blob: d1368d80e590ac73bc169161c97c4618d8d496a7 [file] [log] [blame]
Tim Northover3b0846e2014-05-24 12:50:23 +00001//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AArch64TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AArch64ISelLowering.h"
Benjamin Kramer1f8930e2014-07-25 11:42:14 +000015#include "AArch64MachineFunctionInfo.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000016#include "AArch64PerfectShuffle.h"
17#include "AArch64Subtarget.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000018#include "AArch64TargetMachine.h"
19#include "AArch64TargetObjectFile.h"
20#include "MCTargetDesc/AArch64AddressingModes.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/IR/Function.h"
27#include "llvm/IR/Intrinsics.h"
28#include "llvm/IR/Type.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Target/TargetOptions.h"
34using namespace llvm;
35
36#define DEBUG_TYPE "aarch64-lower"
37
38STATISTIC(NumTailCalls, "Number of tail calls");
39STATISTIC(NumShiftInserts, "Number of vector shift inserts");
40
Alexey Samsonovf17f03e2014-08-19 18:40:39 +000041namespace {
Tim Northover3b0846e2014-05-24 12:50:23 +000042enum AlignMode {
43 StrictAlign,
44 NoStrictAlign
45};
Alexey Samsonovf17f03e2014-08-19 18:40:39 +000046}
Tim Northover3b0846e2014-05-24 12:50:23 +000047
48static cl::opt<AlignMode>
49Align(cl::desc("Load/store alignment support"),
50 cl::Hidden, cl::init(NoStrictAlign),
51 cl::values(
52 clEnumValN(StrictAlign, "aarch64-strict-align",
53 "Disallow all unaligned memory accesses"),
54 clEnumValN(NoStrictAlign, "aarch64-no-strict-align",
55 "Allow unaligned memory accesses"),
56 clEnumValEnd));
57
58// Place holder until extr generation is tested fully.
59static cl::opt<bool>
60EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden,
61 cl::desc("Allow AArch64 (or (shift)(shift))->extract"),
62 cl::init(true));
63
64static cl::opt<bool>
65EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
66 cl::desc("Allow AArch64 SLI/SRI formation"),
67 cl::init(false));
68
69//===----------------------------------------------------------------------===//
70// AArch64 Lowering public interface.
71//===----------------------------------------------------------------------===//
Eric Christopher89958332014-05-31 00:07:32 +000072static TargetLoweringObjectFile *createTLOF(const Triple &TT) {
73 if (TT.isOSBinFormatMachO())
Tim Northover3b0846e2014-05-24 12:50:23 +000074 return new AArch64_MachoTargetObjectFile();
75
76 return new AArch64_ELFTargetObjectFile();
77}
78
Eric Christopherf12e1ab2014-10-03 00:42:41 +000079AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM)
Eric Christopher89958332014-05-31 00:07:32 +000080 : TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))) {
Tim Northover3b0846e2014-05-24 12:50:23 +000081 Subtarget = &TM.getSubtarget<AArch64Subtarget>();
82
83 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
84 // we have to make something up. Arbitrarily, choose ZeroOrOne.
85 setBooleanContents(ZeroOrOneBooleanContent);
86 // When comparing vectors the result sets the different elements in the
87 // vector to all-one or all-zero.
88 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
89
90 // Set up the register classes.
91 addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
92 addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
93
94 if (Subtarget->hasFPARMv8()) {
95 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
96 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
97 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
98 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
99 }
100
101 if (Subtarget->hasNEON()) {
102 addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
103 addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
104 // Someone set us up the NEON.
105 addDRTypeForNEON(MVT::v2f32);
106 addDRTypeForNEON(MVT::v8i8);
107 addDRTypeForNEON(MVT::v4i16);
108 addDRTypeForNEON(MVT::v2i32);
109 addDRTypeForNEON(MVT::v1i64);
110 addDRTypeForNEON(MVT::v1f64);
Oliver Stannard89d15422014-08-27 16:16:04 +0000111 addDRTypeForNEON(MVT::v4f16);
Tim Northover3b0846e2014-05-24 12:50:23 +0000112
113 addQRTypeForNEON(MVT::v4f32);
114 addQRTypeForNEON(MVT::v2f64);
115 addQRTypeForNEON(MVT::v16i8);
116 addQRTypeForNEON(MVT::v8i16);
117 addQRTypeForNEON(MVT::v4i32);
118 addQRTypeForNEON(MVT::v2i64);
Oliver Stannard89d15422014-08-27 16:16:04 +0000119 addQRTypeForNEON(MVT::v8f16);
Tim Northover3b0846e2014-05-24 12:50:23 +0000120 }
121
122 // Compute derived properties from the register classes
123 computeRegisterProperties();
124
125 // Provide all sorts of operation actions
126 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
127 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
128 setOperationAction(ISD::SETCC, MVT::i32, Custom);
129 setOperationAction(ISD::SETCC, MVT::i64, Custom);
130 setOperationAction(ISD::SETCC, MVT::f32, Custom);
131 setOperationAction(ISD::SETCC, MVT::f64, Custom);
132 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
133 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
134 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
135 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
136 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
137 setOperationAction(ISD::SELECT, MVT::i32, Custom);
138 setOperationAction(ISD::SELECT, MVT::i64, Custom);
139 setOperationAction(ISD::SELECT, MVT::f32, Custom);
140 setOperationAction(ISD::SELECT, MVT::f64, Custom);
141 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
142 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
143 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
144 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
145 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
146 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
147
148 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
149 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
150 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
151
152 setOperationAction(ISD::FREM, MVT::f32, Expand);
153 setOperationAction(ISD::FREM, MVT::f64, Expand);
154 setOperationAction(ISD::FREM, MVT::f80, Expand);
155
156 // Custom lowering hooks are needed for XOR
157 // to fold it into CSINC/CSINV.
158 setOperationAction(ISD::XOR, MVT::i32, Custom);
159 setOperationAction(ISD::XOR, MVT::i64, Custom);
160
161 // Virtually no operation on f128 is legal, but LLVM can't expand them when
162 // there's a valid register class, so we need custom operations in most cases.
163 setOperationAction(ISD::FABS, MVT::f128, Expand);
164 setOperationAction(ISD::FADD, MVT::f128, Custom);
165 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
166 setOperationAction(ISD::FCOS, MVT::f128, Expand);
167 setOperationAction(ISD::FDIV, MVT::f128, Custom);
168 setOperationAction(ISD::FMA, MVT::f128, Expand);
169 setOperationAction(ISD::FMUL, MVT::f128, Custom);
170 setOperationAction(ISD::FNEG, MVT::f128, Expand);
171 setOperationAction(ISD::FPOW, MVT::f128, Expand);
172 setOperationAction(ISD::FREM, MVT::f128, Expand);
173 setOperationAction(ISD::FRINT, MVT::f128, Expand);
174 setOperationAction(ISD::FSIN, MVT::f128, Expand);
175 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
176 setOperationAction(ISD::FSQRT, MVT::f128, Expand);
177 setOperationAction(ISD::FSUB, MVT::f128, Custom);
178 setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
179 setOperationAction(ISD::SETCC, MVT::f128, Custom);
180 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
181 setOperationAction(ISD::SELECT, MVT::f128, Custom);
182 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
183 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
184
185 // Lowering for many of the conversions is actually specified by the non-f128
186 // type. The LowerXXX function will be trivial when f128 isn't involved.
187 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
188 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
189 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
190 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
191 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
192 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
193 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
194 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
195 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
196 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
197 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
198 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
199 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
200 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
201
202 // Variable arguments.
203 setOperationAction(ISD::VASTART, MVT::Other, Custom);
204 setOperationAction(ISD::VAARG, MVT::Other, Custom);
205 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
206 setOperationAction(ISD::VAEND, MVT::Other, Expand);
207
208 // Variable-sized objects.
209 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
210 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
211 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
212
213 // Exception handling.
214 // FIXME: These are guesses. Has this been defined yet?
215 setExceptionPointerRegister(AArch64::X0);
216 setExceptionSelectorRegister(AArch64::X1);
217
218 // Constant pool entries
219 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
220
221 // BlockAddress
222 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
223
224 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
225 setOperationAction(ISD::ADDC, MVT::i32, Custom);
226 setOperationAction(ISD::ADDE, MVT::i32, Custom);
227 setOperationAction(ISD::SUBC, MVT::i32, Custom);
228 setOperationAction(ISD::SUBE, MVT::i32, Custom);
229 setOperationAction(ISD::ADDC, MVT::i64, Custom);
230 setOperationAction(ISD::ADDE, MVT::i64, Custom);
231 setOperationAction(ISD::SUBC, MVT::i64, Custom);
232 setOperationAction(ISD::SUBE, MVT::i64, Custom);
233
234 // AArch64 lacks both left-rotate and popcount instructions.
235 setOperationAction(ISD::ROTL, MVT::i32, Expand);
236 setOperationAction(ISD::ROTL, MVT::i64, Expand);
237
238 // AArch64 doesn't have {U|S}MUL_LOHI.
239 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
240 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
241
242
243 // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero
244 // counterparts, which AArch64 supports directly.
245 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
246 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
247 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
248 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
249
250 setOperationAction(ISD::CTPOP, MVT::i32, Custom);
251 setOperationAction(ISD::CTPOP, MVT::i64, Custom);
252
253 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
254 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
255 setOperationAction(ISD::SREM, MVT::i32, Expand);
256 setOperationAction(ISD::SREM, MVT::i64, Expand);
257 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
258 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
259 setOperationAction(ISD::UREM, MVT::i32, Expand);
260 setOperationAction(ISD::UREM, MVT::i64, Expand);
261
262 // Custom lower Add/Sub/Mul with overflow.
263 setOperationAction(ISD::SADDO, MVT::i32, Custom);
264 setOperationAction(ISD::SADDO, MVT::i64, Custom);
265 setOperationAction(ISD::UADDO, MVT::i32, Custom);
266 setOperationAction(ISD::UADDO, MVT::i64, Custom);
267 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
268 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
269 setOperationAction(ISD::USUBO, MVT::i32, Custom);
270 setOperationAction(ISD::USUBO, MVT::i64, Custom);
271 setOperationAction(ISD::SMULO, MVT::i32, Custom);
272 setOperationAction(ISD::SMULO, MVT::i64, Custom);
273 setOperationAction(ISD::UMULO, MVT::i32, Custom);
274 setOperationAction(ISD::UMULO, MVT::i64, Custom);
275
276 setOperationAction(ISD::FSIN, MVT::f32, Expand);
277 setOperationAction(ISD::FSIN, MVT::f64, Expand);
278 setOperationAction(ISD::FCOS, MVT::f32, Expand);
279 setOperationAction(ISD::FCOS, MVT::f64, Expand);
280 setOperationAction(ISD::FPOW, MVT::f32, Expand);
281 setOperationAction(ISD::FPOW, MVT::f64, Expand);
282 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
283 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
284
Oliver Stannardf5469be2014-08-18 14:22:39 +0000285 // f16 is storage-only, so we promote operations to f32 if we know this is
286 // valid, and ignore them otherwise. The operations not mentioned here will
287 // fail to select, but this is not a major problem as no source language
288 // should be emitting native f16 operations yet.
289 setOperationAction(ISD::FADD, MVT::f16, Promote);
290 setOperationAction(ISD::FDIV, MVT::f16, Promote);
291 setOperationAction(ISD::FMUL, MVT::f16, Promote);
292 setOperationAction(ISD::FSUB, MVT::f16, Promote);
293
Oliver Stannard89d15422014-08-27 16:16:04 +0000294 // v4f16 is also a storage-only type, so promote it to v4f32 when that is
295 // known to be safe.
296 setOperationAction(ISD::FADD, MVT::v4f16, Promote);
297 setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
298 setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
299 setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
300 setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote);
301 setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote);
302 AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
303 AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
304 AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
305 AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
306 AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32);
307 AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32);
308
309 // Expand all other v4f16 operations.
310 // FIXME: We could generate better code by promoting some operations to
311 // a pair of v4f32s
312 setOperationAction(ISD::FABS, MVT::v4f16, Expand);
313 setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
314 setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
315 setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
316 setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
317 setOperationAction(ISD::FMA, MVT::v4f16, Expand);
318 setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
319 setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
320 setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
321 setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
322 setOperationAction(ISD::FREM, MVT::v4f16, Expand);
323 setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
324 setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
325 setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
326 setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
327 setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
328 setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
329 setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
330 setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
331 setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
332 setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
333 setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
334 setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
335 setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
336 setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
337 setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
338
339
340 // v8f16 is also a storage-only type, so expand it.
341 setOperationAction(ISD::FABS, MVT::v8f16, Expand);
342 setOperationAction(ISD::FADD, MVT::v8f16, Expand);
343 setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
344 setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
345 setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
346 setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
347 setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
348 setOperationAction(ISD::FMA, MVT::v8f16, Expand);
349 setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
350 setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
351 setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
352 setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
353 setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
354 setOperationAction(ISD::FREM, MVT::v8f16, Expand);
355 setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
356 setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
357 setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
358 setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
359 setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
360 setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
361 setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
362 setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
363 setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
364 setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
365 setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
366 setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
367 setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
368 setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
369 setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
370 setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
371 setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
372
Tim Northover3b0846e2014-05-24 12:50:23 +0000373 // AArch64 has implementations of a lot of rounding-like FP operations.
374 static MVT RoundingTypes[] = { MVT::f32, MVT::f64};
375 for (unsigned I = 0; I < array_lengthof(RoundingTypes); ++I) {
376 MVT Ty = RoundingTypes[I];
377 setOperationAction(ISD::FFLOOR, Ty, Legal);
378 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
379 setOperationAction(ISD::FCEIL, Ty, Legal);
380 setOperationAction(ISD::FRINT, Ty, Legal);
381 setOperationAction(ISD::FTRUNC, Ty, Legal);
382 setOperationAction(ISD::FROUND, Ty, Legal);
383 }
384
385 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
386
387 if (Subtarget->isTargetMachO()) {
388 // For iOS, we don't want to the normal expansion of a libcall to
389 // sincos. We want to issue a libcall to __sincos_stret to avoid memory
390 // traffic.
391 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
392 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
393 } else {
394 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
395 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
396 }
397
398 // AArch64 does not have floating-point extending loads, i1 sign-extending
399 // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
Tim Northoverb94f0852014-07-18 13:01:31 +0000400 setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000401 setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
402 setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
403 setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
404 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Expand);
405 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
406 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
407 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
408 setTruncStoreAction(MVT::f128, MVT::f80, Expand);
409 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
410 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
411 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
Tim Northoverf8bfe212014-07-18 13:07:05 +0000412
413 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
414 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
415
Tim Northover3b0846e2014-05-24 12:50:23 +0000416 // Indexed loads and stores are supported.
417 for (unsigned im = (unsigned)ISD::PRE_INC;
418 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
419 setIndexedLoadAction(im, MVT::i8, Legal);
420 setIndexedLoadAction(im, MVT::i16, Legal);
421 setIndexedLoadAction(im, MVT::i32, Legal);
422 setIndexedLoadAction(im, MVT::i64, Legal);
423 setIndexedLoadAction(im, MVT::f64, Legal);
424 setIndexedLoadAction(im, MVT::f32, Legal);
425 setIndexedStoreAction(im, MVT::i8, Legal);
426 setIndexedStoreAction(im, MVT::i16, Legal);
427 setIndexedStoreAction(im, MVT::i32, Legal);
428 setIndexedStoreAction(im, MVT::i64, Legal);
429 setIndexedStoreAction(im, MVT::f64, Legal);
430 setIndexedStoreAction(im, MVT::f32, Legal);
431 }
432
433 // Trap.
434 setOperationAction(ISD::TRAP, MVT::Other, Legal);
435
436 // We combine OR nodes for bitfield operations.
437 setTargetDAGCombine(ISD::OR);
438
439 // Vector add and sub nodes may conceal a high-half opportunity.
440 // Also, try to fold ADD into CSINC/CSINV..
441 setTargetDAGCombine(ISD::ADD);
442 setTargetDAGCombine(ISD::SUB);
443
444 setTargetDAGCombine(ISD::XOR);
445 setTargetDAGCombine(ISD::SINT_TO_FP);
446 setTargetDAGCombine(ISD::UINT_TO_FP);
447
448 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
449
450 setTargetDAGCombine(ISD::ANY_EXTEND);
451 setTargetDAGCombine(ISD::ZERO_EXTEND);
452 setTargetDAGCombine(ISD::SIGN_EXTEND);
453 setTargetDAGCombine(ISD::BITCAST);
454 setTargetDAGCombine(ISD::CONCAT_VECTORS);
455 setTargetDAGCombine(ISD::STORE);
456
457 setTargetDAGCombine(ISD::MUL);
458
459 setTargetDAGCombine(ISD::SELECT);
460 setTargetDAGCombine(ISD::VSELECT);
461
462 setTargetDAGCombine(ISD::INTRINSIC_VOID);
463 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
464 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
465
466 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
467 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
468 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
469
470 setStackPointerRegisterToSaveRestore(AArch64::SP);
471
472 setSchedulingPreference(Sched::Hybrid);
473
474 // Enable TBZ/TBNZ
475 MaskAndBranchFoldingIsLegal = true;
476
477 setMinFunctionAlignment(2);
478
479 RequireStrictAlign = (Align == StrictAlign);
480
481 setHasExtractBitsInsn(true);
482
483 if (Subtarget->hasNEON()) {
484 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
485 // silliness like this:
486 setOperationAction(ISD::FABS, MVT::v1f64, Expand);
487 setOperationAction(ISD::FADD, MVT::v1f64, Expand);
488 setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
489 setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
490 setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
491 setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
492 setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
493 setOperationAction(ISD::FMA, MVT::v1f64, Expand);
494 setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
495 setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
496 setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
497 setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
498 setOperationAction(ISD::FREM, MVT::v1f64, Expand);
499 setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
500 setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
501 setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
502 setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
503 setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
504 setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
505 setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
506 setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
507 setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
508 setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
509 setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
510 setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
511
512 setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
513 setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
514 setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
515 setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
516 setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
517
518 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
519
520 // AArch64 doesn't have a direct vector ->f32 conversion instructions for
521 // elements smaller than i32, so promote the input to i32 first.
522 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
523 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
524 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
525 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
526 // Similarly, there is no direct i32 -> f64 vector conversion instruction.
527 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
528 setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
529 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
530 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
531
532 // AArch64 doesn't have MUL.2d:
533 setOperationAction(ISD::MUL, MVT::v2i64, Expand);
534 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
535 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
536 // Likewise, narrowing and extending vector loads/stores aren't handled
537 // directly.
538 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
539 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
540
541 setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
542 Expand);
543
544 setOperationAction(ISD::MULHS, (MVT::SimpleValueType)VT, Expand);
545 setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
546 setOperationAction(ISD::MULHU, (MVT::SimpleValueType)VT, Expand);
547 setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
548
549 setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
550
551 for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
552 InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
553 setTruncStoreAction((MVT::SimpleValueType)VT,
554 (MVT::SimpleValueType)InnerVT, Expand);
555 setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
556 setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
557 setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
558 }
559
560 // AArch64 has implementations of a lot of rounding-like FP operations.
561 static MVT RoundingVecTypes[] = {MVT::v2f32, MVT::v4f32, MVT::v2f64 };
562 for (unsigned I = 0; I < array_lengthof(RoundingVecTypes); ++I) {
563 MVT Ty = RoundingVecTypes[I];
564 setOperationAction(ISD::FFLOOR, Ty, Legal);
565 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
566 setOperationAction(ISD::FCEIL, Ty, Legal);
567 setOperationAction(ISD::FRINT, Ty, Legal);
568 setOperationAction(ISD::FTRUNC, Ty, Legal);
569 setOperationAction(ISD::FROUND, Ty, Legal);
570 }
571 }
James Molloyf089ab72014-08-06 10:42:18 +0000572
573 // Prefer likely predicted branches to selects on out-of-order cores.
574 if (Subtarget->isCortexA57())
575 PredictableSelectIsExpensive = true;
Tim Northover3b0846e2014-05-24 12:50:23 +0000576}
577
578void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) {
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000579 if (VT == MVT::v2f32 || VT == MVT::v4f16) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000580 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
581 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32);
582
583 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
584 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32);
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000585 } else if (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000586 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
587 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64);
588
589 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
590 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64);
591 }
592
593 // Mark vector float intrinsics as expand.
594 if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
595 setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand);
596 setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand);
597 setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand);
598 setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand);
599 setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand);
600 setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand);
601 setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand);
602 setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand);
603 setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand);
604 }
605
606 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
607 setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
608 setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
609 setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
610 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom);
611 setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
612 setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
613 setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
614 setOperationAction(ISD::AND, VT.getSimpleVT(), Custom);
615 setOperationAction(ISD::OR, VT.getSimpleVT(), Custom);
616 setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
617 setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
618
619 setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
620 setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
621 setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand);
622 setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
623
624 // CNT supports only B element sizes.
625 if (VT != MVT::v8i8 && VT != MVT::v16i8)
626 setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand);
627
628 setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
629 setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
630 setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
631 setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
632 setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
633
634 setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
635 setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
636
637 if (Subtarget->isLittleEndian()) {
638 for (unsigned im = (unsigned)ISD::PRE_INC;
639 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
640 setIndexedLoadAction(im, VT.getSimpleVT(), Legal);
641 setIndexedStoreAction(im, VT.getSimpleVT(), Legal);
642 }
643 }
644}
645
646void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
647 addRegisterClass(VT, &AArch64::FPR64RegClass);
648 addTypeForNEON(VT, MVT::v2i32);
649}
650
651void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
652 addRegisterClass(VT, &AArch64::FPR128RegClass);
653 addTypeForNEON(VT, MVT::v4i32);
654}
655
656EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
657 if (!VT.isVector())
658 return MVT::i32;
659 return VT.changeVectorElementTypeToInteger();
660}
661
662/// computeKnownBitsForTargetNode - Determine which of the bits specified in
663/// Mask are known to be either zero or one and return them in the
664/// KnownZero/KnownOne bitsets.
665void AArch64TargetLowering::computeKnownBitsForTargetNode(
666 const SDValue Op, APInt &KnownZero, APInt &KnownOne,
667 const SelectionDAG &DAG, unsigned Depth) const {
668 switch (Op.getOpcode()) {
669 default:
670 break;
671 case AArch64ISD::CSEL: {
672 APInt KnownZero2, KnownOne2;
673 DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
674 DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
675 KnownZero &= KnownZero2;
676 KnownOne &= KnownOne2;
677 break;
678 }
679 case ISD::INTRINSIC_W_CHAIN: {
680 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
681 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
682 switch (IntID) {
683 default: return;
684 case Intrinsic::aarch64_ldaxr:
685 case Intrinsic::aarch64_ldxr: {
686 unsigned BitWidth = KnownOne.getBitWidth();
687 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
688 unsigned MemBits = VT.getScalarType().getSizeInBits();
689 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
690 return;
691 }
692 }
693 break;
694 }
695 case ISD::INTRINSIC_WO_CHAIN:
696 case ISD::INTRINSIC_VOID: {
697 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
698 switch (IntNo) {
699 default:
700 break;
701 case Intrinsic::aarch64_neon_umaxv:
702 case Intrinsic::aarch64_neon_uminv: {
703 // Figure out the datatype of the vector operand. The UMINV instruction
704 // will zero extend the result, so we can mark as known zero all the
705 // bits larger than the element datatype. 32-bit or larget doesn't need
706 // this as those are legal types and will be handled by isel directly.
707 MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
708 unsigned BitWidth = KnownZero.getBitWidth();
709 if (VT == MVT::v8i8 || VT == MVT::v16i8) {
710 assert(BitWidth >= 8 && "Unexpected width!");
711 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
712 KnownZero |= Mask;
713 } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
714 assert(BitWidth >= 16 && "Unexpected width!");
715 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
716 KnownZero |= Mask;
717 }
718 break;
719 } break;
720 }
721 }
722 }
723}
724
725MVT AArch64TargetLowering::getScalarShiftAmountTy(EVT LHSTy) const {
726 return MVT::i64;
727}
728
729unsigned AArch64TargetLowering::getMaximalGlobalOffset() const {
730 // FIXME: On AArch64, this depends on the type.
Tim Northover21feb2e2014-07-01 19:47:09 +0000731 // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes().
Tim Northover3b0846e2014-05-24 12:50:23 +0000732 // and the offset has to be a multiple of the related size in bytes.
733 return 4095;
734}
735
736FastISel *
737AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
738 const TargetLibraryInfo *libInfo) const {
739 return AArch64::createFastISel(funcInfo, libInfo);
740}
741
742const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
743 switch (Opcode) {
744 default:
745 return nullptr;
746 case AArch64ISD::CALL: return "AArch64ISD::CALL";
747 case AArch64ISD::ADRP: return "AArch64ISD::ADRP";
748 case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow";
749 case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot";
750 case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG";
751 case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND";
752 case AArch64ISD::CSEL: return "AArch64ISD::CSEL";
753 case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL";
754 case AArch64ISD::CSINV: return "AArch64ISD::CSINV";
755 case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG";
756 case AArch64ISD::CSINC: return "AArch64ISD::CSINC";
757 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
758 case AArch64ISD::TLSDESC_CALL: return "AArch64ISD::TLSDESC_CALL";
759 case AArch64ISD::ADC: return "AArch64ISD::ADC";
760 case AArch64ISD::SBC: return "AArch64ISD::SBC";
761 case AArch64ISD::ADDS: return "AArch64ISD::ADDS";
762 case AArch64ISD::SUBS: return "AArch64ISD::SUBS";
763 case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
764 case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
765 case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
766 case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
767 case AArch64ISD::FMIN: return "AArch64ISD::FMIN";
768 case AArch64ISD::FMAX: return "AArch64ISD::FMAX";
769 case AArch64ISD::DUP: return "AArch64ISD::DUP";
770 case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8";
771 case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16";
772 case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32";
773 case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64";
774 case AArch64ISD::MOVI: return "AArch64ISD::MOVI";
775 case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift";
776 case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit";
777 case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl";
778 case AArch64ISD::FMOV: return "AArch64ISD::FMOV";
779 case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift";
780 case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl";
781 case AArch64ISD::BICi: return "AArch64ISD::BICi";
782 case AArch64ISD::ORRi: return "AArch64ISD::ORRi";
783 case AArch64ISD::BSL: return "AArch64ISD::BSL";
784 case AArch64ISD::NEG: return "AArch64ISD::NEG";
785 case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
786 case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1";
787 case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2";
788 case AArch64ISD::UZP1: return "AArch64ISD::UZP1";
789 case AArch64ISD::UZP2: return "AArch64ISD::UZP2";
790 case AArch64ISD::TRN1: return "AArch64ISD::TRN1";
791 case AArch64ISD::TRN2: return "AArch64ISD::TRN2";
792 case AArch64ISD::REV16: return "AArch64ISD::REV16";
793 case AArch64ISD::REV32: return "AArch64ISD::REV32";
794 case AArch64ISD::REV64: return "AArch64ISD::REV64";
795 case AArch64ISD::EXT: return "AArch64ISD::EXT";
796 case AArch64ISD::VSHL: return "AArch64ISD::VSHL";
797 case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR";
798 case AArch64ISD::VASHR: return "AArch64ISD::VASHR";
799 case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ";
800 case AArch64ISD::CMGE: return "AArch64ISD::CMGE";
801 case AArch64ISD::CMGT: return "AArch64ISD::CMGT";
802 case AArch64ISD::CMHI: return "AArch64ISD::CMHI";
803 case AArch64ISD::CMHS: return "AArch64ISD::CMHS";
804 case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ";
805 case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE";
806 case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT";
807 case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz";
808 case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz";
809 case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz";
810 case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz";
811 case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz";
812 case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz";
813 case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz";
814 case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz";
815 case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz";
816 case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz";
817 case AArch64ISD::NOT: return "AArch64ISD::NOT";
818 case AArch64ISD::BIT: return "AArch64ISD::BIT";
819 case AArch64ISD::CBZ: return "AArch64ISD::CBZ";
820 case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ";
821 case AArch64ISD::TBZ: return "AArch64ISD::TBZ";
822 case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ";
823 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
824 case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
825 case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
Asiri Rathnayake530b3ed2014-10-01 09:59:45 +0000826 case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST";
Tim Northover3b0846e2014-05-24 12:50:23 +0000827 case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
828 case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
829 case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
830 case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I";
831 case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I";
832 case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
833 case AArch64ISD::LD2post: return "AArch64ISD::LD2post";
834 case AArch64ISD::LD3post: return "AArch64ISD::LD3post";
835 case AArch64ISD::LD4post: return "AArch64ISD::LD4post";
836 case AArch64ISD::ST2post: return "AArch64ISD::ST2post";
837 case AArch64ISD::ST3post: return "AArch64ISD::ST3post";
838 case AArch64ISD::ST4post: return "AArch64ISD::ST4post";
839 case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post";
840 case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post";
841 case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post";
842 case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post";
843 case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post";
844 case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post";
845 case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost";
846 case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost";
847 case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost";
848 case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost";
849 case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost";
850 case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost";
851 case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost";
852 case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost";
853 case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
854 case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
855 case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
856 }
857}
858
859MachineBasicBlock *
860AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
861 MachineBasicBlock *MBB) const {
862 // We materialise the F128CSEL pseudo-instruction as some control flow and a
863 // phi node:
864
865 // OrigBB:
866 // [... previous instrs leading to comparison ...]
867 // b.ne TrueBB
868 // b EndBB
869 // TrueBB:
870 // ; Fallthrough
871 // EndBB:
872 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
873
Eric Christopherd9134482014-08-04 21:25:23 +0000874 const TargetInstrInfo *TII =
875 getTargetMachine().getSubtargetImpl()->getInstrInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +0000876 MachineFunction *MF = MBB->getParent();
877 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
878 DebugLoc DL = MI->getDebugLoc();
879 MachineFunction::iterator It = MBB;
880 ++It;
881
882 unsigned DestReg = MI->getOperand(0).getReg();
883 unsigned IfTrueReg = MI->getOperand(1).getReg();
884 unsigned IfFalseReg = MI->getOperand(2).getReg();
885 unsigned CondCode = MI->getOperand(3).getImm();
886 bool NZCVKilled = MI->getOperand(4).isKill();
887
888 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
889 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
890 MF->insert(It, TrueBB);
891 MF->insert(It, EndBB);
892
893 // Transfer rest of current basic-block to EndBB
894 EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
895 MBB->end());
896 EndBB->transferSuccessorsAndUpdatePHIs(MBB);
897
898 BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
899 BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
900 MBB->addSuccessor(TrueBB);
901 MBB->addSuccessor(EndBB);
902
903 // TrueBB falls through to the end.
904 TrueBB->addSuccessor(EndBB);
905
906 if (!NZCVKilled) {
907 TrueBB->addLiveIn(AArch64::NZCV);
908 EndBB->addLiveIn(AArch64::NZCV);
909 }
910
911 BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
912 .addReg(IfTrueReg)
913 .addMBB(TrueBB)
914 .addReg(IfFalseReg)
915 .addMBB(MBB);
916
917 MI->eraseFromParent();
918 return EndBB;
919}
920
921MachineBasicBlock *
922AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
923 MachineBasicBlock *BB) const {
924 switch (MI->getOpcode()) {
925 default:
926#ifndef NDEBUG
927 MI->dump();
928#endif
Craig Topper35b2f752014-06-19 06:10:58 +0000929 llvm_unreachable("Unexpected instruction for custom inserter!");
Tim Northover3b0846e2014-05-24 12:50:23 +0000930
931 case AArch64::F128CSEL:
932 return EmitF128CSEL(MI, BB);
933
934 case TargetOpcode::STACKMAP:
935 case TargetOpcode::PATCHPOINT:
936 return emitPatchPoint(MI, BB);
937 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000938}
939
940//===----------------------------------------------------------------------===//
941// AArch64 Lowering private implementation.
942//===----------------------------------------------------------------------===//
943
944//===----------------------------------------------------------------------===//
945// Lowering Code
946//===----------------------------------------------------------------------===//
947
948/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
949/// CC
950static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
951 switch (CC) {
952 default:
953 llvm_unreachable("Unknown condition code!");
954 case ISD::SETNE:
955 return AArch64CC::NE;
956 case ISD::SETEQ:
957 return AArch64CC::EQ;
958 case ISD::SETGT:
959 return AArch64CC::GT;
960 case ISD::SETGE:
961 return AArch64CC::GE;
962 case ISD::SETLT:
963 return AArch64CC::LT;
964 case ISD::SETLE:
965 return AArch64CC::LE;
966 case ISD::SETUGT:
967 return AArch64CC::HI;
968 case ISD::SETUGE:
969 return AArch64CC::HS;
970 case ISD::SETULT:
971 return AArch64CC::LO;
972 case ISD::SETULE:
973 return AArch64CC::LS;
974 }
975}
976
977/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
978static void changeFPCCToAArch64CC(ISD::CondCode CC,
979 AArch64CC::CondCode &CondCode,
980 AArch64CC::CondCode &CondCode2) {
981 CondCode2 = AArch64CC::AL;
982 switch (CC) {
983 default:
984 llvm_unreachable("Unknown FP condition!");
985 case ISD::SETEQ:
986 case ISD::SETOEQ:
987 CondCode = AArch64CC::EQ;
988 break;
989 case ISD::SETGT:
990 case ISD::SETOGT:
991 CondCode = AArch64CC::GT;
992 break;
993 case ISD::SETGE:
994 case ISD::SETOGE:
995 CondCode = AArch64CC::GE;
996 break;
997 case ISD::SETOLT:
998 CondCode = AArch64CC::MI;
999 break;
1000 case ISD::SETOLE:
1001 CondCode = AArch64CC::LS;
1002 break;
1003 case ISD::SETONE:
1004 CondCode = AArch64CC::MI;
1005 CondCode2 = AArch64CC::GT;
1006 break;
1007 case ISD::SETO:
1008 CondCode = AArch64CC::VC;
1009 break;
1010 case ISD::SETUO:
1011 CondCode = AArch64CC::VS;
1012 break;
1013 case ISD::SETUEQ:
1014 CondCode = AArch64CC::EQ;
1015 CondCode2 = AArch64CC::VS;
1016 break;
1017 case ISD::SETUGT:
1018 CondCode = AArch64CC::HI;
1019 break;
1020 case ISD::SETUGE:
1021 CondCode = AArch64CC::PL;
1022 break;
1023 case ISD::SETLT:
1024 case ISD::SETULT:
1025 CondCode = AArch64CC::LT;
1026 break;
1027 case ISD::SETLE:
1028 case ISD::SETULE:
1029 CondCode = AArch64CC::LE;
1030 break;
1031 case ISD::SETNE:
1032 case ISD::SETUNE:
1033 CondCode = AArch64CC::NE;
1034 break;
1035 }
1036}
1037
1038/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1039/// CC usable with the vector instructions. Fewer operations are available
1040/// without a real NZCV register, so we have to use less efficient combinations
1041/// to get the same effect.
1042static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1043 AArch64CC::CondCode &CondCode,
1044 AArch64CC::CondCode &CondCode2,
1045 bool &Invert) {
1046 Invert = false;
1047 switch (CC) {
1048 default:
1049 // Mostly the scalar mappings work fine.
1050 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1051 break;
1052 case ISD::SETUO:
1053 Invert = true; // Fallthrough
1054 case ISD::SETO:
1055 CondCode = AArch64CC::MI;
1056 CondCode2 = AArch64CC::GE;
1057 break;
1058 case ISD::SETUEQ:
1059 case ISD::SETULT:
1060 case ISD::SETULE:
1061 case ISD::SETUGT:
1062 case ISD::SETUGE:
1063 // All of the compare-mask comparisons are ordered, but we can switch
1064 // between the two by a double inversion. E.g. ULE == !OGT.
1065 Invert = true;
1066 changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
1067 break;
1068 }
1069}
1070
1071static bool isLegalArithImmed(uint64_t C) {
1072 // Matches AArch64DAGToDAGISel::SelectArithImmed().
1073 return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1074}
1075
1076static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1077 SDLoc dl, SelectionDAG &DAG) {
1078 EVT VT = LHS.getValueType();
1079
1080 if (VT.isFloatingPoint())
1081 return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
1082
1083 // The CMP instruction is just an alias for SUBS, and representing it as
1084 // SUBS means that it's possible to get CSE with subtract operations.
1085 // A later phase can perform the optimization of setting the destination
1086 // register to WZR/XZR if it ends up being unused.
1087 unsigned Opcode = AArch64ISD::SUBS;
1088
1089 if (RHS.getOpcode() == ISD::SUB && isa<ConstantSDNode>(RHS.getOperand(0)) &&
1090 cast<ConstantSDNode>(RHS.getOperand(0))->getZExtValue() == 0 &&
1091 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1092 // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
1093 // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
1094 // can be set differently by this operation. It comes down to whether
1095 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1096 // everything is fine. If not then the optimization is wrong. Thus general
1097 // comparisons are only valid if op2 != 0.
1098
1099 // So, finally, the only LLVM-native comparisons that don't mention C and V
1100 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1101 // the absence of information about op2.
1102 Opcode = AArch64ISD::ADDS;
1103 RHS = RHS.getOperand(1);
1104 } else if (LHS.getOpcode() == ISD::AND && isa<ConstantSDNode>(RHS) &&
1105 cast<ConstantSDNode>(RHS)->getZExtValue() == 0 &&
1106 !isUnsignedIntSetCC(CC)) {
1107 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1108 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1109 // of the signed comparisons.
1110 Opcode = AArch64ISD::ANDS;
1111 RHS = LHS.getOperand(1);
1112 LHS = LHS.getOperand(0);
1113 }
1114
1115 return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS)
1116 .getValue(1);
1117}
1118
1119static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1120 SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) {
David Xuee978202014-08-28 04:59:53 +00001121 SDValue Cmp;
1122 AArch64CC::CondCode AArch64CC;
Tim Northover3b0846e2014-05-24 12:50:23 +00001123 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1124 EVT VT = RHS.getValueType();
1125 uint64_t C = RHSC->getZExtValue();
1126 if (!isLegalArithImmed(C)) {
1127 // Constant does not fit, try adjusting it by one?
1128 switch (CC) {
1129 default:
1130 break;
1131 case ISD::SETLT:
1132 case ISD::SETGE:
1133 if ((VT == MVT::i32 && C != 0x80000000 &&
1134 isLegalArithImmed((uint32_t)(C - 1))) ||
1135 (VT == MVT::i64 && C != 0x80000000ULL &&
1136 isLegalArithImmed(C - 1ULL))) {
1137 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1138 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1139 RHS = DAG.getConstant(C, VT);
1140 }
1141 break;
1142 case ISD::SETULT:
1143 case ISD::SETUGE:
1144 if ((VT == MVT::i32 && C != 0 &&
1145 isLegalArithImmed((uint32_t)(C - 1))) ||
1146 (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1147 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1148 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1149 RHS = DAG.getConstant(C, VT);
1150 }
1151 break;
1152 case ISD::SETLE:
1153 case ISD::SETGT:
1154 if ((VT == MVT::i32 && C != 0x7fffffff &&
1155 isLegalArithImmed((uint32_t)(C + 1))) ||
1156 (VT == MVT::i64 && C != 0x7ffffffffffffffULL &&
1157 isLegalArithImmed(C + 1ULL))) {
1158 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1159 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1160 RHS = DAG.getConstant(C, VT);
1161 }
1162 break;
1163 case ISD::SETULE:
1164 case ISD::SETUGT:
1165 if ((VT == MVT::i32 && C != 0xffffffff &&
1166 isLegalArithImmed((uint32_t)(C + 1))) ||
1167 (VT == MVT::i64 && C != 0xfffffffffffffffULL &&
1168 isLegalArithImmed(C + 1ULL))) {
1169 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1170 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1171 RHS = DAG.getConstant(C, VT);
1172 }
1173 break;
1174 }
1175 }
1176 }
David Xuee978202014-08-28 04:59:53 +00001177 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
1178 // For the i8 operand, the largest immediate is 255, so this can be easily
1179 // encoded in the compare instruction. For the i16 operand, however, the
1180 // largest immediate cannot be encoded in the compare.
1181 // Therefore, use a sign extending load and cmn to avoid materializing the -1
1182 // constant. For example,
1183 // movz w1, #65535
1184 // ldrh w0, [x0, #0]
1185 // cmp w0, w1
1186 // >
1187 // ldrsh w0, [x0, #0]
1188 // cmn w0, #1
1189 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
1190 // if and only if (sext LHS) == (sext RHS). The checks are in place to ensure
1191 // both the LHS and RHS are truely zero extended and to make sure the
1192 // transformation is profitable.
1193 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
1194 if ((cast<ConstantSDNode>(RHS)->getZExtValue() >> 16 == 0) &&
1195 isa<LoadSDNode>(LHS)) {
1196 if (cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
1197 cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
1198 LHS.getNode()->hasNUsesOfValue(1, 0)) {
1199 int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
1200 if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
1201 SDValue SExt =
1202 DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
1203 DAG.getValueType(MVT::i16));
1204 Cmp = emitComparison(SExt,
1205 DAG.getConstant(ValueofRHS, RHS.getValueType()),
1206 CC, dl, DAG);
1207 AArch64CC = changeIntCCToAArch64CC(CC);
1208 AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
1209 return Cmp;
1210 }
1211 }
1212 }
1213 }
1214 Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
1215 AArch64CC = changeIntCCToAArch64CC(CC);
Tim Northover3b0846e2014-05-24 12:50:23 +00001216 AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
1217 return Cmp;
1218}
1219
1220static std::pair<SDValue, SDValue>
1221getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
1222 assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
1223 "Unsupported value type");
1224 SDValue Value, Overflow;
1225 SDLoc DL(Op);
1226 SDValue LHS = Op.getOperand(0);
1227 SDValue RHS = Op.getOperand(1);
1228 unsigned Opc = 0;
1229 switch (Op.getOpcode()) {
1230 default:
1231 llvm_unreachable("Unknown overflow instruction!");
1232 case ISD::SADDO:
1233 Opc = AArch64ISD::ADDS;
1234 CC = AArch64CC::VS;
1235 break;
1236 case ISD::UADDO:
1237 Opc = AArch64ISD::ADDS;
1238 CC = AArch64CC::HS;
1239 break;
1240 case ISD::SSUBO:
1241 Opc = AArch64ISD::SUBS;
1242 CC = AArch64CC::VS;
1243 break;
1244 case ISD::USUBO:
1245 Opc = AArch64ISD::SUBS;
1246 CC = AArch64CC::LO;
1247 break;
1248 // Multiply needs a little bit extra work.
1249 case ISD::SMULO:
1250 case ISD::UMULO: {
1251 CC = AArch64CC::NE;
1252 bool IsSigned = (Op.getOpcode() == ISD::SMULO) ? true : false;
1253 if (Op.getValueType() == MVT::i32) {
1254 unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1255 // For a 32 bit multiply with overflow check we want the instruction
1256 // selector to generate a widening multiply (SMADDL/UMADDL). For that we
1257 // need to generate the following pattern:
1258 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
1259 LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
1260 RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
1261 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1262 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
1263 DAG.getConstant(0, MVT::i64));
1264 // On AArch64 the upper 32 bits are always zero extended for a 32 bit
1265 // operation. We need to clear out the upper 32 bits, because we used a
1266 // widening multiply that wrote all 64 bits. In the end this should be a
1267 // noop.
1268 Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
1269 if (IsSigned) {
1270 // The signed overflow check requires more than just a simple check for
1271 // any bit set in the upper 32 bits of the result. These bits could be
1272 // just the sign bits of a negative number. To perform the overflow
1273 // check we have to arithmetic shift right the 32nd bit of the result by
1274 // 31 bits. Then we compare the result to the upper 32 bits.
1275 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
1276 DAG.getConstant(32, MVT::i64));
1277 UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
1278 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
1279 DAG.getConstant(31, MVT::i64));
1280 // It is important that LowerBits is last, otherwise the arithmetic
1281 // shift will not be folded into the compare (SUBS).
1282 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
1283 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1284 .getValue(1);
1285 } else {
1286 // The overflow check for unsigned multiply is easy. We only need to
1287 // check if any of the upper 32 bits are set. This can be done with a
1288 // CMP (shifted register). For that we need to generate the following
1289 // pattern:
1290 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
1291 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
1292 DAG.getConstant(32, MVT::i64));
1293 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1294 Overflow =
1295 DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
1296 UpperBits).getValue(1);
1297 }
1298 break;
1299 }
1300 assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
1301 // For the 64 bit multiply
1302 Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1303 if (IsSigned) {
1304 SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
1305 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
1306 DAG.getConstant(63, MVT::i64));
1307 // It is important that LowerBits is last, otherwise the arithmetic
1308 // shift will not be folded into the compare (SUBS).
1309 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1310 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1311 .getValue(1);
1312 } else {
1313 SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
1314 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1315 Overflow =
1316 DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
1317 UpperBits).getValue(1);
1318 }
1319 break;
1320 }
1321 } // switch (...)
1322
1323 if (Opc) {
1324 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
1325
1326 // Emit the AArch64 operation with overflow check.
1327 Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
1328 Overflow = Value.getValue(1);
1329 }
1330 return std::make_pair(Value, Overflow);
1331}
1332
1333SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
1334 RTLIB::Libcall Call) const {
1335 SmallVector<SDValue, 2> Ops;
1336 for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i)
1337 Ops.push_back(Op.getOperand(i));
1338
1339 return makeLibCall(DAG, Call, MVT::f128, &Ops[0], Ops.size(), false,
1340 SDLoc(Op)).first;
1341}
1342
1343static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
1344 SDValue Sel = Op.getOperand(0);
1345 SDValue Other = Op.getOperand(1);
1346
1347 // If neither operand is a SELECT_CC, give up.
1348 if (Sel.getOpcode() != ISD::SELECT_CC)
1349 std::swap(Sel, Other);
1350 if (Sel.getOpcode() != ISD::SELECT_CC)
1351 return Op;
1352
1353 // The folding we want to perform is:
1354 // (xor x, (select_cc a, b, cc, 0, -1) )
1355 // -->
1356 // (csel x, (xor x, -1), cc ...)
1357 //
1358 // The latter will get matched to a CSINV instruction.
1359
1360 ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
1361 SDValue LHS = Sel.getOperand(0);
1362 SDValue RHS = Sel.getOperand(1);
1363 SDValue TVal = Sel.getOperand(2);
1364 SDValue FVal = Sel.getOperand(3);
1365 SDLoc dl(Sel);
1366
1367 // FIXME: This could be generalized to non-integer comparisons.
1368 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
1369 return Op;
1370
1371 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
1372 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
1373
1374 // The the values aren't constants, this isn't the pattern we're looking for.
1375 if (!CFVal || !CTVal)
1376 return Op;
1377
1378 // We can commute the SELECT_CC by inverting the condition. This
1379 // might be needed to make this fit into a CSINV pattern.
1380 if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
1381 std::swap(TVal, FVal);
1382 std::swap(CTVal, CFVal);
1383 CC = ISD::getSetCCInverse(CC, true);
1384 }
1385
1386 // If the constants line up, perform the transform!
1387 if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
1388 SDValue CCVal;
1389 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
1390
1391 FVal = Other;
1392 TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
1393 DAG.getConstant(-1ULL, Other.getValueType()));
1394
1395 return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
1396 CCVal, Cmp);
1397 }
1398
1399 return Op;
1400}
1401
1402static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
1403 EVT VT = Op.getValueType();
1404
1405 // Let legalize expand this if it isn't a legal type yet.
1406 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
1407 return SDValue();
1408
1409 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
1410
1411 unsigned Opc;
1412 bool ExtraOp = false;
1413 switch (Op.getOpcode()) {
1414 default:
Craig Topper2a30d782014-06-18 05:05:13 +00001415 llvm_unreachable("Invalid code");
Tim Northover3b0846e2014-05-24 12:50:23 +00001416 case ISD::ADDC:
1417 Opc = AArch64ISD::ADDS;
1418 break;
1419 case ISD::SUBC:
1420 Opc = AArch64ISD::SUBS;
1421 break;
1422 case ISD::ADDE:
1423 Opc = AArch64ISD::ADCS;
1424 ExtraOp = true;
1425 break;
1426 case ISD::SUBE:
1427 Opc = AArch64ISD::SBCS;
1428 ExtraOp = true;
1429 break;
1430 }
1431
1432 if (!ExtraOp)
1433 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
1434 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
1435 Op.getOperand(2));
1436}
1437
1438static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
1439 // Let legalize expand this if it isn't a legal type yet.
1440 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
1441 return SDValue();
1442
1443 AArch64CC::CondCode CC;
1444 // The actual operation that sets the overflow or carry flag.
1445 SDValue Value, Overflow;
1446 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
1447
1448 // We use 0 and 1 as false and true values.
1449 SDValue TVal = DAG.getConstant(1, MVT::i32);
1450 SDValue FVal = DAG.getConstant(0, MVT::i32);
1451
1452 // We use an inverted condition, because the conditional select is inverted
1453 // too. This will allow it to be selected to a single instruction:
1454 // CSINC Wd, WZR, WZR, invert(cond).
1455 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), MVT::i32);
1456 Overflow = DAG.getNode(AArch64ISD::CSEL, SDLoc(Op), MVT::i32, FVal, TVal,
1457 CCVal, Overflow);
1458
1459 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
1460 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow);
1461}
1462
1463// Prefetch operands are:
1464// 1: Address to prefetch
1465// 2: bool isWrite
1466// 3: int locality (0 = no locality ... 3 = extreme locality)
1467// 4: bool isDataCache
1468static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
1469 SDLoc DL(Op);
1470 unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1471 unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
Yi Konge56de692014-08-05 12:46:47 +00001472 unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00001473
1474 bool IsStream = !Locality;
1475 // When the locality number is set
1476 if (Locality) {
1477 // The front-end should have filtered out the out-of-range values
1478 assert(Locality <= 3 && "Prefetch locality out-of-range");
1479 // The locality degree is the opposite of the cache speed.
1480 // Put the number the other way around.
1481 // The encoding starts at 0 for level 1
1482 Locality = 3 - Locality;
1483 }
1484
1485 // built the mask value encoding the expected behavior.
1486 unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
Yi Konge56de692014-08-05 12:46:47 +00001487 (!IsData << 3) | // IsDataCache bit
Tim Northover3b0846e2014-05-24 12:50:23 +00001488 (Locality << 1) | // Cache level bits
1489 (unsigned)IsStream; // Stream bit
1490 return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
1491 DAG.getConstant(PrfOp, MVT::i32), Op.getOperand(1));
1492}
1493
1494SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
1495 SelectionDAG &DAG) const {
1496 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1497
1498 RTLIB::Libcall LC;
1499 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1500
1501 return LowerF128Call(Op, DAG, LC);
1502}
1503
1504SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
1505 SelectionDAG &DAG) const {
1506 if (Op.getOperand(0).getValueType() != MVT::f128) {
1507 // It's legal except when f128 is involved
1508 return Op;
1509 }
1510
1511 RTLIB::Libcall LC;
1512 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1513
1514 // FP_ROUND node has a second operand indicating whether it is known to be
1515 // precise. That doesn't take part in the LibCall so we can't directly use
1516 // LowerF128Call.
1517 SDValue SrcVal = Op.getOperand(0);
1518 return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
1519 /*isSigned*/ false, SDLoc(Op)).first;
1520}
1521
1522static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1523 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1524 // Any additional optimization in this function should be recorded
1525 // in the cost tables.
1526 EVT InVT = Op.getOperand(0).getValueType();
1527 EVT VT = Op.getValueType();
1528
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001529 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001530 SDLoc dl(Op);
1531 SDValue Cv =
1532 DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
1533 Op.getOperand(0));
1534 return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001535 }
1536
1537 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001538 SDLoc dl(Op);
Oliver Stannard89d15422014-08-27 16:16:04 +00001539 MVT ExtVT =
1540 MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
1541 VT.getVectorNumElements());
1542 SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
Tim Northover3b0846e2014-05-24 12:50:23 +00001543 return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
1544 }
1545
1546 // Type changing conversions are illegal.
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001547 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00001548}
1549
1550SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
1551 SelectionDAG &DAG) const {
1552 if (Op.getOperand(0).getValueType().isVector())
1553 return LowerVectorFP_TO_INT(Op, DAG);
1554
1555 if (Op.getOperand(0).getValueType() != MVT::f128) {
1556 // It's legal except when f128 is involved
1557 return Op;
1558 }
1559
1560 RTLIB::Libcall LC;
1561 if (Op.getOpcode() == ISD::FP_TO_SINT)
1562 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1563 else
1564 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1565
1566 SmallVector<SDValue, 2> Ops;
1567 for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i)
1568 Ops.push_back(Op.getOperand(i));
1569
1570 return makeLibCall(DAG, LC, Op.getValueType(), &Ops[0], Ops.size(), false,
1571 SDLoc(Op)).first;
1572}
1573
1574static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1575 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1576 // Any additional optimization in this function should be recorded
1577 // in the cost tables.
1578 EVT VT = Op.getValueType();
1579 SDLoc dl(Op);
1580 SDValue In = Op.getOperand(0);
1581 EVT InVT = In.getValueType();
1582
Tim Northoveref0d7602014-06-15 09:27:06 +00001583 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1584 MVT CastVT =
1585 MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
1586 InVT.getVectorNumElements());
1587 In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
1588 return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0));
Tim Northover3b0846e2014-05-24 12:50:23 +00001589 }
1590
Tim Northoveref0d7602014-06-15 09:27:06 +00001591 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
1592 unsigned CastOpc =
1593 Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1594 EVT CastVT = VT.changeVectorElementTypeToInteger();
1595 In = DAG.getNode(CastOpc, dl, CastVT, In);
1596 return DAG.getNode(Op.getOpcode(), dl, VT, In);
Tim Northover3b0846e2014-05-24 12:50:23 +00001597 }
1598
Tim Northoveref0d7602014-06-15 09:27:06 +00001599 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00001600}
1601
1602SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
1603 SelectionDAG &DAG) const {
1604 if (Op.getValueType().isVector())
1605 return LowerVectorINT_TO_FP(Op, DAG);
1606
1607 // i128 conversions are libcalls.
1608 if (Op.getOperand(0).getValueType() == MVT::i128)
1609 return SDValue();
1610
1611 // Other conversions are legal, unless it's to the completely software-based
1612 // fp128.
1613 if (Op.getValueType() != MVT::f128)
1614 return Op;
1615
1616 RTLIB::Libcall LC;
1617 if (Op.getOpcode() == ISD::SINT_TO_FP)
1618 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1619 else
1620 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1621
1622 return LowerF128Call(Op, DAG, LC);
1623}
1624
1625SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
1626 SelectionDAG &DAG) const {
1627 // For iOS, we want to call an alternative entry point: __sincos_stret,
1628 // which returns the values in two S / D registers.
1629 SDLoc dl(Op);
1630 SDValue Arg = Op.getOperand(0);
1631 EVT ArgVT = Arg.getValueType();
1632 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1633
1634 ArgListTy Args;
1635 ArgListEntry Entry;
1636
1637 Entry.Node = Arg;
1638 Entry.Ty = ArgTy;
1639 Entry.isSExt = false;
1640 Entry.isZExt = false;
1641 Args.push_back(Entry);
1642
1643 const char *LibcallName =
1644 (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
1645 SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
1646
1647 StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL);
1648 TargetLowering::CallLoweringInfo CLI(DAG);
1649 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
Juergen Ributzka3bd03c72014-07-01 22:01:54 +00001650 .setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args), 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00001651
1652 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1653 return CallResult.first;
1654}
1655
Tim Northoverf8bfe212014-07-18 13:07:05 +00001656static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
1657 if (Op.getValueType() != MVT::f16)
1658 return SDValue();
1659
1660 assert(Op.getOperand(0).getValueType() == MVT::i16);
1661 SDLoc DL(Op);
1662
1663 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
1664 Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
1665 return SDValue(
1666 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
1667 DAG.getTargetConstant(AArch64::hsub, MVT::i32)),
1668 0);
1669}
1670
1671
Tim Northover3b0846e2014-05-24 12:50:23 +00001672SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
1673 SelectionDAG &DAG) const {
1674 switch (Op.getOpcode()) {
1675 default:
1676 llvm_unreachable("unimplemented operand");
1677 return SDValue();
Tim Northoverf8bfe212014-07-18 13:07:05 +00001678 case ISD::BITCAST:
1679 return LowerBITCAST(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00001680 case ISD::GlobalAddress:
1681 return LowerGlobalAddress(Op, DAG);
1682 case ISD::GlobalTLSAddress:
1683 return LowerGlobalTLSAddress(Op, DAG);
1684 case ISD::SETCC:
1685 return LowerSETCC(Op, DAG);
1686 case ISD::BR_CC:
1687 return LowerBR_CC(Op, DAG);
1688 case ISD::SELECT:
1689 return LowerSELECT(Op, DAG);
1690 case ISD::SELECT_CC:
1691 return LowerSELECT_CC(Op, DAG);
1692 case ISD::JumpTable:
1693 return LowerJumpTable(Op, DAG);
1694 case ISD::ConstantPool:
1695 return LowerConstantPool(Op, DAG);
1696 case ISD::BlockAddress:
1697 return LowerBlockAddress(Op, DAG);
1698 case ISD::VASTART:
1699 return LowerVASTART(Op, DAG);
1700 case ISD::VACOPY:
1701 return LowerVACOPY(Op, DAG);
1702 case ISD::VAARG:
1703 return LowerVAARG(Op, DAG);
1704 case ISD::ADDC:
1705 case ISD::ADDE:
1706 case ISD::SUBC:
1707 case ISD::SUBE:
1708 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
1709 case ISD::SADDO:
1710 case ISD::UADDO:
1711 case ISD::SSUBO:
1712 case ISD::USUBO:
1713 case ISD::SMULO:
1714 case ISD::UMULO:
1715 return LowerXALUO(Op, DAG);
1716 case ISD::FADD:
1717 return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
1718 case ISD::FSUB:
1719 return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
1720 case ISD::FMUL:
1721 return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
1722 case ISD::FDIV:
1723 return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
1724 case ISD::FP_ROUND:
1725 return LowerFP_ROUND(Op, DAG);
1726 case ISD::FP_EXTEND:
1727 return LowerFP_EXTEND(Op, DAG);
1728 case ISD::FRAMEADDR:
1729 return LowerFRAMEADDR(Op, DAG);
1730 case ISD::RETURNADDR:
1731 return LowerRETURNADDR(Op, DAG);
1732 case ISD::INSERT_VECTOR_ELT:
1733 return LowerINSERT_VECTOR_ELT(Op, DAG);
1734 case ISD::EXTRACT_VECTOR_ELT:
1735 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
1736 case ISD::BUILD_VECTOR:
1737 return LowerBUILD_VECTOR(Op, DAG);
1738 case ISD::VECTOR_SHUFFLE:
1739 return LowerVECTOR_SHUFFLE(Op, DAG);
1740 case ISD::EXTRACT_SUBVECTOR:
1741 return LowerEXTRACT_SUBVECTOR(Op, DAG);
1742 case ISD::SRA:
1743 case ISD::SRL:
1744 case ISD::SHL:
1745 return LowerVectorSRA_SRL_SHL(Op, DAG);
1746 case ISD::SHL_PARTS:
1747 return LowerShiftLeftParts(Op, DAG);
1748 case ISD::SRL_PARTS:
1749 case ISD::SRA_PARTS:
1750 return LowerShiftRightParts(Op, DAG);
1751 case ISD::CTPOP:
1752 return LowerCTPOP(Op, DAG);
1753 case ISD::FCOPYSIGN:
1754 return LowerFCOPYSIGN(Op, DAG);
1755 case ISD::AND:
1756 return LowerVectorAND(Op, DAG);
1757 case ISD::OR:
1758 return LowerVectorOR(Op, DAG);
1759 case ISD::XOR:
1760 return LowerXOR(Op, DAG);
1761 case ISD::PREFETCH:
1762 return LowerPREFETCH(Op, DAG);
1763 case ISD::SINT_TO_FP:
1764 case ISD::UINT_TO_FP:
1765 return LowerINT_TO_FP(Op, DAG);
1766 case ISD::FP_TO_SINT:
1767 case ISD::FP_TO_UINT:
1768 return LowerFP_TO_INT(Op, DAG);
1769 case ISD::FSINCOS:
1770 return LowerFSINCOS(Op, DAG);
1771 }
1772}
1773
1774/// getFunctionAlignment - Return the Log2 alignment of this function.
1775unsigned AArch64TargetLowering::getFunctionAlignment(const Function *F) const {
1776 return 2;
1777}
1778
1779//===----------------------------------------------------------------------===//
1780// Calling Convention Implementation
1781//===----------------------------------------------------------------------===//
1782
1783#include "AArch64GenCallingConv.inc"
1784
Robin Morisset039781e2014-08-29 21:53:01 +00001785/// Selects the correct CCAssignFn for a given CallingConvention value.
Tim Northover3b0846e2014-05-24 12:50:23 +00001786CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1787 bool IsVarArg) const {
1788 switch (CC) {
1789 default:
1790 llvm_unreachable("Unsupported calling convention.");
1791 case CallingConv::WebKit_JS:
1792 return CC_AArch64_WebKit_JS;
1793 case CallingConv::C:
1794 case CallingConv::Fast:
1795 if (!Subtarget->isTargetDarwin())
1796 return CC_AArch64_AAPCS;
1797 return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
1798 }
1799}
1800
1801SDValue AArch64TargetLowering::LowerFormalArguments(
1802 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1803 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
1804 SmallVectorImpl<SDValue> &InVals) const {
1805 MachineFunction &MF = DAG.getMachineFunction();
1806 MachineFrameInfo *MFI = MF.getFrameInfo();
1807
1808 // Assign locations to all of the incoming arguments.
1809 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00001810 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1811 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00001812
1813 // At this point, Ins[].VT may already be promoted to i32. To correctly
1814 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
1815 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
1816 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
1817 // we use a special version of AnalyzeFormalArguments to pass in ValVT and
1818 // LocVT.
1819 unsigned NumArgs = Ins.size();
1820 Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
1821 unsigned CurArgIdx = 0;
1822 for (unsigned i = 0; i != NumArgs; ++i) {
1823 MVT ValVT = Ins[i].VT;
1824 std::advance(CurOrigArg, Ins[i].OrigArgIndex - CurArgIdx);
1825 CurArgIdx = Ins[i].OrigArgIndex;
1826
1827 // Get type of the original argument.
1828 EVT ActualVT = getValueType(CurOrigArg->getType(), /*AllowUnknown*/ true);
1829 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
1830 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
Tim Northover3b0846e2014-05-24 12:50:23 +00001831 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
Tim Northover47e003c2014-05-26 17:21:53 +00001832 ValVT = MVT::i8;
Tim Northover3b0846e2014-05-24 12:50:23 +00001833 else if (ActualMVT == MVT::i16)
Tim Northover47e003c2014-05-26 17:21:53 +00001834 ValVT = MVT::i16;
Tim Northover3b0846e2014-05-24 12:50:23 +00001835
1836 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
1837 bool Res =
Tim Northover47e003c2014-05-26 17:21:53 +00001838 AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00001839 assert(!Res && "Call operand has unhandled type");
1840 (void)Res;
1841 }
1842 assert(ArgLocs.size() == Ins.size());
1843 SmallVector<SDValue, 16> ArgValues;
1844 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1845 CCValAssign &VA = ArgLocs[i];
1846
1847 if (Ins[i].Flags.isByVal()) {
1848 // Byval is used for HFAs in the PCS, but the system should work in a
1849 // non-compliant manner for larger structs.
1850 EVT PtrTy = getPointerTy();
1851 int Size = Ins[i].Flags.getByValSize();
1852 unsigned NumRegs = (Size + 7) / 8;
1853
1854 // FIXME: This works on big-endian for composite byvals, which are the common
1855 // case. It should also work for fundamental types too.
1856 unsigned FrameIdx =
1857 MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
1858 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
1859 InVals.push_back(FrameIdxN);
1860
1861 continue;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00001862 }
1863
1864 if (VA.isRegLoc()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001865 // Arguments stored in registers.
1866 EVT RegVT = VA.getLocVT();
1867
1868 SDValue ArgValue;
1869 const TargetRegisterClass *RC;
1870
1871 if (RegVT == MVT::i32)
1872 RC = &AArch64::GPR32RegClass;
1873 else if (RegVT == MVT::i64)
1874 RC = &AArch64::GPR64RegClass;
Oliver Stannard6eda6ff2014-07-11 13:33:46 +00001875 else if (RegVT == MVT::f16)
1876 RC = &AArch64::FPR16RegClass;
Tim Northover3b0846e2014-05-24 12:50:23 +00001877 else if (RegVT == MVT::f32)
1878 RC = &AArch64::FPR32RegClass;
1879 else if (RegVT == MVT::f64 || RegVT.is64BitVector())
1880 RC = &AArch64::FPR64RegClass;
1881 else if (RegVT == MVT::f128 || RegVT.is128BitVector())
1882 RC = &AArch64::FPR128RegClass;
1883 else
1884 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
1885
1886 // Transform the arguments in physical registers into virtual ones.
1887 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1888 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
1889
1890 // If this is an 8, 16 or 32-bit value, it is really passed promoted
1891 // to 64 bits. Insert an assert[sz]ext to capture this, then
1892 // truncate to the right size.
1893 switch (VA.getLocInfo()) {
1894 default:
1895 llvm_unreachable("Unknown loc info!");
1896 case CCValAssign::Full:
1897 break;
1898 case CCValAssign::BCvt:
1899 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
1900 break;
Tim Northover47e003c2014-05-26 17:21:53 +00001901 case CCValAssign::AExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00001902 case CCValAssign::SExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00001903 case CCValAssign::ZExt:
Tim Northover47e003c2014-05-26 17:21:53 +00001904 // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
1905 // nodes after our lowering.
1906 assert(RegVT == Ins[i].VT && "incorrect register location selected");
Tim Northover3b0846e2014-05-24 12:50:23 +00001907 break;
1908 }
1909
1910 InVals.push_back(ArgValue);
1911
1912 } else { // VA.isRegLoc()
1913 assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
1914 unsigned ArgOffset = VA.getLocMemOffset();
Amara Emerson82da7d02014-08-15 14:29:57 +00001915 unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
Tim Northover3b0846e2014-05-24 12:50:23 +00001916
1917 uint32_t BEAlign = 0;
1918 if (ArgSize < 8 && !Subtarget->isLittleEndian())
1919 BEAlign = 8 - ArgSize;
1920
1921 int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
1922
1923 // Create load nodes to retrieve arguments from the stack.
1924 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1925 SDValue ArgValue;
1926
Jiangning Liucc4f38b2014-06-03 03:25:09 +00001927 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
Tim Northover47e003c2014-05-26 17:21:53 +00001928 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00001929 MVT MemVT = VA.getValVT();
1930
Tim Northover47e003c2014-05-26 17:21:53 +00001931 switch (VA.getLocInfo()) {
1932 default:
1933 break;
Tim Northover6890add2014-06-03 13:54:53 +00001934 case CCValAssign::BCvt:
1935 MemVT = VA.getLocVT();
1936 break;
Tim Northover47e003c2014-05-26 17:21:53 +00001937 case CCValAssign::SExt:
1938 ExtType = ISD::SEXTLOAD;
1939 break;
1940 case CCValAssign::ZExt:
1941 ExtType = ISD::ZEXTLOAD;
1942 break;
1943 case CCValAssign::AExt:
1944 ExtType = ISD::EXTLOAD;
1945 break;
Tim Northover3b0846e2014-05-24 12:50:23 +00001946 }
1947
Tim Northover6890add2014-06-03 13:54:53 +00001948 ArgValue = DAG.getExtLoad(ExtType, DL, VA.getLocVT(), Chain, FIN,
Tim Northover47e003c2014-05-26 17:21:53 +00001949 MachinePointerInfo::getFixedStack(FI),
Louis Gerbarg67474e32014-07-31 21:45:05 +00001950 MemVT, false, false, false, 0, nullptr);
Tim Northover47e003c2014-05-26 17:21:53 +00001951
Tim Northover3b0846e2014-05-24 12:50:23 +00001952 InVals.push_back(ArgValue);
1953 }
1954 }
1955
1956 // varargs
1957 if (isVarArg) {
1958 if (!Subtarget->isTargetDarwin()) {
1959 // The AAPCS variadic function ABI is identical to the non-variadic
1960 // one. As a result there may be more arguments in registers and we should
1961 // save them for future reference.
1962 saveVarArgRegisters(CCInfo, DAG, DL, Chain);
1963 }
1964
1965 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1966 // This will point to the next argument passed via stack.
1967 unsigned StackOffset = CCInfo.getNextStackOffset();
1968 // We currently pass all varargs at 8-byte alignment.
1969 StackOffset = ((StackOffset + 7) & ~7);
1970 AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
1971 }
1972
1973 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
1974 unsigned StackArgSize = CCInfo.getNextStackOffset();
1975 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
1976 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
1977 // This is a non-standard ABI so by fiat I say we're allowed to make full
1978 // use of the stack area to be popped, which must be aligned to 16 bytes in
1979 // any case:
1980 StackArgSize = RoundUpToAlignment(StackArgSize, 16);
1981
1982 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
1983 // a multiple of 16.
1984 FuncInfo->setArgumentStackToRestore(StackArgSize);
1985
1986 // This realignment carries over to the available bytes below. Our own
1987 // callers will guarantee the space is free by giving an aligned value to
1988 // CALLSEQ_START.
1989 }
1990 // Even if we're not expected to free up the space, it's useful to know how
1991 // much is there while considering tail calls (because we can reuse it).
1992 FuncInfo->setBytesInStackArgArea(StackArgSize);
1993
1994 return Chain;
1995}
1996
1997void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
1998 SelectionDAG &DAG, SDLoc DL,
1999 SDValue &Chain) const {
2000 MachineFunction &MF = DAG.getMachineFunction();
2001 MachineFrameInfo *MFI = MF.getFrameInfo();
2002 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2003
2004 SmallVector<SDValue, 8> MemOps;
2005
2006 static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
2007 AArch64::X3, AArch64::X4, AArch64::X5,
2008 AArch64::X6, AArch64::X7 };
2009 static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
2010 unsigned FirstVariadicGPR =
2011 CCInfo.getFirstUnallocated(GPRArgRegs, NumGPRArgRegs);
2012
2013 unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
2014 int GPRIdx = 0;
2015 if (GPRSaveSize != 0) {
2016 GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
2017
2018 SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
2019
2020 for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
2021 unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
2022 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
2023 SDValue Store =
2024 DAG.getStore(Val.getValue(1), DL, Val, FIN,
2025 MachinePointerInfo::getStack(i * 8), false, false, 0);
2026 MemOps.push_back(Store);
2027 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
2028 DAG.getConstant(8, getPointerTy()));
2029 }
2030 }
2031 FuncInfo->setVarArgsGPRIndex(GPRIdx);
2032 FuncInfo->setVarArgsGPRSize(GPRSaveSize);
2033
2034 if (Subtarget->hasFPARMv8()) {
2035 static const MCPhysReg FPRArgRegs[] = {
2036 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
2037 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
2038 static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
2039 unsigned FirstVariadicFPR =
2040 CCInfo.getFirstUnallocated(FPRArgRegs, NumFPRArgRegs);
2041
2042 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
2043 int FPRIdx = 0;
2044 if (FPRSaveSize != 0) {
2045 FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
2046
2047 SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
2048
2049 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
2050 unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
2051 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
2052
2053 SDValue Store =
2054 DAG.getStore(Val.getValue(1), DL, Val, FIN,
2055 MachinePointerInfo::getStack(i * 16), false, false, 0);
2056 MemOps.push_back(Store);
2057 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
2058 DAG.getConstant(16, getPointerTy()));
2059 }
2060 }
2061 FuncInfo->setVarArgsFPRIndex(FPRIdx);
2062 FuncInfo->setVarArgsFPRSize(FPRSaveSize);
2063 }
2064
2065 if (!MemOps.empty()) {
2066 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2067 }
2068}
2069
2070/// LowerCallResult - Lower the result values of a call into the
2071/// appropriate copies out of appropriate physical registers.
2072SDValue AArch64TargetLowering::LowerCallResult(
2073 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
2074 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2075 SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2076 SDValue ThisVal) const {
2077 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2078 ? RetCC_AArch64_WebKit_JS
2079 : RetCC_AArch64_AAPCS;
2080 // Assign locations to each value returned by this call.
2081 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002082 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2083 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002084 CCInfo.AnalyzeCallResult(Ins, RetCC);
2085
2086 // Copy all of the result registers out of their specified physreg.
2087 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2088 CCValAssign VA = RVLocs[i];
2089
2090 // Pass 'this' value directly from the argument to return value, to avoid
2091 // reg unit interference
2092 if (i == 0 && isThisReturn) {
2093 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
2094 "unexpected return calling convention register assignment");
2095 InVals.push_back(ThisVal);
2096 continue;
2097 }
2098
2099 SDValue Val =
2100 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2101 Chain = Val.getValue(1);
2102 InFlag = Val.getValue(2);
2103
2104 switch (VA.getLocInfo()) {
2105 default:
2106 llvm_unreachable("Unknown loc info!");
2107 case CCValAssign::Full:
2108 break;
2109 case CCValAssign::BCvt:
2110 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2111 break;
2112 }
2113
2114 InVals.push_back(Val);
2115 }
2116
2117 return Chain;
2118}
2119
2120bool AArch64TargetLowering::isEligibleForTailCallOptimization(
2121 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2122 bool isCalleeStructRet, bool isCallerStructRet,
2123 const SmallVectorImpl<ISD::OutputArg> &Outs,
2124 const SmallVectorImpl<SDValue> &OutVals,
2125 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2126 // For CallingConv::C this function knows whether the ABI needs
2127 // changing. That's not true for other conventions so they will have to opt in
2128 // manually.
2129 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
2130 return false;
2131
2132 const MachineFunction &MF = DAG.getMachineFunction();
2133 const Function *CallerF = MF.getFunction();
2134 CallingConv::ID CallerCC = CallerF->getCallingConv();
2135 bool CCMatch = CallerCC == CalleeCC;
2136
2137 // Byval parameters hand the function a pointer directly into the stack area
2138 // we want to reuse during a tail call. Working around this *is* possible (see
2139 // X86) but less efficient and uglier in LowerCall.
2140 for (Function::const_arg_iterator i = CallerF->arg_begin(),
2141 e = CallerF->arg_end();
2142 i != e; ++i)
2143 if (i->hasByValAttr())
2144 return false;
2145
2146 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2147 if (IsTailCallConvention(CalleeCC) && CCMatch)
2148 return true;
2149 return false;
2150 }
2151
Oliver Stannard12993dd2014-08-18 12:42:15 +00002152 // Externally-defined functions with weak linkage should not be
2153 // tail-called on AArch64 when the OS does not support dynamic
2154 // pre-emption of symbols, as the AAELF spec requires normal calls
2155 // to undefined weak functions to be replaced with a NOP or jump to the
2156 // next instruction. The behaviour of branch instructions in this
2157 // situation (as used for tail calls) is implementation-defined, so we
2158 // cannot rely on the linker replacing the tail call with a return.
2159 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2160 const GlobalValue *GV = G->getGlobal();
2161 if (GV->hasExternalWeakLinkage())
2162 return false;
2163 }
2164
Tim Northover3b0846e2014-05-24 12:50:23 +00002165 // Now we search for cases where we can use a tail call without changing the
2166 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
2167 // concept.
2168
2169 // I want anyone implementing a new calling convention to think long and hard
2170 // about this assert.
2171 assert((!isVarArg || CalleeCC == CallingConv::C) &&
2172 "Unexpected variadic calling convention");
2173
2174 if (isVarArg && !Outs.empty()) {
2175 // At least two cases here: if caller is fastcc then we can't have any
2176 // memory arguments (we'd be expected to clean up the stack afterwards). If
2177 // caller is C then we could potentially use its argument area.
2178
2179 // FIXME: for now we take the most conservative of these in both cases:
2180 // disallow all variadic memory operands.
2181 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002182 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2183 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002184
2185 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
2186 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2187 if (!ArgLocs[i].isRegLoc())
2188 return false;
2189 }
2190
2191 // If the calling conventions do not match, then we'd better make sure the
2192 // results are returned in the same way as what the caller expects.
2193 if (!CCMatch) {
2194 SmallVector<CCValAssign, 16> RVLocs1;
Eric Christopherb5217502014-08-06 18:45:26 +00002195 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
2196 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002197 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg));
2198
2199 SmallVector<CCValAssign, 16> RVLocs2;
Eric Christopherb5217502014-08-06 18:45:26 +00002200 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
2201 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002202 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg));
2203
2204 if (RVLocs1.size() != RVLocs2.size())
2205 return false;
2206 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2207 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2208 return false;
2209 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2210 return false;
2211 if (RVLocs1[i].isRegLoc()) {
2212 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2213 return false;
2214 } else {
2215 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2216 return false;
2217 }
2218 }
2219 }
2220
2221 // Nothing more to check if the callee is taking no arguments
2222 if (Outs.empty())
2223 return true;
2224
2225 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002226 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2227 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002228
2229 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2230
2231 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2232
2233 // If the stack arguments for this call would fit into our own save area then
2234 // the call can be made tail.
2235 return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
2236}
2237
2238SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
2239 SelectionDAG &DAG,
2240 MachineFrameInfo *MFI,
2241 int ClobberedFI) const {
2242 SmallVector<SDValue, 8> ArgChains;
2243 int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
2244 int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
2245
2246 // Include the original chain at the beginning of the list. When this is
2247 // used by target LowerCall hooks, this helps legalize find the
2248 // CALLSEQ_BEGIN node.
2249 ArgChains.push_back(Chain);
2250
2251 // Add a chain value for each stack argument corresponding
2252 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
2253 UE = DAG.getEntryNode().getNode()->use_end();
2254 U != UE; ++U)
2255 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2256 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2257 if (FI->getIndex() < 0) {
2258 int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
2259 int64_t InLastByte = InFirstByte;
2260 InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
2261
2262 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
2263 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
2264 ArgChains.push_back(SDValue(L, 1));
2265 }
2266
2267 // Build a tokenfactor for all the chains.
2268 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
2269}
2270
2271bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
2272 bool TailCallOpt) const {
2273 return CallCC == CallingConv::Fast && TailCallOpt;
2274}
2275
2276bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
2277 return CallCC == CallingConv::Fast;
2278}
2279
2280/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
2281/// and add input and output parameter nodes.
2282SDValue
2283AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
2284 SmallVectorImpl<SDValue> &InVals) const {
2285 SelectionDAG &DAG = CLI.DAG;
2286 SDLoc &DL = CLI.DL;
2287 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2288 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2289 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2290 SDValue Chain = CLI.Chain;
2291 SDValue Callee = CLI.Callee;
2292 bool &IsTailCall = CLI.IsTailCall;
2293 CallingConv::ID CallConv = CLI.CallConv;
2294 bool IsVarArg = CLI.IsVarArg;
2295
2296 MachineFunction &MF = DAG.getMachineFunction();
2297 bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2298 bool IsThisReturn = false;
2299
2300 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2301 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2302 bool IsSibCall = false;
2303
2304 if (IsTailCall) {
2305 // Check if it's really possible to do a tail call.
2306 IsTailCall = isEligibleForTailCallOptimization(
2307 Callee, CallConv, IsVarArg, IsStructRet,
2308 MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG);
2309 if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2310 report_fatal_error("failed to perform tail call elimination on a call "
2311 "site marked musttail");
2312
2313 // A sibling call is one where we're under the usual C ABI and not planning
2314 // to change that but can still do a tail call:
2315 if (!TailCallOpt && IsTailCall)
2316 IsSibCall = true;
2317
2318 if (IsTailCall)
2319 ++NumTailCalls;
2320 }
2321
2322 // Analyze operands of the call, assigning locations to each operand.
2323 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002324 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
2325 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002326
2327 if (IsVarArg) {
2328 // Handle fixed and variable vector arguments differently.
2329 // Variable vector arguments always go into memory.
2330 unsigned NumArgs = Outs.size();
2331
2332 for (unsigned i = 0; i != NumArgs; ++i) {
2333 MVT ArgVT = Outs[i].VT;
2334 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2335 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
2336 /*IsVarArg=*/ !Outs[i].IsFixed);
2337 bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2338 assert(!Res && "Call operand has unhandled type");
2339 (void)Res;
2340 }
2341 } else {
2342 // At this point, Outs[].VT may already be promoted to i32. To correctly
2343 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2344 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2345 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
2346 // we use a special version of AnalyzeCallOperands to pass in ValVT and
2347 // LocVT.
2348 unsigned NumArgs = Outs.size();
2349 for (unsigned i = 0; i != NumArgs; ++i) {
2350 MVT ValVT = Outs[i].VT;
2351 // Get type of the original argument.
2352 EVT ActualVT = getValueType(CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
2353 /*AllowUnknown*/ true);
2354 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
2355 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2356 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
Tim Northover3b0846e2014-05-24 12:50:23 +00002357 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
Tim Northover47e003c2014-05-26 17:21:53 +00002358 ValVT = MVT::i8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002359 else if (ActualMVT == MVT::i16)
Tim Northover47e003c2014-05-26 17:21:53 +00002360 ValVT = MVT::i16;
Tim Northover3b0846e2014-05-24 12:50:23 +00002361
2362 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
Tim Northover47e003c2014-05-26 17:21:53 +00002363 bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00002364 assert(!Res && "Call operand has unhandled type");
2365 (void)Res;
2366 }
2367 }
2368
2369 // Get a count of how many bytes are to be pushed on the stack.
2370 unsigned NumBytes = CCInfo.getNextStackOffset();
2371
2372 if (IsSibCall) {
2373 // Since we're not changing the ABI to make this a tail call, the memory
2374 // operands are already available in the caller's incoming argument space.
2375 NumBytes = 0;
2376 }
2377
2378 // FPDiff is the byte offset of the call's argument area from the callee's.
2379 // Stores to callee stack arguments will be placed in FixedStackSlots offset
2380 // by this amount for a tail call. In a sibling call it must be 0 because the
2381 // caller will deallocate the entire stack and the callee still expects its
2382 // arguments to begin at SP+0. Completely unused for non-tail calls.
2383 int FPDiff = 0;
2384
2385 if (IsTailCall && !IsSibCall) {
2386 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
2387
2388 // Since callee will pop argument stack as a tail call, we must keep the
2389 // popped size 16-byte aligned.
2390 NumBytes = RoundUpToAlignment(NumBytes, 16);
2391
2392 // FPDiff will be negative if this tail call requires more space than we
2393 // would automatically have in our incoming argument space. Positive if we
2394 // can actually shrink the stack.
2395 FPDiff = NumReusableBytes - NumBytes;
2396
2397 // The stack pointer must be 16-byte aligned at all times it's used for a
2398 // memory operation, which in practice means at *all* times and in
2399 // particular across call boundaries. Therefore our own arguments started at
2400 // a 16-byte aligned SP and the delta applied for the tail call should
2401 // satisfy the same constraint.
2402 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
2403 }
2404
2405 // Adjust the stack pointer for the new arguments...
2406 // These operations are automatically eliminated by the prolog/epilog pass
2407 if (!IsSibCall)
2408 Chain =
2409 DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), DL);
2410
2411 SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, getPointerTy());
2412
2413 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2414 SmallVector<SDValue, 8> MemOpChains;
2415
2416 // Walk the register/memloc assignments, inserting copies/loads.
2417 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
2418 ++i, ++realArgIdx) {
2419 CCValAssign &VA = ArgLocs[i];
2420 SDValue Arg = OutVals[realArgIdx];
2421 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2422
2423 // Promote the value if needed.
2424 switch (VA.getLocInfo()) {
2425 default:
2426 llvm_unreachable("Unknown loc info!");
2427 case CCValAssign::Full:
2428 break;
2429 case CCValAssign::SExt:
2430 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2431 break;
2432 case CCValAssign::ZExt:
2433 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2434 break;
2435 case CCValAssign::AExt:
Tim Northover68ae5032014-05-26 17:22:07 +00002436 if (Outs[realArgIdx].ArgVT == MVT::i1) {
2437 // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
2438 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2439 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
2440 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002441 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2442 break;
2443 case CCValAssign::BCvt:
2444 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2445 break;
2446 case CCValAssign::FPExt:
2447 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2448 break;
2449 }
2450
2451 if (VA.isRegLoc()) {
2452 if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
2453 assert(VA.getLocVT() == MVT::i64 &&
2454 "unexpected calling convention register assignment");
2455 assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
2456 "unexpected use of 'returned'");
2457 IsThisReturn = true;
2458 }
2459 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2460 } else {
2461 assert(VA.isMemLoc());
2462
2463 SDValue DstAddr;
2464 MachinePointerInfo DstInfo;
2465
2466 // FIXME: This works on big-endian for composite byvals, which are the
2467 // common case. It should also work for fundamental types too.
2468 uint32_t BEAlign = 0;
2469 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
Amara Emerson82da7d02014-08-15 14:29:57 +00002470 : VA.getValVT().getSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00002471 OpSize = (OpSize + 7) / 8;
2472 if (!Subtarget->isLittleEndian() && !Flags.isByVal()) {
2473 if (OpSize < 8)
2474 BEAlign = 8 - OpSize;
2475 }
2476 unsigned LocMemOffset = VA.getLocMemOffset();
2477 int32_t Offset = LocMemOffset + BEAlign;
2478 SDValue PtrOff = DAG.getIntPtrConstant(Offset);
2479 PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2480
2481 if (IsTailCall) {
2482 Offset = Offset + FPDiff;
2483 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2484
2485 DstAddr = DAG.getFrameIndex(FI, getPointerTy());
2486 DstInfo = MachinePointerInfo::getFixedStack(FI);
2487
2488 // Make sure any stack arguments overlapping with where we're storing
2489 // are loaded before this eventual operation. Otherwise they'll be
2490 // clobbered.
2491 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
2492 } else {
2493 SDValue PtrOff = DAG.getIntPtrConstant(Offset);
2494
2495 DstAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2496 DstInfo = MachinePointerInfo::getStack(LocMemOffset);
2497 }
2498
2499 if (Outs[i].Flags.isByVal()) {
2500 SDValue SizeNode =
2501 DAG.getConstant(Outs[i].Flags.getByValSize(), MVT::i64);
2502 SDValue Cpy = DAG.getMemcpy(
2503 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
Jim Grosbach8e810ba2014-08-11 22:42:28 +00002504 /*isVol = */ false,
2505 /*AlwaysInline = */ false, DstInfo, MachinePointerInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +00002506
2507 MemOpChains.push_back(Cpy);
2508 } else {
2509 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
2510 // promoted to a legal register type i32, we should truncate Arg back to
2511 // i1/i8/i16.
Tim Northover6890add2014-06-03 13:54:53 +00002512 if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
2513 VA.getValVT() == MVT::i16)
2514 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
Tim Northover3b0846e2014-05-24 12:50:23 +00002515
2516 SDValue Store =
2517 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0);
2518 MemOpChains.push_back(Store);
2519 }
2520 }
2521 }
2522
2523 if (!MemOpChains.empty())
2524 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2525
2526 // Build a sequence of copy-to-reg nodes chained together with token chain
2527 // and flag operands which copy the outgoing args into the appropriate regs.
2528 SDValue InFlag;
2529 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2530 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
2531 RegsToPass[i].second, InFlag);
2532 InFlag = Chain.getValue(1);
2533 }
2534
2535 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2536 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2537 // node so that legalize doesn't hack it.
2538 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
2539 Subtarget->isTargetMachO()) {
2540 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2541 const GlobalValue *GV = G->getGlobal();
2542 bool InternalLinkage = GV->hasInternalLinkage();
2543 if (InternalLinkage)
2544 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2545 else {
2546 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0,
2547 AArch64II::MO_GOT);
2548 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2549 }
2550 } else if (ExternalSymbolSDNode *S =
2551 dyn_cast<ExternalSymbolSDNode>(Callee)) {
2552 const char *Sym = S->getSymbol();
2553 Callee =
2554 DAG.getTargetExternalSymbol(Sym, getPointerTy(), AArch64II::MO_GOT);
2555 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2556 }
2557 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2558 const GlobalValue *GV = G->getGlobal();
2559 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2560 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2561 const char *Sym = S->getSymbol();
2562 Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), 0);
2563 }
2564
2565 // We don't usually want to end the call-sequence here because we would tidy
2566 // the frame up *after* the call, however in the ABI-changing tail-call case
2567 // we've carefully laid out the parameters so that when sp is reset they'll be
2568 // in the correct location.
2569 if (IsTailCall && !IsSibCall) {
2570 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2571 DAG.getIntPtrConstant(0, true), InFlag, DL);
2572 InFlag = Chain.getValue(1);
2573 }
2574
2575 std::vector<SDValue> Ops;
2576 Ops.push_back(Chain);
2577 Ops.push_back(Callee);
2578
2579 if (IsTailCall) {
2580 // Each tail call may have to adjust the stack by a different amount, so
2581 // this information must travel along with the operation for eventual
2582 // consumption by emitEpilogue.
2583 Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
2584 }
2585
2586 // Add argument registers to the end of the list so that they are known live
2587 // into the call.
2588 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2589 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2590 RegsToPass[i].second.getValueType()));
2591
2592 // Add a register mask operand representing the call-preserved registers.
2593 const uint32_t *Mask;
Eric Christopherd9134482014-08-04 21:25:23 +00002594 const TargetRegisterInfo *TRI =
2595 getTargetMachine().getSubtargetImpl()->getRegisterInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +00002596 const AArch64RegisterInfo *ARI =
2597 static_cast<const AArch64RegisterInfo *>(TRI);
2598 if (IsThisReturn) {
2599 // For 'this' returns, use the X0-preserving mask if applicable
2600 Mask = ARI->getThisReturnPreservedMask(CallConv);
2601 if (!Mask) {
2602 IsThisReturn = false;
2603 Mask = ARI->getCallPreservedMask(CallConv);
2604 }
2605 } else
2606 Mask = ARI->getCallPreservedMask(CallConv);
2607
2608 assert(Mask && "Missing call preserved mask for calling convention");
2609 Ops.push_back(DAG.getRegisterMask(Mask));
2610
2611 if (InFlag.getNode())
2612 Ops.push_back(InFlag);
2613
2614 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2615
2616 // If we're doing a tall call, use a TC_RETURN here rather than an
2617 // actual call instruction.
2618 if (IsTailCall)
2619 return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
2620
2621 // Returns a chain and a flag for retval copy to use.
2622 Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
2623 InFlag = Chain.getValue(1);
2624
2625 uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt)
2626 ? RoundUpToAlignment(NumBytes, 16)
2627 : 0;
2628
2629 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2630 DAG.getIntPtrConstant(CalleePopBytes, true),
2631 InFlag, DL);
2632 if (!Ins.empty())
2633 InFlag = Chain.getValue(1);
2634
2635 // Handle result values, copying them out of physregs into vregs that we
2636 // return.
2637 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2638 InVals, IsThisReturn,
2639 IsThisReturn ? OutVals[0] : SDValue());
2640}
2641
2642bool AArch64TargetLowering::CanLowerReturn(
2643 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
2644 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
2645 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2646 ? RetCC_AArch64_WebKit_JS
2647 : RetCC_AArch64_AAPCS;
2648 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002649 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
Tim Northover3b0846e2014-05-24 12:50:23 +00002650 return CCInfo.CheckReturn(Outs, RetCC);
2651}
2652
2653SDValue
2654AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2655 bool isVarArg,
2656 const SmallVectorImpl<ISD::OutputArg> &Outs,
2657 const SmallVectorImpl<SDValue> &OutVals,
2658 SDLoc DL, SelectionDAG &DAG) const {
2659 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2660 ? RetCC_AArch64_WebKit_JS
2661 : RetCC_AArch64_AAPCS;
2662 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002663 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2664 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002665 CCInfo.AnalyzeReturn(Outs, RetCC);
2666
2667 // Copy the result values into the output registers.
2668 SDValue Flag;
2669 SmallVector<SDValue, 4> RetOps(1, Chain);
2670 for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
2671 ++i, ++realRVLocIdx) {
2672 CCValAssign &VA = RVLocs[i];
2673 assert(VA.isRegLoc() && "Can only return in registers!");
2674 SDValue Arg = OutVals[realRVLocIdx];
2675
2676 switch (VA.getLocInfo()) {
2677 default:
2678 llvm_unreachable("Unknown loc info!");
2679 case CCValAssign::Full:
Tim Northover68ae5032014-05-26 17:22:07 +00002680 if (Outs[i].ArgVT == MVT::i1) {
2681 // AAPCS requires i1 to be zero-extended to i8 by the producer of the
2682 // value. This is strictly redundant on Darwin (which uses "zeroext
2683 // i1"), but will be optimised out before ISel.
2684 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2685 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2686 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002687 break;
2688 case CCValAssign::BCvt:
2689 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2690 break;
2691 }
2692
2693 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2694 Flag = Chain.getValue(1);
2695 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2696 }
2697
2698 RetOps[0] = Chain; // Update chain.
2699
2700 // Add the flag if we have it.
2701 if (Flag.getNode())
2702 RetOps.push_back(Flag);
2703
2704 return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
2705}
2706
2707//===----------------------------------------------------------------------===//
2708// Other Lowering Code
2709//===----------------------------------------------------------------------===//
2710
2711SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
2712 SelectionDAG &DAG) const {
2713 EVT PtrVT = getPointerTy();
2714 SDLoc DL(Op);
Asiri Rathnayake369c0302014-09-10 13:54:38 +00002715 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
2716 const GlobalValue *GV = GN->getGlobal();
Tim Northover3b0846e2014-05-24 12:50:23 +00002717 unsigned char OpFlags =
2718 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
2719
2720 assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
2721 "unexpected offset in global node");
2722
2723 // This also catched the large code model case for Darwin.
2724 if ((OpFlags & AArch64II::MO_GOT) != 0) {
2725 SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2726 // FIXME: Once remat is capable of dealing with instructions with register
2727 // operands, expand this into two nodes instead of using a wrapper node.
2728 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
2729 }
2730
Asiri Rathnayake369c0302014-09-10 13:54:38 +00002731 if ((OpFlags & AArch64II::MO_CONSTPOOL) != 0) {
2732 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
2733 "use of MO_CONSTPOOL only supported on small model");
2734 SDValue Hi = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, AArch64II::MO_PAGE);
2735 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
2736 unsigned char LoFlags = AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
2737 SDValue Lo = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, LoFlags);
2738 SDValue PoolAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
2739 SDValue GlobalAddr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), PoolAddr,
2740 MachinePointerInfo::getConstantPool(),
2741 /*isVolatile=*/ false,
2742 /*isNonTemporal=*/ true,
2743 /*isInvariant=*/ true, 8);
2744 if (GN->getOffset() != 0)
2745 return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalAddr,
2746 DAG.getConstant(GN->getOffset(), PtrVT));
2747 return GlobalAddr;
2748 }
2749
Tim Northover3b0846e2014-05-24 12:50:23 +00002750 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2751 const unsigned char MO_NC = AArch64II::MO_NC;
2752 return DAG.getNode(
2753 AArch64ISD::WrapperLarge, DL, PtrVT,
2754 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
2755 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
2756 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
2757 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
2758 } else {
2759 // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
2760 // the only correct model on Darwin.
2761 SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2762 OpFlags | AArch64II::MO_PAGE);
2763 unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
2764 SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
2765
2766 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
2767 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
2768 }
2769}
2770
2771/// \brief Convert a TLS address reference into the correct sequence of loads
2772/// and calls to compute the variable's address (for Darwin, currently) and
2773/// return an SDValue containing the final node.
2774
2775/// Darwin only has one TLS scheme which must be capable of dealing with the
2776/// fully general situation, in the worst case. This means:
2777/// + "extern __thread" declaration.
2778/// + Defined in a possibly unknown dynamic library.
2779///
2780/// The general system is that each __thread variable has a [3 x i64] descriptor
2781/// which contains information used by the runtime to calculate the address. The
2782/// only part of this the compiler needs to know about is the first xword, which
2783/// contains a function pointer that must be called with the address of the
2784/// entire descriptor in "x0".
2785///
2786/// Since this descriptor may be in a different unit, in general even the
2787/// descriptor must be accessed via an indirect load. The "ideal" code sequence
2788/// is:
2789/// adrp x0, _var@TLVPPAGE
2790/// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
2791/// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
2792/// ; the function pointer
2793/// blr x1 ; Uses descriptor address in x0
2794/// ; Address of _var is now in x0.
2795///
2796/// If the address of _var's descriptor *is* known to the linker, then it can
2797/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
2798/// a slight efficiency gain.
2799SDValue
2800AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
2801 SelectionDAG &DAG) const {
2802 assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
2803
2804 SDLoc DL(Op);
2805 MVT PtrVT = getPointerTy();
2806 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2807
2808 SDValue TLVPAddr =
2809 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
2810 SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
2811
2812 // The first entry in the descriptor is a function pointer that we must call
2813 // to obtain the address of the variable.
2814 SDValue Chain = DAG.getEntryNode();
2815 SDValue FuncTLVGet =
2816 DAG.getLoad(MVT::i64, DL, Chain, DescAddr, MachinePointerInfo::getGOT(),
2817 false, true, true, 8);
2818 Chain = FuncTLVGet.getValue(1);
2819
2820 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2821 MFI->setAdjustsStack(true);
2822
2823 // TLS calls preserve all registers except those that absolutely must be
2824 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
2825 // silly).
Eric Christopherd9134482014-08-04 21:25:23 +00002826 const TargetRegisterInfo *TRI =
2827 getTargetMachine().getSubtargetImpl()->getRegisterInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +00002828 const AArch64RegisterInfo *ARI =
2829 static_cast<const AArch64RegisterInfo *>(TRI);
2830 const uint32_t *Mask = ARI->getTLSCallPreservedMask();
2831
2832 // Finally, we can make the call. This is just a degenerate version of a
2833 // normal AArch64 call node: x0 takes the address of the descriptor, and
2834 // returns the address of the variable in this thread.
2835 Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
2836 Chain =
2837 DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
2838 Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
2839 DAG.getRegisterMask(Mask), Chain.getValue(1));
2840 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
2841}
2842
2843/// When accessing thread-local variables under either the general-dynamic or
2844/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
2845/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
2846/// is a function pointer to carry out the resolution. This function takes the
2847/// address of the descriptor in X0 and returns the TPIDR_EL0 offset in X0. All
2848/// other registers (except LR, NZCV) are preserved.
2849///
2850/// Thus, the ideal call sequence on AArch64 is:
2851///
2852/// adrp x0, :tlsdesc:thread_var
2853/// ldr x8, [x0, :tlsdesc_lo12:thread_var]
2854/// add x0, x0, :tlsdesc_lo12:thread_var
2855/// .tlsdesccall thread_var
2856/// blr x8
2857/// (TPIDR_EL0 offset now in x0).
2858///
2859/// The ".tlsdesccall" directive instructs the assembler to insert a particular
2860/// relocation to help the linker relax this sequence if it turns out to be too
2861/// conservative.
2862///
2863/// FIXME: we currently produce an extra, duplicated, ADRP instruction, but this
2864/// is harmless.
2865SDValue AArch64TargetLowering::LowerELFTLSDescCall(SDValue SymAddr,
2866 SDValue DescAddr, SDLoc DL,
2867 SelectionDAG &DAG) const {
2868 EVT PtrVT = getPointerTy();
2869
2870 // The function we need to call is simply the first entry in the GOT for this
2871 // descriptor, load it in preparation.
2872 SDValue Func = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, SymAddr);
2873
2874 // TLS calls preserve all registers except those that absolutely must be
2875 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
2876 // silly).
Eric Christopherd9134482014-08-04 21:25:23 +00002877 const TargetRegisterInfo *TRI =
2878 getTargetMachine().getSubtargetImpl()->getRegisterInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +00002879 const AArch64RegisterInfo *ARI =
2880 static_cast<const AArch64RegisterInfo *>(TRI);
2881 const uint32_t *Mask = ARI->getTLSCallPreservedMask();
2882
2883 // The function takes only one argument: the address of the descriptor itself
2884 // in X0.
2885 SDValue Glue, Chain;
2886 Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
2887 Glue = Chain.getValue(1);
2888
2889 // We're now ready to populate the argument list, as with a normal call:
2890 SmallVector<SDValue, 6> Ops;
2891 Ops.push_back(Chain);
2892 Ops.push_back(Func);
2893 Ops.push_back(SymAddr);
2894 Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
2895 Ops.push_back(DAG.getRegisterMask(Mask));
2896 Ops.push_back(Glue);
2897
2898 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2899 Chain = DAG.getNode(AArch64ISD::TLSDESC_CALL, DL, NodeTys, Ops);
2900 Glue = Chain.getValue(1);
2901
2902 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
2903}
2904
2905SDValue
2906AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
2907 SelectionDAG &DAG) const {
2908 assert(Subtarget->isTargetELF() && "This function expects an ELF target");
2909 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
2910 "ELF TLS only supported in small memory model");
2911 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2912
2913 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
2914
2915 SDValue TPOff;
2916 EVT PtrVT = getPointerTy();
2917 SDLoc DL(Op);
2918 const GlobalValue *GV = GA->getGlobal();
2919
2920 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
2921
2922 if (Model == TLSModel::LocalExec) {
2923 SDValue HiVar = DAG.getTargetGlobalAddress(
2924 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
2925 SDValue LoVar = DAG.getTargetGlobalAddress(
2926 GV, DL, PtrVT, 0,
2927 AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
2928
2929 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
2930 DAG.getTargetConstant(16, MVT::i32)),
2931 0);
2932 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar,
2933 DAG.getTargetConstant(0, MVT::i32)),
2934 0);
2935 } else if (Model == TLSModel::InitialExec) {
2936 TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
2937 TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
2938 } else if (Model == TLSModel::LocalDynamic) {
2939 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
2940 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
2941 // the beginning of the module's TLS region, followed by a DTPREL offset
2942 // calculation.
2943
2944 // These accesses will need deduplicating if there's more than one.
2945 AArch64FunctionInfo *MFI =
2946 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
2947 MFI->incNumLocalDynamicTLSAccesses();
2948
2949 // Accesses used in this sequence go via the TLS descriptor which lives in
2950 // the GOT. Prepare an address we can use to handle this.
2951 SDValue HiDesc = DAG.getTargetExternalSymbol(
2952 "_TLS_MODULE_BASE_", PtrVT, AArch64II::MO_TLS | AArch64II::MO_PAGE);
2953 SDValue LoDesc = DAG.getTargetExternalSymbol(
2954 "_TLS_MODULE_BASE_", PtrVT,
2955 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
2956
2957 // First argument to the descriptor call is the address of the descriptor
2958 // itself.
2959 SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc);
2960 DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
2961
2962 // The call needs a relocation too for linker relaxation. It doesn't make
2963 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
2964 // the address.
2965 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
2966 AArch64II::MO_TLS);
2967
2968 // Now we can calculate the offset from TPIDR_EL0 to this module's
2969 // thread-local area.
2970 TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
2971
2972 // Now use :dtprel_whatever: operations to calculate this variable's offset
2973 // in its thread-storage area.
2974 SDValue HiVar = DAG.getTargetGlobalAddress(
2975 GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
2976 SDValue LoVar = DAG.getTargetGlobalAddress(
2977 GV, DL, MVT::i64, 0,
2978 AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
2979
2980 SDValue DTPOff =
2981 SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
2982 DAG.getTargetConstant(16, MVT::i32)),
2983 0);
2984 DTPOff =
2985 SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, DTPOff, LoVar,
2986 DAG.getTargetConstant(0, MVT::i32)),
2987 0);
2988
2989 TPOff = DAG.getNode(ISD::ADD, DL, PtrVT, TPOff, DTPOff);
2990 } else if (Model == TLSModel::GeneralDynamic) {
2991 // Accesses used in this sequence go via the TLS descriptor which lives in
2992 // the GOT. Prepare an address we can use to handle this.
2993 SDValue HiDesc = DAG.getTargetGlobalAddress(
2994 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGE);
2995 SDValue LoDesc = DAG.getTargetGlobalAddress(
2996 GV, DL, PtrVT, 0,
2997 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
2998
2999 // First argument to the descriptor call is the address of the descriptor
3000 // itself.
3001 SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc);
3002 DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
3003
3004 // The call needs a relocation too for linker relaxation. It doesn't make
3005 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3006 // the address.
3007 SDValue SymAddr =
3008 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3009
3010 // Finally we can make a call to calculate the offset from tpidr_el0.
3011 TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
3012 } else
3013 llvm_unreachable("Unsupported ELF TLS access model");
3014
3015 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
3016}
3017
3018SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
3019 SelectionDAG &DAG) const {
3020 if (Subtarget->isTargetDarwin())
3021 return LowerDarwinGlobalTLSAddress(Op, DAG);
3022 else if (Subtarget->isTargetELF())
3023 return LowerELFGlobalTLSAddress(Op, DAG);
3024
3025 llvm_unreachable("Unexpected platform trying to use TLS");
3026}
3027SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3028 SDValue Chain = Op.getOperand(0);
3029 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3030 SDValue LHS = Op.getOperand(2);
3031 SDValue RHS = Op.getOperand(3);
3032 SDValue Dest = Op.getOperand(4);
3033 SDLoc dl(Op);
3034
3035 // Handle f128 first, since lowering it will result in comparing the return
3036 // value of a libcall against zero, which is just what the rest of LowerBR_CC
3037 // is expecting to deal with.
3038 if (LHS.getValueType() == MVT::f128) {
3039 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3040
3041 // If softenSetCCOperands returned a scalar, we need to compare the result
3042 // against zero to select between true and false values.
3043 if (!RHS.getNode()) {
3044 RHS = DAG.getConstant(0, LHS.getValueType());
3045 CC = ISD::SETNE;
3046 }
3047 }
3048
3049 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
3050 // instruction.
3051 unsigned Opc = LHS.getOpcode();
3052 if (LHS.getResNo() == 1 && isa<ConstantSDNode>(RHS) &&
3053 cast<ConstantSDNode>(RHS)->isOne() &&
3054 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3055 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3056 assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
3057 "Unexpected condition code.");
3058 // Only lower legal XALUO ops.
3059 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
3060 return SDValue();
3061
3062 // The actual operation with overflow check.
3063 AArch64CC::CondCode OFCC;
3064 SDValue Value, Overflow;
3065 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
3066
3067 if (CC == ISD::SETNE)
3068 OFCC = getInvertedCondCode(OFCC);
3069 SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
3070
3071 return DAG.getNode(AArch64ISD::BRCOND, SDLoc(LHS), MVT::Other, Chain, Dest,
3072 CCVal, Overflow);
3073 }
3074
3075 if (LHS.getValueType().isInteger()) {
3076 assert((LHS.getValueType() == RHS.getValueType()) &&
3077 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3078
3079 // If the RHS of the comparison is zero, we can potentially fold this
3080 // to a specialized branch.
3081 const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
3082 if (RHSC && RHSC->getZExtValue() == 0) {
3083 if (CC == ISD::SETEQ) {
3084 // See if we can use a TBZ to fold in an AND as well.
3085 // TBZ has a smaller branch displacement than CBZ. If the offset is
3086 // out of bounds, a late MI-layer pass rewrites branches.
3087 // 403.gcc is an example that hits this case.
3088 if (LHS.getOpcode() == ISD::AND &&
3089 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3090 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3091 SDValue Test = LHS.getOperand(0);
3092 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003093 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
3094 DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
3095 }
3096
3097 return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
3098 } else if (CC == ISD::SETNE) {
3099 // See if we can use a TBZ to fold in an AND as well.
3100 // TBZ has a smaller branch displacement than CBZ. If the offset is
3101 // out of bounds, a late MI-layer pass rewrites branches.
3102 // 403.gcc is an example that hits this case.
3103 if (LHS.getOpcode() == ISD::AND &&
3104 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3105 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3106 SDValue Test = LHS.getOperand(0);
3107 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003108 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
3109 DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
3110 }
3111
3112 return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
Chad Rosier579c02c2014-08-01 14:48:56 +00003113 } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
3114 // Don't combine AND since emitComparison converts the AND to an ANDS
3115 // (a.k.a. TST) and the test in the test bit and branch instruction
3116 // becomes redundant. This would also increase register pressure.
3117 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3118 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
3119 DAG.getConstant(Mask, MVT::i64), Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003120 }
3121 }
Chad Rosier579c02c2014-08-01 14:48:56 +00003122 if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
3123 LHS.getOpcode() != ISD::AND) {
3124 // Don't combine AND since emitComparison converts the AND to an ANDS
3125 // (a.k.a. TST) and the test in the test bit and branch instruction
3126 // becomes redundant. This would also increase register pressure.
3127 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3128 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
3129 DAG.getConstant(Mask, MVT::i64), Dest);
3130 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003131
3132 SDValue CCVal;
3133 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3134 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3135 Cmp);
3136 }
3137
3138 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3139
3140 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3141 // clean. Some of them require two branches to implement.
3142 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3143 AArch64CC::CondCode CC1, CC2;
3144 changeFPCCToAArch64CC(CC, CC1, CC2);
3145 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3146 SDValue BR1 =
3147 DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
3148 if (CC2 != AArch64CC::AL) {
3149 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3150 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
3151 Cmp);
3152 }
3153
3154 return BR1;
3155}
3156
3157SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
3158 SelectionDAG &DAG) const {
3159 EVT VT = Op.getValueType();
3160 SDLoc DL(Op);
3161
3162 SDValue In1 = Op.getOperand(0);
3163 SDValue In2 = Op.getOperand(1);
3164 EVT SrcVT = In2.getValueType();
3165 if (SrcVT != VT) {
3166 if (SrcVT == MVT::f32 && VT == MVT::f64)
3167 In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
3168 else if (SrcVT == MVT::f64 && VT == MVT::f32)
3169 In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0));
3170 else
3171 // FIXME: Src type is different, bail out for now. Can VT really be a
3172 // vector type?
3173 return SDValue();
3174 }
3175
3176 EVT VecVT;
3177 EVT EltVT;
3178 SDValue EltMask, VecVal1, VecVal2;
3179 if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
3180 EltVT = MVT::i32;
3181 VecVT = MVT::v4i32;
3182 EltMask = DAG.getConstant(0x80000000ULL, EltVT);
3183
3184 if (!VT.isVector()) {
3185 VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3186 DAG.getUNDEF(VecVT), In1);
3187 VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3188 DAG.getUNDEF(VecVT), In2);
3189 } else {
3190 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3191 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3192 }
3193 } else if (VT == MVT::f64 || VT == MVT::v2f64) {
3194 EltVT = MVT::i64;
3195 VecVT = MVT::v2i64;
3196
3197 // We want to materialize a mask with the the high bit set, but the AdvSIMD
3198 // immediate moves cannot materialize that in a single instruction for
3199 // 64-bit elements. Instead, materialize zero and then negate it.
3200 EltMask = DAG.getConstant(0, EltVT);
3201
3202 if (!VT.isVector()) {
3203 VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3204 DAG.getUNDEF(VecVT), In1);
3205 VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3206 DAG.getUNDEF(VecVT), In2);
3207 } else {
3208 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3209 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3210 }
3211 } else {
3212 llvm_unreachable("Invalid type for copysign!");
3213 }
3214
3215 std::vector<SDValue> BuildVectorOps;
3216 for (unsigned i = 0; i < VecVT.getVectorNumElements(); ++i)
3217 BuildVectorOps.push_back(EltMask);
3218
3219 SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, BuildVectorOps);
3220
3221 // If we couldn't materialize the mask above, then the mask vector will be
3222 // the zero vector, and we need to negate it here.
3223 if (VT == MVT::f64 || VT == MVT::v2f64) {
3224 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
3225 BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
3226 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
3227 }
3228
3229 SDValue Sel =
3230 DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
3231
3232 if (VT == MVT::f32)
3233 return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
3234 else if (VT == MVT::f64)
3235 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
3236 else
3237 return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
3238}
3239
3240SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
3241 if (DAG.getMachineFunction().getFunction()->getAttributes().hasAttribute(
3242 AttributeSet::FunctionIndex, Attribute::NoImplicitFloat))
3243 return SDValue();
3244
3245 // While there is no integer popcount instruction, it can
3246 // be more efficiently lowered to the following sequence that uses
3247 // AdvSIMD registers/instructions as long as the copies to/from
3248 // the AdvSIMD registers are cheap.
3249 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
3250 // CNT V0.8B, V0.8B // 8xbyte pop-counts
3251 // ADDV B0, V0.8B // sum 8xbyte pop-counts
3252 // UMOV X0, V0.B[0] // copy byte result back to integer reg
3253 SDValue Val = Op.getOperand(0);
3254 SDLoc DL(Op);
3255 EVT VT = Op.getValueType();
3256 SDValue ZeroVec = DAG.getUNDEF(MVT::v8i8);
3257
3258 SDValue VecVal;
3259 if (VT == MVT::i32) {
3260 VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
3261 VecVal = DAG.getTargetInsertSubreg(AArch64::ssub, DL, MVT::v8i8, ZeroVec,
3262 VecVal);
3263 } else {
3264 VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
3265 }
3266
3267 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, VecVal);
3268 SDValue UaddLV = DAG.getNode(
3269 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
3270 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, MVT::i32), CtPop);
3271
3272 if (VT == MVT::i64)
3273 UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
3274 return UaddLV;
3275}
3276
3277SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3278
3279 if (Op.getValueType().isVector())
3280 return LowerVSETCC(Op, DAG);
3281
3282 SDValue LHS = Op.getOperand(0);
3283 SDValue RHS = Op.getOperand(1);
3284 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3285 SDLoc dl(Op);
3286
3287 // We chose ZeroOrOneBooleanContents, so use zero and one.
3288 EVT VT = Op.getValueType();
3289 SDValue TVal = DAG.getConstant(1, VT);
3290 SDValue FVal = DAG.getConstant(0, VT);
3291
3292 // Handle f128 first, since one possible outcome is a normal integer
3293 // comparison which gets picked up by the next if statement.
3294 if (LHS.getValueType() == MVT::f128) {
3295 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3296
3297 // If softenSetCCOperands returned a scalar, use it.
3298 if (!RHS.getNode()) {
3299 assert(LHS.getValueType() == Op.getValueType() &&
3300 "Unexpected setcc expansion!");
3301 return LHS;
3302 }
3303 }
3304
3305 if (LHS.getValueType().isInteger()) {
3306 SDValue CCVal;
3307 SDValue Cmp =
3308 getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
3309
3310 // Note that we inverted the condition above, so we reverse the order of
3311 // the true and false operands here. This will allow the setcc to be
3312 // matched to a single CSINC instruction.
3313 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
3314 }
3315
3316 // Now we know we're dealing with FP values.
3317 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3318
3319 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3320 // and do the comparison.
3321 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3322
3323 AArch64CC::CondCode CC1, CC2;
3324 changeFPCCToAArch64CC(CC, CC1, CC2);
3325 if (CC2 == AArch64CC::AL) {
3326 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
3327 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3328
3329 // Note that we inverted the condition above, so we reverse the order of
3330 // the true and false operands here. This will allow the setcc to be
3331 // matched to a single CSINC instruction.
3332 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
3333 } else {
3334 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
3335 // totally clean. Some of them require two CSELs to implement. As is in
3336 // this case, we emit the first CSEL and then emit a second using the output
3337 // of the first as the RHS. We're effectively OR'ing the two CC's together.
3338
3339 // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
3340 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3341 SDValue CS1 =
3342 DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3343
3344 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3345 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3346 }
3347}
3348
3349/// A SELECT_CC operation is really some kind of max or min if both values being
3350/// compared are, in some sense, equal to the results in either case. However,
3351/// it is permissible to compare f32 values and produce directly extended f64
3352/// values.
3353///
3354/// Extending the comparison operands would also be allowed, but is less likely
3355/// to happen in practice since their use is right here. Note that truncate
3356/// operations would *not* be semantically equivalent.
3357static bool selectCCOpsAreFMaxCompatible(SDValue Cmp, SDValue Result) {
3358 if (Cmp == Result)
3359 return true;
3360
3361 ConstantFPSDNode *CCmp = dyn_cast<ConstantFPSDNode>(Cmp);
3362 ConstantFPSDNode *CResult = dyn_cast<ConstantFPSDNode>(Result);
3363 if (CCmp && CResult && Cmp.getValueType() == MVT::f32 &&
3364 Result.getValueType() == MVT::f64) {
3365 bool Lossy;
3366 APFloat CmpVal = CCmp->getValueAPF();
3367 CmpVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Lossy);
3368 return CResult->getValueAPF().bitwiseIsEqual(CmpVal);
3369 }
3370
3371 return Result->getOpcode() == ISD::FP_EXTEND && Result->getOperand(0) == Cmp;
3372}
3373
3374SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
3375 SelectionDAG &DAG) const {
3376 SDValue CC = Op->getOperand(0);
3377 SDValue TVal = Op->getOperand(1);
3378 SDValue FVal = Op->getOperand(2);
3379 SDLoc DL(Op);
3380
3381 unsigned Opc = CC.getOpcode();
3382 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
3383 // instruction.
3384 if (CC.getResNo() == 1 &&
3385 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3386 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3387 // Only lower legal XALUO ops.
3388 if (!DAG.getTargetLoweringInfo().isTypeLegal(CC->getValueType(0)))
3389 return SDValue();
3390
3391 AArch64CC::CondCode OFCC;
3392 SDValue Value, Overflow;
3393 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CC.getValue(0), DAG);
3394 SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
3395
3396 return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
3397 CCVal, Overflow);
3398 }
3399
3400 if (CC.getOpcode() == ISD::SETCC)
3401 return DAG.getSelectCC(DL, CC.getOperand(0), CC.getOperand(1), TVal, FVal,
3402 cast<CondCodeSDNode>(CC.getOperand(2))->get());
3403 else
3404 return DAG.getSelectCC(DL, CC, DAG.getConstant(0, CC.getValueType()), TVal,
3405 FVal, ISD::SETNE);
3406}
3407
3408SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
3409 SelectionDAG &DAG) const {
3410 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3411 SDValue LHS = Op.getOperand(0);
3412 SDValue RHS = Op.getOperand(1);
3413 SDValue TVal = Op.getOperand(2);
3414 SDValue FVal = Op.getOperand(3);
3415 SDLoc dl(Op);
3416
3417 // Handle f128 first, because it will result in a comparison of some RTLIB
3418 // call result against zero.
3419 if (LHS.getValueType() == MVT::f128) {
3420 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3421
3422 // If softenSetCCOperands returned a scalar, we need to compare the result
3423 // against zero to select between true and false values.
3424 if (!RHS.getNode()) {
3425 RHS = DAG.getConstant(0, LHS.getValueType());
3426 CC = ISD::SETNE;
3427 }
3428 }
3429
3430 // Handle integers first.
3431 if (LHS.getValueType().isInteger()) {
3432 assert((LHS.getValueType() == RHS.getValueType()) &&
3433 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3434
3435 unsigned Opcode = AArch64ISD::CSEL;
3436
3437 // If both the TVal and the FVal are constants, see if we can swap them in
3438 // order to for a CSINV or CSINC out of them.
3439 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
3440 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
3441
3442 if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
3443 std::swap(TVal, FVal);
3444 std::swap(CTVal, CFVal);
3445 CC = ISD::getSetCCInverse(CC, true);
3446 } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
3447 std::swap(TVal, FVal);
3448 std::swap(CTVal, CFVal);
3449 CC = ISD::getSetCCInverse(CC, true);
3450 } else if (TVal.getOpcode() == ISD::XOR) {
3451 // If TVal is a NOT we want to swap TVal and FVal so that we can match
3452 // with a CSINV rather than a CSEL.
3453 ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(1));
3454
3455 if (CVal && CVal->isAllOnesValue()) {
3456 std::swap(TVal, FVal);
3457 std::swap(CTVal, CFVal);
3458 CC = ISD::getSetCCInverse(CC, true);
3459 }
3460 } else if (TVal.getOpcode() == ISD::SUB) {
3461 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
3462 // that we can match with a CSNEG rather than a CSEL.
3463 ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(0));
3464
3465 if (CVal && CVal->isNullValue()) {
3466 std::swap(TVal, FVal);
3467 std::swap(CTVal, CFVal);
3468 CC = ISD::getSetCCInverse(CC, true);
3469 }
3470 } else if (CTVal && CFVal) {
3471 const int64_t TrueVal = CTVal->getSExtValue();
3472 const int64_t FalseVal = CFVal->getSExtValue();
3473 bool Swap = false;
3474
3475 // If both TVal and FVal are constants, see if FVal is the
3476 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
3477 // instead of a CSEL in that case.
3478 if (TrueVal == ~FalseVal) {
3479 Opcode = AArch64ISD::CSINV;
3480 } else if (TrueVal == -FalseVal) {
3481 Opcode = AArch64ISD::CSNEG;
3482 } else if (TVal.getValueType() == MVT::i32) {
3483 // If our operands are only 32-bit wide, make sure we use 32-bit
3484 // arithmetic for the check whether we can use CSINC. This ensures that
3485 // the addition in the check will wrap around properly in case there is
3486 // an overflow (which would not be the case if we do the check with
3487 // 64-bit arithmetic).
3488 const uint32_t TrueVal32 = CTVal->getZExtValue();
3489 const uint32_t FalseVal32 = CFVal->getZExtValue();
3490
3491 if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
3492 Opcode = AArch64ISD::CSINC;
3493
3494 if (TrueVal32 > FalseVal32) {
3495 Swap = true;
3496 }
3497 }
3498 // 64-bit check whether we can use CSINC.
3499 } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
3500 Opcode = AArch64ISD::CSINC;
3501
3502 if (TrueVal > FalseVal) {
3503 Swap = true;
3504 }
3505 }
3506
3507 // Swap TVal and FVal if necessary.
3508 if (Swap) {
3509 std::swap(TVal, FVal);
3510 std::swap(CTVal, CFVal);
3511 CC = ISD::getSetCCInverse(CC, true);
3512 }
3513
3514 if (Opcode != AArch64ISD::CSEL) {
3515 // Drop FVal since we can get its value by simply inverting/negating
3516 // TVal.
3517 FVal = TVal;
3518 }
3519 }
3520
3521 SDValue CCVal;
3522 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3523
3524 EVT VT = Op.getValueType();
3525 return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
3526 }
3527
3528 // Now we know we're dealing with FP values.
3529 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3530 assert(LHS.getValueType() == RHS.getValueType());
3531 EVT VT = Op.getValueType();
3532
3533 // Try to match this select into a max/min operation, which have dedicated
3534 // opcode in the instruction set.
3535 // FIXME: This is not correct in the presence of NaNs, so we only enable this
3536 // in no-NaNs mode.
3537 if (getTargetMachine().Options.NoNaNsFPMath) {
3538 SDValue MinMaxLHS = TVal, MinMaxRHS = FVal;
3539 if (selectCCOpsAreFMaxCompatible(LHS, MinMaxRHS) &&
3540 selectCCOpsAreFMaxCompatible(RHS, MinMaxLHS)) {
3541 CC = ISD::getSetCCSwappedOperands(CC);
3542 std::swap(MinMaxLHS, MinMaxRHS);
3543 }
3544
3545 if (selectCCOpsAreFMaxCompatible(LHS, MinMaxLHS) &&
3546 selectCCOpsAreFMaxCompatible(RHS, MinMaxRHS)) {
3547 switch (CC) {
3548 default:
3549 break;
3550 case ISD::SETGT:
3551 case ISD::SETGE:
3552 case ISD::SETUGT:
3553 case ISD::SETUGE:
3554 case ISD::SETOGT:
3555 case ISD::SETOGE:
3556 return DAG.getNode(AArch64ISD::FMAX, dl, VT, MinMaxLHS, MinMaxRHS);
3557 break;
3558 case ISD::SETLT:
3559 case ISD::SETLE:
3560 case ISD::SETULT:
3561 case ISD::SETULE:
3562 case ISD::SETOLT:
3563 case ISD::SETOLE:
3564 return DAG.getNode(AArch64ISD::FMIN, dl, VT, MinMaxLHS, MinMaxRHS);
3565 break;
3566 }
3567 }
3568 }
3569
3570 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3571 // and do the comparison.
3572 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3573
3574 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3575 // clean. Some of them require two CSELs to implement.
3576 AArch64CC::CondCode CC1, CC2;
3577 changeFPCCToAArch64CC(CC, CC1, CC2);
3578 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3579 SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3580
3581 // If we need a second CSEL, emit it, using the output of the first as the
3582 // RHS. We're effectively OR'ing the two CC's together.
3583 if (CC2 != AArch64CC::AL) {
3584 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3585 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3586 }
3587
3588 // Otherwise, return the output of the first CSEL.
3589 return CS1;
3590}
3591
3592SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
3593 SelectionDAG &DAG) const {
3594 // Jump table entries as PC relative offsets. No additional tweaking
3595 // is necessary here. Just get the address of the jump table.
3596 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3597 EVT PtrVT = getPointerTy();
3598 SDLoc DL(Op);
3599
3600 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3601 !Subtarget->isTargetMachO()) {
3602 const unsigned char MO_NC = AArch64II::MO_NC;
3603 return DAG.getNode(
3604 AArch64ISD::WrapperLarge, DL, PtrVT,
3605 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
3606 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
3607 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
3608 DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3609 AArch64II::MO_G0 | MO_NC));
3610 }
3611
3612 SDValue Hi =
3613 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
3614 SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3615 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3616 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3617 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3618}
3619
3620SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
3621 SelectionDAG &DAG) const {
3622 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3623 EVT PtrVT = getPointerTy();
3624 SDLoc DL(Op);
3625
3626 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3627 // Use the GOT for the large code model on iOS.
3628 if (Subtarget->isTargetMachO()) {
3629 SDValue GotAddr = DAG.getTargetConstantPool(
3630 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3631 AArch64II::MO_GOT);
3632 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
3633 }
3634
3635 const unsigned char MO_NC = AArch64II::MO_NC;
3636 return DAG.getNode(
3637 AArch64ISD::WrapperLarge, DL, PtrVT,
3638 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3639 CP->getOffset(), AArch64II::MO_G3),
3640 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3641 CP->getOffset(), AArch64II::MO_G2 | MO_NC),
3642 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3643 CP->getOffset(), AArch64II::MO_G1 | MO_NC),
3644 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3645 CP->getOffset(), AArch64II::MO_G0 | MO_NC));
3646 } else {
3647 // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
3648 // ELF, the only valid one on Darwin.
3649 SDValue Hi =
3650 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3651 CP->getOffset(), AArch64II::MO_PAGE);
3652 SDValue Lo = DAG.getTargetConstantPool(
3653 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3654 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3655
3656 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3657 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3658 }
3659}
3660
3661SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
3662 SelectionDAG &DAG) const {
3663 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
3664 EVT PtrVT = getPointerTy();
3665 SDLoc DL(Op);
3666 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3667 !Subtarget->isTargetMachO()) {
3668 const unsigned char MO_NC = AArch64II::MO_NC;
3669 return DAG.getNode(
3670 AArch64ISD::WrapperLarge, DL, PtrVT,
3671 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
3672 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
3673 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
3674 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
3675 } else {
3676 SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
3677 SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
3678 AArch64II::MO_NC);
3679 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3680 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3681 }
3682}
3683
3684SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
3685 SelectionDAG &DAG) const {
3686 AArch64FunctionInfo *FuncInfo =
3687 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3688
3689 SDLoc DL(Op);
3690 SDValue FR =
3691 DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3692 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3693 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3694 MachinePointerInfo(SV), false, false, 0);
3695}
3696
3697SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
3698 SelectionDAG &DAG) const {
3699 // The layout of the va_list struct is specified in the AArch64 Procedure Call
3700 // Standard, section B.3.
3701 MachineFunction &MF = DAG.getMachineFunction();
3702 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3703 SDLoc DL(Op);
3704
3705 SDValue Chain = Op.getOperand(0);
3706 SDValue VAList = Op.getOperand(1);
3707 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3708 SmallVector<SDValue, 4> MemOps;
3709
3710 // void *__stack at offset 0
3711 SDValue Stack =
3712 DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3713 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
3714 MachinePointerInfo(SV), false, false, 8));
3715
3716 // void *__gr_top at offset 8
3717 int GPRSize = FuncInfo->getVarArgsGPRSize();
3718 if (GPRSize > 0) {
3719 SDValue GRTop, GRTopAddr;
3720
3721 GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3722 DAG.getConstant(8, getPointerTy()));
3723
3724 GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), getPointerTy());
3725 GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
3726 DAG.getConstant(GPRSize, getPointerTy()));
3727
3728 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
3729 MachinePointerInfo(SV, 8), false, false, 8));
3730 }
3731
3732 // void *__vr_top at offset 16
3733 int FPRSize = FuncInfo->getVarArgsFPRSize();
3734 if (FPRSize > 0) {
3735 SDValue VRTop, VRTopAddr;
3736 VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3737 DAG.getConstant(16, getPointerTy()));
3738
3739 VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), getPointerTy());
3740 VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
3741 DAG.getConstant(FPRSize, getPointerTy()));
3742
3743 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
3744 MachinePointerInfo(SV, 16), false, false, 8));
3745 }
3746
3747 // int __gr_offs at offset 24
3748 SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3749 DAG.getConstant(24, getPointerTy()));
3750 MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
3751 GROffsAddr, MachinePointerInfo(SV, 24), false,
3752 false, 4));
3753
3754 // int __vr_offs at offset 28
3755 SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3756 DAG.getConstant(28, getPointerTy()));
3757 MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
3758 VROffsAddr, MachinePointerInfo(SV, 28), false,
3759 false, 4));
3760
3761 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3762}
3763
3764SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
3765 SelectionDAG &DAG) const {
3766 return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
3767 : LowerAAPCS_VASTART(Op, DAG);
3768}
3769
3770SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
3771 SelectionDAG &DAG) const {
3772 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
3773 // pointer.
3774 unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
3775 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3776 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3777
3778 return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op), Op.getOperand(1),
3779 Op.getOperand(2), DAG.getConstant(VaListSize, MVT::i32),
3780 8, false, false, MachinePointerInfo(DestSV),
3781 MachinePointerInfo(SrcSV));
3782}
3783
3784SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3785 assert(Subtarget->isTargetDarwin() &&
3786 "automatic va_arg instruction only works on Darwin");
3787
3788 const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3789 EVT VT = Op.getValueType();
3790 SDLoc DL(Op);
3791 SDValue Chain = Op.getOperand(0);
3792 SDValue Addr = Op.getOperand(1);
3793 unsigned Align = Op.getConstantOperandVal(3);
3794
3795 SDValue VAList = DAG.getLoad(getPointerTy(), DL, Chain, Addr,
3796 MachinePointerInfo(V), false, false, false, 0);
3797 Chain = VAList.getValue(1);
3798
3799 if (Align > 8) {
3800 assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
3801 VAList = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3802 DAG.getConstant(Align - 1, getPointerTy()));
3803 VAList = DAG.getNode(ISD::AND, DL, getPointerTy(), VAList,
3804 DAG.getConstant(-(int64_t)Align, getPointerTy()));
3805 }
3806
3807 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
3808 uint64_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
3809
3810 // Scalar integer and FP values smaller than 64 bits are implicitly extended
3811 // up to 64 bits. At the very least, we have to increase the striding of the
3812 // vaargs list to match this, and for FP values we need to introduce
3813 // FP_ROUND nodes as well.
3814 if (VT.isInteger() && !VT.isVector())
3815 ArgSize = 8;
3816 bool NeedFPTrunc = false;
3817 if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
3818 ArgSize = 8;
3819 NeedFPTrunc = true;
3820 }
3821
3822 // Increment the pointer, VAList, to the next vaarg
3823 SDValue VANext = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3824 DAG.getConstant(ArgSize, getPointerTy()));
3825 // Store the incremented VAList to the legalized pointer
3826 SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
3827 false, false, 0);
3828
3829 // Load the actual argument out of the pointer VAList
3830 if (NeedFPTrunc) {
3831 // Load the value as an f64.
3832 SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
3833 MachinePointerInfo(), false, false, false, 0);
3834 // Round the value down to an f32.
3835 SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
3836 DAG.getIntPtrConstant(1));
3837 SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
3838 // Merge the rounded value with the chain output of the load.
3839 return DAG.getMergeValues(Ops, DL);
3840 }
3841
3842 return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
3843 false, false, 0);
3844}
3845
3846SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
3847 SelectionDAG &DAG) const {
3848 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3849 MFI->setFrameAddressIsTaken(true);
3850
3851 EVT VT = Op.getValueType();
3852 SDLoc DL(Op);
3853 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3854 SDValue FrameAddr =
3855 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
3856 while (Depth--)
3857 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
3858 MachinePointerInfo(), false, false, false, 0);
3859 return FrameAddr;
3860}
3861
3862// FIXME? Maybe this could be a TableGen attribute on some registers and
3863// this table could be generated automatically from RegInfo.
3864unsigned AArch64TargetLowering::getRegisterByName(const char* RegName,
3865 EVT VT) const {
3866 unsigned Reg = StringSwitch<unsigned>(RegName)
3867 .Case("sp", AArch64::SP)
3868 .Default(0);
3869 if (Reg)
3870 return Reg;
3871 report_fatal_error("Invalid register name global variable");
3872}
3873
3874SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
3875 SelectionDAG &DAG) const {
3876 MachineFunction &MF = DAG.getMachineFunction();
3877 MachineFrameInfo *MFI = MF.getFrameInfo();
3878 MFI->setReturnAddressIsTaken(true);
3879
3880 EVT VT = Op.getValueType();
3881 SDLoc DL(Op);
3882 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3883 if (Depth) {
3884 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3885 SDValue Offset = DAG.getConstant(8, getPointerTy());
3886 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3887 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3888 MachinePointerInfo(), false, false, false, 0);
3889 }
3890
3891 // Return LR, which contains the return address. Mark it an implicit live-in.
3892 unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
3893 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
3894}
3895
3896/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3897/// i64 values and take a 2 x i64 value to shift plus a shift amount.
3898SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
3899 SelectionDAG &DAG) const {
3900 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3901 EVT VT = Op.getValueType();
3902 unsigned VTBits = VT.getSizeInBits();
3903 SDLoc dl(Op);
3904 SDValue ShOpLo = Op.getOperand(0);
3905 SDValue ShOpHi = Op.getOperand(1);
3906 SDValue ShAmt = Op.getOperand(2);
3907 SDValue ARMcc;
3908 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3909
3910 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3911
3912 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
3913 DAG.getConstant(VTBits, MVT::i64), ShAmt);
3914 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3915 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
3916 DAG.getConstant(VTBits, MVT::i64));
3917 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3918
3919 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
3920 ISD::SETGE, dl, DAG);
3921 SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
3922
3923 SDValue FalseValLo = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3924 SDValue TrueValLo = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3925 SDValue Lo =
3926 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
3927
3928 // AArch64 shifts larger than the register width are wrapped rather than
3929 // clamped, so we can't just emit "hi >> x".
3930 SDValue FalseValHi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3931 SDValue TrueValHi = Opc == ISD::SRA
3932 ? DAG.getNode(Opc, dl, VT, ShOpHi,
3933 DAG.getConstant(VTBits - 1, MVT::i64))
3934 : DAG.getConstant(0, VT);
3935 SDValue Hi =
3936 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValHi, FalseValHi, CCVal, Cmp);
3937
3938 SDValue Ops[2] = { Lo, Hi };
3939 return DAG.getMergeValues(Ops, dl);
3940}
3941
3942/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3943/// i64 values and take a 2 x i64 value to shift plus a shift amount.
3944SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
3945 SelectionDAG &DAG) const {
3946 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3947 EVT VT = Op.getValueType();
3948 unsigned VTBits = VT.getSizeInBits();
3949 SDLoc dl(Op);
3950 SDValue ShOpLo = Op.getOperand(0);
3951 SDValue ShOpHi = Op.getOperand(1);
3952 SDValue ShAmt = Op.getOperand(2);
3953 SDValue ARMcc;
3954
3955 assert(Op.getOpcode() == ISD::SHL_PARTS);
3956 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
3957 DAG.getConstant(VTBits, MVT::i64), ShAmt);
3958 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3959 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
3960 DAG.getConstant(VTBits, MVT::i64));
3961 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3962 SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3963
3964 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3965
3966 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
3967 ISD::SETGE, dl, DAG);
3968 SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
3969 SDValue Hi =
3970 DAG.getNode(AArch64ISD::CSEL, dl, VT, Tmp3, FalseVal, CCVal, Cmp);
3971
3972 // AArch64 shifts of larger than register sizes are wrapped rather than
3973 // clamped, so we can't just emit "lo << a" if a is too big.
3974 SDValue TrueValLo = DAG.getConstant(0, VT);
3975 SDValue FalseValLo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3976 SDValue Lo =
3977 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
3978
3979 SDValue Ops[2] = { Lo, Hi };
3980 return DAG.getMergeValues(Ops, dl);
3981}
3982
3983bool AArch64TargetLowering::isOffsetFoldingLegal(
3984 const GlobalAddressSDNode *GA) const {
3985 // The AArch64 target doesn't support folding offsets into global addresses.
3986 return false;
3987}
3988
3989bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3990 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
3991 // FIXME: We should be able to handle f128 as well with a clever lowering.
3992 if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
3993 return true;
3994
3995 if (VT == MVT::f64)
3996 return AArch64_AM::getFP64Imm(Imm) != -1;
3997 else if (VT == MVT::f32)
3998 return AArch64_AM::getFP32Imm(Imm) != -1;
3999 return false;
4000}
4001
4002//===----------------------------------------------------------------------===//
4003// AArch64 Optimization Hooks
4004//===----------------------------------------------------------------------===//
4005
4006//===----------------------------------------------------------------------===//
4007// AArch64 Inline Assembly Support
4008//===----------------------------------------------------------------------===//
4009
4010// Table of Constraints
4011// TODO: This is the current set of constraints supported by ARM for the
4012// compiler, not all of them may make sense, e.g. S may be difficult to support.
4013//
4014// r - A general register
4015// w - An FP/SIMD register of some size in the range v0-v31
4016// x - An FP/SIMD register of some size in the range v0-v15
4017// I - Constant that can be used with an ADD instruction
4018// J - Constant that can be used with a SUB instruction
4019// K - Constant that can be used with a 32-bit logical instruction
4020// L - Constant that can be used with a 64-bit logical instruction
4021// M - Constant that can be used as a 32-bit MOV immediate
4022// N - Constant that can be used as a 64-bit MOV immediate
4023// Q - A memory reference with base register and no offset
4024// S - A symbolic address
4025// Y - Floating point constant zero
4026// Z - Integer constant zero
4027//
4028// Note that general register operands will be output using their 64-bit x
4029// register name, whatever the size of the variable, unless the asm operand
4030// is prefixed by the %w modifier. Floating-point and SIMD register operands
4031// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
4032// %q modifier.
4033
4034/// getConstraintType - Given a constraint letter, return the type of
4035/// constraint it is for this target.
4036AArch64TargetLowering::ConstraintType
4037AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
4038 if (Constraint.size() == 1) {
4039 switch (Constraint[0]) {
4040 default:
4041 break;
4042 case 'z':
4043 return C_Other;
4044 case 'x':
4045 case 'w':
4046 return C_RegisterClass;
4047 // An address with a single base register. Due to the way we
4048 // currently handle addresses it is the same as 'r'.
4049 case 'Q':
4050 return C_Memory;
4051 }
4052 }
4053 return TargetLowering::getConstraintType(Constraint);
4054}
4055
4056/// Examine constraint type and operand type and determine a weight value.
4057/// This object must already have been set up with the operand type
4058/// and the current alternative constraint selected.
4059TargetLowering::ConstraintWeight
4060AArch64TargetLowering::getSingleConstraintMatchWeight(
4061 AsmOperandInfo &info, const char *constraint) const {
4062 ConstraintWeight weight = CW_Invalid;
4063 Value *CallOperandVal = info.CallOperandVal;
4064 // If we don't have a value, we can't do a match,
4065 // but allow it at the lowest weight.
4066 if (!CallOperandVal)
4067 return CW_Default;
4068 Type *type = CallOperandVal->getType();
4069 // Look at the constraint type.
4070 switch (*constraint) {
4071 default:
4072 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
4073 break;
4074 case 'x':
4075 case 'w':
4076 if (type->isFloatingPointTy() || type->isVectorTy())
4077 weight = CW_Register;
4078 break;
4079 case 'z':
4080 weight = CW_Constant;
4081 break;
4082 }
4083 return weight;
4084}
4085
4086std::pair<unsigned, const TargetRegisterClass *>
4087AArch64TargetLowering::getRegForInlineAsmConstraint(
4088 const std::string &Constraint, MVT VT) const {
4089 if (Constraint.size() == 1) {
4090 switch (Constraint[0]) {
4091 case 'r':
4092 if (VT.getSizeInBits() == 64)
4093 return std::make_pair(0U, &AArch64::GPR64commonRegClass);
4094 return std::make_pair(0U, &AArch64::GPR32commonRegClass);
4095 case 'w':
4096 if (VT == MVT::f32)
4097 return std::make_pair(0U, &AArch64::FPR32RegClass);
4098 if (VT.getSizeInBits() == 64)
4099 return std::make_pair(0U, &AArch64::FPR64RegClass);
4100 if (VT.getSizeInBits() == 128)
4101 return std::make_pair(0U, &AArch64::FPR128RegClass);
4102 break;
4103 // The instructions that this constraint is designed for can
4104 // only take 128-bit registers so just use that regclass.
4105 case 'x':
4106 if (VT.getSizeInBits() == 128)
4107 return std::make_pair(0U, &AArch64::FPR128_loRegClass);
4108 break;
4109 }
4110 }
4111 if (StringRef("{cc}").equals_lower(Constraint))
4112 return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
4113
4114 // Use the default implementation in TargetLowering to convert the register
4115 // constraint into a member of a register class.
4116 std::pair<unsigned, const TargetRegisterClass *> Res;
4117 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4118
4119 // Not found as a standard register?
4120 if (!Res.second) {
4121 unsigned Size = Constraint.size();
4122 if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
4123 tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
4124 const std::string Reg =
4125 std::string(&Constraint[2], &Constraint[Size - 1]);
4126 int RegNo = atoi(Reg.c_str());
4127 if (RegNo >= 0 && RegNo <= 31) {
4128 // v0 - v31 are aliases of q0 - q31.
4129 // By default we'll emit v0-v31 for this unless there's a modifier where
4130 // we'll emit the correct register as well.
4131 Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
4132 Res.second = &AArch64::FPR128RegClass;
4133 }
4134 }
4135 }
4136
4137 return Res;
4138}
4139
4140/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4141/// vector. If it is invalid, don't add anything to Ops.
4142void AArch64TargetLowering::LowerAsmOperandForConstraint(
4143 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
4144 SelectionDAG &DAG) const {
4145 SDValue Result;
4146
4147 // Currently only support length 1 constraints.
4148 if (Constraint.length() != 1)
4149 return;
4150
4151 char ConstraintLetter = Constraint[0];
4152 switch (ConstraintLetter) {
4153 default:
4154 break;
4155
4156 // This set of constraints deal with valid constants for various instructions.
4157 // Validate and return a target constant for them if we can.
4158 case 'z': {
4159 // 'z' maps to xzr or wzr so it needs an input of 0.
4160 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4161 if (!C || C->getZExtValue() != 0)
4162 return;
4163
4164 if (Op.getValueType() == MVT::i64)
4165 Result = DAG.getRegister(AArch64::XZR, MVT::i64);
4166 else
4167 Result = DAG.getRegister(AArch64::WZR, MVT::i32);
4168 break;
4169 }
4170
4171 case 'I':
4172 case 'J':
4173 case 'K':
4174 case 'L':
4175 case 'M':
4176 case 'N':
4177 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4178 if (!C)
4179 return;
4180
4181 // Grab the value and do some validation.
4182 uint64_t CVal = C->getZExtValue();
4183 switch (ConstraintLetter) {
4184 // The I constraint applies only to simple ADD or SUB immediate operands:
4185 // i.e. 0 to 4095 with optional shift by 12
4186 // The J constraint applies only to ADD or SUB immediates that would be
4187 // valid when negated, i.e. if [an add pattern] were to be output as a SUB
4188 // instruction [or vice versa], in other words -1 to -4095 with optional
4189 // left shift by 12.
4190 case 'I':
4191 if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
4192 break;
4193 return;
4194 case 'J': {
4195 uint64_t NVal = -C->getSExtValue();
Tim Northover2c46beb2014-07-27 07:10:29 +00004196 if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
4197 CVal = C->getSExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00004198 break;
Tim Northover2c46beb2014-07-27 07:10:29 +00004199 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004200 return;
4201 }
4202 // The K and L constraints apply *only* to logical immediates, including
4203 // what used to be the MOVI alias for ORR (though the MOVI alias has now
4204 // been removed and MOV should be used). So these constraints have to
4205 // distinguish between bit patterns that are valid 32-bit or 64-bit
4206 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
4207 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
4208 // versa.
4209 case 'K':
4210 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4211 break;
4212 return;
4213 case 'L':
4214 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4215 break;
4216 return;
4217 // The M and N constraints are a superset of K and L respectively, for use
4218 // with the MOV (immediate) alias. As well as the logical immediates they
4219 // also match 32 or 64-bit immediates that can be loaded either using a
4220 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
4221 // (M) or 64-bit 0x1234000000000000 (N) etc.
4222 // As a note some of this code is liberally stolen from the asm parser.
4223 case 'M': {
4224 if (!isUInt<32>(CVal))
4225 return;
4226 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4227 break;
4228 if ((CVal & 0xFFFF) == CVal)
4229 break;
4230 if ((CVal & 0xFFFF0000ULL) == CVal)
4231 break;
4232 uint64_t NCVal = ~(uint32_t)CVal;
4233 if ((NCVal & 0xFFFFULL) == NCVal)
4234 break;
4235 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4236 break;
4237 return;
4238 }
4239 case 'N': {
4240 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4241 break;
4242 if ((CVal & 0xFFFFULL) == CVal)
4243 break;
4244 if ((CVal & 0xFFFF0000ULL) == CVal)
4245 break;
4246 if ((CVal & 0xFFFF00000000ULL) == CVal)
4247 break;
4248 if ((CVal & 0xFFFF000000000000ULL) == CVal)
4249 break;
4250 uint64_t NCVal = ~CVal;
4251 if ((NCVal & 0xFFFFULL) == NCVal)
4252 break;
4253 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4254 break;
4255 if ((NCVal & 0xFFFF00000000ULL) == NCVal)
4256 break;
4257 if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
4258 break;
4259 return;
4260 }
4261 default:
4262 return;
4263 }
4264
4265 // All assembler immediates are 64-bit integers.
4266 Result = DAG.getTargetConstant(CVal, MVT::i64);
4267 break;
4268 }
4269
4270 if (Result.getNode()) {
4271 Ops.push_back(Result);
4272 return;
4273 }
4274
4275 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4276}
4277
4278//===----------------------------------------------------------------------===//
4279// AArch64 Advanced SIMD Support
4280//===----------------------------------------------------------------------===//
4281
4282/// WidenVector - Given a value in the V64 register class, produce the
4283/// equivalent value in the V128 register class.
4284static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
4285 EVT VT = V64Reg.getValueType();
4286 unsigned NarrowSize = VT.getVectorNumElements();
4287 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4288 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
4289 SDLoc DL(V64Reg);
4290
4291 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
4292 V64Reg, DAG.getConstant(0, MVT::i32));
4293}
4294
4295/// getExtFactor - Determine the adjustment factor for the position when
4296/// generating an "extract from vector registers" instruction.
4297static unsigned getExtFactor(SDValue &V) {
4298 EVT EltType = V.getValueType().getVectorElementType();
4299 return EltType.getSizeInBits() / 8;
4300}
4301
4302/// NarrowVector - Given a value in the V128 register class, produce the
4303/// equivalent value in the V64 register class.
4304static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
4305 EVT VT = V128Reg.getValueType();
4306 unsigned WideSize = VT.getVectorNumElements();
4307 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4308 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
4309 SDLoc DL(V128Reg);
4310
4311 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
4312}
4313
4314// Gather data to see if the operation can be modelled as a
4315// shuffle in combination with VEXTs.
4316SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
4317 SelectionDAG &DAG) const {
Kevin Qinf0ec9af2014-06-18 05:54:42 +00004318 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00004319 SDLoc dl(Op);
4320 EVT VT = Op.getValueType();
4321 unsigned NumElts = VT.getVectorNumElements();
4322
Tim Northover7324e842014-07-24 15:39:55 +00004323 struct ShuffleSourceInfo {
4324 SDValue Vec;
4325 unsigned MinElt;
4326 unsigned MaxElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00004327
Tim Northover7324e842014-07-24 15:39:55 +00004328 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
4329 // be compatible with the shuffle we intend to construct. As a result
4330 // ShuffleVec will be some sliding window into the original Vec.
4331 SDValue ShuffleVec;
4332
4333 // Code should guarantee that element i in Vec starts at element "WindowBase
4334 // + i * WindowScale in ShuffleVec".
4335 int WindowBase;
4336 int WindowScale;
4337
4338 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
4339 ShuffleSourceInfo(SDValue Vec)
4340 : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
4341 WindowScale(1) {}
4342 };
4343
4344 // First gather all vectors used as an immediate source for this BUILD_VECTOR
4345 // node.
4346 SmallVector<ShuffleSourceInfo, 2> Sources;
Tim Northover3b0846e2014-05-24 12:50:23 +00004347 for (unsigned i = 0; i < NumElts; ++i) {
4348 SDValue V = Op.getOperand(i);
4349 if (V.getOpcode() == ISD::UNDEF)
4350 continue;
4351 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4352 // A shuffle can only come from building a vector from various
4353 // elements of other vectors.
4354 return SDValue();
4355 }
4356
Tim Northover7324e842014-07-24 15:39:55 +00004357 // Add this element source to the list if it's not already there.
Tim Northover3b0846e2014-05-24 12:50:23 +00004358 SDValue SourceVec = V.getOperand(0);
Tim Northover7324e842014-07-24 15:39:55 +00004359 auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
4360 if (Source == Sources.end())
4361 Sources.push_back(ShuffleSourceInfo(SourceVec));
Tim Northover3b0846e2014-05-24 12:50:23 +00004362
Tim Northover7324e842014-07-24 15:39:55 +00004363 // Update the minimum and maximum lane number seen.
4364 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4365 Source->MinElt = std::min(Source->MinElt, EltNo);
4366 Source->MaxElt = std::max(Source->MaxElt, EltNo);
Tim Northover3b0846e2014-05-24 12:50:23 +00004367 }
4368
4369 // Currently only do something sane when at most two source vectors
Tim Northover7324e842014-07-24 15:39:55 +00004370 // are involved.
4371 if (Sources.size() > 2)
Tim Northover3b0846e2014-05-24 12:50:23 +00004372 return SDValue();
4373
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004374 // Find out the smallest element size among result and two sources, and use
4375 // it as element size to build the shuffle_vector.
4376 EVT SmallestEltTy = VT.getVectorElementType();
Tim Northover7324e842014-07-24 15:39:55 +00004377 for (auto &Source : Sources) {
4378 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004379 if (SrcEltTy.bitsLT(SmallestEltTy)) {
4380 SmallestEltTy = SrcEltTy;
4381 }
4382 }
4383 unsigned ResMultiplier =
4384 VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004385 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
4386 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00004387
Tim Northover7324e842014-07-24 15:39:55 +00004388 // If the source vector is too wide or too narrow, we may nevertheless be able
4389 // to construct a compatible shuffle either by concatenating it with UNDEF or
4390 // extracting a suitable range of elements.
4391 for (auto &Src : Sources) {
4392 EVT SrcVT = Src.ShuffleVec.getValueType();
Kevin Qinf0ec9af2014-06-18 05:54:42 +00004393
Tim Northover7324e842014-07-24 15:39:55 +00004394 if (SrcVT.getSizeInBits() == VT.getSizeInBits())
Tim Northover3b0846e2014-05-24 12:50:23 +00004395 continue;
Tim Northover7324e842014-07-24 15:39:55 +00004396
4397 // This stage of the search produces a source with the same element type as
4398 // the original, but with a total width matching the BUILD_VECTOR output.
4399 EVT EltVT = SrcVT.getVectorElementType();
4400 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT,
4401 VT.getSizeInBits() / EltVT.getSizeInBits());
4402
4403 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
4404 assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00004405 // We can pad out the smaller vector for free, so if it's part of a
4406 // shuffle...
Tim Northover7324e842014-07-24 15:39:55 +00004407 Src.ShuffleVec =
4408 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
4409 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004410 continue;
4411 }
4412
Tim Northover7324e842014-07-24 15:39:55 +00004413 assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00004414
Tim Northover7324e842014-07-24 15:39:55 +00004415 if (Src.MaxElt - Src.MinElt >= NumElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004416 // Span too large for a VEXT to cope
4417 return SDValue();
4418 }
4419
Tim Northover7324e842014-07-24 15:39:55 +00004420 if (Src.MinElt >= NumElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004421 // The extraction can just take the second half
Tim Northover7324e842014-07-24 15:39:55 +00004422 Src.ShuffleVec =
4423 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
4424 DAG.getIntPtrConstant(NumElts));
4425 Src.WindowBase = -NumElts;
4426 } else if (Src.MaxElt < NumElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004427 // The extraction can just take the first half
Tim Northover7324e842014-07-24 15:39:55 +00004428 Src.ShuffleVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT,
4429 Src.ShuffleVec, DAG.getIntPtrConstant(0));
Tim Northover3b0846e2014-05-24 12:50:23 +00004430 } else {
4431 // An actual VEXT is needed
Tim Northover7324e842014-07-24 15:39:55 +00004432 SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT,
4433 Src.ShuffleVec, DAG.getIntPtrConstant(0));
4434 SDValue VEXTSrc2 =
4435 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
4436 DAG.getIntPtrConstant(NumElts));
4437 unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
4438
4439 Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004440 VEXTSrc2, DAG.getConstant(Imm, MVT::i32));
Tim Northover7324e842014-07-24 15:39:55 +00004441 Src.WindowBase = -Src.MinElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00004442 }
4443 }
4444
Tim Northover7324e842014-07-24 15:39:55 +00004445 // Another possible incompatibility occurs from the vector element types. We
4446 // can fix this by bitcasting the source vectors to the same type we intend
4447 // for the shuffle.
4448 for (auto &Src : Sources) {
4449 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
4450 if (SrcEltTy == SmallestEltTy)
4451 continue;
4452 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
4453 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
4454 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
4455 Src.WindowBase *= Src.WindowScale;
4456 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004457
Tim Northover7324e842014-07-24 15:39:55 +00004458 // Final sanity check before we try to actually produce a shuffle.
4459 DEBUG(
4460 for (auto Src : Sources)
4461 assert(Src.ShuffleVec.getValueType() == ShuffleVT);
4462 );
4463
4464 // The stars all align, our next step is to produce the mask for the shuffle.
4465 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
4466 int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004467 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004468 SDValue Entry = Op.getOperand(i);
Tim Northover7324e842014-07-24 15:39:55 +00004469 if (Entry.getOpcode() == ISD::UNDEF)
4470 continue;
Tim Northover3b0846e2014-05-24 12:50:23 +00004471
Tim Northover7324e842014-07-24 15:39:55 +00004472 auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
4473 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
4474
4475 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
4476 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
4477 // segment.
4478 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
4479 int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
4480 VT.getVectorElementType().getSizeInBits());
4481 int LanesDefined = BitsDefined / BitsPerShuffleLane;
4482
4483 // This source is expected to fill ResMultiplier lanes of the final shuffle,
4484 // starting at the appropriate offset.
4485 int *LaneMask = &Mask[i * ResMultiplier];
4486
4487 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
4488 ExtractBase += NumElts * (Src - Sources.begin());
4489 for (int j = 0; j < LanesDefined; ++j)
4490 LaneMask[j] = ExtractBase + j;
Tim Northover3b0846e2014-05-24 12:50:23 +00004491 }
4492
4493 // Final check before we try to produce nonsense...
Tim Northover7324e842014-07-24 15:39:55 +00004494 if (!isShuffleMaskLegal(Mask, ShuffleVT))
4495 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00004496
Tim Northover7324e842014-07-24 15:39:55 +00004497 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
4498 for (unsigned i = 0; i < Sources.size(); ++i)
4499 ShuffleOps[i] = Sources[i].ShuffleVec;
4500
4501 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
4502 ShuffleOps[1], &Mask[0]);
4503 return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
Tim Northover3b0846e2014-05-24 12:50:23 +00004504}
4505
4506// check if an EXT instruction can handle the shuffle mask when the
4507// vector sources of the shuffle are the same.
4508static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
4509 unsigned NumElts = VT.getVectorNumElements();
4510
4511 // Assume that the first shuffle index is not UNDEF. Fail if it is.
4512 if (M[0] < 0)
4513 return false;
4514
4515 Imm = M[0];
4516
4517 // If this is a VEXT shuffle, the immediate value is the index of the first
4518 // element. The other shuffle indices must be the successive elements after
4519 // the first one.
4520 unsigned ExpectedElt = Imm;
4521 for (unsigned i = 1; i < NumElts; ++i) {
4522 // Increment the expected index. If it wraps around, just follow it
4523 // back to index zero and keep going.
4524 ++ExpectedElt;
4525 if (ExpectedElt == NumElts)
4526 ExpectedElt = 0;
4527
4528 if (M[i] < 0)
4529 continue; // ignore UNDEF indices
4530 if (ExpectedElt != static_cast<unsigned>(M[i]))
4531 return false;
4532 }
4533
4534 return true;
4535}
4536
4537// check if an EXT instruction can handle the shuffle mask when the
4538// vector sources of the shuffle are different.
4539static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
4540 unsigned &Imm) {
4541 // Look for the first non-undef element.
4542 const int *FirstRealElt = std::find_if(M.begin(), M.end(),
4543 [](int Elt) {return Elt >= 0;});
4544
4545 // Benefit form APInt to handle overflow when calculating expected element.
4546 unsigned NumElts = VT.getVectorNumElements();
4547 unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
4548 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
4549 // The following shuffle indices must be the successive elements after the
4550 // first real element.
4551 const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
4552 [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
4553 if (FirstWrongElt != M.end())
4554 return false;
4555
4556 // The index of an EXT is the first element if it is not UNDEF.
4557 // Watch out for the beginning UNDEFs. The EXT index should be the expected
4558 // value of the first element. E.g.
4559 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
4560 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
4561 // ExpectedElt is the last mask index plus 1.
4562 Imm = ExpectedElt.getZExtValue();
4563
4564 // There are two difference cases requiring to reverse input vectors.
4565 // For example, for vector <4 x i32> we have the following cases,
4566 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
4567 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
4568 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
4569 // to reverse two input vectors.
4570 if (Imm < NumElts)
4571 ReverseEXT = true;
4572 else
4573 Imm -= NumElts;
4574
4575 return true;
4576}
4577
4578/// isREVMask - Check if a vector shuffle corresponds to a REV
4579/// instruction with the specified blocksize. (The order of the elements
4580/// within each block of the vector is reversed.)
4581static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
4582 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
4583 "Only possible block sizes for REV are: 16, 32, 64");
4584
4585 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4586 if (EltSz == 64)
4587 return false;
4588
4589 unsigned NumElts = VT.getVectorNumElements();
4590 unsigned BlockElts = M[0] + 1;
4591 // If the first shuffle index is UNDEF, be optimistic.
4592 if (M[0] < 0)
4593 BlockElts = BlockSize / EltSz;
4594
4595 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
4596 return false;
4597
4598 for (unsigned i = 0; i < NumElts; ++i) {
4599 if (M[i] < 0)
4600 continue; // ignore UNDEF indices
4601 if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
4602 return false;
4603 }
4604
4605 return true;
4606}
4607
4608static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4609 unsigned NumElts = VT.getVectorNumElements();
4610 WhichResult = (M[0] == 0 ? 0 : 1);
4611 unsigned Idx = WhichResult * NumElts / 2;
4612 for (unsigned i = 0; i != NumElts; i += 2) {
4613 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4614 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
4615 return false;
4616 Idx += 1;
4617 }
4618
4619 return true;
4620}
4621
4622static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4623 unsigned NumElts = VT.getVectorNumElements();
4624 WhichResult = (M[0] == 0 ? 0 : 1);
4625 for (unsigned i = 0; i != NumElts; ++i) {
4626 if (M[i] < 0)
4627 continue; // ignore UNDEF indices
4628 if ((unsigned)M[i] != 2 * i + WhichResult)
4629 return false;
4630 }
4631
4632 return true;
4633}
4634
4635static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4636 unsigned NumElts = VT.getVectorNumElements();
4637 WhichResult = (M[0] == 0 ? 0 : 1);
4638 for (unsigned i = 0; i < NumElts; i += 2) {
4639 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4640 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
4641 return false;
4642 }
4643 return true;
4644}
4645
4646/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
4647/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4648/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
4649static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4650 unsigned NumElts = VT.getVectorNumElements();
4651 WhichResult = (M[0] == 0 ? 0 : 1);
4652 unsigned Idx = WhichResult * NumElts / 2;
4653 for (unsigned i = 0; i != NumElts; i += 2) {
4654 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4655 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
4656 return false;
4657 Idx += 1;
4658 }
4659
4660 return true;
4661}
4662
4663/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
4664/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4665/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
4666static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4667 unsigned Half = VT.getVectorNumElements() / 2;
4668 WhichResult = (M[0] == 0 ? 0 : 1);
4669 for (unsigned j = 0; j != 2; ++j) {
4670 unsigned Idx = WhichResult;
4671 for (unsigned i = 0; i != Half; ++i) {
4672 int MIdx = M[i + j * Half];
4673 if (MIdx >= 0 && (unsigned)MIdx != Idx)
4674 return false;
4675 Idx += 2;
4676 }
4677 }
4678
4679 return true;
4680}
4681
4682/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
4683/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4684/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
4685static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4686 unsigned NumElts = VT.getVectorNumElements();
4687 WhichResult = (M[0] == 0 ? 0 : 1);
4688 for (unsigned i = 0; i < NumElts; i += 2) {
4689 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4690 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
4691 return false;
4692 }
4693 return true;
4694}
4695
4696static bool isINSMask(ArrayRef<int> M, int NumInputElements,
4697 bool &DstIsLeft, int &Anomaly) {
4698 if (M.size() != static_cast<size_t>(NumInputElements))
4699 return false;
4700
4701 int NumLHSMatch = 0, NumRHSMatch = 0;
4702 int LastLHSMismatch = -1, LastRHSMismatch = -1;
4703
4704 for (int i = 0; i < NumInputElements; ++i) {
4705 if (M[i] == -1) {
4706 ++NumLHSMatch;
4707 ++NumRHSMatch;
4708 continue;
4709 }
4710
4711 if (M[i] == i)
4712 ++NumLHSMatch;
4713 else
4714 LastLHSMismatch = i;
4715
4716 if (M[i] == i + NumInputElements)
4717 ++NumRHSMatch;
4718 else
4719 LastRHSMismatch = i;
4720 }
4721
4722 if (NumLHSMatch == NumInputElements - 1) {
4723 DstIsLeft = true;
4724 Anomaly = LastLHSMismatch;
4725 return true;
4726 } else if (NumRHSMatch == NumInputElements - 1) {
4727 DstIsLeft = false;
4728 Anomaly = LastRHSMismatch;
4729 return true;
4730 }
4731
4732 return false;
4733}
4734
4735static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
4736 if (VT.getSizeInBits() != 128)
4737 return false;
4738
4739 unsigned NumElts = VT.getVectorNumElements();
4740
4741 for (int I = 0, E = NumElts / 2; I != E; I++) {
4742 if (Mask[I] != I)
4743 return false;
4744 }
4745
4746 int Offset = NumElts / 2;
4747 for (int I = NumElts / 2, E = NumElts; I != E; I++) {
4748 if (Mask[I] != I + SplitLHS * Offset)
4749 return false;
4750 }
4751
4752 return true;
4753}
4754
4755static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
4756 SDLoc DL(Op);
4757 EVT VT = Op.getValueType();
4758 SDValue V0 = Op.getOperand(0);
4759 SDValue V1 = Op.getOperand(1);
4760 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
4761
4762 if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
4763 VT.getVectorElementType() != V1.getValueType().getVectorElementType())
4764 return SDValue();
4765
4766 bool SplitV0 = V0.getValueType().getSizeInBits() == 128;
4767
4768 if (!isConcatMask(Mask, VT, SplitV0))
4769 return SDValue();
4770
4771 EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
4772 VT.getVectorNumElements() / 2);
4773 if (SplitV0) {
4774 V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
4775 DAG.getConstant(0, MVT::i64));
4776 }
4777 if (V1.getValueType().getSizeInBits() == 128) {
4778 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
4779 DAG.getConstant(0, MVT::i64));
4780 }
4781 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
4782}
4783
4784/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4785/// the specified operations to build the shuffle.
4786static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4787 SDValue RHS, SelectionDAG &DAG,
4788 SDLoc dl) {
4789 unsigned OpNum = (PFEntry >> 26) & 0x0F;
4790 unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
4791 unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
4792
4793 enum {
4794 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4795 OP_VREV,
4796 OP_VDUP0,
4797 OP_VDUP1,
4798 OP_VDUP2,
4799 OP_VDUP3,
4800 OP_VEXT1,
4801 OP_VEXT2,
4802 OP_VEXT3,
4803 OP_VUZPL, // VUZP, left result
4804 OP_VUZPR, // VUZP, right result
4805 OP_VZIPL, // VZIP, left result
4806 OP_VZIPR, // VZIP, right result
4807 OP_VTRNL, // VTRN, left result
4808 OP_VTRNR // VTRN, right result
4809 };
4810
4811 if (OpNum == OP_COPY) {
4812 if (LHSID == (1 * 9 + 2) * 9 + 3)
4813 return LHS;
4814 assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
4815 return RHS;
4816 }
4817
4818 SDValue OpLHS, OpRHS;
4819 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4820 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4821 EVT VT = OpLHS.getValueType();
4822
4823 switch (OpNum) {
4824 default:
4825 llvm_unreachable("Unknown shuffle opcode!");
4826 case OP_VREV:
4827 // VREV divides the vector in half and swaps within the half.
4828 if (VT.getVectorElementType() == MVT::i32 ||
4829 VT.getVectorElementType() == MVT::f32)
4830 return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
4831 // vrev <4 x i16> -> REV32
Oliver Stannard89d15422014-08-27 16:16:04 +00004832 if (VT.getVectorElementType() == MVT::i16 ||
4833 VT.getVectorElementType() == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00004834 return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
4835 // vrev <4 x i8> -> REV16
4836 assert(VT.getVectorElementType() == MVT::i8);
4837 return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
4838 case OP_VDUP0:
4839 case OP_VDUP1:
4840 case OP_VDUP2:
4841 case OP_VDUP3: {
4842 EVT EltTy = VT.getVectorElementType();
4843 unsigned Opcode;
4844 if (EltTy == MVT::i8)
4845 Opcode = AArch64ISD::DUPLANE8;
4846 else if (EltTy == MVT::i16)
4847 Opcode = AArch64ISD::DUPLANE16;
4848 else if (EltTy == MVT::i32 || EltTy == MVT::f32)
4849 Opcode = AArch64ISD::DUPLANE32;
4850 else if (EltTy == MVT::i64 || EltTy == MVT::f64)
4851 Opcode = AArch64ISD::DUPLANE64;
4852 else
4853 llvm_unreachable("Invalid vector element type?");
4854
4855 if (VT.getSizeInBits() == 64)
4856 OpLHS = WidenVector(OpLHS, DAG);
4857 SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, MVT::i64);
4858 return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
4859 }
4860 case OP_VEXT1:
4861 case OP_VEXT2:
4862 case OP_VEXT3: {
4863 unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
4864 return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
4865 DAG.getConstant(Imm, MVT::i32));
4866 }
4867 case OP_VUZPL:
4868 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
4869 OpRHS);
4870 case OP_VUZPR:
4871 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
4872 OpRHS);
4873 case OP_VZIPL:
4874 return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
4875 OpRHS);
4876 case OP_VZIPR:
4877 return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
4878 OpRHS);
4879 case OP_VTRNL:
4880 return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
4881 OpRHS);
4882 case OP_VTRNR:
4883 return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
4884 OpRHS);
4885 }
4886}
4887
4888static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
4889 SelectionDAG &DAG) {
4890 // Check to see if we can use the TBL instruction.
4891 SDValue V1 = Op.getOperand(0);
4892 SDValue V2 = Op.getOperand(1);
4893 SDLoc DL(Op);
4894
4895 EVT EltVT = Op.getValueType().getVectorElementType();
4896 unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
4897
4898 SmallVector<SDValue, 8> TBLMask;
4899 for (int Val : ShuffleMask) {
4900 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
4901 unsigned Offset = Byte + Val * BytesPerElt;
4902 TBLMask.push_back(DAG.getConstant(Offset, MVT::i32));
4903 }
4904 }
4905
4906 MVT IndexVT = MVT::v8i8;
4907 unsigned IndexLen = 8;
4908 if (Op.getValueType().getSizeInBits() == 128) {
4909 IndexVT = MVT::v16i8;
4910 IndexLen = 16;
4911 }
4912
4913 SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
4914 SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
4915
4916 SDValue Shuffle;
4917 if (V2.getNode()->getOpcode() == ISD::UNDEF) {
4918 if (IndexLen == 8)
4919 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
4920 Shuffle = DAG.getNode(
4921 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
4922 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
4923 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
4924 makeArrayRef(TBLMask.data(), IndexLen)));
4925 } else {
4926 if (IndexLen == 8) {
4927 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
4928 Shuffle = DAG.getNode(
4929 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
4930 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
4931 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
4932 makeArrayRef(TBLMask.data(), IndexLen)));
4933 } else {
4934 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
4935 // cannot currently represent the register constraints on the input
4936 // table registers.
4937 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
4938 // DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
4939 // &TBLMask[0], IndexLen));
4940 Shuffle = DAG.getNode(
4941 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
4942 DAG.getConstant(Intrinsic::aarch64_neon_tbl2, MVT::i32), V1Cst, V2Cst,
4943 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
4944 makeArrayRef(TBLMask.data(), IndexLen)));
4945 }
4946 }
4947 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
4948}
4949
4950static unsigned getDUPLANEOp(EVT EltType) {
4951 if (EltType == MVT::i8)
4952 return AArch64ISD::DUPLANE8;
Oliver Stannard89d15422014-08-27 16:16:04 +00004953 if (EltType == MVT::i16 || EltType == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00004954 return AArch64ISD::DUPLANE16;
4955 if (EltType == MVT::i32 || EltType == MVT::f32)
4956 return AArch64ISD::DUPLANE32;
4957 if (EltType == MVT::i64 || EltType == MVT::f64)
4958 return AArch64ISD::DUPLANE64;
4959
4960 llvm_unreachable("Invalid vector element type?");
4961}
4962
4963SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4964 SelectionDAG &DAG) const {
4965 SDLoc dl(Op);
4966 EVT VT = Op.getValueType();
4967
4968 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4969
4970 // Convert shuffles that are directly supported on NEON to target-specific
4971 // DAG nodes, instead of keeping them as shuffles and matching them again
4972 // during code selection. This is more efficient and avoids the possibility
4973 // of inconsistencies between legalization and selection.
4974 ArrayRef<int> ShuffleMask = SVN->getMask();
4975
4976 SDValue V1 = Op.getOperand(0);
4977 SDValue V2 = Op.getOperand(1);
4978
4979 if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0],
4980 V1.getValueType().getSimpleVT())) {
4981 int Lane = SVN->getSplatIndex();
4982 // If this is undef splat, generate it via "just" vdup, if possible.
4983 if (Lane == -1)
4984 Lane = 0;
4985
4986 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
4987 return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
4988 V1.getOperand(0));
4989 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
4990 // constant. If so, we can just reference the lane's definition directly.
4991 if (V1.getOpcode() == ISD::BUILD_VECTOR &&
4992 !isa<ConstantSDNode>(V1.getOperand(Lane)))
4993 return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
4994
4995 // Otherwise, duplicate from the lane of the input vector.
4996 unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
4997
4998 // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
4999 // to make a vector of the same size as this SHUFFLE. We can ignore the
5000 // extract entirely, and canonicalise the concat using WidenVector.
5001 if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
5002 Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
5003 V1 = V1.getOperand(0);
5004 } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
5005 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
5006 Lane -= Idx * VT.getVectorNumElements() / 2;
5007 V1 = WidenVector(V1.getOperand(Idx), DAG);
5008 } else if (VT.getSizeInBits() == 64)
5009 V1 = WidenVector(V1, DAG);
5010
5011 return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, MVT::i64));
5012 }
5013
5014 if (isREVMask(ShuffleMask, VT, 64))
5015 return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
5016 if (isREVMask(ShuffleMask, VT, 32))
5017 return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
5018 if (isREVMask(ShuffleMask, VT, 16))
5019 return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
5020
5021 bool ReverseEXT = false;
5022 unsigned Imm;
5023 if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
5024 if (ReverseEXT)
5025 std::swap(V1, V2);
5026 Imm *= getExtFactor(V1);
5027 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
5028 DAG.getConstant(Imm, MVT::i32));
5029 } else if (V2->getOpcode() == ISD::UNDEF &&
5030 isSingletonEXTMask(ShuffleMask, VT, Imm)) {
5031 Imm *= getExtFactor(V1);
5032 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
5033 DAG.getConstant(Imm, MVT::i32));
5034 }
5035
5036 unsigned WhichResult;
5037 if (isZIPMask(ShuffleMask, VT, WhichResult)) {
5038 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5039 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5040 }
5041 if (isUZPMask(ShuffleMask, VT, WhichResult)) {
5042 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5043 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5044 }
5045 if (isTRNMask(ShuffleMask, VT, WhichResult)) {
5046 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5047 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5048 }
5049
5050 if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5051 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5052 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5053 }
5054 if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5055 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5056 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5057 }
5058 if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5059 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5060 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5061 }
5062
5063 SDValue Concat = tryFormConcatFromShuffle(Op, DAG);
5064 if (Concat.getNode())
5065 return Concat;
5066
5067 bool DstIsLeft;
5068 int Anomaly;
5069 int NumInputElements = V1.getValueType().getVectorNumElements();
5070 if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
5071 SDValue DstVec = DstIsLeft ? V1 : V2;
5072 SDValue DstLaneV = DAG.getConstant(Anomaly, MVT::i64);
5073
5074 SDValue SrcVec = V1;
5075 int SrcLane = ShuffleMask[Anomaly];
5076 if (SrcLane >= NumInputElements) {
5077 SrcVec = V2;
5078 SrcLane -= VT.getVectorNumElements();
5079 }
5080 SDValue SrcLaneV = DAG.getConstant(SrcLane, MVT::i64);
5081
5082 EVT ScalarVT = VT.getVectorElementType();
Oliver Stannard89d15422014-08-27 16:16:04 +00005083
5084 if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00005085 ScalarVT = MVT::i32;
5086
5087 return DAG.getNode(
5088 ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
5089 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
5090 DstLaneV);
5091 }
5092
5093 // If the shuffle is not directly supported and it has 4 elements, use
5094 // the PerfectShuffle-generated table to synthesize it from other shuffles.
5095 unsigned NumElts = VT.getVectorNumElements();
5096 if (NumElts == 4) {
5097 unsigned PFIndexes[4];
5098 for (unsigned i = 0; i != 4; ++i) {
5099 if (ShuffleMask[i] < 0)
5100 PFIndexes[i] = 8;
5101 else
5102 PFIndexes[i] = ShuffleMask[i];
5103 }
5104
5105 // Compute the index in the perfect shuffle table.
5106 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
5107 PFIndexes[2] * 9 + PFIndexes[3];
5108 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5109 unsigned Cost = (PFEntry >> 30);
5110
5111 if (Cost <= 4)
5112 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5113 }
5114
5115 return GenerateTBL(Op, ShuffleMask, DAG);
5116}
5117
5118static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
5119 APInt &UndefBits) {
5120 EVT VT = BVN->getValueType(0);
5121 APInt SplatBits, SplatUndef;
5122 unsigned SplatBitSize;
5123 bool HasAnyUndefs;
5124 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5125 unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
5126
5127 for (unsigned i = 0; i < NumSplats; ++i) {
5128 CnstBits <<= SplatBitSize;
5129 UndefBits <<= SplatBitSize;
5130 CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
5131 UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
5132 }
5133
5134 return true;
5135 }
5136
5137 return false;
5138}
5139
5140SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
5141 SelectionDAG &DAG) const {
5142 BuildVectorSDNode *BVN =
5143 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5144 SDValue LHS = Op.getOperand(0);
5145 SDLoc dl(Op);
5146 EVT VT = Op.getValueType();
5147
5148 if (!BVN)
5149 return Op;
5150
5151 APInt CnstBits(VT.getSizeInBits(), 0);
5152 APInt UndefBits(VT.getSizeInBits(), 0);
5153 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5154 // We only have BIC vector immediate instruction, which is and-not.
5155 CnstBits = ~CnstBits;
5156
5157 // We make use of a little bit of goto ickiness in order to avoid having to
5158 // duplicate the immediate matching logic for the undef toggled case.
5159 bool SecondTry = false;
5160 AttemptModImm:
5161
5162 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5163 CnstBits = CnstBits.zextOrTrunc(64);
5164 uint64_t CnstVal = CnstBits.getZExtValue();
5165
5166 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5167 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5168 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5169 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5170 DAG.getConstant(CnstVal, MVT::i32),
5171 DAG.getConstant(0, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005172 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005173 }
5174
5175 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5176 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5177 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5178 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5179 DAG.getConstant(CnstVal, MVT::i32),
5180 DAG.getConstant(8, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005181 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005182 }
5183
5184 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5185 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5186 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5187 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5188 DAG.getConstant(CnstVal, MVT::i32),
5189 DAG.getConstant(16, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005190 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005191 }
5192
5193 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5194 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5195 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5196 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5197 DAG.getConstant(CnstVal, MVT::i32),
5198 DAG.getConstant(24, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005199 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005200 }
5201
5202 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5203 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5204 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5205 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5206 DAG.getConstant(CnstVal, MVT::i32),
5207 DAG.getConstant(0, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005208 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005209 }
5210
5211 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5212 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5213 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5214 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5215 DAG.getConstant(CnstVal, MVT::i32),
5216 DAG.getConstant(8, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005217 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005218 }
5219 }
5220
5221 if (SecondTry)
5222 goto FailedModImm;
5223 SecondTry = true;
5224 CnstBits = ~UndefBits;
5225 goto AttemptModImm;
5226 }
5227
5228// We can always fall back to a non-immediate AND.
5229FailedModImm:
5230 return Op;
5231}
5232
5233// Specialized code to quickly find if PotentialBVec is a BuildVector that
5234// consists of only the same constant int value, returned in reference arg
5235// ConstVal
5236static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
5237 uint64_t &ConstVal) {
5238 BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
5239 if (!Bvec)
5240 return false;
5241 ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
5242 if (!FirstElt)
5243 return false;
5244 EVT VT = Bvec->getValueType(0);
5245 unsigned NumElts = VT.getVectorNumElements();
5246 for (unsigned i = 1; i < NumElts; ++i)
5247 if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
5248 return false;
5249 ConstVal = FirstElt->getZExtValue();
5250 return true;
5251}
5252
5253static unsigned getIntrinsicID(const SDNode *N) {
5254 unsigned Opcode = N->getOpcode();
5255 switch (Opcode) {
5256 default:
5257 return Intrinsic::not_intrinsic;
5258 case ISD::INTRINSIC_WO_CHAIN: {
5259 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5260 if (IID < Intrinsic::num_intrinsics)
5261 return IID;
5262 return Intrinsic::not_intrinsic;
5263 }
5264 }
5265}
5266
5267// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
5268// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
5269// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
5270// Also, logical shift right -> sri, with the same structure.
5271static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
5272 EVT VT = N->getValueType(0);
5273
5274 if (!VT.isVector())
5275 return SDValue();
5276
5277 SDLoc DL(N);
5278
5279 // Is the first op an AND?
5280 const SDValue And = N->getOperand(0);
5281 if (And.getOpcode() != ISD::AND)
5282 return SDValue();
5283
5284 // Is the second op an shl or lshr?
5285 SDValue Shift = N->getOperand(1);
5286 // This will have been turned into: AArch64ISD::VSHL vector, #shift
5287 // or AArch64ISD::VLSHR vector, #shift
5288 unsigned ShiftOpc = Shift.getOpcode();
5289 if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
5290 return SDValue();
5291 bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
5292
5293 // Is the shift amount constant?
5294 ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
5295 if (!C2node)
5296 return SDValue();
5297
5298 // Is the and mask vector all constant?
5299 uint64_t C1;
5300 if (!isAllConstantBuildVector(And.getOperand(1), C1))
5301 return SDValue();
5302
5303 // Is C1 == ~C2, taking into account how much one can shift elements of a
5304 // particular size?
5305 uint64_t C2 = C2node->getZExtValue();
5306 unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
5307 if (C2 > ElemSizeInBits)
5308 return SDValue();
5309 unsigned ElemMask = (1 << ElemSizeInBits) - 1;
5310 if ((C1 & ElemMask) != (~C2 & ElemMask))
5311 return SDValue();
5312
5313 SDValue X = And.getOperand(0);
5314 SDValue Y = Shift.getOperand(0);
5315
5316 unsigned Intrin =
5317 IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
5318 SDValue ResultSLI =
5319 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
5320 DAG.getConstant(Intrin, MVT::i32), X, Y, Shift.getOperand(1));
5321
5322 DEBUG(dbgs() << "aarch64-lower: transformed: \n");
5323 DEBUG(N->dump(&DAG));
5324 DEBUG(dbgs() << "into: \n");
5325 DEBUG(ResultSLI->dump(&DAG));
5326
5327 ++NumShiftInserts;
5328 return ResultSLI;
5329}
5330
5331SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
5332 SelectionDAG &DAG) const {
5333 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
5334 if (EnableAArch64SlrGeneration) {
5335 SDValue Res = tryLowerToSLI(Op.getNode(), DAG);
5336 if (Res.getNode())
5337 return Res;
5338 }
5339
5340 BuildVectorSDNode *BVN =
5341 dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
5342 SDValue LHS = Op.getOperand(1);
5343 SDLoc dl(Op);
5344 EVT VT = Op.getValueType();
5345
5346 // OR commutes, so try swapping the operands.
5347 if (!BVN) {
5348 LHS = Op.getOperand(0);
5349 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5350 }
5351 if (!BVN)
5352 return Op;
5353
5354 APInt CnstBits(VT.getSizeInBits(), 0);
5355 APInt UndefBits(VT.getSizeInBits(), 0);
5356 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5357 // We make use of a little bit of goto ickiness in order to avoid having to
5358 // duplicate the immediate matching logic for the undef toggled case.
5359 bool SecondTry = false;
5360 AttemptModImm:
5361
5362 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5363 CnstBits = CnstBits.zextOrTrunc(64);
5364 uint64_t CnstVal = CnstBits.getZExtValue();
5365
5366 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5367 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5368 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5369 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5370 DAG.getConstant(CnstVal, MVT::i32),
5371 DAG.getConstant(0, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005372 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005373 }
5374
5375 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5376 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5377 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5378 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5379 DAG.getConstant(CnstVal, MVT::i32),
5380 DAG.getConstant(8, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005381 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005382 }
5383
5384 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5385 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5386 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5387 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5388 DAG.getConstant(CnstVal, MVT::i32),
5389 DAG.getConstant(16, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005390 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005391 }
5392
5393 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5394 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5395 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5396 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5397 DAG.getConstant(CnstVal, MVT::i32),
5398 DAG.getConstant(24, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005399 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005400 }
5401
5402 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5403 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5404 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5405 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5406 DAG.getConstant(CnstVal, MVT::i32),
5407 DAG.getConstant(0, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005408 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005409 }
5410
5411 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5412 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5413 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5414 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5415 DAG.getConstant(CnstVal, MVT::i32),
5416 DAG.getConstant(8, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005417 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005418 }
5419 }
5420
5421 if (SecondTry)
5422 goto FailedModImm;
5423 SecondTry = true;
5424 CnstBits = UndefBits;
5425 goto AttemptModImm;
5426 }
5427
5428// We can always fall back to a non-immediate OR.
5429FailedModImm:
5430 return Op;
5431}
5432
Kevin Qin4473c192014-07-07 02:45:40 +00005433// Normalize the operands of BUILD_VECTOR. The value of constant operands will
5434// be truncated to fit element width.
5435static SDValue NormalizeBuildVector(SDValue Op,
5436 SelectionDAG &DAG) {
5437 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00005438 SDLoc dl(Op);
5439 EVT VT = Op.getValueType();
Kevin Qin4473c192014-07-07 02:45:40 +00005440 EVT EltTy= VT.getVectorElementType();
5441
5442 if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
5443 return Op;
5444
5445 SmallVector<SDValue, 16> Ops;
5446 for (unsigned I = 0, E = VT.getVectorNumElements(); I != E; ++I) {
5447 SDValue Lane = Op.getOperand(I);
5448 if (Lane.getOpcode() == ISD::Constant) {
5449 APInt LowBits(EltTy.getSizeInBits(),
5450 cast<ConstantSDNode>(Lane)->getZExtValue());
5451 Lane = DAG.getConstant(LowBits.getZExtValue(), MVT::i32);
5452 }
5453 Ops.push_back(Lane);
5454 }
5455 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
5456}
5457
5458SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
5459 SelectionDAG &DAG) const {
5460 SDLoc dl(Op);
5461 EVT VT = Op.getValueType();
5462 Op = NormalizeBuildVector(Op, DAG);
5463 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
Tim Northover3b0846e2014-05-24 12:50:23 +00005464
5465 APInt CnstBits(VT.getSizeInBits(), 0);
5466 APInt UndefBits(VT.getSizeInBits(), 0);
5467 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5468 // We make use of a little bit of goto ickiness in order to avoid having to
5469 // duplicate the immediate matching logic for the undef toggled case.
5470 bool SecondTry = false;
5471 AttemptModImm:
5472
5473 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5474 CnstBits = CnstBits.zextOrTrunc(64);
5475 uint64_t CnstVal = CnstBits.getZExtValue();
5476
5477 // Certain magic vector constants (used to express things like NOT
5478 // and NEG) are passed through unmodified. This allows codegen patterns
5479 // for these operations to match. Special-purpose patterns will lower
5480 // these immediates to MOVIs if it proves necessary.
5481 if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
5482 return Op;
5483
5484 // The many faces of MOVI...
5485 if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
5486 CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
5487 if (VT.getSizeInBits() == 128) {
5488 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
5489 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005490 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005491 }
5492
5493 // Support the V64 version via subregister insertion.
5494 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
5495 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005496 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005497 }
5498
5499 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5500 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5501 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5502 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5503 DAG.getConstant(CnstVal, MVT::i32),
5504 DAG.getConstant(0, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005505 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005506 }
5507
5508 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5509 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5510 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5511 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5512 DAG.getConstant(CnstVal, MVT::i32),
5513 DAG.getConstant(8, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005514 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005515 }
5516
5517 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5518 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5519 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5520 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5521 DAG.getConstant(CnstVal, MVT::i32),
5522 DAG.getConstant(16, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005523 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005524 }
5525
5526 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5527 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5528 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5529 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5530 DAG.getConstant(CnstVal, MVT::i32),
5531 DAG.getConstant(24, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005532 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005533 }
5534
5535 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5536 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5537 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5538 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5539 DAG.getConstant(CnstVal, MVT::i32),
5540 DAG.getConstant(0, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005541 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005542 }
5543
5544 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5545 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5546 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5547 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5548 DAG.getConstant(CnstVal, MVT::i32),
5549 DAG.getConstant(8, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005550 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005551 }
5552
5553 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5554 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5555 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5556 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
5557 DAG.getConstant(CnstVal, MVT::i32),
5558 DAG.getConstant(264, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005559 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005560 }
5561
5562 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5563 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5564 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5565 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
5566 DAG.getConstant(CnstVal, MVT::i32),
5567 DAG.getConstant(272, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005568 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005569 }
5570
5571 if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
5572 CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
5573 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
5574 SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
5575 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005576 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005577 }
5578
5579 // The few faces of FMOV...
5580 if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
5581 CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
5582 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
5583 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
5584 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005585 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005586 }
5587
5588 if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
5589 VT.getSizeInBits() == 128) {
5590 CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
5591 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
5592 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005593 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005594 }
5595
5596 // The many faces of MVNI...
5597 CnstVal = ~CnstVal;
5598 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5599 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5600 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5601 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5602 DAG.getConstant(CnstVal, MVT::i32),
5603 DAG.getConstant(0, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005604 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005605 }
5606
5607 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5608 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5609 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5610 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5611 DAG.getConstant(CnstVal, MVT::i32),
5612 DAG.getConstant(8, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005613 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005614 }
5615
5616 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5617 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5618 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5619 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5620 DAG.getConstant(CnstVal, MVT::i32),
5621 DAG.getConstant(16, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005622 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005623 }
5624
5625 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5626 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5627 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5628 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5629 DAG.getConstant(CnstVal, MVT::i32),
5630 DAG.getConstant(24, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005631 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005632 }
5633
5634 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5635 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5636 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5637 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5638 DAG.getConstant(CnstVal, MVT::i32),
5639 DAG.getConstant(0, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005640 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005641 }
5642
5643 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5644 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5645 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5646 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5647 DAG.getConstant(CnstVal, MVT::i32),
5648 DAG.getConstant(8, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005649 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005650 }
5651
5652 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5653 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5654 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5655 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
5656 DAG.getConstant(CnstVal, MVT::i32),
5657 DAG.getConstant(264, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005658 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005659 }
5660
5661 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5662 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5663 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5664 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
5665 DAG.getConstant(CnstVal, MVT::i32),
5666 DAG.getConstant(272, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005667 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005668 }
5669 }
5670
5671 if (SecondTry)
5672 goto FailedModImm;
5673 SecondTry = true;
5674 CnstBits = UndefBits;
5675 goto AttemptModImm;
5676 }
5677FailedModImm:
5678
5679 // Scan through the operands to find some interesting properties we can
5680 // exploit:
5681 // 1) If only one value is used, we can use a DUP, or
5682 // 2) if only the low element is not undef, we can just insert that, or
5683 // 3) if only one constant value is used (w/ some non-constant lanes),
5684 // we can splat the constant value into the whole vector then fill
5685 // in the non-constant lanes.
5686 // 4) FIXME: If different constant values are used, but we can intelligently
5687 // select the values we'll be overwriting for the non-constant
5688 // lanes such that we can directly materialize the vector
5689 // some other way (MOVI, e.g.), we can be sneaky.
5690 unsigned NumElts = VT.getVectorNumElements();
5691 bool isOnlyLowElement = true;
5692 bool usesOnlyOneValue = true;
5693 bool usesOnlyOneConstantValue = true;
5694 bool isConstant = true;
5695 unsigned NumConstantLanes = 0;
5696 SDValue Value;
5697 SDValue ConstantValue;
5698 for (unsigned i = 0; i < NumElts; ++i) {
5699 SDValue V = Op.getOperand(i);
5700 if (V.getOpcode() == ISD::UNDEF)
5701 continue;
5702 if (i > 0)
5703 isOnlyLowElement = false;
5704 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
5705 isConstant = false;
5706
5707 if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
5708 ++NumConstantLanes;
5709 if (!ConstantValue.getNode())
5710 ConstantValue = V;
5711 else if (ConstantValue != V)
5712 usesOnlyOneConstantValue = false;
5713 }
5714
5715 if (!Value.getNode())
5716 Value = V;
5717 else if (V != Value)
5718 usesOnlyOneValue = false;
5719 }
5720
5721 if (!Value.getNode())
5722 return DAG.getUNDEF(VT);
5723
5724 if (isOnlyLowElement)
5725 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
5726
5727 // Use DUP for non-constant splats. For f32 constant splats, reduce to
5728 // i32 and try again.
5729 if (usesOnlyOneValue) {
5730 if (!isConstant) {
5731 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5732 Value.getValueType() != VT)
5733 return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
5734
5735 // This is actually a DUPLANExx operation, which keeps everything vectory.
5736
5737 // DUPLANE works on 128-bit vectors, widen it if necessary.
5738 SDValue Lane = Value.getOperand(1);
5739 Value = Value.getOperand(0);
5740 if (Value.getValueType().getSizeInBits() == 64)
5741 Value = WidenVector(Value, DAG);
5742
5743 unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
5744 return DAG.getNode(Opcode, dl, VT, Value, Lane);
5745 }
5746
5747 if (VT.getVectorElementType().isFloatingPoint()) {
5748 SmallVector<SDValue, 8> Ops;
5749 MVT NewType =
5750 (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5751 for (unsigned i = 0; i < NumElts; ++i)
5752 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
5753 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
5754 SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
5755 Val = LowerBUILD_VECTOR(Val, DAG);
5756 if (Val.getNode())
5757 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5758 }
5759 }
5760
5761 // If there was only one constant value used and for more than one lane,
5762 // start by splatting that value, then replace the non-constant lanes. This
5763 // is better than the default, which will perform a separate initialization
5764 // for each lane.
5765 if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
5766 SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
5767 // Now insert the non-constant lanes.
5768 for (unsigned i = 0; i < NumElts; ++i) {
5769 SDValue V = Op.getOperand(i);
5770 SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
5771 if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
5772 // Note that type legalization likely mucked about with the VT of the
5773 // source operand, so we may have to convert it here before inserting.
5774 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
5775 }
5776 }
5777 return Val;
5778 }
5779
5780 // If all elements are constants and the case above didn't get hit, fall back
5781 // to the default expansion, which will generate a load from the constant
5782 // pool.
5783 if (isConstant)
5784 return SDValue();
5785
5786 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
5787 if (NumElts >= 4) {
5788 SDValue shuffle = ReconstructShuffle(Op, DAG);
5789 if (shuffle != SDValue())
5790 return shuffle;
5791 }
5792
5793 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
5794 // know the default expansion would otherwise fall back on something even
5795 // worse. For a vector with one or two non-undef values, that's
5796 // scalar_to_vector for the elements followed by a shuffle (provided the
5797 // shuffle is valid for the target) and materialization element by element
5798 // on the stack followed by a load for everything else.
5799 if (!isConstant && !usesOnlyOneValue) {
5800 SDValue Vec = DAG.getUNDEF(VT);
5801 SDValue Op0 = Op.getOperand(0);
5802 unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
5803 unsigned i = 0;
5804 // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
5805 // a) Avoid a RMW dependency on the full vector register, and
5806 // b) Allow the register coalescer to fold away the copy if the
5807 // value is already in an S or D register.
5808 if (Op0.getOpcode() != ISD::UNDEF && (ElemSize == 32 || ElemSize == 64)) {
5809 unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
5810 MachineSDNode *N =
5811 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
5812 DAG.getTargetConstant(SubIdx, MVT::i32));
5813 Vec = SDValue(N, 0);
5814 ++i;
5815 }
5816 for (; i < NumElts; ++i) {
5817 SDValue V = Op.getOperand(i);
5818 if (V.getOpcode() == ISD::UNDEF)
5819 continue;
5820 SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
5821 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
5822 }
5823 return Vec;
5824 }
5825
5826 // Just use the default expansion. We failed to find a better alternative.
5827 return SDValue();
5828}
5829
5830SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
5831 SelectionDAG &DAG) const {
5832 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
5833
Tim Northovere4b8e132014-07-15 10:00:26 +00005834 // Check for non-constant or out of range lane.
5835 EVT VT = Op.getOperand(0).getValueType();
5836 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
5837 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00005838 return SDValue();
5839
Tim Northover3b0846e2014-05-24 12:50:23 +00005840
5841 // Insertion/extraction are legal for V128 types.
5842 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00005843 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
5844 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005845 return Op;
5846
5847 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00005848 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005849 return SDValue();
5850
5851 // For V64 types, we perform insertion by expanding the value
5852 // to a V128 type and perform the insertion on that.
5853 SDLoc DL(Op);
5854 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
5855 EVT WideTy = WideVec.getValueType();
5856
5857 SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
5858 Op.getOperand(1), Op.getOperand(2));
5859 // Re-narrow the resultant vector.
5860 return NarrowVector(Node, DAG);
5861}
5862
5863SDValue
5864AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5865 SelectionDAG &DAG) const {
5866 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
5867
Tim Northovere4b8e132014-07-15 10:00:26 +00005868 // Check for non-constant or out of range lane.
5869 EVT VT = Op.getOperand(0).getValueType();
5870 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5871 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00005872 return SDValue();
5873
Tim Northover3b0846e2014-05-24 12:50:23 +00005874
5875 // Insertion/extraction are legal for V128 types.
5876 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00005877 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
5878 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005879 return Op;
5880
5881 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00005882 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005883 return SDValue();
5884
5885 // For V64 types, we perform extraction by expanding the value
5886 // to a V128 type and perform the extraction on that.
5887 SDLoc DL(Op);
5888 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
5889 EVT WideTy = WideVec.getValueType();
5890
5891 EVT ExtrTy = WideTy.getVectorElementType();
5892 if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
5893 ExtrTy = MVT::i32;
5894
5895 // For extractions, we just return the result directly.
5896 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
5897 Op.getOperand(1));
5898}
5899
5900SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
5901 SelectionDAG &DAG) const {
5902 EVT VT = Op.getOperand(0).getValueType();
5903 SDLoc dl(Op);
5904 // Just in case...
5905 if (!VT.isVector())
5906 return SDValue();
5907
5908 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5909 if (!Cst)
5910 return SDValue();
5911 unsigned Val = Cst->getZExtValue();
5912
5913 unsigned Size = Op.getValueType().getSizeInBits();
5914 if (Val == 0) {
5915 switch (Size) {
5916 case 8:
5917 return DAG.getTargetExtractSubreg(AArch64::bsub, dl, Op.getValueType(),
5918 Op.getOperand(0));
5919 case 16:
5920 return DAG.getTargetExtractSubreg(AArch64::hsub, dl, Op.getValueType(),
5921 Op.getOperand(0));
5922 case 32:
5923 return DAG.getTargetExtractSubreg(AArch64::ssub, dl, Op.getValueType(),
5924 Op.getOperand(0));
5925 case 64:
5926 return DAG.getTargetExtractSubreg(AArch64::dsub, dl, Op.getValueType(),
5927 Op.getOperand(0));
5928 default:
5929 llvm_unreachable("Unexpected vector type in extract_subvector!");
5930 }
5931 }
5932 // If this is extracting the upper 64-bits of a 128-bit vector, we match
5933 // that directly.
5934 if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
5935 return Op;
5936
5937 return SDValue();
5938}
5939
5940bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
5941 EVT VT) const {
5942 if (VT.getVectorNumElements() == 4 &&
5943 (VT.is128BitVector() || VT.is64BitVector())) {
5944 unsigned PFIndexes[4];
5945 for (unsigned i = 0; i != 4; ++i) {
5946 if (M[i] < 0)
5947 PFIndexes[i] = 8;
5948 else
5949 PFIndexes[i] = M[i];
5950 }
5951
5952 // Compute the index in the perfect shuffle table.
5953 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
5954 PFIndexes[2] * 9 + PFIndexes[3];
5955 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5956 unsigned Cost = (PFEntry >> 30);
5957
5958 if (Cost <= 4)
5959 return true;
5960 }
5961
5962 bool DummyBool;
5963 int DummyInt;
5964 unsigned DummyUnsigned;
5965
5966 return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
5967 isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
5968 isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
5969 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
5970 isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
5971 isZIPMask(M, VT, DummyUnsigned) ||
5972 isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
5973 isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
5974 isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
5975 isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
5976 isConcatMask(M, VT, VT.getSizeInBits() == 128));
5977}
5978
5979/// getVShiftImm - Check if this is a valid build_vector for the immediate
5980/// operand of a vector shift operation, where all the elements of the
5981/// build_vector must have the same constant integer value.
5982static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
5983 // Ignore bit_converts.
5984 while (Op.getOpcode() == ISD::BITCAST)
5985 Op = Op.getOperand(0);
5986 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
5987 APInt SplatBits, SplatUndef;
5988 unsigned SplatBitSize;
5989 bool HasAnyUndefs;
5990 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
5991 HasAnyUndefs, ElementBits) ||
5992 SplatBitSize > ElementBits)
5993 return false;
5994 Cnt = SplatBits.getSExtValue();
5995 return true;
5996}
5997
5998/// isVShiftLImm - Check if this is a valid build_vector for the immediate
5999/// operand of a vector shift left operation. That value must be in the range:
6000/// 0 <= Value < ElementBits for a left shift; or
6001/// 0 <= Value <= ElementBits for a long left shift.
6002static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6003 assert(VT.isVector() && "vector shift count is not a vector type");
6004 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6005 if (!getVShiftImm(Op, ElementBits, Cnt))
6006 return false;
6007 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6008}
6009
6010/// isVShiftRImm - Check if this is a valid build_vector for the immediate
6011/// operand of a vector shift right operation. For a shift opcode, the value
6012/// is positive, but for an intrinsic the value count must be negative. The
6013/// absolute value must be in the range:
6014/// 1 <= |Value| <= ElementBits for a right shift; or
6015/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
6016static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
6017 int64_t &Cnt) {
6018 assert(VT.isVector() && "vector shift count is not a vector type");
6019 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6020 if (!getVShiftImm(Op, ElementBits, Cnt))
6021 return false;
6022 if (isIntrinsic)
6023 Cnt = -Cnt;
6024 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6025}
6026
6027SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
6028 SelectionDAG &DAG) const {
6029 EVT VT = Op.getValueType();
6030 SDLoc DL(Op);
6031 int64_t Cnt;
6032
6033 if (!Op.getOperand(1).getValueType().isVector())
6034 return Op;
6035 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6036
6037 switch (Op.getOpcode()) {
6038 default:
6039 llvm_unreachable("unexpected shift opcode");
6040
6041 case ISD::SHL:
6042 if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
6043 return DAG.getNode(AArch64ISD::VSHL, SDLoc(Op), VT, Op.getOperand(0),
6044 DAG.getConstant(Cnt, MVT::i32));
6045 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6046 DAG.getConstant(Intrinsic::aarch64_neon_ushl, MVT::i32),
6047 Op.getOperand(0), Op.getOperand(1));
6048 case ISD::SRA:
6049 case ISD::SRL:
6050 // Right shift immediate
6051 if (isVShiftRImm(Op.getOperand(1), VT, false, false, Cnt) &&
6052 Cnt < EltSize) {
6053 unsigned Opc =
6054 (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
6055 return DAG.getNode(Opc, SDLoc(Op), VT, Op.getOperand(0),
6056 DAG.getConstant(Cnt, MVT::i32));
6057 }
6058
6059 // Right shift register. Note, there is not a shift right register
6060 // instruction, but the shift left register instruction takes a signed
6061 // value, where negative numbers specify a right shift.
6062 unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
6063 : Intrinsic::aarch64_neon_ushl;
6064 // negate the shift amount
6065 SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
6066 SDValue NegShiftLeft =
6067 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6068 DAG.getConstant(Opc, MVT::i32), Op.getOperand(0), NegShift);
6069 return NegShiftLeft;
6070 }
6071
6072 return SDValue();
6073}
6074
6075static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
6076 AArch64CC::CondCode CC, bool NoNans, EVT VT,
6077 SDLoc dl, SelectionDAG &DAG) {
6078 EVT SrcVT = LHS.getValueType();
6079
6080 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
6081 APInt CnstBits(VT.getSizeInBits(), 0);
6082 APInt UndefBits(VT.getSizeInBits(), 0);
6083 bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
6084 bool IsZero = IsCnst && (CnstBits == 0);
6085
6086 if (SrcVT.getVectorElementType().isFloatingPoint()) {
6087 switch (CC) {
6088 default:
6089 return SDValue();
6090 case AArch64CC::NE: {
6091 SDValue Fcmeq;
6092 if (IsZero)
6093 Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6094 else
6095 Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6096 return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
6097 }
6098 case AArch64CC::EQ:
6099 if (IsZero)
6100 return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6101 return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6102 case AArch64CC::GE:
6103 if (IsZero)
6104 return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
6105 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
6106 case AArch64CC::GT:
6107 if (IsZero)
6108 return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
6109 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
6110 case AArch64CC::LS:
6111 if (IsZero)
6112 return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
6113 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
6114 case AArch64CC::LT:
6115 if (!NoNans)
6116 return SDValue();
6117 // If we ignore NaNs then we can use to the MI implementation.
6118 // Fallthrough.
6119 case AArch64CC::MI:
6120 if (IsZero)
6121 return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
6122 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
6123 }
6124 }
6125
6126 switch (CC) {
6127 default:
6128 return SDValue();
6129 case AArch64CC::NE: {
6130 SDValue Cmeq;
6131 if (IsZero)
6132 Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6133 else
6134 Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6135 return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
6136 }
6137 case AArch64CC::EQ:
6138 if (IsZero)
6139 return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6140 return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6141 case AArch64CC::GE:
6142 if (IsZero)
6143 return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
6144 return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
6145 case AArch64CC::GT:
6146 if (IsZero)
6147 return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
6148 return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
6149 case AArch64CC::LE:
6150 if (IsZero)
6151 return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
6152 return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
6153 case AArch64CC::LS:
6154 return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
6155 case AArch64CC::LO:
6156 return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
6157 case AArch64CC::LT:
6158 if (IsZero)
6159 return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
6160 return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
6161 case AArch64CC::HI:
6162 return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
6163 case AArch64CC::HS:
6164 return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
6165 }
6166}
6167
6168SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
6169 SelectionDAG &DAG) const {
6170 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6171 SDValue LHS = Op.getOperand(0);
6172 SDValue RHS = Op.getOperand(1);
6173 SDLoc dl(Op);
6174
6175 if (LHS.getValueType().getVectorElementType().isInteger()) {
6176 assert(LHS.getValueType() == RHS.getValueType());
6177 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
6178 return EmitVectorComparison(LHS, RHS, AArch64CC, false, Op.getValueType(),
6179 dl, DAG);
6180 }
6181
6182 assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
6183 LHS.getValueType().getVectorElementType() == MVT::f64);
6184
6185 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
6186 // clean. Some of them require two branches to implement.
6187 AArch64CC::CondCode CC1, CC2;
6188 bool ShouldInvert;
6189 changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
6190
6191 bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
6192 SDValue Cmp =
6193 EmitVectorComparison(LHS, RHS, CC1, NoNaNs, Op.getValueType(), dl, DAG);
6194 if (!Cmp.getNode())
6195 return SDValue();
6196
6197 if (CC2 != AArch64CC::AL) {
6198 SDValue Cmp2 =
6199 EmitVectorComparison(LHS, RHS, CC2, NoNaNs, Op.getValueType(), dl, DAG);
6200 if (!Cmp2.getNode())
6201 return SDValue();
6202
6203 Cmp = DAG.getNode(ISD::OR, dl, Cmp.getValueType(), Cmp, Cmp2);
6204 }
6205
6206 if (ShouldInvert)
6207 return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
6208
6209 return Cmp;
6210}
6211
6212/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
6213/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
6214/// specified in the intrinsic calls.
6215bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
6216 const CallInst &I,
6217 unsigned Intrinsic) const {
6218 switch (Intrinsic) {
6219 case Intrinsic::aarch64_neon_ld2:
6220 case Intrinsic::aarch64_neon_ld3:
6221 case Intrinsic::aarch64_neon_ld4:
6222 case Intrinsic::aarch64_neon_ld1x2:
6223 case Intrinsic::aarch64_neon_ld1x3:
6224 case Intrinsic::aarch64_neon_ld1x4:
6225 case Intrinsic::aarch64_neon_ld2lane:
6226 case Intrinsic::aarch64_neon_ld3lane:
6227 case Intrinsic::aarch64_neon_ld4lane:
6228 case Intrinsic::aarch64_neon_ld2r:
6229 case Intrinsic::aarch64_neon_ld3r:
6230 case Intrinsic::aarch64_neon_ld4r: {
6231 Info.opc = ISD::INTRINSIC_W_CHAIN;
6232 // Conservatively set memVT to the entire set of vectors loaded.
6233 uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
6234 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6235 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6236 Info.offset = 0;
6237 Info.align = 0;
6238 Info.vol = false; // volatile loads with NEON intrinsics not supported
6239 Info.readMem = true;
6240 Info.writeMem = false;
6241 return true;
6242 }
6243 case Intrinsic::aarch64_neon_st2:
6244 case Intrinsic::aarch64_neon_st3:
6245 case Intrinsic::aarch64_neon_st4:
6246 case Intrinsic::aarch64_neon_st1x2:
6247 case Intrinsic::aarch64_neon_st1x3:
6248 case Intrinsic::aarch64_neon_st1x4:
6249 case Intrinsic::aarch64_neon_st2lane:
6250 case Intrinsic::aarch64_neon_st3lane:
6251 case Intrinsic::aarch64_neon_st4lane: {
6252 Info.opc = ISD::INTRINSIC_VOID;
6253 // Conservatively set memVT to the entire set of vectors stored.
6254 unsigned NumElts = 0;
6255 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
6256 Type *ArgTy = I.getArgOperand(ArgI)->getType();
6257 if (!ArgTy->isVectorTy())
6258 break;
6259 NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
6260 }
6261 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6262 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6263 Info.offset = 0;
6264 Info.align = 0;
6265 Info.vol = false; // volatile stores with NEON intrinsics not supported
6266 Info.readMem = false;
6267 Info.writeMem = true;
6268 return true;
6269 }
6270 case Intrinsic::aarch64_ldaxr:
6271 case Intrinsic::aarch64_ldxr: {
6272 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
6273 Info.opc = ISD::INTRINSIC_W_CHAIN;
6274 Info.memVT = MVT::getVT(PtrTy->getElementType());
6275 Info.ptrVal = I.getArgOperand(0);
6276 Info.offset = 0;
6277 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
6278 Info.vol = true;
6279 Info.readMem = true;
6280 Info.writeMem = false;
6281 return true;
6282 }
6283 case Intrinsic::aarch64_stlxr:
6284 case Intrinsic::aarch64_stxr: {
6285 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
6286 Info.opc = ISD::INTRINSIC_W_CHAIN;
6287 Info.memVT = MVT::getVT(PtrTy->getElementType());
6288 Info.ptrVal = I.getArgOperand(1);
6289 Info.offset = 0;
6290 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
6291 Info.vol = true;
6292 Info.readMem = false;
6293 Info.writeMem = true;
6294 return true;
6295 }
6296 case Intrinsic::aarch64_ldaxp:
6297 case Intrinsic::aarch64_ldxp: {
6298 Info.opc = ISD::INTRINSIC_W_CHAIN;
6299 Info.memVT = MVT::i128;
6300 Info.ptrVal = I.getArgOperand(0);
6301 Info.offset = 0;
6302 Info.align = 16;
6303 Info.vol = true;
6304 Info.readMem = true;
6305 Info.writeMem = false;
6306 return true;
6307 }
6308 case Intrinsic::aarch64_stlxp:
6309 case Intrinsic::aarch64_stxp: {
6310 Info.opc = ISD::INTRINSIC_W_CHAIN;
6311 Info.memVT = MVT::i128;
6312 Info.ptrVal = I.getArgOperand(2);
6313 Info.offset = 0;
6314 Info.align = 16;
6315 Info.vol = true;
6316 Info.readMem = false;
6317 Info.writeMem = true;
6318 return true;
6319 }
6320 default:
6321 break;
6322 }
6323
6324 return false;
6325}
6326
6327// Truncations from 64-bit GPR to 32-bit GPR is free.
6328bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
6329 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6330 return false;
6331 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6332 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006333 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006334}
6335bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006336 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006337 return false;
6338 unsigned NumBits1 = VT1.getSizeInBits();
6339 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006340 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006341}
6342
6343// All 32-bit GPR operations implicitly zero the high-half of the corresponding
6344// 64-bit GPR.
6345bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
6346 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6347 return false;
6348 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6349 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006350 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006351}
6352bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006353 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006354 return false;
6355 unsigned NumBits1 = VT1.getSizeInBits();
6356 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006357 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006358}
6359
6360bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
6361 EVT VT1 = Val.getValueType();
6362 if (isZExtFree(VT1, VT2)) {
6363 return true;
6364 }
6365
6366 if (Val.getOpcode() != ISD::LOAD)
6367 return false;
6368
6369 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
Hao Liu40914502014-05-29 09:19:07 +00006370 return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
6371 VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
6372 VT1.getSizeInBits() <= 32);
Tim Northover3b0846e2014-05-24 12:50:23 +00006373}
6374
6375bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType,
6376 unsigned &RequiredAligment) const {
6377 if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
6378 return false;
6379 // Cyclone supports unaligned accesses.
6380 RequiredAligment = 0;
6381 unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
6382 return NumBits == 32 || NumBits == 64;
6383}
6384
6385bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
6386 unsigned &RequiredAligment) const {
6387 if (!LoadedType.isSimple() ||
6388 (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
6389 return false;
6390 // Cyclone supports unaligned accesses.
6391 RequiredAligment = 0;
6392 unsigned NumBits = LoadedType.getSizeInBits();
6393 return NumBits == 32 || NumBits == 64;
6394}
6395
6396static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
6397 unsigned AlignCheck) {
6398 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
6399 (DstAlign == 0 || DstAlign % AlignCheck == 0));
6400}
6401
6402EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
6403 unsigned SrcAlign, bool IsMemset,
6404 bool ZeroMemset,
6405 bool MemcpyStrSrc,
6406 MachineFunction &MF) const {
6407 // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
6408 // instruction to materialize the v2i64 zero and one store (with restrictive
6409 // addressing mode). Just do two i64 store of zero-registers.
6410 bool Fast;
6411 const Function *F = MF.getFunction();
6412 if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
6413 !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
6414 Attribute::NoImplicitFloat) &&
6415 (memOpAlign(SrcAlign, DstAlign, 16) ||
Matt Arsenault6f2a5262014-07-27 17:46:40 +00006416 (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast)))
Tim Northover3b0846e2014-05-24 12:50:23 +00006417 return MVT::f128;
6418
6419 return Size >= 8 ? MVT::i64 : MVT::i32;
6420}
6421
6422// 12-bit optionally shifted immediates are legal for adds.
6423bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
6424 if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0))
6425 return true;
6426 return false;
6427}
6428
6429// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
6430// immediates is the same as for an add or a sub.
6431bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
6432 if (Immed < 0)
6433 Immed *= -1;
6434 return isLegalAddImmediate(Immed);
6435}
6436
6437/// isLegalAddressingMode - Return true if the addressing mode represented
6438/// by AM is legal for this target, for a load/store of the specified type.
6439bool AArch64TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6440 Type *Ty) const {
6441 // AArch64 has five basic addressing modes:
6442 // reg
6443 // reg + 9-bit signed offset
6444 // reg + SIZE_IN_BYTES * 12-bit unsigned offset
6445 // reg1 + reg2
6446 // reg + SIZE_IN_BYTES * reg
6447
6448 // No global is ever allowed as a base.
6449 if (AM.BaseGV)
6450 return false;
6451
6452 // No reg+reg+imm addressing.
6453 if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
6454 return false;
6455
6456 // check reg + imm case:
6457 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
6458 uint64_t NumBytes = 0;
6459 if (Ty->isSized()) {
6460 uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty);
6461 NumBytes = NumBits / 8;
6462 if (!isPowerOf2_64(NumBits))
6463 NumBytes = 0;
6464 }
6465
6466 if (!AM.Scale) {
6467 int64_t Offset = AM.BaseOffs;
6468
6469 // 9-bit signed offset
6470 if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
6471 return true;
6472
6473 // 12-bit unsigned offset
6474 unsigned shift = Log2_64(NumBytes);
6475 if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
6476 // Must be a multiple of NumBytes (NumBytes is a power of 2)
6477 (Offset >> shift) << shift == Offset)
6478 return true;
6479 return false;
6480 }
6481
6482 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
6483
6484 if (!AM.Scale || AM.Scale == 1 ||
6485 (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
6486 return true;
6487 return false;
6488}
6489
6490int AArch64TargetLowering::getScalingFactorCost(const AddrMode &AM,
6491 Type *Ty) const {
6492 // Scaling factors are not free at all.
6493 // Operands | Rt Latency
6494 // -------------------------------------------
6495 // Rt, [Xn, Xm] | 4
6496 // -------------------------------------------
6497 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
6498 // Rt, [Xn, Wm, <extend> #imm] |
6499 if (isLegalAddressingMode(AM, Ty))
6500 // Scale represents reg2 * scale, thus account for 1 if
6501 // it is not equal to 0 or 1.
6502 return AM.Scale != 0 && AM.Scale != 1;
6503 return -1;
6504}
6505
6506bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
6507 VT = VT.getScalarType();
6508
6509 if (!VT.isSimple())
6510 return false;
6511
6512 switch (VT.getSimpleVT().SimpleTy) {
6513 case MVT::f32:
6514 case MVT::f64:
6515 return true;
6516 default:
6517 break;
6518 }
6519
6520 return false;
6521}
6522
6523const MCPhysReg *
6524AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
6525 // LR is a callee-save register, but we must treat it as clobbered by any call
6526 // site. Hence we include LR in the scratch registers, which are in turn added
6527 // as implicit-defs for stackmaps and patchpoints.
6528 static const MCPhysReg ScratchRegs[] = {
6529 AArch64::X16, AArch64::X17, AArch64::LR, 0
6530 };
6531 return ScratchRegs;
6532}
6533
6534bool
6535AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
6536 EVT VT = N->getValueType(0);
6537 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
6538 // it with shift to let it be lowered to UBFX.
6539 if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
6540 isa<ConstantSDNode>(N->getOperand(1))) {
6541 uint64_t TruncMask = N->getConstantOperandVal(1);
6542 if (isMask_64(TruncMask) &&
6543 N->getOperand(0).getOpcode() == ISD::SRL &&
6544 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
6545 return false;
6546 }
6547 return true;
6548}
6549
6550bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
6551 Type *Ty) const {
6552 assert(Ty->isIntegerTy());
6553
6554 unsigned BitSize = Ty->getPrimitiveSizeInBits();
6555 if (BitSize == 0)
6556 return false;
6557
6558 int64_t Val = Imm.getSExtValue();
6559 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
6560 return true;
6561
6562 if ((int64_t)Val < 0)
6563 Val = ~Val;
6564 if (BitSize == 32)
6565 Val &= (1LL << 32) - 1;
6566
6567 unsigned LZ = countLeadingZeros((uint64_t)Val);
6568 unsigned Shift = (63 - LZ) / 16;
6569 // MOVZ is free so return true for one or fewer MOVK.
6570 return (Shift < 3) ? true : false;
6571}
6572
6573// Generate SUBS and CSEL for integer abs.
6574static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
6575 EVT VT = N->getValueType(0);
6576
6577 SDValue N0 = N->getOperand(0);
6578 SDValue N1 = N->getOperand(1);
6579 SDLoc DL(N);
6580
6581 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
6582 // and change it to SUB and CSEL.
6583 if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
6584 N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
6585 N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
6586 if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
6587 if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
6588 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
6589 N0.getOperand(0));
6590 // Generate SUBS & CSEL.
6591 SDValue Cmp =
6592 DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
6593 N0.getOperand(0), DAG.getConstant(0, VT));
6594 return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
6595 DAG.getConstant(AArch64CC::PL, MVT::i32),
6596 SDValue(Cmp.getNode(), 1));
6597 }
6598 return SDValue();
6599}
6600
6601// performXorCombine - Attempts to handle integer ABS.
6602static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
6603 TargetLowering::DAGCombinerInfo &DCI,
6604 const AArch64Subtarget *Subtarget) {
6605 if (DCI.isBeforeLegalizeOps())
6606 return SDValue();
6607
6608 return performIntegerAbsCombine(N, DAG);
6609}
6610
Chad Rosier17020f92014-07-23 14:57:52 +00006611SDValue
6612AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
6613 SelectionDAG &DAG,
6614 std::vector<SDNode *> *Created) const {
6615 // fold (sdiv X, pow2)
6616 EVT VT = N->getValueType(0);
6617 if ((VT != MVT::i32 && VT != MVT::i64) ||
6618 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
6619 return SDValue();
6620
6621 SDLoc DL(N);
6622 SDValue N0 = N->getOperand(0);
6623 unsigned Lg2 = Divisor.countTrailingZeros();
6624 SDValue Zero = DAG.getConstant(0, VT);
6625 SDValue Pow2MinusOne = DAG.getConstant((1 << Lg2) - 1, VT);
6626
6627 // Add (N0 < 0) ? Pow2 - 1 : 0;
6628 SDValue CCVal;
6629 SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
6630 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
6631 SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
6632
6633 if (Created) {
6634 Created->push_back(Cmp.getNode());
6635 Created->push_back(Add.getNode());
6636 Created->push_back(CSel.getNode());
6637 }
6638
6639 // Divide by pow2.
6640 SDValue SRA =
6641 DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, MVT::i64));
6642
6643 // If we're dividing by a positive value, we're done. Otherwise, we must
6644 // negate the result.
6645 if (Divisor.isNonNegative())
6646 return SRA;
6647
6648 if (Created)
6649 Created->push_back(SRA.getNode());
6650 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT), SRA);
6651}
6652
Tim Northover3b0846e2014-05-24 12:50:23 +00006653static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
6654 TargetLowering::DAGCombinerInfo &DCI,
6655 const AArch64Subtarget *Subtarget) {
6656 if (DCI.isBeforeLegalizeOps())
6657 return SDValue();
6658
6659 // Multiplication of a power of two plus/minus one can be done more
6660 // cheaply as as shift+add/sub. For now, this is true unilaterally. If
6661 // future CPUs have a cheaper MADD instruction, this may need to be
6662 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
6663 // 64-bit is 5 cycles, so this is always a win.
6664 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6665 APInt Value = C->getAPIntValue();
6666 EVT VT = N->getValueType(0);
Chad Rosiere6b87612014-06-30 14:51:14 +00006667 if (Value.isNonNegative()) {
6668 // (mul x, 2^N + 1) => (add (shl x, N), x)
6669 APInt VM1 = Value - 1;
6670 if (VM1.isPowerOf2()) {
6671 SDValue ShiftedVal =
6672 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6673 DAG.getConstant(VM1.logBase2(), MVT::i64));
6674 return DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal,
6675 N->getOperand(0));
6676 }
6677 // (mul x, 2^N - 1) => (sub (shl x, N), x)
6678 APInt VP1 = Value + 1;
6679 if (VP1.isPowerOf2()) {
6680 SDValue ShiftedVal =
6681 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6682 DAG.getConstant(VP1.logBase2(), MVT::i64));
6683 return DAG.getNode(ISD::SUB, SDLoc(N), VT, ShiftedVal,
6684 N->getOperand(0));
6685 }
6686 } else {
6687 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
6688 APInt VNM1 = -Value - 1;
6689 if (VNM1.isPowerOf2()) {
6690 SDValue ShiftedVal =
6691 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6692 DAG.getConstant(VNM1.logBase2(), MVT::i64));
6693 SDValue Add =
6694 DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal, N->getOperand(0));
6695 return DAG.getNode(ISD::SUB, SDLoc(N), VT, DAG.getConstant(0, VT), Add);
6696 }
6697 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
6698 APInt VNP1 = -Value + 1;
6699 if (VNP1.isPowerOf2()) {
6700 SDValue ShiftedVal =
6701 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6702 DAG.getConstant(VNP1.logBase2(), MVT::i64));
6703 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N->getOperand(0),
6704 ShiftedVal);
6705 }
Chad Rosierd96e9f12014-06-09 01:25:51 +00006706 }
Tim Northover3b0846e2014-05-24 12:50:23 +00006707 }
6708 return SDValue();
6709}
6710
Jim Grosbachf7502c42014-07-18 00:40:52 +00006711static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
6712 SelectionDAG &DAG) {
6713 // Take advantage of vector comparisons producing 0 or -1 in each lane to
6714 // optimize away operation when it's from a constant.
6715 //
6716 // The general transformation is:
6717 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
6718 // AND(VECTOR_CMP(x,y), constant2)
6719 // constant2 = UNARYOP(constant)
6720
Jim Grosbach8f6f0852014-07-23 20:41:38 +00006721 // Early exit if this isn't a vector operation, the operand of the
6722 // unary operation isn't a bitwise AND, or if the sizes of the operations
6723 // aren't the same.
Jim Grosbachf7502c42014-07-18 00:40:52 +00006724 EVT VT = N->getValueType(0);
6725 if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
Jim Grosbach8f6f0852014-07-23 20:41:38 +00006726 N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
6727 VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
Jim Grosbachf7502c42014-07-18 00:40:52 +00006728 return SDValue();
6729
Jim Grosbach724e4382014-07-23 20:41:43 +00006730 // Now check that the other operand of the AND is a constant. We could
Jim Grosbachf7502c42014-07-18 00:40:52 +00006731 // make the transformation for non-constant splats as well, but it's unclear
6732 // that would be a benefit as it would not eliminate any operations, just
6733 // perform one more step in scalar code before moving to the vector unit.
6734 if (BuildVectorSDNode *BV =
6735 dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
Jim Grosbach724e4382014-07-23 20:41:43 +00006736 // Bail out if the vector isn't a constant.
6737 if (!BV->isConstant())
Jim Grosbachf7502c42014-07-18 00:40:52 +00006738 return SDValue();
6739
6740 // Everything checks out. Build up the new and improved node.
6741 SDLoc DL(N);
6742 EVT IntVT = BV->getValueType(0);
6743 // Create a new constant of the appropriate type for the transformed
6744 // DAG.
6745 SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
6746 // The AND node needs bitcasts to/from an integer vector type around it.
6747 SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
6748 SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
6749 N->getOperand(0)->getOperand(0), MaskConst);
6750 SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
6751 return Res;
6752 }
6753
6754 return SDValue();
6755}
6756
Tim Northover3b0846e2014-05-24 12:50:23 +00006757static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG) {
Jim Grosbachf7502c42014-07-18 00:40:52 +00006758 // First try to optimize away the conversion when it's conditionally from
6759 // a constant. Vectors only.
6760 SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG);
6761 if (Res != SDValue())
6762 return Res;
6763
Tim Northover3b0846e2014-05-24 12:50:23 +00006764 EVT VT = N->getValueType(0);
6765 if (VT != MVT::f32 && VT != MVT::f64)
6766 return SDValue();
Jim Grosbachf7502c42014-07-18 00:40:52 +00006767
Tim Northover3b0846e2014-05-24 12:50:23 +00006768 // Only optimize when the source and destination types have the same width.
6769 if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
6770 return SDValue();
6771
6772 // If the result of an integer load is only used by an integer-to-float
6773 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
6774 // This eliminates an "integer-to-vector-move UOP and improve throughput.
6775 SDValue N0 = N->getOperand(0);
6776 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
6777 // Do not change the width of a volatile load.
6778 !cast<LoadSDNode>(N0)->isVolatile()) {
6779 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6780 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
6781 LN0->getPointerInfo(), LN0->isVolatile(),
6782 LN0->isNonTemporal(), LN0->isInvariant(),
6783 LN0->getAlignment());
6784
6785 // Make sure successors of the original load stay after it by updating them
6786 // to use the new Chain.
6787 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
6788
6789 unsigned Opcode =
6790 (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
6791 return DAG.getNode(Opcode, SDLoc(N), VT, Load);
6792 }
6793
6794 return SDValue();
6795}
6796
6797/// An EXTR instruction is made up of two shifts, ORed together. This helper
6798/// searches for and classifies those shifts.
6799static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
6800 bool &FromHi) {
6801 if (N.getOpcode() == ISD::SHL)
6802 FromHi = false;
6803 else if (N.getOpcode() == ISD::SRL)
6804 FromHi = true;
6805 else
6806 return false;
6807
6808 if (!isa<ConstantSDNode>(N.getOperand(1)))
6809 return false;
6810
6811 ShiftAmount = N->getConstantOperandVal(1);
6812 Src = N->getOperand(0);
6813 return true;
6814}
6815
6816/// EXTR instruction extracts a contiguous chunk of bits from two existing
6817/// registers viewed as a high/low pair. This function looks for the pattern:
6818/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
6819/// EXTR. Can't quite be done in TableGen because the two immediates aren't
6820/// independent.
6821static SDValue tryCombineToEXTR(SDNode *N,
6822 TargetLowering::DAGCombinerInfo &DCI) {
6823 SelectionDAG &DAG = DCI.DAG;
6824 SDLoc DL(N);
6825 EVT VT = N->getValueType(0);
6826
6827 assert(N->getOpcode() == ISD::OR && "Unexpected root");
6828
6829 if (VT != MVT::i32 && VT != MVT::i64)
6830 return SDValue();
6831
6832 SDValue LHS;
6833 uint32_t ShiftLHS = 0;
6834 bool LHSFromHi = 0;
6835 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
6836 return SDValue();
6837
6838 SDValue RHS;
6839 uint32_t ShiftRHS = 0;
6840 bool RHSFromHi = 0;
6841 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
6842 return SDValue();
6843
6844 // If they're both trying to come from the high part of the register, they're
6845 // not really an EXTR.
6846 if (LHSFromHi == RHSFromHi)
6847 return SDValue();
6848
6849 if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
6850 return SDValue();
6851
6852 if (LHSFromHi) {
6853 std::swap(LHS, RHS);
6854 std::swap(ShiftLHS, ShiftRHS);
6855 }
6856
6857 return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
6858 DAG.getConstant(ShiftRHS, MVT::i64));
6859}
6860
6861static SDValue tryCombineToBSL(SDNode *N,
6862 TargetLowering::DAGCombinerInfo &DCI) {
6863 EVT VT = N->getValueType(0);
6864 SelectionDAG &DAG = DCI.DAG;
6865 SDLoc DL(N);
6866
6867 if (!VT.isVector())
6868 return SDValue();
6869
6870 SDValue N0 = N->getOperand(0);
6871 if (N0.getOpcode() != ISD::AND)
6872 return SDValue();
6873
6874 SDValue N1 = N->getOperand(1);
6875 if (N1.getOpcode() != ISD::AND)
6876 return SDValue();
6877
6878 // We only have to look for constant vectors here since the general, variable
6879 // case can be handled in TableGen.
6880 unsigned Bits = VT.getVectorElementType().getSizeInBits();
6881 uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
6882 for (int i = 1; i >= 0; --i)
6883 for (int j = 1; j >= 0; --j) {
6884 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
6885 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
6886 if (!BVN0 || !BVN1)
6887 continue;
6888
6889 bool FoundMatch = true;
6890 for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
6891 ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
6892 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
6893 if (!CN0 || !CN1 ||
6894 CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
6895 FoundMatch = false;
6896 break;
6897 }
6898 }
6899
6900 if (FoundMatch)
6901 return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
6902 N0->getOperand(1 - i), N1->getOperand(1 - j));
6903 }
6904
6905 return SDValue();
6906}
6907
6908static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
6909 const AArch64Subtarget *Subtarget) {
6910 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
6911 if (!EnableAArch64ExtrGeneration)
6912 return SDValue();
6913 SelectionDAG &DAG = DCI.DAG;
6914 EVT VT = N->getValueType(0);
6915
6916 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
6917 return SDValue();
6918
6919 SDValue Res = tryCombineToEXTR(N, DCI);
6920 if (Res.getNode())
6921 return Res;
6922
6923 Res = tryCombineToBSL(N, DCI);
6924 if (Res.getNode())
6925 return Res;
6926
6927 return SDValue();
6928}
6929
6930static SDValue performBitcastCombine(SDNode *N,
6931 TargetLowering::DAGCombinerInfo &DCI,
6932 SelectionDAG &DAG) {
6933 // Wait 'til after everything is legalized to try this. That way we have
6934 // legal vector types and such.
6935 if (DCI.isBeforeLegalizeOps())
6936 return SDValue();
6937
6938 // Remove extraneous bitcasts around an extract_subvector.
6939 // For example,
6940 // (v4i16 (bitconvert
6941 // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
6942 // becomes
6943 // (extract_subvector ((v8i16 ...), (i64 4)))
6944
6945 // Only interested in 64-bit vectors as the ultimate result.
6946 EVT VT = N->getValueType(0);
6947 if (!VT.isVector())
6948 return SDValue();
6949 if (VT.getSimpleVT().getSizeInBits() != 64)
6950 return SDValue();
6951 // Is the operand an extract_subvector starting at the beginning or halfway
6952 // point of the vector? A low half may also come through as an
6953 // EXTRACT_SUBREG, so look for that, too.
6954 SDValue Op0 = N->getOperand(0);
6955 if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
6956 !(Op0->isMachineOpcode() &&
6957 Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
6958 return SDValue();
6959 uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
6960 if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
6961 if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
6962 return SDValue();
6963 } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
6964 if (idx != AArch64::dsub)
6965 return SDValue();
6966 // The dsub reference is equivalent to a lane zero subvector reference.
6967 idx = 0;
6968 }
6969 // Look through the bitcast of the input to the extract.
6970 if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
6971 return SDValue();
6972 SDValue Source = Op0->getOperand(0)->getOperand(0);
6973 // If the source type has twice the number of elements as our destination
6974 // type, we know this is an extract of the high or low half of the vector.
6975 EVT SVT = Source->getValueType(0);
6976 if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
6977 return SDValue();
6978
6979 DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
6980
6981 // Create the simplified form to just extract the low or high half of the
6982 // vector directly rather than bothering with the bitcasts.
6983 SDLoc dl(N);
6984 unsigned NumElements = VT.getVectorNumElements();
6985 if (idx) {
6986 SDValue HalfIdx = DAG.getConstant(NumElements, MVT::i64);
6987 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
6988 } else {
6989 SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, MVT::i32);
6990 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
6991 Source, SubReg),
6992 0);
6993 }
6994}
6995
6996static SDValue performConcatVectorsCombine(SDNode *N,
6997 TargetLowering::DAGCombinerInfo &DCI,
6998 SelectionDAG &DAG) {
6999 // Wait 'til after everything is legalized to try this. That way we have
7000 // legal vector types and such.
7001 if (DCI.isBeforeLegalizeOps())
7002 return SDValue();
7003
7004 SDLoc dl(N);
7005 EVT VT = N->getValueType(0);
7006
7007 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
7008 // splat. The indexed instructions are going to be expecting a DUPLANE64, so
7009 // canonicalise to that.
7010 if (N->getOperand(0) == N->getOperand(1) && VT.getVectorNumElements() == 2) {
7011 assert(VT.getVectorElementType().getSizeInBits() == 64);
7012 return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT,
7013 WidenVector(N->getOperand(0), DAG),
7014 DAG.getConstant(0, MVT::i64));
7015 }
7016
7017 // Canonicalise concat_vectors so that the right-hand vector has as few
7018 // bit-casts as possible before its real operation. The primary matching
7019 // destination for these operations will be the narrowing "2" instructions,
7020 // which depend on the operation being performed on this right-hand vector.
7021 // For example,
7022 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
7023 // becomes
7024 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
7025
7026 SDValue Op1 = N->getOperand(1);
7027 if (Op1->getOpcode() != ISD::BITCAST)
7028 return SDValue();
7029 SDValue RHS = Op1->getOperand(0);
7030 MVT RHSTy = RHS.getValueType().getSimpleVT();
7031 // If the RHS is not a vector, this is not the pattern we're looking for.
7032 if (!RHSTy.isVector())
7033 return SDValue();
7034
7035 DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
7036
7037 MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
7038 RHSTy.getVectorNumElements() * 2);
7039 return DAG.getNode(
7040 ISD::BITCAST, dl, VT,
7041 DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
7042 DAG.getNode(ISD::BITCAST, dl, RHSTy, N->getOperand(0)), RHS));
7043}
7044
7045static SDValue tryCombineFixedPointConvert(SDNode *N,
7046 TargetLowering::DAGCombinerInfo &DCI,
7047 SelectionDAG &DAG) {
7048 // Wait 'til after everything is legalized to try this. That way we have
7049 // legal vector types and such.
7050 if (DCI.isBeforeLegalizeOps())
7051 return SDValue();
7052 // Transform a scalar conversion of a value from a lane extract into a
7053 // lane extract of a vector conversion. E.g., from foo1 to foo2:
7054 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
7055 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
7056 //
7057 // The second form interacts better with instruction selection and the
7058 // register allocator to avoid cross-class register copies that aren't
7059 // coalescable due to a lane reference.
7060
7061 // Check the operand and see if it originates from a lane extract.
7062 SDValue Op1 = N->getOperand(1);
7063 if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7064 // Yep, no additional predication needed. Perform the transform.
7065 SDValue IID = N->getOperand(0);
7066 SDValue Shift = N->getOperand(2);
7067 SDValue Vec = Op1.getOperand(0);
7068 SDValue Lane = Op1.getOperand(1);
7069 EVT ResTy = N->getValueType(0);
7070 EVT VecResTy;
7071 SDLoc DL(N);
7072
7073 // The vector width should be 128 bits by the time we get here, even
7074 // if it started as 64 bits (the extract_vector handling will have
7075 // done so).
7076 assert(Vec.getValueType().getSizeInBits() == 128 &&
7077 "unexpected vector size on extract_vector_elt!");
7078 if (Vec.getValueType() == MVT::v4i32)
7079 VecResTy = MVT::v4f32;
7080 else if (Vec.getValueType() == MVT::v2i64)
7081 VecResTy = MVT::v2f64;
7082 else
Craig Topper2a30d782014-06-18 05:05:13 +00007083 llvm_unreachable("unexpected vector type!");
Tim Northover3b0846e2014-05-24 12:50:23 +00007084
7085 SDValue Convert =
7086 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
7087 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
7088 }
7089 return SDValue();
7090}
7091
7092// AArch64 high-vector "long" operations are formed by performing the non-high
7093// version on an extract_subvector of each operand which gets the high half:
7094//
7095// (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
7096//
7097// However, there are cases which don't have an extract_high explicitly, but
7098// have another operation that can be made compatible with one for free. For
7099// example:
7100//
7101// (dupv64 scalar) --> (extract_high (dup128 scalar))
7102//
7103// This routine does the actual conversion of such DUPs, once outer routines
7104// have determined that everything else is in order.
7105static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
7106 // We can handle most types of duplicate, but the lane ones have an extra
7107 // operand saying *which* lane, so we need to know.
7108 bool IsDUPLANE;
7109 switch (N.getOpcode()) {
7110 case AArch64ISD::DUP:
7111 IsDUPLANE = false;
7112 break;
7113 case AArch64ISD::DUPLANE8:
7114 case AArch64ISD::DUPLANE16:
7115 case AArch64ISD::DUPLANE32:
7116 case AArch64ISD::DUPLANE64:
7117 IsDUPLANE = true;
7118 break;
7119 default:
7120 return SDValue();
7121 }
7122
7123 MVT NarrowTy = N.getSimpleValueType();
7124 if (!NarrowTy.is64BitVector())
7125 return SDValue();
7126
7127 MVT ElementTy = NarrowTy.getVectorElementType();
7128 unsigned NumElems = NarrowTy.getVectorNumElements();
7129 MVT NewDUPVT = MVT::getVectorVT(ElementTy, NumElems * 2);
7130
7131 SDValue NewDUP;
7132 if (IsDUPLANE)
7133 NewDUP = DAG.getNode(N.getOpcode(), SDLoc(N), NewDUPVT, N.getOperand(0),
7134 N.getOperand(1));
7135 else
7136 NewDUP = DAG.getNode(AArch64ISD::DUP, SDLoc(N), NewDUPVT, N.getOperand(0));
7137
7138 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N.getNode()), NarrowTy,
7139 NewDUP, DAG.getConstant(NumElems, MVT::i64));
7140}
7141
7142static bool isEssentiallyExtractSubvector(SDValue N) {
7143 if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
7144 return true;
7145
7146 return N.getOpcode() == ISD::BITCAST &&
7147 N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
7148}
7149
7150/// \brief Helper structure to keep track of ISD::SET_CC operands.
7151struct GenericSetCCInfo {
7152 const SDValue *Opnd0;
7153 const SDValue *Opnd1;
7154 ISD::CondCode CC;
7155};
7156
7157/// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
7158struct AArch64SetCCInfo {
7159 const SDValue *Cmp;
7160 AArch64CC::CondCode CC;
7161};
7162
7163/// \brief Helper structure to keep track of SetCC information.
7164union SetCCInfo {
7165 GenericSetCCInfo Generic;
7166 AArch64SetCCInfo AArch64;
7167};
7168
7169/// \brief Helper structure to be able to read SetCC information. If set to
7170/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
7171/// GenericSetCCInfo.
7172struct SetCCInfoAndKind {
7173 SetCCInfo Info;
7174 bool IsAArch64;
7175};
7176
7177/// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
7178/// an
7179/// AArch64 lowered one.
7180/// \p SetCCInfo is filled accordingly.
7181/// \post SetCCInfo is meanginfull only when this function returns true.
7182/// \return True when Op is a kind of SET_CC operation.
7183static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
7184 // If this is a setcc, this is straight forward.
7185 if (Op.getOpcode() == ISD::SETCC) {
7186 SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
7187 SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
7188 SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7189 SetCCInfo.IsAArch64 = false;
7190 return true;
7191 }
7192 // Otherwise, check if this is a matching csel instruction.
7193 // In other words:
7194 // - csel 1, 0, cc
7195 // - csel 0, 1, !cc
7196 if (Op.getOpcode() != AArch64ISD::CSEL)
7197 return false;
7198 // Set the information about the operands.
7199 // TODO: we want the operands of the Cmp not the csel
7200 SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
7201 SetCCInfo.IsAArch64 = true;
7202 SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
7203 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
7204
7205 // Check that the operands matches the constraints:
7206 // (1) Both operands must be constants.
7207 // (2) One must be 1 and the other must be 0.
7208 ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
7209 ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7210
7211 // Check (1).
7212 if (!TValue || !FValue)
7213 return false;
7214
7215 // Check (2).
7216 if (!TValue->isOne()) {
7217 // Update the comparison when we are interested in !cc.
7218 std::swap(TValue, FValue);
7219 SetCCInfo.Info.AArch64.CC =
7220 AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
7221 }
7222 return TValue->isOne() && FValue->isNullValue();
7223}
7224
7225// Returns true if Op is setcc or zext of setcc.
7226static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
7227 if (isSetCC(Op, Info))
7228 return true;
7229 return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
7230 isSetCC(Op->getOperand(0), Info));
7231}
7232
7233// The folding we want to perform is:
7234// (add x, [zext] (setcc cc ...) )
7235// -->
7236// (csel x, (add x, 1), !cc ...)
7237//
7238// The latter will get matched to a CSINC instruction.
7239static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
7240 assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
7241 SDValue LHS = Op->getOperand(0);
7242 SDValue RHS = Op->getOperand(1);
7243 SetCCInfoAndKind InfoAndKind;
7244
7245 // If neither operand is a SET_CC, give up.
7246 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
7247 std::swap(LHS, RHS);
7248 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
7249 return SDValue();
7250 }
7251
7252 // FIXME: This could be generatized to work for FP comparisons.
7253 EVT CmpVT = InfoAndKind.IsAArch64
7254 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
7255 : InfoAndKind.Info.Generic.Opnd0->getValueType();
7256 if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
7257 return SDValue();
7258
7259 SDValue CCVal;
7260 SDValue Cmp;
7261 SDLoc dl(Op);
7262 if (InfoAndKind.IsAArch64) {
7263 CCVal = DAG.getConstant(
7264 AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), MVT::i32);
7265 Cmp = *InfoAndKind.Info.AArch64.Cmp;
7266 } else
7267 Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
7268 *InfoAndKind.Info.Generic.Opnd1,
7269 ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
7270 CCVal, DAG, dl);
7271
7272 EVT VT = Op->getValueType(0);
7273 LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, VT));
7274 return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
7275}
7276
7277// The basic add/sub long vector instructions have variants with "2" on the end
7278// which act on the high-half of their inputs. They are normally matched by
7279// patterns like:
7280//
7281// (add (zeroext (extract_high LHS)),
7282// (zeroext (extract_high RHS)))
7283// -> uaddl2 vD, vN, vM
7284//
7285// However, if one of the extracts is something like a duplicate, this
7286// instruction can still be used profitably. This function puts the DAG into a
7287// more appropriate form for those patterns to trigger.
7288static SDValue performAddSubLongCombine(SDNode *N,
7289 TargetLowering::DAGCombinerInfo &DCI,
7290 SelectionDAG &DAG) {
7291 if (DCI.isBeforeLegalizeOps())
7292 return SDValue();
7293
7294 MVT VT = N->getSimpleValueType(0);
7295 if (!VT.is128BitVector()) {
7296 if (N->getOpcode() == ISD::ADD)
7297 return performSetccAddFolding(N, DAG);
7298 return SDValue();
7299 }
7300
7301 // Make sure both branches are extended in the same way.
7302 SDValue LHS = N->getOperand(0);
7303 SDValue RHS = N->getOperand(1);
7304 if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
7305 LHS.getOpcode() != ISD::SIGN_EXTEND) ||
7306 LHS.getOpcode() != RHS.getOpcode())
7307 return SDValue();
7308
7309 unsigned ExtType = LHS.getOpcode();
7310
7311 // It's not worth doing if at least one of the inputs isn't already an
7312 // extract, but we don't know which it'll be so we have to try both.
7313 if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
7314 RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
7315 if (!RHS.getNode())
7316 return SDValue();
7317
7318 RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
7319 } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
7320 LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
7321 if (!LHS.getNode())
7322 return SDValue();
7323
7324 LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
7325 }
7326
7327 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
7328}
7329
7330// Massage DAGs which we can use the high-half "long" operations on into
7331// something isel will recognize better. E.g.
7332//
7333// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
7334// (aarch64_neon_umull (extract_high (v2i64 vec)))
7335// (extract_high (v2i64 (dup128 scalar)))))
7336//
7337static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
7338 TargetLowering::DAGCombinerInfo &DCI,
7339 SelectionDAG &DAG) {
7340 if (DCI.isBeforeLegalizeOps())
7341 return SDValue();
7342
7343 SDValue LHS = N->getOperand(1);
7344 SDValue RHS = N->getOperand(2);
7345 assert(LHS.getValueType().is64BitVector() &&
7346 RHS.getValueType().is64BitVector() &&
7347 "unexpected shape for long operation");
7348
7349 // Either node could be a DUP, but it's not worth doing both of them (you'd
7350 // just as well use the non-high version) so look for a corresponding extract
7351 // operation on the other "wing".
7352 if (isEssentiallyExtractSubvector(LHS)) {
7353 RHS = tryExtendDUPToExtractHigh(RHS, DAG);
7354 if (!RHS.getNode())
7355 return SDValue();
7356 } else if (isEssentiallyExtractSubvector(RHS)) {
7357 LHS = tryExtendDUPToExtractHigh(LHS, DAG);
7358 if (!LHS.getNode())
7359 return SDValue();
7360 }
7361
7362 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
7363 N->getOperand(0), LHS, RHS);
7364}
7365
7366static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
7367 MVT ElemTy = N->getSimpleValueType(0).getScalarType();
7368 unsigned ElemBits = ElemTy.getSizeInBits();
7369
7370 int64_t ShiftAmount;
7371 if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
7372 APInt SplatValue, SplatUndef;
7373 unsigned SplatBitSize;
7374 bool HasAnyUndefs;
7375 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
7376 HasAnyUndefs, ElemBits) ||
7377 SplatBitSize != ElemBits)
7378 return SDValue();
7379
7380 ShiftAmount = SplatValue.getSExtValue();
7381 } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
7382 ShiftAmount = CVN->getSExtValue();
7383 } else
7384 return SDValue();
7385
7386 unsigned Opcode;
7387 bool IsRightShift;
7388 switch (IID) {
7389 default:
7390 llvm_unreachable("Unknown shift intrinsic");
7391 case Intrinsic::aarch64_neon_sqshl:
7392 Opcode = AArch64ISD::SQSHL_I;
7393 IsRightShift = false;
7394 break;
7395 case Intrinsic::aarch64_neon_uqshl:
7396 Opcode = AArch64ISD::UQSHL_I;
7397 IsRightShift = false;
7398 break;
7399 case Intrinsic::aarch64_neon_srshl:
7400 Opcode = AArch64ISD::SRSHR_I;
7401 IsRightShift = true;
7402 break;
7403 case Intrinsic::aarch64_neon_urshl:
7404 Opcode = AArch64ISD::URSHR_I;
7405 IsRightShift = true;
7406 break;
7407 case Intrinsic::aarch64_neon_sqshlu:
7408 Opcode = AArch64ISD::SQSHLU_I;
7409 IsRightShift = false;
7410 break;
7411 }
7412
7413 if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits)
7414 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
7415 DAG.getConstant(-ShiftAmount, MVT::i32));
James Molloy1e3b5a42014-06-16 10:39:21 +00007416 else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits)
Tim Northover3b0846e2014-05-24 12:50:23 +00007417 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
7418 DAG.getConstant(ShiftAmount, MVT::i32));
7419
7420 return SDValue();
7421}
7422
7423// The CRC32[BH] instructions ignore the high bits of their data operand. Since
7424// the intrinsics must be legal and take an i32, this means there's almost
7425// certainly going to be a zext in the DAG which we can eliminate.
7426static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
7427 SDValue AndN = N->getOperand(2);
7428 if (AndN.getOpcode() != ISD::AND)
7429 return SDValue();
7430
7431 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
7432 if (!CMask || CMask->getZExtValue() != Mask)
7433 return SDValue();
7434
7435 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
7436 N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
7437}
7438
7439static SDValue performIntrinsicCombine(SDNode *N,
7440 TargetLowering::DAGCombinerInfo &DCI,
7441 const AArch64Subtarget *Subtarget) {
7442 SelectionDAG &DAG = DCI.DAG;
7443 unsigned IID = getIntrinsicID(N);
7444 switch (IID) {
7445 default:
7446 break;
7447 case Intrinsic::aarch64_neon_vcvtfxs2fp:
7448 case Intrinsic::aarch64_neon_vcvtfxu2fp:
7449 return tryCombineFixedPointConvert(N, DCI, DAG);
7450 break;
7451 case Intrinsic::aarch64_neon_fmax:
7452 return DAG.getNode(AArch64ISD::FMAX, SDLoc(N), N->getValueType(0),
7453 N->getOperand(1), N->getOperand(2));
7454 case Intrinsic::aarch64_neon_fmin:
7455 return DAG.getNode(AArch64ISD::FMIN, SDLoc(N), N->getValueType(0),
7456 N->getOperand(1), N->getOperand(2));
7457 case Intrinsic::aarch64_neon_smull:
7458 case Intrinsic::aarch64_neon_umull:
7459 case Intrinsic::aarch64_neon_pmull:
7460 case Intrinsic::aarch64_neon_sqdmull:
7461 return tryCombineLongOpWithDup(IID, N, DCI, DAG);
7462 case Intrinsic::aarch64_neon_sqshl:
7463 case Intrinsic::aarch64_neon_uqshl:
7464 case Intrinsic::aarch64_neon_sqshlu:
7465 case Intrinsic::aarch64_neon_srshl:
7466 case Intrinsic::aarch64_neon_urshl:
7467 return tryCombineShiftImm(IID, N, DAG);
7468 case Intrinsic::aarch64_crc32b:
7469 case Intrinsic::aarch64_crc32cb:
7470 return tryCombineCRC32(0xff, N, DAG);
7471 case Intrinsic::aarch64_crc32h:
7472 case Intrinsic::aarch64_crc32ch:
7473 return tryCombineCRC32(0xffff, N, DAG);
7474 }
7475 return SDValue();
7476}
7477
7478static SDValue performExtendCombine(SDNode *N,
7479 TargetLowering::DAGCombinerInfo &DCI,
7480 SelectionDAG &DAG) {
7481 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
7482 // we can convert that DUP into another extract_high (of a bigger DUP), which
7483 // helps the backend to decide that an sabdl2 would be useful, saving a real
7484 // extract_high operation.
7485 if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
7486 N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
7487 SDNode *ABDNode = N->getOperand(0).getNode();
7488 unsigned IID = getIntrinsicID(ABDNode);
7489 if (IID == Intrinsic::aarch64_neon_sabd ||
7490 IID == Intrinsic::aarch64_neon_uabd) {
7491 SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
7492 if (!NewABD.getNode())
7493 return SDValue();
7494
7495 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
7496 NewABD);
7497 }
7498 }
7499
7500 // This is effectively a custom type legalization for AArch64.
7501 //
7502 // Type legalization will split an extend of a small, legal, type to a larger
7503 // illegal type by first splitting the destination type, often creating
7504 // illegal source types, which then get legalized in isel-confusing ways,
7505 // leading to really terrible codegen. E.g.,
7506 // %result = v8i32 sext v8i8 %value
7507 // becomes
7508 // %losrc = extract_subreg %value, ...
7509 // %hisrc = extract_subreg %value, ...
7510 // %lo = v4i32 sext v4i8 %losrc
7511 // %hi = v4i32 sext v4i8 %hisrc
7512 // Things go rapidly downhill from there.
7513 //
7514 // For AArch64, the [sz]ext vector instructions can only go up one element
7515 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
7516 // take two instructions.
7517 //
7518 // This implies that the most efficient way to do the extend from v8i8
7519 // to two v4i32 values is to first extend the v8i8 to v8i16, then do
7520 // the normal splitting to happen for the v8i16->v8i32.
7521
7522 // This is pre-legalization to catch some cases where the default
7523 // type legalization will create ill-tempered code.
7524 if (!DCI.isBeforeLegalizeOps())
7525 return SDValue();
7526
7527 // We're only interested in cleaning things up for non-legal vector types
7528 // here. If both the source and destination are legal, things will just
7529 // work naturally without any fiddling.
7530 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7531 EVT ResVT = N->getValueType(0);
7532 if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
7533 return SDValue();
7534 // If the vector type isn't a simple VT, it's beyond the scope of what
7535 // we're worried about here. Let legalization do its thing and hope for
7536 // the best.
Jim Grosbachec2b0d02014-08-28 22:08:28 +00007537 SDValue Src = N->getOperand(0);
7538 EVT SrcVT = Src->getValueType(0);
7539 if (!ResVT.isSimple() || !SrcVT.isSimple())
Tim Northover3b0846e2014-05-24 12:50:23 +00007540 return SDValue();
7541
Tim Northover3b0846e2014-05-24 12:50:23 +00007542 // If the source VT is a 64-bit vector, we can play games and get the
7543 // better results we want.
7544 if (SrcVT.getSizeInBits() != 64)
7545 return SDValue();
7546
7547 unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
7548 unsigned ElementCount = SrcVT.getVectorNumElements();
7549 SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
7550 SDLoc DL(N);
7551 Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
7552
7553 // Now split the rest of the operation into two halves, each with a 64
7554 // bit source.
7555 EVT LoVT, HiVT;
7556 SDValue Lo, Hi;
7557 unsigned NumElements = ResVT.getVectorNumElements();
7558 assert(!(NumElements & 1) && "Splitting vector, but not in half!");
7559 LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
7560 ResVT.getVectorElementType(), NumElements / 2);
7561
7562 EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
7563 LoVT.getVectorNumElements());
7564 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
7565 DAG.getIntPtrConstant(0));
7566 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
7567 DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
7568 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
7569 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
7570
7571 // Now combine the parts back together so we still have a single result
7572 // like the combiner expects.
7573 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
7574}
7575
7576/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
7577/// value. The load store optimizer pass will merge them to store pair stores.
7578/// This has better performance than a splat of the scalar followed by a split
7579/// vector store. Even if the stores are not merged it is four stores vs a dup,
7580/// followed by an ext.b and two stores.
7581static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
7582 SDValue StVal = St->getValue();
7583 EVT VT = StVal.getValueType();
7584
7585 // Don't replace floating point stores, they possibly won't be transformed to
7586 // stp because of the store pair suppress pass.
7587 if (VT.isFloatingPoint())
7588 return SDValue();
7589
7590 // Check for insert vector elements.
7591 if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
7592 return SDValue();
7593
7594 // We can express a splat as store pair(s) for 2 or 4 elements.
7595 unsigned NumVecElts = VT.getVectorNumElements();
7596 if (NumVecElts != 4 && NumVecElts != 2)
7597 return SDValue();
7598 SDValue SplatVal = StVal.getOperand(1);
7599 unsigned RemainInsertElts = NumVecElts - 1;
7600
7601 // Check that this is a splat.
7602 while (--RemainInsertElts) {
7603 SDValue NextInsertElt = StVal.getOperand(0);
7604 if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
7605 return SDValue();
7606 if (NextInsertElt.getOperand(1) != SplatVal)
7607 return SDValue();
7608 StVal = NextInsertElt;
7609 }
7610 unsigned OrigAlignment = St->getAlignment();
7611 unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
7612 unsigned Alignment = std::min(OrigAlignment, EltOffset);
7613
7614 // Create scalar stores. This is at least as good as the code sequence for a
7615 // split unaligned store wich is a dup.s, ext.b, and two stores.
7616 // Most of the time the three stores should be replaced by store pair
7617 // instructions (stp).
7618 SDLoc DL(St);
7619 SDValue BasePtr = St->getBasePtr();
7620 SDValue NewST1 =
7621 DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
7622 St->isVolatile(), St->isNonTemporal(), St->getAlignment());
7623
7624 unsigned Offset = EltOffset;
7625 while (--NumVecElts) {
7626 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
7627 DAG.getConstant(Offset, MVT::i64));
7628 NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
7629 St->getPointerInfo(), St->isVolatile(),
7630 St->isNonTemporal(), Alignment);
7631 Offset += EltOffset;
7632 }
7633 return NewST1;
7634}
7635
7636static SDValue performSTORECombine(SDNode *N,
7637 TargetLowering::DAGCombinerInfo &DCI,
7638 SelectionDAG &DAG,
7639 const AArch64Subtarget *Subtarget) {
7640 if (!DCI.isBeforeLegalize())
7641 return SDValue();
7642
7643 StoreSDNode *S = cast<StoreSDNode>(N);
7644 if (S->isVolatile())
7645 return SDValue();
7646
7647 // Cyclone has bad performance on unaligned 16B stores when crossing line and
7648 // page boundries. We want to split such stores.
7649 if (!Subtarget->isCyclone())
7650 return SDValue();
7651
7652 // Don't split at Oz.
7653 MachineFunction &MF = DAG.getMachineFunction();
7654 bool IsMinSize = MF.getFunction()->getAttributes().hasAttribute(
7655 AttributeSet::FunctionIndex, Attribute::MinSize);
7656 if (IsMinSize)
7657 return SDValue();
7658
7659 SDValue StVal = S->getValue();
7660 EVT VT = StVal.getValueType();
7661
7662 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
7663 // those up regresses performance on micro-benchmarks and olden/bh.
7664 if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
7665 return SDValue();
7666
7667 // Split unaligned 16B stores. They are terrible for performance.
7668 // Don't split stores with alignment of 1 or 2. Code that uses clang vector
7669 // extensions can use this to mark that it does not want splitting to happen
7670 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
7671 // eliminating alignment hazards is only 1 in 8 for alignment of 2.
7672 if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
7673 S->getAlignment() <= 2)
7674 return SDValue();
7675
7676 // If we get a splat of a scalar convert this vector store to a store of
7677 // scalars. They will be merged into store pairs thereby removing two
7678 // instructions.
7679 SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S);
7680 if (ReplacedSplat != SDValue())
7681 return ReplacedSplat;
7682
7683 SDLoc DL(S);
7684 unsigned NumElts = VT.getVectorNumElements() / 2;
7685 // Split VT into two.
7686 EVT HalfVT =
7687 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
7688 SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
7689 DAG.getIntPtrConstant(0));
7690 SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
7691 DAG.getIntPtrConstant(NumElts));
7692 SDValue BasePtr = S->getBasePtr();
7693 SDValue NewST1 =
7694 DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
7695 S->isVolatile(), S->isNonTemporal(), S->getAlignment());
7696 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
7697 DAG.getConstant(8, MVT::i64));
7698 return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
7699 S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
7700 S->getAlignment());
7701}
7702
7703/// Target-specific DAG combine function for post-increment LD1 (lane) and
7704/// post-increment LD1R.
7705static SDValue performPostLD1Combine(SDNode *N,
7706 TargetLowering::DAGCombinerInfo &DCI,
7707 bool IsLaneOp) {
7708 if (DCI.isBeforeLegalizeOps())
7709 return SDValue();
7710
7711 SelectionDAG &DAG = DCI.DAG;
7712 EVT VT = N->getValueType(0);
7713
7714 unsigned LoadIdx = IsLaneOp ? 1 : 0;
7715 SDNode *LD = N->getOperand(LoadIdx).getNode();
7716 // If it is not LOAD, can not do such combine.
7717 if (LD->getOpcode() != ISD::LOAD)
7718 return SDValue();
7719
7720 LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
7721 EVT MemVT = LoadSDN->getMemoryVT();
7722 // Check if memory operand is the same type as the vector element.
7723 if (MemVT != VT.getVectorElementType())
7724 return SDValue();
7725
7726 // Check if there are other uses. If so, do not combine as it will introduce
7727 // an extra load.
7728 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
7729 ++UI) {
7730 if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
7731 continue;
7732 if (*UI != N)
7733 return SDValue();
7734 }
7735
7736 SDValue Addr = LD->getOperand(1);
7737 SDValue Vector = N->getOperand(0);
7738 // Search for a use of the address operand that is an increment.
7739 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
7740 Addr.getNode()->use_end(); UI != UE; ++UI) {
7741 SDNode *User = *UI;
7742 if (User->getOpcode() != ISD::ADD
7743 || UI.getUse().getResNo() != Addr.getResNo())
7744 continue;
7745
7746 // Check that the add is independent of the load. Otherwise, folding it
7747 // would create a cycle.
7748 if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
7749 continue;
7750 // Also check that add is not used in the vector operand. This would also
7751 // create a cycle.
7752 if (User->isPredecessorOf(Vector.getNode()))
7753 continue;
7754
7755 // If the increment is a constant, it must match the memory ref size.
7756 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7757 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7758 uint32_t IncVal = CInc->getZExtValue();
7759 unsigned NumBytes = VT.getScalarSizeInBits() / 8;
7760 if (IncVal != NumBytes)
7761 continue;
7762 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
7763 }
7764
7765 SmallVector<SDValue, 8> Ops;
7766 Ops.push_back(LD->getOperand(0)); // Chain
7767 if (IsLaneOp) {
7768 Ops.push_back(Vector); // The vector to be inserted
7769 Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
7770 }
7771 Ops.push_back(Addr);
7772 Ops.push_back(Inc);
7773
7774 EVT Tys[3] = { VT, MVT::i64, MVT::Other };
Craig Toppere1d12942014-08-27 05:25:25 +00007775 SDVTList SDTys = DAG.getVTList(Tys);
Tim Northover3b0846e2014-05-24 12:50:23 +00007776 unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
7777 SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
7778 MemVT,
7779 LoadSDN->getMemOperand());
7780
7781 // Update the uses.
7782 std::vector<SDValue> NewResults;
7783 NewResults.push_back(SDValue(LD, 0)); // The result of load
7784 NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain
7785 DCI.CombineTo(LD, NewResults);
7786 DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
7787 DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
7788
7789 break;
7790 }
7791 return SDValue();
7792}
7793
7794/// Target-specific DAG combine function for NEON load/store intrinsics
7795/// to merge base address updates.
7796static SDValue performNEONPostLDSTCombine(SDNode *N,
7797 TargetLowering::DAGCombinerInfo &DCI,
7798 SelectionDAG &DAG) {
7799 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
7800 return SDValue();
7801
7802 unsigned AddrOpIdx = N->getNumOperands() - 1;
7803 SDValue Addr = N->getOperand(AddrOpIdx);
7804
7805 // Search for a use of the address operand that is an increment.
7806 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
7807 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
7808 SDNode *User = *UI;
7809 if (User->getOpcode() != ISD::ADD ||
7810 UI.getUse().getResNo() != Addr.getResNo())
7811 continue;
7812
7813 // Check that the add is independent of the load/store. Otherwise, folding
7814 // it would create a cycle.
7815 if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
7816 continue;
7817
7818 // Find the new opcode for the updating load/store.
7819 bool IsStore = false;
7820 bool IsLaneOp = false;
7821 bool IsDupOp = false;
7822 unsigned NewOpc = 0;
7823 unsigned NumVecs = 0;
7824 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7825 switch (IntNo) {
7826 default: llvm_unreachable("unexpected intrinsic for Neon base update");
7827 case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
7828 NumVecs = 2; break;
7829 case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
7830 NumVecs = 3; break;
7831 case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
7832 NumVecs = 4; break;
7833 case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
7834 NumVecs = 2; IsStore = true; break;
7835 case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
7836 NumVecs = 3; IsStore = true; break;
7837 case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
7838 NumVecs = 4; IsStore = true; break;
7839 case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
7840 NumVecs = 2; break;
7841 case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
7842 NumVecs = 3; break;
7843 case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
7844 NumVecs = 4; break;
7845 case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
7846 NumVecs = 2; IsStore = true; break;
7847 case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
7848 NumVecs = 3; IsStore = true; break;
7849 case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
7850 NumVecs = 4; IsStore = true; break;
7851 case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
7852 NumVecs = 2; IsDupOp = true; break;
7853 case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
7854 NumVecs = 3; IsDupOp = true; break;
7855 case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
7856 NumVecs = 4; IsDupOp = true; break;
7857 case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
7858 NumVecs = 2; IsLaneOp = true; break;
7859 case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
7860 NumVecs = 3; IsLaneOp = true; break;
7861 case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
7862 NumVecs = 4; IsLaneOp = true; break;
7863 case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
7864 NumVecs = 2; IsStore = true; IsLaneOp = true; break;
7865 case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
7866 NumVecs = 3; IsStore = true; IsLaneOp = true; break;
7867 case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
7868 NumVecs = 4; IsStore = true; IsLaneOp = true; break;
7869 }
7870
7871 EVT VecTy;
7872 if (IsStore)
7873 VecTy = N->getOperand(2).getValueType();
7874 else
7875 VecTy = N->getValueType(0);
7876
7877 // If the increment is a constant, it must match the memory ref size.
7878 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7879 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7880 uint32_t IncVal = CInc->getZExtValue();
7881 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
7882 if (IsLaneOp || IsDupOp)
7883 NumBytes /= VecTy.getVectorNumElements();
7884 if (IncVal != NumBytes)
7885 continue;
7886 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
7887 }
7888 SmallVector<SDValue, 8> Ops;
7889 Ops.push_back(N->getOperand(0)); // Incoming chain
7890 // Load lane and store have vector list as input.
7891 if (IsLaneOp || IsStore)
7892 for (unsigned i = 2; i < AddrOpIdx; ++i)
7893 Ops.push_back(N->getOperand(i));
7894 Ops.push_back(Addr); // Base register
7895 Ops.push_back(Inc);
7896
7897 // Return Types.
7898 EVT Tys[6];
7899 unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
7900 unsigned n;
7901 for (n = 0; n < NumResultVecs; ++n)
7902 Tys[n] = VecTy;
7903 Tys[n++] = MVT::i64; // Type of write back register
7904 Tys[n] = MVT::Other; // Type of the chain
Craig Toppere1d12942014-08-27 05:25:25 +00007905 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
Tim Northover3b0846e2014-05-24 12:50:23 +00007906
7907 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
7908 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
7909 MemInt->getMemoryVT(),
7910 MemInt->getMemOperand());
7911
7912 // Update the uses.
7913 std::vector<SDValue> NewResults;
7914 for (unsigned i = 0; i < NumResultVecs; ++i) {
7915 NewResults.push_back(SDValue(UpdN.getNode(), i));
7916 }
7917 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
7918 DCI.CombineTo(N, NewResults);
7919 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
7920
7921 break;
7922 }
7923 return SDValue();
7924}
7925
Louis Gerbarg03c627e2014-08-29 21:00:22 +00007926// Checks to see if the value is the prescribed width and returns information
7927// about its extension mode.
7928static
7929bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
7930 ExtType = ISD::NON_EXTLOAD;
7931 switch(V.getNode()->getOpcode()) {
7932 default:
7933 return false;
7934 case ISD::LOAD: {
7935 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
7936 if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
7937 || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
7938 ExtType = LoadNode->getExtensionType();
7939 return true;
7940 }
7941 return false;
7942 }
7943 case ISD::AssertSext: {
7944 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
7945 if ((TypeNode->getVT() == MVT::i8 && width == 8)
7946 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
7947 ExtType = ISD::SEXTLOAD;
7948 return true;
7949 }
7950 return false;
7951 }
7952 case ISD::AssertZext: {
7953 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
7954 if ((TypeNode->getVT() == MVT::i8 && width == 8)
7955 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
7956 ExtType = ISD::ZEXTLOAD;
7957 return true;
7958 }
7959 return false;
7960 }
7961 case ISD::Constant:
7962 case ISD::TargetConstant: {
Reid Kleckner39ad7c92014-08-29 22:14:26 +00007963 if (std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
Aaron Ballman8ca53882014-09-02 12:19:02 +00007964 1LL << (width - 1))
Louis Gerbarg03c627e2014-08-29 21:00:22 +00007965 return true;
7966 return false;
7967 }
7968 }
7969
7970 return true;
7971}
7972
7973// This function does a whole lot of voodoo to determine if the tests are
7974// equivalent without and with a mask. Essentially what happens is that given a
7975// DAG resembling:
7976//
7977// +-------------+ +-------------+ +-------------+ +-------------+
7978// | Input | | AddConstant | | CompConstant| | CC |
7979// +-------------+ +-------------+ +-------------+ +-------------+
7980// | | | |
7981// V V | +----------+
7982// +-------------+ +----+ | |
7983// | ADD | |0xff| | |
7984// +-------------+ +----+ | |
7985// | | | |
7986// V V | |
7987// +-------------+ | |
7988// | AND | | |
7989// +-------------+ | |
7990// | | |
7991// +-----+ | |
7992// | | |
7993// V V V
7994// +-------------+
7995// | CMP |
7996// +-------------+
7997//
7998// The AND node may be safely removed for some combinations of inputs. In
7999// particular we need to take into account the extension type of the Input,
8000// the exact values of AddConstant, CompConstant, and CC, along with the nominal
8001// width of the input (this can work for any width inputs, the above graph is
8002// specific to 8 bits.
8003//
8004// The specific equations were worked out by generating output tables for each
8005// AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
8006// problem was simplified by working with 4 bit inputs, which means we only
8007// needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
8008// extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
8009// patterns present in both extensions (0,7). For every distinct set of
8010// AddConstant and CompConstants bit patterns we can consider the masked and
8011// unmasked versions to be equivalent if the result of this function is true for
8012// all 16 distinct bit patterns of for the current extension type of Input (w0).
8013//
8014// sub w8, w0, w1
8015// and w10, w8, #0x0f
8016// cmp w8, w2
8017// cset w9, AArch64CC
8018// cmp w10, w2
8019// cset w11, AArch64CC
8020// cmp w9, w11
8021// cset w0, eq
8022// ret
8023//
8024// Since the above function shows when the outputs are equivalent it defines
8025// when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
8026// would be expensive to run during compiles. The equations below were written
8027// in a test harness that confirmed they gave equivalent outputs to the above
8028// for all inputs function, so they can be used determine if the removal is
8029// legal instead.
8030//
8031// isEquivalentMaskless() is the code for testing if the AND can be removed
8032// factored out of the DAG recognition as the DAG can take several forms.
8033
8034static
8035bool isEquivalentMaskless(unsigned CC, unsigned width,
8036 ISD::LoadExtType ExtType, signed AddConstant,
8037 signed CompConstant) {
8038 // By being careful about our equations and only writing the in term
8039 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
8040 // make them generally applicable to all bit widths.
8041 signed MaxUInt = (1 << width);
8042
8043 // For the purposes of these comparisons sign extending the type is
8044 // equivalent to zero extending the add and displacing it by half the integer
8045 // width. Provided we are careful and make sure our equations are valid over
8046 // the whole range we can just adjust the input and avoid writing equations
8047 // for sign extended inputs.
8048 if (ExtType == ISD::SEXTLOAD)
8049 AddConstant -= (1 << (width-1));
8050
8051 switch(CC) {
8052 case AArch64CC::LE:
8053 case AArch64CC::GT: {
8054 if ((AddConstant == 0) ||
8055 (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
8056 (AddConstant >= 0 && CompConstant < 0) ||
8057 (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
8058 return true;
8059 } break;
8060 case AArch64CC::LT:
8061 case AArch64CC::GE: {
8062 if ((AddConstant == 0) ||
8063 (AddConstant >= 0 && CompConstant <= 0) ||
8064 (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
8065 return true;
8066 } break;
8067 case AArch64CC::HI:
8068 case AArch64CC::LS: {
8069 if ((AddConstant >= 0 && CompConstant < 0) ||
8070 (AddConstant <= 0 && CompConstant >= -1 &&
8071 CompConstant < AddConstant + MaxUInt))
8072 return true;
8073 } break;
8074 case AArch64CC::PL:
8075 case AArch64CC::MI: {
8076 if ((AddConstant == 0) ||
8077 (AddConstant > 0 && CompConstant <= 0) ||
8078 (AddConstant < 0 && CompConstant <= AddConstant))
8079 return true;
8080 } break;
8081 case AArch64CC::LO:
8082 case AArch64CC::HS: {
8083 if ((AddConstant >= 0 && CompConstant <= 0) ||
8084 (AddConstant <= 0 && CompConstant >= 0 &&
8085 CompConstant <= AddConstant + MaxUInt))
8086 return true;
8087 } break;
8088 case AArch64CC::EQ:
8089 case AArch64CC::NE: {
8090 if ((AddConstant > 0 && CompConstant < 0) ||
8091 (AddConstant < 0 && CompConstant >= 0 &&
8092 CompConstant < AddConstant + MaxUInt) ||
8093 (AddConstant >= 0 && CompConstant >= 0 &&
8094 CompConstant >= AddConstant) ||
8095 (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
8096
8097 return true;
8098 } break;
8099 case AArch64CC::VS:
8100 case AArch64CC::VC:
8101 case AArch64CC::AL:
8102 case AArch64CC::NV:
8103 return true;
8104 case AArch64CC::Invalid:
8105 break;
8106 }
8107
8108 return false;
8109}
8110
8111static
8112SDValue performCONDCombine(SDNode *N,
8113 TargetLowering::DAGCombinerInfo &DCI,
8114 SelectionDAG &DAG, unsigned CCIndex,
8115 unsigned CmpIndex) {
8116 unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
8117 SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
8118 unsigned CondOpcode = SubsNode->getOpcode();
8119
8120 if (CondOpcode != AArch64ISD::SUBS)
8121 return SDValue();
8122
8123 // There is a SUBS feeding this condition. Is it fed by a mask we can
8124 // use?
8125
8126 SDNode *AndNode = SubsNode->getOperand(0).getNode();
8127 unsigned MaskBits = 0;
8128
8129 if (AndNode->getOpcode() != ISD::AND)
8130 return SDValue();
8131
8132 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
8133 uint32_t CNV = CN->getZExtValue();
8134 if (CNV == 255)
8135 MaskBits = 8;
8136 else if (CNV == 65535)
8137 MaskBits = 16;
8138 }
8139
8140 if (!MaskBits)
8141 return SDValue();
8142
8143 SDValue AddValue = AndNode->getOperand(0);
8144
8145 if (AddValue.getOpcode() != ISD::ADD)
8146 return SDValue();
8147
8148 // The basic dag structure is correct, grab the inputs and validate them.
8149
8150 SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
8151 SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
8152 SDValue SubsInputValue = SubsNode->getOperand(1);
8153
8154 // The mask is present and the provenance of all the values is a smaller type,
8155 // lets see if the mask is superfluous.
8156
8157 if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
8158 !isa<ConstantSDNode>(SubsInputValue.getNode()))
8159 return SDValue();
8160
8161 ISD::LoadExtType ExtType;
8162
8163 if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
8164 !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
8165 !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
8166 return SDValue();
8167
8168 if(!isEquivalentMaskless(CC, MaskBits, ExtType,
8169 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
8170 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
8171 return SDValue();
8172
8173 // The AND is not necessary, remove it.
8174
8175 SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
8176 SubsNode->getValueType(1));
8177 SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
8178
8179 SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
8180 DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
8181
8182 return SDValue(N, 0);
8183}
8184
Tim Northover3b0846e2014-05-24 12:50:23 +00008185// Optimize compare with zero and branch.
8186static SDValue performBRCONDCombine(SDNode *N,
8187 TargetLowering::DAGCombinerInfo &DCI,
8188 SelectionDAG &DAG) {
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008189 SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3);
8190 if (NV.getNode())
8191 N = NV.getNode();
Tim Northover3b0846e2014-05-24 12:50:23 +00008192 SDValue Chain = N->getOperand(0);
8193 SDValue Dest = N->getOperand(1);
8194 SDValue CCVal = N->getOperand(2);
8195 SDValue Cmp = N->getOperand(3);
8196
8197 assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
8198 unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
8199 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
8200 return SDValue();
8201
8202 unsigned CmpOpc = Cmp.getOpcode();
8203 if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
8204 return SDValue();
8205
8206 // Only attempt folding if there is only one use of the flag and no use of the
8207 // value.
8208 if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
8209 return SDValue();
8210
8211 SDValue LHS = Cmp.getOperand(0);
8212 SDValue RHS = Cmp.getOperand(1);
8213
8214 assert(LHS.getValueType() == RHS.getValueType() &&
8215 "Expected the value type to be the same for both operands!");
8216 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
8217 return SDValue();
8218
8219 if (isa<ConstantSDNode>(LHS) && cast<ConstantSDNode>(LHS)->isNullValue())
8220 std::swap(LHS, RHS);
8221
8222 if (!isa<ConstantSDNode>(RHS) || !cast<ConstantSDNode>(RHS)->isNullValue())
8223 return SDValue();
8224
8225 if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
8226 LHS.getOpcode() == ISD::SRL)
8227 return SDValue();
8228
8229 // Fold the compare into the branch instruction.
8230 SDValue BR;
8231 if (CC == AArch64CC::EQ)
8232 BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
8233 else
8234 BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
8235
8236 // Do not add new nodes to DAG combiner worklist.
8237 DCI.CombineTo(N, BR, false);
8238
8239 return SDValue();
8240}
8241
8242// vselect (v1i1 setcc) ->
8243// vselect (v1iXX setcc) (XX is the size of the compared operand type)
8244// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
8245// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
8246// such VSELECT.
8247static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
8248 SDValue N0 = N->getOperand(0);
8249 EVT CCVT = N0.getValueType();
8250
8251 if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
8252 CCVT.getVectorElementType() != MVT::i1)
8253 return SDValue();
8254
8255 EVT ResVT = N->getValueType(0);
8256 EVT CmpVT = N0.getOperand(0).getValueType();
8257 // Only combine when the result type is of the same size as the compared
8258 // operands.
8259 if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
8260 return SDValue();
8261
8262 SDValue IfTrue = N->getOperand(1);
8263 SDValue IfFalse = N->getOperand(2);
8264 SDValue SetCC =
8265 DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
8266 N0.getOperand(0), N0.getOperand(1),
8267 cast<CondCodeSDNode>(N0.getOperand(2))->get());
8268 return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
8269 IfTrue, IfFalse);
8270}
8271
8272/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
8273/// the compare-mask instructions rather than going via NZCV, even if LHS and
8274/// RHS are really scalar. This replaces any scalar setcc in the above pattern
8275/// with a vector one followed by a DUP shuffle on the result.
8276static SDValue performSelectCombine(SDNode *N, SelectionDAG &DAG) {
8277 SDValue N0 = N->getOperand(0);
8278 EVT ResVT = N->getValueType(0);
Tim Northover3c0915e2014-08-29 15:34:58 +00008279
8280 if (N0.getOpcode() != ISD::SETCC || N0.getValueType() != MVT::i1)
8281 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00008282
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008283 // If NumMaskElts == 0, the comparison is larger than select result. The
8284 // largest real NEON comparison is 64-bits per lane, which means the result is
8285 // at most 32-bits and an illegal vector. Just bail out for now.
Tim Northover3c0915e2014-08-29 15:34:58 +00008286 EVT SrcVT = N0.getOperand(0).getValueType();
8287 int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008288 if (!ResVT.isVector() || NumMaskElts == 0)
Tim Northover3b0846e2014-05-24 12:50:23 +00008289 return SDValue();
8290
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008291 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00008292 EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
8293
8294 // First perform a vector comparison, where lane 0 is the one we're interested
8295 // in.
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008296 SDLoc DL(N0);
Tim Northover3b0846e2014-05-24 12:50:23 +00008297 SDValue LHS =
8298 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
8299 SDValue RHS =
8300 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
8301 SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
8302
8303 // Now duplicate the comparison mask we want across all other lanes.
8304 SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
8305 SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data());
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008306 Mask = DAG.getNode(ISD::BITCAST, DL,
8307 ResVT.changeVectorElementTypeToInteger(), Mask);
Tim Northover3b0846e2014-05-24 12:50:23 +00008308
8309 return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
8310}
8311
8312SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
8313 DAGCombinerInfo &DCI) const {
8314 SelectionDAG &DAG = DCI.DAG;
8315 switch (N->getOpcode()) {
8316 default:
8317 break;
8318 case ISD::ADD:
8319 case ISD::SUB:
8320 return performAddSubLongCombine(N, DCI, DAG);
8321 case ISD::XOR:
8322 return performXorCombine(N, DAG, DCI, Subtarget);
8323 case ISD::MUL:
8324 return performMulCombine(N, DAG, DCI, Subtarget);
8325 case ISD::SINT_TO_FP:
8326 case ISD::UINT_TO_FP:
8327 return performIntToFpCombine(N, DAG);
8328 case ISD::OR:
8329 return performORCombine(N, DCI, Subtarget);
8330 case ISD::INTRINSIC_WO_CHAIN:
8331 return performIntrinsicCombine(N, DCI, Subtarget);
8332 case ISD::ANY_EXTEND:
8333 case ISD::ZERO_EXTEND:
8334 case ISD::SIGN_EXTEND:
8335 return performExtendCombine(N, DCI, DAG);
8336 case ISD::BITCAST:
8337 return performBitcastCombine(N, DCI, DAG);
8338 case ISD::CONCAT_VECTORS:
8339 return performConcatVectorsCombine(N, DCI, DAG);
8340 case ISD::SELECT:
8341 return performSelectCombine(N, DAG);
8342 case ISD::VSELECT:
8343 return performVSelectCombine(N, DCI.DAG);
8344 case ISD::STORE:
8345 return performSTORECombine(N, DCI, DAG, Subtarget);
8346 case AArch64ISD::BRCOND:
8347 return performBRCONDCombine(N, DCI, DAG);
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008348 case AArch64ISD::CSEL:
8349 return performCONDCombine(N, DCI, DAG, 2, 3);
Tim Northover3b0846e2014-05-24 12:50:23 +00008350 case AArch64ISD::DUP:
8351 return performPostLD1Combine(N, DCI, false);
8352 case ISD::INSERT_VECTOR_ELT:
8353 return performPostLD1Combine(N, DCI, true);
8354 case ISD::INTRINSIC_VOID:
8355 case ISD::INTRINSIC_W_CHAIN:
8356 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
8357 case Intrinsic::aarch64_neon_ld2:
8358 case Intrinsic::aarch64_neon_ld3:
8359 case Intrinsic::aarch64_neon_ld4:
8360 case Intrinsic::aarch64_neon_ld1x2:
8361 case Intrinsic::aarch64_neon_ld1x3:
8362 case Intrinsic::aarch64_neon_ld1x4:
8363 case Intrinsic::aarch64_neon_ld2lane:
8364 case Intrinsic::aarch64_neon_ld3lane:
8365 case Intrinsic::aarch64_neon_ld4lane:
8366 case Intrinsic::aarch64_neon_ld2r:
8367 case Intrinsic::aarch64_neon_ld3r:
8368 case Intrinsic::aarch64_neon_ld4r:
8369 case Intrinsic::aarch64_neon_st2:
8370 case Intrinsic::aarch64_neon_st3:
8371 case Intrinsic::aarch64_neon_st4:
8372 case Intrinsic::aarch64_neon_st1x2:
8373 case Intrinsic::aarch64_neon_st1x3:
8374 case Intrinsic::aarch64_neon_st1x4:
8375 case Intrinsic::aarch64_neon_st2lane:
8376 case Intrinsic::aarch64_neon_st3lane:
8377 case Intrinsic::aarch64_neon_st4lane:
8378 return performNEONPostLDSTCombine(N, DCI, DAG);
8379 default:
8380 break;
8381 }
8382 }
8383 return SDValue();
8384}
8385
8386// Check if the return value is used as only a return value, as otherwise
8387// we can't perform a tail-call. In particular, we need to check for
8388// target ISD nodes that are returns and any other "odd" constructs
8389// that the generic analysis code won't necessarily catch.
8390bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
8391 SDValue &Chain) const {
8392 if (N->getNumValues() != 1)
8393 return false;
8394 if (!N->hasNUsesOfValue(1, 0))
8395 return false;
8396
8397 SDValue TCChain = Chain;
8398 SDNode *Copy = *N->use_begin();
8399 if (Copy->getOpcode() == ISD::CopyToReg) {
8400 // If the copy has a glue operand, we conservatively assume it isn't safe to
8401 // perform a tail call.
8402 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
8403 MVT::Glue)
8404 return false;
8405 TCChain = Copy->getOperand(0);
8406 } else if (Copy->getOpcode() != ISD::FP_EXTEND)
8407 return false;
8408
8409 bool HasRet = false;
8410 for (SDNode *Node : Copy->uses()) {
8411 if (Node->getOpcode() != AArch64ISD::RET_FLAG)
8412 return false;
8413 HasRet = true;
8414 }
8415
8416 if (!HasRet)
8417 return false;
8418
8419 Chain = TCChain;
8420 return true;
8421}
8422
8423// Return whether the an instruction can potentially be optimized to a tail
8424// call. This will cause the optimizers to attempt to move, or duplicate,
8425// return instructions to help enable tail call optimizations for this
8426// instruction.
8427bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
8428 if (!CI->isTailCall())
8429 return false;
8430
8431 return true;
8432}
8433
8434bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
8435 SDValue &Offset,
8436 ISD::MemIndexedMode &AM,
8437 bool &IsInc,
8438 SelectionDAG &DAG) const {
8439 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
8440 return false;
8441
8442 Base = Op->getOperand(0);
8443 // All of the indexed addressing mode instructions take a signed
8444 // 9 bit immediate offset.
8445 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
8446 int64_t RHSC = (int64_t)RHS->getZExtValue();
8447 if (RHSC >= 256 || RHSC <= -256)
8448 return false;
8449 IsInc = (Op->getOpcode() == ISD::ADD);
8450 Offset = Op->getOperand(1);
8451 return true;
8452 }
8453 return false;
8454}
8455
8456bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
8457 SDValue &Offset,
8458 ISD::MemIndexedMode &AM,
8459 SelectionDAG &DAG) const {
8460 EVT VT;
8461 SDValue Ptr;
8462 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8463 VT = LD->getMemoryVT();
8464 Ptr = LD->getBasePtr();
8465 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8466 VT = ST->getMemoryVT();
8467 Ptr = ST->getBasePtr();
8468 } else
8469 return false;
8470
8471 bool IsInc;
8472 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
8473 return false;
8474 AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
8475 return true;
8476}
8477
8478bool AArch64TargetLowering::getPostIndexedAddressParts(
8479 SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
8480 ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
8481 EVT VT;
8482 SDValue Ptr;
8483 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8484 VT = LD->getMemoryVT();
8485 Ptr = LD->getBasePtr();
8486 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8487 VT = ST->getMemoryVT();
8488 Ptr = ST->getBasePtr();
8489 } else
8490 return false;
8491
8492 bool IsInc;
8493 if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
8494 return false;
8495 // Post-indexing updates the base, so it's not a valid transform
8496 // if that's not the same as the load's pointer.
8497 if (Ptr != Base)
8498 return false;
8499 AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
8500 return true;
8501}
8502
Tim Northoverf8bfe212014-07-18 13:07:05 +00008503static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
8504 SelectionDAG &DAG) {
8505 if (N->getValueType(0) != MVT::i16)
8506 return;
8507
8508 SDLoc DL(N);
8509 SDValue Op = N->getOperand(0);
8510 assert(Op.getValueType() == MVT::f16 &&
8511 "Inconsistent bitcast? Only 16-bit types should be i16 or f16");
8512 Op = SDValue(
8513 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
8514 DAG.getUNDEF(MVT::i32), Op,
8515 DAG.getTargetConstant(AArch64::hsub, MVT::i32)),
8516 0);
8517 Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
8518 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
8519}
8520
Tim Northover3b0846e2014-05-24 12:50:23 +00008521void AArch64TargetLowering::ReplaceNodeResults(
8522 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
8523 switch (N->getOpcode()) {
8524 default:
8525 llvm_unreachable("Don't know how to custom expand this");
Tim Northoverf8bfe212014-07-18 13:07:05 +00008526 case ISD::BITCAST:
8527 ReplaceBITCASTResults(N, Results, DAG);
8528 return;
Tim Northover3b0846e2014-05-24 12:50:23 +00008529 case ISD::FP_TO_UINT:
8530 case ISD::FP_TO_SINT:
8531 assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
8532 // Let normal code take care of it by not adding anything to Results.
8533 return;
8534 }
8535}
8536
Akira Hatanakae5b6e0d2014-07-25 19:31:34 +00008537bool AArch64TargetLowering::useLoadStackGuardNode() const {
8538 return true;
8539}
8540
Chandler Carruth9d010ff2014-07-03 00:23:43 +00008541TargetLoweringBase::LegalizeTypeAction
8542AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
8543 MVT SVT = VT.getSimpleVT();
8544 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
8545 // v4i16, v2i32 instead of to promote.
8546 if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
8547 || SVT == MVT::v1f32)
8548 return TypeWidenVector;
8549
8550 return TargetLoweringBase::getPreferredVectorAction(VT);
8551}
8552
Robin Morisseted3d48f2014-09-03 21:29:59 +00008553// Loads and stores less than 128-bits are already atomic; ones above that
8554// are doomed anyway, so defer to the default libcall and blame the OS when
8555// things go wrong.
8556bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
8557 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
8558 return Size == 128;
8559}
8560
8561// Loads and stores less than 128-bits are already atomic; ones above that
8562// are doomed anyway, so defer to the default libcall and blame the OS when
8563// things go wrong.
8564bool AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
8565 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
8566 return Size == 128;
8567}
8568
8569// For the real atomic operations, we have ldxr/stxr up to 128 bits,
8570bool AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
8571 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
8572 return Size <= 128;
8573}
8574
Robin Morisset25c8e312014-09-17 00:06:58 +00008575bool AArch64TargetLowering::hasLoadLinkedStoreConditional() const {
8576 return true;
8577}
8578
Tim Northover3b0846e2014-05-24 12:50:23 +00008579Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
8580 AtomicOrdering Ord) const {
8581 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
8582 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
Robin Morissetb155f522014-08-18 16:48:58 +00008583 bool IsAcquire = isAtLeastAcquire(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +00008584
8585 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
8586 // intrinsic must return {i64, i64} and we have to recombine them into a
8587 // single i128 here.
8588 if (ValTy->getPrimitiveSizeInBits() == 128) {
8589 Intrinsic::ID Int =
8590 IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
8591 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int);
8592
8593 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
8594 Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
8595
8596 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
8597 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
8598 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
8599 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
8600 return Builder.CreateOr(
8601 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
8602 }
8603
8604 Type *Tys[] = { Addr->getType() };
8605 Intrinsic::ID Int =
8606 IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
8607 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys);
8608
8609 return Builder.CreateTruncOrBitCast(
8610 Builder.CreateCall(Ldxr, Addr),
8611 cast<PointerType>(Addr->getType())->getElementType());
8612}
8613
8614Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
8615 Value *Val, Value *Addr,
8616 AtomicOrdering Ord) const {
8617 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Robin Morissetb155f522014-08-18 16:48:58 +00008618 bool IsRelease = isAtLeastRelease(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +00008619
8620 // Since the intrinsics must have legal type, the i128 intrinsics take two
8621 // parameters: "i64, i64". We must marshal Val into the appropriate form
8622 // before the call.
8623 if (Val->getType()->getPrimitiveSizeInBits() == 128) {
8624 Intrinsic::ID Int =
8625 IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
8626 Function *Stxr = Intrinsic::getDeclaration(M, Int);
8627 Type *Int64Ty = Type::getInt64Ty(M->getContext());
8628
8629 Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
8630 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
8631 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
8632 return Builder.CreateCall3(Stxr, Lo, Hi, Addr);
8633 }
8634
8635 Intrinsic::ID Int =
8636 IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
8637 Type *Tys[] = { Addr->getType() };
8638 Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
8639
8640 return Builder.CreateCall2(
8641 Stxr, Builder.CreateZExtOrBitCast(
8642 Val, Stxr->getFunctionType()->getParamType(0)),
8643 Addr);
8644}