1ULL))) {
1156 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1157 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1158 RHS = DAG.getConstant(C, VT);
1159 }
1160 break;
1161 case ISD::SETULE:
1162 case ISD::SETUGT:
Oliver Stannard269a275c2014-11-03 15:28:40 +00001163 if ((VT == MVT::i32 && C != UINT32_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001164 isLegalArithImmed((uint32_t)(C + 1))) ||
Oliver Stannard269a275c2014-11-03 15:28:40 +00001165 (VT == MVT::i64 && C != UINT64_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001166 isLegalArithImmed(C + 1ULL))) {
1167 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1168 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1169 RHS = DAG.getConstant(C, VT);
1170 }
1171 break;
1172 }
1173 }
1174 }
David Xuee978202014-08-28 04:59:53 +00001175 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
1176 // For the i8 operand, the largest immediate is 255, so this can be easily
1177 // encoded in the compare instruction. For the i16 operand, however, the
1178 // largest immediate cannot be encoded in the compare.
1179 // Therefore, use a sign extending load and cmn to avoid materializing the -1
1180 // constant. For example,
1181 // movz w1, #65535
1182 // ldrh w0, [x0, #0]
1183 // cmp w0, w1
1184 // >
1185 // ldrsh w0, [x0, #0]
1186 // cmn w0, #1
1187 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
1188 // if and only if (sext LHS) == (sext RHS). The checks are in place to ensure
1189 // both the LHS and RHS are truely zero extended and to make sure the
1190 // transformation is profitable.
1191 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
1192 if ((cast<ConstantSDNode>(RHS)->getZExtValue() >> 16 == 0) &&
1193 isa<LoadSDNode>(LHS)) {
1194 if (cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
1195 cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
1196 LHS.getNode()->hasNUsesOfValue(1, 0)) {
1197 int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
1198 if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
1199 SDValue SExt =
1200 DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
1201 DAG.getValueType(MVT::i16));
1202 Cmp = emitComparison(SExt,
1203 DAG.getConstant(ValueofRHS, RHS.getValueType()),
1204 CC, dl, DAG);
1205 AArch64CC = changeIntCCToAArch64CC(CC);
1206 AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
1207 return Cmp;
1208 }
1209 }
1210 }
1211 }
1212 Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
1213 AArch64CC = changeIntCCToAArch64CC(CC);
Tim Northover3b0846e2014-05-24 12:50:23 +00001214 AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
1215 return Cmp;
1216}
1217
1218static std::pair<SDValue, SDValue>
1219getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
1220 assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
1221 "Unsupported value type");
1222 SDValue Value, Overflow;
1223 SDLoc DL(Op);
1224 SDValue LHS = Op.getOperand(0);
1225 SDValue RHS = Op.getOperand(1);
1226 unsigned Opc = 0;
1227 switch (Op.getOpcode()) {
1228 default:
1229 llvm_unreachable("Unknown overflow instruction!");
1230 case ISD::SADDO:
1231 Opc = AArch64ISD::ADDS;
1232 CC = AArch64CC::VS;
1233 break;
1234 case ISD::UADDO:
1235 Opc = AArch64ISD::ADDS;
1236 CC = AArch64CC::HS;
1237 break;
1238 case ISD::SSUBO:
1239 Opc = AArch64ISD::SUBS;
1240 CC = AArch64CC::VS;
1241 break;
1242 case ISD::USUBO:
1243 Opc = AArch64ISD::SUBS;
1244 CC = AArch64CC::LO;
1245 break;
1246 // Multiply needs a little bit extra work.
1247 case ISD::SMULO:
1248 case ISD::UMULO: {
1249 CC = AArch64CC::NE;
1250 bool IsSigned = (Op.getOpcode() == ISD::SMULO) ? true : false;
1251 if (Op.getValueType() == MVT::i32) {
1252 unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1253 // For a 32 bit multiply with overflow check we want the instruction
1254 // selector to generate a widening multiply (SMADDL/UMADDL). For that we
1255 // need to generate the following pattern:
1256 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
1257 LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
1258 RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
1259 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1260 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
1261 DAG.getConstant(0, MVT::i64));
1262 // On AArch64 the upper 32 bits are always zero extended for a 32 bit
1263 // operation. We need to clear out the upper 32 bits, because we used a
1264 // widening multiply that wrote all 64 bits. In the end this should be a
1265 // noop.
1266 Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
1267 if (IsSigned) {
1268 // The signed overflow check requires more than just a simple check for
1269 // any bit set in the upper 32 bits of the result. These bits could be
1270 // just the sign bits of a negative number. To perform the overflow
1271 // check we have to arithmetic shift right the 32nd bit of the result by
1272 // 31 bits. Then we compare the result to the upper 32 bits.
1273 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
1274 DAG.getConstant(32, MVT::i64));
1275 UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
1276 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
1277 DAG.getConstant(31, MVT::i64));
1278 // It is important that LowerBits is last, otherwise the arithmetic
1279 // shift will not be folded into the compare (SUBS).
1280 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
1281 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1282 .getValue(1);
1283 } else {
1284 // The overflow check for unsigned multiply is easy. We only need to
1285 // check if any of the upper 32 bits are set. This can be done with a
1286 // CMP (shifted register). For that we need to generate the following
1287 // pattern:
1288 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
1289 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
1290 DAG.getConstant(32, MVT::i64));
1291 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1292 Overflow =
1293 DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
1294 UpperBits).getValue(1);
1295 }
1296 break;
1297 }
1298 assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
1299 // For the 64 bit multiply
1300 Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1301 if (IsSigned) {
1302 SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
1303 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
1304 DAG.getConstant(63, MVT::i64));
1305 // It is important that LowerBits is last, otherwise the arithmetic
1306 // shift will not be folded into the compare (SUBS).
1307 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1308 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1309 .getValue(1);
1310 } else {
1311 SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
1312 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1313 Overflow =
1314 DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
1315 UpperBits).getValue(1);
1316 }
1317 break;
1318 }
1319 } // switch (...)
1320
1321 if (Opc) {
1322 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
1323
1324 // Emit the AArch64 operation with overflow check.
1325 Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
1326 Overflow = Value.getValue(1);
1327 }
1328 return std::make_pair(Value, Overflow);
1329}
1330
1331SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
1332 RTLIB::Libcall Call) const {
1333 SmallVector<SDValue, 2> Ops;
1334 for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i)
1335 Ops.push_back(Op.getOperand(i));
1336
1337 return makeLibCall(DAG, Call, MVT::f128, &Ops[0], Ops.size(), false,
1338 SDLoc(Op)).first;
1339}
1340
1341static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
1342 SDValue Sel = Op.getOperand(0);
1343 SDValue Other = Op.getOperand(1);
1344
1345 // If neither operand is a SELECT_CC, give up.
1346 if (Sel.getOpcode() != ISD::SELECT_CC)
1347 std::swap(Sel, Other);
1348 if (Sel.getOpcode() != ISD::SELECT_CC)
1349 return Op;
1350
1351 // The folding we want to perform is:
1352 // (xor x, (select_cc a, b, cc, 0, -1) )
1353 // -->
1354 // (csel x, (xor x, -1), cc ...)
1355 //
1356 // The latter will get matched to a CSINV instruction.
1357
1358 ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
1359 SDValue LHS = Sel.getOperand(0);
1360 SDValue RHS = Sel.getOperand(1);
1361 SDValue TVal = Sel.getOperand(2);
1362 SDValue FVal = Sel.getOperand(3);
1363 SDLoc dl(Sel);
1364
1365 // FIXME: This could be generalized to non-integer comparisons.
1366 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
1367 return Op;
1368
1369 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
1370 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
1371
1372 // The the values aren't constants, this isn't the pattern we're looking for.
1373 if (!CFVal || !CTVal)
1374 return Op;
1375
1376 // We can commute the SELECT_CC by inverting the condition. This
1377 // might be needed to make this fit into a CSINV pattern.
1378 if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
1379 std::swap(TVal, FVal);
1380 std::swap(CTVal, CFVal);
1381 CC = ISD::getSetCCInverse(CC, true);
1382 }
1383
1384 // If the constants line up, perform the transform!
1385 if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
1386 SDValue CCVal;
1387 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
1388
1389 FVal = Other;
1390 TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
1391 DAG.getConstant(-1ULL, Other.getValueType()));
1392
1393 return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
1394 CCVal, Cmp);
1395 }
1396
1397 return Op;
1398}
1399
1400static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
1401 EVT VT = Op.getValueType();
1402
1403 // Let legalize expand this if it isn't a legal type yet.
1404 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
1405 return SDValue();
1406
1407 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
1408
1409 unsigned Opc;
1410 bool ExtraOp = false;
1411 switch (Op.getOpcode()) {
1412 default:
Craig Topper2a30d782014-06-18 05:05:13 +00001413 llvm_unreachable("Invalid code");
Tim Northover3b0846e2014-05-24 12:50:23 +00001414 case ISD::ADDC:
1415 Opc = AArch64ISD::ADDS;
1416 break;
1417 case ISD::SUBC:
1418 Opc = AArch64ISD::SUBS;
1419 break;
1420 case ISD::ADDE:
1421 Opc = AArch64ISD::ADCS;
1422 ExtraOp = true;
1423 break;
1424 case ISD::SUBE:
1425 Opc = AArch64ISD::SBCS;
1426 ExtraOp = true;
1427 break;
1428 }
1429
1430 if (!ExtraOp)
1431 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
1432 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
1433 Op.getOperand(2));
1434}
1435
1436static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
1437 // Let legalize expand this if it isn't a legal type yet.
1438 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
1439 return SDValue();
1440
1441 AArch64CC::CondCode CC;
1442 // The actual operation that sets the overflow or carry flag.
1443 SDValue Value, Overflow;
1444 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
1445
1446 // We use 0 and 1 as false and true values.
1447 SDValue TVal = DAG.getConstant(1, MVT::i32);
1448 SDValue FVal = DAG.getConstant(0, MVT::i32);
1449
1450 // We use an inverted condition, because the conditional select is inverted
1451 // too. This will allow it to be selected to a single instruction:
1452 // CSINC Wd, WZR, WZR, invert(cond).
1453 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), MVT::i32);
1454 Overflow = DAG.getNode(AArch64ISD::CSEL, SDLoc(Op), MVT::i32, FVal, TVal,
1455 CCVal, Overflow);
1456
1457 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
1458 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow);
1459}
1460
1461// Prefetch operands are:
1462// 1: Address to prefetch
1463// 2: bool isWrite
1464// 3: int locality (0 = no locality ... 3 = extreme locality)
1465// 4: bool isDataCache
1466static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
1467 SDLoc DL(Op);
1468 unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1469 unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
Yi Konge56de692014-08-05 12:46:47 +00001470 unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00001471
1472 bool IsStream = !Locality;
1473 // When the locality number is set
1474 if (Locality) {
1475 // The front-end should have filtered out the out-of-range values
1476 assert(Locality <= 3 && "Prefetch locality out-of-range");
1477 // The locality degree is the opposite of the cache speed.
1478 // Put the number the other way around.
1479 // The encoding starts at 0 for level 1
1480 Locality = 3 - Locality;
1481 }
1482
1483 // built the mask value encoding the expected behavior.
1484 unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
Yi Konge56de692014-08-05 12:46:47 +00001485 (!IsData << 3) | // IsDataCache bit
Tim Northover3b0846e2014-05-24 12:50:23 +00001486 (Locality << 1) | // Cache level bits
1487 (unsigned)IsStream; // Stream bit
1488 return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
1489 DAG.getConstant(PrfOp, MVT::i32), Op.getOperand(1));
1490}
1491
1492SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
1493 SelectionDAG &DAG) const {
1494 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1495
1496 RTLIB::Libcall LC;
1497 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1498
1499 return LowerF128Call(Op, DAG, LC);
1500}
1501
1502SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
1503 SelectionDAG &DAG) const {
1504 if (Op.getOperand(0).getValueType() != MVT::f128) {
1505 // It's legal except when f128 is involved
1506 return Op;
1507 }
1508
1509 RTLIB::Libcall LC;
1510 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1511
1512 // FP_ROUND node has a second operand indicating whether it is known to be
1513 // precise. That doesn't take part in the LibCall so we can't directly use
1514 // LowerF128Call.
1515 SDValue SrcVal = Op.getOperand(0);
1516 return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
1517 /*isSigned*/ false, SDLoc(Op)).first;
1518}
1519
1520static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1521 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1522 // Any additional optimization in this function should be recorded
1523 // in the cost tables.
1524 EVT InVT = Op.getOperand(0).getValueType();
1525 EVT VT = Op.getValueType();
1526
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001527 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001528 SDLoc dl(Op);
1529 SDValue Cv =
1530 DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
1531 Op.getOperand(0));
1532 return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001533 }
1534
1535 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001536 SDLoc dl(Op);
Oliver Stannard89d15422014-08-27 16:16:04 +00001537 MVT ExtVT =
1538 MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
1539 VT.getVectorNumElements());
1540 SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
Tim Northover3b0846e2014-05-24 12:50:23 +00001541 return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
1542 }
1543
1544 // Type changing conversions are illegal.
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001545 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00001546}
1547
1548SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
1549 SelectionDAG &DAG) const {
1550 if (Op.getOperand(0).getValueType().isVector())
1551 return LowerVectorFP_TO_INT(Op, DAG);
1552
1553 if (Op.getOperand(0).getValueType() != MVT::f128) {
1554 // It's legal except when f128 is involved
1555 return Op;
1556 }
1557
1558 RTLIB::Libcall LC;
1559 if (Op.getOpcode() == ISD::FP_TO_SINT)
1560 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1561 else
1562 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1563
1564 SmallVector<SDValue, 2> Ops;
1565 for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i)
1566 Ops.push_back(Op.getOperand(i));
1567
1568 return makeLibCall(DAG, LC, Op.getValueType(), &Ops[0], Ops.size(), false,
1569 SDLoc(Op)).first;
1570}
1571
1572static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1573 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1574 // Any additional optimization in this function should be recorded
1575 // in the cost tables.
1576 EVT VT = Op.getValueType();
1577 SDLoc dl(Op);
1578 SDValue In = Op.getOperand(0);
1579 EVT InVT = In.getValueType();
1580
Tim Northoveref0d7602014-06-15 09:27:06 +00001581 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1582 MVT CastVT =
1583 MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
1584 InVT.getVectorNumElements());
1585 In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
1586 return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0));
Tim Northover3b0846e2014-05-24 12:50:23 +00001587 }
1588
Tim Northoveref0d7602014-06-15 09:27:06 +00001589 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
1590 unsigned CastOpc =
1591 Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1592 EVT CastVT = VT.changeVectorElementTypeToInteger();
1593 In = DAG.getNode(CastOpc, dl, CastVT, In);
1594 return DAG.getNode(Op.getOpcode(), dl, VT, In);
Tim Northover3b0846e2014-05-24 12:50:23 +00001595 }
1596
Tim Northoveref0d7602014-06-15 09:27:06 +00001597 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00001598}
1599
1600SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
1601 SelectionDAG &DAG) const {
1602 if (Op.getValueType().isVector())
1603 return LowerVectorINT_TO_FP(Op, DAG);
1604
1605 // i128 conversions are libcalls.
1606 if (Op.getOperand(0).getValueType() == MVT::i128)
1607 return SDValue();
1608
1609 // Other conversions are legal, unless it's to the completely software-based
1610 // fp128.
1611 if (Op.getValueType() != MVT::f128)
1612 return Op;
1613
1614 RTLIB::Libcall LC;
1615 if (Op.getOpcode() == ISD::SINT_TO_FP)
1616 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1617 else
1618 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1619
1620 return LowerF128Call(Op, DAG, LC);
1621}
1622
1623SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
1624 SelectionDAG &DAG) const {
1625 // For iOS, we want to call an alternative entry point: __sincos_stret,
1626 // which returns the values in two S / D registers.
1627 SDLoc dl(Op);
1628 SDValue Arg = Op.getOperand(0);
1629 EVT ArgVT = Arg.getValueType();
1630 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1631
1632 ArgListTy Args;
1633 ArgListEntry Entry;
1634
1635 Entry.Node = Arg;
1636 Entry.Ty = ArgTy;
1637 Entry.isSExt = false;
1638 Entry.isZExt = false;
1639 Args.push_back(Entry);
1640
1641 const char *LibcallName =
1642 (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
1643 SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
1644
1645 StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL);
1646 TargetLowering::CallLoweringInfo CLI(DAG);
1647 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
Juergen Ributzka3bd03c72014-07-01 22:01:54 +00001648 .setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args), 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00001649
1650 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1651 return CallResult.first;
1652}
1653
Tim Northoverf8bfe212014-07-18 13:07:05 +00001654static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
1655 if (Op.getValueType() != MVT::f16)
1656 return SDValue();
1657
1658 assert(Op.getOperand(0).getValueType() == MVT::i16);
1659 SDLoc DL(Op);
1660
1661 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
1662 Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
1663 return SDValue(
1664 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
1665 DAG.getTargetConstant(AArch64::hsub, MVT::i32)),
1666 0);
1667}
1668
Chad Rosierd9d0f862014-10-08 02:31:24 +00001669static EVT getExtensionTo64Bits(const EVT &OrigVT) {
1670 if (OrigVT.getSizeInBits() >= 64)
1671 return OrigVT;
1672
1673 assert(OrigVT.isSimple() && "Expecting a simple value type");
1674
1675 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
1676 switch (OrigSimpleTy) {
1677 default: llvm_unreachable("Unexpected Vector Type");
1678 case MVT::v2i8:
1679 case MVT::v2i16:
1680 return MVT::v2i32;
1681 case MVT::v4i8:
1682 return MVT::v4i16;
1683 }
1684}
1685
1686static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
1687 const EVT &OrigTy,
1688 const EVT &ExtTy,
1689 unsigned ExtOpcode) {
1690 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
1691 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
1692 // 64-bits we need to insert a new extension so that it will be 64-bits.
1693 assert(ExtTy.is128BitVector() && "Unexpected extension size");
1694 if (OrigTy.getSizeInBits() >= 64)
1695 return N;
1696
1697 // Must extend size to at least 64 bits to be used as an operand for VMULL.
1698 EVT NewVT = getExtensionTo64Bits(OrigTy);
1699
1700 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
1701}
1702
1703static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
1704 bool isSigned) {
1705 EVT VT = N->getValueType(0);
1706
1707 if (N->getOpcode() != ISD::BUILD_VECTOR)
1708 return false;
1709
1710 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1711 SDNode *Elt = N->getOperand(i).getNode();
1712 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
1713 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
1714 unsigned HalfSize = EltSize / 2;
1715 if (isSigned) {
1716 if (!isIntN(HalfSize, C->getSExtValue()))
1717 return false;
1718 } else {
1719 if (!isUIntN(HalfSize, C->getZExtValue()))
1720 return false;
1721 }
1722 continue;
1723 }
1724 return false;
1725 }
1726
1727 return true;
1728}
1729
1730static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
1731 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
1732 return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
1733 N->getOperand(0)->getValueType(0),
1734 N->getValueType(0),
1735 N->getOpcode());
1736
1737 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
1738 EVT VT = N->getValueType(0);
1739 unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
1740 unsigned NumElts = VT.getVectorNumElements();
1741 MVT TruncVT = MVT::getIntegerVT(EltSize);
1742 SmallVector<SDValue, 8> Ops;
1743 for (unsigned i = 0; i != NumElts; ++i) {
1744 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
1745 const APInt &CInt = C->getAPIntValue();
1746 // Element types smaller than 32 bits are not legal, so use i32 elements.
1747 // The values are implicitly truncated so sext vs. zext doesn't matter.
1748 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
1749 }
1750 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
1751 MVT::getVectorVT(TruncVT, NumElts), Ops);
1752}
1753
1754static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
1755 if (N->getOpcode() == ISD::SIGN_EXTEND)
1756 return true;
1757 if (isExtendedBUILD_VECTOR(N, DAG, true))
1758 return true;
1759 return false;
1760}
1761
1762static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
1763 if (N->getOpcode() == ISD::ZERO_EXTEND)
1764 return true;
1765 if (isExtendedBUILD_VECTOR(N, DAG, false))
1766 return true;
1767 return false;
1768}
1769
1770static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
1771 unsigned Opcode = N->getOpcode();
1772 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
1773 SDNode *N0 = N->getOperand(0).getNode();
1774 SDNode *N1 = N->getOperand(1).getNode();
1775 return N0->hasOneUse() && N1->hasOneUse() &&
1776 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
1777 }
1778 return false;
1779}
1780
1781static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
1782 unsigned Opcode = N->getOpcode();
1783 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
1784 SDNode *N0 = N->getOperand(0).getNode();
1785 SDNode *N1 = N->getOperand(1).getNode();
1786 return N0->hasOneUse() && N1->hasOneUse() &&
1787 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
1788 }
1789 return false;
1790}
1791
1792static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
1793 // Multiplications are only custom-lowered for 128-bit vectors so that
1794 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
1795 EVT VT = Op.getValueType();
1796 assert(VT.is128BitVector() && VT.isInteger() &&
1797 "unexpected type for custom-lowering ISD::MUL");
1798 SDNode *N0 = Op.getOperand(0).getNode();
1799 SDNode *N1 = Op.getOperand(1).getNode();
1800 unsigned NewOpc = 0;
1801 bool isMLA = false;
1802 bool isN0SExt = isSignExtended(N0, DAG);
1803 bool isN1SExt = isSignExtended(N1, DAG);
1804 if (isN0SExt && isN1SExt)
1805 NewOpc = AArch64ISD::SMULL;
1806 else {
1807 bool isN0ZExt = isZeroExtended(N0, DAG);
1808 bool isN1ZExt = isZeroExtended(N1, DAG);
1809 if (isN0ZExt && isN1ZExt)
1810 NewOpc = AArch64ISD::UMULL;
1811 else if (isN1SExt || isN1ZExt) {
1812 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
1813 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
1814 if (isN1SExt && isAddSubSExt(N0, DAG)) {
1815 NewOpc = AArch64ISD::SMULL;
1816 isMLA = true;
1817 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
1818 NewOpc = AArch64ISD::UMULL;
1819 isMLA = true;
1820 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
1821 std::swap(N0, N1);
1822 NewOpc = AArch64ISD::UMULL;
1823 isMLA = true;
1824 }
1825 }
1826
1827 if (!NewOpc) {
1828 if (VT == MVT::v2i64)
1829 // Fall through to expand this. It is not legal.
1830 return SDValue();
1831 else
1832 // Other vector multiplications are legal.
1833 return Op;
1834 }
1835 }
1836
1837 // Legalize to a S/UMULL instruction
1838 SDLoc DL(Op);
1839 SDValue Op0;
1840 SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
1841 if (!isMLA) {
1842 Op0 = skipExtensionForVectorMULL(N0, DAG);
1843 assert(Op0.getValueType().is64BitVector() &&
1844 Op1.getValueType().is64BitVector() &&
1845 "unexpected types for extended operands to VMULL");
1846 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
1847 }
1848 // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
1849 // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
1850 // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
1851 SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
1852 SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
1853 EVT Op1VT = Op1.getValueType();
1854 return DAG.getNode(N0->getOpcode(), DL, VT,
1855 DAG.getNode(NewOpc, DL, VT,
1856 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
1857 DAG.getNode(NewOpc, DL, VT,
1858 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
1859}
Tim Northoverf8bfe212014-07-18 13:07:05 +00001860
Tim Northover3b0846e2014-05-24 12:50:23 +00001861SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
1862 SelectionDAG &DAG) const {
1863 switch (Op.getOpcode()) {
1864 default:
1865 llvm_unreachable("unimplemented operand");
1866 return SDValue();
Tim Northoverf8bfe212014-07-18 13:07:05 +00001867 case ISD::BITCAST:
1868 return LowerBITCAST(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00001869 case ISD::GlobalAddress:
1870 return LowerGlobalAddress(Op, DAG);
1871 case ISD::GlobalTLSAddress:
1872 return LowerGlobalTLSAddress(Op, DAG);
1873 case ISD::SETCC:
1874 return LowerSETCC(Op, DAG);
1875 case ISD::BR_CC:
1876 return LowerBR_CC(Op, DAG);
1877 case ISD::SELECT:
1878 return LowerSELECT(Op, DAG);
1879 case ISD::SELECT_CC:
1880 return LowerSELECT_CC(Op, DAG);
1881 case ISD::JumpTable:
1882 return LowerJumpTable(Op, DAG);
1883 case ISD::ConstantPool:
1884 return LowerConstantPool(Op, DAG);
1885 case ISD::BlockAddress:
1886 return LowerBlockAddress(Op, DAG);
1887 case ISD::VASTART:
1888 return LowerVASTART(Op, DAG);
1889 case ISD::VACOPY:
1890 return LowerVACOPY(Op, DAG);
1891 case ISD::VAARG:
1892 return LowerVAARG(Op, DAG);
1893 case ISD::ADDC:
1894 case ISD::ADDE:
1895 case ISD::SUBC:
1896 case ISD::SUBE:
1897 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
1898 case ISD::SADDO:
1899 case ISD::UADDO:
1900 case ISD::SSUBO:
1901 case ISD::USUBO:
1902 case ISD::SMULO:
1903 case ISD::UMULO:
1904 return LowerXALUO(Op, DAG);
1905 case ISD::FADD:
1906 return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
1907 case ISD::FSUB:
1908 return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
1909 case ISD::FMUL:
1910 return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
1911 case ISD::FDIV:
1912 return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
1913 case ISD::FP_ROUND:
1914 return LowerFP_ROUND(Op, DAG);
1915 case ISD::FP_EXTEND:
1916 return LowerFP_EXTEND(Op, DAG);
1917 case ISD::FRAMEADDR:
1918 return LowerFRAMEADDR(Op, DAG);
1919 case ISD::RETURNADDR:
1920 return LowerRETURNADDR(Op, DAG);
1921 case ISD::INSERT_VECTOR_ELT:
1922 return LowerINSERT_VECTOR_ELT(Op, DAG);
1923 case ISD::EXTRACT_VECTOR_ELT:
1924 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
1925 case ISD::BUILD_VECTOR:
1926 return LowerBUILD_VECTOR(Op, DAG);
1927 case ISD::VECTOR_SHUFFLE:
1928 return LowerVECTOR_SHUFFLE(Op, DAG);
1929 case ISD::EXTRACT_SUBVECTOR:
1930 return LowerEXTRACT_SUBVECTOR(Op, DAG);
1931 case ISD::SRA:
1932 case ISD::SRL:
1933 case ISD::SHL:
1934 return LowerVectorSRA_SRL_SHL(Op, DAG);
1935 case ISD::SHL_PARTS:
1936 return LowerShiftLeftParts(Op, DAG);
1937 case ISD::SRL_PARTS:
1938 case ISD::SRA_PARTS:
1939 return LowerShiftRightParts(Op, DAG);
1940 case ISD::CTPOP:
1941 return LowerCTPOP(Op, DAG);
1942 case ISD::FCOPYSIGN:
1943 return LowerFCOPYSIGN(Op, DAG);
1944 case ISD::AND:
1945 return LowerVectorAND(Op, DAG);
1946 case ISD::OR:
1947 return LowerVectorOR(Op, DAG);
1948 case ISD::XOR:
1949 return LowerXOR(Op, DAG);
1950 case ISD::PREFETCH:
1951 return LowerPREFETCH(Op, DAG);
1952 case ISD::SINT_TO_FP:
1953 case ISD::UINT_TO_FP:
1954 return LowerINT_TO_FP(Op, DAG);
1955 case ISD::FP_TO_SINT:
1956 case ISD::FP_TO_UINT:
1957 return LowerFP_TO_INT(Op, DAG);
1958 case ISD::FSINCOS:
1959 return LowerFSINCOS(Op, DAG);
Chad Rosierd9d0f862014-10-08 02:31:24 +00001960 case ISD::MUL:
1961 return LowerMUL(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00001962 }
1963}
1964
1965/// getFunctionAlignment - Return the Log2 alignment of this function.
1966unsigned AArch64TargetLowering::getFunctionAlignment(const Function *F) const {
1967 return 2;
1968}
1969
1970//===----------------------------------------------------------------------===//
1971// Calling Convention Implementation
1972//===----------------------------------------------------------------------===//
1973
1974#include "AArch64GenCallingConv.inc"
1975
Robin Morisset039781e2014-08-29 21:53:01 +00001976/// Selects the correct CCAssignFn for a given CallingConvention value.
Tim Northover3b0846e2014-05-24 12:50:23 +00001977CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1978 bool IsVarArg) const {
1979 switch (CC) {
1980 default:
1981 llvm_unreachable("Unsupported calling convention.");
1982 case CallingConv::WebKit_JS:
1983 return CC_AArch64_WebKit_JS;
1984 case CallingConv::C:
1985 case CallingConv::Fast:
1986 if (!Subtarget->isTargetDarwin())
1987 return CC_AArch64_AAPCS;
1988 return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
1989 }
1990}
1991
1992SDValue AArch64TargetLowering::LowerFormalArguments(
1993 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1994 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
1995 SmallVectorImpl<SDValue> &InVals) const {
1996 MachineFunction &MF = DAG.getMachineFunction();
1997 MachineFrameInfo *MFI = MF.getFrameInfo();
1998
1999 // Assign locations to all of the incoming arguments.
2000 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002001 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2002 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002003
2004 // At this point, Ins[].VT may already be promoted to i32. To correctly
2005 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2006 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2007 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
2008 // we use a special version of AnalyzeFormalArguments to pass in ValVT and
2009 // LocVT.
2010 unsigned NumArgs = Ins.size();
2011 Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2012 unsigned CurArgIdx = 0;
2013 for (unsigned i = 0; i != NumArgs; ++i) {
2014 MVT ValVT = Ins[i].VT;
2015 std::advance(CurOrigArg, Ins[i].OrigArgIndex - CurArgIdx);
2016 CurArgIdx = Ins[i].OrigArgIndex;
2017
2018 // Get type of the original argument.
2019 EVT ActualVT = getValueType(CurOrigArg->getType(), /*AllowUnknown*/ true);
2020 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
2021 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
Tim Northover3b0846e2014-05-24 12:50:23 +00002022 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
Tim Northover47e003c2014-05-26 17:21:53 +00002023 ValVT = MVT::i8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002024 else if (ActualMVT == MVT::i16)
Tim Northover47e003c2014-05-26 17:21:53 +00002025 ValVT = MVT::i16;
Tim Northover3b0846e2014-05-24 12:50:23 +00002026
2027 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2028 bool Res =
Tim Northover47e003c2014-05-26 17:21:53 +00002029 AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00002030 assert(!Res && "Call operand has unhandled type");
2031 (void)Res;
2032 }
2033 assert(ArgLocs.size() == Ins.size());
2034 SmallVector<SDValue, 16> ArgValues;
2035 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2036 CCValAssign &VA = ArgLocs[i];
2037
2038 if (Ins[i].Flags.isByVal()) {
2039 // Byval is used for HFAs in the PCS, but the system should work in a
2040 // non-compliant manner for larger structs.
2041 EVT PtrTy = getPointerTy();
2042 int Size = Ins[i].Flags.getByValSize();
2043 unsigned NumRegs = (Size + 7) / 8;
2044
2045 // FIXME: This works on big-endian for composite byvals, which are the common
2046 // case. It should also work for fundamental types too.
2047 unsigned FrameIdx =
2048 MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
2049 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
2050 InVals.push_back(FrameIdxN);
2051
2052 continue;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002053 }
2054
2055 if (VA.isRegLoc()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00002056 // Arguments stored in registers.
2057 EVT RegVT = VA.getLocVT();
2058
2059 SDValue ArgValue;
2060 const TargetRegisterClass *RC;
2061
2062 if (RegVT == MVT::i32)
2063 RC = &AArch64::GPR32RegClass;
2064 else if (RegVT == MVT::i64)
2065 RC = &AArch64::GPR64RegClass;
Oliver Stannard6eda6ff2014-07-11 13:33:46 +00002066 else if (RegVT == MVT::f16)
2067 RC = &AArch64::FPR16RegClass;
Tim Northover3b0846e2014-05-24 12:50:23 +00002068 else if (RegVT == MVT::f32)
2069 RC = &AArch64::FPR32RegClass;
2070 else if (RegVT == MVT::f64 || RegVT.is64BitVector())
2071 RC = &AArch64::FPR64RegClass;
2072 else if (RegVT == MVT::f128 || RegVT.is128BitVector())
2073 RC = &AArch64::FPR128RegClass;
2074 else
2075 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2076
2077 // Transform the arguments in physical registers into virtual ones.
2078 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2079 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2080
2081 // If this is an 8, 16 or 32-bit value, it is really passed promoted
2082 // to 64 bits. Insert an assert[sz]ext to capture this, then
2083 // truncate to the right size.
2084 switch (VA.getLocInfo()) {
2085 default:
2086 llvm_unreachable("Unknown loc info!");
2087 case CCValAssign::Full:
2088 break;
2089 case CCValAssign::BCvt:
2090 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
2091 break;
Tim Northover47e003c2014-05-26 17:21:53 +00002092 case CCValAssign::AExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00002093 case CCValAssign::SExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00002094 case CCValAssign::ZExt:
Tim Northover47e003c2014-05-26 17:21:53 +00002095 // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
2096 // nodes after our lowering.
2097 assert(RegVT == Ins[i].VT && "incorrect register location selected");
Tim Northover3b0846e2014-05-24 12:50:23 +00002098 break;
2099 }
2100
2101 InVals.push_back(ArgValue);
2102
2103 } else { // VA.isRegLoc()
2104 assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
2105 unsigned ArgOffset = VA.getLocMemOffset();
Amara Emerson82da7d02014-08-15 14:29:57 +00002106 unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002107
2108 uint32_t BEAlign = 0;
2109 if (ArgSize < 8 && !Subtarget->isLittleEndian())
2110 BEAlign = 8 - ArgSize;
2111
2112 int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
2113
2114 // Create load nodes to retrieve arguments from the stack.
2115 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2116 SDValue ArgValue;
2117
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002118 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
Tim Northover47e003c2014-05-26 17:21:53 +00002119 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002120 MVT MemVT = VA.getValVT();
2121
Tim Northover47e003c2014-05-26 17:21:53 +00002122 switch (VA.getLocInfo()) {
2123 default:
2124 break;
Tim Northover6890add2014-06-03 13:54:53 +00002125 case CCValAssign::BCvt:
2126 MemVT = VA.getLocVT();
2127 break;
Tim Northover47e003c2014-05-26 17:21:53 +00002128 case CCValAssign::SExt:
2129 ExtType = ISD::SEXTLOAD;
2130 break;
2131 case CCValAssign::ZExt:
2132 ExtType = ISD::ZEXTLOAD;
2133 break;
2134 case CCValAssign::AExt:
2135 ExtType = ISD::EXTLOAD;
2136 break;
Tim Northover3b0846e2014-05-24 12:50:23 +00002137 }
2138
Tim Northover6890add2014-06-03 13:54:53 +00002139 ArgValue = DAG.getExtLoad(ExtType, DL, VA.getLocVT(), Chain, FIN,
Tim Northover47e003c2014-05-26 17:21:53 +00002140 MachinePointerInfo::getFixedStack(FI),
Benjamin Kramer2e52f022014-10-04 22:44:29 +00002141 MemVT, false, false, false, 0);
Tim Northover47e003c2014-05-26 17:21:53 +00002142
Tim Northover3b0846e2014-05-24 12:50:23 +00002143 InVals.push_back(ArgValue);
2144 }
2145 }
2146
2147 // varargs
2148 if (isVarArg) {
2149 if (!Subtarget->isTargetDarwin()) {
2150 // The AAPCS variadic function ABI is identical to the non-variadic
2151 // one. As a result there may be more arguments in registers and we should
2152 // save them for future reference.
2153 saveVarArgRegisters(CCInfo, DAG, DL, Chain);
2154 }
2155
2156 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2157 // This will point to the next argument passed via stack.
2158 unsigned StackOffset = CCInfo.getNextStackOffset();
2159 // We currently pass all varargs at 8-byte alignment.
2160 StackOffset = ((StackOffset + 7) & ~7);
2161 AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
2162 }
2163
2164 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2165 unsigned StackArgSize = CCInfo.getNextStackOffset();
2166 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2167 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
2168 // This is a non-standard ABI so by fiat I say we're allowed to make full
2169 // use of the stack area to be popped, which must be aligned to 16 bytes in
2170 // any case:
2171 StackArgSize = RoundUpToAlignment(StackArgSize, 16);
2172
2173 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
2174 // a multiple of 16.
2175 FuncInfo->setArgumentStackToRestore(StackArgSize);
2176
2177 // This realignment carries over to the available bytes below. Our own
2178 // callers will guarantee the space is free by giving an aligned value to
2179 // CALLSEQ_START.
2180 }
2181 // Even if we're not expected to free up the space, it's useful to know how
2182 // much is there while considering tail calls (because we can reuse it).
2183 FuncInfo->setBytesInStackArgArea(StackArgSize);
2184
2185 return Chain;
2186}
2187
2188void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
2189 SelectionDAG &DAG, SDLoc DL,
2190 SDValue &Chain) const {
2191 MachineFunction &MF = DAG.getMachineFunction();
2192 MachineFrameInfo *MFI = MF.getFrameInfo();
2193 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2194
2195 SmallVector<SDValue, 8> MemOps;
2196
2197 static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
2198 AArch64::X3, AArch64::X4, AArch64::X5,
2199 AArch64::X6, AArch64::X7 };
2200 static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
2201 unsigned FirstVariadicGPR =
2202 CCInfo.getFirstUnallocated(GPRArgRegs, NumGPRArgRegs);
2203
2204 unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
2205 int GPRIdx = 0;
2206 if (GPRSaveSize != 0) {
2207 GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
2208
2209 SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
2210
2211 for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
2212 unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
2213 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
2214 SDValue Store =
2215 DAG.getStore(Val.getValue(1), DL, Val, FIN,
2216 MachinePointerInfo::getStack(i * 8), false, false, 0);
2217 MemOps.push_back(Store);
2218 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
2219 DAG.getConstant(8, getPointerTy()));
2220 }
2221 }
2222 FuncInfo->setVarArgsGPRIndex(GPRIdx);
2223 FuncInfo->setVarArgsGPRSize(GPRSaveSize);
2224
2225 if (Subtarget->hasFPARMv8()) {
2226 static const MCPhysReg FPRArgRegs[] = {
2227 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
2228 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
2229 static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
2230 unsigned FirstVariadicFPR =
2231 CCInfo.getFirstUnallocated(FPRArgRegs, NumFPRArgRegs);
2232
2233 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
2234 int FPRIdx = 0;
2235 if (FPRSaveSize != 0) {
2236 FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
2237
2238 SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
2239
2240 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
2241 unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
2242 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
2243
2244 SDValue Store =
2245 DAG.getStore(Val.getValue(1), DL, Val, FIN,
2246 MachinePointerInfo::getStack(i * 16), false, false, 0);
2247 MemOps.push_back(Store);
2248 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
2249 DAG.getConstant(16, getPointerTy()));
2250 }
2251 }
2252 FuncInfo->setVarArgsFPRIndex(FPRIdx);
2253 FuncInfo->setVarArgsFPRSize(FPRSaveSize);
2254 }
2255
2256 if (!MemOps.empty()) {
2257 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2258 }
2259}
2260
2261/// LowerCallResult - Lower the result values of a call into the
2262/// appropriate copies out of appropriate physical registers.
2263SDValue AArch64TargetLowering::LowerCallResult(
2264 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
2265 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2266 SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2267 SDValue ThisVal) const {
2268 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2269 ? RetCC_AArch64_WebKit_JS
2270 : RetCC_AArch64_AAPCS;
2271 // Assign locations to each value returned by this call.
2272 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002273 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2274 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002275 CCInfo.AnalyzeCallResult(Ins, RetCC);
2276
2277 // Copy all of the result registers out of their specified physreg.
2278 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2279 CCValAssign VA = RVLocs[i];
2280
2281 // Pass 'this' value directly from the argument to return value, to avoid
2282 // reg unit interference
2283 if (i == 0 && isThisReturn) {
2284 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
2285 "unexpected return calling convention register assignment");
2286 InVals.push_back(ThisVal);
2287 continue;
2288 }
2289
2290 SDValue Val =
2291 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2292 Chain = Val.getValue(1);
2293 InFlag = Val.getValue(2);
2294
2295 switch (VA.getLocInfo()) {
2296 default:
2297 llvm_unreachable("Unknown loc info!");
2298 case CCValAssign::Full:
2299 break;
2300 case CCValAssign::BCvt:
2301 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2302 break;
2303 }
2304
2305 InVals.push_back(Val);
2306 }
2307
2308 return Chain;
2309}
2310
2311bool AArch64TargetLowering::isEligibleForTailCallOptimization(
2312 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2313 bool isCalleeStructRet, bool isCallerStructRet,
2314 const SmallVectorImpl<ISD::OutputArg> &Outs,
2315 const SmallVectorImpl<SDValue> &OutVals,
2316 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2317 // For CallingConv::C this function knows whether the ABI needs
2318 // changing. That's not true for other conventions so they will have to opt in
2319 // manually.
2320 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
2321 return false;
2322
2323 const MachineFunction &MF = DAG.getMachineFunction();
2324 const Function *CallerF = MF.getFunction();
2325 CallingConv::ID CallerCC = CallerF->getCallingConv();
2326 bool CCMatch = CallerCC == CalleeCC;
2327
2328 // Byval parameters hand the function a pointer directly into the stack area
2329 // we want to reuse during a tail call. Working around this *is* possible (see
2330 // X86) but less efficient and uglier in LowerCall.
2331 for (Function::const_arg_iterator i = CallerF->arg_begin(),
2332 e = CallerF->arg_end();
2333 i != e; ++i)
2334 if (i->hasByValAttr())
2335 return false;
2336
2337 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2338 if (IsTailCallConvention(CalleeCC) && CCMatch)
2339 return true;
2340 return false;
2341 }
2342
Oliver Stannard12993dd2014-08-18 12:42:15 +00002343 // Externally-defined functions with weak linkage should not be
2344 // tail-called on AArch64 when the OS does not support dynamic
2345 // pre-emption of symbols, as the AAELF spec requires normal calls
2346 // to undefined weak functions to be replaced with a NOP or jump to the
2347 // next instruction. The behaviour of branch instructions in this
2348 // situation (as used for tail calls) is implementation-defined, so we
2349 // cannot rely on the linker replacing the tail call with a return.
2350 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2351 const GlobalValue *GV = G->getGlobal();
2352 if (GV->hasExternalWeakLinkage())
2353 return false;
2354 }
2355
Tim Northover3b0846e2014-05-24 12:50:23 +00002356 // Now we search for cases where we can use a tail call without changing the
2357 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
2358 // concept.
2359
2360 // I want anyone implementing a new calling convention to think long and hard
2361 // about this assert.
2362 assert((!isVarArg || CalleeCC == CallingConv::C) &&
2363 "Unexpected variadic calling convention");
2364
2365 if (isVarArg && !Outs.empty()) {
2366 // At least two cases here: if caller is fastcc then we can't have any
2367 // memory arguments (we'd be expected to clean up the stack afterwards). If
2368 // caller is C then we could potentially use its argument area.
2369
2370 // FIXME: for now we take the most conservative of these in both cases:
2371 // disallow all variadic memory operands.
2372 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002373 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2374 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002375
2376 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
2377 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2378 if (!ArgLocs[i].isRegLoc())
2379 return false;
2380 }
2381
2382 // If the calling conventions do not match, then we'd better make sure the
2383 // results are returned in the same way as what the caller expects.
2384 if (!CCMatch) {
2385 SmallVector<CCValAssign, 16> RVLocs1;
Eric Christopherb5217502014-08-06 18:45:26 +00002386 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
2387 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002388 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg));
2389
2390 SmallVector<CCValAssign, 16> RVLocs2;
Eric Christopherb5217502014-08-06 18:45:26 +00002391 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
2392 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002393 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg));
2394
2395 if (RVLocs1.size() != RVLocs2.size())
2396 return false;
2397 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2398 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2399 return false;
2400 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2401 return false;
2402 if (RVLocs1[i].isRegLoc()) {
2403 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2404 return false;
2405 } else {
2406 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2407 return false;
2408 }
2409 }
2410 }
2411
2412 // Nothing more to check if the callee is taking no arguments
2413 if (Outs.empty())
2414 return true;
2415
2416 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002417 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2418 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002419
2420 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2421
2422 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2423
2424 // If the stack arguments for this call would fit into our own save area then
2425 // the call can be made tail.
2426 return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
2427}
2428
2429SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
2430 SelectionDAG &DAG,
2431 MachineFrameInfo *MFI,
2432 int ClobberedFI) const {
2433 SmallVector<SDValue, 8> ArgChains;
2434 int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
2435 int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
2436
2437 // Include the original chain at the beginning of the list. When this is
2438 // used by target LowerCall hooks, this helps legalize find the
2439 // CALLSEQ_BEGIN node.
2440 ArgChains.push_back(Chain);
2441
2442 // Add a chain value for each stack argument corresponding
2443 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
2444 UE = DAG.getEntryNode().getNode()->use_end();
2445 U != UE; ++U)
2446 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2447 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2448 if (FI->getIndex() < 0) {
2449 int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
2450 int64_t InLastByte = InFirstByte;
2451 InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
2452
2453 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
2454 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
2455 ArgChains.push_back(SDValue(L, 1));
2456 }
2457
2458 // Build a tokenfactor for all the chains.
2459 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
2460}
2461
2462bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
2463 bool TailCallOpt) const {
2464 return CallCC == CallingConv::Fast && TailCallOpt;
2465}
2466
2467bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
2468 return CallCC == CallingConv::Fast;
2469}
2470
2471/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
2472/// and add input and output parameter nodes.
2473SDValue
2474AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
2475 SmallVectorImpl<SDValue> &InVals) const {
2476 SelectionDAG &DAG = CLI.DAG;
2477 SDLoc &DL = CLI.DL;
2478 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2479 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2480 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2481 SDValue Chain = CLI.Chain;
2482 SDValue Callee = CLI.Callee;
2483 bool &IsTailCall = CLI.IsTailCall;
2484 CallingConv::ID CallConv = CLI.CallConv;
2485 bool IsVarArg = CLI.IsVarArg;
2486
2487 MachineFunction &MF = DAG.getMachineFunction();
2488 bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2489 bool IsThisReturn = false;
2490
2491 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2492 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2493 bool IsSibCall = false;
2494
2495 if (IsTailCall) {
2496 // Check if it's really possible to do a tail call.
2497 IsTailCall = isEligibleForTailCallOptimization(
2498 Callee, CallConv, IsVarArg, IsStructRet,
2499 MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG);
2500 if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2501 report_fatal_error("failed to perform tail call elimination on a call "
2502 "site marked musttail");
2503
2504 // A sibling call is one where we're under the usual C ABI and not planning
2505 // to change that but can still do a tail call:
2506 if (!TailCallOpt && IsTailCall)
2507 IsSibCall = true;
2508
2509 if (IsTailCall)
2510 ++NumTailCalls;
2511 }
2512
2513 // Analyze operands of the call, assigning locations to each operand.
2514 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002515 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
2516 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002517
2518 if (IsVarArg) {
2519 // Handle fixed and variable vector arguments differently.
2520 // Variable vector arguments always go into memory.
2521 unsigned NumArgs = Outs.size();
2522
2523 for (unsigned i = 0; i != NumArgs; ++i) {
2524 MVT ArgVT = Outs[i].VT;
2525 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2526 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
2527 /*IsVarArg=*/ !Outs[i].IsFixed);
2528 bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2529 assert(!Res && "Call operand has unhandled type");
2530 (void)Res;
2531 }
2532 } else {
2533 // At this point, Outs[].VT may already be promoted to i32. To correctly
2534 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2535 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2536 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
2537 // we use a special version of AnalyzeCallOperands to pass in ValVT and
2538 // LocVT.
2539 unsigned NumArgs = Outs.size();
2540 for (unsigned i = 0; i != NumArgs; ++i) {
2541 MVT ValVT = Outs[i].VT;
2542 // Get type of the original argument.
2543 EVT ActualVT = getValueType(CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
2544 /*AllowUnknown*/ true);
2545 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
2546 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2547 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
Tim Northover3b0846e2014-05-24 12:50:23 +00002548 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
Tim Northover47e003c2014-05-26 17:21:53 +00002549 ValVT = MVT::i8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002550 else if (ActualMVT == MVT::i16)
Tim Northover47e003c2014-05-26 17:21:53 +00002551 ValVT = MVT::i16;
Tim Northover3b0846e2014-05-24 12:50:23 +00002552
2553 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
Tim Northover47e003c2014-05-26 17:21:53 +00002554 bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00002555 assert(!Res && "Call operand has unhandled type");
2556 (void)Res;
2557 }
2558 }
2559
2560 // Get a count of how many bytes are to be pushed on the stack.
2561 unsigned NumBytes = CCInfo.getNextStackOffset();
2562
2563 if (IsSibCall) {
2564 // Since we're not changing the ABI to make this a tail call, the memory
2565 // operands are already available in the caller's incoming argument space.
2566 NumBytes = 0;
2567 }
2568
2569 // FPDiff is the byte offset of the call's argument area from the callee's.
2570 // Stores to callee stack arguments will be placed in FixedStackSlots offset
2571 // by this amount for a tail call. In a sibling call it must be 0 because the
2572 // caller will deallocate the entire stack and the callee still expects its
2573 // arguments to begin at SP+0. Completely unused for non-tail calls.
2574 int FPDiff = 0;
2575
2576 if (IsTailCall && !IsSibCall) {
2577 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
2578
2579 // Since callee will pop argument stack as a tail call, we must keep the
2580 // popped size 16-byte aligned.
2581 NumBytes = RoundUpToAlignment(NumBytes, 16);
2582
2583 // FPDiff will be negative if this tail call requires more space than we
2584 // would automatically have in our incoming argument space. Positive if we
2585 // can actually shrink the stack.
2586 FPDiff = NumReusableBytes - NumBytes;
2587
2588 // The stack pointer must be 16-byte aligned at all times it's used for a
2589 // memory operation, which in practice means at *all* times and in
2590 // particular across call boundaries. Therefore our own arguments started at
2591 // a 16-byte aligned SP and the delta applied for the tail call should
2592 // satisfy the same constraint.
2593 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
2594 }
2595
2596 // Adjust the stack pointer for the new arguments...
2597 // These operations are automatically eliminated by the prolog/epilog pass
2598 if (!IsSibCall)
2599 Chain =
2600 DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), DL);
2601
2602 SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, getPointerTy());
2603
2604 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2605 SmallVector<SDValue, 8> MemOpChains;
2606
2607 // Walk the register/memloc assignments, inserting copies/loads.
2608 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
2609 ++i, ++realArgIdx) {
2610 CCValAssign &VA = ArgLocs[i];
2611 SDValue Arg = OutVals[realArgIdx];
2612 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2613
2614 // Promote the value if needed.
2615 switch (VA.getLocInfo()) {
2616 default:
2617 llvm_unreachable("Unknown loc info!");
2618 case CCValAssign::Full:
2619 break;
2620 case CCValAssign::SExt:
2621 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2622 break;
2623 case CCValAssign::ZExt:
2624 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2625 break;
2626 case CCValAssign::AExt:
Tim Northover68ae5032014-05-26 17:22:07 +00002627 if (Outs[realArgIdx].ArgVT == MVT::i1) {
2628 // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
2629 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2630 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
2631 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002632 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2633 break;
2634 case CCValAssign::BCvt:
2635 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2636 break;
2637 case CCValAssign::FPExt:
2638 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2639 break;
2640 }
2641
2642 if (VA.isRegLoc()) {
2643 if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
2644 assert(VA.getLocVT() == MVT::i64 &&
2645 "unexpected calling convention register assignment");
2646 assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
2647 "unexpected use of 'returned'");
2648 IsThisReturn = true;
2649 }
2650 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2651 } else {
2652 assert(VA.isMemLoc());
2653
2654 SDValue DstAddr;
2655 MachinePointerInfo DstInfo;
2656
2657 // FIXME: This works on big-endian for composite byvals, which are the
2658 // common case. It should also work for fundamental types too.
2659 uint32_t BEAlign = 0;
2660 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
Amara Emerson82da7d02014-08-15 14:29:57 +00002661 : VA.getValVT().getSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00002662 OpSize = (OpSize + 7) / 8;
2663 if (!Subtarget->isLittleEndian() && !Flags.isByVal()) {
2664 if (OpSize < 8)
2665 BEAlign = 8 - OpSize;
2666 }
2667 unsigned LocMemOffset = VA.getLocMemOffset();
2668 int32_t Offset = LocMemOffset + BEAlign;
2669 SDValue PtrOff = DAG.getIntPtrConstant(Offset);
2670 PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2671
2672 if (IsTailCall) {
2673 Offset = Offset + FPDiff;
2674 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2675
2676 DstAddr = DAG.getFrameIndex(FI, getPointerTy());
2677 DstInfo = MachinePointerInfo::getFixedStack(FI);
2678
2679 // Make sure any stack arguments overlapping with where we're storing
2680 // are loaded before this eventual operation. Otherwise they'll be
2681 // clobbered.
2682 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
2683 } else {
2684 SDValue PtrOff = DAG.getIntPtrConstant(Offset);
2685
2686 DstAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2687 DstInfo = MachinePointerInfo::getStack(LocMemOffset);
2688 }
2689
2690 if (Outs[i].Flags.isByVal()) {
2691 SDValue SizeNode =
2692 DAG.getConstant(Outs[i].Flags.getByValSize(), MVT::i64);
2693 SDValue Cpy = DAG.getMemcpy(
2694 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
Jim Grosbach8e810ba2014-08-11 22:42:28 +00002695 /*isVol = */ false,
2696 /*AlwaysInline = */ false, DstInfo, MachinePointerInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +00002697
2698 MemOpChains.push_back(Cpy);
2699 } else {
2700 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
2701 // promoted to a legal register type i32, we should truncate Arg back to
2702 // i1/i8/i16.
Tim Northover6890add2014-06-03 13:54:53 +00002703 if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
2704 VA.getValVT() == MVT::i16)
2705 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
Tim Northover3b0846e2014-05-24 12:50:23 +00002706
2707 SDValue Store =
2708 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0);
2709 MemOpChains.push_back(Store);
2710 }
2711 }
2712 }
2713
2714 if (!MemOpChains.empty())
2715 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2716
2717 // Build a sequence of copy-to-reg nodes chained together with token chain
2718 // and flag operands which copy the outgoing args into the appropriate regs.
2719 SDValue InFlag;
2720 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2721 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
2722 RegsToPass[i].second, InFlag);
2723 InFlag = Chain.getValue(1);
2724 }
2725
2726 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2727 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2728 // node so that legalize doesn't hack it.
2729 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
2730 Subtarget->isTargetMachO()) {
2731 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2732 const GlobalValue *GV = G->getGlobal();
2733 bool InternalLinkage = GV->hasInternalLinkage();
2734 if (InternalLinkage)
2735 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2736 else {
2737 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0,
2738 AArch64II::MO_GOT);
2739 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2740 }
2741 } else if (ExternalSymbolSDNode *S =
2742 dyn_cast<ExternalSymbolSDNode>(Callee)) {
2743 const char *Sym = S->getSymbol();
2744 Callee =
2745 DAG.getTargetExternalSymbol(Sym, getPointerTy(), AArch64II::MO_GOT);
2746 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2747 }
2748 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2749 const GlobalValue *GV = G->getGlobal();
2750 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2751 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2752 const char *Sym = S->getSymbol();
2753 Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), 0);
2754 }
2755
2756 // We don't usually want to end the call-sequence here because we would tidy
2757 // the frame up *after* the call, however in the ABI-changing tail-call case
2758 // we've carefully laid out the parameters so that when sp is reset they'll be
2759 // in the correct location.
2760 if (IsTailCall && !IsSibCall) {
2761 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2762 DAG.getIntPtrConstant(0, true), InFlag, DL);
2763 InFlag = Chain.getValue(1);
2764 }
2765
2766 std::vector<SDValue> Ops;
2767 Ops.push_back(Chain);
2768 Ops.push_back(Callee);
2769
2770 if (IsTailCall) {
2771 // Each tail call may have to adjust the stack by a different amount, so
2772 // this information must travel along with the operation for eventual
2773 // consumption by emitEpilogue.
2774 Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
2775 }
2776
2777 // Add argument registers to the end of the list so that they are known live
2778 // into the call.
2779 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2780 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2781 RegsToPass[i].second.getValueType()));
2782
2783 // Add a register mask operand representing the call-preserved registers.
2784 const uint32_t *Mask;
Eric Christopherd9134482014-08-04 21:25:23 +00002785 const TargetRegisterInfo *TRI =
2786 getTargetMachine().getSubtargetImpl()->getRegisterInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +00002787 const AArch64RegisterInfo *ARI =
2788 static_cast<const AArch64RegisterInfo *>(TRI);
2789 if (IsThisReturn) {
2790 // For 'this' returns, use the X0-preserving mask if applicable
2791 Mask = ARI->getThisReturnPreservedMask(CallConv);
2792 if (!Mask) {
2793 IsThisReturn = false;
2794 Mask = ARI->getCallPreservedMask(CallConv);
2795 }
2796 } else
2797 Mask = ARI->getCallPreservedMask(CallConv);
2798
2799 assert(Mask && "Missing call preserved mask for calling convention");
2800 Ops.push_back(DAG.getRegisterMask(Mask));
2801
2802 if (InFlag.getNode())
2803 Ops.push_back(InFlag);
2804
2805 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2806
2807 // If we're doing a tall call, use a TC_RETURN here rather than an
2808 // actual call instruction.
2809 if (IsTailCall)
2810 return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
2811
2812 // Returns a chain and a flag for retval copy to use.
2813 Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
2814 InFlag = Chain.getValue(1);
2815
2816 uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt)
2817 ? RoundUpToAlignment(NumBytes, 16)
2818 : 0;
2819
2820 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2821 DAG.getIntPtrConstant(CalleePopBytes, true),
2822 InFlag, DL);
2823 if (!Ins.empty())
2824 InFlag = Chain.getValue(1);
2825
2826 // Handle result values, copying them out of physregs into vregs that we
2827 // return.
2828 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2829 InVals, IsThisReturn,
2830 IsThisReturn ? OutVals[0] : SDValue());
2831}
2832
2833bool AArch64TargetLowering::CanLowerReturn(
2834 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
2835 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
2836 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2837 ? RetCC_AArch64_WebKit_JS
2838 : RetCC_AArch64_AAPCS;
2839 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002840 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
Tim Northover3b0846e2014-05-24 12:50:23 +00002841 return CCInfo.CheckReturn(Outs, RetCC);
2842}
2843
2844SDValue
2845AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2846 bool isVarArg,
2847 const SmallVectorImpl<ISD::OutputArg> &Outs,
2848 const SmallVectorImpl<SDValue> &OutVals,
2849 SDLoc DL, SelectionDAG &DAG) const {
2850 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2851 ? RetCC_AArch64_WebKit_JS
2852 : RetCC_AArch64_AAPCS;
2853 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002854 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2855 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002856 CCInfo.AnalyzeReturn(Outs, RetCC);
2857
2858 // Copy the result values into the output registers.
2859 SDValue Flag;
2860 SmallVector<SDValue, 4> RetOps(1, Chain);
2861 for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
2862 ++i, ++realRVLocIdx) {
2863 CCValAssign &VA = RVLocs[i];
2864 assert(VA.isRegLoc() && "Can only return in registers!");
2865 SDValue Arg = OutVals[realRVLocIdx];
2866
2867 switch (VA.getLocInfo()) {
2868 default:
2869 llvm_unreachable("Unknown loc info!");
2870 case CCValAssign::Full:
Tim Northover68ae5032014-05-26 17:22:07 +00002871 if (Outs[i].ArgVT == MVT::i1) {
2872 // AAPCS requires i1 to be zero-extended to i8 by the producer of the
2873 // value. This is strictly redundant on Darwin (which uses "zeroext
2874 // i1"), but will be optimised out before ISel.
2875 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2876 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2877 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002878 break;
2879 case CCValAssign::BCvt:
2880 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2881 break;
2882 }
2883
2884 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2885 Flag = Chain.getValue(1);
2886 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2887 }
2888
2889 RetOps[0] = Chain; // Update chain.
2890
2891 // Add the flag if we have it.
2892 if (Flag.getNode())
2893 RetOps.push_back(Flag);
2894
2895 return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
2896}
2897
2898//===----------------------------------------------------------------------===//
2899// Other Lowering Code
2900//===----------------------------------------------------------------------===//
2901
2902SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
2903 SelectionDAG &DAG) const {
2904 EVT PtrVT = getPointerTy();
2905 SDLoc DL(Op);
Asiri Rathnayake369c0302014-09-10 13:54:38 +00002906 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
2907 const GlobalValue *GV = GN->getGlobal();
Tim Northover3b0846e2014-05-24 12:50:23 +00002908 unsigned char OpFlags =
2909 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
2910
2911 assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
2912 "unexpected offset in global node");
2913
2914 // This also catched the large code model case for Darwin.
2915 if ((OpFlags & AArch64II::MO_GOT) != 0) {
2916 SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2917 // FIXME: Once remat is capable of dealing with instructions with register
2918 // operands, expand this into two nodes instead of using a wrapper node.
2919 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
2920 }
2921
Asiri Rathnayake369c0302014-09-10 13:54:38 +00002922 if ((OpFlags & AArch64II::MO_CONSTPOOL) != 0) {
2923 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
2924 "use of MO_CONSTPOOL only supported on small model");
2925 SDValue Hi = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, AArch64II::MO_PAGE);
2926 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
2927 unsigned char LoFlags = AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
2928 SDValue Lo = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, LoFlags);
2929 SDValue PoolAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
2930 SDValue GlobalAddr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), PoolAddr,
2931 MachinePointerInfo::getConstantPool(),
2932 /*isVolatile=*/ false,
2933 /*isNonTemporal=*/ true,
2934 /*isInvariant=*/ true, 8);
2935 if (GN->getOffset() != 0)
2936 return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalAddr,
2937 DAG.getConstant(GN->getOffset(), PtrVT));
2938 return GlobalAddr;
2939 }
2940
Tim Northover3b0846e2014-05-24 12:50:23 +00002941 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2942 const unsigned char MO_NC = AArch64II::MO_NC;
2943 return DAG.getNode(
2944 AArch64ISD::WrapperLarge, DL, PtrVT,
2945 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
2946 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
2947 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
2948 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
2949 } else {
2950 // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
2951 // the only correct model on Darwin.
2952 SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2953 OpFlags | AArch64II::MO_PAGE);
2954 unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
2955 SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
2956
2957 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
2958 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
2959 }
2960}
2961
2962/// \brief Convert a TLS address reference into the correct sequence of loads
2963/// and calls to compute the variable's address (for Darwin, currently) and
2964/// return an SDValue containing the final node.
2965
2966/// Darwin only has one TLS scheme which must be capable of dealing with the
2967/// fully general situation, in the worst case. This means:
2968/// + "extern __thread" declaration.
2969/// + Defined in a possibly unknown dynamic library.
2970///
2971/// The general system is that each __thread variable has a [3 x i64] descriptor
2972/// which contains information used by the runtime to calculate the address. The
2973/// only part of this the compiler needs to know about is the first xword, which
2974/// contains a function pointer that must be called with the address of the
2975/// entire descriptor in "x0".
2976///
2977/// Since this descriptor may be in a different unit, in general even the
2978/// descriptor must be accessed via an indirect load. The "ideal" code sequence
2979/// is:
2980/// adrp x0, _var@TLVPPAGE
2981/// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
2982/// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
2983/// ; the function pointer
2984/// blr x1 ; Uses descriptor address in x0
2985/// ; Address of _var is now in x0.
2986///
2987/// If the address of _var's descriptor *is* known to the linker, then it can
2988/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
2989/// a slight efficiency gain.
2990SDValue
2991AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
2992 SelectionDAG &DAG) const {
2993 assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
2994
2995 SDLoc DL(Op);
2996 MVT PtrVT = getPointerTy();
2997 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2998
2999 SDValue TLVPAddr =
3000 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3001 SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
3002
3003 // The first entry in the descriptor is a function pointer that we must call
3004 // to obtain the address of the variable.
3005 SDValue Chain = DAG.getEntryNode();
3006 SDValue FuncTLVGet =
3007 DAG.getLoad(MVT::i64, DL, Chain, DescAddr, MachinePointerInfo::getGOT(),
3008 false, true, true, 8);
3009 Chain = FuncTLVGet.getValue(1);
3010
3011 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3012 MFI->setAdjustsStack(true);
3013
3014 // TLS calls preserve all registers except those that absolutely must be
3015 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3016 // silly).
Eric Christopherd9134482014-08-04 21:25:23 +00003017 const TargetRegisterInfo *TRI =
3018 getTargetMachine().getSubtargetImpl()->getRegisterInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +00003019 const AArch64RegisterInfo *ARI =
3020 static_cast<const AArch64RegisterInfo *>(TRI);
3021 const uint32_t *Mask = ARI->getTLSCallPreservedMask();
3022
3023 // Finally, we can make the call. This is just a degenerate version of a
3024 // normal AArch64 call node: x0 takes the address of the descriptor, and
3025 // returns the address of the variable in this thread.
3026 Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
3027 Chain =
3028 DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3029 Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
3030 DAG.getRegisterMask(Mask), Chain.getValue(1));
3031 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
3032}
3033
3034/// When accessing thread-local variables under either the general-dynamic or
3035/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
3036/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
3037/// is a function pointer to carry out the resolution. This function takes the
3038/// address of the descriptor in X0 and returns the TPIDR_EL0 offset in X0. All
3039/// other registers (except LR, NZCV) are preserved.
3040///
3041/// Thus, the ideal call sequence on AArch64 is:
3042///
3043/// adrp x0, :tlsdesc:thread_var
3044/// ldr x8, [x0, :tlsdesc_lo12:thread_var]
3045/// add x0, x0, :tlsdesc_lo12:thread_var
3046/// .tlsdesccall thread_var
3047/// blr x8
3048/// (TPIDR_EL0 offset now in x0).
3049///
3050/// The ".tlsdesccall" directive instructs the assembler to insert a particular
3051/// relocation to help the linker relax this sequence if it turns out to be too
3052/// conservative.
3053///
3054/// FIXME: we currently produce an extra, duplicated, ADRP instruction, but this
3055/// is harmless.
3056SDValue AArch64TargetLowering::LowerELFTLSDescCall(SDValue SymAddr,
3057 SDValue DescAddr, SDLoc DL,
3058 SelectionDAG &DAG) const {
3059 EVT PtrVT = getPointerTy();
3060
3061 // The function we need to call is simply the first entry in the GOT for this
3062 // descriptor, load it in preparation.
3063 SDValue Func = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, SymAddr);
3064
3065 // TLS calls preserve all registers except those that absolutely must be
3066 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3067 // silly).
Eric Christopherd9134482014-08-04 21:25:23 +00003068 const TargetRegisterInfo *TRI =
3069 getTargetMachine().getSubtargetImpl()->getRegisterInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +00003070 const AArch64RegisterInfo *ARI =
3071 static_cast<const AArch64RegisterInfo *>(TRI);
3072 const uint32_t *Mask = ARI->getTLSCallPreservedMask();
3073
3074 // The function takes only one argument: the address of the descriptor itself
3075 // in X0.
3076 SDValue Glue, Chain;
3077 Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
3078 Glue = Chain.getValue(1);
3079
3080 // We're now ready to populate the argument list, as with a normal call:
3081 SmallVector<SDValue, 6> Ops;
3082 Ops.push_back(Chain);
3083 Ops.push_back(Func);
3084 Ops.push_back(SymAddr);
3085 Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
3086 Ops.push_back(DAG.getRegisterMask(Mask));
3087 Ops.push_back(Glue);
3088
3089 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3090 Chain = DAG.getNode(AArch64ISD::TLSDESC_CALL, DL, NodeTys, Ops);
3091 Glue = Chain.getValue(1);
3092
3093 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
3094}
3095
3096SDValue
3097AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
3098 SelectionDAG &DAG) const {
3099 assert(Subtarget->isTargetELF() && "This function expects an ELF target");
3100 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
3101 "ELF TLS only supported in small memory model");
3102 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3103
3104 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
3105
3106 SDValue TPOff;
3107 EVT PtrVT = getPointerTy();
3108 SDLoc DL(Op);
3109 const GlobalValue *GV = GA->getGlobal();
3110
3111 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
3112
3113 if (Model == TLSModel::LocalExec) {
3114 SDValue HiVar = DAG.getTargetGlobalAddress(
3115 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
3116 SDValue LoVar = DAG.getTargetGlobalAddress(
3117 GV, DL, PtrVT, 0,
3118 AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
3119
3120 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
3121 DAG.getTargetConstant(16, MVT::i32)),
3122 0);
3123 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar,
3124 DAG.getTargetConstant(0, MVT::i32)),
3125 0);
3126 } else if (Model == TLSModel::InitialExec) {
3127 TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3128 TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
3129 } else if (Model == TLSModel::LocalDynamic) {
3130 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
3131 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
3132 // the beginning of the module's TLS region, followed by a DTPREL offset
3133 // calculation.
3134
3135 // These accesses will need deduplicating if there's more than one.
3136 AArch64FunctionInfo *MFI =
3137 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3138 MFI->incNumLocalDynamicTLSAccesses();
3139
3140 // Accesses used in this sequence go via the TLS descriptor which lives in
3141 // the GOT. Prepare an address we can use to handle this.
3142 SDValue HiDesc = DAG.getTargetExternalSymbol(
3143 "_TLS_MODULE_BASE_", PtrVT, AArch64II::MO_TLS | AArch64II::MO_PAGE);
3144 SDValue LoDesc = DAG.getTargetExternalSymbol(
3145 "_TLS_MODULE_BASE_", PtrVT,
3146 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3147
3148 // First argument to the descriptor call is the address of the descriptor
3149 // itself.
3150 SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc);
3151 DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
3152
3153 // The call needs a relocation too for linker relaxation. It doesn't make
3154 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3155 // the address.
3156 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
3157 AArch64II::MO_TLS);
3158
3159 // Now we can calculate the offset from TPIDR_EL0 to this module's
3160 // thread-local area.
3161 TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
3162
3163 // Now use :dtprel_whatever: operations to calculate this variable's offset
3164 // in its thread-storage area.
3165 SDValue HiVar = DAG.getTargetGlobalAddress(
3166 GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
3167 SDValue LoVar = DAG.getTargetGlobalAddress(
3168 GV, DL, MVT::i64, 0,
3169 AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
3170
3171 SDValue DTPOff =
3172 SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
3173 DAG.getTargetConstant(16, MVT::i32)),
3174 0);
3175 DTPOff =
3176 SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, DTPOff, LoVar,
3177 DAG.getTargetConstant(0, MVT::i32)),
3178 0);
3179
3180 TPOff = DAG.getNode(ISD::ADD, DL, PtrVT, TPOff, DTPOff);
3181 } else if (Model == TLSModel::GeneralDynamic) {
3182 // Accesses used in this sequence go via the TLS descriptor which lives in
3183 // the GOT. Prepare an address we can use to handle this.
3184 SDValue HiDesc = DAG.getTargetGlobalAddress(
3185 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGE);
3186 SDValue LoDesc = DAG.getTargetGlobalAddress(
3187 GV, DL, PtrVT, 0,
3188 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3189
3190 // First argument to the descriptor call is the address of the descriptor
3191 // itself.
3192 SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc);
3193 DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
3194
3195 // The call needs a relocation too for linker relaxation. It doesn't make
3196 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3197 // the address.
3198 SDValue SymAddr =
3199 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3200
3201 // Finally we can make a call to calculate the offset from tpidr_el0.
3202 TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
3203 } else
3204 llvm_unreachable("Unsupported ELF TLS access model");
3205
3206 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
3207}
3208
3209SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
3210 SelectionDAG &DAG) const {
3211 if (Subtarget->isTargetDarwin())
3212 return LowerDarwinGlobalTLSAddress(Op, DAG);
3213 else if (Subtarget->isTargetELF())
3214 return LowerELFGlobalTLSAddress(Op, DAG);
3215
3216 llvm_unreachable("Unexpected platform trying to use TLS");
3217}
3218SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3219 SDValue Chain = Op.getOperand(0);
3220 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3221 SDValue LHS = Op.getOperand(2);
3222 SDValue RHS = Op.getOperand(3);
3223 SDValue Dest = Op.getOperand(4);
3224 SDLoc dl(Op);
3225
3226 // Handle f128 first, since lowering it will result in comparing the return
3227 // value of a libcall against zero, which is just what the rest of LowerBR_CC
3228 // is expecting to deal with.
3229 if (LHS.getValueType() == MVT::f128) {
3230 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3231
3232 // If softenSetCCOperands returned a scalar, we need to compare the result
3233 // against zero to select between true and false values.
3234 if (!RHS.getNode()) {
3235 RHS = DAG.getConstant(0, LHS.getValueType());
3236 CC = ISD::SETNE;
3237 }
3238 }
3239
3240 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
3241 // instruction.
3242 unsigned Opc = LHS.getOpcode();
3243 if (LHS.getResNo() == 1 && isa<ConstantSDNode>(RHS) &&
3244 cast<ConstantSDNode>(RHS)->isOne() &&
3245 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3246 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3247 assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
3248 "Unexpected condition code.");
3249 // Only lower legal XALUO ops.
3250 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
3251 return SDValue();
3252
3253 // The actual operation with overflow check.
3254 AArch64CC::CondCode OFCC;
3255 SDValue Value, Overflow;
3256 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
3257
3258 if (CC == ISD::SETNE)
3259 OFCC = getInvertedCondCode(OFCC);
3260 SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
3261
3262 return DAG.getNode(AArch64ISD::BRCOND, SDLoc(LHS), MVT::Other, Chain, Dest,
3263 CCVal, Overflow);
3264 }
3265
3266 if (LHS.getValueType().isInteger()) {
3267 assert((LHS.getValueType() == RHS.getValueType()) &&
3268 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3269
3270 // If the RHS of the comparison is zero, we can potentially fold this
3271 // to a specialized branch.
3272 const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
3273 if (RHSC && RHSC->getZExtValue() == 0) {
3274 if (CC == ISD::SETEQ) {
3275 // See if we can use a TBZ to fold in an AND as well.
3276 // TBZ has a smaller branch displacement than CBZ. If the offset is
3277 // out of bounds, a late MI-layer pass rewrites branches.
3278 // 403.gcc is an example that hits this case.
3279 if (LHS.getOpcode() == ISD::AND &&
3280 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3281 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3282 SDValue Test = LHS.getOperand(0);
3283 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003284 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
3285 DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
3286 }
3287
3288 return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
3289 } else if (CC == ISD::SETNE) {
3290 // See if we can use a TBZ to fold in an AND as well.
3291 // TBZ has a smaller branch displacement than CBZ. If the offset is
3292 // out of bounds, a late MI-layer pass rewrites branches.
3293 // 403.gcc is an example that hits this case.
3294 if (LHS.getOpcode() == ISD::AND &&
3295 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3296 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3297 SDValue Test = LHS.getOperand(0);
3298 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003299 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
3300 DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
3301 }
3302
3303 return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
Chad Rosier579c02c2014-08-01 14:48:56 +00003304 } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
3305 // Don't combine AND since emitComparison converts the AND to an ANDS
3306 // (a.k.a. TST) and the test in the test bit and branch instruction
3307 // becomes redundant. This would also increase register pressure.
3308 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3309 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
3310 DAG.getConstant(Mask, MVT::i64), Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003311 }
3312 }
Chad Rosier579c02c2014-08-01 14:48:56 +00003313 if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
3314 LHS.getOpcode() != ISD::AND) {
3315 // Don't combine AND since emitComparison converts the AND to an ANDS
3316 // (a.k.a. TST) and the test in the test bit and branch instruction
3317 // becomes redundant. This would also increase register pressure.
3318 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3319 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
3320 DAG.getConstant(Mask, MVT::i64), Dest);
3321 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003322
3323 SDValue CCVal;
3324 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3325 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3326 Cmp);
3327 }
3328
3329 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3330
3331 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3332 // clean. Some of them require two branches to implement.
3333 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3334 AArch64CC::CondCode CC1, CC2;
3335 changeFPCCToAArch64CC(CC, CC1, CC2);
3336 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3337 SDValue BR1 =
3338 DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
3339 if (CC2 != AArch64CC::AL) {
3340 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3341 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
3342 Cmp);
3343 }
3344
3345 return BR1;
3346}
3347
3348SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
3349 SelectionDAG &DAG) const {
3350 EVT VT = Op.getValueType();
3351 SDLoc DL(Op);
3352
3353 SDValue In1 = Op.getOperand(0);
3354 SDValue In2 = Op.getOperand(1);
3355 EVT SrcVT = In2.getValueType();
3356 if (SrcVT != VT) {
3357 if (SrcVT == MVT::f32 && VT == MVT::f64)
3358 In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
3359 else if (SrcVT == MVT::f64 && VT == MVT::f32)
3360 In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0));
3361 else
3362 // FIXME: Src type is different, bail out for now. Can VT really be a
3363 // vector type?
3364 return SDValue();
3365 }
3366
3367 EVT VecVT;
3368 EVT EltVT;
3369 SDValue EltMask, VecVal1, VecVal2;
3370 if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
3371 EltVT = MVT::i32;
3372 VecVT = MVT::v4i32;
3373 EltMask = DAG.getConstant(0x80000000ULL, EltVT);
3374
3375 if (!VT.isVector()) {
3376 VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3377 DAG.getUNDEF(VecVT), In1);
3378 VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3379 DAG.getUNDEF(VecVT), In2);
3380 } else {
3381 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3382 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3383 }
3384 } else if (VT == MVT::f64 || VT == MVT::v2f64) {
3385 EltVT = MVT::i64;
3386 VecVT = MVT::v2i64;
3387
3388 // We want to materialize a mask with the the high bit set, but the AdvSIMD
3389 // immediate moves cannot materialize that in a single instruction for
3390 // 64-bit elements. Instead, materialize zero and then negate it.
3391 EltMask = DAG.getConstant(0, EltVT);
3392
3393 if (!VT.isVector()) {
3394 VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3395 DAG.getUNDEF(VecVT), In1);
3396 VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3397 DAG.getUNDEF(VecVT), In2);
3398 } else {
3399 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3400 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3401 }
3402 } else {
3403 llvm_unreachable("Invalid type for copysign!");
3404 }
3405
3406 std::vector<SDValue> BuildVectorOps;
3407 for (unsigned i = 0; i < VecVT.getVectorNumElements(); ++i)
3408 BuildVectorOps.push_back(EltMask);
3409
3410 SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, BuildVectorOps);
3411
3412 // If we couldn't materialize the mask above, then the mask vector will be
3413 // the zero vector, and we need to negate it here.
3414 if (VT == MVT::f64 || VT == MVT::v2f64) {
3415 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
3416 BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
3417 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
3418 }
3419
3420 SDValue Sel =
3421 DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
3422
3423 if (VT == MVT::f32)
3424 return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
3425 else if (VT == MVT::f64)
3426 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
3427 else
3428 return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
3429}
3430
3431SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
3432 if (DAG.getMachineFunction().getFunction()->getAttributes().hasAttribute(
3433 AttributeSet::FunctionIndex, Attribute::NoImplicitFloat))
3434 return SDValue();
3435
3436 // While there is no integer popcount instruction, it can
3437 // be more efficiently lowered to the following sequence that uses
3438 // AdvSIMD registers/instructions as long as the copies to/from
3439 // the AdvSIMD registers are cheap.
3440 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
3441 // CNT V0.8B, V0.8B // 8xbyte pop-counts
3442 // ADDV B0, V0.8B // sum 8xbyte pop-counts
3443 // UMOV X0, V0.B[0] // copy byte result back to integer reg
3444 SDValue Val = Op.getOperand(0);
3445 SDLoc DL(Op);
3446 EVT VT = Op.getValueType();
3447 SDValue ZeroVec = DAG.getUNDEF(MVT::v8i8);
3448
3449 SDValue VecVal;
3450 if (VT == MVT::i32) {
3451 VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
3452 VecVal = DAG.getTargetInsertSubreg(AArch64::ssub, DL, MVT::v8i8, ZeroVec,
3453 VecVal);
3454 } else {
3455 VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
3456 }
3457
3458 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, VecVal);
3459 SDValue UaddLV = DAG.getNode(
3460 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
3461 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, MVT::i32), CtPop);
3462
3463 if (VT == MVT::i64)
3464 UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
3465 return UaddLV;
3466}
3467
3468SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3469
3470 if (Op.getValueType().isVector())
3471 return LowerVSETCC(Op, DAG);
3472
3473 SDValue LHS = Op.getOperand(0);
3474 SDValue RHS = Op.getOperand(1);
3475 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3476 SDLoc dl(Op);
3477
3478 // We chose ZeroOrOneBooleanContents, so use zero and one.
3479 EVT VT = Op.getValueType();
3480 SDValue TVal = DAG.getConstant(1, VT);
3481 SDValue FVal = DAG.getConstant(0, VT);
3482
3483 // Handle f128 first, since one possible outcome is a normal integer
3484 // comparison which gets picked up by the next if statement.
3485 if (LHS.getValueType() == MVT::f128) {
3486 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3487
3488 // If softenSetCCOperands returned a scalar, use it.
3489 if (!RHS.getNode()) {
3490 assert(LHS.getValueType() == Op.getValueType() &&
3491 "Unexpected setcc expansion!");
3492 return LHS;
3493 }
3494 }
3495
3496 if (LHS.getValueType().isInteger()) {
3497 SDValue CCVal;
3498 SDValue Cmp =
3499 getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
3500
3501 // Note that we inverted the condition above, so we reverse the order of
3502 // the true and false operands here. This will allow the setcc to be
3503 // matched to a single CSINC instruction.
3504 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
3505 }
3506
3507 // Now we know we're dealing with FP values.
3508 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3509
3510 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3511 // and do the comparison.
3512 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3513
3514 AArch64CC::CondCode CC1, CC2;
3515 changeFPCCToAArch64CC(CC, CC1, CC2);
3516 if (CC2 == AArch64CC::AL) {
3517 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
3518 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3519
3520 // Note that we inverted the condition above, so we reverse the order of
3521 // the true and false operands here. This will allow the setcc to be
3522 // matched to a single CSINC instruction.
3523 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
3524 } else {
3525 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
3526 // totally clean. Some of them require two CSELs to implement. As is in
3527 // this case, we emit the first CSEL and then emit a second using the output
3528 // of the first as the RHS. We're effectively OR'ing the two CC's together.
3529
3530 // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
3531 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3532 SDValue CS1 =
3533 DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3534
3535 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3536 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3537 }
3538}
3539
3540/// A SELECT_CC operation is really some kind of max or min if both values being
3541/// compared are, in some sense, equal to the results in either case. However,
3542/// it is permissible to compare f32 values and produce directly extended f64
3543/// values.
3544///
3545/// Extending the comparison operands would also be allowed, but is less likely
3546/// to happen in practice since their use is right here. Note that truncate
3547/// operations would *not* be semantically equivalent.
3548static bool selectCCOpsAreFMaxCompatible(SDValue Cmp, SDValue Result) {
3549 if (Cmp == Result)
3550 return true;
3551
3552 ConstantFPSDNode *CCmp = dyn_cast<ConstantFPSDNode>(Cmp);
3553 ConstantFPSDNode *CResult = dyn_cast<ConstantFPSDNode>(Result);
3554 if (CCmp && CResult && Cmp.getValueType() == MVT::f32 &&
3555 Result.getValueType() == MVT::f64) {
3556 bool Lossy;
3557 APFloat CmpVal = CCmp->getValueAPF();
3558 CmpVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Lossy);
3559 return CResult->getValueAPF().bitwiseIsEqual(CmpVal);
3560 }
3561
3562 return Result->getOpcode() == ISD::FP_EXTEND && Result->getOperand(0) == Cmp;
3563}
3564
3565SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
3566 SelectionDAG &DAG) const {
3567 SDValue CC = Op->getOperand(0);
3568 SDValue TVal = Op->getOperand(1);
3569 SDValue FVal = Op->getOperand(2);
3570 SDLoc DL(Op);
3571
3572 unsigned Opc = CC.getOpcode();
3573 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
3574 // instruction.
3575 if (CC.getResNo() == 1 &&
3576 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3577 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3578 // Only lower legal XALUO ops.
3579 if (!DAG.getTargetLoweringInfo().isTypeLegal(CC->getValueType(0)))
3580 return SDValue();
3581
3582 AArch64CC::CondCode OFCC;
3583 SDValue Value, Overflow;
3584 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CC.getValue(0), DAG);
3585 SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
3586
3587 return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
3588 CCVal, Overflow);
3589 }
3590
3591 if (CC.getOpcode() == ISD::SETCC)
3592 return DAG.getSelectCC(DL, CC.getOperand(0), CC.getOperand(1), TVal, FVal,
3593 cast<CondCodeSDNode>(CC.getOperand(2))->get());
3594 else
3595 return DAG.getSelectCC(DL, CC, DAG.getConstant(0, CC.getValueType()), TVal,
3596 FVal, ISD::SETNE);
3597}
3598
3599SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
3600 SelectionDAG &DAG) const {
3601 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3602 SDValue LHS = Op.getOperand(0);
3603 SDValue RHS = Op.getOperand(1);
3604 SDValue TVal = Op.getOperand(2);
3605 SDValue FVal = Op.getOperand(3);
3606 SDLoc dl(Op);
3607
3608 // Handle f128 first, because it will result in a comparison of some RTLIB
3609 // call result against zero.
3610 if (LHS.getValueType() == MVT::f128) {
3611 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3612
3613 // If softenSetCCOperands returned a scalar, we need to compare the result
3614 // against zero to select between true and false values.
3615 if (!RHS.getNode()) {
3616 RHS = DAG.getConstant(0, LHS.getValueType());
3617 CC = ISD::SETNE;
3618 }
3619 }
3620
3621 // Handle integers first.
3622 if (LHS.getValueType().isInteger()) {
3623 assert((LHS.getValueType() == RHS.getValueType()) &&
3624 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3625
3626 unsigned Opcode = AArch64ISD::CSEL;
3627
3628 // If both the TVal and the FVal are constants, see if we can swap them in
3629 // order to for a CSINV or CSINC out of them.
3630 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
3631 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
3632
3633 if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
3634 std::swap(TVal, FVal);
3635 std::swap(CTVal, CFVal);
3636 CC = ISD::getSetCCInverse(CC, true);
3637 } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
3638 std::swap(TVal, FVal);
3639 std::swap(CTVal, CFVal);
3640 CC = ISD::getSetCCInverse(CC, true);
3641 } else if (TVal.getOpcode() == ISD::XOR) {
3642 // If TVal is a NOT we want to swap TVal and FVal so that we can match
3643 // with a CSINV rather than a CSEL.
3644 ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(1));
3645
3646 if (CVal && CVal->isAllOnesValue()) {
3647 std::swap(TVal, FVal);
3648 std::swap(CTVal, CFVal);
3649 CC = ISD::getSetCCInverse(CC, true);
3650 }
3651 } else if (TVal.getOpcode() == ISD::SUB) {
3652 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
3653 // that we can match with a CSNEG rather than a CSEL.
3654 ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(0));
3655
3656 if (CVal && CVal->isNullValue()) {
3657 std::swap(TVal, FVal);
3658 std::swap(CTVal, CFVal);
3659 CC = ISD::getSetCCInverse(CC, true);
3660 }
3661 } else if (CTVal && CFVal) {
3662 const int64_t TrueVal = CTVal->getSExtValue();
3663 const int64_t FalseVal = CFVal->getSExtValue();
3664 bool Swap = false;
3665
3666 // If both TVal and FVal are constants, see if FVal is the
3667 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
3668 // instead of a CSEL in that case.
3669 if (TrueVal == ~FalseVal) {
3670 Opcode = AArch64ISD::CSINV;
3671 } else if (TrueVal == -FalseVal) {
3672 Opcode = AArch64ISD::CSNEG;
3673 } else if (TVal.getValueType() == MVT::i32) {
3674 // If our operands are only 32-bit wide, make sure we use 32-bit
3675 // arithmetic for the check whether we can use CSINC. This ensures that
3676 // the addition in the check will wrap around properly in case there is
3677 // an overflow (which would not be the case if we do the check with
3678 // 64-bit arithmetic).
3679 const uint32_t TrueVal32 = CTVal->getZExtValue();
3680 const uint32_t FalseVal32 = CFVal->getZExtValue();
3681
3682 if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
3683 Opcode = AArch64ISD::CSINC;
3684
3685 if (TrueVal32 > FalseVal32) {
3686 Swap = true;
3687 }
3688 }
3689 // 64-bit check whether we can use CSINC.
3690 } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
3691 Opcode = AArch64ISD::CSINC;
3692
3693 if (TrueVal > FalseVal) {
3694 Swap = true;
3695 }
3696 }
3697
3698 // Swap TVal and FVal if necessary.
3699 if (Swap) {
3700 std::swap(TVal, FVal);
3701 std::swap(CTVal, CFVal);
3702 CC = ISD::getSetCCInverse(CC, true);
3703 }
3704
3705 if (Opcode != AArch64ISD::CSEL) {
3706 // Drop FVal since we can get its value by simply inverting/negating
3707 // TVal.
3708 FVal = TVal;
3709 }
3710 }
3711
3712 SDValue CCVal;
3713 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3714
3715 EVT VT = Op.getValueType();
3716 return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
3717 }
3718
3719 // Now we know we're dealing with FP values.
3720 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3721 assert(LHS.getValueType() == RHS.getValueType());
3722 EVT VT = Op.getValueType();
3723
3724 // Try to match this select into a max/min operation, which have dedicated
3725 // opcode in the instruction set.
3726 // FIXME: This is not correct in the presence of NaNs, so we only enable this
3727 // in no-NaNs mode.
3728 if (getTargetMachine().Options.NoNaNsFPMath) {
3729 SDValue MinMaxLHS = TVal, MinMaxRHS = FVal;
3730 if (selectCCOpsAreFMaxCompatible(LHS, MinMaxRHS) &&
3731 selectCCOpsAreFMaxCompatible(RHS, MinMaxLHS)) {
3732 CC = ISD::getSetCCSwappedOperands(CC);
3733 std::swap(MinMaxLHS, MinMaxRHS);
3734 }
3735
3736 if (selectCCOpsAreFMaxCompatible(LHS, MinMaxLHS) &&
3737 selectCCOpsAreFMaxCompatible(RHS, MinMaxRHS)) {
3738 switch (CC) {
3739 default:
3740 break;
3741 case ISD::SETGT:
3742 case ISD::SETGE:
3743 case ISD::SETUGT:
3744 case ISD::SETUGE:
3745 case ISD::SETOGT:
3746 case ISD::SETOGE:
3747 return DAG.getNode(AArch64ISD::FMAX, dl, VT, MinMaxLHS, MinMaxRHS);
3748 break;
3749 case ISD::SETLT:
3750 case ISD::SETLE:
3751 case ISD::SETULT:
3752 case ISD::SETULE:
3753 case ISD::SETOLT:
3754 case ISD::SETOLE:
3755 return DAG.getNode(AArch64ISD::FMIN, dl, VT, MinMaxLHS, MinMaxRHS);
3756 break;
3757 }
3758 }
3759 }
3760
3761 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3762 // and do the comparison.
3763 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3764
3765 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3766 // clean. Some of them require two CSELs to implement.
3767 AArch64CC::CondCode CC1, CC2;
3768 changeFPCCToAArch64CC(CC, CC1, CC2);
3769 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3770 SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3771
3772 // If we need a second CSEL, emit it, using the output of the first as the
3773 // RHS. We're effectively OR'ing the two CC's together.
3774 if (CC2 != AArch64CC::AL) {
3775 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3776 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3777 }
3778
3779 // Otherwise, return the output of the first CSEL.
3780 return CS1;
3781}
3782
3783SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
3784 SelectionDAG &DAG) const {
3785 // Jump table entries as PC relative offsets. No additional tweaking
3786 // is necessary here. Just get the address of the jump table.
3787 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3788 EVT PtrVT = getPointerTy();
3789 SDLoc DL(Op);
3790
3791 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3792 !Subtarget->isTargetMachO()) {
3793 const unsigned char MO_NC = AArch64II::MO_NC;
3794 return DAG.getNode(
3795 AArch64ISD::WrapperLarge, DL, PtrVT,
3796 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
3797 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
3798 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
3799 DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3800 AArch64II::MO_G0 | MO_NC));
3801 }
3802
3803 SDValue Hi =
3804 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
3805 SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3806 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3807 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3808 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3809}
3810
3811SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
3812 SelectionDAG &DAG) const {
3813 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3814 EVT PtrVT = getPointerTy();
3815 SDLoc DL(Op);
3816
3817 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3818 // Use the GOT for the large code model on iOS.
3819 if (Subtarget->isTargetMachO()) {
3820 SDValue GotAddr = DAG.getTargetConstantPool(
3821 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3822 AArch64II::MO_GOT);
3823 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
3824 }
3825
3826 const unsigned char MO_NC = AArch64II::MO_NC;
3827 return DAG.getNode(
3828 AArch64ISD::WrapperLarge, DL, PtrVT,
3829 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3830 CP->getOffset(), AArch64II::MO_G3),
3831 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3832 CP->getOffset(), AArch64II::MO_G2 | MO_NC),
3833 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3834 CP->getOffset(), AArch64II::MO_G1 | MO_NC),
3835 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3836 CP->getOffset(), AArch64II::MO_G0 | MO_NC));
3837 } else {
3838 // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
3839 // ELF, the only valid one on Darwin.
3840 SDValue Hi =
3841 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3842 CP->getOffset(), AArch64II::MO_PAGE);
3843 SDValue Lo = DAG.getTargetConstantPool(
3844 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3845 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3846
3847 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3848 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3849 }
3850}
3851
3852SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
3853 SelectionDAG &DAG) const {
3854 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
3855 EVT PtrVT = getPointerTy();
3856 SDLoc DL(Op);
3857 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3858 !Subtarget->isTargetMachO()) {
3859 const unsigned char MO_NC = AArch64II::MO_NC;
3860 return DAG.getNode(
3861 AArch64ISD::WrapperLarge, DL, PtrVT,
3862 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
3863 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
3864 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
3865 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
3866 } else {
3867 SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
3868 SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
3869 AArch64II::MO_NC);
3870 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3871 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3872 }
3873}
3874
3875SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
3876 SelectionDAG &DAG) const {
3877 AArch64FunctionInfo *FuncInfo =
3878 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3879
3880 SDLoc DL(Op);
3881 SDValue FR =
3882 DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3883 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3884 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3885 MachinePointerInfo(SV), false, false, 0);
3886}
3887
3888SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
3889 SelectionDAG &DAG) const {
3890 // The layout of the va_list struct is specified in the AArch64 Procedure Call
3891 // Standard, section B.3.
3892 MachineFunction &MF = DAG.getMachineFunction();
3893 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3894 SDLoc DL(Op);
3895
3896 SDValue Chain = Op.getOperand(0);
3897 SDValue VAList = Op.getOperand(1);
3898 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3899 SmallVector<SDValue, 4> MemOps;
3900
3901 // void *__stack at offset 0
3902 SDValue Stack =
3903 DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3904 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
3905 MachinePointerInfo(SV), false, false, 8));
3906
3907 // void *__gr_top at offset 8
3908 int GPRSize = FuncInfo->getVarArgsGPRSize();
3909 if (GPRSize > 0) {
3910 SDValue GRTop, GRTopAddr;
3911
3912 GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3913 DAG.getConstant(8, getPointerTy()));
3914
3915 GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), getPointerTy());
3916 GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
3917 DAG.getConstant(GPRSize, getPointerTy()));
3918
3919 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
3920 MachinePointerInfo(SV, 8), false, false, 8));
3921 }
3922
3923 // void *__vr_top at offset 16
3924 int FPRSize = FuncInfo->getVarArgsFPRSize();
3925 if (FPRSize > 0) {
3926 SDValue VRTop, VRTopAddr;
3927 VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3928 DAG.getConstant(16, getPointerTy()));
3929
3930 VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), getPointerTy());
3931 VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
3932 DAG.getConstant(FPRSize, getPointerTy()));
3933
3934 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
3935 MachinePointerInfo(SV, 16), false, false, 8));
3936 }
3937
3938 // int __gr_offs at offset 24
3939 SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3940 DAG.getConstant(24, getPointerTy()));
3941 MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
3942 GROffsAddr, MachinePointerInfo(SV, 24), false,
3943 false, 4));
3944
3945 // int __vr_offs at offset 28
3946 SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3947 DAG.getConstant(28, getPointerTy()));
3948 MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
3949 VROffsAddr, MachinePointerInfo(SV, 28), false,
3950 false, 4));
3951
3952 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3953}
3954
3955SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
3956 SelectionDAG &DAG) const {
3957 return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
3958 : LowerAAPCS_VASTART(Op, DAG);
3959}
3960
3961SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
3962 SelectionDAG &DAG) const {
3963 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
3964 // pointer.
3965 unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
3966 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3967 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3968
3969 return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op), Op.getOperand(1),
3970 Op.getOperand(2), DAG.getConstant(VaListSize, MVT::i32),
3971 8, false, false, MachinePointerInfo(DestSV),
3972 MachinePointerInfo(SrcSV));
3973}
3974
3975SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3976 assert(Subtarget->isTargetDarwin() &&
3977 "automatic va_arg instruction only works on Darwin");
3978
3979 const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3980 EVT VT = Op.getValueType();
3981 SDLoc DL(Op);
3982 SDValue Chain = Op.getOperand(0);
3983 SDValue Addr = Op.getOperand(1);
3984 unsigned Align = Op.getConstantOperandVal(3);
3985
3986 SDValue VAList = DAG.getLoad(getPointerTy(), DL, Chain, Addr,
3987 MachinePointerInfo(V), false, false, false, 0);
3988 Chain = VAList.getValue(1);
3989
3990 if (Align > 8) {
3991 assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
3992 VAList = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3993 DAG.getConstant(Align - 1, getPointerTy()));
3994 VAList = DAG.getNode(ISD::AND, DL, getPointerTy(), VAList,
3995 DAG.getConstant(-(int64_t)Align, getPointerTy()));
3996 }
3997
3998 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
3999 uint64_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
4000
4001 // Scalar integer and FP values smaller than 64 bits are implicitly extended
4002 // up to 64 bits. At the very least, we have to increase the striding of the
4003 // vaargs list to match this, and for FP values we need to introduce
4004 // FP_ROUND nodes as well.
4005 if (VT.isInteger() && !VT.isVector())
4006 ArgSize = 8;
4007 bool NeedFPTrunc = false;
4008 if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
4009 ArgSize = 8;
4010 NeedFPTrunc = true;
4011 }
4012
4013 // Increment the pointer, VAList, to the next vaarg
4014 SDValue VANext = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
4015 DAG.getConstant(ArgSize, getPointerTy()));
4016 // Store the incremented VAList to the legalized pointer
4017 SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
4018 false, false, 0);
4019
4020 // Load the actual argument out of the pointer VAList
4021 if (NeedFPTrunc) {
4022 // Load the value as an f64.
4023 SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
4024 MachinePointerInfo(), false, false, false, 0);
4025 // Round the value down to an f32.
4026 SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
4027 DAG.getIntPtrConstant(1));
4028 SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
4029 // Merge the rounded value with the chain output of the load.
4030 return DAG.getMergeValues(Ops, DL);
4031 }
4032
4033 return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
4034 false, false, 0);
4035}
4036
4037SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
4038 SelectionDAG &DAG) const {
4039 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4040 MFI->setFrameAddressIsTaken(true);
4041
4042 EVT VT = Op.getValueType();
4043 SDLoc DL(Op);
4044 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4045 SDValue FrameAddr =
4046 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
4047 while (Depth--)
4048 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
4049 MachinePointerInfo(), false, false, false, 0);
4050 return FrameAddr;
4051}
4052
4053// FIXME? Maybe this could be a TableGen attribute on some registers and
4054// this table could be generated automatically from RegInfo.
4055unsigned AArch64TargetLowering::getRegisterByName(const char* RegName,
4056 EVT VT) const {
4057 unsigned Reg = StringSwitch<unsigned>(RegName)
4058 .Case("sp", AArch64::SP)
4059 .Default(0);
4060 if (Reg)
4061 return Reg;
4062 report_fatal_error("Invalid register name global variable");
4063}
4064
4065SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
4066 SelectionDAG &DAG) const {
4067 MachineFunction &MF = DAG.getMachineFunction();
4068 MachineFrameInfo *MFI = MF.getFrameInfo();
4069 MFI->setReturnAddressIsTaken(true);
4070
4071 EVT VT = Op.getValueType();
4072 SDLoc DL(Op);
4073 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4074 if (Depth) {
4075 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
4076 SDValue Offset = DAG.getConstant(8, getPointerTy());
4077 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4078 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4079 MachinePointerInfo(), false, false, false, 0);
4080 }
4081
4082 // Return LR, which contains the return address. Mark it an implicit live-in.
4083 unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
4084 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
4085}
4086
4087/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
4088/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4089SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
4090 SelectionDAG &DAG) const {
4091 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4092 EVT VT = Op.getValueType();
4093 unsigned VTBits = VT.getSizeInBits();
4094 SDLoc dl(Op);
4095 SDValue ShOpLo = Op.getOperand(0);
4096 SDValue ShOpHi = Op.getOperand(1);
4097 SDValue ShAmt = Op.getOperand(2);
4098 SDValue ARMcc;
4099 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
4100
4101 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
4102
4103 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
4104 DAG.getConstant(VTBits, MVT::i64), ShAmt);
4105 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
4106 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
4107 DAG.getConstant(VTBits, MVT::i64));
4108 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
4109
4110 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
4111 ISD::SETGE, dl, DAG);
4112 SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
4113
4114 SDValue FalseValLo = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4115 SDValue TrueValLo = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
4116 SDValue Lo =
4117 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
4118
4119 // AArch64 shifts larger than the register width are wrapped rather than
4120 // clamped, so we can't just emit "hi >> x".
4121 SDValue FalseValHi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
4122 SDValue TrueValHi = Opc == ISD::SRA
4123 ? DAG.getNode(Opc, dl, VT, ShOpHi,
4124 DAG.getConstant(VTBits - 1, MVT::i64))
4125 : DAG.getConstant(0, VT);
4126 SDValue Hi =
4127 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValHi, FalseValHi, CCVal, Cmp);
4128
4129 SDValue Ops[2] = { Lo, Hi };
4130 return DAG.getMergeValues(Ops, dl);
4131}
4132
4133/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
4134/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4135SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
4136 SelectionDAG &DAG) const {
4137 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4138 EVT VT = Op.getValueType();
4139 unsigned VTBits = VT.getSizeInBits();
4140 SDLoc dl(Op);
4141 SDValue ShOpLo = Op.getOperand(0);
4142 SDValue ShOpHi = Op.getOperand(1);
4143 SDValue ShAmt = Op.getOperand(2);
4144 SDValue ARMcc;
4145
4146 assert(Op.getOpcode() == ISD::SHL_PARTS);
4147 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
4148 DAG.getConstant(VTBits, MVT::i64), ShAmt);
4149 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
4150 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
4151 DAG.getConstant(VTBits, MVT::i64));
4152 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
4153 SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
4154
4155 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4156
4157 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
4158 ISD::SETGE, dl, DAG);
4159 SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
4160 SDValue Hi =
4161 DAG.getNode(AArch64ISD::CSEL, dl, VT, Tmp3, FalseVal, CCVal, Cmp);
4162
4163 // AArch64 shifts of larger than register sizes are wrapped rather than
4164 // clamped, so we can't just emit "lo << a" if a is too big.
4165 SDValue TrueValLo = DAG.getConstant(0, VT);
4166 SDValue FalseValLo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4167 SDValue Lo =
4168 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
4169
4170 SDValue Ops[2] = { Lo, Hi };
4171 return DAG.getMergeValues(Ops, dl);
4172}
4173
4174bool AArch64TargetLowering::isOffsetFoldingLegal(
4175 const GlobalAddressSDNode *GA) const {
4176 // The AArch64 target doesn't support folding offsets into global addresses.
4177 return false;
4178}
4179
4180bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4181 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
4182 // FIXME: We should be able to handle f128 as well with a clever lowering.
4183 if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
4184 return true;
4185
4186 if (VT == MVT::f64)
4187 return AArch64_AM::getFP64Imm(Imm) != -1;
4188 else if (VT == MVT::f32)
4189 return AArch64_AM::getFP32Imm(Imm) != -1;
4190 return false;
4191}
4192
4193//===----------------------------------------------------------------------===//
4194// AArch64 Optimization Hooks
4195//===----------------------------------------------------------------------===//
4196
4197//===----------------------------------------------------------------------===//
4198// AArch64 Inline Assembly Support
4199//===----------------------------------------------------------------------===//
4200
4201// Table of Constraints
4202// TODO: This is the current set of constraints supported by ARM for the
4203// compiler, not all of them may make sense, e.g. S may be difficult to support.
4204//
4205// r - A general register
4206// w - An FP/SIMD register of some size in the range v0-v31
4207// x - An FP/SIMD register of some size in the range v0-v15
4208// I - Constant that can be used with an ADD instruction
4209// J - Constant that can be used with a SUB instruction
4210// K - Constant that can be used with a 32-bit logical instruction
4211// L - Constant that can be used with a 64-bit logical instruction
4212// M - Constant that can be used as a 32-bit MOV immediate
4213// N - Constant that can be used as a 64-bit MOV immediate
4214// Q - A memory reference with base register and no offset
4215// S - A symbolic address
4216// Y - Floating point constant zero
4217// Z - Integer constant zero
4218//
4219// Note that general register operands will be output using their 64-bit x
4220// register name, whatever the size of the variable, unless the asm operand
4221// is prefixed by the %w modifier. Floating-point and SIMD register operands
4222// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
4223// %q modifier.
4224
4225/// getConstraintType - Given a constraint letter, return the type of
4226/// constraint it is for this target.
4227AArch64TargetLowering::ConstraintType
4228AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
4229 if (Constraint.size() == 1) {
4230 switch (Constraint[0]) {
4231 default:
4232 break;
4233 case 'z':
4234 return C_Other;
4235 case 'x':
4236 case 'w':
4237 return C_RegisterClass;
4238 // An address with a single base register. Due to the way we
4239 // currently handle addresses it is the same as 'r'.
4240 case 'Q':
4241 return C_Memory;
4242 }
4243 }
4244 return TargetLowering::getConstraintType(Constraint);
4245}
4246
4247/// Examine constraint type and operand type and determine a weight value.
4248/// This object must already have been set up with the operand type
4249/// and the current alternative constraint selected.
4250TargetLowering::ConstraintWeight
4251AArch64TargetLowering::getSingleConstraintMatchWeight(
4252 AsmOperandInfo &info, const char *constraint) const {
4253 ConstraintWeight weight = CW_Invalid;
4254 Value *CallOperandVal = info.CallOperandVal;
4255 // If we don't have a value, we can't do a match,
4256 // but allow it at the lowest weight.
4257 if (!CallOperandVal)
4258 return CW_Default;
4259 Type *type = CallOperandVal->getType();
4260 // Look at the constraint type.
4261 switch (*constraint) {
4262 default:
4263 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
4264 break;
4265 case 'x':
4266 case 'w':
4267 if (type->isFloatingPointTy() || type->isVectorTy())
4268 weight = CW_Register;
4269 break;
4270 case 'z':
4271 weight = CW_Constant;
4272 break;
4273 }
4274 return weight;
4275}
4276
4277std::pair<unsigned, const TargetRegisterClass *>
4278AArch64TargetLowering::getRegForInlineAsmConstraint(
4279 const std::string &Constraint, MVT VT) const {
4280 if (Constraint.size() == 1) {
4281 switch (Constraint[0]) {
4282 case 'r':
4283 if (VT.getSizeInBits() == 64)
4284 return std::make_pair(0U, &AArch64::GPR64commonRegClass);
4285 return std::make_pair(0U, &AArch64::GPR32commonRegClass);
4286 case 'w':
4287 if (VT == MVT::f32)
4288 return std::make_pair(0U, &AArch64::FPR32RegClass);
4289 if (VT.getSizeInBits() == 64)
4290 return std::make_pair(0U, &AArch64::FPR64RegClass);
4291 if (VT.getSizeInBits() == 128)
4292 return std::make_pair(0U, &AArch64::FPR128RegClass);
4293 break;
4294 // The instructions that this constraint is designed for can
4295 // only take 128-bit registers so just use that regclass.
4296 case 'x':
4297 if (VT.getSizeInBits() == 128)
4298 return std::make_pair(0U, &AArch64::FPR128_loRegClass);
4299 break;
4300 }
4301 }
4302 if (StringRef("{cc}").equals_lower(Constraint))
4303 return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
4304
4305 // Use the default implementation in TargetLowering to convert the register
4306 // constraint into a member of a register class.
4307 std::pair<unsigned, const TargetRegisterClass *> Res;
4308 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4309
4310 // Not found as a standard register?
4311 if (!Res.second) {
4312 unsigned Size = Constraint.size();
4313 if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
4314 tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
4315 const std::string Reg =
4316 std::string(&Constraint[2], &Constraint[Size - 1]);
4317 int RegNo = atoi(Reg.c_str());
4318 if (RegNo >= 0 && RegNo <= 31) {
4319 // v0 - v31 are aliases of q0 - q31.
4320 // By default we'll emit v0-v31 for this unless there's a modifier where
4321 // we'll emit the correct register as well.
4322 Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
4323 Res.second = &AArch64::FPR128RegClass;
4324 }
4325 }
4326 }
4327
4328 return Res;
4329}
4330
4331/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4332/// vector. If it is invalid, don't add anything to Ops.
4333void AArch64TargetLowering::LowerAsmOperandForConstraint(
4334 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
4335 SelectionDAG &DAG) const {
4336 SDValue Result;
4337
4338 // Currently only support length 1 constraints.
4339 if (Constraint.length() != 1)
4340 return;
4341
4342 char ConstraintLetter = Constraint[0];
4343 switch (ConstraintLetter) {
4344 default:
4345 break;
4346
4347 // This set of constraints deal with valid constants for various instructions.
4348 // Validate and return a target constant for them if we can.
4349 case 'z': {
4350 // 'z' maps to xzr or wzr so it needs an input of 0.
4351 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4352 if (!C || C->getZExtValue() != 0)
4353 return;
4354
4355 if (Op.getValueType() == MVT::i64)
4356 Result = DAG.getRegister(AArch64::XZR, MVT::i64);
4357 else
4358 Result = DAG.getRegister(AArch64::WZR, MVT::i32);
4359 break;
4360 }
4361
4362 case 'I':
4363 case 'J':
4364 case 'K':
4365 case 'L':
4366 case 'M':
4367 case 'N':
4368 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4369 if (!C)
4370 return;
4371
4372 // Grab the value and do some validation.
4373 uint64_t CVal = C->getZExtValue();
4374 switch (ConstraintLetter) {
4375 // The I constraint applies only to simple ADD or SUB immediate operands:
4376 // i.e. 0 to 4095 with optional shift by 12
4377 // The J constraint applies only to ADD or SUB immediates that would be
4378 // valid when negated, i.e. if [an add pattern] were to be output as a SUB
4379 // instruction [or vice versa], in other words -1 to -4095 with optional
4380 // left shift by 12.
4381 case 'I':
4382 if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
4383 break;
4384 return;
4385 case 'J': {
4386 uint64_t NVal = -C->getSExtValue();
Tim Northover2c46beb2014-07-27 07:10:29 +00004387 if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
4388 CVal = C->getSExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00004389 break;
Tim Northover2c46beb2014-07-27 07:10:29 +00004390 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004391 return;
4392 }
4393 // The K and L constraints apply *only* to logical immediates, including
4394 // what used to be the MOVI alias for ORR (though the MOVI alias has now
4395 // been removed and MOV should be used). So these constraints have to
4396 // distinguish between bit patterns that are valid 32-bit or 64-bit
4397 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
4398 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
4399 // versa.
4400 case 'K':
4401 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4402 break;
4403 return;
4404 case 'L':
4405 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4406 break;
4407 return;
4408 // The M and N constraints are a superset of K and L respectively, for use
4409 // with the MOV (immediate) alias. As well as the logical immediates they
4410 // also match 32 or 64-bit immediates that can be loaded either using a
4411 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
4412 // (M) or 64-bit 0x1234000000000000 (N) etc.
4413 // As a note some of this code is liberally stolen from the asm parser.
4414 case 'M': {
4415 if (!isUInt<32>(CVal))
4416 return;
4417 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4418 break;
4419 if ((CVal & 0xFFFF) == CVal)
4420 break;
4421 if ((CVal & 0xFFFF0000ULL) == CVal)
4422 break;
4423 uint64_t NCVal = ~(uint32_t)CVal;
4424 if ((NCVal & 0xFFFFULL) == NCVal)
4425 break;
4426 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4427 break;
4428 return;
4429 }
4430 case 'N': {
4431 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4432 break;
4433 if ((CVal & 0xFFFFULL) == CVal)
4434 break;
4435 if ((CVal & 0xFFFF0000ULL) == CVal)
4436 break;
4437 if ((CVal & 0xFFFF00000000ULL) == CVal)
4438 break;
4439 if ((CVal & 0xFFFF000000000000ULL) == CVal)
4440 break;
4441 uint64_t NCVal = ~CVal;
4442 if ((NCVal & 0xFFFFULL) == NCVal)
4443 break;
4444 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4445 break;
4446 if ((NCVal & 0xFFFF00000000ULL) == NCVal)
4447 break;
4448 if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
4449 break;
4450 return;
4451 }
4452 default:
4453 return;
4454 }
4455
4456 // All assembler immediates are 64-bit integers.
4457 Result = DAG.getTargetConstant(CVal, MVT::i64);
4458 break;
4459 }
4460
4461 if (Result.getNode()) {
4462 Ops.push_back(Result);
4463 return;
4464 }
4465
4466 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4467}
4468
4469//===----------------------------------------------------------------------===//
4470// AArch64 Advanced SIMD Support
4471//===----------------------------------------------------------------------===//
4472
4473/// WidenVector - Given a value in the V64 register class, produce the
4474/// equivalent value in the V128 register class.
4475static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
4476 EVT VT = V64Reg.getValueType();
4477 unsigned NarrowSize = VT.getVectorNumElements();
4478 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4479 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
4480 SDLoc DL(V64Reg);
4481
4482 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
4483 V64Reg, DAG.getConstant(0, MVT::i32));
4484}
4485
4486/// getExtFactor - Determine the adjustment factor for the position when
4487/// generating an "extract from vector registers" instruction.
4488static unsigned getExtFactor(SDValue &V) {
4489 EVT EltType = V.getValueType().getVectorElementType();
4490 return EltType.getSizeInBits() / 8;
4491}
4492
4493/// NarrowVector - Given a value in the V128 register class, produce the
4494/// equivalent value in the V64 register class.
4495static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
4496 EVT VT = V128Reg.getValueType();
4497 unsigned WideSize = VT.getVectorNumElements();
4498 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4499 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
4500 SDLoc DL(V128Reg);
4501
4502 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
4503}
4504
4505// Gather data to see if the operation can be modelled as a
4506// shuffle in combination with VEXTs.
4507SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
4508 SelectionDAG &DAG) const {
Kevin Qinf0ec9af2014-06-18 05:54:42 +00004509 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00004510 SDLoc dl(Op);
4511 EVT VT = Op.getValueType();
4512 unsigned NumElts = VT.getVectorNumElements();
4513
Tim Northover7324e842014-07-24 15:39:55 +00004514 struct ShuffleSourceInfo {
4515 SDValue Vec;
4516 unsigned MinElt;
4517 unsigned MaxElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00004518
Tim Northover7324e842014-07-24 15:39:55 +00004519 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
4520 // be compatible with the shuffle we intend to construct. As a result
4521 // ShuffleVec will be some sliding window into the original Vec.
4522 SDValue ShuffleVec;
4523
4524 // Code should guarantee that element i in Vec starts at element "WindowBase
4525 // + i * WindowScale in ShuffleVec".
4526 int WindowBase;
4527 int WindowScale;
4528
4529 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
4530 ShuffleSourceInfo(SDValue Vec)
4531 : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
4532 WindowScale(1) {}
4533 };
4534
4535 // First gather all vectors used as an immediate source for this BUILD_VECTOR
4536 // node.
4537 SmallVector<ShuffleSourceInfo, 2> Sources;
Tim Northover3b0846e2014-05-24 12:50:23 +00004538 for (unsigned i = 0; i < NumElts; ++i) {
4539 SDValue V = Op.getOperand(i);
4540 if (V.getOpcode() == ISD::UNDEF)
4541 continue;
4542 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4543 // A shuffle can only come from building a vector from various
4544 // elements of other vectors.
4545 return SDValue();
4546 }
4547
Tim Northover7324e842014-07-24 15:39:55 +00004548 // Add this element source to the list if it's not already there.
Tim Northover3b0846e2014-05-24 12:50:23 +00004549 SDValue SourceVec = V.getOperand(0);
Tim Northover7324e842014-07-24 15:39:55 +00004550 auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
4551 if (Source == Sources.end())
James Molloyf497d552014-10-17 17:06:31 +00004552 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
Tim Northover3b0846e2014-05-24 12:50:23 +00004553
Tim Northover7324e842014-07-24 15:39:55 +00004554 // Update the minimum and maximum lane number seen.
4555 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4556 Source->MinElt = std::min(Source->MinElt, EltNo);
4557 Source->MaxElt = std::max(Source->MaxElt, EltNo);
Tim Northover3b0846e2014-05-24 12:50:23 +00004558 }
4559
4560 // Currently only do something sane when at most two source vectors
Tim Northover7324e842014-07-24 15:39:55 +00004561 // are involved.
4562 if (Sources.size() > 2)
Tim Northover3b0846e2014-05-24 12:50:23 +00004563 return SDValue();
4564
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004565 // Find out the smallest element size among result and two sources, and use
4566 // it as element size to build the shuffle_vector.
4567 EVT SmallestEltTy = VT.getVectorElementType();
Tim Northover7324e842014-07-24 15:39:55 +00004568 for (auto &Source : Sources) {
4569 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004570 if (SrcEltTy.bitsLT(SmallestEltTy)) {
4571 SmallestEltTy = SrcEltTy;
4572 }
4573 }
4574 unsigned ResMultiplier =
4575 VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004576 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
4577 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00004578
Tim Northover7324e842014-07-24 15:39:55 +00004579 // If the source vector is too wide or too narrow, we may nevertheless be able
4580 // to construct a compatible shuffle either by concatenating it with UNDEF or
4581 // extracting a suitable range of elements.
4582 for (auto &Src : Sources) {
4583 EVT SrcVT = Src.ShuffleVec.getValueType();
Kevin Qinf0ec9af2014-06-18 05:54:42 +00004584
Tim Northover7324e842014-07-24 15:39:55 +00004585 if (SrcVT.getSizeInBits() == VT.getSizeInBits())
Tim Northover3b0846e2014-05-24 12:50:23 +00004586 continue;
Tim Northover7324e842014-07-24 15:39:55 +00004587
4588 // This stage of the search produces a source with the same element type as
4589 // the original, but with a total width matching the BUILD_VECTOR output.
4590 EVT EltVT = SrcVT.getVectorElementType();
James Molloyf497d552014-10-17 17:06:31 +00004591 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
4592 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
Tim Northover7324e842014-07-24 15:39:55 +00004593
4594 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
4595 assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00004596 // We can pad out the smaller vector for free, so if it's part of a
4597 // shuffle...
Tim Northover7324e842014-07-24 15:39:55 +00004598 Src.ShuffleVec =
4599 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
4600 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004601 continue;
4602 }
4603
Tim Northover7324e842014-07-24 15:39:55 +00004604 assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00004605
James Molloyf497d552014-10-17 17:06:31 +00004606 if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004607 // Span too large for a VEXT to cope
4608 return SDValue();
4609 }
4610
James Molloyf497d552014-10-17 17:06:31 +00004611 if (Src.MinElt >= NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004612 // The extraction can just take the second half
Tim Northover7324e842014-07-24 15:39:55 +00004613 Src.ShuffleVec =
4614 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
James Molloyf497d552014-10-17 17:06:31 +00004615 DAG.getIntPtrConstant(NumSrcElts));
4616 Src.WindowBase = -NumSrcElts;
4617 } else if (Src.MaxElt < NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004618 // The extraction can just take the first half
Tim Northover7324e842014-07-24 15:39:55 +00004619 Src.ShuffleVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT,
4620 Src.ShuffleVec, DAG.getIntPtrConstant(0));
Tim Northover3b0846e2014-05-24 12:50:23 +00004621 } else {
4622 // An actual VEXT is needed
Tim Northover7324e842014-07-24 15:39:55 +00004623 SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT,
4624 Src.ShuffleVec, DAG.getIntPtrConstant(0));
4625 SDValue VEXTSrc2 =
4626 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
James Molloyf497d552014-10-17 17:06:31 +00004627 DAG.getIntPtrConstant(NumSrcElts));
Tim Northover7324e842014-07-24 15:39:55 +00004628 unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
4629
4630 Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004631 VEXTSrc2, DAG.getConstant(Imm, MVT::i32));
Tim Northover7324e842014-07-24 15:39:55 +00004632 Src.WindowBase = -Src.MinElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00004633 }
4634 }
4635
Tim Northover7324e842014-07-24 15:39:55 +00004636 // Another possible incompatibility occurs from the vector element types. We
4637 // can fix this by bitcasting the source vectors to the same type we intend
4638 // for the shuffle.
4639 for (auto &Src : Sources) {
4640 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
4641 if (SrcEltTy == SmallestEltTy)
4642 continue;
4643 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
4644 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
4645 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
4646 Src.WindowBase *= Src.WindowScale;
4647 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004648
Tim Northover7324e842014-07-24 15:39:55 +00004649 // Final sanity check before we try to actually produce a shuffle.
4650 DEBUG(
4651 for (auto Src : Sources)
4652 assert(Src.ShuffleVec.getValueType() == ShuffleVT);
4653 );
4654
4655 // The stars all align, our next step is to produce the mask for the shuffle.
4656 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
4657 int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004658 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004659 SDValue Entry = Op.getOperand(i);
Tim Northover7324e842014-07-24 15:39:55 +00004660 if (Entry.getOpcode() == ISD::UNDEF)
4661 continue;
Tim Northover3b0846e2014-05-24 12:50:23 +00004662
Tim Northover7324e842014-07-24 15:39:55 +00004663 auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
4664 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
4665
4666 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
4667 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
4668 // segment.
4669 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
4670 int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
4671 VT.getVectorElementType().getSizeInBits());
4672 int LanesDefined = BitsDefined / BitsPerShuffleLane;
4673
4674 // This source is expected to fill ResMultiplier lanes of the final shuffle,
4675 // starting at the appropriate offset.
4676 int *LaneMask = &Mask[i * ResMultiplier];
4677
4678 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
4679 ExtractBase += NumElts * (Src - Sources.begin());
4680 for (int j = 0; j < LanesDefined; ++j)
4681 LaneMask[j] = ExtractBase + j;
Tim Northover3b0846e2014-05-24 12:50:23 +00004682 }
4683
4684 // Final check before we try to produce nonsense...
Tim Northover7324e842014-07-24 15:39:55 +00004685 if (!isShuffleMaskLegal(Mask, ShuffleVT))
4686 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00004687
Tim Northover7324e842014-07-24 15:39:55 +00004688 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
4689 for (unsigned i = 0; i < Sources.size(); ++i)
4690 ShuffleOps[i] = Sources[i].ShuffleVec;
4691
4692 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
4693 ShuffleOps[1], &Mask[0]);
4694 return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
Tim Northover3b0846e2014-05-24 12:50:23 +00004695}
4696
4697// check if an EXT instruction can handle the shuffle mask when the
4698// vector sources of the shuffle are the same.
4699static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
4700 unsigned NumElts = VT.getVectorNumElements();
4701
4702 // Assume that the first shuffle index is not UNDEF. Fail if it is.
4703 if (M[0] < 0)
4704 return false;
4705
4706 Imm = M[0];
4707
4708 // If this is a VEXT shuffle, the immediate value is the index of the first
4709 // element. The other shuffle indices must be the successive elements after
4710 // the first one.
4711 unsigned ExpectedElt = Imm;
4712 for (unsigned i = 1; i < NumElts; ++i) {
4713 // Increment the expected index. If it wraps around, just follow it
4714 // back to index zero and keep going.
4715 ++ExpectedElt;
4716 if (ExpectedElt == NumElts)
4717 ExpectedElt = 0;
4718
4719 if (M[i] < 0)
4720 continue; // ignore UNDEF indices
4721 if (ExpectedElt != static_cast<unsigned>(M[i]))
4722 return false;
4723 }
4724
4725 return true;
4726}
4727
4728// check if an EXT instruction can handle the shuffle mask when the
4729// vector sources of the shuffle are different.
4730static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
4731 unsigned &Imm) {
4732 // Look for the first non-undef element.
4733 const int *FirstRealElt = std::find_if(M.begin(), M.end(),
4734 [](int Elt) {return Elt >= 0;});
4735
4736 // Benefit form APInt to handle overflow when calculating expected element.
4737 unsigned NumElts = VT.getVectorNumElements();
4738 unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
4739 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
4740 // The following shuffle indices must be the successive elements after the
4741 // first real element.
4742 const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
4743 [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
4744 if (FirstWrongElt != M.end())
4745 return false;
4746
4747 // The index of an EXT is the first element if it is not UNDEF.
4748 // Watch out for the beginning UNDEFs. The EXT index should be the expected
4749 // value of the first element. E.g.
4750 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
4751 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
4752 // ExpectedElt is the last mask index plus 1.
4753 Imm = ExpectedElt.getZExtValue();
4754
4755 // There are two difference cases requiring to reverse input vectors.
4756 // For example, for vector <4 x i32> we have the following cases,
4757 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
4758 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
4759 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
4760 // to reverse two input vectors.
4761 if (Imm < NumElts)
4762 ReverseEXT = true;
4763 else
4764 Imm -= NumElts;
4765
4766 return true;
4767}
4768
4769/// isREVMask - Check if a vector shuffle corresponds to a REV
4770/// instruction with the specified blocksize. (The order of the elements
4771/// within each block of the vector is reversed.)
4772static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
4773 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
4774 "Only possible block sizes for REV are: 16, 32, 64");
4775
4776 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4777 if (EltSz == 64)
4778 return false;
4779
4780 unsigned NumElts = VT.getVectorNumElements();
4781 unsigned BlockElts = M[0] + 1;
4782 // If the first shuffle index is UNDEF, be optimistic.
4783 if (M[0] < 0)
4784 BlockElts = BlockSize / EltSz;
4785
4786 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
4787 return false;
4788
4789 for (unsigned i = 0; i < NumElts; ++i) {
4790 if (M[i] < 0)
4791 continue; // ignore UNDEF indices
4792 if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
4793 return false;
4794 }
4795
4796 return true;
4797}
4798
4799static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4800 unsigned NumElts = VT.getVectorNumElements();
4801 WhichResult = (M[0] == 0 ? 0 : 1);
4802 unsigned Idx = WhichResult * NumElts / 2;
4803 for (unsigned i = 0; i != NumElts; i += 2) {
4804 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4805 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
4806 return false;
4807 Idx += 1;
4808 }
4809
4810 return true;
4811}
4812
4813static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4814 unsigned NumElts = VT.getVectorNumElements();
4815 WhichResult = (M[0] == 0 ? 0 : 1);
4816 for (unsigned i = 0; i != NumElts; ++i) {
4817 if (M[i] < 0)
4818 continue; // ignore UNDEF indices
4819 if ((unsigned)M[i] != 2 * i + WhichResult)
4820 return false;
4821 }
4822
4823 return true;
4824}
4825
4826static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4827 unsigned NumElts = VT.getVectorNumElements();
4828 WhichResult = (M[0] == 0 ? 0 : 1);
4829 for (unsigned i = 0; i < NumElts; i += 2) {
4830 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4831 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
4832 return false;
4833 }
4834 return true;
4835}
4836
4837/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
4838/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4839/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
4840static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4841 unsigned NumElts = VT.getVectorNumElements();
4842 WhichResult = (M[0] == 0 ? 0 : 1);
4843 unsigned Idx = WhichResult * NumElts / 2;
4844 for (unsigned i = 0; i != NumElts; i += 2) {
4845 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4846 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
4847 return false;
4848 Idx += 1;
4849 }
4850
4851 return true;
4852}
4853
4854/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
4855/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4856/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
4857static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4858 unsigned Half = VT.getVectorNumElements() / 2;
4859 WhichResult = (M[0] == 0 ? 0 : 1);
4860 for (unsigned j = 0; j != 2; ++j) {
4861 unsigned Idx = WhichResult;
4862 for (unsigned i = 0; i != Half; ++i) {
4863 int MIdx = M[i + j * Half];
4864 if (MIdx >= 0 && (unsigned)MIdx != Idx)
4865 return false;
4866 Idx += 2;
4867 }
4868 }
4869
4870 return true;
4871}
4872
4873/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
4874/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4875/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
4876static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4877 unsigned NumElts = VT.getVectorNumElements();
4878 WhichResult = (M[0] == 0 ? 0 : 1);
4879 for (unsigned i = 0; i < NumElts; i += 2) {
4880 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4881 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
4882 return false;
4883 }
4884 return true;
4885}
4886
4887static bool isINSMask(ArrayRef<int> M, int NumInputElements,
4888 bool &DstIsLeft, int &Anomaly) {
4889 if (M.size() != static_cast<size_t>(NumInputElements))
4890 return false;
4891
4892 int NumLHSMatch = 0, NumRHSMatch = 0;
4893 int LastLHSMismatch = -1, LastRHSMismatch = -1;
4894
4895 for (int i = 0; i < NumInputElements; ++i) {
4896 if (M[i] == -1) {
4897 ++NumLHSMatch;
4898 ++NumRHSMatch;
4899 continue;
4900 }
4901
4902 if (M[i] == i)
4903 ++NumLHSMatch;
4904 else
4905 LastLHSMismatch = i;
4906
4907 if (M[i] == i + NumInputElements)
4908 ++NumRHSMatch;
4909 else
4910 LastRHSMismatch = i;
4911 }
4912
4913 if (NumLHSMatch == NumInputElements - 1) {
4914 DstIsLeft = true;
4915 Anomaly = LastLHSMismatch;
4916 return true;
4917 } else if (NumRHSMatch == NumInputElements - 1) {
4918 DstIsLeft = false;
4919 Anomaly = LastRHSMismatch;
4920 return true;
4921 }
4922
4923 return false;
4924}
4925
4926static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
4927 if (VT.getSizeInBits() != 128)
4928 return false;
4929
4930 unsigned NumElts = VT.getVectorNumElements();
4931
4932 for (int I = 0, E = NumElts / 2; I != E; I++) {
4933 if (Mask[I] != I)
4934 return false;
4935 }
4936
4937 int Offset = NumElts / 2;
4938 for (int I = NumElts / 2, E = NumElts; I != E; I++) {
4939 if (Mask[I] != I + SplitLHS * Offset)
4940 return false;
4941 }
4942
4943 return true;
4944}
4945
4946static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
4947 SDLoc DL(Op);
4948 EVT VT = Op.getValueType();
4949 SDValue V0 = Op.getOperand(0);
4950 SDValue V1 = Op.getOperand(1);
4951 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
4952
4953 if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
4954 VT.getVectorElementType() != V1.getValueType().getVectorElementType())
4955 return SDValue();
4956
4957 bool SplitV0 = V0.getValueType().getSizeInBits() == 128;
4958
4959 if (!isConcatMask(Mask, VT, SplitV0))
4960 return SDValue();
4961
4962 EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
4963 VT.getVectorNumElements() / 2);
4964 if (SplitV0) {
4965 V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
4966 DAG.getConstant(0, MVT::i64));
4967 }
4968 if (V1.getValueType().getSizeInBits() == 128) {
4969 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
4970 DAG.getConstant(0, MVT::i64));
4971 }
4972 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
4973}
4974
4975/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4976/// the specified operations to build the shuffle.
4977static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4978 SDValue RHS, SelectionDAG &DAG,
4979 SDLoc dl) {
4980 unsigned OpNum = (PFEntry >> 26) & 0x0F;
4981 unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
4982 unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
4983
4984 enum {
4985 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4986 OP_VREV,
4987 OP_VDUP0,
4988 OP_VDUP1,
4989 OP_VDUP2,
4990 OP_VDUP3,
4991 OP_VEXT1,
4992 OP_VEXT2,
4993 OP_VEXT3,
4994 OP_VUZPL, // VUZP, left result
4995 OP_VUZPR, // VUZP, right result
4996 OP_VZIPL, // VZIP, left result
4997 OP_VZIPR, // VZIP, right result
4998 OP_VTRNL, // VTRN, left result
4999 OP_VTRNR // VTRN, right result
5000 };
5001
5002 if (OpNum == OP_COPY) {
5003 if (LHSID == (1 * 9 + 2) * 9 + 3)
5004 return LHS;
5005 assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
5006 return RHS;
5007 }
5008
5009 SDValue OpLHS, OpRHS;
5010 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5011 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5012 EVT VT = OpLHS.getValueType();
5013
5014 switch (OpNum) {
5015 default:
5016 llvm_unreachable("Unknown shuffle opcode!");
5017 case OP_VREV:
5018 // VREV divides the vector in half and swaps within the half.
5019 if (VT.getVectorElementType() == MVT::i32 ||
5020 VT.getVectorElementType() == MVT::f32)
5021 return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
5022 // vrev <4 x i16> -> REV32
Oliver Stannard89d15422014-08-27 16:16:04 +00005023 if (VT.getVectorElementType() == MVT::i16 ||
5024 VT.getVectorElementType() == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005025 return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
5026 // vrev <4 x i8> -> REV16
5027 assert(VT.getVectorElementType() == MVT::i8);
5028 return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
5029 case OP_VDUP0:
5030 case OP_VDUP1:
5031 case OP_VDUP2:
5032 case OP_VDUP3: {
5033 EVT EltTy = VT.getVectorElementType();
5034 unsigned Opcode;
5035 if (EltTy == MVT::i8)
5036 Opcode = AArch64ISD::DUPLANE8;
5037 else if (EltTy == MVT::i16)
5038 Opcode = AArch64ISD::DUPLANE16;
5039 else if (EltTy == MVT::i32 || EltTy == MVT::f32)
5040 Opcode = AArch64ISD::DUPLANE32;
5041 else if (EltTy == MVT::i64 || EltTy == MVT::f64)
5042 Opcode = AArch64ISD::DUPLANE64;
5043 else
5044 llvm_unreachable("Invalid vector element type?");
5045
5046 if (VT.getSizeInBits() == 64)
5047 OpLHS = WidenVector(OpLHS, DAG);
5048 SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, MVT::i64);
5049 return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
5050 }
5051 case OP_VEXT1:
5052 case OP_VEXT2:
5053 case OP_VEXT3: {
5054 unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
5055 return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
5056 DAG.getConstant(Imm, MVT::i32));
5057 }
5058 case OP_VUZPL:
5059 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
5060 OpRHS);
5061 case OP_VUZPR:
5062 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
5063 OpRHS);
5064 case OP_VZIPL:
5065 return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
5066 OpRHS);
5067 case OP_VZIPR:
5068 return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
5069 OpRHS);
5070 case OP_VTRNL:
5071 return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
5072 OpRHS);
5073 case OP_VTRNR:
5074 return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
5075 OpRHS);
5076 }
5077}
5078
5079static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
5080 SelectionDAG &DAG) {
5081 // Check to see if we can use the TBL instruction.
5082 SDValue V1 = Op.getOperand(0);
5083 SDValue V2 = Op.getOperand(1);
5084 SDLoc DL(Op);
5085
5086 EVT EltVT = Op.getValueType().getVectorElementType();
5087 unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
5088
5089 SmallVector<SDValue, 8> TBLMask;
5090 for (int Val : ShuffleMask) {
5091 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
5092 unsigned Offset = Byte + Val * BytesPerElt;
5093 TBLMask.push_back(DAG.getConstant(Offset, MVT::i32));
5094 }
5095 }
5096
5097 MVT IndexVT = MVT::v8i8;
5098 unsigned IndexLen = 8;
5099 if (Op.getValueType().getSizeInBits() == 128) {
5100 IndexVT = MVT::v16i8;
5101 IndexLen = 16;
5102 }
5103
5104 SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
5105 SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
5106
5107 SDValue Shuffle;
5108 if (V2.getNode()->getOpcode() == ISD::UNDEF) {
5109 if (IndexLen == 8)
5110 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
5111 Shuffle = DAG.getNode(
5112 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5113 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
5114 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5115 makeArrayRef(TBLMask.data(), IndexLen)));
5116 } else {
5117 if (IndexLen == 8) {
5118 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
5119 Shuffle = DAG.getNode(
5120 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5121 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
5122 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5123 makeArrayRef(TBLMask.data(), IndexLen)));
5124 } else {
5125 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
5126 // cannot currently represent the register constraints on the input
5127 // table registers.
5128 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
5129 // DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5130 // &TBLMask[0], IndexLen));
5131 Shuffle = DAG.getNode(
5132 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5133 DAG.getConstant(Intrinsic::aarch64_neon_tbl2, MVT::i32), V1Cst, V2Cst,
5134 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5135 makeArrayRef(TBLMask.data(), IndexLen)));
5136 }
5137 }
5138 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
5139}
5140
5141static unsigned getDUPLANEOp(EVT EltType) {
5142 if (EltType == MVT::i8)
5143 return AArch64ISD::DUPLANE8;
Oliver Stannard89d15422014-08-27 16:16:04 +00005144 if (EltType == MVT::i16 || EltType == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005145 return AArch64ISD::DUPLANE16;
5146 if (EltType == MVT::i32 || EltType == MVT::f32)
5147 return AArch64ISD::DUPLANE32;
5148 if (EltType == MVT::i64 || EltType == MVT::f64)
5149 return AArch64ISD::DUPLANE64;
5150
5151 llvm_unreachable("Invalid vector element type?");
5152}
5153
5154SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5155 SelectionDAG &DAG) const {
5156 SDLoc dl(Op);
5157 EVT VT = Op.getValueType();
5158
5159 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
5160
5161 // Convert shuffles that are directly supported on NEON to target-specific
5162 // DAG nodes, instead of keeping them as shuffles and matching them again
5163 // during code selection. This is more efficient and avoids the possibility
5164 // of inconsistencies between legalization and selection.
5165 ArrayRef<int> ShuffleMask = SVN->getMask();
5166
5167 SDValue V1 = Op.getOperand(0);
5168 SDValue V2 = Op.getOperand(1);
5169
5170 if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0],
5171 V1.getValueType().getSimpleVT())) {
5172 int Lane = SVN->getSplatIndex();
5173 // If this is undef splat, generate it via "just" vdup, if possible.
5174 if (Lane == -1)
5175 Lane = 0;
5176
5177 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
5178 return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
5179 V1.getOperand(0));
5180 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
5181 // constant. If so, we can just reference the lane's definition directly.
5182 if (V1.getOpcode() == ISD::BUILD_VECTOR &&
5183 !isa<ConstantSDNode>(V1.getOperand(Lane)))
5184 return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
5185
5186 // Otherwise, duplicate from the lane of the input vector.
5187 unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
5188
5189 // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
5190 // to make a vector of the same size as this SHUFFLE. We can ignore the
5191 // extract entirely, and canonicalise the concat using WidenVector.
5192 if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
5193 Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
5194 V1 = V1.getOperand(0);
5195 } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
5196 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
5197 Lane -= Idx * VT.getVectorNumElements() / 2;
5198 V1 = WidenVector(V1.getOperand(Idx), DAG);
5199 } else if (VT.getSizeInBits() == 64)
5200 V1 = WidenVector(V1, DAG);
5201
5202 return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, MVT::i64));
5203 }
5204
5205 if (isREVMask(ShuffleMask, VT, 64))
5206 return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
5207 if (isREVMask(ShuffleMask, VT, 32))
5208 return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
5209 if (isREVMask(ShuffleMask, VT, 16))
5210 return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
5211
5212 bool ReverseEXT = false;
5213 unsigned Imm;
5214 if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
5215 if (ReverseEXT)
5216 std::swap(V1, V2);
5217 Imm *= getExtFactor(V1);
5218 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
5219 DAG.getConstant(Imm, MVT::i32));
5220 } else if (V2->getOpcode() == ISD::UNDEF &&
5221 isSingletonEXTMask(ShuffleMask, VT, Imm)) {
5222 Imm *= getExtFactor(V1);
5223 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
5224 DAG.getConstant(Imm, MVT::i32));
5225 }
5226
5227 unsigned WhichResult;
5228 if (isZIPMask(ShuffleMask, VT, WhichResult)) {
5229 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5230 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5231 }
5232 if (isUZPMask(ShuffleMask, VT, WhichResult)) {
5233 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5234 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5235 }
5236 if (isTRNMask(ShuffleMask, VT, WhichResult)) {
5237 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5238 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5239 }
5240
5241 if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5242 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5243 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5244 }
5245 if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5246 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5247 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5248 }
5249 if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5250 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5251 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5252 }
5253
5254 SDValue Concat = tryFormConcatFromShuffle(Op, DAG);
5255 if (Concat.getNode())
5256 return Concat;
5257
5258 bool DstIsLeft;
5259 int Anomaly;
5260 int NumInputElements = V1.getValueType().getVectorNumElements();
5261 if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
5262 SDValue DstVec = DstIsLeft ? V1 : V2;
5263 SDValue DstLaneV = DAG.getConstant(Anomaly, MVT::i64);
5264
5265 SDValue SrcVec = V1;
5266 int SrcLane = ShuffleMask[Anomaly];
5267 if (SrcLane >= NumInputElements) {
5268 SrcVec = V2;
5269 SrcLane -= VT.getVectorNumElements();
5270 }
5271 SDValue SrcLaneV = DAG.getConstant(SrcLane, MVT::i64);
5272
5273 EVT ScalarVT = VT.getVectorElementType();
Oliver Stannard89d15422014-08-27 16:16:04 +00005274
5275 if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00005276 ScalarVT = MVT::i32;
5277
5278 return DAG.getNode(
5279 ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
5280 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
5281 DstLaneV);
5282 }
5283
5284 // If the shuffle is not directly supported and it has 4 elements, use
5285 // the PerfectShuffle-generated table to synthesize it from other shuffles.
5286 unsigned NumElts = VT.getVectorNumElements();
5287 if (NumElts == 4) {
5288 unsigned PFIndexes[4];
5289 for (unsigned i = 0; i != 4; ++i) {
5290 if (ShuffleMask[i] < 0)
5291 PFIndexes[i] = 8;
5292 else
5293 PFIndexes[i] = ShuffleMask[i];
5294 }
5295
5296 // Compute the index in the perfect shuffle table.
5297 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
5298 PFIndexes[2] * 9 + PFIndexes[3];
5299 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5300 unsigned Cost = (PFEntry >> 30);
5301
5302 if (Cost <= 4)
5303 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5304 }
5305
5306 return GenerateTBL(Op, ShuffleMask, DAG);
5307}
5308
5309static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
5310 APInt &UndefBits) {
5311 EVT VT = BVN->getValueType(0);
5312 APInt SplatBits, SplatUndef;
5313 unsigned SplatBitSize;
5314 bool HasAnyUndefs;
5315 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5316 unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
5317
5318 for (unsigned i = 0; i < NumSplats; ++i) {
5319 CnstBits <<= SplatBitSize;
5320 UndefBits <<= SplatBitSize;
5321 CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
5322 UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
5323 }
5324
5325 return true;
5326 }
5327
5328 return false;
5329}
5330
5331SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
5332 SelectionDAG &DAG) const {
5333 BuildVectorSDNode *BVN =
5334 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5335 SDValue LHS = Op.getOperand(0);
5336 SDLoc dl(Op);
5337 EVT VT = Op.getValueType();
5338
5339 if (!BVN)
5340 return Op;
5341
5342 APInt CnstBits(VT.getSizeInBits(), 0);
5343 APInt UndefBits(VT.getSizeInBits(), 0);
5344 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5345 // We only have BIC vector immediate instruction, which is and-not.
5346 CnstBits = ~CnstBits;
5347
5348 // We make use of a little bit of goto ickiness in order to avoid having to
5349 // duplicate the immediate matching logic for the undef toggled case.
5350 bool SecondTry = false;
5351 AttemptModImm:
5352
5353 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5354 CnstBits = CnstBits.zextOrTrunc(64);
5355 uint64_t CnstVal = CnstBits.getZExtValue();
5356
5357 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5358 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5359 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5360 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5361 DAG.getConstant(CnstVal, MVT::i32),
5362 DAG.getConstant(0, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005363 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005364 }
5365
5366 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5367 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5368 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5369 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5370 DAG.getConstant(CnstVal, MVT::i32),
5371 DAG.getConstant(8, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005372 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005373 }
5374
5375 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5376 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5377 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5378 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5379 DAG.getConstant(CnstVal, MVT::i32),
5380 DAG.getConstant(16, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005381 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005382 }
5383
5384 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5385 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5386 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5387 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5388 DAG.getConstant(CnstVal, MVT::i32),
5389 DAG.getConstant(24, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005390 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005391 }
5392
5393 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5394 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5395 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5396 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5397 DAG.getConstant(CnstVal, MVT::i32),
5398 DAG.getConstant(0, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005399 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005400 }
5401
5402 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5403 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5404 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5405 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5406 DAG.getConstant(CnstVal, MVT::i32),
5407 DAG.getConstant(8, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005408 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005409 }
5410 }
5411
5412 if (SecondTry)
5413 goto FailedModImm;
5414 SecondTry = true;
5415 CnstBits = ~UndefBits;
5416 goto AttemptModImm;
5417 }
5418
5419// We can always fall back to a non-immediate AND.
5420FailedModImm:
5421 return Op;
5422}
5423
5424// Specialized code to quickly find if PotentialBVec is a BuildVector that
5425// consists of only the same constant int value, returned in reference arg
5426// ConstVal
5427static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
5428 uint64_t &ConstVal) {
5429 BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
5430 if (!Bvec)
5431 return false;
5432 ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
5433 if (!FirstElt)
5434 return false;
5435 EVT VT = Bvec->getValueType(0);
5436 unsigned NumElts = VT.getVectorNumElements();
5437 for (unsigned i = 1; i < NumElts; ++i)
5438 if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
5439 return false;
5440 ConstVal = FirstElt->getZExtValue();
5441 return true;
5442}
5443
5444static unsigned getIntrinsicID(const SDNode *N) {
5445 unsigned Opcode = N->getOpcode();
5446 switch (Opcode) {
5447 default:
5448 return Intrinsic::not_intrinsic;
5449 case ISD::INTRINSIC_WO_CHAIN: {
5450 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5451 if (IID < Intrinsic::num_intrinsics)
5452 return IID;
5453 return Intrinsic::not_intrinsic;
5454 }
5455 }
5456}
5457
5458// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
5459// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
5460// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
5461// Also, logical shift right -> sri, with the same structure.
5462static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
5463 EVT VT = N->getValueType(0);
5464
5465 if (!VT.isVector())
5466 return SDValue();
5467
5468 SDLoc DL(N);
5469
5470 // Is the first op an AND?
5471 const SDValue And = N->getOperand(0);
5472 if (And.getOpcode() != ISD::AND)
5473 return SDValue();
5474
5475 // Is the second op an shl or lshr?
5476 SDValue Shift = N->getOperand(1);
5477 // This will have been turned into: AArch64ISD::VSHL vector, #shift
5478 // or AArch64ISD::VLSHR vector, #shift
5479 unsigned ShiftOpc = Shift.getOpcode();
5480 if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
5481 return SDValue();
5482 bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
5483
5484 // Is the shift amount constant?
5485 ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
5486 if (!C2node)
5487 return SDValue();
5488
5489 // Is the and mask vector all constant?
5490 uint64_t C1;
5491 if (!isAllConstantBuildVector(And.getOperand(1), C1))
5492 return SDValue();
5493
5494 // Is C1 == ~C2, taking into account how much one can shift elements of a
5495 // particular size?
5496 uint64_t C2 = C2node->getZExtValue();
5497 unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
5498 if (C2 > ElemSizeInBits)
5499 return SDValue();
5500 unsigned ElemMask = (1 << ElemSizeInBits) - 1;
5501 if ((C1 & ElemMask) != (~C2 & ElemMask))
5502 return SDValue();
5503
5504 SDValue X = And.getOperand(0);
5505 SDValue Y = Shift.getOperand(0);
5506
5507 unsigned Intrin =
5508 IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
5509 SDValue ResultSLI =
5510 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
5511 DAG.getConstant(Intrin, MVT::i32), X, Y, Shift.getOperand(1));
5512
5513 DEBUG(dbgs() << "aarch64-lower: transformed: \n");
5514 DEBUG(N->dump(&DAG));
5515 DEBUG(dbgs() << "into: \n");
5516 DEBUG(ResultSLI->dump(&DAG));
5517
5518 ++NumShiftInserts;
5519 return ResultSLI;
5520}
5521
5522SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
5523 SelectionDAG &DAG) const {
5524 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
5525 if (EnableAArch64SlrGeneration) {
5526 SDValue Res = tryLowerToSLI(Op.getNode(), DAG);
5527 if (Res.getNode())
5528 return Res;
5529 }
5530
5531 BuildVectorSDNode *BVN =
5532 dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
5533 SDValue LHS = Op.getOperand(1);
5534 SDLoc dl(Op);
5535 EVT VT = Op.getValueType();
5536
5537 // OR commutes, so try swapping the operands.
5538 if (!BVN) {
5539 LHS = Op.getOperand(0);
5540 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5541 }
5542 if (!BVN)
5543 return Op;
5544
5545 APInt CnstBits(VT.getSizeInBits(), 0);
5546 APInt UndefBits(VT.getSizeInBits(), 0);
5547 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5548 // We make use of a little bit of goto ickiness in order to avoid having to
5549 // duplicate the immediate matching logic for the undef toggled case.
5550 bool SecondTry = false;
5551 AttemptModImm:
5552
5553 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5554 CnstBits = CnstBits.zextOrTrunc(64);
5555 uint64_t CnstVal = CnstBits.getZExtValue();
5556
5557 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5558 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5559 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5560 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5561 DAG.getConstant(CnstVal, MVT::i32),
5562 DAG.getConstant(0, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005563 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005564 }
5565
5566 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5567 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5568 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5569 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5570 DAG.getConstant(CnstVal, MVT::i32),
5571 DAG.getConstant(8, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005572 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005573 }
5574
5575 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5576 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5577 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5578 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5579 DAG.getConstant(CnstVal, MVT::i32),
5580 DAG.getConstant(16, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005581 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005582 }
5583
5584 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5585 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5586 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5587 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5588 DAG.getConstant(CnstVal, MVT::i32),
5589 DAG.getConstant(24, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005590 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005591 }
5592
5593 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5594 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5595 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5596 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5597 DAG.getConstant(CnstVal, MVT::i32),
5598 DAG.getConstant(0, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005599 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005600 }
5601
5602 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5603 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5604 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5605 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5606 DAG.getConstant(CnstVal, MVT::i32),
5607 DAG.getConstant(8, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005608 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005609 }
5610 }
5611
5612 if (SecondTry)
5613 goto FailedModImm;
5614 SecondTry = true;
5615 CnstBits = UndefBits;
5616 goto AttemptModImm;
5617 }
5618
5619// We can always fall back to a non-immediate OR.
5620FailedModImm:
5621 return Op;
5622}
5623
Kevin Qin4473c192014-07-07 02:45:40 +00005624// Normalize the operands of BUILD_VECTOR. The value of constant operands will
5625// be truncated to fit element width.
5626static SDValue NormalizeBuildVector(SDValue Op,
5627 SelectionDAG &DAG) {
5628 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00005629 SDLoc dl(Op);
5630 EVT VT = Op.getValueType();
Kevin Qin4473c192014-07-07 02:45:40 +00005631 EVT EltTy= VT.getVectorElementType();
5632
5633 if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
5634 return Op;
5635
5636 SmallVector<SDValue, 16> Ops;
5637 for (unsigned I = 0, E = VT.getVectorNumElements(); I != E; ++I) {
5638 SDValue Lane = Op.getOperand(I);
5639 if (Lane.getOpcode() == ISD::Constant) {
5640 APInt LowBits(EltTy.getSizeInBits(),
5641 cast<ConstantSDNode>(Lane)->getZExtValue());
5642 Lane = DAG.getConstant(LowBits.getZExtValue(), MVT::i32);
5643 }
5644 Ops.push_back(Lane);
5645 }
5646 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
5647}
5648
5649SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
5650 SelectionDAG &DAG) const {
5651 SDLoc dl(Op);
5652 EVT VT = Op.getValueType();
5653 Op = NormalizeBuildVector(Op, DAG);
5654 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
Tim Northover3b0846e2014-05-24 12:50:23 +00005655
5656 APInt CnstBits(VT.getSizeInBits(), 0);
5657 APInt UndefBits(VT.getSizeInBits(), 0);
5658 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5659 // We make use of a little bit of goto ickiness in order to avoid having to
5660 // duplicate the immediate matching logic for the undef toggled case.
5661 bool SecondTry = false;
5662 AttemptModImm:
5663
5664 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5665 CnstBits = CnstBits.zextOrTrunc(64);
5666 uint64_t CnstVal = CnstBits.getZExtValue();
5667
5668 // Certain magic vector constants (used to express things like NOT
5669 // and NEG) are passed through unmodified. This allows codegen patterns
5670 // for these operations to match. Special-purpose patterns will lower
5671 // these immediates to MOVIs if it proves necessary.
5672 if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
5673 return Op;
5674
5675 // The many faces of MOVI...
5676 if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
5677 CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
5678 if (VT.getSizeInBits() == 128) {
5679 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
5680 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005681 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005682 }
5683
5684 // Support the V64 version via subregister insertion.
5685 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
5686 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005687 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005688 }
5689
5690 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5691 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5692 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5693 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5694 DAG.getConstant(CnstVal, MVT::i32),
5695 DAG.getConstant(0, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005696 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005697 }
5698
5699 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5700 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5701 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5702 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5703 DAG.getConstant(CnstVal, MVT::i32),
5704 DAG.getConstant(8, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005705 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005706 }
5707
5708 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5709 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5710 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5711 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5712 DAG.getConstant(CnstVal, MVT::i32),
5713 DAG.getConstant(16, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005714 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005715 }
5716
5717 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5718 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5719 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5720 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5721 DAG.getConstant(CnstVal, MVT::i32),
5722 DAG.getConstant(24, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005723 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005724 }
5725
5726 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5727 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5728 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5729 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5730 DAG.getConstant(CnstVal, MVT::i32),
5731 DAG.getConstant(0, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005732 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005733 }
5734
5735 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5736 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5737 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5738 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5739 DAG.getConstant(CnstVal, MVT::i32),
5740 DAG.getConstant(8, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005741 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005742 }
5743
5744 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5745 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5746 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5747 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
5748 DAG.getConstant(CnstVal, MVT::i32),
5749 DAG.getConstant(264, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005750 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005751 }
5752
5753 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5754 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5755 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5756 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
5757 DAG.getConstant(CnstVal, MVT::i32),
5758 DAG.getConstant(272, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005759 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005760 }
5761
5762 if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
5763 CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
5764 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
5765 SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
5766 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005767 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005768 }
5769
5770 // The few faces of FMOV...
5771 if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
5772 CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
5773 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
5774 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
5775 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005776 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005777 }
5778
5779 if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
5780 VT.getSizeInBits() == 128) {
5781 CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
5782 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
5783 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005784 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005785 }
5786
5787 // The many faces of MVNI...
5788 CnstVal = ~CnstVal;
5789 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5790 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5791 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5792 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5793 DAG.getConstant(CnstVal, MVT::i32),
5794 DAG.getConstant(0, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005795 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005796 }
5797
5798 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5799 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5800 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5801 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5802 DAG.getConstant(CnstVal, MVT::i32),
5803 DAG.getConstant(8, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005804 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005805 }
5806
5807 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5808 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5809 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5810 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5811 DAG.getConstant(CnstVal, MVT::i32),
5812 DAG.getConstant(16, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005813 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005814 }
5815
5816 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5817 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5818 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5819 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5820 DAG.getConstant(CnstVal, MVT::i32),
5821 DAG.getConstant(24, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005822 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005823 }
5824
5825 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5826 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5827 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5828 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5829 DAG.getConstant(CnstVal, MVT::i32),
5830 DAG.getConstant(0, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005831 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005832 }
5833
5834 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5835 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5836 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5837 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5838 DAG.getConstant(CnstVal, MVT::i32),
5839 DAG.getConstant(8, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005840 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005841 }
5842
5843 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5844 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5845 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5846 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
5847 DAG.getConstant(CnstVal, MVT::i32),
5848 DAG.getConstant(264, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005849 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005850 }
5851
5852 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5853 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5854 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5855 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
5856 DAG.getConstant(CnstVal, MVT::i32),
5857 DAG.getConstant(272, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005858 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005859 }
5860 }
5861
5862 if (SecondTry)
5863 goto FailedModImm;
5864 SecondTry = true;
5865 CnstBits = UndefBits;
5866 goto AttemptModImm;
5867 }
5868FailedModImm:
5869
5870 // Scan through the operands to find some interesting properties we can
5871 // exploit:
5872 // 1) If only one value is used, we can use a DUP, or
5873 // 2) if only the low element is not undef, we can just insert that, or
5874 // 3) if only one constant value is used (w/ some non-constant lanes),
5875 // we can splat the constant value into the whole vector then fill
5876 // in the non-constant lanes.
5877 // 4) FIXME: If different constant values are used, but we can intelligently
5878 // select the values we'll be overwriting for the non-constant
5879 // lanes such that we can directly materialize the vector
5880 // some other way (MOVI, e.g.), we can be sneaky.
5881 unsigned NumElts = VT.getVectorNumElements();
5882 bool isOnlyLowElement = true;
5883 bool usesOnlyOneValue = true;
5884 bool usesOnlyOneConstantValue = true;
5885 bool isConstant = true;
5886 unsigned NumConstantLanes = 0;
5887 SDValue Value;
5888 SDValue ConstantValue;
5889 for (unsigned i = 0; i < NumElts; ++i) {
5890 SDValue V = Op.getOperand(i);
5891 if (V.getOpcode() == ISD::UNDEF)
5892 continue;
5893 if (i > 0)
5894 isOnlyLowElement = false;
5895 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
5896 isConstant = false;
5897
5898 if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
5899 ++NumConstantLanes;
5900 if (!ConstantValue.getNode())
5901 ConstantValue = V;
5902 else if (ConstantValue != V)
5903 usesOnlyOneConstantValue = false;
5904 }
5905
5906 if (!Value.getNode())
5907 Value = V;
5908 else if (V != Value)
5909 usesOnlyOneValue = false;
5910 }
5911
5912 if (!Value.getNode())
5913 return DAG.getUNDEF(VT);
5914
5915 if (isOnlyLowElement)
5916 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
5917
5918 // Use DUP for non-constant splats. For f32 constant splats, reduce to
5919 // i32 and try again.
5920 if (usesOnlyOneValue) {
5921 if (!isConstant) {
5922 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5923 Value.getValueType() != VT)
5924 return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
5925
5926 // This is actually a DUPLANExx operation, which keeps everything vectory.
5927
5928 // DUPLANE works on 128-bit vectors, widen it if necessary.
5929 SDValue Lane = Value.getOperand(1);
5930 Value = Value.getOperand(0);
5931 if (Value.getValueType().getSizeInBits() == 64)
5932 Value = WidenVector(Value, DAG);
5933
5934 unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
5935 return DAG.getNode(Opcode, dl, VT, Value, Lane);
5936 }
5937
5938 if (VT.getVectorElementType().isFloatingPoint()) {
5939 SmallVector<SDValue, 8> Ops;
5940 MVT NewType =
5941 (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5942 for (unsigned i = 0; i < NumElts; ++i)
5943 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
5944 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
5945 SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
5946 Val = LowerBUILD_VECTOR(Val, DAG);
5947 if (Val.getNode())
5948 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5949 }
5950 }
5951
5952 // If there was only one constant value used and for more than one lane,
5953 // start by splatting that value, then replace the non-constant lanes. This
5954 // is better than the default, which will perform a separate initialization
5955 // for each lane.
5956 if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
5957 SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
5958 // Now insert the non-constant lanes.
5959 for (unsigned i = 0; i < NumElts; ++i) {
5960 SDValue V = Op.getOperand(i);
5961 SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
5962 if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
5963 // Note that type legalization likely mucked about with the VT of the
5964 // source operand, so we may have to convert it here before inserting.
5965 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
5966 }
5967 }
5968 return Val;
5969 }
5970
5971 // If all elements are constants and the case above didn't get hit, fall back
5972 // to the default expansion, which will generate a load from the constant
5973 // pool.
5974 if (isConstant)
5975 return SDValue();
5976
5977 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
5978 if (NumElts >= 4) {
5979 SDValue shuffle = ReconstructShuffle(Op, DAG);
5980 if (shuffle != SDValue())
5981 return shuffle;
5982 }
5983
5984 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
5985 // know the default expansion would otherwise fall back on something even
5986 // worse. For a vector with one or two non-undef values, that's
5987 // scalar_to_vector for the elements followed by a shuffle (provided the
5988 // shuffle is valid for the target) and materialization element by element
5989 // on the stack followed by a load for everything else.
5990 if (!isConstant && !usesOnlyOneValue) {
5991 SDValue Vec = DAG.getUNDEF(VT);
5992 SDValue Op0 = Op.getOperand(0);
5993 unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
5994 unsigned i = 0;
5995 // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
5996 // a) Avoid a RMW dependency on the full vector register, and
5997 // b) Allow the register coalescer to fold away the copy if the
5998 // value is already in an S or D register.
5999 if (Op0.getOpcode() != ISD::UNDEF && (ElemSize == 32 || ElemSize == 64)) {
6000 unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
6001 MachineSDNode *N =
6002 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
6003 DAG.getTargetConstant(SubIdx, MVT::i32));
6004 Vec = SDValue(N, 0);
6005 ++i;
6006 }
6007 for (; i < NumElts; ++i) {
6008 SDValue V = Op.getOperand(i);
6009 if (V.getOpcode() == ISD::UNDEF)
6010 continue;
6011 SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
6012 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
6013 }
6014 return Vec;
6015 }
6016
6017 // Just use the default expansion. We failed to find a better alternative.
6018 return SDValue();
6019}
6020
6021SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
6022 SelectionDAG &DAG) const {
6023 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
6024
Tim Northovere4b8e132014-07-15 10:00:26 +00006025 // Check for non-constant or out of range lane.
6026 EVT VT = Op.getOperand(0).getValueType();
6027 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
6028 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00006029 return SDValue();
6030
Tim Northover3b0846e2014-05-24 12:50:23 +00006031
6032 // Insertion/extraction are legal for V128 types.
6033 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00006034 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6035 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006036 return Op;
6037
6038 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00006039 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006040 return SDValue();
6041
6042 // For V64 types, we perform insertion by expanding the value
6043 // to a V128 type and perform the insertion on that.
6044 SDLoc DL(Op);
6045 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6046 EVT WideTy = WideVec.getValueType();
6047
6048 SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
6049 Op.getOperand(1), Op.getOperand(2));
6050 // Re-narrow the resultant vector.
6051 return NarrowVector(Node, DAG);
6052}
6053
6054SDValue
6055AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6056 SelectionDAG &DAG) const {
6057 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
6058
Tim Northovere4b8e132014-07-15 10:00:26 +00006059 // Check for non-constant or out of range lane.
6060 EVT VT = Op.getOperand(0).getValueType();
6061 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6062 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00006063 return SDValue();
6064
Tim Northover3b0846e2014-05-24 12:50:23 +00006065
6066 // Insertion/extraction are legal for V128 types.
6067 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00006068 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6069 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006070 return Op;
6071
6072 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00006073 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006074 return SDValue();
6075
6076 // For V64 types, we perform extraction by expanding the value
6077 // to a V128 type and perform the extraction on that.
6078 SDLoc DL(Op);
6079 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6080 EVT WideTy = WideVec.getValueType();
6081
6082 EVT ExtrTy = WideTy.getVectorElementType();
6083 if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
6084 ExtrTy = MVT::i32;
6085
6086 // For extractions, we just return the result directly.
6087 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
6088 Op.getOperand(1));
6089}
6090
6091SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
6092 SelectionDAG &DAG) const {
6093 EVT VT = Op.getOperand(0).getValueType();
6094 SDLoc dl(Op);
6095 // Just in case...
6096 if (!VT.isVector())
6097 return SDValue();
6098
6099 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6100 if (!Cst)
6101 return SDValue();
6102 unsigned Val = Cst->getZExtValue();
6103
6104 unsigned Size = Op.getValueType().getSizeInBits();
6105 if (Val == 0) {
6106 switch (Size) {
6107 case 8:
6108 return DAG.getTargetExtractSubreg(AArch64::bsub, dl, Op.getValueType(),
6109 Op.getOperand(0));
6110 case 16:
6111 return DAG.getTargetExtractSubreg(AArch64::hsub, dl, Op.getValueType(),
6112 Op.getOperand(0));
6113 case 32:
6114 return DAG.getTargetExtractSubreg(AArch64::ssub, dl, Op.getValueType(),
6115 Op.getOperand(0));
6116 case 64:
6117 return DAG.getTargetExtractSubreg(AArch64::dsub, dl, Op.getValueType(),
6118 Op.getOperand(0));
6119 default:
6120 llvm_unreachable("Unexpected vector type in extract_subvector!");
6121 }
6122 }
6123 // If this is extracting the upper 64-bits of a 128-bit vector, we match
6124 // that directly.
6125 if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
6126 return Op;
6127
6128 return SDValue();
6129}
6130
6131bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
6132 EVT VT) const {
6133 if (VT.getVectorNumElements() == 4 &&
6134 (VT.is128BitVector() || VT.is64BitVector())) {
6135 unsigned PFIndexes[4];
6136 for (unsigned i = 0; i != 4; ++i) {
6137 if (M[i] < 0)
6138 PFIndexes[i] = 8;
6139 else
6140 PFIndexes[i] = M[i];
6141 }
6142
6143 // Compute the index in the perfect shuffle table.
6144 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
6145 PFIndexes[2] * 9 + PFIndexes[3];
6146 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6147 unsigned Cost = (PFEntry >> 30);
6148
6149 if (Cost <= 4)
6150 return true;
6151 }
6152
6153 bool DummyBool;
6154 int DummyInt;
6155 unsigned DummyUnsigned;
6156
6157 return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
6158 isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
6159 isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
6160 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
6161 isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
6162 isZIPMask(M, VT, DummyUnsigned) ||
6163 isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
6164 isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
6165 isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
6166 isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
6167 isConcatMask(M, VT, VT.getSizeInBits() == 128));
6168}
6169
6170/// getVShiftImm - Check if this is a valid build_vector for the immediate
6171/// operand of a vector shift operation, where all the elements of the
6172/// build_vector must have the same constant integer value.
6173static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6174 // Ignore bit_converts.
6175 while (Op.getOpcode() == ISD::BITCAST)
6176 Op = Op.getOperand(0);
6177 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6178 APInt SplatBits, SplatUndef;
6179 unsigned SplatBitSize;
6180 bool HasAnyUndefs;
6181 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
6182 HasAnyUndefs, ElementBits) ||
6183 SplatBitSize > ElementBits)
6184 return false;
6185 Cnt = SplatBits.getSExtValue();
6186 return true;
6187}
6188
6189/// isVShiftLImm - Check if this is a valid build_vector for the immediate
6190/// operand of a vector shift left operation. That value must be in the range:
6191/// 0 <= Value < ElementBits for a left shift; or
6192/// 0 <= Value <= ElementBits for a long left shift.
6193static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6194 assert(VT.isVector() && "vector shift count is not a vector type");
6195 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6196 if (!getVShiftImm(Op, ElementBits, Cnt))
6197 return false;
6198 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6199}
6200
6201/// isVShiftRImm - Check if this is a valid build_vector for the immediate
6202/// operand of a vector shift right operation. For a shift opcode, the value
6203/// is positive, but for an intrinsic the value count must be negative. The
6204/// absolute value must be in the range:
6205/// 1 <= |Value| <= ElementBits for a right shift; or
6206/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
6207static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
6208 int64_t &Cnt) {
6209 assert(VT.isVector() && "vector shift count is not a vector type");
6210 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6211 if (!getVShiftImm(Op, ElementBits, Cnt))
6212 return false;
6213 if (isIntrinsic)
6214 Cnt = -Cnt;
6215 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6216}
6217
6218SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
6219 SelectionDAG &DAG) const {
6220 EVT VT = Op.getValueType();
6221 SDLoc DL(Op);
6222 int64_t Cnt;
6223
6224 if (!Op.getOperand(1).getValueType().isVector())
6225 return Op;
6226 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6227
6228 switch (Op.getOpcode()) {
6229 default:
6230 llvm_unreachable("unexpected shift opcode");
6231
6232 case ISD::SHL:
6233 if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
6234 return DAG.getNode(AArch64ISD::VSHL, SDLoc(Op), VT, Op.getOperand(0),
6235 DAG.getConstant(Cnt, MVT::i32));
6236 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6237 DAG.getConstant(Intrinsic::aarch64_neon_ushl, MVT::i32),
6238 Op.getOperand(0), Op.getOperand(1));
6239 case ISD::SRA:
6240 case ISD::SRL:
6241 // Right shift immediate
6242 if (isVShiftRImm(Op.getOperand(1), VT, false, false, Cnt) &&
6243 Cnt < EltSize) {
6244 unsigned Opc =
6245 (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
6246 return DAG.getNode(Opc, SDLoc(Op), VT, Op.getOperand(0),
6247 DAG.getConstant(Cnt, MVT::i32));
6248 }
6249
6250 // Right shift register. Note, there is not a shift right register
6251 // instruction, but the shift left register instruction takes a signed
6252 // value, where negative numbers specify a right shift.
6253 unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
6254 : Intrinsic::aarch64_neon_ushl;
6255 // negate the shift amount
6256 SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
6257 SDValue NegShiftLeft =
6258 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6259 DAG.getConstant(Opc, MVT::i32), Op.getOperand(0), NegShift);
6260 return NegShiftLeft;
6261 }
6262
6263 return SDValue();
6264}
6265
6266static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
6267 AArch64CC::CondCode CC, bool NoNans, EVT VT,
6268 SDLoc dl, SelectionDAG &DAG) {
6269 EVT SrcVT = LHS.getValueType();
6270
6271 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
6272 APInt CnstBits(VT.getSizeInBits(), 0);
6273 APInt UndefBits(VT.getSizeInBits(), 0);
6274 bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
6275 bool IsZero = IsCnst && (CnstBits == 0);
6276
6277 if (SrcVT.getVectorElementType().isFloatingPoint()) {
6278 switch (CC) {
6279 default:
6280 return SDValue();
6281 case AArch64CC::NE: {
6282 SDValue Fcmeq;
6283 if (IsZero)
6284 Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6285 else
6286 Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6287 return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
6288 }
6289 case AArch64CC::EQ:
6290 if (IsZero)
6291 return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6292 return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6293 case AArch64CC::GE:
6294 if (IsZero)
6295 return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
6296 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
6297 case AArch64CC::GT:
6298 if (IsZero)
6299 return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
6300 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
6301 case AArch64CC::LS:
6302 if (IsZero)
6303 return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
6304 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
6305 case AArch64CC::LT:
6306 if (!NoNans)
6307 return SDValue();
6308 // If we ignore NaNs then we can use to the MI implementation.
6309 // Fallthrough.
6310 case AArch64CC::MI:
6311 if (IsZero)
6312 return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
6313 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
6314 }
6315 }
6316
6317 switch (CC) {
6318 default:
6319 return SDValue();
6320 case AArch64CC::NE: {
6321 SDValue Cmeq;
6322 if (IsZero)
6323 Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6324 else
6325 Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6326 return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
6327 }
6328 case AArch64CC::EQ:
6329 if (IsZero)
6330 return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6331 return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6332 case AArch64CC::GE:
6333 if (IsZero)
6334 return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
6335 return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
6336 case AArch64CC::GT:
6337 if (IsZero)
6338 return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
6339 return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
6340 case AArch64CC::LE:
6341 if (IsZero)
6342 return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
6343 return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
6344 case AArch64CC::LS:
6345 return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
6346 case AArch64CC::LO:
6347 return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
6348 case AArch64CC::LT:
6349 if (IsZero)
6350 return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
6351 return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
6352 case AArch64CC::HI:
6353 return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
6354 case AArch64CC::HS:
6355 return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
6356 }
6357}
6358
6359SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
6360 SelectionDAG &DAG) const {
6361 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6362 SDValue LHS = Op.getOperand(0);
6363 SDValue RHS = Op.getOperand(1);
6364 SDLoc dl(Op);
6365
6366 if (LHS.getValueType().getVectorElementType().isInteger()) {
6367 assert(LHS.getValueType() == RHS.getValueType());
6368 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
6369 return EmitVectorComparison(LHS, RHS, AArch64CC, false, Op.getValueType(),
6370 dl, DAG);
6371 }
6372
6373 assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
6374 LHS.getValueType().getVectorElementType() == MVT::f64);
6375
6376 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
6377 // clean. Some of them require two branches to implement.
6378 AArch64CC::CondCode CC1, CC2;
6379 bool ShouldInvert;
6380 changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
6381
6382 bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
6383 SDValue Cmp =
6384 EmitVectorComparison(LHS, RHS, CC1, NoNaNs, Op.getValueType(), dl, DAG);
6385 if (!Cmp.getNode())
6386 return SDValue();
6387
6388 if (CC2 != AArch64CC::AL) {
6389 SDValue Cmp2 =
6390 EmitVectorComparison(LHS, RHS, CC2, NoNaNs, Op.getValueType(), dl, DAG);
6391 if (!Cmp2.getNode())
6392 return SDValue();
6393
6394 Cmp = DAG.getNode(ISD::OR, dl, Cmp.getValueType(), Cmp, Cmp2);
6395 }
6396
6397 if (ShouldInvert)
6398 return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
6399
6400 return Cmp;
6401}
6402
6403/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
6404/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
6405/// specified in the intrinsic calls.
6406bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
6407 const CallInst &I,
6408 unsigned Intrinsic) const {
6409 switch (Intrinsic) {
6410 case Intrinsic::aarch64_neon_ld2:
6411 case Intrinsic::aarch64_neon_ld3:
6412 case Intrinsic::aarch64_neon_ld4:
6413 case Intrinsic::aarch64_neon_ld1x2:
6414 case Intrinsic::aarch64_neon_ld1x3:
6415 case Intrinsic::aarch64_neon_ld1x4:
6416 case Intrinsic::aarch64_neon_ld2lane:
6417 case Intrinsic::aarch64_neon_ld3lane:
6418 case Intrinsic::aarch64_neon_ld4lane:
6419 case Intrinsic::aarch64_neon_ld2r:
6420 case Intrinsic::aarch64_neon_ld3r:
6421 case Intrinsic::aarch64_neon_ld4r: {
6422 Info.opc = ISD::INTRINSIC_W_CHAIN;
6423 // Conservatively set memVT to the entire set of vectors loaded.
6424 uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
6425 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6426 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6427 Info.offset = 0;
6428 Info.align = 0;
6429 Info.vol = false; // volatile loads with NEON intrinsics not supported
6430 Info.readMem = true;
6431 Info.writeMem = false;
6432 return true;
6433 }
6434 case Intrinsic::aarch64_neon_st2:
6435 case Intrinsic::aarch64_neon_st3:
6436 case Intrinsic::aarch64_neon_st4:
6437 case Intrinsic::aarch64_neon_st1x2:
6438 case Intrinsic::aarch64_neon_st1x3:
6439 case Intrinsic::aarch64_neon_st1x4:
6440 case Intrinsic::aarch64_neon_st2lane:
6441 case Intrinsic::aarch64_neon_st3lane:
6442 case Intrinsic::aarch64_neon_st4lane: {
6443 Info.opc = ISD::INTRINSIC_VOID;
6444 // Conservatively set memVT to the entire set of vectors stored.
6445 unsigned NumElts = 0;
6446 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
6447 Type *ArgTy = I.getArgOperand(ArgI)->getType();
6448 if (!ArgTy->isVectorTy())
6449 break;
6450 NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
6451 }
6452 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6453 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6454 Info.offset = 0;
6455 Info.align = 0;
6456 Info.vol = false; // volatile stores with NEON intrinsics not supported
6457 Info.readMem = false;
6458 Info.writeMem = true;
6459 return true;
6460 }
6461 case Intrinsic::aarch64_ldaxr:
6462 case Intrinsic::aarch64_ldxr: {
6463 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
6464 Info.opc = ISD::INTRINSIC_W_CHAIN;
6465 Info.memVT = MVT::getVT(PtrTy->getElementType());
6466 Info.ptrVal = I.getArgOperand(0);
6467 Info.offset = 0;
6468 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
6469 Info.vol = true;
6470 Info.readMem = true;
6471 Info.writeMem = false;
6472 return true;
6473 }
6474 case Intrinsic::aarch64_stlxr:
6475 case Intrinsic::aarch64_stxr: {
6476 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
6477 Info.opc = ISD::INTRINSIC_W_CHAIN;
6478 Info.memVT = MVT::getVT(PtrTy->getElementType());
6479 Info.ptrVal = I.getArgOperand(1);
6480 Info.offset = 0;
6481 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
6482 Info.vol = true;
6483 Info.readMem = false;
6484 Info.writeMem = true;
6485 return true;
6486 }
6487 case Intrinsic::aarch64_ldaxp:
6488 case Intrinsic::aarch64_ldxp: {
6489 Info.opc = ISD::INTRINSIC_W_CHAIN;
6490 Info.memVT = MVT::i128;
6491 Info.ptrVal = I.getArgOperand(0);
6492 Info.offset = 0;
6493 Info.align = 16;
6494 Info.vol = true;
6495 Info.readMem = true;
6496 Info.writeMem = false;
6497 return true;
6498 }
6499 case Intrinsic::aarch64_stlxp:
6500 case Intrinsic::aarch64_stxp: {
6501 Info.opc = ISD::INTRINSIC_W_CHAIN;
6502 Info.memVT = MVT::i128;
6503 Info.ptrVal = I.getArgOperand(2);
6504 Info.offset = 0;
6505 Info.align = 16;
6506 Info.vol = true;
6507 Info.readMem = false;
6508 Info.writeMem = true;
6509 return true;
6510 }
6511 default:
6512 break;
6513 }
6514
6515 return false;
6516}
6517
6518// Truncations from 64-bit GPR to 32-bit GPR is free.
6519bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
6520 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6521 return false;
6522 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6523 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006524 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006525}
6526bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006527 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006528 return false;
6529 unsigned NumBits1 = VT1.getSizeInBits();
6530 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006531 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006532}
6533
6534// All 32-bit GPR operations implicitly zero the high-half of the corresponding
6535// 64-bit GPR.
6536bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
6537 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6538 return false;
6539 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6540 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006541 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006542}
6543bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006544 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006545 return false;
6546 unsigned NumBits1 = VT1.getSizeInBits();
6547 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006548 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006549}
6550
6551bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
6552 EVT VT1 = Val.getValueType();
6553 if (isZExtFree(VT1, VT2)) {
6554 return true;
6555 }
6556
6557 if (Val.getOpcode() != ISD::LOAD)
6558 return false;
6559
6560 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
Hao Liu40914502014-05-29 09:19:07 +00006561 return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
6562 VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
6563 VT1.getSizeInBits() <= 32);
Tim Northover3b0846e2014-05-24 12:50:23 +00006564}
6565
6566bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType,
6567 unsigned &RequiredAligment) const {
6568 if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
6569 return false;
6570 // Cyclone supports unaligned accesses.
6571 RequiredAligment = 0;
6572 unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
6573 return NumBits == 32 || NumBits == 64;
6574}
6575
6576bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
6577 unsigned &RequiredAligment) const {
6578 if (!LoadedType.isSimple() ||
6579 (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
6580 return false;
6581 // Cyclone supports unaligned accesses.
6582 RequiredAligment = 0;
6583 unsigned NumBits = LoadedType.getSizeInBits();
6584 return NumBits == 32 || NumBits == 64;
6585}
6586
6587static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
6588 unsigned AlignCheck) {
6589 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
6590 (DstAlign == 0 || DstAlign % AlignCheck == 0));
6591}
6592
6593EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
6594 unsigned SrcAlign, bool IsMemset,
6595 bool ZeroMemset,
6596 bool MemcpyStrSrc,
6597 MachineFunction &MF) const {
6598 // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
6599 // instruction to materialize the v2i64 zero and one store (with restrictive
6600 // addressing mode). Just do two i64 store of zero-registers.
6601 bool Fast;
6602 const Function *F = MF.getFunction();
6603 if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
6604 !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
6605 Attribute::NoImplicitFloat) &&
6606 (memOpAlign(SrcAlign, DstAlign, 16) ||
Matt Arsenault6f2a5262014-07-27 17:46:40 +00006607 (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast)))
Tim Northover3b0846e2014-05-24 12:50:23 +00006608 return MVT::f128;
6609
6610 return Size >= 8 ? MVT::i64 : MVT::i32;
6611}
6612
6613// 12-bit optionally shifted immediates are legal for adds.
6614bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
6615 if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0))
6616 return true;
6617 return false;
6618}
6619
6620// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
6621// immediates is the same as for an add or a sub.
6622bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
6623 if (Immed < 0)
6624 Immed *= -1;
6625 return isLegalAddImmediate(Immed);
6626}
6627
6628/// isLegalAddressingMode - Return true if the addressing mode represented
6629/// by AM is legal for this target, for a load/store of the specified type.
6630bool AArch64TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6631 Type *Ty) const {
6632 // AArch64 has five basic addressing modes:
6633 // reg
6634 // reg + 9-bit signed offset
6635 // reg + SIZE_IN_BYTES * 12-bit unsigned offset
6636 // reg1 + reg2
6637 // reg + SIZE_IN_BYTES * reg
6638
6639 // No global is ever allowed as a base.
6640 if (AM.BaseGV)
6641 return false;
6642
6643 // No reg+reg+imm addressing.
6644 if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
6645 return false;
6646
6647 // check reg + imm case:
6648 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
6649 uint64_t NumBytes = 0;
6650 if (Ty->isSized()) {
6651 uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty);
6652 NumBytes = NumBits / 8;
6653 if (!isPowerOf2_64(NumBits))
6654 NumBytes = 0;
6655 }
6656
6657 if (!AM.Scale) {
6658 int64_t Offset = AM.BaseOffs;
6659
6660 // 9-bit signed offset
6661 if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
6662 return true;
6663
6664 // 12-bit unsigned offset
6665 unsigned shift = Log2_64(NumBytes);
6666 if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
6667 // Must be a multiple of NumBytes (NumBytes is a power of 2)
6668 (Offset >> shift) << shift == Offset)
6669 return true;
6670 return false;
6671 }
6672
6673 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
6674
6675 if (!AM.Scale || AM.Scale == 1 ||
6676 (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
6677 return true;
6678 return false;
6679}
6680
6681int AArch64TargetLowering::getScalingFactorCost(const AddrMode &AM,
6682 Type *Ty) const {
6683 // Scaling factors are not free at all.
6684 // Operands | Rt Latency
6685 // -------------------------------------------
6686 // Rt, [Xn, Xm] | 4
6687 // -------------------------------------------
6688 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
6689 // Rt, [Xn, Wm, <extend> #imm] |
6690 if (isLegalAddressingMode(AM, Ty))
6691 // Scale represents reg2 * scale, thus account for 1 if
6692 // it is not equal to 0 or 1.
6693 return AM.Scale != 0 && AM.Scale != 1;
6694 return -1;
6695}
6696
6697bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
6698 VT = VT.getScalarType();
6699
6700 if (!VT.isSimple())
6701 return false;
6702
6703 switch (VT.getSimpleVT().SimpleTy) {
6704 case MVT::f32:
6705 case MVT::f64:
6706 return true;
6707 default:
6708 break;
6709 }
6710
6711 return false;
6712}
6713
6714const MCPhysReg *
6715AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
6716 // LR is a callee-save register, but we must treat it as clobbered by any call
6717 // site. Hence we include LR in the scratch registers, which are in turn added
6718 // as implicit-defs for stackmaps and patchpoints.
6719 static const MCPhysReg ScratchRegs[] = {
6720 AArch64::X16, AArch64::X17, AArch64::LR, 0
6721 };
6722 return ScratchRegs;
6723}
6724
6725bool
6726AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
6727 EVT VT = N->getValueType(0);
6728 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
6729 // it with shift to let it be lowered to UBFX.
6730 if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
6731 isa<ConstantSDNode>(N->getOperand(1))) {
6732 uint64_t TruncMask = N->getConstantOperandVal(1);
6733 if (isMask_64(TruncMask) &&
6734 N->getOperand(0).getOpcode() == ISD::SRL &&
6735 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
6736 return false;
6737 }
6738 return true;
6739}
6740
6741bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
6742 Type *Ty) const {
6743 assert(Ty->isIntegerTy());
6744
6745 unsigned BitSize = Ty->getPrimitiveSizeInBits();
6746 if (BitSize == 0)
6747 return false;
6748
6749 int64_t Val = Imm.getSExtValue();
6750 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
6751 return true;
6752
6753 if ((int64_t)Val < 0)
6754 Val = ~Val;
6755 if (BitSize == 32)
6756 Val &= (1LL << 32) - 1;
6757
6758 unsigned LZ = countLeadingZeros((uint64_t)Val);
6759 unsigned Shift = (63 - LZ) / 16;
6760 // MOVZ is free so return true for one or fewer MOVK.
6761 return (Shift < 3) ? true : false;
6762}
6763
6764// Generate SUBS and CSEL for integer abs.
6765static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
6766 EVT VT = N->getValueType(0);
6767
6768 SDValue N0 = N->getOperand(0);
6769 SDValue N1 = N->getOperand(1);
6770 SDLoc DL(N);
6771
6772 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
6773 // and change it to SUB and CSEL.
6774 if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
6775 N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
6776 N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
6777 if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
6778 if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
6779 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
6780 N0.getOperand(0));
6781 // Generate SUBS & CSEL.
6782 SDValue Cmp =
6783 DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
6784 N0.getOperand(0), DAG.getConstant(0, VT));
6785 return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
6786 DAG.getConstant(AArch64CC::PL, MVT::i32),
6787 SDValue(Cmp.getNode(), 1));
6788 }
6789 return SDValue();
6790}
6791
6792// performXorCombine - Attempts to handle integer ABS.
6793static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
6794 TargetLowering::DAGCombinerInfo &DCI,
6795 const AArch64Subtarget *Subtarget) {
6796 if (DCI.isBeforeLegalizeOps())
6797 return SDValue();
6798
6799 return performIntegerAbsCombine(N, DAG);
6800}
6801
Chad Rosier17020f92014-07-23 14:57:52 +00006802SDValue
6803AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
6804 SelectionDAG &DAG,
6805 std::vector<SDNode *> *Created) const {
6806 // fold (sdiv X, pow2)
6807 EVT VT = N->getValueType(0);
6808 if ((VT != MVT::i32 && VT != MVT::i64) ||
6809 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
6810 return SDValue();
6811
6812 SDLoc DL(N);
6813 SDValue N0 = N->getOperand(0);
6814 unsigned Lg2 = Divisor.countTrailingZeros();
6815 SDValue Zero = DAG.getConstant(0, VT);
Juergen Ributzka03a06112014-10-16 16:41:15 +00006816 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, VT);
Chad Rosier17020f92014-07-23 14:57:52 +00006817
6818 // Add (N0 < 0) ? Pow2 - 1 : 0;
6819 SDValue CCVal;
6820 SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
6821 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
6822 SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
6823
6824 if (Created) {
6825 Created->push_back(Cmp.getNode());
6826 Created->push_back(Add.getNode());
6827 Created->push_back(CSel.getNode());
6828 }
6829
6830 // Divide by pow2.
6831 SDValue SRA =
6832 DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, MVT::i64));
6833
6834 // If we're dividing by a positive value, we're done. Otherwise, we must
6835 // negate the result.
6836 if (Divisor.isNonNegative())
6837 return SRA;
6838
6839 if (Created)
6840 Created->push_back(SRA.getNode());
6841 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT), SRA);
6842}
6843
Tim Northover3b0846e2014-05-24 12:50:23 +00006844static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
6845 TargetLowering::DAGCombinerInfo &DCI,
6846 const AArch64Subtarget *Subtarget) {
6847 if (DCI.isBeforeLegalizeOps())
6848 return SDValue();
6849
6850 // Multiplication of a power of two plus/minus one can be done more
6851 // cheaply as as shift+add/sub. For now, this is true unilaterally. If
6852 // future CPUs have a cheaper MADD instruction, this may need to be
6853 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
6854 // 64-bit is 5 cycles, so this is always a win.
6855 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6856 APInt Value = C->getAPIntValue();
6857 EVT VT = N->getValueType(0);
Chad Rosiere6b87612014-06-30 14:51:14 +00006858 if (Value.isNonNegative()) {
6859 // (mul x, 2^N + 1) => (add (shl x, N), x)
6860 APInt VM1 = Value - 1;
6861 if (VM1.isPowerOf2()) {
6862 SDValue ShiftedVal =
6863 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6864 DAG.getConstant(VM1.logBase2(), MVT::i64));
6865 return DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal,
6866 N->getOperand(0));
6867 }
6868 // (mul x, 2^N - 1) => (sub (shl x, N), x)
6869 APInt VP1 = Value + 1;
6870 if (VP1.isPowerOf2()) {
6871 SDValue ShiftedVal =
6872 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6873 DAG.getConstant(VP1.logBase2(), MVT::i64));
6874 return DAG.getNode(ISD::SUB, SDLoc(N), VT, ShiftedVal,
6875 N->getOperand(0));
6876 }
6877 } else {
6878 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
6879 APInt VNM1 = -Value - 1;
6880 if (VNM1.isPowerOf2()) {
6881 SDValue ShiftedVal =
6882 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6883 DAG.getConstant(VNM1.logBase2(), MVT::i64));
6884 SDValue Add =
6885 DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal, N->getOperand(0));
6886 return DAG.getNode(ISD::SUB, SDLoc(N), VT, DAG.getConstant(0, VT), Add);
6887 }
6888 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
6889 APInt VNP1 = -Value + 1;
6890 if (VNP1.isPowerOf2()) {
6891 SDValue ShiftedVal =
6892 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6893 DAG.getConstant(VNP1.logBase2(), MVT::i64));
6894 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N->getOperand(0),
6895 ShiftedVal);
6896 }
Chad Rosierd96e9f12014-06-09 01:25:51 +00006897 }
Tim Northover3b0846e2014-05-24 12:50:23 +00006898 }
6899 return SDValue();
6900}
6901
Jim Grosbachf7502c42014-07-18 00:40:52 +00006902static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
6903 SelectionDAG &DAG) {
6904 // Take advantage of vector comparisons producing 0 or -1 in each lane to
6905 // optimize away operation when it's from a constant.
6906 //
6907 // The general transformation is:
6908 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
6909 // AND(VECTOR_CMP(x,y), constant2)
6910 // constant2 = UNARYOP(constant)
6911
Jim Grosbach8f6f0852014-07-23 20:41:38 +00006912 // Early exit if this isn't a vector operation, the operand of the
6913 // unary operation isn't a bitwise AND, or if the sizes of the operations
6914 // aren't the same.
Jim Grosbachf7502c42014-07-18 00:40:52 +00006915 EVT VT = N->getValueType(0);
6916 if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
Jim Grosbach8f6f0852014-07-23 20:41:38 +00006917 N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
6918 VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
Jim Grosbachf7502c42014-07-18 00:40:52 +00006919 return SDValue();
6920
Jim Grosbach724e4382014-07-23 20:41:43 +00006921 // Now check that the other operand of the AND is a constant. We could
Jim Grosbachf7502c42014-07-18 00:40:52 +00006922 // make the transformation for non-constant splats as well, but it's unclear
6923 // that would be a benefit as it would not eliminate any operations, just
6924 // perform one more step in scalar code before moving to the vector unit.
6925 if (BuildVectorSDNode *BV =
6926 dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
Jim Grosbach724e4382014-07-23 20:41:43 +00006927 // Bail out if the vector isn't a constant.
6928 if (!BV->isConstant())
Jim Grosbachf7502c42014-07-18 00:40:52 +00006929 return SDValue();
6930
6931 // Everything checks out. Build up the new and improved node.
6932 SDLoc DL(N);
6933 EVT IntVT = BV->getValueType(0);
6934 // Create a new constant of the appropriate type for the transformed
6935 // DAG.
6936 SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
6937 // The AND node needs bitcasts to/from an integer vector type around it.
6938 SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
6939 SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
6940 N->getOperand(0)->getOperand(0), MaskConst);
6941 SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
6942 return Res;
6943 }
6944
6945 return SDValue();
6946}
6947
Tim Northover3b0846e2014-05-24 12:50:23 +00006948static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG) {
Jim Grosbachf7502c42014-07-18 00:40:52 +00006949 // First try to optimize away the conversion when it's conditionally from
6950 // a constant. Vectors only.
6951 SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG);
6952 if (Res != SDValue())
6953 return Res;
6954
Tim Northover3b0846e2014-05-24 12:50:23 +00006955 EVT VT = N->getValueType(0);
6956 if (VT != MVT::f32 && VT != MVT::f64)
6957 return SDValue();
Jim Grosbachf7502c42014-07-18 00:40:52 +00006958
Tim Northover3b0846e2014-05-24 12:50:23 +00006959 // Only optimize when the source and destination types have the same width.
6960 if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
6961 return SDValue();
6962
6963 // If the result of an integer load is only used by an integer-to-float
6964 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
6965 // This eliminates an "integer-to-vector-move UOP and improve throughput.
6966 SDValue N0 = N->getOperand(0);
6967 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
6968 // Do not change the width of a volatile load.
6969 !cast<LoadSDNode>(N0)->isVolatile()) {
6970 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6971 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
6972 LN0->getPointerInfo(), LN0->isVolatile(),
6973 LN0->isNonTemporal(), LN0->isInvariant(),
6974 LN0->getAlignment());
6975
6976 // Make sure successors of the original load stay after it by updating them
6977 // to use the new Chain.
6978 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
6979
6980 unsigned Opcode =
6981 (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
6982 return DAG.getNode(Opcode, SDLoc(N), VT, Load);
6983 }
6984
6985 return SDValue();
6986}
6987
6988/// An EXTR instruction is made up of two shifts, ORed together. This helper
6989/// searches for and classifies those shifts.
6990static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
6991 bool &FromHi) {
6992 if (N.getOpcode() == ISD::SHL)
6993 FromHi = false;
6994 else if (N.getOpcode() == ISD::SRL)
6995 FromHi = true;
6996 else
6997 return false;
6998
6999 if (!isa<ConstantSDNode>(N.getOperand(1)))
7000 return false;
7001
7002 ShiftAmount = N->getConstantOperandVal(1);
7003 Src = N->getOperand(0);
7004 return true;
7005}
7006
7007/// EXTR instruction extracts a contiguous chunk of bits from two existing
7008/// registers viewed as a high/low pair. This function looks for the pattern:
7009/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
7010/// EXTR. Can't quite be done in TableGen because the two immediates aren't
7011/// independent.
7012static SDValue tryCombineToEXTR(SDNode *N,
7013 TargetLowering::DAGCombinerInfo &DCI) {
7014 SelectionDAG &DAG = DCI.DAG;
7015 SDLoc DL(N);
7016 EVT VT = N->getValueType(0);
7017
7018 assert(N->getOpcode() == ISD::OR && "Unexpected root");
7019
7020 if (VT != MVT::i32 && VT != MVT::i64)
7021 return SDValue();
7022
7023 SDValue LHS;
7024 uint32_t ShiftLHS = 0;
7025 bool LHSFromHi = 0;
7026 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
7027 return SDValue();
7028
7029 SDValue RHS;
7030 uint32_t ShiftRHS = 0;
7031 bool RHSFromHi = 0;
7032 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
7033 return SDValue();
7034
7035 // If they're both trying to come from the high part of the register, they're
7036 // not really an EXTR.
7037 if (LHSFromHi == RHSFromHi)
7038 return SDValue();
7039
7040 if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
7041 return SDValue();
7042
7043 if (LHSFromHi) {
7044 std::swap(LHS, RHS);
7045 std::swap(ShiftLHS, ShiftRHS);
7046 }
7047
7048 return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
7049 DAG.getConstant(ShiftRHS, MVT::i64));
7050}
7051
7052static SDValue tryCombineToBSL(SDNode *N,
7053 TargetLowering::DAGCombinerInfo &DCI) {
7054 EVT VT = N->getValueType(0);
7055 SelectionDAG &DAG = DCI.DAG;
7056 SDLoc DL(N);
7057
7058 if (!VT.isVector())
7059 return SDValue();
7060
7061 SDValue N0 = N->getOperand(0);
7062 if (N0.getOpcode() != ISD::AND)
7063 return SDValue();
7064
7065 SDValue N1 = N->getOperand(1);
7066 if (N1.getOpcode() != ISD::AND)
7067 return SDValue();
7068
7069 // We only have to look for constant vectors here since the general, variable
7070 // case can be handled in TableGen.
7071 unsigned Bits = VT.getVectorElementType().getSizeInBits();
7072 uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
7073 for (int i = 1; i >= 0; --i)
7074 for (int j = 1; j >= 0; --j) {
7075 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
7076 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
7077 if (!BVN0 || !BVN1)
7078 continue;
7079
7080 bool FoundMatch = true;
7081 for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
7082 ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
7083 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
7084 if (!CN0 || !CN1 ||
7085 CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
7086 FoundMatch = false;
7087 break;
7088 }
7089 }
7090
7091 if (FoundMatch)
7092 return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
7093 N0->getOperand(1 - i), N1->getOperand(1 - j));
7094 }
7095
7096 return SDValue();
7097}
7098
7099static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
7100 const AArch64Subtarget *Subtarget) {
7101 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
7102 if (!EnableAArch64ExtrGeneration)
7103 return SDValue();
7104 SelectionDAG &DAG = DCI.DAG;
7105 EVT VT = N->getValueType(0);
7106
7107 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7108 return SDValue();
7109
7110 SDValue Res = tryCombineToEXTR(N, DCI);
7111 if (Res.getNode())
7112 return Res;
7113
7114 Res = tryCombineToBSL(N, DCI);
7115 if (Res.getNode())
7116 return Res;
7117
7118 return SDValue();
7119}
7120
7121static SDValue performBitcastCombine(SDNode *N,
7122 TargetLowering::DAGCombinerInfo &DCI,
7123 SelectionDAG &DAG) {
7124 // Wait 'til after everything is legalized to try this. That way we have
7125 // legal vector types and such.
7126 if (DCI.isBeforeLegalizeOps())
7127 return SDValue();
7128
7129 // Remove extraneous bitcasts around an extract_subvector.
7130 // For example,
7131 // (v4i16 (bitconvert
7132 // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
7133 // becomes
7134 // (extract_subvector ((v8i16 ...), (i64 4)))
7135
7136 // Only interested in 64-bit vectors as the ultimate result.
7137 EVT VT = N->getValueType(0);
7138 if (!VT.isVector())
7139 return SDValue();
7140 if (VT.getSimpleVT().getSizeInBits() != 64)
7141 return SDValue();
7142 // Is the operand an extract_subvector starting at the beginning or halfway
7143 // point of the vector? A low half may also come through as an
7144 // EXTRACT_SUBREG, so look for that, too.
7145 SDValue Op0 = N->getOperand(0);
7146 if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
7147 !(Op0->isMachineOpcode() &&
7148 Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
7149 return SDValue();
7150 uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
7151 if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
7152 if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
7153 return SDValue();
7154 } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
7155 if (idx != AArch64::dsub)
7156 return SDValue();
7157 // The dsub reference is equivalent to a lane zero subvector reference.
7158 idx = 0;
7159 }
7160 // Look through the bitcast of the input to the extract.
7161 if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
7162 return SDValue();
7163 SDValue Source = Op0->getOperand(0)->getOperand(0);
7164 // If the source type has twice the number of elements as our destination
7165 // type, we know this is an extract of the high or low half of the vector.
7166 EVT SVT = Source->getValueType(0);
7167 if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
7168 return SDValue();
7169
7170 DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
7171
7172 // Create the simplified form to just extract the low or high half of the
7173 // vector directly rather than bothering with the bitcasts.
7174 SDLoc dl(N);
7175 unsigned NumElements = VT.getVectorNumElements();
7176 if (idx) {
7177 SDValue HalfIdx = DAG.getConstant(NumElements, MVT::i64);
7178 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
7179 } else {
7180 SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, MVT::i32);
7181 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
7182 Source, SubReg),
7183 0);
7184 }
7185}
7186
7187static SDValue performConcatVectorsCombine(SDNode *N,
7188 TargetLowering::DAGCombinerInfo &DCI,
7189 SelectionDAG &DAG) {
7190 // Wait 'til after everything is legalized to try this. That way we have
7191 // legal vector types and such.
7192 if (DCI.isBeforeLegalizeOps())
7193 return SDValue();
7194
7195 SDLoc dl(N);
7196 EVT VT = N->getValueType(0);
7197
7198 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
7199 // splat. The indexed instructions are going to be expecting a DUPLANE64, so
7200 // canonicalise to that.
7201 if (N->getOperand(0) == N->getOperand(1) && VT.getVectorNumElements() == 2) {
7202 assert(VT.getVectorElementType().getSizeInBits() == 64);
7203 return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT,
7204 WidenVector(N->getOperand(0), DAG),
7205 DAG.getConstant(0, MVT::i64));
7206 }
7207
7208 // Canonicalise concat_vectors so that the right-hand vector has as few
7209 // bit-casts as possible before its real operation. The primary matching
7210 // destination for these operations will be the narrowing "2" instructions,
7211 // which depend on the operation being performed on this right-hand vector.
7212 // For example,
7213 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
7214 // becomes
7215 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
7216
7217 SDValue Op1 = N->getOperand(1);
7218 if (Op1->getOpcode() != ISD::BITCAST)
7219 return SDValue();
7220 SDValue RHS = Op1->getOperand(0);
7221 MVT RHSTy = RHS.getValueType().getSimpleVT();
7222 // If the RHS is not a vector, this is not the pattern we're looking for.
7223 if (!RHSTy.isVector())
7224 return SDValue();
7225
7226 DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
7227
7228 MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
7229 RHSTy.getVectorNumElements() * 2);
7230 return DAG.getNode(
7231 ISD::BITCAST, dl, VT,
7232 DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
7233 DAG.getNode(ISD::BITCAST, dl, RHSTy, N->getOperand(0)), RHS));
7234}
7235
7236static SDValue tryCombineFixedPointConvert(SDNode *N,
7237 TargetLowering::DAGCombinerInfo &DCI,
7238 SelectionDAG &DAG) {
7239 // Wait 'til after everything is legalized to try this. That way we have
7240 // legal vector types and such.
7241 if (DCI.isBeforeLegalizeOps())
7242 return SDValue();
7243 // Transform a scalar conversion of a value from a lane extract into a
7244 // lane extract of a vector conversion. E.g., from foo1 to foo2:
7245 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
7246 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
7247 //
7248 // The second form interacts better with instruction selection and the
7249 // register allocator to avoid cross-class register copies that aren't
7250 // coalescable due to a lane reference.
7251
7252 // Check the operand and see if it originates from a lane extract.
7253 SDValue Op1 = N->getOperand(1);
7254 if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7255 // Yep, no additional predication needed. Perform the transform.
7256 SDValue IID = N->getOperand(0);
7257 SDValue Shift = N->getOperand(2);
7258 SDValue Vec = Op1.getOperand(0);
7259 SDValue Lane = Op1.getOperand(1);
7260 EVT ResTy = N->getValueType(0);
7261 EVT VecResTy;
7262 SDLoc DL(N);
7263
7264 // The vector width should be 128 bits by the time we get here, even
7265 // if it started as 64 bits (the extract_vector handling will have
7266 // done so).
7267 assert(Vec.getValueType().getSizeInBits() == 128 &&
7268 "unexpected vector size on extract_vector_elt!");
7269 if (Vec.getValueType() == MVT::v4i32)
7270 VecResTy = MVT::v4f32;
7271 else if (Vec.getValueType() == MVT::v2i64)
7272 VecResTy = MVT::v2f64;
7273 else
Craig Topper2a30d782014-06-18 05:05:13 +00007274 llvm_unreachable("unexpected vector type!");
Tim Northover3b0846e2014-05-24 12:50:23 +00007275
7276 SDValue Convert =
7277 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
7278 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
7279 }
7280 return SDValue();
7281}
7282
7283// AArch64 high-vector "long" operations are formed by performing the non-high
7284// version on an extract_subvector of each operand which gets the high half:
7285//
7286// (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
7287//
7288// However, there are cases which don't have an extract_high explicitly, but
7289// have another operation that can be made compatible with one for free. For
7290// example:
7291//
7292// (dupv64 scalar) --> (extract_high (dup128 scalar))
7293//
7294// This routine does the actual conversion of such DUPs, once outer routines
7295// have determined that everything else is in order.
7296static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
7297 // We can handle most types of duplicate, but the lane ones have an extra
7298 // operand saying *which* lane, so we need to know.
7299 bool IsDUPLANE;
7300 switch (N.getOpcode()) {
7301 case AArch64ISD::DUP:
7302 IsDUPLANE = false;
7303 break;
7304 case AArch64ISD::DUPLANE8:
7305 case AArch64ISD::DUPLANE16:
7306 case AArch64ISD::DUPLANE32:
7307 case AArch64ISD::DUPLANE64:
7308 IsDUPLANE = true;
7309 break;
7310 default:
7311 return SDValue();
7312 }
7313
7314 MVT NarrowTy = N.getSimpleValueType();
7315 if (!NarrowTy.is64BitVector())
7316 return SDValue();
7317
7318 MVT ElementTy = NarrowTy.getVectorElementType();
7319 unsigned NumElems = NarrowTy.getVectorNumElements();
7320 MVT NewDUPVT = MVT::getVectorVT(ElementTy, NumElems * 2);
7321
7322 SDValue NewDUP;
7323 if (IsDUPLANE)
7324 NewDUP = DAG.getNode(N.getOpcode(), SDLoc(N), NewDUPVT, N.getOperand(0),
7325 N.getOperand(1));
7326 else
7327 NewDUP = DAG.getNode(AArch64ISD::DUP, SDLoc(N), NewDUPVT, N.getOperand(0));
7328
7329 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N.getNode()), NarrowTy,
7330 NewDUP, DAG.getConstant(NumElems, MVT::i64));
7331}
7332
7333static bool isEssentiallyExtractSubvector(SDValue N) {
7334 if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
7335 return true;
7336
7337 return N.getOpcode() == ISD::BITCAST &&
7338 N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
7339}
7340
7341/// \brief Helper structure to keep track of ISD::SET_CC operands.
7342struct GenericSetCCInfo {
7343 const SDValue *Opnd0;
7344 const SDValue *Opnd1;
7345 ISD::CondCode CC;
7346};
7347
7348/// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
7349struct AArch64SetCCInfo {
7350 const SDValue *Cmp;
7351 AArch64CC::CondCode CC;
7352};
7353
7354/// \brief Helper structure to keep track of SetCC information.
7355union SetCCInfo {
7356 GenericSetCCInfo Generic;
7357 AArch64SetCCInfo AArch64;
7358};
7359
7360/// \brief Helper structure to be able to read SetCC information. If set to
7361/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
7362/// GenericSetCCInfo.
7363struct SetCCInfoAndKind {
7364 SetCCInfo Info;
7365 bool IsAArch64;
7366};
7367
7368/// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
7369/// an
7370/// AArch64 lowered one.
7371/// \p SetCCInfo is filled accordingly.
7372/// \post SetCCInfo is meanginfull only when this function returns true.
7373/// \return True when Op is a kind of SET_CC operation.
7374static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
7375 // If this is a setcc, this is straight forward.
7376 if (Op.getOpcode() == ISD::SETCC) {
7377 SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
7378 SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
7379 SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7380 SetCCInfo.IsAArch64 = false;
7381 return true;
7382 }
7383 // Otherwise, check if this is a matching csel instruction.
7384 // In other words:
7385 // - csel 1, 0, cc
7386 // - csel 0, 1, !cc
7387 if (Op.getOpcode() != AArch64ISD::CSEL)
7388 return false;
7389 // Set the information about the operands.
7390 // TODO: we want the operands of the Cmp not the csel
7391 SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
7392 SetCCInfo.IsAArch64 = true;
7393 SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
7394 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
7395
7396 // Check that the operands matches the constraints:
7397 // (1) Both operands must be constants.
7398 // (2) One must be 1 and the other must be 0.
7399 ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
7400 ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7401
7402 // Check (1).
7403 if (!TValue || !FValue)
7404 return false;
7405
7406 // Check (2).
7407 if (!TValue->isOne()) {
7408 // Update the comparison when we are interested in !cc.
7409 std::swap(TValue, FValue);
7410 SetCCInfo.Info.AArch64.CC =
7411 AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
7412 }
7413 return TValue->isOne() && FValue->isNullValue();
7414}
7415
7416// Returns true if Op is setcc or zext of setcc.
7417static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
7418 if (isSetCC(Op, Info))
7419 return true;
7420 return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
7421 isSetCC(Op->getOperand(0), Info));
7422}
7423
7424// The folding we want to perform is:
7425// (add x, [zext] (setcc cc ...) )
7426// -->
7427// (csel x, (add x, 1), !cc ...)
7428//
7429// The latter will get matched to a CSINC instruction.
7430static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
7431 assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
7432 SDValue LHS = Op->getOperand(0);
7433 SDValue RHS = Op->getOperand(1);
7434 SetCCInfoAndKind InfoAndKind;
7435
7436 // If neither operand is a SET_CC, give up.
7437 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
7438 std::swap(LHS, RHS);
7439 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
7440 return SDValue();
7441 }
7442
7443 // FIXME: This could be generatized to work for FP comparisons.
7444 EVT CmpVT = InfoAndKind.IsAArch64
7445 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
7446 : InfoAndKind.Info.Generic.Opnd0->getValueType();
7447 if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
7448 return SDValue();
7449
7450 SDValue CCVal;
7451 SDValue Cmp;
7452 SDLoc dl(Op);
7453 if (InfoAndKind.IsAArch64) {
7454 CCVal = DAG.getConstant(
7455 AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), MVT::i32);
7456 Cmp = *InfoAndKind.Info.AArch64.Cmp;
7457 } else
7458 Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
7459 *InfoAndKind.Info.Generic.Opnd1,
7460 ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
7461 CCVal, DAG, dl);
7462
7463 EVT VT = Op->getValueType(0);
7464 LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, VT));
7465 return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
7466}
7467
7468// The basic add/sub long vector instructions have variants with "2" on the end
7469// which act on the high-half of their inputs. They are normally matched by
7470// patterns like:
7471//
7472// (add (zeroext (extract_high LHS)),
7473// (zeroext (extract_high RHS)))
7474// -> uaddl2 vD, vN, vM
7475//
7476// However, if one of the extracts is something like a duplicate, this
7477// instruction can still be used profitably. This function puts the DAG into a
7478// more appropriate form for those patterns to trigger.
7479static SDValue performAddSubLongCombine(SDNode *N,
7480 TargetLowering::DAGCombinerInfo &DCI,
7481 SelectionDAG &DAG) {
7482 if (DCI.isBeforeLegalizeOps())
7483 return SDValue();
7484
7485 MVT VT = N->getSimpleValueType(0);
7486 if (!VT.is128BitVector()) {
7487 if (N->getOpcode() == ISD::ADD)
7488 return performSetccAddFolding(N, DAG);
7489 return SDValue();
7490 }
7491
7492 // Make sure both branches are extended in the same way.
7493 SDValue LHS = N->getOperand(0);
7494 SDValue RHS = N->getOperand(1);
7495 if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
7496 LHS.getOpcode() != ISD::SIGN_EXTEND) ||
7497 LHS.getOpcode() != RHS.getOpcode())
7498 return SDValue();
7499
7500 unsigned ExtType = LHS.getOpcode();
7501
7502 // It's not worth doing if at least one of the inputs isn't already an
7503 // extract, but we don't know which it'll be so we have to try both.
7504 if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
7505 RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
7506 if (!RHS.getNode())
7507 return SDValue();
7508
7509 RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
7510 } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
7511 LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
7512 if (!LHS.getNode())
7513 return SDValue();
7514
7515 LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
7516 }
7517
7518 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
7519}
7520
7521// Massage DAGs which we can use the high-half "long" operations on into
7522// something isel will recognize better. E.g.
7523//
7524// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
7525// (aarch64_neon_umull (extract_high (v2i64 vec)))
7526// (extract_high (v2i64 (dup128 scalar)))))
7527//
7528static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
7529 TargetLowering::DAGCombinerInfo &DCI,
7530 SelectionDAG &DAG) {
7531 if (DCI.isBeforeLegalizeOps())
7532 return SDValue();
7533
7534 SDValue LHS = N->getOperand(1);
7535 SDValue RHS = N->getOperand(2);
7536 assert(LHS.getValueType().is64BitVector() &&
7537 RHS.getValueType().is64BitVector() &&
7538 "unexpected shape for long operation");
7539
7540 // Either node could be a DUP, but it's not worth doing both of them (you'd
7541 // just as well use the non-high version) so look for a corresponding extract
7542 // operation on the other "wing".
7543 if (isEssentiallyExtractSubvector(LHS)) {
7544 RHS = tryExtendDUPToExtractHigh(RHS, DAG);
7545 if (!RHS.getNode())
7546 return SDValue();
7547 } else if (isEssentiallyExtractSubvector(RHS)) {
7548 LHS = tryExtendDUPToExtractHigh(LHS, DAG);
7549 if (!LHS.getNode())
7550 return SDValue();
7551 }
7552
7553 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
7554 N->getOperand(0), LHS, RHS);
7555}
7556
7557static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
7558 MVT ElemTy = N->getSimpleValueType(0).getScalarType();
7559 unsigned ElemBits = ElemTy.getSizeInBits();
7560
7561 int64_t ShiftAmount;
7562 if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
7563 APInt SplatValue, SplatUndef;
7564 unsigned SplatBitSize;
7565 bool HasAnyUndefs;
7566 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
7567 HasAnyUndefs, ElemBits) ||
7568 SplatBitSize != ElemBits)
7569 return SDValue();
7570
7571 ShiftAmount = SplatValue.getSExtValue();
7572 } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
7573 ShiftAmount = CVN->getSExtValue();
7574 } else
7575 return SDValue();
7576
7577 unsigned Opcode;
7578 bool IsRightShift;
7579 switch (IID) {
7580 default:
7581 llvm_unreachable("Unknown shift intrinsic");
7582 case Intrinsic::aarch64_neon_sqshl:
7583 Opcode = AArch64ISD::SQSHL_I;
7584 IsRightShift = false;
7585 break;
7586 case Intrinsic::aarch64_neon_uqshl:
7587 Opcode = AArch64ISD::UQSHL_I;
7588 IsRightShift = false;
7589 break;
7590 case Intrinsic::aarch64_neon_srshl:
7591 Opcode = AArch64ISD::SRSHR_I;
7592 IsRightShift = true;
7593 break;
7594 case Intrinsic::aarch64_neon_urshl:
7595 Opcode = AArch64ISD::URSHR_I;
7596 IsRightShift = true;
7597 break;
7598 case Intrinsic::aarch64_neon_sqshlu:
7599 Opcode = AArch64ISD::SQSHLU_I;
7600 IsRightShift = false;
7601 break;
7602 }
7603
7604 if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits)
7605 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
7606 DAG.getConstant(-ShiftAmount, MVT::i32));
James Molloy1e3b5a42014-06-16 10:39:21 +00007607 else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits)
Tim Northover3b0846e2014-05-24 12:50:23 +00007608 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
7609 DAG.getConstant(ShiftAmount, MVT::i32));
7610
7611 return SDValue();
7612}
7613
7614// The CRC32[BH] instructions ignore the high bits of their data operand. Since
7615// the intrinsics must be legal and take an i32, this means there's almost
7616// certainly going to be a zext in the DAG which we can eliminate.
7617static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
7618 SDValue AndN = N->getOperand(2);
7619 if (AndN.getOpcode() != ISD::AND)
7620 return SDValue();
7621
7622 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
7623 if (!CMask || CMask->getZExtValue() != Mask)
7624 return SDValue();
7625
7626 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
7627 N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
7628}
7629
7630static SDValue performIntrinsicCombine(SDNode *N,
7631 TargetLowering::DAGCombinerInfo &DCI,
7632 const AArch64Subtarget *Subtarget) {
7633 SelectionDAG &DAG = DCI.DAG;
7634 unsigned IID = getIntrinsicID(N);
7635 switch (IID) {
7636 default:
7637 break;
7638 case Intrinsic::aarch64_neon_vcvtfxs2fp:
7639 case Intrinsic::aarch64_neon_vcvtfxu2fp:
7640 return tryCombineFixedPointConvert(N, DCI, DAG);
7641 break;
7642 case Intrinsic::aarch64_neon_fmax:
7643 return DAG.getNode(AArch64ISD::FMAX, SDLoc(N), N->getValueType(0),
7644 N->getOperand(1), N->getOperand(2));
7645 case Intrinsic::aarch64_neon_fmin:
7646 return DAG.getNode(AArch64ISD::FMIN, SDLoc(N), N->getValueType(0),
7647 N->getOperand(1), N->getOperand(2));
7648 case Intrinsic::aarch64_neon_smull:
7649 case Intrinsic::aarch64_neon_umull:
7650 case Intrinsic::aarch64_neon_pmull:
7651 case Intrinsic::aarch64_neon_sqdmull:
7652 return tryCombineLongOpWithDup(IID, N, DCI, DAG);
7653 case Intrinsic::aarch64_neon_sqshl:
7654 case Intrinsic::aarch64_neon_uqshl:
7655 case Intrinsic::aarch64_neon_sqshlu:
7656 case Intrinsic::aarch64_neon_srshl:
7657 case Intrinsic::aarch64_neon_urshl:
7658 return tryCombineShiftImm(IID, N, DAG);
7659 case Intrinsic::aarch64_crc32b:
7660 case Intrinsic::aarch64_crc32cb:
7661 return tryCombineCRC32(0xff, N, DAG);
7662 case Intrinsic::aarch64_crc32h:
7663 case Intrinsic::aarch64_crc32ch:
7664 return tryCombineCRC32(0xffff, N, DAG);
7665 }
7666 return SDValue();
7667}
7668
7669static SDValue performExtendCombine(SDNode *N,
7670 TargetLowering::DAGCombinerInfo &DCI,
7671 SelectionDAG &DAG) {
7672 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
7673 // we can convert that DUP into another extract_high (of a bigger DUP), which
7674 // helps the backend to decide that an sabdl2 would be useful, saving a real
7675 // extract_high operation.
7676 if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
7677 N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
7678 SDNode *ABDNode = N->getOperand(0).getNode();
7679 unsigned IID = getIntrinsicID(ABDNode);
7680 if (IID == Intrinsic::aarch64_neon_sabd ||
7681 IID == Intrinsic::aarch64_neon_uabd) {
7682 SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
7683 if (!NewABD.getNode())
7684 return SDValue();
7685
7686 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
7687 NewABD);
7688 }
7689 }
7690
7691 // This is effectively a custom type legalization for AArch64.
7692 //
7693 // Type legalization will split an extend of a small, legal, type to a larger
7694 // illegal type by first splitting the destination type, often creating
7695 // illegal source types, which then get legalized in isel-confusing ways,
7696 // leading to really terrible codegen. E.g.,
7697 // %result = v8i32 sext v8i8 %value
7698 // becomes
7699 // %losrc = extract_subreg %value, ...
7700 // %hisrc = extract_subreg %value, ...
7701 // %lo = v4i32 sext v4i8 %losrc
7702 // %hi = v4i32 sext v4i8 %hisrc
7703 // Things go rapidly downhill from there.
7704 //
7705 // For AArch64, the [sz]ext vector instructions can only go up one element
7706 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
7707 // take two instructions.
7708 //
7709 // This implies that the most efficient way to do the extend from v8i8
7710 // to two v4i32 values is to first extend the v8i8 to v8i16, then do
7711 // the normal splitting to happen for the v8i16->v8i32.
7712
7713 // This is pre-legalization to catch some cases where the default
7714 // type legalization will create ill-tempered code.
7715 if (!DCI.isBeforeLegalizeOps())
7716 return SDValue();
7717
7718 // We're only interested in cleaning things up for non-legal vector types
7719 // here. If both the source and destination are legal, things will just
7720 // work naturally without any fiddling.
7721 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7722 EVT ResVT = N->getValueType(0);
7723 if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
7724 return SDValue();
7725 // If the vector type isn't a simple VT, it's beyond the scope of what
7726 // we're worried about here. Let legalization do its thing and hope for
7727 // the best.
Jim Grosbachec2b0d02014-08-28 22:08:28 +00007728 SDValue Src = N->getOperand(0);
7729 EVT SrcVT = Src->getValueType(0);
7730 if (!ResVT.isSimple() || !SrcVT.isSimple())
Tim Northover3b0846e2014-05-24 12:50:23 +00007731 return SDValue();
7732
Tim Northover3b0846e2014-05-24 12:50:23 +00007733 // If the source VT is a 64-bit vector, we can play games and get the
7734 // better results we want.
7735 if (SrcVT.getSizeInBits() != 64)
7736 return SDValue();
7737
7738 unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
7739 unsigned ElementCount = SrcVT.getVectorNumElements();
7740 SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
7741 SDLoc DL(N);
7742 Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
7743
7744 // Now split the rest of the operation into two halves, each with a 64
7745 // bit source.
7746 EVT LoVT, HiVT;
7747 SDValue Lo, Hi;
7748 unsigned NumElements = ResVT.getVectorNumElements();
7749 assert(!(NumElements & 1) && "Splitting vector, but not in half!");
7750 LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
7751 ResVT.getVectorElementType(), NumElements / 2);
7752
7753 EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
7754 LoVT.getVectorNumElements());
7755 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
7756 DAG.getIntPtrConstant(0));
7757 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
7758 DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
7759 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
7760 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
7761
7762 // Now combine the parts back together so we still have a single result
7763 // like the combiner expects.
7764 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
7765}
7766
7767/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
7768/// value. The load store optimizer pass will merge them to store pair stores.
7769/// This has better performance than a splat of the scalar followed by a split
7770/// vector store. Even if the stores are not merged it is four stores vs a dup,
7771/// followed by an ext.b and two stores.
7772static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
7773 SDValue StVal = St->getValue();
7774 EVT VT = StVal.getValueType();
7775
7776 // Don't replace floating point stores, they possibly won't be transformed to
7777 // stp because of the store pair suppress pass.
7778 if (VT.isFloatingPoint())
7779 return SDValue();
7780
7781 // Check for insert vector elements.
7782 if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
7783 return SDValue();
7784
7785 // We can express a splat as store pair(s) for 2 or 4 elements.
7786 unsigned NumVecElts = VT.getVectorNumElements();
7787 if (NumVecElts != 4 && NumVecElts != 2)
7788 return SDValue();
7789 SDValue SplatVal = StVal.getOperand(1);
7790 unsigned RemainInsertElts = NumVecElts - 1;
7791
7792 // Check that this is a splat.
7793 while (--RemainInsertElts) {
7794 SDValue NextInsertElt = StVal.getOperand(0);
7795 if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
7796 return SDValue();
7797 if (NextInsertElt.getOperand(1) != SplatVal)
7798 return SDValue();
7799 StVal = NextInsertElt;
7800 }
7801 unsigned OrigAlignment = St->getAlignment();
7802 unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
7803 unsigned Alignment = std::min(OrigAlignment, EltOffset);
7804
7805 // Create scalar stores. This is at least as good as the code sequence for a
7806 // split unaligned store wich is a dup.s, ext.b, and two stores.
7807 // Most of the time the three stores should be replaced by store pair
7808 // instructions (stp).
7809 SDLoc DL(St);
7810 SDValue BasePtr = St->getBasePtr();
7811 SDValue NewST1 =
7812 DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
7813 St->isVolatile(), St->isNonTemporal(), St->getAlignment());
7814
7815 unsigned Offset = EltOffset;
7816 while (--NumVecElts) {
7817 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
7818 DAG.getConstant(Offset, MVT::i64));
7819 NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
7820 St->getPointerInfo(), St->isVolatile(),
7821 St->isNonTemporal(), Alignment);
7822 Offset += EltOffset;
7823 }
7824 return NewST1;
7825}
7826
7827static SDValue performSTORECombine(SDNode *N,
7828 TargetLowering::DAGCombinerInfo &DCI,
7829 SelectionDAG &DAG,
7830 const AArch64Subtarget *Subtarget) {
7831 if (!DCI.isBeforeLegalize())
7832 return SDValue();
7833
7834 StoreSDNode *S = cast<StoreSDNode>(N);
7835 if (S->isVolatile())
7836 return SDValue();
7837
7838 // Cyclone has bad performance on unaligned 16B stores when crossing line and
7839 // page boundries. We want to split such stores.
7840 if (!Subtarget->isCyclone())
7841 return SDValue();
7842
7843 // Don't split at Oz.
7844 MachineFunction &MF = DAG.getMachineFunction();
7845 bool IsMinSize = MF.getFunction()->getAttributes().hasAttribute(
7846 AttributeSet::FunctionIndex, Attribute::MinSize);
7847 if (IsMinSize)
7848 return SDValue();
7849
7850 SDValue StVal = S->getValue();
7851 EVT VT = StVal.getValueType();
7852
7853 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
7854 // those up regresses performance on micro-benchmarks and olden/bh.
7855 if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
7856 return SDValue();
7857
7858 // Split unaligned 16B stores. They are terrible for performance.
7859 // Don't split stores with alignment of 1 or 2. Code that uses clang vector
7860 // extensions can use this to mark that it does not want splitting to happen
7861 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
7862 // eliminating alignment hazards is only 1 in 8 for alignment of 2.
7863 if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
7864 S->getAlignment() <= 2)
7865 return SDValue();
7866
7867 // If we get a splat of a scalar convert this vector store to a store of
7868 // scalars. They will be merged into store pairs thereby removing two
7869 // instructions.
7870 SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S);
7871 if (ReplacedSplat != SDValue())
7872 return ReplacedSplat;
7873
7874 SDLoc DL(S);
7875 unsigned NumElts = VT.getVectorNumElements() / 2;
7876 // Split VT into two.
7877 EVT HalfVT =
7878 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
7879 SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
7880 DAG.getIntPtrConstant(0));
7881 SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
7882 DAG.getIntPtrConstant(NumElts));
7883 SDValue BasePtr = S->getBasePtr();
7884 SDValue NewST1 =
7885 DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
7886 S->isVolatile(), S->isNonTemporal(), S->getAlignment());
7887 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
7888 DAG.getConstant(8, MVT::i64));
7889 return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
7890 S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
7891 S->getAlignment());
7892}
7893
7894/// Target-specific DAG combine function for post-increment LD1 (lane) and
7895/// post-increment LD1R.
7896static SDValue performPostLD1Combine(SDNode *N,
7897 TargetLowering::DAGCombinerInfo &DCI,
7898 bool IsLaneOp) {
7899 if (DCI.isBeforeLegalizeOps())
7900 return SDValue();
7901
7902 SelectionDAG &DAG = DCI.DAG;
7903 EVT VT = N->getValueType(0);
7904
7905 unsigned LoadIdx = IsLaneOp ? 1 : 0;
7906 SDNode *LD = N->getOperand(LoadIdx).getNode();
7907 // If it is not LOAD, can not do such combine.
7908 if (LD->getOpcode() != ISD::LOAD)
7909 return SDValue();
7910
7911 LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
7912 EVT MemVT = LoadSDN->getMemoryVT();
7913 // Check if memory operand is the same type as the vector element.
7914 if (MemVT != VT.getVectorElementType())
7915 return SDValue();
7916
7917 // Check if there are other uses. If so, do not combine as it will introduce
7918 // an extra load.
7919 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
7920 ++UI) {
7921 if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
7922 continue;
7923 if (*UI != N)
7924 return SDValue();
7925 }
7926
7927 SDValue Addr = LD->getOperand(1);
7928 SDValue Vector = N->getOperand(0);
7929 // Search for a use of the address operand that is an increment.
7930 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
7931 Addr.getNode()->use_end(); UI != UE; ++UI) {
7932 SDNode *User = *UI;
7933 if (User->getOpcode() != ISD::ADD
7934 || UI.getUse().getResNo() != Addr.getResNo())
7935 continue;
7936
7937 // Check that the add is independent of the load. Otherwise, folding it
7938 // would create a cycle.
7939 if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
7940 continue;
7941 // Also check that add is not used in the vector operand. This would also
7942 // create a cycle.
7943 if (User->isPredecessorOf(Vector.getNode()))
7944 continue;
7945
7946 // If the increment is a constant, it must match the memory ref size.
7947 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7948 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7949 uint32_t IncVal = CInc->getZExtValue();
7950 unsigned NumBytes = VT.getScalarSizeInBits() / 8;
7951 if (IncVal != NumBytes)
7952 continue;
7953 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
7954 }
7955
7956 SmallVector<SDValue, 8> Ops;
7957 Ops.push_back(LD->getOperand(0)); // Chain
7958 if (IsLaneOp) {
7959 Ops.push_back(Vector); // The vector to be inserted
7960 Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
7961 }
7962 Ops.push_back(Addr);
7963 Ops.push_back(Inc);
7964
7965 EVT Tys[3] = { VT, MVT::i64, MVT::Other };
Craig Toppere1d12942014-08-27 05:25:25 +00007966 SDVTList SDTys = DAG.getVTList(Tys);
Tim Northover3b0846e2014-05-24 12:50:23 +00007967 unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
7968 SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
7969 MemVT,
7970 LoadSDN->getMemOperand());
7971
7972 // Update the uses.
7973 std::vector<SDValue> NewResults;
7974 NewResults.push_back(SDValue(LD, 0)); // The result of load
7975 NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain
7976 DCI.CombineTo(LD, NewResults);
7977 DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
7978 DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
7979
7980 break;
7981 }
7982 return SDValue();
7983}
7984
7985/// Target-specific DAG combine function for NEON load/store intrinsics
7986/// to merge base address updates.
7987static SDValue performNEONPostLDSTCombine(SDNode *N,
7988 TargetLowering::DAGCombinerInfo &DCI,
7989 SelectionDAG &DAG) {
7990 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
7991 return SDValue();
7992
7993 unsigned AddrOpIdx = N->getNumOperands() - 1;
7994 SDValue Addr = N->getOperand(AddrOpIdx);
7995
7996 // Search for a use of the address operand that is an increment.
7997 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
7998 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
7999 SDNode *User = *UI;
8000 if (User->getOpcode() != ISD::ADD ||
8001 UI.getUse().getResNo() != Addr.getResNo())
8002 continue;
8003
8004 // Check that the add is independent of the load/store. Otherwise, folding
8005 // it would create a cycle.
8006 if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
8007 continue;
8008
8009 // Find the new opcode for the updating load/store.
8010 bool IsStore = false;
8011 bool IsLaneOp = false;
8012 bool IsDupOp = false;
8013 unsigned NewOpc = 0;
8014 unsigned NumVecs = 0;
8015 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8016 switch (IntNo) {
8017 default: llvm_unreachable("unexpected intrinsic for Neon base update");
8018 case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
8019 NumVecs = 2; break;
8020 case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
8021 NumVecs = 3; break;
8022 case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
8023 NumVecs = 4; break;
8024 case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
8025 NumVecs = 2; IsStore = true; break;
8026 case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
8027 NumVecs = 3; IsStore = true; break;
8028 case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
8029 NumVecs = 4; IsStore = true; break;
8030 case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
8031 NumVecs = 2; break;
8032 case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
8033 NumVecs = 3; break;
8034 case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
8035 NumVecs = 4; break;
8036 case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
8037 NumVecs = 2; IsStore = true; break;
8038 case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
8039 NumVecs = 3; IsStore = true; break;
8040 case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
8041 NumVecs = 4; IsStore = true; break;
8042 case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
8043 NumVecs = 2; IsDupOp = true; break;
8044 case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
8045 NumVecs = 3; IsDupOp = true; break;
8046 case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
8047 NumVecs = 4; IsDupOp = true; break;
8048 case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
8049 NumVecs = 2; IsLaneOp = true; break;
8050 case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
8051 NumVecs = 3; IsLaneOp = true; break;
8052 case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
8053 NumVecs = 4; IsLaneOp = true; break;
8054 case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
8055 NumVecs = 2; IsStore = true; IsLaneOp = true; break;
8056 case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
8057 NumVecs = 3; IsStore = true; IsLaneOp = true; break;
8058 case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
8059 NumVecs = 4; IsStore = true; IsLaneOp = true; break;
8060 }
8061
8062 EVT VecTy;
8063 if (IsStore)
8064 VecTy = N->getOperand(2).getValueType();
8065 else
8066 VecTy = N->getValueType(0);
8067
8068 // If the increment is a constant, it must match the memory ref size.
8069 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8070 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8071 uint32_t IncVal = CInc->getZExtValue();
8072 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
8073 if (IsLaneOp || IsDupOp)
8074 NumBytes /= VecTy.getVectorNumElements();
8075 if (IncVal != NumBytes)
8076 continue;
8077 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
8078 }
8079 SmallVector<SDValue, 8> Ops;
8080 Ops.push_back(N->getOperand(0)); // Incoming chain
8081 // Load lane and store have vector list as input.
8082 if (IsLaneOp || IsStore)
8083 for (unsigned i = 2; i < AddrOpIdx; ++i)
8084 Ops.push_back(N->getOperand(i));
8085 Ops.push_back(Addr); // Base register
8086 Ops.push_back(Inc);
8087
8088 // Return Types.
8089 EVT Tys[6];
8090 unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
8091 unsigned n;
8092 for (n = 0; n < NumResultVecs; ++n)
8093 Tys[n] = VecTy;
8094 Tys[n++] = MVT::i64; // Type of write back register
8095 Tys[n] = MVT::Other; // Type of the chain
Craig Toppere1d12942014-08-27 05:25:25 +00008096 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
Tim Northover3b0846e2014-05-24 12:50:23 +00008097
8098 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
8099 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
8100 MemInt->getMemoryVT(),
8101 MemInt->getMemOperand());
8102
8103 // Update the uses.
8104 std::vector<SDValue> NewResults;
8105 for (unsigned i = 0; i < NumResultVecs; ++i) {
8106 NewResults.push_back(SDValue(UpdN.getNode(), i));
8107 }
8108 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
8109 DCI.CombineTo(N, NewResults);
8110 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
8111
8112 break;
8113 }
8114 return SDValue();
8115}
8116
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008117// Checks to see if the value is the prescribed width and returns information
8118// about its extension mode.
8119static
8120bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
8121 ExtType = ISD::NON_EXTLOAD;
8122 switch(V.getNode()->getOpcode()) {
8123 default:
8124 return false;
8125 case ISD::LOAD: {
8126 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
8127 if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
8128 || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
8129 ExtType = LoadNode->getExtensionType();
8130 return true;
8131 }
8132 return false;
8133 }
8134 case ISD::AssertSext: {
8135 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
8136 if ((TypeNode->getVT() == MVT::i8 && width == 8)
8137 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
8138 ExtType = ISD::SEXTLOAD;
8139 return true;
8140 }
8141 return false;
8142 }
8143 case ISD::AssertZext: {
8144 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
8145 if ((TypeNode->getVT() == MVT::i8 && width == 8)
8146 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
8147 ExtType = ISD::ZEXTLOAD;
8148 return true;
8149 }
8150 return false;
8151 }
8152 case ISD::Constant:
8153 case ISD::TargetConstant: {
Reid Kleckner39ad7c92014-08-29 22:14:26 +00008154 if (std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
Aaron Ballman8ca53882014-09-02 12:19:02 +00008155 1LL << (width - 1))
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008156 return true;
8157 return false;
8158 }
8159 }
8160
8161 return true;
8162}
8163
8164// This function does a whole lot of voodoo to determine if the tests are
8165// equivalent without and with a mask. Essentially what happens is that given a
8166// DAG resembling:
8167//
8168// +-------------+ +-------------+ +-------------+ +-------------+
8169// | Input | | AddConstant | | CompConstant| | CC |
8170// +-------------+ +-------------+ +-------------+ +-------------+
8171// | | | |
8172// V V | +----------+
8173// +-------------+ +----+ | |
8174// | ADD | |0xff| | |
8175// +-------------+ +----+ | |
8176// | | | |
8177// V V | |
8178// +-------------+ | |
8179// | AND | | |
8180// +-------------+ | |
8181// | | |
8182// +-----+ | |
8183// | | |
8184// V V V
8185// +-------------+
8186// | CMP |
8187// +-------------+
8188//
8189// The AND node may be safely removed for some combinations of inputs. In
8190// particular we need to take into account the extension type of the Input,
8191// the exact values of AddConstant, CompConstant, and CC, along with the nominal
8192// width of the input (this can work for any width inputs, the above graph is
8193// specific to 8 bits.
8194//
8195// The specific equations were worked out by generating output tables for each
8196// AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
8197// problem was simplified by working with 4 bit inputs, which means we only
8198// needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
8199// extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
8200// patterns present in both extensions (0,7). For every distinct set of
8201// AddConstant and CompConstants bit patterns we can consider the masked and
8202// unmasked versions to be equivalent if the result of this function is true for
8203// all 16 distinct bit patterns of for the current extension type of Input (w0).
8204//
8205// sub w8, w0, w1
8206// and w10, w8, #0x0f
8207// cmp w8, w2
8208// cset w9, AArch64CC
8209// cmp w10, w2
8210// cset w11, AArch64CC
8211// cmp w9, w11
8212// cset w0, eq
8213// ret
8214//
8215// Since the above function shows when the outputs are equivalent it defines
8216// when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
8217// would be expensive to run during compiles. The equations below were written
8218// in a test harness that confirmed they gave equivalent outputs to the above
8219// for all inputs function, so they can be used determine if the removal is
8220// legal instead.
8221//
8222// isEquivalentMaskless() is the code for testing if the AND can be removed
8223// factored out of the DAG recognition as the DAG can take several forms.
8224
8225static
8226bool isEquivalentMaskless(unsigned CC, unsigned width,
8227 ISD::LoadExtType ExtType, signed AddConstant,
8228 signed CompConstant) {
8229 // By being careful about our equations and only writing the in term
8230 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
8231 // make them generally applicable to all bit widths.
8232 signed MaxUInt = (1 << width);
8233
8234 // For the purposes of these comparisons sign extending the type is
8235 // equivalent to zero extending the add and displacing it by half the integer
8236 // width. Provided we are careful and make sure our equations are valid over
8237 // the whole range we can just adjust the input and avoid writing equations
8238 // for sign extended inputs.
8239 if (ExtType == ISD::SEXTLOAD)
8240 AddConstant -= (1 << (width-1));
8241
8242 switch(CC) {
8243 case AArch64CC::LE:
8244 case AArch64CC::GT: {
8245 if ((AddConstant == 0) ||
8246 (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
8247 (AddConstant >= 0 && CompConstant < 0) ||
8248 (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
8249 return true;
8250 } break;
8251 case AArch64CC::LT:
8252 case AArch64CC::GE: {
8253 if ((AddConstant == 0) ||
8254 (AddConstant >= 0 && CompConstant <= 0) ||
8255 (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
8256 return true;
8257 } break;
8258 case AArch64CC::HI:
8259 case AArch64CC::LS: {
8260 if ((AddConstant >= 0 && CompConstant < 0) ||
8261 (AddConstant <= 0 && CompConstant >= -1 &&
8262 CompConstant < AddConstant + MaxUInt))
8263 return true;
8264 } break;
8265 case AArch64CC::PL:
8266 case AArch64CC::MI: {
8267 if ((AddConstant == 0) ||
8268 (AddConstant > 0 && CompConstant <= 0) ||
8269 (AddConstant < 0 && CompConstant <= AddConstant))
8270 return true;
8271 } break;
8272 case AArch64CC::LO:
8273 case AArch64CC::HS: {
8274 if ((AddConstant >= 0 && CompConstant <= 0) ||
8275 (AddConstant <= 0 && CompConstant >= 0 &&
8276 CompConstant <= AddConstant + MaxUInt))
8277 return true;
8278 } break;
8279 case AArch64CC::EQ:
8280 case AArch64CC::NE: {
8281 if ((AddConstant > 0 && CompConstant < 0) ||
8282 (AddConstant < 0 && CompConstant >= 0 &&
8283 CompConstant < AddConstant + MaxUInt) ||
8284 (AddConstant >= 0 && CompConstant >= 0 &&
8285 CompConstant >= AddConstant) ||
8286 (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
8287
8288 return true;
8289 } break;
8290 case AArch64CC::VS:
8291 case AArch64CC::VC:
8292 case AArch64CC::AL:
8293 case AArch64CC::NV:
8294 return true;
8295 case AArch64CC::Invalid:
8296 break;
8297 }
8298
8299 return false;
8300}
8301
8302static
8303SDValue performCONDCombine(SDNode *N,
8304 TargetLowering::DAGCombinerInfo &DCI,
8305 SelectionDAG &DAG, unsigned CCIndex,
8306 unsigned CmpIndex) {
8307 unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
8308 SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
8309 unsigned CondOpcode = SubsNode->getOpcode();
8310
8311 if (CondOpcode != AArch64ISD::SUBS)
8312 return SDValue();
8313
8314 // There is a SUBS feeding this condition. Is it fed by a mask we can
8315 // use?
8316
8317 SDNode *AndNode = SubsNode->getOperand(0).getNode();
8318 unsigned MaskBits = 0;
8319
8320 if (AndNode->getOpcode() != ISD::AND)
8321 return SDValue();
8322
8323 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
8324 uint32_t CNV = CN->getZExtValue();
8325 if (CNV == 255)
8326 MaskBits = 8;
8327 else if (CNV == 65535)
8328 MaskBits = 16;
8329 }
8330
8331 if (!MaskBits)
8332 return SDValue();
8333
8334 SDValue AddValue = AndNode->getOperand(0);
8335
8336 if (AddValue.getOpcode() != ISD::ADD)
8337 return SDValue();
8338
8339 // The basic dag structure is correct, grab the inputs and validate them.
8340
8341 SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
8342 SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
8343 SDValue SubsInputValue = SubsNode->getOperand(1);
8344
8345 // The mask is present and the provenance of all the values is a smaller type,
8346 // lets see if the mask is superfluous.
8347
8348 if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
8349 !isa<ConstantSDNode>(SubsInputValue.getNode()))
8350 return SDValue();
8351
8352 ISD::LoadExtType ExtType;
8353
8354 if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
8355 !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
8356 !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
8357 return SDValue();
8358
8359 if(!isEquivalentMaskless(CC, MaskBits, ExtType,
8360 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
8361 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
8362 return SDValue();
8363
8364 // The AND is not necessary, remove it.
8365
8366 SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
8367 SubsNode->getValueType(1));
8368 SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
8369
8370 SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
8371 DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
8372
8373 return SDValue(N, 0);
8374}
8375
Tim Northover3b0846e2014-05-24 12:50:23 +00008376// Optimize compare with zero and branch.
8377static SDValue performBRCONDCombine(SDNode *N,
8378 TargetLowering::DAGCombinerInfo &DCI,
8379 SelectionDAG &DAG) {
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008380 SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3);
8381 if (NV.getNode())
8382 N = NV.getNode();
Tim Northover3b0846e2014-05-24 12:50:23 +00008383 SDValue Chain = N->getOperand(0);
8384 SDValue Dest = N->getOperand(1);
8385 SDValue CCVal = N->getOperand(2);
8386 SDValue Cmp = N->getOperand(3);
8387
8388 assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
8389 unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
8390 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
8391 return SDValue();
8392
8393 unsigned CmpOpc = Cmp.getOpcode();
8394 if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
8395 return SDValue();
8396
8397 // Only attempt folding if there is only one use of the flag and no use of the
8398 // value.
8399 if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
8400 return SDValue();
8401
8402 SDValue LHS = Cmp.getOperand(0);
8403 SDValue RHS = Cmp.getOperand(1);
8404
8405 assert(LHS.getValueType() == RHS.getValueType() &&
8406 "Expected the value type to be the same for both operands!");
8407 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
8408 return SDValue();
8409
8410 if (isa<ConstantSDNode>(LHS) && cast<ConstantSDNode>(LHS)->isNullValue())
8411 std::swap(LHS, RHS);
8412
8413 if (!isa<ConstantSDNode>(RHS) || !cast<ConstantSDNode>(RHS)->isNullValue())
8414 return SDValue();
8415
8416 if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
8417 LHS.getOpcode() == ISD::SRL)
8418 return SDValue();
8419
8420 // Fold the compare into the branch instruction.
8421 SDValue BR;
8422 if (CC == AArch64CC::EQ)
8423 BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
8424 else
8425 BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
8426
8427 // Do not add new nodes to DAG combiner worklist.
8428 DCI.CombineTo(N, BR, false);
8429
8430 return SDValue();
8431}
8432
8433// vselect (v1i1 setcc) ->
8434// vselect (v1iXX setcc) (XX is the size of the compared operand type)
8435// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
8436// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
8437// such VSELECT.
8438static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
8439 SDValue N0 = N->getOperand(0);
8440 EVT CCVT = N0.getValueType();
8441
8442 if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
8443 CCVT.getVectorElementType() != MVT::i1)
8444 return SDValue();
8445
8446 EVT ResVT = N->getValueType(0);
8447 EVT CmpVT = N0.getOperand(0).getValueType();
8448 // Only combine when the result type is of the same size as the compared
8449 // operands.
8450 if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
8451 return SDValue();
8452
8453 SDValue IfTrue = N->getOperand(1);
8454 SDValue IfFalse = N->getOperand(2);
8455 SDValue SetCC =
8456 DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
8457 N0.getOperand(0), N0.getOperand(1),
8458 cast<CondCodeSDNode>(N0.getOperand(2))->get());
8459 return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
8460 IfTrue, IfFalse);
8461}
8462
8463/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
8464/// the compare-mask instructions rather than going via NZCV, even if LHS and
8465/// RHS are really scalar. This replaces any scalar setcc in the above pattern
8466/// with a vector one followed by a DUP shuffle on the result.
8467static SDValue performSelectCombine(SDNode *N, SelectionDAG &DAG) {
8468 SDValue N0 = N->getOperand(0);
8469 EVT ResVT = N->getValueType(0);
Tim Northover3c0915e2014-08-29 15:34:58 +00008470
8471 if (N0.getOpcode() != ISD::SETCC || N0.getValueType() != MVT::i1)
8472 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00008473
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008474 // If NumMaskElts == 0, the comparison is larger than select result. The
8475 // largest real NEON comparison is 64-bits per lane, which means the result is
8476 // at most 32-bits and an illegal vector. Just bail out for now.
Tim Northover3c0915e2014-08-29 15:34:58 +00008477 EVT SrcVT = N0.getOperand(0).getValueType();
8478 int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008479 if (!ResVT.isVector() || NumMaskElts == 0)
Tim Northover3b0846e2014-05-24 12:50:23 +00008480 return SDValue();
8481
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008482 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00008483 EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
8484
8485 // First perform a vector comparison, where lane 0 is the one we're interested
8486 // in.
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008487 SDLoc DL(N0);
Tim Northover3b0846e2014-05-24 12:50:23 +00008488 SDValue LHS =
8489 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
8490 SDValue RHS =
8491 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
8492 SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
8493
8494 // Now duplicate the comparison mask we want across all other lanes.
8495 SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
8496 SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data());
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008497 Mask = DAG.getNode(ISD::BITCAST, DL,
8498 ResVT.changeVectorElementTypeToInteger(), Mask);
Tim Northover3b0846e2014-05-24 12:50:23 +00008499
8500 return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
8501}
8502
8503SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
8504 DAGCombinerInfo &DCI) const {
8505 SelectionDAG &DAG = DCI.DAG;
8506 switch (N->getOpcode()) {
8507 default:
8508 break;
8509 case ISD::ADD:
8510 case ISD::SUB:
8511 return performAddSubLongCombine(N, DCI, DAG);
8512 case ISD::XOR:
8513 return performXorCombine(N, DAG, DCI, Subtarget);
8514 case ISD::MUL:
8515 return performMulCombine(N, DAG, DCI, Subtarget);
8516 case ISD::SINT_TO_FP:
8517 case ISD::UINT_TO_FP:
8518 return performIntToFpCombine(N, DAG);
8519 case ISD::OR:
8520 return performORCombine(N, DCI, Subtarget);
8521 case ISD::INTRINSIC_WO_CHAIN:
8522 return performIntrinsicCombine(N, DCI, Subtarget);
8523 case ISD::ANY_EXTEND:
8524 case ISD::ZERO_EXTEND:
8525 case ISD::SIGN_EXTEND:
8526 return performExtendCombine(N, DCI, DAG);
8527 case ISD::BITCAST:
8528 return performBitcastCombine(N, DCI, DAG);
8529 case ISD::CONCAT_VECTORS:
8530 return performConcatVectorsCombine(N, DCI, DAG);
8531 case ISD::SELECT:
8532 return performSelectCombine(N, DAG);
8533 case ISD::VSELECT:
8534 return performVSelectCombine(N, DCI.DAG);
8535 case ISD::STORE:
8536 return performSTORECombine(N, DCI, DAG, Subtarget);
8537 case AArch64ISD::BRCOND:
8538 return performBRCONDCombine(N, DCI, DAG);
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008539 case AArch64ISD::CSEL:
8540 return performCONDCombine(N, DCI, DAG, 2, 3);
Tim Northover3b0846e2014-05-24 12:50:23 +00008541 case AArch64ISD::DUP:
8542 return performPostLD1Combine(N, DCI, false);
8543 case ISD::INSERT_VECTOR_ELT:
8544 return performPostLD1Combine(N, DCI, true);
8545 case ISD::INTRINSIC_VOID:
8546 case ISD::INTRINSIC_W_CHAIN:
8547 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
8548 case Intrinsic::aarch64_neon_ld2:
8549 case Intrinsic::aarch64_neon_ld3:
8550 case Intrinsic::aarch64_neon_ld4:
8551 case Intrinsic::aarch64_neon_ld1x2:
8552 case Intrinsic::aarch64_neon_ld1x3:
8553 case Intrinsic::aarch64_neon_ld1x4:
8554 case Intrinsic::aarch64_neon_ld2lane:
8555 case Intrinsic::aarch64_neon_ld3lane:
8556 case Intrinsic::aarch64_neon_ld4lane:
8557 case Intrinsic::aarch64_neon_ld2r:
8558 case Intrinsic::aarch64_neon_ld3r:
8559 case Intrinsic::aarch64_neon_ld4r:
8560 case Intrinsic::aarch64_neon_st2:
8561 case Intrinsic::aarch64_neon_st3:
8562 case Intrinsic::aarch64_neon_st4:
8563 case Intrinsic::aarch64_neon_st1x2:
8564 case Intrinsic::aarch64_neon_st1x3:
8565 case Intrinsic::aarch64_neon_st1x4:
8566 case Intrinsic::aarch64_neon_st2lane:
8567 case Intrinsic::aarch64_neon_st3lane:
8568 case Intrinsic::aarch64_neon_st4lane:
8569 return performNEONPostLDSTCombine(N, DCI, DAG);
8570 default:
8571 break;
8572 }
8573 }
8574 return SDValue();
8575}
8576
8577// Check if the return value is used as only a return value, as otherwise
8578// we can't perform a tail-call. In particular, we need to check for
8579// target ISD nodes that are returns and any other "odd" constructs
8580// that the generic analysis code won't necessarily catch.
8581bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
8582 SDValue &Chain) const {
8583 if (N->getNumValues() != 1)
8584 return false;
8585 if (!N->hasNUsesOfValue(1, 0))
8586 return false;
8587
8588 SDValue TCChain = Chain;
8589 SDNode *Copy = *N->use_begin();
8590 if (Copy->getOpcode() == ISD::CopyToReg) {
8591 // If the copy has a glue operand, we conservatively assume it isn't safe to
8592 // perform a tail call.
8593 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
8594 MVT::Glue)
8595 return false;
8596 TCChain = Copy->getOperand(0);
8597 } else if (Copy->getOpcode() != ISD::FP_EXTEND)
8598 return false;
8599
8600 bool HasRet = false;
8601 for (SDNode *Node : Copy->uses()) {
8602 if (Node->getOpcode() != AArch64ISD::RET_FLAG)
8603 return false;
8604 HasRet = true;
8605 }
8606
8607 if (!HasRet)
8608 return false;
8609
8610 Chain = TCChain;
8611 return true;
8612}
8613
8614// Return whether the an instruction can potentially be optimized to a tail
8615// call. This will cause the optimizers to attempt to move, or duplicate,
8616// return instructions to help enable tail call optimizations for this
8617// instruction.
8618bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
8619 if (!CI->isTailCall())
8620 return false;
8621
8622 return true;
8623}
8624
8625bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
8626 SDValue &Offset,
8627 ISD::MemIndexedMode &AM,
8628 bool &IsInc,
8629 SelectionDAG &DAG) const {
8630 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
8631 return false;
8632
8633 Base = Op->getOperand(0);
8634 // All of the indexed addressing mode instructions take a signed
8635 // 9 bit immediate offset.
8636 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
8637 int64_t RHSC = (int64_t)RHS->getZExtValue();
8638 if (RHSC >= 256 || RHSC <= -256)
8639 return false;
8640 IsInc = (Op->getOpcode() == ISD::ADD);
8641 Offset = Op->getOperand(1);
8642 return true;
8643 }
8644 return false;
8645}
8646
8647bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
8648 SDValue &Offset,
8649 ISD::MemIndexedMode &AM,
8650 SelectionDAG &DAG) const {
8651 EVT VT;
8652 SDValue Ptr;
8653 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8654 VT = LD->getMemoryVT();
8655 Ptr = LD->getBasePtr();
8656 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8657 VT = ST->getMemoryVT();
8658 Ptr = ST->getBasePtr();
8659 } else
8660 return false;
8661
8662 bool IsInc;
8663 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
8664 return false;
8665 AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
8666 return true;
8667}
8668
8669bool AArch64TargetLowering::getPostIndexedAddressParts(
8670 SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
8671 ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
8672 EVT VT;
8673 SDValue Ptr;
8674 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8675 VT = LD->getMemoryVT();
8676 Ptr = LD->getBasePtr();
8677 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8678 VT = ST->getMemoryVT();
8679 Ptr = ST->getBasePtr();
8680 } else
8681 return false;
8682
8683 bool IsInc;
8684 if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
8685 return false;
8686 // Post-indexing updates the base, so it's not a valid transform
8687 // if that's not the same as the load's pointer.
8688 if (Ptr != Base)
8689 return false;
8690 AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
8691 return true;
8692}
8693
Tim Northoverf8bfe212014-07-18 13:07:05 +00008694static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
8695 SelectionDAG &DAG) {
8696 if (N->getValueType(0) != MVT::i16)
8697 return;
8698
8699 SDLoc DL(N);
8700 SDValue Op = N->getOperand(0);
8701 assert(Op.getValueType() == MVT::f16 &&
8702 "Inconsistent bitcast? Only 16-bit types should be i16 or f16");
8703 Op = SDValue(
8704 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
8705 DAG.getUNDEF(MVT::i32), Op,
8706 DAG.getTargetConstant(AArch64::hsub, MVT::i32)),
8707 0);
8708 Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
8709 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
8710}
8711
Tim Northover3b0846e2014-05-24 12:50:23 +00008712void AArch64TargetLowering::ReplaceNodeResults(
8713 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
8714 switch (N->getOpcode()) {
8715 default:
8716 llvm_unreachable("Don't know how to custom expand this");
Tim Northoverf8bfe212014-07-18 13:07:05 +00008717 case ISD::BITCAST:
8718 ReplaceBITCASTResults(N, Results, DAG);
8719 return;
Tim Northover3b0846e2014-05-24 12:50:23 +00008720 case ISD::FP_TO_UINT:
8721 case ISD::FP_TO_SINT:
8722 assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
8723 // Let normal code take care of it by not adding anything to Results.
8724 return;
8725 }
8726}
8727
Akira Hatanakae5b6e0d2014-07-25 19:31:34 +00008728bool AArch64TargetLowering::useLoadStackGuardNode() const {
8729 return true;
8730}
8731
Chandler Carruth9d010ff2014-07-03 00:23:43 +00008732TargetLoweringBase::LegalizeTypeAction
8733AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
8734 MVT SVT = VT.getSimpleVT();
8735 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
8736 // v4i16, v2i32 instead of to promote.
8737 if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
8738 || SVT == MVT::v1f32)
8739 return TypeWidenVector;
8740
8741 return TargetLoweringBase::getPreferredVectorAction(VT);
8742}
8743
Robin Morisseted3d48f2014-09-03 21:29:59 +00008744// Loads and stores less than 128-bits are already atomic; ones above that
8745// are doomed anyway, so defer to the default libcall and blame the OS when
8746// things go wrong.
8747bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
8748 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
8749 return Size == 128;
8750}
8751
8752// Loads and stores less than 128-bits are already atomic; ones above that
8753// are doomed anyway, so defer to the default libcall and blame the OS when
8754// things go wrong.
8755bool AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
8756 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
8757 return Size == 128;
8758}
8759
8760// For the real atomic operations, we have ldxr/stxr up to 128 bits,
8761bool AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
8762 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
8763 return Size <= 128;
8764}
8765
Robin Morisset25c8e312014-09-17 00:06:58 +00008766bool AArch64TargetLowering::hasLoadLinkedStoreConditional() const {
8767 return true;
8768}
8769
Tim Northover3b0846e2014-05-24 12:50:23 +00008770Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
8771 AtomicOrdering Ord) const {
8772 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
8773 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
Robin Morissetb155f522014-08-18 16:48:58 +00008774 bool IsAcquire = isAtLeastAcquire(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +00008775
8776 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
8777 // intrinsic must return {i64, i64} and we have to recombine them into a
8778 // single i128 here.
8779 if (ValTy->getPrimitiveSizeInBits() == 128) {
8780 Intrinsic::ID Int =
8781 IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
8782 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int);
8783
8784 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
8785 Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
8786
8787 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
8788 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
8789 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
8790 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
8791 return Builder.CreateOr(
8792 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
8793 }
8794
8795 Type *Tys[] = { Addr->getType() };
8796 Intrinsic::ID Int =
8797 IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
8798 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys);
8799
8800 return Builder.CreateTruncOrBitCast(
8801 Builder.CreateCall(Ldxr, Addr),
8802 cast<PointerType>(Addr->getType())->getElementType());
8803}
8804
8805Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
8806 Value *Val, Value *Addr,
8807 AtomicOrdering Ord) const {
8808 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Robin Morissetb155f522014-08-18 16:48:58 +00008809 bool IsRelease = isAtLeastRelease(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +00008810
8811 // Since the intrinsics must have legal type, the i128 intrinsics take two
8812 // parameters: "i64, i64". We must marshal Val into the appropriate form
8813 // before the call.
8814 if (Val->getType()->getPrimitiveSizeInBits() == 128) {
8815 Intrinsic::ID Int =
8816 IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
8817 Function *Stxr = Intrinsic::getDeclaration(M, Int);
8818 Type *Int64Ty = Type::getInt64Ty(M->getContext());
8819
8820 Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
8821 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
8822 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
8823 return Builder.CreateCall3(Stxr, Lo, Hi, Addr);
8824 }
8825
8826 Intrinsic::ID Int =
8827 IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
8828 Type *Tys[] = { Addr->getType() };
8829 Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
8830
8831 return Builder.CreateCall2(
8832 Stxr, Builder.CreateZExtOrBitCast(
8833 Val, Stxr->getFunctionType()->getParamType(0)),
8834 Addr);
8835}