blob: 7f719cb375aa0ca0b49c49cda2decc496154c364 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
200``linker_private``
201 Similar to ``private``, but the symbol is passed through the
202 assembler and evaluated by the linker. Unlike normal strong symbols,
203 they are removed by the linker from the final linked image
204 (executable or dynamic library).
205``linker_private_weak``
206 Similar to "``linker_private``", but the symbol is weak. Note that
207 ``linker_private_weak`` symbols are subject to coalescing by the
208 linker. The symbols are removed by the linker from the final linked
209 image (executable or dynamic library).
210``internal``
211 Similar to private, but the value shows as a local symbol
212 (``STB_LOCAL`` in the case of ELF) in the object file. This
213 corresponds to the notion of the '``static``' keyword in C.
214``available_externally``
215 Globals with "``available_externally``" linkage are never emitted
216 into the object file corresponding to the LLVM module. They exist to
217 allow inlining and other optimizations to take place given knowledge
218 of the definition of the global, which is known to be somewhere
219 outside the module. Globals with ``available_externally`` linkage
220 are allowed to be discarded at will, and are otherwise the same as
221 ``linkonce_odr``. This linkage type is only allowed on definitions,
222 not declarations.
223``linkonce``
224 Globals with "``linkonce``" linkage are merged with other globals of
225 the same name when linkage occurs. This can be used to implement
226 some forms of inline functions, templates, or other code which must
227 be generated in each translation unit that uses it, but where the
228 body may be overridden with a more definitive definition later.
229 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
230 that ``linkonce`` linkage does not actually allow the optimizer to
231 inline the body of this function into callers because it doesn't
232 know if this definition of the function is the definitive definition
233 within the program or whether it will be overridden by a stronger
234 definition. To enable inlining and other optimizations, use
235 "``linkonce_odr``" linkage.
236``weak``
237 "``weak``" linkage has the same merging semantics as ``linkonce``
238 linkage, except that unreferenced globals with ``weak`` linkage may
239 not be discarded. This is used for globals that are declared "weak"
240 in C source code.
241``common``
242 "``common``" linkage is most similar to "``weak``" linkage, but they
243 are used for tentative definitions in C, such as "``int X;``" at
244 global scope. Symbols with "``common``" linkage are merged in the
245 same way as ``weak symbols``, and they may not be deleted if
246 unreferenced. ``common`` symbols may not have an explicit section,
247 must have a zero initializer, and may not be marked
248 ':ref:`constant <globalvars>`'. Functions and aliases may not have
249 common linkage.
250
251.. _linkage_appending:
252
253``appending``
254 "``appending``" linkage may only be applied to global variables of
255 pointer to array type. When two global variables with appending
256 linkage are linked together, the two global arrays are appended
257 together. This is the LLVM, typesafe, equivalent of having the
258 system linker append together "sections" with identical names when
259 .o files are linked.
260``extern_weak``
261 The semantics of this linkage follow the ELF object file model: the
262 symbol is weak until linked, if not linked, the symbol becomes null
263 instead of being an undefined reference.
264``linkonce_odr``, ``weak_odr``
265 Some languages allow differing globals to be merged, such as two
266 functions with different semantics. Other languages, such as
267 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000268 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000269 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
270 global will only be merged with equivalent globals. These linkage
271 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000272``external``
273 If none of the above identifiers are used, the global is externally
274 visible, meaning that it participates in linkage and can be used to
275 resolve external symbol references.
276
277The next two types of linkage are targeted for Microsoft Windows
278platform only. They are designed to support importing (exporting)
279symbols from (to) DLLs (Dynamic Link Libraries).
280
281``dllimport``
282 "``dllimport``" linkage causes the compiler to reference a function
283 or variable via a global pointer to a pointer that is set up by the
284 DLL exporting the symbol. On Microsoft Windows targets, the pointer
285 name is formed by combining ``__imp_`` and the function or variable
286 name.
287``dllexport``
288 "``dllexport``" linkage causes the compiler to provide a global
289 pointer to a pointer in a DLL, so that it can be referenced with the
290 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
291 name is formed by combining ``__imp_`` and the function or variable
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000292 name. Since this linkage exists for defining a dll interface, the
293 compiler, assembler and linker know it is externally referenced and
294 must refrain from deleting the symbol.
Sean Silvab084af42012-12-07 10:36:55 +0000295
Sean Silvab084af42012-12-07 10:36:55 +0000296It is illegal for a function *declaration* to have any linkage type
297other than ``external``, ``dllimport`` or ``extern_weak``.
298
Sean Silvab084af42012-12-07 10:36:55 +0000299.. _callingconv:
300
301Calling Conventions
302-------------------
303
304LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
305:ref:`invokes <i_invoke>` can all have an optional calling convention
306specified for the call. The calling convention of any pair of dynamic
307caller/callee must match, or the behavior of the program is undefined.
308The following calling conventions are supported by LLVM, and more may be
309added in the future:
310
311"``ccc``" - The C calling convention
312 This calling convention (the default if no other calling convention
313 is specified) matches the target C calling conventions. This calling
314 convention supports varargs function calls and tolerates some
315 mismatch in the declared prototype and implemented declaration of
316 the function (as does normal C).
317"``fastcc``" - The fast calling convention
318 This calling convention attempts to make calls as fast as possible
319 (e.g. by passing things in registers). This calling convention
320 allows the target to use whatever tricks it wants to produce fast
321 code for the target, without having to conform to an externally
322 specified ABI (Application Binary Interface). `Tail calls can only
323 be optimized when this, the GHC or the HiPE convention is
324 used. <CodeGenerator.html#id80>`_ This calling convention does not
325 support varargs and requires the prototype of all callees to exactly
326 match the prototype of the function definition.
327"``coldcc``" - The cold calling convention
328 This calling convention attempts to make code in the caller as
329 efficient as possible under the assumption that the call is not
330 commonly executed. As such, these calls often preserve all registers
331 so that the call does not break any live ranges in the caller side.
332 This calling convention does not support varargs and requires the
333 prototype of all callees to exactly match the prototype of the
334 function definition.
335"``cc 10``" - GHC convention
336 This calling convention has been implemented specifically for use by
337 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
338 It passes everything in registers, going to extremes to achieve this
339 by disabling callee save registers. This calling convention should
340 not be used lightly but only for specific situations such as an
341 alternative to the *register pinning* performance technique often
342 used when implementing functional programming languages. At the
343 moment only X86 supports this convention and it has the following
344 limitations:
345
346 - On *X86-32* only supports up to 4 bit type parameters. No
347 floating point types are supported.
348 - On *X86-64* only supports up to 10 bit type parameters and 6
349 floating point parameters.
350
351 This calling convention supports `tail call
352 optimization <CodeGenerator.html#id80>`_ but requires both the
353 caller and callee are using it.
354"``cc 11``" - The HiPE calling convention
355 This calling convention has been implemented specifically for use by
356 the `High-Performance Erlang
357 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
358 native code compiler of the `Ericsson's Open Source Erlang/OTP
359 system <http://www.erlang.org/download.shtml>`_. It uses more
360 registers for argument passing than the ordinary C calling
361 convention and defines no callee-saved registers. The calling
362 convention properly supports `tail call
363 optimization <CodeGenerator.html#id80>`_ but requires that both the
364 caller and the callee use it. It uses a *register pinning*
365 mechanism, similar to GHC's convention, for keeping frequently
366 accessed runtime components pinned to specific hardware registers.
367 At the moment only X86 supports this convention (both 32 and 64
368 bit).
369"``cc <n>``" - Numbered convention
370 Any calling convention may be specified by number, allowing
371 target-specific calling conventions to be used. Target specific
372 calling conventions start at 64.
373
374More calling conventions can be added/defined on an as-needed basis, to
375support Pascal conventions or any other well-known target-independent
376convention.
377
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000378.. _visibilitystyles:
379
Sean Silvab084af42012-12-07 10:36:55 +0000380Visibility Styles
381-----------------
382
383All Global Variables and Functions have one of the following visibility
384styles:
385
386"``default``" - Default style
387 On targets that use the ELF object file format, default visibility
388 means that the declaration is visible to other modules and, in
389 shared libraries, means that the declared entity may be overridden.
390 On Darwin, default visibility means that the declaration is visible
391 to other modules. Default visibility corresponds to "external
392 linkage" in the language.
393"``hidden``" - Hidden style
394 Two declarations of an object with hidden visibility refer to the
395 same object if they are in the same shared object. Usually, hidden
396 visibility indicates that the symbol will not be placed into the
397 dynamic symbol table, so no other module (executable or shared
398 library) can reference it directly.
399"``protected``" - Protected style
400 On ELF, protected visibility indicates that the symbol will be
401 placed in the dynamic symbol table, but that references within the
402 defining module will bind to the local symbol. That is, the symbol
403 cannot be overridden by another module.
404
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000405.. _namedtypes:
406
Sean Silvab084af42012-12-07 10:36:55 +0000407Named Types
408-----------
409
410LLVM IR allows you to specify name aliases for certain types. This can
411make it easier to read the IR and make the IR more condensed
412(particularly when recursive types are involved). An example of a name
413specification is:
414
415.. code-block:: llvm
416
417 %mytype = type { %mytype*, i32 }
418
419You may give a name to any :ref:`type <typesystem>` except
420":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
421expected with the syntax "%mytype".
422
423Note that type names are aliases for the structural type that they
424indicate, and that you can therefore specify multiple names for the same
425type. This often leads to confusing behavior when dumping out a .ll
426file. Since LLVM IR uses structural typing, the name is not part of the
427type. When printing out LLVM IR, the printer will pick *one name* to
428render all types of a particular shape. This means that if you have code
429where two different source types end up having the same LLVM type, that
430the dumper will sometimes print the "wrong" or unexpected type. This is
431an important design point and isn't going to change.
432
433.. _globalvars:
434
435Global Variables
436----------------
437
438Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000439instead of run-time.
440
441Global variables definitions must be initialized, may have an explicit section
442to be placed in, and may have an optional explicit alignment specified.
443
444Global variables in other translation units can also be declared, in which
445case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000446
447A variable may be defined as ``thread_local``, which means that it will
448not be shared by threads (each thread will have a separated copy of the
449variable). Not all targets support thread-local variables. Optionally, a
450TLS model may be specified:
451
452``localdynamic``
453 For variables that are only used within the current shared library.
454``initialexec``
455 For variables in modules that will not be loaded dynamically.
456``localexec``
457 For variables defined in the executable and only used within it.
458
459The models correspond to the ELF TLS models; see `ELF Handling For
460Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
461more information on under which circumstances the different models may
462be used. The target may choose a different TLS model if the specified
463model is not supported, or if a better choice of model can be made.
464
Michael Gottesman006039c2013-01-31 05:48:48 +0000465A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000466the contents of the variable will **never** be modified (enabling better
467optimization, allowing the global data to be placed in the read-only
468section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000469initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000470variable.
471
472LLVM explicitly allows *declarations* of global variables to be marked
473constant, even if the final definition of the global is not. This
474capability can be used to enable slightly better optimization of the
475program, but requires the language definition to guarantee that
476optimizations based on the 'constantness' are valid for the translation
477units that do not include the definition.
478
479As SSA values, global variables define pointer values that are in scope
480(i.e. they dominate) all basic blocks in the program. Global variables
481always define a pointer to their "content" type because they describe a
482region of memory, and all memory objects in LLVM are accessed through
483pointers.
484
485Global variables can be marked with ``unnamed_addr`` which indicates
486that the address is not significant, only the content. Constants marked
487like this can be merged with other constants if they have the same
488initializer. Note that a constant with significant address *can* be
489merged with a ``unnamed_addr`` constant, the result being a constant
490whose address is significant.
491
492A global variable may be declared to reside in a target-specific
493numbered address space. For targets that support them, address spaces
494may affect how optimizations are performed and/or what target
495instructions are used to access the variable. The default address space
496is zero. The address space qualifier must precede any other attributes.
497
498LLVM allows an explicit section to be specified for globals. If the
499target supports it, it will emit globals to the section specified.
500
Michael Gottesmane743a302013-02-04 03:22:00 +0000501By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000502variables defined within the module are not modified from their
503initial values before the start of the global initializer. This is
504true even for variables potentially accessible from outside the
505module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000506``@llvm.used`` or dllexported variables. This assumption may be suppressed
507by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000508
Sean Silvab084af42012-12-07 10:36:55 +0000509An explicit alignment may be specified for a global, which must be a
510power of 2. If not present, or if the alignment is set to zero, the
511alignment of the global is set by the target to whatever it feels
512convenient. If an explicit alignment is specified, the global is forced
513to have exactly that alignment. Targets and optimizers are not allowed
514to over-align the global if the global has an assigned section. In this
515case, the extra alignment could be observable: for example, code could
516assume that the globals are densely packed in their section and try to
517iterate over them as an array, alignment padding would break this
518iteration.
519
520For example, the following defines a global in a numbered address space
521with an initializer, section, and alignment:
522
523.. code-block:: llvm
524
525 @G = addrspace(5) constant float 1.0, section "foo", align 4
526
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000527The following example just declares a global variable
528
529.. code-block:: llvm
530
531 @G = external global i32
532
Sean Silvab084af42012-12-07 10:36:55 +0000533The following example defines a thread-local global with the
534``initialexec`` TLS model:
535
536.. code-block:: llvm
537
538 @G = thread_local(initialexec) global i32 0, align 4
539
540.. _functionstructure:
541
542Functions
543---------
544
545LLVM function definitions consist of the "``define``" keyword, an
546optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
547style <visibility>`, an optional :ref:`calling convention <callingconv>`,
548an optional ``unnamed_addr`` attribute, a return type, an optional
549:ref:`parameter attribute <paramattrs>` for the return type, a function
550name, a (possibly empty) argument list (each with optional :ref:`parameter
551attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
552an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000553collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
554curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000555
556LLVM function declarations consist of the "``declare``" keyword, an
557optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
558style <visibility>`, an optional :ref:`calling convention <callingconv>`,
559an optional ``unnamed_addr`` attribute, a return type, an optional
560:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000561name, a possibly empty list of arguments, an optional alignment, an optional
562:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000563
Bill Wendling6822ecb2013-10-27 05:09:12 +0000564A function definition contains a list of basic blocks, forming the CFG (Control
565Flow Graph) for the function. Each basic block may optionally start with a label
566(giving the basic block a symbol table entry), contains a list of instructions,
567and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
568function return). If an explicit label is not provided, a block is assigned an
569implicit numbered label, using the next value from the same counter as used for
570unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
571entry block does not have an explicit label, it will be assigned label "%0",
572then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000573
574The first basic block in a function is special in two ways: it is
575immediately executed on entrance to the function, and it is not allowed
576to have predecessor basic blocks (i.e. there can not be any branches to
577the entry block of a function). Because the block can have no
578predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
579
580LLVM allows an explicit section to be specified for functions. If the
581target supports it, it will emit functions to the section specified.
582
583An explicit alignment may be specified for a function. If not present,
584or if the alignment is set to zero, the alignment of the function is set
585by the target to whatever it feels convenient. If an explicit alignment
586is specified, the function is forced to have at least that much
587alignment. All alignments must be a power of 2.
588
589If the ``unnamed_addr`` attribute is given, the address is know to not
590be significant and two identical functions can be merged.
591
592Syntax::
593
594 define [linkage] [visibility]
595 [cconv] [ret attrs]
596 <ResultType> @<FunctionName> ([argument list])
597 [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000598 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000599
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000600.. _langref_aliases:
601
Sean Silvab084af42012-12-07 10:36:55 +0000602Aliases
603-------
604
605Aliases act as "second name" for the aliasee value (which can be either
606function, global variable, another alias or bitcast of global value).
607Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
608:ref:`visibility style <visibility>`.
609
610Syntax::
611
612 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
613
Rafael Espindola65785492013-10-07 13:57:59 +0000614The linkage must be one of ``private``, ``linker_private``,
Rafael Espindola78527052013-10-06 15:10:43 +0000615``linker_private_weak``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000616``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Alp Tokerf907b892013-12-05 05:44:44 +0000617might not correctly handle dropping a weak symbol that is aliased by a non-weak
Rafael Espindola716e7402013-11-01 17:09:14 +0000618alias.
Rafael Espindola78527052013-10-06 15:10:43 +0000619
Sean Silvab084af42012-12-07 10:36:55 +0000620.. _namedmetadatastructure:
621
622Named Metadata
623--------------
624
625Named metadata is a collection of metadata. :ref:`Metadata
626nodes <metadata>` (but not metadata strings) are the only valid
627operands for a named metadata.
628
629Syntax::
630
631 ; Some unnamed metadata nodes, which are referenced by the named metadata.
632 !0 = metadata !{metadata !"zero"}
633 !1 = metadata !{metadata !"one"}
634 !2 = metadata !{metadata !"two"}
635 ; A named metadata.
636 !name = !{!0, !1, !2}
637
638.. _paramattrs:
639
640Parameter Attributes
641--------------------
642
643The return type and each parameter of a function type may have a set of
644*parameter attributes* associated with them. Parameter attributes are
645used to communicate additional information about the result or
646parameters of a function. Parameter attributes are considered to be part
647of the function, not of the function type, so functions with different
648parameter attributes can have the same function type.
649
650Parameter attributes are simple keywords that follow the type specified.
651If multiple parameter attributes are needed, they are space separated.
652For example:
653
654.. code-block:: llvm
655
656 declare i32 @printf(i8* noalias nocapture, ...)
657 declare i32 @atoi(i8 zeroext)
658 declare signext i8 @returns_signed_char()
659
660Note that any attributes for the function result (``nounwind``,
661``readonly``) come immediately after the argument list.
662
663Currently, only the following parameter attributes are defined:
664
665``zeroext``
666 This indicates to the code generator that the parameter or return
667 value should be zero-extended to the extent required by the target's
668 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
669 the caller (for a parameter) or the callee (for a return value).
670``signext``
671 This indicates to the code generator that the parameter or return
672 value should be sign-extended to the extent required by the target's
673 ABI (which is usually 32-bits) by the caller (for a parameter) or
674 the callee (for a return value).
675``inreg``
676 This indicates that this parameter or return value should be treated
677 in a special target-dependent fashion during while emitting code for
678 a function call or return (usually, by putting it in a register as
679 opposed to memory, though some targets use it to distinguish between
680 two different kinds of registers). Use of this attribute is
681 target-specific.
682``byval``
683 This indicates that the pointer parameter should really be passed by
684 value to the function. The attribute implies that a hidden copy of
685 the pointee is made between the caller and the callee, so the callee
686 is unable to modify the value in the caller. This attribute is only
687 valid on LLVM pointer arguments. It is generally used to pass
688 structs and arrays by value, but is also valid on pointers to
689 scalars. The copy is considered to belong to the caller not the
690 callee (for example, ``readonly`` functions should not write to
691 ``byval`` parameters). This is not a valid attribute for return
692 values.
693
694 The byval attribute also supports specifying an alignment with the
695 align attribute. It indicates the alignment of the stack slot to
696 form and the known alignment of the pointer specified to the call
697 site. If the alignment is not specified, then the code generator
698 makes a target-specific assumption.
699
700``sret``
701 This indicates that the pointer parameter specifies the address of a
702 structure that is the return value of the function in the source
703 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000704 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000705 not to trap and to be properly aligned. This may only be applied to
706 the first parameter. This is not a valid attribute for return
707 values.
708``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000709 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000710 the argument or return value do not alias pointer values which are
711 not *based* on it, ignoring certain "irrelevant" dependencies. For a
712 call to the parent function, dependencies between memory references
713 from before or after the call and from those during the call are
714 "irrelevant" to the ``noalias`` keyword for the arguments and return
715 value used in that call. The caller shares the responsibility with
716 the callee for ensuring that these requirements are met. For further
717 details, please see the discussion of the NoAlias response in `alias
718 analysis <AliasAnalysis.html#MustMayNo>`_.
719
720 Note that this definition of ``noalias`` is intentionally similar
721 to the definition of ``restrict`` in C99 for function arguments,
722 though it is slightly weaker.
723
724 For function return values, C99's ``restrict`` is not meaningful,
725 while LLVM's ``noalias`` is.
726``nocapture``
727 This indicates that the callee does not make any copies of the
728 pointer that outlive the callee itself. This is not a valid
729 attribute for return values.
730
731.. _nest:
732
733``nest``
734 This indicates that the pointer parameter can be excised using the
735 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000736 attribute for return values and can only be applied to one parameter.
737
738``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000739 This indicates that the function always returns the argument as its return
740 value. This is an optimization hint to the code generator when generating
741 the caller, allowing tail call optimization and omission of register saves
742 and restores in some cases; it is not checked or enforced when generating
743 the callee. The parameter and the function return type must be valid
744 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
745 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000746
747.. _gc:
748
749Garbage Collector Names
750-----------------------
751
752Each function may specify a garbage collector name, which is simply a
753string:
754
755.. code-block:: llvm
756
757 define void @f() gc "name" { ... }
758
759The compiler declares the supported values of *name*. Specifying a
760collector which will cause the compiler to alter its output in order to
761support the named garbage collection algorithm.
762
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000763.. _prefixdata:
764
765Prefix Data
766-----------
767
768Prefix data is data associated with a function which the code generator
769will emit immediately before the function body. The purpose of this feature
770is to allow frontends to associate language-specific runtime metadata with
771specific functions and make it available through the function pointer while
772still allowing the function pointer to be called. To access the data for a
773given function, a program may bitcast the function pointer to a pointer to
774the constant's type. This implies that the IR symbol points to the start
775of the prefix data.
776
777To maintain the semantics of ordinary function calls, the prefix data must
778have a particular format. Specifically, it must begin with a sequence of
779bytes which decode to a sequence of machine instructions, valid for the
780module's target, which transfer control to the point immediately succeeding
781the prefix data, without performing any other visible action. This allows
782the inliner and other passes to reason about the semantics of the function
783definition without needing to reason about the prefix data. Obviously this
784makes the format of the prefix data highly target dependent.
785
Peter Collingbourne213358a2013-09-23 20:14:21 +0000786Prefix data is laid out as if it were an initializer for a global variable
787of the prefix data's type. No padding is automatically placed between the
788prefix data and the function body. If padding is required, it must be part
789of the prefix data.
790
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000791A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
792which encodes the ``nop`` instruction:
793
794.. code-block:: llvm
795
796 define void @f() prefix i8 144 { ... }
797
798Generally prefix data can be formed by encoding a relative branch instruction
799which skips the metadata, as in this example of valid prefix data for the
800x86_64 architecture, where the first two bytes encode ``jmp .+10``:
801
802.. code-block:: llvm
803
804 %0 = type <{ i8, i8, i8* }>
805
806 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
807
808A function may have prefix data but no body. This has similar semantics
809to the ``available_externally`` linkage in that the data may be used by the
810optimizers but will not be emitted in the object file.
811
Bill Wendling63b88192013-02-06 06:52:58 +0000812.. _attrgrp:
813
814Attribute Groups
815----------------
816
817Attribute groups are groups of attributes that are referenced by objects within
818the IR. They are important for keeping ``.ll`` files readable, because a lot of
819functions will use the same set of attributes. In the degenerative case of a
820``.ll`` file that corresponds to a single ``.c`` file, the single attribute
821group will capture the important command line flags used to build that file.
822
823An attribute group is a module-level object. To use an attribute group, an
824object references the attribute group's ID (e.g. ``#37``). An object may refer
825to more than one attribute group. In that situation, the attributes from the
826different groups are merged.
827
828Here is an example of attribute groups for a function that should always be
829inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
830
831.. code-block:: llvm
832
833 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000834 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000835
836 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000837 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000838
839 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
840 define void @f() #0 #1 { ... }
841
Sean Silvab084af42012-12-07 10:36:55 +0000842.. _fnattrs:
843
844Function Attributes
845-------------------
846
847Function attributes are set to communicate additional information about
848a function. Function attributes are considered to be part of the
849function, not of the function type, so functions with different function
850attributes can have the same function type.
851
852Function attributes are simple keywords that follow the type specified.
853If multiple attributes are needed, they are space separated. For
854example:
855
856.. code-block:: llvm
857
858 define void @f() noinline { ... }
859 define void @f() alwaysinline { ... }
860 define void @f() alwaysinline optsize { ... }
861 define void @f() optsize { ... }
862
Sean Silvab084af42012-12-07 10:36:55 +0000863``alignstack(<n>)``
864 This attribute indicates that, when emitting the prologue and
865 epilogue, the backend should forcibly align the stack pointer.
866 Specify the desired alignment, which must be a power of two, in
867 parentheses.
868``alwaysinline``
869 This attribute indicates that the inliner should attempt to inline
870 this function into callers whenever possible, ignoring any active
871 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +0000872``builtin``
873 This indicates that the callee function at a call site should be
874 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +0000875 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +0000876 direct calls to functions which are declared with the ``nobuiltin``
877 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +0000878``cold``
879 This attribute indicates that this function is rarely called. When
880 computing edge weights, basic blocks post-dominated by a cold
881 function call are also considered to be cold; and, thus, given low
882 weight.
Sean Silvab084af42012-12-07 10:36:55 +0000883``inlinehint``
884 This attribute indicates that the source code contained a hint that
885 inlining this function is desirable (such as the "inline" keyword in
886 C/C++). It is just a hint; it imposes no requirements on the
887 inliner.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000888``minsize``
889 This attribute suggests that optimization passes and code generator
890 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000891 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000892 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +0000893``naked``
894 This attribute disables prologue / epilogue emission for the
895 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +0000896``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +0000897 This indicates that the callee function at a call site is not recognized as
898 a built-in function. LLVM will retain the original call and not replace it
899 with equivalent code based on the semantics of the built-in function, unless
900 the call site uses the ``builtin`` attribute. This is valid at call sites
901 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +0000902``noduplicate``
903 This attribute indicates that calls to the function cannot be
904 duplicated. A call to a ``noduplicate`` function may be moved
905 within its parent function, but may not be duplicated within
906 its parent function.
907
908 A function containing a ``noduplicate`` call may still
909 be an inlining candidate, provided that the call is not
910 duplicated by inlining. That implies that the function has
911 internal linkage and only has one call site, so the original
912 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000913``noimplicitfloat``
914 This attributes disables implicit floating point instructions.
915``noinline``
916 This attribute indicates that the inliner should never inline this
917 function in any situation. This attribute may not be used together
918 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +0000919``nonlazybind``
920 This attribute suppresses lazy symbol binding for the function. This
921 may make calls to the function faster, at the cost of extra program
922 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +0000923``noredzone``
924 This attribute indicates that the code generator should not use a
925 red zone, even if the target-specific ABI normally permits it.
926``noreturn``
927 This function attribute indicates that the function never returns
928 normally. This produces undefined behavior at runtime if the
929 function ever does dynamically return.
930``nounwind``
931 This function attribute indicates that the function never returns
932 with an unwind or exceptional control flow. If the function does
933 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +0000934``optnone``
935 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000936 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +0000937 exception of interprocedural optimization passes.
938 This attribute cannot be used together with the ``alwaysinline``
939 attribute; this attribute is also incompatible
940 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000941
Paul Robinsondcbe35b2013-11-18 21:44:03 +0000942 This attribute requires the ``noinline`` attribute to be specified on
943 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +0000944 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +0000945 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +0000946``optsize``
947 This attribute suggests that optimization passes and code generator
948 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000949 and otherwise do optimizations specifically to reduce code size as
950 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +0000951``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +0000952 On a function, this attribute indicates that the function computes its
953 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +0000954 without dereferencing any pointer arguments or otherwise accessing
955 any mutable state (e.g. memory, control registers, etc) visible to
956 caller functions. It does not write through any pointer arguments
957 (including ``byval`` arguments) and never changes any state visible
958 to callers. This means that it cannot unwind exceptions by calling
959 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000960
Nick Lewyckyc2ec0722013-07-06 00:29:58 +0000961 On an argument, this attribute indicates that the function does not
962 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +0000963 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +0000964``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +0000965 On a function, this attribute indicates that the function does not write
966 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +0000967 modify any state (e.g. memory, control registers, etc) visible to
968 caller functions. It may dereference pointer arguments and read
969 state that may be set in the caller. A readonly function always
970 returns the same value (or unwinds an exception identically) when
971 called with the same set of arguments and global state. It cannot
972 unwind an exception by calling the ``C++`` exception throwing
973 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000974
Nick Lewyckyc2ec0722013-07-06 00:29:58 +0000975 On an argument, this attribute indicates that the function does not write
976 through this pointer argument, even though it may write to the memory that
977 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +0000978``returns_twice``
979 This attribute indicates that this function can return twice. The C
980 ``setjmp`` is an example of such a function. The compiler disables
981 some optimizations (like tail calls) in the caller of these
982 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +0000983``sanitize_address``
984 This attribute indicates that AddressSanitizer checks
985 (dynamic address safety analysis) are enabled for this function.
986``sanitize_memory``
987 This attribute indicates that MemorySanitizer checks (dynamic detection
988 of accesses to uninitialized memory) are enabled for this function.
989``sanitize_thread``
990 This attribute indicates that ThreadSanitizer checks
991 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +0000992``ssp``
993 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000994 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +0000995 placed on the stack before the local variables that's checked upon
996 return from the function to see if it has been overwritten. A
997 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +0000998 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +0000999
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001000 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1001 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1002 - Calls to alloca() with variable sizes or constant sizes greater than
1003 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001004
1005 If a function that has an ``ssp`` attribute is inlined into a
1006 function that doesn't have an ``ssp`` attribute, then the resulting
1007 function will have an ``ssp`` attribute.
1008``sspreq``
1009 This attribute indicates that the function should *always* emit a
1010 stack smashing protector. This overrides the ``ssp`` function
1011 attribute.
1012
1013 If a function that has an ``sspreq`` attribute is inlined into a
1014 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001015 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1016 an ``sspreq`` attribute.
1017``sspstrong``
1018 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001019 protector. This attribute causes a strong heuristic to be used when
1020 determining if a function needs stack protectors. The strong heuristic
1021 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001022
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001023 - Arrays of any size and type
1024 - Aggregates containing an array of any size and type.
1025 - Calls to alloca().
1026 - Local variables that have had their address taken.
1027
1028 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001029
1030 If a function that has an ``sspstrong`` attribute is inlined into a
1031 function that doesn't have an ``sspstrong`` attribute, then the
1032 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001033``uwtable``
1034 This attribute indicates that the ABI being targeted requires that
1035 an unwind table entry be produce for this function even if we can
1036 show that no exceptions passes by it. This is normally the case for
1037 the ELF x86-64 abi, but it can be disabled for some compilation
1038 units.
Sean Silvab084af42012-12-07 10:36:55 +00001039
1040.. _moduleasm:
1041
1042Module-Level Inline Assembly
1043----------------------------
1044
1045Modules may contain "module-level inline asm" blocks, which corresponds
1046to the GCC "file scope inline asm" blocks. These blocks are internally
1047concatenated by LLVM and treated as a single unit, but may be separated
1048in the ``.ll`` file if desired. The syntax is very simple:
1049
1050.. code-block:: llvm
1051
1052 module asm "inline asm code goes here"
1053 module asm "more can go here"
1054
1055The strings can contain any character by escaping non-printable
1056characters. The escape sequence used is simply "\\xx" where "xx" is the
1057two digit hex code for the number.
1058
1059The inline asm code is simply printed to the machine code .s file when
1060assembly code is generated.
1061
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001062.. _langref_datalayout:
1063
Sean Silvab084af42012-12-07 10:36:55 +00001064Data Layout
1065-----------
1066
1067A module may specify a target specific data layout string that specifies
1068how data is to be laid out in memory. The syntax for the data layout is
1069simply:
1070
1071.. code-block:: llvm
1072
1073 target datalayout = "layout specification"
1074
1075The *layout specification* consists of a list of specifications
1076separated by the minus sign character ('-'). Each specification starts
1077with a letter and may include other information after the letter to
1078define some aspect of the data layout. The specifications accepted are
1079as follows:
1080
1081``E``
1082 Specifies that the target lays out data in big-endian form. That is,
1083 the bits with the most significance have the lowest address
1084 location.
1085``e``
1086 Specifies that the target lays out data in little-endian form. That
1087 is, the bits with the least significance have the lowest address
1088 location.
1089``S<size>``
1090 Specifies the natural alignment of the stack in bits. Alignment
1091 promotion of stack variables is limited to the natural stack
1092 alignment to avoid dynamic stack realignment. The stack alignment
1093 must be a multiple of 8-bits. If omitted, the natural stack
1094 alignment defaults to "unspecified", which does not prevent any
1095 alignment promotions.
1096``p[n]:<size>:<abi>:<pref>``
1097 This specifies the *size* of a pointer and its ``<abi>`` and
1098 ``<pref>``\erred alignments for address space ``n``. All sizes are in
1099 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
1100 preceding ``:`` should be omitted too. The address space, ``n`` is
1101 optional, and if not specified, denotes the default address space 0.
1102 The value of ``n`` must be in the range [1,2^23).
1103``i<size>:<abi>:<pref>``
1104 This specifies the alignment for an integer type of a given bit
1105 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1106``v<size>:<abi>:<pref>``
1107 This specifies the alignment for a vector type of a given bit
1108 ``<size>``.
1109``f<size>:<abi>:<pref>``
1110 This specifies the alignment for a floating point type of a given bit
1111 ``<size>``. Only values of ``<size>`` that are supported by the target
1112 will work. 32 (float) and 64 (double) are supported on all targets; 80
1113 or 128 (different flavors of long double) are also supported on some
1114 targets.
1115``a<size>:<abi>:<pref>``
1116 This specifies the alignment for an aggregate type of a given bit
1117 ``<size>``.
1118``s<size>:<abi>:<pref>``
1119 This specifies the alignment for a stack object of a given bit
1120 ``<size>``.
1121``n<size1>:<size2>:<size3>...``
1122 This specifies a set of native integer widths for the target CPU in
1123 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1124 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1125 this set are considered to support most general arithmetic operations
1126 efficiently.
1127
1128When constructing the data layout for a given target, LLVM starts with a
1129default set of specifications which are then (possibly) overridden by
1130the specifications in the ``datalayout`` keyword. The default
1131specifications are given in this list:
1132
1133- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001134- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1135- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1136 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001137- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001138- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1139- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1140- ``i16:16:16`` - i16 is 16-bit aligned
1141- ``i32:32:32`` - i32 is 32-bit aligned
1142- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1143 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001144- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001145- ``f32:32:32`` - float is 32-bit aligned
1146- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001147- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001148- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1149- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001150- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001151
1152When LLVM is determining the alignment for a given type, it uses the
1153following rules:
1154
1155#. If the type sought is an exact match for one of the specifications,
1156 that specification is used.
1157#. If no match is found, and the type sought is an integer type, then
1158 the smallest integer type that is larger than the bitwidth of the
1159 sought type is used. If none of the specifications are larger than
1160 the bitwidth then the largest integer type is used. For example,
1161 given the default specifications above, the i7 type will use the
1162 alignment of i8 (next largest) while both i65 and i256 will use the
1163 alignment of i64 (largest specified).
1164#. If no match is found, and the type sought is a vector type, then the
1165 largest vector type that is smaller than the sought vector type will
1166 be used as a fall back. This happens because <128 x double> can be
1167 implemented in terms of 64 <2 x double>, for example.
1168
1169The function of the data layout string may not be what you expect.
1170Notably, this is not a specification from the frontend of what alignment
1171the code generator should use.
1172
1173Instead, if specified, the target data layout is required to match what
1174the ultimate *code generator* expects. This string is used by the
1175mid-level optimizers to improve code, and this only works if it matches
1176what the ultimate code generator uses. If you would like to generate IR
1177that does not embed this target-specific detail into the IR, then you
1178don't have to specify the string. This will disable some optimizations
1179that require precise layout information, but this also prevents those
1180optimizations from introducing target specificity into the IR.
1181
Bill Wendling5cc90842013-10-18 23:41:25 +00001182.. _langref_triple:
1183
1184Target Triple
1185-------------
1186
1187A module may specify a target triple string that describes the target
1188host. The syntax for the target triple is simply:
1189
1190.. code-block:: llvm
1191
1192 target triple = "x86_64-apple-macosx10.7.0"
1193
1194The *target triple* string consists of a series of identifiers delimited
1195by the minus sign character ('-'). The canonical forms are:
1196
1197::
1198
1199 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1200 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1201
1202This information is passed along to the backend so that it generates
1203code for the proper architecture. It's possible to override this on the
1204command line with the ``-mtriple`` command line option.
1205
Sean Silvab084af42012-12-07 10:36:55 +00001206.. _pointeraliasing:
1207
1208Pointer Aliasing Rules
1209----------------------
1210
1211Any memory access must be done through a pointer value associated with
1212an address range of the memory access, otherwise the behavior is
1213undefined. Pointer values are associated with address ranges according
1214to the following rules:
1215
1216- A pointer value is associated with the addresses associated with any
1217 value it is *based* on.
1218- An address of a global variable is associated with the address range
1219 of the variable's storage.
1220- The result value of an allocation instruction is associated with the
1221 address range of the allocated storage.
1222- A null pointer in the default address-space is associated with no
1223 address.
1224- An integer constant other than zero or a pointer value returned from
1225 a function not defined within LLVM may be associated with address
1226 ranges allocated through mechanisms other than those provided by
1227 LLVM. Such ranges shall not overlap with any ranges of addresses
1228 allocated by mechanisms provided by LLVM.
1229
1230A pointer value is *based* on another pointer value according to the
1231following rules:
1232
1233- A pointer value formed from a ``getelementptr`` operation is *based*
1234 on the first operand of the ``getelementptr``.
1235- The result value of a ``bitcast`` is *based* on the operand of the
1236 ``bitcast``.
1237- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1238 values that contribute (directly or indirectly) to the computation of
1239 the pointer's value.
1240- The "*based* on" relationship is transitive.
1241
1242Note that this definition of *"based"* is intentionally similar to the
1243definition of *"based"* in C99, though it is slightly weaker.
1244
1245LLVM IR does not associate types with memory. The result type of a
1246``load`` merely indicates the size and alignment of the memory from
1247which to load, as well as the interpretation of the value. The first
1248operand type of a ``store`` similarly only indicates the size and
1249alignment of the store.
1250
1251Consequently, type-based alias analysis, aka TBAA, aka
1252``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1253:ref:`Metadata <metadata>` may be used to encode additional information
1254which specialized optimization passes may use to implement type-based
1255alias analysis.
1256
1257.. _volatile:
1258
1259Volatile Memory Accesses
1260------------------------
1261
1262Certain memory accesses, such as :ref:`load <i_load>`'s,
1263:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1264marked ``volatile``. The optimizers must not change the number of
1265volatile operations or change their order of execution relative to other
1266volatile operations. The optimizers *may* change the order of volatile
1267operations relative to non-volatile operations. This is not Java's
1268"volatile" and has no cross-thread synchronization behavior.
1269
Andrew Trick89fc5a62013-01-30 21:19:35 +00001270IR-level volatile loads and stores cannot safely be optimized into
1271llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1272flagged volatile. Likewise, the backend should never split or merge
1273target-legal volatile load/store instructions.
1274
Andrew Trick7e6f9282013-01-31 00:49:39 +00001275.. admonition:: Rationale
1276
1277 Platforms may rely on volatile loads and stores of natively supported
1278 data width to be executed as single instruction. For example, in C
1279 this holds for an l-value of volatile primitive type with native
1280 hardware support, but not necessarily for aggregate types. The
1281 frontend upholds these expectations, which are intentionally
1282 unspecified in the IR. The rules above ensure that IR transformation
1283 do not violate the frontend's contract with the language.
1284
Sean Silvab084af42012-12-07 10:36:55 +00001285.. _memmodel:
1286
1287Memory Model for Concurrent Operations
1288--------------------------------------
1289
1290The LLVM IR does not define any way to start parallel threads of
1291execution or to register signal handlers. Nonetheless, there are
1292platform-specific ways to create them, and we define LLVM IR's behavior
1293in their presence. This model is inspired by the C++0x memory model.
1294
1295For a more informal introduction to this model, see the :doc:`Atomics`.
1296
1297We define a *happens-before* partial order as the least partial order
1298that
1299
1300- Is a superset of single-thread program order, and
1301- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1302 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1303 techniques, like pthread locks, thread creation, thread joining,
1304 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1305 Constraints <ordering>`).
1306
1307Note that program order does not introduce *happens-before* edges
1308between a thread and signals executing inside that thread.
1309
1310Every (defined) read operation (load instructions, memcpy, atomic
1311loads/read-modify-writes, etc.) R reads a series of bytes written by
1312(defined) write operations (store instructions, atomic
1313stores/read-modify-writes, memcpy, etc.). For the purposes of this
1314section, initialized globals are considered to have a write of the
1315initializer which is atomic and happens before any other read or write
1316of the memory in question. For each byte of a read R, R\ :sub:`byte`
1317may see any write to the same byte, except:
1318
1319- If write\ :sub:`1` happens before write\ :sub:`2`, and
1320 write\ :sub:`2` happens before R\ :sub:`byte`, then
1321 R\ :sub:`byte` does not see write\ :sub:`1`.
1322- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1323 R\ :sub:`byte` does not see write\ :sub:`3`.
1324
1325Given that definition, R\ :sub:`byte` is defined as follows:
1326
1327- If R is volatile, the result is target-dependent. (Volatile is
1328 supposed to give guarantees which can support ``sig_atomic_t`` in
1329 C/C++, and may be used for accesses to addresses which do not behave
1330 like normal memory. It does not generally provide cross-thread
1331 synchronization.)
1332- Otherwise, if there is no write to the same byte that happens before
1333 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1334- Otherwise, if R\ :sub:`byte` may see exactly one write,
1335 R\ :sub:`byte` returns the value written by that write.
1336- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1337 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1338 Memory Ordering Constraints <ordering>` section for additional
1339 constraints on how the choice is made.
1340- Otherwise R\ :sub:`byte` returns ``undef``.
1341
1342R returns the value composed of the series of bytes it read. This
1343implies that some bytes within the value may be ``undef`` **without**
1344the entire value being ``undef``. Note that this only defines the
1345semantics of the operation; it doesn't mean that targets will emit more
1346than one instruction to read the series of bytes.
1347
1348Note that in cases where none of the atomic intrinsics are used, this
1349model places only one restriction on IR transformations on top of what
1350is required for single-threaded execution: introducing a store to a byte
1351which might not otherwise be stored is not allowed in general.
1352(Specifically, in the case where another thread might write to and read
1353from an address, introducing a store can change a load that may see
1354exactly one write into a load that may see multiple writes.)
1355
1356.. _ordering:
1357
1358Atomic Memory Ordering Constraints
1359----------------------------------
1360
1361Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1362:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1363:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1364an ordering parameter that determines which other atomic instructions on
1365the same address they *synchronize with*. These semantics are borrowed
1366from Java and C++0x, but are somewhat more colloquial. If these
1367descriptions aren't precise enough, check those specs (see spec
1368references in the :doc:`atomics guide <Atomics>`).
1369:ref:`fence <i_fence>` instructions treat these orderings somewhat
1370differently since they don't take an address. See that instruction's
1371documentation for details.
1372
1373For a simpler introduction to the ordering constraints, see the
1374:doc:`Atomics`.
1375
1376``unordered``
1377 The set of values that can be read is governed by the happens-before
1378 partial order. A value cannot be read unless some operation wrote
1379 it. This is intended to provide a guarantee strong enough to model
1380 Java's non-volatile shared variables. This ordering cannot be
1381 specified for read-modify-write operations; it is not strong enough
1382 to make them atomic in any interesting way.
1383``monotonic``
1384 In addition to the guarantees of ``unordered``, there is a single
1385 total order for modifications by ``monotonic`` operations on each
1386 address. All modification orders must be compatible with the
1387 happens-before order. There is no guarantee that the modification
1388 orders can be combined to a global total order for the whole program
1389 (and this often will not be possible). The read in an atomic
1390 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1391 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1392 order immediately before the value it writes. If one atomic read
1393 happens before another atomic read of the same address, the later
1394 read must see the same value or a later value in the address's
1395 modification order. This disallows reordering of ``monotonic`` (or
1396 stronger) operations on the same address. If an address is written
1397 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1398 read that address repeatedly, the other threads must eventually see
1399 the write. This corresponds to the C++0x/C1x
1400 ``memory_order_relaxed``.
1401``acquire``
1402 In addition to the guarantees of ``monotonic``, a
1403 *synchronizes-with* edge may be formed with a ``release`` operation.
1404 This is intended to model C++'s ``memory_order_acquire``.
1405``release``
1406 In addition to the guarantees of ``monotonic``, if this operation
1407 writes a value which is subsequently read by an ``acquire``
1408 operation, it *synchronizes-with* that operation. (This isn't a
1409 complete description; see the C++0x definition of a release
1410 sequence.) This corresponds to the C++0x/C1x
1411 ``memory_order_release``.
1412``acq_rel`` (acquire+release)
1413 Acts as both an ``acquire`` and ``release`` operation on its
1414 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1415``seq_cst`` (sequentially consistent)
1416 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1417 operation which only reads, ``release`` for an operation which only
1418 writes), there is a global total order on all
1419 sequentially-consistent operations on all addresses, which is
1420 consistent with the *happens-before* partial order and with the
1421 modification orders of all the affected addresses. Each
1422 sequentially-consistent read sees the last preceding write to the
1423 same address in this global order. This corresponds to the C++0x/C1x
1424 ``memory_order_seq_cst`` and Java volatile.
1425
1426.. _singlethread:
1427
1428If an atomic operation is marked ``singlethread``, it only *synchronizes
1429with* or participates in modification and seq\_cst total orderings with
1430other operations running in the same thread (for example, in signal
1431handlers).
1432
1433.. _fastmath:
1434
1435Fast-Math Flags
1436---------------
1437
1438LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1439:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1440:ref:`frem <i_frem>`) have the following flags that can set to enable
1441otherwise unsafe floating point operations
1442
1443``nnan``
1444 No NaNs - Allow optimizations to assume the arguments and result are not
1445 NaN. Such optimizations are required to retain defined behavior over
1446 NaNs, but the value of the result is undefined.
1447
1448``ninf``
1449 No Infs - Allow optimizations to assume the arguments and result are not
1450 +/-Inf. Such optimizations are required to retain defined behavior over
1451 +/-Inf, but the value of the result is undefined.
1452
1453``nsz``
1454 No Signed Zeros - Allow optimizations to treat the sign of a zero
1455 argument or result as insignificant.
1456
1457``arcp``
1458 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1459 argument rather than perform division.
1460
1461``fast``
1462 Fast - Allow algebraically equivalent transformations that may
1463 dramatically change results in floating point (e.g. reassociate). This
1464 flag implies all the others.
1465
1466.. _typesystem:
1467
1468Type System
1469===========
1470
1471The LLVM type system is one of the most important features of the
1472intermediate representation. Being typed enables a number of
1473optimizations to be performed on the intermediate representation
1474directly, without having to do extra analyses on the side before the
1475transformation. A strong type system makes it easier to read the
1476generated code and enables novel analyses and transformations that are
1477not feasible to perform on normal three address code representations.
1478
Rafael Espindola08013342013-12-07 19:34:20 +00001479.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001480
Rafael Espindola08013342013-12-07 19:34:20 +00001481Void Type
1482---------
Sean Silvab084af42012-12-07 10:36:55 +00001483
Rafael Espindola08013342013-12-07 19:34:20 +00001484Overview:
1485^^^^^^^^^
1486
1487The void type does not represent any value and has no size.
1488
1489Syntax:
1490^^^^^^^
1491
1492::
1493
1494 void
Sean Silvab084af42012-12-07 10:36:55 +00001495
1496
Rafael Espindola08013342013-12-07 19:34:20 +00001497.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001498
Rafael Espindola08013342013-12-07 19:34:20 +00001499Function Type
1500-------------
Sean Silvab084af42012-12-07 10:36:55 +00001501
Rafael Espindola08013342013-12-07 19:34:20 +00001502Overview:
1503^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001504
Rafael Espindola08013342013-12-07 19:34:20 +00001505The function type can be thought of as a function signature. It consists of a
1506return type and a list of formal parameter types. The return type of a function
1507type is a void type or first class type --- except for :ref:`label <t_label>`
1508and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001509
Rafael Espindola08013342013-12-07 19:34:20 +00001510Syntax:
1511^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001512
Rafael Espindola08013342013-12-07 19:34:20 +00001513::
Sean Silvab084af42012-12-07 10:36:55 +00001514
Rafael Espindola08013342013-12-07 19:34:20 +00001515 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001516
Rafael Espindola08013342013-12-07 19:34:20 +00001517...where '``<parameter list>``' is a comma-separated list of type
1518specifiers. Optionally, the parameter list may include a type ``...``, which
1519indicates that the function takes a variable number of arguments. Variable
1520argument functions can access their arguments with the :ref:`variable argument
1521handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1522except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001523
Rafael Espindola08013342013-12-07 19:34:20 +00001524Examples:
1525^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001526
Rafael Espindola08013342013-12-07 19:34:20 +00001527+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1528| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1529+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1530| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1531+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1532| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1533+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1534| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1535+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1536
1537.. _t_firstclass:
1538
1539First Class Types
1540-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001541
1542The :ref:`first class <t_firstclass>` types are perhaps the most important.
1543Values of these types are the only ones which can be produced by
1544instructions.
1545
Rafael Espindola08013342013-12-07 19:34:20 +00001546.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001547
Rafael Espindola08013342013-12-07 19:34:20 +00001548Single Value Types
1549^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001550
Rafael Espindola08013342013-12-07 19:34:20 +00001551These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001552
1553.. _t_integer:
1554
1555Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001556""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001557
1558Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001559*********
Sean Silvab084af42012-12-07 10:36:55 +00001560
1561The integer type is a very simple type that simply specifies an
1562arbitrary bit width for the integer type desired. Any bit width from 1
1563bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1564
1565Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001566*******
Sean Silvab084af42012-12-07 10:36:55 +00001567
1568::
1569
1570 iN
1571
1572The number of bits the integer will occupy is specified by the ``N``
1573value.
1574
1575Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001576*********
Sean Silvab084af42012-12-07 10:36:55 +00001577
1578+----------------+------------------------------------------------+
1579| ``i1`` | a single-bit integer. |
1580+----------------+------------------------------------------------+
1581| ``i32`` | a 32-bit integer. |
1582+----------------+------------------------------------------------+
1583| ``i1942652`` | a really big integer of over 1 million bits. |
1584+----------------+------------------------------------------------+
1585
1586.. _t_floating:
1587
1588Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001589""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001590
1591.. list-table::
1592 :header-rows: 1
1593
1594 * - Type
1595 - Description
1596
1597 * - ``half``
1598 - 16-bit floating point value
1599
1600 * - ``float``
1601 - 32-bit floating point value
1602
1603 * - ``double``
1604 - 64-bit floating point value
1605
1606 * - ``fp128``
1607 - 128-bit floating point value (112-bit mantissa)
1608
1609 * - ``x86_fp80``
1610 - 80-bit floating point value (X87)
1611
1612 * - ``ppc_fp128``
1613 - 128-bit floating point value (two 64-bits)
1614
1615.. _t_x86mmx:
1616
1617X86mmx Type
Rafael Espindola08013342013-12-07 19:34:20 +00001618"""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001619
1620Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001621*********
Sean Silvab084af42012-12-07 10:36:55 +00001622
1623The x86mmx type represents a value held in an MMX register on an x86
1624machine. The operations allowed on it are quite limited: parameters and
1625return values, load and store, and bitcast. User-specified MMX
1626instructions are represented as intrinsic or asm calls with arguments
1627and/or results of this type. There are no arrays, vectors or constants
1628of this type.
1629
1630Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001631*******
Sean Silvab084af42012-12-07 10:36:55 +00001632
1633::
1634
1635 x86mmx
1636
Sean Silvab084af42012-12-07 10:36:55 +00001637
Rafael Espindola08013342013-12-07 19:34:20 +00001638.. _t_pointer:
1639
1640Pointer Type
1641""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001642
1643Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001644*********
Sean Silvab084af42012-12-07 10:36:55 +00001645
Rafael Espindola08013342013-12-07 19:34:20 +00001646The pointer type is used to specify memory locations. Pointers are
1647commonly used to reference objects in memory.
1648
1649Pointer types may have an optional address space attribute defining the
1650numbered address space where the pointed-to object resides. The default
1651address space is number zero. The semantics of non-zero address spaces
1652are target-specific.
1653
1654Note that LLVM does not permit pointers to void (``void*``) nor does it
1655permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001656
1657Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001658*******
Sean Silvab084af42012-12-07 10:36:55 +00001659
1660::
1661
Rafael Espindola08013342013-12-07 19:34:20 +00001662 <type> *
1663
1664Examples:
1665*********
1666
1667+-------------------------+--------------------------------------------------------------------------------------------------------------+
1668| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1669+-------------------------+--------------------------------------------------------------------------------------------------------------+
1670| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1671+-------------------------+--------------------------------------------------------------------------------------------------------------+
1672| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1673+-------------------------+--------------------------------------------------------------------------------------------------------------+
1674
1675.. _t_vector:
1676
1677Vector Type
1678"""""""""""
1679
1680Overview:
1681*********
1682
1683A vector type is a simple derived type that represents a vector of
1684elements. Vector types are used when multiple primitive data are
1685operated in parallel using a single instruction (SIMD). A vector type
1686requires a size (number of elements) and an underlying primitive data
1687type. Vector types are considered :ref:`first class <t_firstclass>`.
1688
1689Syntax:
1690*******
1691
1692::
1693
1694 < <# elements> x <elementtype> >
1695
1696The number of elements is a constant integer value larger than 0;
1697elementtype may be any integer or floating point type, or a pointer to
1698these types. Vectors of size zero are not allowed.
1699
1700Examples:
1701*********
1702
1703+-------------------+--------------------------------------------------+
1704| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1705+-------------------+--------------------------------------------------+
1706| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1707+-------------------+--------------------------------------------------+
1708| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1709+-------------------+--------------------------------------------------+
1710| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1711+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001712
1713.. _t_label:
1714
1715Label Type
1716^^^^^^^^^^
1717
1718Overview:
1719"""""""""
1720
1721The label type represents code labels.
1722
1723Syntax:
1724"""""""
1725
1726::
1727
1728 label
1729
1730.. _t_metadata:
1731
1732Metadata Type
1733^^^^^^^^^^^^^
1734
1735Overview:
1736"""""""""
1737
1738The metadata type represents embedded metadata. No derived types may be
1739created from metadata except for :ref:`function <t_function>` arguments.
1740
1741Syntax:
1742"""""""
1743
1744::
1745
1746 metadata
1747
Sean Silvab084af42012-12-07 10:36:55 +00001748.. _t_aggregate:
1749
1750Aggregate Types
1751^^^^^^^^^^^^^^^
1752
1753Aggregate Types are a subset of derived types that can contain multiple
1754member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1755aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1756aggregate types.
1757
1758.. _t_array:
1759
1760Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001761""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001762
1763Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001764*********
Sean Silvab084af42012-12-07 10:36:55 +00001765
1766The array type is a very simple derived type that arranges elements
1767sequentially in memory. The array type requires a size (number of
1768elements) and an underlying data type.
1769
1770Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001771*******
Sean Silvab084af42012-12-07 10:36:55 +00001772
1773::
1774
1775 [<# elements> x <elementtype>]
1776
1777The number of elements is a constant integer value; ``elementtype`` may
1778be any type with a size.
1779
1780Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001781*********
Sean Silvab084af42012-12-07 10:36:55 +00001782
1783+------------------+--------------------------------------+
1784| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1785+------------------+--------------------------------------+
1786| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1787+------------------+--------------------------------------+
1788| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1789+------------------+--------------------------------------+
1790
1791Here are some examples of multidimensional arrays:
1792
1793+-----------------------------+----------------------------------------------------------+
1794| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1795+-----------------------------+----------------------------------------------------------+
1796| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1797+-----------------------------+----------------------------------------------------------+
1798| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1799+-----------------------------+----------------------------------------------------------+
1800
1801There is no restriction on indexing beyond the end of the array implied
1802by a static type (though there are restrictions on indexing beyond the
1803bounds of an allocated object in some cases). This means that
1804single-dimension 'variable sized array' addressing can be implemented in
1805LLVM with a zero length array type. An implementation of 'pascal style
1806arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1807example.
1808
Sean Silvab084af42012-12-07 10:36:55 +00001809.. _t_struct:
1810
1811Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001812""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001813
1814Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001815*********
Sean Silvab084af42012-12-07 10:36:55 +00001816
1817The structure type is used to represent a collection of data members
1818together in memory. The elements of a structure may be any type that has
1819a size.
1820
1821Structures in memory are accessed using '``load``' and '``store``' by
1822getting a pointer to a field with the '``getelementptr``' instruction.
1823Structures in registers are accessed using the '``extractvalue``' and
1824'``insertvalue``' instructions.
1825
1826Structures may optionally be "packed" structures, which indicate that
1827the alignment of the struct is one byte, and that there is no padding
1828between the elements. In non-packed structs, padding between field types
1829is inserted as defined by the DataLayout string in the module, which is
1830required to match what the underlying code generator expects.
1831
1832Structures can either be "literal" or "identified". A literal structure
1833is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1834identified types are always defined at the top level with a name.
1835Literal types are uniqued by their contents and can never be recursive
1836or opaque since there is no way to write one. Identified types can be
1837recursive, can be opaqued, and are never uniqued.
1838
1839Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001840*******
Sean Silvab084af42012-12-07 10:36:55 +00001841
1842::
1843
1844 %T1 = type { <type list> } ; Identified normal struct type
1845 %T2 = type <{ <type list> }> ; Identified packed struct type
1846
1847Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001848*********
Sean Silvab084af42012-12-07 10:36:55 +00001849
1850+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1851| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1852+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001853| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001854+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1855| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1856+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1857
1858.. _t_opaque:
1859
1860Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00001861""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001862
1863Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001864*********
Sean Silvab084af42012-12-07 10:36:55 +00001865
1866Opaque structure types are used to represent named structure types that
1867do not have a body specified. This corresponds (for example) to the C
1868notion of a forward declared structure.
1869
1870Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001871*******
Sean Silvab084af42012-12-07 10:36:55 +00001872
1873::
1874
1875 %X = type opaque
1876 %52 = type opaque
1877
1878Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001879*********
Sean Silvab084af42012-12-07 10:36:55 +00001880
1881+--------------+-------------------+
1882| ``opaque`` | An opaque type. |
1883+--------------+-------------------+
1884
Sean Silvab084af42012-12-07 10:36:55 +00001885Constants
1886=========
1887
1888LLVM has several different basic types of constants. This section
1889describes them all and their syntax.
1890
1891Simple Constants
1892----------------
1893
1894**Boolean constants**
1895 The two strings '``true``' and '``false``' are both valid constants
1896 of the ``i1`` type.
1897**Integer constants**
1898 Standard integers (such as '4') are constants of the
1899 :ref:`integer <t_integer>` type. Negative numbers may be used with
1900 integer types.
1901**Floating point constants**
1902 Floating point constants use standard decimal notation (e.g.
1903 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1904 hexadecimal notation (see below). The assembler requires the exact
1905 decimal value of a floating-point constant. For example, the
1906 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1907 decimal in binary. Floating point constants must have a :ref:`floating
1908 point <t_floating>` type.
1909**Null pointer constants**
1910 The identifier '``null``' is recognized as a null pointer constant
1911 and must be of :ref:`pointer type <t_pointer>`.
1912
1913The one non-intuitive notation for constants is the hexadecimal form of
1914floating point constants. For example, the form
1915'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1916than) '``double 4.5e+15``'. The only time hexadecimal floating point
1917constants are required (and the only time that they are generated by the
1918disassembler) is when a floating point constant must be emitted but it
1919cannot be represented as a decimal floating point number in a reasonable
1920number of digits. For example, NaN's, infinities, and other special
1921values are represented in their IEEE hexadecimal format so that assembly
1922and disassembly do not cause any bits to change in the constants.
1923
1924When using the hexadecimal form, constants of types half, float, and
1925double are represented using the 16-digit form shown above (which
1926matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00001927must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00001928precision, respectively. Hexadecimal format is always used for long
1929double, and there are three forms of long double. The 80-bit format used
1930by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1931128-bit format used by PowerPC (two adjacent doubles) is represented by
1932``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00001933represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1934will only work if they match the long double format on your target.
1935The IEEE 16-bit format (half precision) is represented by ``0xH``
1936followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1937(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00001938
1939There are no constants of type x86mmx.
1940
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001941.. _complexconstants:
1942
Sean Silvab084af42012-12-07 10:36:55 +00001943Complex Constants
1944-----------------
1945
1946Complex constants are a (potentially recursive) combination of simple
1947constants and smaller complex constants.
1948
1949**Structure constants**
1950 Structure constants are represented with notation similar to
1951 structure type definitions (a comma separated list of elements,
1952 surrounded by braces (``{}``)). For example:
1953 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1954 "``@G = external global i32``". Structure constants must have
1955 :ref:`structure type <t_struct>`, and the number and types of elements
1956 must match those specified by the type.
1957**Array constants**
1958 Array constants are represented with notation similar to array type
1959 definitions (a comma separated list of elements, surrounded by
1960 square brackets (``[]``)). For example:
1961 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1962 :ref:`array type <t_array>`, and the number and types of elements must
1963 match those specified by the type.
1964**Vector constants**
1965 Vector constants are represented with notation similar to vector
1966 type definitions (a comma separated list of elements, surrounded by
1967 less-than/greater-than's (``<>``)). For example:
1968 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1969 must have :ref:`vector type <t_vector>`, and the number and types of
1970 elements must match those specified by the type.
1971**Zero initialization**
1972 The string '``zeroinitializer``' can be used to zero initialize a
1973 value to zero of *any* type, including scalar and
1974 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1975 having to print large zero initializers (e.g. for large arrays) and
1976 is always exactly equivalent to using explicit zero initializers.
1977**Metadata node**
1978 A metadata node is a structure-like constant with :ref:`metadata
1979 type <t_metadata>`. For example:
1980 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1981 constants that are meant to be interpreted as part of the
1982 instruction stream, metadata is a place to attach additional
1983 information such as debug info.
1984
1985Global Variable and Function Addresses
1986--------------------------------------
1987
1988The addresses of :ref:`global variables <globalvars>` and
1989:ref:`functions <functionstructure>` are always implicitly valid
1990(link-time) constants. These constants are explicitly referenced when
1991the :ref:`identifier for the global <identifiers>` is used and always have
1992:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1993file:
1994
1995.. code-block:: llvm
1996
1997 @X = global i32 17
1998 @Y = global i32 42
1999 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2000
2001.. _undefvalues:
2002
2003Undefined Values
2004----------------
2005
2006The string '``undef``' can be used anywhere a constant is expected, and
2007indicates that the user of the value may receive an unspecified
2008bit-pattern. Undefined values may be of any type (other than '``label``'
2009or '``void``') and be used anywhere a constant is permitted.
2010
2011Undefined values are useful because they indicate to the compiler that
2012the program is well defined no matter what value is used. This gives the
2013compiler more freedom to optimize. Here are some examples of
2014(potentially surprising) transformations that are valid (in pseudo IR):
2015
2016.. code-block:: llvm
2017
2018 %A = add %X, undef
2019 %B = sub %X, undef
2020 %C = xor %X, undef
2021 Safe:
2022 %A = undef
2023 %B = undef
2024 %C = undef
2025
2026This is safe because all of the output bits are affected by the undef
2027bits. Any output bit can have a zero or one depending on the input bits.
2028
2029.. code-block:: llvm
2030
2031 %A = or %X, undef
2032 %B = and %X, undef
2033 Safe:
2034 %A = -1
2035 %B = 0
2036 Unsafe:
2037 %A = undef
2038 %B = undef
2039
2040These logical operations have bits that are not always affected by the
2041input. For example, if ``%X`` has a zero bit, then the output of the
2042'``and``' operation will always be a zero for that bit, no matter what
2043the corresponding bit from the '``undef``' is. As such, it is unsafe to
2044optimize or assume that the result of the '``and``' is '``undef``'.
2045However, it is safe to assume that all bits of the '``undef``' could be
20460, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2047all the bits of the '``undef``' operand to the '``or``' could be set,
2048allowing the '``or``' to be folded to -1.
2049
2050.. code-block:: llvm
2051
2052 %A = select undef, %X, %Y
2053 %B = select undef, 42, %Y
2054 %C = select %X, %Y, undef
2055 Safe:
2056 %A = %X (or %Y)
2057 %B = 42 (or %Y)
2058 %C = %Y
2059 Unsafe:
2060 %A = undef
2061 %B = undef
2062 %C = undef
2063
2064This set of examples shows that undefined '``select``' (and conditional
2065branch) conditions can go *either way*, but they have to come from one
2066of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2067both known to have a clear low bit, then ``%A`` would have to have a
2068cleared low bit. However, in the ``%C`` example, the optimizer is
2069allowed to assume that the '``undef``' operand could be the same as
2070``%Y``, allowing the whole '``select``' to be eliminated.
2071
2072.. code-block:: llvm
2073
2074 %A = xor undef, undef
2075
2076 %B = undef
2077 %C = xor %B, %B
2078
2079 %D = undef
2080 %E = icmp lt %D, 4
2081 %F = icmp gte %D, 4
2082
2083 Safe:
2084 %A = undef
2085 %B = undef
2086 %C = undef
2087 %D = undef
2088 %E = undef
2089 %F = undef
2090
2091This example points out that two '``undef``' operands are not
2092necessarily the same. This can be surprising to people (and also matches
2093C semantics) where they assume that "``X^X``" is always zero, even if
2094``X`` is undefined. This isn't true for a number of reasons, but the
2095short answer is that an '``undef``' "variable" can arbitrarily change
2096its value over its "live range". This is true because the variable
2097doesn't actually *have a live range*. Instead, the value is logically
2098read from arbitrary registers that happen to be around when needed, so
2099the value is not necessarily consistent over time. In fact, ``%A`` and
2100``%C`` need to have the same semantics or the core LLVM "replace all
2101uses with" concept would not hold.
2102
2103.. code-block:: llvm
2104
2105 %A = fdiv undef, %X
2106 %B = fdiv %X, undef
2107 Safe:
2108 %A = undef
2109 b: unreachable
2110
2111These examples show the crucial difference between an *undefined value*
2112and *undefined behavior*. An undefined value (like '``undef``') is
2113allowed to have an arbitrary bit-pattern. This means that the ``%A``
2114operation can be constant folded to '``undef``', because the '``undef``'
2115could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2116However, in the second example, we can make a more aggressive
2117assumption: because the ``undef`` is allowed to be an arbitrary value,
2118we are allowed to assume that it could be zero. Since a divide by zero
2119has *undefined behavior*, we are allowed to assume that the operation
2120does not execute at all. This allows us to delete the divide and all
2121code after it. Because the undefined operation "can't happen", the
2122optimizer can assume that it occurs in dead code.
2123
2124.. code-block:: llvm
2125
2126 a: store undef -> %X
2127 b: store %X -> undef
2128 Safe:
2129 a: <deleted>
2130 b: unreachable
2131
2132These examples reiterate the ``fdiv`` example: a store *of* an undefined
2133value can be assumed to not have any effect; we can assume that the
2134value is overwritten with bits that happen to match what was already
2135there. However, a store *to* an undefined location could clobber
2136arbitrary memory, therefore, it has undefined behavior.
2137
2138.. _poisonvalues:
2139
2140Poison Values
2141-------------
2142
2143Poison values are similar to :ref:`undef values <undefvalues>`, however
2144they also represent the fact that an instruction or constant expression
2145which cannot evoke side effects has nevertheless detected a condition
2146which results in undefined behavior.
2147
2148There is currently no way of representing a poison value in the IR; they
2149only exist when produced by operations such as :ref:`add <i_add>` with
2150the ``nsw`` flag.
2151
2152Poison value behavior is defined in terms of value *dependence*:
2153
2154- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2155- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2156 their dynamic predecessor basic block.
2157- Function arguments depend on the corresponding actual argument values
2158 in the dynamic callers of their functions.
2159- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2160 instructions that dynamically transfer control back to them.
2161- :ref:`Invoke <i_invoke>` instructions depend on the
2162 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2163 call instructions that dynamically transfer control back to them.
2164- Non-volatile loads and stores depend on the most recent stores to all
2165 of the referenced memory addresses, following the order in the IR
2166 (including loads and stores implied by intrinsics such as
2167 :ref:`@llvm.memcpy <int_memcpy>`.)
2168- An instruction with externally visible side effects depends on the
2169 most recent preceding instruction with externally visible side
2170 effects, following the order in the IR. (This includes :ref:`volatile
2171 operations <volatile>`.)
2172- An instruction *control-depends* on a :ref:`terminator
2173 instruction <terminators>` if the terminator instruction has
2174 multiple successors and the instruction is always executed when
2175 control transfers to one of the successors, and may not be executed
2176 when control is transferred to another.
2177- Additionally, an instruction also *control-depends* on a terminator
2178 instruction if the set of instructions it otherwise depends on would
2179 be different if the terminator had transferred control to a different
2180 successor.
2181- Dependence is transitive.
2182
2183Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2184with the additional affect that any instruction which has a *dependence*
2185on a poison value has undefined behavior.
2186
2187Here are some examples:
2188
2189.. code-block:: llvm
2190
2191 entry:
2192 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2193 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2194 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2195 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2196
2197 store i32 %poison, i32* @g ; Poison value stored to memory.
2198 %poison2 = load i32* @g ; Poison value loaded back from memory.
2199
2200 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2201
2202 %narrowaddr = bitcast i32* @g to i16*
2203 %wideaddr = bitcast i32* @g to i64*
2204 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2205 %poison4 = load i64* %wideaddr ; Returns a poison value.
2206
2207 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2208 br i1 %cmp, label %true, label %end ; Branch to either destination.
2209
2210 true:
2211 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2212 ; it has undefined behavior.
2213 br label %end
2214
2215 end:
2216 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2217 ; Both edges into this PHI are
2218 ; control-dependent on %cmp, so this
2219 ; always results in a poison value.
2220
2221 store volatile i32 0, i32* @g ; This would depend on the store in %true
2222 ; if %cmp is true, or the store in %entry
2223 ; otherwise, so this is undefined behavior.
2224
2225 br i1 %cmp, label %second_true, label %second_end
2226 ; The same branch again, but this time the
2227 ; true block doesn't have side effects.
2228
2229 second_true:
2230 ; No side effects!
2231 ret void
2232
2233 second_end:
2234 store volatile i32 0, i32* @g ; This time, the instruction always depends
2235 ; on the store in %end. Also, it is
2236 ; control-equivalent to %end, so this is
2237 ; well-defined (ignoring earlier undefined
2238 ; behavior in this example).
2239
2240.. _blockaddress:
2241
2242Addresses of Basic Blocks
2243-------------------------
2244
2245``blockaddress(@function, %block)``
2246
2247The '``blockaddress``' constant computes the address of the specified
2248basic block in the specified function, and always has an ``i8*`` type.
2249Taking the address of the entry block is illegal.
2250
2251This value only has defined behavior when used as an operand to the
2252':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2253against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002254undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002255no label is equal to the null pointer. This may be passed around as an
2256opaque pointer sized value as long as the bits are not inspected. This
2257allows ``ptrtoint`` and arithmetic to be performed on these values so
2258long as the original value is reconstituted before the ``indirectbr``
2259instruction.
2260
2261Finally, some targets may provide defined semantics when using the value
2262as the operand to an inline assembly, but that is target specific.
2263
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002264.. _constantexprs:
2265
Sean Silvab084af42012-12-07 10:36:55 +00002266Constant Expressions
2267--------------------
2268
2269Constant expressions are used to allow expressions involving other
2270constants to be used as constants. Constant expressions may be of any
2271:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2272that does not have side effects (e.g. load and call are not supported).
2273The following is the syntax for constant expressions:
2274
2275``trunc (CST to TYPE)``
2276 Truncate a constant to another type. The bit size of CST must be
2277 larger than the bit size of TYPE. Both types must be integers.
2278``zext (CST to TYPE)``
2279 Zero extend a constant to another type. The bit size of CST must be
2280 smaller than the bit size of TYPE. Both types must be integers.
2281``sext (CST to TYPE)``
2282 Sign extend a constant to another type. The bit size of CST must be
2283 smaller than the bit size of TYPE. Both types must be integers.
2284``fptrunc (CST to TYPE)``
2285 Truncate a floating point constant to another floating point type.
2286 The size of CST must be larger than the size of TYPE. Both types
2287 must be floating point.
2288``fpext (CST to TYPE)``
2289 Floating point extend a constant to another type. The size of CST
2290 must be smaller or equal to the size of TYPE. Both types must be
2291 floating point.
2292``fptoui (CST to TYPE)``
2293 Convert a floating point constant to the corresponding unsigned
2294 integer constant. TYPE must be a scalar or vector integer type. CST
2295 must be of scalar or vector floating point type. Both CST and TYPE
2296 must be scalars, or vectors of the same number of elements. If the
2297 value won't fit in the integer type, the results are undefined.
2298``fptosi (CST to TYPE)``
2299 Convert a floating point constant to the corresponding signed
2300 integer constant. TYPE must be a scalar or vector integer type. CST
2301 must be of scalar or vector floating point type. Both CST and TYPE
2302 must be scalars, or vectors of the same number of elements. If the
2303 value won't fit in the integer type, the results are undefined.
2304``uitofp (CST to TYPE)``
2305 Convert an unsigned integer constant to the corresponding floating
2306 point constant. TYPE must be a scalar or vector floating point type.
2307 CST must be of scalar or vector integer type. Both CST and TYPE must
2308 be scalars, or vectors of the same number of elements. If the value
2309 won't fit in the floating point type, the results are undefined.
2310``sitofp (CST to TYPE)``
2311 Convert a signed integer constant to the corresponding floating
2312 point constant. TYPE must be a scalar or vector floating point type.
2313 CST must be of scalar or vector integer type. Both CST and TYPE must
2314 be scalars, or vectors of the same number of elements. If the value
2315 won't fit in the floating point type, the results are undefined.
2316``ptrtoint (CST to TYPE)``
2317 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002318 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002319 pointer type. The ``CST`` value is zero extended, truncated, or
2320 unchanged to make it fit in ``TYPE``.
2321``inttoptr (CST to TYPE)``
2322 Convert an integer constant to a pointer constant. TYPE must be a
2323 pointer type. CST must be of integer type. The CST value is zero
2324 extended, truncated, or unchanged to make it fit in a pointer size.
2325 This one is *really* dangerous!
2326``bitcast (CST to TYPE)``
2327 Convert a constant, CST, to another TYPE. The constraints of the
2328 operands are the same as those for the :ref:`bitcast
2329 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002330``addrspacecast (CST to TYPE)``
2331 Convert a constant pointer or constant vector of pointer, CST, to another
2332 TYPE in a different address space. The constraints of the operands are the
2333 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002334``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2335 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2336 constants. As with the :ref:`getelementptr <i_getelementptr>`
2337 instruction, the index list may have zero or more indexes, which are
2338 required to make sense for the type of "CSTPTR".
2339``select (COND, VAL1, VAL2)``
2340 Perform the :ref:`select operation <i_select>` on constants.
2341``icmp COND (VAL1, VAL2)``
2342 Performs the :ref:`icmp operation <i_icmp>` on constants.
2343``fcmp COND (VAL1, VAL2)``
2344 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2345``extractelement (VAL, IDX)``
2346 Perform the :ref:`extractelement operation <i_extractelement>` on
2347 constants.
2348``insertelement (VAL, ELT, IDX)``
2349 Perform the :ref:`insertelement operation <i_insertelement>` on
2350 constants.
2351``shufflevector (VEC1, VEC2, IDXMASK)``
2352 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2353 constants.
2354``extractvalue (VAL, IDX0, IDX1, ...)``
2355 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2356 constants. The index list is interpreted in a similar manner as
2357 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2358 least one index value must be specified.
2359``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2360 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2361 The index list is interpreted in a similar manner as indices in a
2362 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2363 value must be specified.
2364``OPCODE (LHS, RHS)``
2365 Perform the specified operation of the LHS and RHS constants. OPCODE
2366 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2367 binary <bitwiseops>` operations. The constraints on operands are
2368 the same as those for the corresponding instruction (e.g. no bitwise
2369 operations on floating point values are allowed).
2370
2371Other Values
2372============
2373
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002374.. _inlineasmexprs:
2375
Sean Silvab084af42012-12-07 10:36:55 +00002376Inline Assembler Expressions
2377----------------------------
2378
2379LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2380Inline Assembly <moduleasm>`) through the use of a special value. This
2381value represents the inline assembler as a string (containing the
2382instructions to emit), a list of operand constraints (stored as a
2383string), a flag that indicates whether or not the inline asm expression
2384has side effects, and a flag indicating whether the function containing
2385the asm needs to align its stack conservatively. An example inline
2386assembler expression is:
2387
2388.. code-block:: llvm
2389
2390 i32 (i32) asm "bswap $0", "=r,r"
2391
2392Inline assembler expressions may **only** be used as the callee operand
2393of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2394Thus, typically we have:
2395
2396.. code-block:: llvm
2397
2398 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2399
2400Inline asms with side effects not visible in the constraint list must be
2401marked as having side effects. This is done through the use of the
2402'``sideeffect``' keyword, like so:
2403
2404.. code-block:: llvm
2405
2406 call void asm sideeffect "eieio", ""()
2407
2408In some cases inline asms will contain code that will not work unless
2409the stack is aligned in some way, such as calls or SSE instructions on
2410x86, yet will not contain code that does that alignment within the asm.
2411The compiler should make conservative assumptions about what the asm
2412might contain and should generate its usual stack alignment code in the
2413prologue if the '``alignstack``' keyword is present:
2414
2415.. code-block:: llvm
2416
2417 call void asm alignstack "eieio", ""()
2418
2419Inline asms also support using non-standard assembly dialects. The
2420assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2421the inline asm is using the Intel dialect. Currently, ATT and Intel are
2422the only supported dialects. An example is:
2423
2424.. code-block:: llvm
2425
2426 call void asm inteldialect "eieio", ""()
2427
2428If multiple keywords appear the '``sideeffect``' keyword must come
2429first, the '``alignstack``' keyword second and the '``inteldialect``'
2430keyword last.
2431
2432Inline Asm Metadata
2433^^^^^^^^^^^^^^^^^^^
2434
2435The call instructions that wrap inline asm nodes may have a
2436"``!srcloc``" MDNode attached to it that contains a list of constant
2437integers. If present, the code generator will use the integer as the
2438location cookie value when report errors through the ``LLVMContext``
2439error reporting mechanisms. This allows a front-end to correlate backend
2440errors that occur with inline asm back to the source code that produced
2441it. For example:
2442
2443.. code-block:: llvm
2444
2445 call void asm sideeffect "something bad", ""(), !srcloc !42
2446 ...
2447 !42 = !{ i32 1234567 }
2448
2449It is up to the front-end to make sense of the magic numbers it places
2450in the IR. If the MDNode contains multiple constants, the code generator
2451will use the one that corresponds to the line of the asm that the error
2452occurs on.
2453
2454.. _metadata:
2455
2456Metadata Nodes and Metadata Strings
2457-----------------------------------
2458
2459LLVM IR allows metadata to be attached to instructions in the program
2460that can convey extra information about the code to the optimizers and
2461code generator. One example application of metadata is source-level
2462debug information. There are two metadata primitives: strings and nodes.
2463All metadata has the ``metadata`` type and is identified in syntax by a
2464preceding exclamation point ('``!``').
2465
2466A metadata string is a string surrounded by double quotes. It can
2467contain any character by escaping non-printable characters with
2468"``\xx``" where "``xx``" is the two digit hex code. For example:
2469"``!"test\00"``".
2470
2471Metadata nodes are represented with notation similar to structure
2472constants (a comma separated list of elements, surrounded by braces and
2473preceded by an exclamation point). Metadata nodes can have any values as
2474their operand. For example:
2475
2476.. code-block:: llvm
2477
2478 !{ metadata !"test\00", i32 10}
2479
2480A :ref:`named metadata <namedmetadatastructure>` is a collection of
2481metadata nodes, which can be looked up in the module symbol table. For
2482example:
2483
2484.. code-block:: llvm
2485
2486 !foo = metadata !{!4, !3}
2487
2488Metadata can be used as function arguments. Here ``llvm.dbg.value``
2489function is using two metadata arguments:
2490
2491.. code-block:: llvm
2492
2493 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2494
2495Metadata can be attached with an instruction. Here metadata ``!21`` is
2496attached to the ``add`` instruction using the ``!dbg`` identifier:
2497
2498.. code-block:: llvm
2499
2500 %indvar.next = add i64 %indvar, 1, !dbg !21
2501
2502More information about specific metadata nodes recognized by the
2503optimizers and code generator is found below.
2504
2505'``tbaa``' Metadata
2506^^^^^^^^^^^^^^^^^^^
2507
2508In LLVM IR, memory does not have types, so LLVM's own type system is not
2509suitable for doing TBAA. Instead, metadata is added to the IR to
2510describe a type system of a higher level language. This can be used to
2511implement typical C/C++ TBAA, but it can also be used to implement
2512custom alias analysis behavior for other languages.
2513
2514The current metadata format is very simple. TBAA metadata nodes have up
2515to three fields, e.g.:
2516
2517.. code-block:: llvm
2518
2519 !0 = metadata !{ metadata !"an example type tree" }
2520 !1 = metadata !{ metadata !"int", metadata !0 }
2521 !2 = metadata !{ metadata !"float", metadata !0 }
2522 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2523
2524The first field is an identity field. It can be any value, usually a
2525metadata string, which uniquely identifies the type. The most important
2526name in the tree is the name of the root node. Two trees with different
2527root node names are entirely disjoint, even if they have leaves with
2528common names.
2529
2530The second field identifies the type's parent node in the tree, or is
2531null or omitted for a root node. A type is considered to alias all of
2532its descendants and all of its ancestors in the tree. Also, a type is
2533considered to alias all types in other trees, so that bitcode produced
2534from multiple front-ends is handled conservatively.
2535
2536If the third field is present, it's an integer which if equal to 1
2537indicates that the type is "constant" (meaning
2538``pointsToConstantMemory`` should return true; see `other useful
2539AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2540
2541'``tbaa.struct``' Metadata
2542^^^^^^^^^^^^^^^^^^^^^^^^^^
2543
2544The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2545aggregate assignment operations in C and similar languages, however it
2546is defined to copy a contiguous region of memory, which is more than
2547strictly necessary for aggregate types which contain holes due to
2548padding. Also, it doesn't contain any TBAA information about the fields
2549of the aggregate.
2550
2551``!tbaa.struct`` metadata can describe which memory subregions in a
2552memcpy are padding and what the TBAA tags of the struct are.
2553
2554The current metadata format is very simple. ``!tbaa.struct`` metadata
2555nodes are a list of operands which are in conceptual groups of three.
2556For each group of three, the first operand gives the byte offset of a
2557field in bytes, the second gives its size in bytes, and the third gives
2558its tbaa tag. e.g.:
2559
2560.. code-block:: llvm
2561
2562 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2563
2564This describes a struct with two fields. The first is at offset 0 bytes
2565with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2566and has size 4 bytes and has tbaa tag !2.
2567
2568Note that the fields need not be contiguous. In this example, there is a
25694 byte gap between the two fields. This gap represents padding which
2570does not carry useful data and need not be preserved.
2571
2572'``fpmath``' Metadata
2573^^^^^^^^^^^^^^^^^^^^^
2574
2575``fpmath`` metadata may be attached to any instruction of floating point
2576type. It can be used to express the maximum acceptable error in the
2577result of that instruction, in ULPs, thus potentially allowing the
2578compiler to use a more efficient but less accurate method of computing
2579it. ULP is defined as follows:
2580
2581 If ``x`` is a real number that lies between two finite consecutive
2582 floating-point numbers ``a`` and ``b``, without being equal to one
2583 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2584 distance between the two non-equal finite floating-point numbers
2585 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2586
2587The metadata node shall consist of a single positive floating point
2588number representing the maximum relative error, for example:
2589
2590.. code-block:: llvm
2591
2592 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2593
2594'``range``' Metadata
2595^^^^^^^^^^^^^^^^^^^^
2596
2597``range`` metadata may be attached only to loads of integer types. It
2598expresses the possible ranges the loaded value is in. The ranges are
2599represented with a flattened list of integers. The loaded value is known
2600to be in the union of the ranges defined by each consecutive pair. Each
2601pair has the following properties:
2602
2603- The type must match the type loaded by the instruction.
2604- The pair ``a,b`` represents the range ``[a,b)``.
2605- Both ``a`` and ``b`` are constants.
2606- The range is allowed to wrap.
2607- The range should not represent the full or empty set. That is,
2608 ``a!=b``.
2609
2610In addition, the pairs must be in signed order of the lower bound and
2611they must be non-contiguous.
2612
2613Examples:
2614
2615.. code-block:: llvm
2616
2617 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2618 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2619 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2620 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2621 ...
2622 !0 = metadata !{ i8 0, i8 2 }
2623 !1 = metadata !{ i8 255, i8 2 }
2624 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2625 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2626
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002627'``llvm.loop``'
2628^^^^^^^^^^^^^^^
2629
2630It is sometimes useful to attach information to loop constructs. Currently,
2631loop metadata is implemented as metadata attached to the branch instruction
2632in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002633guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002634specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002635
2636The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002637itself to avoid merging it with any other identifier metadata, e.g.,
2638during module linkage or function inlining. That is, each loop should refer
2639to their own identification metadata even if they reside in separate functions.
2640The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002641constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002642
2643.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002644
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002645 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002646 !1 = metadata !{ metadata !1 }
2647
Paul Redmond5fdf8362013-05-28 20:00:34 +00002648The loop identifier metadata can be used to specify additional per-loop
2649metadata. Any operands after the first operand can be treated as user-defined
2650metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2651by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002652
Paul Redmond5fdf8362013-05-28 20:00:34 +00002653.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002654
Paul Redmond5fdf8362013-05-28 20:00:34 +00002655 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2656 ...
2657 !0 = metadata !{ metadata !0, metadata !1 }
2658 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002659
2660'``llvm.mem``'
2661^^^^^^^^^^^^^^^
2662
2663Metadata types used to annotate memory accesses with information helpful
2664for optimizations are prefixed with ``llvm.mem``.
2665
2666'``llvm.mem.parallel_loop_access``' Metadata
2667^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2668
2669For a loop to be parallel, in addition to using
Paul Redmond5fdf8362013-05-28 20:00:34 +00002670the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002671also all of the memory accessing instructions in the loop body need to be
2672marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2673is at least one memory accessing instruction not marked with the metadata,
Paul Redmond5fdf8362013-05-28 20:00:34 +00002674the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002675converted to sequential loops due to optimization passes that are unaware of
2676the parallel semantics and that insert new memory instructions to the loop
2677body.
2678
2679Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002680both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002681metadata types that refer to the same loop identifier metadata.
2682
2683.. code-block:: llvm
2684
2685 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002686 ...
2687 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2688 ...
2689 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2690 ...
2691 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002692
2693 for.end:
2694 ...
2695 !0 = metadata !{ metadata !0 }
2696
2697It is also possible to have nested parallel loops. In that case the
2698memory accesses refer to a list of loop identifier metadata nodes instead of
2699the loop identifier metadata node directly:
2700
2701.. code-block:: llvm
2702
2703 outer.for.body:
2704 ...
2705
2706 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002707 ...
2708 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2709 ...
2710 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2711 ...
2712 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002713
2714 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002715 ...
2716 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2717 ...
2718 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2719 ...
2720 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002721
2722 outer.for.end: ; preds = %for.body
2723 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002724 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2725 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2726 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002727
Paul Redmond5fdf8362013-05-28 20:00:34 +00002728'``llvm.vectorizer``'
2729^^^^^^^^^^^^^^^^^^^^^
2730
2731Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2732vectorization parameters such as vectorization factor and unroll factor.
2733
2734``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2735loop identification metadata.
2736
2737'``llvm.vectorizer.unroll``' Metadata
2738^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2739
2740This metadata instructs the loop vectorizer to unroll the specified
2741loop exactly ``N`` times.
2742
2743The first operand is the string ``llvm.vectorizer.unroll`` and the second
2744operand is an integer specifying the unroll factor. For example:
2745
2746.. code-block:: llvm
2747
2748 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2749
2750Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2751loop.
2752
2753If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2754determined automatically.
2755
2756'``llvm.vectorizer.width``' Metadata
2757^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2758
Paul Redmondeccbb322013-05-30 17:22:46 +00002759This metadata sets the target width of the vectorizer to ``N``. Without
2760this metadata, the vectorizer will choose a width automatically.
2761Regardless of this metadata, the vectorizer will only vectorize loops if
2762it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002763
2764The first operand is the string ``llvm.vectorizer.width`` and the second
2765operand is an integer specifying the width. For example:
2766
2767.. code-block:: llvm
2768
2769 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2770
2771Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2772loop.
2773
2774If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2775automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002776
Sean Silvab084af42012-12-07 10:36:55 +00002777Module Flags Metadata
2778=====================
2779
2780Information about the module as a whole is difficult to convey to LLVM's
2781subsystems. The LLVM IR isn't sufficient to transmit this information.
2782The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002783this. These flags are in the form of key / value pairs --- much like a
2784dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002785look it up.
2786
2787The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2788Each triplet has the following form:
2789
2790- The first element is a *behavior* flag, which specifies the behavior
2791 when two (or more) modules are merged together, and it encounters two
2792 (or more) metadata with the same ID. The supported behaviors are
2793 described below.
2794- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002795 metadata. Each module may only have one flag entry for each unique ID (not
2796 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002797- The third element is the value of the flag.
2798
2799When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002800``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2801each unique metadata ID string, there will be exactly one entry in the merged
2802modules ``llvm.module.flags`` metadata table, and the value for that entry will
2803be determined by the merge behavior flag, as described below. The only exception
2804is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002805
2806The following behaviors are supported:
2807
2808.. list-table::
2809 :header-rows: 1
2810 :widths: 10 90
2811
2812 * - Value
2813 - Behavior
2814
2815 * - 1
2816 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002817 Emits an error if two values disagree, otherwise the resulting value
2818 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002819
2820 * - 2
2821 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002822 Emits a warning if two values disagree. The result value will be the
2823 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002824
2825 * - 3
2826 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002827 Adds a requirement that another module flag be present and have a
2828 specified value after linking is performed. The value must be a
2829 metadata pair, where the first element of the pair is the ID of the
2830 module flag to be restricted, and the second element of the pair is
2831 the value the module flag should be restricted to. This behavior can
2832 be used to restrict the allowable results (via triggering of an
2833 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002834
2835 * - 4
2836 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002837 Uses the specified value, regardless of the behavior or value of the
2838 other module. If both modules specify **Override**, but the values
2839 differ, an error will be emitted.
2840
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002841 * - 5
2842 - **Append**
2843 Appends the two values, which are required to be metadata nodes.
2844
2845 * - 6
2846 - **AppendUnique**
2847 Appends the two values, which are required to be metadata
2848 nodes. However, duplicate entries in the second list are dropped
2849 during the append operation.
2850
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002851It is an error for a particular unique flag ID to have multiple behaviors,
2852except in the case of **Require** (which adds restrictions on another metadata
2853value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002854
2855An example of module flags:
2856
2857.. code-block:: llvm
2858
2859 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2860 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2861 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2862 !3 = metadata !{ i32 3, metadata !"qux",
2863 metadata !{
2864 metadata !"foo", i32 1
2865 }
2866 }
2867 !llvm.module.flags = !{ !0, !1, !2, !3 }
2868
2869- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2870 if two or more ``!"foo"`` flags are seen is to emit an error if their
2871 values are not equal.
2872
2873- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2874 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002875 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002876
2877- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2878 behavior if two or more ``!"qux"`` flags are seen is to emit a
2879 warning if their values are not equal.
2880
2881- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2882
2883 ::
2884
2885 metadata !{ metadata !"foo", i32 1 }
2886
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002887 The behavior is to emit an error if the ``llvm.module.flags`` does not
2888 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2889 performed.
Sean Silvab084af42012-12-07 10:36:55 +00002890
2891Objective-C Garbage Collection Module Flags Metadata
2892----------------------------------------------------
2893
2894On the Mach-O platform, Objective-C stores metadata about garbage
2895collection in a special section called "image info". The metadata
2896consists of a version number and a bitmask specifying what types of
2897garbage collection are supported (if any) by the file. If two or more
2898modules are linked together their garbage collection metadata needs to
2899be merged rather than appended together.
2900
2901The Objective-C garbage collection module flags metadata consists of the
2902following key-value pairs:
2903
2904.. list-table::
2905 :header-rows: 1
2906 :widths: 30 70
2907
2908 * - Key
2909 - Value
2910
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002911 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002912 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00002913
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002914 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002915 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00002916 always 0.
2917
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002918 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002919 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00002920 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2921 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2922 Objective-C ABI version 2.
2923
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002924 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002925 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00002926 not. Valid values are 0, for no garbage collection, and 2, for garbage
2927 collection supported.
2928
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002929 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002930 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00002931 If present, its value must be 6. This flag requires that the
2932 ``Objective-C Garbage Collection`` flag have the value 2.
2933
2934Some important flag interactions:
2935
2936- If a module with ``Objective-C Garbage Collection`` set to 0 is
2937 merged with a module with ``Objective-C Garbage Collection`` set to
2938 2, then the resulting module has the
2939 ``Objective-C Garbage Collection`` flag set to 0.
2940- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2941 merged with a module with ``Objective-C GC Only`` set to 6.
2942
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002943Automatic Linker Flags Module Flags Metadata
2944--------------------------------------------
2945
2946Some targets support embedding flags to the linker inside individual object
2947files. Typically this is used in conjunction with language extensions which
2948allow source files to explicitly declare the libraries they depend on, and have
2949these automatically be transmitted to the linker via object files.
2950
2951These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002952using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002953to be ``AppendUnique``, and the value for the key is expected to be a metadata
2954node which should be a list of other metadata nodes, each of which should be a
2955list of metadata strings defining linker options.
2956
2957For example, the following metadata section specifies two separate sets of
2958linker options, presumably to link against ``libz`` and the ``Cocoa``
2959framework::
2960
Michael Liaoa7699082013-03-06 18:24:34 +00002961 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002962 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00002963 metadata !{ metadata !"-lz" },
2964 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002965 !llvm.module.flags = !{ !0 }
2966
2967The metadata encoding as lists of lists of options, as opposed to a collapsed
2968list of options, is chosen so that the IR encoding can use multiple option
2969strings to specify e.g., a single library, while still having that specifier be
2970preserved as an atomic element that can be recognized by a target specific
2971assembly writer or object file emitter.
2972
2973Each individual option is required to be either a valid option for the target's
2974linker, or an option that is reserved by the target specific assembly writer or
2975object file emitter. No other aspect of these options is defined by the IR.
2976
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002977.. _intrinsicglobalvariables:
2978
Sean Silvab084af42012-12-07 10:36:55 +00002979Intrinsic Global Variables
2980==========================
2981
2982LLVM has a number of "magic" global variables that contain data that
2983affect code generation or other IR semantics. These are documented here.
2984All globals of this sort should have a section specified as
2985"``llvm.metadata``". This section and all globals that start with
2986"``llvm.``" are reserved for use by LLVM.
2987
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002988.. _gv_llvmused:
2989
Sean Silvab084af42012-12-07 10:36:55 +00002990The '``llvm.used``' Global Variable
2991-----------------------------------
2992
Rafael Espindola74f2e462013-04-22 14:58:02 +00002993The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00002994:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00002995pointers to named global variables, functions and aliases which may optionally
2996have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00002997use of it is:
2998
2999.. code-block:: llvm
3000
3001 @X = global i8 4
3002 @Y = global i32 123
3003
3004 @llvm.used = appending global [2 x i8*] [
3005 i8* @X,
3006 i8* bitcast (i32* @Y to i8*)
3007 ], section "llvm.metadata"
3008
Rafael Espindola74f2e462013-04-22 14:58:02 +00003009If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3010and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003011symbol that it cannot see (which is why they have to be named). For example, if
3012a variable has internal linkage and no references other than that from the
3013``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3014references from inline asms and other things the compiler cannot "see", and
3015corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003016
3017On some targets, the code generator must emit a directive to the
3018assembler or object file to prevent the assembler and linker from
3019molesting the symbol.
3020
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003021.. _gv_llvmcompilerused:
3022
Sean Silvab084af42012-12-07 10:36:55 +00003023The '``llvm.compiler.used``' Global Variable
3024--------------------------------------------
3025
3026The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3027directive, except that it only prevents the compiler from touching the
3028symbol. On targets that support it, this allows an intelligent linker to
3029optimize references to the symbol without being impeded as it would be
3030by ``@llvm.used``.
3031
3032This is a rare construct that should only be used in rare circumstances,
3033and should not be exposed to source languages.
3034
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003035.. _gv_llvmglobalctors:
3036
Sean Silvab084af42012-12-07 10:36:55 +00003037The '``llvm.global_ctors``' Global Variable
3038-------------------------------------------
3039
3040.. code-block:: llvm
3041
3042 %0 = type { i32, void ()* }
3043 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3044
3045The ``@llvm.global_ctors`` array contains a list of constructor
3046functions and associated priorities. The functions referenced by this
3047array will be called in ascending order of priority (i.e. lowest first)
3048when the module is loaded. The order of functions with the same priority
3049is not defined.
3050
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003051.. _llvmglobaldtors:
3052
Sean Silvab084af42012-12-07 10:36:55 +00003053The '``llvm.global_dtors``' Global Variable
3054-------------------------------------------
3055
3056.. code-block:: llvm
3057
3058 %0 = type { i32, void ()* }
3059 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3060
3061The ``@llvm.global_dtors`` array contains a list of destructor functions
3062and associated priorities. The functions referenced by this array will
3063be called in descending order of priority (i.e. highest first) when the
3064module is loaded. The order of functions with the same priority is not
3065defined.
3066
3067Instruction Reference
3068=====================
3069
3070The LLVM instruction set consists of several different classifications
3071of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3072instructions <binaryops>`, :ref:`bitwise binary
3073instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3074:ref:`other instructions <otherops>`.
3075
3076.. _terminators:
3077
3078Terminator Instructions
3079-----------------------
3080
3081As mentioned :ref:`previously <functionstructure>`, every basic block in a
3082program ends with a "Terminator" instruction, which indicates which
3083block should be executed after the current block is finished. These
3084terminator instructions typically yield a '``void``' value: they produce
3085control flow, not values (the one exception being the
3086':ref:`invoke <i_invoke>`' instruction).
3087
3088The terminator instructions are: ':ref:`ret <i_ret>`',
3089':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3090':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3091':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3092
3093.. _i_ret:
3094
3095'``ret``' Instruction
3096^^^^^^^^^^^^^^^^^^^^^
3097
3098Syntax:
3099"""""""
3100
3101::
3102
3103 ret <type> <value> ; Return a value from a non-void function
3104 ret void ; Return from void function
3105
3106Overview:
3107"""""""""
3108
3109The '``ret``' instruction is used to return control flow (and optionally
3110a value) from a function back to the caller.
3111
3112There are two forms of the '``ret``' instruction: one that returns a
3113value and then causes control flow, and one that just causes control
3114flow to occur.
3115
3116Arguments:
3117""""""""""
3118
3119The '``ret``' instruction optionally accepts a single argument, the
3120return value. The type of the return value must be a ':ref:`first
3121class <t_firstclass>`' type.
3122
3123A function is not :ref:`well formed <wellformed>` if it it has a non-void
3124return type and contains a '``ret``' instruction with no return value or
3125a return value with a type that does not match its type, or if it has a
3126void return type and contains a '``ret``' instruction with a return
3127value.
3128
3129Semantics:
3130""""""""""
3131
3132When the '``ret``' instruction is executed, control flow returns back to
3133the calling function's context. If the caller is a
3134":ref:`call <i_call>`" instruction, execution continues at the
3135instruction after the call. If the caller was an
3136":ref:`invoke <i_invoke>`" instruction, execution continues at the
3137beginning of the "normal" destination block. If the instruction returns
3138a value, that value shall set the call or invoke instruction's return
3139value.
3140
3141Example:
3142""""""""
3143
3144.. code-block:: llvm
3145
3146 ret i32 5 ; Return an integer value of 5
3147 ret void ; Return from a void function
3148 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3149
3150.. _i_br:
3151
3152'``br``' Instruction
3153^^^^^^^^^^^^^^^^^^^^
3154
3155Syntax:
3156"""""""
3157
3158::
3159
3160 br i1 <cond>, label <iftrue>, label <iffalse>
3161 br label <dest> ; Unconditional branch
3162
3163Overview:
3164"""""""""
3165
3166The '``br``' instruction is used to cause control flow to transfer to a
3167different basic block in the current function. There are two forms of
3168this instruction, corresponding to a conditional branch and an
3169unconditional branch.
3170
3171Arguments:
3172""""""""""
3173
3174The conditional branch form of the '``br``' instruction takes a single
3175'``i1``' value and two '``label``' values. The unconditional form of the
3176'``br``' instruction takes a single '``label``' value as a target.
3177
3178Semantics:
3179""""""""""
3180
3181Upon execution of a conditional '``br``' instruction, the '``i1``'
3182argument is evaluated. If the value is ``true``, control flows to the
3183'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3184to the '``iffalse``' ``label`` argument.
3185
3186Example:
3187""""""""
3188
3189.. code-block:: llvm
3190
3191 Test:
3192 %cond = icmp eq i32 %a, %b
3193 br i1 %cond, label %IfEqual, label %IfUnequal
3194 IfEqual:
3195 ret i32 1
3196 IfUnequal:
3197 ret i32 0
3198
3199.. _i_switch:
3200
3201'``switch``' Instruction
3202^^^^^^^^^^^^^^^^^^^^^^^^
3203
3204Syntax:
3205"""""""
3206
3207::
3208
3209 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3210
3211Overview:
3212"""""""""
3213
3214The '``switch``' instruction is used to transfer control flow to one of
3215several different places. It is a generalization of the '``br``'
3216instruction, allowing a branch to occur to one of many possible
3217destinations.
3218
3219Arguments:
3220""""""""""
3221
3222The '``switch``' instruction uses three parameters: an integer
3223comparison value '``value``', a default '``label``' destination, and an
3224array of pairs of comparison value constants and '``label``'s. The table
3225is not allowed to contain duplicate constant entries.
3226
3227Semantics:
3228""""""""""
3229
3230The ``switch`` instruction specifies a table of values and destinations.
3231When the '``switch``' instruction is executed, this table is searched
3232for the given value. If the value is found, control flow is transferred
3233to the corresponding destination; otherwise, control flow is transferred
3234to the default destination.
3235
3236Implementation:
3237"""""""""""""""
3238
3239Depending on properties of the target machine and the particular
3240``switch`` instruction, this instruction may be code generated in
3241different ways. For example, it could be generated as a series of
3242chained conditional branches or with a lookup table.
3243
3244Example:
3245""""""""
3246
3247.. code-block:: llvm
3248
3249 ; Emulate a conditional br instruction
3250 %Val = zext i1 %value to i32
3251 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3252
3253 ; Emulate an unconditional br instruction
3254 switch i32 0, label %dest [ ]
3255
3256 ; Implement a jump table:
3257 switch i32 %val, label %otherwise [ i32 0, label %onzero
3258 i32 1, label %onone
3259 i32 2, label %ontwo ]
3260
3261.. _i_indirectbr:
3262
3263'``indirectbr``' Instruction
3264^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3265
3266Syntax:
3267"""""""
3268
3269::
3270
3271 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3272
3273Overview:
3274"""""""""
3275
3276The '``indirectbr``' instruction implements an indirect branch to a
3277label within the current function, whose address is specified by
3278"``address``". Address must be derived from a
3279:ref:`blockaddress <blockaddress>` constant.
3280
3281Arguments:
3282""""""""""
3283
3284The '``address``' argument is the address of the label to jump to. The
3285rest of the arguments indicate the full set of possible destinations
3286that the address may point to. Blocks are allowed to occur multiple
3287times in the destination list, though this isn't particularly useful.
3288
3289This destination list is required so that dataflow analysis has an
3290accurate understanding of the CFG.
3291
3292Semantics:
3293""""""""""
3294
3295Control transfers to the block specified in the address argument. All
3296possible destination blocks must be listed in the label list, otherwise
3297this instruction has undefined behavior. This implies that jumps to
3298labels defined in other functions have undefined behavior as well.
3299
3300Implementation:
3301"""""""""""""""
3302
3303This is typically implemented with a jump through a register.
3304
3305Example:
3306""""""""
3307
3308.. code-block:: llvm
3309
3310 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3311
3312.. _i_invoke:
3313
3314'``invoke``' Instruction
3315^^^^^^^^^^^^^^^^^^^^^^^^
3316
3317Syntax:
3318"""""""
3319
3320::
3321
3322 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3323 to label <normal label> unwind label <exception label>
3324
3325Overview:
3326"""""""""
3327
3328The '``invoke``' instruction causes control to transfer to a specified
3329function, with the possibility of control flow transfer to either the
3330'``normal``' label or the '``exception``' label. If the callee function
3331returns with the "``ret``" instruction, control flow will return to the
3332"normal" label. If the callee (or any indirect callees) returns via the
3333":ref:`resume <i_resume>`" instruction or other exception handling
3334mechanism, control is interrupted and continued at the dynamically
3335nearest "exception" label.
3336
3337The '``exception``' label is a `landing
3338pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3339'``exception``' label is required to have the
3340":ref:`landingpad <i_landingpad>`" instruction, which contains the
3341information about the behavior of the program after unwinding happens,
3342as its first non-PHI instruction. The restrictions on the
3343"``landingpad``" instruction's tightly couples it to the "``invoke``"
3344instruction, so that the important information contained within the
3345"``landingpad``" instruction can't be lost through normal code motion.
3346
3347Arguments:
3348""""""""""
3349
3350This instruction requires several arguments:
3351
3352#. The optional "cconv" marker indicates which :ref:`calling
3353 convention <callingconv>` the call should use. If none is
3354 specified, the call defaults to using C calling conventions.
3355#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3356 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3357 are valid here.
3358#. '``ptr to function ty``': shall be the signature of the pointer to
3359 function value being invoked. In most cases, this is a direct
3360 function invocation, but indirect ``invoke``'s are just as possible,
3361 branching off an arbitrary pointer to function value.
3362#. '``function ptr val``': An LLVM value containing a pointer to a
3363 function to be invoked.
3364#. '``function args``': argument list whose types match the function
3365 signature argument types and parameter attributes. All arguments must
3366 be of :ref:`first class <t_firstclass>` type. If the function signature
3367 indicates the function accepts a variable number of arguments, the
3368 extra arguments can be specified.
3369#. '``normal label``': the label reached when the called function
3370 executes a '``ret``' instruction.
3371#. '``exception label``': the label reached when a callee returns via
3372 the :ref:`resume <i_resume>` instruction or other exception handling
3373 mechanism.
3374#. The optional :ref:`function attributes <fnattrs>` list. Only
3375 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3376 attributes are valid here.
3377
3378Semantics:
3379""""""""""
3380
3381This instruction is designed to operate as a standard '``call``'
3382instruction in most regards. The primary difference is that it
3383establishes an association with a label, which is used by the runtime
3384library to unwind the stack.
3385
3386This instruction is used in languages with destructors to ensure that
3387proper cleanup is performed in the case of either a ``longjmp`` or a
3388thrown exception. Additionally, this is important for implementation of
3389'``catch``' clauses in high-level languages that support them.
3390
3391For the purposes of the SSA form, the definition of the value returned
3392by the '``invoke``' instruction is deemed to occur on the edge from the
3393current block to the "normal" label. If the callee unwinds then no
3394return value is available.
3395
3396Example:
3397""""""""
3398
3399.. code-block:: llvm
3400
3401 %retval = invoke i32 @Test(i32 15) to label %Continue
3402 unwind label %TestCleanup ; {i32}:retval set
3403 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3404 unwind label %TestCleanup ; {i32}:retval set
3405
3406.. _i_resume:
3407
3408'``resume``' Instruction
3409^^^^^^^^^^^^^^^^^^^^^^^^
3410
3411Syntax:
3412"""""""
3413
3414::
3415
3416 resume <type> <value>
3417
3418Overview:
3419"""""""""
3420
3421The '``resume``' instruction is a terminator instruction that has no
3422successors.
3423
3424Arguments:
3425""""""""""
3426
3427The '``resume``' instruction requires one argument, which must have the
3428same type as the result of any '``landingpad``' instruction in the same
3429function.
3430
3431Semantics:
3432""""""""""
3433
3434The '``resume``' instruction resumes propagation of an existing
3435(in-flight) exception whose unwinding was interrupted with a
3436:ref:`landingpad <i_landingpad>` instruction.
3437
3438Example:
3439""""""""
3440
3441.. code-block:: llvm
3442
3443 resume { i8*, i32 } %exn
3444
3445.. _i_unreachable:
3446
3447'``unreachable``' Instruction
3448^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3449
3450Syntax:
3451"""""""
3452
3453::
3454
3455 unreachable
3456
3457Overview:
3458"""""""""
3459
3460The '``unreachable``' instruction has no defined semantics. This
3461instruction is used to inform the optimizer that a particular portion of
3462the code is not reachable. This can be used to indicate that the code
3463after a no-return function cannot be reached, and other facts.
3464
3465Semantics:
3466""""""""""
3467
3468The '``unreachable``' instruction has no defined semantics.
3469
3470.. _binaryops:
3471
3472Binary Operations
3473-----------------
3474
3475Binary operators are used to do most of the computation in a program.
3476They require two operands of the same type, execute an operation on
3477them, and produce a single value. The operands might represent multiple
3478data, as is the case with the :ref:`vector <t_vector>` data type. The
3479result value has the same type as its operands.
3480
3481There are several different binary operators:
3482
3483.. _i_add:
3484
3485'``add``' Instruction
3486^^^^^^^^^^^^^^^^^^^^^
3487
3488Syntax:
3489"""""""
3490
3491::
3492
3493 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3494 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3495 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3496 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3497
3498Overview:
3499"""""""""
3500
3501The '``add``' instruction returns the sum of its two operands.
3502
3503Arguments:
3504""""""""""
3505
3506The two arguments to the '``add``' instruction must be
3507:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3508arguments must have identical types.
3509
3510Semantics:
3511""""""""""
3512
3513The value produced is the integer sum of the two operands.
3514
3515If the sum has unsigned overflow, the result returned is the
3516mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3517the result.
3518
3519Because LLVM integers use a two's complement representation, this
3520instruction is appropriate for both signed and unsigned integers.
3521
3522``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3523respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3524result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3525unsigned and/or signed overflow, respectively, occurs.
3526
3527Example:
3528""""""""
3529
3530.. code-block:: llvm
3531
3532 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3533
3534.. _i_fadd:
3535
3536'``fadd``' Instruction
3537^^^^^^^^^^^^^^^^^^^^^^
3538
3539Syntax:
3540"""""""
3541
3542::
3543
3544 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3545
3546Overview:
3547"""""""""
3548
3549The '``fadd``' instruction returns the sum of its two operands.
3550
3551Arguments:
3552""""""""""
3553
3554The two arguments to the '``fadd``' instruction must be :ref:`floating
3555point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3556Both arguments must have identical types.
3557
3558Semantics:
3559""""""""""
3560
3561The value produced is the floating point sum of the two operands. This
3562instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3563which are optimization hints to enable otherwise unsafe floating point
3564optimizations:
3565
3566Example:
3567""""""""
3568
3569.. code-block:: llvm
3570
3571 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3572
3573'``sub``' Instruction
3574^^^^^^^^^^^^^^^^^^^^^
3575
3576Syntax:
3577"""""""
3578
3579::
3580
3581 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3582 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3583 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3584 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3585
3586Overview:
3587"""""""""
3588
3589The '``sub``' instruction returns the difference of its two operands.
3590
3591Note that the '``sub``' instruction is used to represent the '``neg``'
3592instruction present in most other intermediate representations.
3593
3594Arguments:
3595""""""""""
3596
3597The two arguments to the '``sub``' instruction must be
3598:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3599arguments must have identical types.
3600
3601Semantics:
3602""""""""""
3603
3604The value produced is the integer difference of the two operands.
3605
3606If the difference has unsigned overflow, the result returned is the
3607mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3608the result.
3609
3610Because LLVM integers use a two's complement representation, this
3611instruction is appropriate for both signed and unsigned integers.
3612
3613``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3614respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3615result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3616unsigned and/or signed overflow, respectively, occurs.
3617
3618Example:
3619""""""""
3620
3621.. code-block:: llvm
3622
3623 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3624 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3625
3626.. _i_fsub:
3627
3628'``fsub``' Instruction
3629^^^^^^^^^^^^^^^^^^^^^^
3630
3631Syntax:
3632"""""""
3633
3634::
3635
3636 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3637
3638Overview:
3639"""""""""
3640
3641The '``fsub``' instruction returns the difference of its two operands.
3642
3643Note that the '``fsub``' instruction is used to represent the '``fneg``'
3644instruction present in most other intermediate representations.
3645
3646Arguments:
3647""""""""""
3648
3649The two arguments to the '``fsub``' instruction must be :ref:`floating
3650point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3651Both arguments must have identical types.
3652
3653Semantics:
3654""""""""""
3655
3656The value produced is the floating point difference of the two operands.
3657This instruction can also take any number of :ref:`fast-math
3658flags <fastmath>`, which are optimization hints to enable otherwise
3659unsafe floating point optimizations:
3660
3661Example:
3662""""""""
3663
3664.. code-block:: llvm
3665
3666 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3667 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3668
3669'``mul``' Instruction
3670^^^^^^^^^^^^^^^^^^^^^
3671
3672Syntax:
3673"""""""
3674
3675::
3676
3677 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3678 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3679 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3680 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3681
3682Overview:
3683"""""""""
3684
3685The '``mul``' instruction returns the product of its two operands.
3686
3687Arguments:
3688""""""""""
3689
3690The two arguments to the '``mul``' instruction must be
3691:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3692arguments must have identical types.
3693
3694Semantics:
3695""""""""""
3696
3697The value produced is the integer product of the two operands.
3698
3699If the result of the multiplication has unsigned overflow, the result
3700returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3701bit width of the result.
3702
3703Because LLVM integers use a two's complement representation, and the
3704result is the same width as the operands, this instruction returns the
3705correct result for both signed and unsigned integers. If a full product
3706(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3707sign-extended or zero-extended as appropriate to the width of the full
3708product.
3709
3710``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3711respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3712result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3713unsigned and/or signed overflow, respectively, occurs.
3714
3715Example:
3716""""""""
3717
3718.. code-block:: llvm
3719
3720 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3721
3722.. _i_fmul:
3723
3724'``fmul``' Instruction
3725^^^^^^^^^^^^^^^^^^^^^^
3726
3727Syntax:
3728"""""""
3729
3730::
3731
3732 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3733
3734Overview:
3735"""""""""
3736
3737The '``fmul``' instruction returns the product of its two operands.
3738
3739Arguments:
3740""""""""""
3741
3742The two arguments to the '``fmul``' instruction must be :ref:`floating
3743point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3744Both arguments must have identical types.
3745
3746Semantics:
3747""""""""""
3748
3749The value produced is the floating point product of the two operands.
3750This instruction can also take any number of :ref:`fast-math
3751flags <fastmath>`, which are optimization hints to enable otherwise
3752unsafe floating point optimizations:
3753
3754Example:
3755""""""""
3756
3757.. code-block:: llvm
3758
3759 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3760
3761'``udiv``' Instruction
3762^^^^^^^^^^^^^^^^^^^^^^
3763
3764Syntax:
3765"""""""
3766
3767::
3768
3769 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3770 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3771
3772Overview:
3773"""""""""
3774
3775The '``udiv``' instruction returns the quotient of its two operands.
3776
3777Arguments:
3778""""""""""
3779
3780The two arguments to the '``udiv``' instruction must be
3781:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3782arguments must have identical types.
3783
3784Semantics:
3785""""""""""
3786
3787The value produced is the unsigned integer quotient of the two operands.
3788
3789Note that unsigned integer division and signed integer division are
3790distinct operations; for signed integer division, use '``sdiv``'.
3791
3792Division by zero leads to undefined behavior.
3793
3794If the ``exact`` keyword is present, the result value of the ``udiv`` is
3795a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3796such, "((a udiv exact b) mul b) == a").
3797
3798Example:
3799""""""""
3800
3801.. code-block:: llvm
3802
3803 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3804
3805'``sdiv``' Instruction
3806^^^^^^^^^^^^^^^^^^^^^^
3807
3808Syntax:
3809"""""""
3810
3811::
3812
3813 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3814 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3815
3816Overview:
3817"""""""""
3818
3819The '``sdiv``' instruction returns the quotient of its two operands.
3820
3821Arguments:
3822""""""""""
3823
3824The two arguments to the '``sdiv``' instruction must be
3825:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3826arguments must have identical types.
3827
3828Semantics:
3829""""""""""
3830
3831The value produced is the signed integer quotient of the two operands
3832rounded towards zero.
3833
3834Note that signed integer division and unsigned integer division are
3835distinct operations; for unsigned integer division, use '``udiv``'.
3836
3837Division by zero leads to undefined behavior. Overflow also leads to
3838undefined behavior; this is a rare case, but can occur, for example, by
3839doing a 32-bit division of -2147483648 by -1.
3840
3841If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3842a :ref:`poison value <poisonvalues>` if the result would be rounded.
3843
3844Example:
3845""""""""
3846
3847.. code-block:: llvm
3848
3849 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3850
3851.. _i_fdiv:
3852
3853'``fdiv``' Instruction
3854^^^^^^^^^^^^^^^^^^^^^^
3855
3856Syntax:
3857"""""""
3858
3859::
3860
3861 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3862
3863Overview:
3864"""""""""
3865
3866The '``fdiv``' instruction returns the quotient of its two operands.
3867
3868Arguments:
3869""""""""""
3870
3871The two arguments to the '``fdiv``' instruction must be :ref:`floating
3872point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3873Both arguments must have identical types.
3874
3875Semantics:
3876""""""""""
3877
3878The value produced is the floating point quotient of the two operands.
3879This instruction can also take any number of :ref:`fast-math
3880flags <fastmath>`, which are optimization hints to enable otherwise
3881unsafe floating point optimizations:
3882
3883Example:
3884""""""""
3885
3886.. code-block:: llvm
3887
3888 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3889
3890'``urem``' Instruction
3891^^^^^^^^^^^^^^^^^^^^^^
3892
3893Syntax:
3894"""""""
3895
3896::
3897
3898 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3899
3900Overview:
3901"""""""""
3902
3903The '``urem``' instruction returns the remainder from the unsigned
3904division of its two arguments.
3905
3906Arguments:
3907""""""""""
3908
3909The two arguments to the '``urem``' instruction must be
3910:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3911arguments must have identical types.
3912
3913Semantics:
3914""""""""""
3915
3916This instruction returns the unsigned integer *remainder* of a division.
3917This instruction always performs an unsigned division to get the
3918remainder.
3919
3920Note that unsigned integer remainder and signed integer remainder are
3921distinct operations; for signed integer remainder, use '``srem``'.
3922
3923Taking the remainder of a division by zero leads to undefined behavior.
3924
3925Example:
3926""""""""
3927
3928.. code-block:: llvm
3929
3930 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3931
3932'``srem``' Instruction
3933^^^^^^^^^^^^^^^^^^^^^^
3934
3935Syntax:
3936"""""""
3937
3938::
3939
3940 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3941
3942Overview:
3943"""""""""
3944
3945The '``srem``' instruction returns the remainder from the signed
3946division of its two operands. This instruction can also take
3947:ref:`vector <t_vector>` versions of the values in which case the elements
3948must be integers.
3949
3950Arguments:
3951""""""""""
3952
3953The two arguments to the '``srem``' instruction must be
3954:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3955arguments must have identical types.
3956
3957Semantics:
3958""""""""""
3959
3960This instruction returns the *remainder* of a division (where the result
3961is either zero or has the same sign as the dividend, ``op1``), not the
3962*modulo* operator (where the result is either zero or has the same sign
3963as the divisor, ``op2``) of a value. For more information about the
3964difference, see `The Math
3965Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3966table of how this is implemented in various languages, please see
3967`Wikipedia: modulo
3968operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3969
3970Note that signed integer remainder and unsigned integer remainder are
3971distinct operations; for unsigned integer remainder, use '``urem``'.
3972
3973Taking the remainder of a division by zero leads to undefined behavior.
3974Overflow also leads to undefined behavior; this is a rare case, but can
3975occur, for example, by taking the remainder of a 32-bit division of
3976-2147483648 by -1. (The remainder doesn't actually overflow, but this
3977rule lets srem be implemented using instructions that return both the
3978result of the division and the remainder.)
3979
3980Example:
3981""""""""
3982
3983.. code-block:: llvm
3984
3985 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3986
3987.. _i_frem:
3988
3989'``frem``' Instruction
3990^^^^^^^^^^^^^^^^^^^^^^
3991
3992Syntax:
3993"""""""
3994
3995::
3996
3997 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3998
3999Overview:
4000"""""""""
4001
4002The '``frem``' instruction returns the remainder from the division of
4003its two operands.
4004
4005Arguments:
4006""""""""""
4007
4008The two arguments to the '``frem``' instruction must be :ref:`floating
4009point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4010Both arguments must have identical types.
4011
4012Semantics:
4013""""""""""
4014
4015This instruction returns the *remainder* of a division. The remainder
4016has the same sign as the dividend. This instruction can also take any
4017number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4018to enable otherwise unsafe floating point optimizations:
4019
4020Example:
4021""""""""
4022
4023.. code-block:: llvm
4024
4025 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4026
4027.. _bitwiseops:
4028
4029Bitwise Binary Operations
4030-------------------------
4031
4032Bitwise binary operators are used to do various forms of bit-twiddling
4033in a program. They are generally very efficient instructions and can
4034commonly be strength reduced from other instructions. They require two
4035operands of the same type, execute an operation on them, and produce a
4036single value. The resulting value is the same type as its operands.
4037
4038'``shl``' Instruction
4039^^^^^^^^^^^^^^^^^^^^^
4040
4041Syntax:
4042"""""""
4043
4044::
4045
4046 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4047 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4048 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4049 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4050
4051Overview:
4052"""""""""
4053
4054The '``shl``' instruction returns the first operand shifted to the left
4055a specified number of bits.
4056
4057Arguments:
4058""""""""""
4059
4060Both arguments to the '``shl``' instruction must be the same
4061:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4062'``op2``' is treated as an unsigned value.
4063
4064Semantics:
4065""""""""""
4066
4067The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4068where ``n`` is the width of the result. If ``op2`` is (statically or
4069dynamically) negative or equal to or larger than the number of bits in
4070``op1``, the result is undefined. If the arguments are vectors, each
4071vector element of ``op1`` is shifted by the corresponding shift amount
4072in ``op2``.
4073
4074If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4075value <poisonvalues>` if it shifts out any non-zero bits. If the
4076``nsw`` keyword is present, then the shift produces a :ref:`poison
4077value <poisonvalues>` if it shifts out any bits that disagree with the
4078resultant sign bit. As such, NUW/NSW have the same semantics as they
4079would if the shift were expressed as a mul instruction with the same
4080nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4081
4082Example:
4083""""""""
4084
4085.. code-block:: llvm
4086
4087 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4088 <result> = shl i32 4, 2 ; yields {i32}: 16
4089 <result> = shl i32 1, 10 ; yields {i32}: 1024
4090 <result> = shl i32 1, 32 ; undefined
4091 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4092
4093'``lshr``' Instruction
4094^^^^^^^^^^^^^^^^^^^^^^
4095
4096Syntax:
4097"""""""
4098
4099::
4100
4101 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4102 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4103
4104Overview:
4105"""""""""
4106
4107The '``lshr``' instruction (logical shift right) returns the first
4108operand shifted to the right a specified number of bits with zero fill.
4109
4110Arguments:
4111""""""""""
4112
4113Both arguments to the '``lshr``' instruction must be the same
4114:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4115'``op2``' is treated as an unsigned value.
4116
4117Semantics:
4118""""""""""
4119
4120This instruction always performs a logical shift right operation. The
4121most significant bits of the result will be filled with zero bits after
4122the shift. If ``op2`` is (statically or dynamically) equal to or larger
4123than the number of bits in ``op1``, the result is undefined. If the
4124arguments are vectors, each vector element of ``op1`` is shifted by the
4125corresponding shift amount in ``op2``.
4126
4127If the ``exact`` keyword is present, the result value of the ``lshr`` is
4128a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4129non-zero.
4130
4131Example:
4132""""""""
4133
4134.. code-block:: llvm
4135
4136 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4137 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4138 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004139 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004140 <result> = lshr i32 1, 32 ; undefined
4141 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4142
4143'``ashr``' Instruction
4144^^^^^^^^^^^^^^^^^^^^^^
4145
4146Syntax:
4147"""""""
4148
4149::
4150
4151 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4152 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4153
4154Overview:
4155"""""""""
4156
4157The '``ashr``' instruction (arithmetic shift right) returns the first
4158operand shifted to the right a specified number of bits with sign
4159extension.
4160
4161Arguments:
4162""""""""""
4163
4164Both arguments to the '``ashr``' instruction must be the same
4165:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4166'``op2``' is treated as an unsigned value.
4167
4168Semantics:
4169""""""""""
4170
4171This instruction always performs an arithmetic shift right operation,
4172The most significant bits of the result will be filled with the sign bit
4173of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4174than the number of bits in ``op1``, the result is undefined. If the
4175arguments are vectors, each vector element of ``op1`` is shifted by the
4176corresponding shift amount in ``op2``.
4177
4178If the ``exact`` keyword is present, the result value of the ``ashr`` is
4179a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4180non-zero.
4181
4182Example:
4183""""""""
4184
4185.. code-block:: llvm
4186
4187 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4188 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4189 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4190 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4191 <result> = ashr i32 1, 32 ; undefined
4192 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4193
4194'``and``' Instruction
4195^^^^^^^^^^^^^^^^^^^^^
4196
4197Syntax:
4198"""""""
4199
4200::
4201
4202 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4203
4204Overview:
4205"""""""""
4206
4207The '``and``' instruction returns the bitwise logical and of its two
4208operands.
4209
4210Arguments:
4211""""""""""
4212
4213The two arguments to the '``and``' instruction must be
4214:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4215arguments must have identical types.
4216
4217Semantics:
4218""""""""""
4219
4220The truth table used for the '``and``' instruction is:
4221
4222+-----+-----+-----+
4223| In0 | In1 | Out |
4224+-----+-----+-----+
4225| 0 | 0 | 0 |
4226+-----+-----+-----+
4227| 0 | 1 | 0 |
4228+-----+-----+-----+
4229| 1 | 0 | 0 |
4230+-----+-----+-----+
4231| 1 | 1 | 1 |
4232+-----+-----+-----+
4233
4234Example:
4235""""""""
4236
4237.. code-block:: llvm
4238
4239 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4240 <result> = and i32 15, 40 ; yields {i32}:result = 8
4241 <result> = and i32 4, 8 ; yields {i32}:result = 0
4242
4243'``or``' Instruction
4244^^^^^^^^^^^^^^^^^^^^
4245
4246Syntax:
4247"""""""
4248
4249::
4250
4251 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4252
4253Overview:
4254"""""""""
4255
4256The '``or``' instruction returns the bitwise logical inclusive or of its
4257two operands.
4258
4259Arguments:
4260""""""""""
4261
4262The two arguments to the '``or``' instruction must be
4263:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4264arguments must have identical types.
4265
4266Semantics:
4267""""""""""
4268
4269The truth table used for the '``or``' instruction is:
4270
4271+-----+-----+-----+
4272| In0 | In1 | Out |
4273+-----+-----+-----+
4274| 0 | 0 | 0 |
4275+-----+-----+-----+
4276| 0 | 1 | 1 |
4277+-----+-----+-----+
4278| 1 | 0 | 1 |
4279+-----+-----+-----+
4280| 1 | 1 | 1 |
4281+-----+-----+-----+
4282
4283Example:
4284""""""""
4285
4286::
4287
4288 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4289 <result> = or i32 15, 40 ; yields {i32}:result = 47
4290 <result> = or i32 4, 8 ; yields {i32}:result = 12
4291
4292'``xor``' Instruction
4293^^^^^^^^^^^^^^^^^^^^^
4294
4295Syntax:
4296"""""""
4297
4298::
4299
4300 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4301
4302Overview:
4303"""""""""
4304
4305The '``xor``' instruction returns the bitwise logical exclusive or of
4306its two operands. The ``xor`` is used to implement the "one's
4307complement" operation, which is the "~" operator in C.
4308
4309Arguments:
4310""""""""""
4311
4312The two arguments to the '``xor``' instruction must be
4313:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4314arguments must have identical types.
4315
4316Semantics:
4317""""""""""
4318
4319The truth table used for the '``xor``' instruction is:
4320
4321+-----+-----+-----+
4322| In0 | In1 | Out |
4323+-----+-----+-----+
4324| 0 | 0 | 0 |
4325+-----+-----+-----+
4326| 0 | 1 | 1 |
4327+-----+-----+-----+
4328| 1 | 0 | 1 |
4329+-----+-----+-----+
4330| 1 | 1 | 0 |
4331+-----+-----+-----+
4332
4333Example:
4334""""""""
4335
4336.. code-block:: llvm
4337
4338 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4339 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4340 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4341 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4342
4343Vector Operations
4344-----------------
4345
4346LLVM supports several instructions to represent vector operations in a
4347target-independent manner. These instructions cover the element-access
4348and vector-specific operations needed to process vectors effectively.
4349While LLVM does directly support these vector operations, many
4350sophisticated algorithms will want to use target-specific intrinsics to
4351take full advantage of a specific target.
4352
4353.. _i_extractelement:
4354
4355'``extractelement``' Instruction
4356^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4357
4358Syntax:
4359"""""""
4360
4361::
4362
4363 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4364
4365Overview:
4366"""""""""
4367
4368The '``extractelement``' instruction extracts a single scalar element
4369from a vector at a specified index.
4370
4371Arguments:
4372""""""""""
4373
4374The first operand of an '``extractelement``' instruction is a value of
4375:ref:`vector <t_vector>` type. The second operand is an index indicating
4376the position from which to extract the element. The index may be a
4377variable.
4378
4379Semantics:
4380""""""""""
4381
4382The result is a scalar of the same type as the element type of ``val``.
4383Its value is the value at position ``idx`` of ``val``. If ``idx``
4384exceeds the length of ``val``, the results are undefined.
4385
4386Example:
4387""""""""
4388
4389.. code-block:: llvm
4390
4391 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4392
4393.. _i_insertelement:
4394
4395'``insertelement``' Instruction
4396^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4397
4398Syntax:
4399"""""""
4400
4401::
4402
4403 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4404
4405Overview:
4406"""""""""
4407
4408The '``insertelement``' instruction inserts a scalar element into a
4409vector at a specified index.
4410
4411Arguments:
4412""""""""""
4413
4414The first operand of an '``insertelement``' instruction is a value of
4415:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4416type must equal the element type of the first operand. The third operand
4417is an index indicating the position at which to insert the value. The
4418index may be a variable.
4419
4420Semantics:
4421""""""""""
4422
4423The result is a vector of the same type as ``val``. Its element values
4424are those of ``val`` except at position ``idx``, where it gets the value
4425``elt``. If ``idx`` exceeds the length of ``val``, the results are
4426undefined.
4427
4428Example:
4429""""""""
4430
4431.. code-block:: llvm
4432
4433 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4434
4435.. _i_shufflevector:
4436
4437'``shufflevector``' Instruction
4438^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4439
4440Syntax:
4441"""""""
4442
4443::
4444
4445 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4446
4447Overview:
4448"""""""""
4449
4450The '``shufflevector``' instruction constructs a permutation of elements
4451from two input vectors, returning a vector with the same element type as
4452the input and length that is the same as the shuffle mask.
4453
4454Arguments:
4455""""""""""
4456
4457The first two operands of a '``shufflevector``' instruction are vectors
4458with the same type. The third argument is a shuffle mask whose element
4459type is always 'i32'. The result of the instruction is a vector whose
4460length is the same as the shuffle mask and whose element type is the
4461same as the element type of the first two operands.
4462
4463The shuffle mask operand is required to be a constant vector with either
4464constant integer or undef values.
4465
4466Semantics:
4467""""""""""
4468
4469The elements of the two input vectors are numbered from left to right
4470across both of the vectors. The shuffle mask operand specifies, for each
4471element of the result vector, which element of the two input vectors the
4472result element gets. The element selector may be undef (meaning "don't
4473care") and the second operand may be undef if performing a shuffle from
4474only one vector.
4475
4476Example:
4477""""""""
4478
4479.. code-block:: llvm
4480
4481 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4482 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4483 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4484 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4485 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4486 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4487 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4488 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4489
4490Aggregate Operations
4491--------------------
4492
4493LLVM supports several instructions for working with
4494:ref:`aggregate <t_aggregate>` values.
4495
4496.. _i_extractvalue:
4497
4498'``extractvalue``' Instruction
4499^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4500
4501Syntax:
4502"""""""
4503
4504::
4505
4506 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4507
4508Overview:
4509"""""""""
4510
4511The '``extractvalue``' instruction extracts the value of a member field
4512from an :ref:`aggregate <t_aggregate>` value.
4513
4514Arguments:
4515""""""""""
4516
4517The first operand of an '``extractvalue``' instruction is a value of
4518:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4519constant indices to specify which value to extract in a similar manner
4520as indices in a '``getelementptr``' instruction.
4521
4522The major differences to ``getelementptr`` indexing are:
4523
4524- Since the value being indexed is not a pointer, the first index is
4525 omitted and assumed to be zero.
4526- At least one index must be specified.
4527- Not only struct indices but also array indices must be in bounds.
4528
4529Semantics:
4530""""""""""
4531
4532The result is the value at the position in the aggregate specified by
4533the index operands.
4534
4535Example:
4536""""""""
4537
4538.. code-block:: llvm
4539
4540 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4541
4542.. _i_insertvalue:
4543
4544'``insertvalue``' Instruction
4545^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4546
4547Syntax:
4548"""""""
4549
4550::
4551
4552 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4553
4554Overview:
4555"""""""""
4556
4557The '``insertvalue``' instruction inserts a value into a member field in
4558an :ref:`aggregate <t_aggregate>` value.
4559
4560Arguments:
4561""""""""""
4562
4563The first operand of an '``insertvalue``' instruction is a value of
4564:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4565a first-class value to insert. The following operands are constant
4566indices indicating the position at which to insert the value in a
4567similar manner as indices in a '``extractvalue``' instruction. The value
4568to insert must have the same type as the value identified by the
4569indices.
4570
4571Semantics:
4572""""""""""
4573
4574The result is an aggregate of the same type as ``val``. Its value is
4575that of ``val`` except that the value at the position specified by the
4576indices is that of ``elt``.
4577
4578Example:
4579""""""""
4580
4581.. code-block:: llvm
4582
4583 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4584 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4585 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4586
4587.. _memoryops:
4588
4589Memory Access and Addressing Operations
4590---------------------------------------
4591
4592A key design point of an SSA-based representation is how it represents
4593memory. In LLVM, no memory locations are in SSA form, which makes things
4594very simple. This section describes how to read, write, and allocate
4595memory in LLVM.
4596
4597.. _i_alloca:
4598
4599'``alloca``' Instruction
4600^^^^^^^^^^^^^^^^^^^^^^^^
4601
4602Syntax:
4603"""""""
4604
4605::
4606
4607 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4608
4609Overview:
4610"""""""""
4611
4612The '``alloca``' instruction allocates memory on the stack frame of the
4613currently executing function, to be automatically released when this
4614function returns to its caller. The object is always allocated in the
4615generic address space (address space zero).
4616
4617Arguments:
4618""""""""""
4619
4620The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4621bytes of memory on the runtime stack, returning a pointer of the
4622appropriate type to the program. If "NumElements" is specified, it is
4623the number of elements allocated, otherwise "NumElements" is defaulted
4624to be one. If a constant alignment is specified, the value result of the
4625allocation is guaranteed to be aligned to at least that boundary. If not
4626specified, or if zero, the target can choose to align the allocation on
4627any convenient boundary compatible with the type.
4628
4629'``type``' may be any sized type.
4630
4631Semantics:
4632""""""""""
4633
4634Memory is allocated; a pointer is returned. The operation is undefined
4635if there is insufficient stack space for the allocation. '``alloca``'d
4636memory is automatically released when the function returns. The
4637'``alloca``' instruction is commonly used to represent automatic
4638variables that must have an address available. When the function returns
4639(either with the ``ret`` or ``resume`` instructions), the memory is
4640reclaimed. Allocating zero bytes is legal, but the result is undefined.
4641The order in which memory is allocated (ie., which way the stack grows)
4642is not specified.
4643
4644Example:
4645""""""""
4646
4647.. code-block:: llvm
4648
4649 %ptr = alloca i32 ; yields {i32*}:ptr
4650 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4651 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4652 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4653
4654.. _i_load:
4655
4656'``load``' Instruction
4657^^^^^^^^^^^^^^^^^^^^^^
4658
4659Syntax:
4660"""""""
4661
4662::
4663
4664 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4665 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4666 !<index> = !{ i32 1 }
4667
4668Overview:
4669"""""""""
4670
4671The '``load``' instruction is used to read from memory.
4672
4673Arguments:
4674""""""""""
4675
Eli Bendersky239a78b2013-04-17 20:17:08 +00004676The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004677from which to load. The pointer must point to a :ref:`first
4678class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4679then the optimizer is not allowed to modify the number or order of
4680execution of this ``load`` with other :ref:`volatile
4681operations <volatile>`.
4682
4683If the ``load`` is marked as ``atomic``, it takes an extra
4684:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4685``release`` and ``acq_rel`` orderings are not valid on ``load``
4686instructions. Atomic loads produce :ref:`defined <memmodel>` results
4687when they may see multiple atomic stores. The type of the pointee must
4688be an integer type whose bit width is a power of two greater than or
4689equal to eight and less than or equal to a target-specific size limit.
4690``align`` must be explicitly specified on atomic loads, and the load has
4691undefined behavior if the alignment is not set to a value which is at
4692least the size in bytes of the pointee. ``!nontemporal`` does not have
4693any defined semantics for atomic loads.
4694
4695The optional constant ``align`` argument specifies the alignment of the
4696operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004697or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004698alignment for the target. It is the responsibility of the code emitter
4699to ensure that the alignment information is correct. Overestimating the
4700alignment results in undefined behavior. Underestimating the alignment
4701may produce less efficient code. An alignment of 1 is always safe.
4702
4703The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004704metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004705``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004706metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004707that this load is not expected to be reused in the cache. The code
4708generator may select special instructions to save cache bandwidth, such
4709as the ``MOVNT`` instruction on x86.
4710
4711The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004712metadata name ``<index>`` corresponding to a metadata node with no
4713entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004714instruction tells the optimizer and code generator that this load
4715address points to memory which does not change value during program
4716execution. The optimizer may then move this load around, for example, by
4717hoisting it out of loops using loop invariant code motion.
4718
4719Semantics:
4720""""""""""
4721
4722The location of memory pointed to is loaded. If the value being loaded
4723is of scalar type then the number of bytes read does not exceed the
4724minimum number of bytes needed to hold all bits of the type. For
4725example, loading an ``i24`` reads at most three bytes. When loading a
4726value of a type like ``i20`` with a size that is not an integral number
4727of bytes, the result is undefined if the value was not originally
4728written using a store of the same type.
4729
4730Examples:
4731"""""""""
4732
4733.. code-block:: llvm
4734
4735 %ptr = alloca i32 ; yields {i32*}:ptr
4736 store i32 3, i32* %ptr ; yields {void}
4737 %val = load i32* %ptr ; yields {i32}:val = i32 3
4738
4739.. _i_store:
4740
4741'``store``' Instruction
4742^^^^^^^^^^^^^^^^^^^^^^^
4743
4744Syntax:
4745"""""""
4746
4747::
4748
4749 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4750 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4751
4752Overview:
4753"""""""""
4754
4755The '``store``' instruction is used to write to memory.
4756
4757Arguments:
4758""""""""""
4759
Eli Benderskyca380842013-04-17 17:17:20 +00004760There are two arguments to the ``store`` instruction: a value to store
4761and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004762operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004763the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004764then the optimizer is not allowed to modify the number or order of
4765execution of this ``store`` with other :ref:`volatile
4766operations <volatile>`.
4767
4768If the ``store`` is marked as ``atomic``, it takes an extra
4769:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4770``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4771instructions. Atomic loads produce :ref:`defined <memmodel>` results
4772when they may see multiple atomic stores. The type of the pointee must
4773be an integer type whose bit width is a power of two greater than or
4774equal to eight and less than or equal to a target-specific size limit.
4775``align`` must be explicitly specified on atomic stores, and the store
4776has undefined behavior if the alignment is not set to a value which is
4777at least the size in bytes of the pointee. ``!nontemporal`` does not
4778have any defined semantics for atomic stores.
4779
Eli Benderskyca380842013-04-17 17:17:20 +00004780The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004781operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004782or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004783alignment for the target. It is the responsibility of the code emitter
4784to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004785alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004786alignment may produce less efficient code. An alignment of 1 is always
4787safe.
4788
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004789The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004790name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004791value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004792tells the optimizer and code generator that this load is not expected to
4793be reused in the cache. The code generator may select special
4794instructions to save cache bandwidth, such as the MOVNT instruction on
4795x86.
4796
4797Semantics:
4798""""""""""
4799
Eli Benderskyca380842013-04-17 17:17:20 +00004800The contents of memory are updated to contain ``<value>`` at the
4801location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004802of scalar type then the number of bytes written does not exceed the
4803minimum number of bytes needed to hold all bits of the type. For
4804example, storing an ``i24`` writes at most three bytes. When writing a
4805value of a type like ``i20`` with a size that is not an integral number
4806of bytes, it is unspecified what happens to the extra bits that do not
4807belong to the type, but they will typically be overwritten.
4808
4809Example:
4810""""""""
4811
4812.. code-block:: llvm
4813
4814 %ptr = alloca i32 ; yields {i32*}:ptr
4815 store i32 3, i32* %ptr ; yields {void}
4816 %val = load i32* %ptr ; yields {i32}:val = i32 3
4817
4818.. _i_fence:
4819
4820'``fence``' Instruction
4821^^^^^^^^^^^^^^^^^^^^^^^
4822
4823Syntax:
4824"""""""
4825
4826::
4827
4828 fence [singlethread] <ordering> ; yields {void}
4829
4830Overview:
4831"""""""""
4832
4833The '``fence``' instruction is used to introduce happens-before edges
4834between operations.
4835
4836Arguments:
4837""""""""""
4838
4839'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4840defines what *synchronizes-with* edges they add. They can only be given
4841``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4842
4843Semantics:
4844""""""""""
4845
4846A fence A which has (at least) ``release`` ordering semantics
4847*synchronizes with* a fence B with (at least) ``acquire`` ordering
4848semantics if and only if there exist atomic operations X and Y, both
4849operating on some atomic object M, such that A is sequenced before X, X
4850modifies M (either directly or through some side effect of a sequence
4851headed by X), Y is sequenced before B, and Y observes M. This provides a
4852*happens-before* dependency between A and B. Rather than an explicit
4853``fence``, one (but not both) of the atomic operations X or Y might
4854provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4855still *synchronize-with* the explicit ``fence`` and establish the
4856*happens-before* edge.
4857
4858A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4859``acquire`` and ``release`` semantics specified above, participates in
4860the global program order of other ``seq_cst`` operations and/or fences.
4861
4862The optional ":ref:`singlethread <singlethread>`" argument specifies
4863that the fence only synchronizes with other fences in the same thread.
4864(This is useful for interacting with signal handlers.)
4865
4866Example:
4867""""""""
4868
4869.. code-block:: llvm
4870
4871 fence acquire ; yields {void}
4872 fence singlethread seq_cst ; yields {void}
4873
4874.. _i_cmpxchg:
4875
4876'``cmpxchg``' Instruction
4877^^^^^^^^^^^^^^^^^^^^^^^^^
4878
4879Syntax:
4880"""""""
4881
4882::
4883
4884 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4885
4886Overview:
4887"""""""""
4888
4889The '``cmpxchg``' instruction is used to atomically modify memory. It
4890loads a value in memory and compares it to a given value. If they are
4891equal, it stores a new value into the memory.
4892
4893Arguments:
4894""""""""""
4895
4896There are three arguments to the '``cmpxchg``' instruction: an address
4897to operate on, a value to compare to the value currently be at that
4898address, and a new value to place at that address if the compared values
4899are equal. The type of '<cmp>' must be an integer type whose bit width
4900is a power of two greater than or equal to eight and less than or equal
4901to a target-specific size limit. '<cmp>' and '<new>' must have the same
4902type, and the type of '<pointer>' must be a pointer to that type. If the
4903``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4904to modify the number or order of execution of this ``cmpxchg`` with
4905other :ref:`volatile operations <volatile>`.
4906
4907The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4908synchronizes with other atomic operations.
4909
4910The optional "``singlethread``" argument declares that the ``cmpxchg``
4911is only atomic with respect to code (usually signal handlers) running in
4912the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4913respect to all other code in the system.
4914
4915The pointer passed into cmpxchg must have alignment greater than or
4916equal to the size in memory of the operand.
4917
4918Semantics:
4919""""""""""
4920
4921The contents of memory at the location specified by the '``<pointer>``'
4922operand is read and compared to '``<cmp>``'; if the read value is the
4923equal, '``<new>``' is written. The original value at the location is
4924returned.
4925
4926A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4927of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4928atomic load with an ordering parameter determined by dropping any
4929``release`` part of the ``cmpxchg``'s ordering.
4930
4931Example:
4932""""""""
4933
4934.. code-block:: llvm
4935
4936 entry:
4937 %orig = atomic load i32* %ptr unordered ; yields {i32}
4938 br label %loop
4939
4940 loop:
4941 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4942 %squared = mul i32 %cmp, %cmp
4943 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4944 %success = icmp eq i32 %cmp, %old
4945 br i1 %success, label %done, label %loop
4946
4947 done:
4948 ...
4949
4950.. _i_atomicrmw:
4951
4952'``atomicrmw``' Instruction
4953^^^^^^^^^^^^^^^^^^^^^^^^^^^
4954
4955Syntax:
4956"""""""
4957
4958::
4959
4960 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4961
4962Overview:
4963"""""""""
4964
4965The '``atomicrmw``' instruction is used to atomically modify memory.
4966
4967Arguments:
4968""""""""""
4969
4970There are three arguments to the '``atomicrmw``' instruction: an
4971operation to apply, an address whose value to modify, an argument to the
4972operation. The operation must be one of the following keywords:
4973
4974- xchg
4975- add
4976- sub
4977- and
4978- nand
4979- or
4980- xor
4981- max
4982- min
4983- umax
4984- umin
4985
4986The type of '<value>' must be an integer type whose bit width is a power
4987of two greater than or equal to eight and less than or equal to a
4988target-specific size limit. The type of the '``<pointer>``' operand must
4989be a pointer to that type. If the ``atomicrmw`` is marked as
4990``volatile``, then the optimizer is not allowed to modify the number or
4991order of execution of this ``atomicrmw`` with other :ref:`volatile
4992operations <volatile>`.
4993
4994Semantics:
4995""""""""""
4996
4997The contents of memory at the location specified by the '``<pointer>``'
4998operand are atomically read, modified, and written back. The original
4999value at the location is returned. The modification is specified by the
5000operation argument:
5001
5002- xchg: ``*ptr = val``
5003- add: ``*ptr = *ptr + val``
5004- sub: ``*ptr = *ptr - val``
5005- and: ``*ptr = *ptr & val``
5006- nand: ``*ptr = ~(*ptr & val)``
5007- or: ``*ptr = *ptr | val``
5008- xor: ``*ptr = *ptr ^ val``
5009- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5010- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5011- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5012 comparison)
5013- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5014 comparison)
5015
5016Example:
5017""""""""
5018
5019.. code-block:: llvm
5020
5021 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5022
5023.. _i_getelementptr:
5024
5025'``getelementptr``' Instruction
5026^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5027
5028Syntax:
5029"""""""
5030
5031::
5032
5033 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5034 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5035 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5036
5037Overview:
5038"""""""""
5039
5040The '``getelementptr``' instruction is used to get the address of a
5041subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5042address calculation only and does not access memory.
5043
5044Arguments:
5045""""""""""
5046
5047The first argument is always a pointer or a vector of pointers, and
5048forms the basis of the calculation. The remaining arguments are indices
5049that indicate which of the elements of the aggregate object are indexed.
5050The interpretation of each index is dependent on the type being indexed
5051into. The first index always indexes the pointer value given as the
5052first argument, the second index indexes a value of the type pointed to
5053(not necessarily the value directly pointed to, since the first index
5054can be non-zero), etc. The first type indexed into must be a pointer
5055value, subsequent types can be arrays, vectors, and structs. Note that
5056subsequent types being indexed into can never be pointers, since that
5057would require loading the pointer before continuing calculation.
5058
5059The type of each index argument depends on the type it is indexing into.
5060When indexing into a (optionally packed) structure, only ``i32`` integer
5061**constants** are allowed (when using a vector of indices they must all
5062be the **same** ``i32`` integer constant). When indexing into an array,
5063pointer or vector, integers of any width are allowed, and they are not
5064required to be constant. These integers are treated as signed values
5065where relevant.
5066
5067For example, let's consider a C code fragment and how it gets compiled
5068to LLVM:
5069
5070.. code-block:: c
5071
5072 struct RT {
5073 char A;
5074 int B[10][20];
5075 char C;
5076 };
5077 struct ST {
5078 int X;
5079 double Y;
5080 struct RT Z;
5081 };
5082
5083 int *foo(struct ST *s) {
5084 return &s[1].Z.B[5][13];
5085 }
5086
5087The LLVM code generated by Clang is:
5088
5089.. code-block:: llvm
5090
5091 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5092 %struct.ST = type { i32, double, %struct.RT }
5093
5094 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5095 entry:
5096 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5097 ret i32* %arrayidx
5098 }
5099
5100Semantics:
5101""""""""""
5102
5103In the example above, the first index is indexing into the
5104'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5105= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5106indexes into the third element of the structure, yielding a
5107'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5108structure. The third index indexes into the second element of the
5109structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5110dimensions of the array are subscripted into, yielding an '``i32``'
5111type. The '``getelementptr``' instruction returns a pointer to this
5112element, thus computing a value of '``i32*``' type.
5113
5114Note that it is perfectly legal to index partially through a structure,
5115returning a pointer to an inner element. Because of this, the LLVM code
5116for the given testcase is equivalent to:
5117
5118.. code-block:: llvm
5119
5120 define i32* @foo(%struct.ST* %s) {
5121 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5122 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5123 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5124 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5125 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5126 ret i32* %t5
5127 }
5128
5129If the ``inbounds`` keyword is present, the result value of the
5130``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5131pointer is not an *in bounds* address of an allocated object, or if any
5132of the addresses that would be formed by successive addition of the
5133offsets implied by the indices to the base address with infinitely
5134precise signed arithmetic are not an *in bounds* address of that
5135allocated object. The *in bounds* addresses for an allocated object are
5136all the addresses that point into the object, plus the address one byte
5137past the end. In cases where the base is a vector of pointers the
5138``inbounds`` keyword applies to each of the computations element-wise.
5139
5140If the ``inbounds`` keyword is not present, the offsets are added to the
5141base address with silently-wrapping two's complement arithmetic. If the
5142offsets have a different width from the pointer, they are sign-extended
5143or truncated to the width of the pointer. The result value of the
5144``getelementptr`` may be outside the object pointed to by the base
5145pointer. The result value may not necessarily be used to access memory
5146though, even if it happens to point into allocated storage. See the
5147:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5148information.
5149
5150The getelementptr instruction is often confusing. For some more insight
5151into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5152
5153Example:
5154""""""""
5155
5156.. code-block:: llvm
5157
5158 ; yields [12 x i8]*:aptr
5159 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5160 ; yields i8*:vptr
5161 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5162 ; yields i8*:eptr
5163 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5164 ; yields i32*:iptr
5165 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5166
5167In cases where the pointer argument is a vector of pointers, each index
5168must be a vector with the same number of elements. For example:
5169
5170.. code-block:: llvm
5171
5172 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5173
5174Conversion Operations
5175---------------------
5176
5177The instructions in this category are the conversion instructions
5178(casting) which all take a single operand and a type. They perform
5179various bit conversions on the operand.
5180
5181'``trunc .. to``' Instruction
5182^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5183
5184Syntax:
5185"""""""
5186
5187::
5188
5189 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5190
5191Overview:
5192"""""""""
5193
5194The '``trunc``' instruction truncates its operand to the type ``ty2``.
5195
5196Arguments:
5197""""""""""
5198
5199The '``trunc``' instruction takes a value to trunc, and a type to trunc
5200it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5201of the same number of integers. The bit size of the ``value`` must be
5202larger than the bit size of the destination type, ``ty2``. Equal sized
5203types are not allowed.
5204
5205Semantics:
5206""""""""""
5207
5208The '``trunc``' instruction truncates the high order bits in ``value``
5209and converts the remaining bits to ``ty2``. Since the source size must
5210be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5211It will always truncate bits.
5212
5213Example:
5214""""""""
5215
5216.. code-block:: llvm
5217
5218 %X = trunc i32 257 to i8 ; yields i8:1
5219 %Y = trunc i32 123 to i1 ; yields i1:true
5220 %Z = trunc i32 122 to i1 ; yields i1:false
5221 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5222
5223'``zext .. to``' Instruction
5224^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5225
5226Syntax:
5227"""""""
5228
5229::
5230
5231 <result> = zext <ty> <value> to <ty2> ; yields ty2
5232
5233Overview:
5234"""""""""
5235
5236The '``zext``' instruction zero extends its operand to type ``ty2``.
5237
5238Arguments:
5239""""""""""
5240
5241The '``zext``' instruction takes a value to cast, and a type to cast it
5242to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5243the same number of integers. The bit size of the ``value`` must be
5244smaller than the bit size of the destination type, ``ty2``.
5245
5246Semantics:
5247""""""""""
5248
5249The ``zext`` fills the high order bits of the ``value`` with zero bits
5250until it reaches the size of the destination type, ``ty2``.
5251
5252When zero extending from i1, the result will always be either 0 or 1.
5253
5254Example:
5255""""""""
5256
5257.. code-block:: llvm
5258
5259 %X = zext i32 257 to i64 ; yields i64:257
5260 %Y = zext i1 true to i32 ; yields i32:1
5261 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5262
5263'``sext .. to``' Instruction
5264^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5265
5266Syntax:
5267"""""""
5268
5269::
5270
5271 <result> = sext <ty> <value> to <ty2> ; yields ty2
5272
5273Overview:
5274"""""""""
5275
5276The '``sext``' sign extends ``value`` to the type ``ty2``.
5277
5278Arguments:
5279""""""""""
5280
5281The '``sext``' instruction takes a value to cast, and a type to cast it
5282to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5283the same number of integers. The bit size of the ``value`` must be
5284smaller than the bit size of the destination type, ``ty2``.
5285
5286Semantics:
5287""""""""""
5288
5289The '``sext``' instruction performs a sign extension by copying the sign
5290bit (highest order bit) of the ``value`` until it reaches the bit size
5291of the type ``ty2``.
5292
5293When sign extending from i1, the extension always results in -1 or 0.
5294
5295Example:
5296""""""""
5297
5298.. code-block:: llvm
5299
5300 %X = sext i8 -1 to i16 ; yields i16 :65535
5301 %Y = sext i1 true to i32 ; yields i32:-1
5302 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5303
5304'``fptrunc .. to``' Instruction
5305^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5306
5307Syntax:
5308"""""""
5309
5310::
5311
5312 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5313
5314Overview:
5315"""""""""
5316
5317The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5318
5319Arguments:
5320""""""""""
5321
5322The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5323value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5324The size of ``value`` must be larger than the size of ``ty2``. This
5325implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5326
5327Semantics:
5328""""""""""
5329
5330The '``fptrunc``' instruction truncates a ``value`` from a larger
5331:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5332point <t_floating>` type. If the value cannot fit within the
5333destination type, ``ty2``, then the results are undefined.
5334
5335Example:
5336""""""""
5337
5338.. code-block:: llvm
5339
5340 %X = fptrunc double 123.0 to float ; yields float:123.0
5341 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5342
5343'``fpext .. to``' Instruction
5344^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5345
5346Syntax:
5347"""""""
5348
5349::
5350
5351 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5352
5353Overview:
5354"""""""""
5355
5356The '``fpext``' extends a floating point ``value`` to a larger floating
5357point value.
5358
5359Arguments:
5360""""""""""
5361
5362The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5363``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5364to. The source type must be smaller than the destination type.
5365
5366Semantics:
5367""""""""""
5368
5369The '``fpext``' instruction extends the ``value`` from a smaller
5370:ref:`floating point <t_floating>` type to a larger :ref:`floating
5371point <t_floating>` type. The ``fpext`` cannot be used to make a
5372*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5373*no-op cast* for a floating point cast.
5374
5375Example:
5376""""""""
5377
5378.. code-block:: llvm
5379
5380 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5381 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5382
5383'``fptoui .. to``' Instruction
5384^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5385
5386Syntax:
5387"""""""
5388
5389::
5390
5391 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5392
5393Overview:
5394"""""""""
5395
5396The '``fptoui``' converts a floating point ``value`` to its unsigned
5397integer equivalent of type ``ty2``.
5398
5399Arguments:
5400""""""""""
5401
5402The '``fptoui``' instruction takes a value to cast, which must be a
5403scalar or vector :ref:`floating point <t_floating>` value, and a type to
5404cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5405``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5406type with the same number of elements as ``ty``
5407
5408Semantics:
5409""""""""""
5410
5411The '``fptoui``' instruction converts its :ref:`floating
5412point <t_floating>` operand into the nearest (rounding towards zero)
5413unsigned integer value. If the value cannot fit in ``ty2``, the results
5414are undefined.
5415
5416Example:
5417""""""""
5418
5419.. code-block:: llvm
5420
5421 %X = fptoui double 123.0 to i32 ; yields i32:123
5422 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5423 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5424
5425'``fptosi .. to``' Instruction
5426^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5427
5428Syntax:
5429"""""""
5430
5431::
5432
5433 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5434
5435Overview:
5436"""""""""
5437
5438The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5439``value`` to type ``ty2``.
5440
5441Arguments:
5442""""""""""
5443
5444The '``fptosi``' instruction takes a value to cast, which must be a
5445scalar or vector :ref:`floating point <t_floating>` value, and a type to
5446cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5447``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5448type with the same number of elements as ``ty``
5449
5450Semantics:
5451""""""""""
5452
5453The '``fptosi``' instruction converts its :ref:`floating
5454point <t_floating>` operand into the nearest (rounding towards zero)
5455signed integer value. If the value cannot fit in ``ty2``, the results
5456are undefined.
5457
5458Example:
5459""""""""
5460
5461.. code-block:: llvm
5462
5463 %X = fptosi double -123.0 to i32 ; yields i32:-123
5464 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5465 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5466
5467'``uitofp .. to``' Instruction
5468^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5469
5470Syntax:
5471"""""""
5472
5473::
5474
5475 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5476
5477Overview:
5478"""""""""
5479
5480The '``uitofp``' instruction regards ``value`` as an unsigned integer
5481and converts that value to the ``ty2`` type.
5482
5483Arguments:
5484""""""""""
5485
5486The '``uitofp``' instruction takes a value to cast, which must be a
5487scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5488``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5489``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5490type with the same number of elements as ``ty``
5491
5492Semantics:
5493""""""""""
5494
5495The '``uitofp``' instruction interprets its operand as an unsigned
5496integer quantity and converts it to the corresponding floating point
5497value. If the value cannot fit in the floating point value, the results
5498are undefined.
5499
5500Example:
5501""""""""
5502
5503.. code-block:: llvm
5504
5505 %X = uitofp i32 257 to float ; yields float:257.0
5506 %Y = uitofp i8 -1 to double ; yields double:255.0
5507
5508'``sitofp .. to``' Instruction
5509^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5510
5511Syntax:
5512"""""""
5513
5514::
5515
5516 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5517
5518Overview:
5519"""""""""
5520
5521The '``sitofp``' instruction regards ``value`` as a signed integer and
5522converts that value to the ``ty2`` type.
5523
5524Arguments:
5525""""""""""
5526
5527The '``sitofp``' instruction takes a value to cast, which must be a
5528scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5529``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5530``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5531type with the same number of elements as ``ty``
5532
5533Semantics:
5534""""""""""
5535
5536The '``sitofp``' instruction interprets its operand as a signed integer
5537quantity and converts it to the corresponding floating point value. If
5538the value cannot fit in the floating point value, the results are
5539undefined.
5540
5541Example:
5542""""""""
5543
5544.. code-block:: llvm
5545
5546 %X = sitofp i32 257 to float ; yields float:257.0
5547 %Y = sitofp i8 -1 to double ; yields double:-1.0
5548
5549.. _i_ptrtoint:
5550
5551'``ptrtoint .. to``' Instruction
5552^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5553
5554Syntax:
5555"""""""
5556
5557::
5558
5559 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5560
5561Overview:
5562"""""""""
5563
5564The '``ptrtoint``' instruction converts the pointer or a vector of
5565pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5566
5567Arguments:
5568""""""""""
5569
5570The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5571a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5572type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5573a vector of integers type.
5574
5575Semantics:
5576""""""""""
5577
5578The '``ptrtoint``' instruction converts ``value`` to integer type
5579``ty2`` by interpreting the pointer value as an integer and either
5580truncating or zero extending that value to the size of the integer type.
5581If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5582``value`` is larger than ``ty2`` then a truncation is done. If they are
5583the same size, then nothing is done (*no-op cast*) other than a type
5584change.
5585
5586Example:
5587""""""""
5588
5589.. code-block:: llvm
5590
5591 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5592 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5593 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5594
5595.. _i_inttoptr:
5596
5597'``inttoptr .. to``' Instruction
5598^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5599
5600Syntax:
5601"""""""
5602
5603::
5604
5605 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5606
5607Overview:
5608"""""""""
5609
5610The '``inttoptr``' instruction converts an integer ``value`` to a
5611pointer type, ``ty2``.
5612
5613Arguments:
5614""""""""""
5615
5616The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5617cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5618type.
5619
5620Semantics:
5621""""""""""
5622
5623The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5624applying either a zero extension or a truncation depending on the size
5625of the integer ``value``. If ``value`` is larger than the size of a
5626pointer then a truncation is done. If ``value`` is smaller than the size
5627of a pointer then a zero extension is done. If they are the same size,
5628nothing is done (*no-op cast*).
5629
5630Example:
5631""""""""
5632
5633.. code-block:: llvm
5634
5635 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5636 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5637 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5638 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5639
5640.. _i_bitcast:
5641
5642'``bitcast .. to``' Instruction
5643^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5644
5645Syntax:
5646"""""""
5647
5648::
5649
5650 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5651
5652Overview:
5653"""""""""
5654
5655The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5656changing any bits.
5657
5658Arguments:
5659""""""""""
5660
5661The '``bitcast``' instruction takes a value to cast, which must be a
5662non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005663also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5664bit sizes of ``value`` and the destination type, ``ty2``, must be
5665identical. If the source type is a pointer, the destination type must
5666also be a pointer of the same size. This instruction supports bitwise
5667conversion of vectors to integers and to vectors of other types (as
5668long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005669
5670Semantics:
5671""""""""""
5672
Matt Arsenault24b49c42013-07-31 17:49:08 +00005673The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5674is always a *no-op cast* because no bits change with this
5675conversion. The conversion is done as if the ``value`` had been stored
5676to memory and read back as type ``ty2``. Pointer (or vector of
5677pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005678pointers) types with the same address space through this instruction.
5679To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5680or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005681
5682Example:
5683""""""""
5684
5685.. code-block:: llvm
5686
5687 %X = bitcast i8 255 to i8 ; yields i8 :-1
5688 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5689 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5690 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5691
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005692.. _i_addrspacecast:
5693
5694'``addrspacecast .. to``' Instruction
5695^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5696
5697Syntax:
5698"""""""
5699
5700::
5701
5702 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5703
5704Overview:
5705"""""""""
5706
5707The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5708address space ``n`` to type ``pty2`` in address space ``m``.
5709
5710Arguments:
5711""""""""""
5712
5713The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5714to cast and a pointer type to cast it to, which must have a different
5715address space.
5716
5717Semantics:
5718""""""""""
5719
5720The '``addrspacecast``' instruction converts the pointer value
5721``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005722value modification, depending on the target and the address space
5723pair. Pointer conversions within the same address space must be
5724performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005725conversion is legal then both result and operand refer to the same memory
5726location.
5727
5728Example:
5729""""""""
5730
5731.. code-block:: llvm
5732
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005733 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5734 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5735 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005736
Sean Silvab084af42012-12-07 10:36:55 +00005737.. _otherops:
5738
5739Other Operations
5740----------------
5741
5742The instructions in this category are the "miscellaneous" instructions,
5743which defy better classification.
5744
5745.. _i_icmp:
5746
5747'``icmp``' Instruction
5748^^^^^^^^^^^^^^^^^^^^^^
5749
5750Syntax:
5751"""""""
5752
5753::
5754
5755 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5756
5757Overview:
5758"""""""""
5759
5760The '``icmp``' instruction returns a boolean value or a vector of
5761boolean values based on comparison of its two integer, integer vector,
5762pointer, or pointer vector operands.
5763
5764Arguments:
5765""""""""""
5766
5767The '``icmp``' instruction takes three operands. The first operand is
5768the condition code indicating the kind of comparison to perform. It is
5769not a value, just a keyword. The possible condition code are:
5770
5771#. ``eq``: equal
5772#. ``ne``: not equal
5773#. ``ugt``: unsigned greater than
5774#. ``uge``: unsigned greater or equal
5775#. ``ult``: unsigned less than
5776#. ``ule``: unsigned less or equal
5777#. ``sgt``: signed greater than
5778#. ``sge``: signed greater or equal
5779#. ``slt``: signed less than
5780#. ``sle``: signed less or equal
5781
5782The remaining two arguments must be :ref:`integer <t_integer>` or
5783:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5784must also be identical types.
5785
5786Semantics:
5787""""""""""
5788
5789The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5790code given as ``cond``. The comparison performed always yields either an
5791:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5792
5793#. ``eq``: yields ``true`` if the operands are equal, ``false``
5794 otherwise. No sign interpretation is necessary or performed.
5795#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5796 otherwise. No sign interpretation is necessary or performed.
5797#. ``ugt``: interprets the operands as unsigned values and yields
5798 ``true`` if ``op1`` is greater than ``op2``.
5799#. ``uge``: interprets the operands as unsigned values and yields
5800 ``true`` if ``op1`` is greater than or equal to ``op2``.
5801#. ``ult``: interprets the operands as unsigned values and yields
5802 ``true`` if ``op1`` is less than ``op2``.
5803#. ``ule``: interprets the operands as unsigned values and yields
5804 ``true`` if ``op1`` is less than or equal to ``op2``.
5805#. ``sgt``: interprets the operands as signed values and yields ``true``
5806 if ``op1`` is greater than ``op2``.
5807#. ``sge``: interprets the operands as signed values and yields ``true``
5808 if ``op1`` is greater than or equal to ``op2``.
5809#. ``slt``: interprets the operands as signed values and yields ``true``
5810 if ``op1`` is less than ``op2``.
5811#. ``sle``: interprets the operands as signed values and yields ``true``
5812 if ``op1`` is less than or equal to ``op2``.
5813
5814If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5815are compared as if they were integers.
5816
5817If the operands are integer vectors, then they are compared element by
5818element. The result is an ``i1`` vector with the same number of elements
5819as the values being compared. Otherwise, the result is an ``i1``.
5820
5821Example:
5822""""""""
5823
5824.. code-block:: llvm
5825
5826 <result> = icmp eq i32 4, 5 ; yields: result=false
5827 <result> = icmp ne float* %X, %X ; yields: result=false
5828 <result> = icmp ult i16 4, 5 ; yields: result=true
5829 <result> = icmp sgt i16 4, 5 ; yields: result=false
5830 <result> = icmp ule i16 -4, 5 ; yields: result=false
5831 <result> = icmp sge i16 4, 5 ; yields: result=false
5832
5833Note that the code generator does not yet support vector types with the
5834``icmp`` instruction.
5835
5836.. _i_fcmp:
5837
5838'``fcmp``' Instruction
5839^^^^^^^^^^^^^^^^^^^^^^
5840
5841Syntax:
5842"""""""
5843
5844::
5845
5846 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5847
5848Overview:
5849"""""""""
5850
5851The '``fcmp``' instruction returns a boolean value or vector of boolean
5852values based on comparison of its operands.
5853
5854If the operands are floating point scalars, then the result type is a
5855boolean (:ref:`i1 <t_integer>`).
5856
5857If the operands are floating point vectors, then the result type is a
5858vector of boolean with the same number of elements as the operands being
5859compared.
5860
5861Arguments:
5862""""""""""
5863
5864The '``fcmp``' instruction takes three operands. The first operand is
5865the condition code indicating the kind of comparison to perform. It is
5866not a value, just a keyword. The possible condition code are:
5867
5868#. ``false``: no comparison, always returns false
5869#. ``oeq``: ordered and equal
5870#. ``ogt``: ordered and greater than
5871#. ``oge``: ordered and greater than or equal
5872#. ``olt``: ordered and less than
5873#. ``ole``: ordered and less than or equal
5874#. ``one``: ordered and not equal
5875#. ``ord``: ordered (no nans)
5876#. ``ueq``: unordered or equal
5877#. ``ugt``: unordered or greater than
5878#. ``uge``: unordered or greater than or equal
5879#. ``ult``: unordered or less than
5880#. ``ule``: unordered or less than or equal
5881#. ``une``: unordered or not equal
5882#. ``uno``: unordered (either nans)
5883#. ``true``: no comparison, always returns true
5884
5885*Ordered* means that neither operand is a QNAN while *unordered* means
5886that either operand may be a QNAN.
5887
5888Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5889point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5890type. They must have identical types.
5891
5892Semantics:
5893""""""""""
5894
5895The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5896condition code given as ``cond``. If the operands are vectors, then the
5897vectors are compared element by element. Each comparison performed
5898always yields an :ref:`i1 <t_integer>` result, as follows:
5899
5900#. ``false``: always yields ``false``, regardless of operands.
5901#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5902 is equal to ``op2``.
5903#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5904 is greater than ``op2``.
5905#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5906 is greater than or equal to ``op2``.
5907#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5908 is less than ``op2``.
5909#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5910 is less than or equal to ``op2``.
5911#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5912 is not equal to ``op2``.
5913#. ``ord``: yields ``true`` if both operands are not a QNAN.
5914#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5915 equal to ``op2``.
5916#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5917 greater than ``op2``.
5918#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5919 greater than or equal to ``op2``.
5920#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5921 less than ``op2``.
5922#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5923 less than or equal to ``op2``.
5924#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5925 not equal to ``op2``.
5926#. ``uno``: yields ``true`` if either operand is a QNAN.
5927#. ``true``: always yields ``true``, regardless of operands.
5928
5929Example:
5930""""""""
5931
5932.. code-block:: llvm
5933
5934 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5935 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5936 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5937 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5938
5939Note that the code generator does not yet support vector types with the
5940``fcmp`` instruction.
5941
5942.. _i_phi:
5943
5944'``phi``' Instruction
5945^^^^^^^^^^^^^^^^^^^^^
5946
5947Syntax:
5948"""""""
5949
5950::
5951
5952 <result> = phi <ty> [ <val0>, <label0>], ...
5953
5954Overview:
5955"""""""""
5956
5957The '``phi``' instruction is used to implement the φ node in the SSA
5958graph representing the function.
5959
5960Arguments:
5961""""""""""
5962
5963The type of the incoming values is specified with the first type field.
5964After this, the '``phi``' instruction takes a list of pairs as
5965arguments, with one pair for each predecessor basic block of the current
5966block. Only values of :ref:`first class <t_firstclass>` type may be used as
5967the value arguments to the PHI node. Only labels may be used as the
5968label arguments.
5969
5970There must be no non-phi instructions between the start of a basic block
5971and the PHI instructions: i.e. PHI instructions must be first in a basic
5972block.
5973
5974For the purposes of the SSA form, the use of each incoming value is
5975deemed to occur on the edge from the corresponding predecessor block to
5976the current block (but after any definition of an '``invoke``'
5977instruction's return value on the same edge).
5978
5979Semantics:
5980""""""""""
5981
5982At runtime, the '``phi``' instruction logically takes on the value
5983specified by the pair corresponding to the predecessor basic block that
5984executed just prior to the current block.
5985
5986Example:
5987""""""""
5988
5989.. code-block:: llvm
5990
5991 Loop: ; Infinite loop that counts from 0 on up...
5992 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5993 %nextindvar = add i32 %indvar, 1
5994 br label %Loop
5995
5996.. _i_select:
5997
5998'``select``' Instruction
5999^^^^^^^^^^^^^^^^^^^^^^^^
6000
6001Syntax:
6002"""""""
6003
6004::
6005
6006 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6007
6008 selty is either i1 or {<N x i1>}
6009
6010Overview:
6011"""""""""
6012
6013The '``select``' instruction is used to choose one value based on a
6014condition, without branching.
6015
6016Arguments:
6017""""""""""
6018
6019The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6020values indicating the condition, and two values of the same :ref:`first
6021class <t_firstclass>` type. If the val1/val2 are vectors and the
6022condition is a scalar, then entire vectors are selected, not individual
6023elements.
6024
6025Semantics:
6026""""""""""
6027
6028If the condition is an i1 and it evaluates to 1, the instruction returns
6029the first value argument; otherwise, it returns the second value
6030argument.
6031
6032If the condition is a vector of i1, then the value arguments must be
6033vectors of the same size, and the selection is done element by element.
6034
6035Example:
6036""""""""
6037
6038.. code-block:: llvm
6039
6040 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6041
6042.. _i_call:
6043
6044'``call``' Instruction
6045^^^^^^^^^^^^^^^^^^^^^^
6046
6047Syntax:
6048"""""""
6049
6050::
6051
6052 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6053
6054Overview:
6055"""""""""
6056
6057The '``call``' instruction represents a simple function call.
6058
6059Arguments:
6060""""""""""
6061
6062This instruction requires several arguments:
6063
6064#. The optional "tail" marker indicates that the callee function does
6065 not access any allocas or varargs in the caller. Note that calls may
6066 be marked "tail" even if they do not occur before a
6067 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
6068 function call is eligible for tail call optimization, but `might not
6069 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
6070 The code generator may optimize calls marked "tail" with either 1)
6071 automatic `sibling call
6072 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6073 callee have matching signatures, or 2) forced tail call optimization
6074 when the following extra requirements are met:
6075
6076 - Caller and callee both have the calling convention ``fastcc``.
6077 - The call is in tail position (ret immediately follows call and ret
6078 uses value of call or is void).
6079 - Option ``-tailcallopt`` is enabled, or
6080 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6081 - `Platform specific constraints are
6082 met. <CodeGenerator.html#tailcallopt>`_
6083
6084#. The optional "cconv" marker indicates which :ref:`calling
6085 convention <callingconv>` the call should use. If none is
6086 specified, the call defaults to using C calling conventions. The
6087 calling convention of the call must match the calling convention of
6088 the target function, or else the behavior is undefined.
6089#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6090 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6091 are valid here.
6092#. '``ty``': the type of the call instruction itself which is also the
6093 type of the return value. Functions that return no value are marked
6094 ``void``.
6095#. '``fnty``': shall be the signature of the pointer to function value
6096 being invoked. The argument types must match the types implied by
6097 this signature. This type can be omitted if the function is not
6098 varargs and if the function type does not return a pointer to a
6099 function.
6100#. '``fnptrval``': An LLVM value containing a pointer to a function to
6101 be invoked. In most cases, this is a direct function invocation, but
6102 indirect ``call``'s are just as possible, calling an arbitrary pointer
6103 to function value.
6104#. '``function args``': argument list whose types match the function
6105 signature argument types and parameter attributes. All arguments must
6106 be of :ref:`first class <t_firstclass>` type. If the function signature
6107 indicates the function accepts a variable number of arguments, the
6108 extra arguments can be specified.
6109#. The optional :ref:`function attributes <fnattrs>` list. Only
6110 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6111 attributes are valid here.
6112
6113Semantics:
6114""""""""""
6115
6116The '``call``' instruction is used to cause control flow to transfer to
6117a specified function, with its incoming arguments bound to the specified
6118values. Upon a '``ret``' instruction in the called function, control
6119flow continues with the instruction after the function call, and the
6120return value of the function is bound to the result argument.
6121
6122Example:
6123""""""""
6124
6125.. code-block:: llvm
6126
6127 %retval = call i32 @test(i32 %argc)
6128 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6129 %X = tail call i32 @foo() ; yields i32
6130 %Y = tail call fastcc i32 @foo() ; yields i32
6131 call void %foo(i8 97 signext)
6132
6133 %struct.A = type { i32, i8 }
6134 %r = call %struct.A @foo() ; yields { 32, i8 }
6135 %gr = extractvalue %struct.A %r, 0 ; yields i32
6136 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6137 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6138 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6139
6140llvm treats calls to some functions with names and arguments that match
6141the standard C99 library as being the C99 library functions, and may
6142perform optimizations or generate code for them under that assumption.
6143This is something we'd like to change in the future to provide better
6144support for freestanding environments and non-C-based languages.
6145
6146.. _i_va_arg:
6147
6148'``va_arg``' Instruction
6149^^^^^^^^^^^^^^^^^^^^^^^^
6150
6151Syntax:
6152"""""""
6153
6154::
6155
6156 <resultval> = va_arg <va_list*> <arglist>, <argty>
6157
6158Overview:
6159"""""""""
6160
6161The '``va_arg``' instruction is used to access arguments passed through
6162the "variable argument" area of a function call. It is used to implement
6163the ``va_arg`` macro in C.
6164
6165Arguments:
6166""""""""""
6167
6168This instruction takes a ``va_list*`` value and the type of the
6169argument. It returns a value of the specified argument type and
6170increments the ``va_list`` to point to the next argument. The actual
6171type of ``va_list`` is target specific.
6172
6173Semantics:
6174""""""""""
6175
6176The '``va_arg``' instruction loads an argument of the specified type
6177from the specified ``va_list`` and causes the ``va_list`` to point to
6178the next argument. For more information, see the variable argument
6179handling :ref:`Intrinsic Functions <int_varargs>`.
6180
6181It is legal for this instruction to be called in a function which does
6182not take a variable number of arguments, for example, the ``vfprintf``
6183function.
6184
6185``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6186function <intrinsics>` because it takes a type as an argument.
6187
6188Example:
6189""""""""
6190
6191See the :ref:`variable argument processing <int_varargs>` section.
6192
6193Note that the code generator does not yet fully support va\_arg on many
6194targets. Also, it does not currently support va\_arg with aggregate
6195types on any target.
6196
6197.. _i_landingpad:
6198
6199'``landingpad``' Instruction
6200^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6201
6202Syntax:
6203"""""""
6204
6205::
6206
6207 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6208 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6209
6210 <clause> := catch <type> <value>
6211 <clause> := filter <array constant type> <array constant>
6212
6213Overview:
6214"""""""""
6215
6216The '``landingpad``' instruction is used by `LLVM's exception handling
6217system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006218is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006219code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6220defines values supplied by the personality function (``pers_fn``) upon
6221re-entry to the function. The ``resultval`` has the type ``resultty``.
6222
6223Arguments:
6224""""""""""
6225
6226This instruction takes a ``pers_fn`` value. This is the personality
6227function associated with the unwinding mechanism. The optional
6228``cleanup`` flag indicates that the landing pad block is a cleanup.
6229
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006230A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006231contains the global variable representing the "type" that may be caught
6232or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6233clause takes an array constant as its argument. Use
6234"``[0 x i8**] undef``" for a filter which cannot throw. The
6235'``landingpad``' instruction must contain *at least* one ``clause`` or
6236the ``cleanup`` flag.
6237
6238Semantics:
6239""""""""""
6240
6241The '``landingpad``' instruction defines the values which are set by the
6242personality function (``pers_fn``) upon re-entry to the function, and
6243therefore the "result type" of the ``landingpad`` instruction. As with
6244calling conventions, how the personality function results are
6245represented in LLVM IR is target specific.
6246
6247The clauses are applied in order from top to bottom. If two
6248``landingpad`` instructions are merged together through inlining, the
6249clauses from the calling function are appended to the list of clauses.
6250When the call stack is being unwound due to an exception being thrown,
6251the exception is compared against each ``clause`` in turn. If it doesn't
6252match any of the clauses, and the ``cleanup`` flag is not set, then
6253unwinding continues further up the call stack.
6254
6255The ``landingpad`` instruction has several restrictions:
6256
6257- A landing pad block is a basic block which is the unwind destination
6258 of an '``invoke``' instruction.
6259- A landing pad block must have a '``landingpad``' instruction as its
6260 first non-PHI instruction.
6261- There can be only one '``landingpad``' instruction within the landing
6262 pad block.
6263- A basic block that is not a landing pad block may not include a
6264 '``landingpad``' instruction.
6265- All '``landingpad``' instructions in a function must have the same
6266 personality function.
6267
6268Example:
6269""""""""
6270
6271.. code-block:: llvm
6272
6273 ;; A landing pad which can catch an integer.
6274 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6275 catch i8** @_ZTIi
6276 ;; A landing pad that is a cleanup.
6277 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6278 cleanup
6279 ;; A landing pad which can catch an integer and can only throw a double.
6280 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6281 catch i8** @_ZTIi
6282 filter [1 x i8**] [@_ZTId]
6283
6284.. _intrinsics:
6285
6286Intrinsic Functions
6287===================
6288
6289LLVM supports the notion of an "intrinsic function". These functions
6290have well known names and semantics and are required to follow certain
6291restrictions. Overall, these intrinsics represent an extension mechanism
6292for the LLVM language that does not require changing all of the
6293transformations in LLVM when adding to the language (or the bitcode
6294reader/writer, the parser, etc...).
6295
6296Intrinsic function names must all start with an "``llvm.``" prefix. This
6297prefix is reserved in LLVM for intrinsic names; thus, function names may
6298not begin with this prefix. Intrinsic functions must always be external
6299functions: you cannot define the body of intrinsic functions. Intrinsic
6300functions may only be used in call or invoke instructions: it is illegal
6301to take the address of an intrinsic function. Additionally, because
6302intrinsic functions are part of the LLVM language, it is required if any
6303are added that they be documented here.
6304
6305Some intrinsic functions can be overloaded, i.e., the intrinsic
6306represents a family of functions that perform the same operation but on
6307different data types. Because LLVM can represent over 8 million
6308different integer types, overloading is used commonly to allow an
6309intrinsic function to operate on any integer type. One or more of the
6310argument types or the result type can be overloaded to accept any
6311integer type. Argument types may also be defined as exactly matching a
6312previous argument's type or the result type. This allows an intrinsic
6313function which accepts multiple arguments, but needs all of them to be
6314of the same type, to only be overloaded with respect to a single
6315argument or the result.
6316
6317Overloaded intrinsics will have the names of its overloaded argument
6318types encoded into its function name, each preceded by a period. Only
6319those types which are overloaded result in a name suffix. Arguments
6320whose type is matched against another type do not. For example, the
6321``llvm.ctpop`` function can take an integer of any width and returns an
6322integer of exactly the same integer width. This leads to a family of
6323functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6324``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6325overloaded, and only one type suffix is required. Because the argument's
6326type is matched against the return type, it does not require its own
6327name suffix.
6328
6329To learn how to add an intrinsic function, please see the `Extending
6330LLVM Guide <ExtendingLLVM.html>`_.
6331
6332.. _int_varargs:
6333
6334Variable Argument Handling Intrinsics
6335-------------------------------------
6336
6337Variable argument support is defined in LLVM with the
6338:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6339functions. These functions are related to the similarly named macros
6340defined in the ``<stdarg.h>`` header file.
6341
6342All of these functions operate on arguments that use a target-specific
6343value type "``va_list``". The LLVM assembly language reference manual
6344does not define what this type is, so all transformations should be
6345prepared to handle these functions regardless of the type used.
6346
6347This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6348variable argument handling intrinsic functions are used.
6349
6350.. code-block:: llvm
6351
6352 define i32 @test(i32 %X, ...) {
6353 ; Initialize variable argument processing
6354 %ap = alloca i8*
6355 %ap2 = bitcast i8** %ap to i8*
6356 call void @llvm.va_start(i8* %ap2)
6357
6358 ; Read a single integer argument
6359 %tmp = va_arg i8** %ap, i32
6360
6361 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6362 %aq = alloca i8*
6363 %aq2 = bitcast i8** %aq to i8*
6364 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6365 call void @llvm.va_end(i8* %aq2)
6366
6367 ; Stop processing of arguments.
6368 call void @llvm.va_end(i8* %ap2)
6369 ret i32 %tmp
6370 }
6371
6372 declare void @llvm.va_start(i8*)
6373 declare void @llvm.va_copy(i8*, i8*)
6374 declare void @llvm.va_end(i8*)
6375
6376.. _int_va_start:
6377
6378'``llvm.va_start``' Intrinsic
6379^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6380
6381Syntax:
6382"""""""
6383
6384::
6385
Nick Lewycky04f6de02013-09-11 22:04:52 +00006386 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006387
6388Overview:
6389"""""""""
6390
6391The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6392subsequent use by ``va_arg``.
6393
6394Arguments:
6395""""""""""
6396
6397The argument is a pointer to a ``va_list`` element to initialize.
6398
6399Semantics:
6400""""""""""
6401
6402The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6403available in C. In a target-dependent way, it initializes the
6404``va_list`` element to which the argument points, so that the next call
6405to ``va_arg`` will produce the first variable argument passed to the
6406function. Unlike the C ``va_start`` macro, this intrinsic does not need
6407to know the last argument of the function as the compiler can figure
6408that out.
6409
6410'``llvm.va_end``' Intrinsic
6411^^^^^^^^^^^^^^^^^^^^^^^^^^^
6412
6413Syntax:
6414"""""""
6415
6416::
6417
6418 declare void @llvm.va_end(i8* <arglist>)
6419
6420Overview:
6421"""""""""
6422
6423The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6424initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6425
6426Arguments:
6427""""""""""
6428
6429The argument is a pointer to a ``va_list`` to destroy.
6430
6431Semantics:
6432""""""""""
6433
6434The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6435available in C. In a target-dependent way, it destroys the ``va_list``
6436element to which the argument points. Calls to
6437:ref:`llvm.va_start <int_va_start>` and
6438:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6439``llvm.va_end``.
6440
6441.. _int_va_copy:
6442
6443'``llvm.va_copy``' Intrinsic
6444^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6445
6446Syntax:
6447"""""""
6448
6449::
6450
6451 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6452
6453Overview:
6454"""""""""
6455
6456The '``llvm.va_copy``' intrinsic copies the current argument position
6457from the source argument list to the destination argument list.
6458
6459Arguments:
6460""""""""""
6461
6462The first argument is a pointer to a ``va_list`` element to initialize.
6463The second argument is a pointer to a ``va_list`` element to copy from.
6464
6465Semantics:
6466""""""""""
6467
6468The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6469available in C. In a target-dependent way, it copies the source
6470``va_list`` element into the destination ``va_list`` element. This
6471intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6472arbitrarily complex and require, for example, memory allocation.
6473
6474Accurate Garbage Collection Intrinsics
6475--------------------------------------
6476
6477LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6478(GC) requires the implementation and generation of these intrinsics.
6479These intrinsics allow identification of :ref:`GC roots on the
6480stack <int_gcroot>`, as well as garbage collector implementations that
6481require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6482Front-ends for type-safe garbage collected languages should generate
6483these intrinsics to make use of the LLVM garbage collectors. For more
6484details, see `Accurate Garbage Collection with
6485LLVM <GarbageCollection.html>`_.
6486
6487The garbage collection intrinsics only operate on objects in the generic
6488address space (address space zero).
6489
6490.. _int_gcroot:
6491
6492'``llvm.gcroot``' Intrinsic
6493^^^^^^^^^^^^^^^^^^^^^^^^^^^
6494
6495Syntax:
6496"""""""
6497
6498::
6499
6500 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6501
6502Overview:
6503"""""""""
6504
6505The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6506the code generator, and allows some metadata to be associated with it.
6507
6508Arguments:
6509""""""""""
6510
6511The first argument specifies the address of a stack object that contains
6512the root pointer. The second pointer (which must be either a constant or
6513a global value address) contains the meta-data to be associated with the
6514root.
6515
6516Semantics:
6517""""""""""
6518
6519At runtime, a call to this intrinsic stores a null pointer into the
6520"ptrloc" location. At compile-time, the code generator generates
6521information to allow the runtime to find the pointer at GC safe points.
6522The '``llvm.gcroot``' intrinsic may only be used in a function which
6523:ref:`specifies a GC algorithm <gc>`.
6524
6525.. _int_gcread:
6526
6527'``llvm.gcread``' Intrinsic
6528^^^^^^^^^^^^^^^^^^^^^^^^^^^
6529
6530Syntax:
6531"""""""
6532
6533::
6534
6535 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6536
6537Overview:
6538"""""""""
6539
6540The '``llvm.gcread``' intrinsic identifies reads of references from heap
6541locations, allowing garbage collector implementations that require read
6542barriers.
6543
6544Arguments:
6545""""""""""
6546
6547The second argument is the address to read from, which should be an
6548address allocated from the garbage collector. The first object is a
6549pointer to the start of the referenced object, if needed by the language
6550runtime (otherwise null).
6551
6552Semantics:
6553""""""""""
6554
6555The '``llvm.gcread``' intrinsic has the same semantics as a load
6556instruction, but may be replaced with substantially more complex code by
6557the garbage collector runtime, as needed. The '``llvm.gcread``'
6558intrinsic may only be used in a function which :ref:`specifies a GC
6559algorithm <gc>`.
6560
6561.. _int_gcwrite:
6562
6563'``llvm.gcwrite``' Intrinsic
6564^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6565
6566Syntax:
6567"""""""
6568
6569::
6570
6571 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6572
6573Overview:
6574"""""""""
6575
6576The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6577locations, allowing garbage collector implementations that require write
6578barriers (such as generational or reference counting collectors).
6579
6580Arguments:
6581""""""""""
6582
6583The first argument is the reference to store, the second is the start of
6584the object to store it to, and the third is the address of the field of
6585Obj to store to. If the runtime does not require a pointer to the
6586object, Obj may be null.
6587
6588Semantics:
6589""""""""""
6590
6591The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6592instruction, but may be replaced with substantially more complex code by
6593the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6594intrinsic may only be used in a function which :ref:`specifies a GC
6595algorithm <gc>`.
6596
6597Code Generator Intrinsics
6598-------------------------
6599
6600These intrinsics are provided by LLVM to expose special features that
6601may only be implemented with code generator support.
6602
6603'``llvm.returnaddress``' Intrinsic
6604^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6605
6606Syntax:
6607"""""""
6608
6609::
6610
6611 declare i8 *@llvm.returnaddress(i32 <level>)
6612
6613Overview:
6614"""""""""
6615
6616The '``llvm.returnaddress``' intrinsic attempts to compute a
6617target-specific value indicating the return address of the current
6618function or one of its callers.
6619
6620Arguments:
6621""""""""""
6622
6623The argument to this intrinsic indicates which function to return the
6624address for. Zero indicates the calling function, one indicates its
6625caller, etc. The argument is **required** to be a constant integer
6626value.
6627
6628Semantics:
6629""""""""""
6630
6631The '``llvm.returnaddress``' intrinsic either returns a pointer
6632indicating the return address of the specified call frame, or zero if it
6633cannot be identified. The value returned by this intrinsic is likely to
6634be incorrect or 0 for arguments other than zero, so it should only be
6635used for debugging purposes.
6636
6637Note that calling this intrinsic does not prevent function inlining or
6638other aggressive transformations, so the value returned may not be that
6639of the obvious source-language caller.
6640
6641'``llvm.frameaddress``' Intrinsic
6642^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6643
6644Syntax:
6645"""""""
6646
6647::
6648
6649 declare i8* @llvm.frameaddress(i32 <level>)
6650
6651Overview:
6652"""""""""
6653
6654The '``llvm.frameaddress``' intrinsic attempts to return the
6655target-specific frame pointer value for the specified stack frame.
6656
6657Arguments:
6658""""""""""
6659
6660The argument to this intrinsic indicates which function to return the
6661frame pointer for. Zero indicates the calling function, one indicates
6662its caller, etc. The argument is **required** to be a constant integer
6663value.
6664
6665Semantics:
6666""""""""""
6667
6668The '``llvm.frameaddress``' intrinsic either returns a pointer
6669indicating the frame address of the specified call frame, or zero if it
6670cannot be identified. The value returned by this intrinsic is likely to
6671be incorrect or 0 for arguments other than zero, so it should only be
6672used for debugging purposes.
6673
6674Note that calling this intrinsic does not prevent function inlining or
6675other aggressive transformations, so the value returned may not be that
6676of the obvious source-language caller.
6677
6678.. _int_stacksave:
6679
6680'``llvm.stacksave``' Intrinsic
6681^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6682
6683Syntax:
6684"""""""
6685
6686::
6687
6688 declare i8* @llvm.stacksave()
6689
6690Overview:
6691"""""""""
6692
6693The '``llvm.stacksave``' intrinsic is used to remember the current state
6694of the function stack, for use with
6695:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6696implementing language features like scoped automatic variable sized
6697arrays in C99.
6698
6699Semantics:
6700""""""""""
6701
6702This intrinsic returns a opaque pointer value that can be passed to
6703:ref:`llvm.stackrestore <int_stackrestore>`. When an
6704``llvm.stackrestore`` intrinsic is executed with a value saved from
6705``llvm.stacksave``, it effectively restores the state of the stack to
6706the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6707practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6708were allocated after the ``llvm.stacksave`` was executed.
6709
6710.. _int_stackrestore:
6711
6712'``llvm.stackrestore``' Intrinsic
6713^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6714
6715Syntax:
6716"""""""
6717
6718::
6719
6720 declare void @llvm.stackrestore(i8* %ptr)
6721
6722Overview:
6723"""""""""
6724
6725The '``llvm.stackrestore``' intrinsic is used to restore the state of
6726the function stack to the state it was in when the corresponding
6727:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6728useful for implementing language features like scoped automatic variable
6729sized arrays in C99.
6730
6731Semantics:
6732""""""""""
6733
6734See the description for :ref:`llvm.stacksave <int_stacksave>`.
6735
6736'``llvm.prefetch``' Intrinsic
6737^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6738
6739Syntax:
6740"""""""
6741
6742::
6743
6744 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6745
6746Overview:
6747"""""""""
6748
6749The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6750insert a prefetch instruction if supported; otherwise, it is a noop.
6751Prefetches have no effect on the behavior of the program but can change
6752its performance characteristics.
6753
6754Arguments:
6755""""""""""
6756
6757``address`` is the address to be prefetched, ``rw`` is the specifier
6758determining if the fetch should be for a read (0) or write (1), and
6759``locality`` is a temporal locality specifier ranging from (0) - no
6760locality, to (3) - extremely local keep in cache. The ``cache type``
6761specifies whether the prefetch is performed on the data (1) or
6762instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6763arguments must be constant integers.
6764
6765Semantics:
6766""""""""""
6767
6768This intrinsic does not modify the behavior of the program. In
6769particular, prefetches cannot trap and do not produce a value. On
6770targets that support this intrinsic, the prefetch can provide hints to
6771the processor cache for better performance.
6772
6773'``llvm.pcmarker``' Intrinsic
6774^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6775
6776Syntax:
6777"""""""
6778
6779::
6780
6781 declare void @llvm.pcmarker(i32 <id>)
6782
6783Overview:
6784"""""""""
6785
6786The '``llvm.pcmarker``' intrinsic is a method to export a Program
6787Counter (PC) in a region of code to simulators and other tools. The
6788method is target specific, but it is expected that the marker will use
6789exported symbols to transmit the PC of the marker. The marker makes no
6790guarantees that it will remain with any specific instruction after
6791optimizations. It is possible that the presence of a marker will inhibit
6792optimizations. The intended use is to be inserted after optimizations to
6793allow correlations of simulation runs.
6794
6795Arguments:
6796""""""""""
6797
6798``id`` is a numerical id identifying the marker.
6799
6800Semantics:
6801""""""""""
6802
6803This intrinsic does not modify the behavior of the program. Backends
6804that do not support this intrinsic may ignore it.
6805
6806'``llvm.readcyclecounter``' Intrinsic
6807^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6808
6809Syntax:
6810"""""""
6811
6812::
6813
6814 declare i64 @llvm.readcyclecounter()
6815
6816Overview:
6817"""""""""
6818
6819The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6820counter register (or similar low latency, high accuracy clocks) on those
6821targets that support it. On X86, it should map to RDTSC. On Alpha, it
6822should map to RPCC. As the backing counters overflow quickly (on the
6823order of 9 seconds on alpha), this should only be used for small
6824timings.
6825
6826Semantics:
6827""""""""""
6828
6829When directly supported, reading the cycle counter should not modify any
6830memory. Implementations are allowed to either return a application
6831specific value or a system wide value. On backends without support, this
6832is lowered to a constant 0.
6833
Tim Northoverbc933082013-05-23 19:11:20 +00006834Note that runtime support may be conditional on the privilege-level code is
6835running at and the host platform.
6836
Sean Silvab084af42012-12-07 10:36:55 +00006837Standard C Library Intrinsics
6838-----------------------------
6839
6840LLVM provides intrinsics for a few important standard C library
6841functions. These intrinsics allow source-language front-ends to pass
6842information about the alignment of the pointer arguments to the code
6843generator, providing opportunity for more efficient code generation.
6844
6845.. _int_memcpy:
6846
6847'``llvm.memcpy``' Intrinsic
6848^^^^^^^^^^^^^^^^^^^^^^^^^^^
6849
6850Syntax:
6851"""""""
6852
6853This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6854integer bit width and for different address spaces. Not all targets
6855support all bit widths however.
6856
6857::
6858
6859 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6860 i32 <len>, i32 <align>, i1 <isvolatile>)
6861 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6862 i64 <len>, i32 <align>, i1 <isvolatile>)
6863
6864Overview:
6865"""""""""
6866
6867The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6868source location to the destination location.
6869
6870Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6871intrinsics do not return a value, takes extra alignment/isvolatile
6872arguments and the pointers can be in specified address spaces.
6873
6874Arguments:
6875""""""""""
6876
6877The first argument is a pointer to the destination, the second is a
6878pointer to the source. The third argument is an integer argument
6879specifying the number of bytes to copy, the fourth argument is the
6880alignment of the source and destination locations, and the fifth is a
6881boolean indicating a volatile access.
6882
6883If the call to this intrinsic has an alignment value that is not 0 or 1,
6884then the caller guarantees that both the source and destination pointers
6885are aligned to that boundary.
6886
6887If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6888a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6889very cleanly specified and it is unwise to depend on it.
6890
6891Semantics:
6892""""""""""
6893
6894The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6895source location to the destination location, which are not allowed to
6896overlap. It copies "len" bytes of memory over. If the argument is known
6897to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00006898argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00006899
6900'``llvm.memmove``' Intrinsic
6901^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6902
6903Syntax:
6904"""""""
6905
6906This is an overloaded intrinsic. You can use llvm.memmove on any integer
6907bit width and for different address space. Not all targets support all
6908bit widths however.
6909
6910::
6911
6912 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6913 i32 <len>, i32 <align>, i1 <isvolatile>)
6914 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6915 i64 <len>, i32 <align>, i1 <isvolatile>)
6916
6917Overview:
6918"""""""""
6919
6920The '``llvm.memmove.*``' intrinsics move a block of memory from the
6921source location to the destination location. It is similar to the
6922'``llvm.memcpy``' intrinsic but allows the two memory locations to
6923overlap.
6924
6925Note that, unlike the standard libc function, the ``llvm.memmove.*``
6926intrinsics do not return a value, takes extra alignment/isvolatile
6927arguments and the pointers can be in specified address spaces.
6928
6929Arguments:
6930""""""""""
6931
6932The first argument is a pointer to the destination, the second is a
6933pointer to the source. The third argument is an integer argument
6934specifying the number of bytes to copy, the fourth argument is the
6935alignment of the source and destination locations, and the fifth is a
6936boolean indicating a volatile access.
6937
6938If the call to this intrinsic has an alignment value that is not 0 or 1,
6939then the caller guarantees that the source and destination pointers are
6940aligned to that boundary.
6941
6942If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6943is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6944not very cleanly specified and it is unwise to depend on it.
6945
6946Semantics:
6947""""""""""
6948
6949The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6950source location to the destination location, which may overlap. It
6951copies "len" bytes of memory over. If the argument is known to be
6952aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00006953otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00006954
6955'``llvm.memset.*``' Intrinsics
6956^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6957
6958Syntax:
6959"""""""
6960
6961This is an overloaded intrinsic. You can use llvm.memset on any integer
6962bit width and for different address spaces. However, not all targets
6963support all bit widths.
6964
6965::
6966
6967 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6968 i32 <len>, i32 <align>, i1 <isvolatile>)
6969 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6970 i64 <len>, i32 <align>, i1 <isvolatile>)
6971
6972Overview:
6973"""""""""
6974
6975The '``llvm.memset.*``' intrinsics fill a block of memory with a
6976particular byte value.
6977
6978Note that, unlike the standard libc function, the ``llvm.memset``
6979intrinsic does not return a value and takes extra alignment/volatile
6980arguments. Also, the destination can be in an arbitrary address space.
6981
6982Arguments:
6983""""""""""
6984
6985The first argument is a pointer to the destination to fill, the second
6986is the byte value with which to fill it, the third argument is an
6987integer argument specifying the number of bytes to fill, and the fourth
6988argument is the known alignment of the destination location.
6989
6990If the call to this intrinsic has an alignment value that is not 0 or 1,
6991then the caller guarantees that the destination pointer is aligned to
6992that boundary.
6993
6994If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6995a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6996very cleanly specified and it is unwise to depend on it.
6997
6998Semantics:
6999""""""""""
7000
7001The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7002at the destination location. If the argument is known to be aligned to
7003some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007004it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007005
7006'``llvm.sqrt.*``' Intrinsic
7007^^^^^^^^^^^^^^^^^^^^^^^^^^^
7008
7009Syntax:
7010"""""""
7011
7012This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7013floating point or vector of floating point type. Not all targets support
7014all types however.
7015
7016::
7017
7018 declare float @llvm.sqrt.f32(float %Val)
7019 declare double @llvm.sqrt.f64(double %Val)
7020 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7021 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7022 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7023
7024Overview:
7025"""""""""
7026
7027The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7028returning the same value as the libm '``sqrt``' functions would. Unlike
7029``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7030negative numbers other than -0.0 (which allows for better optimization,
7031because there is no need to worry about errno being set).
7032``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7033
7034Arguments:
7035""""""""""
7036
7037The argument and return value are floating point numbers of the same
7038type.
7039
7040Semantics:
7041""""""""""
7042
7043This function returns the sqrt of the specified operand if it is a
7044nonnegative floating point number.
7045
7046'``llvm.powi.*``' Intrinsic
7047^^^^^^^^^^^^^^^^^^^^^^^^^^^
7048
7049Syntax:
7050"""""""
7051
7052This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7053floating point or vector of floating point type. Not all targets support
7054all types however.
7055
7056::
7057
7058 declare float @llvm.powi.f32(float %Val, i32 %power)
7059 declare double @llvm.powi.f64(double %Val, i32 %power)
7060 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7061 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7062 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7063
7064Overview:
7065"""""""""
7066
7067The '``llvm.powi.*``' intrinsics return the first operand raised to the
7068specified (positive or negative) power. The order of evaluation of
7069multiplications is not defined. When a vector of floating point type is
7070used, the second argument remains a scalar integer value.
7071
7072Arguments:
7073""""""""""
7074
7075The second argument is an integer power, and the first is a value to
7076raise to that power.
7077
7078Semantics:
7079""""""""""
7080
7081This function returns the first value raised to the second power with an
7082unspecified sequence of rounding operations.
7083
7084'``llvm.sin.*``' Intrinsic
7085^^^^^^^^^^^^^^^^^^^^^^^^^^
7086
7087Syntax:
7088"""""""
7089
7090This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7091floating point or vector of floating point type. Not all targets support
7092all types however.
7093
7094::
7095
7096 declare float @llvm.sin.f32(float %Val)
7097 declare double @llvm.sin.f64(double %Val)
7098 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7099 declare fp128 @llvm.sin.f128(fp128 %Val)
7100 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7101
7102Overview:
7103"""""""""
7104
7105The '``llvm.sin.*``' intrinsics return the sine of the operand.
7106
7107Arguments:
7108""""""""""
7109
7110The argument and return value are floating point numbers of the same
7111type.
7112
7113Semantics:
7114""""""""""
7115
7116This function returns the sine of the specified operand, returning the
7117same values as the libm ``sin`` functions would, and handles error
7118conditions in the same way.
7119
7120'``llvm.cos.*``' Intrinsic
7121^^^^^^^^^^^^^^^^^^^^^^^^^^
7122
7123Syntax:
7124"""""""
7125
7126This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7127floating point or vector of floating point type. Not all targets support
7128all types however.
7129
7130::
7131
7132 declare float @llvm.cos.f32(float %Val)
7133 declare double @llvm.cos.f64(double %Val)
7134 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7135 declare fp128 @llvm.cos.f128(fp128 %Val)
7136 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7137
7138Overview:
7139"""""""""
7140
7141The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7142
7143Arguments:
7144""""""""""
7145
7146The argument and return value are floating point numbers of the same
7147type.
7148
7149Semantics:
7150""""""""""
7151
7152This function returns the cosine of the specified operand, returning the
7153same values as the libm ``cos`` functions would, and handles error
7154conditions in the same way.
7155
7156'``llvm.pow.*``' Intrinsic
7157^^^^^^^^^^^^^^^^^^^^^^^^^^
7158
7159Syntax:
7160"""""""
7161
7162This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7163floating point or vector of floating point type. Not all targets support
7164all types however.
7165
7166::
7167
7168 declare float @llvm.pow.f32(float %Val, float %Power)
7169 declare double @llvm.pow.f64(double %Val, double %Power)
7170 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7171 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7172 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7173
7174Overview:
7175"""""""""
7176
7177The '``llvm.pow.*``' intrinsics return the first operand raised to the
7178specified (positive or negative) power.
7179
7180Arguments:
7181""""""""""
7182
7183The second argument is a floating point power, and the first is a value
7184to raise to that power.
7185
7186Semantics:
7187""""""""""
7188
7189This function returns the first value raised to the second power,
7190returning the same values as the libm ``pow`` functions would, and
7191handles error conditions in the same way.
7192
7193'``llvm.exp.*``' Intrinsic
7194^^^^^^^^^^^^^^^^^^^^^^^^^^
7195
7196Syntax:
7197"""""""
7198
7199This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7200floating point or vector of floating point type. Not all targets support
7201all types however.
7202
7203::
7204
7205 declare float @llvm.exp.f32(float %Val)
7206 declare double @llvm.exp.f64(double %Val)
7207 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7208 declare fp128 @llvm.exp.f128(fp128 %Val)
7209 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7210
7211Overview:
7212"""""""""
7213
7214The '``llvm.exp.*``' intrinsics perform the exp function.
7215
7216Arguments:
7217""""""""""
7218
7219The argument and return value are floating point numbers of the same
7220type.
7221
7222Semantics:
7223""""""""""
7224
7225This function returns the same values as the libm ``exp`` functions
7226would, and handles error conditions in the same way.
7227
7228'``llvm.exp2.*``' Intrinsic
7229^^^^^^^^^^^^^^^^^^^^^^^^^^^
7230
7231Syntax:
7232"""""""
7233
7234This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7235floating point or vector of floating point type. Not all targets support
7236all types however.
7237
7238::
7239
7240 declare float @llvm.exp2.f32(float %Val)
7241 declare double @llvm.exp2.f64(double %Val)
7242 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7243 declare fp128 @llvm.exp2.f128(fp128 %Val)
7244 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7245
7246Overview:
7247"""""""""
7248
7249The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7250
7251Arguments:
7252""""""""""
7253
7254The argument and return value are floating point numbers of the same
7255type.
7256
7257Semantics:
7258""""""""""
7259
7260This function returns the same values as the libm ``exp2`` functions
7261would, and handles error conditions in the same way.
7262
7263'``llvm.log.*``' Intrinsic
7264^^^^^^^^^^^^^^^^^^^^^^^^^^
7265
7266Syntax:
7267"""""""
7268
7269This is an overloaded intrinsic. You can use ``llvm.log`` on any
7270floating point or vector of floating point type. Not all targets support
7271all types however.
7272
7273::
7274
7275 declare float @llvm.log.f32(float %Val)
7276 declare double @llvm.log.f64(double %Val)
7277 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7278 declare fp128 @llvm.log.f128(fp128 %Val)
7279 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7280
7281Overview:
7282"""""""""
7283
7284The '``llvm.log.*``' intrinsics perform the log function.
7285
7286Arguments:
7287""""""""""
7288
7289The argument and return value are floating point numbers of the same
7290type.
7291
7292Semantics:
7293""""""""""
7294
7295This function returns the same values as the libm ``log`` functions
7296would, and handles error conditions in the same way.
7297
7298'``llvm.log10.*``' Intrinsic
7299^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7300
7301Syntax:
7302"""""""
7303
7304This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7305floating point or vector of floating point type. Not all targets support
7306all types however.
7307
7308::
7309
7310 declare float @llvm.log10.f32(float %Val)
7311 declare double @llvm.log10.f64(double %Val)
7312 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7313 declare fp128 @llvm.log10.f128(fp128 %Val)
7314 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7315
7316Overview:
7317"""""""""
7318
7319The '``llvm.log10.*``' intrinsics perform the log10 function.
7320
7321Arguments:
7322""""""""""
7323
7324The argument and return value are floating point numbers of the same
7325type.
7326
7327Semantics:
7328""""""""""
7329
7330This function returns the same values as the libm ``log10`` functions
7331would, and handles error conditions in the same way.
7332
7333'``llvm.log2.*``' Intrinsic
7334^^^^^^^^^^^^^^^^^^^^^^^^^^^
7335
7336Syntax:
7337"""""""
7338
7339This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7340floating point or vector of floating point type. Not all targets support
7341all types however.
7342
7343::
7344
7345 declare float @llvm.log2.f32(float %Val)
7346 declare double @llvm.log2.f64(double %Val)
7347 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7348 declare fp128 @llvm.log2.f128(fp128 %Val)
7349 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7350
7351Overview:
7352"""""""""
7353
7354The '``llvm.log2.*``' intrinsics perform the log2 function.
7355
7356Arguments:
7357""""""""""
7358
7359The argument and return value are floating point numbers of the same
7360type.
7361
7362Semantics:
7363""""""""""
7364
7365This function returns the same values as the libm ``log2`` functions
7366would, and handles error conditions in the same way.
7367
7368'``llvm.fma.*``' Intrinsic
7369^^^^^^^^^^^^^^^^^^^^^^^^^^
7370
7371Syntax:
7372"""""""
7373
7374This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7375floating point or vector of floating point type. Not all targets support
7376all types however.
7377
7378::
7379
7380 declare float @llvm.fma.f32(float %a, float %b, float %c)
7381 declare double @llvm.fma.f64(double %a, double %b, double %c)
7382 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7383 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7384 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7385
7386Overview:
7387"""""""""
7388
7389The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7390operation.
7391
7392Arguments:
7393""""""""""
7394
7395The argument and return value are floating point numbers of the same
7396type.
7397
7398Semantics:
7399""""""""""
7400
7401This function returns the same values as the libm ``fma`` functions
7402would.
7403
7404'``llvm.fabs.*``' Intrinsic
7405^^^^^^^^^^^^^^^^^^^^^^^^^^^
7406
7407Syntax:
7408"""""""
7409
7410This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7411floating point or vector of floating point type. Not all targets support
7412all types however.
7413
7414::
7415
7416 declare float @llvm.fabs.f32(float %Val)
7417 declare double @llvm.fabs.f64(double %Val)
7418 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7419 declare fp128 @llvm.fabs.f128(fp128 %Val)
7420 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7421
7422Overview:
7423"""""""""
7424
7425The '``llvm.fabs.*``' intrinsics return the absolute value of the
7426operand.
7427
7428Arguments:
7429""""""""""
7430
7431The argument and return value are floating point numbers of the same
7432type.
7433
7434Semantics:
7435""""""""""
7436
7437This function returns the same values as the libm ``fabs`` functions
7438would, and handles error conditions in the same way.
7439
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007440'``llvm.copysign.*``' Intrinsic
7441^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7442
7443Syntax:
7444"""""""
7445
7446This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7447floating point or vector of floating point type. Not all targets support
7448all types however.
7449
7450::
7451
7452 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7453 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7454 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7455 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7456 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7457
7458Overview:
7459"""""""""
7460
7461The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7462first operand and the sign of the second operand.
7463
7464Arguments:
7465""""""""""
7466
7467The arguments and return value are floating point numbers of the same
7468type.
7469
7470Semantics:
7471""""""""""
7472
7473This function returns the same values as the libm ``copysign``
7474functions would, and handles error conditions in the same way.
7475
Sean Silvab084af42012-12-07 10:36:55 +00007476'``llvm.floor.*``' Intrinsic
7477^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7478
7479Syntax:
7480"""""""
7481
7482This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7483floating point or vector of floating point type. Not all targets support
7484all types however.
7485
7486::
7487
7488 declare float @llvm.floor.f32(float %Val)
7489 declare double @llvm.floor.f64(double %Val)
7490 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7491 declare fp128 @llvm.floor.f128(fp128 %Val)
7492 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7493
7494Overview:
7495"""""""""
7496
7497The '``llvm.floor.*``' intrinsics return the floor of the operand.
7498
7499Arguments:
7500""""""""""
7501
7502The argument and return value are floating point numbers of the same
7503type.
7504
7505Semantics:
7506""""""""""
7507
7508This function returns the same values as the libm ``floor`` functions
7509would, and handles error conditions in the same way.
7510
7511'``llvm.ceil.*``' Intrinsic
7512^^^^^^^^^^^^^^^^^^^^^^^^^^^
7513
7514Syntax:
7515"""""""
7516
7517This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7518floating point or vector of floating point type. Not all targets support
7519all types however.
7520
7521::
7522
7523 declare float @llvm.ceil.f32(float %Val)
7524 declare double @llvm.ceil.f64(double %Val)
7525 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7526 declare fp128 @llvm.ceil.f128(fp128 %Val)
7527 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7528
7529Overview:
7530"""""""""
7531
7532The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7533
7534Arguments:
7535""""""""""
7536
7537The argument and return value are floating point numbers of the same
7538type.
7539
7540Semantics:
7541""""""""""
7542
7543This function returns the same values as the libm ``ceil`` functions
7544would, and handles error conditions in the same way.
7545
7546'``llvm.trunc.*``' Intrinsic
7547^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7548
7549Syntax:
7550"""""""
7551
7552This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7553floating point or vector of floating point type. Not all targets support
7554all types however.
7555
7556::
7557
7558 declare float @llvm.trunc.f32(float %Val)
7559 declare double @llvm.trunc.f64(double %Val)
7560 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7561 declare fp128 @llvm.trunc.f128(fp128 %Val)
7562 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7563
7564Overview:
7565"""""""""
7566
7567The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7568nearest integer not larger in magnitude than the operand.
7569
7570Arguments:
7571""""""""""
7572
7573The argument and return value are floating point numbers of the same
7574type.
7575
7576Semantics:
7577""""""""""
7578
7579This function returns the same values as the libm ``trunc`` functions
7580would, and handles error conditions in the same way.
7581
7582'``llvm.rint.*``' Intrinsic
7583^^^^^^^^^^^^^^^^^^^^^^^^^^^
7584
7585Syntax:
7586"""""""
7587
7588This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7589floating point or vector of floating point type. Not all targets support
7590all types however.
7591
7592::
7593
7594 declare float @llvm.rint.f32(float %Val)
7595 declare double @llvm.rint.f64(double %Val)
7596 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7597 declare fp128 @llvm.rint.f128(fp128 %Val)
7598 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7599
7600Overview:
7601"""""""""
7602
7603The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7604nearest integer. It may raise an inexact floating-point exception if the
7605operand isn't an integer.
7606
7607Arguments:
7608""""""""""
7609
7610The argument and return value are floating point numbers of the same
7611type.
7612
7613Semantics:
7614""""""""""
7615
7616This function returns the same values as the libm ``rint`` functions
7617would, and handles error conditions in the same way.
7618
7619'``llvm.nearbyint.*``' Intrinsic
7620^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7621
7622Syntax:
7623"""""""
7624
7625This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7626floating point or vector of floating point type. Not all targets support
7627all types however.
7628
7629::
7630
7631 declare float @llvm.nearbyint.f32(float %Val)
7632 declare double @llvm.nearbyint.f64(double %Val)
7633 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7634 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7635 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7636
7637Overview:
7638"""""""""
7639
7640The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7641nearest integer.
7642
7643Arguments:
7644""""""""""
7645
7646The argument and return value are floating point numbers of the same
7647type.
7648
7649Semantics:
7650""""""""""
7651
7652This function returns the same values as the libm ``nearbyint``
7653functions would, and handles error conditions in the same way.
7654
Hal Finkel171817e2013-08-07 22:49:12 +00007655'``llvm.round.*``' Intrinsic
7656^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7657
7658Syntax:
7659"""""""
7660
7661This is an overloaded intrinsic. You can use ``llvm.round`` on any
7662floating point or vector of floating point type. Not all targets support
7663all types however.
7664
7665::
7666
7667 declare float @llvm.round.f32(float %Val)
7668 declare double @llvm.round.f64(double %Val)
7669 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7670 declare fp128 @llvm.round.f128(fp128 %Val)
7671 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7672
7673Overview:
7674"""""""""
7675
7676The '``llvm.round.*``' intrinsics returns the operand rounded to the
7677nearest integer.
7678
7679Arguments:
7680""""""""""
7681
7682The argument and return value are floating point numbers of the same
7683type.
7684
7685Semantics:
7686""""""""""
7687
7688This function returns the same values as the libm ``round``
7689functions would, and handles error conditions in the same way.
7690
Sean Silvab084af42012-12-07 10:36:55 +00007691Bit Manipulation Intrinsics
7692---------------------------
7693
7694LLVM provides intrinsics for a few important bit manipulation
7695operations. These allow efficient code generation for some algorithms.
7696
7697'``llvm.bswap.*``' Intrinsics
7698^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7699
7700Syntax:
7701"""""""
7702
7703This is an overloaded intrinsic function. You can use bswap on any
7704integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7705
7706::
7707
7708 declare i16 @llvm.bswap.i16(i16 <id>)
7709 declare i32 @llvm.bswap.i32(i32 <id>)
7710 declare i64 @llvm.bswap.i64(i64 <id>)
7711
7712Overview:
7713"""""""""
7714
7715The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7716values with an even number of bytes (positive multiple of 16 bits).
7717These are useful for performing operations on data that is not in the
7718target's native byte order.
7719
7720Semantics:
7721""""""""""
7722
7723The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7724and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7725intrinsic returns an i32 value that has the four bytes of the input i32
7726swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7727returned i32 will have its bytes in 3, 2, 1, 0 order. The
7728``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7729concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7730respectively).
7731
7732'``llvm.ctpop.*``' Intrinsic
7733^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7734
7735Syntax:
7736"""""""
7737
7738This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7739bit width, or on any vector with integer elements. Not all targets
7740support all bit widths or vector types, however.
7741
7742::
7743
7744 declare i8 @llvm.ctpop.i8(i8 <src>)
7745 declare i16 @llvm.ctpop.i16(i16 <src>)
7746 declare i32 @llvm.ctpop.i32(i32 <src>)
7747 declare i64 @llvm.ctpop.i64(i64 <src>)
7748 declare i256 @llvm.ctpop.i256(i256 <src>)
7749 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7750
7751Overview:
7752"""""""""
7753
7754The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7755in a value.
7756
7757Arguments:
7758""""""""""
7759
7760The only argument is the value to be counted. The argument may be of any
7761integer type, or a vector with integer elements. The return type must
7762match the argument type.
7763
7764Semantics:
7765""""""""""
7766
7767The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7768each element of a vector.
7769
7770'``llvm.ctlz.*``' Intrinsic
7771^^^^^^^^^^^^^^^^^^^^^^^^^^^
7772
7773Syntax:
7774"""""""
7775
7776This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7777integer bit width, or any vector whose elements are integers. Not all
7778targets support all bit widths or vector types, however.
7779
7780::
7781
7782 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7783 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7784 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7785 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7786 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7787 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7788
7789Overview:
7790"""""""""
7791
7792The '``llvm.ctlz``' family of intrinsic functions counts the number of
7793leading zeros in a variable.
7794
7795Arguments:
7796""""""""""
7797
7798The first argument is the value to be counted. This argument may be of
7799any integer type, or a vectory with integer element type. The return
7800type must match the first argument type.
7801
7802The second argument must be a constant and is a flag to indicate whether
7803the intrinsic should ensure that a zero as the first argument produces a
7804defined result. Historically some architectures did not provide a
7805defined result for zero values as efficiently, and many algorithms are
7806now predicated on avoiding zero-value inputs.
7807
7808Semantics:
7809""""""""""
7810
7811The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7812zeros in a variable, or within each element of the vector. If
7813``src == 0`` then the result is the size in bits of the type of ``src``
7814if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7815``llvm.ctlz(i32 2) = 30``.
7816
7817'``llvm.cttz.*``' Intrinsic
7818^^^^^^^^^^^^^^^^^^^^^^^^^^^
7819
7820Syntax:
7821"""""""
7822
7823This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7824integer bit width, or any vector of integer elements. Not all targets
7825support all bit widths or vector types, however.
7826
7827::
7828
7829 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7830 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7831 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7832 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7833 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7834 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7835
7836Overview:
7837"""""""""
7838
7839The '``llvm.cttz``' family of intrinsic functions counts the number of
7840trailing zeros.
7841
7842Arguments:
7843""""""""""
7844
7845The first argument is the value to be counted. This argument may be of
7846any integer type, or a vectory with integer element type. The return
7847type must match the first argument type.
7848
7849The second argument must be a constant and is a flag to indicate whether
7850the intrinsic should ensure that a zero as the first argument produces a
7851defined result. Historically some architectures did not provide a
7852defined result for zero values as efficiently, and many algorithms are
7853now predicated on avoiding zero-value inputs.
7854
7855Semantics:
7856""""""""""
7857
7858The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7859zeros in a variable, or within each element of a vector. If ``src == 0``
7860then the result is the size in bits of the type of ``src`` if
7861``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7862``llvm.cttz(2) = 1``.
7863
7864Arithmetic with Overflow Intrinsics
7865-----------------------------------
7866
7867LLVM provides intrinsics for some arithmetic with overflow operations.
7868
7869'``llvm.sadd.with.overflow.*``' Intrinsics
7870^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7871
7872Syntax:
7873"""""""
7874
7875This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7876on any integer bit width.
7877
7878::
7879
7880 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7881 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7882 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7883
7884Overview:
7885"""""""""
7886
7887The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7888a signed addition of the two arguments, and indicate whether an overflow
7889occurred during the signed summation.
7890
7891Arguments:
7892""""""""""
7893
7894The arguments (%a and %b) and the first element of the result structure
7895may be of integer types of any bit width, but they must have the same
7896bit width. The second element of the result structure must be of type
7897``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7898addition.
7899
7900Semantics:
7901""""""""""
7902
7903The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007904a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007905first element of which is the signed summation, and the second element
7906of which is a bit specifying if the signed summation resulted in an
7907overflow.
7908
7909Examples:
7910"""""""""
7911
7912.. code-block:: llvm
7913
7914 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7915 %sum = extractvalue {i32, i1} %res, 0
7916 %obit = extractvalue {i32, i1} %res, 1
7917 br i1 %obit, label %overflow, label %normal
7918
7919'``llvm.uadd.with.overflow.*``' Intrinsics
7920^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7921
7922Syntax:
7923"""""""
7924
7925This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7926on any integer bit width.
7927
7928::
7929
7930 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7931 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7932 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7933
7934Overview:
7935"""""""""
7936
7937The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7938an unsigned addition of the two arguments, and indicate whether a carry
7939occurred during the unsigned summation.
7940
7941Arguments:
7942""""""""""
7943
7944The arguments (%a and %b) and the first element of the result structure
7945may be of integer types of any bit width, but they must have the same
7946bit width. The second element of the result structure must be of type
7947``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7948addition.
7949
7950Semantics:
7951""""""""""
7952
7953The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007954an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007955first element of which is the sum, and the second element of which is a
7956bit specifying if the unsigned summation resulted in a carry.
7957
7958Examples:
7959"""""""""
7960
7961.. code-block:: llvm
7962
7963 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7964 %sum = extractvalue {i32, i1} %res, 0
7965 %obit = extractvalue {i32, i1} %res, 1
7966 br i1 %obit, label %carry, label %normal
7967
7968'``llvm.ssub.with.overflow.*``' Intrinsics
7969^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7970
7971Syntax:
7972"""""""
7973
7974This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7975on any integer bit width.
7976
7977::
7978
7979 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7980 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7981 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7982
7983Overview:
7984"""""""""
7985
7986The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7987a signed subtraction of the two arguments, and indicate whether an
7988overflow occurred during the signed subtraction.
7989
7990Arguments:
7991""""""""""
7992
7993The arguments (%a and %b) and the first element of the result structure
7994may be of integer types of any bit width, but they must have the same
7995bit width. The second element of the result structure must be of type
7996``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7997subtraction.
7998
7999Semantics:
8000""""""""""
8001
8002The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008003a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008004first element of which is the subtraction, and the second element of
8005which is a bit specifying if the signed subtraction resulted in an
8006overflow.
8007
8008Examples:
8009"""""""""
8010
8011.. code-block:: llvm
8012
8013 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8014 %sum = extractvalue {i32, i1} %res, 0
8015 %obit = extractvalue {i32, i1} %res, 1
8016 br i1 %obit, label %overflow, label %normal
8017
8018'``llvm.usub.with.overflow.*``' Intrinsics
8019^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8020
8021Syntax:
8022"""""""
8023
8024This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8025on any integer bit width.
8026
8027::
8028
8029 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8030 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8031 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8032
8033Overview:
8034"""""""""
8035
8036The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8037an unsigned subtraction of the two arguments, and indicate whether an
8038overflow occurred during the unsigned subtraction.
8039
8040Arguments:
8041""""""""""
8042
8043The arguments (%a and %b) and the first element of the result structure
8044may be of integer types of any bit width, but they must have the same
8045bit width. The second element of the result structure must be of type
8046``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8047subtraction.
8048
8049Semantics:
8050""""""""""
8051
8052The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008053an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008054the first element of which is the subtraction, and the second element of
8055which is a bit specifying if the unsigned subtraction resulted in an
8056overflow.
8057
8058Examples:
8059"""""""""
8060
8061.. code-block:: llvm
8062
8063 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8064 %sum = extractvalue {i32, i1} %res, 0
8065 %obit = extractvalue {i32, i1} %res, 1
8066 br i1 %obit, label %overflow, label %normal
8067
8068'``llvm.smul.with.overflow.*``' Intrinsics
8069^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8070
8071Syntax:
8072"""""""
8073
8074This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8075on any integer bit width.
8076
8077::
8078
8079 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8080 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8081 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8082
8083Overview:
8084"""""""""
8085
8086The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8087a signed multiplication of the two arguments, and indicate whether an
8088overflow occurred during the signed multiplication.
8089
8090Arguments:
8091""""""""""
8092
8093The arguments (%a and %b) and the first element of the result structure
8094may be of integer types of any bit width, but they must have the same
8095bit width. The second element of the result structure must be of type
8096``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8097multiplication.
8098
8099Semantics:
8100""""""""""
8101
8102The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008103a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008104the first element of which is the multiplication, and the second element
8105of which is a bit specifying if the signed multiplication resulted in an
8106overflow.
8107
8108Examples:
8109"""""""""
8110
8111.. code-block:: llvm
8112
8113 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8114 %sum = extractvalue {i32, i1} %res, 0
8115 %obit = extractvalue {i32, i1} %res, 1
8116 br i1 %obit, label %overflow, label %normal
8117
8118'``llvm.umul.with.overflow.*``' Intrinsics
8119^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8120
8121Syntax:
8122"""""""
8123
8124This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8125on any integer bit width.
8126
8127::
8128
8129 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8130 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8131 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8132
8133Overview:
8134"""""""""
8135
8136The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8137a unsigned multiplication of the two arguments, and indicate whether an
8138overflow occurred during the unsigned multiplication.
8139
8140Arguments:
8141""""""""""
8142
8143The arguments (%a and %b) and the first element of the result structure
8144may be of integer types of any bit width, but they must have the same
8145bit width. The second element of the result structure must be of type
8146``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8147multiplication.
8148
8149Semantics:
8150""""""""""
8151
8152The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008153an unsigned multiplication of the two arguments. They return a structure ---
8154the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008155element of which is a bit specifying if the unsigned multiplication
8156resulted in an overflow.
8157
8158Examples:
8159"""""""""
8160
8161.. code-block:: llvm
8162
8163 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8164 %sum = extractvalue {i32, i1} %res, 0
8165 %obit = extractvalue {i32, i1} %res, 1
8166 br i1 %obit, label %overflow, label %normal
8167
8168Specialised Arithmetic Intrinsics
8169---------------------------------
8170
8171'``llvm.fmuladd.*``' Intrinsic
8172^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8173
8174Syntax:
8175"""""""
8176
8177::
8178
8179 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8180 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8181
8182Overview:
8183"""""""""
8184
8185The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008186expressions that can be fused if the code generator determines that (a) the
8187target instruction set has support for a fused operation, and (b) that the
8188fused operation is more efficient than the equivalent, separate pair of mul
8189and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008190
8191Arguments:
8192""""""""""
8193
8194The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8195multiplicands, a and b, and an addend c.
8196
8197Semantics:
8198""""""""""
8199
8200The expression:
8201
8202::
8203
8204 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8205
8206is equivalent to the expression a \* b + c, except that rounding will
8207not be performed between the multiplication and addition steps if the
8208code generator fuses the operations. Fusion is not guaranteed, even if
8209the target platform supports it. If a fused multiply-add is required the
8210corresponding llvm.fma.\* intrinsic function should be used instead.
8211
8212Examples:
8213"""""""""
8214
8215.. code-block:: llvm
8216
8217 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8218
8219Half Precision Floating Point Intrinsics
8220----------------------------------------
8221
8222For most target platforms, half precision floating point is a
8223storage-only format. This means that it is a dense encoding (in memory)
8224but does not support computation in the format.
8225
8226This means that code must first load the half-precision floating point
8227value as an i16, then convert it to float with
8228:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8229then be performed on the float value (including extending to double
8230etc). To store the value back to memory, it is first converted to float
8231if needed, then converted to i16 with
8232:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8233i16 value.
8234
8235.. _int_convert_to_fp16:
8236
8237'``llvm.convert.to.fp16``' Intrinsic
8238^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8239
8240Syntax:
8241"""""""
8242
8243::
8244
8245 declare i16 @llvm.convert.to.fp16(f32 %a)
8246
8247Overview:
8248"""""""""
8249
8250The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8251from single precision floating point format to half precision floating
8252point format.
8253
8254Arguments:
8255""""""""""
8256
8257The intrinsic function contains single argument - the value to be
8258converted.
8259
8260Semantics:
8261""""""""""
8262
8263The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8264from single precision floating point format to half precision floating
8265point format. The return value is an ``i16`` which contains the
8266converted number.
8267
8268Examples:
8269"""""""""
8270
8271.. code-block:: llvm
8272
8273 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8274 store i16 %res, i16* @x, align 2
8275
8276.. _int_convert_from_fp16:
8277
8278'``llvm.convert.from.fp16``' Intrinsic
8279^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8280
8281Syntax:
8282"""""""
8283
8284::
8285
8286 declare f32 @llvm.convert.from.fp16(i16 %a)
8287
8288Overview:
8289"""""""""
8290
8291The '``llvm.convert.from.fp16``' intrinsic function performs a
8292conversion from half precision floating point format to single precision
8293floating point format.
8294
8295Arguments:
8296""""""""""
8297
8298The intrinsic function contains single argument - the value to be
8299converted.
8300
8301Semantics:
8302""""""""""
8303
8304The '``llvm.convert.from.fp16``' intrinsic function performs a
8305conversion from half single precision floating point format to single
8306precision floating point format. The input half-float value is
8307represented by an ``i16`` value.
8308
8309Examples:
8310"""""""""
8311
8312.. code-block:: llvm
8313
8314 %a = load i16* @x, align 2
8315 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8316
8317Debugger Intrinsics
8318-------------------
8319
8320The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8321prefix), are described in the `LLVM Source Level
8322Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8323document.
8324
8325Exception Handling Intrinsics
8326-----------------------------
8327
8328The LLVM exception handling intrinsics (which all start with
8329``llvm.eh.`` prefix), are described in the `LLVM Exception
8330Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8331
8332.. _int_trampoline:
8333
8334Trampoline Intrinsics
8335---------------------
8336
8337These intrinsics make it possible to excise one parameter, marked with
8338the :ref:`nest <nest>` attribute, from a function. The result is a
8339callable function pointer lacking the nest parameter - the caller does
8340not need to provide a value for it. Instead, the value to use is stored
8341in advance in a "trampoline", a block of memory usually allocated on the
8342stack, which also contains code to splice the nest value into the
8343argument list. This is used to implement the GCC nested function address
8344extension.
8345
8346For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8347then the resulting function pointer has signature ``i32 (i32, i32)*``.
8348It can be created as follows:
8349
8350.. code-block:: llvm
8351
8352 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8353 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8354 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8355 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8356 %fp = bitcast i8* %p to i32 (i32, i32)*
8357
8358The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8359``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8360
8361.. _int_it:
8362
8363'``llvm.init.trampoline``' Intrinsic
8364^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8365
8366Syntax:
8367"""""""
8368
8369::
8370
8371 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8372
8373Overview:
8374"""""""""
8375
8376This fills the memory pointed to by ``tramp`` with executable code,
8377turning it into a trampoline.
8378
8379Arguments:
8380""""""""""
8381
8382The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8383pointers. The ``tramp`` argument must point to a sufficiently large and
8384sufficiently aligned block of memory; this memory is written to by the
8385intrinsic. Note that the size and the alignment are target-specific -
8386LLVM currently provides no portable way of determining them, so a
8387front-end that generates this intrinsic needs to have some
8388target-specific knowledge. The ``func`` argument must hold a function
8389bitcast to an ``i8*``.
8390
8391Semantics:
8392""""""""""
8393
8394The block of memory pointed to by ``tramp`` is filled with target
8395dependent code, turning it into a function. Then ``tramp`` needs to be
8396passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8397be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8398function's signature is the same as that of ``func`` with any arguments
8399marked with the ``nest`` attribute removed. At most one such ``nest``
8400argument is allowed, and it must be of pointer type. Calling the new
8401function is equivalent to calling ``func`` with the same argument list,
8402but with ``nval`` used for the missing ``nest`` argument. If, after
8403calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8404modified, then the effect of any later call to the returned function
8405pointer is undefined.
8406
8407.. _int_at:
8408
8409'``llvm.adjust.trampoline``' Intrinsic
8410^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8411
8412Syntax:
8413"""""""
8414
8415::
8416
8417 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8418
8419Overview:
8420"""""""""
8421
8422This performs any required machine-specific adjustment to the address of
8423a trampoline (passed as ``tramp``).
8424
8425Arguments:
8426""""""""""
8427
8428``tramp`` must point to a block of memory which already has trampoline
8429code filled in by a previous call to
8430:ref:`llvm.init.trampoline <int_it>`.
8431
8432Semantics:
8433""""""""""
8434
8435On some architectures the address of the code to be executed needs to be
8436different to the address where the trampoline is actually stored. This
8437intrinsic returns the executable address corresponding to ``tramp``
8438after performing the required machine specific adjustments. The pointer
8439returned can then be :ref:`bitcast and executed <int_trampoline>`.
8440
8441Memory Use Markers
8442------------------
8443
8444This class of intrinsics exists to information about the lifetime of
8445memory objects and ranges where variables are immutable.
8446
8447'``llvm.lifetime.start``' Intrinsic
8448^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8449
8450Syntax:
8451"""""""
8452
8453::
8454
8455 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8456
8457Overview:
8458"""""""""
8459
8460The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8461object's lifetime.
8462
8463Arguments:
8464""""""""""
8465
8466The first argument is a constant integer representing the size of the
8467object, or -1 if it is variable sized. The second argument is a pointer
8468to the object.
8469
8470Semantics:
8471""""""""""
8472
8473This intrinsic indicates that before this point in the code, the value
8474of the memory pointed to by ``ptr`` is dead. This means that it is known
8475to never be used and has an undefined value. A load from the pointer
8476that precedes this intrinsic can be replaced with ``'undef'``.
8477
8478'``llvm.lifetime.end``' Intrinsic
8479^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8480
8481Syntax:
8482"""""""
8483
8484::
8485
8486 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8487
8488Overview:
8489"""""""""
8490
8491The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8492object's lifetime.
8493
8494Arguments:
8495""""""""""
8496
8497The first argument is a constant integer representing the size of the
8498object, or -1 if it is variable sized. The second argument is a pointer
8499to the object.
8500
8501Semantics:
8502""""""""""
8503
8504This intrinsic indicates that after this point in the code, the value of
8505the memory pointed to by ``ptr`` is dead. This means that it is known to
8506never be used and has an undefined value. Any stores into the memory
8507object following this intrinsic may be removed as dead.
8508
8509'``llvm.invariant.start``' Intrinsic
8510^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8511
8512Syntax:
8513"""""""
8514
8515::
8516
8517 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8518
8519Overview:
8520"""""""""
8521
8522The '``llvm.invariant.start``' intrinsic specifies that the contents of
8523a memory object will not change.
8524
8525Arguments:
8526""""""""""
8527
8528The first argument is a constant integer representing the size of the
8529object, or -1 if it is variable sized. The second argument is a pointer
8530to the object.
8531
8532Semantics:
8533""""""""""
8534
8535This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8536the return value, the referenced memory location is constant and
8537unchanging.
8538
8539'``llvm.invariant.end``' Intrinsic
8540^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8541
8542Syntax:
8543"""""""
8544
8545::
8546
8547 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8548
8549Overview:
8550"""""""""
8551
8552The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8553memory object are mutable.
8554
8555Arguments:
8556""""""""""
8557
8558The first argument is the matching ``llvm.invariant.start`` intrinsic.
8559The second argument is a constant integer representing the size of the
8560object, or -1 if it is variable sized and the third argument is a
8561pointer to the object.
8562
8563Semantics:
8564""""""""""
8565
8566This intrinsic indicates that the memory is mutable again.
8567
8568General Intrinsics
8569------------------
8570
8571This class of intrinsics is designed to be generic and has no specific
8572purpose.
8573
8574'``llvm.var.annotation``' Intrinsic
8575^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8576
8577Syntax:
8578"""""""
8579
8580::
8581
8582 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8583
8584Overview:
8585"""""""""
8586
8587The '``llvm.var.annotation``' intrinsic.
8588
8589Arguments:
8590""""""""""
8591
8592The first argument is a pointer to a value, the second is a pointer to a
8593global string, the third is a pointer to a global string which is the
8594source file name, and the last argument is the line number.
8595
8596Semantics:
8597""""""""""
8598
8599This intrinsic allows annotation of local variables with arbitrary
8600strings. This can be useful for special purpose optimizations that want
8601to look for these annotations. These have no other defined use; they are
8602ignored by code generation and optimization.
8603
Michael Gottesman88d18832013-03-26 00:34:27 +00008604'``llvm.ptr.annotation.*``' Intrinsic
8605^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8606
8607Syntax:
8608"""""""
8609
8610This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8611pointer to an integer of any width. *NOTE* you must specify an address space for
8612the pointer. The identifier for the default address space is the integer
8613'``0``'.
8614
8615::
8616
8617 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8618 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8619 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8620 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8621 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8622
8623Overview:
8624"""""""""
8625
8626The '``llvm.ptr.annotation``' intrinsic.
8627
8628Arguments:
8629""""""""""
8630
8631The first argument is a pointer to an integer value of arbitrary bitwidth
8632(result of some expression), the second is a pointer to a global string, the
8633third is a pointer to a global string which is the source file name, and the
8634last argument is the line number. It returns the value of the first argument.
8635
8636Semantics:
8637""""""""""
8638
8639This intrinsic allows annotation of a pointer to an integer with arbitrary
8640strings. This can be useful for special purpose optimizations that want to look
8641for these annotations. These have no other defined use; they are ignored by code
8642generation and optimization.
8643
Sean Silvab084af42012-12-07 10:36:55 +00008644'``llvm.annotation.*``' Intrinsic
8645^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8646
8647Syntax:
8648"""""""
8649
8650This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8651any integer bit width.
8652
8653::
8654
8655 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8656 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8657 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8658 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8659 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8660
8661Overview:
8662"""""""""
8663
8664The '``llvm.annotation``' intrinsic.
8665
8666Arguments:
8667""""""""""
8668
8669The first argument is an integer value (result of some expression), the
8670second is a pointer to a global string, the third is a pointer to a
8671global string which is the source file name, and the last argument is
8672the line number. It returns the value of the first argument.
8673
8674Semantics:
8675""""""""""
8676
8677This intrinsic allows annotations to be put on arbitrary expressions
8678with arbitrary strings. This can be useful for special purpose
8679optimizations that want to look for these annotations. These have no
8680other defined use; they are ignored by code generation and optimization.
8681
8682'``llvm.trap``' Intrinsic
8683^^^^^^^^^^^^^^^^^^^^^^^^^
8684
8685Syntax:
8686"""""""
8687
8688::
8689
8690 declare void @llvm.trap() noreturn nounwind
8691
8692Overview:
8693"""""""""
8694
8695The '``llvm.trap``' intrinsic.
8696
8697Arguments:
8698""""""""""
8699
8700None.
8701
8702Semantics:
8703""""""""""
8704
8705This intrinsic is lowered to the target dependent trap instruction. If
8706the target does not have a trap instruction, this intrinsic will be
8707lowered to a call of the ``abort()`` function.
8708
8709'``llvm.debugtrap``' Intrinsic
8710^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8711
8712Syntax:
8713"""""""
8714
8715::
8716
8717 declare void @llvm.debugtrap() nounwind
8718
8719Overview:
8720"""""""""
8721
8722The '``llvm.debugtrap``' intrinsic.
8723
8724Arguments:
8725""""""""""
8726
8727None.
8728
8729Semantics:
8730""""""""""
8731
8732This intrinsic is lowered to code which is intended to cause an
8733execution trap with the intention of requesting the attention of a
8734debugger.
8735
8736'``llvm.stackprotector``' Intrinsic
8737^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8738
8739Syntax:
8740"""""""
8741
8742::
8743
8744 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8745
8746Overview:
8747"""""""""
8748
8749The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8750onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8751is placed on the stack before local variables.
8752
8753Arguments:
8754""""""""""
8755
8756The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8757The first argument is the value loaded from the stack guard
8758``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8759enough space to hold the value of the guard.
8760
8761Semantics:
8762""""""""""
8763
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008764This intrinsic causes the prologue/epilogue inserter to force the position of
8765the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8766to ensure that if a local variable on the stack is overwritten, it will destroy
8767the value of the guard. When the function exits, the guard on the stack is
8768checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8769different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8770calling the ``__stack_chk_fail()`` function.
8771
8772'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00008773^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008774
8775Syntax:
8776"""""""
8777
8778::
8779
8780 declare void @llvm.stackprotectorcheck(i8** <guard>)
8781
8782Overview:
8783"""""""""
8784
8785The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00008786created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00008787``__stack_chk_fail()`` function.
8788
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008789Arguments:
8790""""""""""
8791
8792The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8793the variable ``@__stack_chk_guard``.
8794
8795Semantics:
8796""""""""""
8797
8798This intrinsic is provided to perform the stack protector check by comparing
8799``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8800values do not match call the ``__stack_chk_fail()`` function.
8801
8802The reason to provide this as an IR level intrinsic instead of implementing it
8803via other IR operations is that in order to perform this operation at the IR
8804level without an intrinsic, one would need to create additional basic blocks to
8805handle the success/failure cases. This makes it difficult to stop the stack
8806protector check from disrupting sibling tail calls in Codegen. With this
8807intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00008808codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008809
Sean Silvab084af42012-12-07 10:36:55 +00008810'``llvm.objectsize``' Intrinsic
8811^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8812
8813Syntax:
8814"""""""
8815
8816::
8817
8818 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8819 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8820
8821Overview:
8822"""""""""
8823
8824The ``llvm.objectsize`` intrinsic is designed to provide information to
8825the optimizers to determine at compile time whether a) an operation
8826(like memcpy) will overflow a buffer that corresponds to an object, or
8827b) that a runtime check for overflow isn't necessary. An object in this
8828context means an allocation of a specific class, structure, array, or
8829other object.
8830
8831Arguments:
8832""""""""""
8833
8834The ``llvm.objectsize`` intrinsic takes two arguments. The first
8835argument is a pointer to or into the ``object``. The second argument is
8836a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8837or -1 (if false) when the object size is unknown. The second argument
8838only accepts constants.
8839
8840Semantics:
8841""""""""""
8842
8843The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8844the size of the object concerned. If the size cannot be determined at
8845compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8846on the ``min`` argument).
8847
8848'``llvm.expect``' Intrinsic
8849^^^^^^^^^^^^^^^^^^^^^^^^^^^
8850
8851Syntax:
8852"""""""
8853
8854::
8855
8856 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8857 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8858
8859Overview:
8860"""""""""
8861
8862The ``llvm.expect`` intrinsic provides information about expected (the
8863most probable) value of ``val``, which can be used by optimizers.
8864
8865Arguments:
8866""""""""""
8867
8868The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8869a value. The second argument is an expected value, this needs to be a
8870constant value, variables are not allowed.
8871
8872Semantics:
8873""""""""""
8874
8875This intrinsic is lowered to the ``val``.
8876
8877'``llvm.donothing``' Intrinsic
8878^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8879
8880Syntax:
8881"""""""
8882
8883::
8884
8885 declare void @llvm.donothing() nounwind readnone
8886
8887Overview:
8888"""""""""
8889
8890The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8891only intrinsic that can be called with an invoke instruction.
8892
8893Arguments:
8894""""""""""
8895
8896None.
8897
8898Semantics:
8899""""""""""
8900
8901This intrinsic does nothing, and it's removed by optimizers and ignored
8902by codegen.