blob: 6bf141e39c8061553e0dfdb7b22b091635ad5403 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
131 incrementing counter, starting with 0).
Sean Silvab084af42012-12-07 10:36:55 +0000132
133It also shows a convention that we follow in this document. When
134demonstrating instructions, we will follow an instruction with a comment
135that defines the type and name of value produced.
136
137High Level Structure
138====================
139
140Module Structure
141----------------
142
143LLVM programs are composed of ``Module``'s, each of which is a
144translation unit of the input programs. Each module consists of
145functions, global variables, and symbol table entries. Modules may be
146combined together with the LLVM linker, which merges function (and
147global variable) definitions, resolves forward declarations, and merges
148symbol table entries. Here is an example of the "hello world" module:
149
150.. code-block:: llvm
151
Michael Liaoa7699082013-03-06 18:24:34 +0000152 ; Declare the string constant as a global constant.
153 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000154
Michael Liaoa7699082013-03-06 18:24:34 +0000155 ; External declaration of the puts function
156 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000157
158 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000159 define i32 @main() { ; i32()*
160 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000161 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
162
Michael Liaoa7699082013-03-06 18:24:34 +0000163 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000164 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000166 }
167
168 ; Named metadata
169 !1 = metadata !{i32 42}
170 !foo = !{!1, null}
171
172This example is made up of a :ref:`global variable <globalvars>` named
173"``.str``", an external declaration of the "``puts``" function, a
174:ref:`function definition <functionstructure>` for "``main``" and
175:ref:`named metadata <namedmetadatastructure>` "``foo``".
176
177In general, a module is made up of a list of global values (where both
178functions and global variables are global values). Global values are
179represented by a pointer to a memory location (in this case, a pointer
180to an array of char, and a pointer to a function), and have one of the
181following :ref:`linkage types <linkage>`.
182
183.. _linkage:
184
185Linkage Types
186-------------
187
188All Global Variables and Functions have one of the following types of
189linkage:
190
191``private``
192 Global values with "``private``" linkage are only directly
193 accessible by objects in the current module. In particular, linking
194 code into a module with an private global value may cause the
195 private to be renamed as necessary to avoid collisions. Because the
196 symbol is private to the module, all references can be updated. This
197 doesn't show up in any symbol table in the object file.
198``linker_private``
199 Similar to ``private``, but the symbol is passed through the
200 assembler and evaluated by the linker. Unlike normal strong symbols,
201 they are removed by the linker from the final linked image
202 (executable or dynamic library).
203``linker_private_weak``
204 Similar to "``linker_private``", but the symbol is weak. Note that
205 ``linker_private_weak`` symbols are subject to coalescing by the
206 linker. The symbols are removed by the linker from the final linked
207 image (executable or dynamic library).
208``internal``
209 Similar to private, but the value shows as a local symbol
210 (``STB_LOCAL`` in the case of ELF) in the object file. This
211 corresponds to the notion of the '``static``' keyword in C.
212``available_externally``
213 Globals with "``available_externally``" linkage are never emitted
214 into the object file corresponding to the LLVM module. They exist to
215 allow inlining and other optimizations to take place given knowledge
216 of the definition of the global, which is known to be somewhere
217 outside the module. Globals with ``available_externally`` linkage
218 are allowed to be discarded at will, and are otherwise the same as
219 ``linkonce_odr``. This linkage type is only allowed on definitions,
220 not declarations.
221``linkonce``
222 Globals with "``linkonce``" linkage are merged with other globals of
223 the same name when linkage occurs. This can be used to implement
224 some forms of inline functions, templates, or other code which must
225 be generated in each translation unit that uses it, but where the
226 body may be overridden with a more definitive definition later.
227 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
228 that ``linkonce`` linkage does not actually allow the optimizer to
229 inline the body of this function into callers because it doesn't
230 know if this definition of the function is the definitive definition
231 within the program or whether it will be overridden by a stronger
232 definition. To enable inlining and other optimizations, use
233 "``linkonce_odr``" linkage.
234``weak``
235 "``weak``" linkage has the same merging semantics as ``linkonce``
236 linkage, except that unreferenced globals with ``weak`` linkage may
237 not be discarded. This is used for globals that are declared "weak"
238 in C source code.
239``common``
240 "``common``" linkage is most similar to "``weak``" linkage, but they
241 are used for tentative definitions in C, such as "``int X;``" at
242 global scope. Symbols with "``common``" linkage are merged in the
243 same way as ``weak symbols``, and they may not be deleted if
244 unreferenced. ``common`` symbols may not have an explicit section,
245 must have a zero initializer, and may not be marked
246 ':ref:`constant <globalvars>`'. Functions and aliases may not have
247 common linkage.
248
249.. _linkage_appending:
250
251``appending``
252 "``appending``" linkage may only be applied to global variables of
253 pointer to array type. When two global variables with appending
254 linkage are linked together, the two global arrays are appended
255 together. This is the LLVM, typesafe, equivalent of having the
256 system linker append together "sections" with identical names when
257 .o files are linked.
258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
270``linkonce_odr_auto_hide``
271 Similar to "``linkonce_odr``", but nothing in the translation unit
272 takes the address of this definition. For instance, functions that
273 had an inline definition, but the compiler decided not to inline it.
274 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
275 symbols are removed by the linker from the final linked image
276 (executable or dynamic library).
277``external``
278 If none of the above identifiers are used, the global is externally
279 visible, meaning that it participates in linkage and can be used to
280 resolve external symbol references.
281
282The next two types of linkage are targeted for Microsoft Windows
283platform only. They are designed to support importing (exporting)
284symbols from (to) DLLs (Dynamic Link Libraries).
285
286``dllimport``
287 "``dllimport``" linkage causes the compiler to reference a function
288 or variable via a global pointer to a pointer that is set up by the
289 DLL exporting the symbol. On Microsoft Windows targets, the pointer
290 name is formed by combining ``__imp_`` and the function or variable
291 name.
292``dllexport``
293 "``dllexport``" linkage causes the compiler to provide a global
294 pointer to a pointer in a DLL, so that it can be referenced with the
295 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
296 name is formed by combining ``__imp_`` and the function or variable
297 name.
298
299For example, since the "``.LC0``" variable is defined to be internal, if
300another module defined a "``.LC0``" variable and was linked with this
301one, one of the two would be renamed, preventing a collision. Since
302"``main``" and "``puts``" are external (i.e., lacking any linkage
303declarations), they are accessible outside of the current module.
304
305It is illegal for a function *declaration* to have any linkage type
306other than ``external``, ``dllimport`` or ``extern_weak``.
307
Sean Silvab084af42012-12-07 10:36:55 +0000308.. _callingconv:
309
310Calling Conventions
311-------------------
312
313LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
314:ref:`invokes <i_invoke>` can all have an optional calling convention
315specified for the call. The calling convention of any pair of dynamic
316caller/callee must match, or the behavior of the program is undefined.
317The following calling conventions are supported by LLVM, and more may be
318added in the future:
319
320"``ccc``" - The C calling convention
321 This calling convention (the default if no other calling convention
322 is specified) matches the target C calling conventions. This calling
323 convention supports varargs function calls and tolerates some
324 mismatch in the declared prototype and implemented declaration of
325 the function (as does normal C).
326"``fastcc``" - The fast calling convention
327 This calling convention attempts to make calls as fast as possible
328 (e.g. by passing things in registers). This calling convention
329 allows the target to use whatever tricks it wants to produce fast
330 code for the target, without having to conform to an externally
331 specified ABI (Application Binary Interface). `Tail calls can only
332 be optimized when this, the GHC or the HiPE convention is
333 used. <CodeGenerator.html#id80>`_ This calling convention does not
334 support varargs and requires the prototype of all callees to exactly
335 match the prototype of the function definition.
336"``coldcc``" - The cold calling convention
337 This calling convention attempts to make code in the caller as
338 efficient as possible under the assumption that the call is not
339 commonly executed. As such, these calls often preserve all registers
340 so that the call does not break any live ranges in the caller side.
341 This calling convention does not support varargs and requires the
342 prototype of all callees to exactly match the prototype of the
343 function definition.
344"``cc 10``" - GHC convention
345 This calling convention has been implemented specifically for use by
346 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
347 It passes everything in registers, going to extremes to achieve this
348 by disabling callee save registers. This calling convention should
349 not be used lightly but only for specific situations such as an
350 alternative to the *register pinning* performance technique often
351 used when implementing functional programming languages. At the
352 moment only X86 supports this convention and it has the following
353 limitations:
354
355 - On *X86-32* only supports up to 4 bit type parameters. No
356 floating point types are supported.
357 - On *X86-64* only supports up to 10 bit type parameters and 6
358 floating point parameters.
359
360 This calling convention supports `tail call
361 optimization <CodeGenerator.html#id80>`_ but requires both the
362 caller and callee are using it.
363"``cc 11``" - The HiPE calling convention
364 This calling convention has been implemented specifically for use by
365 the `High-Performance Erlang
366 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
367 native code compiler of the `Ericsson's Open Source Erlang/OTP
368 system <http://www.erlang.org/download.shtml>`_. It uses more
369 registers for argument passing than the ordinary C calling
370 convention and defines no callee-saved registers. The calling
371 convention properly supports `tail call
372 optimization <CodeGenerator.html#id80>`_ but requires that both the
373 caller and the callee use it. It uses a *register pinning*
374 mechanism, similar to GHC's convention, for keeping frequently
375 accessed runtime components pinned to specific hardware registers.
376 At the moment only X86 supports this convention (both 32 and 64
377 bit).
378"``cc <n>``" - Numbered convention
379 Any calling convention may be specified by number, allowing
380 target-specific calling conventions to be used. Target specific
381 calling conventions start at 64.
382
383More calling conventions can be added/defined on an as-needed basis, to
384support Pascal conventions or any other well-known target-independent
385convention.
386
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000387.. _visibilitystyles:
388
Sean Silvab084af42012-12-07 10:36:55 +0000389Visibility Styles
390-----------------
391
392All Global Variables and Functions have one of the following visibility
393styles:
394
395"``default``" - Default style
396 On targets that use the ELF object file format, default visibility
397 means that the declaration is visible to other modules and, in
398 shared libraries, means that the declared entity may be overridden.
399 On Darwin, default visibility means that the declaration is visible
400 to other modules. Default visibility corresponds to "external
401 linkage" in the language.
402"``hidden``" - Hidden style
403 Two declarations of an object with hidden visibility refer to the
404 same object if they are in the same shared object. Usually, hidden
405 visibility indicates that the symbol will not be placed into the
406 dynamic symbol table, so no other module (executable or shared
407 library) can reference it directly.
408"``protected``" - Protected style
409 On ELF, protected visibility indicates that the symbol will be
410 placed in the dynamic symbol table, but that references within the
411 defining module will bind to the local symbol. That is, the symbol
412 cannot be overridden by another module.
413
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000414.. _namedtypes:
415
Sean Silvab084af42012-12-07 10:36:55 +0000416Named Types
417-----------
418
419LLVM IR allows you to specify name aliases for certain types. This can
420make it easier to read the IR and make the IR more condensed
421(particularly when recursive types are involved). An example of a name
422specification is:
423
424.. code-block:: llvm
425
426 %mytype = type { %mytype*, i32 }
427
428You may give a name to any :ref:`type <typesystem>` except
429":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
430expected with the syntax "%mytype".
431
432Note that type names are aliases for the structural type that they
433indicate, and that you can therefore specify multiple names for the same
434type. This often leads to confusing behavior when dumping out a .ll
435file. Since LLVM IR uses structural typing, the name is not part of the
436type. When printing out LLVM IR, the printer will pick *one name* to
437render all types of a particular shape. This means that if you have code
438where two different source types end up having the same LLVM type, that
439the dumper will sometimes print the "wrong" or unexpected type. This is
440an important design point and isn't going to change.
441
442.. _globalvars:
443
444Global Variables
445----------------
446
447Global variables define regions of memory allocated at compilation time
448instead of run-time. Global variables may optionally be initialized, may
449have an explicit section to be placed in, and may have an optional
450explicit alignment specified.
451
452A variable may be defined as ``thread_local``, which means that it will
453not be shared by threads (each thread will have a separated copy of the
454variable). Not all targets support thread-local variables. Optionally, a
455TLS model may be specified:
456
457``localdynamic``
458 For variables that are only used within the current shared library.
459``initialexec``
460 For variables in modules that will not be loaded dynamically.
461``localexec``
462 For variables defined in the executable and only used within it.
463
464The models correspond to the ELF TLS models; see `ELF Handling For
465Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
466more information on under which circumstances the different models may
467be used. The target may choose a different TLS model if the specified
468model is not supported, or if a better choice of model can be made.
469
Michael Gottesman006039c2013-01-31 05:48:48 +0000470A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000471the contents of the variable will **never** be modified (enabling better
472optimization, allowing the global data to be placed in the read-only
473section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000474initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000475variable.
476
477LLVM explicitly allows *declarations* of global variables to be marked
478constant, even if the final definition of the global is not. This
479capability can be used to enable slightly better optimization of the
480program, but requires the language definition to guarantee that
481optimizations based on the 'constantness' are valid for the translation
482units that do not include the definition.
483
484As SSA values, global variables define pointer values that are in scope
485(i.e. they dominate) all basic blocks in the program. Global variables
486always define a pointer to their "content" type because they describe a
487region of memory, and all memory objects in LLVM are accessed through
488pointers.
489
490Global variables can be marked with ``unnamed_addr`` which indicates
491that the address is not significant, only the content. Constants marked
492like this can be merged with other constants if they have the same
493initializer. Note that a constant with significant address *can* be
494merged with a ``unnamed_addr`` constant, the result being a constant
495whose address is significant.
496
497A global variable may be declared to reside in a target-specific
498numbered address space. For targets that support them, address spaces
499may affect how optimizations are performed and/or what target
500instructions are used to access the variable. The default address space
501is zero. The address space qualifier must precede any other attributes.
502
503LLVM allows an explicit section to be specified for globals. If the
504target supports it, it will emit globals to the section specified.
505
Michael Gottesmane743a302013-02-04 03:22:00 +0000506By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000507variables defined within the module are not modified from their
508initial values before the start of the global initializer. This is
509true even for variables potentially accessible from outside the
510module, including those with external linkage or appearing in
Michael Gottesman8901bb62013-02-03 09:57:18 +0000511``@llvm.used``. This assumption may be suppressed by marking the
512variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000513
Sean Silvab084af42012-12-07 10:36:55 +0000514An explicit alignment may be specified for a global, which must be a
515power of 2. If not present, or if the alignment is set to zero, the
516alignment of the global is set by the target to whatever it feels
517convenient. If an explicit alignment is specified, the global is forced
518to have exactly that alignment. Targets and optimizers are not allowed
519to over-align the global if the global has an assigned section. In this
520case, the extra alignment could be observable: for example, code could
521assume that the globals are densely packed in their section and try to
522iterate over them as an array, alignment padding would break this
523iteration.
524
525For example, the following defines a global in a numbered address space
526with an initializer, section, and alignment:
527
528.. code-block:: llvm
529
530 @G = addrspace(5) constant float 1.0, section "foo", align 4
531
532The following example defines a thread-local global with the
533``initialexec`` TLS model:
534
535.. code-block:: llvm
536
537 @G = thread_local(initialexec) global i32 0, align 4
538
539.. _functionstructure:
540
541Functions
542---------
543
544LLVM function definitions consist of the "``define``" keyword, an
545optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
546style <visibility>`, an optional :ref:`calling convention <callingconv>`,
547an optional ``unnamed_addr`` attribute, a return type, an optional
548:ref:`parameter attribute <paramattrs>` for the return type, a function
549name, a (possibly empty) argument list (each with optional :ref:`parameter
550attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
551an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000552collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
553curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000554
555LLVM function declarations consist of the "``declare``" keyword, an
556optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
557style <visibility>`, an optional :ref:`calling convention <callingconv>`,
558an optional ``unnamed_addr`` attribute, a return type, an optional
559:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000560name, a possibly empty list of arguments, an optional alignment, an optional
561:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000562
Bill Wendling6822ecb2013-10-27 05:09:12 +0000563A function definition contains a list of basic blocks, forming the CFG (Control
564Flow Graph) for the function. Each basic block may optionally start with a label
565(giving the basic block a symbol table entry), contains a list of instructions,
566and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
567function return). If an explicit label is not provided, a block is assigned an
568implicit numbered label, using the next value from the same counter as used for
569unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
570entry block does not have an explicit label, it will be assigned label "%0",
571then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000572
573The first basic block in a function is special in two ways: it is
574immediately executed on entrance to the function, and it is not allowed
575to have predecessor basic blocks (i.e. there can not be any branches to
576the entry block of a function). Because the block can have no
577predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
578
579LLVM allows an explicit section to be specified for functions. If the
580target supports it, it will emit functions to the section specified.
581
582An explicit alignment may be specified for a function. If not present,
583or if the alignment is set to zero, the alignment of the function is set
584by the target to whatever it feels convenient. If an explicit alignment
585is specified, the function is forced to have at least that much
586alignment. All alignments must be a power of 2.
587
588If the ``unnamed_addr`` attribute is given, the address is know to not
589be significant and two identical functions can be merged.
590
591Syntax::
592
593 define [linkage] [visibility]
594 [cconv] [ret attrs]
595 <ResultType> @<FunctionName> ([argument list])
596 [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000597 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000598
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000599.. _langref_aliases:
600
Sean Silvab084af42012-12-07 10:36:55 +0000601Aliases
602-------
603
604Aliases act as "second name" for the aliasee value (which can be either
605function, global variable, another alias or bitcast of global value).
606Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
607:ref:`visibility style <visibility>`.
608
609Syntax::
610
611 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
612
Rafael Espindola65785492013-10-07 13:57:59 +0000613The linkage must be one of ``private``, ``linker_private``,
Rafael Espindola78527052013-10-06 15:10:43 +0000614``linker_private_weak``, ``internal``, ``linkonce``, ``weak``,
615``linkonce_odr``, ``weak_odr``, ``linkonce_odr_auto_hide``, ``external``. Note
616that some system linkers might not correctly handle dropping a weak symbol that
617is aliased by a non weak alias.
618
Sean Silvab084af42012-12-07 10:36:55 +0000619.. _namedmetadatastructure:
620
621Named Metadata
622--------------
623
624Named metadata is a collection of metadata. :ref:`Metadata
625nodes <metadata>` (but not metadata strings) are the only valid
626operands for a named metadata.
627
628Syntax::
629
630 ; Some unnamed metadata nodes, which are referenced by the named metadata.
631 !0 = metadata !{metadata !"zero"}
632 !1 = metadata !{metadata !"one"}
633 !2 = metadata !{metadata !"two"}
634 ; A named metadata.
635 !name = !{!0, !1, !2}
636
637.. _paramattrs:
638
639Parameter Attributes
640--------------------
641
642The return type and each parameter of a function type may have a set of
643*parameter attributes* associated with them. Parameter attributes are
644used to communicate additional information about the result or
645parameters of a function. Parameter attributes are considered to be part
646of the function, not of the function type, so functions with different
647parameter attributes can have the same function type.
648
649Parameter attributes are simple keywords that follow the type specified.
650If multiple parameter attributes are needed, they are space separated.
651For example:
652
653.. code-block:: llvm
654
655 declare i32 @printf(i8* noalias nocapture, ...)
656 declare i32 @atoi(i8 zeroext)
657 declare signext i8 @returns_signed_char()
658
659Note that any attributes for the function result (``nounwind``,
660``readonly``) come immediately after the argument list.
661
662Currently, only the following parameter attributes are defined:
663
664``zeroext``
665 This indicates to the code generator that the parameter or return
666 value should be zero-extended to the extent required by the target's
667 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
668 the caller (for a parameter) or the callee (for a return value).
669``signext``
670 This indicates to the code generator that the parameter or return
671 value should be sign-extended to the extent required by the target's
672 ABI (which is usually 32-bits) by the caller (for a parameter) or
673 the callee (for a return value).
674``inreg``
675 This indicates that this parameter or return value should be treated
676 in a special target-dependent fashion during while emitting code for
677 a function call or return (usually, by putting it in a register as
678 opposed to memory, though some targets use it to distinguish between
679 two different kinds of registers). Use of this attribute is
680 target-specific.
681``byval``
682 This indicates that the pointer parameter should really be passed by
683 value to the function. The attribute implies that a hidden copy of
684 the pointee is made between the caller and the callee, so the callee
685 is unable to modify the value in the caller. This attribute is only
686 valid on LLVM pointer arguments. It is generally used to pass
687 structs and arrays by value, but is also valid on pointers to
688 scalars. The copy is considered to belong to the caller not the
689 callee (for example, ``readonly`` functions should not write to
690 ``byval`` parameters). This is not a valid attribute for return
691 values.
692
693 The byval attribute also supports specifying an alignment with the
694 align attribute. It indicates the alignment of the stack slot to
695 form and the known alignment of the pointer specified to the call
696 site. If the alignment is not specified, then the code generator
697 makes a target-specific assumption.
698
699``sret``
700 This indicates that the pointer parameter specifies the address of a
701 structure that is the return value of the function in the source
702 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000703 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000704 not to trap and to be properly aligned. This may only be applied to
705 the first parameter. This is not a valid attribute for return
706 values.
707``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000708 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000709 the argument or return value do not alias pointer values which are
710 not *based* on it, ignoring certain "irrelevant" dependencies. For a
711 call to the parent function, dependencies between memory references
712 from before or after the call and from those during the call are
713 "irrelevant" to the ``noalias`` keyword for the arguments and return
714 value used in that call. The caller shares the responsibility with
715 the callee for ensuring that these requirements are met. For further
716 details, please see the discussion of the NoAlias response in `alias
717 analysis <AliasAnalysis.html#MustMayNo>`_.
718
719 Note that this definition of ``noalias`` is intentionally similar
720 to the definition of ``restrict`` in C99 for function arguments,
721 though it is slightly weaker.
722
723 For function return values, C99's ``restrict`` is not meaningful,
724 while LLVM's ``noalias`` is.
725``nocapture``
726 This indicates that the callee does not make any copies of the
727 pointer that outlive the callee itself. This is not a valid
728 attribute for return values.
729
730.. _nest:
731
732``nest``
733 This indicates that the pointer parameter can be excised using the
734 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000735 attribute for return values and can only be applied to one parameter.
736
737``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000738 This indicates that the function always returns the argument as its return
739 value. This is an optimization hint to the code generator when generating
740 the caller, allowing tail call optimization and omission of register saves
741 and restores in some cases; it is not checked or enforced when generating
742 the callee. The parameter and the function return type must be valid
743 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
744 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000745
746.. _gc:
747
748Garbage Collector Names
749-----------------------
750
751Each function may specify a garbage collector name, which is simply a
752string:
753
754.. code-block:: llvm
755
756 define void @f() gc "name" { ... }
757
758The compiler declares the supported values of *name*. Specifying a
759collector which will cause the compiler to alter its output in order to
760support the named garbage collection algorithm.
761
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000762.. _prefixdata:
763
764Prefix Data
765-----------
766
767Prefix data is data associated with a function which the code generator
768will emit immediately before the function body. The purpose of this feature
769is to allow frontends to associate language-specific runtime metadata with
770specific functions and make it available through the function pointer while
771still allowing the function pointer to be called. To access the data for a
772given function, a program may bitcast the function pointer to a pointer to
773the constant's type. This implies that the IR symbol points to the start
774of the prefix data.
775
776To maintain the semantics of ordinary function calls, the prefix data must
777have a particular format. Specifically, it must begin with a sequence of
778bytes which decode to a sequence of machine instructions, valid for the
779module's target, which transfer control to the point immediately succeeding
780the prefix data, without performing any other visible action. This allows
781the inliner and other passes to reason about the semantics of the function
782definition without needing to reason about the prefix data. Obviously this
783makes the format of the prefix data highly target dependent.
784
Peter Collingbourne213358a2013-09-23 20:14:21 +0000785Prefix data is laid out as if it were an initializer for a global variable
786of the prefix data's type. No padding is automatically placed between the
787prefix data and the function body. If padding is required, it must be part
788of the prefix data.
789
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000790A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
791which encodes the ``nop`` instruction:
792
793.. code-block:: llvm
794
795 define void @f() prefix i8 144 { ... }
796
797Generally prefix data can be formed by encoding a relative branch instruction
798which skips the metadata, as in this example of valid prefix data for the
799x86_64 architecture, where the first two bytes encode ``jmp .+10``:
800
801.. code-block:: llvm
802
803 %0 = type <{ i8, i8, i8* }>
804
805 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
806
807A function may have prefix data but no body. This has similar semantics
808to the ``available_externally`` linkage in that the data may be used by the
809optimizers but will not be emitted in the object file.
810
Bill Wendling63b88192013-02-06 06:52:58 +0000811.. _attrgrp:
812
813Attribute Groups
814----------------
815
816Attribute groups are groups of attributes that are referenced by objects within
817the IR. They are important for keeping ``.ll`` files readable, because a lot of
818functions will use the same set of attributes. In the degenerative case of a
819``.ll`` file that corresponds to a single ``.c`` file, the single attribute
820group will capture the important command line flags used to build that file.
821
822An attribute group is a module-level object. To use an attribute group, an
823object references the attribute group's ID (e.g. ``#37``). An object may refer
824to more than one attribute group. In that situation, the attributes from the
825different groups are merged.
826
827Here is an example of attribute groups for a function that should always be
828inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
829
830.. code-block:: llvm
831
832 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000833 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000834
835 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000836 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000837
838 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
839 define void @f() #0 #1 { ... }
840
Sean Silvab084af42012-12-07 10:36:55 +0000841.. _fnattrs:
842
843Function Attributes
844-------------------
845
846Function attributes are set to communicate additional information about
847a function. Function attributes are considered to be part of the
848function, not of the function type, so functions with different function
849attributes can have the same function type.
850
851Function attributes are simple keywords that follow the type specified.
852If multiple attributes are needed, they are space separated. For
853example:
854
855.. code-block:: llvm
856
857 define void @f() noinline { ... }
858 define void @f() alwaysinline { ... }
859 define void @f() alwaysinline optsize { ... }
860 define void @f() optsize { ... }
861
Sean Silvab084af42012-12-07 10:36:55 +0000862``alignstack(<n>)``
863 This attribute indicates that, when emitting the prologue and
864 epilogue, the backend should forcibly align the stack pointer.
865 Specify the desired alignment, which must be a power of two, in
866 parentheses.
867``alwaysinline``
868 This attribute indicates that the inliner should attempt to inline
869 this function into callers whenever possible, ignoring any active
870 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +0000871``builtin``
872 This indicates that the callee function at a call site should be
873 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +0000874 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +0000875 direct calls to functions which are declared with the ``nobuiltin``
876 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +0000877``cold``
878 This attribute indicates that this function is rarely called. When
879 computing edge weights, basic blocks post-dominated by a cold
880 function call are also considered to be cold; and, thus, given low
881 weight.
Sean Silvab084af42012-12-07 10:36:55 +0000882``inlinehint``
883 This attribute indicates that the source code contained a hint that
884 inlining this function is desirable (such as the "inline" keyword in
885 C/C++). It is just a hint; it imposes no requirements on the
886 inliner.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000887``minsize``
888 This attribute suggests that optimization passes and code generator
889 passes make choices that keep the code size of this function as small
890 as possible and perform optimizations that may sacrifice runtime
891 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +0000892``naked``
893 This attribute disables prologue / epilogue emission for the
894 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +0000895``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +0000896 This indicates that the callee function at a call site is not recognized as
897 a built-in function. LLVM will retain the original call and not replace it
898 with equivalent code based on the semantics of the built-in function, unless
899 the call site uses the ``builtin`` attribute. This is valid at call sites
900 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +0000901``noduplicate``
902 This attribute indicates that calls to the function cannot be
903 duplicated. A call to a ``noduplicate`` function may be moved
904 within its parent function, but may not be duplicated within
905 its parent function.
906
907 A function containing a ``noduplicate`` call may still
908 be an inlining candidate, provided that the call is not
909 duplicated by inlining. That implies that the function has
910 internal linkage and only has one call site, so the original
911 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000912``noimplicitfloat``
913 This attributes disables implicit floating point instructions.
914``noinline``
915 This attribute indicates that the inliner should never inline this
916 function in any situation. This attribute may not be used together
917 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +0000918``nonlazybind``
919 This attribute suppresses lazy symbol binding for the function. This
920 may make calls to the function faster, at the cost of extra program
921 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +0000922``noredzone``
923 This attribute indicates that the code generator should not use a
924 red zone, even if the target-specific ABI normally permits it.
925``noreturn``
926 This function attribute indicates that the function never returns
927 normally. This produces undefined behavior at runtime if the
928 function ever does dynamically return.
929``nounwind``
930 This function attribute indicates that the function never returns
931 with an unwind or exceptional control flow. If the function does
932 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +0000933``optnone``
934 This function attribute indicates that the function is not optimized
935 by any optimization or code generator passes with the
936 exception of interprocedural optimization passes.
937 This attribute cannot be used together with the ``alwaysinline``
938 attribute; this attribute is also incompatible
939 with the ``minsize`` attribute and the ``optsize`` attribute.
940
941 The inliner should never inline this function in any situation.
942 Only functions with the ``alwaysinline`` attribute are valid
943 candidates for inlining inside the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +0000944``optsize``
945 This attribute suggests that optimization passes and code generator
946 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000947 and otherwise do optimizations specifically to reduce code size as
948 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +0000949``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +0000950 On a function, this attribute indicates that the function computes its
951 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +0000952 without dereferencing any pointer arguments or otherwise accessing
953 any mutable state (e.g. memory, control registers, etc) visible to
954 caller functions. It does not write through any pointer arguments
955 (including ``byval`` arguments) and never changes any state visible
956 to callers. This means that it cannot unwind exceptions by calling
957 the ``C++`` exception throwing methods.
Nick Lewyckyc2ec0722013-07-06 00:29:58 +0000958
959 On an argument, this attribute indicates that the function does not
960 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +0000961 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +0000962``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +0000963 On a function, this attribute indicates that the function does not write
964 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +0000965 modify any state (e.g. memory, control registers, etc) visible to
966 caller functions. It may dereference pointer arguments and read
967 state that may be set in the caller. A readonly function always
968 returns the same value (or unwinds an exception identically) when
969 called with the same set of arguments and global state. It cannot
970 unwind an exception by calling the ``C++`` exception throwing
971 methods.
Nick Lewyckyc2ec0722013-07-06 00:29:58 +0000972
973 On an argument, this attribute indicates that the function does not write
974 through this pointer argument, even though it may write to the memory that
975 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +0000976``returns_twice``
977 This attribute indicates that this function can return twice. The C
978 ``setjmp`` is an example of such a function. The compiler disables
979 some optimizations (like tail calls) in the caller of these
980 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +0000981``sanitize_address``
982 This attribute indicates that AddressSanitizer checks
983 (dynamic address safety analysis) are enabled for this function.
984``sanitize_memory``
985 This attribute indicates that MemorySanitizer checks (dynamic detection
986 of accesses to uninitialized memory) are enabled for this function.
987``sanitize_thread``
988 This attribute indicates that ThreadSanitizer checks
989 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +0000990``ssp``
991 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000992 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +0000993 placed on the stack before the local variables that's checked upon
994 return from the function to see if it has been overwritten. A
995 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +0000996 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +0000997
Bill Wendling7c8f96a2013-01-23 06:43:53 +0000998 - Character arrays larger than ``ssp-buffer-size`` (default 8).
999 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1000 - Calls to alloca() with variable sizes or constant sizes greater than
1001 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001002
1003 If a function that has an ``ssp`` attribute is inlined into a
1004 function that doesn't have an ``ssp`` attribute, then the resulting
1005 function will have an ``ssp`` attribute.
1006``sspreq``
1007 This attribute indicates that the function should *always* emit a
1008 stack smashing protector. This overrides the ``ssp`` function
1009 attribute.
1010
1011 If a function that has an ``sspreq`` attribute is inlined into a
1012 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001013 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1014 an ``sspreq`` attribute.
1015``sspstrong``
1016 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001017 protector. This attribute causes a strong heuristic to be used when
1018 determining if a function needs stack protectors. The strong heuristic
1019 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001020
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001021 - Arrays of any size and type
1022 - Aggregates containing an array of any size and type.
1023 - Calls to alloca().
1024 - Local variables that have had their address taken.
1025
1026 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001027
1028 If a function that has an ``sspstrong`` attribute is inlined into a
1029 function that doesn't have an ``sspstrong`` attribute, then the
1030 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001031``uwtable``
1032 This attribute indicates that the ABI being targeted requires that
1033 an unwind table entry be produce for this function even if we can
1034 show that no exceptions passes by it. This is normally the case for
1035 the ELF x86-64 abi, but it can be disabled for some compilation
1036 units.
Sean Silvab084af42012-12-07 10:36:55 +00001037
1038.. _moduleasm:
1039
1040Module-Level Inline Assembly
1041----------------------------
1042
1043Modules may contain "module-level inline asm" blocks, which corresponds
1044to the GCC "file scope inline asm" blocks. These blocks are internally
1045concatenated by LLVM and treated as a single unit, but may be separated
1046in the ``.ll`` file if desired. The syntax is very simple:
1047
1048.. code-block:: llvm
1049
1050 module asm "inline asm code goes here"
1051 module asm "more can go here"
1052
1053The strings can contain any character by escaping non-printable
1054characters. The escape sequence used is simply "\\xx" where "xx" is the
1055two digit hex code for the number.
1056
1057The inline asm code is simply printed to the machine code .s file when
1058assembly code is generated.
1059
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001060.. _langref_datalayout:
1061
Sean Silvab084af42012-12-07 10:36:55 +00001062Data Layout
1063-----------
1064
1065A module may specify a target specific data layout string that specifies
1066how data is to be laid out in memory. The syntax for the data layout is
1067simply:
1068
1069.. code-block:: llvm
1070
1071 target datalayout = "layout specification"
1072
1073The *layout specification* consists of a list of specifications
1074separated by the minus sign character ('-'). Each specification starts
1075with a letter and may include other information after the letter to
1076define some aspect of the data layout. The specifications accepted are
1077as follows:
1078
1079``E``
1080 Specifies that the target lays out data in big-endian form. That is,
1081 the bits with the most significance have the lowest address
1082 location.
1083``e``
1084 Specifies that the target lays out data in little-endian form. That
1085 is, the bits with the least significance have the lowest address
1086 location.
1087``S<size>``
1088 Specifies the natural alignment of the stack in bits. Alignment
1089 promotion of stack variables is limited to the natural stack
1090 alignment to avoid dynamic stack realignment. The stack alignment
1091 must be a multiple of 8-bits. If omitted, the natural stack
1092 alignment defaults to "unspecified", which does not prevent any
1093 alignment promotions.
1094``p[n]:<size>:<abi>:<pref>``
1095 This specifies the *size* of a pointer and its ``<abi>`` and
1096 ``<pref>``\erred alignments for address space ``n``. All sizes are in
1097 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
1098 preceding ``:`` should be omitted too. The address space, ``n`` is
1099 optional, and if not specified, denotes the default address space 0.
1100 The value of ``n`` must be in the range [1,2^23).
1101``i<size>:<abi>:<pref>``
1102 This specifies the alignment for an integer type of a given bit
1103 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1104``v<size>:<abi>:<pref>``
1105 This specifies the alignment for a vector type of a given bit
1106 ``<size>``.
1107``f<size>:<abi>:<pref>``
1108 This specifies the alignment for a floating point type of a given bit
1109 ``<size>``. Only values of ``<size>`` that are supported by the target
1110 will work. 32 (float) and 64 (double) are supported on all targets; 80
1111 or 128 (different flavors of long double) are also supported on some
1112 targets.
1113``a<size>:<abi>:<pref>``
1114 This specifies the alignment for an aggregate type of a given bit
1115 ``<size>``.
1116``s<size>:<abi>:<pref>``
1117 This specifies the alignment for a stack object of a given bit
1118 ``<size>``.
1119``n<size1>:<size2>:<size3>...``
1120 This specifies a set of native integer widths for the target CPU in
1121 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1122 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1123 this set are considered to support most general arithmetic operations
1124 efficiently.
1125
1126When constructing the data layout for a given target, LLVM starts with a
1127default set of specifications which are then (possibly) overridden by
1128the specifications in the ``datalayout`` keyword. The default
1129specifications are given in this list:
1130
1131- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001132- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1133- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1134 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001135- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001136- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1137- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1138- ``i16:16:16`` - i16 is 16-bit aligned
1139- ``i32:32:32`` - i32 is 32-bit aligned
1140- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1141 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001142- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001143- ``f32:32:32`` - float is 32-bit aligned
1144- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001145- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001146- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1147- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001148- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001149
1150When LLVM is determining the alignment for a given type, it uses the
1151following rules:
1152
1153#. If the type sought is an exact match for one of the specifications,
1154 that specification is used.
1155#. If no match is found, and the type sought is an integer type, then
1156 the smallest integer type that is larger than the bitwidth of the
1157 sought type is used. If none of the specifications are larger than
1158 the bitwidth then the largest integer type is used. For example,
1159 given the default specifications above, the i7 type will use the
1160 alignment of i8 (next largest) while both i65 and i256 will use the
1161 alignment of i64 (largest specified).
1162#. If no match is found, and the type sought is a vector type, then the
1163 largest vector type that is smaller than the sought vector type will
1164 be used as a fall back. This happens because <128 x double> can be
1165 implemented in terms of 64 <2 x double>, for example.
1166
1167The function of the data layout string may not be what you expect.
1168Notably, this is not a specification from the frontend of what alignment
1169the code generator should use.
1170
1171Instead, if specified, the target data layout is required to match what
1172the ultimate *code generator* expects. This string is used by the
1173mid-level optimizers to improve code, and this only works if it matches
1174what the ultimate code generator uses. If you would like to generate IR
1175that does not embed this target-specific detail into the IR, then you
1176don't have to specify the string. This will disable some optimizations
1177that require precise layout information, but this also prevents those
1178optimizations from introducing target specificity into the IR.
1179
Bill Wendling5cc90842013-10-18 23:41:25 +00001180.. _langref_triple:
1181
1182Target Triple
1183-------------
1184
1185A module may specify a target triple string that describes the target
1186host. The syntax for the target triple is simply:
1187
1188.. code-block:: llvm
1189
1190 target triple = "x86_64-apple-macosx10.7.0"
1191
1192The *target triple* string consists of a series of identifiers delimited
1193by the minus sign character ('-'). The canonical forms are:
1194
1195::
1196
1197 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1198 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1199
1200This information is passed along to the backend so that it generates
1201code for the proper architecture. It's possible to override this on the
1202command line with the ``-mtriple`` command line option.
1203
Sean Silvab084af42012-12-07 10:36:55 +00001204.. _pointeraliasing:
1205
1206Pointer Aliasing Rules
1207----------------------
1208
1209Any memory access must be done through a pointer value associated with
1210an address range of the memory access, otherwise the behavior is
1211undefined. Pointer values are associated with address ranges according
1212to the following rules:
1213
1214- A pointer value is associated with the addresses associated with any
1215 value it is *based* on.
1216- An address of a global variable is associated with the address range
1217 of the variable's storage.
1218- The result value of an allocation instruction is associated with the
1219 address range of the allocated storage.
1220- A null pointer in the default address-space is associated with no
1221 address.
1222- An integer constant other than zero or a pointer value returned from
1223 a function not defined within LLVM may be associated with address
1224 ranges allocated through mechanisms other than those provided by
1225 LLVM. Such ranges shall not overlap with any ranges of addresses
1226 allocated by mechanisms provided by LLVM.
1227
1228A pointer value is *based* on another pointer value according to the
1229following rules:
1230
1231- A pointer value formed from a ``getelementptr`` operation is *based*
1232 on the first operand of the ``getelementptr``.
1233- The result value of a ``bitcast`` is *based* on the operand of the
1234 ``bitcast``.
1235- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1236 values that contribute (directly or indirectly) to the computation of
1237 the pointer's value.
1238- The "*based* on" relationship is transitive.
1239
1240Note that this definition of *"based"* is intentionally similar to the
1241definition of *"based"* in C99, though it is slightly weaker.
1242
1243LLVM IR does not associate types with memory. The result type of a
1244``load`` merely indicates the size and alignment of the memory from
1245which to load, as well as the interpretation of the value. The first
1246operand type of a ``store`` similarly only indicates the size and
1247alignment of the store.
1248
1249Consequently, type-based alias analysis, aka TBAA, aka
1250``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1251:ref:`Metadata <metadata>` may be used to encode additional information
1252which specialized optimization passes may use to implement type-based
1253alias analysis.
1254
1255.. _volatile:
1256
1257Volatile Memory Accesses
1258------------------------
1259
1260Certain memory accesses, such as :ref:`load <i_load>`'s,
1261:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1262marked ``volatile``. The optimizers must not change the number of
1263volatile operations or change their order of execution relative to other
1264volatile operations. The optimizers *may* change the order of volatile
1265operations relative to non-volatile operations. This is not Java's
1266"volatile" and has no cross-thread synchronization behavior.
1267
Andrew Trick89fc5a62013-01-30 21:19:35 +00001268IR-level volatile loads and stores cannot safely be optimized into
1269llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1270flagged volatile. Likewise, the backend should never split or merge
1271target-legal volatile load/store instructions.
1272
Andrew Trick7e6f9282013-01-31 00:49:39 +00001273.. admonition:: Rationale
1274
1275 Platforms may rely on volatile loads and stores of natively supported
1276 data width to be executed as single instruction. For example, in C
1277 this holds for an l-value of volatile primitive type with native
1278 hardware support, but not necessarily for aggregate types. The
1279 frontend upholds these expectations, which are intentionally
1280 unspecified in the IR. The rules above ensure that IR transformation
1281 do not violate the frontend's contract with the language.
1282
Sean Silvab084af42012-12-07 10:36:55 +00001283.. _memmodel:
1284
1285Memory Model for Concurrent Operations
1286--------------------------------------
1287
1288The LLVM IR does not define any way to start parallel threads of
1289execution or to register signal handlers. Nonetheless, there are
1290platform-specific ways to create them, and we define LLVM IR's behavior
1291in their presence. This model is inspired by the C++0x memory model.
1292
1293For a more informal introduction to this model, see the :doc:`Atomics`.
1294
1295We define a *happens-before* partial order as the least partial order
1296that
1297
1298- Is a superset of single-thread program order, and
1299- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1300 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1301 techniques, like pthread locks, thread creation, thread joining,
1302 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1303 Constraints <ordering>`).
1304
1305Note that program order does not introduce *happens-before* edges
1306between a thread and signals executing inside that thread.
1307
1308Every (defined) read operation (load instructions, memcpy, atomic
1309loads/read-modify-writes, etc.) R reads a series of bytes written by
1310(defined) write operations (store instructions, atomic
1311stores/read-modify-writes, memcpy, etc.). For the purposes of this
1312section, initialized globals are considered to have a write of the
1313initializer which is atomic and happens before any other read or write
1314of the memory in question. For each byte of a read R, R\ :sub:`byte`
1315may see any write to the same byte, except:
1316
1317- If write\ :sub:`1` happens before write\ :sub:`2`, and
1318 write\ :sub:`2` happens before R\ :sub:`byte`, then
1319 R\ :sub:`byte` does not see write\ :sub:`1`.
1320- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1321 R\ :sub:`byte` does not see write\ :sub:`3`.
1322
1323Given that definition, R\ :sub:`byte` is defined as follows:
1324
1325- If R is volatile, the result is target-dependent. (Volatile is
1326 supposed to give guarantees which can support ``sig_atomic_t`` in
1327 C/C++, and may be used for accesses to addresses which do not behave
1328 like normal memory. It does not generally provide cross-thread
1329 synchronization.)
1330- Otherwise, if there is no write to the same byte that happens before
1331 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1332- Otherwise, if R\ :sub:`byte` may see exactly one write,
1333 R\ :sub:`byte` returns the value written by that write.
1334- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1335 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1336 Memory Ordering Constraints <ordering>` section for additional
1337 constraints on how the choice is made.
1338- Otherwise R\ :sub:`byte` returns ``undef``.
1339
1340R returns the value composed of the series of bytes it read. This
1341implies that some bytes within the value may be ``undef`` **without**
1342the entire value being ``undef``. Note that this only defines the
1343semantics of the operation; it doesn't mean that targets will emit more
1344than one instruction to read the series of bytes.
1345
1346Note that in cases where none of the atomic intrinsics are used, this
1347model places only one restriction on IR transformations on top of what
1348is required for single-threaded execution: introducing a store to a byte
1349which might not otherwise be stored is not allowed in general.
1350(Specifically, in the case where another thread might write to and read
1351from an address, introducing a store can change a load that may see
1352exactly one write into a load that may see multiple writes.)
1353
1354.. _ordering:
1355
1356Atomic Memory Ordering Constraints
1357----------------------------------
1358
1359Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1360:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1361:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1362an ordering parameter that determines which other atomic instructions on
1363the same address they *synchronize with*. These semantics are borrowed
1364from Java and C++0x, but are somewhat more colloquial. If these
1365descriptions aren't precise enough, check those specs (see spec
1366references in the :doc:`atomics guide <Atomics>`).
1367:ref:`fence <i_fence>` instructions treat these orderings somewhat
1368differently since they don't take an address. See that instruction's
1369documentation for details.
1370
1371For a simpler introduction to the ordering constraints, see the
1372:doc:`Atomics`.
1373
1374``unordered``
1375 The set of values that can be read is governed by the happens-before
1376 partial order. A value cannot be read unless some operation wrote
1377 it. This is intended to provide a guarantee strong enough to model
1378 Java's non-volatile shared variables. This ordering cannot be
1379 specified for read-modify-write operations; it is not strong enough
1380 to make them atomic in any interesting way.
1381``monotonic``
1382 In addition to the guarantees of ``unordered``, there is a single
1383 total order for modifications by ``monotonic`` operations on each
1384 address. All modification orders must be compatible with the
1385 happens-before order. There is no guarantee that the modification
1386 orders can be combined to a global total order for the whole program
1387 (and this often will not be possible). The read in an atomic
1388 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1389 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1390 order immediately before the value it writes. If one atomic read
1391 happens before another atomic read of the same address, the later
1392 read must see the same value or a later value in the address's
1393 modification order. This disallows reordering of ``monotonic`` (or
1394 stronger) operations on the same address. If an address is written
1395 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1396 read that address repeatedly, the other threads must eventually see
1397 the write. This corresponds to the C++0x/C1x
1398 ``memory_order_relaxed``.
1399``acquire``
1400 In addition to the guarantees of ``monotonic``, a
1401 *synchronizes-with* edge may be formed with a ``release`` operation.
1402 This is intended to model C++'s ``memory_order_acquire``.
1403``release``
1404 In addition to the guarantees of ``monotonic``, if this operation
1405 writes a value which is subsequently read by an ``acquire``
1406 operation, it *synchronizes-with* that operation. (This isn't a
1407 complete description; see the C++0x definition of a release
1408 sequence.) This corresponds to the C++0x/C1x
1409 ``memory_order_release``.
1410``acq_rel`` (acquire+release)
1411 Acts as both an ``acquire`` and ``release`` operation on its
1412 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1413``seq_cst`` (sequentially consistent)
1414 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1415 operation which only reads, ``release`` for an operation which only
1416 writes), there is a global total order on all
1417 sequentially-consistent operations on all addresses, which is
1418 consistent with the *happens-before* partial order and with the
1419 modification orders of all the affected addresses. Each
1420 sequentially-consistent read sees the last preceding write to the
1421 same address in this global order. This corresponds to the C++0x/C1x
1422 ``memory_order_seq_cst`` and Java volatile.
1423
1424.. _singlethread:
1425
1426If an atomic operation is marked ``singlethread``, it only *synchronizes
1427with* or participates in modification and seq\_cst total orderings with
1428other operations running in the same thread (for example, in signal
1429handlers).
1430
1431.. _fastmath:
1432
1433Fast-Math Flags
1434---------------
1435
1436LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1437:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1438:ref:`frem <i_frem>`) have the following flags that can set to enable
1439otherwise unsafe floating point operations
1440
1441``nnan``
1442 No NaNs - Allow optimizations to assume the arguments and result are not
1443 NaN. Such optimizations are required to retain defined behavior over
1444 NaNs, but the value of the result is undefined.
1445
1446``ninf``
1447 No Infs - Allow optimizations to assume the arguments and result are not
1448 +/-Inf. Such optimizations are required to retain defined behavior over
1449 +/-Inf, but the value of the result is undefined.
1450
1451``nsz``
1452 No Signed Zeros - Allow optimizations to treat the sign of a zero
1453 argument or result as insignificant.
1454
1455``arcp``
1456 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1457 argument rather than perform division.
1458
1459``fast``
1460 Fast - Allow algebraically equivalent transformations that may
1461 dramatically change results in floating point (e.g. reassociate). This
1462 flag implies all the others.
1463
1464.. _typesystem:
1465
1466Type System
1467===========
1468
1469The LLVM type system is one of the most important features of the
1470intermediate representation. Being typed enables a number of
1471optimizations to be performed on the intermediate representation
1472directly, without having to do extra analyses on the side before the
1473transformation. A strong type system makes it easier to read the
1474generated code and enables novel analyses and transformations that are
1475not feasible to perform on normal three address code representations.
1476
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001477.. _typeclassifications:
1478
Sean Silvab084af42012-12-07 10:36:55 +00001479Type Classifications
1480--------------------
1481
1482The types fall into a few useful classifications:
1483
1484
1485.. list-table::
1486 :header-rows: 1
1487
1488 * - Classification
1489 - Types
1490
1491 * - :ref:`integer <t_integer>`
1492 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1493 ``i64``, ...
1494
1495 * - :ref:`floating point <t_floating>`
1496 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1497 ``ppc_fp128``
1498
1499
1500 * - first class
1501
1502 .. _t_firstclass:
1503
1504 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1505 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1506 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1507 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1508
1509 * - :ref:`primitive <t_primitive>`
1510 - :ref:`label <t_label>`,
1511 :ref:`void <t_void>`,
1512 :ref:`integer <t_integer>`,
1513 :ref:`floating point <t_floating>`,
1514 :ref:`x86mmx <t_x86mmx>`,
1515 :ref:`metadata <t_metadata>`.
1516
1517 * - :ref:`derived <t_derived>`
1518 - :ref:`array <t_array>`,
1519 :ref:`function <t_function>`,
1520 :ref:`pointer <t_pointer>`,
1521 :ref:`structure <t_struct>`,
1522 :ref:`vector <t_vector>`,
1523 :ref:`opaque <t_opaque>`.
1524
1525The :ref:`first class <t_firstclass>` types are perhaps the most important.
1526Values of these types are the only ones which can be produced by
1527instructions.
1528
1529.. _t_primitive:
1530
1531Primitive Types
1532---------------
1533
1534The primitive types are the fundamental building blocks of the LLVM
1535system.
1536
1537.. _t_integer:
1538
1539Integer Type
1540^^^^^^^^^^^^
1541
1542Overview:
1543"""""""""
1544
1545The integer type is a very simple type that simply specifies an
1546arbitrary bit width for the integer type desired. Any bit width from 1
1547bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1548
1549Syntax:
1550"""""""
1551
1552::
1553
1554 iN
1555
1556The number of bits the integer will occupy is specified by the ``N``
1557value.
1558
1559Examples:
1560"""""""""
1561
1562+----------------+------------------------------------------------+
1563| ``i1`` | a single-bit integer. |
1564+----------------+------------------------------------------------+
1565| ``i32`` | a 32-bit integer. |
1566+----------------+------------------------------------------------+
1567| ``i1942652`` | a really big integer of over 1 million bits. |
1568+----------------+------------------------------------------------+
1569
1570.. _t_floating:
1571
1572Floating Point Types
1573^^^^^^^^^^^^^^^^^^^^
1574
1575.. list-table::
1576 :header-rows: 1
1577
1578 * - Type
1579 - Description
1580
1581 * - ``half``
1582 - 16-bit floating point value
1583
1584 * - ``float``
1585 - 32-bit floating point value
1586
1587 * - ``double``
1588 - 64-bit floating point value
1589
1590 * - ``fp128``
1591 - 128-bit floating point value (112-bit mantissa)
1592
1593 * - ``x86_fp80``
1594 - 80-bit floating point value (X87)
1595
1596 * - ``ppc_fp128``
1597 - 128-bit floating point value (two 64-bits)
1598
1599.. _t_x86mmx:
1600
1601X86mmx Type
1602^^^^^^^^^^^
1603
1604Overview:
1605"""""""""
1606
1607The x86mmx type represents a value held in an MMX register on an x86
1608machine. The operations allowed on it are quite limited: parameters and
1609return values, load and store, and bitcast. User-specified MMX
1610instructions are represented as intrinsic or asm calls with arguments
1611and/or results of this type. There are no arrays, vectors or constants
1612of this type.
1613
1614Syntax:
1615"""""""
1616
1617::
1618
1619 x86mmx
1620
1621.. _t_void:
1622
1623Void Type
1624^^^^^^^^^
1625
1626Overview:
1627"""""""""
1628
1629The void type does not represent any value and has no size.
1630
1631Syntax:
1632"""""""
1633
1634::
1635
1636 void
1637
1638.. _t_label:
1639
1640Label Type
1641^^^^^^^^^^
1642
1643Overview:
1644"""""""""
1645
1646The label type represents code labels.
1647
1648Syntax:
1649"""""""
1650
1651::
1652
1653 label
1654
1655.. _t_metadata:
1656
1657Metadata Type
1658^^^^^^^^^^^^^
1659
1660Overview:
1661"""""""""
1662
1663The metadata type represents embedded metadata. No derived types may be
1664created from metadata except for :ref:`function <t_function>` arguments.
1665
1666Syntax:
1667"""""""
1668
1669::
1670
1671 metadata
1672
1673.. _t_derived:
1674
1675Derived Types
1676-------------
1677
1678The real power in LLVM comes from the derived types in the system. This
1679is what allows a programmer to represent arrays, functions, pointers,
1680and other useful types. Each of these types contain one or more element
1681types which may be a primitive type, or another derived type. For
1682example, it is possible to have a two dimensional array, using an array
1683as the element type of another array.
1684
1685.. _t_aggregate:
1686
1687Aggregate Types
1688^^^^^^^^^^^^^^^
1689
1690Aggregate Types are a subset of derived types that can contain multiple
1691member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1692aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1693aggregate types.
1694
1695.. _t_array:
1696
1697Array Type
1698^^^^^^^^^^
1699
1700Overview:
1701"""""""""
1702
1703The array type is a very simple derived type that arranges elements
1704sequentially in memory. The array type requires a size (number of
1705elements) and an underlying data type.
1706
1707Syntax:
1708"""""""
1709
1710::
1711
1712 [<# elements> x <elementtype>]
1713
1714The number of elements is a constant integer value; ``elementtype`` may
1715be any type with a size.
1716
1717Examples:
1718"""""""""
1719
1720+------------------+--------------------------------------+
1721| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1722+------------------+--------------------------------------+
1723| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1724+------------------+--------------------------------------+
1725| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1726+------------------+--------------------------------------+
1727
1728Here are some examples of multidimensional arrays:
1729
1730+-----------------------------+----------------------------------------------------------+
1731| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1732+-----------------------------+----------------------------------------------------------+
1733| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1734+-----------------------------+----------------------------------------------------------+
1735| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1736+-----------------------------+----------------------------------------------------------+
1737
1738There is no restriction on indexing beyond the end of the array implied
1739by a static type (though there are restrictions on indexing beyond the
1740bounds of an allocated object in some cases). This means that
1741single-dimension 'variable sized array' addressing can be implemented in
1742LLVM with a zero length array type. An implementation of 'pascal style
1743arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1744example.
1745
1746.. _t_function:
1747
1748Function Type
1749^^^^^^^^^^^^^
1750
1751Overview:
1752"""""""""
1753
Bill Wendlinge9d5c482013-10-27 04:19:29 +00001754The function type can be thought of as a function signature. It consists of a
1755return type and a list of formal parameter types. The return type of a function
1756type is a void type or first class type --- except for :ref:`label <t_label>`
1757and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001758
1759Syntax:
1760"""""""
1761
1762::
1763
1764 <returntype> (<parameter list>)
1765
1766...where '``<parameter list>``' is a comma-separated list of type
Bill Wendlinge9d5c482013-10-27 04:19:29 +00001767specifiers. Optionally, the parameter list may include a type ``...``, which
1768indicates that the function takes a variable number of arguments. Variable
1769argument functions can access their arguments with the :ref:`variable argument
1770handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1771except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001772
1773Examples:
1774"""""""""
1775
1776+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1777| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1778+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001779| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvab084af42012-12-07 10:36:55 +00001780+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1781| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1782+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1783| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1784+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1785
1786.. _t_struct:
1787
1788Structure Type
1789^^^^^^^^^^^^^^
1790
1791Overview:
1792"""""""""
1793
1794The structure type is used to represent a collection of data members
1795together in memory. The elements of a structure may be any type that has
1796a size.
1797
1798Structures in memory are accessed using '``load``' and '``store``' by
1799getting a pointer to a field with the '``getelementptr``' instruction.
1800Structures in registers are accessed using the '``extractvalue``' and
1801'``insertvalue``' instructions.
1802
1803Structures may optionally be "packed" structures, which indicate that
1804the alignment of the struct is one byte, and that there is no padding
1805between the elements. In non-packed structs, padding between field types
1806is inserted as defined by the DataLayout string in the module, which is
1807required to match what the underlying code generator expects.
1808
1809Structures can either be "literal" or "identified". A literal structure
1810is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1811identified types are always defined at the top level with a name.
1812Literal types are uniqued by their contents and can never be recursive
1813or opaque since there is no way to write one. Identified types can be
1814recursive, can be opaqued, and are never uniqued.
1815
1816Syntax:
1817"""""""
1818
1819::
1820
1821 %T1 = type { <type list> } ; Identified normal struct type
1822 %T2 = type <{ <type list> }> ; Identified packed struct type
1823
1824Examples:
1825"""""""""
1826
1827+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1828| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1829+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001830| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001831+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1832| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1833+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1834
1835.. _t_opaque:
1836
1837Opaque Structure Types
1838^^^^^^^^^^^^^^^^^^^^^^
1839
1840Overview:
1841"""""""""
1842
1843Opaque structure types are used to represent named structure types that
1844do not have a body specified. This corresponds (for example) to the C
1845notion of a forward declared structure.
1846
1847Syntax:
1848"""""""
1849
1850::
1851
1852 %X = type opaque
1853 %52 = type opaque
1854
1855Examples:
1856"""""""""
1857
1858+--------------+-------------------+
1859| ``opaque`` | An opaque type. |
1860+--------------+-------------------+
1861
1862.. _t_pointer:
1863
1864Pointer Type
1865^^^^^^^^^^^^
1866
1867Overview:
1868"""""""""
1869
1870The pointer type is used to specify memory locations. Pointers are
1871commonly used to reference objects in memory.
1872
1873Pointer types may have an optional address space attribute defining the
1874numbered address space where the pointed-to object resides. The default
1875address space is number zero. The semantics of non-zero address spaces
1876are target-specific.
1877
1878Note that LLVM does not permit pointers to void (``void*``) nor does it
1879permit pointers to labels (``label*``). Use ``i8*`` instead.
1880
1881Syntax:
1882"""""""
1883
1884::
1885
1886 <type> *
1887
1888Examples:
1889"""""""""
1890
1891+-------------------------+--------------------------------------------------------------------------------------------------------------+
1892| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1893+-------------------------+--------------------------------------------------------------------------------------------------------------+
1894| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1895+-------------------------+--------------------------------------------------------------------------------------------------------------+
1896| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1897+-------------------------+--------------------------------------------------------------------------------------------------------------+
1898
1899.. _t_vector:
1900
1901Vector Type
1902^^^^^^^^^^^
1903
1904Overview:
1905"""""""""
1906
1907A vector type is a simple derived type that represents a vector of
1908elements. Vector types are used when multiple primitive data are
1909operated in parallel using a single instruction (SIMD). A vector type
1910requires a size (number of elements) and an underlying primitive data
1911type. Vector types are considered :ref:`first class <t_firstclass>`.
1912
1913Syntax:
1914"""""""
1915
1916::
1917
1918 < <# elements> x <elementtype> >
1919
1920The number of elements is a constant integer value larger than 0;
1921elementtype may be any integer or floating point type, or a pointer to
1922these types. Vectors of size zero are not allowed.
1923
1924Examples:
1925"""""""""
1926
1927+-------------------+--------------------------------------------------+
1928| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1929+-------------------+--------------------------------------------------+
1930| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1931+-------------------+--------------------------------------------------+
1932| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1933+-------------------+--------------------------------------------------+
1934| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1935+-------------------+--------------------------------------------------+
1936
1937Constants
1938=========
1939
1940LLVM has several different basic types of constants. This section
1941describes them all and their syntax.
1942
1943Simple Constants
1944----------------
1945
1946**Boolean constants**
1947 The two strings '``true``' and '``false``' are both valid constants
1948 of the ``i1`` type.
1949**Integer constants**
1950 Standard integers (such as '4') are constants of the
1951 :ref:`integer <t_integer>` type. Negative numbers may be used with
1952 integer types.
1953**Floating point constants**
1954 Floating point constants use standard decimal notation (e.g.
1955 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1956 hexadecimal notation (see below). The assembler requires the exact
1957 decimal value of a floating-point constant. For example, the
1958 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1959 decimal in binary. Floating point constants must have a :ref:`floating
1960 point <t_floating>` type.
1961**Null pointer constants**
1962 The identifier '``null``' is recognized as a null pointer constant
1963 and must be of :ref:`pointer type <t_pointer>`.
1964
1965The one non-intuitive notation for constants is the hexadecimal form of
1966floating point constants. For example, the form
1967'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1968than) '``double 4.5e+15``'. The only time hexadecimal floating point
1969constants are required (and the only time that they are generated by the
1970disassembler) is when a floating point constant must be emitted but it
1971cannot be represented as a decimal floating point number in a reasonable
1972number of digits. For example, NaN's, infinities, and other special
1973values are represented in their IEEE hexadecimal format so that assembly
1974and disassembly do not cause any bits to change in the constants.
1975
1976When using the hexadecimal form, constants of types half, float, and
1977double are represented using the 16-digit form shown above (which
1978matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00001979must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00001980precision, respectively. Hexadecimal format is always used for long
1981double, and there are three forms of long double. The 80-bit format used
1982by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1983128-bit format used by PowerPC (two adjacent doubles) is represented by
1984``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00001985represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1986will only work if they match the long double format on your target.
1987The IEEE 16-bit format (half precision) is represented by ``0xH``
1988followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1989(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00001990
1991There are no constants of type x86mmx.
1992
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001993.. _complexconstants:
1994
Sean Silvab084af42012-12-07 10:36:55 +00001995Complex Constants
1996-----------------
1997
1998Complex constants are a (potentially recursive) combination of simple
1999constants and smaller complex constants.
2000
2001**Structure constants**
2002 Structure constants are represented with notation similar to
2003 structure type definitions (a comma separated list of elements,
2004 surrounded by braces (``{}``)). For example:
2005 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2006 "``@G = external global i32``". Structure constants must have
2007 :ref:`structure type <t_struct>`, and the number and types of elements
2008 must match those specified by the type.
2009**Array constants**
2010 Array constants are represented with notation similar to array type
2011 definitions (a comma separated list of elements, surrounded by
2012 square brackets (``[]``)). For example:
2013 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2014 :ref:`array type <t_array>`, and the number and types of elements must
2015 match those specified by the type.
2016**Vector constants**
2017 Vector constants are represented with notation similar to vector
2018 type definitions (a comma separated list of elements, surrounded by
2019 less-than/greater-than's (``<>``)). For example:
2020 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2021 must have :ref:`vector type <t_vector>`, and the number and types of
2022 elements must match those specified by the type.
2023**Zero initialization**
2024 The string '``zeroinitializer``' can be used to zero initialize a
2025 value to zero of *any* type, including scalar and
2026 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2027 having to print large zero initializers (e.g. for large arrays) and
2028 is always exactly equivalent to using explicit zero initializers.
2029**Metadata node**
2030 A metadata node is a structure-like constant with :ref:`metadata
2031 type <t_metadata>`. For example:
2032 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2033 constants that are meant to be interpreted as part of the
2034 instruction stream, metadata is a place to attach additional
2035 information such as debug info.
2036
2037Global Variable and Function Addresses
2038--------------------------------------
2039
2040The addresses of :ref:`global variables <globalvars>` and
2041:ref:`functions <functionstructure>` are always implicitly valid
2042(link-time) constants. These constants are explicitly referenced when
2043the :ref:`identifier for the global <identifiers>` is used and always have
2044:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2045file:
2046
2047.. code-block:: llvm
2048
2049 @X = global i32 17
2050 @Y = global i32 42
2051 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2052
2053.. _undefvalues:
2054
2055Undefined Values
2056----------------
2057
2058The string '``undef``' can be used anywhere a constant is expected, and
2059indicates that the user of the value may receive an unspecified
2060bit-pattern. Undefined values may be of any type (other than '``label``'
2061or '``void``') and be used anywhere a constant is permitted.
2062
2063Undefined values are useful because they indicate to the compiler that
2064the program is well defined no matter what value is used. This gives the
2065compiler more freedom to optimize. Here are some examples of
2066(potentially surprising) transformations that are valid (in pseudo IR):
2067
2068.. code-block:: llvm
2069
2070 %A = add %X, undef
2071 %B = sub %X, undef
2072 %C = xor %X, undef
2073 Safe:
2074 %A = undef
2075 %B = undef
2076 %C = undef
2077
2078This is safe because all of the output bits are affected by the undef
2079bits. Any output bit can have a zero or one depending on the input bits.
2080
2081.. code-block:: llvm
2082
2083 %A = or %X, undef
2084 %B = and %X, undef
2085 Safe:
2086 %A = -1
2087 %B = 0
2088 Unsafe:
2089 %A = undef
2090 %B = undef
2091
2092These logical operations have bits that are not always affected by the
2093input. For example, if ``%X`` has a zero bit, then the output of the
2094'``and``' operation will always be a zero for that bit, no matter what
2095the corresponding bit from the '``undef``' is. As such, it is unsafe to
2096optimize or assume that the result of the '``and``' is '``undef``'.
2097However, it is safe to assume that all bits of the '``undef``' could be
20980, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2099all the bits of the '``undef``' operand to the '``or``' could be set,
2100allowing the '``or``' to be folded to -1.
2101
2102.. code-block:: llvm
2103
2104 %A = select undef, %X, %Y
2105 %B = select undef, 42, %Y
2106 %C = select %X, %Y, undef
2107 Safe:
2108 %A = %X (or %Y)
2109 %B = 42 (or %Y)
2110 %C = %Y
2111 Unsafe:
2112 %A = undef
2113 %B = undef
2114 %C = undef
2115
2116This set of examples shows that undefined '``select``' (and conditional
2117branch) conditions can go *either way*, but they have to come from one
2118of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2119both known to have a clear low bit, then ``%A`` would have to have a
2120cleared low bit. However, in the ``%C`` example, the optimizer is
2121allowed to assume that the '``undef``' operand could be the same as
2122``%Y``, allowing the whole '``select``' to be eliminated.
2123
2124.. code-block:: llvm
2125
2126 %A = xor undef, undef
2127
2128 %B = undef
2129 %C = xor %B, %B
2130
2131 %D = undef
2132 %E = icmp lt %D, 4
2133 %F = icmp gte %D, 4
2134
2135 Safe:
2136 %A = undef
2137 %B = undef
2138 %C = undef
2139 %D = undef
2140 %E = undef
2141 %F = undef
2142
2143This example points out that two '``undef``' operands are not
2144necessarily the same. This can be surprising to people (and also matches
2145C semantics) where they assume that "``X^X``" is always zero, even if
2146``X`` is undefined. This isn't true for a number of reasons, but the
2147short answer is that an '``undef``' "variable" can arbitrarily change
2148its value over its "live range". This is true because the variable
2149doesn't actually *have a live range*. Instead, the value is logically
2150read from arbitrary registers that happen to be around when needed, so
2151the value is not necessarily consistent over time. In fact, ``%A`` and
2152``%C`` need to have the same semantics or the core LLVM "replace all
2153uses with" concept would not hold.
2154
2155.. code-block:: llvm
2156
2157 %A = fdiv undef, %X
2158 %B = fdiv %X, undef
2159 Safe:
2160 %A = undef
2161 b: unreachable
2162
2163These examples show the crucial difference between an *undefined value*
2164and *undefined behavior*. An undefined value (like '``undef``') is
2165allowed to have an arbitrary bit-pattern. This means that the ``%A``
2166operation can be constant folded to '``undef``', because the '``undef``'
2167could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2168However, in the second example, we can make a more aggressive
2169assumption: because the ``undef`` is allowed to be an arbitrary value,
2170we are allowed to assume that it could be zero. Since a divide by zero
2171has *undefined behavior*, we are allowed to assume that the operation
2172does not execute at all. This allows us to delete the divide and all
2173code after it. Because the undefined operation "can't happen", the
2174optimizer can assume that it occurs in dead code.
2175
2176.. code-block:: llvm
2177
2178 a: store undef -> %X
2179 b: store %X -> undef
2180 Safe:
2181 a: <deleted>
2182 b: unreachable
2183
2184These examples reiterate the ``fdiv`` example: a store *of* an undefined
2185value can be assumed to not have any effect; we can assume that the
2186value is overwritten with bits that happen to match what was already
2187there. However, a store *to* an undefined location could clobber
2188arbitrary memory, therefore, it has undefined behavior.
2189
2190.. _poisonvalues:
2191
2192Poison Values
2193-------------
2194
2195Poison values are similar to :ref:`undef values <undefvalues>`, however
2196they also represent the fact that an instruction or constant expression
2197which cannot evoke side effects has nevertheless detected a condition
2198which results in undefined behavior.
2199
2200There is currently no way of representing a poison value in the IR; they
2201only exist when produced by operations such as :ref:`add <i_add>` with
2202the ``nsw`` flag.
2203
2204Poison value behavior is defined in terms of value *dependence*:
2205
2206- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2207- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2208 their dynamic predecessor basic block.
2209- Function arguments depend on the corresponding actual argument values
2210 in the dynamic callers of their functions.
2211- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2212 instructions that dynamically transfer control back to them.
2213- :ref:`Invoke <i_invoke>` instructions depend on the
2214 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2215 call instructions that dynamically transfer control back to them.
2216- Non-volatile loads and stores depend on the most recent stores to all
2217 of the referenced memory addresses, following the order in the IR
2218 (including loads and stores implied by intrinsics such as
2219 :ref:`@llvm.memcpy <int_memcpy>`.)
2220- An instruction with externally visible side effects depends on the
2221 most recent preceding instruction with externally visible side
2222 effects, following the order in the IR. (This includes :ref:`volatile
2223 operations <volatile>`.)
2224- An instruction *control-depends* on a :ref:`terminator
2225 instruction <terminators>` if the terminator instruction has
2226 multiple successors and the instruction is always executed when
2227 control transfers to one of the successors, and may not be executed
2228 when control is transferred to another.
2229- Additionally, an instruction also *control-depends* on a terminator
2230 instruction if the set of instructions it otherwise depends on would
2231 be different if the terminator had transferred control to a different
2232 successor.
2233- Dependence is transitive.
2234
2235Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2236with the additional affect that any instruction which has a *dependence*
2237on a poison value has undefined behavior.
2238
2239Here are some examples:
2240
2241.. code-block:: llvm
2242
2243 entry:
2244 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2245 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2246 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2247 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2248
2249 store i32 %poison, i32* @g ; Poison value stored to memory.
2250 %poison2 = load i32* @g ; Poison value loaded back from memory.
2251
2252 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2253
2254 %narrowaddr = bitcast i32* @g to i16*
2255 %wideaddr = bitcast i32* @g to i64*
2256 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2257 %poison4 = load i64* %wideaddr ; Returns a poison value.
2258
2259 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2260 br i1 %cmp, label %true, label %end ; Branch to either destination.
2261
2262 true:
2263 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2264 ; it has undefined behavior.
2265 br label %end
2266
2267 end:
2268 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2269 ; Both edges into this PHI are
2270 ; control-dependent on %cmp, so this
2271 ; always results in a poison value.
2272
2273 store volatile i32 0, i32* @g ; This would depend on the store in %true
2274 ; if %cmp is true, or the store in %entry
2275 ; otherwise, so this is undefined behavior.
2276
2277 br i1 %cmp, label %second_true, label %second_end
2278 ; The same branch again, but this time the
2279 ; true block doesn't have side effects.
2280
2281 second_true:
2282 ; No side effects!
2283 ret void
2284
2285 second_end:
2286 store volatile i32 0, i32* @g ; This time, the instruction always depends
2287 ; on the store in %end. Also, it is
2288 ; control-equivalent to %end, so this is
2289 ; well-defined (ignoring earlier undefined
2290 ; behavior in this example).
2291
2292.. _blockaddress:
2293
2294Addresses of Basic Blocks
2295-------------------------
2296
2297``blockaddress(@function, %block)``
2298
2299The '``blockaddress``' constant computes the address of the specified
2300basic block in the specified function, and always has an ``i8*`` type.
2301Taking the address of the entry block is illegal.
2302
2303This value only has defined behavior when used as an operand to the
2304':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2305against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002306undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002307no label is equal to the null pointer. This may be passed around as an
2308opaque pointer sized value as long as the bits are not inspected. This
2309allows ``ptrtoint`` and arithmetic to be performed on these values so
2310long as the original value is reconstituted before the ``indirectbr``
2311instruction.
2312
2313Finally, some targets may provide defined semantics when using the value
2314as the operand to an inline assembly, but that is target specific.
2315
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002316.. _constantexprs:
2317
Sean Silvab084af42012-12-07 10:36:55 +00002318Constant Expressions
2319--------------------
2320
2321Constant expressions are used to allow expressions involving other
2322constants to be used as constants. Constant expressions may be of any
2323:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2324that does not have side effects (e.g. load and call are not supported).
2325The following is the syntax for constant expressions:
2326
2327``trunc (CST to TYPE)``
2328 Truncate a constant to another type. The bit size of CST must be
2329 larger than the bit size of TYPE. Both types must be integers.
2330``zext (CST to TYPE)``
2331 Zero extend a constant to another type. The bit size of CST must be
2332 smaller than the bit size of TYPE. Both types must be integers.
2333``sext (CST to TYPE)``
2334 Sign extend a constant to another type. The bit size of CST must be
2335 smaller than the bit size of TYPE. Both types must be integers.
2336``fptrunc (CST to TYPE)``
2337 Truncate a floating point constant to another floating point type.
2338 The size of CST must be larger than the size of TYPE. Both types
2339 must be floating point.
2340``fpext (CST to TYPE)``
2341 Floating point extend a constant to another type. The size of CST
2342 must be smaller or equal to the size of TYPE. Both types must be
2343 floating point.
2344``fptoui (CST to TYPE)``
2345 Convert a floating point constant to the corresponding unsigned
2346 integer constant. TYPE must be a scalar or vector integer type. CST
2347 must be of scalar or vector floating point type. Both CST and TYPE
2348 must be scalars, or vectors of the same number of elements. If the
2349 value won't fit in the integer type, the results are undefined.
2350``fptosi (CST to TYPE)``
2351 Convert a floating point constant to the corresponding signed
2352 integer constant. TYPE must be a scalar or vector integer type. CST
2353 must be of scalar or vector floating point type. Both CST and TYPE
2354 must be scalars, or vectors of the same number of elements. If the
2355 value won't fit in the integer type, the results are undefined.
2356``uitofp (CST to TYPE)``
2357 Convert an unsigned integer constant to the corresponding floating
2358 point constant. TYPE must be a scalar or vector floating point type.
2359 CST must be of scalar or vector integer type. Both CST and TYPE must
2360 be scalars, or vectors of the same number of elements. If the value
2361 won't fit in the floating point type, the results are undefined.
2362``sitofp (CST to TYPE)``
2363 Convert a signed integer constant to the corresponding floating
2364 point constant. TYPE must be a scalar or vector floating point type.
2365 CST must be of scalar or vector integer type. Both CST and TYPE must
2366 be scalars, or vectors of the same number of elements. If the value
2367 won't fit in the floating point type, the results are undefined.
2368``ptrtoint (CST to TYPE)``
2369 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002370 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002371 pointer type. The ``CST`` value is zero extended, truncated, or
2372 unchanged to make it fit in ``TYPE``.
2373``inttoptr (CST to TYPE)``
2374 Convert an integer constant to a pointer constant. TYPE must be a
2375 pointer type. CST must be of integer type. The CST value is zero
2376 extended, truncated, or unchanged to make it fit in a pointer size.
2377 This one is *really* dangerous!
2378``bitcast (CST to TYPE)``
2379 Convert a constant, CST, to another TYPE. The constraints of the
2380 operands are the same as those for the :ref:`bitcast
2381 instruction <i_bitcast>`.
2382``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2383 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2384 constants. As with the :ref:`getelementptr <i_getelementptr>`
2385 instruction, the index list may have zero or more indexes, which are
2386 required to make sense for the type of "CSTPTR".
2387``select (COND, VAL1, VAL2)``
2388 Perform the :ref:`select operation <i_select>` on constants.
2389``icmp COND (VAL1, VAL2)``
2390 Performs the :ref:`icmp operation <i_icmp>` on constants.
2391``fcmp COND (VAL1, VAL2)``
2392 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2393``extractelement (VAL, IDX)``
2394 Perform the :ref:`extractelement operation <i_extractelement>` on
2395 constants.
2396``insertelement (VAL, ELT, IDX)``
2397 Perform the :ref:`insertelement operation <i_insertelement>` on
2398 constants.
2399``shufflevector (VEC1, VEC2, IDXMASK)``
2400 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2401 constants.
2402``extractvalue (VAL, IDX0, IDX1, ...)``
2403 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2404 constants. The index list is interpreted in a similar manner as
2405 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2406 least one index value must be specified.
2407``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2408 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2409 The index list is interpreted in a similar manner as indices in a
2410 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2411 value must be specified.
2412``OPCODE (LHS, RHS)``
2413 Perform the specified operation of the LHS and RHS constants. OPCODE
2414 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2415 binary <bitwiseops>` operations. The constraints on operands are
2416 the same as those for the corresponding instruction (e.g. no bitwise
2417 operations on floating point values are allowed).
2418
2419Other Values
2420============
2421
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002422.. _inlineasmexprs:
2423
Sean Silvab084af42012-12-07 10:36:55 +00002424Inline Assembler Expressions
2425----------------------------
2426
2427LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2428Inline Assembly <moduleasm>`) through the use of a special value. This
2429value represents the inline assembler as a string (containing the
2430instructions to emit), a list of operand constraints (stored as a
2431string), a flag that indicates whether or not the inline asm expression
2432has side effects, and a flag indicating whether the function containing
2433the asm needs to align its stack conservatively. An example inline
2434assembler expression is:
2435
2436.. code-block:: llvm
2437
2438 i32 (i32) asm "bswap $0", "=r,r"
2439
2440Inline assembler expressions may **only** be used as the callee operand
2441of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2442Thus, typically we have:
2443
2444.. code-block:: llvm
2445
2446 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2447
2448Inline asms with side effects not visible in the constraint list must be
2449marked as having side effects. This is done through the use of the
2450'``sideeffect``' keyword, like so:
2451
2452.. code-block:: llvm
2453
2454 call void asm sideeffect "eieio", ""()
2455
2456In some cases inline asms will contain code that will not work unless
2457the stack is aligned in some way, such as calls or SSE instructions on
2458x86, yet will not contain code that does that alignment within the asm.
2459The compiler should make conservative assumptions about what the asm
2460might contain and should generate its usual stack alignment code in the
2461prologue if the '``alignstack``' keyword is present:
2462
2463.. code-block:: llvm
2464
2465 call void asm alignstack "eieio", ""()
2466
2467Inline asms also support using non-standard assembly dialects. The
2468assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2469the inline asm is using the Intel dialect. Currently, ATT and Intel are
2470the only supported dialects. An example is:
2471
2472.. code-block:: llvm
2473
2474 call void asm inteldialect "eieio", ""()
2475
2476If multiple keywords appear the '``sideeffect``' keyword must come
2477first, the '``alignstack``' keyword second and the '``inteldialect``'
2478keyword last.
2479
2480Inline Asm Metadata
2481^^^^^^^^^^^^^^^^^^^
2482
2483The call instructions that wrap inline asm nodes may have a
2484"``!srcloc``" MDNode attached to it that contains a list of constant
2485integers. If present, the code generator will use the integer as the
2486location cookie value when report errors through the ``LLVMContext``
2487error reporting mechanisms. This allows a front-end to correlate backend
2488errors that occur with inline asm back to the source code that produced
2489it. For example:
2490
2491.. code-block:: llvm
2492
2493 call void asm sideeffect "something bad", ""(), !srcloc !42
2494 ...
2495 !42 = !{ i32 1234567 }
2496
2497It is up to the front-end to make sense of the magic numbers it places
2498in the IR. If the MDNode contains multiple constants, the code generator
2499will use the one that corresponds to the line of the asm that the error
2500occurs on.
2501
2502.. _metadata:
2503
2504Metadata Nodes and Metadata Strings
2505-----------------------------------
2506
2507LLVM IR allows metadata to be attached to instructions in the program
2508that can convey extra information about the code to the optimizers and
2509code generator. One example application of metadata is source-level
2510debug information. There are two metadata primitives: strings and nodes.
2511All metadata has the ``metadata`` type and is identified in syntax by a
2512preceding exclamation point ('``!``').
2513
2514A metadata string is a string surrounded by double quotes. It can
2515contain any character by escaping non-printable characters with
2516"``\xx``" where "``xx``" is the two digit hex code. For example:
2517"``!"test\00"``".
2518
2519Metadata nodes are represented with notation similar to structure
2520constants (a comma separated list of elements, surrounded by braces and
2521preceded by an exclamation point). Metadata nodes can have any values as
2522their operand. For example:
2523
2524.. code-block:: llvm
2525
2526 !{ metadata !"test\00", i32 10}
2527
2528A :ref:`named metadata <namedmetadatastructure>` is a collection of
2529metadata nodes, which can be looked up in the module symbol table. For
2530example:
2531
2532.. code-block:: llvm
2533
2534 !foo = metadata !{!4, !3}
2535
2536Metadata can be used as function arguments. Here ``llvm.dbg.value``
2537function is using two metadata arguments:
2538
2539.. code-block:: llvm
2540
2541 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2542
2543Metadata can be attached with an instruction. Here metadata ``!21`` is
2544attached to the ``add`` instruction using the ``!dbg`` identifier:
2545
2546.. code-block:: llvm
2547
2548 %indvar.next = add i64 %indvar, 1, !dbg !21
2549
2550More information about specific metadata nodes recognized by the
2551optimizers and code generator is found below.
2552
2553'``tbaa``' Metadata
2554^^^^^^^^^^^^^^^^^^^
2555
2556In LLVM IR, memory does not have types, so LLVM's own type system is not
2557suitable for doing TBAA. Instead, metadata is added to the IR to
2558describe a type system of a higher level language. This can be used to
2559implement typical C/C++ TBAA, but it can also be used to implement
2560custom alias analysis behavior for other languages.
2561
2562The current metadata format is very simple. TBAA metadata nodes have up
2563to three fields, e.g.:
2564
2565.. code-block:: llvm
2566
2567 !0 = metadata !{ metadata !"an example type tree" }
2568 !1 = metadata !{ metadata !"int", metadata !0 }
2569 !2 = metadata !{ metadata !"float", metadata !0 }
2570 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2571
2572The first field is an identity field. It can be any value, usually a
2573metadata string, which uniquely identifies the type. The most important
2574name in the tree is the name of the root node. Two trees with different
2575root node names are entirely disjoint, even if they have leaves with
2576common names.
2577
2578The second field identifies the type's parent node in the tree, or is
2579null or omitted for a root node. A type is considered to alias all of
2580its descendants and all of its ancestors in the tree. Also, a type is
2581considered to alias all types in other trees, so that bitcode produced
2582from multiple front-ends is handled conservatively.
2583
2584If the third field is present, it's an integer which if equal to 1
2585indicates that the type is "constant" (meaning
2586``pointsToConstantMemory`` should return true; see `other useful
2587AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2588
2589'``tbaa.struct``' Metadata
2590^^^^^^^^^^^^^^^^^^^^^^^^^^
2591
2592The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2593aggregate assignment operations in C and similar languages, however it
2594is defined to copy a contiguous region of memory, which is more than
2595strictly necessary for aggregate types which contain holes due to
2596padding. Also, it doesn't contain any TBAA information about the fields
2597of the aggregate.
2598
2599``!tbaa.struct`` metadata can describe which memory subregions in a
2600memcpy are padding and what the TBAA tags of the struct are.
2601
2602The current metadata format is very simple. ``!tbaa.struct`` metadata
2603nodes are a list of operands which are in conceptual groups of three.
2604For each group of three, the first operand gives the byte offset of a
2605field in bytes, the second gives its size in bytes, and the third gives
2606its tbaa tag. e.g.:
2607
2608.. code-block:: llvm
2609
2610 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2611
2612This describes a struct with two fields. The first is at offset 0 bytes
2613with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2614and has size 4 bytes and has tbaa tag !2.
2615
2616Note that the fields need not be contiguous. In this example, there is a
26174 byte gap between the two fields. This gap represents padding which
2618does not carry useful data and need not be preserved.
2619
2620'``fpmath``' Metadata
2621^^^^^^^^^^^^^^^^^^^^^
2622
2623``fpmath`` metadata may be attached to any instruction of floating point
2624type. It can be used to express the maximum acceptable error in the
2625result of that instruction, in ULPs, thus potentially allowing the
2626compiler to use a more efficient but less accurate method of computing
2627it. ULP is defined as follows:
2628
2629 If ``x`` is a real number that lies between two finite consecutive
2630 floating-point numbers ``a`` and ``b``, without being equal to one
2631 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2632 distance between the two non-equal finite floating-point numbers
2633 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2634
2635The metadata node shall consist of a single positive floating point
2636number representing the maximum relative error, for example:
2637
2638.. code-block:: llvm
2639
2640 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2641
2642'``range``' Metadata
2643^^^^^^^^^^^^^^^^^^^^
2644
2645``range`` metadata may be attached only to loads of integer types. It
2646expresses the possible ranges the loaded value is in. The ranges are
2647represented with a flattened list of integers. The loaded value is known
2648to be in the union of the ranges defined by each consecutive pair. Each
2649pair has the following properties:
2650
2651- The type must match the type loaded by the instruction.
2652- The pair ``a,b`` represents the range ``[a,b)``.
2653- Both ``a`` and ``b`` are constants.
2654- The range is allowed to wrap.
2655- The range should not represent the full or empty set. That is,
2656 ``a!=b``.
2657
2658In addition, the pairs must be in signed order of the lower bound and
2659they must be non-contiguous.
2660
2661Examples:
2662
2663.. code-block:: llvm
2664
2665 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2666 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2667 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2668 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2669 ...
2670 !0 = metadata !{ i8 0, i8 2 }
2671 !1 = metadata !{ i8 255, i8 2 }
2672 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2673 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2674
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002675'``llvm.loop``'
2676^^^^^^^^^^^^^^^
2677
2678It is sometimes useful to attach information to loop constructs. Currently,
2679loop metadata is implemented as metadata attached to the branch instruction
2680in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002681guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002682specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002683
2684The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002685itself to avoid merging it with any other identifier metadata, e.g.,
2686during module linkage or function inlining. That is, each loop should refer
2687to their own identification metadata even if they reside in separate functions.
2688The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002689constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002690
2691.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002692
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002693 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002694 !1 = metadata !{ metadata !1 }
2695
Paul Redmond5fdf8362013-05-28 20:00:34 +00002696The loop identifier metadata can be used to specify additional per-loop
2697metadata. Any operands after the first operand can be treated as user-defined
2698metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2699by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002700
Paul Redmond5fdf8362013-05-28 20:00:34 +00002701.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002702
Paul Redmond5fdf8362013-05-28 20:00:34 +00002703 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2704 ...
2705 !0 = metadata !{ metadata !0, metadata !1 }
2706 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002707
2708'``llvm.mem``'
2709^^^^^^^^^^^^^^^
2710
2711Metadata types used to annotate memory accesses with information helpful
2712for optimizations are prefixed with ``llvm.mem``.
2713
2714'``llvm.mem.parallel_loop_access``' Metadata
2715^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2716
2717For a loop to be parallel, in addition to using
Paul Redmond5fdf8362013-05-28 20:00:34 +00002718the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002719also all of the memory accessing instructions in the loop body need to be
2720marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2721is at least one memory accessing instruction not marked with the metadata,
Paul Redmond5fdf8362013-05-28 20:00:34 +00002722the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002723converted to sequential loops due to optimization passes that are unaware of
2724the parallel semantics and that insert new memory instructions to the loop
2725body.
2726
2727Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002728both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002729metadata types that refer to the same loop identifier metadata.
2730
2731.. code-block:: llvm
2732
2733 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002734 ...
2735 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2736 ...
2737 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2738 ...
2739 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002740
2741 for.end:
2742 ...
2743 !0 = metadata !{ metadata !0 }
2744
2745It is also possible to have nested parallel loops. In that case the
2746memory accesses refer to a list of loop identifier metadata nodes instead of
2747the loop identifier metadata node directly:
2748
2749.. code-block:: llvm
2750
2751 outer.for.body:
2752 ...
2753
2754 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002755 ...
2756 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2757 ...
2758 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2759 ...
2760 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002761
2762 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002763 ...
2764 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2765 ...
2766 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2767 ...
2768 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002769
2770 outer.for.end: ; preds = %for.body
2771 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002772 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2773 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2774 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002775
Paul Redmond5fdf8362013-05-28 20:00:34 +00002776'``llvm.vectorizer``'
2777^^^^^^^^^^^^^^^^^^^^^
2778
2779Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2780vectorization parameters such as vectorization factor and unroll factor.
2781
2782``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2783loop identification metadata.
2784
2785'``llvm.vectorizer.unroll``' Metadata
2786^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2787
2788This metadata instructs the loop vectorizer to unroll the specified
2789loop exactly ``N`` times.
2790
2791The first operand is the string ``llvm.vectorizer.unroll`` and the second
2792operand is an integer specifying the unroll factor. For example:
2793
2794.. code-block:: llvm
2795
2796 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2797
2798Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2799loop.
2800
2801If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2802determined automatically.
2803
2804'``llvm.vectorizer.width``' Metadata
2805^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2806
Paul Redmondeccbb322013-05-30 17:22:46 +00002807This metadata sets the target width of the vectorizer to ``N``. Without
2808this metadata, the vectorizer will choose a width automatically.
2809Regardless of this metadata, the vectorizer will only vectorize loops if
2810it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002811
2812The first operand is the string ``llvm.vectorizer.width`` and the second
2813operand is an integer specifying the width. For example:
2814
2815.. code-block:: llvm
2816
2817 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2818
2819Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2820loop.
2821
2822If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2823automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002824
Sean Silvab084af42012-12-07 10:36:55 +00002825Module Flags Metadata
2826=====================
2827
2828Information about the module as a whole is difficult to convey to LLVM's
2829subsystems. The LLVM IR isn't sufficient to transmit this information.
2830The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002831this. These flags are in the form of key / value pairs --- much like a
2832dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002833look it up.
2834
2835The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2836Each triplet has the following form:
2837
2838- The first element is a *behavior* flag, which specifies the behavior
2839 when two (or more) modules are merged together, and it encounters two
2840 (or more) metadata with the same ID. The supported behaviors are
2841 described below.
2842- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002843 metadata. Each module may only have one flag entry for each unique ID (not
2844 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002845- The third element is the value of the flag.
2846
2847When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002848``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2849each unique metadata ID string, there will be exactly one entry in the merged
2850modules ``llvm.module.flags`` metadata table, and the value for that entry will
2851be determined by the merge behavior flag, as described below. The only exception
2852is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002853
2854The following behaviors are supported:
2855
2856.. list-table::
2857 :header-rows: 1
2858 :widths: 10 90
2859
2860 * - Value
2861 - Behavior
2862
2863 * - 1
2864 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002865 Emits an error if two values disagree, otherwise the resulting value
2866 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002867
2868 * - 2
2869 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002870 Emits a warning if two values disagree. The result value will be the
2871 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002872
2873 * - 3
2874 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002875 Adds a requirement that another module flag be present and have a
2876 specified value after linking is performed. The value must be a
2877 metadata pair, where the first element of the pair is the ID of the
2878 module flag to be restricted, and the second element of the pair is
2879 the value the module flag should be restricted to. This behavior can
2880 be used to restrict the allowable results (via triggering of an
2881 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002882
2883 * - 4
2884 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002885 Uses the specified value, regardless of the behavior or value of the
2886 other module. If both modules specify **Override**, but the values
2887 differ, an error will be emitted.
2888
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002889 * - 5
2890 - **Append**
2891 Appends the two values, which are required to be metadata nodes.
2892
2893 * - 6
2894 - **AppendUnique**
2895 Appends the two values, which are required to be metadata
2896 nodes. However, duplicate entries in the second list are dropped
2897 during the append operation.
2898
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002899It is an error for a particular unique flag ID to have multiple behaviors,
2900except in the case of **Require** (which adds restrictions on another metadata
2901value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002902
2903An example of module flags:
2904
2905.. code-block:: llvm
2906
2907 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2908 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2909 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2910 !3 = metadata !{ i32 3, metadata !"qux",
2911 metadata !{
2912 metadata !"foo", i32 1
2913 }
2914 }
2915 !llvm.module.flags = !{ !0, !1, !2, !3 }
2916
2917- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2918 if two or more ``!"foo"`` flags are seen is to emit an error if their
2919 values are not equal.
2920
2921- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2922 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002923 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002924
2925- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2926 behavior if two or more ``!"qux"`` flags are seen is to emit a
2927 warning if their values are not equal.
2928
2929- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2930
2931 ::
2932
2933 metadata !{ metadata !"foo", i32 1 }
2934
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002935 The behavior is to emit an error if the ``llvm.module.flags`` does not
2936 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2937 performed.
Sean Silvab084af42012-12-07 10:36:55 +00002938
2939Objective-C Garbage Collection Module Flags Metadata
2940----------------------------------------------------
2941
2942On the Mach-O platform, Objective-C stores metadata about garbage
2943collection in a special section called "image info". The metadata
2944consists of a version number and a bitmask specifying what types of
2945garbage collection are supported (if any) by the file. If two or more
2946modules are linked together their garbage collection metadata needs to
2947be merged rather than appended together.
2948
2949The Objective-C garbage collection module flags metadata consists of the
2950following key-value pairs:
2951
2952.. list-table::
2953 :header-rows: 1
2954 :widths: 30 70
2955
2956 * - Key
2957 - Value
2958
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002959 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002960 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00002961
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002962 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002963 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00002964 always 0.
2965
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002966 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002967 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00002968 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2969 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2970 Objective-C ABI version 2.
2971
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002972 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002973 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00002974 not. Valid values are 0, for no garbage collection, and 2, for garbage
2975 collection supported.
2976
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002977 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002978 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00002979 If present, its value must be 6. This flag requires that the
2980 ``Objective-C Garbage Collection`` flag have the value 2.
2981
2982Some important flag interactions:
2983
2984- If a module with ``Objective-C Garbage Collection`` set to 0 is
2985 merged with a module with ``Objective-C Garbage Collection`` set to
2986 2, then the resulting module has the
2987 ``Objective-C Garbage Collection`` flag set to 0.
2988- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2989 merged with a module with ``Objective-C GC Only`` set to 6.
2990
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002991Automatic Linker Flags Module Flags Metadata
2992--------------------------------------------
2993
2994Some targets support embedding flags to the linker inside individual object
2995files. Typically this is used in conjunction with language extensions which
2996allow source files to explicitly declare the libraries they depend on, and have
2997these automatically be transmitted to the linker via object files.
2998
2999These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003000using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003001to be ``AppendUnique``, and the value for the key is expected to be a metadata
3002node which should be a list of other metadata nodes, each of which should be a
3003list of metadata strings defining linker options.
3004
3005For example, the following metadata section specifies two separate sets of
3006linker options, presumably to link against ``libz`` and the ``Cocoa``
3007framework::
3008
Michael Liaoa7699082013-03-06 18:24:34 +00003009 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003010 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003011 metadata !{ metadata !"-lz" },
3012 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003013 !llvm.module.flags = !{ !0 }
3014
3015The metadata encoding as lists of lists of options, as opposed to a collapsed
3016list of options, is chosen so that the IR encoding can use multiple option
3017strings to specify e.g., a single library, while still having that specifier be
3018preserved as an atomic element that can be recognized by a target specific
3019assembly writer or object file emitter.
3020
3021Each individual option is required to be either a valid option for the target's
3022linker, or an option that is reserved by the target specific assembly writer or
3023object file emitter. No other aspect of these options is defined by the IR.
3024
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003025.. _intrinsicglobalvariables:
3026
Sean Silvab084af42012-12-07 10:36:55 +00003027Intrinsic Global Variables
3028==========================
3029
3030LLVM has a number of "magic" global variables that contain data that
3031affect code generation or other IR semantics. These are documented here.
3032All globals of this sort should have a section specified as
3033"``llvm.metadata``". This section and all globals that start with
3034"``llvm.``" are reserved for use by LLVM.
3035
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003036.. _gv_llvmused:
3037
Sean Silvab084af42012-12-07 10:36:55 +00003038The '``llvm.used``' Global Variable
3039-----------------------------------
3040
Rafael Espindola74f2e462013-04-22 14:58:02 +00003041The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003042:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003043pointers to named global variables, functions and aliases which may optionally
3044have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003045use of it is:
3046
3047.. code-block:: llvm
3048
3049 @X = global i8 4
3050 @Y = global i32 123
3051
3052 @llvm.used = appending global [2 x i8*] [
3053 i8* @X,
3054 i8* bitcast (i32* @Y to i8*)
3055 ], section "llvm.metadata"
3056
Rafael Espindola74f2e462013-04-22 14:58:02 +00003057If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3058and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003059symbol that it cannot see (which is why they have to be named). For example, if
3060a variable has internal linkage and no references other than that from the
3061``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3062references from inline asms and other things the compiler cannot "see", and
3063corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003064
3065On some targets, the code generator must emit a directive to the
3066assembler or object file to prevent the assembler and linker from
3067molesting the symbol.
3068
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003069.. _gv_llvmcompilerused:
3070
Sean Silvab084af42012-12-07 10:36:55 +00003071The '``llvm.compiler.used``' Global Variable
3072--------------------------------------------
3073
3074The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3075directive, except that it only prevents the compiler from touching the
3076symbol. On targets that support it, this allows an intelligent linker to
3077optimize references to the symbol without being impeded as it would be
3078by ``@llvm.used``.
3079
3080This is a rare construct that should only be used in rare circumstances,
3081and should not be exposed to source languages.
3082
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003083.. _gv_llvmglobalctors:
3084
Sean Silvab084af42012-12-07 10:36:55 +00003085The '``llvm.global_ctors``' Global Variable
3086-------------------------------------------
3087
3088.. code-block:: llvm
3089
3090 %0 = type { i32, void ()* }
3091 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3092
3093The ``@llvm.global_ctors`` array contains a list of constructor
3094functions and associated priorities. The functions referenced by this
3095array will be called in ascending order of priority (i.e. lowest first)
3096when the module is loaded. The order of functions with the same priority
3097is not defined.
3098
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003099.. _llvmglobaldtors:
3100
Sean Silvab084af42012-12-07 10:36:55 +00003101The '``llvm.global_dtors``' Global Variable
3102-------------------------------------------
3103
3104.. code-block:: llvm
3105
3106 %0 = type { i32, void ()* }
3107 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3108
3109The ``@llvm.global_dtors`` array contains a list of destructor functions
3110and associated priorities. The functions referenced by this array will
3111be called in descending order of priority (i.e. highest first) when the
3112module is loaded. The order of functions with the same priority is not
3113defined.
3114
3115Instruction Reference
3116=====================
3117
3118The LLVM instruction set consists of several different classifications
3119of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3120instructions <binaryops>`, :ref:`bitwise binary
3121instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3122:ref:`other instructions <otherops>`.
3123
3124.. _terminators:
3125
3126Terminator Instructions
3127-----------------------
3128
3129As mentioned :ref:`previously <functionstructure>`, every basic block in a
3130program ends with a "Terminator" instruction, which indicates which
3131block should be executed after the current block is finished. These
3132terminator instructions typically yield a '``void``' value: they produce
3133control flow, not values (the one exception being the
3134':ref:`invoke <i_invoke>`' instruction).
3135
3136The terminator instructions are: ':ref:`ret <i_ret>`',
3137':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3138':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3139':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3140
3141.. _i_ret:
3142
3143'``ret``' Instruction
3144^^^^^^^^^^^^^^^^^^^^^
3145
3146Syntax:
3147"""""""
3148
3149::
3150
3151 ret <type> <value> ; Return a value from a non-void function
3152 ret void ; Return from void function
3153
3154Overview:
3155"""""""""
3156
3157The '``ret``' instruction is used to return control flow (and optionally
3158a value) from a function back to the caller.
3159
3160There are two forms of the '``ret``' instruction: one that returns a
3161value and then causes control flow, and one that just causes control
3162flow to occur.
3163
3164Arguments:
3165""""""""""
3166
3167The '``ret``' instruction optionally accepts a single argument, the
3168return value. The type of the return value must be a ':ref:`first
3169class <t_firstclass>`' type.
3170
3171A function is not :ref:`well formed <wellformed>` if it it has a non-void
3172return type and contains a '``ret``' instruction with no return value or
3173a return value with a type that does not match its type, or if it has a
3174void return type and contains a '``ret``' instruction with a return
3175value.
3176
3177Semantics:
3178""""""""""
3179
3180When the '``ret``' instruction is executed, control flow returns back to
3181the calling function's context. If the caller is a
3182":ref:`call <i_call>`" instruction, execution continues at the
3183instruction after the call. If the caller was an
3184":ref:`invoke <i_invoke>`" instruction, execution continues at the
3185beginning of the "normal" destination block. If the instruction returns
3186a value, that value shall set the call or invoke instruction's return
3187value.
3188
3189Example:
3190""""""""
3191
3192.. code-block:: llvm
3193
3194 ret i32 5 ; Return an integer value of 5
3195 ret void ; Return from a void function
3196 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3197
3198.. _i_br:
3199
3200'``br``' Instruction
3201^^^^^^^^^^^^^^^^^^^^
3202
3203Syntax:
3204"""""""
3205
3206::
3207
3208 br i1 <cond>, label <iftrue>, label <iffalse>
3209 br label <dest> ; Unconditional branch
3210
3211Overview:
3212"""""""""
3213
3214The '``br``' instruction is used to cause control flow to transfer to a
3215different basic block in the current function. There are two forms of
3216this instruction, corresponding to a conditional branch and an
3217unconditional branch.
3218
3219Arguments:
3220""""""""""
3221
3222The conditional branch form of the '``br``' instruction takes a single
3223'``i1``' value and two '``label``' values. The unconditional form of the
3224'``br``' instruction takes a single '``label``' value as a target.
3225
3226Semantics:
3227""""""""""
3228
3229Upon execution of a conditional '``br``' instruction, the '``i1``'
3230argument is evaluated. If the value is ``true``, control flows to the
3231'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3232to the '``iffalse``' ``label`` argument.
3233
3234Example:
3235""""""""
3236
3237.. code-block:: llvm
3238
3239 Test:
3240 %cond = icmp eq i32 %a, %b
3241 br i1 %cond, label %IfEqual, label %IfUnequal
3242 IfEqual:
3243 ret i32 1
3244 IfUnequal:
3245 ret i32 0
3246
3247.. _i_switch:
3248
3249'``switch``' Instruction
3250^^^^^^^^^^^^^^^^^^^^^^^^
3251
3252Syntax:
3253"""""""
3254
3255::
3256
3257 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3258
3259Overview:
3260"""""""""
3261
3262The '``switch``' instruction is used to transfer control flow to one of
3263several different places. It is a generalization of the '``br``'
3264instruction, allowing a branch to occur to one of many possible
3265destinations.
3266
3267Arguments:
3268""""""""""
3269
3270The '``switch``' instruction uses three parameters: an integer
3271comparison value '``value``', a default '``label``' destination, and an
3272array of pairs of comparison value constants and '``label``'s. The table
3273is not allowed to contain duplicate constant entries.
3274
3275Semantics:
3276""""""""""
3277
3278The ``switch`` instruction specifies a table of values and destinations.
3279When the '``switch``' instruction is executed, this table is searched
3280for the given value. If the value is found, control flow is transferred
3281to the corresponding destination; otherwise, control flow is transferred
3282to the default destination.
3283
3284Implementation:
3285"""""""""""""""
3286
3287Depending on properties of the target machine and the particular
3288``switch`` instruction, this instruction may be code generated in
3289different ways. For example, it could be generated as a series of
3290chained conditional branches or with a lookup table.
3291
3292Example:
3293""""""""
3294
3295.. code-block:: llvm
3296
3297 ; Emulate a conditional br instruction
3298 %Val = zext i1 %value to i32
3299 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3300
3301 ; Emulate an unconditional br instruction
3302 switch i32 0, label %dest [ ]
3303
3304 ; Implement a jump table:
3305 switch i32 %val, label %otherwise [ i32 0, label %onzero
3306 i32 1, label %onone
3307 i32 2, label %ontwo ]
3308
3309.. _i_indirectbr:
3310
3311'``indirectbr``' Instruction
3312^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3313
3314Syntax:
3315"""""""
3316
3317::
3318
3319 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3320
3321Overview:
3322"""""""""
3323
3324The '``indirectbr``' instruction implements an indirect branch to a
3325label within the current function, whose address is specified by
3326"``address``". Address must be derived from a
3327:ref:`blockaddress <blockaddress>` constant.
3328
3329Arguments:
3330""""""""""
3331
3332The '``address``' argument is the address of the label to jump to. The
3333rest of the arguments indicate the full set of possible destinations
3334that the address may point to. Blocks are allowed to occur multiple
3335times in the destination list, though this isn't particularly useful.
3336
3337This destination list is required so that dataflow analysis has an
3338accurate understanding of the CFG.
3339
3340Semantics:
3341""""""""""
3342
3343Control transfers to the block specified in the address argument. All
3344possible destination blocks must be listed in the label list, otherwise
3345this instruction has undefined behavior. This implies that jumps to
3346labels defined in other functions have undefined behavior as well.
3347
3348Implementation:
3349"""""""""""""""
3350
3351This is typically implemented with a jump through a register.
3352
3353Example:
3354""""""""
3355
3356.. code-block:: llvm
3357
3358 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3359
3360.. _i_invoke:
3361
3362'``invoke``' Instruction
3363^^^^^^^^^^^^^^^^^^^^^^^^
3364
3365Syntax:
3366"""""""
3367
3368::
3369
3370 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3371 to label <normal label> unwind label <exception label>
3372
3373Overview:
3374"""""""""
3375
3376The '``invoke``' instruction causes control to transfer to a specified
3377function, with the possibility of control flow transfer to either the
3378'``normal``' label or the '``exception``' label. If the callee function
3379returns with the "``ret``" instruction, control flow will return to the
3380"normal" label. If the callee (or any indirect callees) returns via the
3381":ref:`resume <i_resume>`" instruction or other exception handling
3382mechanism, control is interrupted and continued at the dynamically
3383nearest "exception" label.
3384
3385The '``exception``' label is a `landing
3386pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3387'``exception``' label is required to have the
3388":ref:`landingpad <i_landingpad>`" instruction, which contains the
3389information about the behavior of the program after unwinding happens,
3390as its first non-PHI instruction. The restrictions on the
3391"``landingpad``" instruction's tightly couples it to the "``invoke``"
3392instruction, so that the important information contained within the
3393"``landingpad``" instruction can't be lost through normal code motion.
3394
3395Arguments:
3396""""""""""
3397
3398This instruction requires several arguments:
3399
3400#. The optional "cconv" marker indicates which :ref:`calling
3401 convention <callingconv>` the call should use. If none is
3402 specified, the call defaults to using C calling conventions.
3403#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3404 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3405 are valid here.
3406#. '``ptr to function ty``': shall be the signature of the pointer to
3407 function value being invoked. In most cases, this is a direct
3408 function invocation, but indirect ``invoke``'s are just as possible,
3409 branching off an arbitrary pointer to function value.
3410#. '``function ptr val``': An LLVM value containing a pointer to a
3411 function to be invoked.
3412#. '``function args``': argument list whose types match the function
3413 signature argument types and parameter attributes. All arguments must
3414 be of :ref:`first class <t_firstclass>` type. If the function signature
3415 indicates the function accepts a variable number of arguments, the
3416 extra arguments can be specified.
3417#. '``normal label``': the label reached when the called function
3418 executes a '``ret``' instruction.
3419#. '``exception label``': the label reached when a callee returns via
3420 the :ref:`resume <i_resume>` instruction or other exception handling
3421 mechanism.
3422#. The optional :ref:`function attributes <fnattrs>` list. Only
3423 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3424 attributes are valid here.
3425
3426Semantics:
3427""""""""""
3428
3429This instruction is designed to operate as a standard '``call``'
3430instruction in most regards. The primary difference is that it
3431establishes an association with a label, which is used by the runtime
3432library to unwind the stack.
3433
3434This instruction is used in languages with destructors to ensure that
3435proper cleanup is performed in the case of either a ``longjmp`` or a
3436thrown exception. Additionally, this is important for implementation of
3437'``catch``' clauses in high-level languages that support them.
3438
3439For the purposes of the SSA form, the definition of the value returned
3440by the '``invoke``' instruction is deemed to occur on the edge from the
3441current block to the "normal" label. If the callee unwinds then no
3442return value is available.
3443
3444Example:
3445""""""""
3446
3447.. code-block:: llvm
3448
3449 %retval = invoke i32 @Test(i32 15) to label %Continue
3450 unwind label %TestCleanup ; {i32}:retval set
3451 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3452 unwind label %TestCleanup ; {i32}:retval set
3453
3454.. _i_resume:
3455
3456'``resume``' Instruction
3457^^^^^^^^^^^^^^^^^^^^^^^^
3458
3459Syntax:
3460"""""""
3461
3462::
3463
3464 resume <type> <value>
3465
3466Overview:
3467"""""""""
3468
3469The '``resume``' instruction is a terminator instruction that has no
3470successors.
3471
3472Arguments:
3473""""""""""
3474
3475The '``resume``' instruction requires one argument, which must have the
3476same type as the result of any '``landingpad``' instruction in the same
3477function.
3478
3479Semantics:
3480""""""""""
3481
3482The '``resume``' instruction resumes propagation of an existing
3483(in-flight) exception whose unwinding was interrupted with a
3484:ref:`landingpad <i_landingpad>` instruction.
3485
3486Example:
3487""""""""
3488
3489.. code-block:: llvm
3490
3491 resume { i8*, i32 } %exn
3492
3493.. _i_unreachable:
3494
3495'``unreachable``' Instruction
3496^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3497
3498Syntax:
3499"""""""
3500
3501::
3502
3503 unreachable
3504
3505Overview:
3506"""""""""
3507
3508The '``unreachable``' instruction has no defined semantics. This
3509instruction is used to inform the optimizer that a particular portion of
3510the code is not reachable. This can be used to indicate that the code
3511after a no-return function cannot be reached, and other facts.
3512
3513Semantics:
3514""""""""""
3515
3516The '``unreachable``' instruction has no defined semantics.
3517
3518.. _binaryops:
3519
3520Binary Operations
3521-----------------
3522
3523Binary operators are used to do most of the computation in a program.
3524They require two operands of the same type, execute an operation on
3525them, and produce a single value. The operands might represent multiple
3526data, as is the case with the :ref:`vector <t_vector>` data type. The
3527result value has the same type as its operands.
3528
3529There are several different binary operators:
3530
3531.. _i_add:
3532
3533'``add``' Instruction
3534^^^^^^^^^^^^^^^^^^^^^
3535
3536Syntax:
3537"""""""
3538
3539::
3540
3541 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3542 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3543 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3544 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3545
3546Overview:
3547"""""""""
3548
3549The '``add``' instruction returns the sum of its two operands.
3550
3551Arguments:
3552""""""""""
3553
3554The two arguments to the '``add``' instruction must be
3555:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3556arguments must have identical types.
3557
3558Semantics:
3559""""""""""
3560
3561The value produced is the integer sum of the two operands.
3562
3563If the sum has unsigned overflow, the result returned is the
3564mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3565the result.
3566
3567Because LLVM integers use a two's complement representation, this
3568instruction is appropriate for both signed and unsigned integers.
3569
3570``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3571respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3572result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3573unsigned and/or signed overflow, respectively, occurs.
3574
3575Example:
3576""""""""
3577
3578.. code-block:: llvm
3579
3580 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3581
3582.. _i_fadd:
3583
3584'``fadd``' Instruction
3585^^^^^^^^^^^^^^^^^^^^^^
3586
3587Syntax:
3588"""""""
3589
3590::
3591
3592 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3593
3594Overview:
3595"""""""""
3596
3597The '``fadd``' instruction returns the sum of its two operands.
3598
3599Arguments:
3600""""""""""
3601
3602The two arguments to the '``fadd``' instruction must be :ref:`floating
3603point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3604Both arguments must have identical types.
3605
3606Semantics:
3607""""""""""
3608
3609The value produced is the floating point sum of the two operands. This
3610instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3611which are optimization hints to enable otherwise unsafe floating point
3612optimizations:
3613
3614Example:
3615""""""""
3616
3617.. code-block:: llvm
3618
3619 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3620
3621'``sub``' Instruction
3622^^^^^^^^^^^^^^^^^^^^^
3623
3624Syntax:
3625"""""""
3626
3627::
3628
3629 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3630 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3631 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3632 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3633
3634Overview:
3635"""""""""
3636
3637The '``sub``' instruction returns the difference of its two operands.
3638
3639Note that the '``sub``' instruction is used to represent the '``neg``'
3640instruction present in most other intermediate representations.
3641
3642Arguments:
3643""""""""""
3644
3645The two arguments to the '``sub``' instruction must be
3646:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3647arguments must have identical types.
3648
3649Semantics:
3650""""""""""
3651
3652The value produced is the integer difference of the two operands.
3653
3654If the difference has unsigned overflow, the result returned is the
3655mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3656the result.
3657
3658Because LLVM integers use a two's complement representation, this
3659instruction is appropriate for both signed and unsigned integers.
3660
3661``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3662respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3663result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3664unsigned and/or signed overflow, respectively, occurs.
3665
3666Example:
3667""""""""
3668
3669.. code-block:: llvm
3670
3671 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3672 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3673
3674.. _i_fsub:
3675
3676'``fsub``' Instruction
3677^^^^^^^^^^^^^^^^^^^^^^
3678
3679Syntax:
3680"""""""
3681
3682::
3683
3684 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3685
3686Overview:
3687"""""""""
3688
3689The '``fsub``' instruction returns the difference of its two operands.
3690
3691Note that the '``fsub``' instruction is used to represent the '``fneg``'
3692instruction present in most other intermediate representations.
3693
3694Arguments:
3695""""""""""
3696
3697The two arguments to the '``fsub``' instruction must be :ref:`floating
3698point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3699Both arguments must have identical types.
3700
3701Semantics:
3702""""""""""
3703
3704The value produced is the floating point difference of the two operands.
3705This instruction can also take any number of :ref:`fast-math
3706flags <fastmath>`, which are optimization hints to enable otherwise
3707unsafe floating point optimizations:
3708
3709Example:
3710""""""""
3711
3712.. code-block:: llvm
3713
3714 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3715 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3716
3717'``mul``' Instruction
3718^^^^^^^^^^^^^^^^^^^^^
3719
3720Syntax:
3721"""""""
3722
3723::
3724
3725 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3726 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3727 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3728 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3729
3730Overview:
3731"""""""""
3732
3733The '``mul``' instruction returns the product of its two operands.
3734
3735Arguments:
3736""""""""""
3737
3738The two arguments to the '``mul``' instruction must be
3739:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3740arguments must have identical types.
3741
3742Semantics:
3743""""""""""
3744
3745The value produced is the integer product of the two operands.
3746
3747If the result of the multiplication has unsigned overflow, the result
3748returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3749bit width of the result.
3750
3751Because LLVM integers use a two's complement representation, and the
3752result is the same width as the operands, this instruction returns the
3753correct result for both signed and unsigned integers. If a full product
3754(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3755sign-extended or zero-extended as appropriate to the width of the full
3756product.
3757
3758``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3759respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3760result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3761unsigned and/or signed overflow, respectively, occurs.
3762
3763Example:
3764""""""""
3765
3766.. code-block:: llvm
3767
3768 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3769
3770.. _i_fmul:
3771
3772'``fmul``' Instruction
3773^^^^^^^^^^^^^^^^^^^^^^
3774
3775Syntax:
3776"""""""
3777
3778::
3779
3780 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3781
3782Overview:
3783"""""""""
3784
3785The '``fmul``' instruction returns the product of its two operands.
3786
3787Arguments:
3788""""""""""
3789
3790The two arguments to the '``fmul``' instruction must be :ref:`floating
3791point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3792Both arguments must have identical types.
3793
3794Semantics:
3795""""""""""
3796
3797The value produced is the floating point product of the two operands.
3798This instruction can also take any number of :ref:`fast-math
3799flags <fastmath>`, which are optimization hints to enable otherwise
3800unsafe floating point optimizations:
3801
3802Example:
3803""""""""
3804
3805.. code-block:: llvm
3806
3807 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3808
3809'``udiv``' Instruction
3810^^^^^^^^^^^^^^^^^^^^^^
3811
3812Syntax:
3813"""""""
3814
3815::
3816
3817 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3818 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3819
3820Overview:
3821"""""""""
3822
3823The '``udiv``' instruction returns the quotient of its two operands.
3824
3825Arguments:
3826""""""""""
3827
3828The two arguments to the '``udiv``' instruction must be
3829:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3830arguments must have identical types.
3831
3832Semantics:
3833""""""""""
3834
3835The value produced is the unsigned integer quotient of the two operands.
3836
3837Note that unsigned integer division and signed integer division are
3838distinct operations; for signed integer division, use '``sdiv``'.
3839
3840Division by zero leads to undefined behavior.
3841
3842If the ``exact`` keyword is present, the result value of the ``udiv`` is
3843a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3844such, "((a udiv exact b) mul b) == a").
3845
3846Example:
3847""""""""
3848
3849.. code-block:: llvm
3850
3851 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3852
3853'``sdiv``' Instruction
3854^^^^^^^^^^^^^^^^^^^^^^
3855
3856Syntax:
3857"""""""
3858
3859::
3860
3861 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3862 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3863
3864Overview:
3865"""""""""
3866
3867The '``sdiv``' instruction returns the quotient of its two operands.
3868
3869Arguments:
3870""""""""""
3871
3872The two arguments to the '``sdiv``' instruction must be
3873:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3874arguments must have identical types.
3875
3876Semantics:
3877""""""""""
3878
3879The value produced is the signed integer quotient of the two operands
3880rounded towards zero.
3881
3882Note that signed integer division and unsigned integer division are
3883distinct operations; for unsigned integer division, use '``udiv``'.
3884
3885Division by zero leads to undefined behavior. Overflow also leads to
3886undefined behavior; this is a rare case, but can occur, for example, by
3887doing a 32-bit division of -2147483648 by -1.
3888
3889If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3890a :ref:`poison value <poisonvalues>` if the result would be rounded.
3891
3892Example:
3893""""""""
3894
3895.. code-block:: llvm
3896
3897 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3898
3899.. _i_fdiv:
3900
3901'``fdiv``' Instruction
3902^^^^^^^^^^^^^^^^^^^^^^
3903
3904Syntax:
3905"""""""
3906
3907::
3908
3909 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3910
3911Overview:
3912"""""""""
3913
3914The '``fdiv``' instruction returns the quotient of its two operands.
3915
3916Arguments:
3917""""""""""
3918
3919The two arguments to the '``fdiv``' instruction must be :ref:`floating
3920point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3921Both arguments must have identical types.
3922
3923Semantics:
3924""""""""""
3925
3926The value produced is the floating point quotient of the two operands.
3927This instruction can also take any number of :ref:`fast-math
3928flags <fastmath>`, which are optimization hints to enable otherwise
3929unsafe floating point optimizations:
3930
3931Example:
3932""""""""
3933
3934.. code-block:: llvm
3935
3936 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3937
3938'``urem``' Instruction
3939^^^^^^^^^^^^^^^^^^^^^^
3940
3941Syntax:
3942"""""""
3943
3944::
3945
3946 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3947
3948Overview:
3949"""""""""
3950
3951The '``urem``' instruction returns the remainder from the unsigned
3952division of its two arguments.
3953
3954Arguments:
3955""""""""""
3956
3957The two arguments to the '``urem``' instruction must be
3958:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3959arguments must have identical types.
3960
3961Semantics:
3962""""""""""
3963
3964This instruction returns the unsigned integer *remainder* of a division.
3965This instruction always performs an unsigned division to get the
3966remainder.
3967
3968Note that unsigned integer remainder and signed integer remainder are
3969distinct operations; for signed integer remainder, use '``srem``'.
3970
3971Taking the remainder of a division by zero leads to undefined behavior.
3972
3973Example:
3974""""""""
3975
3976.. code-block:: llvm
3977
3978 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3979
3980'``srem``' Instruction
3981^^^^^^^^^^^^^^^^^^^^^^
3982
3983Syntax:
3984"""""""
3985
3986::
3987
3988 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3989
3990Overview:
3991"""""""""
3992
3993The '``srem``' instruction returns the remainder from the signed
3994division of its two operands. This instruction can also take
3995:ref:`vector <t_vector>` versions of the values in which case the elements
3996must be integers.
3997
3998Arguments:
3999""""""""""
4000
4001The two arguments to the '``srem``' instruction must be
4002:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4003arguments must have identical types.
4004
4005Semantics:
4006""""""""""
4007
4008This instruction returns the *remainder* of a division (where the result
4009is either zero or has the same sign as the dividend, ``op1``), not the
4010*modulo* operator (where the result is either zero or has the same sign
4011as the divisor, ``op2``) of a value. For more information about the
4012difference, see `The Math
4013Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4014table of how this is implemented in various languages, please see
4015`Wikipedia: modulo
4016operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4017
4018Note that signed integer remainder and unsigned integer remainder are
4019distinct operations; for unsigned integer remainder, use '``urem``'.
4020
4021Taking the remainder of a division by zero leads to undefined behavior.
4022Overflow also leads to undefined behavior; this is a rare case, but can
4023occur, for example, by taking the remainder of a 32-bit division of
4024-2147483648 by -1. (The remainder doesn't actually overflow, but this
4025rule lets srem be implemented using instructions that return both the
4026result of the division and the remainder.)
4027
4028Example:
4029""""""""
4030
4031.. code-block:: llvm
4032
4033 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4034
4035.. _i_frem:
4036
4037'``frem``' Instruction
4038^^^^^^^^^^^^^^^^^^^^^^
4039
4040Syntax:
4041"""""""
4042
4043::
4044
4045 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4046
4047Overview:
4048"""""""""
4049
4050The '``frem``' instruction returns the remainder from the division of
4051its two operands.
4052
4053Arguments:
4054""""""""""
4055
4056The two arguments to the '``frem``' instruction must be :ref:`floating
4057point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4058Both arguments must have identical types.
4059
4060Semantics:
4061""""""""""
4062
4063This instruction returns the *remainder* of a division. The remainder
4064has the same sign as the dividend. This instruction can also take any
4065number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4066to enable otherwise unsafe floating point optimizations:
4067
4068Example:
4069""""""""
4070
4071.. code-block:: llvm
4072
4073 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4074
4075.. _bitwiseops:
4076
4077Bitwise Binary Operations
4078-------------------------
4079
4080Bitwise binary operators are used to do various forms of bit-twiddling
4081in a program. They are generally very efficient instructions and can
4082commonly be strength reduced from other instructions. They require two
4083operands of the same type, execute an operation on them, and produce a
4084single value. The resulting value is the same type as its operands.
4085
4086'``shl``' Instruction
4087^^^^^^^^^^^^^^^^^^^^^
4088
4089Syntax:
4090"""""""
4091
4092::
4093
4094 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4095 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4096 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4097 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4098
4099Overview:
4100"""""""""
4101
4102The '``shl``' instruction returns the first operand shifted to the left
4103a specified number of bits.
4104
4105Arguments:
4106""""""""""
4107
4108Both arguments to the '``shl``' instruction must be the same
4109:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4110'``op2``' is treated as an unsigned value.
4111
4112Semantics:
4113""""""""""
4114
4115The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4116where ``n`` is the width of the result. If ``op2`` is (statically or
4117dynamically) negative or equal to or larger than the number of bits in
4118``op1``, the result is undefined. If the arguments are vectors, each
4119vector element of ``op1`` is shifted by the corresponding shift amount
4120in ``op2``.
4121
4122If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4123value <poisonvalues>` if it shifts out any non-zero bits. If the
4124``nsw`` keyword is present, then the shift produces a :ref:`poison
4125value <poisonvalues>` if it shifts out any bits that disagree with the
4126resultant sign bit. As such, NUW/NSW have the same semantics as they
4127would if the shift were expressed as a mul instruction with the same
4128nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4129
4130Example:
4131""""""""
4132
4133.. code-block:: llvm
4134
4135 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4136 <result> = shl i32 4, 2 ; yields {i32}: 16
4137 <result> = shl i32 1, 10 ; yields {i32}: 1024
4138 <result> = shl i32 1, 32 ; undefined
4139 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4140
4141'``lshr``' Instruction
4142^^^^^^^^^^^^^^^^^^^^^^
4143
4144Syntax:
4145"""""""
4146
4147::
4148
4149 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4150 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4151
4152Overview:
4153"""""""""
4154
4155The '``lshr``' instruction (logical shift right) returns the first
4156operand shifted to the right a specified number of bits with zero fill.
4157
4158Arguments:
4159""""""""""
4160
4161Both arguments to the '``lshr``' instruction must be the same
4162:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4163'``op2``' is treated as an unsigned value.
4164
4165Semantics:
4166""""""""""
4167
4168This instruction always performs a logical shift right operation. The
4169most significant bits of the result will be filled with zero bits after
4170the shift. If ``op2`` is (statically or dynamically) equal to or larger
4171than the number of bits in ``op1``, the result is undefined. If the
4172arguments are vectors, each vector element of ``op1`` is shifted by the
4173corresponding shift amount in ``op2``.
4174
4175If the ``exact`` keyword is present, the result value of the ``lshr`` is
4176a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4177non-zero.
4178
4179Example:
4180""""""""
4181
4182.. code-block:: llvm
4183
4184 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4185 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4186 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004187 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004188 <result> = lshr i32 1, 32 ; undefined
4189 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4190
4191'``ashr``' Instruction
4192^^^^^^^^^^^^^^^^^^^^^^
4193
4194Syntax:
4195"""""""
4196
4197::
4198
4199 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4200 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4201
4202Overview:
4203"""""""""
4204
4205The '``ashr``' instruction (arithmetic shift right) returns the first
4206operand shifted to the right a specified number of bits with sign
4207extension.
4208
4209Arguments:
4210""""""""""
4211
4212Both arguments to the '``ashr``' instruction must be the same
4213:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4214'``op2``' is treated as an unsigned value.
4215
4216Semantics:
4217""""""""""
4218
4219This instruction always performs an arithmetic shift right operation,
4220The most significant bits of the result will be filled with the sign bit
4221of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4222than the number of bits in ``op1``, the result is undefined. If the
4223arguments are vectors, each vector element of ``op1`` is shifted by the
4224corresponding shift amount in ``op2``.
4225
4226If the ``exact`` keyword is present, the result value of the ``ashr`` is
4227a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4228non-zero.
4229
4230Example:
4231""""""""
4232
4233.. code-block:: llvm
4234
4235 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4236 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4237 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4238 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4239 <result> = ashr i32 1, 32 ; undefined
4240 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4241
4242'``and``' Instruction
4243^^^^^^^^^^^^^^^^^^^^^
4244
4245Syntax:
4246"""""""
4247
4248::
4249
4250 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4251
4252Overview:
4253"""""""""
4254
4255The '``and``' instruction returns the bitwise logical and of its two
4256operands.
4257
4258Arguments:
4259""""""""""
4260
4261The two arguments to the '``and``' instruction must be
4262:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4263arguments must have identical types.
4264
4265Semantics:
4266""""""""""
4267
4268The truth table used for the '``and``' instruction is:
4269
4270+-----+-----+-----+
4271| In0 | In1 | Out |
4272+-----+-----+-----+
4273| 0 | 0 | 0 |
4274+-----+-----+-----+
4275| 0 | 1 | 0 |
4276+-----+-----+-----+
4277| 1 | 0 | 0 |
4278+-----+-----+-----+
4279| 1 | 1 | 1 |
4280+-----+-----+-----+
4281
4282Example:
4283""""""""
4284
4285.. code-block:: llvm
4286
4287 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4288 <result> = and i32 15, 40 ; yields {i32}:result = 8
4289 <result> = and i32 4, 8 ; yields {i32}:result = 0
4290
4291'``or``' Instruction
4292^^^^^^^^^^^^^^^^^^^^
4293
4294Syntax:
4295"""""""
4296
4297::
4298
4299 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4300
4301Overview:
4302"""""""""
4303
4304The '``or``' instruction returns the bitwise logical inclusive or of its
4305two operands.
4306
4307Arguments:
4308""""""""""
4309
4310The two arguments to the '``or``' instruction must be
4311:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4312arguments must have identical types.
4313
4314Semantics:
4315""""""""""
4316
4317The truth table used for the '``or``' instruction is:
4318
4319+-----+-----+-----+
4320| In0 | In1 | Out |
4321+-----+-----+-----+
4322| 0 | 0 | 0 |
4323+-----+-----+-----+
4324| 0 | 1 | 1 |
4325+-----+-----+-----+
4326| 1 | 0 | 1 |
4327+-----+-----+-----+
4328| 1 | 1 | 1 |
4329+-----+-----+-----+
4330
4331Example:
4332""""""""
4333
4334::
4335
4336 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4337 <result> = or i32 15, 40 ; yields {i32}:result = 47
4338 <result> = or i32 4, 8 ; yields {i32}:result = 12
4339
4340'``xor``' Instruction
4341^^^^^^^^^^^^^^^^^^^^^
4342
4343Syntax:
4344"""""""
4345
4346::
4347
4348 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4349
4350Overview:
4351"""""""""
4352
4353The '``xor``' instruction returns the bitwise logical exclusive or of
4354its two operands. The ``xor`` is used to implement the "one's
4355complement" operation, which is the "~" operator in C.
4356
4357Arguments:
4358""""""""""
4359
4360The two arguments to the '``xor``' instruction must be
4361:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4362arguments must have identical types.
4363
4364Semantics:
4365""""""""""
4366
4367The truth table used for the '``xor``' instruction is:
4368
4369+-----+-----+-----+
4370| In0 | In1 | Out |
4371+-----+-----+-----+
4372| 0 | 0 | 0 |
4373+-----+-----+-----+
4374| 0 | 1 | 1 |
4375+-----+-----+-----+
4376| 1 | 0 | 1 |
4377+-----+-----+-----+
4378| 1 | 1 | 0 |
4379+-----+-----+-----+
4380
4381Example:
4382""""""""
4383
4384.. code-block:: llvm
4385
4386 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4387 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4388 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4389 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4390
4391Vector Operations
4392-----------------
4393
4394LLVM supports several instructions to represent vector operations in a
4395target-independent manner. These instructions cover the element-access
4396and vector-specific operations needed to process vectors effectively.
4397While LLVM does directly support these vector operations, many
4398sophisticated algorithms will want to use target-specific intrinsics to
4399take full advantage of a specific target.
4400
4401.. _i_extractelement:
4402
4403'``extractelement``' Instruction
4404^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4405
4406Syntax:
4407"""""""
4408
4409::
4410
4411 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4412
4413Overview:
4414"""""""""
4415
4416The '``extractelement``' instruction extracts a single scalar element
4417from a vector at a specified index.
4418
4419Arguments:
4420""""""""""
4421
4422The first operand of an '``extractelement``' instruction is a value of
4423:ref:`vector <t_vector>` type. The second operand is an index indicating
4424the position from which to extract the element. The index may be a
4425variable.
4426
4427Semantics:
4428""""""""""
4429
4430The result is a scalar of the same type as the element type of ``val``.
4431Its value is the value at position ``idx`` of ``val``. If ``idx``
4432exceeds the length of ``val``, the results are undefined.
4433
4434Example:
4435""""""""
4436
4437.. code-block:: llvm
4438
4439 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4440
4441.. _i_insertelement:
4442
4443'``insertelement``' Instruction
4444^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4445
4446Syntax:
4447"""""""
4448
4449::
4450
4451 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4452
4453Overview:
4454"""""""""
4455
4456The '``insertelement``' instruction inserts a scalar element into a
4457vector at a specified index.
4458
4459Arguments:
4460""""""""""
4461
4462The first operand of an '``insertelement``' instruction is a value of
4463:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4464type must equal the element type of the first operand. The third operand
4465is an index indicating the position at which to insert the value. The
4466index may be a variable.
4467
4468Semantics:
4469""""""""""
4470
4471The result is a vector of the same type as ``val``. Its element values
4472are those of ``val`` except at position ``idx``, where it gets the value
4473``elt``. If ``idx`` exceeds the length of ``val``, the results are
4474undefined.
4475
4476Example:
4477""""""""
4478
4479.. code-block:: llvm
4480
4481 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4482
4483.. _i_shufflevector:
4484
4485'``shufflevector``' Instruction
4486^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4487
4488Syntax:
4489"""""""
4490
4491::
4492
4493 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4494
4495Overview:
4496"""""""""
4497
4498The '``shufflevector``' instruction constructs a permutation of elements
4499from two input vectors, returning a vector with the same element type as
4500the input and length that is the same as the shuffle mask.
4501
4502Arguments:
4503""""""""""
4504
4505The first two operands of a '``shufflevector``' instruction are vectors
4506with the same type. The third argument is a shuffle mask whose element
4507type is always 'i32'. The result of the instruction is a vector whose
4508length is the same as the shuffle mask and whose element type is the
4509same as the element type of the first two operands.
4510
4511The shuffle mask operand is required to be a constant vector with either
4512constant integer or undef values.
4513
4514Semantics:
4515""""""""""
4516
4517The elements of the two input vectors are numbered from left to right
4518across both of the vectors. The shuffle mask operand specifies, for each
4519element of the result vector, which element of the two input vectors the
4520result element gets. The element selector may be undef (meaning "don't
4521care") and the second operand may be undef if performing a shuffle from
4522only one vector.
4523
4524Example:
4525""""""""
4526
4527.. code-block:: llvm
4528
4529 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4530 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4531 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4532 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4533 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4534 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4535 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4536 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4537
4538Aggregate Operations
4539--------------------
4540
4541LLVM supports several instructions for working with
4542:ref:`aggregate <t_aggregate>` values.
4543
4544.. _i_extractvalue:
4545
4546'``extractvalue``' Instruction
4547^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4548
4549Syntax:
4550"""""""
4551
4552::
4553
4554 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4555
4556Overview:
4557"""""""""
4558
4559The '``extractvalue``' instruction extracts the value of a member field
4560from an :ref:`aggregate <t_aggregate>` value.
4561
4562Arguments:
4563""""""""""
4564
4565The first operand of an '``extractvalue``' instruction is a value of
4566:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4567constant indices to specify which value to extract in a similar manner
4568as indices in a '``getelementptr``' instruction.
4569
4570The major differences to ``getelementptr`` indexing are:
4571
4572- Since the value being indexed is not a pointer, the first index is
4573 omitted and assumed to be zero.
4574- At least one index must be specified.
4575- Not only struct indices but also array indices must be in bounds.
4576
4577Semantics:
4578""""""""""
4579
4580The result is the value at the position in the aggregate specified by
4581the index operands.
4582
4583Example:
4584""""""""
4585
4586.. code-block:: llvm
4587
4588 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4589
4590.. _i_insertvalue:
4591
4592'``insertvalue``' Instruction
4593^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4594
4595Syntax:
4596"""""""
4597
4598::
4599
4600 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4601
4602Overview:
4603"""""""""
4604
4605The '``insertvalue``' instruction inserts a value into a member field in
4606an :ref:`aggregate <t_aggregate>` value.
4607
4608Arguments:
4609""""""""""
4610
4611The first operand of an '``insertvalue``' instruction is a value of
4612:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4613a first-class value to insert. The following operands are constant
4614indices indicating the position at which to insert the value in a
4615similar manner as indices in a '``extractvalue``' instruction. The value
4616to insert must have the same type as the value identified by the
4617indices.
4618
4619Semantics:
4620""""""""""
4621
4622The result is an aggregate of the same type as ``val``. Its value is
4623that of ``val`` except that the value at the position specified by the
4624indices is that of ``elt``.
4625
4626Example:
4627""""""""
4628
4629.. code-block:: llvm
4630
4631 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4632 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4633 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4634
4635.. _memoryops:
4636
4637Memory Access and Addressing Operations
4638---------------------------------------
4639
4640A key design point of an SSA-based representation is how it represents
4641memory. In LLVM, no memory locations are in SSA form, which makes things
4642very simple. This section describes how to read, write, and allocate
4643memory in LLVM.
4644
4645.. _i_alloca:
4646
4647'``alloca``' Instruction
4648^^^^^^^^^^^^^^^^^^^^^^^^
4649
4650Syntax:
4651"""""""
4652
4653::
4654
4655 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4656
4657Overview:
4658"""""""""
4659
4660The '``alloca``' instruction allocates memory on the stack frame of the
4661currently executing function, to be automatically released when this
4662function returns to its caller. The object is always allocated in the
4663generic address space (address space zero).
4664
4665Arguments:
4666""""""""""
4667
4668The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4669bytes of memory on the runtime stack, returning a pointer of the
4670appropriate type to the program. If "NumElements" is specified, it is
4671the number of elements allocated, otherwise "NumElements" is defaulted
4672to be one. If a constant alignment is specified, the value result of the
4673allocation is guaranteed to be aligned to at least that boundary. If not
4674specified, or if zero, the target can choose to align the allocation on
4675any convenient boundary compatible with the type.
4676
4677'``type``' may be any sized type.
4678
4679Semantics:
4680""""""""""
4681
4682Memory is allocated; a pointer is returned. The operation is undefined
4683if there is insufficient stack space for the allocation. '``alloca``'d
4684memory is automatically released when the function returns. The
4685'``alloca``' instruction is commonly used to represent automatic
4686variables that must have an address available. When the function returns
4687(either with the ``ret`` or ``resume`` instructions), the memory is
4688reclaimed. Allocating zero bytes is legal, but the result is undefined.
4689The order in which memory is allocated (ie., which way the stack grows)
4690is not specified.
4691
4692Example:
4693""""""""
4694
4695.. code-block:: llvm
4696
4697 %ptr = alloca i32 ; yields {i32*}:ptr
4698 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4699 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4700 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4701
4702.. _i_load:
4703
4704'``load``' Instruction
4705^^^^^^^^^^^^^^^^^^^^^^
4706
4707Syntax:
4708"""""""
4709
4710::
4711
4712 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4713 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4714 !<index> = !{ i32 1 }
4715
4716Overview:
4717"""""""""
4718
4719The '``load``' instruction is used to read from memory.
4720
4721Arguments:
4722""""""""""
4723
Eli Bendersky239a78b2013-04-17 20:17:08 +00004724The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004725from which to load. The pointer must point to a :ref:`first
4726class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4727then the optimizer is not allowed to modify the number or order of
4728execution of this ``load`` with other :ref:`volatile
4729operations <volatile>`.
4730
4731If the ``load`` is marked as ``atomic``, it takes an extra
4732:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4733``release`` and ``acq_rel`` orderings are not valid on ``load``
4734instructions. Atomic loads produce :ref:`defined <memmodel>` results
4735when they may see multiple atomic stores. The type of the pointee must
4736be an integer type whose bit width is a power of two greater than or
4737equal to eight and less than or equal to a target-specific size limit.
4738``align`` must be explicitly specified on atomic loads, and the load has
4739undefined behavior if the alignment is not set to a value which is at
4740least the size in bytes of the pointee. ``!nontemporal`` does not have
4741any defined semantics for atomic loads.
4742
4743The optional constant ``align`` argument specifies the alignment of the
4744operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004745or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004746alignment for the target. It is the responsibility of the code emitter
4747to ensure that the alignment information is correct. Overestimating the
4748alignment results in undefined behavior. Underestimating the alignment
4749may produce less efficient code. An alignment of 1 is always safe.
4750
4751The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004752metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004753``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004754metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004755that this load is not expected to be reused in the cache. The code
4756generator may select special instructions to save cache bandwidth, such
4757as the ``MOVNT`` instruction on x86.
4758
4759The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004760metadata name ``<index>`` corresponding to a metadata node with no
4761entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004762instruction tells the optimizer and code generator that this load
4763address points to memory which does not change value during program
4764execution. The optimizer may then move this load around, for example, by
4765hoisting it out of loops using loop invariant code motion.
4766
4767Semantics:
4768""""""""""
4769
4770The location of memory pointed to is loaded. If the value being loaded
4771is of scalar type then the number of bytes read does not exceed the
4772minimum number of bytes needed to hold all bits of the type. For
4773example, loading an ``i24`` reads at most three bytes. When loading a
4774value of a type like ``i20`` with a size that is not an integral number
4775of bytes, the result is undefined if the value was not originally
4776written using a store of the same type.
4777
4778Examples:
4779"""""""""
4780
4781.. code-block:: llvm
4782
4783 %ptr = alloca i32 ; yields {i32*}:ptr
4784 store i32 3, i32* %ptr ; yields {void}
4785 %val = load i32* %ptr ; yields {i32}:val = i32 3
4786
4787.. _i_store:
4788
4789'``store``' Instruction
4790^^^^^^^^^^^^^^^^^^^^^^^
4791
4792Syntax:
4793"""""""
4794
4795::
4796
4797 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4798 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4799
4800Overview:
4801"""""""""
4802
4803The '``store``' instruction is used to write to memory.
4804
4805Arguments:
4806""""""""""
4807
Eli Benderskyca380842013-04-17 17:17:20 +00004808There are two arguments to the ``store`` instruction: a value to store
4809and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004810operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004811the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004812then the optimizer is not allowed to modify the number or order of
4813execution of this ``store`` with other :ref:`volatile
4814operations <volatile>`.
4815
4816If the ``store`` is marked as ``atomic``, it takes an extra
4817:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4818``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4819instructions. Atomic loads produce :ref:`defined <memmodel>` results
4820when they may see multiple atomic stores. The type of the pointee must
4821be an integer type whose bit width is a power of two greater than or
4822equal to eight and less than or equal to a target-specific size limit.
4823``align`` must be explicitly specified on atomic stores, and the store
4824has undefined behavior if the alignment is not set to a value which is
4825at least the size in bytes of the pointee. ``!nontemporal`` does not
4826have any defined semantics for atomic stores.
4827
Eli Benderskyca380842013-04-17 17:17:20 +00004828The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004829operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004830or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004831alignment for the target. It is the responsibility of the code emitter
4832to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004833alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004834alignment may produce less efficient code. An alignment of 1 is always
4835safe.
4836
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004837The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004838name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004839value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004840tells the optimizer and code generator that this load is not expected to
4841be reused in the cache. The code generator may select special
4842instructions to save cache bandwidth, such as the MOVNT instruction on
4843x86.
4844
4845Semantics:
4846""""""""""
4847
Eli Benderskyca380842013-04-17 17:17:20 +00004848The contents of memory are updated to contain ``<value>`` at the
4849location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004850of scalar type then the number of bytes written does not exceed the
4851minimum number of bytes needed to hold all bits of the type. For
4852example, storing an ``i24`` writes at most three bytes. When writing a
4853value of a type like ``i20`` with a size that is not an integral number
4854of bytes, it is unspecified what happens to the extra bits that do not
4855belong to the type, but they will typically be overwritten.
4856
4857Example:
4858""""""""
4859
4860.. code-block:: llvm
4861
4862 %ptr = alloca i32 ; yields {i32*}:ptr
4863 store i32 3, i32* %ptr ; yields {void}
4864 %val = load i32* %ptr ; yields {i32}:val = i32 3
4865
4866.. _i_fence:
4867
4868'``fence``' Instruction
4869^^^^^^^^^^^^^^^^^^^^^^^
4870
4871Syntax:
4872"""""""
4873
4874::
4875
4876 fence [singlethread] <ordering> ; yields {void}
4877
4878Overview:
4879"""""""""
4880
4881The '``fence``' instruction is used to introduce happens-before edges
4882between operations.
4883
4884Arguments:
4885""""""""""
4886
4887'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4888defines what *synchronizes-with* edges they add. They can only be given
4889``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4890
4891Semantics:
4892""""""""""
4893
4894A fence A which has (at least) ``release`` ordering semantics
4895*synchronizes with* a fence B with (at least) ``acquire`` ordering
4896semantics if and only if there exist atomic operations X and Y, both
4897operating on some atomic object M, such that A is sequenced before X, X
4898modifies M (either directly or through some side effect of a sequence
4899headed by X), Y is sequenced before B, and Y observes M. This provides a
4900*happens-before* dependency between A and B. Rather than an explicit
4901``fence``, one (but not both) of the atomic operations X or Y might
4902provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4903still *synchronize-with* the explicit ``fence`` and establish the
4904*happens-before* edge.
4905
4906A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4907``acquire`` and ``release`` semantics specified above, participates in
4908the global program order of other ``seq_cst`` operations and/or fences.
4909
4910The optional ":ref:`singlethread <singlethread>`" argument specifies
4911that the fence only synchronizes with other fences in the same thread.
4912(This is useful for interacting with signal handlers.)
4913
4914Example:
4915""""""""
4916
4917.. code-block:: llvm
4918
4919 fence acquire ; yields {void}
4920 fence singlethread seq_cst ; yields {void}
4921
4922.. _i_cmpxchg:
4923
4924'``cmpxchg``' Instruction
4925^^^^^^^^^^^^^^^^^^^^^^^^^
4926
4927Syntax:
4928"""""""
4929
4930::
4931
4932 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4933
4934Overview:
4935"""""""""
4936
4937The '``cmpxchg``' instruction is used to atomically modify memory. It
4938loads a value in memory and compares it to a given value. If they are
4939equal, it stores a new value into the memory.
4940
4941Arguments:
4942""""""""""
4943
4944There are three arguments to the '``cmpxchg``' instruction: an address
4945to operate on, a value to compare to the value currently be at that
4946address, and a new value to place at that address if the compared values
4947are equal. The type of '<cmp>' must be an integer type whose bit width
4948is a power of two greater than or equal to eight and less than or equal
4949to a target-specific size limit. '<cmp>' and '<new>' must have the same
4950type, and the type of '<pointer>' must be a pointer to that type. If the
4951``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4952to modify the number or order of execution of this ``cmpxchg`` with
4953other :ref:`volatile operations <volatile>`.
4954
4955The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4956synchronizes with other atomic operations.
4957
4958The optional "``singlethread``" argument declares that the ``cmpxchg``
4959is only atomic with respect to code (usually signal handlers) running in
4960the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4961respect to all other code in the system.
4962
4963The pointer passed into cmpxchg must have alignment greater than or
4964equal to the size in memory of the operand.
4965
4966Semantics:
4967""""""""""
4968
4969The contents of memory at the location specified by the '``<pointer>``'
4970operand is read and compared to '``<cmp>``'; if the read value is the
4971equal, '``<new>``' is written. The original value at the location is
4972returned.
4973
4974A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4975of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4976atomic load with an ordering parameter determined by dropping any
4977``release`` part of the ``cmpxchg``'s ordering.
4978
4979Example:
4980""""""""
4981
4982.. code-block:: llvm
4983
4984 entry:
4985 %orig = atomic load i32* %ptr unordered ; yields {i32}
4986 br label %loop
4987
4988 loop:
4989 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4990 %squared = mul i32 %cmp, %cmp
4991 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4992 %success = icmp eq i32 %cmp, %old
4993 br i1 %success, label %done, label %loop
4994
4995 done:
4996 ...
4997
4998.. _i_atomicrmw:
4999
5000'``atomicrmw``' Instruction
5001^^^^^^^^^^^^^^^^^^^^^^^^^^^
5002
5003Syntax:
5004"""""""
5005
5006::
5007
5008 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5009
5010Overview:
5011"""""""""
5012
5013The '``atomicrmw``' instruction is used to atomically modify memory.
5014
5015Arguments:
5016""""""""""
5017
5018There are three arguments to the '``atomicrmw``' instruction: an
5019operation to apply, an address whose value to modify, an argument to the
5020operation. The operation must be one of the following keywords:
5021
5022- xchg
5023- add
5024- sub
5025- and
5026- nand
5027- or
5028- xor
5029- max
5030- min
5031- umax
5032- umin
5033
5034The type of '<value>' must be an integer type whose bit width is a power
5035of two greater than or equal to eight and less than or equal to a
5036target-specific size limit. The type of the '``<pointer>``' operand must
5037be a pointer to that type. If the ``atomicrmw`` is marked as
5038``volatile``, then the optimizer is not allowed to modify the number or
5039order of execution of this ``atomicrmw`` with other :ref:`volatile
5040operations <volatile>`.
5041
5042Semantics:
5043""""""""""
5044
5045The contents of memory at the location specified by the '``<pointer>``'
5046operand are atomically read, modified, and written back. The original
5047value at the location is returned. The modification is specified by the
5048operation argument:
5049
5050- xchg: ``*ptr = val``
5051- add: ``*ptr = *ptr + val``
5052- sub: ``*ptr = *ptr - val``
5053- and: ``*ptr = *ptr & val``
5054- nand: ``*ptr = ~(*ptr & val)``
5055- or: ``*ptr = *ptr | val``
5056- xor: ``*ptr = *ptr ^ val``
5057- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5058- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5059- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5060 comparison)
5061- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5062 comparison)
5063
5064Example:
5065""""""""
5066
5067.. code-block:: llvm
5068
5069 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5070
5071.. _i_getelementptr:
5072
5073'``getelementptr``' Instruction
5074^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5075
5076Syntax:
5077"""""""
5078
5079::
5080
5081 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5082 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5083 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5084
5085Overview:
5086"""""""""
5087
5088The '``getelementptr``' instruction is used to get the address of a
5089subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5090address calculation only and does not access memory.
5091
5092Arguments:
5093""""""""""
5094
5095The first argument is always a pointer or a vector of pointers, and
5096forms the basis of the calculation. The remaining arguments are indices
5097that indicate which of the elements of the aggregate object are indexed.
5098The interpretation of each index is dependent on the type being indexed
5099into. The first index always indexes the pointer value given as the
5100first argument, the second index indexes a value of the type pointed to
5101(not necessarily the value directly pointed to, since the first index
5102can be non-zero), etc. The first type indexed into must be a pointer
5103value, subsequent types can be arrays, vectors, and structs. Note that
5104subsequent types being indexed into can never be pointers, since that
5105would require loading the pointer before continuing calculation.
5106
5107The type of each index argument depends on the type it is indexing into.
5108When indexing into a (optionally packed) structure, only ``i32`` integer
5109**constants** are allowed (when using a vector of indices they must all
5110be the **same** ``i32`` integer constant). When indexing into an array,
5111pointer or vector, integers of any width are allowed, and they are not
5112required to be constant. These integers are treated as signed values
5113where relevant.
5114
5115For example, let's consider a C code fragment and how it gets compiled
5116to LLVM:
5117
5118.. code-block:: c
5119
5120 struct RT {
5121 char A;
5122 int B[10][20];
5123 char C;
5124 };
5125 struct ST {
5126 int X;
5127 double Y;
5128 struct RT Z;
5129 };
5130
5131 int *foo(struct ST *s) {
5132 return &s[1].Z.B[5][13];
5133 }
5134
5135The LLVM code generated by Clang is:
5136
5137.. code-block:: llvm
5138
5139 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5140 %struct.ST = type { i32, double, %struct.RT }
5141
5142 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5143 entry:
5144 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5145 ret i32* %arrayidx
5146 }
5147
5148Semantics:
5149""""""""""
5150
5151In the example above, the first index is indexing into the
5152'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5153= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5154indexes into the third element of the structure, yielding a
5155'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5156structure. The third index indexes into the second element of the
5157structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5158dimensions of the array are subscripted into, yielding an '``i32``'
5159type. The '``getelementptr``' instruction returns a pointer to this
5160element, thus computing a value of '``i32*``' type.
5161
5162Note that it is perfectly legal to index partially through a structure,
5163returning a pointer to an inner element. Because of this, the LLVM code
5164for the given testcase is equivalent to:
5165
5166.. code-block:: llvm
5167
5168 define i32* @foo(%struct.ST* %s) {
5169 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5170 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5171 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5172 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5173 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5174 ret i32* %t5
5175 }
5176
5177If the ``inbounds`` keyword is present, the result value of the
5178``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5179pointer is not an *in bounds* address of an allocated object, or if any
5180of the addresses that would be formed by successive addition of the
5181offsets implied by the indices to the base address with infinitely
5182precise signed arithmetic are not an *in bounds* address of that
5183allocated object. The *in bounds* addresses for an allocated object are
5184all the addresses that point into the object, plus the address one byte
5185past the end. In cases where the base is a vector of pointers the
5186``inbounds`` keyword applies to each of the computations element-wise.
5187
5188If the ``inbounds`` keyword is not present, the offsets are added to the
5189base address with silently-wrapping two's complement arithmetic. If the
5190offsets have a different width from the pointer, they are sign-extended
5191or truncated to the width of the pointer. The result value of the
5192``getelementptr`` may be outside the object pointed to by the base
5193pointer. The result value may not necessarily be used to access memory
5194though, even if it happens to point into allocated storage. See the
5195:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5196information.
5197
5198The getelementptr instruction is often confusing. For some more insight
5199into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5200
5201Example:
5202""""""""
5203
5204.. code-block:: llvm
5205
5206 ; yields [12 x i8]*:aptr
5207 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5208 ; yields i8*:vptr
5209 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5210 ; yields i8*:eptr
5211 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5212 ; yields i32*:iptr
5213 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5214
5215In cases where the pointer argument is a vector of pointers, each index
5216must be a vector with the same number of elements. For example:
5217
5218.. code-block:: llvm
5219
5220 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5221
5222Conversion Operations
5223---------------------
5224
5225The instructions in this category are the conversion instructions
5226(casting) which all take a single operand and a type. They perform
5227various bit conversions on the operand.
5228
5229'``trunc .. to``' Instruction
5230^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5231
5232Syntax:
5233"""""""
5234
5235::
5236
5237 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5238
5239Overview:
5240"""""""""
5241
5242The '``trunc``' instruction truncates its operand to the type ``ty2``.
5243
5244Arguments:
5245""""""""""
5246
5247The '``trunc``' instruction takes a value to trunc, and a type to trunc
5248it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5249of the same number of integers. The bit size of the ``value`` must be
5250larger than the bit size of the destination type, ``ty2``. Equal sized
5251types are not allowed.
5252
5253Semantics:
5254""""""""""
5255
5256The '``trunc``' instruction truncates the high order bits in ``value``
5257and converts the remaining bits to ``ty2``. Since the source size must
5258be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5259It will always truncate bits.
5260
5261Example:
5262""""""""
5263
5264.. code-block:: llvm
5265
5266 %X = trunc i32 257 to i8 ; yields i8:1
5267 %Y = trunc i32 123 to i1 ; yields i1:true
5268 %Z = trunc i32 122 to i1 ; yields i1:false
5269 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5270
5271'``zext .. to``' Instruction
5272^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5273
5274Syntax:
5275"""""""
5276
5277::
5278
5279 <result> = zext <ty> <value> to <ty2> ; yields ty2
5280
5281Overview:
5282"""""""""
5283
5284The '``zext``' instruction zero extends its operand to type ``ty2``.
5285
5286Arguments:
5287""""""""""
5288
5289The '``zext``' instruction takes a value to cast, and a type to cast it
5290to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5291the same number of integers. The bit size of the ``value`` must be
5292smaller than the bit size of the destination type, ``ty2``.
5293
5294Semantics:
5295""""""""""
5296
5297The ``zext`` fills the high order bits of the ``value`` with zero bits
5298until it reaches the size of the destination type, ``ty2``.
5299
5300When zero extending from i1, the result will always be either 0 or 1.
5301
5302Example:
5303""""""""
5304
5305.. code-block:: llvm
5306
5307 %X = zext i32 257 to i64 ; yields i64:257
5308 %Y = zext i1 true to i32 ; yields i32:1
5309 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5310
5311'``sext .. to``' Instruction
5312^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5313
5314Syntax:
5315"""""""
5316
5317::
5318
5319 <result> = sext <ty> <value> to <ty2> ; yields ty2
5320
5321Overview:
5322"""""""""
5323
5324The '``sext``' sign extends ``value`` to the type ``ty2``.
5325
5326Arguments:
5327""""""""""
5328
5329The '``sext``' instruction takes a value to cast, and a type to cast it
5330to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5331the same number of integers. The bit size of the ``value`` must be
5332smaller than the bit size of the destination type, ``ty2``.
5333
5334Semantics:
5335""""""""""
5336
5337The '``sext``' instruction performs a sign extension by copying the sign
5338bit (highest order bit) of the ``value`` until it reaches the bit size
5339of the type ``ty2``.
5340
5341When sign extending from i1, the extension always results in -1 or 0.
5342
5343Example:
5344""""""""
5345
5346.. code-block:: llvm
5347
5348 %X = sext i8 -1 to i16 ; yields i16 :65535
5349 %Y = sext i1 true to i32 ; yields i32:-1
5350 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5351
5352'``fptrunc .. to``' Instruction
5353^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5354
5355Syntax:
5356"""""""
5357
5358::
5359
5360 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5361
5362Overview:
5363"""""""""
5364
5365The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5366
5367Arguments:
5368""""""""""
5369
5370The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5371value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5372The size of ``value`` must be larger than the size of ``ty2``. This
5373implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5374
5375Semantics:
5376""""""""""
5377
5378The '``fptrunc``' instruction truncates a ``value`` from a larger
5379:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5380point <t_floating>` type. If the value cannot fit within the
5381destination type, ``ty2``, then the results are undefined.
5382
5383Example:
5384""""""""
5385
5386.. code-block:: llvm
5387
5388 %X = fptrunc double 123.0 to float ; yields float:123.0
5389 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5390
5391'``fpext .. to``' Instruction
5392^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5393
5394Syntax:
5395"""""""
5396
5397::
5398
5399 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5400
5401Overview:
5402"""""""""
5403
5404The '``fpext``' extends a floating point ``value`` to a larger floating
5405point value.
5406
5407Arguments:
5408""""""""""
5409
5410The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5411``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5412to. The source type must be smaller than the destination type.
5413
5414Semantics:
5415""""""""""
5416
5417The '``fpext``' instruction extends the ``value`` from a smaller
5418:ref:`floating point <t_floating>` type to a larger :ref:`floating
5419point <t_floating>` type. The ``fpext`` cannot be used to make a
5420*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5421*no-op cast* for a floating point cast.
5422
5423Example:
5424""""""""
5425
5426.. code-block:: llvm
5427
5428 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5429 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5430
5431'``fptoui .. to``' Instruction
5432^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5433
5434Syntax:
5435"""""""
5436
5437::
5438
5439 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5440
5441Overview:
5442"""""""""
5443
5444The '``fptoui``' converts a floating point ``value`` to its unsigned
5445integer equivalent of type ``ty2``.
5446
5447Arguments:
5448""""""""""
5449
5450The '``fptoui``' instruction takes a value to cast, which must be a
5451scalar or vector :ref:`floating point <t_floating>` value, and a type to
5452cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5453``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5454type with the same number of elements as ``ty``
5455
5456Semantics:
5457""""""""""
5458
5459The '``fptoui``' instruction converts its :ref:`floating
5460point <t_floating>` operand into the nearest (rounding towards zero)
5461unsigned integer value. If the value cannot fit in ``ty2``, the results
5462are undefined.
5463
5464Example:
5465""""""""
5466
5467.. code-block:: llvm
5468
5469 %X = fptoui double 123.0 to i32 ; yields i32:123
5470 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5471 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5472
5473'``fptosi .. to``' Instruction
5474^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5475
5476Syntax:
5477"""""""
5478
5479::
5480
5481 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5482
5483Overview:
5484"""""""""
5485
5486The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5487``value`` to type ``ty2``.
5488
5489Arguments:
5490""""""""""
5491
5492The '``fptosi``' instruction takes a value to cast, which must be a
5493scalar or vector :ref:`floating point <t_floating>` value, and a type to
5494cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5495``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5496type with the same number of elements as ``ty``
5497
5498Semantics:
5499""""""""""
5500
5501The '``fptosi``' instruction converts its :ref:`floating
5502point <t_floating>` operand into the nearest (rounding towards zero)
5503signed integer value. If the value cannot fit in ``ty2``, the results
5504are undefined.
5505
5506Example:
5507""""""""
5508
5509.. code-block:: llvm
5510
5511 %X = fptosi double -123.0 to i32 ; yields i32:-123
5512 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5513 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5514
5515'``uitofp .. to``' Instruction
5516^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5517
5518Syntax:
5519"""""""
5520
5521::
5522
5523 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5524
5525Overview:
5526"""""""""
5527
5528The '``uitofp``' instruction regards ``value`` as an unsigned integer
5529and converts that value to the ``ty2`` type.
5530
5531Arguments:
5532""""""""""
5533
5534The '``uitofp``' instruction takes a value to cast, which must be a
5535scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5536``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5537``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5538type with the same number of elements as ``ty``
5539
5540Semantics:
5541""""""""""
5542
5543The '``uitofp``' instruction interprets its operand as an unsigned
5544integer quantity and converts it to the corresponding floating point
5545value. If the value cannot fit in the floating point value, the results
5546are undefined.
5547
5548Example:
5549""""""""
5550
5551.. code-block:: llvm
5552
5553 %X = uitofp i32 257 to float ; yields float:257.0
5554 %Y = uitofp i8 -1 to double ; yields double:255.0
5555
5556'``sitofp .. to``' Instruction
5557^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5558
5559Syntax:
5560"""""""
5561
5562::
5563
5564 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5565
5566Overview:
5567"""""""""
5568
5569The '``sitofp``' instruction regards ``value`` as a signed integer and
5570converts that value to the ``ty2`` type.
5571
5572Arguments:
5573""""""""""
5574
5575The '``sitofp``' instruction takes a value to cast, which must be a
5576scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5577``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5578``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5579type with the same number of elements as ``ty``
5580
5581Semantics:
5582""""""""""
5583
5584The '``sitofp``' instruction interprets its operand as a signed integer
5585quantity and converts it to the corresponding floating point value. If
5586the value cannot fit in the floating point value, the results are
5587undefined.
5588
5589Example:
5590""""""""
5591
5592.. code-block:: llvm
5593
5594 %X = sitofp i32 257 to float ; yields float:257.0
5595 %Y = sitofp i8 -1 to double ; yields double:-1.0
5596
5597.. _i_ptrtoint:
5598
5599'``ptrtoint .. to``' Instruction
5600^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5601
5602Syntax:
5603"""""""
5604
5605::
5606
5607 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5608
5609Overview:
5610"""""""""
5611
5612The '``ptrtoint``' instruction converts the pointer or a vector of
5613pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5614
5615Arguments:
5616""""""""""
5617
5618The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5619a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5620type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5621a vector of integers type.
5622
5623Semantics:
5624""""""""""
5625
5626The '``ptrtoint``' instruction converts ``value`` to integer type
5627``ty2`` by interpreting the pointer value as an integer and either
5628truncating or zero extending that value to the size of the integer type.
5629If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5630``value`` is larger than ``ty2`` then a truncation is done. If they are
5631the same size, then nothing is done (*no-op cast*) other than a type
5632change.
5633
5634Example:
5635""""""""
5636
5637.. code-block:: llvm
5638
5639 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5640 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5641 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5642
5643.. _i_inttoptr:
5644
5645'``inttoptr .. to``' Instruction
5646^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5647
5648Syntax:
5649"""""""
5650
5651::
5652
5653 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5654
5655Overview:
5656"""""""""
5657
5658The '``inttoptr``' instruction converts an integer ``value`` to a
5659pointer type, ``ty2``.
5660
5661Arguments:
5662""""""""""
5663
5664The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5665cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5666type.
5667
5668Semantics:
5669""""""""""
5670
5671The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5672applying either a zero extension or a truncation depending on the size
5673of the integer ``value``. If ``value`` is larger than the size of a
5674pointer then a truncation is done. If ``value`` is smaller than the size
5675of a pointer then a zero extension is done. If they are the same size,
5676nothing is done (*no-op cast*).
5677
5678Example:
5679""""""""
5680
5681.. code-block:: llvm
5682
5683 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5684 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5685 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5686 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5687
5688.. _i_bitcast:
5689
5690'``bitcast .. to``' Instruction
5691^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5692
5693Syntax:
5694"""""""
5695
5696::
5697
5698 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5699
5700Overview:
5701"""""""""
5702
5703The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5704changing any bits.
5705
5706Arguments:
5707""""""""""
5708
5709The '``bitcast``' instruction takes a value to cast, which must be a
5710non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005711also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5712bit sizes of ``value`` and the destination type, ``ty2``, must be
5713identical. If the source type is a pointer, the destination type must
5714also be a pointer of the same size. This instruction supports bitwise
5715conversion of vectors to integers and to vectors of other types (as
5716long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005717
5718Semantics:
5719""""""""""
5720
Matt Arsenault24b49c42013-07-31 17:49:08 +00005721The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5722is always a *no-op cast* because no bits change with this
5723conversion. The conversion is done as if the ``value`` had been stored
5724to memory and read back as type ``ty2``. Pointer (or vector of
5725pointers) types may only be converted to other pointer (or vector of
5726pointers) types with this instruction if the pointer sizes are
5727equal. To convert pointers to other types, use the :ref:`inttoptr
5728<i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005729
5730Example:
5731""""""""
5732
5733.. code-block:: llvm
5734
5735 %X = bitcast i8 255 to i8 ; yields i8 :-1
5736 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5737 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5738 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5739
5740.. _otherops:
5741
5742Other Operations
5743----------------
5744
5745The instructions in this category are the "miscellaneous" instructions,
5746which defy better classification.
5747
5748.. _i_icmp:
5749
5750'``icmp``' Instruction
5751^^^^^^^^^^^^^^^^^^^^^^
5752
5753Syntax:
5754"""""""
5755
5756::
5757
5758 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5759
5760Overview:
5761"""""""""
5762
5763The '``icmp``' instruction returns a boolean value or a vector of
5764boolean values based on comparison of its two integer, integer vector,
5765pointer, or pointer vector operands.
5766
5767Arguments:
5768""""""""""
5769
5770The '``icmp``' instruction takes three operands. The first operand is
5771the condition code indicating the kind of comparison to perform. It is
5772not a value, just a keyword. The possible condition code are:
5773
5774#. ``eq``: equal
5775#. ``ne``: not equal
5776#. ``ugt``: unsigned greater than
5777#. ``uge``: unsigned greater or equal
5778#. ``ult``: unsigned less than
5779#. ``ule``: unsigned less or equal
5780#. ``sgt``: signed greater than
5781#. ``sge``: signed greater or equal
5782#. ``slt``: signed less than
5783#. ``sle``: signed less or equal
5784
5785The remaining two arguments must be :ref:`integer <t_integer>` or
5786:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5787must also be identical types.
5788
5789Semantics:
5790""""""""""
5791
5792The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5793code given as ``cond``. The comparison performed always yields either an
5794:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5795
5796#. ``eq``: yields ``true`` if the operands are equal, ``false``
5797 otherwise. No sign interpretation is necessary or performed.
5798#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5799 otherwise. No sign interpretation is necessary or performed.
5800#. ``ugt``: interprets the operands as unsigned values and yields
5801 ``true`` if ``op1`` is greater than ``op2``.
5802#. ``uge``: interprets the operands as unsigned values and yields
5803 ``true`` if ``op1`` is greater than or equal to ``op2``.
5804#. ``ult``: interprets the operands as unsigned values and yields
5805 ``true`` if ``op1`` is less than ``op2``.
5806#. ``ule``: interprets the operands as unsigned values and yields
5807 ``true`` if ``op1`` is less than or equal to ``op2``.
5808#. ``sgt``: interprets the operands as signed values and yields ``true``
5809 if ``op1`` is greater than ``op2``.
5810#. ``sge``: interprets the operands as signed values and yields ``true``
5811 if ``op1`` is greater than or equal to ``op2``.
5812#. ``slt``: interprets the operands as signed values and yields ``true``
5813 if ``op1`` is less than ``op2``.
5814#. ``sle``: interprets the operands as signed values and yields ``true``
5815 if ``op1`` is less than or equal to ``op2``.
5816
5817If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5818are compared as if they were integers.
5819
5820If the operands are integer vectors, then they are compared element by
5821element. The result is an ``i1`` vector with the same number of elements
5822as the values being compared. Otherwise, the result is an ``i1``.
5823
5824Example:
5825""""""""
5826
5827.. code-block:: llvm
5828
5829 <result> = icmp eq i32 4, 5 ; yields: result=false
5830 <result> = icmp ne float* %X, %X ; yields: result=false
5831 <result> = icmp ult i16 4, 5 ; yields: result=true
5832 <result> = icmp sgt i16 4, 5 ; yields: result=false
5833 <result> = icmp ule i16 -4, 5 ; yields: result=false
5834 <result> = icmp sge i16 4, 5 ; yields: result=false
5835
5836Note that the code generator does not yet support vector types with the
5837``icmp`` instruction.
5838
5839.. _i_fcmp:
5840
5841'``fcmp``' Instruction
5842^^^^^^^^^^^^^^^^^^^^^^
5843
5844Syntax:
5845"""""""
5846
5847::
5848
5849 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5850
5851Overview:
5852"""""""""
5853
5854The '``fcmp``' instruction returns a boolean value or vector of boolean
5855values based on comparison of its operands.
5856
5857If the operands are floating point scalars, then the result type is a
5858boolean (:ref:`i1 <t_integer>`).
5859
5860If the operands are floating point vectors, then the result type is a
5861vector of boolean with the same number of elements as the operands being
5862compared.
5863
5864Arguments:
5865""""""""""
5866
5867The '``fcmp``' instruction takes three operands. The first operand is
5868the condition code indicating the kind of comparison to perform. It is
5869not a value, just a keyword. The possible condition code are:
5870
5871#. ``false``: no comparison, always returns false
5872#. ``oeq``: ordered and equal
5873#. ``ogt``: ordered and greater than
5874#. ``oge``: ordered and greater than or equal
5875#. ``olt``: ordered and less than
5876#. ``ole``: ordered and less than or equal
5877#. ``one``: ordered and not equal
5878#. ``ord``: ordered (no nans)
5879#. ``ueq``: unordered or equal
5880#. ``ugt``: unordered or greater than
5881#. ``uge``: unordered or greater than or equal
5882#. ``ult``: unordered or less than
5883#. ``ule``: unordered or less than or equal
5884#. ``une``: unordered or not equal
5885#. ``uno``: unordered (either nans)
5886#. ``true``: no comparison, always returns true
5887
5888*Ordered* means that neither operand is a QNAN while *unordered* means
5889that either operand may be a QNAN.
5890
5891Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5892point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5893type. They must have identical types.
5894
5895Semantics:
5896""""""""""
5897
5898The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5899condition code given as ``cond``. If the operands are vectors, then the
5900vectors are compared element by element. Each comparison performed
5901always yields an :ref:`i1 <t_integer>` result, as follows:
5902
5903#. ``false``: always yields ``false``, regardless of operands.
5904#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5905 is equal to ``op2``.
5906#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5907 is greater than ``op2``.
5908#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5909 is greater than or equal to ``op2``.
5910#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5911 is less than ``op2``.
5912#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5913 is less than or equal to ``op2``.
5914#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5915 is not equal to ``op2``.
5916#. ``ord``: yields ``true`` if both operands are not a QNAN.
5917#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5918 equal to ``op2``.
5919#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5920 greater than ``op2``.
5921#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5922 greater than or equal to ``op2``.
5923#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5924 less than ``op2``.
5925#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5926 less than or equal to ``op2``.
5927#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5928 not equal to ``op2``.
5929#. ``uno``: yields ``true`` if either operand is a QNAN.
5930#. ``true``: always yields ``true``, regardless of operands.
5931
5932Example:
5933""""""""
5934
5935.. code-block:: llvm
5936
5937 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5938 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5939 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5940 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5941
5942Note that the code generator does not yet support vector types with the
5943``fcmp`` instruction.
5944
5945.. _i_phi:
5946
5947'``phi``' Instruction
5948^^^^^^^^^^^^^^^^^^^^^
5949
5950Syntax:
5951"""""""
5952
5953::
5954
5955 <result> = phi <ty> [ <val0>, <label0>], ...
5956
5957Overview:
5958"""""""""
5959
5960The '``phi``' instruction is used to implement the φ node in the SSA
5961graph representing the function.
5962
5963Arguments:
5964""""""""""
5965
5966The type of the incoming values is specified with the first type field.
5967After this, the '``phi``' instruction takes a list of pairs as
5968arguments, with one pair for each predecessor basic block of the current
5969block. Only values of :ref:`first class <t_firstclass>` type may be used as
5970the value arguments to the PHI node. Only labels may be used as the
5971label arguments.
5972
5973There must be no non-phi instructions between the start of a basic block
5974and the PHI instructions: i.e. PHI instructions must be first in a basic
5975block.
5976
5977For the purposes of the SSA form, the use of each incoming value is
5978deemed to occur on the edge from the corresponding predecessor block to
5979the current block (but after any definition of an '``invoke``'
5980instruction's return value on the same edge).
5981
5982Semantics:
5983""""""""""
5984
5985At runtime, the '``phi``' instruction logically takes on the value
5986specified by the pair corresponding to the predecessor basic block that
5987executed just prior to the current block.
5988
5989Example:
5990""""""""
5991
5992.. code-block:: llvm
5993
5994 Loop: ; Infinite loop that counts from 0 on up...
5995 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5996 %nextindvar = add i32 %indvar, 1
5997 br label %Loop
5998
5999.. _i_select:
6000
6001'``select``' Instruction
6002^^^^^^^^^^^^^^^^^^^^^^^^
6003
6004Syntax:
6005"""""""
6006
6007::
6008
6009 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6010
6011 selty is either i1 or {<N x i1>}
6012
6013Overview:
6014"""""""""
6015
6016The '``select``' instruction is used to choose one value based on a
6017condition, without branching.
6018
6019Arguments:
6020""""""""""
6021
6022The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6023values indicating the condition, and two values of the same :ref:`first
6024class <t_firstclass>` type. If the val1/val2 are vectors and the
6025condition is a scalar, then entire vectors are selected, not individual
6026elements.
6027
6028Semantics:
6029""""""""""
6030
6031If the condition is an i1 and it evaluates to 1, the instruction returns
6032the first value argument; otherwise, it returns the second value
6033argument.
6034
6035If the condition is a vector of i1, then the value arguments must be
6036vectors of the same size, and the selection is done element by element.
6037
6038Example:
6039""""""""
6040
6041.. code-block:: llvm
6042
6043 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6044
6045.. _i_call:
6046
6047'``call``' Instruction
6048^^^^^^^^^^^^^^^^^^^^^^
6049
6050Syntax:
6051"""""""
6052
6053::
6054
6055 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6056
6057Overview:
6058"""""""""
6059
6060The '``call``' instruction represents a simple function call.
6061
6062Arguments:
6063""""""""""
6064
6065This instruction requires several arguments:
6066
6067#. The optional "tail" marker indicates that the callee function does
6068 not access any allocas or varargs in the caller. Note that calls may
6069 be marked "tail" even if they do not occur before a
6070 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
6071 function call is eligible for tail call optimization, but `might not
6072 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
6073 The code generator may optimize calls marked "tail" with either 1)
6074 automatic `sibling call
6075 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6076 callee have matching signatures, or 2) forced tail call optimization
6077 when the following extra requirements are met:
6078
6079 - Caller and callee both have the calling convention ``fastcc``.
6080 - The call is in tail position (ret immediately follows call and ret
6081 uses value of call or is void).
6082 - Option ``-tailcallopt`` is enabled, or
6083 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6084 - `Platform specific constraints are
6085 met. <CodeGenerator.html#tailcallopt>`_
6086
6087#. The optional "cconv" marker indicates which :ref:`calling
6088 convention <callingconv>` the call should use. If none is
6089 specified, the call defaults to using C calling conventions. The
6090 calling convention of the call must match the calling convention of
6091 the target function, or else the behavior is undefined.
6092#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6093 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6094 are valid here.
6095#. '``ty``': the type of the call instruction itself which is also the
6096 type of the return value. Functions that return no value are marked
6097 ``void``.
6098#. '``fnty``': shall be the signature of the pointer to function value
6099 being invoked. The argument types must match the types implied by
6100 this signature. This type can be omitted if the function is not
6101 varargs and if the function type does not return a pointer to a
6102 function.
6103#. '``fnptrval``': An LLVM value containing a pointer to a function to
6104 be invoked. In most cases, this is a direct function invocation, but
6105 indirect ``call``'s are just as possible, calling an arbitrary pointer
6106 to function value.
6107#. '``function args``': argument list whose types match the function
6108 signature argument types and parameter attributes. All arguments must
6109 be of :ref:`first class <t_firstclass>` type. If the function signature
6110 indicates the function accepts a variable number of arguments, the
6111 extra arguments can be specified.
6112#. The optional :ref:`function attributes <fnattrs>` list. Only
6113 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6114 attributes are valid here.
6115
6116Semantics:
6117""""""""""
6118
6119The '``call``' instruction is used to cause control flow to transfer to
6120a specified function, with its incoming arguments bound to the specified
6121values. Upon a '``ret``' instruction in the called function, control
6122flow continues with the instruction after the function call, and the
6123return value of the function is bound to the result argument.
6124
6125Example:
6126""""""""
6127
6128.. code-block:: llvm
6129
6130 %retval = call i32 @test(i32 %argc)
6131 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6132 %X = tail call i32 @foo() ; yields i32
6133 %Y = tail call fastcc i32 @foo() ; yields i32
6134 call void %foo(i8 97 signext)
6135
6136 %struct.A = type { i32, i8 }
6137 %r = call %struct.A @foo() ; yields { 32, i8 }
6138 %gr = extractvalue %struct.A %r, 0 ; yields i32
6139 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6140 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6141 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6142
6143llvm treats calls to some functions with names and arguments that match
6144the standard C99 library as being the C99 library functions, and may
6145perform optimizations or generate code for them under that assumption.
6146This is something we'd like to change in the future to provide better
6147support for freestanding environments and non-C-based languages.
6148
6149.. _i_va_arg:
6150
6151'``va_arg``' Instruction
6152^^^^^^^^^^^^^^^^^^^^^^^^
6153
6154Syntax:
6155"""""""
6156
6157::
6158
6159 <resultval> = va_arg <va_list*> <arglist>, <argty>
6160
6161Overview:
6162"""""""""
6163
6164The '``va_arg``' instruction is used to access arguments passed through
6165the "variable argument" area of a function call. It is used to implement
6166the ``va_arg`` macro in C.
6167
6168Arguments:
6169""""""""""
6170
6171This instruction takes a ``va_list*`` value and the type of the
6172argument. It returns a value of the specified argument type and
6173increments the ``va_list`` to point to the next argument. The actual
6174type of ``va_list`` is target specific.
6175
6176Semantics:
6177""""""""""
6178
6179The '``va_arg``' instruction loads an argument of the specified type
6180from the specified ``va_list`` and causes the ``va_list`` to point to
6181the next argument. For more information, see the variable argument
6182handling :ref:`Intrinsic Functions <int_varargs>`.
6183
6184It is legal for this instruction to be called in a function which does
6185not take a variable number of arguments, for example, the ``vfprintf``
6186function.
6187
6188``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6189function <intrinsics>` because it takes a type as an argument.
6190
6191Example:
6192""""""""
6193
6194See the :ref:`variable argument processing <int_varargs>` section.
6195
6196Note that the code generator does not yet fully support va\_arg on many
6197targets. Also, it does not currently support va\_arg with aggregate
6198types on any target.
6199
6200.. _i_landingpad:
6201
6202'``landingpad``' Instruction
6203^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6204
6205Syntax:
6206"""""""
6207
6208::
6209
6210 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6211 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6212
6213 <clause> := catch <type> <value>
6214 <clause> := filter <array constant type> <array constant>
6215
6216Overview:
6217"""""""""
6218
6219The '``landingpad``' instruction is used by `LLVM's exception handling
6220system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006221is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006222code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6223defines values supplied by the personality function (``pers_fn``) upon
6224re-entry to the function. The ``resultval`` has the type ``resultty``.
6225
6226Arguments:
6227""""""""""
6228
6229This instruction takes a ``pers_fn`` value. This is the personality
6230function associated with the unwinding mechanism. The optional
6231``cleanup`` flag indicates that the landing pad block is a cleanup.
6232
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006233A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006234contains the global variable representing the "type" that may be caught
6235or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6236clause takes an array constant as its argument. Use
6237"``[0 x i8**] undef``" for a filter which cannot throw. The
6238'``landingpad``' instruction must contain *at least* one ``clause`` or
6239the ``cleanup`` flag.
6240
6241Semantics:
6242""""""""""
6243
6244The '``landingpad``' instruction defines the values which are set by the
6245personality function (``pers_fn``) upon re-entry to the function, and
6246therefore the "result type" of the ``landingpad`` instruction. As with
6247calling conventions, how the personality function results are
6248represented in LLVM IR is target specific.
6249
6250The clauses are applied in order from top to bottom. If two
6251``landingpad`` instructions are merged together through inlining, the
6252clauses from the calling function are appended to the list of clauses.
6253When the call stack is being unwound due to an exception being thrown,
6254the exception is compared against each ``clause`` in turn. If it doesn't
6255match any of the clauses, and the ``cleanup`` flag is not set, then
6256unwinding continues further up the call stack.
6257
6258The ``landingpad`` instruction has several restrictions:
6259
6260- A landing pad block is a basic block which is the unwind destination
6261 of an '``invoke``' instruction.
6262- A landing pad block must have a '``landingpad``' instruction as its
6263 first non-PHI instruction.
6264- There can be only one '``landingpad``' instruction within the landing
6265 pad block.
6266- A basic block that is not a landing pad block may not include a
6267 '``landingpad``' instruction.
6268- All '``landingpad``' instructions in a function must have the same
6269 personality function.
6270
6271Example:
6272""""""""
6273
6274.. code-block:: llvm
6275
6276 ;; A landing pad which can catch an integer.
6277 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6278 catch i8** @_ZTIi
6279 ;; A landing pad that is a cleanup.
6280 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6281 cleanup
6282 ;; A landing pad which can catch an integer and can only throw a double.
6283 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6284 catch i8** @_ZTIi
6285 filter [1 x i8**] [@_ZTId]
6286
6287.. _intrinsics:
6288
6289Intrinsic Functions
6290===================
6291
6292LLVM supports the notion of an "intrinsic function". These functions
6293have well known names and semantics and are required to follow certain
6294restrictions. Overall, these intrinsics represent an extension mechanism
6295for the LLVM language that does not require changing all of the
6296transformations in LLVM when adding to the language (or the bitcode
6297reader/writer, the parser, etc...).
6298
6299Intrinsic function names must all start with an "``llvm.``" prefix. This
6300prefix is reserved in LLVM for intrinsic names; thus, function names may
6301not begin with this prefix. Intrinsic functions must always be external
6302functions: you cannot define the body of intrinsic functions. Intrinsic
6303functions may only be used in call or invoke instructions: it is illegal
6304to take the address of an intrinsic function. Additionally, because
6305intrinsic functions are part of the LLVM language, it is required if any
6306are added that they be documented here.
6307
6308Some intrinsic functions can be overloaded, i.e., the intrinsic
6309represents a family of functions that perform the same operation but on
6310different data types. Because LLVM can represent over 8 million
6311different integer types, overloading is used commonly to allow an
6312intrinsic function to operate on any integer type. One or more of the
6313argument types or the result type can be overloaded to accept any
6314integer type. Argument types may also be defined as exactly matching a
6315previous argument's type or the result type. This allows an intrinsic
6316function which accepts multiple arguments, but needs all of them to be
6317of the same type, to only be overloaded with respect to a single
6318argument or the result.
6319
6320Overloaded intrinsics will have the names of its overloaded argument
6321types encoded into its function name, each preceded by a period. Only
6322those types which are overloaded result in a name suffix. Arguments
6323whose type is matched against another type do not. For example, the
6324``llvm.ctpop`` function can take an integer of any width and returns an
6325integer of exactly the same integer width. This leads to a family of
6326functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6327``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6328overloaded, and only one type suffix is required. Because the argument's
6329type is matched against the return type, it does not require its own
6330name suffix.
6331
6332To learn how to add an intrinsic function, please see the `Extending
6333LLVM Guide <ExtendingLLVM.html>`_.
6334
6335.. _int_varargs:
6336
6337Variable Argument Handling Intrinsics
6338-------------------------------------
6339
6340Variable argument support is defined in LLVM with the
6341:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6342functions. These functions are related to the similarly named macros
6343defined in the ``<stdarg.h>`` header file.
6344
6345All of these functions operate on arguments that use a target-specific
6346value type "``va_list``". The LLVM assembly language reference manual
6347does not define what this type is, so all transformations should be
6348prepared to handle these functions regardless of the type used.
6349
6350This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6351variable argument handling intrinsic functions are used.
6352
6353.. code-block:: llvm
6354
6355 define i32 @test(i32 %X, ...) {
6356 ; Initialize variable argument processing
6357 %ap = alloca i8*
6358 %ap2 = bitcast i8** %ap to i8*
6359 call void @llvm.va_start(i8* %ap2)
6360
6361 ; Read a single integer argument
6362 %tmp = va_arg i8** %ap, i32
6363
6364 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6365 %aq = alloca i8*
6366 %aq2 = bitcast i8** %aq to i8*
6367 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6368 call void @llvm.va_end(i8* %aq2)
6369
6370 ; Stop processing of arguments.
6371 call void @llvm.va_end(i8* %ap2)
6372 ret i32 %tmp
6373 }
6374
6375 declare void @llvm.va_start(i8*)
6376 declare void @llvm.va_copy(i8*, i8*)
6377 declare void @llvm.va_end(i8*)
6378
6379.. _int_va_start:
6380
6381'``llvm.va_start``' Intrinsic
6382^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6383
6384Syntax:
6385"""""""
6386
6387::
6388
Nick Lewycky04f6de02013-09-11 22:04:52 +00006389 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006390
6391Overview:
6392"""""""""
6393
6394The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6395subsequent use by ``va_arg``.
6396
6397Arguments:
6398""""""""""
6399
6400The argument is a pointer to a ``va_list`` element to initialize.
6401
6402Semantics:
6403""""""""""
6404
6405The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6406available in C. In a target-dependent way, it initializes the
6407``va_list`` element to which the argument points, so that the next call
6408to ``va_arg`` will produce the first variable argument passed to the
6409function. Unlike the C ``va_start`` macro, this intrinsic does not need
6410to know the last argument of the function as the compiler can figure
6411that out.
6412
6413'``llvm.va_end``' Intrinsic
6414^^^^^^^^^^^^^^^^^^^^^^^^^^^
6415
6416Syntax:
6417"""""""
6418
6419::
6420
6421 declare void @llvm.va_end(i8* <arglist>)
6422
6423Overview:
6424"""""""""
6425
6426The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6427initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6428
6429Arguments:
6430""""""""""
6431
6432The argument is a pointer to a ``va_list`` to destroy.
6433
6434Semantics:
6435""""""""""
6436
6437The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6438available in C. In a target-dependent way, it destroys the ``va_list``
6439element to which the argument points. Calls to
6440:ref:`llvm.va_start <int_va_start>` and
6441:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6442``llvm.va_end``.
6443
6444.. _int_va_copy:
6445
6446'``llvm.va_copy``' Intrinsic
6447^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6448
6449Syntax:
6450"""""""
6451
6452::
6453
6454 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6455
6456Overview:
6457"""""""""
6458
6459The '``llvm.va_copy``' intrinsic copies the current argument position
6460from the source argument list to the destination argument list.
6461
6462Arguments:
6463""""""""""
6464
6465The first argument is a pointer to a ``va_list`` element to initialize.
6466The second argument is a pointer to a ``va_list`` element to copy from.
6467
6468Semantics:
6469""""""""""
6470
6471The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6472available in C. In a target-dependent way, it copies the source
6473``va_list`` element into the destination ``va_list`` element. This
6474intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6475arbitrarily complex and require, for example, memory allocation.
6476
6477Accurate Garbage Collection Intrinsics
6478--------------------------------------
6479
6480LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6481(GC) requires the implementation and generation of these intrinsics.
6482These intrinsics allow identification of :ref:`GC roots on the
6483stack <int_gcroot>`, as well as garbage collector implementations that
6484require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6485Front-ends for type-safe garbage collected languages should generate
6486these intrinsics to make use of the LLVM garbage collectors. For more
6487details, see `Accurate Garbage Collection with
6488LLVM <GarbageCollection.html>`_.
6489
6490The garbage collection intrinsics only operate on objects in the generic
6491address space (address space zero).
6492
6493.. _int_gcroot:
6494
6495'``llvm.gcroot``' Intrinsic
6496^^^^^^^^^^^^^^^^^^^^^^^^^^^
6497
6498Syntax:
6499"""""""
6500
6501::
6502
6503 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6504
6505Overview:
6506"""""""""
6507
6508The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6509the code generator, and allows some metadata to be associated with it.
6510
6511Arguments:
6512""""""""""
6513
6514The first argument specifies the address of a stack object that contains
6515the root pointer. The second pointer (which must be either a constant or
6516a global value address) contains the meta-data to be associated with the
6517root.
6518
6519Semantics:
6520""""""""""
6521
6522At runtime, a call to this intrinsic stores a null pointer into the
6523"ptrloc" location. At compile-time, the code generator generates
6524information to allow the runtime to find the pointer at GC safe points.
6525The '``llvm.gcroot``' intrinsic may only be used in a function which
6526:ref:`specifies a GC algorithm <gc>`.
6527
6528.. _int_gcread:
6529
6530'``llvm.gcread``' Intrinsic
6531^^^^^^^^^^^^^^^^^^^^^^^^^^^
6532
6533Syntax:
6534"""""""
6535
6536::
6537
6538 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6539
6540Overview:
6541"""""""""
6542
6543The '``llvm.gcread``' intrinsic identifies reads of references from heap
6544locations, allowing garbage collector implementations that require read
6545barriers.
6546
6547Arguments:
6548""""""""""
6549
6550The second argument is the address to read from, which should be an
6551address allocated from the garbage collector. The first object is a
6552pointer to the start of the referenced object, if needed by the language
6553runtime (otherwise null).
6554
6555Semantics:
6556""""""""""
6557
6558The '``llvm.gcread``' intrinsic has the same semantics as a load
6559instruction, but may be replaced with substantially more complex code by
6560the garbage collector runtime, as needed. The '``llvm.gcread``'
6561intrinsic may only be used in a function which :ref:`specifies a GC
6562algorithm <gc>`.
6563
6564.. _int_gcwrite:
6565
6566'``llvm.gcwrite``' Intrinsic
6567^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6568
6569Syntax:
6570"""""""
6571
6572::
6573
6574 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6575
6576Overview:
6577"""""""""
6578
6579The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6580locations, allowing garbage collector implementations that require write
6581barriers (such as generational or reference counting collectors).
6582
6583Arguments:
6584""""""""""
6585
6586The first argument is the reference to store, the second is the start of
6587the object to store it to, and the third is the address of the field of
6588Obj to store to. If the runtime does not require a pointer to the
6589object, Obj may be null.
6590
6591Semantics:
6592""""""""""
6593
6594The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6595instruction, but may be replaced with substantially more complex code by
6596the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6597intrinsic may only be used in a function which :ref:`specifies a GC
6598algorithm <gc>`.
6599
6600Code Generator Intrinsics
6601-------------------------
6602
6603These intrinsics are provided by LLVM to expose special features that
6604may only be implemented with code generator support.
6605
6606'``llvm.returnaddress``' Intrinsic
6607^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6608
6609Syntax:
6610"""""""
6611
6612::
6613
6614 declare i8 *@llvm.returnaddress(i32 <level>)
6615
6616Overview:
6617"""""""""
6618
6619The '``llvm.returnaddress``' intrinsic attempts to compute a
6620target-specific value indicating the return address of the current
6621function or one of its callers.
6622
6623Arguments:
6624""""""""""
6625
6626The argument to this intrinsic indicates which function to return the
6627address for. Zero indicates the calling function, one indicates its
6628caller, etc. The argument is **required** to be a constant integer
6629value.
6630
6631Semantics:
6632""""""""""
6633
6634The '``llvm.returnaddress``' intrinsic either returns a pointer
6635indicating the return address of the specified call frame, or zero if it
6636cannot be identified. The value returned by this intrinsic is likely to
6637be incorrect or 0 for arguments other than zero, so it should only be
6638used for debugging purposes.
6639
6640Note that calling this intrinsic does not prevent function inlining or
6641other aggressive transformations, so the value returned may not be that
6642of the obvious source-language caller.
6643
6644'``llvm.frameaddress``' Intrinsic
6645^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6646
6647Syntax:
6648"""""""
6649
6650::
6651
6652 declare i8* @llvm.frameaddress(i32 <level>)
6653
6654Overview:
6655"""""""""
6656
6657The '``llvm.frameaddress``' intrinsic attempts to return the
6658target-specific frame pointer value for the specified stack frame.
6659
6660Arguments:
6661""""""""""
6662
6663The argument to this intrinsic indicates which function to return the
6664frame pointer for. Zero indicates the calling function, one indicates
6665its caller, etc. The argument is **required** to be a constant integer
6666value.
6667
6668Semantics:
6669""""""""""
6670
6671The '``llvm.frameaddress``' intrinsic either returns a pointer
6672indicating the frame address of the specified call frame, or zero if it
6673cannot be identified. The value returned by this intrinsic is likely to
6674be incorrect or 0 for arguments other than zero, so it should only be
6675used for debugging purposes.
6676
6677Note that calling this intrinsic does not prevent function inlining or
6678other aggressive transformations, so the value returned may not be that
6679of the obvious source-language caller.
6680
6681.. _int_stacksave:
6682
6683'``llvm.stacksave``' Intrinsic
6684^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6685
6686Syntax:
6687"""""""
6688
6689::
6690
6691 declare i8* @llvm.stacksave()
6692
6693Overview:
6694"""""""""
6695
6696The '``llvm.stacksave``' intrinsic is used to remember the current state
6697of the function stack, for use with
6698:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6699implementing language features like scoped automatic variable sized
6700arrays in C99.
6701
6702Semantics:
6703""""""""""
6704
6705This intrinsic returns a opaque pointer value that can be passed to
6706:ref:`llvm.stackrestore <int_stackrestore>`. When an
6707``llvm.stackrestore`` intrinsic is executed with a value saved from
6708``llvm.stacksave``, it effectively restores the state of the stack to
6709the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6710practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6711were allocated after the ``llvm.stacksave`` was executed.
6712
6713.. _int_stackrestore:
6714
6715'``llvm.stackrestore``' Intrinsic
6716^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6717
6718Syntax:
6719"""""""
6720
6721::
6722
6723 declare void @llvm.stackrestore(i8* %ptr)
6724
6725Overview:
6726"""""""""
6727
6728The '``llvm.stackrestore``' intrinsic is used to restore the state of
6729the function stack to the state it was in when the corresponding
6730:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6731useful for implementing language features like scoped automatic variable
6732sized arrays in C99.
6733
6734Semantics:
6735""""""""""
6736
6737See the description for :ref:`llvm.stacksave <int_stacksave>`.
6738
6739'``llvm.prefetch``' Intrinsic
6740^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6741
6742Syntax:
6743"""""""
6744
6745::
6746
6747 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6748
6749Overview:
6750"""""""""
6751
6752The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6753insert a prefetch instruction if supported; otherwise, it is a noop.
6754Prefetches have no effect on the behavior of the program but can change
6755its performance characteristics.
6756
6757Arguments:
6758""""""""""
6759
6760``address`` is the address to be prefetched, ``rw`` is the specifier
6761determining if the fetch should be for a read (0) or write (1), and
6762``locality`` is a temporal locality specifier ranging from (0) - no
6763locality, to (3) - extremely local keep in cache. The ``cache type``
6764specifies whether the prefetch is performed on the data (1) or
6765instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6766arguments must be constant integers.
6767
6768Semantics:
6769""""""""""
6770
6771This intrinsic does not modify the behavior of the program. In
6772particular, prefetches cannot trap and do not produce a value. On
6773targets that support this intrinsic, the prefetch can provide hints to
6774the processor cache for better performance.
6775
6776'``llvm.pcmarker``' Intrinsic
6777^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6778
6779Syntax:
6780"""""""
6781
6782::
6783
6784 declare void @llvm.pcmarker(i32 <id>)
6785
6786Overview:
6787"""""""""
6788
6789The '``llvm.pcmarker``' intrinsic is a method to export a Program
6790Counter (PC) in a region of code to simulators and other tools. The
6791method is target specific, but it is expected that the marker will use
6792exported symbols to transmit the PC of the marker. The marker makes no
6793guarantees that it will remain with any specific instruction after
6794optimizations. It is possible that the presence of a marker will inhibit
6795optimizations. The intended use is to be inserted after optimizations to
6796allow correlations of simulation runs.
6797
6798Arguments:
6799""""""""""
6800
6801``id`` is a numerical id identifying the marker.
6802
6803Semantics:
6804""""""""""
6805
6806This intrinsic does not modify the behavior of the program. Backends
6807that do not support this intrinsic may ignore it.
6808
6809'``llvm.readcyclecounter``' Intrinsic
6810^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6811
6812Syntax:
6813"""""""
6814
6815::
6816
6817 declare i64 @llvm.readcyclecounter()
6818
6819Overview:
6820"""""""""
6821
6822The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6823counter register (or similar low latency, high accuracy clocks) on those
6824targets that support it. On X86, it should map to RDTSC. On Alpha, it
6825should map to RPCC. As the backing counters overflow quickly (on the
6826order of 9 seconds on alpha), this should only be used for small
6827timings.
6828
6829Semantics:
6830""""""""""
6831
6832When directly supported, reading the cycle counter should not modify any
6833memory. Implementations are allowed to either return a application
6834specific value or a system wide value. On backends without support, this
6835is lowered to a constant 0.
6836
Tim Northoverbc933082013-05-23 19:11:20 +00006837Note that runtime support may be conditional on the privilege-level code is
6838running at and the host platform.
6839
Sean Silvab084af42012-12-07 10:36:55 +00006840Standard C Library Intrinsics
6841-----------------------------
6842
6843LLVM provides intrinsics for a few important standard C library
6844functions. These intrinsics allow source-language front-ends to pass
6845information about the alignment of the pointer arguments to the code
6846generator, providing opportunity for more efficient code generation.
6847
6848.. _int_memcpy:
6849
6850'``llvm.memcpy``' Intrinsic
6851^^^^^^^^^^^^^^^^^^^^^^^^^^^
6852
6853Syntax:
6854"""""""
6855
6856This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6857integer bit width and for different address spaces. Not all targets
6858support all bit widths however.
6859
6860::
6861
6862 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6863 i32 <len>, i32 <align>, i1 <isvolatile>)
6864 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6865 i64 <len>, i32 <align>, i1 <isvolatile>)
6866
6867Overview:
6868"""""""""
6869
6870The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6871source location to the destination location.
6872
6873Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6874intrinsics do not return a value, takes extra alignment/isvolatile
6875arguments and the pointers can be in specified address spaces.
6876
6877Arguments:
6878""""""""""
6879
6880The first argument is a pointer to the destination, the second is a
6881pointer to the source. The third argument is an integer argument
6882specifying the number of bytes to copy, the fourth argument is the
6883alignment of the source and destination locations, and the fifth is a
6884boolean indicating a volatile access.
6885
6886If the call to this intrinsic has an alignment value that is not 0 or 1,
6887then the caller guarantees that both the source and destination pointers
6888are aligned to that boundary.
6889
6890If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6891a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6892very cleanly specified and it is unwise to depend on it.
6893
6894Semantics:
6895""""""""""
6896
6897The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6898source location to the destination location, which are not allowed to
6899overlap. It copies "len" bytes of memory over. If the argument is known
6900to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00006901argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00006902
6903'``llvm.memmove``' Intrinsic
6904^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6905
6906Syntax:
6907"""""""
6908
6909This is an overloaded intrinsic. You can use llvm.memmove on any integer
6910bit width and for different address space. Not all targets support all
6911bit widths however.
6912
6913::
6914
6915 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6916 i32 <len>, i32 <align>, i1 <isvolatile>)
6917 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6918 i64 <len>, i32 <align>, i1 <isvolatile>)
6919
6920Overview:
6921"""""""""
6922
6923The '``llvm.memmove.*``' intrinsics move a block of memory from the
6924source location to the destination location. It is similar to the
6925'``llvm.memcpy``' intrinsic but allows the two memory locations to
6926overlap.
6927
6928Note that, unlike the standard libc function, the ``llvm.memmove.*``
6929intrinsics do not return a value, takes extra alignment/isvolatile
6930arguments and the pointers can be in specified address spaces.
6931
6932Arguments:
6933""""""""""
6934
6935The first argument is a pointer to the destination, the second is a
6936pointer to the source. The third argument is an integer argument
6937specifying the number of bytes to copy, the fourth argument is the
6938alignment of the source and destination locations, and the fifth is a
6939boolean indicating a volatile access.
6940
6941If the call to this intrinsic has an alignment value that is not 0 or 1,
6942then the caller guarantees that the source and destination pointers are
6943aligned to that boundary.
6944
6945If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6946is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6947not very cleanly specified and it is unwise to depend on it.
6948
6949Semantics:
6950""""""""""
6951
6952The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6953source location to the destination location, which may overlap. It
6954copies "len" bytes of memory over. If the argument is known to be
6955aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00006956otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00006957
6958'``llvm.memset.*``' Intrinsics
6959^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6960
6961Syntax:
6962"""""""
6963
6964This is an overloaded intrinsic. You can use llvm.memset on any integer
6965bit width and for different address spaces. However, not all targets
6966support all bit widths.
6967
6968::
6969
6970 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6971 i32 <len>, i32 <align>, i1 <isvolatile>)
6972 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6973 i64 <len>, i32 <align>, i1 <isvolatile>)
6974
6975Overview:
6976"""""""""
6977
6978The '``llvm.memset.*``' intrinsics fill a block of memory with a
6979particular byte value.
6980
6981Note that, unlike the standard libc function, the ``llvm.memset``
6982intrinsic does not return a value and takes extra alignment/volatile
6983arguments. Also, the destination can be in an arbitrary address space.
6984
6985Arguments:
6986""""""""""
6987
6988The first argument is a pointer to the destination to fill, the second
6989is the byte value with which to fill it, the third argument is an
6990integer argument specifying the number of bytes to fill, and the fourth
6991argument is the known alignment of the destination location.
6992
6993If the call to this intrinsic has an alignment value that is not 0 or 1,
6994then the caller guarantees that the destination pointer is aligned to
6995that boundary.
6996
6997If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6998a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6999very cleanly specified and it is unwise to depend on it.
7000
7001Semantics:
7002""""""""""
7003
7004The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7005at the destination location. If the argument is known to be aligned to
7006some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007007it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007008
7009'``llvm.sqrt.*``' Intrinsic
7010^^^^^^^^^^^^^^^^^^^^^^^^^^^
7011
7012Syntax:
7013"""""""
7014
7015This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7016floating point or vector of floating point type. Not all targets support
7017all types however.
7018
7019::
7020
7021 declare float @llvm.sqrt.f32(float %Val)
7022 declare double @llvm.sqrt.f64(double %Val)
7023 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7024 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7025 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7026
7027Overview:
7028"""""""""
7029
7030The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7031returning the same value as the libm '``sqrt``' functions would. Unlike
7032``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7033negative numbers other than -0.0 (which allows for better optimization,
7034because there is no need to worry about errno being set).
7035``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7036
7037Arguments:
7038""""""""""
7039
7040The argument and return value are floating point numbers of the same
7041type.
7042
7043Semantics:
7044""""""""""
7045
7046This function returns the sqrt of the specified operand if it is a
7047nonnegative floating point number.
7048
7049'``llvm.powi.*``' Intrinsic
7050^^^^^^^^^^^^^^^^^^^^^^^^^^^
7051
7052Syntax:
7053"""""""
7054
7055This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7056floating point or vector of floating point type. Not all targets support
7057all types however.
7058
7059::
7060
7061 declare float @llvm.powi.f32(float %Val, i32 %power)
7062 declare double @llvm.powi.f64(double %Val, i32 %power)
7063 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7064 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7065 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7066
7067Overview:
7068"""""""""
7069
7070The '``llvm.powi.*``' intrinsics return the first operand raised to the
7071specified (positive or negative) power. The order of evaluation of
7072multiplications is not defined. When a vector of floating point type is
7073used, the second argument remains a scalar integer value.
7074
7075Arguments:
7076""""""""""
7077
7078The second argument is an integer power, and the first is a value to
7079raise to that power.
7080
7081Semantics:
7082""""""""""
7083
7084This function returns the first value raised to the second power with an
7085unspecified sequence of rounding operations.
7086
7087'``llvm.sin.*``' Intrinsic
7088^^^^^^^^^^^^^^^^^^^^^^^^^^
7089
7090Syntax:
7091"""""""
7092
7093This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7094floating point or vector of floating point type. Not all targets support
7095all types however.
7096
7097::
7098
7099 declare float @llvm.sin.f32(float %Val)
7100 declare double @llvm.sin.f64(double %Val)
7101 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7102 declare fp128 @llvm.sin.f128(fp128 %Val)
7103 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7104
7105Overview:
7106"""""""""
7107
7108The '``llvm.sin.*``' intrinsics return the sine of the operand.
7109
7110Arguments:
7111""""""""""
7112
7113The argument and return value are floating point numbers of the same
7114type.
7115
7116Semantics:
7117""""""""""
7118
7119This function returns the sine of the specified operand, returning the
7120same values as the libm ``sin`` functions would, and handles error
7121conditions in the same way.
7122
7123'``llvm.cos.*``' Intrinsic
7124^^^^^^^^^^^^^^^^^^^^^^^^^^
7125
7126Syntax:
7127"""""""
7128
7129This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7130floating point or vector of floating point type. Not all targets support
7131all types however.
7132
7133::
7134
7135 declare float @llvm.cos.f32(float %Val)
7136 declare double @llvm.cos.f64(double %Val)
7137 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7138 declare fp128 @llvm.cos.f128(fp128 %Val)
7139 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7140
7141Overview:
7142"""""""""
7143
7144The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7145
7146Arguments:
7147""""""""""
7148
7149The argument and return value are floating point numbers of the same
7150type.
7151
7152Semantics:
7153""""""""""
7154
7155This function returns the cosine of the specified operand, returning the
7156same values as the libm ``cos`` functions would, and handles error
7157conditions in the same way.
7158
7159'``llvm.pow.*``' Intrinsic
7160^^^^^^^^^^^^^^^^^^^^^^^^^^
7161
7162Syntax:
7163"""""""
7164
7165This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7166floating point or vector of floating point type. Not all targets support
7167all types however.
7168
7169::
7170
7171 declare float @llvm.pow.f32(float %Val, float %Power)
7172 declare double @llvm.pow.f64(double %Val, double %Power)
7173 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7174 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7175 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7176
7177Overview:
7178"""""""""
7179
7180The '``llvm.pow.*``' intrinsics return the first operand raised to the
7181specified (positive or negative) power.
7182
7183Arguments:
7184""""""""""
7185
7186The second argument is a floating point power, and the first is a value
7187to raise to that power.
7188
7189Semantics:
7190""""""""""
7191
7192This function returns the first value raised to the second power,
7193returning the same values as the libm ``pow`` functions would, and
7194handles error conditions in the same way.
7195
7196'``llvm.exp.*``' Intrinsic
7197^^^^^^^^^^^^^^^^^^^^^^^^^^
7198
7199Syntax:
7200"""""""
7201
7202This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7203floating point or vector of floating point type. Not all targets support
7204all types however.
7205
7206::
7207
7208 declare float @llvm.exp.f32(float %Val)
7209 declare double @llvm.exp.f64(double %Val)
7210 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7211 declare fp128 @llvm.exp.f128(fp128 %Val)
7212 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7213
7214Overview:
7215"""""""""
7216
7217The '``llvm.exp.*``' intrinsics perform the exp function.
7218
7219Arguments:
7220""""""""""
7221
7222The argument and return value are floating point numbers of the same
7223type.
7224
7225Semantics:
7226""""""""""
7227
7228This function returns the same values as the libm ``exp`` functions
7229would, and handles error conditions in the same way.
7230
7231'``llvm.exp2.*``' Intrinsic
7232^^^^^^^^^^^^^^^^^^^^^^^^^^^
7233
7234Syntax:
7235"""""""
7236
7237This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7238floating point or vector of floating point type. Not all targets support
7239all types however.
7240
7241::
7242
7243 declare float @llvm.exp2.f32(float %Val)
7244 declare double @llvm.exp2.f64(double %Val)
7245 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7246 declare fp128 @llvm.exp2.f128(fp128 %Val)
7247 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7248
7249Overview:
7250"""""""""
7251
7252The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7253
7254Arguments:
7255""""""""""
7256
7257The argument and return value are floating point numbers of the same
7258type.
7259
7260Semantics:
7261""""""""""
7262
7263This function returns the same values as the libm ``exp2`` functions
7264would, and handles error conditions in the same way.
7265
7266'``llvm.log.*``' Intrinsic
7267^^^^^^^^^^^^^^^^^^^^^^^^^^
7268
7269Syntax:
7270"""""""
7271
7272This is an overloaded intrinsic. You can use ``llvm.log`` on any
7273floating point or vector of floating point type. Not all targets support
7274all types however.
7275
7276::
7277
7278 declare float @llvm.log.f32(float %Val)
7279 declare double @llvm.log.f64(double %Val)
7280 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7281 declare fp128 @llvm.log.f128(fp128 %Val)
7282 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7283
7284Overview:
7285"""""""""
7286
7287The '``llvm.log.*``' intrinsics perform the log function.
7288
7289Arguments:
7290""""""""""
7291
7292The argument and return value are floating point numbers of the same
7293type.
7294
7295Semantics:
7296""""""""""
7297
7298This function returns the same values as the libm ``log`` functions
7299would, and handles error conditions in the same way.
7300
7301'``llvm.log10.*``' Intrinsic
7302^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7303
7304Syntax:
7305"""""""
7306
7307This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7308floating point or vector of floating point type. Not all targets support
7309all types however.
7310
7311::
7312
7313 declare float @llvm.log10.f32(float %Val)
7314 declare double @llvm.log10.f64(double %Val)
7315 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7316 declare fp128 @llvm.log10.f128(fp128 %Val)
7317 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7318
7319Overview:
7320"""""""""
7321
7322The '``llvm.log10.*``' intrinsics perform the log10 function.
7323
7324Arguments:
7325""""""""""
7326
7327The argument and return value are floating point numbers of the same
7328type.
7329
7330Semantics:
7331""""""""""
7332
7333This function returns the same values as the libm ``log10`` functions
7334would, and handles error conditions in the same way.
7335
7336'``llvm.log2.*``' Intrinsic
7337^^^^^^^^^^^^^^^^^^^^^^^^^^^
7338
7339Syntax:
7340"""""""
7341
7342This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7343floating point or vector of floating point type. Not all targets support
7344all types however.
7345
7346::
7347
7348 declare float @llvm.log2.f32(float %Val)
7349 declare double @llvm.log2.f64(double %Val)
7350 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7351 declare fp128 @llvm.log2.f128(fp128 %Val)
7352 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7353
7354Overview:
7355"""""""""
7356
7357The '``llvm.log2.*``' intrinsics perform the log2 function.
7358
7359Arguments:
7360""""""""""
7361
7362The argument and return value are floating point numbers of the same
7363type.
7364
7365Semantics:
7366""""""""""
7367
7368This function returns the same values as the libm ``log2`` functions
7369would, and handles error conditions in the same way.
7370
7371'``llvm.fma.*``' Intrinsic
7372^^^^^^^^^^^^^^^^^^^^^^^^^^
7373
7374Syntax:
7375"""""""
7376
7377This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7378floating point or vector of floating point type. Not all targets support
7379all types however.
7380
7381::
7382
7383 declare float @llvm.fma.f32(float %a, float %b, float %c)
7384 declare double @llvm.fma.f64(double %a, double %b, double %c)
7385 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7386 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7387 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7388
7389Overview:
7390"""""""""
7391
7392The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7393operation.
7394
7395Arguments:
7396""""""""""
7397
7398The argument and return value are floating point numbers of the same
7399type.
7400
7401Semantics:
7402""""""""""
7403
7404This function returns the same values as the libm ``fma`` functions
7405would.
7406
7407'``llvm.fabs.*``' Intrinsic
7408^^^^^^^^^^^^^^^^^^^^^^^^^^^
7409
7410Syntax:
7411"""""""
7412
7413This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7414floating point or vector of floating point type. Not all targets support
7415all types however.
7416
7417::
7418
7419 declare float @llvm.fabs.f32(float %Val)
7420 declare double @llvm.fabs.f64(double %Val)
7421 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7422 declare fp128 @llvm.fabs.f128(fp128 %Val)
7423 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7424
7425Overview:
7426"""""""""
7427
7428The '``llvm.fabs.*``' intrinsics return the absolute value of the
7429operand.
7430
7431Arguments:
7432""""""""""
7433
7434The argument and return value are floating point numbers of the same
7435type.
7436
7437Semantics:
7438""""""""""
7439
7440This function returns the same values as the libm ``fabs`` functions
7441would, and handles error conditions in the same way.
7442
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007443'``llvm.copysign.*``' Intrinsic
7444^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7445
7446Syntax:
7447"""""""
7448
7449This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7450floating point or vector of floating point type. Not all targets support
7451all types however.
7452
7453::
7454
7455 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7456 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7457 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7458 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7459 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7460
7461Overview:
7462"""""""""
7463
7464The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7465first operand and the sign of the second operand.
7466
7467Arguments:
7468""""""""""
7469
7470The arguments and return value are floating point numbers of the same
7471type.
7472
7473Semantics:
7474""""""""""
7475
7476This function returns the same values as the libm ``copysign``
7477functions would, and handles error conditions in the same way.
7478
Sean Silvab084af42012-12-07 10:36:55 +00007479'``llvm.floor.*``' Intrinsic
7480^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7481
7482Syntax:
7483"""""""
7484
7485This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7486floating point or vector of floating point type. Not all targets support
7487all types however.
7488
7489::
7490
7491 declare float @llvm.floor.f32(float %Val)
7492 declare double @llvm.floor.f64(double %Val)
7493 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7494 declare fp128 @llvm.floor.f128(fp128 %Val)
7495 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7496
7497Overview:
7498"""""""""
7499
7500The '``llvm.floor.*``' intrinsics return the floor of the operand.
7501
7502Arguments:
7503""""""""""
7504
7505The argument and return value are floating point numbers of the same
7506type.
7507
7508Semantics:
7509""""""""""
7510
7511This function returns the same values as the libm ``floor`` functions
7512would, and handles error conditions in the same way.
7513
7514'``llvm.ceil.*``' Intrinsic
7515^^^^^^^^^^^^^^^^^^^^^^^^^^^
7516
7517Syntax:
7518"""""""
7519
7520This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7521floating point or vector of floating point type. Not all targets support
7522all types however.
7523
7524::
7525
7526 declare float @llvm.ceil.f32(float %Val)
7527 declare double @llvm.ceil.f64(double %Val)
7528 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7529 declare fp128 @llvm.ceil.f128(fp128 %Val)
7530 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7531
7532Overview:
7533"""""""""
7534
7535The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7536
7537Arguments:
7538""""""""""
7539
7540The argument and return value are floating point numbers of the same
7541type.
7542
7543Semantics:
7544""""""""""
7545
7546This function returns the same values as the libm ``ceil`` functions
7547would, and handles error conditions in the same way.
7548
7549'``llvm.trunc.*``' Intrinsic
7550^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7551
7552Syntax:
7553"""""""
7554
7555This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7556floating point or vector of floating point type. Not all targets support
7557all types however.
7558
7559::
7560
7561 declare float @llvm.trunc.f32(float %Val)
7562 declare double @llvm.trunc.f64(double %Val)
7563 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7564 declare fp128 @llvm.trunc.f128(fp128 %Val)
7565 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7566
7567Overview:
7568"""""""""
7569
7570The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7571nearest integer not larger in magnitude than the operand.
7572
7573Arguments:
7574""""""""""
7575
7576The argument and return value are floating point numbers of the same
7577type.
7578
7579Semantics:
7580""""""""""
7581
7582This function returns the same values as the libm ``trunc`` functions
7583would, and handles error conditions in the same way.
7584
7585'``llvm.rint.*``' Intrinsic
7586^^^^^^^^^^^^^^^^^^^^^^^^^^^
7587
7588Syntax:
7589"""""""
7590
7591This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7592floating point or vector of floating point type. Not all targets support
7593all types however.
7594
7595::
7596
7597 declare float @llvm.rint.f32(float %Val)
7598 declare double @llvm.rint.f64(double %Val)
7599 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7600 declare fp128 @llvm.rint.f128(fp128 %Val)
7601 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7602
7603Overview:
7604"""""""""
7605
7606The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7607nearest integer. It may raise an inexact floating-point exception if the
7608operand isn't an integer.
7609
7610Arguments:
7611""""""""""
7612
7613The argument and return value are floating point numbers of the same
7614type.
7615
7616Semantics:
7617""""""""""
7618
7619This function returns the same values as the libm ``rint`` functions
7620would, and handles error conditions in the same way.
7621
7622'``llvm.nearbyint.*``' Intrinsic
7623^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7624
7625Syntax:
7626"""""""
7627
7628This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7629floating point or vector of floating point type. Not all targets support
7630all types however.
7631
7632::
7633
7634 declare float @llvm.nearbyint.f32(float %Val)
7635 declare double @llvm.nearbyint.f64(double %Val)
7636 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7637 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7638 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7639
7640Overview:
7641"""""""""
7642
7643The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7644nearest integer.
7645
7646Arguments:
7647""""""""""
7648
7649The argument and return value are floating point numbers of the same
7650type.
7651
7652Semantics:
7653""""""""""
7654
7655This function returns the same values as the libm ``nearbyint``
7656functions would, and handles error conditions in the same way.
7657
Hal Finkel171817e2013-08-07 22:49:12 +00007658'``llvm.round.*``' Intrinsic
7659^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7660
7661Syntax:
7662"""""""
7663
7664This is an overloaded intrinsic. You can use ``llvm.round`` on any
7665floating point or vector of floating point type. Not all targets support
7666all types however.
7667
7668::
7669
7670 declare float @llvm.round.f32(float %Val)
7671 declare double @llvm.round.f64(double %Val)
7672 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7673 declare fp128 @llvm.round.f128(fp128 %Val)
7674 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7675
7676Overview:
7677"""""""""
7678
7679The '``llvm.round.*``' intrinsics returns the operand rounded to the
7680nearest integer.
7681
7682Arguments:
7683""""""""""
7684
7685The argument and return value are floating point numbers of the same
7686type.
7687
7688Semantics:
7689""""""""""
7690
7691This function returns the same values as the libm ``round``
7692functions would, and handles error conditions in the same way.
7693
Sean Silvab084af42012-12-07 10:36:55 +00007694Bit Manipulation Intrinsics
7695---------------------------
7696
7697LLVM provides intrinsics for a few important bit manipulation
7698operations. These allow efficient code generation for some algorithms.
7699
7700'``llvm.bswap.*``' Intrinsics
7701^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7702
7703Syntax:
7704"""""""
7705
7706This is an overloaded intrinsic function. You can use bswap on any
7707integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7708
7709::
7710
7711 declare i16 @llvm.bswap.i16(i16 <id>)
7712 declare i32 @llvm.bswap.i32(i32 <id>)
7713 declare i64 @llvm.bswap.i64(i64 <id>)
7714
7715Overview:
7716"""""""""
7717
7718The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7719values with an even number of bytes (positive multiple of 16 bits).
7720These are useful for performing operations on data that is not in the
7721target's native byte order.
7722
7723Semantics:
7724""""""""""
7725
7726The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7727and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7728intrinsic returns an i32 value that has the four bytes of the input i32
7729swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7730returned i32 will have its bytes in 3, 2, 1, 0 order. The
7731``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7732concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7733respectively).
7734
7735'``llvm.ctpop.*``' Intrinsic
7736^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7737
7738Syntax:
7739"""""""
7740
7741This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7742bit width, or on any vector with integer elements. Not all targets
7743support all bit widths or vector types, however.
7744
7745::
7746
7747 declare i8 @llvm.ctpop.i8(i8 <src>)
7748 declare i16 @llvm.ctpop.i16(i16 <src>)
7749 declare i32 @llvm.ctpop.i32(i32 <src>)
7750 declare i64 @llvm.ctpop.i64(i64 <src>)
7751 declare i256 @llvm.ctpop.i256(i256 <src>)
7752 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7753
7754Overview:
7755"""""""""
7756
7757The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7758in a value.
7759
7760Arguments:
7761""""""""""
7762
7763The only argument is the value to be counted. The argument may be of any
7764integer type, or a vector with integer elements. The return type must
7765match the argument type.
7766
7767Semantics:
7768""""""""""
7769
7770The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7771each element of a vector.
7772
7773'``llvm.ctlz.*``' Intrinsic
7774^^^^^^^^^^^^^^^^^^^^^^^^^^^
7775
7776Syntax:
7777"""""""
7778
7779This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7780integer bit width, or any vector whose elements are integers. Not all
7781targets support all bit widths or vector types, however.
7782
7783::
7784
7785 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7786 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7787 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7788 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7789 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7790 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7791
7792Overview:
7793"""""""""
7794
7795The '``llvm.ctlz``' family of intrinsic functions counts the number of
7796leading zeros in a variable.
7797
7798Arguments:
7799""""""""""
7800
7801The first argument is the value to be counted. This argument may be of
7802any integer type, or a vectory with integer element type. The return
7803type must match the first argument type.
7804
7805The second argument must be a constant and is a flag to indicate whether
7806the intrinsic should ensure that a zero as the first argument produces a
7807defined result. Historically some architectures did not provide a
7808defined result for zero values as efficiently, and many algorithms are
7809now predicated on avoiding zero-value inputs.
7810
7811Semantics:
7812""""""""""
7813
7814The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7815zeros in a variable, or within each element of the vector. If
7816``src == 0`` then the result is the size in bits of the type of ``src``
7817if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7818``llvm.ctlz(i32 2) = 30``.
7819
7820'``llvm.cttz.*``' Intrinsic
7821^^^^^^^^^^^^^^^^^^^^^^^^^^^
7822
7823Syntax:
7824"""""""
7825
7826This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7827integer bit width, or any vector of integer elements. Not all targets
7828support all bit widths or vector types, however.
7829
7830::
7831
7832 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7833 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7834 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7835 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7836 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7837 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7838
7839Overview:
7840"""""""""
7841
7842The '``llvm.cttz``' family of intrinsic functions counts the number of
7843trailing zeros.
7844
7845Arguments:
7846""""""""""
7847
7848The first argument is the value to be counted. This argument may be of
7849any integer type, or a vectory with integer element type. The return
7850type must match the first argument type.
7851
7852The second argument must be a constant and is a flag to indicate whether
7853the intrinsic should ensure that a zero as the first argument produces a
7854defined result. Historically some architectures did not provide a
7855defined result for zero values as efficiently, and many algorithms are
7856now predicated on avoiding zero-value inputs.
7857
7858Semantics:
7859""""""""""
7860
7861The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7862zeros in a variable, or within each element of a vector. If ``src == 0``
7863then the result is the size in bits of the type of ``src`` if
7864``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7865``llvm.cttz(2) = 1``.
7866
7867Arithmetic with Overflow Intrinsics
7868-----------------------------------
7869
7870LLVM provides intrinsics for some arithmetic with overflow operations.
7871
7872'``llvm.sadd.with.overflow.*``' Intrinsics
7873^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7874
7875Syntax:
7876"""""""
7877
7878This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7879on any integer bit width.
7880
7881::
7882
7883 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7884 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7885 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7886
7887Overview:
7888"""""""""
7889
7890The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7891a signed addition of the two arguments, and indicate whether an overflow
7892occurred during the signed summation.
7893
7894Arguments:
7895""""""""""
7896
7897The arguments (%a and %b) and the first element of the result structure
7898may be of integer types of any bit width, but they must have the same
7899bit width. The second element of the result structure must be of type
7900``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7901addition.
7902
7903Semantics:
7904""""""""""
7905
7906The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007907a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007908first element of which is the signed summation, and the second element
7909of which is a bit specifying if the signed summation resulted in an
7910overflow.
7911
7912Examples:
7913"""""""""
7914
7915.. code-block:: llvm
7916
7917 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7918 %sum = extractvalue {i32, i1} %res, 0
7919 %obit = extractvalue {i32, i1} %res, 1
7920 br i1 %obit, label %overflow, label %normal
7921
7922'``llvm.uadd.with.overflow.*``' Intrinsics
7923^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7924
7925Syntax:
7926"""""""
7927
7928This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7929on any integer bit width.
7930
7931::
7932
7933 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7934 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7935 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7936
7937Overview:
7938"""""""""
7939
7940The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7941an unsigned addition of the two arguments, and indicate whether a carry
7942occurred during the unsigned summation.
7943
7944Arguments:
7945""""""""""
7946
7947The arguments (%a and %b) and the first element of the result structure
7948may be of integer types of any bit width, but they must have the same
7949bit width. The second element of the result structure must be of type
7950``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7951addition.
7952
7953Semantics:
7954""""""""""
7955
7956The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007957an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007958first element of which is the sum, and the second element of which is a
7959bit specifying if the unsigned summation resulted in a carry.
7960
7961Examples:
7962"""""""""
7963
7964.. code-block:: llvm
7965
7966 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7967 %sum = extractvalue {i32, i1} %res, 0
7968 %obit = extractvalue {i32, i1} %res, 1
7969 br i1 %obit, label %carry, label %normal
7970
7971'``llvm.ssub.with.overflow.*``' Intrinsics
7972^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7973
7974Syntax:
7975"""""""
7976
7977This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7978on any integer bit width.
7979
7980::
7981
7982 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7983 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7984 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7985
7986Overview:
7987"""""""""
7988
7989The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7990a signed subtraction of the two arguments, and indicate whether an
7991overflow occurred during the signed subtraction.
7992
7993Arguments:
7994""""""""""
7995
7996The arguments (%a and %b) and the first element of the result structure
7997may be of integer types of any bit width, but they must have the same
7998bit width. The second element of the result structure must be of type
7999``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8000subtraction.
8001
8002Semantics:
8003""""""""""
8004
8005The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008006a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008007first element of which is the subtraction, and the second element of
8008which is a bit specifying if the signed subtraction resulted in an
8009overflow.
8010
8011Examples:
8012"""""""""
8013
8014.. code-block:: llvm
8015
8016 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8017 %sum = extractvalue {i32, i1} %res, 0
8018 %obit = extractvalue {i32, i1} %res, 1
8019 br i1 %obit, label %overflow, label %normal
8020
8021'``llvm.usub.with.overflow.*``' Intrinsics
8022^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8023
8024Syntax:
8025"""""""
8026
8027This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8028on any integer bit width.
8029
8030::
8031
8032 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8033 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8034 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8035
8036Overview:
8037"""""""""
8038
8039The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8040an unsigned subtraction of the two arguments, and indicate whether an
8041overflow occurred during the unsigned subtraction.
8042
8043Arguments:
8044""""""""""
8045
8046The arguments (%a and %b) and the first element of the result structure
8047may be of integer types of any bit width, but they must have the same
8048bit width. The second element of the result structure must be of type
8049``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8050subtraction.
8051
8052Semantics:
8053""""""""""
8054
8055The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008056an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008057the first element of which is the subtraction, and the second element of
8058which is a bit specifying if the unsigned subtraction resulted in an
8059overflow.
8060
8061Examples:
8062"""""""""
8063
8064.. code-block:: llvm
8065
8066 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8067 %sum = extractvalue {i32, i1} %res, 0
8068 %obit = extractvalue {i32, i1} %res, 1
8069 br i1 %obit, label %overflow, label %normal
8070
8071'``llvm.smul.with.overflow.*``' Intrinsics
8072^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8073
8074Syntax:
8075"""""""
8076
8077This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8078on any integer bit width.
8079
8080::
8081
8082 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8083 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8084 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8085
8086Overview:
8087"""""""""
8088
8089The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8090a signed multiplication of the two arguments, and indicate whether an
8091overflow occurred during the signed multiplication.
8092
8093Arguments:
8094""""""""""
8095
8096The arguments (%a and %b) and the first element of the result structure
8097may be of integer types of any bit width, but they must have the same
8098bit width. The second element of the result structure must be of type
8099``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8100multiplication.
8101
8102Semantics:
8103""""""""""
8104
8105The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008106a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008107the first element of which is the multiplication, and the second element
8108of which is a bit specifying if the signed multiplication resulted in an
8109overflow.
8110
8111Examples:
8112"""""""""
8113
8114.. code-block:: llvm
8115
8116 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8117 %sum = extractvalue {i32, i1} %res, 0
8118 %obit = extractvalue {i32, i1} %res, 1
8119 br i1 %obit, label %overflow, label %normal
8120
8121'``llvm.umul.with.overflow.*``' Intrinsics
8122^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8123
8124Syntax:
8125"""""""
8126
8127This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8128on any integer bit width.
8129
8130::
8131
8132 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8133 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8134 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8135
8136Overview:
8137"""""""""
8138
8139The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8140a unsigned multiplication of the two arguments, and indicate whether an
8141overflow occurred during the unsigned multiplication.
8142
8143Arguments:
8144""""""""""
8145
8146The arguments (%a and %b) and the first element of the result structure
8147may be of integer types of any bit width, but they must have the same
8148bit width. The second element of the result structure must be of type
8149``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8150multiplication.
8151
8152Semantics:
8153""""""""""
8154
8155The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008156an unsigned multiplication of the two arguments. They return a structure ---
8157the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008158element of which is a bit specifying if the unsigned multiplication
8159resulted in an overflow.
8160
8161Examples:
8162"""""""""
8163
8164.. code-block:: llvm
8165
8166 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8167 %sum = extractvalue {i32, i1} %res, 0
8168 %obit = extractvalue {i32, i1} %res, 1
8169 br i1 %obit, label %overflow, label %normal
8170
8171Specialised Arithmetic Intrinsics
8172---------------------------------
8173
8174'``llvm.fmuladd.*``' Intrinsic
8175^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8176
8177Syntax:
8178"""""""
8179
8180::
8181
8182 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8183 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8184
8185Overview:
8186"""""""""
8187
8188The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008189expressions that can be fused if the code generator determines that (a) the
8190target instruction set has support for a fused operation, and (b) that the
8191fused operation is more efficient than the equivalent, separate pair of mul
8192and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008193
8194Arguments:
8195""""""""""
8196
8197The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8198multiplicands, a and b, and an addend c.
8199
8200Semantics:
8201""""""""""
8202
8203The expression:
8204
8205::
8206
8207 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8208
8209is equivalent to the expression a \* b + c, except that rounding will
8210not be performed between the multiplication and addition steps if the
8211code generator fuses the operations. Fusion is not guaranteed, even if
8212the target platform supports it. If a fused multiply-add is required the
8213corresponding llvm.fma.\* intrinsic function should be used instead.
8214
8215Examples:
8216"""""""""
8217
8218.. code-block:: llvm
8219
8220 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8221
8222Half Precision Floating Point Intrinsics
8223----------------------------------------
8224
8225For most target platforms, half precision floating point is a
8226storage-only format. This means that it is a dense encoding (in memory)
8227but does not support computation in the format.
8228
8229This means that code must first load the half-precision floating point
8230value as an i16, then convert it to float with
8231:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8232then be performed on the float value (including extending to double
8233etc). To store the value back to memory, it is first converted to float
8234if needed, then converted to i16 with
8235:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8236i16 value.
8237
8238.. _int_convert_to_fp16:
8239
8240'``llvm.convert.to.fp16``' Intrinsic
8241^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8242
8243Syntax:
8244"""""""
8245
8246::
8247
8248 declare i16 @llvm.convert.to.fp16(f32 %a)
8249
8250Overview:
8251"""""""""
8252
8253The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8254from single precision floating point format to half precision floating
8255point format.
8256
8257Arguments:
8258""""""""""
8259
8260The intrinsic function contains single argument - the value to be
8261converted.
8262
8263Semantics:
8264""""""""""
8265
8266The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8267from single precision floating point format to half precision floating
8268point format. The return value is an ``i16`` which contains the
8269converted number.
8270
8271Examples:
8272"""""""""
8273
8274.. code-block:: llvm
8275
8276 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8277 store i16 %res, i16* @x, align 2
8278
8279.. _int_convert_from_fp16:
8280
8281'``llvm.convert.from.fp16``' Intrinsic
8282^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8283
8284Syntax:
8285"""""""
8286
8287::
8288
8289 declare f32 @llvm.convert.from.fp16(i16 %a)
8290
8291Overview:
8292"""""""""
8293
8294The '``llvm.convert.from.fp16``' intrinsic function performs a
8295conversion from half precision floating point format to single precision
8296floating point format.
8297
8298Arguments:
8299""""""""""
8300
8301The intrinsic function contains single argument - the value to be
8302converted.
8303
8304Semantics:
8305""""""""""
8306
8307The '``llvm.convert.from.fp16``' intrinsic function performs a
8308conversion from half single precision floating point format to single
8309precision floating point format. The input half-float value is
8310represented by an ``i16`` value.
8311
8312Examples:
8313"""""""""
8314
8315.. code-block:: llvm
8316
8317 %a = load i16* @x, align 2
8318 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8319
8320Debugger Intrinsics
8321-------------------
8322
8323The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8324prefix), are described in the `LLVM Source Level
8325Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8326document.
8327
8328Exception Handling Intrinsics
8329-----------------------------
8330
8331The LLVM exception handling intrinsics (which all start with
8332``llvm.eh.`` prefix), are described in the `LLVM Exception
8333Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8334
8335.. _int_trampoline:
8336
8337Trampoline Intrinsics
8338---------------------
8339
8340These intrinsics make it possible to excise one parameter, marked with
8341the :ref:`nest <nest>` attribute, from a function. The result is a
8342callable function pointer lacking the nest parameter - the caller does
8343not need to provide a value for it. Instead, the value to use is stored
8344in advance in a "trampoline", a block of memory usually allocated on the
8345stack, which also contains code to splice the nest value into the
8346argument list. This is used to implement the GCC nested function address
8347extension.
8348
8349For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8350then the resulting function pointer has signature ``i32 (i32, i32)*``.
8351It can be created as follows:
8352
8353.. code-block:: llvm
8354
8355 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8356 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8357 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8358 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8359 %fp = bitcast i8* %p to i32 (i32, i32)*
8360
8361The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8362``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8363
8364.. _int_it:
8365
8366'``llvm.init.trampoline``' Intrinsic
8367^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8368
8369Syntax:
8370"""""""
8371
8372::
8373
8374 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8375
8376Overview:
8377"""""""""
8378
8379This fills the memory pointed to by ``tramp`` with executable code,
8380turning it into a trampoline.
8381
8382Arguments:
8383""""""""""
8384
8385The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8386pointers. The ``tramp`` argument must point to a sufficiently large and
8387sufficiently aligned block of memory; this memory is written to by the
8388intrinsic. Note that the size and the alignment are target-specific -
8389LLVM currently provides no portable way of determining them, so a
8390front-end that generates this intrinsic needs to have some
8391target-specific knowledge. The ``func`` argument must hold a function
8392bitcast to an ``i8*``.
8393
8394Semantics:
8395""""""""""
8396
8397The block of memory pointed to by ``tramp`` is filled with target
8398dependent code, turning it into a function. Then ``tramp`` needs to be
8399passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8400be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8401function's signature is the same as that of ``func`` with any arguments
8402marked with the ``nest`` attribute removed. At most one such ``nest``
8403argument is allowed, and it must be of pointer type. Calling the new
8404function is equivalent to calling ``func`` with the same argument list,
8405but with ``nval`` used for the missing ``nest`` argument. If, after
8406calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8407modified, then the effect of any later call to the returned function
8408pointer is undefined.
8409
8410.. _int_at:
8411
8412'``llvm.adjust.trampoline``' Intrinsic
8413^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8414
8415Syntax:
8416"""""""
8417
8418::
8419
8420 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8421
8422Overview:
8423"""""""""
8424
8425This performs any required machine-specific adjustment to the address of
8426a trampoline (passed as ``tramp``).
8427
8428Arguments:
8429""""""""""
8430
8431``tramp`` must point to a block of memory which already has trampoline
8432code filled in by a previous call to
8433:ref:`llvm.init.trampoline <int_it>`.
8434
8435Semantics:
8436""""""""""
8437
8438On some architectures the address of the code to be executed needs to be
8439different to the address where the trampoline is actually stored. This
8440intrinsic returns the executable address corresponding to ``tramp``
8441after performing the required machine specific adjustments. The pointer
8442returned can then be :ref:`bitcast and executed <int_trampoline>`.
8443
8444Memory Use Markers
8445------------------
8446
8447This class of intrinsics exists to information about the lifetime of
8448memory objects and ranges where variables are immutable.
8449
8450'``llvm.lifetime.start``' Intrinsic
8451^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8452
8453Syntax:
8454"""""""
8455
8456::
8457
8458 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8459
8460Overview:
8461"""""""""
8462
8463The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8464object's lifetime.
8465
8466Arguments:
8467""""""""""
8468
8469The first argument is a constant integer representing the size of the
8470object, or -1 if it is variable sized. The second argument is a pointer
8471to the object.
8472
8473Semantics:
8474""""""""""
8475
8476This intrinsic indicates that before this point in the code, the value
8477of the memory pointed to by ``ptr`` is dead. This means that it is known
8478to never be used and has an undefined value. A load from the pointer
8479that precedes this intrinsic can be replaced with ``'undef'``.
8480
8481'``llvm.lifetime.end``' Intrinsic
8482^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8483
8484Syntax:
8485"""""""
8486
8487::
8488
8489 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8490
8491Overview:
8492"""""""""
8493
8494The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8495object's lifetime.
8496
8497Arguments:
8498""""""""""
8499
8500The first argument is a constant integer representing the size of the
8501object, or -1 if it is variable sized. The second argument is a pointer
8502to the object.
8503
8504Semantics:
8505""""""""""
8506
8507This intrinsic indicates that after this point in the code, the value of
8508the memory pointed to by ``ptr`` is dead. This means that it is known to
8509never be used and has an undefined value. Any stores into the memory
8510object following this intrinsic may be removed as dead.
8511
8512'``llvm.invariant.start``' Intrinsic
8513^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8514
8515Syntax:
8516"""""""
8517
8518::
8519
8520 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8521
8522Overview:
8523"""""""""
8524
8525The '``llvm.invariant.start``' intrinsic specifies that the contents of
8526a memory object will not change.
8527
8528Arguments:
8529""""""""""
8530
8531The first argument is a constant integer representing the size of the
8532object, or -1 if it is variable sized. The second argument is a pointer
8533to the object.
8534
8535Semantics:
8536""""""""""
8537
8538This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8539the return value, the referenced memory location is constant and
8540unchanging.
8541
8542'``llvm.invariant.end``' Intrinsic
8543^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8544
8545Syntax:
8546"""""""
8547
8548::
8549
8550 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8551
8552Overview:
8553"""""""""
8554
8555The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8556memory object are mutable.
8557
8558Arguments:
8559""""""""""
8560
8561The first argument is the matching ``llvm.invariant.start`` intrinsic.
8562The second argument is a constant integer representing the size of the
8563object, or -1 if it is variable sized and the third argument is a
8564pointer to the object.
8565
8566Semantics:
8567""""""""""
8568
8569This intrinsic indicates that the memory is mutable again.
8570
8571General Intrinsics
8572------------------
8573
8574This class of intrinsics is designed to be generic and has no specific
8575purpose.
8576
8577'``llvm.var.annotation``' Intrinsic
8578^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8579
8580Syntax:
8581"""""""
8582
8583::
8584
8585 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8586
8587Overview:
8588"""""""""
8589
8590The '``llvm.var.annotation``' intrinsic.
8591
8592Arguments:
8593""""""""""
8594
8595The first argument is a pointer to a value, the second is a pointer to a
8596global string, the third is a pointer to a global string which is the
8597source file name, and the last argument is the line number.
8598
8599Semantics:
8600""""""""""
8601
8602This intrinsic allows annotation of local variables with arbitrary
8603strings. This can be useful for special purpose optimizations that want
8604to look for these annotations. These have no other defined use; they are
8605ignored by code generation and optimization.
8606
Michael Gottesman88d18832013-03-26 00:34:27 +00008607'``llvm.ptr.annotation.*``' Intrinsic
8608^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8609
8610Syntax:
8611"""""""
8612
8613This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8614pointer to an integer of any width. *NOTE* you must specify an address space for
8615the pointer. The identifier for the default address space is the integer
8616'``0``'.
8617
8618::
8619
8620 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8621 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8622 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8623 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8624 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8625
8626Overview:
8627"""""""""
8628
8629The '``llvm.ptr.annotation``' intrinsic.
8630
8631Arguments:
8632""""""""""
8633
8634The first argument is a pointer to an integer value of arbitrary bitwidth
8635(result of some expression), the second is a pointer to a global string, the
8636third is a pointer to a global string which is the source file name, and the
8637last argument is the line number. It returns the value of the first argument.
8638
8639Semantics:
8640""""""""""
8641
8642This intrinsic allows annotation of a pointer to an integer with arbitrary
8643strings. This can be useful for special purpose optimizations that want to look
8644for these annotations. These have no other defined use; they are ignored by code
8645generation and optimization.
8646
Sean Silvab084af42012-12-07 10:36:55 +00008647'``llvm.annotation.*``' Intrinsic
8648^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8649
8650Syntax:
8651"""""""
8652
8653This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8654any integer bit width.
8655
8656::
8657
8658 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8659 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8660 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8661 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8662 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8663
8664Overview:
8665"""""""""
8666
8667The '``llvm.annotation``' intrinsic.
8668
8669Arguments:
8670""""""""""
8671
8672The first argument is an integer value (result of some expression), the
8673second is a pointer to a global string, the third is a pointer to a
8674global string which is the source file name, and the last argument is
8675the line number. It returns the value of the first argument.
8676
8677Semantics:
8678""""""""""
8679
8680This intrinsic allows annotations to be put on arbitrary expressions
8681with arbitrary strings. This can be useful for special purpose
8682optimizations that want to look for these annotations. These have no
8683other defined use; they are ignored by code generation and optimization.
8684
8685'``llvm.trap``' Intrinsic
8686^^^^^^^^^^^^^^^^^^^^^^^^^
8687
8688Syntax:
8689"""""""
8690
8691::
8692
8693 declare void @llvm.trap() noreturn nounwind
8694
8695Overview:
8696"""""""""
8697
8698The '``llvm.trap``' intrinsic.
8699
8700Arguments:
8701""""""""""
8702
8703None.
8704
8705Semantics:
8706""""""""""
8707
8708This intrinsic is lowered to the target dependent trap instruction. If
8709the target does not have a trap instruction, this intrinsic will be
8710lowered to a call of the ``abort()`` function.
8711
8712'``llvm.debugtrap``' Intrinsic
8713^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8714
8715Syntax:
8716"""""""
8717
8718::
8719
8720 declare void @llvm.debugtrap() nounwind
8721
8722Overview:
8723"""""""""
8724
8725The '``llvm.debugtrap``' intrinsic.
8726
8727Arguments:
8728""""""""""
8729
8730None.
8731
8732Semantics:
8733""""""""""
8734
8735This intrinsic is lowered to code which is intended to cause an
8736execution trap with the intention of requesting the attention of a
8737debugger.
8738
8739'``llvm.stackprotector``' Intrinsic
8740^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8741
8742Syntax:
8743"""""""
8744
8745::
8746
8747 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8748
8749Overview:
8750"""""""""
8751
8752The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8753onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8754is placed on the stack before local variables.
8755
8756Arguments:
8757""""""""""
8758
8759The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8760The first argument is the value loaded from the stack guard
8761``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8762enough space to hold the value of the guard.
8763
8764Semantics:
8765""""""""""
8766
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008767This intrinsic causes the prologue/epilogue inserter to force the position of
8768the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8769to ensure that if a local variable on the stack is overwritten, it will destroy
8770the value of the guard. When the function exits, the guard on the stack is
8771checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8772different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8773calling the ``__stack_chk_fail()`` function.
8774
8775'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00008776^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008777
8778Syntax:
8779"""""""
8780
8781::
8782
8783 declare void @llvm.stackprotectorcheck(i8** <guard>)
8784
8785Overview:
8786"""""""""
8787
8788The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00008789created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00008790``__stack_chk_fail()`` function.
8791
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008792Arguments:
8793""""""""""
8794
8795The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8796the variable ``@__stack_chk_guard``.
8797
8798Semantics:
8799""""""""""
8800
8801This intrinsic is provided to perform the stack protector check by comparing
8802``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8803values do not match call the ``__stack_chk_fail()`` function.
8804
8805The reason to provide this as an IR level intrinsic instead of implementing it
8806via other IR operations is that in order to perform this operation at the IR
8807level without an intrinsic, one would need to create additional basic blocks to
8808handle the success/failure cases. This makes it difficult to stop the stack
8809protector check from disrupting sibling tail calls in Codegen. With this
8810intrinsic, we are able to generate the stack protector basic blocks late in
8811codegen after the tail call decision has occured.
8812
Sean Silvab084af42012-12-07 10:36:55 +00008813'``llvm.objectsize``' Intrinsic
8814^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8815
8816Syntax:
8817"""""""
8818
8819::
8820
8821 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8822 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8823
8824Overview:
8825"""""""""
8826
8827The ``llvm.objectsize`` intrinsic is designed to provide information to
8828the optimizers to determine at compile time whether a) an operation
8829(like memcpy) will overflow a buffer that corresponds to an object, or
8830b) that a runtime check for overflow isn't necessary. An object in this
8831context means an allocation of a specific class, structure, array, or
8832other object.
8833
8834Arguments:
8835""""""""""
8836
8837The ``llvm.objectsize`` intrinsic takes two arguments. The first
8838argument is a pointer to or into the ``object``. The second argument is
8839a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8840or -1 (if false) when the object size is unknown. The second argument
8841only accepts constants.
8842
8843Semantics:
8844""""""""""
8845
8846The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8847the size of the object concerned. If the size cannot be determined at
8848compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8849on the ``min`` argument).
8850
8851'``llvm.expect``' Intrinsic
8852^^^^^^^^^^^^^^^^^^^^^^^^^^^
8853
8854Syntax:
8855"""""""
8856
8857::
8858
8859 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8860 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8861
8862Overview:
8863"""""""""
8864
8865The ``llvm.expect`` intrinsic provides information about expected (the
8866most probable) value of ``val``, which can be used by optimizers.
8867
8868Arguments:
8869""""""""""
8870
8871The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8872a value. The second argument is an expected value, this needs to be a
8873constant value, variables are not allowed.
8874
8875Semantics:
8876""""""""""
8877
8878This intrinsic is lowered to the ``val``.
8879
8880'``llvm.donothing``' Intrinsic
8881^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8882
8883Syntax:
8884"""""""
8885
8886::
8887
8888 declare void @llvm.donothing() nounwind readnone
8889
8890Overview:
8891"""""""""
8892
8893The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8894only intrinsic that can be called with an invoke instruction.
8895
8896Arguments:
8897""""""""""
8898
8899None.
8900
8901Semantics:
8902""""""""""
8903
8904This intrinsic does nothing, and it's removed by optimizers and ignored
8905by codegen.