blob: 369b031113eab1068ce8a42c817ac7edf847a01a [file] [log] [blame]
Jia Liub22310f2012-02-18 12:03:15 +00001//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
Misha Brukmanc88330a2005-04-21 23:38:14 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanc88330a2005-04-21 23:38:14 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerd92fb002002-10-25 22:55:53 +00009//
Chris Lattnerb4d58d72003-01-14 22:00:31 +000010// This file contains the X86 implementation of the TargetInstrInfo class.
Chris Lattnerd92fb002002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
Chris Lattner27d24792002-10-29 21:05:24 +000014#include "X86InstrInfo.h"
Chris Lattner0d808742002-12-03 05:42:53 +000015#include "X86.h"
Evan Chengc8c172e2006-05-30 21:45:53 +000016#include "X86InstrBuilder.h"
Owen Anderson6bb0c522008-01-04 23:57:37 +000017#include "X86MachineFunctionInfo.h"
Evan Chengc8c172e2006-05-30 21:45:53 +000018#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
Owen Andersone2f23a32007-09-07 04:06:50 +000020#include "llvm/ADT/STLExtras.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000021#include "llvm/CodeGen/LiveVariables.h"
Dan Gohmancc78cdf2008-12-03 05:21:24 +000022#include "llvm/CodeGen/MachineConstantPool.h"
Hans Wennborg789acfb2012-06-01 16:27:21 +000023#include "llvm/CodeGen/MachineDominators.h"
Owen Anderson6bb0c522008-01-04 23:57:37 +000024#include "llvm/CodeGen/MachineFrameInfo.h"
Evan Chengc8c172e2006-05-30 21:45:53 +000025#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattnera10fff52007-12-31 04:13:23 +000026#include "llvm/CodeGen/MachineRegisterInfo.h"
Andrew Trick153ebe62013-10-31 22:11:56 +000027#include "llvm/CodeGen/StackMaps.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000028#include "llvm/IR/DerivedTypes.h"
29#include "llvm/IR/LLVMContext.h"
Craig Topperb25fda92012-03-17 18:46:09 +000030#include "llvm/MC/MCAsmInfo.h"
Chris Lattner6a5e7062010-04-26 23:37:21 +000031#include "llvm/MC/MCInst.h"
Owen Anderson2a3be7b2008-01-07 01:35:02 +000032#include "llvm/Support/CommandLine.h"
David Greened589daf2010-01-05 01:29:29 +000033#include "llvm/Support/Debug.h"
Torok Edwin6dd27302009-07-08 18:01:40 +000034#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/raw_ostream.h"
Evan Chenge95f3912007-09-25 01:57:46 +000036#include "llvm/Target/TargetOptions.h"
David Greene70fdd572009-11-12 20:55:29 +000037#include <limits>
38
Evan Cheng703a0fb2011-07-01 17:57:27 +000039#define GET_INSTRINFO_CTOR
Evan Cheng1e210d02011-06-28 20:07:07 +000040#include "X86GenInstrInfo.inc"
41
Brian Gaeke960707c2003-11-11 22:41:34 +000042using namespace llvm;
43
Chris Lattnera6f074f2009-08-23 03:41:05 +000044static cl::opt<bool>
45NoFusing("disable-spill-fusing",
46 cl::desc("Disable fusing of spill code into instructions"));
47static cl::opt<bool>
48PrintFailedFusing("print-failed-fuse-candidates",
49 cl::desc("Print instructions that the allocator wants to"
50 " fuse, but the X86 backend currently can't"),
51 cl::Hidden);
52static cl::opt<bool>
53ReMatPICStubLoad("remat-pic-stub-load",
54 cl::desc("Re-materialize load from stub in PIC mode"),
55 cl::init(false), cl::Hidden);
Owen Anderson2a3be7b2008-01-07 01:35:02 +000056
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +000057enum {
58 // Select which memory operand is being unfolded.
Craig Topper1cac50b2012-06-23 08:01:18 +000059 // (stored in bits 0 - 3)
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +000060 TB_INDEX_0 = 0,
61 TB_INDEX_1 = 1,
62 TB_INDEX_2 = 2,
Elena Demikhovsky602f3a22012-05-31 09:20:20 +000063 TB_INDEX_3 = 3,
Craig Topper1cac50b2012-06-23 08:01:18 +000064 TB_INDEX_MASK = 0xf,
65
66 // Do not insert the reverse map (MemOp -> RegOp) into the table.
67 // This may be needed because there is a many -> one mapping.
68 TB_NO_REVERSE = 1 << 4,
69
70 // Do not insert the forward map (RegOp -> MemOp) into the table.
71 // This is needed for Native Client, which prohibits branch
72 // instructions from using a memory operand.
73 TB_NO_FORWARD = 1 << 5,
74
75 TB_FOLDED_LOAD = 1 << 6,
76 TB_FOLDED_STORE = 1 << 7,
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +000077
78 // Minimum alignment required for load/store.
79 // Used for RegOp->MemOp conversion.
80 // (stored in bits 8 - 15)
81 TB_ALIGN_SHIFT = 8,
82 TB_ALIGN_NONE = 0 << TB_ALIGN_SHIFT,
83 TB_ALIGN_16 = 16 << TB_ALIGN_SHIFT,
84 TB_ALIGN_32 = 32 << TB_ALIGN_SHIFT,
Elena Demikhovskycf5b1452013-08-11 07:55:09 +000085 TB_ALIGN_64 = 64 << TB_ALIGN_SHIFT,
Craig Topper1cac50b2012-06-23 08:01:18 +000086 TB_ALIGN_MASK = 0xff << TB_ALIGN_SHIFT
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +000087};
88
Craig Topper2dac9622012-03-09 07:45:21 +000089struct X86OpTblEntry {
90 uint16_t RegOp;
91 uint16_t MemOp;
Craig Topper1cac50b2012-06-23 08:01:18 +000092 uint16_t Flags;
Craig Topper2dac9622012-03-09 07:45:21 +000093};
94
Evan Chengc8c172e2006-05-30 21:45:53 +000095X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Evan Cheng703a0fb2011-07-01 17:57:27 +000096 : X86GenInstrInfo((tm.getSubtarget<X86Subtarget>().is64Bit()
97 ? X86::ADJCALLSTACKDOWN64
98 : X86::ADJCALLSTACKDOWN32),
99 (tm.getSubtarget<X86Subtarget>().is64Bit()
100 ? X86::ADJCALLSTACKUP64
101 : X86::ADJCALLSTACKUP32)),
Bill Wendling8f268402013-06-07 21:00:34 +0000102 TM(tm), RI(tm) {
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +0000103
Craig Topper2dac9622012-03-09 07:45:21 +0000104 static const X86OpTblEntry OpTbl2Addr[] = {
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000105 { X86::ADC32ri, X86::ADC32mi, 0 },
106 { X86::ADC32ri8, X86::ADC32mi8, 0 },
107 { X86::ADC32rr, X86::ADC32mr, 0 },
108 { X86::ADC64ri32, X86::ADC64mi32, 0 },
109 { X86::ADC64ri8, X86::ADC64mi8, 0 },
110 { X86::ADC64rr, X86::ADC64mr, 0 },
111 { X86::ADD16ri, X86::ADD16mi, 0 },
112 { X86::ADD16ri8, X86::ADD16mi8, 0 },
113 { X86::ADD16ri_DB, X86::ADD16mi, TB_NO_REVERSE },
114 { X86::ADD16ri8_DB, X86::ADD16mi8, TB_NO_REVERSE },
115 { X86::ADD16rr, X86::ADD16mr, 0 },
116 { X86::ADD16rr_DB, X86::ADD16mr, TB_NO_REVERSE },
117 { X86::ADD32ri, X86::ADD32mi, 0 },
118 { X86::ADD32ri8, X86::ADD32mi8, 0 },
119 { X86::ADD32ri_DB, X86::ADD32mi, TB_NO_REVERSE },
120 { X86::ADD32ri8_DB, X86::ADD32mi8, TB_NO_REVERSE },
121 { X86::ADD32rr, X86::ADD32mr, 0 },
122 { X86::ADD32rr_DB, X86::ADD32mr, TB_NO_REVERSE },
123 { X86::ADD64ri32, X86::ADD64mi32, 0 },
124 { X86::ADD64ri8, X86::ADD64mi8, 0 },
125 { X86::ADD64ri32_DB,X86::ADD64mi32, TB_NO_REVERSE },
126 { X86::ADD64ri8_DB, X86::ADD64mi8, TB_NO_REVERSE },
127 { X86::ADD64rr, X86::ADD64mr, 0 },
128 { X86::ADD64rr_DB, X86::ADD64mr, TB_NO_REVERSE },
129 { X86::ADD8ri, X86::ADD8mi, 0 },
130 { X86::ADD8rr, X86::ADD8mr, 0 },
131 { X86::AND16ri, X86::AND16mi, 0 },
132 { X86::AND16ri8, X86::AND16mi8, 0 },
133 { X86::AND16rr, X86::AND16mr, 0 },
134 { X86::AND32ri, X86::AND32mi, 0 },
135 { X86::AND32ri8, X86::AND32mi8, 0 },
136 { X86::AND32rr, X86::AND32mr, 0 },
137 { X86::AND64ri32, X86::AND64mi32, 0 },
138 { X86::AND64ri8, X86::AND64mi8, 0 },
139 { X86::AND64rr, X86::AND64mr, 0 },
140 { X86::AND8ri, X86::AND8mi, 0 },
141 { X86::AND8rr, X86::AND8mr, 0 },
142 { X86::DEC16r, X86::DEC16m, 0 },
143 { X86::DEC32r, X86::DEC32m, 0 },
144 { X86::DEC64_16r, X86::DEC64_16m, 0 },
145 { X86::DEC64_32r, X86::DEC64_32m, 0 },
146 { X86::DEC64r, X86::DEC64m, 0 },
147 { X86::DEC8r, X86::DEC8m, 0 },
148 { X86::INC16r, X86::INC16m, 0 },
149 { X86::INC32r, X86::INC32m, 0 },
150 { X86::INC64_16r, X86::INC64_16m, 0 },
151 { X86::INC64_32r, X86::INC64_32m, 0 },
152 { X86::INC64r, X86::INC64m, 0 },
153 { X86::INC8r, X86::INC8m, 0 },
154 { X86::NEG16r, X86::NEG16m, 0 },
155 { X86::NEG32r, X86::NEG32m, 0 },
156 { X86::NEG64r, X86::NEG64m, 0 },
157 { X86::NEG8r, X86::NEG8m, 0 },
158 { X86::NOT16r, X86::NOT16m, 0 },
159 { X86::NOT32r, X86::NOT32m, 0 },
160 { X86::NOT64r, X86::NOT64m, 0 },
161 { X86::NOT8r, X86::NOT8m, 0 },
162 { X86::OR16ri, X86::OR16mi, 0 },
163 { X86::OR16ri8, X86::OR16mi8, 0 },
164 { X86::OR16rr, X86::OR16mr, 0 },
165 { X86::OR32ri, X86::OR32mi, 0 },
166 { X86::OR32ri8, X86::OR32mi8, 0 },
167 { X86::OR32rr, X86::OR32mr, 0 },
168 { X86::OR64ri32, X86::OR64mi32, 0 },
169 { X86::OR64ri8, X86::OR64mi8, 0 },
170 { X86::OR64rr, X86::OR64mr, 0 },
171 { X86::OR8ri, X86::OR8mi, 0 },
172 { X86::OR8rr, X86::OR8mr, 0 },
173 { X86::ROL16r1, X86::ROL16m1, 0 },
174 { X86::ROL16rCL, X86::ROL16mCL, 0 },
175 { X86::ROL16ri, X86::ROL16mi, 0 },
176 { X86::ROL32r1, X86::ROL32m1, 0 },
177 { X86::ROL32rCL, X86::ROL32mCL, 0 },
178 { X86::ROL32ri, X86::ROL32mi, 0 },
179 { X86::ROL64r1, X86::ROL64m1, 0 },
180 { X86::ROL64rCL, X86::ROL64mCL, 0 },
181 { X86::ROL64ri, X86::ROL64mi, 0 },
182 { X86::ROL8r1, X86::ROL8m1, 0 },
183 { X86::ROL8rCL, X86::ROL8mCL, 0 },
184 { X86::ROL8ri, X86::ROL8mi, 0 },
185 { X86::ROR16r1, X86::ROR16m1, 0 },
186 { X86::ROR16rCL, X86::ROR16mCL, 0 },
187 { X86::ROR16ri, X86::ROR16mi, 0 },
188 { X86::ROR32r1, X86::ROR32m1, 0 },
189 { X86::ROR32rCL, X86::ROR32mCL, 0 },
190 { X86::ROR32ri, X86::ROR32mi, 0 },
191 { X86::ROR64r1, X86::ROR64m1, 0 },
192 { X86::ROR64rCL, X86::ROR64mCL, 0 },
193 { X86::ROR64ri, X86::ROR64mi, 0 },
194 { X86::ROR8r1, X86::ROR8m1, 0 },
195 { X86::ROR8rCL, X86::ROR8mCL, 0 },
196 { X86::ROR8ri, X86::ROR8mi, 0 },
197 { X86::SAR16r1, X86::SAR16m1, 0 },
198 { X86::SAR16rCL, X86::SAR16mCL, 0 },
199 { X86::SAR16ri, X86::SAR16mi, 0 },
200 { X86::SAR32r1, X86::SAR32m1, 0 },
201 { X86::SAR32rCL, X86::SAR32mCL, 0 },
202 { X86::SAR32ri, X86::SAR32mi, 0 },
203 { X86::SAR64r1, X86::SAR64m1, 0 },
204 { X86::SAR64rCL, X86::SAR64mCL, 0 },
205 { X86::SAR64ri, X86::SAR64mi, 0 },
206 { X86::SAR8r1, X86::SAR8m1, 0 },
207 { X86::SAR8rCL, X86::SAR8mCL, 0 },
208 { X86::SAR8ri, X86::SAR8mi, 0 },
209 { X86::SBB32ri, X86::SBB32mi, 0 },
210 { X86::SBB32ri8, X86::SBB32mi8, 0 },
211 { X86::SBB32rr, X86::SBB32mr, 0 },
212 { X86::SBB64ri32, X86::SBB64mi32, 0 },
213 { X86::SBB64ri8, X86::SBB64mi8, 0 },
214 { X86::SBB64rr, X86::SBB64mr, 0 },
215 { X86::SHL16rCL, X86::SHL16mCL, 0 },
216 { X86::SHL16ri, X86::SHL16mi, 0 },
217 { X86::SHL32rCL, X86::SHL32mCL, 0 },
218 { X86::SHL32ri, X86::SHL32mi, 0 },
219 { X86::SHL64rCL, X86::SHL64mCL, 0 },
220 { X86::SHL64ri, X86::SHL64mi, 0 },
221 { X86::SHL8rCL, X86::SHL8mCL, 0 },
222 { X86::SHL8ri, X86::SHL8mi, 0 },
223 { X86::SHLD16rrCL, X86::SHLD16mrCL, 0 },
224 { X86::SHLD16rri8, X86::SHLD16mri8, 0 },
225 { X86::SHLD32rrCL, X86::SHLD32mrCL, 0 },
226 { X86::SHLD32rri8, X86::SHLD32mri8, 0 },
227 { X86::SHLD64rrCL, X86::SHLD64mrCL, 0 },
228 { X86::SHLD64rri8, X86::SHLD64mri8, 0 },
229 { X86::SHR16r1, X86::SHR16m1, 0 },
230 { X86::SHR16rCL, X86::SHR16mCL, 0 },
231 { X86::SHR16ri, X86::SHR16mi, 0 },
232 { X86::SHR32r1, X86::SHR32m1, 0 },
233 { X86::SHR32rCL, X86::SHR32mCL, 0 },
234 { X86::SHR32ri, X86::SHR32mi, 0 },
235 { X86::SHR64r1, X86::SHR64m1, 0 },
236 { X86::SHR64rCL, X86::SHR64mCL, 0 },
237 { X86::SHR64ri, X86::SHR64mi, 0 },
238 { X86::SHR8r1, X86::SHR8m1, 0 },
239 { X86::SHR8rCL, X86::SHR8mCL, 0 },
240 { X86::SHR8ri, X86::SHR8mi, 0 },
241 { X86::SHRD16rrCL, X86::SHRD16mrCL, 0 },
242 { X86::SHRD16rri8, X86::SHRD16mri8, 0 },
243 { X86::SHRD32rrCL, X86::SHRD32mrCL, 0 },
244 { X86::SHRD32rri8, X86::SHRD32mri8, 0 },
245 { X86::SHRD64rrCL, X86::SHRD64mrCL, 0 },
246 { X86::SHRD64rri8, X86::SHRD64mri8, 0 },
247 { X86::SUB16ri, X86::SUB16mi, 0 },
248 { X86::SUB16ri8, X86::SUB16mi8, 0 },
249 { X86::SUB16rr, X86::SUB16mr, 0 },
250 { X86::SUB32ri, X86::SUB32mi, 0 },
251 { X86::SUB32ri8, X86::SUB32mi8, 0 },
252 { X86::SUB32rr, X86::SUB32mr, 0 },
253 { X86::SUB64ri32, X86::SUB64mi32, 0 },
254 { X86::SUB64ri8, X86::SUB64mi8, 0 },
255 { X86::SUB64rr, X86::SUB64mr, 0 },
256 { X86::SUB8ri, X86::SUB8mi, 0 },
257 { X86::SUB8rr, X86::SUB8mr, 0 },
258 { X86::XOR16ri, X86::XOR16mi, 0 },
259 { X86::XOR16ri8, X86::XOR16mi8, 0 },
260 { X86::XOR16rr, X86::XOR16mr, 0 },
261 { X86::XOR32ri, X86::XOR32mi, 0 },
262 { X86::XOR32ri8, X86::XOR32mi8, 0 },
263 { X86::XOR32rr, X86::XOR32mr, 0 },
264 { X86::XOR64ri32, X86::XOR64mi32, 0 },
265 { X86::XOR64ri8, X86::XOR64mi8, 0 },
266 { X86::XOR64rr, X86::XOR64mr, 0 },
267 { X86::XOR8ri, X86::XOR8mi, 0 },
268 { X86::XOR8rr, X86::XOR8mr, 0 }
Owen Anderson2a3be7b2008-01-07 01:35:02 +0000269 };
270
271 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
Craig Topper2dac9622012-03-09 07:45:21 +0000272 unsigned RegOp = OpTbl2Addr[i].RegOp;
273 unsigned MemOp = OpTbl2Addr[i].MemOp;
274 unsigned Flags = OpTbl2Addr[i].Flags;
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000275 AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
276 RegOp, MemOp,
277 // Index 0, folded load and store, no alignment requirement.
278 Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
Owen Anderson2a3be7b2008-01-07 01:35:02 +0000279 }
280
Craig Topper2dac9622012-03-09 07:45:21 +0000281 static const X86OpTblEntry OpTbl0[] = {
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000282 { X86::BT16ri8, X86::BT16mi8, TB_FOLDED_LOAD },
283 { X86::BT32ri8, X86::BT32mi8, TB_FOLDED_LOAD },
284 { X86::BT64ri8, X86::BT64mi8, TB_FOLDED_LOAD },
285 { X86::CALL32r, X86::CALL32m, TB_FOLDED_LOAD },
286 { X86::CALL64r, X86::CALL64m, TB_FOLDED_LOAD },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000287 { X86::CMP16ri, X86::CMP16mi, TB_FOLDED_LOAD },
288 { X86::CMP16ri8, X86::CMP16mi8, TB_FOLDED_LOAD },
289 { X86::CMP16rr, X86::CMP16mr, TB_FOLDED_LOAD },
290 { X86::CMP32ri, X86::CMP32mi, TB_FOLDED_LOAD },
291 { X86::CMP32ri8, X86::CMP32mi8, TB_FOLDED_LOAD },
292 { X86::CMP32rr, X86::CMP32mr, TB_FOLDED_LOAD },
293 { X86::CMP64ri32, X86::CMP64mi32, TB_FOLDED_LOAD },
294 { X86::CMP64ri8, X86::CMP64mi8, TB_FOLDED_LOAD },
295 { X86::CMP64rr, X86::CMP64mr, TB_FOLDED_LOAD },
296 { X86::CMP8ri, X86::CMP8mi, TB_FOLDED_LOAD },
297 { X86::CMP8rr, X86::CMP8mr, TB_FOLDED_LOAD },
298 { X86::DIV16r, X86::DIV16m, TB_FOLDED_LOAD },
299 { X86::DIV32r, X86::DIV32m, TB_FOLDED_LOAD },
300 { X86::DIV64r, X86::DIV64m, TB_FOLDED_LOAD },
301 { X86::DIV8r, X86::DIV8m, TB_FOLDED_LOAD },
Craig Topperd09a9af2012-12-26 01:47:12 +0000302 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, TB_FOLDED_STORE },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000303 { X86::IDIV16r, X86::IDIV16m, TB_FOLDED_LOAD },
304 { X86::IDIV32r, X86::IDIV32m, TB_FOLDED_LOAD },
305 { X86::IDIV64r, X86::IDIV64m, TB_FOLDED_LOAD },
306 { X86::IDIV8r, X86::IDIV8m, TB_FOLDED_LOAD },
307 { X86::IMUL16r, X86::IMUL16m, TB_FOLDED_LOAD },
308 { X86::IMUL32r, X86::IMUL32m, TB_FOLDED_LOAD },
309 { X86::IMUL64r, X86::IMUL64m, TB_FOLDED_LOAD },
310 { X86::IMUL8r, X86::IMUL8m, TB_FOLDED_LOAD },
311 { X86::JMP32r, X86::JMP32m, TB_FOLDED_LOAD },
312 { X86::JMP64r, X86::JMP64m, TB_FOLDED_LOAD },
313 { X86::MOV16ri, X86::MOV16mi, TB_FOLDED_STORE },
314 { X86::MOV16rr, X86::MOV16mr, TB_FOLDED_STORE },
315 { X86::MOV32ri, X86::MOV32mi, TB_FOLDED_STORE },
316 { X86::MOV32rr, X86::MOV32mr, TB_FOLDED_STORE },
317 { X86::MOV64ri32, X86::MOV64mi32, TB_FOLDED_STORE },
318 { X86::MOV64rr, X86::MOV64mr, TB_FOLDED_STORE },
319 { X86::MOV8ri, X86::MOV8mi, TB_FOLDED_STORE },
320 { X86::MOV8rr, X86::MOV8mr, TB_FOLDED_STORE },
321 { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
322 { X86::MOVAPDrr, X86::MOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
323 { X86::MOVAPSrr, X86::MOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
324 { X86::MOVDQArr, X86::MOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000325 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, TB_FOLDED_STORE },
326 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, TB_FOLDED_STORE },
327 { X86::MOVSDto64rr, X86::MOVSDto64mr, TB_FOLDED_STORE },
328 { X86::MOVSS2DIrr, X86::MOVSS2DImr, TB_FOLDED_STORE },
329 { X86::MOVUPDrr, X86::MOVUPDmr, TB_FOLDED_STORE },
330 { X86::MOVUPSrr, X86::MOVUPSmr, TB_FOLDED_STORE },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000331 { X86::MUL16r, X86::MUL16m, TB_FOLDED_LOAD },
332 { X86::MUL32r, X86::MUL32m, TB_FOLDED_LOAD },
333 { X86::MUL64r, X86::MUL64m, TB_FOLDED_LOAD },
334 { X86::MUL8r, X86::MUL8m, TB_FOLDED_LOAD },
335 { X86::SETAEr, X86::SETAEm, TB_FOLDED_STORE },
336 { X86::SETAr, X86::SETAm, TB_FOLDED_STORE },
337 { X86::SETBEr, X86::SETBEm, TB_FOLDED_STORE },
338 { X86::SETBr, X86::SETBm, TB_FOLDED_STORE },
339 { X86::SETEr, X86::SETEm, TB_FOLDED_STORE },
340 { X86::SETGEr, X86::SETGEm, TB_FOLDED_STORE },
341 { X86::SETGr, X86::SETGm, TB_FOLDED_STORE },
342 { X86::SETLEr, X86::SETLEm, TB_FOLDED_STORE },
343 { X86::SETLr, X86::SETLm, TB_FOLDED_STORE },
344 { X86::SETNEr, X86::SETNEm, TB_FOLDED_STORE },
345 { X86::SETNOr, X86::SETNOm, TB_FOLDED_STORE },
346 { X86::SETNPr, X86::SETNPm, TB_FOLDED_STORE },
347 { X86::SETNSr, X86::SETNSm, TB_FOLDED_STORE },
348 { X86::SETOr, X86::SETOm, TB_FOLDED_STORE },
349 { X86::SETPr, X86::SETPm, TB_FOLDED_STORE },
350 { X86::SETSr, X86::SETSm, TB_FOLDED_STORE },
351 { X86::TAILJMPr, X86::TAILJMPm, TB_FOLDED_LOAD },
352 { X86::TAILJMPr64, X86::TAILJMPm64, TB_FOLDED_LOAD },
353 { X86::TEST16ri, X86::TEST16mi, TB_FOLDED_LOAD },
354 { X86::TEST32ri, X86::TEST32mi, TB_FOLDED_LOAD },
355 { X86::TEST64ri32, X86::TEST64mi32, TB_FOLDED_LOAD },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000356 { X86::TEST8ri, X86::TEST8mi, TB_FOLDED_LOAD },
357 // AVX 128-bit versions of foldable instructions
Craig Topperd09a9af2012-12-26 01:47:12 +0000358 { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr, TB_FOLDED_STORE },
Craig Topperd78429f2012-01-14 18:14:53 +0000359 { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000360 { X86::VMOVAPDrr, X86::VMOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
361 { X86::VMOVAPSrr, X86::VMOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
362 { X86::VMOVDQArr, X86::VMOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
363 { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr, TB_FOLDED_STORE },
364 { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
365 { X86::VMOVSDto64rr,X86::VMOVSDto64mr, TB_FOLDED_STORE },
366 { X86::VMOVSS2DIrr, X86::VMOVSS2DImr, TB_FOLDED_STORE },
367 { X86::VMOVUPDrr, X86::VMOVUPDmr, TB_FOLDED_STORE },
368 { X86::VMOVUPSrr, X86::VMOVUPSmr, TB_FOLDED_STORE },
369 // AVX 256-bit foldable instructions
Craig Topperd78429f2012-01-14 18:14:53 +0000370 { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000371 { X86::VMOVAPDYrr, X86::VMOVAPDYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
372 { X86::VMOVAPSYrr, X86::VMOVAPSYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
373 { X86::VMOVDQAYrr, X86::VMOVDQAYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
374 { X86::VMOVUPDYrr, X86::VMOVUPDYmr, TB_FOLDED_STORE },
Elena Demikhovsky534015e2013-09-02 07:12:29 +0000375 { X86::VMOVUPSYrr, X86::VMOVUPSYmr, TB_FOLDED_STORE },
376 // AVX-512 foldable instructions
377 { X86::VMOVPDI2DIZrr,X86::VMOVPDI2DIZmr, TB_FOLDED_STORE }
Owen Anderson2a3be7b2008-01-07 01:35:02 +0000378 };
379
380 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
Craig Topper2dac9622012-03-09 07:45:21 +0000381 unsigned RegOp = OpTbl0[i].RegOp;
382 unsigned MemOp = OpTbl0[i].MemOp;
383 unsigned Flags = OpTbl0[i].Flags;
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000384 AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
385 RegOp, MemOp, TB_INDEX_0 | Flags);
Owen Anderson2a3be7b2008-01-07 01:35:02 +0000386 }
387
Craig Topper2dac9622012-03-09 07:45:21 +0000388 static const X86OpTblEntry OpTbl1[] = {
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000389 { X86::CMP16rr, X86::CMP16rm, 0 },
390 { X86::CMP32rr, X86::CMP32rm, 0 },
391 { X86::CMP64rr, X86::CMP64rm, 0 },
392 { X86::CMP8rr, X86::CMP8rm, 0 },
393 { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 },
394 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 },
395 { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 },
396 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 },
397 { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 },
398 { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 },
399 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 },
400 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 },
401 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 },
402 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000403 { X86::IMUL16rri, X86::IMUL16rmi, 0 },
404 { X86::IMUL16rri8, X86::IMUL16rmi8, 0 },
405 { X86::IMUL32rri, X86::IMUL32rmi, 0 },
406 { X86::IMUL32rri8, X86::IMUL32rmi8, 0 },
407 { X86::IMUL64rri32, X86::IMUL64rmi32, 0 },
408 { X86::IMUL64rri8, X86::IMUL64rmi8, 0 },
409 { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 },
410 { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000411 { X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, 0 },
412 { X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 },
Craig Topper11913052012-06-15 07:02:58 +0000413 { X86::CVTSS2SI64rr, X86::CVTSS2SI64rm, 0 },
414 { X86::CVTSS2SIrr, X86::CVTSS2SIrm, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000415 { X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, TB_ALIGN_16 },
416 { X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, TB_ALIGN_16 },
417 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
418 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
419 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
420 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
421 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 },
422 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000423 { X86::MOV16rr, X86::MOV16rm, 0 },
424 { X86::MOV32rr, X86::MOV32rm, 0 },
425 { X86::MOV64rr, X86::MOV64rm, 0 },
426 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 },
427 { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 },
428 { X86::MOV8rr, X86::MOV8rm, 0 },
429 { X86::MOVAPDrr, X86::MOVAPDrm, TB_ALIGN_16 },
430 { X86::MOVAPSrr, X86::MOVAPSrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000431 { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 },
432 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 },
433 { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 },
434 { X86::MOVDQArr, X86::MOVDQArm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000435 { X86::MOVSHDUPrr, X86::MOVSHDUPrm, TB_ALIGN_16 },
436 { X86::MOVSLDUPrr, X86::MOVSLDUPrm, TB_ALIGN_16 },
437 { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 },
438 { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 },
439 { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 },
440 { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 },
441 { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 },
442 { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 },
443 { X86::MOVUPDrr, X86::MOVUPDrm, TB_ALIGN_16 },
444 { X86::MOVUPSrr, X86::MOVUPSrm, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000445 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 },
446 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, TB_ALIGN_16 },
447 { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 },
448 { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 },
449 { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
450 { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 },
Craig Topper182b00a2011-11-14 08:07:55 +0000451 { X86::PABSBrr128, X86::PABSBrm128, TB_ALIGN_16 },
452 { X86::PABSDrr128, X86::PABSDrm128, TB_ALIGN_16 },
453 { X86::PABSWrr128, X86::PABSWrm128, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000454 { X86::PSHUFDri, X86::PSHUFDmi, TB_ALIGN_16 },
455 { X86::PSHUFHWri, X86::PSHUFHWmi, TB_ALIGN_16 },
456 { X86::PSHUFLWri, X86::PSHUFLWmi, TB_ALIGN_16 },
457 { X86::RCPPSr, X86::RCPPSm, TB_ALIGN_16 },
458 { X86::RCPPSr_Int, X86::RCPPSm_Int, TB_ALIGN_16 },
459 { X86::RSQRTPSr, X86::RSQRTPSm, TB_ALIGN_16 },
460 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, TB_ALIGN_16 },
461 { X86::RSQRTSSr, X86::RSQRTSSm, 0 },
462 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 },
463 { X86::SQRTPDr, X86::SQRTPDm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000464 { X86::SQRTPSr, X86::SQRTPSm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000465 { X86::SQRTSDr, X86::SQRTSDm, 0 },
466 { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 },
467 { X86::SQRTSSr, X86::SQRTSSm, 0 },
468 { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 },
469 { X86::TEST16rr, X86::TEST16rm, 0 },
470 { X86::TEST32rr, X86::TEST32rm, 0 },
471 { X86::TEST64rr, X86::TEST64rm, 0 },
472 { X86::TEST8rr, X86::TEST8rm, 0 },
Owen Anderson2a3be7b2008-01-07 01:35:02 +0000473 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000474 { X86::UCOMISDrr, X86::UCOMISDrm, 0 },
475 { X86::UCOMISSrr, X86::UCOMISSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000476 // AVX 128-bit versions of foldable instructions
477 { X86::Int_VCOMISDrr, X86::Int_VCOMISDrm, 0 },
478 { X86::Int_VCOMISSrr, X86::Int_VCOMISSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000479 { X86::Int_VUCOMISDrr, X86::Int_VUCOMISDrm, 0 },
480 { X86::Int_VUCOMISSrr, X86::Int_VUCOMISSrm, 0 },
Craig Topper11913052012-06-15 07:02:58 +0000481 { X86::VCVTTSD2SI64rr, X86::VCVTTSD2SI64rm, 0 },
482 { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 },
Pete Cooper8bbce762012-06-14 22:12:58 +0000483 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SIrm, 0 },
Craig Topper11913052012-06-15 07:02:58 +0000484 { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm, 0 },
485 { X86::VCVTTSS2SI64rr, X86::VCVTTSS2SI64rm, 0 },
486 { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 },
487 { X86::VCVTTSS2SIrr, X86::VCVTTSS2SIrm, 0 },
488 { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm, 0 },
489 { X86::VCVTSD2SI64rr, X86::VCVTSD2SI64rm, 0 },
490 { X86::VCVTSD2SIrr, X86::VCVTSD2SIrm, 0 },
491 { X86::VCVTSS2SI64rr, X86::VCVTSS2SI64rm, 0 },
492 { X86::VCVTSS2SIrr, X86::VCVTSS2SIrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000493 { X86::VMOV64toPQIrr, X86::VMOVQI2PQIrm, 0 },
494 { X86::VMOV64toSDrr, X86::VMOV64toSDrm, 0 },
495 { X86::VMOVAPDrr, X86::VMOVAPDrm, TB_ALIGN_16 },
496 { X86::VMOVAPSrr, X86::VMOVAPSrm, TB_ALIGN_16 },
497 { X86::VMOVDDUPrr, X86::VMOVDDUPrm, 0 },
498 { X86::VMOVDI2PDIrr, X86::VMOVDI2PDIrm, 0 },
499 { X86::VMOVDI2SSrr, X86::VMOVDI2SSrm, 0 },
500 { X86::VMOVDQArr, X86::VMOVDQArm, TB_ALIGN_16 },
501 { X86::VMOVSLDUPrr, X86::VMOVSLDUPrm, TB_ALIGN_16 },
502 { X86::VMOVSHDUPrr, X86::VMOVSHDUPrm, TB_ALIGN_16 },
Craig Topperb2922162012-12-26 02:14:19 +0000503 { X86::VMOVUPDrr, X86::VMOVUPDrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000504 { X86::VMOVUPSrr, X86::VMOVUPSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000505 { X86::VMOVZQI2PQIrr, X86::VMOVZQI2PQIrm, 0 },
506 { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm, TB_ALIGN_16 },
Craig Topper81d1e592012-12-26 02:44:47 +0000507 { X86::VPABSBrr128, X86::VPABSBrm128, 0 },
508 { X86::VPABSDrr128, X86::VPABSDrm128, 0 },
509 { X86::VPABSWrr128, X86::VPABSWrm128, 0 },
510 { X86::VPERMILPDri, X86::VPERMILPDmi, 0 },
511 { X86::VPERMILPSri, X86::VPERMILPSmi, 0 },
512 { X86::VPSHUFDri, X86::VPSHUFDmi, 0 },
513 { X86::VPSHUFHWri, X86::VPSHUFHWmi, 0 },
514 { X86::VPSHUFLWri, X86::VPSHUFLWmi, 0 },
515 { X86::VRCPPSr, X86::VRCPPSm, 0 },
516 { X86::VRCPPSr_Int, X86::VRCPPSm_Int, 0 },
517 { X86::VRSQRTPSr, X86::VRSQRTPSm, 0 },
518 { X86::VRSQRTPSr_Int, X86::VRSQRTPSm_Int, 0 },
519 { X86::VSQRTPDr, X86::VSQRTPDm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +0000520 { X86::VSQRTPSr, X86::VSQRTPSm, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000521 { X86::VUCOMISDrr, X86::VUCOMISDrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000522 { X86::VUCOMISSrr, X86::VUCOMISSrm, 0 },
Nadav Rotemee3552f2012-07-15 12:26:30 +0000523 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrm, TB_NO_REVERSE },
524
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000525 // AVX 256-bit foldable instructions
526 { X86::VMOVAPDYrr, X86::VMOVAPDYrm, TB_ALIGN_32 },
527 { X86::VMOVAPSYrr, X86::VMOVAPSYrm, TB_ALIGN_32 },
Craig Toppera875b7c2012-01-19 08:50:38 +0000528 { X86::VMOVDQAYrr, X86::VMOVDQAYrm, TB_ALIGN_32 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000529 { X86::VMOVUPDYrr, X86::VMOVUPDYrm, 0 },
Craig Topper182b00a2011-11-14 08:07:55 +0000530 { X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +0000531 { X86::VPERMILPDYri, X86::VPERMILPDYmi, 0 },
532 { X86::VPERMILPSYri, X86::VPERMILPSYmi, 0 },
Nadav Rotemee3552f2012-07-15 12:26:30 +0000533
Craig Topper182b00a2011-11-14 08:07:55 +0000534 // AVX2 foldable instructions
Craig Topper81d1e592012-12-26 02:44:47 +0000535 { X86::VPABSBrr256, X86::VPABSBrm256, 0 },
536 { X86::VPABSDrr256, X86::VPABSDrm256, 0 },
537 { X86::VPABSWrr256, X86::VPABSWrm256, 0 },
538 { X86::VPSHUFDYri, X86::VPSHUFDYmi, 0 },
539 { X86::VPSHUFHWYri, X86::VPSHUFHWYmi, 0 },
540 { X86::VPSHUFLWYri, X86::VPSHUFLWYmi, 0 },
541 { X86::VRCPPSYr, X86::VRCPPSYm, 0 },
542 { X86::VRCPPSYr_Int, X86::VRCPPSYm_Int, 0 },
543 { X86::VRSQRTPSYr, X86::VRSQRTPSYm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +0000544 { X86::VSQRTPDYr, X86::VSQRTPDYm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +0000545 { X86::VSQRTPSYr, X86::VSQRTPSYm, 0 },
Nadav Rotemee3552f2012-07-15 12:26:30 +0000546 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm, TB_NO_REVERSE },
547 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm, TB_NO_REVERSE },
Michael Liao2de86af2012-09-26 08:24:51 +0000548
Craig Topperc81e2942013-10-05 20:20:51 +0000549 // BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions
Craig Topperf924a582012-12-17 05:02:29 +0000550 { X86::BEXTR32rr, X86::BEXTR32rm, 0 },
551 { X86::BEXTR64rr, X86::BEXTR64rm, 0 },
Craig Topperc81e2942013-10-05 20:20:51 +0000552 { X86::BEXTRI32ri, X86::BEXTRI32mi, 0 },
553 { X86::BEXTRI64ri, X86::BEXTRI64mi, 0 },
554 { X86::BLCFILL32rr, X86::BLCFILL32rm, 0 },
555 { X86::BLCFILL64rr, X86::BLCFILL64rm, 0 },
556 { X86::BLCI32rr, X86::BLCI32rm, 0 },
557 { X86::BLCI64rr, X86::BLCI64rm, 0 },
558 { X86::BLCIC32rr, X86::BLCIC32rm, 0 },
559 { X86::BLCIC64rr, X86::BLCIC64rm, 0 },
560 { X86::BLCMSK32rr, X86::BLCMSK32rm, 0 },
561 { X86::BLCMSK64rr, X86::BLCMSK64rm, 0 },
562 { X86::BLCS32rr, X86::BLCS32rm, 0 },
563 { X86::BLCS64rr, X86::BLCS64rm, 0 },
564 { X86::BLSFILL32rr, X86::BLSFILL32rm, 0 },
565 { X86::BLSFILL64rr, X86::BLSFILL64rm, 0 },
Craig Topperf924a582012-12-17 05:02:29 +0000566 { X86::BLSI32rr, X86::BLSI32rm, 0 },
567 { X86::BLSI64rr, X86::BLSI64rm, 0 },
Craig Topperc81e2942013-10-05 20:20:51 +0000568 { X86::BLSIC32rr, X86::BLSIC32rm, 0 },
569 { X86::BLSIC64rr, X86::BLSIC64rm, 0 },
Craig Topperf924a582012-12-17 05:02:29 +0000570 { X86::BLSMSK32rr, X86::BLSMSK32rm, 0 },
571 { X86::BLSMSK64rr, X86::BLSMSK64rm, 0 },
572 { X86::BLSR32rr, X86::BLSR32rm, 0 },
573 { X86::BLSR64rr, X86::BLSR64rm, 0 },
574 { X86::BZHI32rr, X86::BZHI32rm, 0 },
575 { X86::BZHI64rr, X86::BZHI64rm, 0 },
576 { X86::LZCNT16rr, X86::LZCNT16rm, 0 },
577 { X86::LZCNT32rr, X86::LZCNT32rm, 0 },
578 { X86::LZCNT64rr, X86::LZCNT64rm, 0 },
579 { X86::POPCNT16rr, X86::POPCNT16rm, 0 },
580 { X86::POPCNT32rr, X86::POPCNT32rm, 0 },
581 { X86::POPCNT64rr, X86::POPCNT64rm, 0 },
Michael Liao2de86af2012-09-26 08:24:51 +0000582 { X86::RORX32ri, X86::RORX32mi, 0 },
583 { X86::RORX64ri, X86::RORX64mi, 0 },
Michael Liao2b425e12012-09-26 08:26:25 +0000584 { X86::SARX32rr, X86::SARX32rm, 0 },
585 { X86::SARX64rr, X86::SARX64rm, 0 },
586 { X86::SHRX32rr, X86::SHRX32rm, 0 },
587 { X86::SHRX64rr, X86::SHRX64rm, 0 },
588 { X86::SHLX32rr, X86::SHLX32rm, 0 },
589 { X86::SHLX64rr, X86::SHLX64rm, 0 },
Craig Topperc81e2942013-10-05 20:20:51 +0000590 { X86::T1MSKC32rr, X86::T1MSKC32rm, 0 },
591 { X86::T1MSKC64rr, X86::T1MSKC64rm, 0 },
Craig Topperf924a582012-12-17 05:02:29 +0000592 { X86::TZCNT16rr, X86::TZCNT16rm, 0 },
593 { X86::TZCNT32rr, X86::TZCNT32rm, 0 },
594 { X86::TZCNT64rr, X86::TZCNT64rm, 0 },
Craig Topperc81e2942013-10-05 20:20:51 +0000595 { X86::TZMSK32rr, X86::TZMSK32rm, 0 },
596 { X86::TZMSK64rr, X86::TZMSK64rm, 0 },
Elena Demikhovsky534015e2013-09-02 07:12:29 +0000597
598 // AVX-512 foldable instructions
599 { X86::VMOV64toPQIZrr, X86::VMOVQI2PQIZrm, 0 },
600 { X86::VMOVDI2SSZrr, X86::VMOVDI2SSZrm, 0 },
Craig Topper684abc82013-09-17 06:05:17 +0000601 { X86::VMOVDQA32rr, X86::VMOVDQA32rm, TB_ALIGN_64 },
602 { X86::VMOVDQA64rr, X86::VMOVDQA64rm, TB_ALIGN_64 },
603 { X86::VMOVDQU32rr, X86::VMOVDQU32rm, 0 },
604 { X86::VMOVDQU64rr, X86::VMOVDQU64rm, 0 },
Craig Topper514f02c2013-09-17 06:50:11 +0000605
606 // AES foldable instructions
607 { X86::AESIMCrr, X86::AESIMCrm, TB_ALIGN_16 },
608 { X86::AESKEYGENASSIST128rr, X86::AESKEYGENASSIST128rm, TB_ALIGN_16 },
609 { X86::VAESIMCrr, X86::VAESIMCrm, TB_ALIGN_16 },
610 { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, TB_ALIGN_16 },
Owen Anderson2a3be7b2008-01-07 01:35:02 +0000611 };
612
613 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
Craig Topper2dac9622012-03-09 07:45:21 +0000614 unsigned RegOp = OpTbl1[i].RegOp;
615 unsigned MemOp = OpTbl1[i].MemOp;
616 unsigned Flags = OpTbl1[i].Flags;
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000617 AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
618 RegOp, MemOp,
619 // Index 1, folded load
620 Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
Owen Anderson2a3be7b2008-01-07 01:35:02 +0000621 }
622
Craig Topper2dac9622012-03-09 07:45:21 +0000623 static const X86OpTblEntry OpTbl2[] = {
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000624 { X86::ADC32rr, X86::ADC32rm, 0 },
625 { X86::ADC64rr, X86::ADC64rm, 0 },
626 { X86::ADD16rr, X86::ADD16rm, 0 },
627 { X86::ADD16rr_DB, X86::ADD16rm, TB_NO_REVERSE },
628 { X86::ADD32rr, X86::ADD32rm, 0 },
629 { X86::ADD32rr_DB, X86::ADD32rm, TB_NO_REVERSE },
630 { X86::ADD64rr, X86::ADD64rm, 0 },
631 { X86::ADD64rr_DB, X86::ADD64rm, TB_NO_REVERSE },
632 { X86::ADD8rr, X86::ADD8rm, 0 },
633 { X86::ADDPDrr, X86::ADDPDrm, TB_ALIGN_16 },
634 { X86::ADDPSrr, X86::ADDPSrm, TB_ALIGN_16 },
635 { X86::ADDSDrr, X86::ADDSDrm, 0 },
636 { X86::ADDSSrr, X86::ADDSSrm, 0 },
637 { X86::ADDSUBPDrr, X86::ADDSUBPDrm, TB_ALIGN_16 },
638 { X86::ADDSUBPSrr, X86::ADDSUBPSrm, TB_ALIGN_16 },
639 { X86::AND16rr, X86::AND16rm, 0 },
640 { X86::AND32rr, X86::AND32rm, 0 },
641 { X86::AND64rr, X86::AND64rm, 0 },
642 { X86::AND8rr, X86::AND8rm, 0 },
643 { X86::ANDNPDrr, X86::ANDNPDrm, TB_ALIGN_16 },
644 { X86::ANDNPSrr, X86::ANDNPSrm, TB_ALIGN_16 },
645 { X86::ANDPDrr, X86::ANDPDrm, TB_ALIGN_16 },
646 { X86::ANDPSrr, X86::ANDPSrm, TB_ALIGN_16 },
Craig Topperd78429f2012-01-14 18:14:53 +0000647 { X86::BLENDPDrri, X86::BLENDPDrmi, TB_ALIGN_16 },
648 { X86::BLENDPSrri, X86::BLENDPSrmi, TB_ALIGN_16 },
649 { X86::BLENDVPDrr0, X86::BLENDVPDrm0, TB_ALIGN_16 },
650 { X86::BLENDVPSrr0, X86::BLENDVPSrm0, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000651 { X86::CMOVA16rr, X86::CMOVA16rm, 0 },
652 { X86::CMOVA32rr, X86::CMOVA32rm, 0 },
653 { X86::CMOVA64rr, X86::CMOVA64rm, 0 },
654 { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 },
655 { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 },
656 { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 },
657 { X86::CMOVB16rr, X86::CMOVB16rm, 0 },
658 { X86::CMOVB32rr, X86::CMOVB32rm, 0 },
659 { X86::CMOVB64rr, X86::CMOVB64rm, 0 },
660 { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 },
661 { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 },
662 { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 },
663 { X86::CMOVE16rr, X86::CMOVE16rm, 0 },
664 { X86::CMOVE32rr, X86::CMOVE32rm, 0 },
665 { X86::CMOVE64rr, X86::CMOVE64rm, 0 },
666 { X86::CMOVG16rr, X86::CMOVG16rm, 0 },
667 { X86::CMOVG32rr, X86::CMOVG32rm, 0 },
668 { X86::CMOVG64rr, X86::CMOVG64rm, 0 },
669 { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 },
670 { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 },
671 { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 },
672 { X86::CMOVL16rr, X86::CMOVL16rm, 0 },
673 { X86::CMOVL32rr, X86::CMOVL32rm, 0 },
674 { X86::CMOVL64rr, X86::CMOVL64rm, 0 },
675 { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 },
676 { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 },
677 { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 },
678 { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 },
679 { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 },
680 { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 },
681 { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 },
682 { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 },
683 { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 },
684 { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 },
685 { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 },
686 { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 },
687 { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 },
688 { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 },
689 { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 },
690 { X86::CMOVO16rr, X86::CMOVO16rm, 0 },
691 { X86::CMOVO32rr, X86::CMOVO32rm, 0 },
692 { X86::CMOVO64rr, X86::CMOVO64rm, 0 },
693 { X86::CMOVP16rr, X86::CMOVP16rm, 0 },
694 { X86::CMOVP32rr, X86::CMOVP32rm, 0 },
695 { X86::CMOVP64rr, X86::CMOVP64rm, 0 },
696 { X86::CMOVS16rr, X86::CMOVS16rm, 0 },
697 { X86::CMOVS32rr, X86::CMOVS32rm, 0 },
698 { X86::CMOVS64rr, X86::CMOVS64rm, 0 },
699 { X86::CMPPDrri, X86::CMPPDrmi, TB_ALIGN_16 },
700 { X86::CMPPSrri, X86::CMPPSrmi, TB_ALIGN_16 },
701 { X86::CMPSDrr, X86::CMPSDrm, 0 },
702 { X86::CMPSSrr, X86::CMPSSrm, 0 },
703 { X86::DIVPDrr, X86::DIVPDrm, TB_ALIGN_16 },
704 { X86::DIVPSrr, X86::DIVPSrm, TB_ALIGN_16 },
705 { X86::DIVSDrr, X86::DIVSDrm, 0 },
706 { X86::DIVSSrr, X86::DIVSSrm, 0 },
707 { X86::FsANDNPDrr, X86::FsANDNPDrm, TB_ALIGN_16 },
708 { X86::FsANDNPSrr, X86::FsANDNPSrm, TB_ALIGN_16 },
709 { X86::FsANDPDrr, X86::FsANDPDrm, TB_ALIGN_16 },
710 { X86::FsANDPSrr, X86::FsANDPSrm, TB_ALIGN_16 },
711 { X86::FsORPDrr, X86::FsORPDrm, TB_ALIGN_16 },
712 { X86::FsORPSrr, X86::FsORPSrm, TB_ALIGN_16 },
713 { X86::FsXORPDrr, X86::FsXORPDrm, TB_ALIGN_16 },
714 { X86::FsXORPSrr, X86::FsXORPSrm, TB_ALIGN_16 },
715 { X86::HADDPDrr, X86::HADDPDrm, TB_ALIGN_16 },
716 { X86::HADDPSrr, X86::HADDPSrm, TB_ALIGN_16 },
717 { X86::HSUBPDrr, X86::HSUBPDrm, TB_ALIGN_16 },
718 { X86::HSUBPSrr, X86::HSUBPSrm, TB_ALIGN_16 },
719 { X86::IMUL16rr, X86::IMUL16rm, 0 },
720 { X86::IMUL32rr, X86::IMUL32rm, 0 },
721 { X86::IMUL64rr, X86::IMUL64rm, 0 },
722 { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 },
723 { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 },
Manman Ren959acb12012-08-13 18:29:41 +0000724 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 },
725 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
726 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 },
727 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
728 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 },
729 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000730 { X86::MAXPDrr, X86::MAXPDrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000731 { X86::MAXPSrr, X86::MAXPSrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000732 { X86::MAXSDrr, X86::MAXSDrm, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000733 { X86::MAXSSrr, X86::MAXSSrm, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000734 { X86::MINPDrr, X86::MINPDrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000735 { X86::MINPSrr, X86::MINPSrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000736 { X86::MINSDrr, X86::MINSDrm, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000737 { X86::MINSSrr, X86::MINSSrm, 0 },
Craig Topper182b00a2011-11-14 08:07:55 +0000738 { X86::MPSADBWrri, X86::MPSADBWrmi, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000739 { X86::MULPDrr, X86::MULPDrm, TB_ALIGN_16 },
740 { X86::MULPSrr, X86::MULPSrm, TB_ALIGN_16 },
741 { X86::MULSDrr, X86::MULSDrm, 0 },
742 { X86::MULSSrr, X86::MULSSrm, 0 },
743 { X86::OR16rr, X86::OR16rm, 0 },
744 { X86::OR32rr, X86::OR32rm, 0 },
745 { X86::OR64rr, X86::OR64rm, 0 },
746 { X86::OR8rr, X86::OR8rm, 0 },
747 { X86::ORPDrr, X86::ORPDrm, TB_ALIGN_16 },
748 { X86::ORPSrr, X86::ORPSrm, TB_ALIGN_16 },
749 { X86::PACKSSDWrr, X86::PACKSSDWrm, TB_ALIGN_16 },
750 { X86::PACKSSWBrr, X86::PACKSSWBrm, TB_ALIGN_16 },
Craig Topper182b00a2011-11-14 08:07:55 +0000751 { X86::PACKUSDWrr, X86::PACKUSDWrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000752 { X86::PACKUSWBrr, X86::PACKUSWBrm, TB_ALIGN_16 },
753 { X86::PADDBrr, X86::PADDBrm, TB_ALIGN_16 },
754 { X86::PADDDrr, X86::PADDDrm, TB_ALIGN_16 },
755 { X86::PADDQrr, X86::PADDQrm, TB_ALIGN_16 },
756 { X86::PADDSBrr, X86::PADDSBrm, TB_ALIGN_16 },
757 { X86::PADDSWrr, X86::PADDSWrm, TB_ALIGN_16 },
Craig Topper182b00a2011-11-14 08:07:55 +0000758 { X86::PADDUSBrr, X86::PADDUSBrm, TB_ALIGN_16 },
759 { X86::PADDUSWrr, X86::PADDUSWrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000760 { X86::PADDWrr, X86::PADDWrm, TB_ALIGN_16 },
Craig Topper182b00a2011-11-14 08:07:55 +0000761 { X86::PALIGNR128rr, X86::PALIGNR128rm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000762 { X86::PANDNrr, X86::PANDNrm, TB_ALIGN_16 },
763 { X86::PANDrr, X86::PANDrm, TB_ALIGN_16 },
764 { X86::PAVGBrr, X86::PAVGBrm, TB_ALIGN_16 },
765 { X86::PAVGWrr, X86::PAVGWrm, TB_ALIGN_16 },
Craig Topperd78429f2012-01-14 18:14:53 +0000766 { X86::PBLENDWrri, X86::PBLENDWrmi, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000767 { X86::PCMPEQBrr, X86::PCMPEQBrm, TB_ALIGN_16 },
768 { X86::PCMPEQDrr, X86::PCMPEQDrm, TB_ALIGN_16 },
Craig Topper182b00a2011-11-14 08:07:55 +0000769 { X86::PCMPEQQrr, X86::PCMPEQQrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000770 { X86::PCMPEQWrr, X86::PCMPEQWrm, TB_ALIGN_16 },
771 { X86::PCMPGTBrr, X86::PCMPGTBrm, TB_ALIGN_16 },
772 { X86::PCMPGTDrr, X86::PCMPGTDrm, TB_ALIGN_16 },
Craig Topper182b00a2011-11-14 08:07:55 +0000773 { X86::PCMPGTQrr, X86::PCMPGTQrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000774 { X86::PCMPGTWrr, X86::PCMPGTWrm, TB_ALIGN_16 },
Craig Topperce4f9c52012-01-25 05:37:32 +0000775 { X86::PHADDDrr, X86::PHADDDrm, TB_ALIGN_16 },
776 { X86::PHADDWrr, X86::PHADDWrm, TB_ALIGN_16 },
Craig Topper182b00a2011-11-14 08:07:55 +0000777 { X86::PHADDSWrr128, X86::PHADDSWrm128, TB_ALIGN_16 },
Craig Topperce4f9c52012-01-25 05:37:32 +0000778 { X86::PHSUBDrr, X86::PHSUBDrm, TB_ALIGN_16 },
Craig Topper182b00a2011-11-14 08:07:55 +0000779 { X86::PHSUBSWrr128, X86::PHSUBSWrm128, TB_ALIGN_16 },
Craig Topperce4f9c52012-01-25 05:37:32 +0000780 { X86::PHSUBWrr, X86::PHSUBWrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000781 { X86::PINSRWrri, X86::PINSRWrmi, TB_ALIGN_16 },
Craig Topper182b00a2011-11-14 08:07:55 +0000782 { X86::PMADDUBSWrr128, X86::PMADDUBSWrm128, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000783 { X86::PMADDWDrr, X86::PMADDWDrm, TB_ALIGN_16 },
784 { X86::PMAXSWrr, X86::PMAXSWrm, TB_ALIGN_16 },
785 { X86::PMAXUBrr, X86::PMAXUBrm, TB_ALIGN_16 },
786 { X86::PMINSWrr, X86::PMINSWrm, TB_ALIGN_16 },
787 { X86::PMINUBrr, X86::PMINUBrm, TB_ALIGN_16 },
Benjamin Kramer4669d182012-12-21 14:04:55 +0000788 { X86::PMINSBrr, X86::PMINSBrm, TB_ALIGN_16 },
789 { X86::PMINSDrr, X86::PMINSDrm, TB_ALIGN_16 },
790 { X86::PMINUDrr, X86::PMINUDrm, TB_ALIGN_16 },
791 { X86::PMINUWrr, X86::PMINUWrm, TB_ALIGN_16 },
792 { X86::PMAXSBrr, X86::PMAXSBrm, TB_ALIGN_16 },
793 { X86::PMAXSDrr, X86::PMAXSDrm, TB_ALIGN_16 },
794 { X86::PMAXUDrr, X86::PMAXUDrm, TB_ALIGN_16 },
795 { X86::PMAXUWrr, X86::PMAXUWrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000796 { X86::PMULDQrr, X86::PMULDQrm, TB_ALIGN_16 },
Craig Topper182b00a2011-11-14 08:07:55 +0000797 { X86::PMULHRSWrr128, X86::PMULHRSWrm128, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000798 { X86::PMULHUWrr, X86::PMULHUWrm, TB_ALIGN_16 },
799 { X86::PMULHWrr, X86::PMULHWrm, TB_ALIGN_16 },
800 { X86::PMULLDrr, X86::PMULLDrm, TB_ALIGN_16 },
801 { X86::PMULLWrr, X86::PMULLWrm, TB_ALIGN_16 },
802 { X86::PMULUDQrr, X86::PMULUDQrm, TB_ALIGN_16 },
803 { X86::PORrr, X86::PORrm, TB_ALIGN_16 },
804 { X86::PSADBWrr, X86::PSADBWrm, TB_ALIGN_16 },
Craig Topper78349002012-01-25 06:43:11 +0000805 { X86::PSHUFBrr, X86::PSHUFBrm, TB_ALIGN_16 },
806 { X86::PSIGNBrr, X86::PSIGNBrm, TB_ALIGN_16 },
807 { X86::PSIGNWrr, X86::PSIGNWrm, TB_ALIGN_16 },
808 { X86::PSIGNDrr, X86::PSIGNDrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000809 { X86::PSLLDrr, X86::PSLLDrm, TB_ALIGN_16 },
810 { X86::PSLLQrr, X86::PSLLQrm, TB_ALIGN_16 },
811 { X86::PSLLWrr, X86::PSLLWrm, TB_ALIGN_16 },
812 { X86::PSRADrr, X86::PSRADrm, TB_ALIGN_16 },
813 { X86::PSRAWrr, X86::PSRAWrm, TB_ALIGN_16 },
814 { X86::PSRLDrr, X86::PSRLDrm, TB_ALIGN_16 },
815 { X86::PSRLQrr, X86::PSRLQrm, TB_ALIGN_16 },
816 { X86::PSRLWrr, X86::PSRLWrm, TB_ALIGN_16 },
817 { X86::PSUBBrr, X86::PSUBBrm, TB_ALIGN_16 },
818 { X86::PSUBDrr, X86::PSUBDrm, TB_ALIGN_16 },
819 { X86::PSUBSBrr, X86::PSUBSBrm, TB_ALIGN_16 },
820 { X86::PSUBSWrr, X86::PSUBSWrm, TB_ALIGN_16 },
821 { X86::PSUBWrr, X86::PSUBWrm, TB_ALIGN_16 },
822 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, TB_ALIGN_16 },
823 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, TB_ALIGN_16 },
824 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, TB_ALIGN_16 },
825 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, TB_ALIGN_16 },
826 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, TB_ALIGN_16 },
827 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, TB_ALIGN_16 },
828 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, TB_ALIGN_16 },
829 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, TB_ALIGN_16 },
830 { X86::PXORrr, X86::PXORrm, TB_ALIGN_16 },
831 { X86::SBB32rr, X86::SBB32rm, 0 },
832 { X86::SBB64rr, X86::SBB64rm, 0 },
833 { X86::SHUFPDrri, X86::SHUFPDrmi, TB_ALIGN_16 },
834 { X86::SHUFPSrri, X86::SHUFPSrmi, TB_ALIGN_16 },
835 { X86::SUB16rr, X86::SUB16rm, 0 },
836 { X86::SUB32rr, X86::SUB32rm, 0 },
837 { X86::SUB64rr, X86::SUB64rm, 0 },
838 { X86::SUB8rr, X86::SUB8rm, 0 },
839 { X86::SUBPDrr, X86::SUBPDrm, TB_ALIGN_16 },
840 { X86::SUBPSrr, X86::SUBPSrm, TB_ALIGN_16 },
841 { X86::SUBSDrr, X86::SUBSDrm, 0 },
842 { X86::SUBSSrr, X86::SUBSSrm, 0 },
Owen Anderson2a3be7b2008-01-07 01:35:02 +0000843 // FIXME: TEST*rr -> swapped operand of TEST*mr.
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000844 { X86::UNPCKHPDrr, X86::UNPCKHPDrm, TB_ALIGN_16 },
845 { X86::UNPCKHPSrr, X86::UNPCKHPSrm, TB_ALIGN_16 },
846 { X86::UNPCKLPDrr, X86::UNPCKLPDrm, TB_ALIGN_16 },
847 { X86::UNPCKLPSrr, X86::UNPCKLPSrm, TB_ALIGN_16 },
848 { X86::XOR16rr, X86::XOR16rm, 0 },
849 { X86::XOR32rr, X86::XOR32rm, 0 },
850 { X86::XOR64rr, X86::XOR64rm, 0 },
851 { X86::XOR8rr, X86::XOR8rm, 0 },
852 { X86::XORPDrr, X86::XORPDrm, TB_ALIGN_16 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000853 { X86::XORPSrr, X86::XORPSrm, TB_ALIGN_16 },
854 // AVX 128-bit versions of foldable instructions
855 { X86::VCVTSD2SSrr, X86::VCVTSD2SSrm, 0 },
856 { X86::Int_VCVTSD2SSrr, X86::Int_VCVTSD2SSrm, 0 },
857 { X86::VCVTSI2SD64rr, X86::VCVTSI2SD64rm, 0 },
858 { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm, 0 },
859 { X86::VCVTSI2SDrr, X86::VCVTSI2SDrm, 0 },
860 { X86::Int_VCVTSI2SDrr, X86::Int_VCVTSI2SDrm, 0 },
861 { X86::VCVTSI2SS64rr, X86::VCVTSI2SS64rm, 0 },
862 { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm, 0 },
863 { X86::VCVTSI2SSrr, X86::VCVTSI2SSrm, 0 },
864 { X86::Int_VCVTSI2SSrr, X86::Int_VCVTSI2SSrm, 0 },
Craig Toppercaef1c52012-12-26 00:35:47 +0000865 { X86::VCVTSS2SDrr, X86::VCVTSS2SDrm, 0 },
866 { X86::Int_VCVTSS2SDrr, X86::Int_VCVTSS2SDrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +0000867 { X86::VCVTTPD2DQrr, X86::VCVTTPD2DQXrm, 0 },
868 { X86::VCVTTPS2DQrr, X86::VCVTTPS2DQrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000869 { X86::VRSQRTSSr, X86::VRSQRTSSm, 0 },
870 { X86::VSQRTSDr, X86::VSQRTSDm, 0 },
871 { X86::VSQRTSSr, X86::VSQRTSSm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +0000872 { X86::VADDPDrr, X86::VADDPDrm, 0 },
873 { X86::VADDPSrr, X86::VADDPSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000874 { X86::VADDSDrr, X86::VADDSDrm, 0 },
875 { X86::VADDSSrr, X86::VADDSSrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +0000876 { X86::VADDSUBPDrr, X86::VADDSUBPDrm, 0 },
877 { X86::VADDSUBPSrr, X86::VADDSUBPSrm, 0 },
878 { X86::VANDNPDrr, X86::VANDNPDrm, 0 },
879 { X86::VANDNPSrr, X86::VANDNPSrm, 0 },
880 { X86::VANDPDrr, X86::VANDPDrm, 0 },
881 { X86::VANDPSrr, X86::VANDPSrm, 0 },
882 { X86::VBLENDPDrri, X86::VBLENDPDrmi, 0 },
883 { X86::VBLENDPSrri, X86::VBLENDPSrmi, 0 },
884 { X86::VBLENDVPDrr, X86::VBLENDVPDrm, 0 },
885 { X86::VBLENDVPSrr, X86::VBLENDVPSrm, 0 },
886 { X86::VCMPPDrri, X86::VCMPPDrmi, 0 },
887 { X86::VCMPPSrri, X86::VCMPPSrmi, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000888 { X86::VCMPSDrr, X86::VCMPSDrm, 0 },
889 { X86::VCMPSSrr, X86::VCMPSSrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +0000890 { X86::VDIVPDrr, X86::VDIVPDrm, 0 },
891 { X86::VDIVPSrr, X86::VDIVPSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000892 { X86::VDIVSDrr, X86::VDIVSDrm, 0 },
893 { X86::VDIVSSrr, X86::VDIVSSrm, 0 },
894 { X86::VFsANDNPDrr, X86::VFsANDNPDrm, TB_ALIGN_16 },
895 { X86::VFsANDNPSrr, X86::VFsANDNPSrm, TB_ALIGN_16 },
896 { X86::VFsANDPDrr, X86::VFsANDPDrm, TB_ALIGN_16 },
897 { X86::VFsANDPSrr, X86::VFsANDPSrm, TB_ALIGN_16 },
898 { X86::VFsORPDrr, X86::VFsORPDrm, TB_ALIGN_16 },
899 { X86::VFsORPSrr, X86::VFsORPSrm, TB_ALIGN_16 },
900 { X86::VFsXORPDrr, X86::VFsXORPDrm, TB_ALIGN_16 },
901 { X86::VFsXORPSrr, X86::VFsXORPSrm, TB_ALIGN_16 },
Craig Topper81d1e592012-12-26 02:44:47 +0000902 { X86::VHADDPDrr, X86::VHADDPDrm, 0 },
903 { X86::VHADDPSrr, X86::VHADDPSrm, 0 },
904 { X86::VHSUBPDrr, X86::VHSUBPDrm, 0 },
905 { X86::VHSUBPSrr, X86::VHSUBPSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000906 { X86::Int_VCMPSDrr, X86::Int_VCMPSDrm, 0 },
907 { X86::Int_VCMPSSrr, X86::Int_VCMPSSrm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +0000908 { X86::VMAXPDrr, X86::VMAXPDrm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +0000909 { X86::VMAXPSrr, X86::VMAXPSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000910 { X86::VMAXSDrr, X86::VMAXSDrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000911 { X86::VMAXSSrr, X86::VMAXSSrm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +0000912 { X86::VMINPDrr, X86::VMINPDrm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +0000913 { X86::VMINPSrr, X86::VMINPSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000914 { X86::VMINSDrr, X86::VMINSDrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000915 { X86::VMINSSrr, X86::VMINSSrm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +0000916 { X86::VMPSADBWrri, X86::VMPSADBWrmi, 0 },
917 { X86::VMULPDrr, X86::VMULPDrm, 0 },
918 { X86::VMULPSrr, X86::VMULPSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000919 { X86::VMULSDrr, X86::VMULSDrm, 0 },
920 { X86::VMULSSrr, X86::VMULSSrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +0000921 { X86::VORPDrr, X86::VORPDrm, 0 },
922 { X86::VORPSrr, X86::VORPSrm, 0 },
923 { X86::VPACKSSDWrr, X86::VPACKSSDWrm, 0 },
924 { X86::VPACKSSWBrr, X86::VPACKSSWBrm, 0 },
925 { X86::VPACKUSDWrr, X86::VPACKUSDWrm, 0 },
926 { X86::VPACKUSWBrr, X86::VPACKUSWBrm, 0 },
927 { X86::VPADDBrr, X86::VPADDBrm, 0 },
928 { X86::VPADDDrr, X86::VPADDDrm, 0 },
929 { X86::VPADDQrr, X86::VPADDQrm, 0 },
930 { X86::VPADDSBrr, X86::VPADDSBrm, 0 },
931 { X86::VPADDSWrr, X86::VPADDSWrm, 0 },
932 { X86::VPADDUSBrr, X86::VPADDUSBrm, 0 },
933 { X86::VPADDUSWrr, X86::VPADDUSWrm, 0 },
934 { X86::VPADDWrr, X86::VPADDWrm, 0 },
935 { X86::VPALIGNR128rr, X86::VPALIGNR128rm, 0 },
936 { X86::VPANDNrr, X86::VPANDNrm, 0 },
937 { X86::VPANDrr, X86::VPANDrm, 0 },
938 { X86::VPAVGBrr, X86::VPAVGBrm, 0 },
939 { X86::VPAVGWrr, X86::VPAVGWrm, 0 },
940 { X86::VPBLENDWrri, X86::VPBLENDWrmi, 0 },
941 { X86::VPCMPEQBrr, X86::VPCMPEQBrm, 0 },
942 { X86::VPCMPEQDrr, X86::VPCMPEQDrm, 0 },
943 { X86::VPCMPEQQrr, X86::VPCMPEQQrm, 0 },
944 { X86::VPCMPEQWrr, X86::VPCMPEQWrm, 0 },
945 { X86::VPCMPGTBrr, X86::VPCMPGTBrm, 0 },
946 { X86::VPCMPGTDrr, X86::VPCMPGTDrm, 0 },
947 { X86::VPCMPGTQrr, X86::VPCMPGTQrm, 0 },
948 { X86::VPCMPGTWrr, X86::VPCMPGTWrm, 0 },
949 { X86::VPHADDDrr, X86::VPHADDDrm, 0 },
950 { X86::VPHADDSWrr128, X86::VPHADDSWrm128, 0 },
951 { X86::VPHADDWrr, X86::VPHADDWrm, 0 },
952 { X86::VPHSUBDrr, X86::VPHSUBDrm, 0 },
953 { X86::VPHSUBSWrr128, X86::VPHSUBSWrm128, 0 },
954 { X86::VPHSUBWrr, X86::VPHSUBWrm, 0 },
955 { X86::VPERMILPDrr, X86::VPERMILPDrm, 0 },
956 { X86::VPERMILPSrr, X86::VPERMILPSrm, 0 },
957 { X86::VPINSRWrri, X86::VPINSRWrmi, 0 },
958 { X86::VPMADDUBSWrr128, X86::VPMADDUBSWrm128, 0 },
959 { X86::VPMADDWDrr, X86::VPMADDWDrm, 0 },
960 { X86::VPMAXSWrr, X86::VPMAXSWrm, 0 },
961 { X86::VPMAXUBrr, X86::VPMAXUBrm, 0 },
962 { X86::VPMINSWrr, X86::VPMINSWrm, 0 },
963 { X86::VPMINUBrr, X86::VPMINUBrm, 0 },
964 { X86::VPMINSBrr, X86::VPMINSBrm, 0 },
965 { X86::VPMINSDrr, X86::VPMINSDrm, 0 },
966 { X86::VPMINUDrr, X86::VPMINUDrm, 0 },
967 { X86::VPMINUWrr, X86::VPMINUWrm, 0 },
968 { X86::VPMAXSBrr, X86::VPMAXSBrm, 0 },
969 { X86::VPMAXSDrr, X86::VPMAXSDrm, 0 },
970 { X86::VPMAXUDrr, X86::VPMAXUDrm, 0 },
971 { X86::VPMAXUWrr, X86::VPMAXUWrm, 0 },
972 { X86::VPMULDQrr, X86::VPMULDQrm, 0 },
973 { X86::VPMULHRSWrr128, X86::VPMULHRSWrm128, 0 },
974 { X86::VPMULHUWrr, X86::VPMULHUWrm, 0 },
975 { X86::VPMULHWrr, X86::VPMULHWrm, 0 },
976 { X86::VPMULLDrr, X86::VPMULLDrm, 0 },
977 { X86::VPMULLWrr, X86::VPMULLWrm, 0 },
978 { X86::VPMULUDQrr, X86::VPMULUDQrm, 0 },
979 { X86::VPORrr, X86::VPORrm, 0 },
980 { X86::VPSADBWrr, X86::VPSADBWrm, 0 },
981 { X86::VPSHUFBrr, X86::VPSHUFBrm, 0 },
982 { X86::VPSIGNBrr, X86::VPSIGNBrm, 0 },
983 { X86::VPSIGNWrr, X86::VPSIGNWrm, 0 },
984 { X86::VPSIGNDrr, X86::VPSIGNDrm, 0 },
985 { X86::VPSLLDrr, X86::VPSLLDrm, 0 },
986 { X86::VPSLLQrr, X86::VPSLLQrm, 0 },
987 { X86::VPSLLWrr, X86::VPSLLWrm, 0 },
988 { X86::VPSRADrr, X86::VPSRADrm, 0 },
989 { X86::VPSRAWrr, X86::VPSRAWrm, 0 },
990 { X86::VPSRLDrr, X86::VPSRLDrm, 0 },
991 { X86::VPSRLQrr, X86::VPSRLQrm, 0 },
992 { X86::VPSRLWrr, X86::VPSRLWrm, 0 },
993 { X86::VPSUBBrr, X86::VPSUBBrm, 0 },
994 { X86::VPSUBDrr, X86::VPSUBDrm, 0 },
995 { X86::VPSUBSBrr, X86::VPSUBSBrm, 0 },
996 { X86::VPSUBSWrr, X86::VPSUBSWrm, 0 },
997 { X86::VPSUBWrr, X86::VPSUBWrm, 0 },
998 { X86::VPUNPCKHBWrr, X86::VPUNPCKHBWrm, 0 },
999 { X86::VPUNPCKHDQrr, X86::VPUNPCKHDQrm, 0 },
1000 { X86::VPUNPCKHQDQrr, X86::VPUNPCKHQDQrm, 0 },
1001 { X86::VPUNPCKHWDrr, X86::VPUNPCKHWDrm, 0 },
1002 { X86::VPUNPCKLBWrr, X86::VPUNPCKLBWrm, 0 },
1003 { X86::VPUNPCKLDQrr, X86::VPUNPCKLDQrm, 0 },
1004 { X86::VPUNPCKLQDQrr, X86::VPUNPCKLQDQrm, 0 },
1005 { X86::VPUNPCKLWDrr, X86::VPUNPCKLWDrm, 0 },
1006 { X86::VPXORrr, X86::VPXORrm, 0 },
1007 { X86::VSHUFPDrri, X86::VSHUFPDrmi, 0 },
1008 { X86::VSHUFPSrri, X86::VSHUFPSrmi, 0 },
1009 { X86::VSUBPDrr, X86::VSUBPDrm, 0 },
1010 { X86::VSUBPSrr, X86::VSUBPSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001011 { X86::VSUBSDrr, X86::VSUBSDrm, 0 },
1012 { X86::VSUBSSrr, X86::VSUBSSrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001013 { X86::VUNPCKHPDrr, X86::VUNPCKHPDrm, 0 },
1014 { X86::VUNPCKHPSrr, X86::VUNPCKHPSrm, 0 },
1015 { X86::VUNPCKLPDrr, X86::VUNPCKLPDrm, 0 },
1016 { X86::VUNPCKLPSrr, X86::VUNPCKLPSrm, 0 },
1017 { X86::VXORPDrr, X86::VXORPDrm, 0 },
1018 { X86::VXORPSrr, X86::VXORPSrm, 0 },
Craig Topperd78429f2012-01-14 18:14:53 +00001019 // AVX 256-bit foldable instructions
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001020 { X86::VADDPDYrr, X86::VADDPDYrm, 0 },
1021 { X86::VADDPSYrr, X86::VADDPSYrm, 0 },
1022 { X86::VADDSUBPDYrr, X86::VADDSUBPDYrm, 0 },
1023 { X86::VADDSUBPSYrr, X86::VADDSUBPSYrm, 0 },
1024 { X86::VANDNPDYrr, X86::VANDNPDYrm, 0 },
1025 { X86::VANDNPSYrr, X86::VANDNPSYrm, 0 },
1026 { X86::VANDPDYrr, X86::VANDPDYrm, 0 },
1027 { X86::VANDPSYrr, X86::VANDPSYrm, 0 },
1028 { X86::VBLENDPDYrri, X86::VBLENDPDYrmi, 0 },
1029 { X86::VBLENDPSYrri, X86::VBLENDPSYrmi, 0 },
1030 { X86::VBLENDVPDYrr, X86::VBLENDVPDYrm, 0 },
1031 { X86::VBLENDVPSYrr, X86::VBLENDVPSYrm, 0 },
1032 { X86::VCMPPDYrri, X86::VCMPPDYrmi, 0 },
1033 { X86::VCMPPSYrri, X86::VCMPPSYrmi, 0 },
1034 { X86::VDIVPDYrr, X86::VDIVPDYrm, 0 },
1035 { X86::VDIVPSYrr, X86::VDIVPSYrm, 0 },
1036 { X86::VHADDPDYrr, X86::VHADDPDYrm, 0 },
1037 { X86::VHADDPSYrr, X86::VHADDPSYrm, 0 },
1038 { X86::VHSUBPDYrr, X86::VHSUBPDYrm, 0 },
1039 { X86::VHSUBPSYrr, X86::VHSUBPSYrm, 0 },
1040 { X86::VINSERTF128rr, X86::VINSERTF128rm, 0 },
1041 { X86::VMAXPDYrr, X86::VMAXPDYrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001042 { X86::VMAXPSYrr, X86::VMAXPSYrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001043 { X86::VMINPDYrr, X86::VMINPDYrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001044 { X86::VMINPSYrr, X86::VMINPSYrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001045 { X86::VMULPDYrr, X86::VMULPDYrm, 0 },
1046 { X86::VMULPSYrr, X86::VMULPSYrm, 0 },
1047 { X86::VORPDYrr, X86::VORPDYrm, 0 },
1048 { X86::VORPSYrr, X86::VORPSYrm, 0 },
1049 { X86::VPERM2F128rr, X86::VPERM2F128rm, 0 },
1050 { X86::VPERMILPDYrr, X86::VPERMILPDYrm, 0 },
1051 { X86::VPERMILPSYrr, X86::VPERMILPSYrm, 0 },
1052 { X86::VSHUFPDYrri, X86::VSHUFPDYrmi, 0 },
1053 { X86::VSHUFPSYrri, X86::VSHUFPSYrmi, 0 },
1054 { X86::VSUBPDYrr, X86::VSUBPDYrm, 0 },
1055 { X86::VSUBPSYrr, X86::VSUBPSYrm, 0 },
1056 { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrm, 0 },
1057 { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrm, 0 },
1058 { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrm, 0 },
1059 { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrm, 0 },
1060 { X86::VXORPDYrr, X86::VXORPDYrm, 0 },
1061 { X86::VXORPSYrr, X86::VXORPSYrm, 0 },
Craig Topper182b00a2011-11-14 08:07:55 +00001062 // AVX2 foldable instructions
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001063 { X86::VINSERTI128rr, X86::VINSERTI128rm, 0 },
1064 { X86::VPACKSSDWYrr, X86::VPACKSSDWYrm, 0 },
1065 { X86::VPACKSSWBYrr, X86::VPACKSSWBYrm, 0 },
1066 { X86::VPACKUSDWYrr, X86::VPACKUSDWYrm, 0 },
1067 { X86::VPACKUSWBYrr, X86::VPACKUSWBYrm, 0 },
1068 { X86::VPADDBYrr, X86::VPADDBYrm, 0 },
1069 { X86::VPADDDYrr, X86::VPADDDYrm, 0 },
1070 { X86::VPADDQYrr, X86::VPADDQYrm, 0 },
1071 { X86::VPADDSBYrr, X86::VPADDSBYrm, 0 },
1072 { X86::VPADDSWYrr, X86::VPADDSWYrm, 0 },
1073 { X86::VPADDUSBYrr, X86::VPADDUSBYrm, 0 },
1074 { X86::VPADDUSWYrr, X86::VPADDUSWYrm, 0 },
1075 { X86::VPADDWYrr, X86::VPADDWYrm, 0 },
1076 { X86::VPALIGNR256rr, X86::VPALIGNR256rm, 0 },
1077 { X86::VPANDNYrr, X86::VPANDNYrm, 0 },
1078 { X86::VPANDYrr, X86::VPANDYrm, 0 },
1079 { X86::VPAVGBYrr, X86::VPAVGBYrm, 0 },
1080 { X86::VPAVGWYrr, X86::VPAVGWYrm, 0 },
1081 { X86::VPBLENDDrri, X86::VPBLENDDrmi, 0 },
1082 { X86::VPBLENDDYrri, X86::VPBLENDDYrmi, 0 },
1083 { X86::VPBLENDWYrri, X86::VPBLENDWYrmi, 0 },
1084 { X86::VPCMPEQBYrr, X86::VPCMPEQBYrm, 0 },
1085 { X86::VPCMPEQDYrr, X86::VPCMPEQDYrm, 0 },
1086 { X86::VPCMPEQQYrr, X86::VPCMPEQQYrm, 0 },
1087 { X86::VPCMPEQWYrr, X86::VPCMPEQWYrm, 0 },
1088 { X86::VPCMPGTBYrr, X86::VPCMPGTBYrm, 0 },
1089 { X86::VPCMPGTDYrr, X86::VPCMPGTDYrm, 0 },
1090 { X86::VPCMPGTQYrr, X86::VPCMPGTQYrm, 0 },
1091 { X86::VPCMPGTWYrr, X86::VPCMPGTWYrm, 0 },
1092 { X86::VPERM2I128rr, X86::VPERM2I128rm, 0 },
1093 { X86::VPERMDYrr, X86::VPERMDYrm, 0 },
1094 { X86::VPERMPDYri, X86::VPERMPDYmi, 0 },
1095 { X86::VPERMPSYrr, X86::VPERMPSYrm, 0 },
1096 { X86::VPERMQYri, X86::VPERMQYmi, 0 },
1097 { X86::VPHADDDYrr, X86::VPHADDDYrm, 0 },
1098 { X86::VPHADDSWrr256, X86::VPHADDSWrm256, 0 },
1099 { X86::VPHADDWYrr, X86::VPHADDWYrm, 0 },
1100 { X86::VPHSUBDYrr, X86::VPHSUBDYrm, 0 },
1101 { X86::VPHSUBSWrr256, X86::VPHSUBSWrm256, 0 },
1102 { X86::VPHSUBWYrr, X86::VPHSUBWYrm, 0 },
1103 { X86::VPMADDUBSWrr256, X86::VPMADDUBSWrm256, 0 },
1104 { X86::VPMADDWDYrr, X86::VPMADDWDYrm, 0 },
1105 { X86::VPMAXSWYrr, X86::VPMAXSWYrm, 0 },
1106 { X86::VPMAXUBYrr, X86::VPMAXUBYrm, 0 },
1107 { X86::VPMINSWYrr, X86::VPMINSWYrm, 0 },
1108 { X86::VPMINUBYrr, X86::VPMINUBYrm, 0 },
1109 { X86::VPMINSBYrr, X86::VPMINSBYrm, 0 },
1110 { X86::VPMINSDYrr, X86::VPMINSDYrm, 0 },
1111 { X86::VPMINUDYrr, X86::VPMINUDYrm, 0 },
1112 { X86::VPMINUWYrr, X86::VPMINUWYrm, 0 },
1113 { X86::VPMAXSBYrr, X86::VPMAXSBYrm, 0 },
1114 { X86::VPMAXSDYrr, X86::VPMAXSDYrm, 0 },
1115 { X86::VPMAXUDYrr, X86::VPMAXUDYrm, 0 },
1116 { X86::VPMAXUWYrr, X86::VPMAXUWYrm, 0 },
1117 { X86::VMPSADBWYrri, X86::VMPSADBWYrmi, 0 },
1118 { X86::VPMULDQYrr, X86::VPMULDQYrm, 0 },
1119 { X86::VPMULHRSWrr256, X86::VPMULHRSWrm256, 0 },
1120 { X86::VPMULHUWYrr, X86::VPMULHUWYrm, 0 },
1121 { X86::VPMULHWYrr, X86::VPMULHWYrm, 0 },
1122 { X86::VPMULLDYrr, X86::VPMULLDYrm, 0 },
1123 { X86::VPMULLWYrr, X86::VPMULLWYrm, 0 },
1124 { X86::VPMULUDQYrr, X86::VPMULUDQYrm, 0 },
1125 { X86::VPORYrr, X86::VPORYrm, 0 },
1126 { X86::VPSADBWYrr, X86::VPSADBWYrm, 0 },
1127 { X86::VPSHUFBYrr, X86::VPSHUFBYrm, 0 },
1128 { X86::VPSIGNBYrr, X86::VPSIGNBYrm, 0 },
1129 { X86::VPSIGNWYrr, X86::VPSIGNWYrm, 0 },
1130 { X86::VPSIGNDYrr, X86::VPSIGNDYrm, 0 },
1131 { X86::VPSLLDYrr, X86::VPSLLDYrm, 0 },
1132 { X86::VPSLLQYrr, X86::VPSLLQYrm, 0 },
1133 { X86::VPSLLWYrr, X86::VPSLLWYrm, 0 },
1134 { X86::VPSLLVDrr, X86::VPSLLVDrm, 0 },
1135 { X86::VPSLLVDYrr, X86::VPSLLVDYrm, 0 },
1136 { X86::VPSLLVQrr, X86::VPSLLVQrm, 0 },
1137 { X86::VPSLLVQYrr, X86::VPSLLVQYrm, 0 },
1138 { X86::VPSRADYrr, X86::VPSRADYrm, 0 },
1139 { X86::VPSRAWYrr, X86::VPSRAWYrm, 0 },
1140 { X86::VPSRAVDrr, X86::VPSRAVDrm, 0 },
1141 { X86::VPSRAVDYrr, X86::VPSRAVDYrm, 0 },
1142 { X86::VPSRLDYrr, X86::VPSRLDYrm, 0 },
1143 { X86::VPSRLQYrr, X86::VPSRLQYrm, 0 },
1144 { X86::VPSRLWYrr, X86::VPSRLWYrm, 0 },
1145 { X86::VPSRLVDrr, X86::VPSRLVDrm, 0 },
1146 { X86::VPSRLVDYrr, X86::VPSRLVDYrm, 0 },
1147 { X86::VPSRLVQrr, X86::VPSRLVQrm, 0 },
1148 { X86::VPSRLVQYrr, X86::VPSRLVQYrm, 0 },
1149 { X86::VPSUBBYrr, X86::VPSUBBYrm, 0 },
1150 { X86::VPSUBDYrr, X86::VPSUBDYrm, 0 },
1151 { X86::VPSUBSBYrr, X86::VPSUBSBYrm, 0 },
1152 { X86::VPSUBSWYrr, X86::VPSUBSWYrm, 0 },
1153 { X86::VPSUBWYrr, X86::VPSUBWYrm, 0 },
1154 { X86::VPUNPCKHBWYrr, X86::VPUNPCKHBWYrm, 0 },
1155 { X86::VPUNPCKHDQYrr, X86::VPUNPCKHDQYrm, 0 },
1156 { X86::VPUNPCKHQDQYrr, X86::VPUNPCKHQDQYrm, 0 },
1157 { X86::VPUNPCKHWDYrr, X86::VPUNPCKHWDYrm, 0 },
1158 { X86::VPUNPCKLBWYrr, X86::VPUNPCKLBWYrm, 0 },
1159 { X86::VPUNPCKLDQYrr, X86::VPUNPCKLDQYrm, 0 },
1160 { X86::VPUNPCKLQDQYrr, X86::VPUNPCKLQDQYrm, 0 },
1161 { X86::VPUNPCKLWDYrr, X86::VPUNPCKLWDYrm, 0 },
1162 { X86::VPXORYrr, X86::VPXORYrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001163 // FIXME: add AVX 256-bit foldable instructions
Craig Topper908e6852012-08-31 23:10:34 +00001164
1165 // FMA4 foldable patterns
Craig Topper3b530ea2012-11-04 04:40:08 +00001166 { X86::VFMADDSS4rr, X86::VFMADDSS4mr, 0 },
1167 { X86::VFMADDSD4rr, X86::VFMADDSD4mr, 0 },
Craig Topper908e6852012-08-31 23:10:34 +00001168 { X86::VFMADDPS4rr, X86::VFMADDPS4mr, TB_ALIGN_16 },
1169 { X86::VFMADDPD4rr, X86::VFMADDPD4mr, TB_ALIGN_16 },
1170 { X86::VFMADDPS4rrY, X86::VFMADDPS4mrY, TB_ALIGN_32 },
1171 { X86::VFMADDPD4rrY, X86::VFMADDPD4mrY, TB_ALIGN_32 },
Craig Topper3b530ea2012-11-04 04:40:08 +00001172 { X86::VFNMADDSS4rr, X86::VFNMADDSS4mr, 0 },
1173 { X86::VFNMADDSD4rr, X86::VFNMADDSD4mr, 0 },
Craig Topper908e6852012-08-31 23:10:34 +00001174 { X86::VFNMADDPS4rr, X86::VFNMADDPS4mr, TB_ALIGN_16 },
1175 { X86::VFNMADDPD4rr, X86::VFNMADDPD4mr, TB_ALIGN_16 },
1176 { X86::VFNMADDPS4rrY, X86::VFNMADDPS4mrY, TB_ALIGN_32 },
1177 { X86::VFNMADDPD4rrY, X86::VFNMADDPD4mrY, TB_ALIGN_32 },
Craig Topper3b530ea2012-11-04 04:40:08 +00001178 { X86::VFMSUBSS4rr, X86::VFMSUBSS4mr, 0 },
1179 { X86::VFMSUBSD4rr, X86::VFMSUBSD4mr, 0 },
Craig Topper908e6852012-08-31 23:10:34 +00001180 { X86::VFMSUBPS4rr, X86::VFMSUBPS4mr, TB_ALIGN_16 },
1181 { X86::VFMSUBPD4rr, X86::VFMSUBPD4mr, TB_ALIGN_16 },
1182 { X86::VFMSUBPS4rrY, X86::VFMSUBPS4mrY, TB_ALIGN_32 },
1183 { X86::VFMSUBPD4rrY, X86::VFMSUBPD4mrY, TB_ALIGN_32 },
Craig Topper3b530ea2012-11-04 04:40:08 +00001184 { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4mr, 0 },
1185 { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4mr, 0 },
Craig Topper908e6852012-08-31 23:10:34 +00001186 { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4mr, TB_ALIGN_16 },
1187 { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4mr, TB_ALIGN_16 },
1188 { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4mrY, TB_ALIGN_32 },
1189 { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4mrY, TB_ALIGN_32 },
1190 { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4mr, TB_ALIGN_16 },
1191 { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4mr, TB_ALIGN_16 },
1192 { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4mrY, TB_ALIGN_32 },
1193 { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4mrY, TB_ALIGN_32 },
1194 { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4mr, TB_ALIGN_16 },
1195 { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4mr, TB_ALIGN_16 },
1196 { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4mrY, TB_ALIGN_32 },
1197 { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4mrY, TB_ALIGN_32 },
Michael Liaof9f7b552012-09-26 08:22:37 +00001198
1199 // BMI/BMI2 foldable instructions
Craig Topperf924a582012-12-17 05:02:29 +00001200 { X86::ANDN32rr, X86::ANDN32rm, 0 },
1201 { X86::ANDN64rr, X86::ANDN64rm, 0 },
Michael Liaof9f7b552012-09-26 08:22:37 +00001202 { X86::MULX32rr, X86::MULX32rm, 0 },
1203 { X86::MULX64rr, X86::MULX64rm, 0 },
Craig Topperf924a582012-12-17 05:02:29 +00001204 { X86::PDEP32rr, X86::PDEP32rm, 0 },
1205 { X86::PDEP64rr, X86::PDEP64rm, 0 },
1206 { X86::PEXT32rr, X86::PEXT32rm, 0 },
1207 { X86::PEXT64rr, X86::PEXT64rm, 0 },
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00001208
1209 // AVX-512 foldable instructions
Elena Demikhovsky534015e2013-09-02 07:12:29 +00001210 { X86::VPADDDZrr, X86::VPADDDZrm, 0 },
1211 { X86::VPADDQZrr, X86::VPADDQZrm, 0 },
1212 { X86::VADDPSZrr, X86::VADDPSZrm, 0 },
1213 { X86::VADDPDZrr, X86::VADDPDZrm, 0 },
1214 { X86::VSUBPSZrr, X86::VSUBPSZrm, 0 },
1215 { X86::VSUBPDZrr, X86::VSUBPDZrm, 0 },
1216 { X86::VMULPSZrr, X86::VMULPSZrm, 0 },
1217 { X86::VMULPDZrr, X86::VMULPDZrm, 0 },
1218 { X86::VDIVPSZrr, X86::VDIVPSZrm, 0 },
1219 { X86::VDIVPDZrr, X86::VDIVPDZrm, 0 },
1220 { X86::VMINPSZrr, X86::VMINPSZrm, 0 },
1221 { X86::VMINPDZrr, X86::VMINPDZrm, 0 },
1222 { X86::VMAXPSZrr, X86::VMAXPSZrm, 0 },
1223 { X86::VMAXPDZrr, X86::VMAXPDZrm, 0 },
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00001224 { X86::VPERMPDZri, X86::VPERMPDZmi, 0 },
1225 { X86::VPERMPSZrr, X86::VPERMPSZrm, 0 },
Elena Demikhovsky534015e2013-09-02 07:12:29 +00001226 { X86::VPSLLVDZrr, X86::VPSLLVDZrm, 0 },
1227 { X86::VPSLLVQZrr, X86::VPSLLVQZrm, 0 },
1228 { X86::VPSRAVDZrr, X86::VPSRAVDZrm, 0 },
1229 { X86::VPSRLVDZrr, X86::VPSRLVDZrm, 0 },
1230 { X86::VPSRLVQZrr, X86::VPSRLVQZrm, 0 },
1231 { X86::VSHUFPDZrri, X86::VSHUFPDZrmi, 0 },
1232 { X86::VSHUFPSZrri, X86::VSHUFPSZrmi, 0 },
1233 { X86::VALIGNQrri, X86::VALIGNQrmi, 0 },
1234 { X86::VALIGNDrri, X86::VALIGNDrmi, 0 },
Craig Topper514f02c2013-09-17 06:50:11 +00001235
1236 // AES foldable instructions
1237 { X86::AESDECLASTrr, X86::AESDECLASTrm, TB_ALIGN_16 },
1238 { X86::AESDECrr, X86::AESDECrm, TB_ALIGN_16 },
1239 { X86::AESENCLASTrr, X86::AESENCLASTrm, TB_ALIGN_16 },
1240 { X86::AESENCrr, X86::AESENCrm, TB_ALIGN_16 },
1241 { X86::VAESDECLASTrr, X86::VAESDECLASTrm, TB_ALIGN_16 },
1242 { X86::VAESDECrr, X86::VAESDECrm, TB_ALIGN_16 },
1243 { X86::VAESENCLASTrr, X86::VAESENCLASTrm, TB_ALIGN_16 },
1244 { X86::VAESENCrr, X86::VAESENCrm, TB_ALIGN_16 },
1245
1246 // SHA foldable instructions
1247 { X86::SHA1MSG1rr, X86::SHA1MSG1rm, TB_ALIGN_16 },
1248 { X86::SHA1MSG2rr, X86::SHA1MSG2rm, TB_ALIGN_16 },
1249 { X86::SHA1NEXTErr, X86::SHA1NEXTErm, TB_ALIGN_16 },
1250 { X86::SHA1RNDS4rri, X86::SHA1RNDS4rmi, TB_ALIGN_16 },
1251 { X86::SHA256MSG1rr, X86::SHA256MSG1rm, TB_ALIGN_16 },
1252 { X86::SHA256MSG2rr, X86::SHA256MSG2rm, TB_ALIGN_16 },
1253 { X86::SHA256RNDS2rr, X86::SHA256RNDS2rm, TB_ALIGN_16 },
Owen Anderson2a3be7b2008-01-07 01:35:02 +00001254 };
1255
1256 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
Craig Topper2dac9622012-03-09 07:45:21 +00001257 unsigned RegOp = OpTbl2[i].RegOp;
1258 unsigned MemOp = OpTbl2[i].MemOp;
1259 unsigned Flags = OpTbl2[i].Flags;
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001260 AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
1261 RegOp, MemOp,
1262 // Index 2, folded load
1263 Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00001264 }
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001265
1266 static const X86OpTblEntry OpTbl3[] = {
1267 // FMA foldable instructions
Craig Topperc6ac4ce2012-06-04 07:46:16 +00001268 { X86::VFMADDSSr231r, X86::VFMADDSSr231m, 0 },
1269 { X86::VFMADDSDr231r, X86::VFMADDSDr231m, 0 },
1270 { X86::VFMADDSSr132r, X86::VFMADDSSr132m, 0 },
1271 { X86::VFMADDSDr132r, X86::VFMADDSDr132m, 0 },
1272 { X86::VFMADDSSr213r, X86::VFMADDSSr213m, 0 },
1273 { X86::VFMADDSDr213r, X86::VFMADDSDr213m, 0 },
Elena Demikhovsky3cb3b002012-08-01 12:06:00 +00001274 { X86::VFMADDSSr213r_Int, X86::VFMADDSSr213m_Int, 0 },
1275 { X86::VFMADDSDr213r_Int, X86::VFMADDSDr213m_Int, 0 },
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001276
Craig Topperc6ac4ce2012-06-04 07:46:16 +00001277 { X86::VFMADDPSr231r, X86::VFMADDPSr231m, TB_ALIGN_16 },
1278 { X86::VFMADDPDr231r, X86::VFMADDPDr231m, TB_ALIGN_16 },
1279 { X86::VFMADDPSr132r, X86::VFMADDPSr132m, TB_ALIGN_16 },
1280 { X86::VFMADDPDr132r, X86::VFMADDPDr132m, TB_ALIGN_16 },
1281 { X86::VFMADDPSr213r, X86::VFMADDPSr213m, TB_ALIGN_16 },
1282 { X86::VFMADDPDr213r, X86::VFMADDPDr213m, TB_ALIGN_16 },
1283 { X86::VFMADDPSr231rY, X86::VFMADDPSr231mY, TB_ALIGN_32 },
1284 { X86::VFMADDPDr231rY, X86::VFMADDPDr231mY, TB_ALIGN_32 },
1285 { X86::VFMADDPSr132rY, X86::VFMADDPSr132mY, TB_ALIGN_32 },
1286 { X86::VFMADDPDr132rY, X86::VFMADDPDr132mY, TB_ALIGN_32 },
1287 { X86::VFMADDPSr213rY, X86::VFMADDPSr213mY, TB_ALIGN_32 },
1288 { X86::VFMADDPDr213rY, X86::VFMADDPDr213mY, TB_ALIGN_32 },
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001289
Craig Topperc6ac4ce2012-06-04 07:46:16 +00001290 { X86::VFNMADDSSr231r, X86::VFNMADDSSr231m, 0 },
1291 { X86::VFNMADDSDr231r, X86::VFNMADDSDr231m, 0 },
1292 { X86::VFNMADDSSr132r, X86::VFNMADDSSr132m, 0 },
1293 { X86::VFNMADDSDr132r, X86::VFNMADDSDr132m, 0 },
1294 { X86::VFNMADDSSr213r, X86::VFNMADDSSr213m, 0 },
1295 { X86::VFNMADDSDr213r, X86::VFNMADDSDr213m, 0 },
Elena Demikhovsky3cb3b002012-08-01 12:06:00 +00001296 { X86::VFNMADDSSr213r_Int, X86::VFNMADDSSr213m_Int, 0 },
1297 { X86::VFNMADDSDr213r_Int, X86::VFNMADDSDr213m_Int, 0 },
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001298
Craig Topperc6ac4ce2012-06-04 07:46:16 +00001299 { X86::VFNMADDPSr231r, X86::VFNMADDPSr231m, TB_ALIGN_16 },
1300 { X86::VFNMADDPDr231r, X86::VFNMADDPDr231m, TB_ALIGN_16 },
1301 { X86::VFNMADDPSr132r, X86::VFNMADDPSr132m, TB_ALIGN_16 },
1302 { X86::VFNMADDPDr132r, X86::VFNMADDPDr132m, TB_ALIGN_16 },
1303 { X86::VFNMADDPSr213r, X86::VFNMADDPSr213m, TB_ALIGN_16 },
1304 { X86::VFNMADDPDr213r, X86::VFNMADDPDr213m, TB_ALIGN_16 },
1305 { X86::VFNMADDPSr231rY, X86::VFNMADDPSr231mY, TB_ALIGN_32 },
1306 { X86::VFNMADDPDr231rY, X86::VFNMADDPDr231mY, TB_ALIGN_32 },
1307 { X86::VFNMADDPSr132rY, X86::VFNMADDPSr132mY, TB_ALIGN_32 },
1308 { X86::VFNMADDPDr132rY, X86::VFNMADDPDr132mY, TB_ALIGN_32 },
1309 { X86::VFNMADDPSr213rY, X86::VFNMADDPSr213mY, TB_ALIGN_32 },
1310 { X86::VFNMADDPDr213rY, X86::VFNMADDPDr213mY, TB_ALIGN_32 },
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001311
Craig Topperc6ac4ce2012-06-04 07:46:16 +00001312 { X86::VFMSUBSSr231r, X86::VFMSUBSSr231m, 0 },
1313 { X86::VFMSUBSDr231r, X86::VFMSUBSDr231m, 0 },
1314 { X86::VFMSUBSSr132r, X86::VFMSUBSSr132m, 0 },
1315 { X86::VFMSUBSDr132r, X86::VFMSUBSDr132m, 0 },
1316 { X86::VFMSUBSSr213r, X86::VFMSUBSSr213m, 0 },
1317 { X86::VFMSUBSDr213r, X86::VFMSUBSDr213m, 0 },
Elena Demikhovsky3cb3b002012-08-01 12:06:00 +00001318 { X86::VFMSUBSSr213r_Int, X86::VFMSUBSSr213m_Int, 0 },
1319 { X86::VFMSUBSDr213r_Int, X86::VFMSUBSDr213m_Int, 0 },
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001320
Craig Topperc6ac4ce2012-06-04 07:46:16 +00001321 { X86::VFMSUBPSr231r, X86::VFMSUBPSr231m, TB_ALIGN_16 },
1322 { X86::VFMSUBPDr231r, X86::VFMSUBPDr231m, TB_ALIGN_16 },
1323 { X86::VFMSUBPSr132r, X86::VFMSUBPSr132m, TB_ALIGN_16 },
1324 { X86::VFMSUBPDr132r, X86::VFMSUBPDr132m, TB_ALIGN_16 },
1325 { X86::VFMSUBPSr213r, X86::VFMSUBPSr213m, TB_ALIGN_16 },
1326 { X86::VFMSUBPDr213r, X86::VFMSUBPDr213m, TB_ALIGN_16 },
1327 { X86::VFMSUBPSr231rY, X86::VFMSUBPSr231mY, TB_ALIGN_32 },
1328 { X86::VFMSUBPDr231rY, X86::VFMSUBPDr231mY, TB_ALIGN_32 },
1329 { X86::VFMSUBPSr132rY, X86::VFMSUBPSr132mY, TB_ALIGN_32 },
1330 { X86::VFMSUBPDr132rY, X86::VFMSUBPDr132mY, TB_ALIGN_32 },
1331 { X86::VFMSUBPSr213rY, X86::VFMSUBPSr213mY, TB_ALIGN_32 },
1332 { X86::VFMSUBPDr213rY, X86::VFMSUBPDr213mY, TB_ALIGN_32 },
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001333
Craig Topperc6ac4ce2012-06-04 07:46:16 +00001334 { X86::VFNMSUBSSr231r, X86::VFNMSUBSSr231m, 0 },
1335 { X86::VFNMSUBSDr231r, X86::VFNMSUBSDr231m, 0 },
1336 { X86::VFNMSUBSSr132r, X86::VFNMSUBSSr132m, 0 },
1337 { X86::VFNMSUBSDr132r, X86::VFNMSUBSDr132m, 0 },
1338 { X86::VFNMSUBSSr213r, X86::VFNMSUBSSr213m, 0 },
1339 { X86::VFNMSUBSDr213r, X86::VFNMSUBSDr213m, 0 },
Elena Demikhovsky3cb3b002012-08-01 12:06:00 +00001340 { X86::VFNMSUBSSr213r_Int, X86::VFNMSUBSSr213m_Int, 0 },
1341 { X86::VFNMSUBSDr213r_Int, X86::VFNMSUBSDr213m_Int, 0 },
Craig Topper2e127b52012-06-01 05:48:39 +00001342
Craig Topperc6ac4ce2012-06-04 07:46:16 +00001343 { X86::VFNMSUBPSr231r, X86::VFNMSUBPSr231m, TB_ALIGN_16 },
1344 { X86::VFNMSUBPDr231r, X86::VFNMSUBPDr231m, TB_ALIGN_16 },
1345 { X86::VFNMSUBPSr132r, X86::VFNMSUBPSr132m, TB_ALIGN_16 },
1346 { X86::VFNMSUBPDr132r, X86::VFNMSUBPDr132m, TB_ALIGN_16 },
1347 { X86::VFNMSUBPSr213r, X86::VFNMSUBPSr213m, TB_ALIGN_16 },
1348 { X86::VFNMSUBPDr213r, X86::VFNMSUBPDr213m, TB_ALIGN_16 },
1349 { X86::VFNMSUBPSr231rY, X86::VFNMSUBPSr231mY, TB_ALIGN_32 },
1350 { X86::VFNMSUBPDr231rY, X86::VFNMSUBPDr231mY, TB_ALIGN_32 },
1351 { X86::VFNMSUBPSr132rY, X86::VFNMSUBPSr132mY, TB_ALIGN_32 },
1352 { X86::VFNMSUBPDr132rY, X86::VFNMSUBPDr132mY, TB_ALIGN_32 },
1353 { X86::VFNMSUBPSr213rY, X86::VFNMSUBPSr213mY, TB_ALIGN_32 },
1354 { X86::VFNMSUBPDr213rY, X86::VFNMSUBPDr213mY, TB_ALIGN_32 },
Craig Topper3cb14302012-06-04 07:08:21 +00001355
Craig Topperc6ac4ce2012-06-04 07:46:16 +00001356 { X86::VFMADDSUBPSr231r, X86::VFMADDSUBPSr231m, TB_ALIGN_16 },
1357 { X86::VFMADDSUBPDr231r, X86::VFMADDSUBPDr231m, TB_ALIGN_16 },
1358 { X86::VFMADDSUBPSr132r, X86::VFMADDSUBPSr132m, TB_ALIGN_16 },
1359 { X86::VFMADDSUBPDr132r, X86::VFMADDSUBPDr132m, TB_ALIGN_16 },
1360 { X86::VFMADDSUBPSr213r, X86::VFMADDSUBPSr213m, TB_ALIGN_16 },
1361 { X86::VFMADDSUBPDr213r, X86::VFMADDSUBPDr213m, TB_ALIGN_16 },
1362 { X86::VFMADDSUBPSr231rY, X86::VFMADDSUBPSr231mY, TB_ALIGN_32 },
1363 { X86::VFMADDSUBPDr231rY, X86::VFMADDSUBPDr231mY, TB_ALIGN_32 },
1364 { X86::VFMADDSUBPSr132rY, X86::VFMADDSUBPSr132mY, TB_ALIGN_32 },
1365 { X86::VFMADDSUBPDr132rY, X86::VFMADDSUBPDr132mY, TB_ALIGN_32 },
1366 { X86::VFMADDSUBPSr213rY, X86::VFMADDSUBPSr213mY, TB_ALIGN_32 },
1367 { X86::VFMADDSUBPDr213rY, X86::VFMADDSUBPDr213mY, TB_ALIGN_32 },
Craig Topper3cb14302012-06-04 07:08:21 +00001368
Craig Topperc6ac4ce2012-06-04 07:46:16 +00001369 { X86::VFMSUBADDPSr231r, X86::VFMSUBADDPSr231m, TB_ALIGN_16 },
1370 { X86::VFMSUBADDPDr231r, X86::VFMSUBADDPDr231m, TB_ALIGN_16 },
1371 { X86::VFMSUBADDPSr132r, X86::VFMSUBADDPSr132m, TB_ALIGN_16 },
1372 { X86::VFMSUBADDPDr132r, X86::VFMSUBADDPDr132m, TB_ALIGN_16 },
1373 { X86::VFMSUBADDPSr213r, X86::VFMSUBADDPSr213m, TB_ALIGN_16 },
1374 { X86::VFMSUBADDPDr213r, X86::VFMSUBADDPDr213m, TB_ALIGN_16 },
1375 { X86::VFMSUBADDPSr231rY, X86::VFMSUBADDPSr231mY, TB_ALIGN_32 },
1376 { X86::VFMSUBADDPDr231rY, X86::VFMSUBADDPDr231mY, TB_ALIGN_32 },
1377 { X86::VFMSUBADDPSr132rY, X86::VFMSUBADDPSr132mY, TB_ALIGN_32 },
1378 { X86::VFMSUBADDPDr132rY, X86::VFMSUBADDPDr132mY, TB_ALIGN_32 },
1379 { X86::VFMSUBADDPSr213rY, X86::VFMSUBADDPSr213mY, TB_ALIGN_32 },
1380 { X86::VFMSUBADDPDr213rY, X86::VFMSUBADDPDr213mY, TB_ALIGN_32 },
Craig Topper908e6852012-08-31 23:10:34 +00001381
1382 // FMA4 foldable patterns
Craig Topper3b530ea2012-11-04 04:40:08 +00001383 { X86::VFMADDSS4rr, X86::VFMADDSS4rm, 0 },
1384 { X86::VFMADDSD4rr, X86::VFMADDSD4rm, 0 },
Craig Topper908e6852012-08-31 23:10:34 +00001385 { X86::VFMADDPS4rr, X86::VFMADDPS4rm, TB_ALIGN_16 },
1386 { X86::VFMADDPD4rr, X86::VFMADDPD4rm, TB_ALIGN_16 },
1387 { X86::VFMADDPS4rrY, X86::VFMADDPS4rmY, TB_ALIGN_32 },
1388 { X86::VFMADDPD4rrY, X86::VFMADDPD4rmY, TB_ALIGN_32 },
Craig Topper3b530ea2012-11-04 04:40:08 +00001389 { X86::VFNMADDSS4rr, X86::VFNMADDSS4rm, 0 },
1390 { X86::VFNMADDSD4rr, X86::VFNMADDSD4rm, 0 },
Craig Topper908e6852012-08-31 23:10:34 +00001391 { X86::VFNMADDPS4rr, X86::VFNMADDPS4rm, TB_ALIGN_16 },
1392 { X86::VFNMADDPD4rr, X86::VFNMADDPD4rm, TB_ALIGN_16 },
1393 { X86::VFNMADDPS4rrY, X86::VFNMADDPS4rmY, TB_ALIGN_32 },
1394 { X86::VFNMADDPD4rrY, X86::VFNMADDPD4rmY, TB_ALIGN_32 },
Craig Topper3b530ea2012-11-04 04:40:08 +00001395 { X86::VFMSUBSS4rr, X86::VFMSUBSS4rm, 0 },
1396 { X86::VFMSUBSD4rr, X86::VFMSUBSD4rm, 0 },
Craig Topper908e6852012-08-31 23:10:34 +00001397 { X86::VFMSUBPS4rr, X86::VFMSUBPS4rm, TB_ALIGN_16 },
1398 { X86::VFMSUBPD4rr, X86::VFMSUBPD4rm, TB_ALIGN_16 },
1399 { X86::VFMSUBPS4rrY, X86::VFMSUBPS4rmY, TB_ALIGN_32 },
1400 { X86::VFMSUBPD4rrY, X86::VFMSUBPD4rmY, TB_ALIGN_32 },
Craig Topper3b530ea2012-11-04 04:40:08 +00001401 { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4rm, 0 },
1402 { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4rm, 0 },
Craig Topper908e6852012-08-31 23:10:34 +00001403 { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4rm, TB_ALIGN_16 },
1404 { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4rm, TB_ALIGN_16 },
1405 { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4rmY, TB_ALIGN_32 },
1406 { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4rmY, TB_ALIGN_32 },
1407 { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4rm, TB_ALIGN_16 },
1408 { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4rm, TB_ALIGN_16 },
1409 { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4rmY, TB_ALIGN_32 },
1410 { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4rmY, TB_ALIGN_32 },
1411 { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4rm, TB_ALIGN_16 },
1412 { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4rm, TB_ALIGN_16 },
1413 { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4rmY, TB_ALIGN_32 },
1414 { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4rmY, TB_ALIGN_32 },
Elena Demikhovsky2e408ae2013-10-06 13:11:09 +00001415 // AVX-512 VPERMI instructions with 3 source operands.
1416 { X86::VPERMI2Drr, X86::VPERMI2Drm, 0 },
1417 { X86::VPERMI2Qrr, X86::VPERMI2Qrm, 0 },
1418 { X86::VPERMI2PSrr, X86::VPERMI2PSrm, 0 },
1419 { X86::VPERMI2PDrr, X86::VPERMI2PDrm, 0 },
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001420 };
1421
1422 for (unsigned i = 0, e = array_lengthof(OpTbl3); i != e; ++i) {
1423 unsigned RegOp = OpTbl3[i].RegOp;
1424 unsigned MemOp = OpTbl3[i].MemOp;
1425 unsigned Flags = OpTbl3[i].Flags;
1426 AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
1427 RegOp, MemOp,
1428 // Index 3, folded load
1429 Flags | TB_INDEX_3 | TB_FOLDED_LOAD);
1430 }
1431
Chris Lattnerd92fb002002-10-25 22:55:53 +00001432}
1433
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001434void
1435X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
1436 MemOp2RegOpTableType &M2RTable,
1437 unsigned RegOp, unsigned MemOp, unsigned Flags) {
1438 if ((Flags & TB_NO_FORWARD) == 0) {
1439 assert(!R2MTable.count(RegOp) && "Duplicate entry!");
1440 R2MTable[RegOp] = std::make_pair(MemOp, Flags);
1441 }
1442 if ((Flags & TB_NO_REVERSE) == 0) {
1443 assert(!M2RTable.count(MemOp) &&
1444 "Duplicated entries in unfolding maps?");
1445 M2RTable[MemOp] = std::make_pair(RegOp, Flags);
1446 }
1447}
1448
Evan Cheng42166152010-01-12 00:09:37 +00001449bool
Evan Cheng30bebff2010-01-13 00:30:23 +00001450X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
1451 unsigned &SrcReg, unsigned &DstReg,
1452 unsigned &SubIdx) const {
Evan Cheng42166152010-01-12 00:09:37 +00001453 switch (MI.getOpcode()) {
1454 default: break;
1455 case X86::MOVSX16rr8:
1456 case X86::MOVZX16rr8:
1457 case X86::MOVSX32rr8:
1458 case X86::MOVZX32rr8:
1459 case X86::MOVSX64rr8:
Evan Chengceb5a4e2010-01-13 08:01:32 +00001460 if (!TM.getSubtarget<X86Subtarget>().is64Bit())
1461 // It's not always legal to reference the low 8-bit of the larger
1462 // register in 32-bit mode.
1463 return false;
Evan Cheng42166152010-01-12 00:09:37 +00001464 case X86::MOVSX32rr16:
1465 case X86::MOVZX32rr16:
1466 case X86::MOVSX64rr16:
Tim Northover04eb4232013-05-30 10:43:18 +00001467 case X86::MOVSX64rr32: {
Evan Cheng42166152010-01-12 00:09:37 +00001468 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
1469 // Be conservative.
1470 return false;
Evan Cheng42166152010-01-12 00:09:37 +00001471 SrcReg = MI.getOperand(1).getReg();
1472 DstReg = MI.getOperand(0).getReg();
Evan Cheng42166152010-01-12 00:09:37 +00001473 switch (MI.getOpcode()) {
Craig Topper4bc3e5a2012-08-21 08:16:16 +00001474 default: llvm_unreachable("Unreachable!");
Evan Cheng42166152010-01-12 00:09:37 +00001475 case X86::MOVSX16rr8:
1476 case X86::MOVZX16rr8:
1477 case X86::MOVSX32rr8:
1478 case X86::MOVZX32rr8:
1479 case X86::MOVSX64rr8:
Jakob Stoklund Olesen396c8802010-05-25 17:04:16 +00001480 SubIdx = X86::sub_8bit;
Evan Cheng42166152010-01-12 00:09:37 +00001481 break;
1482 case X86::MOVSX32rr16:
1483 case X86::MOVZX32rr16:
1484 case X86::MOVSX64rr16:
Jakob Stoklund Olesen396c8802010-05-25 17:04:16 +00001485 SubIdx = X86::sub_16bit;
Evan Cheng42166152010-01-12 00:09:37 +00001486 break;
1487 case X86::MOVSX64rr32:
Jakob Stoklund Olesen396c8802010-05-25 17:04:16 +00001488 SubIdx = X86::sub_32bit;
Evan Cheng42166152010-01-12 00:09:37 +00001489 break;
1490 }
Evan Cheng30bebff2010-01-13 00:30:23 +00001491 return true;
Evan Cheng42166152010-01-12 00:09:37 +00001492 }
1493 }
Evan Cheng30bebff2010-01-13 00:30:23 +00001494 return false;
Evan Cheng42166152010-01-12 00:09:37 +00001495}
1496
David Greene70fdd572009-11-12 20:55:29 +00001497/// isFrameOperand - Return true and the FrameIndex if the specified
1498/// operand and follow operands form a reference to the stack frame.
1499bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
1500 int &FrameIndex) const {
1501 if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
1502 MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
1503 MI->getOperand(Op+1).getImm() == 1 &&
1504 MI->getOperand(Op+2).getReg() == 0 &&
1505 MI->getOperand(Op+3).getImm() == 0) {
1506 FrameIndex = MI->getOperand(Op).getIndex();
1507 return true;
1508 }
1509 return false;
1510}
1511
David Greene2f4c3742009-11-13 00:29:53 +00001512static bool isFrameLoadOpcode(int Opcode) {
1513 switch (Opcode) {
David Blaikie46a9f012012-01-20 21:51:11 +00001514 default:
1515 return false;
Chris Lattnerbb53acd2006-02-02 20:12:32 +00001516 case X86::MOV8rm:
1517 case X86::MOV16rm:
1518 case X86::MOV32rm:
Evan Cheng11b0a5d2006-09-08 06:48:29 +00001519 case X86::MOV64rm:
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001520 case X86::LD_Fp64m:
Chris Lattnerbb53acd2006-02-02 20:12:32 +00001521 case X86::MOVSSrm:
1522 case X86::MOVSDrm:
Chris Lattnerbfc2c682006-04-18 16:44:51 +00001523 case X86::MOVAPSrm:
1524 case X86::MOVAPDrm:
Dan Gohmanbdc0f8b2009-01-09 02:40:34 +00001525 case X86::MOVDQArm:
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001526 case X86::VMOVSSrm:
1527 case X86::VMOVSDrm:
1528 case X86::VMOVAPSrm:
1529 case X86::VMOVAPDrm:
1530 case X86::VMOVDQArm:
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00001531 case X86::VMOVAPSYrm:
1532 case X86::VMOVAPDYrm:
1533 case X86::VMOVDQAYrm:
Bill Wendlinge7b2a862007-04-03 06:00:37 +00001534 case X86::MMX_MOVD64rm:
1535 case X86::MMX_MOVQ64rm:
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00001536 case X86::VMOVDQA32rm:
1537 case X86::VMOVDQA64rm:
David Greene2f4c3742009-11-13 00:29:53 +00001538 return true;
David Greene2f4c3742009-11-13 00:29:53 +00001539 }
David Greene2f4c3742009-11-13 00:29:53 +00001540}
1541
1542static bool isFrameStoreOpcode(int Opcode) {
1543 switch (Opcode) {
1544 default: break;
1545 case X86::MOV8mr:
1546 case X86::MOV16mr:
1547 case X86::MOV32mr:
1548 case X86::MOV64mr:
1549 case X86::ST_FpP64m:
1550 case X86::MOVSSmr:
1551 case X86::MOVSDmr:
1552 case X86::MOVAPSmr:
1553 case X86::MOVAPDmr:
1554 case X86::MOVDQAmr:
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001555 case X86::VMOVSSmr:
1556 case X86::VMOVSDmr:
1557 case X86::VMOVAPSmr:
1558 case X86::VMOVAPDmr:
1559 case X86::VMOVDQAmr:
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00001560 case X86::VMOVAPSYmr:
1561 case X86::VMOVAPDYmr:
1562 case X86::VMOVDQAYmr:
David Greene2f4c3742009-11-13 00:29:53 +00001563 case X86::MMX_MOVD64mr:
1564 case X86::MMX_MOVQ64mr:
1565 case X86::MMX_MOVNTQmr:
1566 return true;
1567 }
1568 return false;
1569}
1570
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00001571unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
David Greene2f4c3742009-11-13 00:29:53 +00001572 int &FrameIndex) const {
1573 if (isFrameLoadOpcode(MI->getOpcode()))
Jakob Stoklund Olesen96a890a2010-07-27 04:17:01 +00001574 if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
Chris Lattnerbb53acd2006-02-02 20:12:32 +00001575 return MI->getOperand(0).getReg();
David Greene2f4c3742009-11-13 00:29:53 +00001576 return 0;
1577}
1578
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00001579unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
David Greene2f4c3742009-11-13 00:29:53 +00001580 int &FrameIndex) const {
1581 if (isFrameLoadOpcode(MI->getOpcode())) {
1582 unsigned Reg;
1583 if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
1584 return Reg;
David Greene70fdd572009-11-12 20:55:29 +00001585 // Check for post-frame index elimination operations
David Greene0508e432009-12-04 22:38:46 +00001586 const MachineMemOperand *Dummy;
1587 return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
Chris Lattnerbb53acd2006-02-02 20:12:32 +00001588 }
1589 return 0;
1590}
1591
Dan Gohman0b273252008-11-18 19:49:32 +00001592unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
Chris Lattnerbb53acd2006-02-02 20:12:32 +00001593 int &FrameIndex) const {
David Greene2f4c3742009-11-13 00:29:53 +00001594 if (isFrameStoreOpcode(MI->getOpcode()))
Jakob Stoklund Olesen96a890a2010-07-27 04:17:01 +00001595 if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
1596 isFrameOperand(MI, 0, FrameIndex))
Chris Lattnerec536272010-07-08 22:41:28 +00001597 return MI->getOperand(X86::AddrNumOperands).getReg();
David Greene2f4c3742009-11-13 00:29:53 +00001598 return 0;
1599}
1600
1601unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
1602 int &FrameIndex) const {
1603 if (isFrameStoreOpcode(MI->getOpcode())) {
1604 unsigned Reg;
1605 if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
1606 return Reg;
David Greene70fdd572009-11-12 20:55:29 +00001607 // Check for post-frame index elimination operations
David Greene0508e432009-12-04 22:38:46 +00001608 const MachineMemOperand *Dummy;
1609 return hasStoreToStackSlot(MI, Dummy, FrameIndex);
Chris Lattnerbb53acd2006-02-02 20:12:32 +00001610 }
1611 return 0;
1612}
1613
Evan Cheng308e5642008-03-27 01:45:11 +00001614/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
1615/// X86::MOVPC32r.
Dan Gohman3b460302008-07-07 23:14:23 +00001616static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Jakob Stoklund Olesen3b9a4422012-08-08 00:40:47 +00001617 // Don't waste compile time scanning use-def chains of physregs.
1618 if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
1619 return false;
Evan Cheng308e5642008-03-27 01:45:11 +00001620 bool isPICBase = false;
1621 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
1622 E = MRI.def_end(); I != E; ++I) {
1623 MachineInstr *DefMI = I.getOperand().getParent();
1624 if (DefMI->getOpcode() != X86::MOVPC32r)
1625 return false;
1626 assert(!isPICBase && "More than one PIC base?");
1627 isPICBase = true;
1628 }
1629 return isPICBase;
1630}
Evan Cheng1973a462008-03-31 07:54:19 +00001631
Bill Wendling1e117682008-05-12 20:54:26 +00001632bool
Dan Gohmane919de52009-10-10 00:34:18 +00001633X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
1634 AliasAnalysis *AA) const {
Dan Gohman4a4a8eb2007-06-14 20:50:44 +00001635 switch (MI->getOpcode()) {
1636 default: break;
Craig Toppera0cabf12012-08-21 08:17:07 +00001637 case X86::MOV8rm:
1638 case X86::MOV16rm:
1639 case X86::MOV32rm:
1640 case X86::MOV64rm:
1641 case X86::LD_Fp64m:
1642 case X86::MOVSSrm:
1643 case X86::MOVSDrm:
1644 case X86::MOVAPSrm:
1645 case X86::MOVUPSrm:
1646 case X86::MOVAPDrm:
1647 case X86::MOVDQArm:
Craig Topper922f10a2012-12-06 06:49:16 +00001648 case X86::MOVDQUrm:
Craig Toppera0cabf12012-08-21 08:17:07 +00001649 case X86::VMOVSSrm:
1650 case X86::VMOVSDrm:
1651 case X86::VMOVAPSrm:
1652 case X86::VMOVUPSrm:
1653 case X86::VMOVAPDrm:
1654 case X86::VMOVDQArm:
Craig Topper922f10a2012-12-06 06:49:16 +00001655 case X86::VMOVDQUrm:
Craig Toppera0cabf12012-08-21 08:17:07 +00001656 case X86::VMOVAPSYrm:
1657 case X86::VMOVUPSYrm:
1658 case X86::VMOVAPDYrm:
1659 case X86::VMOVDQAYrm:
Craig Topper922f10a2012-12-06 06:49:16 +00001660 case X86::VMOVDQUYrm:
Craig Toppera0cabf12012-08-21 08:17:07 +00001661 case X86::MMX_MOVD64rm:
1662 case X86::MMX_MOVQ64rm:
1663 case X86::FsVMOVAPSrm:
1664 case X86::FsVMOVAPDrm:
1665 case X86::FsMOVAPSrm:
1666 case X86::FsMOVAPDrm: {
1667 // Loads from constant pools are trivially rematerializable.
1668 if (MI->getOperand(1).isReg() &&
1669 MI->getOperand(2).isImm() &&
1670 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
1671 MI->isInvariantLoad(AA)) {
1672 unsigned BaseReg = MI->getOperand(1).getReg();
1673 if (BaseReg == 0 || BaseReg == X86::RIP)
1674 return true;
1675 // Allow re-materialization of PIC load.
1676 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
1677 return false;
1678 const MachineFunction &MF = *MI->getParent()->getParent();
1679 const MachineRegisterInfo &MRI = MF.getRegInfo();
1680 return regIsPICBase(BaseReg, MRI);
Evan Cheng94ba37f2008-02-22 09:25:47 +00001681 }
Craig Toppera0cabf12012-08-21 08:17:07 +00001682 return false;
1683 }
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00001684
Craig Toppera0cabf12012-08-21 08:17:07 +00001685 case X86::LEA32r:
1686 case X86::LEA64r: {
1687 if (MI->getOperand(2).isImm() &&
1688 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
1689 !MI->getOperand(4).isReg()) {
1690 // lea fi#, lea GV, etc. are all rematerializable.
1691 if (!MI->getOperand(1).isReg())
1692 return true;
1693 unsigned BaseReg = MI->getOperand(1).getReg();
1694 if (BaseReg == 0)
1695 return true;
1696 // Allow re-materialization of lea PICBase + x.
1697 const MachineFunction &MF = *MI->getParent()->getParent();
1698 const MachineRegisterInfo &MRI = MF.getRegInfo();
1699 return regIsPICBase(BaseReg, MRI);
1700 }
1701 return false;
1702 }
Dan Gohman4a4a8eb2007-06-14 20:50:44 +00001703 }
Evan Cheng29e62a52008-03-27 01:41:09 +00001704
Dan Gohmane8c1e422007-06-26 00:48:07 +00001705 // All other instructions marked M_REMATERIALIZABLE are always trivially
1706 // rematerializable.
1707 return true;
Dan Gohman4a4a8eb2007-06-14 20:50:44 +00001708}
1709
Evan Cheng3f2ceac2008-06-24 07:10:51 +00001710/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
1711/// would clobber the EFLAGS condition register. Note the result may be
1712/// conservative. If it cannot definitely determine the safety after visiting
Dan Gohman0be8c2b2009-10-14 00:08:59 +00001713/// a few instructions in each direction it assumes it's not safe.
Evan Cheng3f2ceac2008-06-24 07:10:51 +00001714static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
1715 MachineBasicBlock::iterator I) {
Evan Chengb6dee6e2010-03-23 20:35:45 +00001716 MachineBasicBlock::iterator E = MBB.end();
1717
Evan Cheng3f2ceac2008-06-24 07:10:51 +00001718 // For compile time consideration, if we are not able to determine the
Dan Gohman0be8c2b2009-10-14 00:08:59 +00001719 // safety after visiting 4 instructions in each direction, we will assume
1720 // it's not safe.
1721 MachineBasicBlock::iterator Iter = I;
Jakob Stoklund Olesenf08354d2011-09-02 23:52:52 +00001722 for (unsigned i = 0; Iter != E && i < 4; ++i) {
Evan Cheng3f2ceac2008-06-24 07:10:51 +00001723 bool SeenDef = false;
Dan Gohman0be8c2b2009-10-14 00:08:59 +00001724 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1725 MachineOperand &MO = Iter->getOperand(j);
Jakob Stoklund Olesen4519fd02012-02-09 00:17:22 +00001726 if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
1727 SeenDef = true;
Dan Gohman0d1e9a82008-10-03 15:45:36 +00001728 if (!MO.isReg())
Evan Cheng3f2ceac2008-06-24 07:10:51 +00001729 continue;
1730 if (MO.getReg() == X86::EFLAGS) {
1731 if (MO.isUse())
1732 return false;
1733 SeenDef = true;
1734 }
1735 }
1736
1737 if (SeenDef)
1738 // This instruction defines EFLAGS, no need to look any further.
1739 return true;
Dan Gohman0be8c2b2009-10-14 00:08:59 +00001740 ++Iter;
Evan Chengb6dee6e2010-03-23 20:35:45 +00001741 // Skip over DBG_VALUE.
1742 while (Iter != E && Iter->isDebugValue())
1743 ++Iter;
Jakob Stoklund Olesenf08354d2011-09-02 23:52:52 +00001744 }
Dan Gohmanc8354582008-10-21 03:24:31 +00001745
Jakob Stoklund Olesenf08354d2011-09-02 23:52:52 +00001746 // It is safe to clobber EFLAGS at the end of a block of no successor has it
1747 // live in.
1748 if (Iter == E) {
1749 for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
1750 SE = MBB.succ_end(); SI != SE; ++SI)
1751 if ((*SI)->isLiveIn(X86::EFLAGS))
1752 return false;
1753 return true;
Dan Gohman0be8c2b2009-10-14 00:08:59 +00001754 }
1755
Evan Chengb6dee6e2010-03-23 20:35:45 +00001756 MachineBasicBlock::iterator B = MBB.begin();
Dan Gohman0be8c2b2009-10-14 00:08:59 +00001757 Iter = I;
1758 for (unsigned i = 0; i < 4; ++i) {
1759 // If we make it to the beginning of the block, it's safe to clobber
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001760 // EFLAGS iff EFLAGS is not live-in.
Evan Chengb6dee6e2010-03-23 20:35:45 +00001761 if (Iter == B)
Dan Gohman0be8c2b2009-10-14 00:08:59 +00001762 return !MBB.isLiveIn(X86::EFLAGS);
1763
1764 --Iter;
Evan Chengb6dee6e2010-03-23 20:35:45 +00001765 // Skip over DBG_VALUE.
1766 while (Iter != B && Iter->isDebugValue())
1767 --Iter;
1768
Dan Gohman0be8c2b2009-10-14 00:08:59 +00001769 bool SawKill = false;
1770 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1771 MachineOperand &MO = Iter->getOperand(j);
Jakob Stoklund Olesen4519fd02012-02-09 00:17:22 +00001772 // A register mask may clobber EFLAGS, but we should still look for a
1773 // live EFLAGS def.
1774 if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
1775 SawKill = true;
Dan Gohman0be8c2b2009-10-14 00:08:59 +00001776 if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
1777 if (MO.isDef()) return MO.isDead();
1778 if (MO.isKill()) SawKill = true;
1779 }
1780 }
1781
1782 if (SawKill)
1783 // This instruction kills EFLAGS and doesn't redefine it, so
1784 // there's no need to look further.
Dan Gohmanc8354582008-10-21 03:24:31 +00001785 return true;
Evan Cheng3f2ceac2008-06-24 07:10:51 +00001786 }
1787
1788 // Conservative answer.
1789 return false;
1790}
1791
Evan Chenged6e34f2008-03-31 20:40:39 +00001792void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1793 MachineBasicBlock::iterator I,
Evan Cheng84517442009-07-16 09:20:10 +00001794 unsigned DestReg, unsigned SubIdx,
Evan Cheng6ad7da92009-11-14 02:55:43 +00001795 const MachineInstr *Orig,
Jakob Stoklund Olesena8ad9772010-06-02 22:47:25 +00001796 const TargetRegisterInfo &TRI) const {
Tim Northover64ec0ff2013-05-30 13:19:42 +00001797 // MOV32r0 is implemented with a xor which clobbers condition code.
1798 // Re-materialize it as movri instructions to avoid side effects.
Evan Cheng84517442009-07-16 09:20:10 +00001799 unsigned Opc = Orig->getOpcode();
Tim Northover64ec0ff2013-05-30 13:19:42 +00001800 if (Opc == X86::MOV32r0 && !isSafeToClobberEFLAGS(MBB, I)) {
1801 DebugLoc DL = Orig->getDebugLoc();
1802 BuildMI(MBB, I, DL, get(X86::MOV32ri)).addOperand(Orig->getOperand(0))
1803 .addImm(0);
1804 } else {
Dan Gohman3b460302008-07-07 23:14:23 +00001805 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Chenged6e34f2008-03-31 20:40:39 +00001806 MBB.insert(I, MI);
Evan Chenged6e34f2008-03-31 20:40:39 +00001807 }
Evan Cheng147cb762008-04-16 23:44:44 +00001808
Evan Cheng84517442009-07-16 09:20:10 +00001809 MachineInstr *NewMI = prior(I);
Jakob Stoklund Olesena8ad9772010-06-02 22:47:25 +00001810 NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
Evan Chenged6e34f2008-03-31 20:40:39 +00001811}
1812
Evan Chenga8a9c152007-10-05 08:04:01 +00001813/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1814/// is not marked dead.
1815static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chenga8a9c152007-10-05 08:04:01 +00001816 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1817 MachineOperand &MO = MI->getOperand(i);
Dan Gohman0d1e9a82008-10-03 15:45:36 +00001818 if (MO.isReg() && MO.isDef() &&
Evan Chenga8a9c152007-10-05 08:04:01 +00001819 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1820 return true;
1821 }
1822 }
1823 return false;
1824}
1825
David Majnemer7ea2a522013-05-22 08:13:02 +00001826/// getTruncatedShiftCount - check whether the shift count for a machine operand
1827/// is non-zero.
1828inline static unsigned getTruncatedShiftCount(MachineInstr *MI,
1829 unsigned ShiftAmtOperandIdx) {
1830 // The shift count is six bits with the REX.W prefix and five bits without.
1831 unsigned ShiftCountMask = (MI->getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
1832 unsigned Imm = MI->getOperand(ShiftAmtOperandIdx).getImm();
1833 return Imm & ShiftCountMask;
1834}
1835
1836/// isTruncatedShiftCountForLEA - check whether the given shift count is appropriate
1837/// can be represented by a LEA instruction.
1838inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
1839 // Left shift instructions can be transformed into load-effective-address
1840 // instructions if we can encode them appropriately.
1841 // A LEA instruction utilizes a SIB byte to encode it's scale factor.
1842 // The SIB.scale field is two bits wide which means that we can encode any
1843 // shift amount less than 4.
1844 return ShAmt < 4 && ShAmt > 0;
1845}
1846
Tim Northover6833e3f2013-06-10 20:43:49 +00001847bool X86InstrInfo::classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
1848 unsigned Opc, bool AllowSP,
1849 unsigned &NewSrc, bool &isKill, bool &isUndef,
1850 MachineOperand &ImplicitOp) const {
1851 MachineFunction &MF = *MI->getParent()->getParent();
1852 const TargetRegisterClass *RC;
1853 if (AllowSP) {
1854 RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
1855 } else {
1856 RC = Opc != X86::LEA32r ?
1857 &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
1858 }
1859 unsigned SrcReg = Src.getReg();
1860
1861 // For both LEA64 and LEA32 the register already has essentially the right
1862 // type (32-bit or 64-bit) we may just need to forbid SP.
1863 if (Opc != X86::LEA64_32r) {
1864 NewSrc = SrcReg;
1865 isKill = Src.isKill();
1866 isUndef = Src.isUndef();
1867
1868 if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
1869 !MF.getRegInfo().constrainRegClass(NewSrc, RC))
1870 return false;
1871
1872 return true;
1873 }
1874
1875 // This is for an LEA64_32r and incoming registers are 32-bit. One way or
1876 // another we need to add 64-bit registers to the final MI.
1877 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
1878 ImplicitOp = Src;
1879 ImplicitOp.setImplicit();
1880
1881 NewSrc = getX86SubSuperRegister(Src.getReg(), MVT::i64);
1882 MachineBasicBlock::LivenessQueryResult LQR =
1883 MI->getParent()->computeRegisterLiveness(&getRegisterInfo(), NewSrc, MI);
1884
1885 switch (LQR) {
1886 case MachineBasicBlock::LQR_Unknown:
1887 // We can't give sane liveness flags to the instruction, abandon LEA
1888 // formation.
1889 return false;
1890 case MachineBasicBlock::LQR_Live:
1891 isKill = MI->killsRegister(SrcReg);
1892 isUndef = false;
1893 break;
1894 default:
1895 // The physreg itself is dead, so we have to use it as an <undef>.
1896 isKill = false;
1897 isUndef = true;
1898 break;
1899 }
1900 } else {
1901 // Virtual register of the wrong class, we have to create a temporary 64-bit
1902 // vreg to feed into the LEA.
1903 NewSrc = MF.getRegInfo().createVirtualRegister(RC);
1904 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1905 get(TargetOpcode::COPY))
1906 .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
1907 .addOperand(Src);
1908
1909 // Which is obviously going to be dead after we're done with it.
1910 isKill = true;
1911 isUndef = false;
1912 }
1913
1914 // We've set all the parameters without issue.
1915 return true;
1916}
1917
Evan Cheng26fdd722009-12-12 20:03:14 +00001918/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
Evan Cheng766a73f2009-12-11 06:01:48 +00001919/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1920/// to a 32-bit superregister and then truncating back down to a 16-bit
1921/// subregister.
1922MachineInstr *
1923X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1924 MachineFunction::iterator &MFI,
1925 MachineBasicBlock::iterator &MBBI,
1926 LiveVariables *LV) const {
1927 MachineInstr *MI = MBBI;
1928 unsigned Dest = MI->getOperand(0).getReg();
1929 unsigned Src = MI->getOperand(1).getReg();
1930 bool isDead = MI->getOperand(0).isDead();
1931 bool isKill = MI->getOperand(1).isKill();
1932
Evan Cheng766a73f2009-12-11 06:01:48 +00001933 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng766a73f2009-12-11 06:01:48 +00001934 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Tim Northover6833e3f2013-06-10 20:43:49 +00001935 unsigned Opc, leaInReg;
1936 if (TM.getSubtarget<X86Subtarget>().is64Bit()) {
1937 Opc = X86::LEA64_32r;
1938 leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1939 } else {
1940 Opc = X86::LEA32r;
1941 leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1942 }
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00001943
Evan Cheng766a73f2009-12-11 06:01:48 +00001944 // Build and insert into an implicit UNDEF value. This is OK because
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00001945 // well be shifting and then extracting the lower 16-bits.
Evan Cheng26fdd722009-12-12 20:03:14 +00001946 // This has the potential to cause partial register stall. e.g.
Evan Cheng3974c8d2009-12-12 18:55:26 +00001947 // movw (%rbp,%rcx,2), %dx
1948 // leal -65(%rdx), %esi
Evan Cheng26fdd722009-12-12 20:03:14 +00001949 // But testing has shown this *does* help performance in 64-bit mode (at
1950 // least on modern x86 machines).
Evan Cheng766a73f2009-12-11 06:01:48 +00001951 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1952 MachineInstr *InsMI =
Jakob Stoklund Olesena1e883d2010-07-08 16:40:15 +00001953 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1954 .addReg(leaInReg, RegState::Define, X86::sub_16bit)
1955 .addReg(Src, getKillRegState(isKill));
Evan Cheng766a73f2009-12-11 06:01:48 +00001956
1957 MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
1958 get(Opc), leaOutReg);
1959 switch (MIOpc) {
Craig Topper4bc3e5a2012-08-21 08:16:16 +00001960 default: llvm_unreachable("Unreachable!");
Evan Cheng766a73f2009-12-11 06:01:48 +00001961 case X86::SHL16ri: {
1962 unsigned ShAmt = MI->getOperand(2).getImm();
1963 MIB.addReg(0).addImm(1 << ShAmt)
Chris Lattnerf4693072010-07-08 23:46:44 +00001964 .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
Evan Cheng766a73f2009-12-11 06:01:48 +00001965 break;
1966 }
1967 case X86::INC16r:
1968 case X86::INC64_16r:
Chris Lattnerf4693072010-07-08 23:46:44 +00001969 addRegOffset(MIB, leaInReg, true, 1);
Evan Cheng766a73f2009-12-11 06:01:48 +00001970 break;
1971 case X86::DEC16r:
1972 case X86::DEC64_16r:
Chris Lattnerf4693072010-07-08 23:46:44 +00001973 addRegOffset(MIB, leaInReg, true, -1);
Evan Cheng766a73f2009-12-11 06:01:48 +00001974 break;
1975 case X86::ADD16ri:
1976 case X86::ADD16ri8:
Chris Lattnerdd774772010-10-08 03:57:25 +00001977 case X86::ADD16ri_DB:
1978 case X86::ADD16ri8_DB:
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00001979 addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
Evan Cheng766a73f2009-12-11 06:01:48 +00001980 break;
Chris Lattner626656a2010-10-08 03:54:52 +00001981 case X86::ADD16rr:
1982 case X86::ADD16rr_DB: {
Evan Cheng766a73f2009-12-11 06:01:48 +00001983 unsigned Src2 = MI->getOperand(2).getReg();
1984 bool isKill2 = MI->getOperand(2).isKill();
1985 unsigned leaInReg2 = 0;
1986 MachineInstr *InsMI2 = 0;
1987 if (Src == Src2) {
1988 // ADD16rr %reg1028<kill>, %reg1028
1989 // just a single insert_subreg.
1990 addRegReg(MIB, leaInReg, true, leaInReg, false);
1991 } else {
Tim Northover6833e3f2013-06-10 20:43:49 +00001992 if (TM.getSubtarget<X86Subtarget>().is64Bit())
1993 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1994 else
1995 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
Evan Cheng766a73f2009-12-11 06:01:48 +00001996 // Build and insert into an implicit UNDEF value. This is OK because
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00001997 // well be shifting and then extracting the lower 16-bits.
Evan Cheng7fae11b2011-12-14 02:11:42 +00001998 BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
Evan Cheng766a73f2009-12-11 06:01:48 +00001999 InsMI2 =
Evan Cheng7fae11b2011-12-14 02:11:42 +00002000 BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
Jakob Stoklund Olesena1e883d2010-07-08 16:40:15 +00002001 .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
2002 .addReg(Src2, getKillRegState(isKill2));
Evan Cheng766a73f2009-12-11 06:01:48 +00002003 addRegReg(MIB, leaInReg, true, leaInReg2, true);
2004 }
2005 if (LV && isKill2 && InsMI2)
2006 LV->replaceKillInstruction(Src2, MI, InsMI2);
2007 break;
2008 }
2009 }
2010
2011 MachineInstr *NewMI = MIB;
2012 MachineInstr *ExtMI =
Jakob Stoklund Olesen00264622010-07-08 16:40:22 +00002013 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
Evan Cheng766a73f2009-12-11 06:01:48 +00002014 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
Jakob Stoklund Olesen00264622010-07-08 16:40:22 +00002015 .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
Evan Cheng766a73f2009-12-11 06:01:48 +00002016
2017 if (LV) {
2018 // Update live variables
2019 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
2020 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
2021 if (isKill)
2022 LV->replaceKillInstruction(Src, MI, InsMI);
2023 if (isDead)
2024 LV->replaceKillInstruction(Dest, MI, ExtMI);
2025 }
2026
2027 return ExtMI;
2028}
2029
Chris Lattnerb7782d72005-01-02 02:37:07 +00002030/// convertToThreeAddress - This method must be implemented by targets that
2031/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
2032/// may be able to convert a two-address instruction into a true
2033/// three-address instruction on demand. This allows the X86 target (for
2034/// example) to convert ADD and SHL instructions into LEA instructions if they
2035/// would require register copies due to two-addressness.
2036///
2037/// This method returns a null pointer if the transformation cannot be
2038/// performed, otherwise it returns the new instruction.
2039///
Evan Cheng07fc1072006-12-01 21:52:41 +00002040MachineInstr *
2041X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
2042 MachineBasicBlock::iterator &MBBI,
Owen Anderson30cc0282008-07-02 23:41:07 +00002043 LiveVariables *LV) const {
Evan Cheng07fc1072006-12-01 21:52:41 +00002044 MachineInstr *MI = MBBI;
David Majnemer7ea2a522013-05-22 08:13:02 +00002045
2046 // The following opcodes also sets the condition code register(s). Only
2047 // convert them to equivalent lea if the condition code register def's
2048 // are dead!
2049 if (hasLiveCondCodeDef(MI))
2050 return 0;
2051
Dan Gohman3b460302008-07-07 23:14:23 +00002052 MachineFunction &MF = *MI->getParent()->getParent();
Chris Lattnerb7782d72005-01-02 02:37:07 +00002053 // All instructions input are two-addr instructions. Get the known operands.
Jakob Stoklund Olesen70304272012-08-23 22:36:31 +00002054 const MachineOperand &Dest = MI->getOperand(0);
2055 const MachineOperand &Src = MI->getOperand(1);
Chris Lattnerb7782d72005-01-02 02:37:07 +00002056
Evan Chengdc2c8742006-11-15 20:58:11 +00002057 MachineInstr *NewMI = NULL;
Evan Cheng07fc1072006-12-01 21:52:41 +00002058 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
Chris Lattner3e1d9172007-03-20 06:08:29 +00002059 // we have better subtarget support, enable the 16-bit LEA generation here.
Evan Cheng26fdd722009-12-12 20:03:14 +00002060 // 16-bit LEA is also slow on Core2.
Evan Cheng07fc1072006-12-01 21:52:41 +00002061 bool DisableLEA16 = true;
Evan Cheng26fdd722009-12-12 20:03:14 +00002062 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng07fc1072006-12-01 21:52:41 +00002063
Evan Chengfa2c8282007-10-05 20:34:26 +00002064 unsigned MIOpc = MI->getOpcode();
2065 switch (MIOpc) {
Evan Cheng66f849b2006-05-30 20:26:50 +00002066 case X86::SHUFPSrri: {
2067 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
Chris Lattner3e1d9172007-03-20 06:08:29 +00002068 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00002069
Evan Chengc8c172e2006-05-30 21:45:53 +00002070 unsigned B = MI->getOperand(1).getReg();
2071 unsigned C = MI->getOperand(2).getReg();
Chris Lattner3e1d9172007-03-20 06:08:29 +00002072 if (B != C) return 0;
Evan Cheng7d98a482008-07-03 09:09:37 +00002073 unsigned M = MI->getOperand(3).getImm();
Bill Wendling27b508d2009-02-11 21:51:19 +00002074 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
Jakob Stoklund Olesen70304272012-08-23 22:36:31 +00002075 .addOperand(Dest).addOperand(Src).addImm(M);
Chris Lattner3e1d9172007-03-20 06:08:29 +00002076 break;
2077 }
Craig Toppere52d86a2012-01-13 09:21:41 +00002078 case X86::SHUFPDrri: {
2079 assert(MI->getNumOperands() == 4 && "Unknown shufpd instruction!");
2080 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
2081
2082 unsigned B = MI->getOperand(1).getReg();
2083 unsigned C = MI->getOperand(2).getReg();
2084 if (B != C) return 0;
Craig Toppere52d86a2012-01-13 09:21:41 +00002085 unsigned M = MI->getOperand(3).getImm();
2086
2087 // Convert to PSHUFD mask.
2088 M = ((M & 1) << 1) | ((M & 1) << 3) | ((M & 2) << 4) | ((M & 2) << 6)| 0x44;
2089
2090 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
Jakob Stoklund Olesen70304272012-08-23 22:36:31 +00002091 .addOperand(Dest).addOperand(Src).addImm(M);
Craig Toppere52d86a2012-01-13 09:21:41 +00002092 break;
2093 }
Chris Lattnerbcd38852007-03-28 18:12:31 +00002094 case X86::SHL64ri: {
Evan Cheng483e1ce2007-09-14 21:48:26 +00002095 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
David Majnemer7ea2a522013-05-22 08:13:02 +00002096 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2097 if (!isTruncatedShiftCountForLEA(ShAmt)) return 0;
Evan Cheng7d98a482008-07-03 09:09:37 +00002098
Jakob Stoklund Olesenb19bae42010-10-07 00:07:26 +00002099 // LEA can't handle RSP.
Jakob Stoklund Olesen70304272012-08-23 22:36:31 +00002100 if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
2101 !MF.getRegInfo().constrainRegClass(Src.getReg(),
2102 &X86::GR64_NOSPRegClass))
Jakob Stoklund Olesenb19bae42010-10-07 00:07:26 +00002103 return 0;
2104
Bill Wendling27b508d2009-02-11 21:51:19 +00002105 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
Jakob Stoklund Olesen70304272012-08-23 22:36:31 +00002106 .addOperand(Dest)
2107 .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
Chris Lattnerbcd38852007-03-28 18:12:31 +00002108 break;
2109 }
Chris Lattner3e1d9172007-03-20 06:08:29 +00002110 case X86::SHL32ri: {
Evan Cheng483e1ce2007-09-14 21:48:26 +00002111 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
David Majnemer7ea2a522013-05-22 08:13:02 +00002112 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2113 if (!isTruncatedShiftCountForLEA(ShAmt)) return 0;
Evan Cheng7d98a482008-07-03 09:09:37 +00002114
Tim Northover6833e3f2013-06-10 20:43:49 +00002115 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2116
Jakob Stoklund Olesenb19bae42010-10-07 00:07:26 +00002117 // LEA can't handle ESP.
Tim Northover6833e3f2013-06-10 20:43:49 +00002118 bool isKill, isUndef;
2119 unsigned SrcReg;
2120 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2121 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2122 SrcReg, isKill, isUndef, ImplicitOp))
Jakob Stoklund Olesenb19bae42010-10-07 00:07:26 +00002123 return 0;
2124
Tim Northover6833e3f2013-06-10 20:43:49 +00002125 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
Jakob Stoklund Olesen70304272012-08-23 22:36:31 +00002126 .addOperand(Dest)
Tim Northover6833e3f2013-06-10 20:43:49 +00002127 .addReg(0).addImm(1 << ShAmt)
2128 .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
2129 .addImm(0).addReg(0);
2130 if (ImplicitOp.getReg() != 0)
2131 MIB.addOperand(ImplicitOp);
2132 NewMI = MIB;
2133
Chris Lattner3e1d9172007-03-20 06:08:29 +00002134 break;
2135 }
2136 case X86::SHL16ri: {
Evan Cheng483e1ce2007-09-14 21:48:26 +00002137 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
David Majnemer7ea2a522013-05-22 08:13:02 +00002138 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2139 if (!isTruncatedShiftCountForLEA(ShAmt)) return 0;
Evan Cheng7d98a482008-07-03 09:09:37 +00002140
Evan Cheng766a73f2009-12-11 06:01:48 +00002141 if (DisableLEA16)
Evan Cheng26fdd722009-12-12 20:03:14 +00002142 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
Evan Cheng766a73f2009-12-11 06:01:48 +00002143 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Jakob Stoklund Olesen70304272012-08-23 22:36:31 +00002144 .addOperand(Dest)
2145 .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
Chris Lattner3e1d9172007-03-20 06:08:29 +00002146 break;
Evan Cheng66f849b2006-05-30 20:26:50 +00002147 }
Evan Chengfa2c8282007-10-05 20:34:26 +00002148 default: {
Evan Cheng66f849b2006-05-30 20:26:50 +00002149
Evan Chengfa2c8282007-10-05 20:34:26 +00002150 switch (MIOpc) {
2151 default: return 0;
2152 case X86::INC64r:
Dan Gohmanbeac19e2009-01-06 23:34:46 +00002153 case X86::INC32r:
2154 case X86::INC64_32r: {
Evan Chengfa2c8282007-10-05 20:34:26 +00002155 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Cheng82bc90a2007-10-09 07:14:53 +00002156 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
2157 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Tim Northover6833e3f2013-06-10 20:43:49 +00002158 bool isKill, isUndef;
2159 unsigned SrcReg;
2160 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2161 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2162 SrcReg, isKill, isUndef, ImplicitOp))
Jakob Stoklund Olesenb19bae42010-10-07 00:07:26 +00002163 return 0;
2164
Tim Northover6833e3f2013-06-10 20:43:49 +00002165 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2166 .addOperand(Dest)
2167 .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef));
2168 if (ImplicitOp.getReg() != 0)
2169 MIB.addOperand(ImplicitOp);
2170
2171 NewMI = addOffset(MIB, 1);
Evan Chengfa2c8282007-10-05 20:34:26 +00002172 break;
Chris Lattnerb7782d72005-01-02 02:37:07 +00002173 }
Evan Chengfa2c8282007-10-05 20:34:26 +00002174 case X86::INC16r:
2175 case X86::INC64_16r:
Evan Cheng766a73f2009-12-11 06:01:48 +00002176 if (DisableLEA16)
Evan Cheng26fdd722009-12-12 20:03:14 +00002177 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
Evan Chengfa2c8282007-10-05 20:34:26 +00002178 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Jakob Stoklund Olesen70304272012-08-23 22:36:31 +00002179 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2180 .addOperand(Dest).addOperand(Src), 1);
Evan Chengfa2c8282007-10-05 20:34:26 +00002181 break;
2182 case X86::DEC64r:
Dan Gohmanbeac19e2009-01-06 23:34:46 +00002183 case X86::DEC32r:
2184 case X86::DEC64_32r: {
Evan Chengfa2c8282007-10-05 20:34:26 +00002185 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Cheng82bc90a2007-10-09 07:14:53 +00002186 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
2187 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Tim Northover6833e3f2013-06-10 20:43:49 +00002188
2189 bool isKill, isUndef;
2190 unsigned SrcReg;
2191 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2192 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2193 SrcReg, isKill, isUndef, ImplicitOp))
Jakob Stoklund Olesenb19bae42010-10-07 00:07:26 +00002194 return 0;
2195
Tim Northover6833e3f2013-06-10 20:43:49 +00002196 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2197 .addOperand(Dest)
2198 .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
2199 if (ImplicitOp.getReg() != 0)
2200 MIB.addOperand(ImplicitOp);
2201
2202 NewMI = addOffset(MIB, -1);
2203
Evan Chengfa2c8282007-10-05 20:34:26 +00002204 break;
2205 }
2206 case X86::DEC16r:
2207 case X86::DEC64_16r:
Evan Cheng766a73f2009-12-11 06:01:48 +00002208 if (DisableLEA16)
Evan Cheng26fdd722009-12-12 20:03:14 +00002209 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
Evan Chengfa2c8282007-10-05 20:34:26 +00002210 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Jakob Stoklund Olesen70304272012-08-23 22:36:31 +00002211 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2212 .addOperand(Dest).addOperand(Src), -1);
Evan Chengfa2c8282007-10-05 20:34:26 +00002213 break;
2214 case X86::ADD64rr:
Chris Lattner626656a2010-10-08 03:54:52 +00002215 case X86::ADD64rr_DB:
2216 case X86::ADD32rr:
2217 case X86::ADD32rr_DB: {
Evan Chengfa2c8282007-10-05 20:34:26 +00002218 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Chris Lattner626656a2010-10-08 03:54:52 +00002219 unsigned Opc;
Tim Northover6833e3f2013-06-10 20:43:49 +00002220 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
Chris Lattner626656a2010-10-08 03:54:52 +00002221 Opc = X86::LEA64r;
Tim Northover6833e3f2013-06-10 20:43:49 +00002222 else
Chris Lattner626656a2010-10-08 03:54:52 +00002223 Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner626656a2010-10-08 03:54:52 +00002224
Tim Northover6833e3f2013-06-10 20:43:49 +00002225 bool isKill, isUndef;
2226 unsigned SrcReg;
2227 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2228 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
2229 SrcReg, isKill, isUndef, ImplicitOp))
Jakob Stoklund Olesenb19bae42010-10-07 00:07:26 +00002230 return 0;
2231
Tim Northover6833e3f2013-06-10 20:43:49 +00002232 const MachineOperand &Src2 = MI->getOperand(2);
2233 bool isKill2, isUndef2;
2234 unsigned SrcReg2;
2235 MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
2236 if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
2237 SrcReg2, isKill2, isUndef2, ImplicitOp2))
2238 return 0;
2239
2240 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2241 .addOperand(Dest);
2242 if (ImplicitOp.getReg() != 0)
2243 MIB.addOperand(ImplicitOp);
2244 if (ImplicitOp2.getReg() != 0)
2245 MIB.addOperand(ImplicitOp2);
2246
2247 NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
Nadav Rotem4968e452012-07-16 10:52:25 +00002248
2249 // Preserve undefness of the operands.
Tim Northover339bf152013-06-01 10:23:46 +00002250 NewMI->getOperand(1).setIsUndef(isUndef);
2251 NewMI->getOperand(3).setIsUndef(isUndef2);
Nadav Rotem4968e452012-07-16 10:52:25 +00002252
Tim Northover6833e3f2013-06-10 20:43:49 +00002253 if (LV && Src2.isKill())
2254 LV->replaceKillInstruction(SrcReg2, MI, NewMI);
Evan Chengfa2c8282007-10-05 20:34:26 +00002255 break;
2256 }
Chris Lattner626656a2010-10-08 03:54:52 +00002257 case X86::ADD16rr:
2258 case X86::ADD16rr_DB: {
Evan Cheng766a73f2009-12-11 06:01:48 +00002259 if (DisableLEA16)
Evan Cheng26fdd722009-12-12 20:03:14 +00002260 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
Evan Chengfa2c8282007-10-05 20:34:26 +00002261 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Cheng7d98a482008-07-03 09:09:37 +00002262 unsigned Src2 = MI->getOperand(2).getReg();
2263 bool isKill2 = MI->getOperand(2).isKill();
Bill Wendling27b508d2009-02-11 21:51:19 +00002264 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Jakob Stoklund Olesen70304272012-08-23 22:36:31 +00002265 .addOperand(Dest),
2266 Src.getReg(), Src.isKill(), Src2, isKill2);
2267
2268 // Preserve undefness of the operands.
2269 bool isUndef = MI->getOperand(1).isUndef();
2270 bool isUndef2 = MI->getOperand(2).isUndef();
2271 NewMI->getOperand(1).setIsUndef(isUndef);
2272 NewMI->getOperand(3).setIsUndef(isUndef2);
2273
Evan Cheng7d98a482008-07-03 09:09:37 +00002274 if (LV && isKill2)
2275 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Chengfa2c8282007-10-05 20:34:26 +00002276 break;
Evan Cheng7d98a482008-07-03 09:09:37 +00002277 }
Evan Chengfa2c8282007-10-05 20:34:26 +00002278 case X86::ADD64ri32:
2279 case X86::ADD64ri8:
Chris Lattnerdd774772010-10-08 03:57:25 +00002280 case X86::ADD64ri32_DB:
2281 case X86::ADD64ri8_DB:
Evan Chengfa2c8282007-10-05 20:34:26 +00002282 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Jakob Stoklund Olesen70304272012-08-23 22:36:31 +00002283 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
2284 .addOperand(Dest).addOperand(Src),
2285 MI->getOperand(2).getImm());
Evan Chengfa2c8282007-10-05 20:34:26 +00002286 break;
2287 case X86::ADD32ri:
Chris Lattnerdd774772010-10-08 03:57:25 +00002288 case X86::ADD32ri8:
2289 case X86::ADD32ri_DB:
2290 case X86::ADD32ri8_DB: {
Evan Chengfa2c8282007-10-05 20:34:26 +00002291 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Tim Northover339bf152013-06-01 10:23:46 +00002292 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Tim Northover6833e3f2013-06-10 20:43:49 +00002293
2294 bool isKill, isUndef;
2295 unsigned SrcReg;
2296 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2297 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
2298 SrcReg, isKill, isUndef, ImplicitOp))
2299 return 0;
2300
2301 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2302 .addOperand(Dest)
2303 .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
2304 if (ImplicitOp.getReg() != 0)
2305 MIB.addOperand(ImplicitOp);
2306
2307 NewMI = addOffset(MIB, MI->getOperand(2).getImm());
Evan Chengfa2c8282007-10-05 20:34:26 +00002308 break;
2309 }
Evan Cheng766a73f2009-12-11 06:01:48 +00002310 case X86::ADD16ri:
2311 case X86::ADD16ri8:
Chris Lattnerdd774772010-10-08 03:57:25 +00002312 case X86::ADD16ri_DB:
2313 case X86::ADD16ri8_DB:
Evan Cheng766a73f2009-12-11 06:01:48 +00002314 if (DisableLEA16)
Evan Cheng26fdd722009-12-12 20:03:14 +00002315 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
Evan Cheng766a73f2009-12-11 06:01:48 +00002316 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Jakob Stoklund Olesen70304272012-08-23 22:36:31 +00002317 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2318 .addOperand(Dest).addOperand(Src),
2319 MI->getOperand(2).getImm());
Evan Cheng766a73f2009-12-11 06:01:48 +00002320 break;
Evan Chengfa2c8282007-10-05 20:34:26 +00002321 }
2322 }
Chris Lattnerb7782d72005-01-02 02:37:07 +00002323 }
2324
Evan Cheng1bc1cae2008-02-07 08:29:53 +00002325 if (!NewMI) return 0;
2326
Evan Cheng7d98a482008-07-03 09:09:37 +00002327 if (LV) { // Update live variables
Jakob Stoklund Olesen70304272012-08-23 22:36:31 +00002328 if (Src.isKill())
2329 LV->replaceKillInstruction(Src.getReg(), MI, NewMI);
2330 if (Dest.isDead())
2331 LV->replaceKillInstruction(Dest.getReg(), MI, NewMI);
Evan Cheng7d98a482008-07-03 09:09:37 +00002332 }
2333
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00002334 MFI->insert(MBBI, NewMI); // Insert the new inst
Evan Chengdc2c8742006-11-15 20:58:11 +00002335 return NewMI;
Chris Lattnerb7782d72005-01-02 02:37:07 +00002336}
2337
Chris Lattner29478012005-01-19 07:11:01 +00002338/// commuteInstruction - We have a few instructions that must be hacked on to
2339/// commute them.
2340///
Evan Cheng03553bb2008-06-16 07:33:11 +00002341MachineInstr *
2342X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Chris Lattner29478012005-01-19 07:11:01 +00002343 switch (MI->getOpcode()) {
Chris Lattnerd54845f2005-01-19 07:31:24 +00002344 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
2345 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
Chris Lattner29478012005-01-19 07:11:01 +00002346 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman48ea03d2007-09-14 23:17:45 +00002347 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
2348 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
2349 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Chris Lattnerd54845f2005-01-19 07:31:24 +00002350 unsigned Opc;
2351 unsigned Size;
2352 switch (MI->getOpcode()) {
Torok Edwinfbcc6632009-07-14 16:55:14 +00002353 default: llvm_unreachable("Unreachable!");
Chris Lattnerd54845f2005-01-19 07:31:24 +00002354 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
2355 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
2356 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
2357 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman48ea03d2007-09-14 23:17:45 +00002358 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
2359 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Chris Lattnerd54845f2005-01-19 07:31:24 +00002360 }
Chris Lattner5c463782007-12-30 20:49:49 +00002361 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohmana39b0a12008-10-17 01:23:35 +00002362 if (NewMI) {
2363 MachineFunction &MF = *MI->getParent()->getParent();
2364 MI = MF.CloneMachineInstr(MI);
2365 NewMI = false;
Evan Cheng244183e2008-02-13 02:46:49 +00002366 }
Dan Gohmana39b0a12008-10-17 01:23:35 +00002367 MI->setDesc(get(Opc));
2368 MI->getOperand(3).setImm(Size-Amt);
Jakob Stoklund Olesen9de596e2012-11-28 02:35:17 +00002369 return TargetInstrInfo::commuteInstruction(MI, NewMI);
Chris Lattner29478012005-01-19 07:11:01 +00002370 }
Craig Topper653e7592012-08-21 07:32:16 +00002371 case X86::CMOVB16rr: case X86::CMOVB32rr: case X86::CMOVB64rr:
2372 case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr:
2373 case X86::CMOVE16rr: case X86::CMOVE32rr: case X86::CMOVE64rr:
2374 case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr:
2375 case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr:
2376 case X86::CMOVA16rr: case X86::CMOVA32rr: case X86::CMOVA64rr:
2377 case X86::CMOVL16rr: case X86::CMOVL32rr: case X86::CMOVL64rr:
2378 case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr:
2379 case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr:
2380 case X86::CMOVG16rr: case X86::CMOVG32rr: case X86::CMOVG64rr:
2381 case X86::CMOVS16rr: case X86::CMOVS32rr: case X86::CMOVS64rr:
2382 case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr:
2383 case X86::CMOVP16rr: case X86::CMOVP32rr: case X86::CMOVP64rr:
2384 case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr:
2385 case X86::CMOVO16rr: case X86::CMOVO32rr: case X86::CMOVO64rr:
2386 case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: {
2387 unsigned Opc;
Evan Cheng1151ffd2007-10-05 23:13:21 +00002388 switch (MI->getOpcode()) {
Craig Topper653e7592012-08-21 07:32:16 +00002389 default: llvm_unreachable("Unreachable!");
Evan Cheng1151ffd2007-10-05 23:13:21 +00002390 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
2391 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
2392 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
2393 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
2394 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
2395 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
2396 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
2397 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
2398 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
2399 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
2400 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
2401 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
Chris Lattner1a1c6002010-10-05 23:00:14 +00002402 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
2403 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
2404 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
2405 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
2406 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
2407 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
Evan Cheng1151ffd2007-10-05 23:13:21 +00002408 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
2409 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
2410 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
2411 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
2412 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
2413 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
2414 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
2415 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
2416 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
2417 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
2418 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
2419 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
2420 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
2421 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
Mon P Wang6c8bcf92009-04-18 05:16:01 +00002422 case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break;
Evan Cheng1151ffd2007-10-05 23:13:21 +00002423 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
2424 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
2425 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
2426 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
2427 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
Mon P Wang6c8bcf92009-04-18 05:16:01 +00002428 case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break;
Evan Cheng1151ffd2007-10-05 23:13:21 +00002429 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
2430 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
2431 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
Dan Gohman7e47cc72009-01-07 00:35:10 +00002432 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
2433 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
Mon P Wang6c8bcf92009-04-18 05:16:01 +00002434 case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break;
Dan Gohman7e47cc72009-01-07 00:35:10 +00002435 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
2436 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
2437 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
Evan Cheng1151ffd2007-10-05 23:13:21 +00002438 }
Dan Gohmana39b0a12008-10-17 01:23:35 +00002439 if (NewMI) {
2440 MachineFunction &MF = *MI->getParent()->getParent();
2441 MI = MF.CloneMachineInstr(MI);
2442 NewMI = false;
2443 }
Chris Lattner59687512008-01-11 18:10:50 +00002444 MI->setDesc(get(Opc));
Evan Cheng1151ffd2007-10-05 23:13:21 +00002445 // Fallthrough intended.
2446 }
Chris Lattner29478012005-01-19 07:11:01 +00002447 default:
Jakob Stoklund Olesen9de596e2012-11-28 02:35:17 +00002448 return TargetInstrInfo::commuteInstruction(MI, NewMI);
Chris Lattner29478012005-01-19 07:11:01 +00002449 }
2450}
2451
Manman Ren5f6fa422012-07-09 18:57:12 +00002452static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
Chris Lattnerc0fb5672006-10-20 17:42:20 +00002453 switch (BrOpc) {
2454 default: return X86::COND_INVALID;
Chris Lattner2b0a7a22010-02-11 19:25:55 +00002455 case X86::JE_4: return X86::COND_E;
2456 case X86::JNE_4: return X86::COND_NE;
2457 case X86::JL_4: return X86::COND_L;
2458 case X86::JLE_4: return X86::COND_LE;
2459 case X86::JG_4: return X86::COND_G;
2460 case X86::JGE_4: return X86::COND_GE;
2461 case X86::JB_4: return X86::COND_B;
2462 case X86::JBE_4: return X86::COND_BE;
2463 case X86::JA_4: return X86::COND_A;
2464 case X86::JAE_4: return X86::COND_AE;
2465 case X86::JS_4: return X86::COND_S;
2466 case X86::JNS_4: return X86::COND_NS;
2467 case X86::JP_4: return X86::COND_P;
2468 case X86::JNP_4: return X86::COND_NP;
2469 case X86::JO_4: return X86::COND_O;
2470 case X86::JNO_4: return X86::COND_NO;
Chris Lattnerc0fb5672006-10-20 17:42:20 +00002471 }
2472}
2473
Manman Ren5f6fa422012-07-09 18:57:12 +00002474/// getCondFromSETOpc - return condition code of a SET opcode.
2475static X86::CondCode getCondFromSETOpc(unsigned Opc) {
2476 switch (Opc) {
2477 default: return X86::COND_INVALID;
2478 case X86::SETAr: case X86::SETAm: return X86::COND_A;
2479 case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
2480 case X86::SETBr: case X86::SETBm: return X86::COND_B;
2481 case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
2482 case X86::SETEr: case X86::SETEm: return X86::COND_E;
2483 case X86::SETGr: case X86::SETGm: return X86::COND_G;
2484 case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
2485 case X86::SETLr: case X86::SETLm: return X86::COND_L;
2486 case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
2487 case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
2488 case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
2489 case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
2490 case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
2491 case X86::SETOr: case X86::SETOm: return X86::COND_O;
2492 case X86::SETPr: case X86::SETPm: return X86::COND_P;
2493 case X86::SETSr: case X86::SETSm: return X86::COND_S;
2494 }
2495}
2496
2497/// getCondFromCmovOpc - return condition code of a CMov opcode.
Michael Liao32376622012-09-20 03:06:15 +00002498X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) {
Manman Ren5f6fa422012-07-09 18:57:12 +00002499 switch (Opc) {
2500 default: return X86::COND_INVALID;
2501 case X86::CMOVA16rm: case X86::CMOVA16rr: case X86::CMOVA32rm:
2502 case X86::CMOVA32rr: case X86::CMOVA64rm: case X86::CMOVA64rr:
2503 return X86::COND_A;
2504 case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
2505 case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
2506 return X86::COND_AE;
2507 case X86::CMOVB16rm: case X86::CMOVB16rr: case X86::CMOVB32rm:
2508 case X86::CMOVB32rr: case X86::CMOVB64rm: case X86::CMOVB64rr:
2509 return X86::COND_B;
2510 case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
2511 case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
2512 return X86::COND_BE;
2513 case X86::CMOVE16rm: case X86::CMOVE16rr: case X86::CMOVE32rm:
2514 case X86::CMOVE32rr: case X86::CMOVE64rm: case X86::CMOVE64rr:
2515 return X86::COND_E;
2516 case X86::CMOVG16rm: case X86::CMOVG16rr: case X86::CMOVG32rm:
2517 case X86::CMOVG32rr: case X86::CMOVG64rm: case X86::CMOVG64rr:
2518 return X86::COND_G;
2519 case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
2520 case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
2521 return X86::COND_GE;
2522 case X86::CMOVL16rm: case X86::CMOVL16rr: case X86::CMOVL32rm:
2523 case X86::CMOVL32rr: case X86::CMOVL64rm: case X86::CMOVL64rr:
2524 return X86::COND_L;
2525 case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
2526 case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
2527 return X86::COND_LE;
2528 case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
2529 case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
2530 return X86::COND_NE;
2531 case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
2532 case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
2533 return X86::COND_NO;
2534 case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
2535 case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
2536 return X86::COND_NP;
2537 case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
2538 case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
2539 return X86::COND_NS;
2540 case X86::CMOVO16rm: case X86::CMOVO16rr: case X86::CMOVO32rm:
2541 case X86::CMOVO32rr: case X86::CMOVO64rm: case X86::CMOVO64rr:
2542 return X86::COND_O;
2543 case X86::CMOVP16rm: case X86::CMOVP16rr: case X86::CMOVP32rm:
2544 case X86::CMOVP32rr: case X86::CMOVP64rm: case X86::CMOVP64rr:
2545 return X86::COND_P;
2546 case X86::CMOVS16rm: case X86::CMOVS16rr: case X86::CMOVS32rm:
2547 case X86::CMOVS32rr: case X86::CMOVS64rm: case X86::CMOVS64rr:
2548 return X86::COND_S;
2549 }
2550}
2551
Chris Lattnerc0fb5672006-10-20 17:42:20 +00002552unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
2553 switch (CC) {
Torok Edwinfbcc6632009-07-14 16:55:14 +00002554 default: llvm_unreachable("Illegal condition code!");
Chris Lattner2b0a7a22010-02-11 19:25:55 +00002555 case X86::COND_E: return X86::JE_4;
2556 case X86::COND_NE: return X86::JNE_4;
2557 case X86::COND_L: return X86::JL_4;
2558 case X86::COND_LE: return X86::JLE_4;
2559 case X86::COND_G: return X86::JG_4;
2560 case X86::COND_GE: return X86::JGE_4;
2561 case X86::COND_B: return X86::JB_4;
2562 case X86::COND_BE: return X86::JBE_4;
2563 case X86::COND_A: return X86::JA_4;
2564 case X86::COND_AE: return X86::JAE_4;
2565 case X86::COND_S: return X86::JS_4;
2566 case X86::COND_NS: return X86::JNS_4;
2567 case X86::COND_P: return X86::JP_4;
2568 case X86::COND_NP: return X86::JNP_4;
2569 case X86::COND_O: return X86::JO_4;
2570 case X86::COND_NO: return X86::JNO_4;
Chris Lattnerc0fb5672006-10-20 17:42:20 +00002571 }
2572}
2573
Chris Lattner3a897f32006-10-21 05:52:40 +00002574/// GetOppositeBranchCondition - Return the inverse of the specified condition,
2575/// e.g. turning COND_E to COND_NE.
2576X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2577 switch (CC) {
Torok Edwinfbcc6632009-07-14 16:55:14 +00002578 default: llvm_unreachable("Illegal condition code!");
Chris Lattner3a897f32006-10-21 05:52:40 +00002579 case X86::COND_E: return X86::COND_NE;
2580 case X86::COND_NE: return X86::COND_E;
2581 case X86::COND_L: return X86::COND_GE;
2582 case X86::COND_LE: return X86::COND_G;
2583 case X86::COND_G: return X86::COND_LE;
2584 case X86::COND_GE: return X86::COND_L;
2585 case X86::COND_B: return X86::COND_AE;
2586 case X86::COND_BE: return X86::COND_A;
2587 case X86::COND_A: return X86::COND_BE;
2588 case X86::COND_AE: return X86::COND_B;
2589 case X86::COND_S: return X86::COND_NS;
2590 case X86::COND_NS: return X86::COND_S;
2591 case X86::COND_P: return X86::COND_NP;
2592 case X86::COND_NP: return X86::COND_P;
2593 case X86::COND_O: return X86::COND_NO;
2594 case X86::COND_NO: return X86::COND_O;
2595 }
2596}
2597
Manman Ren5f6fa422012-07-09 18:57:12 +00002598/// getSwappedCondition - assume the flags are set by MI(a,b), return
2599/// the condition code if we modify the instructions such that flags are
2600/// set by MI(b,a).
Benjamin Kramerabbfe692012-07-13 13:25:15 +00002601static X86::CondCode getSwappedCondition(X86::CondCode CC) {
Manman Ren5f6fa422012-07-09 18:57:12 +00002602 switch (CC) {
2603 default: return X86::COND_INVALID;
2604 case X86::COND_E: return X86::COND_E;
2605 case X86::COND_NE: return X86::COND_NE;
2606 case X86::COND_L: return X86::COND_G;
2607 case X86::COND_LE: return X86::COND_GE;
2608 case X86::COND_G: return X86::COND_L;
2609 case X86::COND_GE: return X86::COND_LE;
2610 case X86::COND_B: return X86::COND_A;
2611 case X86::COND_BE: return X86::COND_AE;
2612 case X86::COND_A: return X86::COND_B;
2613 case X86::COND_AE: return X86::COND_BE;
2614 }
2615}
2616
2617/// getSETFromCond - Return a set opcode for the given condition and
2618/// whether it has memory operand.
2619static unsigned getSETFromCond(X86::CondCode CC,
2620 bool HasMemoryOperand) {
Craig Topperbfcfdeb2012-08-21 08:23:21 +00002621 static const uint16_t Opc[16][2] = {
Manman Ren5f6fa422012-07-09 18:57:12 +00002622 { X86::SETAr, X86::SETAm },
2623 { X86::SETAEr, X86::SETAEm },
2624 { X86::SETBr, X86::SETBm },
2625 { X86::SETBEr, X86::SETBEm },
2626 { X86::SETEr, X86::SETEm },
2627 { X86::SETGr, X86::SETGm },
2628 { X86::SETGEr, X86::SETGEm },
2629 { X86::SETLr, X86::SETLm },
2630 { X86::SETLEr, X86::SETLEm },
2631 { X86::SETNEr, X86::SETNEm },
2632 { X86::SETNOr, X86::SETNOm },
2633 { X86::SETNPr, X86::SETNPm },
2634 { X86::SETNSr, X86::SETNSm },
2635 { X86::SETOr, X86::SETOm },
2636 { X86::SETPr, X86::SETPm },
2637 { X86::SETSr, X86::SETSm }
2638 };
2639
2640 assert(CC < 16 && "Can only handle standard cond codes");
2641 return Opc[CC][HasMemoryOperand ? 1 : 0];
2642}
2643
2644/// getCMovFromCond - Return a cmov opcode for the given condition,
2645/// register size in bytes, and operand type.
2646static unsigned getCMovFromCond(X86::CondCode CC, unsigned RegBytes,
2647 bool HasMemoryOperand) {
Craig Topperbfcfdeb2012-08-21 08:23:21 +00002648 static const uint16_t Opc[32][3] = {
Jakob Stoklund Olesen49e4d4b2012-07-04 00:09:58 +00002649 { X86::CMOVA16rr, X86::CMOVA32rr, X86::CMOVA64rr },
2650 { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
2651 { X86::CMOVB16rr, X86::CMOVB32rr, X86::CMOVB64rr },
2652 { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
2653 { X86::CMOVE16rr, X86::CMOVE32rr, X86::CMOVE64rr },
2654 { X86::CMOVG16rr, X86::CMOVG32rr, X86::CMOVG64rr },
2655 { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
2656 { X86::CMOVL16rr, X86::CMOVL32rr, X86::CMOVL64rr },
2657 { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
2658 { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
2659 { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
2660 { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
2661 { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
2662 { X86::CMOVO16rr, X86::CMOVO32rr, X86::CMOVO64rr },
2663 { X86::CMOVP16rr, X86::CMOVP32rr, X86::CMOVP64rr },
Manman Ren5f6fa422012-07-09 18:57:12 +00002664 { X86::CMOVS16rr, X86::CMOVS32rr, X86::CMOVS64rr },
2665 { X86::CMOVA16rm, X86::CMOVA32rm, X86::CMOVA64rm },
2666 { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
2667 { X86::CMOVB16rm, X86::CMOVB32rm, X86::CMOVB64rm },
2668 { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
2669 { X86::CMOVE16rm, X86::CMOVE32rm, X86::CMOVE64rm },
2670 { X86::CMOVG16rm, X86::CMOVG32rm, X86::CMOVG64rm },
2671 { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
2672 { X86::CMOVL16rm, X86::CMOVL32rm, X86::CMOVL64rm },
2673 { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
2674 { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
2675 { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
2676 { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
2677 { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
2678 { X86::CMOVO16rm, X86::CMOVO32rm, X86::CMOVO64rm },
2679 { X86::CMOVP16rm, X86::CMOVP32rm, X86::CMOVP64rm },
2680 { X86::CMOVS16rm, X86::CMOVS32rm, X86::CMOVS64rm }
Jakob Stoklund Olesen49e4d4b2012-07-04 00:09:58 +00002681 };
2682
2683 assert(CC < 16 && "Can only handle standard cond codes");
Manman Ren5f6fa422012-07-09 18:57:12 +00002684 unsigned Idx = HasMemoryOperand ? 16+CC : CC;
Jakob Stoklund Olesen49e4d4b2012-07-04 00:09:58 +00002685 switch(RegBytes) {
2686 default: llvm_unreachable("Illegal register size!");
Manman Ren5f6fa422012-07-09 18:57:12 +00002687 case 2: return Opc[Idx][0];
2688 case 4: return Opc[Idx][1];
2689 case 8: return Opc[Idx][2];
Jakob Stoklund Olesen49e4d4b2012-07-04 00:09:58 +00002690 }
2691}
2692
Dale Johannesen616627b2007-06-14 22:03:45 +00002693bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Evan Cheng7f8e5632011-12-07 07:15:52 +00002694 if (!MI->isTerminator()) return false;
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00002695
Chris Lattnera98c6792008-01-07 01:56:04 +00002696 // Conditional branch is a special case.
Evan Cheng7f8e5632011-12-07 07:15:52 +00002697 if (MI->isBranch() && !MI->isBarrier())
Chris Lattnera98c6792008-01-07 01:56:04 +00002698 return true;
Evan Cheng7f8e5632011-12-07 07:15:52 +00002699 if (!MI->isPredicable())
Chris Lattnera98c6792008-01-07 01:56:04 +00002700 return true;
2701 return !isPredicated(MI);
Dale Johannesen616627b2007-06-14 22:03:45 +00002702}
Chris Lattner3a897f32006-10-21 05:52:40 +00002703
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00002704bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
Chris Lattnerc0fb5672006-10-20 17:42:20 +00002705 MachineBasicBlock *&TBB,
2706 MachineBasicBlock *&FBB,
Evan Cheng64dfcac2009-02-09 07:14:22 +00002707 SmallVectorImpl<MachineOperand> &Cond,
2708 bool AllowModify) const {
Dan Gohman97d95d62008-10-21 03:29:32 +00002709 // Start from the bottom of the block and work up, examining the
2710 // terminator instructions.
Chris Lattnerc0fb5672006-10-20 17:42:20 +00002711 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng4ca4bc62010-04-13 18:50:27 +00002712 MachineBasicBlock::iterator UnCondBrIter = MBB.end();
Dan Gohman97d95d62008-10-21 03:29:32 +00002713 while (I != MBB.begin()) {
2714 --I;
Dale Johannesen4244d122010-04-02 01:38:09 +00002715 if (I->isDebugValue())
2716 continue;
Bill Wendling277381f2009-12-14 06:51:19 +00002717
2718 // Working from the bottom, when we see a non-terminator instruction, we're
2719 // done.
Jakob Stoklund Olesenc30b4dd2010-07-16 17:41:44 +00002720 if (!isUnpredicatedTerminator(I))
Dan Gohman97d95d62008-10-21 03:29:32 +00002721 break;
Bill Wendling277381f2009-12-14 06:51:19 +00002722
2723 // A terminator that isn't a branch can't easily be handled by this
2724 // analysis.
Evan Cheng7f8e5632011-12-07 07:15:52 +00002725 if (!I->isBranch())
Chris Lattnerc0fb5672006-10-20 17:42:20 +00002726 return true;
Bill Wendling277381f2009-12-14 06:51:19 +00002727
Dan Gohman97d95d62008-10-21 03:29:32 +00002728 // Handle unconditional branches.
Chris Lattner2b0a7a22010-02-11 19:25:55 +00002729 if (I->getOpcode() == X86::JMP_4) {
Evan Cheng4ca4bc62010-04-13 18:50:27 +00002730 UnCondBrIter = I;
2731
Evan Cheng64dfcac2009-02-09 07:14:22 +00002732 if (!AllowModify) {
2733 TBB = I->getOperand(0).getMBB();
Evan Cheng2fa28112009-05-08 06:34:09 +00002734 continue;
Evan Cheng64dfcac2009-02-09 07:14:22 +00002735 }
2736
Dan Gohman97d95d62008-10-21 03:29:32 +00002737 // If the block has any instructions after a JMP, delete them.
Chris Lattnera48f44d2009-12-03 00:50:42 +00002738 while (llvm::next(I) != MBB.end())
2739 llvm::next(I)->eraseFromParent();
Bill Wendling277381f2009-12-14 06:51:19 +00002740
Dan Gohman97d95d62008-10-21 03:29:32 +00002741 Cond.clear();
2742 FBB = 0;
Bill Wendling277381f2009-12-14 06:51:19 +00002743
Dan Gohman97d95d62008-10-21 03:29:32 +00002744 // Delete the JMP if it's equivalent to a fall-through.
2745 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
2746 TBB = 0;
2747 I->eraseFromParent();
2748 I = MBB.end();
Evan Cheng4ca4bc62010-04-13 18:50:27 +00002749 UnCondBrIter = MBB.end();
Dan Gohman97d95d62008-10-21 03:29:32 +00002750 continue;
2751 }
Bill Wendling277381f2009-12-14 06:51:19 +00002752
Evan Cheng4ca4bc62010-04-13 18:50:27 +00002753 // TBB is used to indicate the unconditional destination.
Dan Gohman97d95d62008-10-21 03:29:32 +00002754 TBB = I->getOperand(0).getMBB();
2755 continue;
Chris Lattnerc0fb5672006-10-20 17:42:20 +00002756 }
Bill Wendling277381f2009-12-14 06:51:19 +00002757
Dan Gohman97d95d62008-10-21 03:29:32 +00002758 // Handle conditional branches.
Manman Ren5f6fa422012-07-09 18:57:12 +00002759 X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode());
Chris Lattnerc0fb5672006-10-20 17:42:20 +00002760 if (BranchCode == X86::COND_INVALID)
2761 return true; // Can't handle indirect branch.
Bill Wendling277381f2009-12-14 06:51:19 +00002762
Dan Gohman97d95d62008-10-21 03:29:32 +00002763 // Working from the bottom, handle the first conditional branch.
2764 if (Cond.empty()) {
Evan Cheng4ca4bc62010-04-13 18:50:27 +00002765 MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
2766 if (AllowModify && UnCondBrIter != MBB.end() &&
2767 MBB.isLayoutSuccessor(TargetBB)) {
2768 // If we can modify the code and it ends in something like:
2769 //
2770 // jCC L1
2771 // jmp L2
2772 // L1:
2773 // ...
2774 // L2:
2775 //
2776 // Then we can change this to:
2777 //
2778 // jnCC L2
2779 // L1:
2780 // ...
2781 // L2:
2782 //
2783 // Which is a bit more efficient.
2784 // We conditionally jump to the fall-through block.
2785 BranchCode = GetOppositeBranchCondition(BranchCode);
2786 unsigned JNCC = GetCondBranchFromCond(BranchCode);
2787 MachineBasicBlock::iterator OldInst = I;
2788
2789 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
2790 .addMBB(UnCondBrIter->getOperand(0).getMBB());
2791 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
2792 .addMBB(TargetBB);
Evan Cheng4ca4bc62010-04-13 18:50:27 +00002793
2794 OldInst->eraseFromParent();
2795 UnCondBrIter->eraseFromParent();
2796
2797 // Restart the analysis.
2798 UnCondBrIter = MBB.end();
2799 I = MBB.end();
2800 continue;
2801 }
2802
Dan Gohman97d95d62008-10-21 03:29:32 +00002803 FBB = TBB;
2804 TBB = I->getOperand(0).getMBB();
2805 Cond.push_back(MachineOperand::CreateImm(BranchCode));
2806 continue;
2807 }
Bill Wendling277381f2009-12-14 06:51:19 +00002808
2809 // Handle subsequent conditional branches. Only handle the case where all
2810 // conditional branches branch to the same destination and their condition
2811 // opcodes fit one of the special multi-branch idioms.
Dan Gohman97d95d62008-10-21 03:29:32 +00002812 assert(Cond.size() == 1);
2813 assert(TBB);
Bill Wendling277381f2009-12-14 06:51:19 +00002814
2815 // Only handle the case where all conditional branches branch to the same
2816 // destination.
Dan Gohman97d95d62008-10-21 03:29:32 +00002817 if (TBB != I->getOperand(0).getMBB())
2818 return true;
Bill Wendling277381f2009-12-14 06:51:19 +00002819
Dan Gohman97d95d62008-10-21 03:29:32 +00002820 // If the conditions are the same, we can leave them alone.
Bill Wendling277381f2009-12-14 06:51:19 +00002821 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
Dan Gohman97d95d62008-10-21 03:29:32 +00002822 if (OldBranchCode == BranchCode)
2823 continue;
Bill Wendling277381f2009-12-14 06:51:19 +00002824
2825 // If they differ, see if they fit one of the known patterns. Theoretically,
2826 // we could handle more patterns here, but we shouldn't expect to see them
2827 // if instruction selection has done a reasonable job.
Dan Gohman97d95d62008-10-21 03:29:32 +00002828 if ((OldBranchCode == X86::COND_NP &&
2829 BranchCode == X86::COND_E) ||
2830 (OldBranchCode == X86::COND_E &&
2831 BranchCode == X86::COND_NP))
2832 BranchCode = X86::COND_NP_OR_E;
2833 else if ((OldBranchCode == X86::COND_P &&
2834 BranchCode == X86::COND_NE) ||
2835 (OldBranchCode == X86::COND_NE &&
2836 BranchCode == X86::COND_P))
2837 BranchCode = X86::COND_NE_OR_P;
2838 else
2839 return true;
Bill Wendling277381f2009-12-14 06:51:19 +00002840
Dan Gohman97d95d62008-10-21 03:29:32 +00002841 // Update the MachineOperand.
2842 Cond[0].setImm(BranchCode);
Chris Lattner74436002006-10-30 22:27:23 +00002843 }
Chris Lattnerc0fb5672006-10-20 17:42:20 +00002844
Dan Gohman97d95d62008-10-21 03:29:32 +00002845 return false;
Chris Lattnerc0fb5672006-10-20 17:42:20 +00002846}
2847
Evan Chenge20dd922007-05-18 00:18:17 +00002848unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
Chris Lattnerc0fb5672006-10-20 17:42:20 +00002849 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman97d95d62008-10-21 03:29:32 +00002850 unsigned Count = 0;
2851
2852 while (I != MBB.begin()) {
2853 --I;
Dale Johannesen4244d122010-04-02 01:38:09 +00002854 if (I->isDebugValue())
2855 continue;
Chris Lattner2b0a7a22010-02-11 19:25:55 +00002856 if (I->getOpcode() != X86::JMP_4 &&
Manman Ren5f6fa422012-07-09 18:57:12 +00002857 getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
Dan Gohman97d95d62008-10-21 03:29:32 +00002858 break;
2859 // Remove the branch.
2860 I->eraseFromParent();
2861 I = MBB.end();
2862 ++Count;
2863 }
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00002864
Dan Gohman97d95d62008-10-21 03:29:32 +00002865 return Count;
Chris Lattnerc0fb5672006-10-20 17:42:20 +00002866}
2867
Evan Chenge20dd922007-05-18 00:18:17 +00002868unsigned
2869X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
2870 MachineBasicBlock *FBB,
Stuart Hastings0125b642010-06-17 22:43:56 +00002871 const SmallVectorImpl<MachineOperand> &Cond,
2872 DebugLoc DL) const {
Chris Lattnerc0fb5672006-10-20 17:42:20 +00002873 // Shouldn't be a fall through.
2874 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
Chris Lattner6fca75e2006-10-21 05:34:23 +00002875 assert((Cond.size() == 1 || Cond.size() == 0) &&
2876 "X86 branch conditions have one component!");
2877
Dan Gohman97d95d62008-10-21 03:29:32 +00002878 if (Cond.empty()) {
2879 // Unconditional branch?
2880 assert(!FBB && "Unconditional branch with multiple successors!");
Stuart Hastings0125b642010-06-17 22:43:56 +00002881 BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
Evan Chenge20dd922007-05-18 00:18:17 +00002882 return 1;
Chris Lattnerc0fb5672006-10-20 17:42:20 +00002883 }
Dan Gohman97d95d62008-10-21 03:29:32 +00002884
2885 // Conditional branch.
2886 unsigned Count = 0;
2887 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
2888 switch (CC) {
2889 case X86::COND_NP_OR_E:
2890 // Synthesize NP_OR_E with two branches.
Stuart Hastings0125b642010-06-17 22:43:56 +00002891 BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
Bill Wendling543ce1f2010-03-05 00:33:59 +00002892 ++Count;
Stuart Hastings0125b642010-06-17 22:43:56 +00002893 BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
Bill Wendling543ce1f2010-03-05 00:33:59 +00002894 ++Count;
Dan Gohman97d95d62008-10-21 03:29:32 +00002895 break;
2896 case X86::COND_NE_OR_P:
2897 // Synthesize NE_OR_P with two branches.
Stuart Hastings0125b642010-06-17 22:43:56 +00002898 BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
Bill Wendling543ce1f2010-03-05 00:33:59 +00002899 ++Count;
Stuart Hastings0125b642010-06-17 22:43:56 +00002900 BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
Bill Wendling543ce1f2010-03-05 00:33:59 +00002901 ++Count;
Dan Gohman97d95d62008-10-21 03:29:32 +00002902 break;
Bill Wendling543ce1f2010-03-05 00:33:59 +00002903 default: {
2904 unsigned Opc = GetCondBranchFromCond(CC);
Stuart Hastings0125b642010-06-17 22:43:56 +00002905 BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
Bill Wendling543ce1f2010-03-05 00:33:59 +00002906 ++Count;
Dan Gohman97d95d62008-10-21 03:29:32 +00002907 }
Bill Wendling543ce1f2010-03-05 00:33:59 +00002908 }
Dan Gohman97d95d62008-10-21 03:29:32 +00002909 if (FBB) {
2910 // Two-way Conditional branch. Insert the second branch.
Stuart Hastings0125b642010-06-17 22:43:56 +00002911 BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
Dan Gohman97d95d62008-10-21 03:29:32 +00002912 ++Count;
2913 }
2914 return Count;
Chris Lattnerc0fb5672006-10-20 17:42:20 +00002915}
2916
Jakob Stoklund Olesen49e4d4b2012-07-04 00:09:58 +00002917bool X86InstrInfo::
2918canInsertSelect(const MachineBasicBlock &MBB,
2919 const SmallVectorImpl<MachineOperand> &Cond,
2920 unsigned TrueReg, unsigned FalseReg,
2921 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
2922 // Not all subtargets have cmov instructions.
2923 if (!TM.getSubtarget<X86Subtarget>().hasCMov())
2924 return false;
2925 if (Cond.size() != 1)
2926 return false;
2927 // We cannot do the composite conditions, at least not in SSA form.
2928 if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
2929 return false;
2930
2931 // Check register classes.
2932 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2933 const TargetRegisterClass *RC =
2934 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
2935 if (!RC)
2936 return false;
2937
2938 // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
2939 if (X86::GR16RegClass.hasSubClassEq(RC) ||
2940 X86::GR32RegClass.hasSubClassEq(RC) ||
2941 X86::GR64RegClass.hasSubClassEq(RC)) {
2942 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
2943 // Bridge. Probably Ivy Bridge as well.
2944 CondCycles = 2;
2945 TrueCycles = 2;
2946 FalseCycles = 2;
2947 return true;
2948 }
2949
2950 // Can't do vectors.
2951 return false;
2952}
2953
2954void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
2955 MachineBasicBlock::iterator I, DebugLoc DL,
2956 unsigned DstReg,
2957 const SmallVectorImpl<MachineOperand> &Cond,
2958 unsigned TrueReg, unsigned FalseReg) const {
2959 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2960 assert(Cond.size() == 1 && "Invalid Cond array");
2961 unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
Manman Ren5f6fa422012-07-09 18:57:12 +00002962 MRI.getRegClass(DstReg)->getSize(),
2963 false/*HasMemoryOperand*/);
Jakob Stoklund Olesen49e4d4b2012-07-04 00:09:58 +00002964 BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
2965}
2966
Dan Gohman7913ea52009-04-15 00:04:23 +00002967/// isHReg - Test if the given register is a physical h register.
2968static bool isHReg(unsigned Reg) {
Dan Gohman29869722009-04-27 16:41:36 +00002969 return X86::GR8_ABCD_HRegClass.contains(Reg);
Dan Gohman7913ea52009-04-15 00:04:23 +00002970}
2971
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00002972// Try and copy between VR128/VR64 and GR64 registers.
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00002973static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00002974 const X86Subtarget& Subtarget) {
2975
2976
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00002977 // SrcReg(VR128) -> DestReg(GR64)
2978 // SrcReg(VR64) -> DestReg(GR64)
2979 // SrcReg(GR64) -> DestReg(VR128)
2980 // SrcReg(GR64) -> DestReg(VR64)
2981
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00002982 bool HasAVX = Subtarget.hasAVX();
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00002983 bool HasAVX512 = Subtarget.hasAVX512();
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00002984 if (X86::GR64RegClass.contains(DestReg)) {
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00002985 if (X86::VR128XRegClass.contains(SrcReg))
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00002986 // Copy from a VR128 register to a GR64 register.
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00002987 return HasAVX512 ? X86::VMOVPQIto64Zrr: (HasAVX ? X86::VMOVPQIto64rr :
2988 X86::MOVPQIto64rr);
Craig Topperbab0c762012-08-21 08:29:51 +00002989 if (X86::VR64RegClass.contains(SrcReg))
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00002990 // Copy from a VR64 register to a GR64 register.
2991 return X86::MOVSDto64rr;
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00002992 } else if (X86::GR64RegClass.contains(SrcReg)) {
2993 // Copy from a GR64 register to a VR128 register.
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00002994 if (X86::VR128XRegClass.contains(DestReg))
2995 return HasAVX512 ? X86::VMOV64toPQIZrr: (HasAVX ? X86::VMOV64toPQIrr :
2996 X86::MOV64toPQIrr);
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00002997 // Copy from a GR64 register to a VR64 register.
Craig Topperbab0c762012-08-21 08:29:51 +00002998 if (X86::VR64RegClass.contains(DestReg))
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00002999 return X86::MOV64toSDrr;
3000 }
3001
Jakob Stoklund Olesenf05864a2011-09-22 22:45:24 +00003002 // SrcReg(FR32) -> DestReg(GR32)
3003 // SrcReg(GR32) -> DestReg(FR32)
3004
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003005 if (X86::GR32RegClass.contains(DestReg) && X86::FR32XRegClass.contains(SrcReg))
Craig Topperbab0c762012-08-21 08:29:51 +00003006 // Copy from a FR32 register to a GR32 register.
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003007 return HasAVX512 ? X86::VMOVSS2DIZrr : (HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr);
Jakob Stoklund Olesenf05864a2011-09-22 22:45:24 +00003008
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003009 if (X86::FR32XRegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
Craig Topperbab0c762012-08-21 08:29:51 +00003010 // Copy from a GR32 register to a FR32 register.
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003011 return HasAVX512 ? X86::VMOVDI2SSZrr : (HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr);
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00003012 return 0;
3013}
3014
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00003015static
3016unsigned copyPhysRegOpcode_AVX512(unsigned& DestReg, unsigned& SrcReg) {
3017 if (X86::VR128XRegClass.contains(DestReg, SrcReg) ||
3018 X86::VR256XRegClass.contains(DestReg, SrcReg) ||
3019 X86::VR512RegClass.contains(DestReg, SrcReg)) {
3020 DestReg = get512BitSuperRegister(DestReg);
3021 SrcReg = get512BitSuperRegister(SrcReg);
3022 return X86::VMOVAPSZrr;
3023 }
3024 if ((X86::VK8RegClass.contains(DestReg) ||
3025 X86::VK16RegClass.contains(DestReg)) &&
3026 (X86::VK8RegClass.contains(SrcReg) ||
3027 X86::VK16RegClass.contains(SrcReg)))
3028 return X86::KMOVWkk;
3029 return 0;
3030}
3031
Jakob Stoklund Olesen930f8082010-07-08 19:46:25 +00003032void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
3033 MachineBasicBlock::iterator MI, DebugLoc DL,
3034 unsigned DestReg, unsigned SrcReg,
3035 bool KillSrc) const {
3036 // First deal with the normal symmetric copies.
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00003037 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00003038 bool HasAVX512 = TM.getSubtarget<X86Subtarget>().hasAVX512();
3039 unsigned Opc = 0;
Jakob Stoklund Olesen930f8082010-07-08 19:46:25 +00003040 if (X86::GR64RegClass.contains(DestReg, SrcReg))
3041 Opc = X86::MOV64rr;
3042 else if (X86::GR32RegClass.contains(DestReg, SrcReg))
3043 Opc = X86::MOV32rr;
3044 else if (X86::GR16RegClass.contains(DestReg, SrcReg))
3045 Opc = X86::MOV16rr;
3046 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
3047 // Copying to or from a physical H register on x86-64 requires a NOREX
3048 // move. Otherwise use a normal move.
3049 if ((isHReg(DestReg) || isHReg(SrcReg)) &&
Jakob Stoklund Olesen464fcc02011-10-07 20:15:54 +00003050 TM.getSubtarget<X86Subtarget>().is64Bit()) {
Jakob Stoklund Olesen930f8082010-07-08 19:46:25 +00003051 Opc = X86::MOV8rr_NOREX;
Jakob Stoklund Olesen464fcc02011-10-07 20:15:54 +00003052 // Both operands must be encodable without an REX prefix.
3053 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
3054 "8-bit H register can not be copied outside GR8_NOREX");
3055 } else
Jakob Stoklund Olesen930f8082010-07-08 19:46:25 +00003056 Opc = X86::MOV8rr;
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00003057 }
3058 else if (X86::VR64RegClass.contains(DestReg, SrcReg))
3059 Opc = X86::MMX_MOVQ64rr;
3060 else if (HasAVX512)
3061 Opc = copyPhysRegOpcode_AVX512(DestReg, SrcReg);
3062 else if (X86::VR128RegClass.contains(DestReg, SrcReg))
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00003063 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00003064 else if (X86::VR256RegClass.contains(DestReg, SrcReg))
3065 Opc = X86::VMOVAPSYrr;
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00003066 if (!Opc)
3067 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, TM.getSubtarget<X86Subtarget>());
Jakob Stoklund Olesen930f8082010-07-08 19:46:25 +00003068
3069 if (Opc) {
3070 BuildMI(MBB, MI, DL, get(Opc), DestReg)
3071 .addReg(SrcReg, getKillRegState(KillSrc));
3072 return;
3073 }
3074
3075 // Moving EFLAGS to / from another register requires a push and a pop.
Nadav Rotemd5aae982012-12-21 23:48:49 +00003076 // Notice that we have to adjust the stack if we don't want to clobber the
3077 // first frame index. See X86FrameLowering.cpp - colobbersTheStack.
Jakob Stoklund Olesen930f8082010-07-08 19:46:25 +00003078 if (SrcReg == X86::EFLAGS) {
3079 if (X86::GR64RegClass.contains(DestReg)) {
3080 BuildMI(MBB, MI, DL, get(X86::PUSHF64));
3081 BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
3082 return;
Craig Topperbab0c762012-08-21 08:29:51 +00003083 }
3084 if (X86::GR32RegClass.contains(DestReg)) {
Jakob Stoklund Olesen930f8082010-07-08 19:46:25 +00003085 BuildMI(MBB, MI, DL, get(X86::PUSHF32));
3086 BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
3087 return;
3088 }
3089 }
3090 if (DestReg == X86::EFLAGS) {
3091 if (X86::GR64RegClass.contains(SrcReg)) {
3092 BuildMI(MBB, MI, DL, get(X86::PUSH64r))
3093 .addReg(SrcReg, getKillRegState(KillSrc));
3094 BuildMI(MBB, MI, DL, get(X86::POPF64));
3095 return;
Craig Topperbab0c762012-08-21 08:29:51 +00003096 }
3097 if (X86::GR32RegClass.contains(SrcReg)) {
Jakob Stoklund Olesen930f8082010-07-08 19:46:25 +00003098 BuildMI(MBB, MI, DL, get(X86::PUSH32r))
3099 .addReg(SrcReg, getKillRegState(KillSrc));
3100 BuildMI(MBB, MI, DL, get(X86::POPF32));
3101 return;
3102 }
3103 }
3104
3105 DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
3106 << " to " << RI.getName(DestReg) << '\n');
3107 llvm_unreachable("Cannot emit physreg copy instruction");
3108}
3109
Rafael Espindolae302f832010-06-12 20:13:29 +00003110static unsigned getLoadStoreRegOpcode(unsigned Reg,
3111 const TargetRegisterClass *RC,
3112 bool isStackAligned,
3113 const TargetMachine &TM,
3114 bool load) {
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003115 if (TM.getSubtarget<X86Subtarget>().hasAVX512()) {
Andrew Trick8460a3b2013-10-14 22:18:56 +00003116 if (X86::VK8RegClass.hasSubClassEq(RC) ||
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003117 X86::VK16RegClass.hasSubClassEq(RC))
3118 return load ? X86::KMOVWkm : X86::KMOVWmk;
Elena Demikhovsky34586e72013-10-02 12:20:42 +00003119 if (RC->getSize() == 4 && X86::FR32XRegClass.hasSubClassEq(RC))
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003120 return load ? X86::VMOVSSZrm : X86::VMOVSSZmr;
Elena Demikhovsky34586e72013-10-02 12:20:42 +00003121 if (RC->getSize() == 8 && X86::FR64XRegClass.hasSubClassEq(RC))
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003122 return load ? X86::VMOVSDZrm : X86::VMOVSDZmr;
Elena Demikhovsky34586e72013-10-02 12:20:42 +00003123 if (X86::VR512RegClass.hasSubClassEq(RC))
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003124 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3125 }
3126
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00003127 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
Jakob Stoklund Olesen56ce3a02011-06-01 15:32:10 +00003128 switch (RC->getSize()) {
Rafael Espindola6635f982010-07-12 03:43:04 +00003129 default:
Jakob Stoklund Olesen56ce3a02011-06-01 15:32:10 +00003130 llvm_unreachable("Unknown spill size");
3131 case 1:
3132 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
Rafael Espindolae302f832010-06-12 20:13:29 +00003133 if (TM.getSubtarget<X86Subtarget>().is64Bit())
Jakob Stoklund Olesen56ce3a02011-06-01 15:32:10 +00003134 // Copying to or from a physical H register on x86-64 requires a NOREX
3135 // move. Otherwise use a normal move.
3136 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
3137 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
3138 return load ? X86::MOV8rm : X86::MOV8mr;
3139 case 2:
3140 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
3141 return load ? X86::MOV16rm : X86::MOV16mr;
3142 case 4:
3143 if (X86::GR32RegClass.hasSubClassEq(RC))
3144 return load ? X86::MOV32rm : X86::MOV32mr;
3145 if (X86::FR32RegClass.hasSubClassEq(RC))
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00003146 return load ?
3147 (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
3148 (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
Jakob Stoklund Olesen56ce3a02011-06-01 15:32:10 +00003149 if (X86::RFP32RegClass.hasSubClassEq(RC))
3150 return load ? X86::LD_Fp32m : X86::ST_Fp32m;
3151 llvm_unreachable("Unknown 4-byte regclass");
3152 case 8:
3153 if (X86::GR64RegClass.hasSubClassEq(RC))
3154 return load ? X86::MOV64rm : X86::MOV64mr;
3155 if (X86::FR64RegClass.hasSubClassEq(RC))
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00003156 return load ?
3157 (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
3158 (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
Jakob Stoklund Olesen56ce3a02011-06-01 15:32:10 +00003159 if (X86::VR64RegClass.hasSubClassEq(RC))
3160 return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
3161 if (X86::RFP64RegClass.hasSubClassEq(RC))
3162 return load ? X86::LD_Fp64m : X86::ST_Fp64m;
3163 llvm_unreachable("Unknown 8-byte regclass");
3164 case 10:
3165 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
Rafael Espindolae302f832010-06-12 20:13:29 +00003166 return load ? X86::LD_Fp80m : X86::ST_FpP80m;
Bruno Cardoso Lopesdb520db2011-08-31 03:04:09 +00003167 case 16: {
Jakob Stoklund Olesen56ce3a02011-06-01 15:32:10 +00003168 assert(X86::VR128RegClass.hasSubClassEq(RC) && "Unknown 16-byte regclass");
Rafael Espindolae302f832010-06-12 20:13:29 +00003169 // If stack is realigned we can use aligned stores.
3170 if (isStackAligned)
Bruno Cardoso Lopesdb520db2011-08-31 03:04:09 +00003171 return load ?
3172 (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
3173 (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
Rafael Espindolae302f832010-06-12 20:13:29 +00003174 else
Bruno Cardoso Lopesdb520db2011-08-31 03:04:09 +00003175 return load ?
3176 (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
3177 (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
3178 }
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00003179 case 32:
3180 assert(X86::VR256RegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
3181 // If stack is realigned we can use aligned stores.
3182 if (isStackAligned)
3183 return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
3184 else
3185 return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003186 case 64:
3187 assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
3188 if (isStackAligned)
3189 return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3190 else
3191 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
Rafael Espindolae302f832010-06-12 20:13:29 +00003192 }
3193}
3194
Dan Gohman29869722009-04-27 16:41:36 +00003195static unsigned getStoreRegOpcode(unsigned SrcReg,
3196 const TargetRegisterClass *RC,
3197 bool isStackAligned,
3198 TargetMachine &TM) {
Rafael Espindolae302f832010-06-12 20:13:29 +00003199 return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
3200}
Owen Andersoneee14602008-01-01 21:11:32 +00003201
Rafael Espindolae302f832010-06-12 20:13:29 +00003202
3203static unsigned getLoadRegOpcode(unsigned DestReg,
3204 const TargetRegisterClass *RC,
3205 bool isStackAligned,
3206 const TargetMachine &TM) {
3207 return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
Owen Andersoneee14602008-01-01 21:11:32 +00003208}
3209
3210void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3211 MachineBasicBlock::iterator MI,
3212 unsigned SrcReg, bool isKill, int FrameIdx,
Evan Chengefb126a2010-05-06 19:06:44 +00003213 const TargetRegisterClass *RC,
3214 const TargetRegisterInfo *TRI) const {
Anton Korobeynikovb7a49922008-07-19 06:30:51 +00003215 const MachineFunction &MF = *MBB.getParent();
Jakob Stoklund Olesenc3c05ed2010-07-27 04:16:58 +00003216 assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
3217 "Stack slot too small for store");
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003218 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00003219 bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
Evan Chengee9b90a2011-06-23 01:53:43 +00003220 RI.canRealignStack(MF);
Dan Gohman29869722009-04-27 16:41:36 +00003221 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
Dale Johannesene5a41342010-01-26 00:03:12 +00003222 DebugLoc DL = MBB.findDebugLoc(MI);
Bill Wendling27b508d2009-02-11 21:51:19 +00003223 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
Bill Wendlingf7b83c72009-05-13 21:33:08 +00003224 .addReg(SrcReg, getKillRegState(isKill));
Owen Andersoneee14602008-01-01 21:11:32 +00003225}
3226
3227void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
3228 bool isKill,
3229 SmallVectorImpl<MachineOperand> &Addr,
3230 const TargetRegisterClass *RC,
Dan Gohmandd76bb22009-10-09 18:10:05 +00003231 MachineInstr::mmo_iterator MMOBegin,
3232 MachineInstr::mmo_iterator MMOEnd,
Owen Andersoneee14602008-01-01 21:11:32 +00003233 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003234 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00003235 bool isAligned = MMOBegin != MMOEnd &&
3236 (*MMOBegin)->getAlignment() >= Alignment;
Dan Gohman29869722009-04-27 16:41:36 +00003237 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
Chris Lattner6f306d72010-04-02 20:16:16 +00003238 DebugLoc DL;
Dale Johannesen6b8c76a2009-02-12 23:08:38 +00003239 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
Owen Andersoneee14602008-01-01 21:11:32 +00003240 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohman2af1f852009-02-18 05:45:50 +00003241 MIB.addOperand(Addr[i]);
Bill Wendlingf7b83c72009-05-13 21:33:08 +00003242 MIB.addReg(SrcReg, getKillRegState(isKill));
Dan Gohmandd76bb22009-10-09 18:10:05 +00003243 (*MIB).setMemRefs(MMOBegin, MMOEnd);
Owen Andersoneee14602008-01-01 21:11:32 +00003244 NewMIs.push_back(MIB);
3245}
3246
Owen Andersoneee14602008-01-01 21:11:32 +00003247
3248void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikovb7a49922008-07-19 06:30:51 +00003249 MachineBasicBlock::iterator MI,
3250 unsigned DestReg, int FrameIdx,
Evan Chengefb126a2010-05-06 19:06:44 +00003251 const TargetRegisterClass *RC,
3252 const TargetRegisterInfo *TRI) const {
Anton Korobeynikovb7a49922008-07-19 06:30:51 +00003253 const MachineFunction &MF = *MBB.getParent();
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003254 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00003255 bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
Evan Chengee9b90a2011-06-23 01:53:43 +00003256 RI.canRealignStack(MF);
Dan Gohman29869722009-04-27 16:41:36 +00003257 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
Dale Johannesene5a41342010-01-26 00:03:12 +00003258 DebugLoc DL = MBB.findDebugLoc(MI);
Bill Wendling27b508d2009-02-11 21:51:19 +00003259 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
Owen Andersoneee14602008-01-01 21:11:32 +00003260}
3261
3262void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Cheng7d98a482008-07-03 09:09:37 +00003263 SmallVectorImpl<MachineOperand> &Addr,
3264 const TargetRegisterClass *RC,
Dan Gohmandd76bb22009-10-09 18:10:05 +00003265 MachineInstr::mmo_iterator MMOBegin,
3266 MachineInstr::mmo_iterator MMOEnd,
Owen Andersoneee14602008-01-01 21:11:32 +00003267 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003268 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00003269 bool isAligned = MMOBegin != MMOEnd &&
3270 (*MMOBegin)->getAlignment() >= Alignment;
Dan Gohman29869722009-04-27 16:41:36 +00003271 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
Chris Lattner6f306d72010-04-02 20:16:16 +00003272 DebugLoc DL;
Dale Johannesen6b8c76a2009-02-12 23:08:38 +00003273 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
Owen Andersoneee14602008-01-01 21:11:32 +00003274 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohman2af1f852009-02-18 05:45:50 +00003275 MIB.addOperand(Addr[i]);
Dan Gohmandd76bb22009-10-09 18:10:05 +00003276 (*MIB).setMemRefs(MMOBegin, MMOEnd);
Owen Andersoneee14602008-01-01 21:11:32 +00003277 NewMIs.push_back(MIB);
3278}
3279
Manman Renc9656732012-07-06 17:36:20 +00003280bool X86InstrInfo::
3281analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
3282 int &CmpMask, int &CmpValue) const {
3283 switch (MI->getOpcode()) {
3284 default: break;
3285 case X86::CMP64ri32:
3286 case X86::CMP64ri8:
3287 case X86::CMP32ri:
3288 case X86::CMP32ri8:
3289 case X86::CMP16ri:
3290 case X86::CMP16ri8:
3291 case X86::CMP8ri:
3292 SrcReg = MI->getOperand(0).getReg();
3293 SrcReg2 = 0;
3294 CmpMask = ~0;
3295 CmpValue = MI->getOperand(1).getImm();
3296 return true;
Manman Ren1be131b2012-08-08 00:51:41 +00003297 // A SUB can be used to perform comparison.
3298 case X86::SUB64rm:
3299 case X86::SUB32rm:
3300 case X86::SUB16rm:
3301 case X86::SUB8rm:
3302 SrcReg = MI->getOperand(1).getReg();
3303 SrcReg2 = 0;
3304 CmpMask = ~0;
3305 CmpValue = 0;
3306 return true;
3307 case X86::SUB64rr:
3308 case X86::SUB32rr:
3309 case X86::SUB16rr:
3310 case X86::SUB8rr:
3311 SrcReg = MI->getOperand(1).getReg();
3312 SrcReg2 = MI->getOperand(2).getReg();
3313 CmpMask = ~0;
3314 CmpValue = 0;
3315 return true;
3316 case X86::SUB64ri32:
3317 case X86::SUB64ri8:
3318 case X86::SUB32ri:
3319 case X86::SUB32ri8:
3320 case X86::SUB16ri:
3321 case X86::SUB16ri8:
3322 case X86::SUB8ri:
3323 SrcReg = MI->getOperand(1).getReg();
3324 SrcReg2 = 0;
3325 CmpMask = ~0;
3326 CmpValue = MI->getOperand(2).getImm();
3327 return true;
Manman Renc9656732012-07-06 17:36:20 +00003328 case X86::CMP64rr:
3329 case X86::CMP32rr:
3330 case X86::CMP16rr:
3331 case X86::CMP8rr:
3332 SrcReg = MI->getOperand(0).getReg();
3333 SrcReg2 = MI->getOperand(1).getReg();
3334 CmpMask = ~0;
3335 CmpValue = 0;
3336 return true;
Manman Rend0a4ee82012-07-18 21:40:01 +00003337 case X86::TEST8rr:
3338 case X86::TEST16rr:
3339 case X86::TEST32rr:
3340 case X86::TEST64rr:
3341 SrcReg = MI->getOperand(0).getReg();
3342 if (MI->getOperand(1).getReg() != SrcReg) return false;
3343 // Compare against zero.
3344 SrcReg2 = 0;
3345 CmpMask = ~0;
3346 CmpValue = 0;
3347 return true;
Manman Renc9656732012-07-06 17:36:20 +00003348 }
3349 return false;
3350}
3351
Manman Renc9656732012-07-06 17:36:20 +00003352/// isRedundantFlagInstr - check whether the first instruction, whose only
3353/// purpose is to update flags, can be made redundant.
3354/// CMPrr can be made redundant by SUBrr if the operands are the same.
3355/// This function can be extended later on.
3356/// SrcReg, SrcRegs: register operands for FlagI.
3357/// ImmValue: immediate for FlagI if it takes an immediate.
3358inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg,
3359 unsigned SrcReg2, int ImmValue,
3360 MachineInstr *OI) {
3361 if (((FlagI->getOpcode() == X86::CMP64rr &&
3362 OI->getOpcode() == X86::SUB64rr) ||
3363 (FlagI->getOpcode() == X86::CMP32rr &&
3364 OI->getOpcode() == X86::SUB32rr)||
3365 (FlagI->getOpcode() == X86::CMP16rr &&
3366 OI->getOpcode() == X86::SUB16rr)||
3367 (FlagI->getOpcode() == X86::CMP8rr &&
3368 OI->getOpcode() == X86::SUB8rr)) &&
3369 ((OI->getOperand(1).getReg() == SrcReg &&
3370 OI->getOperand(2).getReg() == SrcReg2) ||
3371 (OI->getOperand(1).getReg() == SrcReg2 &&
3372 OI->getOperand(2).getReg() == SrcReg)))
3373 return true;
3374
3375 if (((FlagI->getOpcode() == X86::CMP64ri32 &&
3376 OI->getOpcode() == X86::SUB64ri32) ||
3377 (FlagI->getOpcode() == X86::CMP64ri8 &&
3378 OI->getOpcode() == X86::SUB64ri8) ||
3379 (FlagI->getOpcode() == X86::CMP32ri &&
3380 OI->getOpcode() == X86::SUB32ri) ||
3381 (FlagI->getOpcode() == X86::CMP32ri8 &&
3382 OI->getOpcode() == X86::SUB32ri8) ||
3383 (FlagI->getOpcode() == X86::CMP16ri &&
3384 OI->getOpcode() == X86::SUB16ri) ||
3385 (FlagI->getOpcode() == X86::CMP16ri8 &&
3386 OI->getOpcode() == X86::SUB16ri8) ||
3387 (FlagI->getOpcode() == X86::CMP8ri &&
3388 OI->getOpcode() == X86::SUB8ri)) &&
3389 OI->getOperand(1).getReg() == SrcReg &&
3390 OI->getOperand(2).getImm() == ImmValue)
3391 return true;
3392 return false;
3393}
3394
Manman Rend0a4ee82012-07-18 21:40:01 +00003395/// isDefConvertible - check whether the definition can be converted
3396/// to remove a comparison against zero.
3397inline static bool isDefConvertible(MachineInstr *MI) {
3398 switch (MI->getOpcode()) {
3399 default: return false;
David Majnemer7ea2a522013-05-22 08:13:02 +00003400
3401 // The shift instructions only modify ZF if their shift count is non-zero.
3402 // N.B.: The processor truncates the shift count depending on the encoding.
3403 case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri:
3404 case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri:
3405 return getTruncatedShiftCount(MI, 2) != 0;
3406
3407 // Some left shift instructions can be turned into LEA instructions but only
3408 // if their flags aren't used. Avoid transforming such instructions.
3409 case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{
3410 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
3411 if (isTruncatedShiftCountForLEA(ShAmt)) return false;
3412 return ShAmt != 0;
3413 }
3414
3415 case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
3416 case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
3417 return getTruncatedShiftCount(MI, 3) != 0;
3418
Manman Rend0a4ee82012-07-18 21:40:01 +00003419 case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
3420 case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8:
3421 case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr:
3422 case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm:
3423 case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm:
Craig Topper5b08cf72012-12-17 04:55:07 +00003424 case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r:
Jan Wen Voung4ce1d7b2012-09-17 22:04:23 +00003425 case X86::DEC64_32r: case X86::DEC64_16r:
Manman Rend0a4ee82012-07-18 21:40:01 +00003426 case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
3427 case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8:
3428 case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr:
3429 case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm:
3430 case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm:
Craig Topper5b08cf72012-12-17 04:55:07 +00003431 case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r:
Jan Wen Voung4ce1d7b2012-09-17 22:04:23 +00003432 case X86::INC64_32r: case X86::INC64_16r:
Manman Rend0a4ee82012-07-18 21:40:01 +00003433 case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
3434 case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8:
3435 case X86::AND8ri: case X86::AND64rr: case X86::AND32rr:
3436 case X86::AND16rr: case X86::AND8rr: case X86::AND64rm:
3437 case X86::AND32rm: case X86::AND16rm: case X86::AND8rm:
3438 case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
3439 case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8:
3440 case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr:
3441 case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm:
3442 case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm:
3443 case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri:
3444 case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8:
3445 case X86::OR8ri: case X86::OR64rr: case X86::OR32rr:
3446 case X86::OR16rr: case X86::OR8rr: case X86::OR64rm:
3447 case X86::OR32rm: case X86::OR16rm: case X86::OR8rm:
David Majnemer8f169742013-05-15 22:03:08 +00003448 case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
3449 case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1:
3450 case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1:
3451 case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1:
3452 case X86::ADC32ri: case X86::ADC32ri8:
3453 case X86::ADC32rr: case X86::ADC64ri32:
3454 case X86::ADC64ri8: case X86::ADC64rr:
3455 case X86::SBB32ri: case X86::SBB32ri8:
3456 case X86::SBB32rr: case X86::SBB64ri32:
3457 case X86::SBB64ri8: case X86::SBB64rr:
Craig Topperf3ff6ae2012-12-17 05:12:30 +00003458 case X86::ANDN32rr: case X86::ANDN32rm:
3459 case X86::ANDN64rr: case X86::ANDN64rm:
David Majnemer8f169742013-05-15 22:03:08 +00003460 case X86::BEXTR32rr: case X86::BEXTR64rr:
3461 case X86::BEXTR32rm: case X86::BEXTR64rm:
3462 case X86::BLSI32rr: case X86::BLSI32rm:
3463 case X86::BLSI64rr: case X86::BLSI64rm:
3464 case X86::BLSMSK32rr:case X86::BLSMSK32rm:
3465 case X86::BLSMSK64rr:case X86::BLSMSK64rm:
3466 case X86::BLSR32rr: case X86::BLSR32rm:
3467 case X86::BLSR64rr: case X86::BLSR64rm:
3468 case X86::BZHI32rr: case X86::BZHI32rm:
3469 case X86::BZHI64rr: case X86::BZHI64rm:
3470 case X86::LZCNT16rr: case X86::LZCNT16rm:
3471 case X86::LZCNT32rr: case X86::LZCNT32rm:
3472 case X86::LZCNT64rr: case X86::LZCNT64rm:
3473 case X86::POPCNT16rr:case X86::POPCNT16rm:
3474 case X86::POPCNT32rr:case X86::POPCNT32rm:
3475 case X86::POPCNT64rr:case X86::POPCNT64rm:
3476 case X86::TZCNT16rr: case X86::TZCNT16rm:
3477 case X86::TZCNT32rr: case X86::TZCNT32rm:
3478 case X86::TZCNT64rr: case X86::TZCNT64rm:
Manman Rend0a4ee82012-07-18 21:40:01 +00003479 return true;
3480 }
3481}
3482
Manman Renc9656732012-07-06 17:36:20 +00003483/// optimizeCompareInstr - Check if there exists an earlier instruction that
3484/// operates on the same source operands and sets flags in the same way as
3485/// Compare; remove Compare if possible.
3486bool X86InstrInfo::
3487optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
3488 int CmpMask, int CmpValue,
3489 const MachineRegisterInfo *MRI) const {
Manman Ren1be131b2012-08-08 00:51:41 +00003490 // Check whether we can replace SUB with CMP.
3491 unsigned NewOpcode = 0;
3492 switch (CmpInstr->getOpcode()) {
3493 default: break;
3494 case X86::SUB64ri32:
3495 case X86::SUB64ri8:
3496 case X86::SUB32ri:
3497 case X86::SUB32ri8:
3498 case X86::SUB16ri:
3499 case X86::SUB16ri8:
3500 case X86::SUB8ri:
3501 case X86::SUB64rm:
3502 case X86::SUB32rm:
3503 case X86::SUB16rm:
3504 case X86::SUB8rm:
3505 case X86::SUB64rr:
3506 case X86::SUB32rr:
3507 case X86::SUB16rr:
3508 case X86::SUB8rr: {
3509 if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
3510 return false;
3511 // There is no use of the destination register, we can replace SUB with CMP.
3512 switch (CmpInstr->getOpcode()) {
Craig Topper4bc3e5a2012-08-21 08:16:16 +00003513 default: llvm_unreachable("Unreachable!");
Manman Ren1be131b2012-08-08 00:51:41 +00003514 case X86::SUB64rm: NewOpcode = X86::CMP64rm; break;
3515 case X86::SUB32rm: NewOpcode = X86::CMP32rm; break;
3516 case X86::SUB16rm: NewOpcode = X86::CMP16rm; break;
3517 case X86::SUB8rm: NewOpcode = X86::CMP8rm; break;
3518 case X86::SUB64rr: NewOpcode = X86::CMP64rr; break;
3519 case X86::SUB32rr: NewOpcode = X86::CMP32rr; break;
3520 case X86::SUB16rr: NewOpcode = X86::CMP16rr; break;
3521 case X86::SUB8rr: NewOpcode = X86::CMP8rr; break;
3522 case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
3523 case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break;
3524 case X86::SUB32ri: NewOpcode = X86::CMP32ri; break;
3525 case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break;
3526 case X86::SUB16ri: NewOpcode = X86::CMP16ri; break;
3527 case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break;
3528 case X86::SUB8ri: NewOpcode = X86::CMP8ri; break;
3529 }
3530 CmpInstr->setDesc(get(NewOpcode));
3531 CmpInstr->RemoveOperand(0);
3532 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
3533 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
3534 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
3535 return false;
3536 }
3537 }
3538
Manman Renc9656732012-07-06 17:36:20 +00003539 // Get the unique definition of SrcReg.
3540 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3541 if (!MI) return false;
3542
3543 // CmpInstr is the first instruction of the BB.
3544 MachineBasicBlock::iterator I = CmpInstr, Def = MI;
3545
Manman Rend0a4ee82012-07-18 21:40:01 +00003546 // If we are comparing against zero, check whether we can use MI to update
3547 // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
3548 bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0);
3549 if (IsCmpZero && (MI->getParent() != CmpInstr->getParent() ||
3550 !isDefConvertible(MI)))
3551 return false;
3552
Manman Renc9656732012-07-06 17:36:20 +00003553 // We are searching for an earlier instruction that can make CmpInstr
3554 // redundant and that instruction will be saved in Sub.
3555 MachineInstr *Sub = NULL;
3556 const TargetRegisterInfo *TRI = &getRegisterInfo();
Manman Ren5f6fa422012-07-09 18:57:12 +00003557
Manman Renc9656732012-07-06 17:36:20 +00003558 // We iterate backward, starting from the instruction before CmpInstr and
3559 // stop when reaching the definition of a source register or done with the BB.
3560 // RI points to the instruction before CmpInstr.
3561 // If the definition is in this basic block, RE points to the definition;
3562 // otherwise, RE is the rend of the basic block.
3563 MachineBasicBlock::reverse_iterator
3564 RI = MachineBasicBlock::reverse_iterator(I),
3565 RE = CmpInstr->getParent() == MI->getParent() ?
3566 MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ :
3567 CmpInstr->getParent()->rend();
Manman Ren1553ce02012-07-11 19:35:12 +00003568 MachineInstr *Movr0Inst = 0;
Manman Renc9656732012-07-06 17:36:20 +00003569 for (; RI != RE; ++RI) {
3570 MachineInstr *Instr = &*RI;
3571 // Check whether CmpInstr can be made redundant by the current instruction.
Manman Rend0a4ee82012-07-18 21:40:01 +00003572 if (!IsCmpZero &&
3573 isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) {
Manman Renc9656732012-07-06 17:36:20 +00003574 Sub = Instr;
3575 break;
3576 }
3577
3578 if (Instr->modifiesRegister(X86::EFLAGS, TRI) ||
Manman Ren1553ce02012-07-11 19:35:12 +00003579 Instr->readsRegister(X86::EFLAGS, TRI)) {
Manman Renc9656732012-07-06 17:36:20 +00003580 // This instruction modifies or uses EFLAGS.
Manman Ren1553ce02012-07-11 19:35:12 +00003581
3582 // MOV32r0 etc. are implemented with xor which clobbers condition code.
3583 // They are safe to move up, if the definition to EFLAGS is dead and
3584 // earlier instructions do not read or write EFLAGS.
Tim Northover64ec0ff2013-05-30 13:19:42 +00003585 if (!Movr0Inst && Instr->getOpcode() == X86::MOV32r0 &&
Manman Ren1553ce02012-07-11 19:35:12 +00003586 Instr->registerDefIsDead(X86::EFLAGS, TRI)) {
3587 Movr0Inst = Instr;
3588 continue;
3589 }
3590
Manman Renc9656732012-07-06 17:36:20 +00003591 // We can't remove CmpInstr.
3592 return false;
Manman Ren1553ce02012-07-11 19:35:12 +00003593 }
Manman Renc9656732012-07-06 17:36:20 +00003594 }
3595
3596 // Return false if no candidates exist.
Manman Rend0a4ee82012-07-18 21:40:01 +00003597 if (!IsCmpZero && !Sub)
Manman Renc9656732012-07-06 17:36:20 +00003598 return false;
3599
Manman Renbb360742012-07-07 03:34:46 +00003600 bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
3601 Sub->getOperand(2).getReg() == SrcReg);
3602
Manman Renc9656732012-07-06 17:36:20 +00003603 // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
Manman Renbb360742012-07-07 03:34:46 +00003604 // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
3605 // If we are done with the basic block, we need to check whether EFLAGS is
3606 // live-out.
3607 bool IsSafe = false;
Manman Renc9656732012-07-06 17:36:20 +00003608 SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate;
3609 MachineBasicBlock::iterator E = CmpInstr->getParent()->end();
3610 for (++I; I != E; ++I) {
3611 const MachineInstr &Instr = *I;
Manman Ren32367c02012-07-28 03:15:46 +00003612 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
3613 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
3614 // We should check the usage if this instruction uses and updates EFLAGS.
3615 if (!UseEFLAGS && ModifyEFLAGS) {
Manman Renc9656732012-07-06 17:36:20 +00003616 // It is safe to remove CmpInstr if EFLAGS is updated again.
Manman Renbb360742012-07-07 03:34:46 +00003617 IsSafe = true;
Manman Renc9656732012-07-06 17:36:20 +00003618 break;
Manman Renbb360742012-07-07 03:34:46 +00003619 }
Manman Ren32367c02012-07-28 03:15:46 +00003620 if (!UseEFLAGS && !ModifyEFLAGS)
Manman Renc9656732012-07-06 17:36:20 +00003621 continue;
3622
3623 // EFLAGS is used by this instruction.
Manman Rend0a4ee82012-07-18 21:40:01 +00003624 X86::CondCode OldCC;
3625 bool OpcIsSET = false;
3626 if (IsCmpZero || IsSwapped) {
3627 // We decode the condition code from opcode.
Manman Ren5f6fa422012-07-09 18:57:12 +00003628 if (Instr.isBranch())
3629 OldCC = getCondFromBranchOpc(Instr.getOpcode());
3630 else {
3631 OldCC = getCondFromSETOpc(Instr.getOpcode());
3632 if (OldCC != X86::COND_INVALID)
3633 OpcIsSET = true;
3634 else
Michael Liao32376622012-09-20 03:06:15 +00003635 OldCC = X86::getCondFromCMovOpc(Instr.getOpcode());
Manman Ren5f6fa422012-07-09 18:57:12 +00003636 }
3637 if (OldCC == X86::COND_INVALID) return false;
Manman Rend0a4ee82012-07-18 21:40:01 +00003638 }
3639 if (IsCmpZero) {
3640 switch (OldCC) {
3641 default: break;
3642 case X86::COND_A: case X86::COND_AE:
3643 case X86::COND_B: case X86::COND_BE:
3644 case X86::COND_G: case X86::COND_GE:
3645 case X86::COND_L: case X86::COND_LE:
3646 case X86::COND_O: case X86::COND_NO:
3647 // CF and OF are used, we can't perform this optimization.
3648 return false;
3649 }
3650 } else if (IsSwapped) {
3651 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
3652 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3653 // We swap the condition code and synthesize the new opcode.
Manman Ren5f6fa422012-07-09 18:57:12 +00003654 X86::CondCode NewCC = getSwappedCondition(OldCC);
3655 if (NewCC == X86::COND_INVALID) return false;
3656
3657 // Synthesize the new opcode.
3658 bool HasMemoryOperand = Instr.hasOneMemOperand();
3659 unsigned NewOpc;
3660 if (Instr.isBranch())
3661 NewOpc = GetCondBranchFromCond(NewCC);
3662 else if(OpcIsSET)
3663 NewOpc = getSETFromCond(NewCC, HasMemoryOperand);
3664 else {
3665 unsigned DstReg = Instr.getOperand(0).getReg();
3666 NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(),
3667 HasMemoryOperand);
3668 }
Manman Renc9656732012-07-06 17:36:20 +00003669
3670 // Push the MachineInstr to OpsToUpdate.
3671 // If it is safe to remove CmpInstr, the condition code of these
3672 // instructions will be modified.
3673 OpsToUpdate.push_back(std::make_pair(&*I, NewOpc));
3674 }
Manman Ren32367c02012-07-28 03:15:46 +00003675 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
3676 // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
Manman Renbb360742012-07-07 03:34:46 +00003677 IsSafe = true;
3678 break;
3679 }
3680 }
3681
3682 // If EFLAGS is not killed nor re-defined, we should check whether it is
3683 // live-out. If it is live-out, do not optimize.
Manman Rend0a4ee82012-07-18 21:40:01 +00003684 if ((IsCmpZero || IsSwapped) && !IsSafe) {
Manman Renbb360742012-07-07 03:34:46 +00003685 MachineBasicBlock *MBB = CmpInstr->getParent();
3686 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
3687 SE = MBB->succ_end(); SI != SE; ++SI)
3688 if ((*SI)->isLiveIn(X86::EFLAGS))
3689 return false;
Manman Renc9656732012-07-06 17:36:20 +00003690 }
3691
Manman Rend0a4ee82012-07-18 21:40:01 +00003692 // The instruction to be updated is either Sub or MI.
3693 Sub = IsCmpZero ? MI : Sub;
David Majnemer5ba473a2013-05-18 01:02:03 +00003694 // Move Movr0Inst to the appropriate place before Sub.
Manman Ren1553ce02012-07-11 19:35:12 +00003695 if (Movr0Inst) {
David Majnemer5ba473a2013-05-18 01:02:03 +00003696 // Look backwards until we find a def that doesn't use the current EFLAGS.
3697 Def = Sub;
3698 MachineBasicBlock::reverse_iterator
3699 InsertI = MachineBasicBlock::reverse_iterator(++Def),
3700 InsertE = Sub->getParent()->rend();
3701 for (; InsertI != InsertE; ++InsertI) {
3702 MachineInstr *Instr = &*InsertI;
3703 if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
3704 Instr->modifiesRegister(X86::EFLAGS, TRI)) {
3705 Sub->getParent()->remove(Movr0Inst);
3706 Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
3707 Movr0Inst);
3708 break;
3709 }
3710 }
3711 if (InsertI == InsertE)
3712 return false;
Manman Ren1553ce02012-07-11 19:35:12 +00003713 }
3714
Jan Wen Voung4ce1d7b2012-09-17 22:04:23 +00003715 // Make sure Sub instruction defines EFLAGS and mark the def live.
David Majnemer8f169742013-05-15 22:03:08 +00003716 unsigned i = 0, e = Sub->getNumOperands();
3717 for (; i != e; ++i) {
3718 MachineOperand &MO = Sub->getOperand(i);
3719 if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
3720 MO.setIsDead(false);
3721 break;
3722 }
3723 }
3724 assert(i != e && "Unable to locate a def EFLAGS operand");
3725
Manman Renc9656732012-07-06 17:36:20 +00003726 CmpInstr->eraseFromParent();
3727
3728 // Modify the condition code of instructions in OpsToUpdate.
3729 for (unsigned i = 0, e = OpsToUpdate.size(); i < e; i++)
3730 OpsToUpdate[i].first->setDesc(get(OpsToUpdate[i].second));
3731 return true;
3732}
3733
Manman Ren5759d012012-08-02 00:56:42 +00003734/// optimizeLoadInstr - Try to remove the load by folding it to a register
3735/// operand at the use. We fold the load instructions if load defines a virtual
3736/// register, the virtual register is used once in the same BB, and the
3737/// instructions in-between do not load or store, and have no side effects.
3738MachineInstr* X86InstrInfo::
3739optimizeLoadInstr(MachineInstr *MI, const MachineRegisterInfo *MRI,
3740 unsigned &FoldAsLoadDefReg,
3741 MachineInstr *&DefMI) const {
3742 if (FoldAsLoadDefReg == 0)
3743 return 0;
3744 // To be conservative, if there exists another load, clear the load candidate.
3745 if (MI->mayLoad()) {
3746 FoldAsLoadDefReg = 0;
3747 return 0;
3748 }
3749
3750 // Check whether we can move DefMI here.
3751 DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
3752 assert(DefMI);
3753 bool SawStore = false;
3754 if (!DefMI->isSafeToMove(this, 0, SawStore))
3755 return 0;
3756
3757 // We try to commute MI if possible.
3758 unsigned IdxEnd = (MI->isCommutable()) ? 2 : 1;
3759 for (unsigned Idx = 0; Idx < IdxEnd; Idx++) {
3760 // Collect information about virtual register operands of MI.
3761 unsigned SrcOperandId = 0;
3762 bool FoundSrcOperand = false;
3763 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
3764 MachineOperand &MO = MI->getOperand(i);
3765 if (!MO.isReg())
3766 continue;
3767 unsigned Reg = MO.getReg();
3768 if (Reg != FoldAsLoadDefReg)
3769 continue;
3770 // Do not fold if we have a subreg use or a def or multiple uses.
3771 if (MO.getSubReg() || MO.isDef() || FoundSrcOperand)
3772 return 0;
3773
3774 SrcOperandId = i;
3775 FoundSrcOperand = true;
3776 }
3777 if (!FoundSrcOperand) return 0;
3778
3779 // Check whether we can fold the def into SrcOperandId.
3780 SmallVector<unsigned, 8> Ops;
3781 Ops.push_back(SrcOperandId);
3782 MachineInstr *FoldMI = foldMemoryOperand(MI, Ops, DefMI);
3783 if (FoldMI) {
3784 FoldAsLoadDefReg = 0;
3785 return FoldMI;
3786 }
3787
3788 if (Idx == 1) {
3789 // MI was changed but it didn't help, commute it back!
3790 commuteInstruction(MI, false);
3791 return 0;
3792 }
3793
3794 // Check whether we can commute MI and enable folding.
3795 if (MI->isCommutable()) {
3796 MachineInstr *NewMI = commuteInstruction(MI, false);
3797 // Unable to commute.
3798 if (!NewMI) return 0;
3799 if (NewMI != MI) {
3800 // New instruction. It doesn't need to be kept.
3801 NewMI->eraseFromParent();
3802 return 0;
3803 }
3804 }
3805 }
3806 return 0;
3807}
3808
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00003809/// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr
3810/// instruction with two undef reads of the register being defined. This is
3811/// used for mapping:
3812/// %xmm4 = V_SET0
3813/// to:
3814/// %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
3815///
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00003816static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
3817 const MCInstrDesc &Desc) {
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00003818 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00003819 unsigned Reg = MIB->getOperand(0).getReg();
3820 MIB->setDesc(Desc);
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00003821
3822 // MachineInstr::addOperand() will insert explicit operands before any
3823 // implicit operands.
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00003824 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00003825 // But we don't trust that.
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00003826 assert(MIB->getOperand(1).getReg() == Reg &&
3827 MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00003828 return true;
3829}
3830
3831bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
3832 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00003833 MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00003834 switch (MI->getOpcode()) {
Craig Topper93849022012-10-05 06:05:15 +00003835 case X86::SETB_C8r:
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00003836 return Expand2AddrUndef(MIB, get(X86::SBB8rr));
Craig Topper93849022012-10-05 06:05:15 +00003837 case X86::SETB_C16r:
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00003838 return Expand2AddrUndef(MIB, get(X86::SBB16rr));
Craig Topper93849022012-10-05 06:05:15 +00003839 case X86::SETB_C32r:
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00003840 return Expand2AddrUndef(MIB, get(X86::SBB32rr));
Craig Topper93849022012-10-05 06:05:15 +00003841 case X86::SETB_C64r:
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00003842 return Expand2AddrUndef(MIB, get(X86::SBB64rr));
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00003843 case X86::V_SET0:
Jakob Stoklund Olesenbde32d32011-11-29 22:27:25 +00003844 case X86::FsFLD0SS:
3845 case X86::FsFLD0SD:
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00003846 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
Craig Topperbd509ee2012-08-28 07:05:28 +00003847 case X86::AVX_SET0:
3848 assert(HasAVX && "AVX not supported");
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00003849 return Expand2AddrUndef(MIB, get(X86::VXORPSYrr));
Elena Demikhovskyf8f478b2013-08-25 12:54:30 +00003850 case X86::AVX512_512_SET0:
3851 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
Craig Topper72f51c32012-08-28 07:30:47 +00003852 case X86::V_SETALLONES:
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00003853 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
Craig Topper72f51c32012-08-28 07:30:47 +00003854 case X86::AVX2_SETALLONES:
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00003855 return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
Jakob Stoklund Olesen729abd32011-10-08 18:28:28 +00003856 case X86::TEST8ri_NOREX:
3857 MI->setDesc(get(X86::TEST8ri));
3858 return true;
Elena Demikhovskyf8f478b2013-08-25 12:54:30 +00003859 case X86::KSET0W: return Expand2AddrUndef(MIB, get(X86::KXORWrr));
3860 case X86::KSET1B:
3861 case X86::KSET1W: return Expand2AddrUndef(MIB, get(X86::KXNORWrr));
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00003862 }
3863 return false;
3864}
3865
Dan Gohman3b460302008-07-07 23:14:23 +00003866static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Dan Gohman906152a2009-01-05 17:59:02 +00003867 const SmallVectorImpl<MachineOperand> &MOs,
Bill Wendlinge3c78362009-02-03 00:55:04 +00003868 MachineInstr *MI,
3869 const TargetInstrInfo &TII) {
Owen Anderson2a3be7b2008-01-07 01:35:02 +00003870 // Create the base instruction with the memory operand as the first part.
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00003871 // Omit the implicit operands, something BuildMI can't do.
Bill Wendlinge3c78362009-02-03 00:55:04 +00003872 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
3873 MI->getDebugLoc(), true);
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00003874 MachineInstrBuilder MIB(MF, NewMI);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00003875 unsigned NumAddrOps = MOs.size();
3876 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohman2af1f852009-02-18 05:45:50 +00003877 MIB.addOperand(MOs[i]);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00003878 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindola3b2df102009-04-08 21:14:34 +00003879 addOffset(MIB, 0);
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00003880
Owen Anderson2a3be7b2008-01-07 01:35:02 +00003881 // Loop over the rest of the ri operands, converting them over.
Chris Lattner03ad8852008-01-07 07:27:27 +00003882 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00003883 for (unsigned i = 0; i != NumOps; ++i) {
3884 MachineOperand &MO = MI->getOperand(i+2);
Dan Gohman2af1f852009-02-18 05:45:50 +00003885 MIB.addOperand(MO);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00003886 }
3887 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
3888 MachineOperand &MO = MI->getOperand(i);
Dan Gohman2af1f852009-02-18 05:45:50 +00003889 MIB.addOperand(MO);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00003890 }
3891 return MIB;
3892}
3893
Dan Gohman3b460302008-07-07 23:14:23 +00003894static MachineInstr *FuseInst(MachineFunction &MF,
3895 unsigned Opcode, unsigned OpNo,
Dan Gohman906152a2009-01-05 17:59:02 +00003896 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson2a3be7b2008-01-07 01:35:02 +00003897 MachineInstr *MI, const TargetInstrInfo &TII) {
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00003898 // Omit the implicit operands, something BuildMI can't do.
Bill Wendlinge3c78362009-02-03 00:55:04 +00003899 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
3900 MI->getDebugLoc(), true);
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00003901 MachineInstrBuilder MIB(MF, NewMI);
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00003902
Owen Anderson2a3be7b2008-01-07 01:35:02 +00003903 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
3904 MachineOperand &MO = MI->getOperand(i);
3905 if (i == OpNo) {
Dan Gohman0d1e9a82008-10-03 15:45:36 +00003906 assert(MO.isReg() && "Expected to fold into reg operand!");
Owen Anderson2a3be7b2008-01-07 01:35:02 +00003907 unsigned NumAddrOps = MOs.size();
3908 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohman2af1f852009-02-18 05:45:50 +00003909 MIB.addOperand(MOs[i]);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00003910 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindola3b2df102009-04-08 21:14:34 +00003911 addOffset(MIB, 0);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00003912 } else {
Dan Gohman2af1f852009-02-18 05:45:50 +00003913 MIB.addOperand(MO);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00003914 }
3915 }
3916 return MIB;
3917}
3918
3919static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
Dan Gohman906152a2009-01-05 17:59:02 +00003920 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson2a3be7b2008-01-07 01:35:02 +00003921 MachineInstr *MI) {
Dan Gohman3b460302008-07-07 23:14:23 +00003922 MachineFunction &MF = *MI->getParent()->getParent();
Bill Wendling27b508d2009-02-11 21:51:19 +00003923 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
Owen Anderson2a3be7b2008-01-07 01:35:02 +00003924
3925 unsigned NumAddrOps = MOs.size();
3926 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohman2af1f852009-02-18 05:45:50 +00003927 MIB.addOperand(MOs[i]);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00003928 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindola3b2df102009-04-08 21:14:34 +00003929 addOffset(MIB, 0);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00003930 return MIB.addImm(0);
3931}
3932
3933MachineInstr*
Dan Gohman3f86b512008-12-03 18:43:12 +00003934X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
3935 MachineInstr *MI, unsigned i,
Evan Cheng9e0c7f22009-07-15 06:10:07 +00003936 const SmallVectorImpl<MachineOperand> &MOs,
Evan Cheng3cad6282009-09-11 00:39:26 +00003937 unsigned Size, unsigned Align) const {
Chris Lattner1c090c02010-10-07 23:08:41 +00003938 const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
Preston Gurdd6be4bf2013-03-27 23:16:18 +00003939 bool isCallRegIndirect = TM.getSubtarget<X86Subtarget>().callRegIndirect();
Owen Anderson2a3be7b2008-01-07 01:35:02 +00003940 bool isTwoAddrFold = false;
Preston Gurdd6be4bf2013-03-27 23:16:18 +00003941
3942 // Atom favors register form of call. So, we do not fold loads into calls
3943 // when X86Subtarget is Atom.
3944 if (isCallRegIndirect &&
3945 (MI->getOpcode() == X86::CALL32r || MI->getOpcode() == X86::CALL64r)) {
3946 return NULL;
3947 }
3948
Chris Lattner03ad8852008-01-07 07:27:27 +00003949 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson2a3be7b2008-01-07 01:35:02 +00003950 bool isTwoAddr = NumOps > 1 &&
Evan Cheng6cc775f2011-06-28 19:10:37 +00003951 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00003952
Jakob Stoklund Olesen2348cdd2011-04-30 23:00:05 +00003953 // FIXME: AsmPrinter doesn't know how to handle
3954 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
3955 if (MI->getOpcode() == X86::ADD32ri &&
3956 MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
3957 return NULL;
3958
Owen Anderson2a3be7b2008-01-07 01:35:02 +00003959 MachineInstr *NewMI = NULL;
3960 // Folding a memory location into the two-address part of a two-address
3961 // instruction is different than folding it other places. It requires
3962 // replacing the *two* registers with the memory location.
3963 if (isTwoAddr && NumOps >= 2 && i < 2 &&
Dan Gohman0d1e9a82008-10-03 15:45:36 +00003964 MI->getOperand(0).isReg() &&
3965 MI->getOperand(1).isReg() &&
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00003966 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
Owen Anderson2a3be7b2008-01-07 01:35:02 +00003967 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
3968 isTwoAddrFold = true;
3969 } else if (i == 0) { // If operand 0
Tim Northover64ec0ff2013-05-30 13:19:42 +00003970 if (MI->getOpcode() == X86::MOV32r0) {
3971 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
3972 if (NewMI)
3973 return NewMI;
Craig Topperf9115972012-08-23 04:57:36 +00003974 }
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00003975
Owen Anderson2a3be7b2008-01-07 01:35:02 +00003976 OpcodeTablePtr = &RegOp2MemOpTable0;
3977 } else if (i == 1) {
3978 OpcodeTablePtr = &RegOp2MemOpTable1;
3979 } else if (i == 2) {
3980 OpcodeTablePtr = &RegOp2MemOpTable2;
Elena Demikhovsky3cb3b002012-08-01 12:06:00 +00003981 } else if (i == 3) {
3982 OpcodeTablePtr = &RegOp2MemOpTable3;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00003983 }
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00003984
Owen Anderson2a3be7b2008-01-07 01:35:02 +00003985 // If table selected...
3986 if (OpcodeTablePtr) {
3987 // Find the Opcode to fuse
Chris Lattner1c090c02010-10-07 23:08:41 +00003988 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
3989 OpcodeTablePtr->find(MI->getOpcode());
Owen Anderson2a3be7b2008-01-07 01:35:02 +00003990 if (I != OpcodeTablePtr->end()) {
Evan Cheng3cad6282009-09-11 00:39:26 +00003991 unsigned Opcode = I->second.first;
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00003992 unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
Evan Cheng9e0c7f22009-07-15 06:10:07 +00003993 if (Align < MinAlign)
3994 return NULL;
Evan Cheng74a32312009-09-11 01:01:31 +00003995 bool NarrowToMOV32rm = false;
Evan Cheng3cad6282009-09-11 00:39:26 +00003996 if (Size) {
Jakob Stoklund Olesen3c52f022012-05-07 22:10:26 +00003997 unsigned RCSize = getRegClass(MI->getDesc(), i, &RI, MF)->getSize();
Evan Cheng3cad6282009-09-11 00:39:26 +00003998 if (Size < RCSize) {
3999 // Check if it's safe to fold the load. If the size of the object is
4000 // narrower than the load width, then it's not.
4001 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
4002 return NULL;
4003 // If this is a 64-bit load, but the spill slot is 32, then we can do
4004 // a 32-bit load which is implicitly zero-extended. This likely is due
4005 // to liveintervalanalysis remat'ing a load from stack slot.
Evan Cheng74a32312009-09-11 01:01:31 +00004006 if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
4007 return NULL;
Evan Cheng3cad6282009-09-11 00:39:26 +00004008 Opcode = X86::MOV32rm;
Evan Cheng74a32312009-09-11 01:01:31 +00004009 NarrowToMOV32rm = true;
Evan Cheng3cad6282009-09-11 00:39:26 +00004010 }
4011 }
4012
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004013 if (isTwoAddrFold)
Evan Cheng3cad6282009-09-11 00:39:26 +00004014 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004015 else
Evan Cheng3cad6282009-09-11 00:39:26 +00004016 NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
Evan Cheng74a32312009-09-11 01:01:31 +00004017
4018 if (NarrowToMOV32rm) {
4019 // If this is the special case where we use a MOV32rm to load a 32-bit
4020 // value and zero-extend the top bits. Change the destination register
4021 // to a 32-bit one.
4022 unsigned DstReg = NewMI->getOperand(0).getReg();
4023 if (TargetRegisterInfo::isPhysicalRegister(DstReg))
4024 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
Jakob Stoklund Olesen9340ea52010-05-24 14:48:17 +00004025 X86::sub_32bit));
Evan Cheng74a32312009-09-11 01:01:31 +00004026 else
Jakob Stoklund Olesen9340ea52010-05-24 14:48:17 +00004027 NewMI->getOperand(0).setSubReg(X86::sub_32bit);
Evan Cheng74a32312009-09-11 01:01:31 +00004028 }
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004029 return NewMI;
4030 }
4031 }
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00004032
4033 // No fusion
Jakob Stoklund Olesen51702ec2010-07-09 20:43:09 +00004034 if (PrintFailedFusing && !MI->isCopy())
David Greened589daf2010-01-05 01:29:29 +00004035 dbgs() << "We failed to fuse operand " << i << " in " << *MI;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004036 return NULL;
4037}
4038
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00004039/// hasPartialRegUpdate - Return true for all instructions that only update
4040/// the first 32 or 64-bits of the destination register and leave the rest
4041/// unmodified. This can be used to avoid folding loads if the instructions
4042/// only update part of the destination register, and the non-updated part is
4043/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
4044/// instructions breaks the partial register dependency and it can improve
4045/// performance. e.g.:
4046///
4047/// movss (%rdi), %xmm0
4048/// cvtss2sd %xmm0, %xmm0
4049///
4050/// Instead of
4051/// cvtss2sd (%rdi), %xmm0
4052///
Bruno Cardoso Lopes7b435682011-09-15 23:04:24 +00004053/// FIXME: This should be turned into a TSFlags.
4054///
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00004055static bool hasPartialRegUpdate(unsigned Opcode) {
4056 switch (Opcode) {
Jakob Stoklund Olesenf8ad3362011-11-15 01:15:30 +00004057 case X86::CVTSI2SSrr:
4058 case X86::CVTSI2SS64rr:
4059 case X86::CVTSI2SDrr:
4060 case X86::CVTSI2SD64rr:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00004061 case X86::CVTSD2SSrr:
4062 case X86::Int_CVTSD2SSrr:
4063 case X86::CVTSS2SDrr:
4064 case X86::Int_CVTSS2SDrr:
4065 case X86::RCPSSr:
4066 case X86::RCPSSr_Int:
4067 case X86::ROUNDSDr:
Benjamin Kramer2dc5dec2011-12-09 15:43:55 +00004068 case X86::ROUNDSDr_Int:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00004069 case X86::ROUNDSSr:
Benjamin Kramer2dc5dec2011-12-09 15:43:55 +00004070 case X86::ROUNDSSr_Int:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00004071 case X86::RSQRTSSr:
4072 case X86::RSQRTSSr_Int:
4073 case X86::SQRTSSr:
4074 case X86::SQRTSSr_Int:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00004075 return true;
4076 }
4077
4078 return false;
4079}
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004080
Jakob Stoklund Olesenf8ad3362011-11-15 01:15:30 +00004081/// getPartialRegUpdateClearance - Inform the ExeDepsFix pass how many idle
4082/// instructions we would like before a partial register update.
4083unsigned X86InstrInfo::
4084getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
4085 const TargetRegisterInfo *TRI) const {
4086 if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
4087 return 0;
4088
4089 // If MI is marked as reading Reg, the partial register update is wanted.
4090 const MachineOperand &MO = MI->getOperand(0);
4091 unsigned Reg = MO.getReg();
4092 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4093 if (MO.readsReg() || MI->readsVirtualRegister(Reg))
4094 return 0;
4095 } else {
4096 if (MI->readsRegister(Reg, TRI))
4097 return 0;
4098 }
4099
4100 // If any of the preceding 16 instructions are reading Reg, insert a
4101 // dependency breaking instruction. The magic number is based on a few
4102 // Nehalem experiments.
4103 return 16;
4104}
4105
Andrew Trickb6d56be2013-10-14 22:19:03 +00004106// Return true for any instruction the copies the high bits of the first source
4107// operand into the unused high bits of the destination operand.
4108static bool hasUndefRegUpdate(unsigned Opcode) {
4109 switch (Opcode) {
4110 case X86::VCVTSI2SSrr:
4111 case X86::Int_VCVTSI2SSrr:
4112 case X86::VCVTSI2SS64rr:
4113 case X86::Int_VCVTSI2SS64rr:
4114 case X86::VCVTSI2SDrr:
4115 case X86::Int_VCVTSI2SDrr:
4116 case X86::VCVTSI2SD64rr:
4117 case X86::Int_VCVTSI2SD64rr:
4118 case X86::VCVTSD2SSrr:
4119 case X86::Int_VCVTSD2SSrr:
4120 case X86::VCVTSS2SDrr:
4121 case X86::Int_VCVTSS2SDrr:
4122 case X86::VRCPSSr:
4123 case X86::VROUNDSDr:
4124 case X86::VROUNDSDr_Int:
4125 case X86::VROUNDSSr:
4126 case X86::VROUNDSSr_Int:
4127 case X86::VRSQRTSSr:
4128 case X86::VSQRTSSr:
4129
4130 // AVX-512
4131 case X86::VCVTSD2SSZrr:
4132 case X86::VCVTSS2SDZrr:
4133 return true;
4134 }
4135
4136 return false;
4137}
4138
4139/// Inform the ExeDepsFix pass how many idle instructions we would like before
4140/// certain undef register reads.
4141///
4142/// This catches the VCVTSI2SD family of instructions:
4143///
4144/// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
4145///
4146/// We should to be careful *not* to catch VXOR idioms which are presumably
4147/// handled specially in the pipeline:
4148///
4149/// vxorps %xmm1<undef>, %xmm1<undef>, %xmm1
4150///
4151/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
4152/// high bits that are passed-through are not live.
4153unsigned X86InstrInfo::
4154getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
4155 const TargetRegisterInfo *TRI) const {
4156 if (!hasUndefRegUpdate(MI->getOpcode()))
4157 return 0;
4158
4159 // Set the OpNum parameter to the first source operand.
4160 OpNum = 1;
4161
4162 const MachineOperand &MO = MI->getOperand(OpNum);
4163 if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
4164 // Use the same magic number as getPartialRegUpdateClearance.
4165 return 16;
4166 }
4167 return 0;
4168}
4169
Jakob Stoklund Olesenf8ad3362011-11-15 01:15:30 +00004170void X86InstrInfo::
4171breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
4172 const TargetRegisterInfo *TRI) const {
4173 unsigned Reg = MI->getOperand(OpNum).getReg();
Andrew Trickb6d56be2013-10-14 22:19:03 +00004174 // If MI kills this register, the false dependence is already broken.
4175 if (MI->killsRegister(Reg, TRI))
4176 return;
Jakob Stoklund Olesenf8ad3362011-11-15 01:15:30 +00004177 if (X86::VR128RegClass.contains(Reg)) {
4178 // These instructions are all floating point domain, so xorps is the best
4179 // choice.
4180 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
4181 unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
4182 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
4183 .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
4184 } else if (X86::VR256RegClass.contains(Reg)) {
4185 // Use vxorps to clear the full ymm register.
4186 // It wants to read and write the xmm sub-register.
4187 unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
4188 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
4189 .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
4190 .addReg(Reg, RegState::ImplicitDefine);
4191 } else
4192 return;
4193 MI->addRegisterKilled(Reg, TRI, true);
4194}
4195
Andrew Trick153ebe62013-10-31 22:11:56 +00004196static MachineInstr* foldPatchpoint(MachineFunction &MF,
4197 MachineInstr *MI,
4198 const SmallVectorImpl<unsigned> &Ops,
4199 int FrameIndex,
4200 const TargetInstrInfo &TII) {
4201 MachineInstr *NewMI =
4202 MF.CreateMachineInstr(TII.get(MI->getOpcode()), MI->getDebugLoc(), true);
4203 MachineInstrBuilder MIB(MF, NewMI);
4204
4205 bool isPatchPoint = MI->getOpcode() == TargetOpcode::PATCHPOINT;
4206 unsigned StartIdx = isPatchPoint ? MI->getOperand(3).getImm() + 4 : 2;
4207
4208 // No need to fold the meta data and function arguments
4209 for (unsigned i = 0; i < StartIdx; ++i)
4210 MIB.addOperand(MI->getOperand(i));
4211
4212 for (unsigned i = StartIdx; i < MI->getNumOperands(); ++i) {
4213 MachineOperand &MO = MI->getOperand(i);
4214 if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) {
4215 MIB.addOperand(MachineOperand::CreateImm(StackMaps::IndirectMemRefOp));
4216 MIB.addOperand(MachineOperand::CreateFI(FrameIndex));
4217 addOffset(MIB, 0);
4218 }
4219 else
4220 MIB.addOperand(MO);
4221 }
4222 return NewMI;
4223}
4224
4225MachineInstr*
4226X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
4227 const SmallVectorImpl<unsigned> &Ops,
4228 int FrameIndex) const {
4229 // Special case stack map and patch point intrinsics.
4230 if (MI->getOpcode() == TargetOpcode::STACKMAP
4231 || MI->getOpcode() == TargetOpcode::PATCHPOINT) {
4232 return foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
4233 }
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00004234 // Check switch flag
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004235 if (NoFusing) return NULL;
4236
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00004237 // Unless optimizing for size, don't fold to avoid partial
4238 // register update stalls
Bill Wendling698e84f2012-12-30 10:32:01 +00004239 if (!MF.getFunction()->getAttributes().
4240 hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) &&
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00004241 hasPartialRegUpdate(MI->getOpcode()))
4242 return 0;
Evan Cheng4cf30b72009-12-18 07:40:29 +00004243
Evan Cheng3b3286d2008-02-08 21:20:40 +00004244 const MachineFrameInfo *MFI = MF.getFrameInfo();
Evan Cheng3cad6282009-09-11 00:39:26 +00004245 unsigned Size = MFI->getObjectSize(FrameIndex);
Evan Cheng3b3286d2008-02-08 21:20:40 +00004246 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
Benjamin Kramer858a3882013-10-06 13:48:22 +00004247 // If the function stack isn't realigned we don't want to fold instructions
4248 // that need increased alignment.
4249 if (!RI.needsStackRealignment(MF))
4250 Alignment = std::min(Alignment, TM.getFrameLowering()->getStackAlignment());
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004251 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
4252 unsigned NewOpc = 0;
Evan Cheng3cad6282009-09-11 00:39:26 +00004253 unsigned RCSize = 0;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004254 switch (MI->getOpcode()) {
4255 default: return NULL;
Evan Cheng3cad6282009-09-11 00:39:26 +00004256 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
Dan Gohman887dd1c2010-05-18 21:42:03 +00004257 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
4258 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
4259 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004260 }
Evan Cheng3cad6282009-09-11 00:39:26 +00004261 // Check if it's safe to fold the load. If the size of the object is
4262 // narrower than the load width, then it's not.
4263 if (Size < RCSize)
4264 return NULL;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004265 // Change to CMPXXri r, 0 first.
Chris Lattner59687512008-01-11 18:10:50 +00004266 MI->setDesc(get(NewOpc));
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004267 MI->getOperand(1).ChangeToImmediate(0);
4268 } else if (Ops.size() != 1)
4269 return NULL;
4270
4271 SmallVector<MachineOperand,4> MOs;
4272 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
Evan Cheng3cad6282009-09-11 00:39:26 +00004273 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004274}
4275
Dan Gohman3f86b512008-12-03 18:43:12 +00004276MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
4277 MachineInstr *MI,
Evan Cheng9e0c7f22009-07-15 06:10:07 +00004278 const SmallVectorImpl<unsigned> &Ops,
Dan Gohman3f86b512008-12-03 18:43:12 +00004279 MachineInstr *LoadMI) const {
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00004280 // Check switch flag
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004281 if (NoFusing) return NULL;
4282
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00004283 // Unless optimizing for size, don't fold to avoid partial
4284 // register update stalls
Bill Wendling698e84f2012-12-30 10:32:01 +00004285 if (!MF.getFunction()->getAttributes().
4286 hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) &&
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00004287 hasPartialRegUpdate(MI->getOpcode()))
4288 return 0;
Evan Cheng4cf30b72009-12-18 07:40:29 +00004289
Dan Gohman9a542a42008-07-12 00:10:52 +00004290 // Determine the alignment of the load.
Evan Cheng3b3286d2008-02-08 21:20:40 +00004291 unsigned Alignment = 0;
Dan Gohman9a542a42008-07-12 00:10:52 +00004292 if (LoadMI->hasOneMemOperand())
Dan Gohman48b185d2009-09-25 20:36:54 +00004293 Alignment = (*LoadMI->memoperands_begin())->getAlignment();
Dan Gohman69499b132009-09-21 18:30:38 +00004294 else
4295 switch (LoadMI->getOpcode()) {
Craig Toppera3a65832011-11-19 22:34:59 +00004296 case X86::AVX2_SETALLONES:
Craig Topperbd509ee2012-08-28 07:05:28 +00004297 case X86::AVX_SET0:
Bruno Cardoso Lopes7f704b32010-08-12 20:20:53 +00004298 Alignment = 32;
4299 break;
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00004300 case X86::V_SET0:
Dan Gohman69499b132009-09-21 18:30:38 +00004301 case X86::V_SETALLONES:
4302 Alignment = 16;
4303 break;
4304 case X86::FsFLD0SD:
4305 Alignment = 8;
4306 break;
4307 case X86::FsFLD0SS:
4308 Alignment = 4;
4309 break;
4310 default:
Eli Friedman87ef3872011-06-10 01:13:01 +00004311 return 0;
Dan Gohman69499b132009-09-21 18:30:38 +00004312 }
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004313 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
4314 unsigned NewOpc = 0;
4315 switch (MI->getOpcode()) {
4316 default: return NULL;
4317 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
Dan Gohmanf8bf6632010-05-18 21:54:15 +00004318 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
4319 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
4320 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004321 }
4322 // Change to CMPXXri r, 0 first.
Chris Lattner59687512008-01-11 18:10:50 +00004323 MI->setDesc(get(NewOpc));
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004324 MI->getOperand(1).ChangeToImmediate(0);
4325 } else if (Ops.size() != 1)
4326 return NULL;
4327
Jakob Stoklund Olesen9c473e42010-08-11 23:08:22 +00004328 // Make sure the subregisters match.
4329 // Otherwise we risk changing the size of the load.
4330 if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
4331 return NULL;
4332
Chris Lattnerec536272010-07-08 22:41:28 +00004333 SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
Dan Gohman69499b132009-09-21 18:30:38 +00004334 switch (LoadMI->getOpcode()) {
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00004335 case X86::V_SET0:
Dan Gohman69499b132009-09-21 18:30:38 +00004336 case X86::V_SETALLONES:
Craig Toppera3a65832011-11-19 22:34:59 +00004337 case X86::AVX2_SETALLONES:
Craig Topperbd509ee2012-08-28 07:05:28 +00004338 case X86::AVX_SET0:
Dan Gohman69499b132009-09-21 18:30:38 +00004339 case X86::FsFLD0SD:
Jakob Stoklund Olesenbde32d32011-11-29 22:27:25 +00004340 case X86::FsFLD0SS: {
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00004341 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
Dan Gohmancc78cdf2008-12-03 05:21:24 +00004342 // Create a constant-pool entry and operands to load from it.
4343
Dan Gohman772952f2010-03-09 03:01:40 +00004344 // Medium and large mode can't fold loads this way.
4345 if (TM.getCodeModel() != CodeModel::Small &&
4346 TM.getCodeModel() != CodeModel::Kernel)
4347 return NULL;
4348
Dan Gohmancc78cdf2008-12-03 05:21:24 +00004349 // x86-32 PIC requires a PIC base register for constant pools.
4350 unsigned PICBase = 0;
Jakob Stoklund Olesenc7895d32009-07-16 21:24:13 +00004351 if (TM.getRelocationModel() == Reloc::PIC_) {
Evan Chengfdd0eb42009-07-16 18:44:05 +00004352 if (TM.getSubtarget<X86Subtarget>().is64Bit())
4353 PICBase = X86::RIP;
Jakob Stoklund Olesenc7895d32009-07-16 21:24:13 +00004354 else
Dan Gohmand7b5ce32010-07-10 09:00:22 +00004355 // FIXME: PICBase = getGlobalBaseReg(&MF);
Evan Chengfdd0eb42009-07-16 18:44:05 +00004356 // This doesn't work for several reasons.
4357 // 1. GlobalBaseReg may have been spilled.
4358 // 2. It may not be live at MI.
Dan Gohman69499b132009-09-21 18:30:38 +00004359 return NULL;
Jakob Stoklund Olesenc7895d32009-07-16 21:24:13 +00004360 }
Dan Gohmancc78cdf2008-12-03 05:21:24 +00004361
Dan Gohman69499b132009-09-21 18:30:38 +00004362 // Create a constant-pool entry.
Dan Gohmancc78cdf2008-12-03 05:21:24 +00004363 MachineConstantPool &MCP = *MF.getConstantPool();
Chris Lattner229907c2011-07-18 04:54:35 +00004364 Type *Ty;
Bruno Cardoso Lopes7f704b32010-08-12 20:20:53 +00004365 unsigned Opc = LoadMI->getOpcode();
Jakob Stoklund Olesenbde32d32011-11-29 22:27:25 +00004366 if (Opc == X86::FsFLD0SS)
Dan Gohman69499b132009-09-21 18:30:38 +00004367 Ty = Type::getFloatTy(MF.getFunction()->getContext());
Jakob Stoklund Olesenbde32d32011-11-29 22:27:25 +00004368 else if (Opc == X86::FsFLD0SD)
Dan Gohman69499b132009-09-21 18:30:38 +00004369 Ty = Type::getDoubleTy(MF.getFunction()->getContext());
Craig Topperbd509ee2012-08-28 07:05:28 +00004370 else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0)
Craig Toppera4c5a472012-01-13 06:12:41 +00004371 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
Dan Gohman69499b132009-09-21 18:30:38 +00004372 else
4373 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
Bruno Cardoso Lopes9212bf22011-07-25 23:05:32 +00004374
Craig Topper72f51c32012-08-28 07:30:47 +00004375 bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES);
Bruno Cardoso Lopes9212bf22011-07-25 23:05:32 +00004376 const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
4377 Constant::getNullValue(Ty);
Dan Gohman69499b132009-09-21 18:30:38 +00004378 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
Dan Gohmancc78cdf2008-12-03 05:21:24 +00004379
4380 // Create operands to load from the constant pool entry.
4381 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
4382 MOs.push_back(MachineOperand::CreateImm(1));
4383 MOs.push_back(MachineOperand::CreateReg(0, false));
4384 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
Rafael Espindola3b2df102009-04-08 21:14:34 +00004385 MOs.push_back(MachineOperand::CreateReg(0, false));
Dan Gohman69499b132009-09-21 18:30:38 +00004386 break;
4387 }
4388 default: {
Manman Ren5b462822012-11-27 18:09:26 +00004389 if ((LoadMI->getOpcode() == X86::MOVSSrm ||
4390 LoadMI->getOpcode() == X86::VMOVSSrm) &&
4391 MF.getRegInfo().getRegClass(LoadMI->getOperand(0).getReg())->getSize()
4392 > 4)
4393 // These instructions only load 32 bits, we can't fold them if the
4394 // destination register is wider than 32 bits (4 bytes).
4395 return NULL;
4396 if ((LoadMI->getOpcode() == X86::MOVSDrm ||
4397 LoadMI->getOpcode() == X86::VMOVSDrm) &&
4398 MF.getRegInfo().getRegClass(LoadMI->getOperand(0).getReg())->getSize()
4399 > 8)
4400 // These instructions only load 64 bits, we can't fold them if the
4401 // destination register is wider than 64 bits (8 bytes).
4402 return NULL;
4403
Dan Gohmancc78cdf2008-12-03 05:21:24 +00004404 // Folding a normal load. Just copy the load's address operands.
4405 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Chris Lattnerec536272010-07-08 22:41:28 +00004406 for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
Dan Gohmancc78cdf2008-12-03 05:21:24 +00004407 MOs.push_back(LoadMI->getOperand(i));
Dan Gohman69499b132009-09-21 18:30:38 +00004408 break;
4409 }
Dan Gohmancc78cdf2008-12-03 05:21:24 +00004410 }
Evan Cheng3cad6282009-09-11 00:39:26 +00004411 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004412}
4413
4414
Dan Gohman33332bc2008-10-16 01:49:15 +00004415bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
4416 const SmallVectorImpl<unsigned> &Ops) const {
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00004417 // Check switch flag
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004418 if (NoFusing) return 0;
4419
4420 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
4421 switch (MI->getOpcode()) {
4422 default: return false;
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00004423 case X86::TEST8rr:
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004424 case X86::TEST16rr:
4425 case X86::TEST32rr:
4426 case X86::TEST64rr:
4427 return true;
Jakob Stoklund Olesen2348cdd2011-04-30 23:00:05 +00004428 case X86::ADD32ri:
4429 // FIXME: AsmPrinter doesn't know how to handle
4430 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
4431 if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
4432 return false;
4433 break;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004434 }
4435 }
4436
4437 if (Ops.size() != 1)
4438 return false;
4439
4440 unsigned OpNum = Ops[0];
4441 unsigned Opc = MI->getOpcode();
Chris Lattner03ad8852008-01-07 07:27:27 +00004442 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004443 bool isTwoAddr = NumOps > 1 &&
Evan Cheng6cc775f2011-06-28 19:10:37 +00004444 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004445
4446 // Folding a memory location into the two-address part of a two-address
4447 // instruction is different than folding it other places. It requires
4448 // replacing the *two* registers with the memory location.
Chris Lattner1c090c02010-10-07 23:08:41 +00004449 const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00004450 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004451 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
4452 } else if (OpNum == 0) { // If operand 0
Tim Northover64ec0ff2013-05-30 13:19:42 +00004453 if (Opc == X86::MOV32r0)
4454 return true;
4455
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004456 OpcodeTablePtr = &RegOp2MemOpTable0;
4457 } else if (OpNum == 1) {
4458 OpcodeTablePtr = &RegOp2MemOpTable1;
4459 } else if (OpNum == 2) {
4460 OpcodeTablePtr = &RegOp2MemOpTable2;
Craig Topper7573c8f2012-08-31 22:12:16 +00004461 } else if (OpNum == 3) {
4462 OpcodeTablePtr = &RegOp2MemOpTable3;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004463 }
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00004464
Chris Lattner626656a2010-10-08 03:54:52 +00004465 if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
4466 return true;
Jakob Stoklund Olesen9de596e2012-11-28 02:35:17 +00004467 return TargetInstrInfo::canFoldMemoryOperand(MI, Ops);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004468}
4469
4470bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
4471 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
Bill Wendling27b508d2009-02-11 21:51:19 +00004472 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Chris Lattner1c090c02010-10-07 23:08:41 +00004473 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
4474 MemOp2RegOpTable.find(MI->getOpcode());
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004475 if (I == MemOp2RegOpTable.end())
4476 return false;
4477 unsigned Opc = I->second.first;
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00004478 unsigned Index = I->second.second & TB_INDEX_MASK;
4479 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
4480 bool FoldedStore = I->second.second & TB_FOLDED_STORE;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004481 if (UnfoldLoad && !FoldedLoad)
4482 return false;
4483 UnfoldLoad &= FoldedLoad;
4484 if (UnfoldStore && !FoldedStore)
4485 return false;
4486 UnfoldStore &= FoldedStore;
4487
Evan Cheng6cc775f2011-06-28 19:10:37 +00004488 const MCInstrDesc &MCID = get(Opc);
Jakob Stoklund Olesen3c52f022012-05-07 22:10:26 +00004489 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
Evan Cheng0ce84482010-07-02 20:36:18 +00004490 if (!MI->hasOneMemOperand() &&
4491 RC == &X86::VR128RegClass &&
4492 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
4493 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
4494 // conservatively assume the address is unaligned. That's bad for
4495 // performance.
4496 return false;
Chris Lattnerec536272010-07-08 22:41:28 +00004497 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004498 SmallVector<MachineOperand,2> BeforeOps;
4499 SmallVector<MachineOperand,2> AfterOps;
4500 SmallVector<MachineOperand,4> ImpOps;
4501 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
4502 MachineOperand &Op = MI->getOperand(i);
Chris Lattnerec536272010-07-08 22:41:28 +00004503 if (i >= Index && i < Index + X86::AddrNumOperands)
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004504 AddrOps.push_back(Op);
Dan Gohman0d1e9a82008-10-03 15:45:36 +00004505 else if (Op.isReg() && Op.isImplicit())
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004506 ImpOps.push_back(Op);
4507 else if (i < Index)
4508 BeforeOps.push_back(Op);
4509 else if (i > Index)
4510 AfterOps.push_back(Op);
4511 }
4512
4513 // Emit the load instruction.
4514 if (UnfoldLoad) {
Dan Gohmandd76bb22009-10-09 18:10:05 +00004515 std::pair<MachineInstr::mmo_iterator,
4516 MachineInstr::mmo_iterator> MMOs =
4517 MF.extractLoadMemRefs(MI->memoperands_begin(),
4518 MI->memoperands_end());
4519 loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004520 if (UnfoldStore) {
4521 // Address operands cannot be marked isKill.
Chris Lattnerec536272010-07-08 22:41:28 +00004522 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004523 MachineOperand &MO = NewMIs[0]->getOperand(i);
Dan Gohman0d1e9a82008-10-03 15:45:36 +00004524 if (MO.isReg())
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004525 MO.setIsKill(false);
4526 }
4527 }
4528 }
4529
4530 // Emit the data processing instruction.
Evan Cheng6cc775f2011-06-28 19:10:37 +00004531 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004532 MachineInstrBuilder MIB(MF, DataMI);
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00004533
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004534 if (FoldedStore)
Bill Wendlingf7b83c72009-05-13 21:33:08 +00004535 MIB.addReg(Reg, RegState::Define);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004536 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
Dan Gohman2af1f852009-02-18 05:45:50 +00004537 MIB.addOperand(BeforeOps[i]);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004538 if (FoldedLoad)
4539 MIB.addReg(Reg);
4540 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
Dan Gohman2af1f852009-02-18 05:45:50 +00004541 MIB.addOperand(AfterOps[i]);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004542 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
4543 MachineOperand &MO = ImpOps[i];
Bill Wendlingf7b83c72009-05-13 21:33:08 +00004544 MIB.addReg(MO.getReg(),
4545 getDefRegState(MO.isDef()) |
4546 RegState::Implicit |
4547 getKillRegState(MO.isKill()) |
Evan Cheng0dc101b2009-06-30 08:49:04 +00004548 getDeadRegState(MO.isDead()) |
4549 getUndefRegState(MO.isUndef()));
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004550 }
4551 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004552 switch (DataMI->getOpcode()) {
4553 default: break;
4554 case X86::CMP64ri32:
Dan Gohmanf8bf6632010-05-18 21:54:15 +00004555 case X86::CMP64ri8:
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004556 case X86::CMP32ri:
Dan Gohmanf8bf6632010-05-18 21:54:15 +00004557 case X86::CMP32ri8:
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004558 case X86::CMP16ri:
Dan Gohmanf8bf6632010-05-18 21:54:15 +00004559 case X86::CMP16ri8:
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004560 case X86::CMP8ri: {
4561 MachineOperand &MO0 = DataMI->getOperand(0);
4562 MachineOperand &MO1 = DataMI->getOperand(1);
4563 if (MO1.getImm() == 0) {
Craig Topper4bc3e5a2012-08-21 08:16:16 +00004564 unsigned NewOpc;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004565 switch (DataMI->getOpcode()) {
Craig Topper4bc3e5a2012-08-21 08:16:16 +00004566 default: llvm_unreachable("Unreachable!");
Dan Gohmanf8bf6632010-05-18 21:54:15 +00004567 case X86::CMP64ri8:
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004568 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
Dan Gohmanf8bf6632010-05-18 21:54:15 +00004569 case X86::CMP32ri8:
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004570 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
Dan Gohmanf8bf6632010-05-18 21:54:15 +00004571 case X86::CMP16ri8:
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004572 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
4573 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
4574 }
Chris Lattner59687512008-01-11 18:10:50 +00004575 DataMI->setDesc(get(NewOpc));
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004576 MO1.ChangeToRegister(MO0.getReg(), false);
4577 }
4578 }
4579 }
4580 NewMIs.push_back(DataMI);
4581
4582 // Emit the store instruction.
4583 if (UnfoldStore) {
Jakob Stoklund Olesen3c52f022012-05-07 22:10:26 +00004584 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
Dan Gohmandd76bb22009-10-09 18:10:05 +00004585 std::pair<MachineInstr::mmo_iterator,
4586 MachineInstr::mmo_iterator> MMOs =
4587 MF.extractStoreMemRefs(MI->memoperands_begin(),
4588 MI->memoperands_end());
4589 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004590 }
4591
4592 return true;
4593}
4594
4595bool
4596X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
Bill Wendling27b508d2009-02-11 21:51:19 +00004597 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohman17059682008-07-17 19:10:17 +00004598 if (!N->isMachineOpcode())
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004599 return false;
4600
Chris Lattner1c090c02010-10-07 23:08:41 +00004601 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
4602 MemOp2RegOpTable.find(N->getMachineOpcode());
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004603 if (I == MemOp2RegOpTable.end())
4604 return false;
4605 unsigned Opc = I->second.first;
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00004606 unsigned Index = I->second.second & TB_INDEX_MASK;
4607 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
4608 bool FoldedStore = I->second.second & TB_FOLDED_STORE;
Evan Cheng6cc775f2011-06-28 19:10:37 +00004609 const MCInstrDesc &MCID = get(Opc);
Jakob Stoklund Olesen3c52f022012-05-07 22:10:26 +00004610 MachineFunction &MF = DAG.getMachineFunction();
4611 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
Evan Cheng6cc775f2011-06-28 19:10:37 +00004612 unsigned NumDefs = MCID.NumDefs;
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00004613 std::vector<SDValue> AddrOps;
4614 std::vector<SDValue> BeforeOps;
4615 std::vector<SDValue> AfterOps;
Andrew Trickef9de2a2013-05-25 02:42:55 +00004616 SDLoc dl(N);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004617 unsigned NumOps = N->getNumOperands();
Dan Gohman48b185d2009-09-25 20:36:54 +00004618 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00004619 SDValue Op = N->getOperand(i);
Chris Lattnerec536272010-07-08 22:41:28 +00004620 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004621 AddrOps.push_back(Op);
Dan Gohmancc329b52009-03-04 19:23:38 +00004622 else if (i < Index-NumDefs)
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004623 BeforeOps.push_back(Op);
Dan Gohmancc329b52009-03-04 19:23:38 +00004624 else if (i > Index-NumDefs)
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004625 AfterOps.push_back(Op);
4626 }
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00004627 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004628 AddrOps.push_back(Chain);
4629
4630 // Emit the load instruction.
4631 SDNode *Load = 0;
4632 if (FoldedLoad) {
Owen Anderson53aa7a92009-08-10 22:56:29 +00004633 EVT VT = *RC->vt_begin();
Evan Chengf25ef4f2009-11-16 21:56:03 +00004634 std::pair<MachineInstr::mmo_iterator,
4635 MachineInstr::mmo_iterator> MMOs =
4636 MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
4637 cast<MachineSDNode>(N)->memoperands_end());
Evan Cheng0ce84482010-07-02 20:36:18 +00004638 if (!(*MMOs.first) &&
4639 RC == &X86::VR128RegClass &&
4640 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
4641 // Do not introduce a slow unaligned load.
4642 return false;
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00004643 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
4644 bool isAligned = (*MMOs.first) &&
4645 (*MMOs.first)->getAlignment() >= Alignment;
Dan Gohman32f71d72009-09-25 18:54:59 +00004646 Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
Michael Liaob53d8962013-04-19 22:22:57 +00004647 VT, MVT::Other, AddrOps);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004648 NewNodes.push_back(Load);
Dan Gohmandd76bb22009-10-09 18:10:05 +00004649
4650 // Preserve memory reference information.
Dan Gohmandd76bb22009-10-09 18:10:05 +00004651 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004652 }
4653
4654 // Emit the data processing instruction.
Owen Anderson53aa7a92009-08-10 22:56:29 +00004655 std::vector<EVT> VTs;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004656 const TargetRegisterClass *DstRC = 0;
Evan Cheng6cc775f2011-06-28 19:10:37 +00004657 if (MCID.getNumDefs() > 0) {
Jakob Stoklund Olesen3c52f022012-05-07 22:10:26 +00004658 DstRC = getRegClass(MCID, 0, &RI, MF);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004659 VTs.push_back(*DstRC->vt_begin());
4660 }
4661 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Owen Anderson53aa7a92009-08-10 22:56:29 +00004662 EVT VT = N->getValueType(i);
Evan Cheng6cc775f2011-06-28 19:10:37 +00004663 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004664 VTs.push_back(VT);
4665 }
4666 if (Load)
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00004667 BeforeOps.push_back(SDValue(Load, 0));
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004668 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
Michael Liaob53d8962013-04-19 22:22:57 +00004669 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004670 NewNodes.push_back(NewNode);
4671
4672 // Emit the store instruction.
4673 if (FoldedStore) {
4674 AddrOps.pop_back();
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00004675 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004676 AddrOps.push_back(Chain);
Evan Chengf25ef4f2009-11-16 21:56:03 +00004677 std::pair<MachineInstr::mmo_iterator,
4678 MachineInstr::mmo_iterator> MMOs =
4679 MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
4680 cast<MachineSDNode>(N)->memoperands_end());
Evan Cheng0ce84482010-07-02 20:36:18 +00004681 if (!(*MMOs.first) &&
4682 RC == &X86::VR128RegClass &&
4683 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
4684 // Do not introduce a slow unaligned store.
4685 return false;
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00004686 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
4687 bool isAligned = (*MMOs.first) &&
4688 (*MMOs.first)->getAlignment() >= Alignment;
Dan Gohman32f71d72009-09-25 18:54:59 +00004689 SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
4690 isAligned, TM),
Michael Liaob53d8962013-04-19 22:22:57 +00004691 dl, MVT::Other, AddrOps);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004692 NewNodes.push_back(Store);
Dan Gohmandd76bb22009-10-09 18:10:05 +00004693
4694 // Preserve memory reference information.
Dan Gohmandd76bb22009-10-09 18:10:05 +00004695 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004696 }
4697
4698 return true;
4699}
4700
4701unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
Dan Gohman49fa51d2009-10-30 22:18:41 +00004702 bool UnfoldLoad, bool UnfoldStore,
4703 unsigned *LoadRegIndex) const {
Chris Lattner1c090c02010-10-07 23:08:41 +00004704 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
4705 MemOp2RegOpTable.find(Opc);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004706 if (I == MemOp2RegOpTable.end())
4707 return 0;
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00004708 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
4709 bool FoldedStore = I->second.second & TB_FOLDED_STORE;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004710 if (UnfoldLoad && !FoldedLoad)
4711 return 0;
4712 if (UnfoldStore && !FoldedStore)
4713 return 0;
Dan Gohman49fa51d2009-10-30 22:18:41 +00004714 if (LoadRegIndex)
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00004715 *LoadRegIndex = I->second.second & TB_INDEX_MASK;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004716 return I->second.first;
4717}
4718
Evan Cheng4f026f32010-01-22 03:34:51 +00004719bool
4720X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
4721 int64_t &Offset1, int64_t &Offset2) const {
4722 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
4723 return false;
4724 unsigned Opc1 = Load1->getMachineOpcode();
4725 unsigned Opc2 = Load2->getMachineOpcode();
4726 switch (Opc1) {
4727 default: return false;
4728 case X86::MOV8rm:
4729 case X86::MOV16rm:
4730 case X86::MOV32rm:
4731 case X86::MOV64rm:
4732 case X86::LD_Fp32m:
4733 case X86::LD_Fp64m:
4734 case X86::LD_Fp80m:
4735 case X86::MOVSSrm:
4736 case X86::MOVSDrm:
4737 case X86::MMX_MOVD64rm:
4738 case X86::MMX_MOVQ64rm:
4739 case X86::FsMOVAPSrm:
4740 case X86::FsMOVAPDrm:
4741 case X86::MOVAPSrm:
4742 case X86::MOVUPSrm:
Evan Cheng4f026f32010-01-22 03:34:51 +00004743 case X86::MOVAPDrm:
4744 case X86::MOVDQArm:
4745 case X86::MOVDQUrm:
Bruno Cardoso Lopesc69d68a2011-09-15 22:15:52 +00004746 // AVX load instructions
4747 case X86::VMOVSSrm:
4748 case X86::VMOVSDrm:
4749 case X86::FsVMOVAPSrm:
4750 case X86::FsVMOVAPDrm:
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00004751 case X86::VMOVAPSrm:
4752 case X86::VMOVUPSrm:
4753 case X86::VMOVAPDrm:
4754 case X86::VMOVDQArm:
4755 case X86::VMOVDQUrm:
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00004756 case X86::VMOVAPSYrm:
4757 case X86::VMOVUPSYrm:
4758 case X86::VMOVAPDYrm:
4759 case X86::VMOVDQAYrm:
4760 case X86::VMOVDQUYrm:
Evan Cheng4f026f32010-01-22 03:34:51 +00004761 break;
4762 }
4763 switch (Opc2) {
4764 default: return false;
4765 case X86::MOV8rm:
4766 case X86::MOV16rm:
4767 case X86::MOV32rm:
4768 case X86::MOV64rm:
4769 case X86::LD_Fp32m:
4770 case X86::LD_Fp64m:
4771 case X86::LD_Fp80m:
4772 case X86::MOVSSrm:
4773 case X86::MOVSDrm:
4774 case X86::MMX_MOVD64rm:
4775 case X86::MMX_MOVQ64rm:
4776 case X86::FsMOVAPSrm:
4777 case X86::FsMOVAPDrm:
4778 case X86::MOVAPSrm:
4779 case X86::MOVUPSrm:
Evan Cheng4f026f32010-01-22 03:34:51 +00004780 case X86::MOVAPDrm:
4781 case X86::MOVDQArm:
4782 case X86::MOVDQUrm:
Bruno Cardoso Lopesc69d68a2011-09-15 22:15:52 +00004783 // AVX load instructions
4784 case X86::VMOVSSrm:
4785 case X86::VMOVSDrm:
4786 case X86::FsVMOVAPSrm:
4787 case X86::FsVMOVAPDrm:
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00004788 case X86::VMOVAPSrm:
4789 case X86::VMOVUPSrm:
4790 case X86::VMOVAPDrm:
4791 case X86::VMOVDQArm:
4792 case X86::VMOVDQUrm:
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00004793 case X86::VMOVAPSYrm:
4794 case X86::VMOVUPSYrm:
4795 case X86::VMOVAPDYrm:
4796 case X86::VMOVDQAYrm:
4797 case X86::VMOVDQUYrm:
Evan Cheng4f026f32010-01-22 03:34:51 +00004798 break;
4799 }
4800
4801 // Check if chain operands and base addresses match.
4802 if (Load1->getOperand(0) != Load2->getOperand(0) ||
4803 Load1->getOperand(5) != Load2->getOperand(5))
4804 return false;
4805 // Segment operands should match as well.
4806 if (Load1->getOperand(4) != Load2->getOperand(4))
4807 return false;
4808 // Scale should be 1, Index should be Reg0.
4809 if (Load1->getOperand(1) == Load2->getOperand(1) &&
4810 Load1->getOperand(2) == Load2->getOperand(2)) {
4811 if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
4812 return false;
Evan Cheng4f026f32010-01-22 03:34:51 +00004813
4814 // Now let's examine the displacements.
4815 if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
4816 isa<ConstantSDNode>(Load2->getOperand(3))) {
4817 Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
4818 Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
4819 return true;
4820 }
4821 }
4822 return false;
4823}
4824
4825bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
4826 int64_t Offset1, int64_t Offset2,
4827 unsigned NumLoads) const {
4828 assert(Offset2 > Offset1);
4829 if ((Offset2 - Offset1) / 8 > 64)
4830 return false;
4831
4832 unsigned Opc1 = Load1->getMachineOpcode();
4833 unsigned Opc2 = Load2->getMachineOpcode();
4834 if (Opc1 != Opc2)
4835 return false; // FIXME: overly conservative?
4836
4837 switch (Opc1) {
4838 default: break;
4839 case X86::LD_Fp32m:
4840 case X86::LD_Fp64m:
4841 case X86::LD_Fp80m:
4842 case X86::MMX_MOVD64rm:
4843 case X86::MMX_MOVQ64rm:
4844 return false;
4845 }
4846
4847 EVT VT = Load1->getValueType(0);
4848 switch (VT.getSimpleVT().SimpleTy) {
Bill Wendling8ce69cd2010-06-22 22:16:17 +00004849 default:
Evan Cheng4f026f32010-01-22 03:34:51 +00004850 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
4851 // have 16 of them to play with.
4852 if (TM.getSubtargetImpl()->is64Bit()) {
4853 if (NumLoads >= 3)
4854 return false;
Bill Wendling8ce69cd2010-06-22 22:16:17 +00004855 } else if (NumLoads) {
Evan Cheng4f026f32010-01-22 03:34:51 +00004856 return false;
Bill Wendling8ce69cd2010-06-22 22:16:17 +00004857 }
Evan Cheng4f026f32010-01-22 03:34:51 +00004858 break;
Evan Cheng4f026f32010-01-22 03:34:51 +00004859 case MVT::i8:
4860 case MVT::i16:
4861 case MVT::i32:
4862 case MVT::i64:
Evan Cheng16cf9342010-01-22 23:49:11 +00004863 case MVT::f32:
4864 case MVT::f64:
Evan Cheng4f026f32010-01-22 03:34:51 +00004865 if (NumLoads)
4866 return false;
Bill Wendling8ce69cd2010-06-22 22:16:17 +00004867 break;
Evan Cheng4f026f32010-01-22 03:34:51 +00004868 }
4869
4870 return true;
4871}
4872
Andrew Trick47740de2013-06-23 09:00:28 +00004873bool X86InstrInfo::shouldScheduleAdjacent(MachineInstr* First,
4874 MachineInstr *Second) const {
4875 // Check if this processor supports macro-fusion. Since this is a minor
4876 // heuristic, we haven't specifically reserved a feature. hasAVX is a decent
4877 // proxy for SandyBridge+.
4878 if (!TM.getSubtarget<X86Subtarget>().hasAVX())
4879 return false;
4880
4881 enum {
4882 FuseTest,
4883 FuseCmp,
4884 FuseInc
4885 } FuseKind;
4886
4887 switch(Second->getOpcode()) {
4888 default:
4889 return false;
4890 case X86::JE_4:
4891 case X86::JNE_4:
4892 case X86::JL_4:
4893 case X86::JLE_4:
4894 case X86::JG_4:
4895 case X86::JGE_4:
4896 FuseKind = FuseInc;
4897 break;
4898 case X86::JB_4:
4899 case X86::JBE_4:
4900 case X86::JA_4:
4901 case X86::JAE_4:
4902 FuseKind = FuseCmp;
4903 break;
4904 case X86::JS_4:
4905 case X86::JNS_4:
4906 case X86::JP_4:
4907 case X86::JNP_4:
4908 case X86::JO_4:
4909 case X86::JNO_4:
4910 FuseKind = FuseTest;
4911 break;
4912 }
4913 switch (First->getOpcode()) {
4914 default:
4915 return false;
4916 case X86::TEST8rr:
4917 case X86::TEST16rr:
4918 case X86::TEST32rr:
4919 case X86::TEST64rr:
4920 case X86::TEST8ri:
4921 case X86::TEST16ri:
4922 case X86::TEST32ri:
4923 case X86::TEST32i32:
4924 case X86::TEST64i32:
4925 case X86::TEST64ri32:
4926 case X86::TEST8rm:
4927 case X86::TEST16rm:
4928 case X86::TEST32rm:
4929 case X86::TEST64rm:
4930 case X86::AND16i16:
4931 case X86::AND16ri:
4932 case X86::AND16ri8:
4933 case X86::AND16rm:
4934 case X86::AND16rr:
4935 case X86::AND32i32:
4936 case X86::AND32ri:
4937 case X86::AND32ri8:
4938 case X86::AND32rm:
4939 case X86::AND32rr:
4940 case X86::AND64i32:
4941 case X86::AND64ri32:
4942 case X86::AND64ri8:
4943 case X86::AND64rm:
4944 case X86::AND64rr:
4945 case X86::AND8i8:
4946 case X86::AND8ri:
4947 case X86::AND8rm:
4948 case X86::AND8rr:
4949 return true;
4950 case X86::CMP16i16:
4951 case X86::CMP16ri:
4952 case X86::CMP16ri8:
4953 case X86::CMP16rm:
4954 case X86::CMP16rr:
4955 case X86::CMP32i32:
4956 case X86::CMP32ri:
4957 case X86::CMP32ri8:
4958 case X86::CMP32rm:
4959 case X86::CMP32rr:
4960 case X86::CMP64i32:
4961 case X86::CMP64ri32:
4962 case X86::CMP64ri8:
4963 case X86::CMP64rm:
4964 case X86::CMP64rr:
4965 case X86::CMP8i8:
4966 case X86::CMP8ri:
4967 case X86::CMP8rm:
4968 case X86::CMP8rr:
4969 case X86::ADD16i16:
4970 case X86::ADD16ri:
4971 case X86::ADD16ri8:
4972 case X86::ADD16ri8_DB:
4973 case X86::ADD16ri_DB:
4974 case X86::ADD16rm:
4975 case X86::ADD16rr:
4976 case X86::ADD16rr_DB:
4977 case X86::ADD32i32:
4978 case X86::ADD32ri:
4979 case X86::ADD32ri8:
4980 case X86::ADD32ri8_DB:
4981 case X86::ADD32ri_DB:
4982 case X86::ADD32rm:
4983 case X86::ADD32rr:
4984 case X86::ADD32rr_DB:
4985 case X86::ADD64i32:
4986 case X86::ADD64ri32:
4987 case X86::ADD64ri32_DB:
4988 case X86::ADD64ri8:
4989 case X86::ADD64ri8_DB:
4990 case X86::ADD64rm:
4991 case X86::ADD64rr:
4992 case X86::ADD64rr_DB:
4993 case X86::ADD8i8:
4994 case X86::ADD8mi:
4995 case X86::ADD8mr:
4996 case X86::ADD8ri:
4997 case X86::ADD8rm:
4998 case X86::ADD8rr:
4999 case X86::SUB16i16:
5000 case X86::SUB16ri:
5001 case X86::SUB16ri8:
5002 case X86::SUB16rm:
5003 case X86::SUB16rr:
5004 case X86::SUB32i32:
5005 case X86::SUB32ri:
5006 case X86::SUB32ri8:
5007 case X86::SUB32rm:
5008 case X86::SUB32rr:
5009 case X86::SUB64i32:
5010 case X86::SUB64ri32:
5011 case X86::SUB64ri8:
5012 case X86::SUB64rm:
5013 case X86::SUB64rr:
5014 case X86::SUB8i8:
5015 case X86::SUB8ri:
5016 case X86::SUB8rm:
5017 case X86::SUB8rr:
5018 return FuseKind == FuseCmp || FuseKind == FuseInc;
5019 case X86::INC16r:
5020 case X86::INC32r:
5021 case X86::INC64_16r:
5022 case X86::INC64_32r:
5023 case X86::INC64r:
5024 case X86::INC8r:
5025 case X86::DEC16r:
5026 case X86::DEC32r:
5027 case X86::DEC64_16r:
5028 case X86::DEC64_32r:
5029 case X86::DEC64r:
5030 case X86::DEC8r:
5031 return FuseKind == FuseInc;
5032 }
5033}
Evan Cheng4f026f32010-01-22 03:34:51 +00005034
Chris Lattnerc0fb5672006-10-20 17:42:20 +00005035bool X86InstrInfo::
Owen Anderson4f6bf042008-08-14 22:49:33 +00005036ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
Chris Lattner3a897f32006-10-21 05:52:40 +00005037 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Evan Chengf93bc7f2008-08-29 23:21:31 +00005038 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
Dan Gohman97d95d62008-10-21 03:29:32 +00005039 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
5040 return true;
Evan Chengf93bc7f2008-08-29 23:21:31 +00005041 Cond[0].setImm(GetOppositeBranchCondition(CC));
Chris Lattner3a897f32006-10-21 05:52:40 +00005042 return false;
Chris Lattnerc0fb5672006-10-20 17:42:20 +00005043}
5044
Evan Chengf7137222008-10-27 07:14:50 +00005045bool X86InstrInfo::
Evan Chengb5f0ec32009-02-06 17:17:30 +00005046isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
5047 // FIXME: Return false for x87 stack register classes for now. We can't
Evan Chengf7137222008-10-27 07:14:50 +00005048 // allow any loads of these registers before FpGet_ST0_80.
Evan Chengb5f0ec32009-02-06 17:17:30 +00005049 return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
5050 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
Evan Chengf7137222008-10-27 07:14:50 +00005051}
5052
Dan Gohman6ebe7342008-09-30 00:58:23 +00005053/// getGlobalBaseReg - Return a virtual register initialized with the
5054/// the global base register value. Output instructions required to
5055/// initialize the register in the function entry block, if necessary.
Dan Gohman24300732008-09-23 18:22:58 +00005056///
Dan Gohmand7b5ce32010-07-10 09:00:22 +00005057/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
5058///
Dan Gohman6ebe7342008-09-30 00:58:23 +00005059unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
5060 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
5061 "X86-64 PIC uses RIP relative addressing");
5062
5063 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
5064 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
5065 if (GlobalBaseReg != 0)
5066 return GlobalBaseReg;
5067
Dan Gohmand7b5ce32010-07-10 09:00:22 +00005068 // Create the register. The code to initialize it is inserted
5069 // later, by the CGBR pass (below).
Dan Gohman24300732008-09-23 18:22:58 +00005070 MachineRegisterInfo &RegInfo = MF->getRegInfo();
Jakob Stoklund Olesen38dcd592012-05-20 18:43:00 +00005071 GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
Dan Gohman6ebe7342008-09-30 00:58:23 +00005072 X86FI->setGlobalBaseReg(GlobalBaseReg);
5073 return GlobalBaseReg;
Dan Gohman24300732008-09-23 18:22:58 +00005074}
Jakob Stoklund Olesen49e121d2010-03-25 17:25:00 +00005075
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00005076// These are the replaceable SSE instructions. Some of these have Int variants
5077// that we don't include here. We don't want to replace instructions selected
5078// by intrinsics.
Craig Topper2dac9622012-03-09 07:45:21 +00005079static const uint16_t ReplaceableInstrs[][3] = {
Bruno Cardoso Lopes1401e042010-08-12 02:08:52 +00005080 //PackedSingle PackedDouble PackedInt
Jakob Stoklund Olesendbff4e82010-03-30 22:46:53 +00005081 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
5082 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
5083 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
5084 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
5085 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
5086 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
5087 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
5088 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
5089 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
5090 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
5091 { X86::ORPSrm, X86::ORPDrm, X86::PORrm },
5092 { X86::ORPSrr, X86::ORPDrr, X86::PORrr },
5093 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
5094 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
Bruno Cardoso Lopes7f704b32010-08-12 20:20:53 +00005095 // AVX 128-bit support
5096 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
5097 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
5098 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
5099 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
5100 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
5101 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
5102 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
5103 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
5104 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
5105 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
5106 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
5107 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
Bruno Cardoso Lopes7f704b32010-08-12 20:20:53 +00005108 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
5109 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00005110 // AVX 256-bit support
5111 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr },
5112 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm },
5113 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr },
5114 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr },
5115 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm },
Craig Topper05baa852011-11-15 05:55:35 +00005116 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr }
5117};
5118
Craig Topper2dac9622012-03-09 07:45:21 +00005119static const uint16_t ReplaceableInstrsAVX2[][3] = {
Craig Topper05baa852011-11-15 05:55:35 +00005120 //PackedSingle PackedDouble PackedInt
Craig Topperf87a2be2011-11-09 09:37:21 +00005121 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm },
5122 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr },
5123 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm },
5124 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr },
5125 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm },
5126 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr },
5127 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm },
Craig Topper12b72de2011-11-29 05:37:58 +00005128 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr },
5129 { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
5130 { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
5131 { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm },
5132 { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr },
5133 { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm },
5134 { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr }
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00005135};
Jakob Stoklund Olesen49e121d2010-03-25 17:25:00 +00005136
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00005137// FIXME: Some shuffle and unpack instructions have equivalents in different
5138// domains, but they require a bit more work than just switching opcodes.
Jakob Stoklund Olesen49e121d2010-03-25 17:25:00 +00005139
Craig Topper2dac9622012-03-09 07:45:21 +00005140static const uint16_t *lookup(unsigned opcode, unsigned domain) {
Jakob Stoklund Olesen49e121d2010-03-25 17:25:00 +00005141 for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00005142 if (ReplaceableInstrs[i][domain-1] == opcode)
5143 return ReplaceableInstrs[i];
Craig Topper649d1c52011-11-15 06:39:01 +00005144 return 0;
5145}
5146
Craig Topper2dac9622012-03-09 07:45:21 +00005147static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) {
Craig Topper649d1c52011-11-15 06:39:01 +00005148 for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
5149 if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
5150 return ReplaceableInstrsAVX2[i];
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00005151 return 0;
5152}
5153
5154std::pair<uint16_t, uint16_t>
Jakob Stoklund Olesenb48c9942011-09-27 22:57:18 +00005155X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00005156 uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
Craig Topper05baa852011-11-15 05:55:35 +00005157 bool hasAVX2 = TM.getSubtarget<X86Subtarget>().hasAVX2();
Craig Topper649d1c52011-11-15 06:39:01 +00005158 uint16_t validDomains = 0;
5159 if (domain && lookup(MI->getOpcode(), domain))
5160 validDomains = 0xe;
5161 else if (domain && lookupAVX2(MI->getOpcode(), domain))
5162 validDomains = hasAVX2 ? 0xe : 0x6;
5163 return std::make_pair(domain, validDomains);
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00005164}
5165
Jakob Stoklund Olesenb48c9942011-09-27 22:57:18 +00005166void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00005167 assert(Domain>0 && Domain<4 && "Invalid execution domain");
5168 uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
5169 assert(dom && "Not an SSE instruction");
Craig Topper2dac9622012-03-09 07:45:21 +00005170 const uint16_t *table = lookup(MI->getOpcode(), dom);
Jakob Stoklund Olesen02845412011-11-23 04:03:08 +00005171 if (!table) { // try the other table
5172 assert((TM.getSubtarget<X86Subtarget>().hasAVX2() || Domain < 3) &&
5173 "256-bit vector operations only available in AVX2");
Craig Topper649d1c52011-11-15 06:39:01 +00005174 table = lookupAVX2(MI->getOpcode(), dom);
Jakob Stoklund Olesen02845412011-11-23 04:03:08 +00005175 }
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00005176 assert(table && "Cannot change domain");
5177 MI->setDesc(get(table[Domain-1]));
Jakob Stoklund Olesen49e121d2010-03-25 17:25:00 +00005178}
Chris Lattner6a5e7062010-04-26 23:37:21 +00005179
5180/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
5181void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
5182 NopInst.setOpcode(X86::NOOP);
5183}
Dan Gohmand7b5ce32010-07-10 09:00:22 +00005184
Andrew Trick641e2d42011-03-05 08:00:22 +00005185bool X86InstrInfo::isHighLatencyDef(int opc) const {
5186 switch (opc) {
Evan Cheng63c76082010-10-19 18:58:51 +00005187 default: return false;
5188 case X86::DIVSDrm:
5189 case X86::DIVSDrm_Int:
5190 case X86::DIVSDrr:
5191 case X86::DIVSDrr_Int:
5192 case X86::DIVSSrm:
5193 case X86::DIVSSrm_Int:
5194 case X86::DIVSSrr:
5195 case X86::DIVSSrr_Int:
5196 case X86::SQRTPDm:
Evan Cheng63c76082010-10-19 18:58:51 +00005197 case X86::SQRTPDr:
Evan Cheng63c76082010-10-19 18:58:51 +00005198 case X86::SQRTPSm:
Evan Cheng63c76082010-10-19 18:58:51 +00005199 case X86::SQRTPSr:
Evan Cheng63c76082010-10-19 18:58:51 +00005200 case X86::SQRTSDm:
5201 case X86::SQRTSDm_Int:
5202 case X86::SQRTSDr:
5203 case X86::SQRTSDr_Int:
5204 case X86::SQRTSSm:
5205 case X86::SQRTSSm_Int:
5206 case X86::SQRTSSr:
5207 case X86::SQRTSSr_Int:
Bruno Cardoso Lopesc69d68a2011-09-15 22:15:52 +00005208 // AVX instructions with high latency
5209 case X86::VDIVSDrm:
5210 case X86::VDIVSDrm_Int:
5211 case X86::VDIVSDrr:
5212 case X86::VDIVSDrr_Int:
5213 case X86::VDIVSSrm:
5214 case X86::VDIVSSrm_Int:
5215 case X86::VDIVSSrr:
5216 case X86::VDIVSSrr_Int:
5217 case X86::VSQRTPDm:
Bruno Cardoso Lopesc69d68a2011-09-15 22:15:52 +00005218 case X86::VSQRTPDr:
Bruno Cardoso Lopesc69d68a2011-09-15 22:15:52 +00005219 case X86::VSQRTPSm:
Bruno Cardoso Lopesc69d68a2011-09-15 22:15:52 +00005220 case X86::VSQRTPSr:
Bruno Cardoso Lopesc69d68a2011-09-15 22:15:52 +00005221 case X86::VSQRTSDm:
5222 case X86::VSQRTSDm_Int:
5223 case X86::VSQRTSDr:
5224 case X86::VSQRTSSm:
5225 case X86::VSQRTSSm_Int:
5226 case X86::VSQRTSSr:
Elena Demikhovsky402ee642013-09-02 07:41:01 +00005227 case X86::VSQRTPDZrm:
5228 case X86::VSQRTPDZrr:
5229 case X86::VSQRTPSZrm:
5230 case X86::VSQRTPSZrr:
5231 case X86::VSQRTSDZm:
5232 case X86::VSQRTSDZm_Int:
5233 case X86::VSQRTSDZr:
5234 case X86::VSQRTSSZm_Int:
5235 case X86::VSQRTSSZr:
5236 case X86::VSQRTSSZm:
5237 case X86::VDIVSDZrm:
5238 case X86::VDIVSDZrr:
5239 case X86::VDIVSSZrm:
5240 case X86::VDIVSSZrr:
Elena Demikhovsky534015e2013-09-02 07:12:29 +00005241
5242 case X86::VGATHERQPSZrm:
5243 case X86::VGATHERQPDZrm:
5244 case X86::VGATHERDPDZrm:
5245 case X86::VGATHERDPSZrm:
5246 case X86::VPGATHERQDZrm:
5247 case X86::VPGATHERQQZrm:
5248 case X86::VPGATHERDDZrm:
Elena Demikhovsky402ee642013-09-02 07:41:01 +00005249 case X86::VPGATHERDQZrm:
5250 case X86::VSCATTERQPDZmr:
5251 case X86::VSCATTERQPSZmr:
5252 case X86::VSCATTERDPDZmr:
5253 case X86::VSCATTERDPSZmr:
5254 case X86::VPSCATTERQDZmr:
5255 case X86::VPSCATTERQQZmr:
5256 case X86::VPSCATTERDDZmr:
5257 case X86::VPSCATTERDQZmr:
Evan Cheng63c76082010-10-19 18:58:51 +00005258 return true;
5259 }
5260}
5261
Andrew Trick641e2d42011-03-05 08:00:22 +00005262bool X86InstrInfo::
5263hasHighOperandLatency(const InstrItineraryData *ItinData,
5264 const MachineRegisterInfo *MRI,
5265 const MachineInstr *DefMI, unsigned DefIdx,
5266 const MachineInstr *UseMI, unsigned UseIdx) const {
5267 return isHighLatencyDef(DefMI->getOpcode());
5268}
5269
Dan Gohmand7b5ce32010-07-10 09:00:22 +00005270namespace {
5271 /// CGBR - Create Global Base Reg pass. This initializes the PIC
5272 /// global base register for x86-32.
5273 struct CGBR : public MachineFunctionPass {
5274 static char ID;
Owen Andersona7aed182010-08-06 18:33:48 +00005275 CGBR() : MachineFunctionPass(ID) {}
Dan Gohmand7b5ce32010-07-10 09:00:22 +00005276
5277 virtual bool runOnMachineFunction(MachineFunction &MF) {
5278 const X86TargetMachine *TM =
5279 static_cast<const X86TargetMachine *>(&MF.getTarget());
5280
5281 assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
5282 "X86-64 PIC uses RIP relative addressing");
5283
5284 // Only emit a global base reg in PIC mode.
5285 if (TM->getRelocationModel() != Reloc::PIC_)
5286 return false;
5287
Dan Gohman534db8a2010-09-17 20:24:24 +00005288 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
5289 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
5290
5291 // If we didn't need a GlobalBaseReg, don't insert code.
5292 if (GlobalBaseReg == 0)
5293 return false;
5294
Dan Gohmand7b5ce32010-07-10 09:00:22 +00005295 // Insert the set of GlobalBaseReg into the first MBB of the function
5296 MachineBasicBlock &FirstMBB = MF.front();
5297 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
5298 DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
5299 MachineRegisterInfo &RegInfo = MF.getRegInfo();
5300 const X86InstrInfo *TII = TM->getInstrInfo();
5301
5302 unsigned PC;
5303 if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
Craig Topperabadc662012-04-20 06:31:50 +00005304 PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Dan Gohmand7b5ce32010-07-10 09:00:22 +00005305 else
Dan Gohman534db8a2010-09-17 20:24:24 +00005306 PC = GlobalBaseReg;
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00005307
Dan Gohmand7b5ce32010-07-10 09:00:22 +00005308 // Operand of MovePCtoStack is completely ignored by asm printer. It's
5309 // only used in JIT code emission as displacement to pc.
5310 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00005311
Dan Gohmand7b5ce32010-07-10 09:00:22 +00005312 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
5313 // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
5314 if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
Dan Gohmand7b5ce32010-07-10 09:00:22 +00005315 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
5316 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
5317 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
5318 X86II::MO_GOT_ABSOLUTE_ADDRESS);
5319 }
5320
5321 return true;
5322 }
5323
5324 virtual const char *getPassName() const {
5325 return "X86 PIC Global Base Reg Initialization";
5326 }
5327
5328 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
5329 AU.setPreservesCFG();
5330 MachineFunctionPass::getAnalysisUsage(AU);
5331 }
5332 };
5333}
5334
5335char CGBR::ID = 0;
5336FunctionPass*
5337llvm::createGlobalBaseRegPass() { return new CGBR(); }
Hans Wennborg789acfb2012-06-01 16:27:21 +00005338
5339namespace {
5340 struct LDTLSCleanup : public MachineFunctionPass {
5341 static char ID;
5342 LDTLSCleanup() : MachineFunctionPass(ID) {}
5343
5344 virtual bool runOnMachineFunction(MachineFunction &MF) {
5345 X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>();
5346 if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
5347 // No point folding accesses if there isn't at least two.
5348 return false;
5349 }
5350
5351 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
5352 return VisitNode(DT->getRootNode(), 0);
5353 }
5354
5355 // Visit the dominator subtree rooted at Node in pre-order.
5356 // If TLSBaseAddrReg is non-null, then use that to replace any
5357 // TLS_base_addr instructions. Otherwise, create the register
5358 // when the first such instruction is seen, and then use it
5359 // as we encounter more instructions.
5360 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
5361 MachineBasicBlock *BB = Node->getBlock();
5362 bool Changed = false;
5363
5364 // Traverse the current block.
5365 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
5366 ++I) {
5367 switch (I->getOpcode()) {
5368 case X86::TLS_base_addr32:
5369 case X86::TLS_base_addr64:
5370 if (TLSBaseAddrReg)
5371 I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg);
5372 else
5373 I = SetRegister(I, &TLSBaseAddrReg);
5374 Changed = true;
5375 break;
5376 default:
5377 break;
5378 }
5379 }
5380
5381 // Visit the children of this block in the dominator tree.
5382 for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
5383 I != E; ++I) {
5384 Changed |= VisitNode(*I, TLSBaseAddrReg);
5385 }
5386
5387 return Changed;
5388 }
5389
5390 // Replace the TLS_base_addr instruction I with a copy from
5391 // TLSBaseAddrReg, returning the new instruction.
5392 MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I,
5393 unsigned TLSBaseAddrReg) {
5394 MachineFunction *MF = I->getParent()->getParent();
5395 const X86TargetMachine *TM =
5396 static_cast<const X86TargetMachine *>(&MF->getTarget());
5397 const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
5398 const X86InstrInfo *TII = TM->getInstrInfo();
5399
5400 // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
5401 MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
5402 TII->get(TargetOpcode::COPY),
5403 is64Bit ? X86::RAX : X86::EAX)
5404 .addReg(TLSBaseAddrReg);
5405
5406 // Erase the TLS_base_addr instruction.
5407 I->eraseFromParent();
5408
5409 return Copy;
5410 }
5411
5412 // Create a virtal register in *TLSBaseAddrReg, and populate it by
5413 // inserting a copy instruction after I. Returns the new instruction.
5414 MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
5415 MachineFunction *MF = I->getParent()->getParent();
5416 const X86TargetMachine *TM =
5417 static_cast<const X86TargetMachine *>(&MF->getTarget());
5418 const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
5419 const X86InstrInfo *TII = TM->getInstrInfo();
5420
5421 // Create a virtual register for the TLS base address.
5422 MachineRegisterInfo &RegInfo = MF->getRegInfo();
5423 *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
5424 ? &X86::GR64RegClass
5425 : &X86::GR32RegClass);
5426
5427 // Insert a copy from RAX/EAX to TLSBaseAddrReg.
5428 MachineInstr *Next = I->getNextNode();
5429 MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
5430 TII->get(TargetOpcode::COPY),
5431 *TLSBaseAddrReg)
5432 .addReg(is64Bit ? X86::RAX : X86::EAX);
5433
5434 return Copy;
5435 }
5436
5437 virtual const char *getPassName() const {
5438 return "Local Dynamic TLS Access Clean-up";
5439 }
5440
5441 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
5442 AU.setPreservesCFG();
5443 AU.addRequired<MachineDominatorTree>();
5444 MachineFunctionPass::getAnalysisUsage(AU);
5445 }
5446 };
5447}
5448
5449char LDTLSCleanup::ID = 0;
5450FunctionPass*
5451llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }