blob: f5ebfa00733869c3b61b73484bf7a4e5ef5d78d4 [file] [log] [blame]
Chandler Carruth664e3542013-01-07 01:37:14 +00001//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// X86 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
Alexey Bataevb271a582016-10-12 13:24:13 +000016/// About Cost Model numbers used below it's necessary to say the following:
17/// the numbers correspond to some "generic" X86 CPU instead of usage of
18/// concrete CPU model. Usually the numbers correspond to CPU where the feature
19/// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
20/// the lookups below the cost is based on Nehalem as that was the first CPU
21/// to support that feature level and thus has most likely the worst case cost.
22/// Some examples of other technologies/CPUs:
23/// SSE 3 - Pentium4 / Athlon64
24/// SSE 4.1 - Penryn
25/// SSE 4.2 - Nehalem
26/// AVX - Sandy Bridge
27/// AVX2 - Haswell
28/// AVX-512 - Xeon Phi / Skylake
29/// And some examples of instruction target dependent costs (latency)
30/// divss sqrtss rsqrtss
31/// AMD K7 11-16 19 3
32/// Piledriver 9-24 13-15 5
33/// Jaguar 14 16 2
34/// Pentium II,III 18 30 2
35/// Nehalem 7-14 7-18 3
36/// Haswell 10-13 11 5
37/// TODO: Develop and implement the target dependent cost model and
38/// specialize cost numbers for different Cost Model Targets such as throughput,
39/// code size, latency and uop count.
40//===----------------------------------------------------------------------===//
Chandler Carruth664e3542013-01-07 01:37:14 +000041
Chandler Carruth93dcdc42015-01-31 11:17:59 +000042#include "X86TargetTransformInfo.h"
Chandler Carruthd3e73552013-01-07 03:08:10 +000043#include "llvm/Analysis/TargetTransformInfo.h"
Chandler Carruth705b1852015-01-31 03:43:40 +000044#include "llvm/CodeGen/BasicTTIImpl.h"
Juergen Ributzkaf26beda2014-01-25 02:02:55 +000045#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000046#include "llvm/Support/Debug.h"
Renato Golind4c392e2013-01-24 23:01:00 +000047#include "llvm/Target/CostTable.h"
Chandler Carruth8a8cd2b2014-01-07 11:48:04 +000048#include "llvm/Target/TargetLowering.h"
Hans Wennborg083ca9b2015-10-06 23:24:35 +000049
Chandler Carruth664e3542013-01-07 01:37:14 +000050using namespace llvm;
51
Chandler Carruth84e68b22014-04-22 02:41:26 +000052#define DEBUG_TYPE "x86tti"
53
Chandler Carruth664e3542013-01-07 01:37:14 +000054//===----------------------------------------------------------------------===//
55//
56// X86 cost model.
57//
58//===----------------------------------------------------------------------===//
59
Chandler Carruth705b1852015-01-31 03:43:40 +000060TargetTransformInfo::PopcntSupportKind
61X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
Chandler Carruth664e3542013-01-07 01:37:14 +000062 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
63 // TODO: Currently the __builtin_popcount() implementation using SSE3
64 // instructions is inefficient. Once the problem is fixed, we should
Craig Topper0a63e1d2013-09-08 00:47:31 +000065 // call ST->hasSSE3() instead of ST->hasPOPCNT().
Chandler Carruth705b1852015-01-31 03:43:40 +000066 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
Chandler Carruth664e3542013-01-07 01:37:14 +000067}
68
Chandler Carruth705b1852015-01-31 03:43:40 +000069unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
Nadav Rotemb1791a72013-01-09 22:29:00 +000070 if (Vector && !ST->hasSSE1())
71 return 0;
72
Adam Nemet2820a5b2014-07-09 18:22:33 +000073 if (ST->is64Bit()) {
74 if (Vector && ST->hasAVX512())
75 return 32;
Chandler Carruth664e3542013-01-07 01:37:14 +000076 return 16;
Adam Nemet2820a5b2014-07-09 18:22:33 +000077 }
Chandler Carruth664e3542013-01-07 01:37:14 +000078 return 8;
79}
80
Chandler Carruth705b1852015-01-31 03:43:40 +000081unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) {
Nadav Rotemb1791a72013-01-09 22:29:00 +000082 if (Vector) {
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000083 if (ST->hasAVX512())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000084 return 512;
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000085 if (ST->hasAVX())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000086 return 256;
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000087 if (ST->hasSSE1())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000088 return 128;
Nadav Rotemb1791a72013-01-09 22:29:00 +000089 return 0;
90 }
91
92 if (ST->is64Bit())
93 return 64;
Nadav Rotemb1791a72013-01-09 22:29:00 +000094
Hans Wennborg083ca9b2015-10-06 23:24:35 +000095 return 32;
Nadav Rotemb1791a72013-01-09 22:29:00 +000096}
97
Wei Mi062c7442015-05-06 17:12:25 +000098unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
99 // If the loop will not be vectorized, don't interleave the loop.
100 // Let regular unroll to unroll the loop, which saves the overflow
101 // check and memory check cost.
102 if (VF == 1)
103 return 1;
104
Nadav Rotemb696c362013-01-09 01:15:42 +0000105 if (ST->isAtom())
106 return 1;
107
108 // Sandybridge and Haswell have multiple execution ports and pipelined
109 // vector units.
110 if (ST->hasAVX())
111 return 4;
112
113 return 2;
114}
115
Chandler Carruth93205eb2015-08-05 18:08:10 +0000116int X86TTIImpl::getArithmeticInstrCost(
Chandler Carruth705b1852015-01-31 03:43:40 +0000117 unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
118 TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
119 TTI::OperandValueProperties Opd2PropInfo) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000120 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000121 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
Chandler Carruth664e3542013-01-07 01:37:14 +0000122
123 int ISD = TLI->InstructionOpcodeToISD(Opcode);
124 assert(ISD && "Invalid opcode");
125
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000126 if (ISD == ISD::SDIV &&
127 Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
128 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
129 // On X86, vector signed division by constants power-of-two are
130 // normally expanded to the sequence SRA + SRL + ADD + SRA.
131 // The OperandValue properties many not be same as that of previous
132 // operation;conservatively assume OP_None.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000133 int Cost = 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info,
134 Op2Info, TargetTransformInfo::OP_None,
135 TargetTransformInfo::OP_None);
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000136 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
137 TargetTransformInfo::OP_None,
138 TargetTransformInfo::OP_None);
139 Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
140 TargetTransformInfo::OP_None,
141 TargetTransformInfo::OP_None);
142
143 return Cost;
144 }
145
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000146 static const CostTblEntry AVX512BWUniformConstCostTable[] = {
147 { ISD::SDIV, MVT::v32i16, 6 }, // vpmulhw sequence
148 { ISD::UDIV, MVT::v32i16, 6 }, // vpmulhuw sequence
149 };
150
151 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
152 ST->hasBWI()) {
153 if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
154 LT.second))
155 return LT.first * Entry->Cost;
156 }
157
158 static const CostTblEntry AVX512UniformConstCostTable[] = {
159 { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
160 { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
161 };
162
163 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
164 ST->hasAVX512()) {
165 if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
166 LT.second))
167 return LT.first * Entry->Cost;
168 }
169
Craig Topper4b275762015-10-28 04:02:12 +0000170 static const CostTblEntry AVX2UniformConstCostTable[] = {
Simon Pilgrim8fbf1c12015-07-06 22:35:19 +0000171 { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle.
172
Benjamin Kramer7c372272014-04-26 14:53:05 +0000173 { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence
174 { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence
175 { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence
176 { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence
177 };
178
179 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
180 ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000181 if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
182 LT.second))
183 return LT.first * Entry->Cost;
Benjamin Kramer7c372272014-04-26 14:53:05 +0000184 }
185
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000186 static const CostTblEntry SSE2UniformConstCostTable[] = {
187 { ISD::SDIV, MVT::v16i16, 12 }, // pmulhw sequence
188 { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence
189 { ISD::UDIV, MVT::v16i16, 12 }, // pmulhuw sequence
190 { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence
191 { ISD::SDIV, MVT::v8i32, 38 }, // pmuludq sequence
192 { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
193 { ISD::UDIV, MVT::v8i32, 30 }, // pmuludq sequence
194 { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
195 };
196
197 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
198 ST->hasSSE2()) {
199 // pmuldq sequence.
200 if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
201 return LT.first * 30;
202 if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
203 return LT.first * 15;
204
205 if (const auto *Entry = CostTableLookup(SSE2UniformConstCostTable, ISD,
206 LT.second))
207 return LT.first * Entry->Cost;
208 }
209
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000210 static const CostTblEntry AVX2UniformCostTable[] = {
211 // Uniform splats are cheaper for the following instructions.
212 { ISD::SHL, MVT::v16i16, 1 }, // psllw.
213 { ISD::SRL, MVT::v16i16, 1 }, // psrlw.
214 { ISD::SRA, MVT::v16i16, 1 }, // psraw.
215 };
216
217 if (ST->hasAVX2() &&
218 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
219 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
220 if (const auto *Entry =
221 CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
222 return LT.first * Entry->Cost;
223 }
224
225 static const CostTblEntry SSE2UniformCostTable[] = {
226 // Uniform splats are cheaper for the following instructions.
227 { ISD::SHL, MVT::v8i16, 1 }, // psllw.
228 { ISD::SHL, MVT::v4i32, 1 }, // pslld
229 { ISD::SHL, MVT::v2i64, 1 }, // psllq.
230
231 { ISD::SRL, MVT::v8i16, 1 }, // psrlw.
232 { ISD::SRL, MVT::v4i32, 1 }, // psrld.
233 { ISD::SRL, MVT::v2i64, 1 }, // psrlq.
234
235 { ISD::SRA, MVT::v8i16, 1 }, // psraw.
236 { ISD::SRA, MVT::v4i32, 1 }, // psrad.
237 };
238
239 if (ST->hasSSE2() &&
240 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
241 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
242 if (const auto *Entry =
243 CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
244 return LT.first * Entry->Cost;
245 }
246
Simon Pilgrim820e1322016-10-27 15:27:00 +0000247 static const CostTblEntry AVX512DQCostTable[] = {
248 { ISD::MUL, MVT::v2i64, 1 },
249 { ISD::MUL, MVT::v4i64, 1 },
250 { ISD::MUL, MVT::v8i64, 1 }
251 };
252
253 // Look for AVX512DQ lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000254 if (ST->hasDQI())
255 if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
Simon Pilgrim820e1322016-10-27 15:27:00 +0000256 return LT.first * Entry->Cost;
Simon Pilgrim820e1322016-10-27 15:27:00 +0000257
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000258 static const CostTblEntry AVX512BWCostTable[] = {
Simon Pilgrima4109d62017-01-07 17:54:10 +0000259 { ISD::SHL, MVT::v32i16, 1 }, // vpsllvw
260 { ISD::SRL, MVT::v32i16, 1 }, // vpsrlvw
261 { ISD::SRA, MVT::v32i16, 1 }, // vpsravw
262
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000263 { ISD::MUL, MVT::v64i8, 11 }, // extend/pmullw/trunc sequence.
264 { ISD::MUL, MVT::v32i8, 4 }, // extend/pmullw/trunc sequence.
265 { ISD::MUL, MVT::v16i8, 4 }, // extend/pmullw/trunc sequence.
266
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000267 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
268 { ISD::SDIV, MVT::v64i8, 64*20 },
269 { ISD::SDIV, MVT::v32i16, 32*20 },
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000270 { ISD::UDIV, MVT::v64i8, 64*20 },
Simon Pilgrimd8333372017-01-06 11:12:53 +0000271 { ISD::UDIV, MVT::v32i16, 32*20 }
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000272 };
273
274 // Look for AVX512BW lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000275 if (ST->hasBWI())
276 if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000277 return LT.first * Entry->Cost;
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000278
Craig Topper4b275762015-10-28 04:02:12 +0000279 static const CostTblEntry AVX512CostTable[] = {
Simon Pilgrimd8333372017-01-06 11:12:53 +0000280 { ISD::SHL, MVT::v16i32, 1 },
281 { ISD::SRL, MVT::v16i32, 1 },
282 { ISD::SRA, MVT::v16i32, 1 },
283 { ISD::SHL, MVT::v8i64, 1 },
284 { ISD::SRL, MVT::v8i64, 1 },
285 { ISD::SRA, MVT::v8i64, 1 },
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000286
Simon Pilgrimd8333372017-01-06 11:12:53 +0000287 { ISD::MUL, MVT::v32i8, 13 }, // extend/pmullw/trunc sequence.
288 { ISD::MUL, MVT::v16i8, 5 }, // extend/pmullw/trunc sequence.
289 { ISD::MUL, MVT::v16i32, 1 }, // pmulld
290 { ISD::MUL, MVT::v8i64, 8 }, // 3*pmuludq/3*shift/2*add
291
292 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
293 { ISD::SDIV, MVT::v16i32, 16*20 },
294 { ISD::SDIV, MVT::v8i64, 8*20 },
295 { ISD::UDIV, MVT::v16i32, 16*20 },
296 { ISD::UDIV, MVT::v8i64, 8*20 }
Elena Demikhovsky27012472014-09-16 07:57:37 +0000297 };
298
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000299 if (ST->hasAVX512())
Craig Topperee0c8592015-10-27 04:14:24 +0000300 if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
301 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000302
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000303 static const CostTblEntry AVX2ShiftCostTable[] = {
Michael Liao70dd7f92013-03-20 22:01:10 +0000304 // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
305 // customize them to detect the cases where shift amount is a scalar one.
306 { ISD::SHL, MVT::v4i32, 1 },
307 { ISD::SRL, MVT::v4i32, 1 },
308 { ISD::SRA, MVT::v4i32, 1 },
309 { ISD::SHL, MVT::v8i32, 1 },
310 { ISD::SRL, MVT::v8i32, 1 },
311 { ISD::SRA, MVT::v8i32, 1 },
312 { ISD::SHL, MVT::v2i64, 1 },
313 { ISD::SRL, MVT::v2i64, 1 },
314 { ISD::SHL, MVT::v4i64, 1 },
315 { ISD::SRL, MVT::v4i64, 1 },
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000316 };
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000317
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000318 // Look for AVX2 lowering tricks.
319 if (ST->hasAVX2()) {
320 if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
321 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
322 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
323 // On AVX2, a packed v16i16 shift left by a constant build_vector
324 // is lowered into a vector multiply (vpmullw).
325 return LT.first;
326
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000327 if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000328 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000329 }
330
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000331 static const CostTblEntry XOPShiftCostTable[] = {
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000332 // 128bit shifts take 1cy, but right shifts require negation beforehand.
333 { ISD::SHL, MVT::v16i8, 1 },
334 { ISD::SRL, MVT::v16i8, 2 },
335 { ISD::SRA, MVT::v16i8, 2 },
336 { ISD::SHL, MVT::v8i16, 1 },
337 { ISD::SRL, MVT::v8i16, 2 },
338 { ISD::SRA, MVT::v8i16, 2 },
339 { ISD::SHL, MVT::v4i32, 1 },
340 { ISD::SRL, MVT::v4i32, 2 },
341 { ISD::SRA, MVT::v4i32, 2 },
342 { ISD::SHL, MVT::v2i64, 1 },
343 { ISD::SRL, MVT::v2i64, 2 },
344 { ISD::SRA, MVT::v2i64, 2 },
345 // 256bit shifts require splitting if AVX2 didn't catch them above.
346 { ISD::SHL, MVT::v32i8, 2 },
347 { ISD::SRL, MVT::v32i8, 4 },
348 { ISD::SRA, MVT::v32i8, 4 },
349 { ISD::SHL, MVT::v16i16, 2 },
350 { ISD::SRL, MVT::v16i16, 4 },
351 { ISD::SRA, MVT::v16i16, 4 },
352 { ISD::SHL, MVT::v8i32, 2 },
353 { ISD::SRL, MVT::v8i32, 4 },
354 { ISD::SRA, MVT::v8i32, 4 },
355 { ISD::SHL, MVT::v4i64, 2 },
356 { ISD::SRL, MVT::v4i64, 4 },
357 { ISD::SRA, MVT::v4i64, 4 },
358 };
359
360 // Look for XOP lowering tricks.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000361 if (ST->hasXOP())
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000362 if (const auto *Entry = CostTableLookup(XOPShiftCostTable, ISD, LT.second))
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000363 return LT.first * Entry->Cost;
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000364
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000365 static const CostTblEntry SSE2UniformShiftCostTable[] = {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000366 // Uniform splats are cheaper for the following instructions.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000367 { ISD::SHL, MVT::v16i8, 1 }, // psllw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000368 { ISD::SHL, MVT::v32i8, 2 }, // psllw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000369 { ISD::SHL, MVT::v16i16, 2 }, // psllw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000370 { ISD::SHL, MVT::v8i32, 2 }, // pslld
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000371 { ISD::SHL, MVT::v4i64, 2 }, // psllq.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000372
373 { ISD::SRL, MVT::v16i8, 1 }, // psrlw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000374 { ISD::SRL, MVT::v32i8, 2 }, // psrlw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000375 { ISD::SRL, MVT::v16i16, 2 }, // psrlw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000376 { ISD::SRL, MVT::v8i32, 2 }, // psrld.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000377 { ISD::SRL, MVT::v4i64, 2 }, // psrlq.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000378
379 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000380 { ISD::SRA, MVT::v32i8, 8 }, // psrlw, pand, pxor, psubb.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000381 { ISD::SRA, MVT::v16i16, 2 }, // psraw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000382 { ISD::SRA, MVT::v8i32, 2 }, // psrad.
Simon Pilgrim8fbf1c12015-07-06 22:35:19 +0000383 { ISD::SRA, MVT::v2i64, 4 }, // 2 x psrad + shuffle.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000384 { ISD::SRA, MVT::v4i64, 8 }, // 2 x psrad + shuffle.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000385 };
386
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000387 if (ST->hasSSE2() &&
388 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
389 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000390 if (const auto *Entry =
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000391 CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000392 return LT.first * Entry->Cost;
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000393 }
394
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000395 if (ISD == ISD::SHL &&
396 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
Craig Toppereda02a92015-10-25 03:15:29 +0000397 MVT VT = LT.second;
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000398 // Vector shift left by non uniform constant can be lowered
Simon Pilgrime70644d2017-01-07 21:33:00 +0000399 // into vector multiply.
400 if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
401 ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000402 ISD = ISD::MUL;
403 }
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000404
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000405 static const CostTblEntry AVX2CostTable[] = {
406 { ISD::SHL, MVT::v32i8, 11 }, // vpblendvb sequence.
407 { ISD::SHL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
408
409 { ISD::SRL, MVT::v32i8, 11 }, // vpblendvb sequence.
410 { ISD::SRL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
411
412 { ISD::SRA, MVT::v32i8, 24 }, // vpblendvb sequence.
413 { ISD::SRA, MVT::v16i16, 10 }, // extend/vpsravd/pack sequence.
414 { ISD::SRA, MVT::v2i64, 4 }, // srl/xor/sub sequence.
415 { ISD::SRA, MVT::v4i64, 4 }, // srl/xor/sub sequence.
416
417 { ISD::SUB, MVT::v32i8, 1 }, // psubb
418 { ISD::ADD, MVT::v32i8, 1 }, // paddb
419 { ISD::SUB, MVT::v16i16, 1 }, // psubw
420 { ISD::ADD, MVT::v16i16, 1 }, // paddw
421 { ISD::SUB, MVT::v8i32, 1 }, // psubd
422 { ISD::ADD, MVT::v8i32, 1 }, // paddd
423 { ISD::SUB, MVT::v4i64, 1 }, // psubq
424 { ISD::ADD, MVT::v4i64, 1 }, // paddq
425
426 { ISD::MUL, MVT::v32i8, 17 }, // extend/pmullw/trunc sequence.
427 { ISD::MUL, MVT::v16i8, 7 }, // extend/pmullw/trunc sequence.
428 { ISD::MUL, MVT::v16i16, 1 }, // pmullw
429 { ISD::MUL, MVT::v8i32, 1 }, // pmulld
430 { ISD::MUL, MVT::v4i64, 8 }, // 3*pmuludq/3*shift/2*add
431
432 { ISD::FDIV, MVT::f32, 7 }, // Haswell from http://www.agner.org/
433 { ISD::FDIV, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
434 { ISD::FDIV, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
435 { ISD::FDIV, MVT::f64, 14 }, // Haswell from http://www.agner.org/
436 { ISD::FDIV, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
437 { ISD::FDIV, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
438 };
439
440 // Look for AVX2 lowering tricks for custom cases.
441 if (ST->hasAVX2())
442 if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
443 return LT.first * Entry->Cost;
444
Simon Pilgrim100eae12017-01-07 17:03:51 +0000445 static const CostTblEntry AVX1CostTable[] = {
446 // We don't have to scalarize unsupported ops. We can issue two half-sized
447 // operations and we only need to extract the upper YMM half.
448 // Two ops + 1 extract + 1 insert = 4.
Simon Pilgrim72599712017-01-07 18:19:25 +0000449 { ISD::MUL, MVT::v16i16, 4 },
450 { ISD::MUL, MVT::v8i32, 4 },
451 { ISD::SUB, MVT::v32i8, 4 },
452 { ISD::ADD, MVT::v32i8, 4 },
453 { ISD::SUB, MVT::v16i16, 4 },
454 { ISD::ADD, MVT::v16i16, 4 },
455 { ISD::SUB, MVT::v8i32, 4 },
456 { ISD::ADD, MVT::v8i32, 4 },
457 { ISD::SUB, MVT::v4i64, 4 },
458 { ISD::ADD, MVT::v4i64, 4 },
Simon Pilgrim100eae12017-01-07 17:03:51 +0000459
460 // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
461 // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
462 // Because we believe v4i64 to be a legal type, we must also include the
463 // extract+insert in the cost table. Therefore, the cost here is 18
464 // instead of 8.
Simon Pilgrim72599712017-01-07 18:19:25 +0000465 { ISD::MUL, MVT::v4i64, 18 },
466
467 { ISD::MUL, MVT::v32i8, 26 }, // extend/pmullw/trunc sequence.
468
469 { ISD::FDIV, MVT::f32, 14 }, // SNB from http://www.agner.org/
470 { ISD::FDIV, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
471 { ISD::FDIV, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
472 { ISD::FDIV, MVT::f64, 22 }, // SNB from http://www.agner.org/
473 { ISD::FDIV, MVT::v2f64, 22 }, // SNB from http://www.agner.org/
474 { ISD::FDIV, MVT::v4f64, 44 }, // SNB from http://www.agner.org/
475
476 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
477 { ISD::SDIV, MVT::v32i8, 32*20 },
478 { ISD::SDIV, MVT::v16i16, 16*20 },
479 { ISD::SDIV, MVT::v8i32, 8*20 },
480 { ISD::SDIV, MVT::v4i64, 4*20 },
481 { ISD::UDIV, MVT::v32i8, 32*20 },
482 { ISD::UDIV, MVT::v16i16, 16*20 },
483 { ISD::UDIV, MVT::v8i32, 8*20 },
484 { ISD::UDIV, MVT::v4i64, 4*20 },
Simon Pilgrim100eae12017-01-07 17:03:51 +0000485 };
486
Simon Pilgrimdf7de7a2017-01-07 17:27:39 +0000487 if (ST->hasAVX())
Simon Pilgrim100eae12017-01-07 17:03:51 +0000488 if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
489 return LT.first * Entry->Cost;
490
Simon Pilgrim5b06e4d2017-01-05 19:19:39 +0000491 static const CostTblEntry SSE42CostTable[] = {
492 { ISD::FDIV, MVT::f32, 14 }, // Nehalem from http://www.agner.org/
493 { ISD::FDIV, MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
494 { ISD::FDIV, MVT::f64, 22 }, // Nehalem from http://www.agner.org/
495 { ISD::FDIV, MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
496 };
497
498 if (ST->hasSSE42())
499 if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
500 return LT.first * Entry->Cost;
501
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000502 static const CostTblEntry SSE41CostTable[] = {
503 { ISD::SHL, MVT::v16i8, 11 }, // pblendvb sequence.
504 { ISD::SHL, MVT::v32i8, 2*11 }, // pblendvb sequence.
505 { ISD::SHL, MVT::v8i16, 14 }, // pblendvb sequence.
506 { ISD::SHL, MVT::v16i16, 2*14 }, // pblendvb sequence.
Simon Pilgrim9681c402017-01-07 22:27:43 +0000507 { ISD::SHL, MVT::v4i32, 4 }, // pslld/paddd/cvttps2dq/pmulld
508 { ISD::SHL, MVT::v8i32, 2*4 }, // pslld/paddd/cvttps2dq/pmulld
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000509
510 { ISD::SRL, MVT::v16i8, 12 }, // pblendvb sequence.
511 { ISD::SRL, MVT::v32i8, 2*12 }, // pblendvb sequence.
512 { ISD::SRL, MVT::v8i16, 14 }, // pblendvb sequence.
513 { ISD::SRL, MVT::v16i16, 2*14 }, // pblendvb sequence.
514 { ISD::SRL, MVT::v4i32, 11 }, // Shift each lane + blend.
515 { ISD::SRL, MVT::v8i32, 2*11 }, // Shift each lane + blend.
516
517 { ISD::SRA, MVT::v16i8, 24 }, // pblendvb sequence.
518 { ISD::SRA, MVT::v32i8, 2*24 }, // pblendvb sequence.
519 { ISD::SRA, MVT::v8i16, 14 }, // pblendvb sequence.
520 { ISD::SRA, MVT::v16i16, 2*14 }, // pblendvb sequence.
521 { ISD::SRA, MVT::v4i32, 12 }, // Shift each lane + blend.
522 { ISD::SRA, MVT::v8i32, 2*12 }, // Shift each lane + blend.
Simon Pilgrim4c050c212017-01-05 19:42:43 +0000523
524 { ISD::MUL, MVT::v4i32, 1 } // pmulld
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000525 };
526
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000527 if (ST->hasSSE41())
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000528 if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
529 return LT.first * Entry->Cost;
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000530
Craig Topper4b275762015-10-28 04:02:12 +0000531 static const CostTblEntry SSE2CostTable[] = {
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000532 // We don't correctly identify costs of casts because they are marked as
533 // custom.
Simon Pilgrim59656802015-06-11 07:46:37 +0000534 { ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence.
535 { ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence.
536 { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000537 { ISD::SHL, MVT::v8i32, 2*2*5 }, // We optimized this using mul.
Simon Pilgrim59764dc2015-07-18 20:06:30 +0000538 { ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000539 { ISD::SHL, MVT::v4i64, 2*4 }, // splat+shuffle sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000540
541 { ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence.
542 { ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence.
543 { ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend.
Simon Pilgrim59764dc2015-07-18 20:06:30 +0000544 { ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000545 { ISD::SRL, MVT::v4i64, 2*4 }, // splat+shuffle sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000546
547 { ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence.
548 { ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence.
549 { ISD::SRA, MVT::v4i32, 16 }, // Shift each lane + blend.
Simon Pilgrim86478c62015-07-29 20:31:45 +0000550 { ISD::SRA, MVT::v2i64, 12 }, // srl/xor/sub sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000551 { ISD::SRA, MVT::v4i64, 2*12 }, // srl/xor/sub sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000552
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000553 { ISD::MUL, MVT::v16i8, 12 }, // extend/pmullw/trunc sequence.
Simon Pilgrime70644d2017-01-07 21:33:00 +0000554 { ISD::MUL, MVT::v8i16, 1 }, // pmullw
Simon Pilgrim4c050c212017-01-05 19:42:43 +0000555 { ISD::MUL, MVT::v4i32, 6 }, // 3*pmuludq/4*shuffle
Simon Pilgrima8bf9752017-01-05 19:01:50 +0000556 { ISD::MUL, MVT::v2i64, 8 }, // 3*pmuludq/3*shift/2*add
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000557
Alexey Bataevd07c7312016-10-31 12:10:53 +0000558 { ISD::FDIV, MVT::f32, 23 }, // Pentium IV from http://www.agner.org/
559 { ISD::FDIV, MVT::v4f32, 39 }, // Pentium IV from http://www.agner.org/
560 { ISD::FDIV, MVT::f64, 38 }, // Pentium IV from http://www.agner.org/
561 { ISD::FDIV, MVT::v2f64, 69 }, // Pentium IV from http://www.agner.org/
562
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000563 // It is not a good idea to vectorize division. We have to scalarize it and
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000564 // in the process we will often end up having to spilling regular
565 // registers. The overhead of division is going to dominate most kernels
566 // anyways so try hard to prevent vectorization of division - it is
567 // generally a bad idea. Assume somewhat arbitrarily that we have to be able
568 // to hide "20 cycles" for each lane.
569 { ISD::SDIV, MVT::v16i8, 16*20 },
Simon Pilgrime70644d2017-01-07 21:33:00 +0000570 { ISD::SDIV, MVT::v8i16, 8*20 },
571 { ISD::SDIV, MVT::v4i32, 4*20 },
572 { ISD::SDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000573 { ISD::UDIV, MVT::v16i8, 16*20 },
Simon Pilgrime70644d2017-01-07 21:33:00 +0000574 { ISD::UDIV, MVT::v8i16, 8*20 },
575 { ISD::UDIV, MVT::v4i32, 4*20 },
576 { ISD::UDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000577 };
578
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000579 if (ST->hasSSE2())
Craig Topperee0c8592015-10-27 04:14:24 +0000580 if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
581 return LT.first * Entry->Cost;
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000582
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000583 static const CostTblEntry SSE1CostTable[] = {
Alexey Bataevd07c7312016-10-31 12:10:53 +0000584 { ISD::FDIV, MVT::f32, 17 }, // Pentium III from http://www.agner.org/
585 { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
586 };
587
588 if (ST->hasSSE1())
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000589 if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
Alexey Bataevd07c7312016-10-31 12:10:53 +0000590 return LT.first * Entry->Cost;
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000591
Chandler Carruth664e3542013-01-07 01:37:14 +0000592 // Fallback to the default implementation.
Chandler Carruth705b1852015-01-31 03:43:40 +0000593 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
Chandler Carruth664e3542013-01-07 01:37:14 +0000594}
595
Chandler Carruth93205eb2015-08-05 18:08:10 +0000596int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
597 Type *SubTp) {
Simon Pilgrima62395a2017-01-05 14:33:32 +0000598 // 64-bit packed float vectors (v2f32) are widened to type v4f32.
599 // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
600 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
Karthik Bhate03a25d2014-06-20 04:32:48 +0000601
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000602 // For Broadcasts we are splatting the first element from the first input
603 // register, so only need to reference that input and all the output
604 // registers are the same.
605 if (Kind == TTI::SK_Broadcast)
606 LT.first = 1;
Simon Pilgrimbca02f92017-01-05 15:56:08 +0000607
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000608 // We are going to permute multiple sources and the result will be in multiple
609 // destinations. Providing an accurate cost only for splits where the element
610 // type remains the same.
611 if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
612 MVT LegalVT = LT.second;
613 if (LegalVT.getVectorElementType().getSizeInBits() ==
614 Tp->getVectorElementType()->getPrimitiveSizeInBits() &&
615 LegalVT.getVectorNumElements() < Tp->getVectorNumElements()) {
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000616
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000617 unsigned VecTySize = DL.getTypeStoreSize(Tp);
618 unsigned LegalVTSize = LegalVT.getStoreSize();
619 // Number of source vectors after legalization:
620 unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
621 // Number of destination vectors after legalization:
622 unsigned NumOfDests = LT.first;
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000623
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000624 Type *SingleOpTy = VectorType::get(Tp->getVectorElementType(),
625 LegalVT.getVectorNumElements());
Simon Pilgrimbca02f92017-01-05 15:56:08 +0000626
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000627 unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
628 return NumOfShuffles *
629 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
630 }
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000631
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000632 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
633 }
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000634
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000635 // For 2-input shuffles, we must account for splitting the 2 inputs into many.
636 if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000637 // We assume that source and destination have the same vector type.
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000638 int NumOfDests = LT.first;
639 int NumOfShufflesPerDest = LT.first * 2 - 1;
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000640 LT.first = NumOfDests * NumOfShufflesPerDest;
Karthik Bhate03a25d2014-06-20 04:32:48 +0000641 }
642
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000643 static const CostTblEntry AVX512VBMIShuffleTbl[] = {
644 { TTI::SK_Reverse, MVT::v64i8, 1 }, // vpermb
645 { TTI::SK_Reverse, MVT::v32i8, 1 }, // vpermb
646
647 { TTI::SK_PermuteSingleSrc, MVT::v64i8, 1 }, // vpermb
648 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 1 }, // vpermb
649
650 { TTI::SK_PermuteTwoSrc, MVT::v64i8, 1 }, // vpermt2b
651 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 1 }, // vpermt2b
652 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 1 } // vpermt2b
653 };
654
655 if (ST->hasVBMI())
656 if (const auto *Entry =
657 CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
658 return LT.first * Entry->Cost;
659
660 static const CostTblEntry AVX512BWShuffleTbl[] = {
661 { TTI::SK_Broadcast, MVT::v32i16, 1 }, // vpbroadcastw
662 { TTI::SK_Broadcast, MVT::v64i8, 1 }, // vpbroadcastb
663
664 { TTI::SK_Reverse, MVT::v32i16, 1 }, // vpermw
665 { TTI::SK_Reverse, MVT::v16i16, 1 }, // vpermw
Simon Pilgrima1b8e2c2017-01-07 15:37:50 +0000666 { TTI::SK_Reverse, MVT::v64i8, 2 }, // pshufb + vshufi64x2
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000667
668 { TTI::SK_PermuteSingleSrc, MVT::v32i16, 1 }, // vpermw
669 { TTI::SK_PermuteSingleSrc, MVT::v16i16, 1 }, // vpermw
670 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 1 }, // vpermw
671 { TTI::SK_PermuteSingleSrc, MVT::v64i8, 8 }, // extend to v32i16
672 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 3 }, // vpermw + zext/trunc
673
674 { TTI::SK_PermuteTwoSrc, MVT::v32i16, 1 }, // vpermt2w
675 { TTI::SK_PermuteTwoSrc, MVT::v16i16, 1 }, // vpermt2w
676 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 1 }, // vpermt2w
677 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 3 }, // zext + vpermt2w + trunc
678 { TTI::SK_PermuteTwoSrc, MVT::v64i8, 19 }, // 6 * v32i8 + 1
679 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 3 } // zext + vpermt2w + trunc
680 };
681
682 if (ST->hasBWI())
683 if (const auto *Entry =
684 CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
685 return LT.first * Entry->Cost;
686
687 static const CostTblEntry AVX512ShuffleTbl[] = {
688 { TTI::SK_Broadcast, MVT::v8f64, 1 }, // vbroadcastpd
689 { TTI::SK_Broadcast, MVT::v16f32, 1 }, // vbroadcastps
690 { TTI::SK_Broadcast, MVT::v8i64, 1 }, // vpbroadcastq
691 { TTI::SK_Broadcast, MVT::v16i32, 1 }, // vpbroadcastd
692
693 { TTI::SK_Reverse, MVT::v8f64, 1 }, // vpermpd
694 { TTI::SK_Reverse, MVT::v16f32, 1 }, // vpermps
695 { TTI::SK_Reverse, MVT::v8i64, 1 }, // vpermq
696 { TTI::SK_Reverse, MVT::v16i32, 1 }, // vpermd
697
698 { TTI::SK_PermuteSingleSrc, MVT::v8f64, 1 }, // vpermpd
699 { TTI::SK_PermuteSingleSrc, MVT::v4f64, 1 }, // vpermpd
700 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // vpermpd
701 { TTI::SK_PermuteSingleSrc, MVT::v16f32, 1 }, // vpermps
702 { TTI::SK_PermuteSingleSrc, MVT::v8f32, 1 }, // vpermps
703 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // vpermps
704 { TTI::SK_PermuteSingleSrc, MVT::v8i64, 1 }, // vpermq
705 { TTI::SK_PermuteSingleSrc, MVT::v4i64, 1 }, // vpermq
706 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // vpermq
707 { TTI::SK_PermuteSingleSrc, MVT::v16i32, 1 }, // vpermd
708 { TTI::SK_PermuteSingleSrc, MVT::v8i32, 1 }, // vpermd
709 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 1 }, // vpermd
710 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 1 }, // pshufb
711
712 { TTI::SK_PermuteTwoSrc, MVT::v8f64, 1 }, // vpermt2pd
713 { TTI::SK_PermuteTwoSrc, MVT::v16f32, 1 }, // vpermt2ps
714 { TTI::SK_PermuteTwoSrc, MVT::v8i64, 1 }, // vpermt2q
715 { TTI::SK_PermuteTwoSrc, MVT::v16i32, 1 }, // vpermt2d
716 { TTI::SK_PermuteTwoSrc, MVT::v4f64, 1 }, // vpermt2pd
717 { TTI::SK_PermuteTwoSrc, MVT::v8f32, 1 }, // vpermt2ps
718 { TTI::SK_PermuteTwoSrc, MVT::v4i64, 1 }, // vpermt2q
719 { TTI::SK_PermuteTwoSrc, MVT::v8i32, 1 }, // vpermt2d
720 { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // vpermt2pd
721 { TTI::SK_PermuteTwoSrc, MVT::v4f32, 1 }, // vpermt2ps
722 { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // vpermt2q
723 { TTI::SK_PermuteTwoSrc, MVT::v4i32, 1 } // vpermt2d
724 };
725
726 if (ST->hasAVX512())
727 if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
728 return LT.first * Entry->Cost;
729
730 static const CostTblEntry AVX2ShuffleTbl[] = {
731 { TTI::SK_Broadcast, MVT::v4f64, 1 }, // vbroadcastpd
732 { TTI::SK_Broadcast, MVT::v8f32, 1 }, // vbroadcastps
733 { TTI::SK_Broadcast, MVT::v4i64, 1 }, // vpbroadcastq
734 { TTI::SK_Broadcast, MVT::v8i32, 1 }, // vpbroadcastd
735 { TTI::SK_Broadcast, MVT::v16i16, 1 }, // vpbroadcastw
736 { TTI::SK_Broadcast, MVT::v32i8, 1 }, // vpbroadcastb
737
738 { TTI::SK_Reverse, MVT::v4f64, 1 }, // vpermpd
739 { TTI::SK_Reverse, MVT::v8f32, 1 }, // vpermps
740 { TTI::SK_Reverse, MVT::v4i64, 1 }, // vpermq
741 { TTI::SK_Reverse, MVT::v8i32, 1 }, // vpermd
742 { TTI::SK_Reverse, MVT::v16i16, 2 }, // vperm2i128 + pshufb
743 { TTI::SK_Reverse, MVT::v32i8, 2 }, // vperm2i128 + pshufb
744
745 { TTI::SK_Alternate, MVT::v16i16, 1 }, // vpblendw
746 { TTI::SK_Alternate, MVT::v32i8, 1 } // vpblendvb
747 };
748
749 if (ST->hasAVX2())
750 if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
751 return LT.first * Entry->Cost;
752
753 static const CostTblEntry AVX1ShuffleTbl[] = {
754 { TTI::SK_Broadcast, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
755 { TTI::SK_Broadcast, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
756 { TTI::SK_Broadcast, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
757 { TTI::SK_Broadcast, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
758 { TTI::SK_Broadcast, MVT::v16i16, 3 }, // vpshuflw + vpshufd + vinsertf128
759 { TTI::SK_Broadcast, MVT::v32i8, 2 }, // vpshufb + vinsertf128
760
761 { TTI::SK_Reverse, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
762 { TTI::SK_Reverse, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
763 { TTI::SK_Reverse, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
764 { TTI::SK_Reverse, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
765 { TTI::SK_Reverse, MVT::v16i16, 4 }, // vextractf128 + 2*pshufb
766 // + vinsertf128
767 { TTI::SK_Reverse, MVT::v32i8, 4 }, // vextractf128 + 2*pshufb
768 // + vinsertf128
769
770 { TTI::SK_Alternate, MVT::v4i64, 1 }, // vblendpd
771 { TTI::SK_Alternate, MVT::v4f64, 1 }, // vblendpd
772 { TTI::SK_Alternate, MVT::v8i32, 1 }, // vblendps
773 { TTI::SK_Alternate, MVT::v8f32, 1 }, // vblendps
774 { TTI::SK_Alternate, MVT::v16i16, 3 }, // vpand + vpandn + vpor
775 { TTI::SK_Alternate, MVT::v32i8, 3 } // vpand + vpandn + vpor
776 };
777
778 if (ST->hasAVX())
779 if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
780 return LT.first * Entry->Cost;
781
782 static const CostTblEntry SSE41ShuffleTbl[] = {
783 { TTI::SK_Alternate, MVT::v2i64, 1 }, // pblendw
784 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
785 { TTI::SK_Alternate, MVT::v4i32, 1 }, // pblendw
786 { TTI::SK_Alternate, MVT::v4f32, 1 }, // blendps
787 { TTI::SK_Alternate, MVT::v8i16, 1 }, // pblendw
788 { TTI::SK_Alternate, MVT::v16i8, 1 } // pblendvb
789 };
790
791 if (ST->hasSSE41())
792 if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
793 return LT.first * Entry->Cost;
794
795 static const CostTblEntry SSSE3ShuffleTbl[] = {
796 { TTI::SK_Broadcast, MVT::v8i16, 1 }, // pshufb
797 { TTI::SK_Broadcast, MVT::v16i8, 1 }, // pshufb
798
799 { TTI::SK_Reverse, MVT::v8i16, 1 }, // pshufb
800 { TTI::SK_Reverse, MVT::v16i8, 1 }, // pshufb
801
802 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pshufb + pshufb + por
803 { TTI::SK_Alternate, MVT::v16i8, 3 } // pshufb + pshufb + por
804 };
805
806 if (ST->hasSSSE3())
807 if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
808 return LT.first * Entry->Cost;
809
810 static const CostTblEntry SSE2ShuffleTbl[] = {
811 { TTI::SK_Broadcast, MVT::v2f64, 1 }, // shufpd
812 { TTI::SK_Broadcast, MVT::v2i64, 1 }, // pshufd
813 { TTI::SK_Broadcast, MVT::v4i32, 1 }, // pshufd
814 { TTI::SK_Broadcast, MVT::v8i16, 2 }, // pshuflw + pshufd
815 { TTI::SK_Broadcast, MVT::v16i8, 3 }, // unpck + pshuflw + pshufd
816
817 { TTI::SK_Reverse, MVT::v2f64, 1 }, // shufpd
818 { TTI::SK_Reverse, MVT::v2i64, 1 }, // pshufd
819 { TTI::SK_Reverse, MVT::v4i32, 1 }, // pshufd
820 { TTI::SK_Reverse, MVT::v8i16, 3 }, // pshuflw + pshufhw + pshufd
821 { TTI::SK_Reverse, MVT::v16i8, 9 }, // 2*pshuflw + 2*pshufhw
822 // + 2*pshufd + 2*unpck + packus
823
824 { TTI::SK_Alternate, MVT::v2i64, 1 }, // movsd
825 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
826 { TTI::SK_Alternate, MVT::v4i32, 2 }, // 2*shufps
827 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pand + pandn + por
828 { TTI::SK_Alternate, MVT::v16i8, 3 } // pand + pandn + por
829 };
830
831 if (ST->hasSSE2())
832 if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
833 return LT.first * Entry->Cost;
834
835 static const CostTblEntry SSE1ShuffleTbl[] = {
836 { TTI::SK_Broadcast, MVT::v4f32, 1 }, // shufps
837 { TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps
838 { TTI::SK_Alternate, MVT::v4f32, 2 } // 2*shufps
839 };
840
841 if (ST->hasSSE1())
842 if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
843 return LT.first * Entry->Cost;
844
Chandler Carruth705b1852015-01-31 03:43:40 +0000845 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
Chandler Carruth664e3542013-01-07 01:37:14 +0000846}
847
Chandler Carruth93205eb2015-08-05 18:08:10 +0000848int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000849 int ISD = TLI->InstructionOpcodeToISD(Opcode);
850 assert(ISD && "Invalid opcode");
851
Cong Hou59898d82015-12-11 00:31:39 +0000852 // FIXME: Need a better design of the cost table to handle non-simple types of
853 // potential massive combinations (elem_num x src_type x dst_type).
854
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000855 static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000856 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
857 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000858 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
859 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000860 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
861 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
862
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000863 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000864 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000865 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000866 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +0000867 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000868 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000869
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000870 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000871 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000872 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, 1 },
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000873 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000874 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000875 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, 1 },
876
877 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 1 },
878 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 },
879 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 },
880 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
881 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 },
882 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000883 };
884
Michael Kupersteinf0c59332016-07-11 21:39:44 +0000885 // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
886 // 256-bit wide vectors.
887
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000888 static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +0000889 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
890 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
891 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000892
893 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 1 },
894 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 1 },
895 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 1 },
896 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000897
898 // v16i1 -> v16i32 - load + broadcast
899 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
900 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000901 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
902 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
903 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
904 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000905 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
906 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000907 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
908 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000909
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000910 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000911 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000912 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000913 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000914 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000915 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
916 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000917 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +0000918 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 },
919 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000920
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000921 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000922 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000923 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000924 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
925 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 2 },
926 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
927 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000928 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000929 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
930 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
931 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
932 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000933 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +0000934 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000935 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
936 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
937 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
938 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
939 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +0000940 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000941 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
942 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 12 },
943 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
944
945 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
946 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
947 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 },
948 { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000949 };
950
Craig Topper4b275762015-10-28 04:02:12 +0000951 static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +0000952 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
953 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000954 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
955 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000956 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
957 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000958 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
959 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
960 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
961 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000962 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
963 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000964 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
965 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000966 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
967 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
968
969 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 },
970 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 },
971 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
972 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 },
973 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
974 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000975
976 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
977 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
Quentin Colombet360460b2014-11-11 02:23:47 +0000978
979 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000980 };
981
Craig Topper4b275762015-10-28 04:02:12 +0000982 static const TypeConversionCostTblEntry AVXConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +0000983 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
984 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000985 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
986 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000987 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 },
988 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000989 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 7 },
990 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
991 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
992 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000993 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
994 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000995 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
996 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000997 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
998 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
999
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001000 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 },
1001 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1002 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001003 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 },
1004 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 },
1005 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001006 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 9 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001007
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001008 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001009 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001010 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
1011 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001012 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001013 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
1014 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001015 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001016 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
1017 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001018 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001019 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001020
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001021 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001022 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001023 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
1024 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001025 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001026 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
1027 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001028 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001029 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001030 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001031 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001032 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001033 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
Quentin Colombet85b904d2014-03-27 22:27:41 +00001034 // The generic code to compute the scalar overhead is currently broken.
1035 // Workaround this limitation by estimating the scalarization overhead
1036 // here. We have roughly 10 instructions per scalar element.
1037 // Multiply that by the vector width.
1038 // FIXME: remove that when PR19268 is fixed.
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001039 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 10 },
1040 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 20 },
1041 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
1042 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001043
Renato Goline1fb0592013-01-20 20:57:20 +00001044 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001045 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 7 },
Adam Nemet6dafe972014-03-30 18:07:13 +00001046 // This node is expanded into scalarized operations but BasicTTI is overly
1047 // optimistic estimating its cost. It computes 3 per element (one
1048 // vector-extract, one scalar conversion and one vector-insert). The
1049 // problem is that the inserts form a read-modify-write chain so latency
1050 // should be factored in too. Inflating the cost per element by 1.
1051 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 },
Adam Nemet10c4ce22014-03-31 21:54:48 +00001052 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001053
1054 { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 },
1055 { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001056 };
1057
Cong Hou59898d82015-12-11 00:31:39 +00001058 static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001059 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
1060 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001061 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1062 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1063 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
1064 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001065
Cong Hou59898d82015-12-11 00:31:39 +00001066 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1067 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001068 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1069 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1070 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1071 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1072 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1073 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1074 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1075 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1076 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1077 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1078 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1079 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1080 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1081 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1082 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1083 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
Cong Hou59898d82015-12-11 00:31:39 +00001084
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001085 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 },
1086 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1 },
1087 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001088 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001089 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001090 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001091 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 },
1092
Cong Hou59898d82015-12-11 00:31:39 +00001093 };
1094
1095 static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001096 // These are somewhat magic numbers justified by looking at the output of
1097 // Intel's IACA, running some kernels and making sure when we take
1098 // legalization into account the throughput will be overestimated.
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001099 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001100 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1101 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1102 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
Sanjay Patel04b34962016-07-06 19:15:54 +00001103 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001104 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1105 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1106 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
Cong Hou59898d82015-12-11 00:31:39 +00001107
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001108 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1109 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1110 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1111 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1112 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1113 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1114 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1115 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001116
Simon Pilgrim4ddc92b2016-10-18 07:42:15 +00001117 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 3 },
1118
Cong Hou59898d82015-12-11 00:31:39 +00001119 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1120 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001121 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
1122 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 3 },
1123 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
1124 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 8 },
1125 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1126 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 2 },
1127 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1128 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1129 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
1130 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1131 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 9 },
1132 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 12 },
1133 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1134 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 2 },
1135 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1136 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 10 },
1137 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
1138 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1139 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001140 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001141 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 },
1142 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 5 },
Cong Hou59898d82015-12-11 00:31:39 +00001143
Cong Hou59898d82015-12-11 00:31:39 +00001144 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001145 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 },
1146 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 },
1147 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 3 },
1148 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 3 },
1149 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1150 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 },
1151 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
1152 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 10 },
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001153 };
1154
Chandler Carruth93205eb2015-08-05 18:08:10 +00001155 std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1156 std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001157
1158 if (ST->hasSSE2() && !ST->hasAVX()) {
Cong Hou59898d82015-12-11 00:31:39 +00001159 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
Craig Topperee0c8592015-10-27 04:14:24 +00001160 LTDest.second, LTSrc.second))
1161 return LTSrc.first * Entry->Cost;
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001162 }
1163
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001164 EVT SrcTy = TLI->getValueType(DL, Src);
1165 EVT DstTy = TLI->getValueType(DL, Dst);
1166
1167 // The function getSimpleVT only handles simple value types.
1168 if (!SrcTy.isSimple() || !DstTy.isSimple())
1169 return BaseT::getCastInstrCost(Opcode, Dst, Src);
1170
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001171 if (ST->hasDQI())
1172 if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
1173 DstTy.getSimpleVT(),
1174 SrcTy.getSimpleVT()))
1175 return Entry->Cost;
1176
1177 if (ST->hasAVX512())
1178 if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
1179 DstTy.getSimpleVT(),
1180 SrcTy.getSimpleVT()))
1181 return Entry->Cost;
1182
Tim Northoverf0e21612014-02-06 18:18:36 +00001183 if (ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001184 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
1185 DstTy.getSimpleVT(),
1186 SrcTy.getSimpleVT()))
1187 return Entry->Cost;
Tim Northoverf0e21612014-02-06 18:18:36 +00001188 }
1189
Chandler Carruth664e3542013-01-07 01:37:14 +00001190 if (ST->hasAVX()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001191 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
1192 DstTy.getSimpleVT(),
1193 SrcTy.getSimpleVT()))
1194 return Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001195 }
1196
Cong Hou59898d82015-12-11 00:31:39 +00001197 if (ST->hasSSE41()) {
1198 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
1199 DstTy.getSimpleVT(),
1200 SrcTy.getSimpleVT()))
1201 return Entry->Cost;
1202 }
1203
1204 if (ST->hasSSE2()) {
1205 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1206 DstTy.getSimpleVT(),
1207 SrcTy.getSimpleVT()))
1208 return Entry->Cost;
1209 }
1210
Chandler Carruth705b1852015-01-31 03:43:40 +00001211 return BaseT::getCastInstrCost(Opcode, Dst, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001212}
1213
Chandler Carruth93205eb2015-08-05 18:08:10 +00001214int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001215 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001216 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Chandler Carruth664e3542013-01-07 01:37:14 +00001217
1218 MVT MTy = LT.second;
1219
1220 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1221 assert(ISD && "Invalid opcode");
1222
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001223 static const CostTblEntry SSE2CostTbl[] = {
1224 { ISD::SETCC, MVT::v2i64, 8 },
1225 { ISD::SETCC, MVT::v4i32, 1 },
1226 { ISD::SETCC, MVT::v8i16, 1 },
1227 { ISD::SETCC, MVT::v16i8, 1 },
1228 };
1229
Craig Topper4b275762015-10-28 04:02:12 +00001230 static const CostTblEntry SSE42CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001231 { ISD::SETCC, MVT::v2f64, 1 },
1232 { ISD::SETCC, MVT::v4f32, 1 },
1233 { ISD::SETCC, MVT::v2i64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001234 };
1235
Craig Topper4b275762015-10-28 04:02:12 +00001236 static const CostTblEntry AVX1CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001237 { ISD::SETCC, MVT::v4f64, 1 },
1238 { ISD::SETCC, MVT::v8f32, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001239 // AVX1 does not support 8-wide integer compare.
Renato Goline1fb0592013-01-20 20:57:20 +00001240 { ISD::SETCC, MVT::v4i64, 4 },
1241 { ISD::SETCC, MVT::v8i32, 4 },
1242 { ISD::SETCC, MVT::v16i16, 4 },
1243 { ISD::SETCC, MVT::v32i8, 4 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001244 };
1245
Craig Topper4b275762015-10-28 04:02:12 +00001246 static const CostTblEntry AVX2CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001247 { ISD::SETCC, MVT::v4i64, 1 },
1248 { ISD::SETCC, MVT::v8i32, 1 },
1249 { ISD::SETCC, MVT::v16i16, 1 },
1250 { ISD::SETCC, MVT::v32i8, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001251 };
1252
Craig Topper4b275762015-10-28 04:02:12 +00001253 static const CostTblEntry AVX512CostTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +00001254 { ISD::SETCC, MVT::v8i64, 1 },
1255 { ISD::SETCC, MVT::v16i32, 1 },
1256 { ISD::SETCC, MVT::v8f64, 1 },
1257 { ISD::SETCC, MVT::v16f32, 1 },
1258 };
1259
Craig Topperee0c8592015-10-27 04:14:24 +00001260 if (ST->hasAVX512())
1261 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1262 return LT.first * Entry->Cost;
Elena Demikhovsky27012472014-09-16 07:57:37 +00001263
Craig Topperee0c8592015-10-27 04:14:24 +00001264 if (ST->hasAVX2())
1265 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1266 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001267
Craig Topperee0c8592015-10-27 04:14:24 +00001268 if (ST->hasAVX())
1269 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1270 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001271
Craig Topperee0c8592015-10-27 04:14:24 +00001272 if (ST->hasSSE42())
1273 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1274 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001275
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001276 if (ST->hasSSE2())
1277 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1278 return LT.first * Entry->Cost;
1279
Chandler Carruth705b1852015-01-31 03:43:40 +00001280 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
Chandler Carruth664e3542013-01-07 01:37:14 +00001281}
1282
Simon Pilgrim14000b32016-05-24 08:17:50 +00001283int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1284 ArrayRef<Type *> Tys, FastMathFlags FMF) {
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001285 // Costs should match the codegen from:
1286 // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
1287 // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001288 // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001289 // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001290 // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
Simon Pilgrim14000b32016-05-24 08:17:50 +00001291 static const CostTblEntry XOPCostTbl[] = {
1292 { ISD::BITREVERSE, MVT::v4i64, 4 },
1293 { ISD::BITREVERSE, MVT::v8i32, 4 },
1294 { ISD::BITREVERSE, MVT::v16i16, 4 },
1295 { ISD::BITREVERSE, MVT::v32i8, 4 },
1296 { ISD::BITREVERSE, MVT::v2i64, 1 },
1297 { ISD::BITREVERSE, MVT::v4i32, 1 },
1298 { ISD::BITREVERSE, MVT::v8i16, 1 },
1299 { ISD::BITREVERSE, MVT::v16i8, 1 },
1300 { ISD::BITREVERSE, MVT::i64, 3 },
1301 { ISD::BITREVERSE, MVT::i32, 3 },
1302 { ISD::BITREVERSE, MVT::i16, 3 },
1303 { ISD::BITREVERSE, MVT::i8, 3 }
1304 };
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001305 static const CostTblEntry AVX2CostTbl[] = {
1306 { ISD::BITREVERSE, MVT::v4i64, 5 },
1307 { ISD::BITREVERSE, MVT::v8i32, 5 },
1308 { ISD::BITREVERSE, MVT::v16i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001309 { ISD::BITREVERSE, MVT::v32i8, 5 },
1310 { ISD::BSWAP, MVT::v4i64, 1 },
1311 { ISD::BSWAP, MVT::v8i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001312 { ISD::BSWAP, MVT::v16i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001313 { ISD::CTLZ, MVT::v4i64, 23 },
1314 { ISD::CTLZ, MVT::v8i32, 18 },
1315 { ISD::CTLZ, MVT::v16i16, 14 },
1316 { ISD::CTLZ, MVT::v32i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001317 { ISD::CTPOP, MVT::v4i64, 7 },
1318 { ISD::CTPOP, MVT::v8i32, 11 },
1319 { ISD::CTPOP, MVT::v16i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001320 { ISD::CTPOP, MVT::v32i8, 6 },
1321 { ISD::CTTZ, MVT::v4i64, 10 },
1322 { ISD::CTTZ, MVT::v8i32, 14 },
1323 { ISD::CTTZ, MVT::v16i16, 12 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001324 { ISD::CTTZ, MVT::v32i8, 9 },
1325 { ISD::FSQRT, MVT::f32, 7 }, // Haswell from http://www.agner.org/
1326 { ISD::FSQRT, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
1327 { ISD::FSQRT, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
1328 { ISD::FSQRT, MVT::f64, 14 }, // Haswell from http://www.agner.org/
1329 { ISD::FSQRT, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
1330 { ISD::FSQRT, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001331 };
1332 static const CostTblEntry AVX1CostTbl[] = {
1333 { ISD::BITREVERSE, MVT::v4i64, 10 },
1334 { ISD::BITREVERSE, MVT::v8i32, 10 },
1335 { ISD::BITREVERSE, MVT::v16i16, 10 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001336 { ISD::BITREVERSE, MVT::v32i8, 10 },
1337 { ISD::BSWAP, MVT::v4i64, 4 },
1338 { ISD::BSWAP, MVT::v8i32, 4 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001339 { ISD::BSWAP, MVT::v16i16, 4 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001340 { ISD::CTLZ, MVT::v4i64, 46 },
1341 { ISD::CTLZ, MVT::v8i32, 36 },
1342 { ISD::CTLZ, MVT::v16i16, 28 },
1343 { ISD::CTLZ, MVT::v32i8, 18 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001344 { ISD::CTPOP, MVT::v4i64, 14 },
1345 { ISD::CTPOP, MVT::v8i32, 22 },
1346 { ISD::CTPOP, MVT::v16i16, 18 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001347 { ISD::CTPOP, MVT::v32i8, 12 },
1348 { ISD::CTTZ, MVT::v4i64, 20 },
1349 { ISD::CTTZ, MVT::v8i32, 28 },
1350 { ISD::CTTZ, MVT::v16i16, 24 },
1351 { ISD::CTTZ, MVT::v32i8, 18 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001352 { ISD::FSQRT, MVT::f32, 14 }, // SNB from http://www.agner.org/
1353 { ISD::FSQRT, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
1354 { ISD::FSQRT, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
1355 { ISD::FSQRT, MVT::f64, 21 }, // SNB from http://www.agner.org/
1356 { ISD::FSQRT, MVT::v2f64, 21 }, // SNB from http://www.agner.org/
1357 { ISD::FSQRT, MVT::v4f64, 43 }, // SNB from http://www.agner.org/
1358 };
1359 static const CostTblEntry SSE42CostTbl[] = {
1360 { ISD::FSQRT, MVT::f32, 18 }, // Nehalem from http://www.agner.org/
1361 { ISD::FSQRT, MVT::v4f32, 18 }, // Nehalem from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001362 };
1363 static const CostTblEntry SSSE3CostTbl[] = {
1364 { ISD::BITREVERSE, MVT::v2i64, 5 },
1365 { ISD::BITREVERSE, MVT::v4i32, 5 },
1366 { ISD::BITREVERSE, MVT::v8i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001367 { ISD::BITREVERSE, MVT::v16i8, 5 },
1368 { ISD::BSWAP, MVT::v2i64, 1 },
1369 { ISD::BSWAP, MVT::v4i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001370 { ISD::BSWAP, MVT::v8i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001371 { ISD::CTLZ, MVT::v2i64, 23 },
1372 { ISD::CTLZ, MVT::v4i32, 18 },
1373 { ISD::CTLZ, MVT::v8i16, 14 },
1374 { ISD::CTLZ, MVT::v16i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001375 { ISD::CTPOP, MVT::v2i64, 7 },
1376 { ISD::CTPOP, MVT::v4i32, 11 },
1377 { ISD::CTPOP, MVT::v8i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001378 { ISD::CTPOP, MVT::v16i8, 6 },
1379 { ISD::CTTZ, MVT::v2i64, 10 },
1380 { ISD::CTTZ, MVT::v4i32, 14 },
1381 { ISD::CTTZ, MVT::v8i16, 12 },
1382 { ISD::CTTZ, MVT::v16i8, 9 }
Simon Pilgrim356e8232016-06-20 23:08:21 +00001383 };
1384 static const CostTblEntry SSE2CostTbl[] = {
1385 { ISD::BSWAP, MVT::v2i64, 7 },
1386 { ISD::BSWAP, MVT::v4i32, 7 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001387 { ISD::BSWAP, MVT::v8i16, 7 },
Simon Pilgrimd02c5522016-11-08 14:10:28 +00001388 { ISD::CTLZ, MVT::v2i64, 25 },
1389 { ISD::CTLZ, MVT::v4i32, 26 },
1390 { ISD::CTLZ, MVT::v8i16, 20 },
1391 { ISD::CTLZ, MVT::v16i8, 17 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001392 { ISD::CTPOP, MVT::v2i64, 12 },
1393 { ISD::CTPOP, MVT::v4i32, 15 },
1394 { ISD::CTPOP, MVT::v8i16, 13 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001395 { ISD::CTPOP, MVT::v16i8, 10 },
1396 { ISD::CTTZ, MVT::v2i64, 14 },
1397 { ISD::CTTZ, MVT::v4i32, 18 },
1398 { ISD::CTTZ, MVT::v8i16, 16 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001399 { ISD::CTTZ, MVT::v16i8, 13 },
1400 { ISD::FSQRT, MVT::f64, 32 }, // Nehalem from http://www.agner.org/
1401 { ISD::FSQRT, MVT::v2f64, 32 }, // Nehalem from http://www.agner.org/
1402 };
1403 static const CostTblEntry SSE1CostTbl[] = {
1404 { ISD::FSQRT, MVT::f32, 28 }, // Pentium III from http://www.agner.org/
1405 { ISD::FSQRT, MVT::v4f32, 56 }, // Pentium III from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001406 };
Simon Pilgrim14000b32016-05-24 08:17:50 +00001407
1408 unsigned ISD = ISD::DELETED_NODE;
1409 switch (IID) {
1410 default:
1411 break;
1412 case Intrinsic::bitreverse:
1413 ISD = ISD::BITREVERSE;
1414 break;
Simon Pilgrim356e8232016-06-20 23:08:21 +00001415 case Intrinsic::bswap:
1416 ISD = ISD::BSWAP;
1417 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001418 case Intrinsic::ctlz:
1419 ISD = ISD::CTLZ;
1420 break;
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001421 case Intrinsic::ctpop:
1422 ISD = ISD::CTPOP;
1423 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001424 case Intrinsic::cttz:
1425 ISD = ISD::CTTZ;
1426 break;
Alexey Bataevd07c7312016-10-31 12:10:53 +00001427 case Intrinsic::sqrt:
1428 ISD = ISD::FSQRT;
1429 break;
Simon Pilgrim14000b32016-05-24 08:17:50 +00001430 }
1431
1432 // Legalize the type.
1433 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
1434 MVT MTy = LT.second;
1435
1436 // Attempt to lookup cost.
1437 if (ST->hasXOP())
1438 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
1439 return LT.first * Entry->Cost;
1440
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001441 if (ST->hasAVX2())
1442 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1443 return LT.first * Entry->Cost;
1444
1445 if (ST->hasAVX())
1446 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1447 return LT.first * Entry->Cost;
1448
Alexey Bataevd07c7312016-10-31 12:10:53 +00001449 if (ST->hasSSE42())
1450 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1451 return LT.first * Entry->Cost;
1452
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001453 if (ST->hasSSSE3())
1454 if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
1455 return LT.first * Entry->Cost;
1456
Simon Pilgrim356e8232016-06-20 23:08:21 +00001457 if (ST->hasSSE2())
1458 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1459 return LT.first * Entry->Cost;
1460
Alexey Bataevd07c7312016-10-31 12:10:53 +00001461 if (ST->hasSSE1())
1462 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
1463 return LT.first * Entry->Cost;
1464
Simon Pilgrim14000b32016-05-24 08:17:50 +00001465 return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF);
1466}
1467
1468int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1469 ArrayRef<Value *> Args, FastMathFlags FMF) {
1470 return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF);
1471}
1472
Chandler Carruth93205eb2015-08-05 18:08:10 +00001473int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001474 assert(Val->isVectorTy() && "This must be a vector type");
1475
Sanjay Patelaedc3472016-05-25 17:27:54 +00001476 Type *ScalarType = Val->getScalarType();
1477
Chandler Carruth664e3542013-01-07 01:37:14 +00001478 if (Index != -1U) {
1479 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001480 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
Chandler Carruth664e3542013-01-07 01:37:14 +00001481
1482 // This type is legalized to a scalar type.
1483 if (!LT.second.isVector())
1484 return 0;
1485
1486 // The type may be split. Normalize the index to the new type.
1487 unsigned Width = LT.second.getVectorNumElements();
1488 Index = Index % Width;
1489
1490 // Floating point scalars are already located in index #0.
Sanjay Patelaedc3472016-05-25 17:27:54 +00001491 if (ScalarType->isFloatingPointTy() && Index == 0)
Chandler Carruth664e3542013-01-07 01:37:14 +00001492 return 0;
1493 }
1494
Sanjay Patelaedc3472016-05-25 17:27:54 +00001495 // Add to the base cost if we know that the extracted element of a vector is
1496 // destined to be moved to and used in the integer register file.
1497 int RegisterFileMoveCost = 0;
1498 if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
1499 RegisterFileMoveCost = 1;
1500
1501 return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001502}
1503
Chandler Carruth93205eb2015-08-05 18:08:10 +00001504int X86TTIImpl::getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001505 assert (Ty->isVectorTy() && "Can only scalarize vectors");
Chandler Carruth93205eb2015-08-05 18:08:10 +00001506 int Cost = 0;
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001507
1508 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
1509 if (Insert)
Chandler Carruth705b1852015-01-31 03:43:40 +00001510 Cost += getVectorInstrCost(Instruction::InsertElement, Ty, i);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001511 if (Extract)
Chandler Carruth705b1852015-01-31 03:43:40 +00001512 Cost += getVectorInstrCost(Instruction::ExtractElement, Ty, i);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001513 }
1514
1515 return Cost;
1516}
1517
Chandler Carruth93205eb2015-08-05 18:08:10 +00001518int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
1519 unsigned AddressSpace) {
Alp Tokerf907b892013-12-05 05:44:44 +00001520 // Handle non-power-of-two vectors such as <3 x float>
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001521 if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
1522 unsigned NumElem = VTy->getVectorNumElements();
1523
1524 // Handle a few common cases:
1525 // <3 x float>
1526 if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
1527 // Cost = 64 bit store + extract + 32 bit store.
1528 return 3;
1529
1530 // <3 x double>
1531 if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
1532 // Cost = 128 bit store + unpack + 64 bit store.
1533 return 3;
1534
Alp Tokerf907b892013-12-05 05:44:44 +00001535 // Assume that all other non-power-of-two numbers are scalarized.
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001536 if (!isPowerOf2_32(NumElem)) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001537 int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
1538 AddressSpace);
1539 int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
1540 Opcode == Instruction::Store);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001541 return NumElem * Cost + SplitCost;
1542 }
1543 }
1544
Chandler Carruth664e3542013-01-07 01:37:14 +00001545 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001546 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001547 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1548 "Invalid Opcode");
1549
1550 // Each load/store unit costs 1.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001551 int Cost = LT.first * 1;
Chandler Carruth664e3542013-01-07 01:37:14 +00001552
Sanjay Patel9f6c4d52016-03-09 22:23:33 +00001553 // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
1554 // proxy for a double-pumped AVX memory interface such as on Sandybridge.
1555 if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
1556 Cost *= 2;
Chandler Carruth664e3542013-01-07 01:37:14 +00001557
1558 return Cost;
1559}
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001560
Chandler Carruth93205eb2015-08-05 18:08:10 +00001561int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
1562 unsigned Alignment,
1563 unsigned AddressSpace) {
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001564 VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
1565 if (!SrcVTy)
1566 // To calculate scalar take the regular cost, without mask
1567 return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
1568
1569 unsigned NumElem = SrcVTy->getVectorNumElements();
1570 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00001571 VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
Elena Demikhovsky20662e32015-10-19 07:43:38 +00001572 if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy)) ||
1573 (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy)) ||
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001574 !isPowerOf2_32(NumElem)) {
1575 // Scalarization
Chandler Carruth93205eb2015-08-05 18:08:10 +00001576 int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
1577 int ScalarCompareCost = getCmpSelInstrCost(
Mehdi Amini867e9142016-04-14 04:36:40 +00001578 Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001579 int BranchCost = getCFInstrCost(Instruction::Br);
1580 int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001581
Chandler Carruth93205eb2015-08-05 18:08:10 +00001582 int ValueSplitCost = getScalarizationOverhead(
1583 SrcVTy, Opcode == Instruction::Load, Opcode == Instruction::Store);
1584 int MemopCost =
Chandler Carruth705b1852015-01-31 03:43:40 +00001585 NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1586 Alignment, AddressSpace);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001587 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
1588 }
1589
1590 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001591 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
Cong Houda4e8ae2015-10-28 18:15:46 +00001592 auto VT = TLI->getValueType(DL, SrcVTy);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001593 int Cost = 0;
Cong Houda4e8ae2015-10-28 18:15:46 +00001594 if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001595 LT.second.getVectorNumElements() == NumElem)
1596 // Promotion requires expand/truncate for data and a shuffle for mask.
Hans Wennborg083ca9b2015-10-06 23:24:35 +00001597 Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, nullptr) +
1598 getShuffleCost(TTI::SK_Alternate, MaskTy, 0, nullptr);
Chandler Carruth705b1852015-01-31 03:43:40 +00001599
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001600 else if (LT.second.getVectorNumElements() > NumElem) {
1601 VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
1602 LT.second.getVectorNumElements());
1603 // Expanding requires fill mask with zeroes
Chandler Carruth705b1852015-01-31 03:43:40 +00001604 Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001605 }
1606 if (!ST->hasAVX512())
1607 return Cost + LT.first*4; // Each maskmov costs 4
1608
1609 // AVX-512 masked load/store is cheapper
1610 return Cost+LT.first;
1611}
1612
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001613int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1614 const SCEV *Ptr) {
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001615 // Address computations in vectorized code with non-consecutive addresses will
1616 // likely result in more instructions compared to scalar code where the
1617 // computation can more often be merged into the index mode. The resulting
1618 // extra micro-ops can significantly decrease throughput.
1619 unsigned NumVectorInstToHideOverhead = 10;
1620
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001621 // Cost modeling of Strided Access Computation is hidden by the indexing
1622 // modes of X86 regardless of the stride value. We dont believe that there
1623 // is a difference between constant strided access in gerenal and constant
1624 // strided value which is less than or equal to 64.
1625 // Even in the case of (loop invariant) stride whose value is not known at
1626 // compile time, the address computation will not incur more than one extra
1627 // ADD instruction.
1628 if (Ty->isVectorTy() && SE) {
1629 if (!BaseT::isStridedAccess(Ptr))
1630 return NumVectorInstToHideOverhead;
1631 if (!BaseT::getConstantStrideStep(SE, Ptr))
1632 return 1;
1633 }
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001634
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001635 return BaseT::getAddressComputationCost(Ty, SE, Ptr);
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001636}
Yi Jiang5c343de2013-09-19 17:48:48 +00001637
Chandler Carruth93205eb2015-08-05 18:08:10 +00001638int X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
1639 bool IsPairwise) {
Michael Liao5bf95782014-12-04 05:20:33 +00001640
Chandler Carruth93205eb2015-08-05 18:08:10 +00001641 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Michael Liao5bf95782014-12-04 05:20:33 +00001642
Yi Jiang5c343de2013-09-19 17:48:48 +00001643 MVT MTy = LT.second;
Michael Liao5bf95782014-12-04 05:20:33 +00001644
Yi Jiang5c343de2013-09-19 17:48:48 +00001645 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1646 assert(ISD && "Invalid opcode");
Michael Liao5bf95782014-12-04 05:20:33 +00001647
1648 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
1649 // and make it as the cost.
1650
Craig Topper4b275762015-10-28 04:02:12 +00001651 static const CostTblEntry SSE42CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001652 { ISD::FADD, MVT::v2f64, 2 },
1653 { ISD::FADD, MVT::v4f32, 4 },
1654 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1655 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1656 { ISD::ADD, MVT::v8i16, 5 },
1657 };
Michael Liao5bf95782014-12-04 05:20:33 +00001658
Craig Topper4b275762015-10-28 04:02:12 +00001659 static const CostTblEntry AVX1CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001660 { ISD::FADD, MVT::v4f32, 4 },
1661 { ISD::FADD, MVT::v4f64, 5 },
1662 { ISD::FADD, MVT::v8f32, 7 },
1663 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1664 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1665 { ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8".
1666 { ISD::ADD, MVT::v8i16, 5 },
1667 { ISD::ADD, MVT::v8i32, 5 },
1668 };
1669
Craig Topper4b275762015-10-28 04:02:12 +00001670 static const CostTblEntry SSE42CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001671 { ISD::FADD, MVT::v2f64, 2 },
1672 { ISD::FADD, MVT::v4f32, 4 },
1673 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1674 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
1675 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
1676 };
Michael Liao5bf95782014-12-04 05:20:33 +00001677
Craig Topper4b275762015-10-28 04:02:12 +00001678 static const CostTblEntry AVX1CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001679 { ISD::FADD, MVT::v4f32, 3 },
1680 { ISD::FADD, MVT::v4f64, 3 },
1681 { ISD::FADD, MVT::v8f32, 4 },
1682 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1683 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "2.8".
1684 { ISD::ADD, MVT::v4i64, 3 },
1685 { ISD::ADD, MVT::v8i16, 4 },
1686 { ISD::ADD, MVT::v8i32, 5 },
1687 };
Michael Liao5bf95782014-12-04 05:20:33 +00001688
Yi Jiang5c343de2013-09-19 17:48:48 +00001689 if (IsPairwise) {
Craig Topperee0c8592015-10-27 04:14:24 +00001690 if (ST->hasAVX())
1691 if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
1692 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001693
Craig Topperee0c8592015-10-27 04:14:24 +00001694 if (ST->hasSSE42())
1695 if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
1696 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001697 } else {
Craig Topperee0c8592015-10-27 04:14:24 +00001698 if (ST->hasAVX())
1699 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
1700 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001701
Craig Topperee0c8592015-10-27 04:14:24 +00001702 if (ST->hasSSE42())
1703 if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
1704 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001705 }
1706
Chandler Carruth705b1852015-01-31 03:43:40 +00001707 return BaseT::getReductionCost(Opcode, ValTy, IsPairwise);
Yi Jiang5c343de2013-09-19 17:48:48 +00001708}
1709
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001710/// \brief Calculate the cost of materializing a 64-bit value. This helper
1711/// method might only calculate a fraction of a larger immediate. Therefore it
1712/// is valid to return a cost of ZERO.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001713int X86TTIImpl::getIntImmCost(int64_t Val) {
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001714 if (Val == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001715 return TTI::TCC_Free;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001716
1717 if (isInt<32>(Val))
Chandler Carruth705b1852015-01-31 03:43:40 +00001718 return TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001719
Chandler Carruth705b1852015-01-31 03:43:40 +00001720 return 2 * TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001721}
1722
Chandler Carruth93205eb2015-08-05 18:08:10 +00001723int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001724 assert(Ty->isIntegerTy());
1725
1726 unsigned BitSize = Ty->getPrimitiveSizeInBits();
1727 if (BitSize == 0)
1728 return ~0U;
1729
Juergen Ributzka43176172014-05-19 21:00:53 +00001730 // Never hoist constants larger than 128bit, because this might lead to
1731 // incorrect code generation or assertions in codegen.
1732 // Fixme: Create a cost model for types larger than i128 once the codegen
1733 // issues have been fixed.
1734 if (BitSize > 128)
Chandler Carruth705b1852015-01-31 03:43:40 +00001735 return TTI::TCC_Free;
Juergen Ributzka43176172014-05-19 21:00:53 +00001736
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001737 if (Imm == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001738 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001739
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001740 // Sign-extend all constants to a multiple of 64-bit.
1741 APInt ImmVal = Imm;
1742 if (BitSize & 0x3f)
1743 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
1744
1745 // Split the constant into 64-bit chunks and calculate the cost for each
1746 // chunk.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001747 int Cost = 0;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001748 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
1749 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
1750 int64_t Val = Tmp.getSExtValue();
1751 Cost += getIntImmCost(Val);
1752 }
Sanjay Patel4c7d0942016-04-05 19:27:39 +00001753 // We need at least one instruction to materialize the constant.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001754 return std::max(1, Cost);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001755}
1756
Chandler Carruth93205eb2015-08-05 18:08:10 +00001757int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
1758 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001759 assert(Ty->isIntegerTy());
1760
1761 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001762 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1763 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001764 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001765 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001766
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001767 unsigned ImmIdx = ~0U;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001768 switch (Opcode) {
Chandler Carruth705b1852015-01-31 03:43:40 +00001769 default:
1770 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001771 case Instruction::GetElementPtr:
Juergen Ributzka27435b32014-04-02 21:45:36 +00001772 // Always hoist the base address of a GetElementPtr. This prevents the
1773 // creation of new constants for every base constant that gets constant
1774 // folded with the offset.
Juergen Ributzka631c4912014-03-25 18:01:25 +00001775 if (Idx == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001776 return 2 * TTI::TCC_Basic;
1777 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001778 case Instruction::Store:
1779 ImmIdx = 0;
1780 break;
Craig Topper074e8452015-12-20 18:41:54 +00001781 case Instruction::ICmp:
1782 // This is an imperfect hack to prevent constant hoisting of
1783 // compares that might be trying to check if a 64-bit value fits in
1784 // 32-bits. The backend can optimize these cases using a right shift by 32.
1785 // Ideally we would check the compare predicate here. There also other
1786 // similar immediates the backend can use shifts for.
1787 if (Idx == 1 && Imm.getBitWidth() == 64) {
1788 uint64_t ImmVal = Imm.getZExtValue();
1789 if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
1790 return TTI::TCC_Free;
1791 }
1792 ImmIdx = 1;
1793 break;
Craig Topper79dd1bf2015-10-06 02:50:24 +00001794 case Instruction::And:
1795 // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
1796 // by using a 32-bit operation with implicit zero extension. Detect such
1797 // immediates here as the normal path expects bit 31 to be sign extended.
1798 if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
1799 return TTI::TCC_Free;
Justin Bognerb03fd122016-08-17 05:10:15 +00001800 LLVM_FALLTHROUGH;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001801 case Instruction::Add:
1802 case Instruction::Sub:
1803 case Instruction::Mul:
1804 case Instruction::UDiv:
1805 case Instruction::SDiv:
1806 case Instruction::URem:
1807 case Instruction::SRem:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001808 case Instruction::Or:
1809 case Instruction::Xor:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001810 ImmIdx = 1;
1811 break;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001812 // Always return TCC_Free for the shift value of a shift instruction.
1813 case Instruction::Shl:
1814 case Instruction::LShr:
1815 case Instruction::AShr:
1816 if (Idx == 1)
Chandler Carruth705b1852015-01-31 03:43:40 +00001817 return TTI::TCC_Free;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001818 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001819 case Instruction::Trunc:
1820 case Instruction::ZExt:
1821 case Instruction::SExt:
1822 case Instruction::IntToPtr:
1823 case Instruction::PtrToInt:
1824 case Instruction::BitCast:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001825 case Instruction::PHI:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001826 case Instruction::Call:
1827 case Instruction::Select:
1828 case Instruction::Ret:
1829 case Instruction::Load:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001830 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001831 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001832
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001833 if (Idx == ImmIdx) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001834 int NumConstants = (BitSize + 63) / 64;
1835 int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
Chandler Carruth705b1852015-01-31 03:43:40 +00001836 return (Cost <= NumConstants * TTI::TCC_Basic)
Chandler Carruth93205eb2015-08-05 18:08:10 +00001837 ? static_cast<int>(TTI::TCC_Free)
Chandler Carruth705b1852015-01-31 03:43:40 +00001838 : Cost;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001839 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001840
Chandler Carruth705b1852015-01-31 03:43:40 +00001841 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001842}
1843
Chandler Carruth93205eb2015-08-05 18:08:10 +00001844int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
1845 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001846 assert(Ty->isIntegerTy());
1847
1848 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001849 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1850 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001851 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001852 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001853
1854 switch (IID) {
Chandler Carruth705b1852015-01-31 03:43:40 +00001855 default:
1856 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001857 case Intrinsic::sadd_with_overflow:
1858 case Intrinsic::uadd_with_overflow:
1859 case Intrinsic::ssub_with_overflow:
1860 case Intrinsic::usub_with_overflow:
1861 case Intrinsic::smul_with_overflow:
1862 case Intrinsic::umul_with_overflow:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001863 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
Chandler Carruth705b1852015-01-31 03:43:40 +00001864 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001865 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001866 case Intrinsic::experimental_stackmap:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001867 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00001868 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001869 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001870 case Intrinsic::experimental_patchpoint_void:
1871 case Intrinsic::experimental_patchpoint_i64:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001872 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00001873 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001874 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001875 }
Chandler Carruth705b1852015-01-31 03:43:40 +00001876 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001877}
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00001878
Elena Demikhovsky54946982015-12-28 20:10:59 +00001879// Return an average cost of Gather / Scatter instruction, maybe improved later
1880int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
1881 unsigned Alignment, unsigned AddressSpace) {
1882
1883 assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
1884 unsigned VF = SrcVTy->getVectorNumElements();
1885
1886 // Try to reduce index size from 64 bit (default for GEP)
1887 // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
1888 // operation will use 16 x 64 indices which do not fit in a zmm and needs
1889 // to split. Also check that the base pointer is the same for all lanes,
1890 // and that there's at most one variable index.
1891 auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
1892 unsigned IndexSize = DL.getPointerSizeInBits();
1893 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1894 if (IndexSize < 64 || !GEP)
1895 return IndexSize;
Simon Pilgrim14000b32016-05-24 08:17:50 +00001896
Elena Demikhovsky54946982015-12-28 20:10:59 +00001897 unsigned NumOfVarIndices = 0;
1898 Value *Ptrs = GEP->getPointerOperand();
1899 if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
1900 return IndexSize;
1901 for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
1902 if (isa<Constant>(GEP->getOperand(i)))
1903 continue;
1904 Type *IndxTy = GEP->getOperand(i)->getType();
1905 if (IndxTy->isVectorTy())
1906 IndxTy = IndxTy->getVectorElementType();
1907 if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
1908 !isa<SExtInst>(GEP->getOperand(i))) ||
1909 ++NumOfVarIndices > 1)
1910 return IndexSize; // 64
1911 }
1912 return (unsigned)32;
1913 };
1914
1915
1916 // Trying to reduce IndexSize to 32 bits for vector 16.
1917 // By default the IndexSize is equal to pointer size.
1918 unsigned IndexSize = (VF >= 16) ? getIndexSizeInBits(Ptr, DL) :
1919 DL.getPointerSizeInBits();
1920
Mehdi Amini867e9142016-04-14 04:36:40 +00001921 Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
Elena Demikhovsky54946982015-12-28 20:10:59 +00001922 IndexSize), VF);
1923 std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
1924 std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
1925 int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
1926 if (SplitFactor > 1) {
1927 // Handle splitting of vector of pointers
1928 Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
1929 return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
1930 AddressSpace);
1931 }
1932
1933 // The gather / scatter cost is given by Intel architects. It is a rough
1934 // number since we are looking at one instruction in a time.
1935 const int GSOverhead = 2;
1936 return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1937 Alignment, AddressSpace);
1938}
1939
1940/// Return the cost of full scalarization of gather / scatter operation.
1941///
1942/// Opcode - Load or Store instruction.
1943/// SrcVTy - The type of the data vector that should be gathered or scattered.
1944/// VariableMask - The mask is non-constant at compile time.
1945/// Alignment - Alignment for one element.
1946/// AddressSpace - pointer[s] address space.
1947///
1948int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
1949 bool VariableMask, unsigned Alignment,
1950 unsigned AddressSpace) {
1951 unsigned VF = SrcVTy->getVectorNumElements();
1952
1953 int MaskUnpackCost = 0;
1954 if (VariableMask) {
1955 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00001956 VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
Elena Demikhovsky54946982015-12-28 20:10:59 +00001957 MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
1958 int ScalarCompareCost =
Mehdi Amini867e9142016-04-14 04:36:40 +00001959 getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
Elena Demikhovsky54946982015-12-28 20:10:59 +00001960 nullptr);
1961 int BranchCost = getCFInstrCost(Instruction::Br);
1962 MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
1963 }
1964
1965 // The cost of the scalar loads/stores.
1966 int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1967 Alignment, AddressSpace);
1968
1969 int InsertExtractCost = 0;
1970 if (Opcode == Instruction::Load)
1971 for (unsigned i = 0; i < VF; ++i)
1972 // Add the cost of inserting each scalar load into the vector
1973 InsertExtractCost +=
1974 getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
1975 else
1976 for (unsigned i = 0; i < VF; ++i)
1977 // Add the cost of extracting each element out of the data vector
1978 InsertExtractCost +=
1979 getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
1980
1981 return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
1982}
1983
1984/// Calculate the cost of Gather / Scatter operation
1985int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
1986 Value *Ptr, bool VariableMask,
1987 unsigned Alignment) {
1988 assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
1989 unsigned VF = SrcVTy->getVectorNumElements();
1990 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
1991 if (!PtrTy && Ptr->getType()->isVectorTy())
1992 PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
1993 assert(PtrTy && "Unexpected type for Ptr argument");
1994 unsigned AddressSpace = PtrTy->getAddressSpace();
1995
1996 bool Scalarize = false;
1997 if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) ||
1998 (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy)))
1999 Scalarize = true;
2000 // Gather / Scatter for vector 2 is not profitable on KNL / SKX
2001 // Vector-4 of gather/scatter instruction does not exist on KNL.
2002 // We can extend it to 8 elements, but zeroing upper bits of
2003 // the mask vector will add more instructions. Right now we give the scalar
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002004 // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
2005 // is better in the VariableMask case.
Elena Demikhovsky54946982015-12-28 20:10:59 +00002006 if (VF == 2 || (VF == 4 && !ST->hasVLX()))
2007 Scalarize = true;
2008
2009 if (Scalarize)
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002010 return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
2011 AddressSpace);
Elena Demikhovsky54946982015-12-28 20:10:59 +00002012
2013 return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
2014}
2015
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002016bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy) {
2017 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002018 int DataWidth = isa<PointerType>(ScalarTy) ?
2019 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002020
Igor Bregerf44b79d2016-08-02 09:15:28 +00002021 return ((DataWidth == 32 || DataWidth == 64) && ST->hasAVX()) ||
2022 ((DataWidth == 8 || DataWidth == 16) && ST->hasBWI());
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002023}
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002024
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002025bool X86TTIImpl::isLegalMaskedStore(Type *DataType) {
2026 return isLegalMaskedLoad(DataType);
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002027}
2028
Elena Demikhovsky09285852015-10-25 15:37:55 +00002029bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) {
2030 // This function is called now in two cases: from the Loop Vectorizer
2031 // and from the Scalarizer.
2032 // When the Loop Vectorizer asks about legality of the feature,
2033 // the vectorization factor is not calculated yet. The Loop Vectorizer
2034 // sends a scalar type and the decision is based on the width of the
2035 // scalar element.
2036 // Later on, the cost model will estimate usage this intrinsic based on
2037 // the vector type.
2038 // The Scalarizer asks again about legality. It sends a vector type.
2039 // In this case we can reject non-power-of-2 vectors.
2040 if (isa<VectorType>(DataTy) && !isPowerOf2_32(DataTy->getVectorNumElements()))
2041 return false;
2042 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002043 int DataWidth = isa<PointerType>(ScalarTy) ?
2044 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002045
2046 // AVX-512 allows gather and scatter
Igor Bregerf44b79d2016-08-02 09:15:28 +00002047 return (DataWidth == 32 || DataWidth == 64) && ST->hasAVX512();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002048}
2049
2050bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) {
2051 return isLegalMaskedGather(DataType);
2052}
2053
Eric Christopherd566fb12015-07-29 22:09:48 +00002054bool X86TTIImpl::areInlineCompatible(const Function *Caller,
2055 const Function *Callee) const {
Eric Christophere1002262015-07-02 01:11:50 +00002056 const TargetMachine &TM = getTLI()->getTargetMachine();
2057
2058 // Work this as a subsetting of subtarget features.
2059 const FeatureBitset &CallerBits =
2060 TM.getSubtargetImpl(*Caller)->getFeatureBits();
2061 const FeatureBitset &CalleeBits =
2062 TM.getSubtargetImpl(*Callee)->getFeatureBits();
2063
2064 // FIXME: This is likely too limiting as it will include subtarget features
2065 // that we might not care about for inlining, but it is conservatively
2066 // correct.
2067 return (CallerBits & CalleeBits) == CalleeBits;
2068}
Michael Kupersteinb2443ed2016-10-20 21:04:31 +00002069
2070bool X86TTIImpl::enableInterleavedAccessVectorization() {
2071 // TODO: We expect this to be beneficial regardless of arch,
2072 // but there are currently some unexplained performance artifacts on Atom.
2073 // As a temporary solution, disable on Atom.
2074 return !(ST->isAtom() || ST->isSLM());
2075}
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002076
2077// Get estimation for interleaved load/store operations and strided load.
2078// \p Indices contains indices for strided load.
2079// \p Factor - the factor of interleaving.
2080// AVX-512 provides 3-src shuffles that significantly reduces the cost.
2081int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode, Type *VecTy,
2082 unsigned Factor,
2083 ArrayRef<unsigned> Indices,
2084 unsigned Alignment,
2085 unsigned AddressSpace) {
2086
2087 // VecTy for interleave memop is <VF*Factor x Elt>.
2088 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
2089 // VecTy = <12 x i32>.
2090
2091 // Calculate the number of memory operations (NumOfMemOps), required
2092 // for load/store the VecTy.
2093 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
2094 unsigned VecTySize = DL.getTypeStoreSize(VecTy);
2095 unsigned LegalVTSize = LegalVT.getStoreSize();
2096 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
2097
2098 // Get the cost of one memory operation.
2099 Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
2100 LegalVT.getVectorNumElements());
2101 unsigned MemOpCost =
2102 getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
2103
2104 if (Opcode == Instruction::Load) {
2105 // Kind of shuffle depends on number of loaded values.
2106 // If we load the entire data in one register, we can use a 1-src shuffle.
2107 // Otherwise, we'll merge 2 sources in each operation.
2108 TTI::ShuffleKind ShuffleKind =
2109 (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
2110
2111 unsigned ShuffleCost =
2112 getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
2113
2114 unsigned NumOfLoadsInInterleaveGrp =
2115 Indices.size() ? Indices.size() : Factor;
2116 Type *ResultTy = VectorType::get(VecTy->getVectorElementType(),
2117 VecTy->getVectorNumElements() / Factor);
2118 unsigned NumOfResults =
2119 getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
2120 NumOfLoadsInInterleaveGrp;
2121
2122 // About a half of the loads may be folded in shuffles when we have only
2123 // one result. If we have more than one result, we do not fold loads at all.
2124 unsigned NumOfUnfoldedLoads =
2125 NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
2126
2127 // Get a number of shuffle operations per result.
2128 unsigned NumOfShufflesPerResult =
2129 std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
2130
2131 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2132 // When we have more than one destination, we need additional instructions
2133 // to keep sources.
2134 unsigned NumOfMoves = 0;
2135 if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
2136 NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
2137
2138 int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
2139 NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
2140
2141 return Cost;
2142 }
2143
2144 // Store.
2145 assert(Opcode == Instruction::Store &&
2146 "Expected Store Instruction at this point");
2147
2148 // There is no strided stores meanwhile. And store can't be folded in
2149 // shuffle.
2150 unsigned NumOfSources = Factor; // The number of values to be merged.
2151 unsigned ShuffleCost =
2152 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
2153 unsigned NumOfShufflesPerStore = NumOfSources - 1;
2154
2155 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2156 // We need additional instructions to keep sources.
2157 unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
2158 int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
2159 NumOfMoves;
2160 return Cost;
2161}
2162
2163int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
2164 unsigned Factor,
2165 ArrayRef<unsigned> Indices,
2166 unsigned Alignment,
2167 unsigned AddressSpace) {
2168 auto isSupportedOnAVX512 = [](Type *VecTy, bool &RequiresBW) {
2169 RequiresBW = false;
2170 Type *EltTy = VecTy->getVectorElementType();
2171 if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
2172 EltTy->isIntegerTy(32) || EltTy->isPointerTy())
2173 return true;
2174 if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8)) {
2175 RequiresBW = true;
2176 return true;
2177 }
2178 return false;
2179 };
2180 bool RequiresBW;
2181 bool HasAVX512Solution = isSupportedOnAVX512(VecTy, RequiresBW);
2182 if (ST->hasAVX512() && HasAVX512Solution && (!RequiresBW || ST->hasBWI()))
2183 return getInterleavedMemoryOpCostAVX512(Opcode, VecTy, Factor, Indices,
2184 Alignment, AddressSpace);
2185 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2186 Alignment, AddressSpace);
2187}