blob: 9c033ed481c256c280872d97615ec53e45d375d1 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
131 incrementing counter, starting with 0).
Sean Silvab084af42012-12-07 10:36:55 +0000132
133It also shows a convention that we follow in this document. When
134demonstrating instructions, we will follow an instruction with a comment
135that defines the type and name of value produced.
136
137High Level Structure
138====================
139
140Module Structure
141----------------
142
143LLVM programs are composed of ``Module``'s, each of which is a
144translation unit of the input programs. Each module consists of
145functions, global variables, and symbol table entries. Modules may be
146combined together with the LLVM linker, which merges function (and
147global variable) definitions, resolves forward declarations, and merges
148symbol table entries. Here is an example of the "hello world" module:
149
150.. code-block:: llvm
151
Michael Liaoa7699082013-03-06 18:24:34 +0000152 ; Declare the string constant as a global constant.
153 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000154
Michael Liaoa7699082013-03-06 18:24:34 +0000155 ; External declaration of the puts function
156 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000157
158 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000159 define i32 @main() { ; i32()*
160 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000161 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
162
Michael Liaoa7699082013-03-06 18:24:34 +0000163 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000164 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000166 }
167
168 ; Named metadata
169 !1 = metadata !{i32 42}
170 !foo = !{!1, null}
171
172This example is made up of a :ref:`global variable <globalvars>` named
173"``.str``", an external declaration of the "``puts``" function, a
174:ref:`function definition <functionstructure>` for "``main``" and
175:ref:`named metadata <namedmetadatastructure>` "``foo``".
176
177In general, a module is made up of a list of global values (where both
178functions and global variables are global values). Global values are
179represented by a pointer to a memory location (in this case, a pointer
180to an array of char, and a pointer to a function), and have one of the
181following :ref:`linkage types <linkage>`.
182
183.. _linkage:
184
185Linkage Types
186-------------
187
188All Global Variables and Functions have one of the following types of
189linkage:
190
191``private``
192 Global values with "``private``" linkage are only directly
193 accessible by objects in the current module. In particular, linking
194 code into a module with an private global value may cause the
195 private to be renamed as necessary to avoid collisions. Because the
196 symbol is private to the module, all references can be updated. This
197 doesn't show up in any symbol table in the object file.
198``linker_private``
199 Similar to ``private``, but the symbol is passed through the
200 assembler and evaluated by the linker. Unlike normal strong symbols,
201 they are removed by the linker from the final linked image
202 (executable or dynamic library).
203``linker_private_weak``
204 Similar to "``linker_private``", but the symbol is weak. Note that
205 ``linker_private_weak`` symbols are subject to coalescing by the
206 linker. The symbols are removed by the linker from the final linked
207 image (executable or dynamic library).
208``internal``
209 Similar to private, but the value shows as a local symbol
210 (``STB_LOCAL`` in the case of ELF) in the object file. This
211 corresponds to the notion of the '``static``' keyword in C.
212``available_externally``
213 Globals with "``available_externally``" linkage are never emitted
214 into the object file corresponding to the LLVM module. They exist to
215 allow inlining and other optimizations to take place given knowledge
216 of the definition of the global, which is known to be somewhere
217 outside the module. Globals with ``available_externally`` linkage
218 are allowed to be discarded at will, and are otherwise the same as
219 ``linkonce_odr``. This linkage type is only allowed on definitions,
220 not declarations.
221``linkonce``
222 Globals with "``linkonce``" linkage are merged with other globals of
223 the same name when linkage occurs. This can be used to implement
224 some forms of inline functions, templates, or other code which must
225 be generated in each translation unit that uses it, but where the
226 body may be overridden with a more definitive definition later.
227 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
228 that ``linkonce`` linkage does not actually allow the optimizer to
229 inline the body of this function into callers because it doesn't
230 know if this definition of the function is the definitive definition
231 within the program or whether it will be overridden by a stronger
232 definition. To enable inlining and other optimizations, use
233 "``linkonce_odr``" linkage.
234``weak``
235 "``weak``" linkage has the same merging semantics as ``linkonce``
236 linkage, except that unreferenced globals with ``weak`` linkage may
237 not be discarded. This is used for globals that are declared "weak"
238 in C source code.
239``common``
240 "``common``" linkage is most similar to "``weak``" linkage, but they
241 are used for tentative definitions in C, such as "``int X;``" at
242 global scope. Symbols with "``common``" linkage are merged in the
243 same way as ``weak symbols``, and they may not be deleted if
244 unreferenced. ``common`` symbols may not have an explicit section,
245 must have a zero initializer, and may not be marked
246 ':ref:`constant <globalvars>`'. Functions and aliases may not have
247 common linkage.
248
249.. _linkage_appending:
250
251``appending``
252 "``appending``" linkage may only be applied to global variables of
253 pointer to array type. When two global variables with appending
254 linkage are linked together, the two global arrays are appended
255 together. This is the LLVM, typesafe, equivalent of having the
256 system linker append together "sections" with identical names when
257 .o files are linked.
258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
275The next two types of linkage are targeted for Microsoft Windows
276platform only. They are designed to support importing (exporting)
277symbols from (to) DLLs (Dynamic Link Libraries).
278
279``dllimport``
280 "``dllimport``" linkage causes the compiler to reference a function
281 or variable via a global pointer to a pointer that is set up by the
282 DLL exporting the symbol. On Microsoft Windows targets, the pointer
283 name is formed by combining ``__imp_`` and the function or variable
284 name.
285``dllexport``
286 "``dllexport``" linkage causes the compiler to provide a global
287 pointer to a pointer in a DLL, so that it can be referenced with the
288 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
289 name is formed by combining ``__imp_`` and the function or variable
290 name.
291
292For example, since the "``.LC0``" variable is defined to be internal, if
293another module defined a "``.LC0``" variable and was linked with this
294one, one of the two would be renamed, preventing a collision. Since
295"``main``" and "``puts``" are external (i.e., lacking any linkage
296declarations), they are accessible outside of the current module.
297
298It is illegal for a function *declaration* to have any linkage type
299other than ``external``, ``dllimport`` or ``extern_weak``.
300
Sean Silvab084af42012-12-07 10:36:55 +0000301.. _callingconv:
302
303Calling Conventions
304-------------------
305
306LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
307:ref:`invokes <i_invoke>` can all have an optional calling convention
308specified for the call. The calling convention of any pair of dynamic
309caller/callee must match, or the behavior of the program is undefined.
310The following calling conventions are supported by LLVM, and more may be
311added in the future:
312
313"``ccc``" - The C calling convention
314 This calling convention (the default if no other calling convention
315 is specified) matches the target C calling conventions. This calling
316 convention supports varargs function calls and tolerates some
317 mismatch in the declared prototype and implemented declaration of
318 the function (as does normal C).
319"``fastcc``" - The fast calling convention
320 This calling convention attempts to make calls as fast as possible
321 (e.g. by passing things in registers). This calling convention
322 allows the target to use whatever tricks it wants to produce fast
323 code for the target, without having to conform to an externally
324 specified ABI (Application Binary Interface). `Tail calls can only
325 be optimized when this, the GHC or the HiPE convention is
326 used. <CodeGenerator.html#id80>`_ This calling convention does not
327 support varargs and requires the prototype of all callees to exactly
328 match the prototype of the function definition.
329"``coldcc``" - The cold calling convention
330 This calling convention attempts to make code in the caller as
331 efficient as possible under the assumption that the call is not
332 commonly executed. As such, these calls often preserve all registers
333 so that the call does not break any live ranges in the caller side.
334 This calling convention does not support varargs and requires the
335 prototype of all callees to exactly match the prototype of the
336 function definition.
337"``cc 10``" - GHC convention
338 This calling convention has been implemented specifically for use by
339 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
340 It passes everything in registers, going to extremes to achieve this
341 by disabling callee save registers. This calling convention should
342 not be used lightly but only for specific situations such as an
343 alternative to the *register pinning* performance technique often
344 used when implementing functional programming languages. At the
345 moment only X86 supports this convention and it has the following
346 limitations:
347
348 - On *X86-32* only supports up to 4 bit type parameters. No
349 floating point types are supported.
350 - On *X86-64* only supports up to 10 bit type parameters and 6
351 floating point parameters.
352
353 This calling convention supports `tail call
354 optimization <CodeGenerator.html#id80>`_ but requires both the
355 caller and callee are using it.
356"``cc 11``" - The HiPE calling convention
357 This calling convention has been implemented specifically for use by
358 the `High-Performance Erlang
359 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
360 native code compiler of the `Ericsson's Open Source Erlang/OTP
361 system <http://www.erlang.org/download.shtml>`_. It uses more
362 registers for argument passing than the ordinary C calling
363 convention and defines no callee-saved registers. The calling
364 convention properly supports `tail call
365 optimization <CodeGenerator.html#id80>`_ but requires that both the
366 caller and the callee use it. It uses a *register pinning*
367 mechanism, similar to GHC's convention, for keeping frequently
368 accessed runtime components pinned to specific hardware registers.
369 At the moment only X86 supports this convention (both 32 and 64
370 bit).
371"``cc <n>``" - Numbered convention
372 Any calling convention may be specified by number, allowing
373 target-specific calling conventions to be used. Target specific
374 calling conventions start at 64.
375
376More calling conventions can be added/defined on an as-needed basis, to
377support Pascal conventions or any other well-known target-independent
378convention.
379
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000380.. _visibilitystyles:
381
Sean Silvab084af42012-12-07 10:36:55 +0000382Visibility Styles
383-----------------
384
385All Global Variables and Functions have one of the following visibility
386styles:
387
388"``default``" - Default style
389 On targets that use the ELF object file format, default visibility
390 means that the declaration is visible to other modules and, in
391 shared libraries, means that the declared entity may be overridden.
392 On Darwin, default visibility means that the declaration is visible
393 to other modules. Default visibility corresponds to "external
394 linkage" in the language.
395"``hidden``" - Hidden style
396 Two declarations of an object with hidden visibility refer to the
397 same object if they are in the same shared object. Usually, hidden
398 visibility indicates that the symbol will not be placed into the
399 dynamic symbol table, so no other module (executable or shared
400 library) can reference it directly.
401"``protected``" - Protected style
402 On ELF, protected visibility indicates that the symbol will be
403 placed in the dynamic symbol table, but that references within the
404 defining module will bind to the local symbol. That is, the symbol
405 cannot be overridden by another module.
406
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000407.. _namedtypes:
408
Sean Silvab084af42012-12-07 10:36:55 +0000409Named Types
410-----------
411
412LLVM IR allows you to specify name aliases for certain types. This can
413make it easier to read the IR and make the IR more condensed
414(particularly when recursive types are involved). An example of a name
415specification is:
416
417.. code-block:: llvm
418
419 %mytype = type { %mytype*, i32 }
420
421You may give a name to any :ref:`type <typesystem>` except
422":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
423expected with the syntax "%mytype".
424
425Note that type names are aliases for the structural type that they
426indicate, and that you can therefore specify multiple names for the same
427type. This often leads to confusing behavior when dumping out a .ll
428file. Since LLVM IR uses structural typing, the name is not part of the
429type. When printing out LLVM IR, the printer will pick *one name* to
430render all types of a particular shape. This means that if you have code
431where two different source types end up having the same LLVM type, that
432the dumper will sometimes print the "wrong" or unexpected type. This is
433an important design point and isn't going to change.
434
435.. _globalvars:
436
437Global Variables
438----------------
439
440Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000441instead of run-time.
442
443Global variables definitions must be initialized, may have an explicit section
444to be placed in, and may have an optional explicit alignment specified.
445
446Global variables in other translation units can also be declared, in which
447case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000448
449A variable may be defined as ``thread_local``, which means that it will
450not be shared by threads (each thread will have a separated copy of the
451variable). Not all targets support thread-local variables. Optionally, a
452TLS model may be specified:
453
454``localdynamic``
455 For variables that are only used within the current shared library.
456``initialexec``
457 For variables in modules that will not be loaded dynamically.
458``localexec``
459 For variables defined in the executable and only used within it.
460
461The models correspond to the ELF TLS models; see `ELF Handling For
462Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
463more information on under which circumstances the different models may
464be used. The target may choose a different TLS model if the specified
465model is not supported, or if a better choice of model can be made.
466
Michael Gottesman006039c2013-01-31 05:48:48 +0000467A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000468the contents of the variable will **never** be modified (enabling better
469optimization, allowing the global data to be placed in the read-only
470section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000471initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000472variable.
473
474LLVM explicitly allows *declarations* of global variables to be marked
475constant, even if the final definition of the global is not. This
476capability can be used to enable slightly better optimization of the
477program, but requires the language definition to guarantee that
478optimizations based on the 'constantness' are valid for the translation
479units that do not include the definition.
480
481As SSA values, global variables define pointer values that are in scope
482(i.e. they dominate) all basic blocks in the program. Global variables
483always define a pointer to their "content" type because they describe a
484region of memory, and all memory objects in LLVM are accessed through
485pointers.
486
487Global variables can be marked with ``unnamed_addr`` which indicates
488that the address is not significant, only the content. Constants marked
489like this can be merged with other constants if they have the same
490initializer. Note that a constant with significant address *can* be
491merged with a ``unnamed_addr`` constant, the result being a constant
492whose address is significant.
493
494A global variable may be declared to reside in a target-specific
495numbered address space. For targets that support them, address spaces
496may affect how optimizations are performed and/or what target
497instructions are used to access the variable. The default address space
498is zero. The address space qualifier must precede any other attributes.
499
500LLVM allows an explicit section to be specified for globals. If the
501target supports it, it will emit globals to the section specified.
502
Michael Gottesmane743a302013-02-04 03:22:00 +0000503By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000504variables defined within the module are not modified from their
505initial values before the start of the global initializer. This is
506true even for variables potentially accessible from outside the
507module, including those with external linkage or appearing in
Michael Gottesman8901bb62013-02-03 09:57:18 +0000508``@llvm.used``. This assumption may be suppressed by marking the
509variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000510
Sean Silvab084af42012-12-07 10:36:55 +0000511An explicit alignment may be specified for a global, which must be a
512power of 2. If not present, or if the alignment is set to zero, the
513alignment of the global is set by the target to whatever it feels
514convenient. If an explicit alignment is specified, the global is forced
515to have exactly that alignment. Targets and optimizers are not allowed
516to over-align the global if the global has an assigned section. In this
517case, the extra alignment could be observable: for example, code could
518assume that the globals are densely packed in their section and try to
519iterate over them as an array, alignment padding would break this
520iteration.
521
522For example, the following defines a global in a numbered address space
523with an initializer, section, and alignment:
524
525.. code-block:: llvm
526
527 @G = addrspace(5) constant float 1.0, section "foo", align 4
528
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000529The following example just declares a global variable
530
531.. code-block:: llvm
532
533 @G = external global i32
534
Sean Silvab084af42012-12-07 10:36:55 +0000535The following example defines a thread-local global with the
536``initialexec`` TLS model:
537
538.. code-block:: llvm
539
540 @G = thread_local(initialexec) global i32 0, align 4
541
542.. _functionstructure:
543
544Functions
545---------
546
547LLVM function definitions consist of the "``define``" keyword, an
548optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
549style <visibility>`, an optional :ref:`calling convention <callingconv>`,
550an optional ``unnamed_addr`` attribute, a return type, an optional
551:ref:`parameter attribute <paramattrs>` for the return type, a function
552name, a (possibly empty) argument list (each with optional :ref:`parameter
553attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
554an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000555collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
556curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000557
558LLVM function declarations consist of the "``declare``" keyword, an
559optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
560style <visibility>`, an optional :ref:`calling convention <callingconv>`,
561an optional ``unnamed_addr`` attribute, a return type, an optional
562:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000563name, a possibly empty list of arguments, an optional alignment, an optional
564:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000565
Bill Wendling6822ecb2013-10-27 05:09:12 +0000566A function definition contains a list of basic blocks, forming the CFG (Control
567Flow Graph) for the function. Each basic block may optionally start with a label
568(giving the basic block a symbol table entry), contains a list of instructions,
569and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
570function return). If an explicit label is not provided, a block is assigned an
571implicit numbered label, using the next value from the same counter as used for
572unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
573entry block does not have an explicit label, it will be assigned label "%0",
574then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000575
576The first basic block in a function is special in two ways: it is
577immediately executed on entrance to the function, and it is not allowed
578to have predecessor basic blocks (i.e. there can not be any branches to
579the entry block of a function). Because the block can have no
580predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
581
582LLVM allows an explicit section to be specified for functions. If the
583target supports it, it will emit functions to the section specified.
584
585An explicit alignment may be specified for a function. If not present,
586or if the alignment is set to zero, the alignment of the function is set
587by the target to whatever it feels convenient. If an explicit alignment
588is specified, the function is forced to have at least that much
589alignment. All alignments must be a power of 2.
590
591If the ``unnamed_addr`` attribute is given, the address is know to not
592be significant and two identical functions can be merged.
593
594Syntax::
595
596 define [linkage] [visibility]
597 [cconv] [ret attrs]
598 <ResultType> @<FunctionName> ([argument list])
599 [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000600 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000601
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000602.. _langref_aliases:
603
Sean Silvab084af42012-12-07 10:36:55 +0000604Aliases
605-------
606
607Aliases act as "second name" for the aliasee value (which can be either
608function, global variable, another alias or bitcast of global value).
609Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
610:ref:`visibility style <visibility>`.
611
612Syntax::
613
614 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
615
Rafael Espindola65785492013-10-07 13:57:59 +0000616The linkage must be one of ``private``, ``linker_private``,
Rafael Espindola78527052013-10-06 15:10:43 +0000617``linker_private_weak``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000618``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
619might not correctly handle dropping a weak symbol that is aliased by a non weak
620alias.
Rafael Espindola78527052013-10-06 15:10:43 +0000621
Sean Silvab084af42012-12-07 10:36:55 +0000622.. _namedmetadatastructure:
623
624Named Metadata
625--------------
626
627Named metadata is a collection of metadata. :ref:`Metadata
628nodes <metadata>` (but not metadata strings) are the only valid
629operands for a named metadata.
630
631Syntax::
632
633 ; Some unnamed metadata nodes, which are referenced by the named metadata.
634 !0 = metadata !{metadata !"zero"}
635 !1 = metadata !{metadata !"one"}
636 !2 = metadata !{metadata !"two"}
637 ; A named metadata.
638 !name = !{!0, !1, !2}
639
640.. _paramattrs:
641
642Parameter Attributes
643--------------------
644
645The return type and each parameter of a function type may have a set of
646*parameter attributes* associated with them. Parameter attributes are
647used to communicate additional information about the result or
648parameters of a function. Parameter attributes are considered to be part
649of the function, not of the function type, so functions with different
650parameter attributes can have the same function type.
651
652Parameter attributes are simple keywords that follow the type specified.
653If multiple parameter attributes are needed, they are space separated.
654For example:
655
656.. code-block:: llvm
657
658 declare i32 @printf(i8* noalias nocapture, ...)
659 declare i32 @atoi(i8 zeroext)
660 declare signext i8 @returns_signed_char()
661
662Note that any attributes for the function result (``nounwind``,
663``readonly``) come immediately after the argument list.
664
665Currently, only the following parameter attributes are defined:
666
667``zeroext``
668 This indicates to the code generator that the parameter or return
669 value should be zero-extended to the extent required by the target's
670 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
671 the caller (for a parameter) or the callee (for a return value).
672``signext``
673 This indicates to the code generator that the parameter or return
674 value should be sign-extended to the extent required by the target's
675 ABI (which is usually 32-bits) by the caller (for a parameter) or
676 the callee (for a return value).
677``inreg``
678 This indicates that this parameter or return value should be treated
679 in a special target-dependent fashion during while emitting code for
680 a function call or return (usually, by putting it in a register as
681 opposed to memory, though some targets use it to distinguish between
682 two different kinds of registers). Use of this attribute is
683 target-specific.
684``byval``
685 This indicates that the pointer parameter should really be passed by
686 value to the function. The attribute implies that a hidden copy of
687 the pointee is made between the caller and the callee, so the callee
688 is unable to modify the value in the caller. This attribute is only
689 valid on LLVM pointer arguments. It is generally used to pass
690 structs and arrays by value, but is also valid on pointers to
691 scalars. The copy is considered to belong to the caller not the
692 callee (for example, ``readonly`` functions should not write to
693 ``byval`` parameters). This is not a valid attribute for return
694 values.
695
696 The byval attribute also supports specifying an alignment with the
697 align attribute. It indicates the alignment of the stack slot to
698 form and the known alignment of the pointer specified to the call
699 site. If the alignment is not specified, then the code generator
700 makes a target-specific assumption.
701
702``sret``
703 This indicates that the pointer parameter specifies the address of a
704 structure that is the return value of the function in the source
705 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000706 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000707 not to trap and to be properly aligned. This may only be applied to
708 the first parameter. This is not a valid attribute for return
709 values.
710``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000711 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000712 the argument or return value do not alias pointer values which are
713 not *based* on it, ignoring certain "irrelevant" dependencies. For a
714 call to the parent function, dependencies between memory references
715 from before or after the call and from those during the call are
716 "irrelevant" to the ``noalias`` keyword for the arguments and return
717 value used in that call. The caller shares the responsibility with
718 the callee for ensuring that these requirements are met. For further
719 details, please see the discussion of the NoAlias response in `alias
720 analysis <AliasAnalysis.html#MustMayNo>`_.
721
722 Note that this definition of ``noalias`` is intentionally similar
723 to the definition of ``restrict`` in C99 for function arguments,
724 though it is slightly weaker.
725
726 For function return values, C99's ``restrict`` is not meaningful,
727 while LLVM's ``noalias`` is.
728``nocapture``
729 This indicates that the callee does not make any copies of the
730 pointer that outlive the callee itself. This is not a valid
731 attribute for return values.
732
733.. _nest:
734
735``nest``
736 This indicates that the pointer parameter can be excised using the
737 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000738 attribute for return values and can only be applied to one parameter.
739
740``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000741 This indicates that the function always returns the argument as its return
742 value. This is an optimization hint to the code generator when generating
743 the caller, allowing tail call optimization and omission of register saves
744 and restores in some cases; it is not checked or enforced when generating
745 the callee. The parameter and the function return type must be valid
746 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
747 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000748
749.. _gc:
750
751Garbage Collector Names
752-----------------------
753
754Each function may specify a garbage collector name, which is simply a
755string:
756
757.. code-block:: llvm
758
759 define void @f() gc "name" { ... }
760
761The compiler declares the supported values of *name*. Specifying a
762collector which will cause the compiler to alter its output in order to
763support the named garbage collection algorithm.
764
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000765.. _prefixdata:
766
767Prefix Data
768-----------
769
770Prefix data is data associated with a function which the code generator
771will emit immediately before the function body. The purpose of this feature
772is to allow frontends to associate language-specific runtime metadata with
773specific functions and make it available through the function pointer while
774still allowing the function pointer to be called. To access the data for a
775given function, a program may bitcast the function pointer to a pointer to
776the constant's type. This implies that the IR symbol points to the start
777of the prefix data.
778
779To maintain the semantics of ordinary function calls, the prefix data must
780have a particular format. Specifically, it must begin with a sequence of
781bytes which decode to a sequence of machine instructions, valid for the
782module's target, which transfer control to the point immediately succeeding
783the prefix data, without performing any other visible action. This allows
784the inliner and other passes to reason about the semantics of the function
785definition without needing to reason about the prefix data. Obviously this
786makes the format of the prefix data highly target dependent.
787
Peter Collingbourne213358a2013-09-23 20:14:21 +0000788Prefix data is laid out as if it were an initializer for a global variable
789of the prefix data's type. No padding is automatically placed between the
790prefix data and the function body. If padding is required, it must be part
791of the prefix data.
792
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000793A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
794which encodes the ``nop`` instruction:
795
796.. code-block:: llvm
797
798 define void @f() prefix i8 144 { ... }
799
800Generally prefix data can be formed by encoding a relative branch instruction
801which skips the metadata, as in this example of valid prefix data for the
802x86_64 architecture, where the first two bytes encode ``jmp .+10``:
803
804.. code-block:: llvm
805
806 %0 = type <{ i8, i8, i8* }>
807
808 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
809
810A function may have prefix data but no body. This has similar semantics
811to the ``available_externally`` linkage in that the data may be used by the
812optimizers but will not be emitted in the object file.
813
Bill Wendling63b88192013-02-06 06:52:58 +0000814.. _attrgrp:
815
816Attribute Groups
817----------------
818
819Attribute groups are groups of attributes that are referenced by objects within
820the IR. They are important for keeping ``.ll`` files readable, because a lot of
821functions will use the same set of attributes. In the degenerative case of a
822``.ll`` file that corresponds to a single ``.c`` file, the single attribute
823group will capture the important command line flags used to build that file.
824
825An attribute group is a module-level object. To use an attribute group, an
826object references the attribute group's ID (e.g. ``#37``). An object may refer
827to more than one attribute group. In that situation, the attributes from the
828different groups are merged.
829
830Here is an example of attribute groups for a function that should always be
831inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
832
833.. code-block:: llvm
834
835 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000836 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000837
838 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000839 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000840
841 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
842 define void @f() #0 #1 { ... }
843
Sean Silvab084af42012-12-07 10:36:55 +0000844.. _fnattrs:
845
846Function Attributes
847-------------------
848
849Function attributes are set to communicate additional information about
850a function. Function attributes are considered to be part of the
851function, not of the function type, so functions with different function
852attributes can have the same function type.
853
854Function attributes are simple keywords that follow the type specified.
855If multiple attributes are needed, they are space separated. For
856example:
857
858.. code-block:: llvm
859
860 define void @f() noinline { ... }
861 define void @f() alwaysinline { ... }
862 define void @f() alwaysinline optsize { ... }
863 define void @f() optsize { ... }
864
Sean Silvab084af42012-12-07 10:36:55 +0000865``alignstack(<n>)``
866 This attribute indicates that, when emitting the prologue and
867 epilogue, the backend should forcibly align the stack pointer.
868 Specify the desired alignment, which must be a power of two, in
869 parentheses.
870``alwaysinline``
871 This attribute indicates that the inliner should attempt to inline
872 this function into callers whenever possible, ignoring any active
873 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +0000874``builtin``
875 This indicates that the callee function at a call site should be
876 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +0000877 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +0000878 direct calls to functions which are declared with the ``nobuiltin``
879 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +0000880``cold``
881 This attribute indicates that this function is rarely called. When
882 computing edge weights, basic blocks post-dominated by a cold
883 function call are also considered to be cold; and, thus, given low
884 weight.
Sean Silvab084af42012-12-07 10:36:55 +0000885``inlinehint``
886 This attribute indicates that the source code contained a hint that
887 inlining this function is desirable (such as the "inline" keyword in
888 C/C++). It is just a hint; it imposes no requirements on the
889 inliner.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000890``minsize``
891 This attribute suggests that optimization passes and code generator
892 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000893 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000894 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +0000895``naked``
896 This attribute disables prologue / epilogue emission for the
897 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +0000898``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +0000899 This indicates that the callee function at a call site is not recognized as
900 a built-in function. LLVM will retain the original call and not replace it
901 with equivalent code based on the semantics of the built-in function, unless
902 the call site uses the ``builtin`` attribute. This is valid at call sites
903 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +0000904``noduplicate``
905 This attribute indicates that calls to the function cannot be
906 duplicated. A call to a ``noduplicate`` function may be moved
907 within its parent function, but may not be duplicated within
908 its parent function.
909
910 A function containing a ``noduplicate`` call may still
911 be an inlining candidate, provided that the call is not
912 duplicated by inlining. That implies that the function has
913 internal linkage and only has one call site, so the original
914 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000915``noimplicitfloat``
916 This attributes disables implicit floating point instructions.
917``noinline``
918 This attribute indicates that the inliner should never inline this
919 function in any situation. This attribute may not be used together
920 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +0000921``nonlazybind``
922 This attribute suppresses lazy symbol binding for the function. This
923 may make calls to the function faster, at the cost of extra program
924 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +0000925``noredzone``
926 This attribute indicates that the code generator should not use a
927 red zone, even if the target-specific ABI normally permits it.
928``noreturn``
929 This function attribute indicates that the function never returns
930 normally. This produces undefined behavior at runtime if the
931 function ever does dynamically return.
932``nounwind``
933 This function attribute indicates that the function never returns
934 with an unwind or exceptional control flow. If the function does
935 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +0000936``optnone``
937 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000938 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +0000939 exception of interprocedural optimization passes.
940 This attribute cannot be used together with the ``alwaysinline``
941 attribute; this attribute is also incompatible
942 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000943
Andrea Di Biagio377496b2013-08-23 11:53:55 +0000944 The inliner should never inline this function in any situation.
945 Only functions with the ``alwaysinline`` attribute are valid
946 candidates for inlining inside the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +0000947``optsize``
948 This attribute suggests that optimization passes and code generator
949 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000950 and otherwise do optimizations specifically to reduce code size as
951 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +0000952``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +0000953 On a function, this attribute indicates that the function computes its
954 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +0000955 without dereferencing any pointer arguments or otherwise accessing
956 any mutable state (e.g. memory, control registers, etc) visible to
957 caller functions. It does not write through any pointer arguments
958 (including ``byval`` arguments) and never changes any state visible
959 to callers. This means that it cannot unwind exceptions by calling
960 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000961
Nick Lewyckyc2ec0722013-07-06 00:29:58 +0000962 On an argument, this attribute indicates that the function does not
963 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +0000964 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +0000965``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +0000966 On a function, this attribute indicates that the function does not write
967 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +0000968 modify any state (e.g. memory, control registers, etc) visible to
969 caller functions. It may dereference pointer arguments and read
970 state that may be set in the caller. A readonly function always
971 returns the same value (or unwinds an exception identically) when
972 called with the same set of arguments and global state. It cannot
973 unwind an exception by calling the ``C++`` exception throwing
974 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000975
Nick Lewyckyc2ec0722013-07-06 00:29:58 +0000976 On an argument, this attribute indicates that the function does not write
977 through this pointer argument, even though it may write to the memory that
978 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +0000979``returns_twice``
980 This attribute indicates that this function can return twice. The C
981 ``setjmp`` is an example of such a function. The compiler disables
982 some optimizations (like tail calls) in the caller of these
983 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +0000984``sanitize_address``
985 This attribute indicates that AddressSanitizer checks
986 (dynamic address safety analysis) are enabled for this function.
987``sanitize_memory``
988 This attribute indicates that MemorySanitizer checks (dynamic detection
989 of accesses to uninitialized memory) are enabled for this function.
990``sanitize_thread``
991 This attribute indicates that ThreadSanitizer checks
992 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +0000993``ssp``
994 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000995 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +0000996 placed on the stack before the local variables that's checked upon
997 return from the function to see if it has been overwritten. A
998 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +0000999 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001000
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001001 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1002 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1003 - Calls to alloca() with variable sizes or constant sizes greater than
1004 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001005
1006 If a function that has an ``ssp`` attribute is inlined into a
1007 function that doesn't have an ``ssp`` attribute, then the resulting
1008 function will have an ``ssp`` attribute.
1009``sspreq``
1010 This attribute indicates that the function should *always* emit a
1011 stack smashing protector. This overrides the ``ssp`` function
1012 attribute.
1013
1014 If a function that has an ``sspreq`` attribute is inlined into a
1015 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001016 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1017 an ``sspreq`` attribute.
1018``sspstrong``
1019 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001020 protector. This attribute causes a strong heuristic to be used when
1021 determining if a function needs stack protectors. The strong heuristic
1022 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001023
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001024 - Arrays of any size and type
1025 - Aggregates containing an array of any size and type.
1026 - Calls to alloca().
1027 - Local variables that have had their address taken.
1028
1029 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001030
1031 If a function that has an ``sspstrong`` attribute is inlined into a
1032 function that doesn't have an ``sspstrong`` attribute, then the
1033 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001034``uwtable``
1035 This attribute indicates that the ABI being targeted requires that
1036 an unwind table entry be produce for this function even if we can
1037 show that no exceptions passes by it. This is normally the case for
1038 the ELF x86-64 abi, but it can be disabled for some compilation
1039 units.
Sean Silvab084af42012-12-07 10:36:55 +00001040
1041.. _moduleasm:
1042
1043Module-Level Inline Assembly
1044----------------------------
1045
1046Modules may contain "module-level inline asm" blocks, which corresponds
1047to the GCC "file scope inline asm" blocks. These blocks are internally
1048concatenated by LLVM and treated as a single unit, but may be separated
1049in the ``.ll`` file if desired. The syntax is very simple:
1050
1051.. code-block:: llvm
1052
1053 module asm "inline asm code goes here"
1054 module asm "more can go here"
1055
1056The strings can contain any character by escaping non-printable
1057characters. The escape sequence used is simply "\\xx" where "xx" is the
1058two digit hex code for the number.
1059
1060The inline asm code is simply printed to the machine code .s file when
1061assembly code is generated.
1062
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001063.. _langref_datalayout:
1064
Sean Silvab084af42012-12-07 10:36:55 +00001065Data Layout
1066-----------
1067
1068A module may specify a target specific data layout string that specifies
1069how data is to be laid out in memory. The syntax for the data layout is
1070simply:
1071
1072.. code-block:: llvm
1073
1074 target datalayout = "layout specification"
1075
1076The *layout specification* consists of a list of specifications
1077separated by the minus sign character ('-'). Each specification starts
1078with a letter and may include other information after the letter to
1079define some aspect of the data layout. The specifications accepted are
1080as follows:
1081
1082``E``
1083 Specifies that the target lays out data in big-endian form. That is,
1084 the bits with the most significance have the lowest address
1085 location.
1086``e``
1087 Specifies that the target lays out data in little-endian form. That
1088 is, the bits with the least significance have the lowest address
1089 location.
1090``S<size>``
1091 Specifies the natural alignment of the stack in bits. Alignment
1092 promotion of stack variables is limited to the natural stack
1093 alignment to avoid dynamic stack realignment. The stack alignment
1094 must be a multiple of 8-bits. If omitted, the natural stack
1095 alignment defaults to "unspecified", which does not prevent any
1096 alignment promotions.
1097``p[n]:<size>:<abi>:<pref>``
1098 This specifies the *size* of a pointer and its ``<abi>`` and
1099 ``<pref>``\erred alignments for address space ``n``. All sizes are in
1100 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
1101 preceding ``:`` should be omitted too. The address space, ``n`` is
1102 optional, and if not specified, denotes the default address space 0.
1103 The value of ``n`` must be in the range [1,2^23).
1104``i<size>:<abi>:<pref>``
1105 This specifies the alignment for an integer type of a given bit
1106 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1107``v<size>:<abi>:<pref>``
1108 This specifies the alignment for a vector type of a given bit
1109 ``<size>``.
1110``f<size>:<abi>:<pref>``
1111 This specifies the alignment for a floating point type of a given bit
1112 ``<size>``. Only values of ``<size>`` that are supported by the target
1113 will work. 32 (float) and 64 (double) are supported on all targets; 80
1114 or 128 (different flavors of long double) are also supported on some
1115 targets.
1116``a<size>:<abi>:<pref>``
1117 This specifies the alignment for an aggregate type of a given bit
1118 ``<size>``.
1119``s<size>:<abi>:<pref>``
1120 This specifies the alignment for a stack object of a given bit
1121 ``<size>``.
1122``n<size1>:<size2>:<size3>...``
1123 This specifies a set of native integer widths for the target CPU in
1124 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1125 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1126 this set are considered to support most general arithmetic operations
1127 efficiently.
1128
1129When constructing the data layout for a given target, LLVM starts with a
1130default set of specifications which are then (possibly) overridden by
1131the specifications in the ``datalayout`` keyword. The default
1132specifications are given in this list:
1133
1134- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001135- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1136- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1137 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001138- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001139- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1140- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1141- ``i16:16:16`` - i16 is 16-bit aligned
1142- ``i32:32:32`` - i32 is 32-bit aligned
1143- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1144 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001145- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001146- ``f32:32:32`` - float is 32-bit aligned
1147- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001148- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001149- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1150- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001151- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001152
1153When LLVM is determining the alignment for a given type, it uses the
1154following rules:
1155
1156#. If the type sought is an exact match for one of the specifications,
1157 that specification is used.
1158#. If no match is found, and the type sought is an integer type, then
1159 the smallest integer type that is larger than the bitwidth of the
1160 sought type is used. If none of the specifications are larger than
1161 the bitwidth then the largest integer type is used. For example,
1162 given the default specifications above, the i7 type will use the
1163 alignment of i8 (next largest) while both i65 and i256 will use the
1164 alignment of i64 (largest specified).
1165#. If no match is found, and the type sought is a vector type, then the
1166 largest vector type that is smaller than the sought vector type will
1167 be used as a fall back. This happens because <128 x double> can be
1168 implemented in terms of 64 <2 x double>, for example.
1169
1170The function of the data layout string may not be what you expect.
1171Notably, this is not a specification from the frontend of what alignment
1172the code generator should use.
1173
1174Instead, if specified, the target data layout is required to match what
1175the ultimate *code generator* expects. This string is used by the
1176mid-level optimizers to improve code, and this only works if it matches
1177what the ultimate code generator uses. If you would like to generate IR
1178that does not embed this target-specific detail into the IR, then you
1179don't have to specify the string. This will disable some optimizations
1180that require precise layout information, but this also prevents those
1181optimizations from introducing target specificity into the IR.
1182
Bill Wendling5cc90842013-10-18 23:41:25 +00001183.. _langref_triple:
1184
1185Target Triple
1186-------------
1187
1188A module may specify a target triple string that describes the target
1189host. The syntax for the target triple is simply:
1190
1191.. code-block:: llvm
1192
1193 target triple = "x86_64-apple-macosx10.7.0"
1194
1195The *target triple* string consists of a series of identifiers delimited
1196by the minus sign character ('-'). The canonical forms are:
1197
1198::
1199
1200 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1201 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1202
1203This information is passed along to the backend so that it generates
1204code for the proper architecture. It's possible to override this on the
1205command line with the ``-mtriple`` command line option.
1206
Sean Silvab084af42012-12-07 10:36:55 +00001207.. _pointeraliasing:
1208
1209Pointer Aliasing Rules
1210----------------------
1211
1212Any memory access must be done through a pointer value associated with
1213an address range of the memory access, otherwise the behavior is
1214undefined. Pointer values are associated with address ranges according
1215to the following rules:
1216
1217- A pointer value is associated with the addresses associated with any
1218 value it is *based* on.
1219- An address of a global variable is associated with the address range
1220 of the variable's storage.
1221- The result value of an allocation instruction is associated with the
1222 address range of the allocated storage.
1223- A null pointer in the default address-space is associated with no
1224 address.
1225- An integer constant other than zero or a pointer value returned from
1226 a function not defined within LLVM may be associated with address
1227 ranges allocated through mechanisms other than those provided by
1228 LLVM. Such ranges shall not overlap with any ranges of addresses
1229 allocated by mechanisms provided by LLVM.
1230
1231A pointer value is *based* on another pointer value according to the
1232following rules:
1233
1234- A pointer value formed from a ``getelementptr`` operation is *based*
1235 on the first operand of the ``getelementptr``.
1236- The result value of a ``bitcast`` is *based* on the operand of the
1237 ``bitcast``.
1238- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1239 values that contribute (directly or indirectly) to the computation of
1240 the pointer's value.
1241- The "*based* on" relationship is transitive.
1242
1243Note that this definition of *"based"* is intentionally similar to the
1244definition of *"based"* in C99, though it is slightly weaker.
1245
1246LLVM IR does not associate types with memory. The result type of a
1247``load`` merely indicates the size and alignment of the memory from
1248which to load, as well as the interpretation of the value. The first
1249operand type of a ``store`` similarly only indicates the size and
1250alignment of the store.
1251
1252Consequently, type-based alias analysis, aka TBAA, aka
1253``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1254:ref:`Metadata <metadata>` may be used to encode additional information
1255which specialized optimization passes may use to implement type-based
1256alias analysis.
1257
1258.. _volatile:
1259
1260Volatile Memory Accesses
1261------------------------
1262
1263Certain memory accesses, such as :ref:`load <i_load>`'s,
1264:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1265marked ``volatile``. The optimizers must not change the number of
1266volatile operations or change their order of execution relative to other
1267volatile operations. The optimizers *may* change the order of volatile
1268operations relative to non-volatile operations. This is not Java's
1269"volatile" and has no cross-thread synchronization behavior.
1270
Andrew Trick89fc5a62013-01-30 21:19:35 +00001271IR-level volatile loads and stores cannot safely be optimized into
1272llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1273flagged volatile. Likewise, the backend should never split or merge
1274target-legal volatile load/store instructions.
1275
Andrew Trick7e6f9282013-01-31 00:49:39 +00001276.. admonition:: Rationale
1277
1278 Platforms may rely on volatile loads and stores of natively supported
1279 data width to be executed as single instruction. For example, in C
1280 this holds for an l-value of volatile primitive type with native
1281 hardware support, but not necessarily for aggregate types. The
1282 frontend upholds these expectations, which are intentionally
1283 unspecified in the IR. The rules above ensure that IR transformation
1284 do not violate the frontend's contract with the language.
1285
Sean Silvab084af42012-12-07 10:36:55 +00001286.. _memmodel:
1287
1288Memory Model for Concurrent Operations
1289--------------------------------------
1290
1291The LLVM IR does not define any way to start parallel threads of
1292execution or to register signal handlers. Nonetheless, there are
1293platform-specific ways to create them, and we define LLVM IR's behavior
1294in their presence. This model is inspired by the C++0x memory model.
1295
1296For a more informal introduction to this model, see the :doc:`Atomics`.
1297
1298We define a *happens-before* partial order as the least partial order
1299that
1300
1301- Is a superset of single-thread program order, and
1302- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1303 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1304 techniques, like pthread locks, thread creation, thread joining,
1305 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1306 Constraints <ordering>`).
1307
1308Note that program order does not introduce *happens-before* edges
1309between a thread and signals executing inside that thread.
1310
1311Every (defined) read operation (load instructions, memcpy, atomic
1312loads/read-modify-writes, etc.) R reads a series of bytes written by
1313(defined) write operations (store instructions, atomic
1314stores/read-modify-writes, memcpy, etc.). For the purposes of this
1315section, initialized globals are considered to have a write of the
1316initializer which is atomic and happens before any other read or write
1317of the memory in question. For each byte of a read R, R\ :sub:`byte`
1318may see any write to the same byte, except:
1319
1320- If write\ :sub:`1` happens before write\ :sub:`2`, and
1321 write\ :sub:`2` happens before R\ :sub:`byte`, then
1322 R\ :sub:`byte` does not see write\ :sub:`1`.
1323- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1324 R\ :sub:`byte` does not see write\ :sub:`3`.
1325
1326Given that definition, R\ :sub:`byte` is defined as follows:
1327
1328- If R is volatile, the result is target-dependent. (Volatile is
1329 supposed to give guarantees which can support ``sig_atomic_t`` in
1330 C/C++, and may be used for accesses to addresses which do not behave
1331 like normal memory. It does not generally provide cross-thread
1332 synchronization.)
1333- Otherwise, if there is no write to the same byte that happens before
1334 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1335- Otherwise, if R\ :sub:`byte` may see exactly one write,
1336 R\ :sub:`byte` returns the value written by that write.
1337- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1338 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1339 Memory Ordering Constraints <ordering>` section for additional
1340 constraints on how the choice is made.
1341- Otherwise R\ :sub:`byte` returns ``undef``.
1342
1343R returns the value composed of the series of bytes it read. This
1344implies that some bytes within the value may be ``undef`` **without**
1345the entire value being ``undef``. Note that this only defines the
1346semantics of the operation; it doesn't mean that targets will emit more
1347than one instruction to read the series of bytes.
1348
1349Note that in cases where none of the atomic intrinsics are used, this
1350model places only one restriction on IR transformations on top of what
1351is required for single-threaded execution: introducing a store to a byte
1352which might not otherwise be stored is not allowed in general.
1353(Specifically, in the case where another thread might write to and read
1354from an address, introducing a store can change a load that may see
1355exactly one write into a load that may see multiple writes.)
1356
1357.. _ordering:
1358
1359Atomic Memory Ordering Constraints
1360----------------------------------
1361
1362Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1363:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1364:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1365an ordering parameter that determines which other atomic instructions on
1366the same address they *synchronize with*. These semantics are borrowed
1367from Java and C++0x, but are somewhat more colloquial. If these
1368descriptions aren't precise enough, check those specs (see spec
1369references in the :doc:`atomics guide <Atomics>`).
1370:ref:`fence <i_fence>` instructions treat these orderings somewhat
1371differently since they don't take an address. See that instruction's
1372documentation for details.
1373
1374For a simpler introduction to the ordering constraints, see the
1375:doc:`Atomics`.
1376
1377``unordered``
1378 The set of values that can be read is governed by the happens-before
1379 partial order. A value cannot be read unless some operation wrote
1380 it. This is intended to provide a guarantee strong enough to model
1381 Java's non-volatile shared variables. This ordering cannot be
1382 specified for read-modify-write operations; it is not strong enough
1383 to make them atomic in any interesting way.
1384``monotonic``
1385 In addition to the guarantees of ``unordered``, there is a single
1386 total order for modifications by ``monotonic`` operations on each
1387 address. All modification orders must be compatible with the
1388 happens-before order. There is no guarantee that the modification
1389 orders can be combined to a global total order for the whole program
1390 (and this often will not be possible). The read in an atomic
1391 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1392 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1393 order immediately before the value it writes. If one atomic read
1394 happens before another atomic read of the same address, the later
1395 read must see the same value or a later value in the address's
1396 modification order. This disallows reordering of ``monotonic`` (or
1397 stronger) operations on the same address. If an address is written
1398 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1399 read that address repeatedly, the other threads must eventually see
1400 the write. This corresponds to the C++0x/C1x
1401 ``memory_order_relaxed``.
1402``acquire``
1403 In addition to the guarantees of ``monotonic``, a
1404 *synchronizes-with* edge may be formed with a ``release`` operation.
1405 This is intended to model C++'s ``memory_order_acquire``.
1406``release``
1407 In addition to the guarantees of ``monotonic``, if this operation
1408 writes a value which is subsequently read by an ``acquire``
1409 operation, it *synchronizes-with* that operation. (This isn't a
1410 complete description; see the C++0x definition of a release
1411 sequence.) This corresponds to the C++0x/C1x
1412 ``memory_order_release``.
1413``acq_rel`` (acquire+release)
1414 Acts as both an ``acquire`` and ``release`` operation on its
1415 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1416``seq_cst`` (sequentially consistent)
1417 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1418 operation which only reads, ``release`` for an operation which only
1419 writes), there is a global total order on all
1420 sequentially-consistent operations on all addresses, which is
1421 consistent with the *happens-before* partial order and with the
1422 modification orders of all the affected addresses. Each
1423 sequentially-consistent read sees the last preceding write to the
1424 same address in this global order. This corresponds to the C++0x/C1x
1425 ``memory_order_seq_cst`` and Java volatile.
1426
1427.. _singlethread:
1428
1429If an atomic operation is marked ``singlethread``, it only *synchronizes
1430with* or participates in modification and seq\_cst total orderings with
1431other operations running in the same thread (for example, in signal
1432handlers).
1433
1434.. _fastmath:
1435
1436Fast-Math Flags
1437---------------
1438
1439LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1440:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1441:ref:`frem <i_frem>`) have the following flags that can set to enable
1442otherwise unsafe floating point operations
1443
1444``nnan``
1445 No NaNs - Allow optimizations to assume the arguments and result are not
1446 NaN. Such optimizations are required to retain defined behavior over
1447 NaNs, but the value of the result is undefined.
1448
1449``ninf``
1450 No Infs - Allow optimizations to assume the arguments and result are not
1451 +/-Inf. Such optimizations are required to retain defined behavior over
1452 +/-Inf, but the value of the result is undefined.
1453
1454``nsz``
1455 No Signed Zeros - Allow optimizations to treat the sign of a zero
1456 argument or result as insignificant.
1457
1458``arcp``
1459 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1460 argument rather than perform division.
1461
1462``fast``
1463 Fast - Allow algebraically equivalent transformations that may
1464 dramatically change results in floating point (e.g. reassociate). This
1465 flag implies all the others.
1466
1467.. _typesystem:
1468
1469Type System
1470===========
1471
1472The LLVM type system is one of the most important features of the
1473intermediate representation. Being typed enables a number of
1474optimizations to be performed on the intermediate representation
1475directly, without having to do extra analyses on the side before the
1476transformation. A strong type system makes it easier to read the
1477generated code and enables novel analyses and transformations that are
1478not feasible to perform on normal three address code representations.
1479
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001480.. _typeclassifications:
1481
Sean Silvab084af42012-12-07 10:36:55 +00001482Type Classifications
1483--------------------
1484
1485The types fall into a few useful classifications:
1486
1487
1488.. list-table::
1489 :header-rows: 1
1490
1491 * - Classification
1492 - Types
1493
1494 * - :ref:`integer <t_integer>`
1495 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1496 ``i64``, ...
1497
1498 * - :ref:`floating point <t_floating>`
1499 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1500 ``ppc_fp128``
1501
1502
1503 * - first class
1504
1505 .. _t_firstclass:
1506
1507 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1508 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1509 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1510 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1511
1512 * - :ref:`primitive <t_primitive>`
1513 - :ref:`label <t_label>`,
1514 :ref:`void <t_void>`,
1515 :ref:`integer <t_integer>`,
1516 :ref:`floating point <t_floating>`,
1517 :ref:`x86mmx <t_x86mmx>`,
1518 :ref:`metadata <t_metadata>`.
1519
1520 * - :ref:`derived <t_derived>`
1521 - :ref:`array <t_array>`,
1522 :ref:`function <t_function>`,
1523 :ref:`pointer <t_pointer>`,
1524 :ref:`structure <t_struct>`,
1525 :ref:`vector <t_vector>`,
1526 :ref:`opaque <t_opaque>`.
1527
1528The :ref:`first class <t_firstclass>` types are perhaps the most important.
1529Values of these types are the only ones which can be produced by
1530instructions.
1531
1532.. _t_primitive:
1533
1534Primitive Types
1535---------------
1536
1537The primitive types are the fundamental building blocks of the LLVM
1538system.
1539
1540.. _t_integer:
1541
1542Integer Type
1543^^^^^^^^^^^^
1544
1545Overview:
1546"""""""""
1547
1548The integer type is a very simple type that simply specifies an
1549arbitrary bit width for the integer type desired. Any bit width from 1
1550bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1551
1552Syntax:
1553"""""""
1554
1555::
1556
1557 iN
1558
1559The number of bits the integer will occupy is specified by the ``N``
1560value.
1561
1562Examples:
1563"""""""""
1564
1565+----------------+------------------------------------------------+
1566| ``i1`` | a single-bit integer. |
1567+----------------+------------------------------------------------+
1568| ``i32`` | a 32-bit integer. |
1569+----------------+------------------------------------------------+
1570| ``i1942652`` | a really big integer of over 1 million bits. |
1571+----------------+------------------------------------------------+
1572
1573.. _t_floating:
1574
1575Floating Point Types
1576^^^^^^^^^^^^^^^^^^^^
1577
1578.. list-table::
1579 :header-rows: 1
1580
1581 * - Type
1582 - Description
1583
1584 * - ``half``
1585 - 16-bit floating point value
1586
1587 * - ``float``
1588 - 32-bit floating point value
1589
1590 * - ``double``
1591 - 64-bit floating point value
1592
1593 * - ``fp128``
1594 - 128-bit floating point value (112-bit mantissa)
1595
1596 * - ``x86_fp80``
1597 - 80-bit floating point value (X87)
1598
1599 * - ``ppc_fp128``
1600 - 128-bit floating point value (two 64-bits)
1601
1602.. _t_x86mmx:
1603
1604X86mmx Type
1605^^^^^^^^^^^
1606
1607Overview:
1608"""""""""
1609
1610The x86mmx type represents a value held in an MMX register on an x86
1611machine. The operations allowed on it are quite limited: parameters and
1612return values, load and store, and bitcast. User-specified MMX
1613instructions are represented as intrinsic or asm calls with arguments
1614and/or results of this type. There are no arrays, vectors or constants
1615of this type.
1616
1617Syntax:
1618"""""""
1619
1620::
1621
1622 x86mmx
1623
1624.. _t_void:
1625
1626Void Type
1627^^^^^^^^^
1628
1629Overview:
1630"""""""""
1631
1632The void type does not represent any value and has no size.
1633
1634Syntax:
1635"""""""
1636
1637::
1638
1639 void
1640
1641.. _t_label:
1642
1643Label Type
1644^^^^^^^^^^
1645
1646Overview:
1647"""""""""
1648
1649The label type represents code labels.
1650
1651Syntax:
1652"""""""
1653
1654::
1655
1656 label
1657
1658.. _t_metadata:
1659
1660Metadata Type
1661^^^^^^^^^^^^^
1662
1663Overview:
1664"""""""""
1665
1666The metadata type represents embedded metadata. No derived types may be
1667created from metadata except for :ref:`function <t_function>` arguments.
1668
1669Syntax:
1670"""""""
1671
1672::
1673
1674 metadata
1675
1676.. _t_derived:
1677
1678Derived Types
1679-------------
1680
1681The real power in LLVM comes from the derived types in the system. This
1682is what allows a programmer to represent arrays, functions, pointers,
1683and other useful types. Each of these types contain one or more element
1684types which may be a primitive type, or another derived type. For
1685example, it is possible to have a two dimensional array, using an array
1686as the element type of another array.
1687
1688.. _t_aggregate:
1689
1690Aggregate Types
1691^^^^^^^^^^^^^^^
1692
1693Aggregate Types are a subset of derived types that can contain multiple
1694member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1695aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1696aggregate types.
1697
1698.. _t_array:
1699
1700Array Type
1701^^^^^^^^^^
1702
1703Overview:
1704"""""""""
1705
1706The array type is a very simple derived type that arranges elements
1707sequentially in memory. The array type requires a size (number of
1708elements) and an underlying data type.
1709
1710Syntax:
1711"""""""
1712
1713::
1714
1715 [<# elements> x <elementtype>]
1716
1717The number of elements is a constant integer value; ``elementtype`` may
1718be any type with a size.
1719
1720Examples:
1721"""""""""
1722
1723+------------------+--------------------------------------+
1724| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1725+------------------+--------------------------------------+
1726| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1727+------------------+--------------------------------------+
1728| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1729+------------------+--------------------------------------+
1730
1731Here are some examples of multidimensional arrays:
1732
1733+-----------------------------+----------------------------------------------------------+
1734| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1735+-----------------------------+----------------------------------------------------------+
1736| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1737+-----------------------------+----------------------------------------------------------+
1738| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1739+-----------------------------+----------------------------------------------------------+
1740
1741There is no restriction on indexing beyond the end of the array implied
1742by a static type (though there are restrictions on indexing beyond the
1743bounds of an allocated object in some cases). This means that
1744single-dimension 'variable sized array' addressing can be implemented in
1745LLVM with a zero length array type. An implementation of 'pascal style
1746arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1747example.
1748
1749.. _t_function:
1750
1751Function Type
1752^^^^^^^^^^^^^
1753
1754Overview:
1755"""""""""
1756
Bill Wendlinge9d5c482013-10-27 04:19:29 +00001757The function type can be thought of as a function signature. It consists of a
1758return type and a list of formal parameter types. The return type of a function
1759type is a void type or first class type --- except for :ref:`label <t_label>`
1760and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001761
1762Syntax:
1763"""""""
1764
1765::
1766
1767 <returntype> (<parameter list>)
1768
1769...where '``<parameter list>``' is a comma-separated list of type
Bill Wendlinge9d5c482013-10-27 04:19:29 +00001770specifiers. Optionally, the parameter list may include a type ``...``, which
1771indicates that the function takes a variable number of arguments. Variable
1772argument functions can access their arguments with the :ref:`variable argument
1773handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1774except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001775
1776Examples:
1777"""""""""
1778
1779+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1780| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1781+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001782| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvab084af42012-12-07 10:36:55 +00001783+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1784| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1785+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1786| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1787+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1788
1789.. _t_struct:
1790
1791Structure Type
1792^^^^^^^^^^^^^^
1793
1794Overview:
1795"""""""""
1796
1797The structure type is used to represent a collection of data members
1798together in memory. The elements of a structure may be any type that has
1799a size.
1800
1801Structures in memory are accessed using '``load``' and '``store``' by
1802getting a pointer to a field with the '``getelementptr``' instruction.
1803Structures in registers are accessed using the '``extractvalue``' and
1804'``insertvalue``' instructions.
1805
1806Structures may optionally be "packed" structures, which indicate that
1807the alignment of the struct is one byte, and that there is no padding
1808between the elements. In non-packed structs, padding between field types
1809is inserted as defined by the DataLayout string in the module, which is
1810required to match what the underlying code generator expects.
1811
1812Structures can either be "literal" or "identified". A literal structure
1813is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1814identified types are always defined at the top level with a name.
1815Literal types are uniqued by their contents and can never be recursive
1816or opaque since there is no way to write one. Identified types can be
1817recursive, can be opaqued, and are never uniqued.
1818
1819Syntax:
1820"""""""
1821
1822::
1823
1824 %T1 = type { <type list> } ; Identified normal struct type
1825 %T2 = type <{ <type list> }> ; Identified packed struct type
1826
1827Examples:
1828"""""""""
1829
1830+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1831| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1832+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001833| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001834+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1835| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1836+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1837
1838.. _t_opaque:
1839
1840Opaque Structure Types
1841^^^^^^^^^^^^^^^^^^^^^^
1842
1843Overview:
1844"""""""""
1845
1846Opaque structure types are used to represent named structure types that
1847do not have a body specified. This corresponds (for example) to the C
1848notion of a forward declared structure.
1849
1850Syntax:
1851"""""""
1852
1853::
1854
1855 %X = type opaque
1856 %52 = type opaque
1857
1858Examples:
1859"""""""""
1860
1861+--------------+-------------------+
1862| ``opaque`` | An opaque type. |
1863+--------------+-------------------+
1864
1865.. _t_pointer:
1866
1867Pointer Type
1868^^^^^^^^^^^^
1869
1870Overview:
1871"""""""""
1872
1873The pointer type is used to specify memory locations. Pointers are
1874commonly used to reference objects in memory.
1875
1876Pointer types may have an optional address space attribute defining the
1877numbered address space where the pointed-to object resides. The default
1878address space is number zero. The semantics of non-zero address spaces
1879are target-specific.
1880
1881Note that LLVM does not permit pointers to void (``void*``) nor does it
1882permit pointers to labels (``label*``). Use ``i8*`` instead.
1883
1884Syntax:
1885"""""""
1886
1887::
1888
1889 <type> *
1890
1891Examples:
1892"""""""""
1893
1894+-------------------------+--------------------------------------------------------------------------------------------------------------+
1895| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1896+-------------------------+--------------------------------------------------------------------------------------------------------------+
1897| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1898+-------------------------+--------------------------------------------------------------------------------------------------------------+
1899| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1900+-------------------------+--------------------------------------------------------------------------------------------------------------+
1901
1902.. _t_vector:
1903
1904Vector Type
1905^^^^^^^^^^^
1906
1907Overview:
1908"""""""""
1909
1910A vector type is a simple derived type that represents a vector of
1911elements. Vector types are used when multiple primitive data are
1912operated in parallel using a single instruction (SIMD). A vector type
1913requires a size (number of elements) and an underlying primitive data
1914type. Vector types are considered :ref:`first class <t_firstclass>`.
1915
1916Syntax:
1917"""""""
1918
1919::
1920
1921 < <# elements> x <elementtype> >
1922
1923The number of elements is a constant integer value larger than 0;
1924elementtype may be any integer or floating point type, or a pointer to
1925these types. Vectors of size zero are not allowed.
1926
1927Examples:
1928"""""""""
1929
1930+-------------------+--------------------------------------------------+
1931| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1932+-------------------+--------------------------------------------------+
1933| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1934+-------------------+--------------------------------------------------+
1935| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1936+-------------------+--------------------------------------------------+
1937| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1938+-------------------+--------------------------------------------------+
1939
1940Constants
1941=========
1942
1943LLVM has several different basic types of constants. This section
1944describes them all and their syntax.
1945
1946Simple Constants
1947----------------
1948
1949**Boolean constants**
1950 The two strings '``true``' and '``false``' are both valid constants
1951 of the ``i1`` type.
1952**Integer constants**
1953 Standard integers (such as '4') are constants of the
1954 :ref:`integer <t_integer>` type. Negative numbers may be used with
1955 integer types.
1956**Floating point constants**
1957 Floating point constants use standard decimal notation (e.g.
1958 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1959 hexadecimal notation (see below). The assembler requires the exact
1960 decimal value of a floating-point constant. For example, the
1961 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1962 decimal in binary. Floating point constants must have a :ref:`floating
1963 point <t_floating>` type.
1964**Null pointer constants**
1965 The identifier '``null``' is recognized as a null pointer constant
1966 and must be of :ref:`pointer type <t_pointer>`.
1967
1968The one non-intuitive notation for constants is the hexadecimal form of
1969floating point constants. For example, the form
1970'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1971than) '``double 4.5e+15``'. The only time hexadecimal floating point
1972constants are required (and the only time that they are generated by the
1973disassembler) is when a floating point constant must be emitted but it
1974cannot be represented as a decimal floating point number in a reasonable
1975number of digits. For example, NaN's, infinities, and other special
1976values are represented in their IEEE hexadecimal format so that assembly
1977and disassembly do not cause any bits to change in the constants.
1978
1979When using the hexadecimal form, constants of types half, float, and
1980double are represented using the 16-digit form shown above (which
1981matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00001982must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00001983precision, respectively. Hexadecimal format is always used for long
1984double, and there are three forms of long double. The 80-bit format used
1985by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1986128-bit format used by PowerPC (two adjacent doubles) is represented by
1987``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00001988represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1989will only work if they match the long double format on your target.
1990The IEEE 16-bit format (half precision) is represented by ``0xH``
1991followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1992(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00001993
1994There are no constants of type x86mmx.
1995
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001996.. _complexconstants:
1997
Sean Silvab084af42012-12-07 10:36:55 +00001998Complex Constants
1999-----------------
2000
2001Complex constants are a (potentially recursive) combination of simple
2002constants and smaller complex constants.
2003
2004**Structure constants**
2005 Structure constants are represented with notation similar to
2006 structure type definitions (a comma separated list of elements,
2007 surrounded by braces (``{}``)). For example:
2008 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2009 "``@G = external global i32``". Structure constants must have
2010 :ref:`structure type <t_struct>`, and the number and types of elements
2011 must match those specified by the type.
2012**Array constants**
2013 Array constants are represented with notation similar to array type
2014 definitions (a comma separated list of elements, surrounded by
2015 square brackets (``[]``)). For example:
2016 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2017 :ref:`array type <t_array>`, and the number and types of elements must
2018 match those specified by the type.
2019**Vector constants**
2020 Vector constants are represented with notation similar to vector
2021 type definitions (a comma separated list of elements, surrounded by
2022 less-than/greater-than's (``<>``)). For example:
2023 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2024 must have :ref:`vector type <t_vector>`, and the number and types of
2025 elements must match those specified by the type.
2026**Zero initialization**
2027 The string '``zeroinitializer``' can be used to zero initialize a
2028 value to zero of *any* type, including scalar and
2029 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2030 having to print large zero initializers (e.g. for large arrays) and
2031 is always exactly equivalent to using explicit zero initializers.
2032**Metadata node**
2033 A metadata node is a structure-like constant with :ref:`metadata
2034 type <t_metadata>`. For example:
2035 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2036 constants that are meant to be interpreted as part of the
2037 instruction stream, metadata is a place to attach additional
2038 information such as debug info.
2039
2040Global Variable and Function Addresses
2041--------------------------------------
2042
2043The addresses of :ref:`global variables <globalvars>` and
2044:ref:`functions <functionstructure>` are always implicitly valid
2045(link-time) constants. These constants are explicitly referenced when
2046the :ref:`identifier for the global <identifiers>` is used and always have
2047:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2048file:
2049
2050.. code-block:: llvm
2051
2052 @X = global i32 17
2053 @Y = global i32 42
2054 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2055
2056.. _undefvalues:
2057
2058Undefined Values
2059----------------
2060
2061The string '``undef``' can be used anywhere a constant is expected, and
2062indicates that the user of the value may receive an unspecified
2063bit-pattern. Undefined values may be of any type (other than '``label``'
2064or '``void``') and be used anywhere a constant is permitted.
2065
2066Undefined values are useful because they indicate to the compiler that
2067the program is well defined no matter what value is used. This gives the
2068compiler more freedom to optimize. Here are some examples of
2069(potentially surprising) transformations that are valid (in pseudo IR):
2070
2071.. code-block:: llvm
2072
2073 %A = add %X, undef
2074 %B = sub %X, undef
2075 %C = xor %X, undef
2076 Safe:
2077 %A = undef
2078 %B = undef
2079 %C = undef
2080
2081This is safe because all of the output bits are affected by the undef
2082bits. Any output bit can have a zero or one depending on the input bits.
2083
2084.. code-block:: llvm
2085
2086 %A = or %X, undef
2087 %B = and %X, undef
2088 Safe:
2089 %A = -1
2090 %B = 0
2091 Unsafe:
2092 %A = undef
2093 %B = undef
2094
2095These logical operations have bits that are not always affected by the
2096input. For example, if ``%X`` has a zero bit, then the output of the
2097'``and``' operation will always be a zero for that bit, no matter what
2098the corresponding bit from the '``undef``' is. As such, it is unsafe to
2099optimize or assume that the result of the '``and``' is '``undef``'.
2100However, it is safe to assume that all bits of the '``undef``' could be
21010, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2102all the bits of the '``undef``' operand to the '``or``' could be set,
2103allowing the '``or``' to be folded to -1.
2104
2105.. code-block:: llvm
2106
2107 %A = select undef, %X, %Y
2108 %B = select undef, 42, %Y
2109 %C = select %X, %Y, undef
2110 Safe:
2111 %A = %X (or %Y)
2112 %B = 42 (or %Y)
2113 %C = %Y
2114 Unsafe:
2115 %A = undef
2116 %B = undef
2117 %C = undef
2118
2119This set of examples shows that undefined '``select``' (and conditional
2120branch) conditions can go *either way*, but they have to come from one
2121of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2122both known to have a clear low bit, then ``%A`` would have to have a
2123cleared low bit. However, in the ``%C`` example, the optimizer is
2124allowed to assume that the '``undef``' operand could be the same as
2125``%Y``, allowing the whole '``select``' to be eliminated.
2126
2127.. code-block:: llvm
2128
2129 %A = xor undef, undef
2130
2131 %B = undef
2132 %C = xor %B, %B
2133
2134 %D = undef
2135 %E = icmp lt %D, 4
2136 %F = icmp gte %D, 4
2137
2138 Safe:
2139 %A = undef
2140 %B = undef
2141 %C = undef
2142 %D = undef
2143 %E = undef
2144 %F = undef
2145
2146This example points out that two '``undef``' operands are not
2147necessarily the same. This can be surprising to people (and also matches
2148C semantics) where they assume that "``X^X``" is always zero, even if
2149``X`` is undefined. This isn't true for a number of reasons, but the
2150short answer is that an '``undef``' "variable" can arbitrarily change
2151its value over its "live range". This is true because the variable
2152doesn't actually *have a live range*. Instead, the value is logically
2153read from arbitrary registers that happen to be around when needed, so
2154the value is not necessarily consistent over time. In fact, ``%A`` and
2155``%C`` need to have the same semantics or the core LLVM "replace all
2156uses with" concept would not hold.
2157
2158.. code-block:: llvm
2159
2160 %A = fdiv undef, %X
2161 %B = fdiv %X, undef
2162 Safe:
2163 %A = undef
2164 b: unreachable
2165
2166These examples show the crucial difference between an *undefined value*
2167and *undefined behavior*. An undefined value (like '``undef``') is
2168allowed to have an arbitrary bit-pattern. This means that the ``%A``
2169operation can be constant folded to '``undef``', because the '``undef``'
2170could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2171However, in the second example, we can make a more aggressive
2172assumption: because the ``undef`` is allowed to be an arbitrary value,
2173we are allowed to assume that it could be zero. Since a divide by zero
2174has *undefined behavior*, we are allowed to assume that the operation
2175does not execute at all. This allows us to delete the divide and all
2176code after it. Because the undefined operation "can't happen", the
2177optimizer can assume that it occurs in dead code.
2178
2179.. code-block:: llvm
2180
2181 a: store undef -> %X
2182 b: store %X -> undef
2183 Safe:
2184 a: <deleted>
2185 b: unreachable
2186
2187These examples reiterate the ``fdiv`` example: a store *of* an undefined
2188value can be assumed to not have any effect; we can assume that the
2189value is overwritten with bits that happen to match what was already
2190there. However, a store *to* an undefined location could clobber
2191arbitrary memory, therefore, it has undefined behavior.
2192
2193.. _poisonvalues:
2194
2195Poison Values
2196-------------
2197
2198Poison values are similar to :ref:`undef values <undefvalues>`, however
2199they also represent the fact that an instruction or constant expression
2200which cannot evoke side effects has nevertheless detected a condition
2201which results in undefined behavior.
2202
2203There is currently no way of representing a poison value in the IR; they
2204only exist when produced by operations such as :ref:`add <i_add>` with
2205the ``nsw`` flag.
2206
2207Poison value behavior is defined in terms of value *dependence*:
2208
2209- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2210- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2211 their dynamic predecessor basic block.
2212- Function arguments depend on the corresponding actual argument values
2213 in the dynamic callers of their functions.
2214- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2215 instructions that dynamically transfer control back to them.
2216- :ref:`Invoke <i_invoke>` instructions depend on the
2217 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2218 call instructions that dynamically transfer control back to them.
2219- Non-volatile loads and stores depend on the most recent stores to all
2220 of the referenced memory addresses, following the order in the IR
2221 (including loads and stores implied by intrinsics such as
2222 :ref:`@llvm.memcpy <int_memcpy>`.)
2223- An instruction with externally visible side effects depends on the
2224 most recent preceding instruction with externally visible side
2225 effects, following the order in the IR. (This includes :ref:`volatile
2226 operations <volatile>`.)
2227- An instruction *control-depends* on a :ref:`terminator
2228 instruction <terminators>` if the terminator instruction has
2229 multiple successors and the instruction is always executed when
2230 control transfers to one of the successors, and may not be executed
2231 when control is transferred to another.
2232- Additionally, an instruction also *control-depends* on a terminator
2233 instruction if the set of instructions it otherwise depends on would
2234 be different if the terminator had transferred control to a different
2235 successor.
2236- Dependence is transitive.
2237
2238Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2239with the additional affect that any instruction which has a *dependence*
2240on a poison value has undefined behavior.
2241
2242Here are some examples:
2243
2244.. code-block:: llvm
2245
2246 entry:
2247 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2248 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2249 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2250 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2251
2252 store i32 %poison, i32* @g ; Poison value stored to memory.
2253 %poison2 = load i32* @g ; Poison value loaded back from memory.
2254
2255 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2256
2257 %narrowaddr = bitcast i32* @g to i16*
2258 %wideaddr = bitcast i32* @g to i64*
2259 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2260 %poison4 = load i64* %wideaddr ; Returns a poison value.
2261
2262 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2263 br i1 %cmp, label %true, label %end ; Branch to either destination.
2264
2265 true:
2266 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2267 ; it has undefined behavior.
2268 br label %end
2269
2270 end:
2271 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2272 ; Both edges into this PHI are
2273 ; control-dependent on %cmp, so this
2274 ; always results in a poison value.
2275
2276 store volatile i32 0, i32* @g ; This would depend on the store in %true
2277 ; if %cmp is true, or the store in %entry
2278 ; otherwise, so this is undefined behavior.
2279
2280 br i1 %cmp, label %second_true, label %second_end
2281 ; The same branch again, but this time the
2282 ; true block doesn't have side effects.
2283
2284 second_true:
2285 ; No side effects!
2286 ret void
2287
2288 second_end:
2289 store volatile i32 0, i32* @g ; This time, the instruction always depends
2290 ; on the store in %end. Also, it is
2291 ; control-equivalent to %end, so this is
2292 ; well-defined (ignoring earlier undefined
2293 ; behavior in this example).
2294
2295.. _blockaddress:
2296
2297Addresses of Basic Blocks
2298-------------------------
2299
2300``blockaddress(@function, %block)``
2301
2302The '``blockaddress``' constant computes the address of the specified
2303basic block in the specified function, and always has an ``i8*`` type.
2304Taking the address of the entry block is illegal.
2305
2306This value only has defined behavior when used as an operand to the
2307':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2308against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002309undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002310no label is equal to the null pointer. This may be passed around as an
2311opaque pointer sized value as long as the bits are not inspected. This
2312allows ``ptrtoint`` and arithmetic to be performed on these values so
2313long as the original value is reconstituted before the ``indirectbr``
2314instruction.
2315
2316Finally, some targets may provide defined semantics when using the value
2317as the operand to an inline assembly, but that is target specific.
2318
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002319.. _constantexprs:
2320
Sean Silvab084af42012-12-07 10:36:55 +00002321Constant Expressions
2322--------------------
2323
2324Constant expressions are used to allow expressions involving other
2325constants to be used as constants. Constant expressions may be of any
2326:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2327that does not have side effects (e.g. load and call are not supported).
2328The following is the syntax for constant expressions:
2329
2330``trunc (CST to TYPE)``
2331 Truncate a constant to another type. The bit size of CST must be
2332 larger than the bit size of TYPE. Both types must be integers.
2333``zext (CST to TYPE)``
2334 Zero extend a constant to another type. The bit size of CST must be
2335 smaller than the bit size of TYPE. Both types must be integers.
2336``sext (CST to TYPE)``
2337 Sign extend a constant to another type. The bit size of CST must be
2338 smaller than the bit size of TYPE. Both types must be integers.
2339``fptrunc (CST to TYPE)``
2340 Truncate a floating point constant to another floating point type.
2341 The size of CST must be larger than the size of TYPE. Both types
2342 must be floating point.
2343``fpext (CST to TYPE)``
2344 Floating point extend a constant to another type. The size of CST
2345 must be smaller or equal to the size of TYPE. Both types must be
2346 floating point.
2347``fptoui (CST to TYPE)``
2348 Convert a floating point constant to the corresponding unsigned
2349 integer constant. TYPE must be a scalar or vector integer type. CST
2350 must be of scalar or vector floating point type. Both CST and TYPE
2351 must be scalars, or vectors of the same number of elements. If the
2352 value won't fit in the integer type, the results are undefined.
2353``fptosi (CST to TYPE)``
2354 Convert a floating point constant to the corresponding signed
2355 integer constant. TYPE must be a scalar or vector integer type. CST
2356 must be of scalar or vector floating point type. Both CST and TYPE
2357 must be scalars, or vectors of the same number of elements. If the
2358 value won't fit in the integer type, the results are undefined.
2359``uitofp (CST to TYPE)``
2360 Convert an unsigned integer constant to the corresponding floating
2361 point constant. TYPE must be a scalar or vector floating point type.
2362 CST must be of scalar or vector integer type. Both CST and TYPE must
2363 be scalars, or vectors of the same number of elements. If the value
2364 won't fit in the floating point type, the results are undefined.
2365``sitofp (CST to TYPE)``
2366 Convert a signed integer constant to the corresponding floating
2367 point constant. TYPE must be a scalar or vector floating point type.
2368 CST must be of scalar or vector integer type. Both CST and TYPE must
2369 be scalars, or vectors of the same number of elements. If the value
2370 won't fit in the floating point type, the results are undefined.
2371``ptrtoint (CST to TYPE)``
2372 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002373 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002374 pointer type. The ``CST`` value is zero extended, truncated, or
2375 unchanged to make it fit in ``TYPE``.
2376``inttoptr (CST to TYPE)``
2377 Convert an integer constant to a pointer constant. TYPE must be a
2378 pointer type. CST must be of integer type. The CST value is zero
2379 extended, truncated, or unchanged to make it fit in a pointer size.
2380 This one is *really* dangerous!
2381``bitcast (CST to TYPE)``
2382 Convert a constant, CST, to another TYPE. The constraints of the
2383 operands are the same as those for the :ref:`bitcast
2384 instruction <i_bitcast>`.
2385``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2386 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2387 constants. As with the :ref:`getelementptr <i_getelementptr>`
2388 instruction, the index list may have zero or more indexes, which are
2389 required to make sense for the type of "CSTPTR".
2390``select (COND, VAL1, VAL2)``
2391 Perform the :ref:`select operation <i_select>` on constants.
2392``icmp COND (VAL1, VAL2)``
2393 Performs the :ref:`icmp operation <i_icmp>` on constants.
2394``fcmp COND (VAL1, VAL2)``
2395 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2396``extractelement (VAL, IDX)``
2397 Perform the :ref:`extractelement operation <i_extractelement>` on
2398 constants.
2399``insertelement (VAL, ELT, IDX)``
2400 Perform the :ref:`insertelement operation <i_insertelement>` on
2401 constants.
2402``shufflevector (VEC1, VEC2, IDXMASK)``
2403 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2404 constants.
2405``extractvalue (VAL, IDX0, IDX1, ...)``
2406 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2407 constants. The index list is interpreted in a similar manner as
2408 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2409 least one index value must be specified.
2410``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2411 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2412 The index list is interpreted in a similar manner as indices in a
2413 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2414 value must be specified.
2415``OPCODE (LHS, RHS)``
2416 Perform the specified operation of the LHS and RHS constants. OPCODE
2417 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2418 binary <bitwiseops>` operations. The constraints on operands are
2419 the same as those for the corresponding instruction (e.g. no bitwise
2420 operations on floating point values are allowed).
2421
2422Other Values
2423============
2424
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002425.. _inlineasmexprs:
2426
Sean Silvab084af42012-12-07 10:36:55 +00002427Inline Assembler Expressions
2428----------------------------
2429
2430LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2431Inline Assembly <moduleasm>`) through the use of a special value. This
2432value represents the inline assembler as a string (containing the
2433instructions to emit), a list of operand constraints (stored as a
2434string), a flag that indicates whether or not the inline asm expression
2435has side effects, and a flag indicating whether the function containing
2436the asm needs to align its stack conservatively. An example inline
2437assembler expression is:
2438
2439.. code-block:: llvm
2440
2441 i32 (i32) asm "bswap $0", "=r,r"
2442
2443Inline assembler expressions may **only** be used as the callee operand
2444of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2445Thus, typically we have:
2446
2447.. code-block:: llvm
2448
2449 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2450
2451Inline asms with side effects not visible in the constraint list must be
2452marked as having side effects. This is done through the use of the
2453'``sideeffect``' keyword, like so:
2454
2455.. code-block:: llvm
2456
2457 call void asm sideeffect "eieio", ""()
2458
2459In some cases inline asms will contain code that will not work unless
2460the stack is aligned in some way, such as calls or SSE instructions on
2461x86, yet will not contain code that does that alignment within the asm.
2462The compiler should make conservative assumptions about what the asm
2463might contain and should generate its usual stack alignment code in the
2464prologue if the '``alignstack``' keyword is present:
2465
2466.. code-block:: llvm
2467
2468 call void asm alignstack "eieio", ""()
2469
2470Inline asms also support using non-standard assembly dialects. The
2471assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2472the inline asm is using the Intel dialect. Currently, ATT and Intel are
2473the only supported dialects. An example is:
2474
2475.. code-block:: llvm
2476
2477 call void asm inteldialect "eieio", ""()
2478
2479If multiple keywords appear the '``sideeffect``' keyword must come
2480first, the '``alignstack``' keyword second and the '``inteldialect``'
2481keyword last.
2482
2483Inline Asm Metadata
2484^^^^^^^^^^^^^^^^^^^
2485
2486The call instructions that wrap inline asm nodes may have a
2487"``!srcloc``" MDNode attached to it that contains a list of constant
2488integers. If present, the code generator will use the integer as the
2489location cookie value when report errors through the ``LLVMContext``
2490error reporting mechanisms. This allows a front-end to correlate backend
2491errors that occur with inline asm back to the source code that produced
2492it. For example:
2493
2494.. code-block:: llvm
2495
2496 call void asm sideeffect "something bad", ""(), !srcloc !42
2497 ...
2498 !42 = !{ i32 1234567 }
2499
2500It is up to the front-end to make sense of the magic numbers it places
2501in the IR. If the MDNode contains multiple constants, the code generator
2502will use the one that corresponds to the line of the asm that the error
2503occurs on.
2504
2505.. _metadata:
2506
2507Metadata Nodes and Metadata Strings
2508-----------------------------------
2509
2510LLVM IR allows metadata to be attached to instructions in the program
2511that can convey extra information about the code to the optimizers and
2512code generator. One example application of metadata is source-level
2513debug information. There are two metadata primitives: strings and nodes.
2514All metadata has the ``metadata`` type and is identified in syntax by a
2515preceding exclamation point ('``!``').
2516
2517A metadata string is a string surrounded by double quotes. It can
2518contain any character by escaping non-printable characters with
2519"``\xx``" where "``xx``" is the two digit hex code. For example:
2520"``!"test\00"``".
2521
2522Metadata nodes are represented with notation similar to structure
2523constants (a comma separated list of elements, surrounded by braces and
2524preceded by an exclamation point). Metadata nodes can have any values as
2525their operand. For example:
2526
2527.. code-block:: llvm
2528
2529 !{ metadata !"test\00", i32 10}
2530
2531A :ref:`named metadata <namedmetadatastructure>` is a collection of
2532metadata nodes, which can be looked up in the module symbol table. For
2533example:
2534
2535.. code-block:: llvm
2536
2537 !foo = metadata !{!4, !3}
2538
2539Metadata can be used as function arguments. Here ``llvm.dbg.value``
2540function is using two metadata arguments:
2541
2542.. code-block:: llvm
2543
2544 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2545
2546Metadata can be attached with an instruction. Here metadata ``!21`` is
2547attached to the ``add`` instruction using the ``!dbg`` identifier:
2548
2549.. code-block:: llvm
2550
2551 %indvar.next = add i64 %indvar, 1, !dbg !21
2552
2553More information about specific metadata nodes recognized by the
2554optimizers and code generator is found below.
2555
2556'``tbaa``' Metadata
2557^^^^^^^^^^^^^^^^^^^
2558
2559In LLVM IR, memory does not have types, so LLVM's own type system is not
2560suitable for doing TBAA. Instead, metadata is added to the IR to
2561describe a type system of a higher level language. This can be used to
2562implement typical C/C++ TBAA, but it can also be used to implement
2563custom alias analysis behavior for other languages.
2564
2565The current metadata format is very simple. TBAA metadata nodes have up
2566to three fields, e.g.:
2567
2568.. code-block:: llvm
2569
2570 !0 = metadata !{ metadata !"an example type tree" }
2571 !1 = metadata !{ metadata !"int", metadata !0 }
2572 !2 = metadata !{ metadata !"float", metadata !0 }
2573 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2574
2575The first field is an identity field. It can be any value, usually a
2576metadata string, which uniquely identifies the type. The most important
2577name in the tree is the name of the root node. Two trees with different
2578root node names are entirely disjoint, even if they have leaves with
2579common names.
2580
2581The second field identifies the type's parent node in the tree, or is
2582null or omitted for a root node. A type is considered to alias all of
2583its descendants and all of its ancestors in the tree. Also, a type is
2584considered to alias all types in other trees, so that bitcode produced
2585from multiple front-ends is handled conservatively.
2586
2587If the third field is present, it's an integer which if equal to 1
2588indicates that the type is "constant" (meaning
2589``pointsToConstantMemory`` should return true; see `other useful
2590AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2591
2592'``tbaa.struct``' Metadata
2593^^^^^^^^^^^^^^^^^^^^^^^^^^
2594
2595The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2596aggregate assignment operations in C and similar languages, however it
2597is defined to copy a contiguous region of memory, which is more than
2598strictly necessary for aggregate types which contain holes due to
2599padding. Also, it doesn't contain any TBAA information about the fields
2600of the aggregate.
2601
2602``!tbaa.struct`` metadata can describe which memory subregions in a
2603memcpy are padding and what the TBAA tags of the struct are.
2604
2605The current metadata format is very simple. ``!tbaa.struct`` metadata
2606nodes are a list of operands which are in conceptual groups of three.
2607For each group of three, the first operand gives the byte offset of a
2608field in bytes, the second gives its size in bytes, and the third gives
2609its tbaa tag. e.g.:
2610
2611.. code-block:: llvm
2612
2613 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2614
2615This describes a struct with two fields. The first is at offset 0 bytes
2616with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2617and has size 4 bytes and has tbaa tag !2.
2618
2619Note that the fields need not be contiguous. In this example, there is a
26204 byte gap between the two fields. This gap represents padding which
2621does not carry useful data and need not be preserved.
2622
2623'``fpmath``' Metadata
2624^^^^^^^^^^^^^^^^^^^^^
2625
2626``fpmath`` metadata may be attached to any instruction of floating point
2627type. It can be used to express the maximum acceptable error in the
2628result of that instruction, in ULPs, thus potentially allowing the
2629compiler to use a more efficient but less accurate method of computing
2630it. ULP is defined as follows:
2631
2632 If ``x`` is a real number that lies between two finite consecutive
2633 floating-point numbers ``a`` and ``b``, without being equal to one
2634 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2635 distance between the two non-equal finite floating-point numbers
2636 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2637
2638The metadata node shall consist of a single positive floating point
2639number representing the maximum relative error, for example:
2640
2641.. code-block:: llvm
2642
2643 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2644
2645'``range``' Metadata
2646^^^^^^^^^^^^^^^^^^^^
2647
2648``range`` metadata may be attached only to loads of integer types. It
2649expresses the possible ranges the loaded value is in. The ranges are
2650represented with a flattened list of integers. The loaded value is known
2651to be in the union of the ranges defined by each consecutive pair. Each
2652pair has the following properties:
2653
2654- The type must match the type loaded by the instruction.
2655- The pair ``a,b`` represents the range ``[a,b)``.
2656- Both ``a`` and ``b`` are constants.
2657- The range is allowed to wrap.
2658- The range should not represent the full or empty set. That is,
2659 ``a!=b``.
2660
2661In addition, the pairs must be in signed order of the lower bound and
2662they must be non-contiguous.
2663
2664Examples:
2665
2666.. code-block:: llvm
2667
2668 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2669 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2670 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2671 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2672 ...
2673 !0 = metadata !{ i8 0, i8 2 }
2674 !1 = metadata !{ i8 255, i8 2 }
2675 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2676 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2677
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002678'``llvm.loop``'
2679^^^^^^^^^^^^^^^
2680
2681It is sometimes useful to attach information to loop constructs. Currently,
2682loop metadata is implemented as metadata attached to the branch instruction
2683in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002684guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002685specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002686
2687The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002688itself to avoid merging it with any other identifier metadata, e.g.,
2689during module linkage or function inlining. That is, each loop should refer
2690to their own identification metadata even if they reside in separate functions.
2691The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002692constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002693
2694.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002695
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002696 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002697 !1 = metadata !{ metadata !1 }
2698
Paul Redmond5fdf8362013-05-28 20:00:34 +00002699The loop identifier metadata can be used to specify additional per-loop
2700metadata. Any operands after the first operand can be treated as user-defined
2701metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2702by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002703
Paul Redmond5fdf8362013-05-28 20:00:34 +00002704.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002705
Paul Redmond5fdf8362013-05-28 20:00:34 +00002706 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2707 ...
2708 !0 = metadata !{ metadata !0, metadata !1 }
2709 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002710
2711'``llvm.mem``'
2712^^^^^^^^^^^^^^^
2713
2714Metadata types used to annotate memory accesses with information helpful
2715for optimizations are prefixed with ``llvm.mem``.
2716
2717'``llvm.mem.parallel_loop_access``' Metadata
2718^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2719
2720For a loop to be parallel, in addition to using
Paul Redmond5fdf8362013-05-28 20:00:34 +00002721the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002722also all of the memory accessing instructions in the loop body need to be
2723marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2724is at least one memory accessing instruction not marked with the metadata,
Paul Redmond5fdf8362013-05-28 20:00:34 +00002725the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002726converted to sequential loops due to optimization passes that are unaware of
2727the parallel semantics and that insert new memory instructions to the loop
2728body.
2729
2730Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002731both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002732metadata types that refer to the same loop identifier metadata.
2733
2734.. code-block:: llvm
2735
2736 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002737 ...
2738 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2739 ...
2740 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2741 ...
2742 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002743
2744 for.end:
2745 ...
2746 !0 = metadata !{ metadata !0 }
2747
2748It is also possible to have nested parallel loops. In that case the
2749memory accesses refer to a list of loop identifier metadata nodes instead of
2750the loop identifier metadata node directly:
2751
2752.. code-block:: llvm
2753
2754 outer.for.body:
2755 ...
2756
2757 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002758 ...
2759 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2760 ...
2761 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2762 ...
2763 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002764
2765 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002766 ...
2767 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2768 ...
2769 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2770 ...
2771 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002772
2773 outer.for.end: ; preds = %for.body
2774 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002775 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2776 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2777 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002778
Paul Redmond5fdf8362013-05-28 20:00:34 +00002779'``llvm.vectorizer``'
2780^^^^^^^^^^^^^^^^^^^^^
2781
2782Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2783vectorization parameters such as vectorization factor and unroll factor.
2784
2785``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2786loop identification metadata.
2787
2788'``llvm.vectorizer.unroll``' Metadata
2789^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2790
2791This metadata instructs the loop vectorizer to unroll the specified
2792loop exactly ``N`` times.
2793
2794The first operand is the string ``llvm.vectorizer.unroll`` and the second
2795operand is an integer specifying the unroll factor. For example:
2796
2797.. code-block:: llvm
2798
2799 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2800
2801Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2802loop.
2803
2804If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2805determined automatically.
2806
2807'``llvm.vectorizer.width``' Metadata
2808^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2809
Paul Redmondeccbb322013-05-30 17:22:46 +00002810This metadata sets the target width of the vectorizer to ``N``. Without
2811this metadata, the vectorizer will choose a width automatically.
2812Regardless of this metadata, the vectorizer will only vectorize loops if
2813it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002814
2815The first operand is the string ``llvm.vectorizer.width`` and the second
2816operand is an integer specifying the width. For example:
2817
2818.. code-block:: llvm
2819
2820 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2821
2822Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2823loop.
2824
2825If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2826automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002827
Sean Silvab084af42012-12-07 10:36:55 +00002828Module Flags Metadata
2829=====================
2830
2831Information about the module as a whole is difficult to convey to LLVM's
2832subsystems. The LLVM IR isn't sufficient to transmit this information.
2833The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002834this. These flags are in the form of key / value pairs --- much like a
2835dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002836look it up.
2837
2838The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2839Each triplet has the following form:
2840
2841- The first element is a *behavior* flag, which specifies the behavior
2842 when two (or more) modules are merged together, and it encounters two
2843 (or more) metadata with the same ID. The supported behaviors are
2844 described below.
2845- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002846 metadata. Each module may only have one flag entry for each unique ID (not
2847 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002848- The third element is the value of the flag.
2849
2850When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002851``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2852each unique metadata ID string, there will be exactly one entry in the merged
2853modules ``llvm.module.flags`` metadata table, and the value for that entry will
2854be determined by the merge behavior flag, as described below. The only exception
2855is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002856
2857The following behaviors are supported:
2858
2859.. list-table::
2860 :header-rows: 1
2861 :widths: 10 90
2862
2863 * - Value
2864 - Behavior
2865
2866 * - 1
2867 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002868 Emits an error if two values disagree, otherwise the resulting value
2869 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002870
2871 * - 2
2872 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002873 Emits a warning if two values disagree. The result value will be the
2874 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002875
2876 * - 3
2877 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002878 Adds a requirement that another module flag be present and have a
2879 specified value after linking is performed. The value must be a
2880 metadata pair, where the first element of the pair is the ID of the
2881 module flag to be restricted, and the second element of the pair is
2882 the value the module flag should be restricted to. This behavior can
2883 be used to restrict the allowable results (via triggering of an
2884 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002885
2886 * - 4
2887 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002888 Uses the specified value, regardless of the behavior or value of the
2889 other module. If both modules specify **Override**, but the values
2890 differ, an error will be emitted.
2891
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002892 * - 5
2893 - **Append**
2894 Appends the two values, which are required to be metadata nodes.
2895
2896 * - 6
2897 - **AppendUnique**
2898 Appends the two values, which are required to be metadata
2899 nodes. However, duplicate entries in the second list are dropped
2900 during the append operation.
2901
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002902It is an error for a particular unique flag ID to have multiple behaviors,
2903except in the case of **Require** (which adds restrictions on another metadata
2904value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002905
2906An example of module flags:
2907
2908.. code-block:: llvm
2909
2910 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2911 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2912 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2913 !3 = metadata !{ i32 3, metadata !"qux",
2914 metadata !{
2915 metadata !"foo", i32 1
2916 }
2917 }
2918 !llvm.module.flags = !{ !0, !1, !2, !3 }
2919
2920- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2921 if two or more ``!"foo"`` flags are seen is to emit an error if their
2922 values are not equal.
2923
2924- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2925 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002926 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002927
2928- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2929 behavior if two or more ``!"qux"`` flags are seen is to emit a
2930 warning if their values are not equal.
2931
2932- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2933
2934 ::
2935
2936 metadata !{ metadata !"foo", i32 1 }
2937
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002938 The behavior is to emit an error if the ``llvm.module.flags`` does not
2939 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2940 performed.
Sean Silvab084af42012-12-07 10:36:55 +00002941
2942Objective-C Garbage Collection Module Flags Metadata
2943----------------------------------------------------
2944
2945On the Mach-O platform, Objective-C stores metadata about garbage
2946collection in a special section called "image info". The metadata
2947consists of a version number and a bitmask specifying what types of
2948garbage collection are supported (if any) by the file. If two or more
2949modules are linked together their garbage collection metadata needs to
2950be merged rather than appended together.
2951
2952The Objective-C garbage collection module flags metadata consists of the
2953following key-value pairs:
2954
2955.. list-table::
2956 :header-rows: 1
2957 :widths: 30 70
2958
2959 * - Key
2960 - Value
2961
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002962 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002963 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00002964
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002965 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002966 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00002967 always 0.
2968
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002969 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002970 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00002971 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2972 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2973 Objective-C ABI version 2.
2974
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002975 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002976 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00002977 not. Valid values are 0, for no garbage collection, and 2, for garbage
2978 collection supported.
2979
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002980 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002981 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00002982 If present, its value must be 6. This flag requires that the
2983 ``Objective-C Garbage Collection`` flag have the value 2.
2984
2985Some important flag interactions:
2986
2987- If a module with ``Objective-C Garbage Collection`` set to 0 is
2988 merged with a module with ``Objective-C Garbage Collection`` set to
2989 2, then the resulting module has the
2990 ``Objective-C Garbage Collection`` flag set to 0.
2991- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2992 merged with a module with ``Objective-C GC Only`` set to 6.
2993
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002994Automatic Linker Flags Module Flags Metadata
2995--------------------------------------------
2996
2997Some targets support embedding flags to the linker inside individual object
2998files. Typically this is used in conjunction with language extensions which
2999allow source files to explicitly declare the libraries they depend on, and have
3000these automatically be transmitted to the linker via object files.
3001
3002These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003003using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003004to be ``AppendUnique``, and the value for the key is expected to be a metadata
3005node which should be a list of other metadata nodes, each of which should be a
3006list of metadata strings defining linker options.
3007
3008For example, the following metadata section specifies two separate sets of
3009linker options, presumably to link against ``libz`` and the ``Cocoa``
3010framework::
3011
Michael Liaoa7699082013-03-06 18:24:34 +00003012 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003013 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003014 metadata !{ metadata !"-lz" },
3015 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003016 !llvm.module.flags = !{ !0 }
3017
3018The metadata encoding as lists of lists of options, as opposed to a collapsed
3019list of options, is chosen so that the IR encoding can use multiple option
3020strings to specify e.g., a single library, while still having that specifier be
3021preserved as an atomic element that can be recognized by a target specific
3022assembly writer or object file emitter.
3023
3024Each individual option is required to be either a valid option for the target's
3025linker, or an option that is reserved by the target specific assembly writer or
3026object file emitter. No other aspect of these options is defined by the IR.
3027
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003028.. _intrinsicglobalvariables:
3029
Sean Silvab084af42012-12-07 10:36:55 +00003030Intrinsic Global Variables
3031==========================
3032
3033LLVM has a number of "magic" global variables that contain data that
3034affect code generation or other IR semantics. These are documented here.
3035All globals of this sort should have a section specified as
3036"``llvm.metadata``". This section and all globals that start with
3037"``llvm.``" are reserved for use by LLVM.
3038
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003039.. _gv_llvmused:
3040
Sean Silvab084af42012-12-07 10:36:55 +00003041The '``llvm.used``' Global Variable
3042-----------------------------------
3043
Rafael Espindola74f2e462013-04-22 14:58:02 +00003044The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003045:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003046pointers to named global variables, functions and aliases which may optionally
3047have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003048use of it is:
3049
3050.. code-block:: llvm
3051
3052 @X = global i8 4
3053 @Y = global i32 123
3054
3055 @llvm.used = appending global [2 x i8*] [
3056 i8* @X,
3057 i8* bitcast (i32* @Y to i8*)
3058 ], section "llvm.metadata"
3059
Rafael Espindola74f2e462013-04-22 14:58:02 +00003060If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3061and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003062symbol that it cannot see (which is why they have to be named). For example, if
3063a variable has internal linkage and no references other than that from the
3064``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3065references from inline asms and other things the compiler cannot "see", and
3066corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003067
3068On some targets, the code generator must emit a directive to the
3069assembler or object file to prevent the assembler and linker from
3070molesting the symbol.
3071
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003072.. _gv_llvmcompilerused:
3073
Sean Silvab084af42012-12-07 10:36:55 +00003074The '``llvm.compiler.used``' Global Variable
3075--------------------------------------------
3076
3077The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3078directive, except that it only prevents the compiler from touching the
3079symbol. On targets that support it, this allows an intelligent linker to
3080optimize references to the symbol without being impeded as it would be
3081by ``@llvm.used``.
3082
3083This is a rare construct that should only be used in rare circumstances,
3084and should not be exposed to source languages.
3085
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003086.. _gv_llvmglobalctors:
3087
Sean Silvab084af42012-12-07 10:36:55 +00003088The '``llvm.global_ctors``' Global Variable
3089-------------------------------------------
3090
3091.. code-block:: llvm
3092
3093 %0 = type { i32, void ()* }
3094 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3095
3096The ``@llvm.global_ctors`` array contains a list of constructor
3097functions and associated priorities. The functions referenced by this
3098array will be called in ascending order of priority (i.e. lowest first)
3099when the module is loaded. The order of functions with the same priority
3100is not defined.
3101
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003102.. _llvmglobaldtors:
3103
Sean Silvab084af42012-12-07 10:36:55 +00003104The '``llvm.global_dtors``' Global Variable
3105-------------------------------------------
3106
3107.. code-block:: llvm
3108
3109 %0 = type { i32, void ()* }
3110 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3111
3112The ``@llvm.global_dtors`` array contains a list of destructor functions
3113and associated priorities. The functions referenced by this array will
3114be called in descending order of priority (i.e. highest first) when the
3115module is loaded. The order of functions with the same priority is not
3116defined.
3117
3118Instruction Reference
3119=====================
3120
3121The LLVM instruction set consists of several different classifications
3122of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3123instructions <binaryops>`, :ref:`bitwise binary
3124instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3125:ref:`other instructions <otherops>`.
3126
3127.. _terminators:
3128
3129Terminator Instructions
3130-----------------------
3131
3132As mentioned :ref:`previously <functionstructure>`, every basic block in a
3133program ends with a "Terminator" instruction, which indicates which
3134block should be executed after the current block is finished. These
3135terminator instructions typically yield a '``void``' value: they produce
3136control flow, not values (the one exception being the
3137':ref:`invoke <i_invoke>`' instruction).
3138
3139The terminator instructions are: ':ref:`ret <i_ret>`',
3140':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3141':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3142':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3143
3144.. _i_ret:
3145
3146'``ret``' Instruction
3147^^^^^^^^^^^^^^^^^^^^^
3148
3149Syntax:
3150"""""""
3151
3152::
3153
3154 ret <type> <value> ; Return a value from a non-void function
3155 ret void ; Return from void function
3156
3157Overview:
3158"""""""""
3159
3160The '``ret``' instruction is used to return control flow (and optionally
3161a value) from a function back to the caller.
3162
3163There are two forms of the '``ret``' instruction: one that returns a
3164value and then causes control flow, and one that just causes control
3165flow to occur.
3166
3167Arguments:
3168""""""""""
3169
3170The '``ret``' instruction optionally accepts a single argument, the
3171return value. The type of the return value must be a ':ref:`first
3172class <t_firstclass>`' type.
3173
3174A function is not :ref:`well formed <wellformed>` if it it has a non-void
3175return type and contains a '``ret``' instruction with no return value or
3176a return value with a type that does not match its type, or if it has a
3177void return type and contains a '``ret``' instruction with a return
3178value.
3179
3180Semantics:
3181""""""""""
3182
3183When the '``ret``' instruction is executed, control flow returns back to
3184the calling function's context. If the caller is a
3185":ref:`call <i_call>`" instruction, execution continues at the
3186instruction after the call. If the caller was an
3187":ref:`invoke <i_invoke>`" instruction, execution continues at the
3188beginning of the "normal" destination block. If the instruction returns
3189a value, that value shall set the call or invoke instruction's return
3190value.
3191
3192Example:
3193""""""""
3194
3195.. code-block:: llvm
3196
3197 ret i32 5 ; Return an integer value of 5
3198 ret void ; Return from a void function
3199 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3200
3201.. _i_br:
3202
3203'``br``' Instruction
3204^^^^^^^^^^^^^^^^^^^^
3205
3206Syntax:
3207"""""""
3208
3209::
3210
3211 br i1 <cond>, label <iftrue>, label <iffalse>
3212 br label <dest> ; Unconditional branch
3213
3214Overview:
3215"""""""""
3216
3217The '``br``' instruction is used to cause control flow to transfer to a
3218different basic block in the current function. There are two forms of
3219this instruction, corresponding to a conditional branch and an
3220unconditional branch.
3221
3222Arguments:
3223""""""""""
3224
3225The conditional branch form of the '``br``' instruction takes a single
3226'``i1``' value and two '``label``' values. The unconditional form of the
3227'``br``' instruction takes a single '``label``' value as a target.
3228
3229Semantics:
3230""""""""""
3231
3232Upon execution of a conditional '``br``' instruction, the '``i1``'
3233argument is evaluated. If the value is ``true``, control flows to the
3234'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3235to the '``iffalse``' ``label`` argument.
3236
3237Example:
3238""""""""
3239
3240.. code-block:: llvm
3241
3242 Test:
3243 %cond = icmp eq i32 %a, %b
3244 br i1 %cond, label %IfEqual, label %IfUnequal
3245 IfEqual:
3246 ret i32 1
3247 IfUnequal:
3248 ret i32 0
3249
3250.. _i_switch:
3251
3252'``switch``' Instruction
3253^^^^^^^^^^^^^^^^^^^^^^^^
3254
3255Syntax:
3256"""""""
3257
3258::
3259
3260 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3261
3262Overview:
3263"""""""""
3264
3265The '``switch``' instruction is used to transfer control flow to one of
3266several different places. It is a generalization of the '``br``'
3267instruction, allowing a branch to occur to one of many possible
3268destinations.
3269
3270Arguments:
3271""""""""""
3272
3273The '``switch``' instruction uses three parameters: an integer
3274comparison value '``value``', a default '``label``' destination, and an
3275array of pairs of comparison value constants and '``label``'s. The table
3276is not allowed to contain duplicate constant entries.
3277
3278Semantics:
3279""""""""""
3280
3281The ``switch`` instruction specifies a table of values and destinations.
3282When the '``switch``' instruction is executed, this table is searched
3283for the given value. If the value is found, control flow is transferred
3284to the corresponding destination; otherwise, control flow is transferred
3285to the default destination.
3286
3287Implementation:
3288"""""""""""""""
3289
3290Depending on properties of the target machine and the particular
3291``switch`` instruction, this instruction may be code generated in
3292different ways. For example, it could be generated as a series of
3293chained conditional branches or with a lookup table.
3294
3295Example:
3296""""""""
3297
3298.. code-block:: llvm
3299
3300 ; Emulate a conditional br instruction
3301 %Val = zext i1 %value to i32
3302 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3303
3304 ; Emulate an unconditional br instruction
3305 switch i32 0, label %dest [ ]
3306
3307 ; Implement a jump table:
3308 switch i32 %val, label %otherwise [ i32 0, label %onzero
3309 i32 1, label %onone
3310 i32 2, label %ontwo ]
3311
3312.. _i_indirectbr:
3313
3314'``indirectbr``' Instruction
3315^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3316
3317Syntax:
3318"""""""
3319
3320::
3321
3322 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3323
3324Overview:
3325"""""""""
3326
3327The '``indirectbr``' instruction implements an indirect branch to a
3328label within the current function, whose address is specified by
3329"``address``". Address must be derived from a
3330:ref:`blockaddress <blockaddress>` constant.
3331
3332Arguments:
3333""""""""""
3334
3335The '``address``' argument is the address of the label to jump to. The
3336rest of the arguments indicate the full set of possible destinations
3337that the address may point to. Blocks are allowed to occur multiple
3338times in the destination list, though this isn't particularly useful.
3339
3340This destination list is required so that dataflow analysis has an
3341accurate understanding of the CFG.
3342
3343Semantics:
3344""""""""""
3345
3346Control transfers to the block specified in the address argument. All
3347possible destination blocks must be listed in the label list, otherwise
3348this instruction has undefined behavior. This implies that jumps to
3349labels defined in other functions have undefined behavior as well.
3350
3351Implementation:
3352"""""""""""""""
3353
3354This is typically implemented with a jump through a register.
3355
3356Example:
3357""""""""
3358
3359.. code-block:: llvm
3360
3361 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3362
3363.. _i_invoke:
3364
3365'``invoke``' Instruction
3366^^^^^^^^^^^^^^^^^^^^^^^^
3367
3368Syntax:
3369"""""""
3370
3371::
3372
3373 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3374 to label <normal label> unwind label <exception label>
3375
3376Overview:
3377"""""""""
3378
3379The '``invoke``' instruction causes control to transfer to a specified
3380function, with the possibility of control flow transfer to either the
3381'``normal``' label or the '``exception``' label. If the callee function
3382returns with the "``ret``" instruction, control flow will return to the
3383"normal" label. If the callee (or any indirect callees) returns via the
3384":ref:`resume <i_resume>`" instruction or other exception handling
3385mechanism, control is interrupted and continued at the dynamically
3386nearest "exception" label.
3387
3388The '``exception``' label is a `landing
3389pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3390'``exception``' label is required to have the
3391":ref:`landingpad <i_landingpad>`" instruction, which contains the
3392information about the behavior of the program after unwinding happens,
3393as its first non-PHI instruction. The restrictions on the
3394"``landingpad``" instruction's tightly couples it to the "``invoke``"
3395instruction, so that the important information contained within the
3396"``landingpad``" instruction can't be lost through normal code motion.
3397
3398Arguments:
3399""""""""""
3400
3401This instruction requires several arguments:
3402
3403#. The optional "cconv" marker indicates which :ref:`calling
3404 convention <callingconv>` the call should use. If none is
3405 specified, the call defaults to using C calling conventions.
3406#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3407 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3408 are valid here.
3409#. '``ptr to function ty``': shall be the signature of the pointer to
3410 function value being invoked. In most cases, this is a direct
3411 function invocation, but indirect ``invoke``'s are just as possible,
3412 branching off an arbitrary pointer to function value.
3413#. '``function ptr val``': An LLVM value containing a pointer to a
3414 function to be invoked.
3415#. '``function args``': argument list whose types match the function
3416 signature argument types and parameter attributes. All arguments must
3417 be of :ref:`first class <t_firstclass>` type. If the function signature
3418 indicates the function accepts a variable number of arguments, the
3419 extra arguments can be specified.
3420#. '``normal label``': the label reached when the called function
3421 executes a '``ret``' instruction.
3422#. '``exception label``': the label reached when a callee returns via
3423 the :ref:`resume <i_resume>` instruction or other exception handling
3424 mechanism.
3425#. The optional :ref:`function attributes <fnattrs>` list. Only
3426 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3427 attributes are valid here.
3428
3429Semantics:
3430""""""""""
3431
3432This instruction is designed to operate as a standard '``call``'
3433instruction in most regards. The primary difference is that it
3434establishes an association with a label, which is used by the runtime
3435library to unwind the stack.
3436
3437This instruction is used in languages with destructors to ensure that
3438proper cleanup is performed in the case of either a ``longjmp`` or a
3439thrown exception. Additionally, this is important for implementation of
3440'``catch``' clauses in high-level languages that support them.
3441
3442For the purposes of the SSA form, the definition of the value returned
3443by the '``invoke``' instruction is deemed to occur on the edge from the
3444current block to the "normal" label. If the callee unwinds then no
3445return value is available.
3446
3447Example:
3448""""""""
3449
3450.. code-block:: llvm
3451
3452 %retval = invoke i32 @Test(i32 15) to label %Continue
3453 unwind label %TestCleanup ; {i32}:retval set
3454 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3455 unwind label %TestCleanup ; {i32}:retval set
3456
3457.. _i_resume:
3458
3459'``resume``' Instruction
3460^^^^^^^^^^^^^^^^^^^^^^^^
3461
3462Syntax:
3463"""""""
3464
3465::
3466
3467 resume <type> <value>
3468
3469Overview:
3470"""""""""
3471
3472The '``resume``' instruction is a terminator instruction that has no
3473successors.
3474
3475Arguments:
3476""""""""""
3477
3478The '``resume``' instruction requires one argument, which must have the
3479same type as the result of any '``landingpad``' instruction in the same
3480function.
3481
3482Semantics:
3483""""""""""
3484
3485The '``resume``' instruction resumes propagation of an existing
3486(in-flight) exception whose unwinding was interrupted with a
3487:ref:`landingpad <i_landingpad>` instruction.
3488
3489Example:
3490""""""""
3491
3492.. code-block:: llvm
3493
3494 resume { i8*, i32 } %exn
3495
3496.. _i_unreachable:
3497
3498'``unreachable``' Instruction
3499^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3500
3501Syntax:
3502"""""""
3503
3504::
3505
3506 unreachable
3507
3508Overview:
3509"""""""""
3510
3511The '``unreachable``' instruction has no defined semantics. This
3512instruction is used to inform the optimizer that a particular portion of
3513the code is not reachable. This can be used to indicate that the code
3514after a no-return function cannot be reached, and other facts.
3515
3516Semantics:
3517""""""""""
3518
3519The '``unreachable``' instruction has no defined semantics.
3520
3521.. _binaryops:
3522
3523Binary Operations
3524-----------------
3525
3526Binary operators are used to do most of the computation in a program.
3527They require two operands of the same type, execute an operation on
3528them, and produce a single value. The operands might represent multiple
3529data, as is the case with the :ref:`vector <t_vector>` data type. The
3530result value has the same type as its operands.
3531
3532There are several different binary operators:
3533
3534.. _i_add:
3535
3536'``add``' Instruction
3537^^^^^^^^^^^^^^^^^^^^^
3538
3539Syntax:
3540"""""""
3541
3542::
3543
3544 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3545 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3546 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3547 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3548
3549Overview:
3550"""""""""
3551
3552The '``add``' instruction returns the sum of its two operands.
3553
3554Arguments:
3555""""""""""
3556
3557The two arguments to the '``add``' instruction must be
3558:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3559arguments must have identical types.
3560
3561Semantics:
3562""""""""""
3563
3564The value produced is the integer sum of the two operands.
3565
3566If the sum has unsigned overflow, the result returned is the
3567mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3568the result.
3569
3570Because LLVM integers use a two's complement representation, this
3571instruction is appropriate for both signed and unsigned integers.
3572
3573``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3574respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3575result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3576unsigned and/or signed overflow, respectively, occurs.
3577
3578Example:
3579""""""""
3580
3581.. code-block:: llvm
3582
3583 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3584
3585.. _i_fadd:
3586
3587'``fadd``' Instruction
3588^^^^^^^^^^^^^^^^^^^^^^
3589
3590Syntax:
3591"""""""
3592
3593::
3594
3595 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3596
3597Overview:
3598"""""""""
3599
3600The '``fadd``' instruction returns the sum of its two operands.
3601
3602Arguments:
3603""""""""""
3604
3605The two arguments to the '``fadd``' instruction must be :ref:`floating
3606point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3607Both arguments must have identical types.
3608
3609Semantics:
3610""""""""""
3611
3612The value produced is the floating point sum of the two operands. This
3613instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3614which are optimization hints to enable otherwise unsafe floating point
3615optimizations:
3616
3617Example:
3618""""""""
3619
3620.. code-block:: llvm
3621
3622 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3623
3624'``sub``' Instruction
3625^^^^^^^^^^^^^^^^^^^^^
3626
3627Syntax:
3628"""""""
3629
3630::
3631
3632 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3633 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3634 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3635 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3636
3637Overview:
3638"""""""""
3639
3640The '``sub``' instruction returns the difference of its two operands.
3641
3642Note that the '``sub``' instruction is used to represent the '``neg``'
3643instruction present in most other intermediate representations.
3644
3645Arguments:
3646""""""""""
3647
3648The two arguments to the '``sub``' instruction must be
3649:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3650arguments must have identical types.
3651
3652Semantics:
3653""""""""""
3654
3655The value produced is the integer difference of the two operands.
3656
3657If the difference has unsigned overflow, the result returned is the
3658mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3659the result.
3660
3661Because LLVM integers use a two's complement representation, this
3662instruction is appropriate for both signed and unsigned integers.
3663
3664``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3665respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3666result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3667unsigned and/or signed overflow, respectively, occurs.
3668
3669Example:
3670""""""""
3671
3672.. code-block:: llvm
3673
3674 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3675 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3676
3677.. _i_fsub:
3678
3679'``fsub``' Instruction
3680^^^^^^^^^^^^^^^^^^^^^^
3681
3682Syntax:
3683"""""""
3684
3685::
3686
3687 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3688
3689Overview:
3690"""""""""
3691
3692The '``fsub``' instruction returns the difference of its two operands.
3693
3694Note that the '``fsub``' instruction is used to represent the '``fneg``'
3695instruction present in most other intermediate representations.
3696
3697Arguments:
3698""""""""""
3699
3700The two arguments to the '``fsub``' instruction must be :ref:`floating
3701point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3702Both arguments must have identical types.
3703
3704Semantics:
3705""""""""""
3706
3707The value produced is the floating point difference of the two operands.
3708This instruction can also take any number of :ref:`fast-math
3709flags <fastmath>`, which are optimization hints to enable otherwise
3710unsafe floating point optimizations:
3711
3712Example:
3713""""""""
3714
3715.. code-block:: llvm
3716
3717 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3718 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3719
3720'``mul``' Instruction
3721^^^^^^^^^^^^^^^^^^^^^
3722
3723Syntax:
3724"""""""
3725
3726::
3727
3728 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3729 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3730 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3731 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3732
3733Overview:
3734"""""""""
3735
3736The '``mul``' instruction returns the product of its two operands.
3737
3738Arguments:
3739""""""""""
3740
3741The two arguments to the '``mul``' instruction must be
3742:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3743arguments must have identical types.
3744
3745Semantics:
3746""""""""""
3747
3748The value produced is the integer product of the two operands.
3749
3750If the result of the multiplication has unsigned overflow, the result
3751returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3752bit width of the result.
3753
3754Because LLVM integers use a two's complement representation, and the
3755result is the same width as the operands, this instruction returns the
3756correct result for both signed and unsigned integers. If a full product
3757(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3758sign-extended or zero-extended as appropriate to the width of the full
3759product.
3760
3761``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3762respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3763result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3764unsigned and/or signed overflow, respectively, occurs.
3765
3766Example:
3767""""""""
3768
3769.. code-block:: llvm
3770
3771 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3772
3773.. _i_fmul:
3774
3775'``fmul``' Instruction
3776^^^^^^^^^^^^^^^^^^^^^^
3777
3778Syntax:
3779"""""""
3780
3781::
3782
3783 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3784
3785Overview:
3786"""""""""
3787
3788The '``fmul``' instruction returns the product of its two operands.
3789
3790Arguments:
3791""""""""""
3792
3793The two arguments to the '``fmul``' instruction must be :ref:`floating
3794point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3795Both arguments must have identical types.
3796
3797Semantics:
3798""""""""""
3799
3800The value produced is the floating point product of the two operands.
3801This instruction can also take any number of :ref:`fast-math
3802flags <fastmath>`, which are optimization hints to enable otherwise
3803unsafe floating point optimizations:
3804
3805Example:
3806""""""""
3807
3808.. code-block:: llvm
3809
3810 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3811
3812'``udiv``' Instruction
3813^^^^^^^^^^^^^^^^^^^^^^
3814
3815Syntax:
3816"""""""
3817
3818::
3819
3820 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3821 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3822
3823Overview:
3824"""""""""
3825
3826The '``udiv``' instruction returns the quotient of its two operands.
3827
3828Arguments:
3829""""""""""
3830
3831The two arguments to the '``udiv``' instruction must be
3832:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3833arguments must have identical types.
3834
3835Semantics:
3836""""""""""
3837
3838The value produced is the unsigned integer quotient of the two operands.
3839
3840Note that unsigned integer division and signed integer division are
3841distinct operations; for signed integer division, use '``sdiv``'.
3842
3843Division by zero leads to undefined behavior.
3844
3845If the ``exact`` keyword is present, the result value of the ``udiv`` is
3846a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3847such, "((a udiv exact b) mul b) == a").
3848
3849Example:
3850""""""""
3851
3852.. code-block:: llvm
3853
3854 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3855
3856'``sdiv``' Instruction
3857^^^^^^^^^^^^^^^^^^^^^^
3858
3859Syntax:
3860"""""""
3861
3862::
3863
3864 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3865 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3866
3867Overview:
3868"""""""""
3869
3870The '``sdiv``' instruction returns the quotient of its two operands.
3871
3872Arguments:
3873""""""""""
3874
3875The two arguments to the '``sdiv``' instruction must be
3876:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3877arguments must have identical types.
3878
3879Semantics:
3880""""""""""
3881
3882The value produced is the signed integer quotient of the two operands
3883rounded towards zero.
3884
3885Note that signed integer division and unsigned integer division are
3886distinct operations; for unsigned integer division, use '``udiv``'.
3887
3888Division by zero leads to undefined behavior. Overflow also leads to
3889undefined behavior; this is a rare case, but can occur, for example, by
3890doing a 32-bit division of -2147483648 by -1.
3891
3892If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3893a :ref:`poison value <poisonvalues>` if the result would be rounded.
3894
3895Example:
3896""""""""
3897
3898.. code-block:: llvm
3899
3900 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3901
3902.. _i_fdiv:
3903
3904'``fdiv``' Instruction
3905^^^^^^^^^^^^^^^^^^^^^^
3906
3907Syntax:
3908"""""""
3909
3910::
3911
3912 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3913
3914Overview:
3915"""""""""
3916
3917The '``fdiv``' instruction returns the quotient of its two operands.
3918
3919Arguments:
3920""""""""""
3921
3922The two arguments to the '``fdiv``' instruction must be :ref:`floating
3923point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3924Both arguments must have identical types.
3925
3926Semantics:
3927""""""""""
3928
3929The value produced is the floating point quotient of the two operands.
3930This instruction can also take any number of :ref:`fast-math
3931flags <fastmath>`, which are optimization hints to enable otherwise
3932unsafe floating point optimizations:
3933
3934Example:
3935""""""""
3936
3937.. code-block:: llvm
3938
3939 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3940
3941'``urem``' Instruction
3942^^^^^^^^^^^^^^^^^^^^^^
3943
3944Syntax:
3945"""""""
3946
3947::
3948
3949 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3950
3951Overview:
3952"""""""""
3953
3954The '``urem``' instruction returns the remainder from the unsigned
3955division of its two arguments.
3956
3957Arguments:
3958""""""""""
3959
3960The two arguments to the '``urem``' instruction must be
3961:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3962arguments must have identical types.
3963
3964Semantics:
3965""""""""""
3966
3967This instruction returns the unsigned integer *remainder* of a division.
3968This instruction always performs an unsigned division to get the
3969remainder.
3970
3971Note that unsigned integer remainder and signed integer remainder are
3972distinct operations; for signed integer remainder, use '``srem``'.
3973
3974Taking the remainder of a division by zero leads to undefined behavior.
3975
3976Example:
3977""""""""
3978
3979.. code-block:: llvm
3980
3981 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3982
3983'``srem``' Instruction
3984^^^^^^^^^^^^^^^^^^^^^^
3985
3986Syntax:
3987"""""""
3988
3989::
3990
3991 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3992
3993Overview:
3994"""""""""
3995
3996The '``srem``' instruction returns the remainder from the signed
3997division of its two operands. This instruction can also take
3998:ref:`vector <t_vector>` versions of the values in which case the elements
3999must be integers.
4000
4001Arguments:
4002""""""""""
4003
4004The two arguments to the '``srem``' instruction must be
4005:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4006arguments must have identical types.
4007
4008Semantics:
4009""""""""""
4010
4011This instruction returns the *remainder* of a division (where the result
4012is either zero or has the same sign as the dividend, ``op1``), not the
4013*modulo* operator (where the result is either zero or has the same sign
4014as the divisor, ``op2``) of a value. For more information about the
4015difference, see `The Math
4016Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4017table of how this is implemented in various languages, please see
4018`Wikipedia: modulo
4019operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4020
4021Note that signed integer remainder and unsigned integer remainder are
4022distinct operations; for unsigned integer remainder, use '``urem``'.
4023
4024Taking the remainder of a division by zero leads to undefined behavior.
4025Overflow also leads to undefined behavior; this is a rare case, but can
4026occur, for example, by taking the remainder of a 32-bit division of
4027-2147483648 by -1. (The remainder doesn't actually overflow, but this
4028rule lets srem be implemented using instructions that return both the
4029result of the division and the remainder.)
4030
4031Example:
4032""""""""
4033
4034.. code-block:: llvm
4035
4036 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4037
4038.. _i_frem:
4039
4040'``frem``' Instruction
4041^^^^^^^^^^^^^^^^^^^^^^
4042
4043Syntax:
4044"""""""
4045
4046::
4047
4048 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4049
4050Overview:
4051"""""""""
4052
4053The '``frem``' instruction returns the remainder from the division of
4054its two operands.
4055
4056Arguments:
4057""""""""""
4058
4059The two arguments to the '``frem``' instruction must be :ref:`floating
4060point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4061Both arguments must have identical types.
4062
4063Semantics:
4064""""""""""
4065
4066This instruction returns the *remainder* of a division. The remainder
4067has the same sign as the dividend. This instruction can also take any
4068number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4069to enable otherwise unsafe floating point optimizations:
4070
4071Example:
4072""""""""
4073
4074.. code-block:: llvm
4075
4076 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4077
4078.. _bitwiseops:
4079
4080Bitwise Binary Operations
4081-------------------------
4082
4083Bitwise binary operators are used to do various forms of bit-twiddling
4084in a program. They are generally very efficient instructions and can
4085commonly be strength reduced from other instructions. They require two
4086operands of the same type, execute an operation on them, and produce a
4087single value. The resulting value is the same type as its operands.
4088
4089'``shl``' Instruction
4090^^^^^^^^^^^^^^^^^^^^^
4091
4092Syntax:
4093"""""""
4094
4095::
4096
4097 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4098 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4099 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4100 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4101
4102Overview:
4103"""""""""
4104
4105The '``shl``' instruction returns the first operand shifted to the left
4106a specified number of bits.
4107
4108Arguments:
4109""""""""""
4110
4111Both arguments to the '``shl``' instruction must be the same
4112:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4113'``op2``' is treated as an unsigned value.
4114
4115Semantics:
4116""""""""""
4117
4118The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4119where ``n`` is the width of the result. If ``op2`` is (statically or
4120dynamically) negative or equal to or larger than the number of bits in
4121``op1``, the result is undefined. If the arguments are vectors, each
4122vector element of ``op1`` is shifted by the corresponding shift amount
4123in ``op2``.
4124
4125If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4126value <poisonvalues>` if it shifts out any non-zero bits. If the
4127``nsw`` keyword is present, then the shift produces a :ref:`poison
4128value <poisonvalues>` if it shifts out any bits that disagree with the
4129resultant sign bit. As such, NUW/NSW have the same semantics as they
4130would if the shift were expressed as a mul instruction with the same
4131nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4132
4133Example:
4134""""""""
4135
4136.. code-block:: llvm
4137
4138 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4139 <result> = shl i32 4, 2 ; yields {i32}: 16
4140 <result> = shl i32 1, 10 ; yields {i32}: 1024
4141 <result> = shl i32 1, 32 ; undefined
4142 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4143
4144'``lshr``' Instruction
4145^^^^^^^^^^^^^^^^^^^^^^
4146
4147Syntax:
4148"""""""
4149
4150::
4151
4152 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4153 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4154
4155Overview:
4156"""""""""
4157
4158The '``lshr``' instruction (logical shift right) returns the first
4159operand shifted to the right a specified number of bits with zero fill.
4160
4161Arguments:
4162""""""""""
4163
4164Both arguments to the '``lshr``' instruction must be the same
4165:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4166'``op2``' is treated as an unsigned value.
4167
4168Semantics:
4169""""""""""
4170
4171This instruction always performs a logical shift right operation. The
4172most significant bits of the result will be filled with zero bits after
4173the shift. If ``op2`` is (statically or dynamically) equal to or larger
4174than the number of bits in ``op1``, the result is undefined. If the
4175arguments are vectors, each vector element of ``op1`` is shifted by the
4176corresponding shift amount in ``op2``.
4177
4178If the ``exact`` keyword is present, the result value of the ``lshr`` is
4179a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4180non-zero.
4181
4182Example:
4183""""""""
4184
4185.. code-block:: llvm
4186
4187 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4188 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4189 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004190 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004191 <result> = lshr i32 1, 32 ; undefined
4192 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4193
4194'``ashr``' Instruction
4195^^^^^^^^^^^^^^^^^^^^^^
4196
4197Syntax:
4198"""""""
4199
4200::
4201
4202 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4203 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4204
4205Overview:
4206"""""""""
4207
4208The '``ashr``' instruction (arithmetic shift right) returns the first
4209operand shifted to the right a specified number of bits with sign
4210extension.
4211
4212Arguments:
4213""""""""""
4214
4215Both arguments to the '``ashr``' instruction must be the same
4216:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4217'``op2``' is treated as an unsigned value.
4218
4219Semantics:
4220""""""""""
4221
4222This instruction always performs an arithmetic shift right operation,
4223The most significant bits of the result will be filled with the sign bit
4224of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4225than the number of bits in ``op1``, the result is undefined. If the
4226arguments are vectors, each vector element of ``op1`` is shifted by the
4227corresponding shift amount in ``op2``.
4228
4229If the ``exact`` keyword is present, the result value of the ``ashr`` is
4230a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4231non-zero.
4232
4233Example:
4234""""""""
4235
4236.. code-block:: llvm
4237
4238 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4239 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4240 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4241 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4242 <result> = ashr i32 1, 32 ; undefined
4243 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4244
4245'``and``' Instruction
4246^^^^^^^^^^^^^^^^^^^^^
4247
4248Syntax:
4249"""""""
4250
4251::
4252
4253 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4254
4255Overview:
4256"""""""""
4257
4258The '``and``' instruction returns the bitwise logical and of its two
4259operands.
4260
4261Arguments:
4262""""""""""
4263
4264The two arguments to the '``and``' instruction must be
4265:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4266arguments must have identical types.
4267
4268Semantics:
4269""""""""""
4270
4271The truth table used for the '``and``' instruction is:
4272
4273+-----+-----+-----+
4274| In0 | In1 | Out |
4275+-----+-----+-----+
4276| 0 | 0 | 0 |
4277+-----+-----+-----+
4278| 0 | 1 | 0 |
4279+-----+-----+-----+
4280| 1 | 0 | 0 |
4281+-----+-----+-----+
4282| 1 | 1 | 1 |
4283+-----+-----+-----+
4284
4285Example:
4286""""""""
4287
4288.. code-block:: llvm
4289
4290 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4291 <result> = and i32 15, 40 ; yields {i32}:result = 8
4292 <result> = and i32 4, 8 ; yields {i32}:result = 0
4293
4294'``or``' Instruction
4295^^^^^^^^^^^^^^^^^^^^
4296
4297Syntax:
4298"""""""
4299
4300::
4301
4302 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4303
4304Overview:
4305"""""""""
4306
4307The '``or``' instruction returns the bitwise logical inclusive or of its
4308two operands.
4309
4310Arguments:
4311""""""""""
4312
4313The two arguments to the '``or``' instruction must be
4314:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4315arguments must have identical types.
4316
4317Semantics:
4318""""""""""
4319
4320The truth table used for the '``or``' instruction is:
4321
4322+-----+-----+-----+
4323| In0 | In1 | Out |
4324+-----+-----+-----+
4325| 0 | 0 | 0 |
4326+-----+-----+-----+
4327| 0 | 1 | 1 |
4328+-----+-----+-----+
4329| 1 | 0 | 1 |
4330+-----+-----+-----+
4331| 1 | 1 | 1 |
4332+-----+-----+-----+
4333
4334Example:
4335""""""""
4336
4337::
4338
4339 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4340 <result> = or i32 15, 40 ; yields {i32}:result = 47
4341 <result> = or i32 4, 8 ; yields {i32}:result = 12
4342
4343'``xor``' Instruction
4344^^^^^^^^^^^^^^^^^^^^^
4345
4346Syntax:
4347"""""""
4348
4349::
4350
4351 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4352
4353Overview:
4354"""""""""
4355
4356The '``xor``' instruction returns the bitwise logical exclusive or of
4357its two operands. The ``xor`` is used to implement the "one's
4358complement" operation, which is the "~" operator in C.
4359
4360Arguments:
4361""""""""""
4362
4363The two arguments to the '``xor``' instruction must be
4364:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4365arguments must have identical types.
4366
4367Semantics:
4368""""""""""
4369
4370The truth table used for the '``xor``' instruction is:
4371
4372+-----+-----+-----+
4373| In0 | In1 | Out |
4374+-----+-----+-----+
4375| 0 | 0 | 0 |
4376+-----+-----+-----+
4377| 0 | 1 | 1 |
4378+-----+-----+-----+
4379| 1 | 0 | 1 |
4380+-----+-----+-----+
4381| 1 | 1 | 0 |
4382+-----+-----+-----+
4383
4384Example:
4385""""""""
4386
4387.. code-block:: llvm
4388
4389 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4390 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4391 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4392 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4393
4394Vector Operations
4395-----------------
4396
4397LLVM supports several instructions to represent vector operations in a
4398target-independent manner. These instructions cover the element-access
4399and vector-specific operations needed to process vectors effectively.
4400While LLVM does directly support these vector operations, many
4401sophisticated algorithms will want to use target-specific intrinsics to
4402take full advantage of a specific target.
4403
4404.. _i_extractelement:
4405
4406'``extractelement``' Instruction
4407^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4408
4409Syntax:
4410"""""""
4411
4412::
4413
4414 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4415
4416Overview:
4417"""""""""
4418
4419The '``extractelement``' instruction extracts a single scalar element
4420from a vector at a specified index.
4421
4422Arguments:
4423""""""""""
4424
4425The first operand of an '``extractelement``' instruction is a value of
4426:ref:`vector <t_vector>` type. The second operand is an index indicating
4427the position from which to extract the element. The index may be a
4428variable.
4429
4430Semantics:
4431""""""""""
4432
4433The result is a scalar of the same type as the element type of ``val``.
4434Its value is the value at position ``idx`` of ``val``. If ``idx``
4435exceeds the length of ``val``, the results are undefined.
4436
4437Example:
4438""""""""
4439
4440.. code-block:: llvm
4441
4442 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4443
4444.. _i_insertelement:
4445
4446'``insertelement``' Instruction
4447^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4448
4449Syntax:
4450"""""""
4451
4452::
4453
4454 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4455
4456Overview:
4457"""""""""
4458
4459The '``insertelement``' instruction inserts a scalar element into a
4460vector at a specified index.
4461
4462Arguments:
4463""""""""""
4464
4465The first operand of an '``insertelement``' instruction is a value of
4466:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4467type must equal the element type of the first operand. The third operand
4468is an index indicating the position at which to insert the value. The
4469index may be a variable.
4470
4471Semantics:
4472""""""""""
4473
4474The result is a vector of the same type as ``val``. Its element values
4475are those of ``val`` except at position ``idx``, where it gets the value
4476``elt``. If ``idx`` exceeds the length of ``val``, the results are
4477undefined.
4478
4479Example:
4480""""""""
4481
4482.. code-block:: llvm
4483
4484 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4485
4486.. _i_shufflevector:
4487
4488'``shufflevector``' Instruction
4489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4490
4491Syntax:
4492"""""""
4493
4494::
4495
4496 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4497
4498Overview:
4499"""""""""
4500
4501The '``shufflevector``' instruction constructs a permutation of elements
4502from two input vectors, returning a vector with the same element type as
4503the input and length that is the same as the shuffle mask.
4504
4505Arguments:
4506""""""""""
4507
4508The first two operands of a '``shufflevector``' instruction are vectors
4509with the same type. The third argument is a shuffle mask whose element
4510type is always 'i32'. The result of the instruction is a vector whose
4511length is the same as the shuffle mask and whose element type is the
4512same as the element type of the first two operands.
4513
4514The shuffle mask operand is required to be a constant vector with either
4515constant integer or undef values.
4516
4517Semantics:
4518""""""""""
4519
4520The elements of the two input vectors are numbered from left to right
4521across both of the vectors. The shuffle mask operand specifies, for each
4522element of the result vector, which element of the two input vectors the
4523result element gets. The element selector may be undef (meaning "don't
4524care") and the second operand may be undef if performing a shuffle from
4525only one vector.
4526
4527Example:
4528""""""""
4529
4530.. code-block:: llvm
4531
4532 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4533 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4534 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4535 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4536 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4537 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4538 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4539 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4540
4541Aggregate Operations
4542--------------------
4543
4544LLVM supports several instructions for working with
4545:ref:`aggregate <t_aggregate>` values.
4546
4547.. _i_extractvalue:
4548
4549'``extractvalue``' Instruction
4550^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4551
4552Syntax:
4553"""""""
4554
4555::
4556
4557 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4558
4559Overview:
4560"""""""""
4561
4562The '``extractvalue``' instruction extracts the value of a member field
4563from an :ref:`aggregate <t_aggregate>` value.
4564
4565Arguments:
4566""""""""""
4567
4568The first operand of an '``extractvalue``' instruction is a value of
4569:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4570constant indices to specify which value to extract in a similar manner
4571as indices in a '``getelementptr``' instruction.
4572
4573The major differences to ``getelementptr`` indexing are:
4574
4575- Since the value being indexed is not a pointer, the first index is
4576 omitted and assumed to be zero.
4577- At least one index must be specified.
4578- Not only struct indices but also array indices must be in bounds.
4579
4580Semantics:
4581""""""""""
4582
4583The result is the value at the position in the aggregate specified by
4584the index operands.
4585
4586Example:
4587""""""""
4588
4589.. code-block:: llvm
4590
4591 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4592
4593.. _i_insertvalue:
4594
4595'``insertvalue``' Instruction
4596^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4597
4598Syntax:
4599"""""""
4600
4601::
4602
4603 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4604
4605Overview:
4606"""""""""
4607
4608The '``insertvalue``' instruction inserts a value into a member field in
4609an :ref:`aggregate <t_aggregate>` value.
4610
4611Arguments:
4612""""""""""
4613
4614The first operand of an '``insertvalue``' instruction is a value of
4615:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4616a first-class value to insert. The following operands are constant
4617indices indicating the position at which to insert the value in a
4618similar manner as indices in a '``extractvalue``' instruction. The value
4619to insert must have the same type as the value identified by the
4620indices.
4621
4622Semantics:
4623""""""""""
4624
4625The result is an aggregate of the same type as ``val``. Its value is
4626that of ``val`` except that the value at the position specified by the
4627indices is that of ``elt``.
4628
4629Example:
4630""""""""
4631
4632.. code-block:: llvm
4633
4634 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4635 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4636 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4637
4638.. _memoryops:
4639
4640Memory Access and Addressing Operations
4641---------------------------------------
4642
4643A key design point of an SSA-based representation is how it represents
4644memory. In LLVM, no memory locations are in SSA form, which makes things
4645very simple. This section describes how to read, write, and allocate
4646memory in LLVM.
4647
4648.. _i_alloca:
4649
4650'``alloca``' Instruction
4651^^^^^^^^^^^^^^^^^^^^^^^^
4652
4653Syntax:
4654"""""""
4655
4656::
4657
4658 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4659
4660Overview:
4661"""""""""
4662
4663The '``alloca``' instruction allocates memory on the stack frame of the
4664currently executing function, to be automatically released when this
4665function returns to its caller. The object is always allocated in the
4666generic address space (address space zero).
4667
4668Arguments:
4669""""""""""
4670
4671The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4672bytes of memory on the runtime stack, returning a pointer of the
4673appropriate type to the program. If "NumElements" is specified, it is
4674the number of elements allocated, otherwise "NumElements" is defaulted
4675to be one. If a constant alignment is specified, the value result of the
4676allocation is guaranteed to be aligned to at least that boundary. If not
4677specified, or if zero, the target can choose to align the allocation on
4678any convenient boundary compatible with the type.
4679
4680'``type``' may be any sized type.
4681
4682Semantics:
4683""""""""""
4684
4685Memory is allocated; a pointer is returned. The operation is undefined
4686if there is insufficient stack space for the allocation. '``alloca``'d
4687memory is automatically released when the function returns. The
4688'``alloca``' instruction is commonly used to represent automatic
4689variables that must have an address available. When the function returns
4690(either with the ``ret`` or ``resume`` instructions), the memory is
4691reclaimed. Allocating zero bytes is legal, but the result is undefined.
4692The order in which memory is allocated (ie., which way the stack grows)
4693is not specified.
4694
4695Example:
4696""""""""
4697
4698.. code-block:: llvm
4699
4700 %ptr = alloca i32 ; yields {i32*}:ptr
4701 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4702 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4703 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4704
4705.. _i_load:
4706
4707'``load``' Instruction
4708^^^^^^^^^^^^^^^^^^^^^^
4709
4710Syntax:
4711"""""""
4712
4713::
4714
4715 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4716 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4717 !<index> = !{ i32 1 }
4718
4719Overview:
4720"""""""""
4721
4722The '``load``' instruction is used to read from memory.
4723
4724Arguments:
4725""""""""""
4726
Eli Bendersky239a78b2013-04-17 20:17:08 +00004727The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004728from which to load. The pointer must point to a :ref:`first
4729class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4730then the optimizer is not allowed to modify the number or order of
4731execution of this ``load`` with other :ref:`volatile
4732operations <volatile>`.
4733
4734If the ``load`` is marked as ``atomic``, it takes an extra
4735:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4736``release`` and ``acq_rel`` orderings are not valid on ``load``
4737instructions. Atomic loads produce :ref:`defined <memmodel>` results
4738when they may see multiple atomic stores. The type of the pointee must
4739be an integer type whose bit width is a power of two greater than or
4740equal to eight and less than or equal to a target-specific size limit.
4741``align`` must be explicitly specified on atomic loads, and the load has
4742undefined behavior if the alignment is not set to a value which is at
4743least the size in bytes of the pointee. ``!nontemporal`` does not have
4744any defined semantics for atomic loads.
4745
4746The optional constant ``align`` argument specifies the alignment of the
4747operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004748or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004749alignment for the target. It is the responsibility of the code emitter
4750to ensure that the alignment information is correct. Overestimating the
4751alignment results in undefined behavior. Underestimating the alignment
4752may produce less efficient code. An alignment of 1 is always safe.
4753
4754The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004755metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004756``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004757metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004758that this load is not expected to be reused in the cache. The code
4759generator may select special instructions to save cache bandwidth, such
4760as the ``MOVNT`` instruction on x86.
4761
4762The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004763metadata name ``<index>`` corresponding to a metadata node with no
4764entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004765instruction tells the optimizer and code generator that this load
4766address points to memory which does not change value during program
4767execution. The optimizer may then move this load around, for example, by
4768hoisting it out of loops using loop invariant code motion.
4769
4770Semantics:
4771""""""""""
4772
4773The location of memory pointed to is loaded. If the value being loaded
4774is of scalar type then the number of bytes read does not exceed the
4775minimum number of bytes needed to hold all bits of the type. For
4776example, loading an ``i24`` reads at most three bytes. When loading a
4777value of a type like ``i20`` with a size that is not an integral number
4778of bytes, the result is undefined if the value was not originally
4779written using a store of the same type.
4780
4781Examples:
4782"""""""""
4783
4784.. code-block:: llvm
4785
4786 %ptr = alloca i32 ; yields {i32*}:ptr
4787 store i32 3, i32* %ptr ; yields {void}
4788 %val = load i32* %ptr ; yields {i32}:val = i32 3
4789
4790.. _i_store:
4791
4792'``store``' Instruction
4793^^^^^^^^^^^^^^^^^^^^^^^
4794
4795Syntax:
4796"""""""
4797
4798::
4799
4800 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4801 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4802
4803Overview:
4804"""""""""
4805
4806The '``store``' instruction is used to write to memory.
4807
4808Arguments:
4809""""""""""
4810
Eli Benderskyca380842013-04-17 17:17:20 +00004811There are two arguments to the ``store`` instruction: a value to store
4812and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004813operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004814the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004815then the optimizer is not allowed to modify the number or order of
4816execution of this ``store`` with other :ref:`volatile
4817operations <volatile>`.
4818
4819If the ``store`` is marked as ``atomic``, it takes an extra
4820:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4821``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4822instructions. Atomic loads produce :ref:`defined <memmodel>` results
4823when they may see multiple atomic stores. The type of the pointee must
4824be an integer type whose bit width is a power of two greater than or
4825equal to eight and less than or equal to a target-specific size limit.
4826``align`` must be explicitly specified on atomic stores, and the store
4827has undefined behavior if the alignment is not set to a value which is
4828at least the size in bytes of the pointee. ``!nontemporal`` does not
4829have any defined semantics for atomic stores.
4830
Eli Benderskyca380842013-04-17 17:17:20 +00004831The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004832operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004833or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004834alignment for the target. It is the responsibility of the code emitter
4835to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004836alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004837alignment may produce less efficient code. An alignment of 1 is always
4838safe.
4839
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004840The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004841name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004842value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004843tells the optimizer and code generator that this load is not expected to
4844be reused in the cache. The code generator may select special
4845instructions to save cache bandwidth, such as the MOVNT instruction on
4846x86.
4847
4848Semantics:
4849""""""""""
4850
Eli Benderskyca380842013-04-17 17:17:20 +00004851The contents of memory are updated to contain ``<value>`` at the
4852location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004853of scalar type then the number of bytes written does not exceed the
4854minimum number of bytes needed to hold all bits of the type. For
4855example, storing an ``i24`` writes at most three bytes. When writing a
4856value of a type like ``i20`` with a size that is not an integral number
4857of bytes, it is unspecified what happens to the extra bits that do not
4858belong to the type, but they will typically be overwritten.
4859
4860Example:
4861""""""""
4862
4863.. code-block:: llvm
4864
4865 %ptr = alloca i32 ; yields {i32*}:ptr
4866 store i32 3, i32* %ptr ; yields {void}
4867 %val = load i32* %ptr ; yields {i32}:val = i32 3
4868
4869.. _i_fence:
4870
4871'``fence``' Instruction
4872^^^^^^^^^^^^^^^^^^^^^^^
4873
4874Syntax:
4875"""""""
4876
4877::
4878
4879 fence [singlethread] <ordering> ; yields {void}
4880
4881Overview:
4882"""""""""
4883
4884The '``fence``' instruction is used to introduce happens-before edges
4885between operations.
4886
4887Arguments:
4888""""""""""
4889
4890'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4891defines what *synchronizes-with* edges they add. They can only be given
4892``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4893
4894Semantics:
4895""""""""""
4896
4897A fence A which has (at least) ``release`` ordering semantics
4898*synchronizes with* a fence B with (at least) ``acquire`` ordering
4899semantics if and only if there exist atomic operations X and Y, both
4900operating on some atomic object M, such that A is sequenced before X, X
4901modifies M (either directly or through some side effect of a sequence
4902headed by X), Y is sequenced before B, and Y observes M. This provides a
4903*happens-before* dependency between A and B. Rather than an explicit
4904``fence``, one (but not both) of the atomic operations X or Y might
4905provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4906still *synchronize-with* the explicit ``fence`` and establish the
4907*happens-before* edge.
4908
4909A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4910``acquire`` and ``release`` semantics specified above, participates in
4911the global program order of other ``seq_cst`` operations and/or fences.
4912
4913The optional ":ref:`singlethread <singlethread>`" argument specifies
4914that the fence only synchronizes with other fences in the same thread.
4915(This is useful for interacting with signal handlers.)
4916
4917Example:
4918""""""""
4919
4920.. code-block:: llvm
4921
4922 fence acquire ; yields {void}
4923 fence singlethread seq_cst ; yields {void}
4924
4925.. _i_cmpxchg:
4926
4927'``cmpxchg``' Instruction
4928^^^^^^^^^^^^^^^^^^^^^^^^^
4929
4930Syntax:
4931"""""""
4932
4933::
4934
4935 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4936
4937Overview:
4938"""""""""
4939
4940The '``cmpxchg``' instruction is used to atomically modify memory. It
4941loads a value in memory and compares it to a given value. If they are
4942equal, it stores a new value into the memory.
4943
4944Arguments:
4945""""""""""
4946
4947There are three arguments to the '``cmpxchg``' instruction: an address
4948to operate on, a value to compare to the value currently be at that
4949address, and a new value to place at that address if the compared values
4950are equal. The type of '<cmp>' must be an integer type whose bit width
4951is a power of two greater than or equal to eight and less than or equal
4952to a target-specific size limit. '<cmp>' and '<new>' must have the same
4953type, and the type of '<pointer>' must be a pointer to that type. If the
4954``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4955to modify the number or order of execution of this ``cmpxchg`` with
4956other :ref:`volatile operations <volatile>`.
4957
4958The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4959synchronizes with other atomic operations.
4960
4961The optional "``singlethread``" argument declares that the ``cmpxchg``
4962is only atomic with respect to code (usually signal handlers) running in
4963the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4964respect to all other code in the system.
4965
4966The pointer passed into cmpxchg must have alignment greater than or
4967equal to the size in memory of the operand.
4968
4969Semantics:
4970""""""""""
4971
4972The contents of memory at the location specified by the '``<pointer>``'
4973operand is read and compared to '``<cmp>``'; if the read value is the
4974equal, '``<new>``' is written. The original value at the location is
4975returned.
4976
4977A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4978of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4979atomic load with an ordering parameter determined by dropping any
4980``release`` part of the ``cmpxchg``'s ordering.
4981
4982Example:
4983""""""""
4984
4985.. code-block:: llvm
4986
4987 entry:
4988 %orig = atomic load i32* %ptr unordered ; yields {i32}
4989 br label %loop
4990
4991 loop:
4992 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4993 %squared = mul i32 %cmp, %cmp
4994 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4995 %success = icmp eq i32 %cmp, %old
4996 br i1 %success, label %done, label %loop
4997
4998 done:
4999 ...
5000
5001.. _i_atomicrmw:
5002
5003'``atomicrmw``' Instruction
5004^^^^^^^^^^^^^^^^^^^^^^^^^^^
5005
5006Syntax:
5007"""""""
5008
5009::
5010
5011 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5012
5013Overview:
5014"""""""""
5015
5016The '``atomicrmw``' instruction is used to atomically modify memory.
5017
5018Arguments:
5019""""""""""
5020
5021There are three arguments to the '``atomicrmw``' instruction: an
5022operation to apply, an address whose value to modify, an argument to the
5023operation. The operation must be one of the following keywords:
5024
5025- xchg
5026- add
5027- sub
5028- and
5029- nand
5030- or
5031- xor
5032- max
5033- min
5034- umax
5035- umin
5036
5037The type of '<value>' must be an integer type whose bit width is a power
5038of two greater than or equal to eight and less than or equal to a
5039target-specific size limit. The type of the '``<pointer>``' operand must
5040be a pointer to that type. If the ``atomicrmw`` is marked as
5041``volatile``, then the optimizer is not allowed to modify the number or
5042order of execution of this ``atomicrmw`` with other :ref:`volatile
5043operations <volatile>`.
5044
5045Semantics:
5046""""""""""
5047
5048The contents of memory at the location specified by the '``<pointer>``'
5049operand are atomically read, modified, and written back. The original
5050value at the location is returned. The modification is specified by the
5051operation argument:
5052
5053- xchg: ``*ptr = val``
5054- add: ``*ptr = *ptr + val``
5055- sub: ``*ptr = *ptr - val``
5056- and: ``*ptr = *ptr & val``
5057- nand: ``*ptr = ~(*ptr & val)``
5058- or: ``*ptr = *ptr | val``
5059- xor: ``*ptr = *ptr ^ val``
5060- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5061- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5062- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5063 comparison)
5064- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5065 comparison)
5066
5067Example:
5068""""""""
5069
5070.. code-block:: llvm
5071
5072 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5073
5074.. _i_getelementptr:
5075
5076'``getelementptr``' Instruction
5077^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5078
5079Syntax:
5080"""""""
5081
5082::
5083
5084 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5085 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5086 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5087
5088Overview:
5089"""""""""
5090
5091The '``getelementptr``' instruction is used to get the address of a
5092subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5093address calculation only and does not access memory.
5094
5095Arguments:
5096""""""""""
5097
5098The first argument is always a pointer or a vector of pointers, and
5099forms the basis of the calculation. The remaining arguments are indices
5100that indicate which of the elements of the aggregate object are indexed.
5101The interpretation of each index is dependent on the type being indexed
5102into. The first index always indexes the pointer value given as the
5103first argument, the second index indexes a value of the type pointed to
5104(not necessarily the value directly pointed to, since the first index
5105can be non-zero), etc. The first type indexed into must be a pointer
5106value, subsequent types can be arrays, vectors, and structs. Note that
5107subsequent types being indexed into can never be pointers, since that
5108would require loading the pointer before continuing calculation.
5109
5110The type of each index argument depends on the type it is indexing into.
5111When indexing into a (optionally packed) structure, only ``i32`` integer
5112**constants** are allowed (when using a vector of indices they must all
5113be the **same** ``i32`` integer constant). When indexing into an array,
5114pointer or vector, integers of any width are allowed, and they are not
5115required to be constant. These integers are treated as signed values
5116where relevant.
5117
5118For example, let's consider a C code fragment and how it gets compiled
5119to LLVM:
5120
5121.. code-block:: c
5122
5123 struct RT {
5124 char A;
5125 int B[10][20];
5126 char C;
5127 };
5128 struct ST {
5129 int X;
5130 double Y;
5131 struct RT Z;
5132 };
5133
5134 int *foo(struct ST *s) {
5135 return &s[1].Z.B[5][13];
5136 }
5137
5138The LLVM code generated by Clang is:
5139
5140.. code-block:: llvm
5141
5142 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5143 %struct.ST = type { i32, double, %struct.RT }
5144
5145 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5146 entry:
5147 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5148 ret i32* %arrayidx
5149 }
5150
5151Semantics:
5152""""""""""
5153
5154In the example above, the first index is indexing into the
5155'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5156= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5157indexes into the third element of the structure, yielding a
5158'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5159structure. The third index indexes into the second element of the
5160structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5161dimensions of the array are subscripted into, yielding an '``i32``'
5162type. The '``getelementptr``' instruction returns a pointer to this
5163element, thus computing a value of '``i32*``' type.
5164
5165Note that it is perfectly legal to index partially through a structure,
5166returning a pointer to an inner element. Because of this, the LLVM code
5167for the given testcase is equivalent to:
5168
5169.. code-block:: llvm
5170
5171 define i32* @foo(%struct.ST* %s) {
5172 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5173 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5174 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5175 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5176 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5177 ret i32* %t5
5178 }
5179
5180If the ``inbounds`` keyword is present, the result value of the
5181``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5182pointer is not an *in bounds* address of an allocated object, or if any
5183of the addresses that would be formed by successive addition of the
5184offsets implied by the indices to the base address with infinitely
5185precise signed arithmetic are not an *in bounds* address of that
5186allocated object. The *in bounds* addresses for an allocated object are
5187all the addresses that point into the object, plus the address one byte
5188past the end. In cases where the base is a vector of pointers the
5189``inbounds`` keyword applies to each of the computations element-wise.
5190
5191If the ``inbounds`` keyword is not present, the offsets are added to the
5192base address with silently-wrapping two's complement arithmetic. If the
5193offsets have a different width from the pointer, they are sign-extended
5194or truncated to the width of the pointer. The result value of the
5195``getelementptr`` may be outside the object pointed to by the base
5196pointer. The result value may not necessarily be used to access memory
5197though, even if it happens to point into allocated storage. See the
5198:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5199information.
5200
5201The getelementptr instruction is often confusing. For some more insight
5202into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5203
5204Example:
5205""""""""
5206
5207.. code-block:: llvm
5208
5209 ; yields [12 x i8]*:aptr
5210 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5211 ; yields i8*:vptr
5212 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5213 ; yields i8*:eptr
5214 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5215 ; yields i32*:iptr
5216 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5217
5218In cases where the pointer argument is a vector of pointers, each index
5219must be a vector with the same number of elements. For example:
5220
5221.. code-block:: llvm
5222
5223 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5224
5225Conversion Operations
5226---------------------
5227
5228The instructions in this category are the conversion instructions
5229(casting) which all take a single operand and a type. They perform
5230various bit conversions on the operand.
5231
5232'``trunc .. to``' Instruction
5233^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5234
5235Syntax:
5236"""""""
5237
5238::
5239
5240 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5241
5242Overview:
5243"""""""""
5244
5245The '``trunc``' instruction truncates its operand to the type ``ty2``.
5246
5247Arguments:
5248""""""""""
5249
5250The '``trunc``' instruction takes a value to trunc, and a type to trunc
5251it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5252of the same number of integers. The bit size of the ``value`` must be
5253larger than the bit size of the destination type, ``ty2``. Equal sized
5254types are not allowed.
5255
5256Semantics:
5257""""""""""
5258
5259The '``trunc``' instruction truncates the high order bits in ``value``
5260and converts the remaining bits to ``ty2``. Since the source size must
5261be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5262It will always truncate bits.
5263
5264Example:
5265""""""""
5266
5267.. code-block:: llvm
5268
5269 %X = trunc i32 257 to i8 ; yields i8:1
5270 %Y = trunc i32 123 to i1 ; yields i1:true
5271 %Z = trunc i32 122 to i1 ; yields i1:false
5272 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5273
5274'``zext .. to``' Instruction
5275^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5276
5277Syntax:
5278"""""""
5279
5280::
5281
5282 <result> = zext <ty> <value> to <ty2> ; yields ty2
5283
5284Overview:
5285"""""""""
5286
5287The '``zext``' instruction zero extends its operand to type ``ty2``.
5288
5289Arguments:
5290""""""""""
5291
5292The '``zext``' instruction takes a value to cast, and a type to cast it
5293to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5294the same number of integers. The bit size of the ``value`` must be
5295smaller than the bit size of the destination type, ``ty2``.
5296
5297Semantics:
5298""""""""""
5299
5300The ``zext`` fills the high order bits of the ``value`` with zero bits
5301until it reaches the size of the destination type, ``ty2``.
5302
5303When zero extending from i1, the result will always be either 0 or 1.
5304
5305Example:
5306""""""""
5307
5308.. code-block:: llvm
5309
5310 %X = zext i32 257 to i64 ; yields i64:257
5311 %Y = zext i1 true to i32 ; yields i32:1
5312 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5313
5314'``sext .. to``' Instruction
5315^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5316
5317Syntax:
5318"""""""
5319
5320::
5321
5322 <result> = sext <ty> <value> to <ty2> ; yields ty2
5323
5324Overview:
5325"""""""""
5326
5327The '``sext``' sign extends ``value`` to the type ``ty2``.
5328
5329Arguments:
5330""""""""""
5331
5332The '``sext``' instruction takes a value to cast, and a type to cast it
5333to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5334the same number of integers. The bit size of the ``value`` must be
5335smaller than the bit size of the destination type, ``ty2``.
5336
5337Semantics:
5338""""""""""
5339
5340The '``sext``' instruction performs a sign extension by copying the sign
5341bit (highest order bit) of the ``value`` until it reaches the bit size
5342of the type ``ty2``.
5343
5344When sign extending from i1, the extension always results in -1 or 0.
5345
5346Example:
5347""""""""
5348
5349.. code-block:: llvm
5350
5351 %X = sext i8 -1 to i16 ; yields i16 :65535
5352 %Y = sext i1 true to i32 ; yields i32:-1
5353 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5354
5355'``fptrunc .. to``' Instruction
5356^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5357
5358Syntax:
5359"""""""
5360
5361::
5362
5363 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5364
5365Overview:
5366"""""""""
5367
5368The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5369
5370Arguments:
5371""""""""""
5372
5373The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5374value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5375The size of ``value`` must be larger than the size of ``ty2``. This
5376implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5377
5378Semantics:
5379""""""""""
5380
5381The '``fptrunc``' instruction truncates a ``value`` from a larger
5382:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5383point <t_floating>` type. If the value cannot fit within the
5384destination type, ``ty2``, then the results are undefined.
5385
5386Example:
5387""""""""
5388
5389.. code-block:: llvm
5390
5391 %X = fptrunc double 123.0 to float ; yields float:123.0
5392 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5393
5394'``fpext .. to``' Instruction
5395^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5396
5397Syntax:
5398"""""""
5399
5400::
5401
5402 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5403
5404Overview:
5405"""""""""
5406
5407The '``fpext``' extends a floating point ``value`` to a larger floating
5408point value.
5409
5410Arguments:
5411""""""""""
5412
5413The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5414``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5415to. The source type must be smaller than the destination type.
5416
5417Semantics:
5418""""""""""
5419
5420The '``fpext``' instruction extends the ``value`` from a smaller
5421:ref:`floating point <t_floating>` type to a larger :ref:`floating
5422point <t_floating>` type. The ``fpext`` cannot be used to make a
5423*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5424*no-op cast* for a floating point cast.
5425
5426Example:
5427""""""""
5428
5429.. code-block:: llvm
5430
5431 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5432 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5433
5434'``fptoui .. to``' Instruction
5435^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5436
5437Syntax:
5438"""""""
5439
5440::
5441
5442 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5443
5444Overview:
5445"""""""""
5446
5447The '``fptoui``' converts a floating point ``value`` to its unsigned
5448integer equivalent of type ``ty2``.
5449
5450Arguments:
5451""""""""""
5452
5453The '``fptoui``' instruction takes a value to cast, which must be a
5454scalar or vector :ref:`floating point <t_floating>` value, and a type to
5455cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5456``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5457type with the same number of elements as ``ty``
5458
5459Semantics:
5460""""""""""
5461
5462The '``fptoui``' instruction converts its :ref:`floating
5463point <t_floating>` operand into the nearest (rounding towards zero)
5464unsigned integer value. If the value cannot fit in ``ty2``, the results
5465are undefined.
5466
5467Example:
5468""""""""
5469
5470.. code-block:: llvm
5471
5472 %X = fptoui double 123.0 to i32 ; yields i32:123
5473 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5474 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5475
5476'``fptosi .. to``' Instruction
5477^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5478
5479Syntax:
5480"""""""
5481
5482::
5483
5484 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5485
5486Overview:
5487"""""""""
5488
5489The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5490``value`` to type ``ty2``.
5491
5492Arguments:
5493""""""""""
5494
5495The '``fptosi``' instruction takes a value to cast, which must be a
5496scalar or vector :ref:`floating point <t_floating>` value, and a type to
5497cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5498``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5499type with the same number of elements as ``ty``
5500
5501Semantics:
5502""""""""""
5503
5504The '``fptosi``' instruction converts its :ref:`floating
5505point <t_floating>` operand into the nearest (rounding towards zero)
5506signed integer value. If the value cannot fit in ``ty2``, the results
5507are undefined.
5508
5509Example:
5510""""""""
5511
5512.. code-block:: llvm
5513
5514 %X = fptosi double -123.0 to i32 ; yields i32:-123
5515 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5516 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5517
5518'``uitofp .. to``' Instruction
5519^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5520
5521Syntax:
5522"""""""
5523
5524::
5525
5526 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5527
5528Overview:
5529"""""""""
5530
5531The '``uitofp``' instruction regards ``value`` as an unsigned integer
5532and converts that value to the ``ty2`` type.
5533
5534Arguments:
5535""""""""""
5536
5537The '``uitofp``' instruction takes a value to cast, which must be a
5538scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5539``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5540``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5541type with the same number of elements as ``ty``
5542
5543Semantics:
5544""""""""""
5545
5546The '``uitofp``' instruction interprets its operand as an unsigned
5547integer quantity and converts it to the corresponding floating point
5548value. If the value cannot fit in the floating point value, the results
5549are undefined.
5550
5551Example:
5552""""""""
5553
5554.. code-block:: llvm
5555
5556 %X = uitofp i32 257 to float ; yields float:257.0
5557 %Y = uitofp i8 -1 to double ; yields double:255.0
5558
5559'``sitofp .. to``' Instruction
5560^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5561
5562Syntax:
5563"""""""
5564
5565::
5566
5567 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5568
5569Overview:
5570"""""""""
5571
5572The '``sitofp``' instruction regards ``value`` as a signed integer and
5573converts that value to the ``ty2`` type.
5574
5575Arguments:
5576""""""""""
5577
5578The '``sitofp``' instruction takes a value to cast, which must be a
5579scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5580``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5581``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5582type with the same number of elements as ``ty``
5583
5584Semantics:
5585""""""""""
5586
5587The '``sitofp``' instruction interprets its operand as a signed integer
5588quantity and converts it to the corresponding floating point value. If
5589the value cannot fit in the floating point value, the results are
5590undefined.
5591
5592Example:
5593""""""""
5594
5595.. code-block:: llvm
5596
5597 %X = sitofp i32 257 to float ; yields float:257.0
5598 %Y = sitofp i8 -1 to double ; yields double:-1.0
5599
5600.. _i_ptrtoint:
5601
5602'``ptrtoint .. to``' Instruction
5603^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5604
5605Syntax:
5606"""""""
5607
5608::
5609
5610 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5611
5612Overview:
5613"""""""""
5614
5615The '``ptrtoint``' instruction converts the pointer or a vector of
5616pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5617
5618Arguments:
5619""""""""""
5620
5621The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5622a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5623type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5624a vector of integers type.
5625
5626Semantics:
5627""""""""""
5628
5629The '``ptrtoint``' instruction converts ``value`` to integer type
5630``ty2`` by interpreting the pointer value as an integer and either
5631truncating or zero extending that value to the size of the integer type.
5632If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5633``value`` is larger than ``ty2`` then a truncation is done. If they are
5634the same size, then nothing is done (*no-op cast*) other than a type
5635change.
5636
5637Example:
5638""""""""
5639
5640.. code-block:: llvm
5641
5642 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5643 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5644 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5645
5646.. _i_inttoptr:
5647
5648'``inttoptr .. to``' Instruction
5649^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5650
5651Syntax:
5652"""""""
5653
5654::
5655
5656 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5657
5658Overview:
5659"""""""""
5660
5661The '``inttoptr``' instruction converts an integer ``value`` to a
5662pointer type, ``ty2``.
5663
5664Arguments:
5665""""""""""
5666
5667The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5668cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5669type.
5670
5671Semantics:
5672""""""""""
5673
5674The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5675applying either a zero extension or a truncation depending on the size
5676of the integer ``value``. If ``value`` is larger than the size of a
5677pointer then a truncation is done. If ``value`` is smaller than the size
5678of a pointer then a zero extension is done. If they are the same size,
5679nothing is done (*no-op cast*).
5680
5681Example:
5682""""""""
5683
5684.. code-block:: llvm
5685
5686 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5687 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5688 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5689 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5690
5691.. _i_bitcast:
5692
5693'``bitcast .. to``' Instruction
5694^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5695
5696Syntax:
5697"""""""
5698
5699::
5700
5701 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5702
5703Overview:
5704"""""""""
5705
5706The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5707changing any bits.
5708
5709Arguments:
5710""""""""""
5711
5712The '``bitcast``' instruction takes a value to cast, which must be a
5713non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005714also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5715bit sizes of ``value`` and the destination type, ``ty2``, must be
5716identical. If the source type is a pointer, the destination type must
5717also be a pointer of the same size. This instruction supports bitwise
5718conversion of vectors to integers and to vectors of other types (as
5719long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005720
5721Semantics:
5722""""""""""
5723
Matt Arsenault24b49c42013-07-31 17:49:08 +00005724The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5725is always a *no-op cast* because no bits change with this
5726conversion. The conversion is done as if the ``value`` had been stored
5727to memory and read back as type ``ty2``. Pointer (or vector of
5728pointers) types may only be converted to other pointer (or vector of
5729pointers) types with this instruction if the pointer sizes are
5730equal. To convert pointers to other types, use the :ref:`inttoptr
5731<i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005732
5733Example:
5734""""""""
5735
5736.. code-block:: llvm
5737
5738 %X = bitcast i8 255 to i8 ; yields i8 :-1
5739 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5740 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5741 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5742
5743.. _otherops:
5744
5745Other Operations
5746----------------
5747
5748The instructions in this category are the "miscellaneous" instructions,
5749which defy better classification.
5750
5751.. _i_icmp:
5752
5753'``icmp``' Instruction
5754^^^^^^^^^^^^^^^^^^^^^^
5755
5756Syntax:
5757"""""""
5758
5759::
5760
5761 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5762
5763Overview:
5764"""""""""
5765
5766The '``icmp``' instruction returns a boolean value or a vector of
5767boolean values based on comparison of its two integer, integer vector,
5768pointer, or pointer vector operands.
5769
5770Arguments:
5771""""""""""
5772
5773The '``icmp``' instruction takes three operands. The first operand is
5774the condition code indicating the kind of comparison to perform. It is
5775not a value, just a keyword. The possible condition code are:
5776
5777#. ``eq``: equal
5778#. ``ne``: not equal
5779#. ``ugt``: unsigned greater than
5780#. ``uge``: unsigned greater or equal
5781#. ``ult``: unsigned less than
5782#. ``ule``: unsigned less or equal
5783#. ``sgt``: signed greater than
5784#. ``sge``: signed greater or equal
5785#. ``slt``: signed less than
5786#. ``sle``: signed less or equal
5787
5788The remaining two arguments must be :ref:`integer <t_integer>` or
5789:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5790must also be identical types.
5791
5792Semantics:
5793""""""""""
5794
5795The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5796code given as ``cond``. The comparison performed always yields either an
5797:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5798
5799#. ``eq``: yields ``true`` if the operands are equal, ``false``
5800 otherwise. No sign interpretation is necessary or performed.
5801#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5802 otherwise. No sign interpretation is necessary or performed.
5803#. ``ugt``: interprets the operands as unsigned values and yields
5804 ``true`` if ``op1`` is greater than ``op2``.
5805#. ``uge``: interprets the operands as unsigned values and yields
5806 ``true`` if ``op1`` is greater than or equal to ``op2``.
5807#. ``ult``: interprets the operands as unsigned values and yields
5808 ``true`` if ``op1`` is less than ``op2``.
5809#. ``ule``: interprets the operands as unsigned values and yields
5810 ``true`` if ``op1`` is less than or equal to ``op2``.
5811#. ``sgt``: interprets the operands as signed values and yields ``true``
5812 if ``op1`` is greater than ``op2``.
5813#. ``sge``: interprets the operands as signed values and yields ``true``
5814 if ``op1`` is greater than or equal to ``op2``.
5815#. ``slt``: interprets the operands as signed values and yields ``true``
5816 if ``op1`` is less than ``op2``.
5817#. ``sle``: interprets the operands as signed values and yields ``true``
5818 if ``op1`` is less than or equal to ``op2``.
5819
5820If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5821are compared as if they were integers.
5822
5823If the operands are integer vectors, then they are compared element by
5824element. The result is an ``i1`` vector with the same number of elements
5825as the values being compared. Otherwise, the result is an ``i1``.
5826
5827Example:
5828""""""""
5829
5830.. code-block:: llvm
5831
5832 <result> = icmp eq i32 4, 5 ; yields: result=false
5833 <result> = icmp ne float* %X, %X ; yields: result=false
5834 <result> = icmp ult i16 4, 5 ; yields: result=true
5835 <result> = icmp sgt i16 4, 5 ; yields: result=false
5836 <result> = icmp ule i16 -4, 5 ; yields: result=false
5837 <result> = icmp sge i16 4, 5 ; yields: result=false
5838
5839Note that the code generator does not yet support vector types with the
5840``icmp`` instruction.
5841
5842.. _i_fcmp:
5843
5844'``fcmp``' Instruction
5845^^^^^^^^^^^^^^^^^^^^^^
5846
5847Syntax:
5848"""""""
5849
5850::
5851
5852 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5853
5854Overview:
5855"""""""""
5856
5857The '``fcmp``' instruction returns a boolean value or vector of boolean
5858values based on comparison of its operands.
5859
5860If the operands are floating point scalars, then the result type is a
5861boolean (:ref:`i1 <t_integer>`).
5862
5863If the operands are floating point vectors, then the result type is a
5864vector of boolean with the same number of elements as the operands being
5865compared.
5866
5867Arguments:
5868""""""""""
5869
5870The '``fcmp``' instruction takes three operands. The first operand is
5871the condition code indicating the kind of comparison to perform. It is
5872not a value, just a keyword. The possible condition code are:
5873
5874#. ``false``: no comparison, always returns false
5875#. ``oeq``: ordered and equal
5876#. ``ogt``: ordered and greater than
5877#. ``oge``: ordered and greater than or equal
5878#. ``olt``: ordered and less than
5879#. ``ole``: ordered and less than or equal
5880#. ``one``: ordered and not equal
5881#. ``ord``: ordered (no nans)
5882#. ``ueq``: unordered or equal
5883#. ``ugt``: unordered or greater than
5884#. ``uge``: unordered or greater than or equal
5885#. ``ult``: unordered or less than
5886#. ``ule``: unordered or less than or equal
5887#. ``une``: unordered or not equal
5888#. ``uno``: unordered (either nans)
5889#. ``true``: no comparison, always returns true
5890
5891*Ordered* means that neither operand is a QNAN while *unordered* means
5892that either operand may be a QNAN.
5893
5894Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5895point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5896type. They must have identical types.
5897
5898Semantics:
5899""""""""""
5900
5901The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5902condition code given as ``cond``. If the operands are vectors, then the
5903vectors are compared element by element. Each comparison performed
5904always yields an :ref:`i1 <t_integer>` result, as follows:
5905
5906#. ``false``: always yields ``false``, regardless of operands.
5907#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5908 is equal to ``op2``.
5909#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5910 is greater than ``op2``.
5911#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5912 is greater than or equal to ``op2``.
5913#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5914 is less than ``op2``.
5915#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5916 is less than or equal to ``op2``.
5917#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5918 is not equal to ``op2``.
5919#. ``ord``: yields ``true`` if both operands are not a QNAN.
5920#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5921 equal to ``op2``.
5922#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5923 greater than ``op2``.
5924#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5925 greater than or equal to ``op2``.
5926#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5927 less than ``op2``.
5928#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5929 less than or equal to ``op2``.
5930#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5931 not equal to ``op2``.
5932#. ``uno``: yields ``true`` if either operand is a QNAN.
5933#. ``true``: always yields ``true``, regardless of operands.
5934
5935Example:
5936""""""""
5937
5938.. code-block:: llvm
5939
5940 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5941 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5942 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5943 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5944
5945Note that the code generator does not yet support vector types with the
5946``fcmp`` instruction.
5947
5948.. _i_phi:
5949
5950'``phi``' Instruction
5951^^^^^^^^^^^^^^^^^^^^^
5952
5953Syntax:
5954"""""""
5955
5956::
5957
5958 <result> = phi <ty> [ <val0>, <label0>], ...
5959
5960Overview:
5961"""""""""
5962
5963The '``phi``' instruction is used to implement the φ node in the SSA
5964graph representing the function.
5965
5966Arguments:
5967""""""""""
5968
5969The type of the incoming values is specified with the first type field.
5970After this, the '``phi``' instruction takes a list of pairs as
5971arguments, with one pair for each predecessor basic block of the current
5972block. Only values of :ref:`first class <t_firstclass>` type may be used as
5973the value arguments to the PHI node. Only labels may be used as the
5974label arguments.
5975
5976There must be no non-phi instructions between the start of a basic block
5977and the PHI instructions: i.e. PHI instructions must be first in a basic
5978block.
5979
5980For the purposes of the SSA form, the use of each incoming value is
5981deemed to occur on the edge from the corresponding predecessor block to
5982the current block (but after any definition of an '``invoke``'
5983instruction's return value on the same edge).
5984
5985Semantics:
5986""""""""""
5987
5988At runtime, the '``phi``' instruction logically takes on the value
5989specified by the pair corresponding to the predecessor basic block that
5990executed just prior to the current block.
5991
5992Example:
5993""""""""
5994
5995.. code-block:: llvm
5996
5997 Loop: ; Infinite loop that counts from 0 on up...
5998 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5999 %nextindvar = add i32 %indvar, 1
6000 br label %Loop
6001
6002.. _i_select:
6003
6004'``select``' Instruction
6005^^^^^^^^^^^^^^^^^^^^^^^^
6006
6007Syntax:
6008"""""""
6009
6010::
6011
6012 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6013
6014 selty is either i1 or {<N x i1>}
6015
6016Overview:
6017"""""""""
6018
6019The '``select``' instruction is used to choose one value based on a
6020condition, without branching.
6021
6022Arguments:
6023""""""""""
6024
6025The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6026values indicating the condition, and two values of the same :ref:`first
6027class <t_firstclass>` type. If the val1/val2 are vectors and the
6028condition is a scalar, then entire vectors are selected, not individual
6029elements.
6030
6031Semantics:
6032""""""""""
6033
6034If the condition is an i1 and it evaluates to 1, the instruction returns
6035the first value argument; otherwise, it returns the second value
6036argument.
6037
6038If the condition is a vector of i1, then the value arguments must be
6039vectors of the same size, and the selection is done element by element.
6040
6041Example:
6042""""""""
6043
6044.. code-block:: llvm
6045
6046 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6047
6048.. _i_call:
6049
6050'``call``' Instruction
6051^^^^^^^^^^^^^^^^^^^^^^
6052
6053Syntax:
6054"""""""
6055
6056::
6057
6058 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6059
6060Overview:
6061"""""""""
6062
6063The '``call``' instruction represents a simple function call.
6064
6065Arguments:
6066""""""""""
6067
6068This instruction requires several arguments:
6069
6070#. The optional "tail" marker indicates that the callee function does
6071 not access any allocas or varargs in the caller. Note that calls may
6072 be marked "tail" even if they do not occur before a
6073 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
6074 function call is eligible for tail call optimization, but `might not
6075 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
6076 The code generator may optimize calls marked "tail" with either 1)
6077 automatic `sibling call
6078 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6079 callee have matching signatures, or 2) forced tail call optimization
6080 when the following extra requirements are met:
6081
6082 - Caller and callee both have the calling convention ``fastcc``.
6083 - The call is in tail position (ret immediately follows call and ret
6084 uses value of call or is void).
6085 - Option ``-tailcallopt`` is enabled, or
6086 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6087 - `Platform specific constraints are
6088 met. <CodeGenerator.html#tailcallopt>`_
6089
6090#. The optional "cconv" marker indicates which :ref:`calling
6091 convention <callingconv>` the call should use. If none is
6092 specified, the call defaults to using C calling conventions. The
6093 calling convention of the call must match the calling convention of
6094 the target function, or else the behavior is undefined.
6095#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6096 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6097 are valid here.
6098#. '``ty``': the type of the call instruction itself which is also the
6099 type of the return value. Functions that return no value are marked
6100 ``void``.
6101#. '``fnty``': shall be the signature of the pointer to function value
6102 being invoked. The argument types must match the types implied by
6103 this signature. This type can be omitted if the function is not
6104 varargs and if the function type does not return a pointer to a
6105 function.
6106#. '``fnptrval``': An LLVM value containing a pointer to a function to
6107 be invoked. In most cases, this is a direct function invocation, but
6108 indirect ``call``'s are just as possible, calling an arbitrary pointer
6109 to function value.
6110#. '``function args``': argument list whose types match the function
6111 signature argument types and parameter attributes. All arguments must
6112 be of :ref:`first class <t_firstclass>` type. If the function signature
6113 indicates the function accepts a variable number of arguments, the
6114 extra arguments can be specified.
6115#. The optional :ref:`function attributes <fnattrs>` list. Only
6116 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6117 attributes are valid here.
6118
6119Semantics:
6120""""""""""
6121
6122The '``call``' instruction is used to cause control flow to transfer to
6123a specified function, with its incoming arguments bound to the specified
6124values. Upon a '``ret``' instruction in the called function, control
6125flow continues with the instruction after the function call, and the
6126return value of the function is bound to the result argument.
6127
6128Example:
6129""""""""
6130
6131.. code-block:: llvm
6132
6133 %retval = call i32 @test(i32 %argc)
6134 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6135 %X = tail call i32 @foo() ; yields i32
6136 %Y = tail call fastcc i32 @foo() ; yields i32
6137 call void %foo(i8 97 signext)
6138
6139 %struct.A = type { i32, i8 }
6140 %r = call %struct.A @foo() ; yields { 32, i8 }
6141 %gr = extractvalue %struct.A %r, 0 ; yields i32
6142 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6143 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6144 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6145
6146llvm treats calls to some functions with names and arguments that match
6147the standard C99 library as being the C99 library functions, and may
6148perform optimizations or generate code for them under that assumption.
6149This is something we'd like to change in the future to provide better
6150support for freestanding environments and non-C-based languages.
6151
6152.. _i_va_arg:
6153
6154'``va_arg``' Instruction
6155^^^^^^^^^^^^^^^^^^^^^^^^
6156
6157Syntax:
6158"""""""
6159
6160::
6161
6162 <resultval> = va_arg <va_list*> <arglist>, <argty>
6163
6164Overview:
6165"""""""""
6166
6167The '``va_arg``' instruction is used to access arguments passed through
6168the "variable argument" area of a function call. It is used to implement
6169the ``va_arg`` macro in C.
6170
6171Arguments:
6172""""""""""
6173
6174This instruction takes a ``va_list*`` value and the type of the
6175argument. It returns a value of the specified argument type and
6176increments the ``va_list`` to point to the next argument. The actual
6177type of ``va_list`` is target specific.
6178
6179Semantics:
6180""""""""""
6181
6182The '``va_arg``' instruction loads an argument of the specified type
6183from the specified ``va_list`` and causes the ``va_list`` to point to
6184the next argument. For more information, see the variable argument
6185handling :ref:`Intrinsic Functions <int_varargs>`.
6186
6187It is legal for this instruction to be called in a function which does
6188not take a variable number of arguments, for example, the ``vfprintf``
6189function.
6190
6191``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6192function <intrinsics>` because it takes a type as an argument.
6193
6194Example:
6195""""""""
6196
6197See the :ref:`variable argument processing <int_varargs>` section.
6198
6199Note that the code generator does not yet fully support va\_arg on many
6200targets. Also, it does not currently support va\_arg with aggregate
6201types on any target.
6202
6203.. _i_landingpad:
6204
6205'``landingpad``' Instruction
6206^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6207
6208Syntax:
6209"""""""
6210
6211::
6212
6213 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6214 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6215
6216 <clause> := catch <type> <value>
6217 <clause> := filter <array constant type> <array constant>
6218
6219Overview:
6220"""""""""
6221
6222The '``landingpad``' instruction is used by `LLVM's exception handling
6223system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006224is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006225code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6226defines values supplied by the personality function (``pers_fn``) upon
6227re-entry to the function. The ``resultval`` has the type ``resultty``.
6228
6229Arguments:
6230""""""""""
6231
6232This instruction takes a ``pers_fn`` value. This is the personality
6233function associated with the unwinding mechanism. The optional
6234``cleanup`` flag indicates that the landing pad block is a cleanup.
6235
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006236A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006237contains the global variable representing the "type" that may be caught
6238or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6239clause takes an array constant as its argument. Use
6240"``[0 x i8**] undef``" for a filter which cannot throw. The
6241'``landingpad``' instruction must contain *at least* one ``clause`` or
6242the ``cleanup`` flag.
6243
6244Semantics:
6245""""""""""
6246
6247The '``landingpad``' instruction defines the values which are set by the
6248personality function (``pers_fn``) upon re-entry to the function, and
6249therefore the "result type" of the ``landingpad`` instruction. As with
6250calling conventions, how the personality function results are
6251represented in LLVM IR is target specific.
6252
6253The clauses are applied in order from top to bottom. If two
6254``landingpad`` instructions are merged together through inlining, the
6255clauses from the calling function are appended to the list of clauses.
6256When the call stack is being unwound due to an exception being thrown,
6257the exception is compared against each ``clause`` in turn. If it doesn't
6258match any of the clauses, and the ``cleanup`` flag is not set, then
6259unwinding continues further up the call stack.
6260
6261The ``landingpad`` instruction has several restrictions:
6262
6263- A landing pad block is a basic block which is the unwind destination
6264 of an '``invoke``' instruction.
6265- A landing pad block must have a '``landingpad``' instruction as its
6266 first non-PHI instruction.
6267- There can be only one '``landingpad``' instruction within the landing
6268 pad block.
6269- A basic block that is not a landing pad block may not include a
6270 '``landingpad``' instruction.
6271- All '``landingpad``' instructions in a function must have the same
6272 personality function.
6273
6274Example:
6275""""""""
6276
6277.. code-block:: llvm
6278
6279 ;; A landing pad which can catch an integer.
6280 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6281 catch i8** @_ZTIi
6282 ;; A landing pad that is a cleanup.
6283 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6284 cleanup
6285 ;; A landing pad which can catch an integer and can only throw a double.
6286 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6287 catch i8** @_ZTIi
6288 filter [1 x i8**] [@_ZTId]
6289
6290.. _intrinsics:
6291
6292Intrinsic Functions
6293===================
6294
6295LLVM supports the notion of an "intrinsic function". These functions
6296have well known names and semantics and are required to follow certain
6297restrictions. Overall, these intrinsics represent an extension mechanism
6298for the LLVM language that does not require changing all of the
6299transformations in LLVM when adding to the language (or the bitcode
6300reader/writer, the parser, etc...).
6301
6302Intrinsic function names must all start with an "``llvm.``" prefix. This
6303prefix is reserved in LLVM for intrinsic names; thus, function names may
6304not begin with this prefix. Intrinsic functions must always be external
6305functions: you cannot define the body of intrinsic functions. Intrinsic
6306functions may only be used in call or invoke instructions: it is illegal
6307to take the address of an intrinsic function. Additionally, because
6308intrinsic functions are part of the LLVM language, it is required if any
6309are added that they be documented here.
6310
6311Some intrinsic functions can be overloaded, i.e., the intrinsic
6312represents a family of functions that perform the same operation but on
6313different data types. Because LLVM can represent over 8 million
6314different integer types, overloading is used commonly to allow an
6315intrinsic function to operate on any integer type. One or more of the
6316argument types or the result type can be overloaded to accept any
6317integer type. Argument types may also be defined as exactly matching a
6318previous argument's type or the result type. This allows an intrinsic
6319function which accepts multiple arguments, but needs all of them to be
6320of the same type, to only be overloaded with respect to a single
6321argument or the result.
6322
6323Overloaded intrinsics will have the names of its overloaded argument
6324types encoded into its function name, each preceded by a period. Only
6325those types which are overloaded result in a name suffix. Arguments
6326whose type is matched against another type do not. For example, the
6327``llvm.ctpop`` function can take an integer of any width and returns an
6328integer of exactly the same integer width. This leads to a family of
6329functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6330``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6331overloaded, and only one type suffix is required. Because the argument's
6332type is matched against the return type, it does not require its own
6333name suffix.
6334
6335To learn how to add an intrinsic function, please see the `Extending
6336LLVM Guide <ExtendingLLVM.html>`_.
6337
6338.. _int_varargs:
6339
6340Variable Argument Handling Intrinsics
6341-------------------------------------
6342
6343Variable argument support is defined in LLVM with the
6344:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6345functions. These functions are related to the similarly named macros
6346defined in the ``<stdarg.h>`` header file.
6347
6348All of these functions operate on arguments that use a target-specific
6349value type "``va_list``". The LLVM assembly language reference manual
6350does not define what this type is, so all transformations should be
6351prepared to handle these functions regardless of the type used.
6352
6353This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6354variable argument handling intrinsic functions are used.
6355
6356.. code-block:: llvm
6357
6358 define i32 @test(i32 %X, ...) {
6359 ; Initialize variable argument processing
6360 %ap = alloca i8*
6361 %ap2 = bitcast i8** %ap to i8*
6362 call void @llvm.va_start(i8* %ap2)
6363
6364 ; Read a single integer argument
6365 %tmp = va_arg i8** %ap, i32
6366
6367 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6368 %aq = alloca i8*
6369 %aq2 = bitcast i8** %aq to i8*
6370 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6371 call void @llvm.va_end(i8* %aq2)
6372
6373 ; Stop processing of arguments.
6374 call void @llvm.va_end(i8* %ap2)
6375 ret i32 %tmp
6376 }
6377
6378 declare void @llvm.va_start(i8*)
6379 declare void @llvm.va_copy(i8*, i8*)
6380 declare void @llvm.va_end(i8*)
6381
6382.. _int_va_start:
6383
6384'``llvm.va_start``' Intrinsic
6385^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6386
6387Syntax:
6388"""""""
6389
6390::
6391
Nick Lewycky04f6de02013-09-11 22:04:52 +00006392 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006393
6394Overview:
6395"""""""""
6396
6397The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6398subsequent use by ``va_arg``.
6399
6400Arguments:
6401""""""""""
6402
6403The argument is a pointer to a ``va_list`` element to initialize.
6404
6405Semantics:
6406""""""""""
6407
6408The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6409available in C. In a target-dependent way, it initializes the
6410``va_list`` element to which the argument points, so that the next call
6411to ``va_arg`` will produce the first variable argument passed to the
6412function. Unlike the C ``va_start`` macro, this intrinsic does not need
6413to know the last argument of the function as the compiler can figure
6414that out.
6415
6416'``llvm.va_end``' Intrinsic
6417^^^^^^^^^^^^^^^^^^^^^^^^^^^
6418
6419Syntax:
6420"""""""
6421
6422::
6423
6424 declare void @llvm.va_end(i8* <arglist>)
6425
6426Overview:
6427"""""""""
6428
6429The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6430initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6431
6432Arguments:
6433""""""""""
6434
6435The argument is a pointer to a ``va_list`` to destroy.
6436
6437Semantics:
6438""""""""""
6439
6440The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6441available in C. In a target-dependent way, it destroys the ``va_list``
6442element to which the argument points. Calls to
6443:ref:`llvm.va_start <int_va_start>` and
6444:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6445``llvm.va_end``.
6446
6447.. _int_va_copy:
6448
6449'``llvm.va_copy``' Intrinsic
6450^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6451
6452Syntax:
6453"""""""
6454
6455::
6456
6457 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6458
6459Overview:
6460"""""""""
6461
6462The '``llvm.va_copy``' intrinsic copies the current argument position
6463from the source argument list to the destination argument list.
6464
6465Arguments:
6466""""""""""
6467
6468The first argument is a pointer to a ``va_list`` element to initialize.
6469The second argument is a pointer to a ``va_list`` element to copy from.
6470
6471Semantics:
6472""""""""""
6473
6474The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6475available in C. In a target-dependent way, it copies the source
6476``va_list`` element into the destination ``va_list`` element. This
6477intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6478arbitrarily complex and require, for example, memory allocation.
6479
6480Accurate Garbage Collection Intrinsics
6481--------------------------------------
6482
6483LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6484(GC) requires the implementation and generation of these intrinsics.
6485These intrinsics allow identification of :ref:`GC roots on the
6486stack <int_gcroot>`, as well as garbage collector implementations that
6487require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6488Front-ends for type-safe garbage collected languages should generate
6489these intrinsics to make use of the LLVM garbage collectors. For more
6490details, see `Accurate Garbage Collection with
6491LLVM <GarbageCollection.html>`_.
6492
6493The garbage collection intrinsics only operate on objects in the generic
6494address space (address space zero).
6495
6496.. _int_gcroot:
6497
6498'``llvm.gcroot``' Intrinsic
6499^^^^^^^^^^^^^^^^^^^^^^^^^^^
6500
6501Syntax:
6502"""""""
6503
6504::
6505
6506 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6507
6508Overview:
6509"""""""""
6510
6511The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6512the code generator, and allows some metadata to be associated with it.
6513
6514Arguments:
6515""""""""""
6516
6517The first argument specifies the address of a stack object that contains
6518the root pointer. The second pointer (which must be either a constant or
6519a global value address) contains the meta-data to be associated with the
6520root.
6521
6522Semantics:
6523""""""""""
6524
6525At runtime, a call to this intrinsic stores a null pointer into the
6526"ptrloc" location. At compile-time, the code generator generates
6527information to allow the runtime to find the pointer at GC safe points.
6528The '``llvm.gcroot``' intrinsic may only be used in a function which
6529:ref:`specifies a GC algorithm <gc>`.
6530
6531.. _int_gcread:
6532
6533'``llvm.gcread``' Intrinsic
6534^^^^^^^^^^^^^^^^^^^^^^^^^^^
6535
6536Syntax:
6537"""""""
6538
6539::
6540
6541 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6542
6543Overview:
6544"""""""""
6545
6546The '``llvm.gcread``' intrinsic identifies reads of references from heap
6547locations, allowing garbage collector implementations that require read
6548barriers.
6549
6550Arguments:
6551""""""""""
6552
6553The second argument is the address to read from, which should be an
6554address allocated from the garbage collector. The first object is a
6555pointer to the start of the referenced object, if needed by the language
6556runtime (otherwise null).
6557
6558Semantics:
6559""""""""""
6560
6561The '``llvm.gcread``' intrinsic has the same semantics as a load
6562instruction, but may be replaced with substantially more complex code by
6563the garbage collector runtime, as needed. The '``llvm.gcread``'
6564intrinsic may only be used in a function which :ref:`specifies a GC
6565algorithm <gc>`.
6566
6567.. _int_gcwrite:
6568
6569'``llvm.gcwrite``' Intrinsic
6570^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6571
6572Syntax:
6573"""""""
6574
6575::
6576
6577 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6578
6579Overview:
6580"""""""""
6581
6582The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6583locations, allowing garbage collector implementations that require write
6584barriers (such as generational or reference counting collectors).
6585
6586Arguments:
6587""""""""""
6588
6589The first argument is the reference to store, the second is the start of
6590the object to store it to, and the third is the address of the field of
6591Obj to store to. If the runtime does not require a pointer to the
6592object, Obj may be null.
6593
6594Semantics:
6595""""""""""
6596
6597The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6598instruction, but may be replaced with substantially more complex code by
6599the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6600intrinsic may only be used in a function which :ref:`specifies a GC
6601algorithm <gc>`.
6602
6603Code Generator Intrinsics
6604-------------------------
6605
6606These intrinsics are provided by LLVM to expose special features that
6607may only be implemented with code generator support.
6608
6609'``llvm.returnaddress``' Intrinsic
6610^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6611
6612Syntax:
6613"""""""
6614
6615::
6616
6617 declare i8 *@llvm.returnaddress(i32 <level>)
6618
6619Overview:
6620"""""""""
6621
6622The '``llvm.returnaddress``' intrinsic attempts to compute a
6623target-specific value indicating the return address of the current
6624function or one of its callers.
6625
6626Arguments:
6627""""""""""
6628
6629The argument to this intrinsic indicates which function to return the
6630address for. Zero indicates the calling function, one indicates its
6631caller, etc. The argument is **required** to be a constant integer
6632value.
6633
6634Semantics:
6635""""""""""
6636
6637The '``llvm.returnaddress``' intrinsic either returns a pointer
6638indicating the return address of the specified call frame, or zero if it
6639cannot be identified. The value returned by this intrinsic is likely to
6640be incorrect or 0 for arguments other than zero, so it should only be
6641used for debugging purposes.
6642
6643Note that calling this intrinsic does not prevent function inlining or
6644other aggressive transformations, so the value returned may not be that
6645of the obvious source-language caller.
6646
6647'``llvm.frameaddress``' Intrinsic
6648^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6649
6650Syntax:
6651"""""""
6652
6653::
6654
6655 declare i8* @llvm.frameaddress(i32 <level>)
6656
6657Overview:
6658"""""""""
6659
6660The '``llvm.frameaddress``' intrinsic attempts to return the
6661target-specific frame pointer value for the specified stack frame.
6662
6663Arguments:
6664""""""""""
6665
6666The argument to this intrinsic indicates which function to return the
6667frame pointer for. Zero indicates the calling function, one indicates
6668its caller, etc. The argument is **required** to be a constant integer
6669value.
6670
6671Semantics:
6672""""""""""
6673
6674The '``llvm.frameaddress``' intrinsic either returns a pointer
6675indicating the frame address of the specified call frame, or zero if it
6676cannot be identified. The value returned by this intrinsic is likely to
6677be incorrect or 0 for arguments other than zero, so it should only be
6678used for debugging purposes.
6679
6680Note that calling this intrinsic does not prevent function inlining or
6681other aggressive transformations, so the value returned may not be that
6682of the obvious source-language caller.
6683
6684.. _int_stacksave:
6685
6686'``llvm.stacksave``' Intrinsic
6687^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6688
6689Syntax:
6690"""""""
6691
6692::
6693
6694 declare i8* @llvm.stacksave()
6695
6696Overview:
6697"""""""""
6698
6699The '``llvm.stacksave``' intrinsic is used to remember the current state
6700of the function stack, for use with
6701:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6702implementing language features like scoped automatic variable sized
6703arrays in C99.
6704
6705Semantics:
6706""""""""""
6707
6708This intrinsic returns a opaque pointer value that can be passed to
6709:ref:`llvm.stackrestore <int_stackrestore>`. When an
6710``llvm.stackrestore`` intrinsic is executed with a value saved from
6711``llvm.stacksave``, it effectively restores the state of the stack to
6712the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6713practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6714were allocated after the ``llvm.stacksave`` was executed.
6715
6716.. _int_stackrestore:
6717
6718'``llvm.stackrestore``' Intrinsic
6719^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6720
6721Syntax:
6722"""""""
6723
6724::
6725
6726 declare void @llvm.stackrestore(i8* %ptr)
6727
6728Overview:
6729"""""""""
6730
6731The '``llvm.stackrestore``' intrinsic is used to restore the state of
6732the function stack to the state it was in when the corresponding
6733:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6734useful for implementing language features like scoped automatic variable
6735sized arrays in C99.
6736
6737Semantics:
6738""""""""""
6739
6740See the description for :ref:`llvm.stacksave <int_stacksave>`.
6741
6742'``llvm.prefetch``' Intrinsic
6743^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6744
6745Syntax:
6746"""""""
6747
6748::
6749
6750 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6751
6752Overview:
6753"""""""""
6754
6755The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6756insert a prefetch instruction if supported; otherwise, it is a noop.
6757Prefetches have no effect on the behavior of the program but can change
6758its performance characteristics.
6759
6760Arguments:
6761""""""""""
6762
6763``address`` is the address to be prefetched, ``rw`` is the specifier
6764determining if the fetch should be for a read (0) or write (1), and
6765``locality`` is a temporal locality specifier ranging from (0) - no
6766locality, to (3) - extremely local keep in cache. The ``cache type``
6767specifies whether the prefetch is performed on the data (1) or
6768instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6769arguments must be constant integers.
6770
6771Semantics:
6772""""""""""
6773
6774This intrinsic does not modify the behavior of the program. In
6775particular, prefetches cannot trap and do not produce a value. On
6776targets that support this intrinsic, the prefetch can provide hints to
6777the processor cache for better performance.
6778
6779'``llvm.pcmarker``' Intrinsic
6780^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6781
6782Syntax:
6783"""""""
6784
6785::
6786
6787 declare void @llvm.pcmarker(i32 <id>)
6788
6789Overview:
6790"""""""""
6791
6792The '``llvm.pcmarker``' intrinsic is a method to export a Program
6793Counter (PC) in a region of code to simulators and other tools. The
6794method is target specific, but it is expected that the marker will use
6795exported symbols to transmit the PC of the marker. The marker makes no
6796guarantees that it will remain with any specific instruction after
6797optimizations. It is possible that the presence of a marker will inhibit
6798optimizations. The intended use is to be inserted after optimizations to
6799allow correlations of simulation runs.
6800
6801Arguments:
6802""""""""""
6803
6804``id`` is a numerical id identifying the marker.
6805
6806Semantics:
6807""""""""""
6808
6809This intrinsic does not modify the behavior of the program. Backends
6810that do not support this intrinsic may ignore it.
6811
6812'``llvm.readcyclecounter``' Intrinsic
6813^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6814
6815Syntax:
6816"""""""
6817
6818::
6819
6820 declare i64 @llvm.readcyclecounter()
6821
6822Overview:
6823"""""""""
6824
6825The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6826counter register (or similar low latency, high accuracy clocks) on those
6827targets that support it. On X86, it should map to RDTSC. On Alpha, it
6828should map to RPCC. As the backing counters overflow quickly (on the
6829order of 9 seconds on alpha), this should only be used for small
6830timings.
6831
6832Semantics:
6833""""""""""
6834
6835When directly supported, reading the cycle counter should not modify any
6836memory. Implementations are allowed to either return a application
6837specific value or a system wide value. On backends without support, this
6838is lowered to a constant 0.
6839
Tim Northoverbc933082013-05-23 19:11:20 +00006840Note that runtime support may be conditional on the privilege-level code is
6841running at and the host platform.
6842
Sean Silvab084af42012-12-07 10:36:55 +00006843Standard C Library Intrinsics
6844-----------------------------
6845
6846LLVM provides intrinsics for a few important standard C library
6847functions. These intrinsics allow source-language front-ends to pass
6848information about the alignment of the pointer arguments to the code
6849generator, providing opportunity for more efficient code generation.
6850
6851.. _int_memcpy:
6852
6853'``llvm.memcpy``' Intrinsic
6854^^^^^^^^^^^^^^^^^^^^^^^^^^^
6855
6856Syntax:
6857"""""""
6858
6859This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6860integer bit width and for different address spaces. Not all targets
6861support all bit widths however.
6862
6863::
6864
6865 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6866 i32 <len>, i32 <align>, i1 <isvolatile>)
6867 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6868 i64 <len>, i32 <align>, i1 <isvolatile>)
6869
6870Overview:
6871"""""""""
6872
6873The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6874source location to the destination location.
6875
6876Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6877intrinsics do not return a value, takes extra alignment/isvolatile
6878arguments and the pointers can be in specified address spaces.
6879
6880Arguments:
6881""""""""""
6882
6883The first argument is a pointer to the destination, the second is a
6884pointer to the source. The third argument is an integer argument
6885specifying the number of bytes to copy, the fourth argument is the
6886alignment of the source and destination locations, and the fifth is a
6887boolean indicating a volatile access.
6888
6889If the call to this intrinsic has an alignment value that is not 0 or 1,
6890then the caller guarantees that both the source and destination pointers
6891are aligned to that boundary.
6892
6893If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6894a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6895very cleanly specified and it is unwise to depend on it.
6896
6897Semantics:
6898""""""""""
6899
6900The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6901source location to the destination location, which are not allowed to
6902overlap. It copies "len" bytes of memory over. If the argument is known
6903to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00006904argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00006905
6906'``llvm.memmove``' Intrinsic
6907^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6908
6909Syntax:
6910"""""""
6911
6912This is an overloaded intrinsic. You can use llvm.memmove on any integer
6913bit width and for different address space. Not all targets support all
6914bit widths however.
6915
6916::
6917
6918 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6919 i32 <len>, i32 <align>, i1 <isvolatile>)
6920 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6921 i64 <len>, i32 <align>, i1 <isvolatile>)
6922
6923Overview:
6924"""""""""
6925
6926The '``llvm.memmove.*``' intrinsics move a block of memory from the
6927source location to the destination location. It is similar to the
6928'``llvm.memcpy``' intrinsic but allows the two memory locations to
6929overlap.
6930
6931Note that, unlike the standard libc function, the ``llvm.memmove.*``
6932intrinsics do not return a value, takes extra alignment/isvolatile
6933arguments and the pointers can be in specified address spaces.
6934
6935Arguments:
6936""""""""""
6937
6938The first argument is a pointer to the destination, the second is a
6939pointer to the source. The third argument is an integer argument
6940specifying the number of bytes to copy, the fourth argument is the
6941alignment of the source and destination locations, and the fifth is a
6942boolean indicating a volatile access.
6943
6944If the call to this intrinsic has an alignment value that is not 0 or 1,
6945then the caller guarantees that the source and destination pointers are
6946aligned to that boundary.
6947
6948If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6949is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6950not very cleanly specified and it is unwise to depend on it.
6951
6952Semantics:
6953""""""""""
6954
6955The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6956source location to the destination location, which may overlap. It
6957copies "len" bytes of memory over. If the argument is known to be
6958aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00006959otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00006960
6961'``llvm.memset.*``' Intrinsics
6962^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6963
6964Syntax:
6965"""""""
6966
6967This is an overloaded intrinsic. You can use llvm.memset on any integer
6968bit width and for different address spaces. However, not all targets
6969support all bit widths.
6970
6971::
6972
6973 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6974 i32 <len>, i32 <align>, i1 <isvolatile>)
6975 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6976 i64 <len>, i32 <align>, i1 <isvolatile>)
6977
6978Overview:
6979"""""""""
6980
6981The '``llvm.memset.*``' intrinsics fill a block of memory with a
6982particular byte value.
6983
6984Note that, unlike the standard libc function, the ``llvm.memset``
6985intrinsic does not return a value and takes extra alignment/volatile
6986arguments. Also, the destination can be in an arbitrary address space.
6987
6988Arguments:
6989""""""""""
6990
6991The first argument is a pointer to the destination to fill, the second
6992is the byte value with which to fill it, the third argument is an
6993integer argument specifying the number of bytes to fill, and the fourth
6994argument is the known alignment of the destination location.
6995
6996If the call to this intrinsic has an alignment value that is not 0 or 1,
6997then the caller guarantees that the destination pointer is aligned to
6998that boundary.
6999
7000If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7001a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7002very cleanly specified and it is unwise to depend on it.
7003
7004Semantics:
7005""""""""""
7006
7007The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7008at the destination location. If the argument is known to be aligned to
7009some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007010it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007011
7012'``llvm.sqrt.*``' Intrinsic
7013^^^^^^^^^^^^^^^^^^^^^^^^^^^
7014
7015Syntax:
7016"""""""
7017
7018This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7019floating point or vector of floating point type. Not all targets support
7020all types however.
7021
7022::
7023
7024 declare float @llvm.sqrt.f32(float %Val)
7025 declare double @llvm.sqrt.f64(double %Val)
7026 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7027 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7028 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7029
7030Overview:
7031"""""""""
7032
7033The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7034returning the same value as the libm '``sqrt``' functions would. Unlike
7035``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7036negative numbers other than -0.0 (which allows for better optimization,
7037because there is no need to worry about errno being set).
7038``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7039
7040Arguments:
7041""""""""""
7042
7043The argument and return value are floating point numbers of the same
7044type.
7045
7046Semantics:
7047""""""""""
7048
7049This function returns the sqrt of the specified operand if it is a
7050nonnegative floating point number.
7051
7052'``llvm.powi.*``' Intrinsic
7053^^^^^^^^^^^^^^^^^^^^^^^^^^^
7054
7055Syntax:
7056"""""""
7057
7058This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7059floating point or vector of floating point type. Not all targets support
7060all types however.
7061
7062::
7063
7064 declare float @llvm.powi.f32(float %Val, i32 %power)
7065 declare double @llvm.powi.f64(double %Val, i32 %power)
7066 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7067 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7068 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7069
7070Overview:
7071"""""""""
7072
7073The '``llvm.powi.*``' intrinsics return the first operand raised to the
7074specified (positive or negative) power. The order of evaluation of
7075multiplications is not defined. When a vector of floating point type is
7076used, the second argument remains a scalar integer value.
7077
7078Arguments:
7079""""""""""
7080
7081The second argument is an integer power, and the first is a value to
7082raise to that power.
7083
7084Semantics:
7085""""""""""
7086
7087This function returns the first value raised to the second power with an
7088unspecified sequence of rounding operations.
7089
7090'``llvm.sin.*``' Intrinsic
7091^^^^^^^^^^^^^^^^^^^^^^^^^^
7092
7093Syntax:
7094"""""""
7095
7096This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7097floating point or vector of floating point type. Not all targets support
7098all types however.
7099
7100::
7101
7102 declare float @llvm.sin.f32(float %Val)
7103 declare double @llvm.sin.f64(double %Val)
7104 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7105 declare fp128 @llvm.sin.f128(fp128 %Val)
7106 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7107
7108Overview:
7109"""""""""
7110
7111The '``llvm.sin.*``' intrinsics return the sine of the operand.
7112
7113Arguments:
7114""""""""""
7115
7116The argument and return value are floating point numbers of the same
7117type.
7118
7119Semantics:
7120""""""""""
7121
7122This function returns the sine of the specified operand, returning the
7123same values as the libm ``sin`` functions would, and handles error
7124conditions in the same way.
7125
7126'``llvm.cos.*``' Intrinsic
7127^^^^^^^^^^^^^^^^^^^^^^^^^^
7128
7129Syntax:
7130"""""""
7131
7132This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7133floating point or vector of floating point type. Not all targets support
7134all types however.
7135
7136::
7137
7138 declare float @llvm.cos.f32(float %Val)
7139 declare double @llvm.cos.f64(double %Val)
7140 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7141 declare fp128 @llvm.cos.f128(fp128 %Val)
7142 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7143
7144Overview:
7145"""""""""
7146
7147The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7148
7149Arguments:
7150""""""""""
7151
7152The argument and return value are floating point numbers of the same
7153type.
7154
7155Semantics:
7156""""""""""
7157
7158This function returns the cosine of the specified operand, returning the
7159same values as the libm ``cos`` functions would, and handles error
7160conditions in the same way.
7161
7162'``llvm.pow.*``' Intrinsic
7163^^^^^^^^^^^^^^^^^^^^^^^^^^
7164
7165Syntax:
7166"""""""
7167
7168This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7169floating point or vector of floating point type. Not all targets support
7170all types however.
7171
7172::
7173
7174 declare float @llvm.pow.f32(float %Val, float %Power)
7175 declare double @llvm.pow.f64(double %Val, double %Power)
7176 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7177 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7178 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7179
7180Overview:
7181"""""""""
7182
7183The '``llvm.pow.*``' intrinsics return the first operand raised to the
7184specified (positive or negative) power.
7185
7186Arguments:
7187""""""""""
7188
7189The second argument is a floating point power, and the first is a value
7190to raise to that power.
7191
7192Semantics:
7193""""""""""
7194
7195This function returns the first value raised to the second power,
7196returning the same values as the libm ``pow`` functions would, and
7197handles error conditions in the same way.
7198
7199'``llvm.exp.*``' Intrinsic
7200^^^^^^^^^^^^^^^^^^^^^^^^^^
7201
7202Syntax:
7203"""""""
7204
7205This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7206floating point or vector of floating point type. Not all targets support
7207all types however.
7208
7209::
7210
7211 declare float @llvm.exp.f32(float %Val)
7212 declare double @llvm.exp.f64(double %Val)
7213 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7214 declare fp128 @llvm.exp.f128(fp128 %Val)
7215 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7216
7217Overview:
7218"""""""""
7219
7220The '``llvm.exp.*``' intrinsics perform the exp function.
7221
7222Arguments:
7223""""""""""
7224
7225The argument and return value are floating point numbers of the same
7226type.
7227
7228Semantics:
7229""""""""""
7230
7231This function returns the same values as the libm ``exp`` functions
7232would, and handles error conditions in the same way.
7233
7234'``llvm.exp2.*``' Intrinsic
7235^^^^^^^^^^^^^^^^^^^^^^^^^^^
7236
7237Syntax:
7238"""""""
7239
7240This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7241floating point or vector of floating point type. Not all targets support
7242all types however.
7243
7244::
7245
7246 declare float @llvm.exp2.f32(float %Val)
7247 declare double @llvm.exp2.f64(double %Val)
7248 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7249 declare fp128 @llvm.exp2.f128(fp128 %Val)
7250 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7251
7252Overview:
7253"""""""""
7254
7255The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7256
7257Arguments:
7258""""""""""
7259
7260The argument and return value are floating point numbers of the same
7261type.
7262
7263Semantics:
7264""""""""""
7265
7266This function returns the same values as the libm ``exp2`` functions
7267would, and handles error conditions in the same way.
7268
7269'``llvm.log.*``' Intrinsic
7270^^^^^^^^^^^^^^^^^^^^^^^^^^
7271
7272Syntax:
7273"""""""
7274
7275This is an overloaded intrinsic. You can use ``llvm.log`` on any
7276floating point or vector of floating point type. Not all targets support
7277all types however.
7278
7279::
7280
7281 declare float @llvm.log.f32(float %Val)
7282 declare double @llvm.log.f64(double %Val)
7283 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7284 declare fp128 @llvm.log.f128(fp128 %Val)
7285 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7286
7287Overview:
7288"""""""""
7289
7290The '``llvm.log.*``' intrinsics perform the log function.
7291
7292Arguments:
7293""""""""""
7294
7295The argument and return value are floating point numbers of the same
7296type.
7297
7298Semantics:
7299""""""""""
7300
7301This function returns the same values as the libm ``log`` functions
7302would, and handles error conditions in the same way.
7303
7304'``llvm.log10.*``' Intrinsic
7305^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7306
7307Syntax:
7308"""""""
7309
7310This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7311floating point or vector of floating point type. Not all targets support
7312all types however.
7313
7314::
7315
7316 declare float @llvm.log10.f32(float %Val)
7317 declare double @llvm.log10.f64(double %Val)
7318 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7319 declare fp128 @llvm.log10.f128(fp128 %Val)
7320 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7321
7322Overview:
7323"""""""""
7324
7325The '``llvm.log10.*``' intrinsics perform the log10 function.
7326
7327Arguments:
7328""""""""""
7329
7330The argument and return value are floating point numbers of the same
7331type.
7332
7333Semantics:
7334""""""""""
7335
7336This function returns the same values as the libm ``log10`` functions
7337would, and handles error conditions in the same way.
7338
7339'``llvm.log2.*``' Intrinsic
7340^^^^^^^^^^^^^^^^^^^^^^^^^^^
7341
7342Syntax:
7343"""""""
7344
7345This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7346floating point or vector of floating point type. Not all targets support
7347all types however.
7348
7349::
7350
7351 declare float @llvm.log2.f32(float %Val)
7352 declare double @llvm.log2.f64(double %Val)
7353 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7354 declare fp128 @llvm.log2.f128(fp128 %Val)
7355 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7356
7357Overview:
7358"""""""""
7359
7360The '``llvm.log2.*``' intrinsics perform the log2 function.
7361
7362Arguments:
7363""""""""""
7364
7365The argument and return value are floating point numbers of the same
7366type.
7367
7368Semantics:
7369""""""""""
7370
7371This function returns the same values as the libm ``log2`` functions
7372would, and handles error conditions in the same way.
7373
7374'``llvm.fma.*``' Intrinsic
7375^^^^^^^^^^^^^^^^^^^^^^^^^^
7376
7377Syntax:
7378"""""""
7379
7380This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7381floating point or vector of floating point type. Not all targets support
7382all types however.
7383
7384::
7385
7386 declare float @llvm.fma.f32(float %a, float %b, float %c)
7387 declare double @llvm.fma.f64(double %a, double %b, double %c)
7388 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7389 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7390 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7391
7392Overview:
7393"""""""""
7394
7395The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7396operation.
7397
7398Arguments:
7399""""""""""
7400
7401The argument and return value are floating point numbers of the same
7402type.
7403
7404Semantics:
7405""""""""""
7406
7407This function returns the same values as the libm ``fma`` functions
7408would.
7409
7410'``llvm.fabs.*``' Intrinsic
7411^^^^^^^^^^^^^^^^^^^^^^^^^^^
7412
7413Syntax:
7414"""""""
7415
7416This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7417floating point or vector of floating point type. Not all targets support
7418all types however.
7419
7420::
7421
7422 declare float @llvm.fabs.f32(float %Val)
7423 declare double @llvm.fabs.f64(double %Val)
7424 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7425 declare fp128 @llvm.fabs.f128(fp128 %Val)
7426 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7427
7428Overview:
7429"""""""""
7430
7431The '``llvm.fabs.*``' intrinsics return the absolute value of the
7432operand.
7433
7434Arguments:
7435""""""""""
7436
7437The argument and return value are floating point numbers of the same
7438type.
7439
7440Semantics:
7441""""""""""
7442
7443This function returns the same values as the libm ``fabs`` functions
7444would, and handles error conditions in the same way.
7445
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007446'``llvm.copysign.*``' Intrinsic
7447^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7448
7449Syntax:
7450"""""""
7451
7452This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7453floating point or vector of floating point type. Not all targets support
7454all types however.
7455
7456::
7457
7458 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7459 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7460 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7461 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7462 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7463
7464Overview:
7465"""""""""
7466
7467The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7468first operand and the sign of the second operand.
7469
7470Arguments:
7471""""""""""
7472
7473The arguments and return value are floating point numbers of the same
7474type.
7475
7476Semantics:
7477""""""""""
7478
7479This function returns the same values as the libm ``copysign``
7480functions would, and handles error conditions in the same way.
7481
Sean Silvab084af42012-12-07 10:36:55 +00007482'``llvm.floor.*``' Intrinsic
7483^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7484
7485Syntax:
7486"""""""
7487
7488This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7489floating point or vector of floating point type. Not all targets support
7490all types however.
7491
7492::
7493
7494 declare float @llvm.floor.f32(float %Val)
7495 declare double @llvm.floor.f64(double %Val)
7496 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7497 declare fp128 @llvm.floor.f128(fp128 %Val)
7498 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7499
7500Overview:
7501"""""""""
7502
7503The '``llvm.floor.*``' intrinsics return the floor of the operand.
7504
7505Arguments:
7506""""""""""
7507
7508The argument and return value are floating point numbers of the same
7509type.
7510
7511Semantics:
7512""""""""""
7513
7514This function returns the same values as the libm ``floor`` functions
7515would, and handles error conditions in the same way.
7516
7517'``llvm.ceil.*``' Intrinsic
7518^^^^^^^^^^^^^^^^^^^^^^^^^^^
7519
7520Syntax:
7521"""""""
7522
7523This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7524floating point or vector of floating point type. Not all targets support
7525all types however.
7526
7527::
7528
7529 declare float @llvm.ceil.f32(float %Val)
7530 declare double @llvm.ceil.f64(double %Val)
7531 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7532 declare fp128 @llvm.ceil.f128(fp128 %Val)
7533 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7534
7535Overview:
7536"""""""""
7537
7538The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7539
7540Arguments:
7541""""""""""
7542
7543The argument and return value are floating point numbers of the same
7544type.
7545
7546Semantics:
7547""""""""""
7548
7549This function returns the same values as the libm ``ceil`` functions
7550would, and handles error conditions in the same way.
7551
7552'``llvm.trunc.*``' Intrinsic
7553^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7554
7555Syntax:
7556"""""""
7557
7558This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7559floating point or vector of floating point type. Not all targets support
7560all types however.
7561
7562::
7563
7564 declare float @llvm.trunc.f32(float %Val)
7565 declare double @llvm.trunc.f64(double %Val)
7566 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7567 declare fp128 @llvm.trunc.f128(fp128 %Val)
7568 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7569
7570Overview:
7571"""""""""
7572
7573The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7574nearest integer not larger in magnitude than the operand.
7575
7576Arguments:
7577""""""""""
7578
7579The argument and return value are floating point numbers of the same
7580type.
7581
7582Semantics:
7583""""""""""
7584
7585This function returns the same values as the libm ``trunc`` functions
7586would, and handles error conditions in the same way.
7587
7588'``llvm.rint.*``' Intrinsic
7589^^^^^^^^^^^^^^^^^^^^^^^^^^^
7590
7591Syntax:
7592"""""""
7593
7594This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7595floating point or vector of floating point type. Not all targets support
7596all types however.
7597
7598::
7599
7600 declare float @llvm.rint.f32(float %Val)
7601 declare double @llvm.rint.f64(double %Val)
7602 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7603 declare fp128 @llvm.rint.f128(fp128 %Val)
7604 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7605
7606Overview:
7607"""""""""
7608
7609The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7610nearest integer. It may raise an inexact floating-point exception if the
7611operand isn't an integer.
7612
7613Arguments:
7614""""""""""
7615
7616The argument and return value are floating point numbers of the same
7617type.
7618
7619Semantics:
7620""""""""""
7621
7622This function returns the same values as the libm ``rint`` functions
7623would, and handles error conditions in the same way.
7624
7625'``llvm.nearbyint.*``' Intrinsic
7626^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7627
7628Syntax:
7629"""""""
7630
7631This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7632floating point or vector of floating point type. Not all targets support
7633all types however.
7634
7635::
7636
7637 declare float @llvm.nearbyint.f32(float %Val)
7638 declare double @llvm.nearbyint.f64(double %Val)
7639 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7640 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7641 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7642
7643Overview:
7644"""""""""
7645
7646The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7647nearest integer.
7648
7649Arguments:
7650""""""""""
7651
7652The argument and return value are floating point numbers of the same
7653type.
7654
7655Semantics:
7656""""""""""
7657
7658This function returns the same values as the libm ``nearbyint``
7659functions would, and handles error conditions in the same way.
7660
Hal Finkel171817e2013-08-07 22:49:12 +00007661'``llvm.round.*``' Intrinsic
7662^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7663
7664Syntax:
7665"""""""
7666
7667This is an overloaded intrinsic. You can use ``llvm.round`` on any
7668floating point or vector of floating point type. Not all targets support
7669all types however.
7670
7671::
7672
7673 declare float @llvm.round.f32(float %Val)
7674 declare double @llvm.round.f64(double %Val)
7675 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7676 declare fp128 @llvm.round.f128(fp128 %Val)
7677 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7678
7679Overview:
7680"""""""""
7681
7682The '``llvm.round.*``' intrinsics returns the operand rounded to the
7683nearest integer.
7684
7685Arguments:
7686""""""""""
7687
7688The argument and return value are floating point numbers of the same
7689type.
7690
7691Semantics:
7692""""""""""
7693
7694This function returns the same values as the libm ``round``
7695functions would, and handles error conditions in the same way.
7696
Sean Silvab084af42012-12-07 10:36:55 +00007697Bit Manipulation Intrinsics
7698---------------------------
7699
7700LLVM provides intrinsics for a few important bit manipulation
7701operations. These allow efficient code generation for some algorithms.
7702
7703'``llvm.bswap.*``' Intrinsics
7704^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7705
7706Syntax:
7707"""""""
7708
7709This is an overloaded intrinsic function. You can use bswap on any
7710integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7711
7712::
7713
7714 declare i16 @llvm.bswap.i16(i16 <id>)
7715 declare i32 @llvm.bswap.i32(i32 <id>)
7716 declare i64 @llvm.bswap.i64(i64 <id>)
7717
7718Overview:
7719"""""""""
7720
7721The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7722values with an even number of bytes (positive multiple of 16 bits).
7723These are useful for performing operations on data that is not in the
7724target's native byte order.
7725
7726Semantics:
7727""""""""""
7728
7729The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7730and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7731intrinsic returns an i32 value that has the four bytes of the input i32
7732swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7733returned i32 will have its bytes in 3, 2, 1, 0 order. The
7734``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7735concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7736respectively).
7737
7738'``llvm.ctpop.*``' Intrinsic
7739^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7740
7741Syntax:
7742"""""""
7743
7744This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7745bit width, or on any vector with integer elements. Not all targets
7746support all bit widths or vector types, however.
7747
7748::
7749
7750 declare i8 @llvm.ctpop.i8(i8 <src>)
7751 declare i16 @llvm.ctpop.i16(i16 <src>)
7752 declare i32 @llvm.ctpop.i32(i32 <src>)
7753 declare i64 @llvm.ctpop.i64(i64 <src>)
7754 declare i256 @llvm.ctpop.i256(i256 <src>)
7755 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7756
7757Overview:
7758"""""""""
7759
7760The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7761in a value.
7762
7763Arguments:
7764""""""""""
7765
7766The only argument is the value to be counted. The argument may be of any
7767integer type, or a vector with integer elements. The return type must
7768match the argument type.
7769
7770Semantics:
7771""""""""""
7772
7773The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7774each element of a vector.
7775
7776'``llvm.ctlz.*``' Intrinsic
7777^^^^^^^^^^^^^^^^^^^^^^^^^^^
7778
7779Syntax:
7780"""""""
7781
7782This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7783integer bit width, or any vector whose elements are integers. Not all
7784targets support all bit widths or vector types, however.
7785
7786::
7787
7788 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7789 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7790 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7791 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7792 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7793 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7794
7795Overview:
7796"""""""""
7797
7798The '``llvm.ctlz``' family of intrinsic functions counts the number of
7799leading zeros in a variable.
7800
7801Arguments:
7802""""""""""
7803
7804The first argument is the value to be counted. This argument may be of
7805any integer type, or a vectory with integer element type. The return
7806type must match the first argument type.
7807
7808The second argument must be a constant and is a flag to indicate whether
7809the intrinsic should ensure that a zero as the first argument produces a
7810defined result. Historically some architectures did not provide a
7811defined result for zero values as efficiently, and many algorithms are
7812now predicated on avoiding zero-value inputs.
7813
7814Semantics:
7815""""""""""
7816
7817The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7818zeros in a variable, or within each element of the vector. If
7819``src == 0`` then the result is the size in bits of the type of ``src``
7820if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7821``llvm.ctlz(i32 2) = 30``.
7822
7823'``llvm.cttz.*``' Intrinsic
7824^^^^^^^^^^^^^^^^^^^^^^^^^^^
7825
7826Syntax:
7827"""""""
7828
7829This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7830integer bit width, or any vector of integer elements. Not all targets
7831support all bit widths or vector types, however.
7832
7833::
7834
7835 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7836 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7837 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7838 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7839 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7840 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7841
7842Overview:
7843"""""""""
7844
7845The '``llvm.cttz``' family of intrinsic functions counts the number of
7846trailing zeros.
7847
7848Arguments:
7849""""""""""
7850
7851The first argument is the value to be counted. This argument may be of
7852any integer type, or a vectory with integer element type. The return
7853type must match the first argument type.
7854
7855The second argument must be a constant and is a flag to indicate whether
7856the intrinsic should ensure that a zero as the first argument produces a
7857defined result. Historically some architectures did not provide a
7858defined result for zero values as efficiently, and many algorithms are
7859now predicated on avoiding zero-value inputs.
7860
7861Semantics:
7862""""""""""
7863
7864The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7865zeros in a variable, or within each element of a vector. If ``src == 0``
7866then the result is the size in bits of the type of ``src`` if
7867``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7868``llvm.cttz(2) = 1``.
7869
7870Arithmetic with Overflow Intrinsics
7871-----------------------------------
7872
7873LLVM provides intrinsics for some arithmetic with overflow operations.
7874
7875'``llvm.sadd.with.overflow.*``' Intrinsics
7876^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7877
7878Syntax:
7879"""""""
7880
7881This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7882on any integer bit width.
7883
7884::
7885
7886 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7887 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7888 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7889
7890Overview:
7891"""""""""
7892
7893The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7894a signed addition of the two arguments, and indicate whether an overflow
7895occurred during the signed summation.
7896
7897Arguments:
7898""""""""""
7899
7900The arguments (%a and %b) and the first element of the result structure
7901may be of integer types of any bit width, but they must have the same
7902bit width. The second element of the result structure must be of type
7903``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7904addition.
7905
7906Semantics:
7907""""""""""
7908
7909The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007910a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007911first element of which is the signed summation, and the second element
7912of which is a bit specifying if the signed summation resulted in an
7913overflow.
7914
7915Examples:
7916"""""""""
7917
7918.. code-block:: llvm
7919
7920 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7921 %sum = extractvalue {i32, i1} %res, 0
7922 %obit = extractvalue {i32, i1} %res, 1
7923 br i1 %obit, label %overflow, label %normal
7924
7925'``llvm.uadd.with.overflow.*``' Intrinsics
7926^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7927
7928Syntax:
7929"""""""
7930
7931This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7932on any integer bit width.
7933
7934::
7935
7936 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7937 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7938 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7939
7940Overview:
7941"""""""""
7942
7943The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7944an unsigned addition of the two arguments, and indicate whether a carry
7945occurred during the unsigned summation.
7946
7947Arguments:
7948""""""""""
7949
7950The arguments (%a and %b) and the first element of the result structure
7951may be of integer types of any bit width, but they must have the same
7952bit width. The second element of the result structure must be of type
7953``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7954addition.
7955
7956Semantics:
7957""""""""""
7958
7959The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007960an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007961first element of which is the sum, and the second element of which is a
7962bit specifying if the unsigned summation resulted in a carry.
7963
7964Examples:
7965"""""""""
7966
7967.. code-block:: llvm
7968
7969 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7970 %sum = extractvalue {i32, i1} %res, 0
7971 %obit = extractvalue {i32, i1} %res, 1
7972 br i1 %obit, label %carry, label %normal
7973
7974'``llvm.ssub.with.overflow.*``' Intrinsics
7975^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7976
7977Syntax:
7978"""""""
7979
7980This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7981on any integer bit width.
7982
7983::
7984
7985 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7986 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7987 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7988
7989Overview:
7990"""""""""
7991
7992The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7993a signed subtraction of the two arguments, and indicate whether an
7994overflow occurred during the signed subtraction.
7995
7996Arguments:
7997""""""""""
7998
7999The arguments (%a and %b) and the first element of the result structure
8000may be of integer types of any bit width, but they must have the same
8001bit width. The second element of the result structure must be of type
8002``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8003subtraction.
8004
8005Semantics:
8006""""""""""
8007
8008The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008009a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008010first element of which is the subtraction, and the second element of
8011which is a bit specifying if the signed subtraction resulted in an
8012overflow.
8013
8014Examples:
8015"""""""""
8016
8017.. code-block:: llvm
8018
8019 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8020 %sum = extractvalue {i32, i1} %res, 0
8021 %obit = extractvalue {i32, i1} %res, 1
8022 br i1 %obit, label %overflow, label %normal
8023
8024'``llvm.usub.with.overflow.*``' Intrinsics
8025^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8026
8027Syntax:
8028"""""""
8029
8030This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8031on any integer bit width.
8032
8033::
8034
8035 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8036 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8037 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8038
8039Overview:
8040"""""""""
8041
8042The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8043an unsigned subtraction of the two arguments, and indicate whether an
8044overflow occurred during the unsigned subtraction.
8045
8046Arguments:
8047""""""""""
8048
8049The arguments (%a and %b) and the first element of the result structure
8050may be of integer types of any bit width, but they must have the same
8051bit width. The second element of the result structure must be of type
8052``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8053subtraction.
8054
8055Semantics:
8056""""""""""
8057
8058The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008059an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008060the first element of which is the subtraction, and the second element of
8061which is a bit specifying if the unsigned subtraction resulted in an
8062overflow.
8063
8064Examples:
8065"""""""""
8066
8067.. code-block:: llvm
8068
8069 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8070 %sum = extractvalue {i32, i1} %res, 0
8071 %obit = extractvalue {i32, i1} %res, 1
8072 br i1 %obit, label %overflow, label %normal
8073
8074'``llvm.smul.with.overflow.*``' Intrinsics
8075^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8076
8077Syntax:
8078"""""""
8079
8080This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8081on any integer bit width.
8082
8083::
8084
8085 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8086 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8087 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8088
8089Overview:
8090"""""""""
8091
8092The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8093a signed multiplication of the two arguments, and indicate whether an
8094overflow occurred during the signed multiplication.
8095
8096Arguments:
8097""""""""""
8098
8099The arguments (%a and %b) and the first element of the result structure
8100may be of integer types of any bit width, but they must have the same
8101bit width. The second element of the result structure must be of type
8102``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8103multiplication.
8104
8105Semantics:
8106""""""""""
8107
8108The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008109a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008110the first element of which is the multiplication, and the second element
8111of which is a bit specifying if the signed multiplication resulted in an
8112overflow.
8113
8114Examples:
8115"""""""""
8116
8117.. code-block:: llvm
8118
8119 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8120 %sum = extractvalue {i32, i1} %res, 0
8121 %obit = extractvalue {i32, i1} %res, 1
8122 br i1 %obit, label %overflow, label %normal
8123
8124'``llvm.umul.with.overflow.*``' Intrinsics
8125^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8126
8127Syntax:
8128"""""""
8129
8130This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8131on any integer bit width.
8132
8133::
8134
8135 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8136 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8137 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8138
8139Overview:
8140"""""""""
8141
8142The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8143a unsigned multiplication of the two arguments, and indicate whether an
8144overflow occurred during the unsigned multiplication.
8145
8146Arguments:
8147""""""""""
8148
8149The arguments (%a and %b) and the first element of the result structure
8150may be of integer types of any bit width, but they must have the same
8151bit width. The second element of the result structure must be of type
8152``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8153multiplication.
8154
8155Semantics:
8156""""""""""
8157
8158The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008159an unsigned multiplication of the two arguments. They return a structure ---
8160the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008161element of which is a bit specifying if the unsigned multiplication
8162resulted in an overflow.
8163
8164Examples:
8165"""""""""
8166
8167.. code-block:: llvm
8168
8169 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8170 %sum = extractvalue {i32, i1} %res, 0
8171 %obit = extractvalue {i32, i1} %res, 1
8172 br i1 %obit, label %overflow, label %normal
8173
8174Specialised Arithmetic Intrinsics
8175---------------------------------
8176
8177'``llvm.fmuladd.*``' Intrinsic
8178^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8179
8180Syntax:
8181"""""""
8182
8183::
8184
8185 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8186 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8187
8188Overview:
8189"""""""""
8190
8191The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008192expressions that can be fused if the code generator determines that (a) the
8193target instruction set has support for a fused operation, and (b) that the
8194fused operation is more efficient than the equivalent, separate pair of mul
8195and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008196
8197Arguments:
8198""""""""""
8199
8200The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8201multiplicands, a and b, and an addend c.
8202
8203Semantics:
8204""""""""""
8205
8206The expression:
8207
8208::
8209
8210 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8211
8212is equivalent to the expression a \* b + c, except that rounding will
8213not be performed between the multiplication and addition steps if the
8214code generator fuses the operations. Fusion is not guaranteed, even if
8215the target platform supports it. If a fused multiply-add is required the
8216corresponding llvm.fma.\* intrinsic function should be used instead.
8217
8218Examples:
8219"""""""""
8220
8221.. code-block:: llvm
8222
8223 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8224
8225Half Precision Floating Point Intrinsics
8226----------------------------------------
8227
8228For most target platforms, half precision floating point is a
8229storage-only format. This means that it is a dense encoding (in memory)
8230but does not support computation in the format.
8231
8232This means that code must first load the half-precision floating point
8233value as an i16, then convert it to float with
8234:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8235then be performed on the float value (including extending to double
8236etc). To store the value back to memory, it is first converted to float
8237if needed, then converted to i16 with
8238:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8239i16 value.
8240
8241.. _int_convert_to_fp16:
8242
8243'``llvm.convert.to.fp16``' Intrinsic
8244^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8245
8246Syntax:
8247"""""""
8248
8249::
8250
8251 declare i16 @llvm.convert.to.fp16(f32 %a)
8252
8253Overview:
8254"""""""""
8255
8256The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8257from single precision floating point format to half precision floating
8258point format.
8259
8260Arguments:
8261""""""""""
8262
8263The intrinsic function contains single argument - the value to be
8264converted.
8265
8266Semantics:
8267""""""""""
8268
8269The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8270from single precision floating point format to half precision floating
8271point format. The return value is an ``i16`` which contains the
8272converted number.
8273
8274Examples:
8275"""""""""
8276
8277.. code-block:: llvm
8278
8279 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8280 store i16 %res, i16* @x, align 2
8281
8282.. _int_convert_from_fp16:
8283
8284'``llvm.convert.from.fp16``' Intrinsic
8285^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8286
8287Syntax:
8288"""""""
8289
8290::
8291
8292 declare f32 @llvm.convert.from.fp16(i16 %a)
8293
8294Overview:
8295"""""""""
8296
8297The '``llvm.convert.from.fp16``' intrinsic function performs a
8298conversion from half precision floating point format to single precision
8299floating point format.
8300
8301Arguments:
8302""""""""""
8303
8304The intrinsic function contains single argument - the value to be
8305converted.
8306
8307Semantics:
8308""""""""""
8309
8310The '``llvm.convert.from.fp16``' intrinsic function performs a
8311conversion from half single precision floating point format to single
8312precision floating point format. The input half-float value is
8313represented by an ``i16`` value.
8314
8315Examples:
8316"""""""""
8317
8318.. code-block:: llvm
8319
8320 %a = load i16* @x, align 2
8321 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8322
8323Debugger Intrinsics
8324-------------------
8325
8326The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8327prefix), are described in the `LLVM Source Level
8328Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8329document.
8330
8331Exception Handling Intrinsics
8332-----------------------------
8333
8334The LLVM exception handling intrinsics (which all start with
8335``llvm.eh.`` prefix), are described in the `LLVM Exception
8336Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8337
8338.. _int_trampoline:
8339
8340Trampoline Intrinsics
8341---------------------
8342
8343These intrinsics make it possible to excise one parameter, marked with
8344the :ref:`nest <nest>` attribute, from a function. The result is a
8345callable function pointer lacking the nest parameter - the caller does
8346not need to provide a value for it. Instead, the value to use is stored
8347in advance in a "trampoline", a block of memory usually allocated on the
8348stack, which also contains code to splice the nest value into the
8349argument list. This is used to implement the GCC nested function address
8350extension.
8351
8352For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8353then the resulting function pointer has signature ``i32 (i32, i32)*``.
8354It can be created as follows:
8355
8356.. code-block:: llvm
8357
8358 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8359 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8360 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8361 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8362 %fp = bitcast i8* %p to i32 (i32, i32)*
8363
8364The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8365``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8366
8367.. _int_it:
8368
8369'``llvm.init.trampoline``' Intrinsic
8370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8371
8372Syntax:
8373"""""""
8374
8375::
8376
8377 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8378
8379Overview:
8380"""""""""
8381
8382This fills the memory pointed to by ``tramp`` with executable code,
8383turning it into a trampoline.
8384
8385Arguments:
8386""""""""""
8387
8388The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8389pointers. The ``tramp`` argument must point to a sufficiently large and
8390sufficiently aligned block of memory; this memory is written to by the
8391intrinsic. Note that the size and the alignment are target-specific -
8392LLVM currently provides no portable way of determining them, so a
8393front-end that generates this intrinsic needs to have some
8394target-specific knowledge. The ``func`` argument must hold a function
8395bitcast to an ``i8*``.
8396
8397Semantics:
8398""""""""""
8399
8400The block of memory pointed to by ``tramp`` is filled with target
8401dependent code, turning it into a function. Then ``tramp`` needs to be
8402passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8403be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8404function's signature is the same as that of ``func`` with any arguments
8405marked with the ``nest`` attribute removed. At most one such ``nest``
8406argument is allowed, and it must be of pointer type. Calling the new
8407function is equivalent to calling ``func`` with the same argument list,
8408but with ``nval`` used for the missing ``nest`` argument. If, after
8409calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8410modified, then the effect of any later call to the returned function
8411pointer is undefined.
8412
8413.. _int_at:
8414
8415'``llvm.adjust.trampoline``' Intrinsic
8416^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8417
8418Syntax:
8419"""""""
8420
8421::
8422
8423 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8424
8425Overview:
8426"""""""""
8427
8428This performs any required machine-specific adjustment to the address of
8429a trampoline (passed as ``tramp``).
8430
8431Arguments:
8432""""""""""
8433
8434``tramp`` must point to a block of memory which already has trampoline
8435code filled in by a previous call to
8436:ref:`llvm.init.trampoline <int_it>`.
8437
8438Semantics:
8439""""""""""
8440
8441On some architectures the address of the code to be executed needs to be
8442different to the address where the trampoline is actually stored. This
8443intrinsic returns the executable address corresponding to ``tramp``
8444after performing the required machine specific adjustments. The pointer
8445returned can then be :ref:`bitcast and executed <int_trampoline>`.
8446
8447Memory Use Markers
8448------------------
8449
8450This class of intrinsics exists to information about the lifetime of
8451memory objects and ranges where variables are immutable.
8452
8453'``llvm.lifetime.start``' Intrinsic
8454^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8455
8456Syntax:
8457"""""""
8458
8459::
8460
8461 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8462
8463Overview:
8464"""""""""
8465
8466The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8467object's lifetime.
8468
8469Arguments:
8470""""""""""
8471
8472The first argument is a constant integer representing the size of the
8473object, or -1 if it is variable sized. The second argument is a pointer
8474to the object.
8475
8476Semantics:
8477""""""""""
8478
8479This intrinsic indicates that before this point in the code, the value
8480of the memory pointed to by ``ptr`` is dead. This means that it is known
8481to never be used and has an undefined value. A load from the pointer
8482that precedes this intrinsic can be replaced with ``'undef'``.
8483
8484'``llvm.lifetime.end``' Intrinsic
8485^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8486
8487Syntax:
8488"""""""
8489
8490::
8491
8492 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8493
8494Overview:
8495"""""""""
8496
8497The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8498object's lifetime.
8499
8500Arguments:
8501""""""""""
8502
8503The first argument is a constant integer representing the size of the
8504object, or -1 if it is variable sized. The second argument is a pointer
8505to the object.
8506
8507Semantics:
8508""""""""""
8509
8510This intrinsic indicates that after this point in the code, the value of
8511the memory pointed to by ``ptr`` is dead. This means that it is known to
8512never be used and has an undefined value. Any stores into the memory
8513object following this intrinsic may be removed as dead.
8514
8515'``llvm.invariant.start``' Intrinsic
8516^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8517
8518Syntax:
8519"""""""
8520
8521::
8522
8523 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8524
8525Overview:
8526"""""""""
8527
8528The '``llvm.invariant.start``' intrinsic specifies that the contents of
8529a memory object will not change.
8530
8531Arguments:
8532""""""""""
8533
8534The first argument is a constant integer representing the size of the
8535object, or -1 if it is variable sized. The second argument is a pointer
8536to the object.
8537
8538Semantics:
8539""""""""""
8540
8541This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8542the return value, the referenced memory location is constant and
8543unchanging.
8544
8545'``llvm.invariant.end``' Intrinsic
8546^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8547
8548Syntax:
8549"""""""
8550
8551::
8552
8553 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8554
8555Overview:
8556"""""""""
8557
8558The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8559memory object are mutable.
8560
8561Arguments:
8562""""""""""
8563
8564The first argument is the matching ``llvm.invariant.start`` intrinsic.
8565The second argument is a constant integer representing the size of the
8566object, or -1 if it is variable sized and the third argument is a
8567pointer to the object.
8568
8569Semantics:
8570""""""""""
8571
8572This intrinsic indicates that the memory is mutable again.
8573
8574General Intrinsics
8575------------------
8576
8577This class of intrinsics is designed to be generic and has no specific
8578purpose.
8579
8580'``llvm.var.annotation``' Intrinsic
8581^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8582
8583Syntax:
8584"""""""
8585
8586::
8587
8588 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8589
8590Overview:
8591"""""""""
8592
8593The '``llvm.var.annotation``' intrinsic.
8594
8595Arguments:
8596""""""""""
8597
8598The first argument is a pointer to a value, the second is a pointer to a
8599global string, the third is a pointer to a global string which is the
8600source file name, and the last argument is the line number.
8601
8602Semantics:
8603""""""""""
8604
8605This intrinsic allows annotation of local variables with arbitrary
8606strings. This can be useful for special purpose optimizations that want
8607to look for these annotations. These have no other defined use; they are
8608ignored by code generation and optimization.
8609
Michael Gottesman88d18832013-03-26 00:34:27 +00008610'``llvm.ptr.annotation.*``' Intrinsic
8611^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8612
8613Syntax:
8614"""""""
8615
8616This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8617pointer to an integer of any width. *NOTE* you must specify an address space for
8618the pointer. The identifier for the default address space is the integer
8619'``0``'.
8620
8621::
8622
8623 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8624 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8625 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8626 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8627 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8628
8629Overview:
8630"""""""""
8631
8632The '``llvm.ptr.annotation``' intrinsic.
8633
8634Arguments:
8635""""""""""
8636
8637The first argument is a pointer to an integer value of arbitrary bitwidth
8638(result of some expression), the second is a pointer to a global string, the
8639third is a pointer to a global string which is the source file name, and the
8640last argument is the line number. It returns the value of the first argument.
8641
8642Semantics:
8643""""""""""
8644
8645This intrinsic allows annotation of a pointer to an integer with arbitrary
8646strings. This can be useful for special purpose optimizations that want to look
8647for these annotations. These have no other defined use; they are ignored by code
8648generation and optimization.
8649
Sean Silvab084af42012-12-07 10:36:55 +00008650'``llvm.annotation.*``' Intrinsic
8651^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8652
8653Syntax:
8654"""""""
8655
8656This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8657any integer bit width.
8658
8659::
8660
8661 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8662 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8663 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8664 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8665 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8666
8667Overview:
8668"""""""""
8669
8670The '``llvm.annotation``' intrinsic.
8671
8672Arguments:
8673""""""""""
8674
8675The first argument is an integer value (result of some expression), the
8676second is a pointer to a global string, the third is a pointer to a
8677global string which is the source file name, and the last argument is
8678the line number. It returns the value of the first argument.
8679
8680Semantics:
8681""""""""""
8682
8683This intrinsic allows annotations to be put on arbitrary expressions
8684with arbitrary strings. This can be useful for special purpose
8685optimizations that want to look for these annotations. These have no
8686other defined use; they are ignored by code generation and optimization.
8687
8688'``llvm.trap``' Intrinsic
8689^^^^^^^^^^^^^^^^^^^^^^^^^
8690
8691Syntax:
8692"""""""
8693
8694::
8695
8696 declare void @llvm.trap() noreturn nounwind
8697
8698Overview:
8699"""""""""
8700
8701The '``llvm.trap``' intrinsic.
8702
8703Arguments:
8704""""""""""
8705
8706None.
8707
8708Semantics:
8709""""""""""
8710
8711This intrinsic is lowered to the target dependent trap instruction. If
8712the target does not have a trap instruction, this intrinsic will be
8713lowered to a call of the ``abort()`` function.
8714
8715'``llvm.debugtrap``' Intrinsic
8716^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8717
8718Syntax:
8719"""""""
8720
8721::
8722
8723 declare void @llvm.debugtrap() nounwind
8724
8725Overview:
8726"""""""""
8727
8728The '``llvm.debugtrap``' intrinsic.
8729
8730Arguments:
8731""""""""""
8732
8733None.
8734
8735Semantics:
8736""""""""""
8737
8738This intrinsic is lowered to code which is intended to cause an
8739execution trap with the intention of requesting the attention of a
8740debugger.
8741
8742'``llvm.stackprotector``' Intrinsic
8743^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8744
8745Syntax:
8746"""""""
8747
8748::
8749
8750 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8751
8752Overview:
8753"""""""""
8754
8755The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8756onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8757is placed on the stack before local variables.
8758
8759Arguments:
8760""""""""""
8761
8762The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8763The first argument is the value loaded from the stack guard
8764``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8765enough space to hold the value of the guard.
8766
8767Semantics:
8768""""""""""
8769
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008770This intrinsic causes the prologue/epilogue inserter to force the position of
8771the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8772to ensure that if a local variable on the stack is overwritten, it will destroy
8773the value of the guard. When the function exits, the guard on the stack is
8774checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8775different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8776calling the ``__stack_chk_fail()`` function.
8777
8778'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00008779^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008780
8781Syntax:
8782"""""""
8783
8784::
8785
8786 declare void @llvm.stackprotectorcheck(i8** <guard>)
8787
8788Overview:
8789"""""""""
8790
8791The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00008792created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00008793``__stack_chk_fail()`` function.
8794
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008795Arguments:
8796""""""""""
8797
8798The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8799the variable ``@__stack_chk_guard``.
8800
8801Semantics:
8802""""""""""
8803
8804This intrinsic is provided to perform the stack protector check by comparing
8805``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8806values do not match call the ``__stack_chk_fail()`` function.
8807
8808The reason to provide this as an IR level intrinsic instead of implementing it
8809via other IR operations is that in order to perform this operation at the IR
8810level without an intrinsic, one would need to create additional basic blocks to
8811handle the success/failure cases. This makes it difficult to stop the stack
8812protector check from disrupting sibling tail calls in Codegen. With this
8813intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00008814codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008815
Sean Silvab084af42012-12-07 10:36:55 +00008816'``llvm.objectsize``' Intrinsic
8817^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8818
8819Syntax:
8820"""""""
8821
8822::
8823
8824 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8825 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8826
8827Overview:
8828"""""""""
8829
8830The ``llvm.objectsize`` intrinsic is designed to provide information to
8831the optimizers to determine at compile time whether a) an operation
8832(like memcpy) will overflow a buffer that corresponds to an object, or
8833b) that a runtime check for overflow isn't necessary. An object in this
8834context means an allocation of a specific class, structure, array, or
8835other object.
8836
8837Arguments:
8838""""""""""
8839
8840The ``llvm.objectsize`` intrinsic takes two arguments. The first
8841argument is a pointer to or into the ``object``. The second argument is
8842a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8843or -1 (if false) when the object size is unknown. The second argument
8844only accepts constants.
8845
8846Semantics:
8847""""""""""
8848
8849The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8850the size of the object concerned. If the size cannot be determined at
8851compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8852on the ``min`` argument).
8853
8854'``llvm.expect``' Intrinsic
8855^^^^^^^^^^^^^^^^^^^^^^^^^^^
8856
8857Syntax:
8858"""""""
8859
8860::
8861
8862 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8863 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8864
8865Overview:
8866"""""""""
8867
8868The ``llvm.expect`` intrinsic provides information about expected (the
8869most probable) value of ``val``, which can be used by optimizers.
8870
8871Arguments:
8872""""""""""
8873
8874The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8875a value. The second argument is an expected value, this needs to be a
8876constant value, variables are not allowed.
8877
8878Semantics:
8879""""""""""
8880
8881This intrinsic is lowered to the ``val``.
8882
8883'``llvm.donothing``' Intrinsic
8884^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8885
8886Syntax:
8887"""""""
8888
8889::
8890
8891 declare void @llvm.donothing() nounwind readnone
8892
8893Overview:
8894"""""""""
8895
8896The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8897only intrinsic that can be called with an invoke instruction.
8898
8899Arguments:
8900""""""""""
8901
8902None.
8903
8904Semantics:
8905""""""""""
8906
8907This intrinsic does nothing, and it's removed by optimizers and ignored
8908by codegen.