blob: 107ed9359376b63cf73bcafc2a1550964a329151 [file] [log] [blame]
Chandler Carruth664e3542013-01-07 01:37:14 +00001//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// X86 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
Alexey Bataevb271a582016-10-12 13:24:13 +000016/// About Cost Model numbers used below it's necessary to say the following:
17/// the numbers correspond to some "generic" X86 CPU instead of usage of
18/// concrete CPU model. Usually the numbers correspond to CPU where the feature
19/// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
20/// the lookups below the cost is based on Nehalem as that was the first CPU
21/// to support that feature level and thus has most likely the worst case cost.
22/// Some examples of other technologies/CPUs:
23/// SSE 3 - Pentium4 / Athlon64
24/// SSE 4.1 - Penryn
25/// SSE 4.2 - Nehalem
26/// AVX - Sandy Bridge
27/// AVX2 - Haswell
28/// AVX-512 - Xeon Phi / Skylake
29/// And some examples of instruction target dependent costs (latency)
30/// divss sqrtss rsqrtss
31/// AMD K7 11-16 19 3
32/// Piledriver 9-24 13-15 5
33/// Jaguar 14 16 2
34/// Pentium II,III 18 30 2
35/// Nehalem 7-14 7-18 3
36/// Haswell 10-13 11 5
37/// TODO: Develop and implement the target dependent cost model and
38/// specialize cost numbers for different Cost Model Targets such as throughput,
39/// code size, latency and uop count.
40//===----------------------------------------------------------------------===//
Chandler Carruth664e3542013-01-07 01:37:14 +000041
Chandler Carruth93dcdc42015-01-31 11:17:59 +000042#include "X86TargetTransformInfo.h"
Chandler Carruthd3e73552013-01-07 03:08:10 +000043#include "llvm/Analysis/TargetTransformInfo.h"
Chandler Carruth705b1852015-01-31 03:43:40 +000044#include "llvm/CodeGen/BasicTTIImpl.h"
Juergen Ributzkaf26beda2014-01-25 02:02:55 +000045#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000046#include "llvm/Support/Debug.h"
Renato Golind4c392e2013-01-24 23:01:00 +000047#include "llvm/Target/CostTable.h"
Chandler Carruth8a8cd2b2014-01-07 11:48:04 +000048#include "llvm/Target/TargetLowering.h"
Hans Wennborg083ca9b2015-10-06 23:24:35 +000049
Chandler Carruth664e3542013-01-07 01:37:14 +000050using namespace llvm;
51
Chandler Carruth84e68b22014-04-22 02:41:26 +000052#define DEBUG_TYPE "x86tti"
53
Chandler Carruth664e3542013-01-07 01:37:14 +000054//===----------------------------------------------------------------------===//
55//
56// X86 cost model.
57//
58//===----------------------------------------------------------------------===//
59
Chandler Carruth705b1852015-01-31 03:43:40 +000060TargetTransformInfo::PopcntSupportKind
61X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
Chandler Carruth664e3542013-01-07 01:37:14 +000062 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
63 // TODO: Currently the __builtin_popcount() implementation using SSE3
64 // instructions is inefficient. Once the problem is fixed, we should
Craig Topper0a63e1d2013-09-08 00:47:31 +000065 // call ST->hasSSE3() instead of ST->hasPOPCNT().
Chandler Carruth705b1852015-01-31 03:43:40 +000066 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
Chandler Carruth664e3542013-01-07 01:37:14 +000067}
68
Chandler Carruth705b1852015-01-31 03:43:40 +000069unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
Nadav Rotemb1791a72013-01-09 22:29:00 +000070 if (Vector && !ST->hasSSE1())
71 return 0;
72
Adam Nemet2820a5b2014-07-09 18:22:33 +000073 if (ST->is64Bit()) {
74 if (Vector && ST->hasAVX512())
75 return 32;
Chandler Carruth664e3542013-01-07 01:37:14 +000076 return 16;
Adam Nemet2820a5b2014-07-09 18:22:33 +000077 }
Chandler Carruth664e3542013-01-07 01:37:14 +000078 return 8;
79}
80
Chandler Carruth705b1852015-01-31 03:43:40 +000081unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) {
Nadav Rotemb1791a72013-01-09 22:29:00 +000082 if (Vector) {
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000083 if (ST->hasAVX512())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000084 return 512;
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000085 if (ST->hasAVX())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000086 return 256;
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000087 if (ST->hasSSE1())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000088 return 128;
Nadav Rotemb1791a72013-01-09 22:29:00 +000089 return 0;
90 }
91
92 if (ST->is64Bit())
93 return 64;
Nadav Rotemb1791a72013-01-09 22:29:00 +000094
Hans Wennborg083ca9b2015-10-06 23:24:35 +000095 return 32;
Nadav Rotemb1791a72013-01-09 22:29:00 +000096}
97
Wei Mi062c7442015-05-06 17:12:25 +000098unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
99 // If the loop will not be vectorized, don't interleave the loop.
100 // Let regular unroll to unroll the loop, which saves the overflow
101 // check and memory check cost.
102 if (VF == 1)
103 return 1;
104
Nadav Rotemb696c362013-01-09 01:15:42 +0000105 if (ST->isAtom())
106 return 1;
107
108 // Sandybridge and Haswell have multiple execution ports and pipelined
109 // vector units.
110 if (ST->hasAVX())
111 return 4;
112
113 return 2;
114}
115
Chandler Carruth93205eb2015-08-05 18:08:10 +0000116int X86TTIImpl::getArithmeticInstrCost(
Chandler Carruth705b1852015-01-31 03:43:40 +0000117 unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
118 TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
119 TTI::OperandValueProperties Opd2PropInfo) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000120 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000121 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
Chandler Carruth664e3542013-01-07 01:37:14 +0000122
123 int ISD = TLI->InstructionOpcodeToISD(Opcode);
124 assert(ISD && "Invalid opcode");
125
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000126 if (ISD == ISD::SDIV &&
127 Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
128 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
129 // On X86, vector signed division by constants power-of-two are
130 // normally expanded to the sequence SRA + SRL + ADD + SRA.
131 // The OperandValue properties many not be same as that of previous
132 // operation;conservatively assume OP_None.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000133 int Cost = 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info,
134 Op2Info, TargetTransformInfo::OP_None,
135 TargetTransformInfo::OP_None);
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000136 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
137 TargetTransformInfo::OP_None,
138 TargetTransformInfo::OP_None);
139 Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
140 TargetTransformInfo::OP_None,
141 TargetTransformInfo::OP_None);
142
143 return Cost;
144 }
145
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000146 static const CostTblEntry AVX512BWUniformConstCostTable[] = {
Simon Pilgrim9c589502017-01-08 14:14:36 +0000147 { ISD::SHL, MVT::v64i8, 2 }, // psllw + pand.
148 { ISD::SRL, MVT::v64i8, 2 }, // psrlw + pand.
149 { ISD::SRA, MVT::v64i8, 4 }, // psrlw, pand, pxor, psubb.
150
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000151 { ISD::SDIV, MVT::v32i16, 6 }, // vpmulhw sequence
152 { ISD::UDIV, MVT::v32i16, 6 }, // vpmulhuw sequence
153 };
154
155 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
156 ST->hasBWI()) {
157 if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
158 LT.second))
159 return LT.first * Entry->Cost;
160 }
161
162 static const CostTblEntry AVX512UniformConstCostTable[] = {
163 { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
164 { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
165 };
166
167 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
168 ST->hasAVX512()) {
169 if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
170 LT.second))
171 return LT.first * Entry->Cost;
172 }
173
Craig Topper4b275762015-10-28 04:02:12 +0000174 static const CostTblEntry AVX2UniformConstCostTable[] = {
Simon Pilgrim9c589502017-01-08 14:14:36 +0000175 { ISD::SHL, MVT::v32i8, 2 }, // psllw + pand.
176 { ISD::SRL, MVT::v32i8, 2 }, // psrlw + pand.
177 { ISD::SRA, MVT::v32i8, 4 }, // psrlw, pand, pxor, psubb.
178
Simon Pilgrim8fbf1c12015-07-06 22:35:19 +0000179 { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle.
180
Benjamin Kramer7c372272014-04-26 14:53:05 +0000181 { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence
182 { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence
183 { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence
184 { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence
185 };
186
187 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
188 ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000189 if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
190 LT.second))
191 return LT.first * Entry->Cost;
Benjamin Kramer7c372272014-04-26 14:53:05 +0000192 }
193
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000194 static const CostTblEntry SSE2UniformConstCostTable[] = {
Simon Pilgrim9c589502017-01-08 14:14:36 +0000195 { ISD::SHL, MVT::v16i8, 2 }, // psllw + pand.
196 { ISD::SRL, MVT::v16i8, 2 }, // psrlw + pand.
197 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
198
199 { ISD::SHL, MVT::v32i8, 4 }, // 2*(psllw + pand).
200 { ISD::SRL, MVT::v32i8, 4 }, // 2*(psrlw + pand).
201 { ISD::SRA, MVT::v32i8, 8 }, // 2*(psrlw, pand, pxor, psubb).
202
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000203 { ISD::SDIV, MVT::v16i16, 12 }, // pmulhw sequence
204 { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence
205 { ISD::UDIV, MVT::v16i16, 12 }, // pmulhuw sequence
206 { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence
207 { ISD::SDIV, MVT::v8i32, 38 }, // pmuludq sequence
208 { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
209 { ISD::UDIV, MVT::v8i32, 30 }, // pmuludq sequence
210 { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
211 };
212
213 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
214 ST->hasSSE2()) {
215 // pmuldq sequence.
216 if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
217 return LT.first * 30;
218 if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
219 return LT.first * 15;
220
221 if (const auto *Entry = CostTableLookup(SSE2UniformConstCostTable, ISD,
222 LT.second))
223 return LT.first * Entry->Cost;
224 }
225
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000226 static const CostTblEntry AVX2UniformCostTable[] = {
227 // Uniform splats are cheaper for the following instructions.
228 { ISD::SHL, MVT::v16i16, 1 }, // psllw.
229 { ISD::SRL, MVT::v16i16, 1 }, // psrlw.
230 { ISD::SRA, MVT::v16i16, 1 }, // psraw.
231 };
232
233 if (ST->hasAVX2() &&
234 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
235 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
236 if (const auto *Entry =
237 CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
238 return LT.first * Entry->Cost;
239 }
240
241 static const CostTblEntry SSE2UniformCostTable[] = {
242 // Uniform splats are cheaper for the following instructions.
243 { ISD::SHL, MVT::v8i16, 1 }, // psllw.
244 { ISD::SHL, MVT::v4i32, 1 }, // pslld
245 { ISD::SHL, MVT::v2i64, 1 }, // psllq.
246
247 { ISD::SRL, MVT::v8i16, 1 }, // psrlw.
248 { ISD::SRL, MVT::v4i32, 1 }, // psrld.
249 { ISD::SRL, MVT::v2i64, 1 }, // psrlq.
250
251 { ISD::SRA, MVT::v8i16, 1 }, // psraw.
252 { ISD::SRA, MVT::v4i32, 1 }, // psrad.
253 };
254
255 if (ST->hasSSE2() &&
256 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
257 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
258 if (const auto *Entry =
259 CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
260 return LT.first * Entry->Cost;
261 }
262
Simon Pilgrim820e1322016-10-27 15:27:00 +0000263 static const CostTblEntry AVX512DQCostTable[] = {
264 { ISD::MUL, MVT::v2i64, 1 },
265 { ISD::MUL, MVT::v4i64, 1 },
266 { ISD::MUL, MVT::v8i64, 1 }
267 };
268
269 // Look for AVX512DQ lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000270 if (ST->hasDQI())
271 if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
Simon Pilgrim820e1322016-10-27 15:27:00 +0000272 return LT.first * Entry->Cost;
Simon Pilgrim820e1322016-10-27 15:27:00 +0000273
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000274 static const CostTblEntry AVX512BWCostTable[] = {
Simon Pilgrima4109d62017-01-07 17:54:10 +0000275 { ISD::SHL, MVT::v32i16, 1 }, // vpsllvw
276 { ISD::SRL, MVT::v32i16, 1 }, // vpsrlvw
277 { ISD::SRA, MVT::v32i16, 1 }, // vpsravw
278
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000279 { ISD::MUL, MVT::v64i8, 11 }, // extend/pmullw/trunc sequence.
280 { ISD::MUL, MVT::v32i8, 4 }, // extend/pmullw/trunc sequence.
281 { ISD::MUL, MVT::v16i8, 4 }, // extend/pmullw/trunc sequence.
282
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000283 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
284 { ISD::SDIV, MVT::v64i8, 64*20 },
285 { ISD::SDIV, MVT::v32i16, 32*20 },
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000286 { ISD::UDIV, MVT::v64i8, 64*20 },
Simon Pilgrimd8333372017-01-06 11:12:53 +0000287 { ISD::UDIV, MVT::v32i16, 32*20 }
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000288 };
289
290 // Look for AVX512BW lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000291 if (ST->hasBWI())
292 if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000293 return LT.first * Entry->Cost;
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000294
Craig Topper4b275762015-10-28 04:02:12 +0000295 static const CostTblEntry AVX512CostTable[] = {
Simon Pilgrimd8333372017-01-06 11:12:53 +0000296 { ISD::SHL, MVT::v16i32, 1 },
297 { ISD::SRL, MVT::v16i32, 1 },
298 { ISD::SRA, MVT::v16i32, 1 },
299 { ISD::SHL, MVT::v8i64, 1 },
300 { ISD::SRL, MVT::v8i64, 1 },
301 { ISD::SRA, MVT::v8i64, 1 },
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000302
Simon Pilgrimd8333372017-01-06 11:12:53 +0000303 { ISD::MUL, MVT::v32i8, 13 }, // extend/pmullw/trunc sequence.
304 { ISD::MUL, MVT::v16i8, 5 }, // extend/pmullw/trunc sequence.
305 { ISD::MUL, MVT::v16i32, 1 }, // pmulld
306 { ISD::MUL, MVT::v8i64, 8 }, // 3*pmuludq/3*shift/2*add
307
308 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
309 { ISD::SDIV, MVT::v16i32, 16*20 },
310 { ISD::SDIV, MVT::v8i64, 8*20 },
311 { ISD::UDIV, MVT::v16i32, 16*20 },
312 { ISD::UDIV, MVT::v8i64, 8*20 }
Elena Demikhovsky27012472014-09-16 07:57:37 +0000313 };
314
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000315 if (ST->hasAVX512())
Craig Topperee0c8592015-10-27 04:14:24 +0000316 if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
317 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000318
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000319 static const CostTblEntry AVX2ShiftCostTable[] = {
Michael Liao70dd7f92013-03-20 22:01:10 +0000320 // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
321 // customize them to detect the cases where shift amount is a scalar one.
322 { ISD::SHL, MVT::v4i32, 1 },
323 { ISD::SRL, MVT::v4i32, 1 },
324 { ISD::SRA, MVT::v4i32, 1 },
325 { ISD::SHL, MVT::v8i32, 1 },
326 { ISD::SRL, MVT::v8i32, 1 },
327 { ISD::SRA, MVT::v8i32, 1 },
328 { ISD::SHL, MVT::v2i64, 1 },
329 { ISD::SRL, MVT::v2i64, 1 },
330 { ISD::SHL, MVT::v4i64, 1 },
331 { ISD::SRL, MVT::v4i64, 1 },
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000332 };
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000333
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000334 // Look for AVX2 lowering tricks.
335 if (ST->hasAVX2()) {
336 if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
337 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
338 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
339 // On AVX2, a packed v16i16 shift left by a constant build_vector
340 // is lowered into a vector multiply (vpmullw).
341 return LT.first;
342
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000343 if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000344 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000345 }
346
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000347 static const CostTblEntry XOPShiftCostTable[] = {
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000348 // 128bit shifts take 1cy, but right shifts require negation beforehand.
349 { ISD::SHL, MVT::v16i8, 1 },
350 { ISD::SRL, MVT::v16i8, 2 },
351 { ISD::SRA, MVT::v16i8, 2 },
352 { ISD::SHL, MVT::v8i16, 1 },
353 { ISD::SRL, MVT::v8i16, 2 },
354 { ISD::SRA, MVT::v8i16, 2 },
355 { ISD::SHL, MVT::v4i32, 1 },
356 { ISD::SRL, MVT::v4i32, 2 },
357 { ISD::SRA, MVT::v4i32, 2 },
358 { ISD::SHL, MVT::v2i64, 1 },
359 { ISD::SRL, MVT::v2i64, 2 },
360 { ISD::SRA, MVT::v2i64, 2 },
361 // 256bit shifts require splitting if AVX2 didn't catch them above.
362 { ISD::SHL, MVT::v32i8, 2 },
363 { ISD::SRL, MVT::v32i8, 4 },
364 { ISD::SRA, MVT::v32i8, 4 },
365 { ISD::SHL, MVT::v16i16, 2 },
366 { ISD::SRL, MVT::v16i16, 4 },
367 { ISD::SRA, MVT::v16i16, 4 },
368 { ISD::SHL, MVT::v8i32, 2 },
369 { ISD::SRL, MVT::v8i32, 4 },
370 { ISD::SRA, MVT::v8i32, 4 },
371 { ISD::SHL, MVT::v4i64, 2 },
372 { ISD::SRL, MVT::v4i64, 4 },
373 { ISD::SRA, MVT::v4i64, 4 },
374 };
375
376 // Look for XOP lowering tricks.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000377 if (ST->hasXOP())
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000378 if (const auto *Entry = CostTableLookup(XOPShiftCostTable, ISD, LT.second))
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000379 return LT.first * Entry->Cost;
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000380
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000381 static const CostTblEntry SSE2UniformShiftCostTable[] = {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000382 // Uniform splats are cheaper for the following instructions.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000383 { ISD::SHL, MVT::v16i16, 2 }, // psllw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000384 { ISD::SHL, MVT::v8i32, 2 }, // pslld
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000385 { ISD::SHL, MVT::v4i64, 2 }, // psllq.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000386
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000387 { ISD::SRL, MVT::v16i16, 2 }, // psrlw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000388 { ISD::SRL, MVT::v8i32, 2 }, // psrld.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000389 { ISD::SRL, MVT::v4i64, 2 }, // psrlq.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000390
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000391 { ISD::SRA, MVT::v16i16, 2 }, // psraw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000392 { ISD::SRA, MVT::v8i32, 2 }, // psrad.
Simon Pilgrim8fbf1c12015-07-06 22:35:19 +0000393 { ISD::SRA, MVT::v2i64, 4 }, // 2 x psrad + shuffle.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000394 { ISD::SRA, MVT::v4i64, 8 }, // 2 x psrad + shuffle.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000395 };
396
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000397 if (ST->hasSSE2() &&
398 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
399 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000400 if (const auto *Entry =
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000401 CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000402 return LT.first * Entry->Cost;
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000403 }
404
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000405 if (ISD == ISD::SHL &&
406 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
Craig Toppereda02a92015-10-25 03:15:29 +0000407 MVT VT = LT.second;
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000408 // Vector shift left by non uniform constant can be lowered
Simon Pilgrime70644d2017-01-07 21:33:00 +0000409 // into vector multiply.
410 if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
411 ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000412 ISD = ISD::MUL;
413 }
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000414
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000415 static const CostTblEntry AVX2CostTable[] = {
416 { ISD::SHL, MVT::v32i8, 11 }, // vpblendvb sequence.
417 { ISD::SHL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
418
419 { ISD::SRL, MVT::v32i8, 11 }, // vpblendvb sequence.
420 { ISD::SRL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
421
422 { ISD::SRA, MVT::v32i8, 24 }, // vpblendvb sequence.
423 { ISD::SRA, MVT::v16i16, 10 }, // extend/vpsravd/pack sequence.
424 { ISD::SRA, MVT::v2i64, 4 }, // srl/xor/sub sequence.
425 { ISD::SRA, MVT::v4i64, 4 }, // srl/xor/sub sequence.
426
427 { ISD::SUB, MVT::v32i8, 1 }, // psubb
428 { ISD::ADD, MVT::v32i8, 1 }, // paddb
429 { ISD::SUB, MVT::v16i16, 1 }, // psubw
430 { ISD::ADD, MVT::v16i16, 1 }, // paddw
431 { ISD::SUB, MVT::v8i32, 1 }, // psubd
432 { ISD::ADD, MVT::v8i32, 1 }, // paddd
433 { ISD::SUB, MVT::v4i64, 1 }, // psubq
434 { ISD::ADD, MVT::v4i64, 1 }, // paddq
435
436 { ISD::MUL, MVT::v32i8, 17 }, // extend/pmullw/trunc sequence.
437 { ISD::MUL, MVT::v16i8, 7 }, // extend/pmullw/trunc sequence.
438 { ISD::MUL, MVT::v16i16, 1 }, // pmullw
439 { ISD::MUL, MVT::v8i32, 1 }, // pmulld
440 { ISD::MUL, MVT::v4i64, 8 }, // 3*pmuludq/3*shift/2*add
441
442 { ISD::FDIV, MVT::f32, 7 }, // Haswell from http://www.agner.org/
443 { ISD::FDIV, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
444 { ISD::FDIV, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
445 { ISD::FDIV, MVT::f64, 14 }, // Haswell from http://www.agner.org/
446 { ISD::FDIV, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
447 { ISD::FDIV, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
448 };
449
450 // Look for AVX2 lowering tricks for custom cases.
451 if (ST->hasAVX2())
452 if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
453 return LT.first * Entry->Cost;
454
Simon Pilgrim100eae12017-01-07 17:03:51 +0000455 static const CostTblEntry AVX1CostTable[] = {
456 // We don't have to scalarize unsupported ops. We can issue two half-sized
457 // operations and we only need to extract the upper YMM half.
458 // Two ops + 1 extract + 1 insert = 4.
Simon Pilgrim72599712017-01-07 18:19:25 +0000459 { ISD::MUL, MVT::v16i16, 4 },
460 { ISD::MUL, MVT::v8i32, 4 },
461 { ISD::SUB, MVT::v32i8, 4 },
462 { ISD::ADD, MVT::v32i8, 4 },
463 { ISD::SUB, MVT::v16i16, 4 },
464 { ISD::ADD, MVT::v16i16, 4 },
465 { ISD::SUB, MVT::v8i32, 4 },
466 { ISD::ADD, MVT::v8i32, 4 },
467 { ISD::SUB, MVT::v4i64, 4 },
468 { ISD::ADD, MVT::v4i64, 4 },
Simon Pilgrim100eae12017-01-07 17:03:51 +0000469
470 // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
471 // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
472 // Because we believe v4i64 to be a legal type, we must also include the
473 // extract+insert in the cost table. Therefore, the cost here is 18
474 // instead of 8.
Simon Pilgrim72599712017-01-07 18:19:25 +0000475 { ISD::MUL, MVT::v4i64, 18 },
476
477 { ISD::MUL, MVT::v32i8, 26 }, // extend/pmullw/trunc sequence.
478
479 { ISD::FDIV, MVT::f32, 14 }, // SNB from http://www.agner.org/
480 { ISD::FDIV, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
481 { ISD::FDIV, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
482 { ISD::FDIV, MVT::f64, 22 }, // SNB from http://www.agner.org/
483 { ISD::FDIV, MVT::v2f64, 22 }, // SNB from http://www.agner.org/
484 { ISD::FDIV, MVT::v4f64, 44 }, // SNB from http://www.agner.org/
485
486 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
487 { ISD::SDIV, MVT::v32i8, 32*20 },
488 { ISD::SDIV, MVT::v16i16, 16*20 },
489 { ISD::SDIV, MVT::v8i32, 8*20 },
490 { ISD::SDIV, MVT::v4i64, 4*20 },
491 { ISD::UDIV, MVT::v32i8, 32*20 },
492 { ISD::UDIV, MVT::v16i16, 16*20 },
493 { ISD::UDIV, MVT::v8i32, 8*20 },
494 { ISD::UDIV, MVT::v4i64, 4*20 },
Simon Pilgrim100eae12017-01-07 17:03:51 +0000495 };
496
Simon Pilgrimdf7de7a2017-01-07 17:27:39 +0000497 if (ST->hasAVX())
Simon Pilgrim100eae12017-01-07 17:03:51 +0000498 if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
499 return LT.first * Entry->Cost;
500
Simon Pilgrim5b06e4d2017-01-05 19:19:39 +0000501 static const CostTblEntry SSE42CostTable[] = {
502 { ISD::FDIV, MVT::f32, 14 }, // Nehalem from http://www.agner.org/
503 { ISD::FDIV, MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
504 { ISD::FDIV, MVT::f64, 22 }, // Nehalem from http://www.agner.org/
505 { ISD::FDIV, MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
506 };
507
508 if (ST->hasSSE42())
509 if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
510 return LT.first * Entry->Cost;
511
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000512 static const CostTblEntry SSE41CostTable[] = {
513 { ISD::SHL, MVT::v16i8, 11 }, // pblendvb sequence.
514 { ISD::SHL, MVT::v32i8, 2*11 }, // pblendvb sequence.
515 { ISD::SHL, MVT::v8i16, 14 }, // pblendvb sequence.
516 { ISD::SHL, MVT::v16i16, 2*14 }, // pblendvb sequence.
Simon Pilgrim9681c402017-01-07 22:27:43 +0000517 { ISD::SHL, MVT::v4i32, 4 }, // pslld/paddd/cvttps2dq/pmulld
518 { ISD::SHL, MVT::v8i32, 2*4 }, // pslld/paddd/cvttps2dq/pmulld
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000519
520 { ISD::SRL, MVT::v16i8, 12 }, // pblendvb sequence.
521 { ISD::SRL, MVT::v32i8, 2*12 }, // pblendvb sequence.
522 { ISD::SRL, MVT::v8i16, 14 }, // pblendvb sequence.
523 { ISD::SRL, MVT::v16i16, 2*14 }, // pblendvb sequence.
524 { ISD::SRL, MVT::v4i32, 11 }, // Shift each lane + blend.
525 { ISD::SRL, MVT::v8i32, 2*11 }, // Shift each lane + blend.
526
527 { ISD::SRA, MVT::v16i8, 24 }, // pblendvb sequence.
528 { ISD::SRA, MVT::v32i8, 2*24 }, // pblendvb sequence.
529 { ISD::SRA, MVT::v8i16, 14 }, // pblendvb sequence.
530 { ISD::SRA, MVT::v16i16, 2*14 }, // pblendvb sequence.
531 { ISD::SRA, MVT::v4i32, 12 }, // Shift each lane + blend.
532 { ISD::SRA, MVT::v8i32, 2*12 }, // Shift each lane + blend.
Simon Pilgrim4c050c212017-01-05 19:42:43 +0000533
534 { ISD::MUL, MVT::v4i32, 1 } // pmulld
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000535 };
536
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000537 if (ST->hasSSE41())
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000538 if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
539 return LT.first * Entry->Cost;
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000540
Craig Topper4b275762015-10-28 04:02:12 +0000541 static const CostTblEntry SSE2CostTable[] = {
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000542 // We don't correctly identify costs of casts because they are marked as
543 // custom.
Simon Pilgrim59656802015-06-11 07:46:37 +0000544 { ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence.
545 { ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence.
546 { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000547 { ISD::SHL, MVT::v8i32, 2*2*5 }, // We optimized this using mul.
Simon Pilgrim59764dc2015-07-18 20:06:30 +0000548 { ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000549 { ISD::SHL, MVT::v4i64, 2*4 }, // splat+shuffle sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000550
551 { ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence.
552 { ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence.
553 { ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend.
Simon Pilgrim59764dc2015-07-18 20:06:30 +0000554 { ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000555 { ISD::SRL, MVT::v4i64, 2*4 }, // splat+shuffle sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000556
557 { ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence.
558 { ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence.
559 { ISD::SRA, MVT::v4i32, 16 }, // Shift each lane + blend.
Simon Pilgrim86478c62015-07-29 20:31:45 +0000560 { ISD::SRA, MVT::v2i64, 12 }, // srl/xor/sub sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000561 { ISD::SRA, MVT::v4i64, 2*12 }, // srl/xor/sub sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000562
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000563 { ISD::MUL, MVT::v16i8, 12 }, // extend/pmullw/trunc sequence.
Simon Pilgrime70644d2017-01-07 21:33:00 +0000564 { ISD::MUL, MVT::v8i16, 1 }, // pmullw
Simon Pilgrim4c050c212017-01-05 19:42:43 +0000565 { ISD::MUL, MVT::v4i32, 6 }, // 3*pmuludq/4*shuffle
Simon Pilgrima8bf9752017-01-05 19:01:50 +0000566 { ISD::MUL, MVT::v2i64, 8 }, // 3*pmuludq/3*shift/2*add
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000567
Alexey Bataevd07c7312016-10-31 12:10:53 +0000568 { ISD::FDIV, MVT::f32, 23 }, // Pentium IV from http://www.agner.org/
569 { ISD::FDIV, MVT::v4f32, 39 }, // Pentium IV from http://www.agner.org/
570 { ISD::FDIV, MVT::f64, 38 }, // Pentium IV from http://www.agner.org/
571 { ISD::FDIV, MVT::v2f64, 69 }, // Pentium IV from http://www.agner.org/
572
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000573 // It is not a good idea to vectorize division. We have to scalarize it and
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000574 // in the process we will often end up having to spilling regular
575 // registers. The overhead of division is going to dominate most kernels
576 // anyways so try hard to prevent vectorization of division - it is
577 // generally a bad idea. Assume somewhat arbitrarily that we have to be able
578 // to hide "20 cycles" for each lane.
579 { ISD::SDIV, MVT::v16i8, 16*20 },
Simon Pilgrime70644d2017-01-07 21:33:00 +0000580 { ISD::SDIV, MVT::v8i16, 8*20 },
581 { ISD::SDIV, MVT::v4i32, 4*20 },
582 { ISD::SDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000583 { ISD::UDIV, MVT::v16i8, 16*20 },
Simon Pilgrime70644d2017-01-07 21:33:00 +0000584 { ISD::UDIV, MVT::v8i16, 8*20 },
585 { ISD::UDIV, MVT::v4i32, 4*20 },
586 { ISD::UDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000587 };
588
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000589 if (ST->hasSSE2())
Craig Topperee0c8592015-10-27 04:14:24 +0000590 if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
591 return LT.first * Entry->Cost;
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000592
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000593 static const CostTblEntry SSE1CostTable[] = {
Alexey Bataevd07c7312016-10-31 12:10:53 +0000594 { ISD::FDIV, MVT::f32, 17 }, // Pentium III from http://www.agner.org/
595 { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
596 };
597
598 if (ST->hasSSE1())
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000599 if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
Alexey Bataevd07c7312016-10-31 12:10:53 +0000600 return LT.first * Entry->Cost;
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000601
Chandler Carruth664e3542013-01-07 01:37:14 +0000602 // Fallback to the default implementation.
Chandler Carruth705b1852015-01-31 03:43:40 +0000603 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
Chandler Carruth664e3542013-01-07 01:37:14 +0000604}
605
Chandler Carruth93205eb2015-08-05 18:08:10 +0000606int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
607 Type *SubTp) {
Simon Pilgrima62395a2017-01-05 14:33:32 +0000608 // 64-bit packed float vectors (v2f32) are widened to type v4f32.
609 // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
610 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
Karthik Bhate03a25d2014-06-20 04:32:48 +0000611
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000612 // For Broadcasts we are splatting the first element from the first input
613 // register, so only need to reference that input and all the output
614 // registers are the same.
615 if (Kind == TTI::SK_Broadcast)
616 LT.first = 1;
Simon Pilgrimbca02f92017-01-05 15:56:08 +0000617
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000618 // We are going to permute multiple sources and the result will be in multiple
619 // destinations. Providing an accurate cost only for splits where the element
620 // type remains the same.
621 if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
622 MVT LegalVT = LT.second;
623 if (LegalVT.getVectorElementType().getSizeInBits() ==
624 Tp->getVectorElementType()->getPrimitiveSizeInBits() &&
625 LegalVT.getVectorNumElements() < Tp->getVectorNumElements()) {
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000626
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000627 unsigned VecTySize = DL.getTypeStoreSize(Tp);
628 unsigned LegalVTSize = LegalVT.getStoreSize();
629 // Number of source vectors after legalization:
630 unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
631 // Number of destination vectors after legalization:
632 unsigned NumOfDests = LT.first;
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000633
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000634 Type *SingleOpTy = VectorType::get(Tp->getVectorElementType(),
635 LegalVT.getVectorNumElements());
Simon Pilgrimbca02f92017-01-05 15:56:08 +0000636
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000637 unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
638 return NumOfShuffles *
639 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
640 }
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000641
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000642 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
643 }
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000644
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000645 // For 2-input shuffles, we must account for splitting the 2 inputs into many.
646 if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000647 // We assume that source and destination have the same vector type.
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000648 int NumOfDests = LT.first;
649 int NumOfShufflesPerDest = LT.first * 2 - 1;
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000650 LT.first = NumOfDests * NumOfShufflesPerDest;
Karthik Bhate03a25d2014-06-20 04:32:48 +0000651 }
652
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000653 static const CostTblEntry AVX512VBMIShuffleTbl[] = {
654 { TTI::SK_Reverse, MVT::v64i8, 1 }, // vpermb
655 { TTI::SK_Reverse, MVT::v32i8, 1 }, // vpermb
656
657 { TTI::SK_PermuteSingleSrc, MVT::v64i8, 1 }, // vpermb
658 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 1 }, // vpermb
659
660 { TTI::SK_PermuteTwoSrc, MVT::v64i8, 1 }, // vpermt2b
661 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 1 }, // vpermt2b
662 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 1 } // vpermt2b
663 };
664
665 if (ST->hasVBMI())
666 if (const auto *Entry =
667 CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
668 return LT.first * Entry->Cost;
669
670 static const CostTblEntry AVX512BWShuffleTbl[] = {
671 { TTI::SK_Broadcast, MVT::v32i16, 1 }, // vpbroadcastw
672 { TTI::SK_Broadcast, MVT::v64i8, 1 }, // vpbroadcastb
673
674 { TTI::SK_Reverse, MVT::v32i16, 1 }, // vpermw
675 { TTI::SK_Reverse, MVT::v16i16, 1 }, // vpermw
Simon Pilgrima1b8e2c2017-01-07 15:37:50 +0000676 { TTI::SK_Reverse, MVT::v64i8, 2 }, // pshufb + vshufi64x2
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000677
678 { TTI::SK_PermuteSingleSrc, MVT::v32i16, 1 }, // vpermw
679 { TTI::SK_PermuteSingleSrc, MVT::v16i16, 1 }, // vpermw
680 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 1 }, // vpermw
681 { TTI::SK_PermuteSingleSrc, MVT::v64i8, 8 }, // extend to v32i16
682 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 3 }, // vpermw + zext/trunc
683
684 { TTI::SK_PermuteTwoSrc, MVT::v32i16, 1 }, // vpermt2w
685 { TTI::SK_PermuteTwoSrc, MVT::v16i16, 1 }, // vpermt2w
686 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 1 }, // vpermt2w
687 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 3 }, // zext + vpermt2w + trunc
688 { TTI::SK_PermuteTwoSrc, MVT::v64i8, 19 }, // 6 * v32i8 + 1
689 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 3 } // zext + vpermt2w + trunc
690 };
691
692 if (ST->hasBWI())
693 if (const auto *Entry =
694 CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
695 return LT.first * Entry->Cost;
696
697 static const CostTblEntry AVX512ShuffleTbl[] = {
698 { TTI::SK_Broadcast, MVT::v8f64, 1 }, // vbroadcastpd
699 { TTI::SK_Broadcast, MVT::v16f32, 1 }, // vbroadcastps
700 { TTI::SK_Broadcast, MVT::v8i64, 1 }, // vpbroadcastq
701 { TTI::SK_Broadcast, MVT::v16i32, 1 }, // vpbroadcastd
702
703 { TTI::SK_Reverse, MVT::v8f64, 1 }, // vpermpd
704 { TTI::SK_Reverse, MVT::v16f32, 1 }, // vpermps
705 { TTI::SK_Reverse, MVT::v8i64, 1 }, // vpermq
706 { TTI::SK_Reverse, MVT::v16i32, 1 }, // vpermd
707
708 { TTI::SK_PermuteSingleSrc, MVT::v8f64, 1 }, // vpermpd
709 { TTI::SK_PermuteSingleSrc, MVT::v4f64, 1 }, // vpermpd
710 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // vpermpd
711 { TTI::SK_PermuteSingleSrc, MVT::v16f32, 1 }, // vpermps
712 { TTI::SK_PermuteSingleSrc, MVT::v8f32, 1 }, // vpermps
713 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // vpermps
714 { TTI::SK_PermuteSingleSrc, MVT::v8i64, 1 }, // vpermq
715 { TTI::SK_PermuteSingleSrc, MVT::v4i64, 1 }, // vpermq
716 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // vpermq
717 { TTI::SK_PermuteSingleSrc, MVT::v16i32, 1 }, // vpermd
718 { TTI::SK_PermuteSingleSrc, MVT::v8i32, 1 }, // vpermd
719 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 1 }, // vpermd
720 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 1 }, // pshufb
721
722 { TTI::SK_PermuteTwoSrc, MVT::v8f64, 1 }, // vpermt2pd
723 { TTI::SK_PermuteTwoSrc, MVT::v16f32, 1 }, // vpermt2ps
724 { TTI::SK_PermuteTwoSrc, MVT::v8i64, 1 }, // vpermt2q
725 { TTI::SK_PermuteTwoSrc, MVT::v16i32, 1 }, // vpermt2d
726 { TTI::SK_PermuteTwoSrc, MVT::v4f64, 1 }, // vpermt2pd
727 { TTI::SK_PermuteTwoSrc, MVT::v8f32, 1 }, // vpermt2ps
728 { TTI::SK_PermuteTwoSrc, MVT::v4i64, 1 }, // vpermt2q
729 { TTI::SK_PermuteTwoSrc, MVT::v8i32, 1 }, // vpermt2d
730 { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // vpermt2pd
731 { TTI::SK_PermuteTwoSrc, MVT::v4f32, 1 }, // vpermt2ps
732 { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // vpermt2q
733 { TTI::SK_PermuteTwoSrc, MVT::v4i32, 1 } // vpermt2d
734 };
735
736 if (ST->hasAVX512())
737 if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
738 return LT.first * Entry->Cost;
739
740 static const CostTblEntry AVX2ShuffleTbl[] = {
741 { TTI::SK_Broadcast, MVT::v4f64, 1 }, // vbroadcastpd
742 { TTI::SK_Broadcast, MVT::v8f32, 1 }, // vbroadcastps
743 { TTI::SK_Broadcast, MVT::v4i64, 1 }, // vpbroadcastq
744 { TTI::SK_Broadcast, MVT::v8i32, 1 }, // vpbroadcastd
745 { TTI::SK_Broadcast, MVT::v16i16, 1 }, // vpbroadcastw
746 { TTI::SK_Broadcast, MVT::v32i8, 1 }, // vpbroadcastb
747
748 { TTI::SK_Reverse, MVT::v4f64, 1 }, // vpermpd
749 { TTI::SK_Reverse, MVT::v8f32, 1 }, // vpermps
750 { TTI::SK_Reverse, MVT::v4i64, 1 }, // vpermq
751 { TTI::SK_Reverse, MVT::v8i32, 1 }, // vpermd
752 { TTI::SK_Reverse, MVT::v16i16, 2 }, // vperm2i128 + pshufb
753 { TTI::SK_Reverse, MVT::v32i8, 2 }, // vperm2i128 + pshufb
754
755 { TTI::SK_Alternate, MVT::v16i16, 1 }, // vpblendw
756 { TTI::SK_Alternate, MVT::v32i8, 1 } // vpblendvb
757 };
758
759 if (ST->hasAVX2())
760 if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
761 return LT.first * Entry->Cost;
762
763 static const CostTblEntry AVX1ShuffleTbl[] = {
764 { TTI::SK_Broadcast, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
765 { TTI::SK_Broadcast, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
766 { TTI::SK_Broadcast, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
767 { TTI::SK_Broadcast, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
768 { TTI::SK_Broadcast, MVT::v16i16, 3 }, // vpshuflw + vpshufd + vinsertf128
769 { TTI::SK_Broadcast, MVT::v32i8, 2 }, // vpshufb + vinsertf128
770
771 { TTI::SK_Reverse, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
772 { TTI::SK_Reverse, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
773 { TTI::SK_Reverse, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
774 { TTI::SK_Reverse, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
775 { TTI::SK_Reverse, MVT::v16i16, 4 }, // vextractf128 + 2*pshufb
776 // + vinsertf128
777 { TTI::SK_Reverse, MVT::v32i8, 4 }, // vextractf128 + 2*pshufb
778 // + vinsertf128
779
780 { TTI::SK_Alternate, MVT::v4i64, 1 }, // vblendpd
781 { TTI::SK_Alternate, MVT::v4f64, 1 }, // vblendpd
782 { TTI::SK_Alternate, MVT::v8i32, 1 }, // vblendps
783 { TTI::SK_Alternate, MVT::v8f32, 1 }, // vblendps
784 { TTI::SK_Alternate, MVT::v16i16, 3 }, // vpand + vpandn + vpor
785 { TTI::SK_Alternate, MVT::v32i8, 3 } // vpand + vpandn + vpor
786 };
787
788 if (ST->hasAVX())
789 if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
790 return LT.first * Entry->Cost;
791
792 static const CostTblEntry SSE41ShuffleTbl[] = {
793 { TTI::SK_Alternate, MVT::v2i64, 1 }, // pblendw
794 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
795 { TTI::SK_Alternate, MVT::v4i32, 1 }, // pblendw
796 { TTI::SK_Alternate, MVT::v4f32, 1 }, // blendps
797 { TTI::SK_Alternate, MVT::v8i16, 1 }, // pblendw
798 { TTI::SK_Alternate, MVT::v16i8, 1 } // pblendvb
799 };
800
801 if (ST->hasSSE41())
802 if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
803 return LT.first * Entry->Cost;
804
805 static const CostTblEntry SSSE3ShuffleTbl[] = {
806 { TTI::SK_Broadcast, MVT::v8i16, 1 }, // pshufb
807 { TTI::SK_Broadcast, MVT::v16i8, 1 }, // pshufb
808
809 { TTI::SK_Reverse, MVT::v8i16, 1 }, // pshufb
810 { TTI::SK_Reverse, MVT::v16i8, 1 }, // pshufb
811
812 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pshufb + pshufb + por
813 { TTI::SK_Alternate, MVT::v16i8, 3 } // pshufb + pshufb + por
814 };
815
816 if (ST->hasSSSE3())
817 if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
818 return LT.first * Entry->Cost;
819
820 static const CostTblEntry SSE2ShuffleTbl[] = {
821 { TTI::SK_Broadcast, MVT::v2f64, 1 }, // shufpd
822 { TTI::SK_Broadcast, MVT::v2i64, 1 }, // pshufd
823 { TTI::SK_Broadcast, MVT::v4i32, 1 }, // pshufd
824 { TTI::SK_Broadcast, MVT::v8i16, 2 }, // pshuflw + pshufd
825 { TTI::SK_Broadcast, MVT::v16i8, 3 }, // unpck + pshuflw + pshufd
826
827 { TTI::SK_Reverse, MVT::v2f64, 1 }, // shufpd
828 { TTI::SK_Reverse, MVT::v2i64, 1 }, // pshufd
829 { TTI::SK_Reverse, MVT::v4i32, 1 }, // pshufd
830 { TTI::SK_Reverse, MVT::v8i16, 3 }, // pshuflw + pshufhw + pshufd
831 { TTI::SK_Reverse, MVT::v16i8, 9 }, // 2*pshuflw + 2*pshufhw
832 // + 2*pshufd + 2*unpck + packus
833
834 { TTI::SK_Alternate, MVT::v2i64, 1 }, // movsd
835 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
836 { TTI::SK_Alternate, MVT::v4i32, 2 }, // 2*shufps
837 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pand + pandn + por
838 { TTI::SK_Alternate, MVT::v16i8, 3 } // pand + pandn + por
839 };
840
841 if (ST->hasSSE2())
842 if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
843 return LT.first * Entry->Cost;
844
845 static const CostTblEntry SSE1ShuffleTbl[] = {
846 { TTI::SK_Broadcast, MVT::v4f32, 1 }, // shufps
847 { TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps
848 { TTI::SK_Alternate, MVT::v4f32, 2 } // 2*shufps
849 };
850
851 if (ST->hasSSE1())
852 if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
853 return LT.first * Entry->Cost;
854
Chandler Carruth705b1852015-01-31 03:43:40 +0000855 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
Chandler Carruth664e3542013-01-07 01:37:14 +0000856}
857
Chandler Carruth93205eb2015-08-05 18:08:10 +0000858int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000859 int ISD = TLI->InstructionOpcodeToISD(Opcode);
860 assert(ISD && "Invalid opcode");
861
Cong Hou59898d82015-12-11 00:31:39 +0000862 // FIXME: Need a better design of the cost table to handle non-simple types of
863 // potential massive combinations (elem_num x src_type x dst_type).
864
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000865 static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000866 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
867 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000868 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
869 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000870 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
871 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
872
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000873 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000874 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000875 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000876 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +0000877 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000878 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000879
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000880 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000881 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000882 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, 1 },
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000883 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000884 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000885 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, 1 },
886
887 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 1 },
888 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 },
889 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 },
890 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
891 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 },
892 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000893 };
894
Michael Kupersteinf0c59332016-07-11 21:39:44 +0000895 // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
896 // 256-bit wide vectors.
897
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000898 static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +0000899 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
900 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
901 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000902
903 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 1 },
904 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 1 },
905 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 1 },
906 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000907
908 // v16i1 -> v16i32 - load + broadcast
909 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
910 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000911 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
912 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
913 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
914 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000915 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
916 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000917 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
918 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000919
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000920 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000921 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000922 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000923 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000924 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000925 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
926 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000927 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +0000928 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 },
929 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000930
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000931 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000932 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000933 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000934 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
935 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 2 },
936 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
937 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000938 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000939 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
940 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
941 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
942 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000943 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +0000944 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000945 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
946 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
947 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
948 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
949 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +0000950 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000951 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
952 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 12 },
953 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
954
955 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
956 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
957 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 },
958 { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000959 };
960
Craig Topper4b275762015-10-28 04:02:12 +0000961 static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +0000962 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
963 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000964 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
965 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000966 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
967 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000968 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
969 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
970 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
971 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000972 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
973 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000974 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
975 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000976 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
977 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
978
979 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 },
980 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 },
981 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
982 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 },
983 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
984 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000985
986 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
987 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
Quentin Colombet360460b2014-11-11 02:23:47 +0000988
989 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000990 };
991
Craig Topper4b275762015-10-28 04:02:12 +0000992 static const TypeConversionCostTblEntry AVXConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +0000993 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
994 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000995 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
996 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000997 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 },
998 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000999 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 7 },
1000 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
1001 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1002 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001003 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
1004 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001005 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1006 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001007 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1008 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1009
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001010 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 },
1011 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1012 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001013 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 },
1014 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 },
1015 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001016 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 9 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001017
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001018 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001019 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001020 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
1021 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001022 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001023 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
1024 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001025 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001026 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
1027 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001028 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001029 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001030
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001031 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001032 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001033 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
1034 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001035 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001036 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
1037 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001038 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001039 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001040 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001041 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001042 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001043 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
Quentin Colombet85b904d2014-03-27 22:27:41 +00001044 // The generic code to compute the scalar overhead is currently broken.
1045 // Workaround this limitation by estimating the scalarization overhead
1046 // here. We have roughly 10 instructions per scalar element.
1047 // Multiply that by the vector width.
1048 // FIXME: remove that when PR19268 is fixed.
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001049 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 10 },
1050 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 20 },
1051 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
1052 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001053
Renato Goline1fb0592013-01-20 20:57:20 +00001054 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001055 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 7 },
Adam Nemet6dafe972014-03-30 18:07:13 +00001056 // This node is expanded into scalarized operations but BasicTTI is overly
1057 // optimistic estimating its cost. It computes 3 per element (one
1058 // vector-extract, one scalar conversion and one vector-insert). The
1059 // problem is that the inserts form a read-modify-write chain so latency
1060 // should be factored in too. Inflating the cost per element by 1.
1061 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 },
Adam Nemet10c4ce22014-03-31 21:54:48 +00001062 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001063
1064 { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 },
1065 { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001066 };
1067
Cong Hou59898d82015-12-11 00:31:39 +00001068 static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001069 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
1070 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001071 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1072 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1073 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
1074 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001075
Cong Hou59898d82015-12-11 00:31:39 +00001076 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1077 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001078 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1079 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1080 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1081 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1082 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1083 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1084 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1085 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1086 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1087 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1088 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1089 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1090 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1091 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1092 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1093 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
Cong Hou59898d82015-12-11 00:31:39 +00001094
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001095 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 },
1096 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1 },
1097 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001098 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001099 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001100 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001101 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 },
1102
Cong Hou59898d82015-12-11 00:31:39 +00001103 };
1104
1105 static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001106 // These are somewhat magic numbers justified by looking at the output of
1107 // Intel's IACA, running some kernels and making sure when we take
1108 // legalization into account the throughput will be overestimated.
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001109 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001110 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1111 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1112 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
Sanjay Patel04b34962016-07-06 19:15:54 +00001113 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001114 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1115 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1116 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
Cong Hou59898d82015-12-11 00:31:39 +00001117
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001118 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1119 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1120 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1121 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1122 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1123 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1124 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1125 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001126
Simon Pilgrim4ddc92b2016-10-18 07:42:15 +00001127 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 3 },
1128
Cong Hou59898d82015-12-11 00:31:39 +00001129 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1130 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001131 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
1132 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 3 },
1133 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
1134 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 8 },
1135 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1136 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 2 },
1137 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1138 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1139 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
1140 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1141 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 9 },
1142 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 12 },
1143 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1144 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 2 },
1145 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1146 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 10 },
1147 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
1148 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1149 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001150 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001151 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 },
1152 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 5 },
Cong Hou59898d82015-12-11 00:31:39 +00001153
Cong Hou59898d82015-12-11 00:31:39 +00001154 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001155 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 },
1156 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 },
1157 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 3 },
1158 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 3 },
1159 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1160 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 },
1161 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
1162 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 10 },
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001163 };
1164
Chandler Carruth93205eb2015-08-05 18:08:10 +00001165 std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1166 std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001167
1168 if (ST->hasSSE2() && !ST->hasAVX()) {
Cong Hou59898d82015-12-11 00:31:39 +00001169 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
Craig Topperee0c8592015-10-27 04:14:24 +00001170 LTDest.second, LTSrc.second))
1171 return LTSrc.first * Entry->Cost;
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001172 }
1173
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001174 EVT SrcTy = TLI->getValueType(DL, Src);
1175 EVT DstTy = TLI->getValueType(DL, Dst);
1176
1177 // The function getSimpleVT only handles simple value types.
1178 if (!SrcTy.isSimple() || !DstTy.isSimple())
1179 return BaseT::getCastInstrCost(Opcode, Dst, Src);
1180
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001181 if (ST->hasDQI())
1182 if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
1183 DstTy.getSimpleVT(),
1184 SrcTy.getSimpleVT()))
1185 return Entry->Cost;
1186
1187 if (ST->hasAVX512())
1188 if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
1189 DstTy.getSimpleVT(),
1190 SrcTy.getSimpleVT()))
1191 return Entry->Cost;
1192
Tim Northoverf0e21612014-02-06 18:18:36 +00001193 if (ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001194 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
1195 DstTy.getSimpleVT(),
1196 SrcTy.getSimpleVT()))
1197 return Entry->Cost;
Tim Northoverf0e21612014-02-06 18:18:36 +00001198 }
1199
Chandler Carruth664e3542013-01-07 01:37:14 +00001200 if (ST->hasAVX()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001201 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
1202 DstTy.getSimpleVT(),
1203 SrcTy.getSimpleVT()))
1204 return Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001205 }
1206
Cong Hou59898d82015-12-11 00:31:39 +00001207 if (ST->hasSSE41()) {
1208 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
1209 DstTy.getSimpleVT(),
1210 SrcTy.getSimpleVT()))
1211 return Entry->Cost;
1212 }
1213
1214 if (ST->hasSSE2()) {
1215 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1216 DstTy.getSimpleVT(),
1217 SrcTy.getSimpleVT()))
1218 return Entry->Cost;
1219 }
1220
Chandler Carruth705b1852015-01-31 03:43:40 +00001221 return BaseT::getCastInstrCost(Opcode, Dst, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001222}
1223
Chandler Carruth93205eb2015-08-05 18:08:10 +00001224int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001225 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001226 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Chandler Carruth664e3542013-01-07 01:37:14 +00001227
1228 MVT MTy = LT.second;
1229
1230 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1231 assert(ISD && "Invalid opcode");
1232
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001233 static const CostTblEntry SSE2CostTbl[] = {
1234 { ISD::SETCC, MVT::v2i64, 8 },
1235 { ISD::SETCC, MVT::v4i32, 1 },
1236 { ISD::SETCC, MVT::v8i16, 1 },
1237 { ISD::SETCC, MVT::v16i8, 1 },
1238 };
1239
Craig Topper4b275762015-10-28 04:02:12 +00001240 static const CostTblEntry SSE42CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001241 { ISD::SETCC, MVT::v2f64, 1 },
1242 { ISD::SETCC, MVT::v4f32, 1 },
1243 { ISD::SETCC, MVT::v2i64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001244 };
1245
Craig Topper4b275762015-10-28 04:02:12 +00001246 static const CostTblEntry AVX1CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001247 { ISD::SETCC, MVT::v4f64, 1 },
1248 { ISD::SETCC, MVT::v8f32, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001249 // AVX1 does not support 8-wide integer compare.
Renato Goline1fb0592013-01-20 20:57:20 +00001250 { ISD::SETCC, MVT::v4i64, 4 },
1251 { ISD::SETCC, MVT::v8i32, 4 },
1252 { ISD::SETCC, MVT::v16i16, 4 },
1253 { ISD::SETCC, MVT::v32i8, 4 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001254 };
1255
Craig Topper4b275762015-10-28 04:02:12 +00001256 static const CostTblEntry AVX2CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001257 { ISD::SETCC, MVT::v4i64, 1 },
1258 { ISD::SETCC, MVT::v8i32, 1 },
1259 { ISD::SETCC, MVT::v16i16, 1 },
1260 { ISD::SETCC, MVT::v32i8, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001261 };
1262
Craig Topper4b275762015-10-28 04:02:12 +00001263 static const CostTblEntry AVX512CostTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +00001264 { ISD::SETCC, MVT::v8i64, 1 },
1265 { ISD::SETCC, MVT::v16i32, 1 },
1266 { ISD::SETCC, MVT::v8f64, 1 },
1267 { ISD::SETCC, MVT::v16f32, 1 },
1268 };
1269
Craig Topperee0c8592015-10-27 04:14:24 +00001270 if (ST->hasAVX512())
1271 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1272 return LT.first * Entry->Cost;
Elena Demikhovsky27012472014-09-16 07:57:37 +00001273
Craig Topperee0c8592015-10-27 04:14:24 +00001274 if (ST->hasAVX2())
1275 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1276 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001277
Craig Topperee0c8592015-10-27 04:14:24 +00001278 if (ST->hasAVX())
1279 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1280 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001281
Craig Topperee0c8592015-10-27 04:14:24 +00001282 if (ST->hasSSE42())
1283 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1284 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001285
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001286 if (ST->hasSSE2())
1287 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1288 return LT.first * Entry->Cost;
1289
Chandler Carruth705b1852015-01-31 03:43:40 +00001290 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
Chandler Carruth664e3542013-01-07 01:37:14 +00001291}
1292
Simon Pilgrim14000b32016-05-24 08:17:50 +00001293int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1294 ArrayRef<Type *> Tys, FastMathFlags FMF) {
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001295 // Costs should match the codegen from:
1296 // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
1297 // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001298 // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001299 // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001300 // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
Simon Pilgrim14000b32016-05-24 08:17:50 +00001301 static const CostTblEntry XOPCostTbl[] = {
1302 { ISD::BITREVERSE, MVT::v4i64, 4 },
1303 { ISD::BITREVERSE, MVT::v8i32, 4 },
1304 { ISD::BITREVERSE, MVT::v16i16, 4 },
1305 { ISD::BITREVERSE, MVT::v32i8, 4 },
1306 { ISD::BITREVERSE, MVT::v2i64, 1 },
1307 { ISD::BITREVERSE, MVT::v4i32, 1 },
1308 { ISD::BITREVERSE, MVT::v8i16, 1 },
1309 { ISD::BITREVERSE, MVT::v16i8, 1 },
1310 { ISD::BITREVERSE, MVT::i64, 3 },
1311 { ISD::BITREVERSE, MVT::i32, 3 },
1312 { ISD::BITREVERSE, MVT::i16, 3 },
1313 { ISD::BITREVERSE, MVT::i8, 3 }
1314 };
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001315 static const CostTblEntry AVX2CostTbl[] = {
1316 { ISD::BITREVERSE, MVT::v4i64, 5 },
1317 { ISD::BITREVERSE, MVT::v8i32, 5 },
1318 { ISD::BITREVERSE, MVT::v16i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001319 { ISD::BITREVERSE, MVT::v32i8, 5 },
1320 { ISD::BSWAP, MVT::v4i64, 1 },
1321 { ISD::BSWAP, MVT::v8i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001322 { ISD::BSWAP, MVT::v16i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001323 { ISD::CTLZ, MVT::v4i64, 23 },
1324 { ISD::CTLZ, MVT::v8i32, 18 },
1325 { ISD::CTLZ, MVT::v16i16, 14 },
1326 { ISD::CTLZ, MVT::v32i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001327 { ISD::CTPOP, MVT::v4i64, 7 },
1328 { ISD::CTPOP, MVT::v8i32, 11 },
1329 { ISD::CTPOP, MVT::v16i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001330 { ISD::CTPOP, MVT::v32i8, 6 },
1331 { ISD::CTTZ, MVT::v4i64, 10 },
1332 { ISD::CTTZ, MVT::v8i32, 14 },
1333 { ISD::CTTZ, MVT::v16i16, 12 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001334 { ISD::CTTZ, MVT::v32i8, 9 },
1335 { ISD::FSQRT, MVT::f32, 7 }, // Haswell from http://www.agner.org/
1336 { ISD::FSQRT, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
1337 { ISD::FSQRT, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
1338 { ISD::FSQRT, MVT::f64, 14 }, // Haswell from http://www.agner.org/
1339 { ISD::FSQRT, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
1340 { ISD::FSQRT, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001341 };
1342 static const CostTblEntry AVX1CostTbl[] = {
1343 { ISD::BITREVERSE, MVT::v4i64, 10 },
1344 { ISD::BITREVERSE, MVT::v8i32, 10 },
1345 { ISD::BITREVERSE, MVT::v16i16, 10 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001346 { ISD::BITREVERSE, MVT::v32i8, 10 },
1347 { ISD::BSWAP, MVT::v4i64, 4 },
1348 { ISD::BSWAP, MVT::v8i32, 4 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001349 { ISD::BSWAP, MVT::v16i16, 4 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001350 { ISD::CTLZ, MVT::v4i64, 46 },
1351 { ISD::CTLZ, MVT::v8i32, 36 },
1352 { ISD::CTLZ, MVT::v16i16, 28 },
1353 { ISD::CTLZ, MVT::v32i8, 18 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001354 { ISD::CTPOP, MVT::v4i64, 14 },
1355 { ISD::CTPOP, MVT::v8i32, 22 },
1356 { ISD::CTPOP, MVT::v16i16, 18 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001357 { ISD::CTPOP, MVT::v32i8, 12 },
1358 { ISD::CTTZ, MVT::v4i64, 20 },
1359 { ISD::CTTZ, MVT::v8i32, 28 },
1360 { ISD::CTTZ, MVT::v16i16, 24 },
1361 { ISD::CTTZ, MVT::v32i8, 18 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001362 { ISD::FSQRT, MVT::f32, 14 }, // SNB from http://www.agner.org/
1363 { ISD::FSQRT, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
1364 { ISD::FSQRT, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
1365 { ISD::FSQRT, MVT::f64, 21 }, // SNB from http://www.agner.org/
1366 { ISD::FSQRT, MVT::v2f64, 21 }, // SNB from http://www.agner.org/
1367 { ISD::FSQRT, MVT::v4f64, 43 }, // SNB from http://www.agner.org/
1368 };
1369 static const CostTblEntry SSE42CostTbl[] = {
1370 { ISD::FSQRT, MVT::f32, 18 }, // Nehalem from http://www.agner.org/
1371 { ISD::FSQRT, MVT::v4f32, 18 }, // Nehalem from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001372 };
1373 static const CostTblEntry SSSE3CostTbl[] = {
1374 { ISD::BITREVERSE, MVT::v2i64, 5 },
1375 { ISD::BITREVERSE, MVT::v4i32, 5 },
1376 { ISD::BITREVERSE, MVT::v8i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001377 { ISD::BITREVERSE, MVT::v16i8, 5 },
1378 { ISD::BSWAP, MVT::v2i64, 1 },
1379 { ISD::BSWAP, MVT::v4i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001380 { ISD::BSWAP, MVT::v8i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001381 { ISD::CTLZ, MVT::v2i64, 23 },
1382 { ISD::CTLZ, MVT::v4i32, 18 },
1383 { ISD::CTLZ, MVT::v8i16, 14 },
1384 { ISD::CTLZ, MVT::v16i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001385 { ISD::CTPOP, MVT::v2i64, 7 },
1386 { ISD::CTPOP, MVT::v4i32, 11 },
1387 { ISD::CTPOP, MVT::v8i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001388 { ISD::CTPOP, MVT::v16i8, 6 },
1389 { ISD::CTTZ, MVT::v2i64, 10 },
1390 { ISD::CTTZ, MVT::v4i32, 14 },
1391 { ISD::CTTZ, MVT::v8i16, 12 },
1392 { ISD::CTTZ, MVT::v16i8, 9 }
Simon Pilgrim356e8232016-06-20 23:08:21 +00001393 };
1394 static const CostTblEntry SSE2CostTbl[] = {
1395 { ISD::BSWAP, MVT::v2i64, 7 },
1396 { ISD::BSWAP, MVT::v4i32, 7 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001397 { ISD::BSWAP, MVT::v8i16, 7 },
Simon Pilgrimd02c5522016-11-08 14:10:28 +00001398 { ISD::CTLZ, MVT::v2i64, 25 },
1399 { ISD::CTLZ, MVT::v4i32, 26 },
1400 { ISD::CTLZ, MVT::v8i16, 20 },
1401 { ISD::CTLZ, MVT::v16i8, 17 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001402 { ISD::CTPOP, MVT::v2i64, 12 },
1403 { ISD::CTPOP, MVT::v4i32, 15 },
1404 { ISD::CTPOP, MVT::v8i16, 13 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001405 { ISD::CTPOP, MVT::v16i8, 10 },
1406 { ISD::CTTZ, MVT::v2i64, 14 },
1407 { ISD::CTTZ, MVT::v4i32, 18 },
1408 { ISD::CTTZ, MVT::v8i16, 16 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001409 { ISD::CTTZ, MVT::v16i8, 13 },
1410 { ISD::FSQRT, MVT::f64, 32 }, // Nehalem from http://www.agner.org/
1411 { ISD::FSQRT, MVT::v2f64, 32 }, // Nehalem from http://www.agner.org/
1412 };
1413 static const CostTblEntry SSE1CostTbl[] = {
1414 { ISD::FSQRT, MVT::f32, 28 }, // Pentium III from http://www.agner.org/
1415 { ISD::FSQRT, MVT::v4f32, 56 }, // Pentium III from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001416 };
Simon Pilgrim14000b32016-05-24 08:17:50 +00001417
1418 unsigned ISD = ISD::DELETED_NODE;
1419 switch (IID) {
1420 default:
1421 break;
1422 case Intrinsic::bitreverse:
1423 ISD = ISD::BITREVERSE;
1424 break;
Simon Pilgrim356e8232016-06-20 23:08:21 +00001425 case Intrinsic::bswap:
1426 ISD = ISD::BSWAP;
1427 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001428 case Intrinsic::ctlz:
1429 ISD = ISD::CTLZ;
1430 break;
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001431 case Intrinsic::ctpop:
1432 ISD = ISD::CTPOP;
1433 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001434 case Intrinsic::cttz:
1435 ISD = ISD::CTTZ;
1436 break;
Alexey Bataevd07c7312016-10-31 12:10:53 +00001437 case Intrinsic::sqrt:
1438 ISD = ISD::FSQRT;
1439 break;
Simon Pilgrim14000b32016-05-24 08:17:50 +00001440 }
1441
1442 // Legalize the type.
1443 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
1444 MVT MTy = LT.second;
1445
1446 // Attempt to lookup cost.
1447 if (ST->hasXOP())
1448 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
1449 return LT.first * Entry->Cost;
1450
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001451 if (ST->hasAVX2())
1452 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1453 return LT.first * Entry->Cost;
1454
1455 if (ST->hasAVX())
1456 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1457 return LT.first * Entry->Cost;
1458
Alexey Bataevd07c7312016-10-31 12:10:53 +00001459 if (ST->hasSSE42())
1460 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1461 return LT.first * Entry->Cost;
1462
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001463 if (ST->hasSSSE3())
1464 if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
1465 return LT.first * Entry->Cost;
1466
Simon Pilgrim356e8232016-06-20 23:08:21 +00001467 if (ST->hasSSE2())
1468 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1469 return LT.first * Entry->Cost;
1470
Alexey Bataevd07c7312016-10-31 12:10:53 +00001471 if (ST->hasSSE1())
1472 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
1473 return LT.first * Entry->Cost;
1474
Simon Pilgrim14000b32016-05-24 08:17:50 +00001475 return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF);
1476}
1477
1478int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1479 ArrayRef<Value *> Args, FastMathFlags FMF) {
1480 return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF);
1481}
1482
Chandler Carruth93205eb2015-08-05 18:08:10 +00001483int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001484 assert(Val->isVectorTy() && "This must be a vector type");
1485
Sanjay Patelaedc3472016-05-25 17:27:54 +00001486 Type *ScalarType = Val->getScalarType();
1487
Chandler Carruth664e3542013-01-07 01:37:14 +00001488 if (Index != -1U) {
1489 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001490 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
Chandler Carruth664e3542013-01-07 01:37:14 +00001491
1492 // This type is legalized to a scalar type.
1493 if (!LT.second.isVector())
1494 return 0;
1495
1496 // The type may be split. Normalize the index to the new type.
1497 unsigned Width = LT.second.getVectorNumElements();
1498 Index = Index % Width;
1499
1500 // Floating point scalars are already located in index #0.
Sanjay Patelaedc3472016-05-25 17:27:54 +00001501 if (ScalarType->isFloatingPointTy() && Index == 0)
Chandler Carruth664e3542013-01-07 01:37:14 +00001502 return 0;
1503 }
1504
Sanjay Patelaedc3472016-05-25 17:27:54 +00001505 // Add to the base cost if we know that the extracted element of a vector is
1506 // destined to be moved to and used in the integer register file.
1507 int RegisterFileMoveCost = 0;
1508 if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
1509 RegisterFileMoveCost = 1;
1510
1511 return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001512}
1513
Chandler Carruth93205eb2015-08-05 18:08:10 +00001514int X86TTIImpl::getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001515 assert (Ty->isVectorTy() && "Can only scalarize vectors");
Chandler Carruth93205eb2015-08-05 18:08:10 +00001516 int Cost = 0;
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001517
1518 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
1519 if (Insert)
Chandler Carruth705b1852015-01-31 03:43:40 +00001520 Cost += getVectorInstrCost(Instruction::InsertElement, Ty, i);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001521 if (Extract)
Chandler Carruth705b1852015-01-31 03:43:40 +00001522 Cost += getVectorInstrCost(Instruction::ExtractElement, Ty, i);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001523 }
1524
1525 return Cost;
1526}
1527
Chandler Carruth93205eb2015-08-05 18:08:10 +00001528int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
1529 unsigned AddressSpace) {
Alp Tokerf907b892013-12-05 05:44:44 +00001530 // Handle non-power-of-two vectors such as <3 x float>
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001531 if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
1532 unsigned NumElem = VTy->getVectorNumElements();
1533
1534 // Handle a few common cases:
1535 // <3 x float>
1536 if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
1537 // Cost = 64 bit store + extract + 32 bit store.
1538 return 3;
1539
1540 // <3 x double>
1541 if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
1542 // Cost = 128 bit store + unpack + 64 bit store.
1543 return 3;
1544
Alp Tokerf907b892013-12-05 05:44:44 +00001545 // Assume that all other non-power-of-two numbers are scalarized.
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001546 if (!isPowerOf2_32(NumElem)) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001547 int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
1548 AddressSpace);
1549 int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
1550 Opcode == Instruction::Store);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001551 return NumElem * Cost + SplitCost;
1552 }
1553 }
1554
Chandler Carruth664e3542013-01-07 01:37:14 +00001555 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001556 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001557 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1558 "Invalid Opcode");
1559
1560 // Each load/store unit costs 1.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001561 int Cost = LT.first * 1;
Chandler Carruth664e3542013-01-07 01:37:14 +00001562
Sanjay Patel9f6c4d52016-03-09 22:23:33 +00001563 // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
1564 // proxy for a double-pumped AVX memory interface such as on Sandybridge.
1565 if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
1566 Cost *= 2;
Chandler Carruth664e3542013-01-07 01:37:14 +00001567
1568 return Cost;
1569}
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001570
Chandler Carruth93205eb2015-08-05 18:08:10 +00001571int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
1572 unsigned Alignment,
1573 unsigned AddressSpace) {
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001574 VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
1575 if (!SrcVTy)
1576 // To calculate scalar take the regular cost, without mask
1577 return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
1578
1579 unsigned NumElem = SrcVTy->getVectorNumElements();
1580 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00001581 VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
Elena Demikhovsky20662e32015-10-19 07:43:38 +00001582 if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy)) ||
1583 (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy)) ||
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001584 !isPowerOf2_32(NumElem)) {
1585 // Scalarization
Chandler Carruth93205eb2015-08-05 18:08:10 +00001586 int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
1587 int ScalarCompareCost = getCmpSelInstrCost(
Mehdi Amini867e9142016-04-14 04:36:40 +00001588 Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001589 int BranchCost = getCFInstrCost(Instruction::Br);
1590 int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001591
Chandler Carruth93205eb2015-08-05 18:08:10 +00001592 int ValueSplitCost = getScalarizationOverhead(
1593 SrcVTy, Opcode == Instruction::Load, Opcode == Instruction::Store);
1594 int MemopCost =
Chandler Carruth705b1852015-01-31 03:43:40 +00001595 NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1596 Alignment, AddressSpace);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001597 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
1598 }
1599
1600 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001601 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
Cong Houda4e8ae2015-10-28 18:15:46 +00001602 auto VT = TLI->getValueType(DL, SrcVTy);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001603 int Cost = 0;
Cong Houda4e8ae2015-10-28 18:15:46 +00001604 if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001605 LT.second.getVectorNumElements() == NumElem)
1606 // Promotion requires expand/truncate for data and a shuffle for mask.
Hans Wennborg083ca9b2015-10-06 23:24:35 +00001607 Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, nullptr) +
1608 getShuffleCost(TTI::SK_Alternate, MaskTy, 0, nullptr);
Chandler Carruth705b1852015-01-31 03:43:40 +00001609
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001610 else if (LT.second.getVectorNumElements() > NumElem) {
1611 VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
1612 LT.second.getVectorNumElements());
1613 // Expanding requires fill mask with zeroes
Chandler Carruth705b1852015-01-31 03:43:40 +00001614 Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001615 }
1616 if (!ST->hasAVX512())
1617 return Cost + LT.first*4; // Each maskmov costs 4
1618
1619 // AVX-512 masked load/store is cheapper
1620 return Cost+LT.first;
1621}
1622
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001623int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1624 const SCEV *Ptr) {
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001625 // Address computations in vectorized code with non-consecutive addresses will
1626 // likely result in more instructions compared to scalar code where the
1627 // computation can more often be merged into the index mode. The resulting
1628 // extra micro-ops can significantly decrease throughput.
1629 unsigned NumVectorInstToHideOverhead = 10;
1630
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001631 // Cost modeling of Strided Access Computation is hidden by the indexing
1632 // modes of X86 regardless of the stride value. We dont believe that there
1633 // is a difference between constant strided access in gerenal and constant
1634 // strided value which is less than or equal to 64.
1635 // Even in the case of (loop invariant) stride whose value is not known at
1636 // compile time, the address computation will not incur more than one extra
1637 // ADD instruction.
1638 if (Ty->isVectorTy() && SE) {
1639 if (!BaseT::isStridedAccess(Ptr))
1640 return NumVectorInstToHideOverhead;
1641 if (!BaseT::getConstantStrideStep(SE, Ptr))
1642 return 1;
1643 }
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001644
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001645 return BaseT::getAddressComputationCost(Ty, SE, Ptr);
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001646}
Yi Jiang5c343de2013-09-19 17:48:48 +00001647
Chandler Carruth93205eb2015-08-05 18:08:10 +00001648int X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
1649 bool IsPairwise) {
Michael Liao5bf95782014-12-04 05:20:33 +00001650
Chandler Carruth93205eb2015-08-05 18:08:10 +00001651 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Michael Liao5bf95782014-12-04 05:20:33 +00001652
Yi Jiang5c343de2013-09-19 17:48:48 +00001653 MVT MTy = LT.second;
Michael Liao5bf95782014-12-04 05:20:33 +00001654
Yi Jiang5c343de2013-09-19 17:48:48 +00001655 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1656 assert(ISD && "Invalid opcode");
Michael Liao5bf95782014-12-04 05:20:33 +00001657
1658 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
1659 // and make it as the cost.
1660
Craig Topper4b275762015-10-28 04:02:12 +00001661 static const CostTblEntry SSE42CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001662 { ISD::FADD, MVT::v2f64, 2 },
1663 { ISD::FADD, MVT::v4f32, 4 },
1664 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1665 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1666 { ISD::ADD, MVT::v8i16, 5 },
1667 };
Michael Liao5bf95782014-12-04 05:20:33 +00001668
Craig Topper4b275762015-10-28 04:02:12 +00001669 static const CostTblEntry AVX1CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001670 { ISD::FADD, MVT::v4f32, 4 },
1671 { ISD::FADD, MVT::v4f64, 5 },
1672 { ISD::FADD, MVT::v8f32, 7 },
1673 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1674 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1675 { ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8".
1676 { ISD::ADD, MVT::v8i16, 5 },
1677 { ISD::ADD, MVT::v8i32, 5 },
1678 };
1679
Craig Topper4b275762015-10-28 04:02:12 +00001680 static const CostTblEntry SSE42CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001681 { ISD::FADD, MVT::v2f64, 2 },
1682 { ISD::FADD, MVT::v4f32, 4 },
1683 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1684 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
1685 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
1686 };
Michael Liao5bf95782014-12-04 05:20:33 +00001687
Craig Topper4b275762015-10-28 04:02:12 +00001688 static const CostTblEntry AVX1CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001689 { ISD::FADD, MVT::v4f32, 3 },
1690 { ISD::FADD, MVT::v4f64, 3 },
1691 { ISD::FADD, MVT::v8f32, 4 },
1692 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1693 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "2.8".
1694 { ISD::ADD, MVT::v4i64, 3 },
1695 { ISD::ADD, MVT::v8i16, 4 },
1696 { ISD::ADD, MVT::v8i32, 5 },
1697 };
Michael Liao5bf95782014-12-04 05:20:33 +00001698
Yi Jiang5c343de2013-09-19 17:48:48 +00001699 if (IsPairwise) {
Craig Topperee0c8592015-10-27 04:14:24 +00001700 if (ST->hasAVX())
1701 if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
1702 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001703
Craig Topperee0c8592015-10-27 04:14:24 +00001704 if (ST->hasSSE42())
1705 if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
1706 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001707 } else {
Craig Topperee0c8592015-10-27 04:14:24 +00001708 if (ST->hasAVX())
1709 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
1710 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001711
Craig Topperee0c8592015-10-27 04:14:24 +00001712 if (ST->hasSSE42())
1713 if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
1714 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001715 }
1716
Chandler Carruth705b1852015-01-31 03:43:40 +00001717 return BaseT::getReductionCost(Opcode, ValTy, IsPairwise);
Yi Jiang5c343de2013-09-19 17:48:48 +00001718}
1719
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001720/// \brief Calculate the cost of materializing a 64-bit value. This helper
1721/// method might only calculate a fraction of a larger immediate. Therefore it
1722/// is valid to return a cost of ZERO.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001723int X86TTIImpl::getIntImmCost(int64_t Val) {
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001724 if (Val == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001725 return TTI::TCC_Free;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001726
1727 if (isInt<32>(Val))
Chandler Carruth705b1852015-01-31 03:43:40 +00001728 return TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001729
Chandler Carruth705b1852015-01-31 03:43:40 +00001730 return 2 * TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001731}
1732
Chandler Carruth93205eb2015-08-05 18:08:10 +00001733int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001734 assert(Ty->isIntegerTy());
1735
1736 unsigned BitSize = Ty->getPrimitiveSizeInBits();
1737 if (BitSize == 0)
1738 return ~0U;
1739
Juergen Ributzka43176172014-05-19 21:00:53 +00001740 // Never hoist constants larger than 128bit, because this might lead to
1741 // incorrect code generation or assertions in codegen.
1742 // Fixme: Create a cost model for types larger than i128 once the codegen
1743 // issues have been fixed.
1744 if (BitSize > 128)
Chandler Carruth705b1852015-01-31 03:43:40 +00001745 return TTI::TCC_Free;
Juergen Ributzka43176172014-05-19 21:00:53 +00001746
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001747 if (Imm == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001748 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001749
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001750 // Sign-extend all constants to a multiple of 64-bit.
1751 APInt ImmVal = Imm;
1752 if (BitSize & 0x3f)
1753 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
1754
1755 // Split the constant into 64-bit chunks and calculate the cost for each
1756 // chunk.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001757 int Cost = 0;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001758 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
1759 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
1760 int64_t Val = Tmp.getSExtValue();
1761 Cost += getIntImmCost(Val);
1762 }
Sanjay Patel4c7d0942016-04-05 19:27:39 +00001763 // We need at least one instruction to materialize the constant.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001764 return std::max(1, Cost);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001765}
1766
Chandler Carruth93205eb2015-08-05 18:08:10 +00001767int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
1768 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001769 assert(Ty->isIntegerTy());
1770
1771 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001772 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1773 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001774 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001775 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001776
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001777 unsigned ImmIdx = ~0U;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001778 switch (Opcode) {
Chandler Carruth705b1852015-01-31 03:43:40 +00001779 default:
1780 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001781 case Instruction::GetElementPtr:
Juergen Ributzka27435b32014-04-02 21:45:36 +00001782 // Always hoist the base address of a GetElementPtr. This prevents the
1783 // creation of new constants for every base constant that gets constant
1784 // folded with the offset.
Juergen Ributzka631c4912014-03-25 18:01:25 +00001785 if (Idx == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001786 return 2 * TTI::TCC_Basic;
1787 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001788 case Instruction::Store:
1789 ImmIdx = 0;
1790 break;
Craig Topper074e8452015-12-20 18:41:54 +00001791 case Instruction::ICmp:
1792 // This is an imperfect hack to prevent constant hoisting of
1793 // compares that might be trying to check if a 64-bit value fits in
1794 // 32-bits. The backend can optimize these cases using a right shift by 32.
1795 // Ideally we would check the compare predicate here. There also other
1796 // similar immediates the backend can use shifts for.
1797 if (Idx == 1 && Imm.getBitWidth() == 64) {
1798 uint64_t ImmVal = Imm.getZExtValue();
1799 if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
1800 return TTI::TCC_Free;
1801 }
1802 ImmIdx = 1;
1803 break;
Craig Topper79dd1bf2015-10-06 02:50:24 +00001804 case Instruction::And:
1805 // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
1806 // by using a 32-bit operation with implicit zero extension. Detect such
1807 // immediates here as the normal path expects bit 31 to be sign extended.
1808 if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
1809 return TTI::TCC_Free;
Justin Bognerb03fd122016-08-17 05:10:15 +00001810 LLVM_FALLTHROUGH;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001811 case Instruction::Add:
1812 case Instruction::Sub:
1813 case Instruction::Mul:
1814 case Instruction::UDiv:
1815 case Instruction::SDiv:
1816 case Instruction::URem:
1817 case Instruction::SRem:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001818 case Instruction::Or:
1819 case Instruction::Xor:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001820 ImmIdx = 1;
1821 break;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001822 // Always return TCC_Free for the shift value of a shift instruction.
1823 case Instruction::Shl:
1824 case Instruction::LShr:
1825 case Instruction::AShr:
1826 if (Idx == 1)
Chandler Carruth705b1852015-01-31 03:43:40 +00001827 return TTI::TCC_Free;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001828 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001829 case Instruction::Trunc:
1830 case Instruction::ZExt:
1831 case Instruction::SExt:
1832 case Instruction::IntToPtr:
1833 case Instruction::PtrToInt:
1834 case Instruction::BitCast:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001835 case Instruction::PHI:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001836 case Instruction::Call:
1837 case Instruction::Select:
1838 case Instruction::Ret:
1839 case Instruction::Load:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001840 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001841 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001842
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001843 if (Idx == ImmIdx) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001844 int NumConstants = (BitSize + 63) / 64;
1845 int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
Chandler Carruth705b1852015-01-31 03:43:40 +00001846 return (Cost <= NumConstants * TTI::TCC_Basic)
Chandler Carruth93205eb2015-08-05 18:08:10 +00001847 ? static_cast<int>(TTI::TCC_Free)
Chandler Carruth705b1852015-01-31 03:43:40 +00001848 : Cost;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001849 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001850
Chandler Carruth705b1852015-01-31 03:43:40 +00001851 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001852}
1853
Chandler Carruth93205eb2015-08-05 18:08:10 +00001854int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
1855 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001856 assert(Ty->isIntegerTy());
1857
1858 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001859 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1860 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001861 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001862 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001863
1864 switch (IID) {
Chandler Carruth705b1852015-01-31 03:43:40 +00001865 default:
1866 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001867 case Intrinsic::sadd_with_overflow:
1868 case Intrinsic::uadd_with_overflow:
1869 case Intrinsic::ssub_with_overflow:
1870 case Intrinsic::usub_with_overflow:
1871 case Intrinsic::smul_with_overflow:
1872 case Intrinsic::umul_with_overflow:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001873 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
Chandler Carruth705b1852015-01-31 03:43:40 +00001874 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001875 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001876 case Intrinsic::experimental_stackmap:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001877 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00001878 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001879 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001880 case Intrinsic::experimental_patchpoint_void:
1881 case Intrinsic::experimental_patchpoint_i64:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001882 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00001883 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001884 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001885 }
Chandler Carruth705b1852015-01-31 03:43:40 +00001886 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001887}
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00001888
Elena Demikhovsky54946982015-12-28 20:10:59 +00001889// Return an average cost of Gather / Scatter instruction, maybe improved later
1890int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
1891 unsigned Alignment, unsigned AddressSpace) {
1892
1893 assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
1894 unsigned VF = SrcVTy->getVectorNumElements();
1895
1896 // Try to reduce index size from 64 bit (default for GEP)
1897 // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
1898 // operation will use 16 x 64 indices which do not fit in a zmm and needs
1899 // to split. Also check that the base pointer is the same for all lanes,
1900 // and that there's at most one variable index.
1901 auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
1902 unsigned IndexSize = DL.getPointerSizeInBits();
1903 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1904 if (IndexSize < 64 || !GEP)
1905 return IndexSize;
Simon Pilgrim14000b32016-05-24 08:17:50 +00001906
Elena Demikhovsky54946982015-12-28 20:10:59 +00001907 unsigned NumOfVarIndices = 0;
1908 Value *Ptrs = GEP->getPointerOperand();
1909 if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
1910 return IndexSize;
1911 for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
1912 if (isa<Constant>(GEP->getOperand(i)))
1913 continue;
1914 Type *IndxTy = GEP->getOperand(i)->getType();
1915 if (IndxTy->isVectorTy())
1916 IndxTy = IndxTy->getVectorElementType();
1917 if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
1918 !isa<SExtInst>(GEP->getOperand(i))) ||
1919 ++NumOfVarIndices > 1)
1920 return IndexSize; // 64
1921 }
1922 return (unsigned)32;
1923 };
1924
1925
1926 // Trying to reduce IndexSize to 32 bits for vector 16.
1927 // By default the IndexSize is equal to pointer size.
1928 unsigned IndexSize = (VF >= 16) ? getIndexSizeInBits(Ptr, DL) :
1929 DL.getPointerSizeInBits();
1930
Mehdi Amini867e9142016-04-14 04:36:40 +00001931 Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
Elena Demikhovsky54946982015-12-28 20:10:59 +00001932 IndexSize), VF);
1933 std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
1934 std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
1935 int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
1936 if (SplitFactor > 1) {
1937 // Handle splitting of vector of pointers
1938 Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
1939 return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
1940 AddressSpace);
1941 }
1942
1943 // The gather / scatter cost is given by Intel architects. It is a rough
1944 // number since we are looking at one instruction in a time.
1945 const int GSOverhead = 2;
1946 return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1947 Alignment, AddressSpace);
1948}
1949
1950/// Return the cost of full scalarization of gather / scatter operation.
1951///
1952/// Opcode - Load or Store instruction.
1953/// SrcVTy - The type of the data vector that should be gathered or scattered.
1954/// VariableMask - The mask is non-constant at compile time.
1955/// Alignment - Alignment for one element.
1956/// AddressSpace - pointer[s] address space.
1957///
1958int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
1959 bool VariableMask, unsigned Alignment,
1960 unsigned AddressSpace) {
1961 unsigned VF = SrcVTy->getVectorNumElements();
1962
1963 int MaskUnpackCost = 0;
1964 if (VariableMask) {
1965 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00001966 VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
Elena Demikhovsky54946982015-12-28 20:10:59 +00001967 MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
1968 int ScalarCompareCost =
Mehdi Amini867e9142016-04-14 04:36:40 +00001969 getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
Elena Demikhovsky54946982015-12-28 20:10:59 +00001970 nullptr);
1971 int BranchCost = getCFInstrCost(Instruction::Br);
1972 MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
1973 }
1974
1975 // The cost of the scalar loads/stores.
1976 int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1977 Alignment, AddressSpace);
1978
1979 int InsertExtractCost = 0;
1980 if (Opcode == Instruction::Load)
1981 for (unsigned i = 0; i < VF; ++i)
1982 // Add the cost of inserting each scalar load into the vector
1983 InsertExtractCost +=
1984 getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
1985 else
1986 for (unsigned i = 0; i < VF; ++i)
1987 // Add the cost of extracting each element out of the data vector
1988 InsertExtractCost +=
1989 getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
1990
1991 return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
1992}
1993
1994/// Calculate the cost of Gather / Scatter operation
1995int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
1996 Value *Ptr, bool VariableMask,
1997 unsigned Alignment) {
1998 assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
1999 unsigned VF = SrcVTy->getVectorNumElements();
2000 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
2001 if (!PtrTy && Ptr->getType()->isVectorTy())
2002 PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
2003 assert(PtrTy && "Unexpected type for Ptr argument");
2004 unsigned AddressSpace = PtrTy->getAddressSpace();
2005
2006 bool Scalarize = false;
2007 if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) ||
2008 (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy)))
2009 Scalarize = true;
2010 // Gather / Scatter for vector 2 is not profitable on KNL / SKX
2011 // Vector-4 of gather/scatter instruction does not exist on KNL.
2012 // We can extend it to 8 elements, but zeroing upper bits of
2013 // the mask vector will add more instructions. Right now we give the scalar
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002014 // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
2015 // is better in the VariableMask case.
Elena Demikhovsky54946982015-12-28 20:10:59 +00002016 if (VF == 2 || (VF == 4 && !ST->hasVLX()))
2017 Scalarize = true;
2018
2019 if (Scalarize)
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002020 return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
2021 AddressSpace);
Elena Demikhovsky54946982015-12-28 20:10:59 +00002022
2023 return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
2024}
2025
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002026bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy) {
2027 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002028 int DataWidth = isa<PointerType>(ScalarTy) ?
2029 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002030
Igor Bregerf44b79d2016-08-02 09:15:28 +00002031 return ((DataWidth == 32 || DataWidth == 64) && ST->hasAVX()) ||
2032 ((DataWidth == 8 || DataWidth == 16) && ST->hasBWI());
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002033}
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002034
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002035bool X86TTIImpl::isLegalMaskedStore(Type *DataType) {
2036 return isLegalMaskedLoad(DataType);
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002037}
2038
Elena Demikhovsky09285852015-10-25 15:37:55 +00002039bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) {
2040 // This function is called now in two cases: from the Loop Vectorizer
2041 // and from the Scalarizer.
2042 // When the Loop Vectorizer asks about legality of the feature,
2043 // the vectorization factor is not calculated yet. The Loop Vectorizer
2044 // sends a scalar type and the decision is based on the width of the
2045 // scalar element.
2046 // Later on, the cost model will estimate usage this intrinsic based on
2047 // the vector type.
2048 // The Scalarizer asks again about legality. It sends a vector type.
2049 // In this case we can reject non-power-of-2 vectors.
2050 if (isa<VectorType>(DataTy) && !isPowerOf2_32(DataTy->getVectorNumElements()))
2051 return false;
2052 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002053 int DataWidth = isa<PointerType>(ScalarTy) ?
2054 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002055
2056 // AVX-512 allows gather and scatter
Igor Bregerf44b79d2016-08-02 09:15:28 +00002057 return (DataWidth == 32 || DataWidth == 64) && ST->hasAVX512();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002058}
2059
2060bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) {
2061 return isLegalMaskedGather(DataType);
2062}
2063
Eric Christopherd566fb12015-07-29 22:09:48 +00002064bool X86TTIImpl::areInlineCompatible(const Function *Caller,
2065 const Function *Callee) const {
Eric Christophere1002262015-07-02 01:11:50 +00002066 const TargetMachine &TM = getTLI()->getTargetMachine();
2067
2068 // Work this as a subsetting of subtarget features.
2069 const FeatureBitset &CallerBits =
2070 TM.getSubtargetImpl(*Caller)->getFeatureBits();
2071 const FeatureBitset &CalleeBits =
2072 TM.getSubtargetImpl(*Callee)->getFeatureBits();
2073
2074 // FIXME: This is likely too limiting as it will include subtarget features
2075 // that we might not care about for inlining, but it is conservatively
2076 // correct.
2077 return (CallerBits & CalleeBits) == CalleeBits;
2078}
Michael Kupersteinb2443ed2016-10-20 21:04:31 +00002079
2080bool X86TTIImpl::enableInterleavedAccessVectorization() {
2081 // TODO: We expect this to be beneficial regardless of arch,
2082 // but there are currently some unexplained performance artifacts on Atom.
2083 // As a temporary solution, disable on Atom.
2084 return !(ST->isAtom() || ST->isSLM());
2085}
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002086
2087// Get estimation for interleaved load/store operations and strided load.
2088// \p Indices contains indices for strided load.
2089// \p Factor - the factor of interleaving.
2090// AVX-512 provides 3-src shuffles that significantly reduces the cost.
2091int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode, Type *VecTy,
2092 unsigned Factor,
2093 ArrayRef<unsigned> Indices,
2094 unsigned Alignment,
2095 unsigned AddressSpace) {
2096
2097 // VecTy for interleave memop is <VF*Factor x Elt>.
2098 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
2099 // VecTy = <12 x i32>.
2100
2101 // Calculate the number of memory operations (NumOfMemOps), required
2102 // for load/store the VecTy.
2103 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
2104 unsigned VecTySize = DL.getTypeStoreSize(VecTy);
2105 unsigned LegalVTSize = LegalVT.getStoreSize();
2106 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
2107
2108 // Get the cost of one memory operation.
2109 Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
2110 LegalVT.getVectorNumElements());
2111 unsigned MemOpCost =
2112 getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
2113
2114 if (Opcode == Instruction::Load) {
2115 // Kind of shuffle depends on number of loaded values.
2116 // If we load the entire data in one register, we can use a 1-src shuffle.
2117 // Otherwise, we'll merge 2 sources in each operation.
2118 TTI::ShuffleKind ShuffleKind =
2119 (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
2120
2121 unsigned ShuffleCost =
2122 getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
2123
2124 unsigned NumOfLoadsInInterleaveGrp =
2125 Indices.size() ? Indices.size() : Factor;
2126 Type *ResultTy = VectorType::get(VecTy->getVectorElementType(),
2127 VecTy->getVectorNumElements() / Factor);
2128 unsigned NumOfResults =
2129 getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
2130 NumOfLoadsInInterleaveGrp;
2131
2132 // About a half of the loads may be folded in shuffles when we have only
2133 // one result. If we have more than one result, we do not fold loads at all.
2134 unsigned NumOfUnfoldedLoads =
2135 NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
2136
2137 // Get a number of shuffle operations per result.
2138 unsigned NumOfShufflesPerResult =
2139 std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
2140
2141 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2142 // When we have more than one destination, we need additional instructions
2143 // to keep sources.
2144 unsigned NumOfMoves = 0;
2145 if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
2146 NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
2147
2148 int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
2149 NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
2150
2151 return Cost;
2152 }
2153
2154 // Store.
2155 assert(Opcode == Instruction::Store &&
2156 "Expected Store Instruction at this point");
2157
2158 // There is no strided stores meanwhile. And store can't be folded in
2159 // shuffle.
2160 unsigned NumOfSources = Factor; // The number of values to be merged.
2161 unsigned ShuffleCost =
2162 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
2163 unsigned NumOfShufflesPerStore = NumOfSources - 1;
2164
2165 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2166 // We need additional instructions to keep sources.
2167 unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
2168 int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
2169 NumOfMoves;
2170 return Cost;
2171}
2172
2173int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
2174 unsigned Factor,
2175 ArrayRef<unsigned> Indices,
2176 unsigned Alignment,
2177 unsigned AddressSpace) {
2178 auto isSupportedOnAVX512 = [](Type *VecTy, bool &RequiresBW) {
2179 RequiresBW = false;
2180 Type *EltTy = VecTy->getVectorElementType();
2181 if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
2182 EltTy->isIntegerTy(32) || EltTy->isPointerTy())
2183 return true;
2184 if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8)) {
2185 RequiresBW = true;
2186 return true;
2187 }
2188 return false;
2189 };
2190 bool RequiresBW;
2191 bool HasAVX512Solution = isSupportedOnAVX512(VecTy, RequiresBW);
2192 if (ST->hasAVX512() && HasAVX512Solution && (!RequiresBW || ST->hasBWI()))
2193 return getInterleavedMemoryOpCostAVX512(Opcode, VecTy, Factor, Indices,
2194 Alignment, AddressSpace);
2195 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2196 Alignment, AddressSpace);
2197}