blob: c07892229df35d83f8aa6224b4c1516213468596 [file] [log] [blame]
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file is a part of MemorySanitizer, a detector of uninitialized
11/// reads.
12///
13/// Status: early prototype.
14///
15/// The algorithm of the tool is similar to Memcheck
16/// (http://goo.gl/QKbem). We associate a few shadow bits with every
17/// byte of the application memory, poison the shadow of the malloc-ed
18/// or alloca-ed memory, load the shadow bits on every memory read,
19/// propagate the shadow bits through some of the arithmetic
20/// instruction (including MOV), store the shadow bits on every memory
21/// write, report a bug on some other instructions (e.g. JMP) if the
22/// associated shadow is poisoned.
23///
24/// But there are differences too. The first and the major one:
25/// compiler instrumentation instead of binary instrumentation. This
26/// gives us much better register allocation, possible compiler
27/// optimizations and a fast start-up. But this brings the major issue
28/// as well: msan needs to see all program events, including system
29/// calls and reads/writes in system libraries, so we either need to
30/// compile *everything* with msan or use a binary translation
31/// component (e.g. DynamoRIO) to instrument pre-built libraries.
32/// Another difference from Memcheck is that we use 8 shadow bits per
33/// byte of application memory and use a direct shadow mapping. This
34/// greatly simplifies the instrumentation code and avoids races on
35/// shadow updates (Memcheck is single-threaded so races are not a
36/// concern there. Memcheck uses 2 shadow bits per byte with a slow
37/// path storage that uses 8 bits per byte).
38///
39/// The default value of shadow is 0, which means "clean" (not poisoned).
40///
41/// Every module initializer should call __msan_init to ensure that the
42/// shadow memory is ready. On error, __msan_warning is called. Since
43/// parameters and return values may be passed via registers, we have a
44/// specialized thread-local shadow for return values
45/// (__msan_retval_tls) and parameters (__msan_param_tls).
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +000046///
47/// Origin tracking.
48///
49/// MemorySanitizer can track origins (allocation points) of all uninitialized
50/// values. This behavior is controlled with a flag (msan-track-origins) and is
51/// disabled by default.
52///
53/// Origins are 4-byte values created and interpreted by the runtime library.
54/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
55/// of application memory. Propagation of origins is basically a bunch of
56/// "select" instructions that pick the origin of a dirty argument, if an
57/// instruction has one.
58///
59/// Every 4 aligned, consecutive bytes of application memory have one origin
60/// value associated with them. If these bytes contain uninitialized data
61/// coming from 2 different allocations, the last store wins. Because of this,
62/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
Alexey Samsonov3efc87e2012-12-28 09:30:44 +000063/// practice.
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +000064///
65/// Origins are meaningless for fully initialized values, so MemorySanitizer
66/// avoids storing origin to memory when a fully initialized value is stored.
67/// This way it avoids needless overwritting origin of the 4-byte region on
68/// a short (i.e. 1 byte) clean store, and it is also good for performance.
Evgeniy Stepanov5522a702013-09-24 11:20:27 +000069///
70/// Atomic handling.
71///
72/// Ideally, every atomic store of application value should update the
73/// corresponding shadow location in an atomic way. Unfortunately, atomic store
74/// of two disjoint locations can not be done without severe slowdown.
75///
76/// Therefore, we implement an approximation that may err on the safe side.
77/// In this implementation, every atomically accessed location in the program
78/// may only change from (partially) uninitialized to fully initialized, but
79/// not the other way around. We load the shadow _after_ the application load,
80/// and we store the shadow _before_ the app store. Also, we always store clean
81/// shadow (if the application store is atomic). This way, if the store-load
82/// pair constitutes a happens-before arc, shadow store and load are correctly
83/// ordered such that the load will get either the value that was stored, or
84/// some later value (which is always clean).
85///
86/// This does not work very well with Compare-And-Swap (CAS) and
87/// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
88/// must store the new shadow before the app operation, and load the shadow
89/// after the app operation. Computers don't work this way. Current
90/// implementation ignores the load aspect of CAS/RMW, always returning a clean
91/// value. It implements the store part as a simple atomic store by storing a
92/// clean shadow.
93
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000094//===----------------------------------------------------------------------===//
95
96#define DEBUG_TYPE "msan"
97
Chandler Carruthed0881b2012-12-03 16:50:05 +000098#include "llvm/Transforms/Instrumentation.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000099#include "llvm/ADT/DepthFirstIterator.h"
100#include "llvm/ADT/SmallString.h"
101#include "llvm/ADT/SmallVector.h"
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +0000102#include "llvm/ADT/Triple.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +0000103#include "llvm/IR/DataLayout.h"
104#include "llvm/IR/Function.h"
105#include "llvm/IR/IRBuilder.h"
106#include "llvm/IR/InlineAsm.h"
Chandler Carruth7da14f12014-03-06 03:23:41 +0000107#include "llvm/IR/InstVisitor.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +0000108#include "llvm/IR/IntrinsicInst.h"
109#include "llvm/IR/LLVMContext.h"
110#include "llvm/IR/MDBuilder.h"
111#include "llvm/IR/Module.h"
112#include "llvm/IR/Type.h"
Chandler Carrutha4ea2692014-03-04 11:26:31 +0000113#include "llvm/IR/ValueMap.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000114#include "llvm/Support/CommandLine.h"
115#include "llvm/Support/Compiler.h"
116#include "llvm/Support/Debug.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000117#include "llvm/Support/raw_ostream.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000118#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Evgeniy Stepanov4fbc0d082012-12-21 11:18:49 +0000119#include "llvm/Transforms/Utils/Local.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000120#include "llvm/Transforms/Utils/ModuleUtils.h"
Peter Collingbourne015370e2013-07-09 22:02:49 +0000121#include "llvm/Transforms/Utils/SpecialCaseList.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000122
123using namespace llvm;
124
125static const uint64_t kShadowMask32 = 1ULL << 31;
126static const uint64_t kShadowMask64 = 1ULL << 46;
127static const uint64_t kOriginOffset32 = 1ULL << 30;
128static const uint64_t kOriginOffset64 = 1ULL << 45;
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000129static const unsigned kMinOriginAlignment = 4;
130static const unsigned kShadowTLSAlignment = 8;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000131
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +0000132/// \brief Track origins of uninitialized values.
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000133///
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +0000134/// Adds a section to MemorySanitizer report that points to the allocation
135/// (stack or heap) the uninitialized bits came from originally.
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000136static cl::opt<int> ClTrackOrigins("msan-track-origins",
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000137 cl::desc("Track origins (allocation sites) of poisoned memory"),
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000138 cl::Hidden, cl::init(0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000139static cl::opt<bool> ClKeepGoing("msan-keep-going",
140 cl::desc("keep going after reporting a UMR"),
141 cl::Hidden, cl::init(false));
142static cl::opt<bool> ClPoisonStack("msan-poison-stack",
143 cl::desc("poison uninitialized stack variables"),
144 cl::Hidden, cl::init(true));
145static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
146 cl::desc("poison uninitialized stack variables with a call"),
147 cl::Hidden, cl::init(false));
148static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
149 cl::desc("poison uninitialized stack variables with the given patter"),
150 cl::Hidden, cl::init(0xff));
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000151static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
152 cl::desc("poison undef temps"),
153 cl::Hidden, cl::init(true));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000154
155static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
156 cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
157 cl::Hidden, cl::init(true));
158
Evgeniy Stepanovfac84032013-01-25 15:31:10 +0000159static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
160 cl::desc("exact handling of relational integer ICmp"),
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +0000161 cl::Hidden, cl::init(false));
Evgeniy Stepanovfac84032013-01-25 15:31:10 +0000162
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000163// This flag controls whether we check the shadow of the address
164// operand of load or store. Such bugs are very rare, since load from
165// a garbage address typically results in SEGV, but still happen
166// (e.g. only lower bits of address are garbage, or the access happens
167// early at program startup where malloc-ed memory is more likely to
168// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
169static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
170 cl::desc("report accesses through a pointer which has poisoned shadow"),
171 cl::Hidden, cl::init(true));
172
173static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
174 cl::desc("print out instructions with default strict semantics"),
175 cl::Hidden, cl::init(false));
176
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000177static cl::opt<std::string> ClBlacklistFile("msan-blacklist",
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000178 cl::desc("File containing the list of functions where MemorySanitizer "
179 "should not report bugs"), cl::Hidden);
180
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000181// Experimental. Wraps all indirect calls in the instrumented code with
182// a call to the given function. This is needed to assist the dynamic
183// helper tool (MSanDR) to regain control on transition between instrumented and
184// non-instrumented code.
185static cl::opt<std::string> ClWrapIndirectCalls("msan-wrap-indirect-calls",
186 cl::desc("Wrap indirect calls with a given function"),
187 cl::Hidden);
188
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000189static cl::opt<bool> ClWrapIndirectCallsFast("msan-wrap-indirect-calls-fast",
190 cl::desc("Do not wrap indirect calls with target in the same module"),
191 cl::Hidden, cl::init(true));
192
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000193namespace {
194
195/// \brief An instrumentation pass implementing detection of uninitialized
196/// reads.
197///
198/// MemorySanitizer: instrument the code in module to find
199/// uninitialized reads.
200class MemorySanitizer : public FunctionPass {
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000201 public:
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000202 MemorySanitizer(int TrackOrigins = 0,
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000203 StringRef BlacklistFile = StringRef())
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000204 : FunctionPass(ID),
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000205 TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)),
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000206 DL(0),
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000207 WarningFn(0),
208 BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile : BlacklistFile),
209 WrapIndirectCalls(!ClWrapIndirectCalls.empty()) {}
Craig Topper3e4c6972014-03-05 09:10:37 +0000210 const char *getPassName() const override { return "MemorySanitizer"; }
211 bool runOnFunction(Function &F) override;
212 bool doInitialization(Module &M) override;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000213 static char ID; // Pass identification, replacement for typeid.
214
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000215 private:
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000216 void initializeCallbacks(Module &M);
217
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000218 /// \brief Track origins (allocation points) of uninitialized values.
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000219 int TrackOrigins;
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000220
Rafael Espindolaaeff8a92014-02-24 23:12:18 +0000221 const DataLayout *DL;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000222 LLVMContext *C;
223 Type *IntptrTy;
224 Type *OriginTy;
225 /// \brief Thread-local shadow storage for function parameters.
226 GlobalVariable *ParamTLS;
227 /// \brief Thread-local origin storage for function parameters.
228 GlobalVariable *ParamOriginTLS;
229 /// \brief Thread-local shadow storage for function return value.
230 GlobalVariable *RetvalTLS;
231 /// \brief Thread-local origin storage for function return value.
232 GlobalVariable *RetvalOriginTLS;
233 /// \brief Thread-local shadow storage for in-register va_arg function
234 /// parameters (x86_64-specific).
235 GlobalVariable *VAArgTLS;
236 /// \brief Thread-local shadow storage for va_arg overflow area
237 /// (x86_64-specific).
238 GlobalVariable *VAArgOverflowSizeTLS;
239 /// \brief Thread-local space used to pass origin value to the UMR reporting
240 /// function.
241 GlobalVariable *OriginTLS;
242
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000243 GlobalVariable *MsandrModuleStart;
244 GlobalVariable *MsandrModuleEnd;
245
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000246 /// \brief The run-time callback to print a warning.
247 Value *WarningFn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000248 /// \brief Run-time helper that generates a new origin value for a stack
249 /// allocation.
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +0000250 Value *MsanSetAllocaOrigin4Fn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000251 /// \brief Run-time helper that poisons stack on function entry.
252 Value *MsanPoisonStackFn;
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000253 /// \brief Run-time helper that records a store (or any event) of an
254 /// uninitialized value and returns an updated origin id encoding this info.
255 Value *MsanChainOriginFn;
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000256 /// \brief MSan runtime replacements for memmove, memcpy and memset.
257 Value *MemmoveFn, *MemcpyFn, *MemsetFn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000258
259 /// \brief Address mask used in application-to-shadow address calculation.
260 /// ShadowAddr is computed as ApplicationAddr & ~ShadowMask.
261 uint64_t ShadowMask;
262 /// \brief Offset of the origin shadow from the "normal" shadow.
263 /// OriginAddr is computed as (ShadowAddr + OriginOffset) & ~3ULL
264 uint64_t OriginOffset;
265 /// \brief Branch weights for error reporting.
266 MDNode *ColdCallWeights;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000267 /// \brief Branch weights for origin store.
268 MDNode *OriginStoreWeights;
Dmitri Gribenko9bf66a52013-05-09 21:16:18 +0000269 /// \brief Path to blacklist file.
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000270 SmallString<64> BlacklistFile;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000271 /// \brief The blacklist.
Ahmed Charles56440fd2014-03-06 05:51:42 +0000272 std::unique_ptr<SpecialCaseList> BL;
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000273 /// \brief An empty volatile inline asm that prevents callback merge.
274 InlineAsm *EmptyAsm;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000275
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000276 bool WrapIndirectCalls;
277 /// \brief Run-time wrapper for indirect calls.
278 Value *IndirectCallWrapperFn;
279 // Argument and return type of IndirectCallWrapperFn: void (*f)(void).
280 Type *AnyFunctionPtrTy;
281
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000282 friend struct MemorySanitizerVisitor;
283 friend struct VarArgAMD64Helper;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000284};
285} // namespace
286
287char MemorySanitizer::ID = 0;
288INITIALIZE_PASS(MemorySanitizer, "msan",
289 "MemorySanitizer: detects uninitialized reads.",
290 false, false)
291
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000292FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins,
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000293 StringRef BlacklistFile) {
294 return new MemorySanitizer(TrackOrigins, BlacklistFile);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000295}
296
297/// \brief Create a non-const global initialized with the given string.
298///
299/// Creates a writable global for Str so that we can pass it to the
300/// run-time lib. Runtime uses first 4 bytes of the string to store the
301/// frame ID, so the string needs to be mutable.
302static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
303 StringRef Str) {
304 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
305 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
306 GlobalValue::PrivateLinkage, StrConst, "");
307}
308
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000309
310/// \brief Insert extern declaration of runtime-provided functions and globals.
311void MemorySanitizer::initializeCallbacks(Module &M) {
312 // Only do this once.
313 if (WarningFn)
314 return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000315
316 IRBuilder<> IRB(*C);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000317 // Create the callback.
318 // FIXME: this function should have "Cold" calling conv,
319 // which is not yet implemented.
320 StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
321 : "__msan_warning_noreturn";
322 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), NULL);
323
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +0000324 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
325 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
326 IRB.getInt8PtrTy(), IntptrTy, NULL);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000327 MsanPoisonStackFn = M.getOrInsertFunction(
328 "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, NULL);
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000329 MsanChainOriginFn = M.getOrInsertFunction(
330 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), NULL);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000331 MemmoveFn = M.getOrInsertFunction(
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000332 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
333 IRB.getInt8PtrTy(), IntptrTy, NULL);
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000334 MemcpyFn = M.getOrInsertFunction(
335 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
336 IntptrTy, NULL);
337 MemsetFn = M.getOrInsertFunction(
338 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000339 IntptrTy, NULL);
340
341 // Create globals.
342 RetvalTLS = new GlobalVariable(
343 M, ArrayType::get(IRB.getInt64Ty(), 8), false,
344 GlobalVariable::ExternalLinkage, 0, "__msan_retval_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000345 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000346 RetvalOriginTLS = new GlobalVariable(
347 M, OriginTy, false, GlobalVariable::ExternalLinkage, 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000348 "__msan_retval_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000349
350 ParamTLS = new GlobalVariable(
351 M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
352 GlobalVariable::ExternalLinkage, 0, "__msan_param_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000353 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000354 ParamOriginTLS = new GlobalVariable(
355 M, ArrayType::get(OriginTy, 1000), false, GlobalVariable::ExternalLinkage,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000356 0, "__msan_param_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000357
358 VAArgTLS = new GlobalVariable(
359 M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
360 GlobalVariable::ExternalLinkage, 0, "__msan_va_arg_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000361 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000362 VAArgOverflowSizeTLS = new GlobalVariable(
363 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, 0,
364 "__msan_va_arg_overflow_size_tls", 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000365 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000366 OriginTLS = new GlobalVariable(
367 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, 0,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000368 "__msan_origin_tls", 0, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000369
370 // We insert an empty inline asm after __msan_report* to avoid callback merge.
371 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
372 StringRef(""), StringRef(""),
373 /*hasSideEffects=*/true);
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000374
375 if (WrapIndirectCalls) {
376 AnyFunctionPtrTy =
377 PointerType::getUnqual(FunctionType::get(IRB.getVoidTy(), false));
378 IndirectCallWrapperFn = M.getOrInsertFunction(
379 ClWrapIndirectCalls, AnyFunctionPtrTy, AnyFunctionPtrTy, NULL);
380 }
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000381
382 if (ClWrapIndirectCallsFast) {
383 MsandrModuleStart = new GlobalVariable(
384 M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage,
385 0, "__executable_start");
386 MsandrModuleStart->setVisibility(GlobalVariable::HiddenVisibility);
387 MsandrModuleEnd = new GlobalVariable(
388 M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage,
389 0, "_end");
390 MsandrModuleEnd->setVisibility(GlobalVariable::HiddenVisibility);
391 }
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000392}
393
394/// \brief Module-level initialization.
395///
396/// inserts a call to __msan_init to the module's constructor list.
397bool MemorySanitizer::doInitialization(Module &M) {
Rafael Espindola93512512014-02-25 17:30:31 +0000398 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
399 if (!DLP)
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000400 return false;
Rafael Espindola93512512014-02-25 17:30:31 +0000401 DL = &DLP->getDataLayout();
402
Alexey Samsonove4b5fb82013-08-12 11:46:09 +0000403 BL.reset(SpecialCaseList::createOrDie(BlacklistFile));
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000404 C = &(M.getContext());
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000405 unsigned PtrSize = DL->getPointerSizeInBits(/* AddressSpace */0);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000406 switch (PtrSize) {
407 case 64:
408 ShadowMask = kShadowMask64;
409 OriginOffset = kOriginOffset64;
410 break;
411 case 32:
412 ShadowMask = kShadowMask32;
413 OriginOffset = kOriginOffset32;
414 break;
415 default:
416 report_fatal_error("unsupported pointer size");
417 break;
418 }
419
420 IRBuilder<> IRB(*C);
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000421 IntptrTy = IRB.getIntPtrTy(DL);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000422 OriginTy = IRB.getInt32Ty();
423
424 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000425 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000426
427 // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
428 appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
429 "__msan_init", IRB.getVoidTy(), NULL)), 0);
430
Evgeniy Stepanov888385e2013-05-31 12:04:29 +0000431 if (TrackOrigins)
432 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
433 IRB.getInt32(TrackOrigins), "__msan_track_origins");
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000434
Evgeniy Stepanov888385e2013-05-31 12:04:29 +0000435 if (ClKeepGoing)
436 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
437 IRB.getInt32(ClKeepGoing), "__msan_keep_going");
Evgeniy Stepanovdcf6bcb2013-01-22 13:26:53 +0000438
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000439 return true;
440}
441
442namespace {
443
444/// \brief A helper class that handles instrumentation of VarArg
445/// functions on a particular platform.
446///
447/// Implementations are expected to insert the instrumentation
448/// necessary to propagate argument shadow through VarArg function
449/// calls. Visit* methods are called during an InstVisitor pass over
450/// the function, and should avoid creating new basic blocks. A new
451/// instance of this class is created for each instrumented function.
452struct VarArgHelper {
453 /// \brief Visit a CallSite.
454 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
455
456 /// \brief Visit a va_start call.
457 virtual void visitVAStartInst(VAStartInst &I) = 0;
458
459 /// \brief Visit a va_copy call.
460 virtual void visitVACopyInst(VACopyInst &I) = 0;
461
462 /// \brief Finalize function instrumentation.
463 ///
464 /// This method is called after visiting all interesting (see above)
465 /// instructions in a function.
466 virtual void finalizeInstrumentation() = 0;
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000467
468 virtual ~VarArgHelper() {}
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000469};
470
471struct MemorySanitizerVisitor;
472
473VarArgHelper*
474CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
475 MemorySanitizerVisitor &Visitor);
476
477/// This class does all the work for a given function. Store and Load
478/// instructions store and load corresponding shadow and origin
479/// values. Most instructions propagate shadow from arguments to their
480/// return values. Certain instructions (most importantly, BranchInst)
481/// test their argument shadow and print reports (with a runtime call) if it's
482/// non-zero.
483struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
484 Function &F;
485 MemorySanitizer &MS;
486 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
487 ValueMap<Value*, Value*> ShadowMap, OriginMap;
Ahmed Charles56440fd2014-03-06 05:51:42 +0000488 std::unique_ptr<VarArgHelper> VAHelper;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000489
490 // The following flags disable parts of MSan instrumentation based on
491 // blacklist contents and command-line options.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000492 bool InsertChecks;
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000493 bool LoadShadow;
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000494 bool PoisonStack;
495 bool PoisonUndef;
Evgeniy Stepanov604293f2013-09-16 13:24:32 +0000496 bool CheckReturnValue;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000497
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000498 struct ShadowOriginAndInsertPoint {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000499 Value *Shadow;
500 Value *Origin;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000501 Instruction *OrigIns;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000502 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000503 : Shadow(S), Origin(O), OrigIns(I) { }
504 ShadowOriginAndInsertPoint() : Shadow(0), Origin(0), OrigIns(0) { }
505 };
506 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000507 SmallVector<Instruction*, 16> StoreList;
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000508 SmallVector<CallSite, 16> IndirectCallList;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000509
510 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000511 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000512 bool SanitizeFunction = !MS.BL->isIn(F) && F.getAttributes().hasAttribute(
513 AttributeSet::FunctionIndex,
514 Attribute::SanitizeMemory);
515 InsertChecks = SanitizeFunction;
516 LoadShadow = SanitizeFunction;
517 PoisonStack = SanitizeFunction && ClPoisonStack;
518 PoisonUndef = SanitizeFunction && ClPoisonUndef;
Evgeniy Stepanov604293f2013-09-16 13:24:32 +0000519 // FIXME: Consider using SpecialCaseList to specify a list of functions that
520 // must always return fully initialized values. For now, we hardcode "main".
521 CheckReturnValue = SanitizeFunction && (F.getName() == "main");
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000522
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000523 DEBUG(if (!InsertChecks)
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000524 dbgs() << "MemorySanitizer is not inserting checks into '"
525 << F.getName() << "'\n");
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000526 }
527
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000528 Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
529 if (MS.TrackOrigins <= 1) return V;
530 return IRB.CreateCall(MS.MsanChainOriginFn, V);
531 }
532
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000533 void materializeStores() {
534 for (size_t i = 0, n = StoreList.size(); i < n; i++) {
535 StoreInst& I = *dyn_cast<StoreInst>(StoreList[i]);
536
537 IRBuilder<> IRB(&I);
538 Value *Val = I.getValueOperand();
539 Value *Addr = I.getPointerOperand();
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000540 Value *Shadow = I.isAtomic() ? getCleanShadow(Val) : getShadow(Val);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000541 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
542
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000543 StoreInst *NewSI =
544 IRB.CreateAlignedStore(Shadow, ShadowPtr, I.getAlignment());
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000545 DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
NAKAMURA Takumie0b1b462012-12-06 13:38:00 +0000546 (void)NewSI;
Evgeniy Stepanovc4415592013-01-22 12:30:52 +0000547
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000548 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000549 insertShadowCheck(Addr, &I);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000550
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000551 if (I.isAtomic())
552 I.setOrdering(addReleaseOrdering(I.getOrdering()));
553
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000554 if (MS.TrackOrigins) {
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000555 unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
Evgeniy Stepanov2aac0732014-03-18 09:47:06 +0000556 if (isa<StructType>(Shadow->getType())) {
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000557 IRB.CreateAlignedStore(updateOrigin(getOrigin(Val), IRB),
558 getOriginPtr(Addr, IRB), Alignment);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000559 } else {
560 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
561
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000562 // TODO(eugenis): handle non-zero constant shadow by inserting an
563 // unconditional check (can not simply fail compilation as this could
564 // be in the dead code).
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000565 if (isa<Constant>(ConvertedShadow))
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000566 continue;
567
568 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
569 getCleanShadow(ConvertedShadow), "_mscmp");
570 Instruction *CheckTerm =
Evgeniy Stepanova9164e92013-12-19 13:29:56 +0000571 SplitBlockAndInsertIfThen(Cmp, &I, false, MS.OriginStoreWeights);
Evgeniy Stepanov49175b22012-12-14 13:43:11 +0000572 IRBuilder<> IRBNew(CheckTerm);
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000573 IRBNew.CreateAlignedStore(updateOrigin(getOrigin(Val), IRBNew),
574 getOriginPtr(Addr, IRBNew), Alignment);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000575 }
576 }
577 }
578 }
579
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000580 void materializeChecks() {
581 for (size_t i = 0, n = InstrumentationList.size(); i < n; i++) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000582 Value *Shadow = InstrumentationList[i].Shadow;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000583 Instruction *OrigIns = InstrumentationList[i].OrigIns;
584 IRBuilder<> IRB(OrigIns);
585 DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
586 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
587 DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000588 // See the comment in materializeStores().
589 if (isa<Constant>(ConvertedShadow))
590 continue;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000591 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
592 getCleanShadow(ConvertedShadow), "_mscmp");
Evgeniy Stepanova9164e92013-12-19 13:29:56 +0000593 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
594 Cmp, OrigIns,
595 /* Unreachable */ !ClKeepGoing, MS.ColdCallWeights);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000596
597 IRB.SetInsertPoint(CheckTerm);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000598 if (MS.TrackOrigins) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000599 Value *Origin = InstrumentationList[i].Origin;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000600 IRB.CreateStore(Origin ? (Value*)Origin : (Value*)IRB.getInt32(0),
601 MS.OriginTLS);
602 }
603 CallInst *Call = IRB.CreateCall(MS.WarningFn);
604 Call->setDebugLoc(OrigIns->getDebugLoc());
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000605 IRB.CreateCall(MS.EmptyAsm);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000606 DEBUG(dbgs() << " CHECK: " << *Cmp << "\n");
607 }
608 DEBUG(dbgs() << "DONE:\n" << F);
609 }
610
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000611 void materializeIndirectCalls() {
612 for (size_t i = 0, n = IndirectCallList.size(); i < n; i++) {
613 CallSite CS = IndirectCallList[i];
614 Instruction *I = CS.getInstruction();
615 BasicBlock *B = I->getParent();
616 IRBuilder<> IRB(I);
617 Value *Fn0 = CS.getCalledValue();
618 Value *Fn = IRB.CreateBitCast(Fn0, MS.AnyFunctionPtrTy);
619
620 if (ClWrapIndirectCallsFast) {
621 // Check that call target is inside this module limits.
622 Value *Start =
623 IRB.CreateBitCast(MS.MsandrModuleStart, MS.AnyFunctionPtrTy);
624 Value *End = IRB.CreateBitCast(MS.MsandrModuleEnd, MS.AnyFunctionPtrTy);
625
626 Value *NotInThisModule = IRB.CreateOr(IRB.CreateICmpULT(Fn, Start),
627 IRB.CreateICmpUGE(Fn, End));
628
629 PHINode *NewFnPhi =
630 IRB.CreatePHI(Fn0->getType(), 2, "msandr.indirect_target");
631
632 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
Evgeniy Stepanova9164e92013-12-19 13:29:56 +0000633 NotInThisModule, NewFnPhi,
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000634 /* Unreachable */ false, MS.ColdCallWeights);
635
636 IRB.SetInsertPoint(CheckTerm);
637 // Slow path: call wrapper function to possibly transform the call
638 // target.
639 Value *NewFn = IRB.CreateBitCast(
640 IRB.CreateCall(MS.IndirectCallWrapperFn, Fn), Fn0->getType());
641
642 NewFnPhi->addIncoming(Fn0, B);
643 NewFnPhi->addIncoming(NewFn, dyn_cast<Instruction>(NewFn)->getParent());
644 CS.setCalledFunction(NewFnPhi);
645 } else {
646 Value *NewFn = IRB.CreateBitCast(
647 IRB.CreateCall(MS.IndirectCallWrapperFn, Fn), Fn0->getType());
648 CS.setCalledFunction(NewFn);
649 }
650 }
651 }
652
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000653 /// \brief Add MemorySanitizer instrumentation to a function.
654 bool runOnFunction() {
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000655 MS.initializeCallbacks(*F.getParent());
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000656 if (!MS.DL) return false;
Evgeniy Stepanov4fbc0d082012-12-21 11:18:49 +0000657
658 // In the presence of unreachable blocks, we may see Phi nodes with
659 // incoming nodes from such blocks. Since InstVisitor skips unreachable
660 // blocks, such nodes will not have any shadow value associated with them.
661 // It's easier to remove unreachable blocks than deal with missing shadow.
662 removeUnreachableBlocks(F);
663
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000664 // Iterate all BBs in depth-first order and create shadow instructions
665 // for all instructions (where applicable).
666 // For PHI nodes we create dummy shadow PHIs which will be finalized later.
667 for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
668 DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
669 BasicBlock *BB = *DI;
670 visit(*BB);
671 }
672
673 // Finalize PHI nodes.
674 for (size_t i = 0, n = ShadowPHINodes.size(); i < n; i++) {
675 PHINode *PN = ShadowPHINodes[i];
676 PHINode *PNS = cast<PHINode>(getShadow(PN));
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000677 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000678 size_t NumValues = PN->getNumIncomingValues();
679 for (size_t v = 0; v < NumValues; v++) {
680 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
681 if (PNO)
682 PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
683 }
684 }
685
686 VAHelper->finalizeInstrumentation();
687
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000688 // Delayed instrumentation of StoreInst.
Evgeniy Stepanov47ac9ba2012-12-06 11:58:59 +0000689 // This may add new checks to be inserted later.
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000690 materializeStores();
691
692 // Insert shadow value checks.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000693 materializeChecks();
694
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000695 // Wrap indirect calls.
696 materializeIndirectCalls();
697
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000698 return true;
699 }
700
701 /// \brief Compute the shadow type that corresponds to a given Value.
702 Type *getShadowTy(Value *V) {
703 return getShadowTy(V->getType());
704 }
705
706 /// \brief Compute the shadow type that corresponds to a given Type.
707 Type *getShadowTy(Type *OrigTy) {
708 if (!OrigTy->isSized()) {
709 return 0;
710 }
711 // For integer type, shadow is the same as the original type.
712 // This may return weird-sized types like i1.
713 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
714 return IT;
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +0000715 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000716 uint32_t EltSize = MS.DL->getTypeSizeInBits(VT->getElementType());
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +0000717 return VectorType::get(IntegerType::get(*MS.C, EltSize),
718 VT->getNumElements());
719 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000720 if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
721 SmallVector<Type*, 4> Elements;
722 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
723 Elements.push_back(getShadowTy(ST->getElementType(i)));
724 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
725 DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
726 return Res;
727 }
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000728 uint32_t TypeSize = MS.DL->getTypeSizeInBits(OrigTy);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000729 return IntegerType::get(*MS.C, TypeSize);
730 }
731
732 /// \brief Flatten a vector type.
733 Type *getShadowTyNoVec(Type *ty) {
734 if (VectorType *vt = dyn_cast<VectorType>(ty))
735 return IntegerType::get(*MS.C, vt->getBitWidth());
736 return ty;
737 }
738
739 /// \brief Convert a shadow value to it's flattened variant.
740 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
741 Type *Ty = V->getType();
742 Type *NoVecTy = getShadowTyNoVec(Ty);
743 if (Ty == NoVecTy) return V;
744 return IRB.CreateBitCast(V, NoVecTy);
745 }
746
747 /// \brief Compute the shadow address that corresponds to a given application
748 /// address.
749 ///
750 /// Shadow = Addr & ~ShadowMask.
751 Value *getShadowPtr(Value *Addr, Type *ShadowTy,
752 IRBuilder<> &IRB) {
753 Value *ShadowLong =
754 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
755 ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
756 return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
757 }
758
759 /// \brief Compute the origin address that corresponds to a given application
760 /// address.
761 ///
762 /// OriginAddr = (ShadowAddr + OriginOffset) & ~3ULL
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000763 Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB) {
764 Value *ShadowLong =
765 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
Evgeniy Stepanov62ba6112012-11-29 13:43:05 +0000766 ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000767 Value *Add =
768 IRB.CreateAdd(ShadowLong,
769 ConstantInt::get(MS.IntptrTy, MS.OriginOffset));
Evgeniy Stepanov62ba6112012-11-29 13:43:05 +0000770 Value *SecondAnd =
771 IRB.CreateAnd(Add, ConstantInt::get(MS.IntptrTy, ~3ULL));
772 return IRB.CreateIntToPtr(SecondAnd, PointerType::get(IRB.getInt32Ty(), 0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000773 }
774
775 /// \brief Compute the shadow address for a given function argument.
776 ///
777 /// Shadow = ParamTLS+ArgOffset.
778 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
779 int ArgOffset) {
780 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
781 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
782 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
783 "_msarg");
784 }
785
786 /// \brief Compute the origin address for a given function argument.
787 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
788 int ArgOffset) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000789 if (!MS.TrackOrigins) return 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000790 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
791 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
792 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
793 "_msarg_o");
794 }
795
796 /// \brief Compute the shadow address for a retval.
797 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
798 Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
799 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
800 "_msret");
801 }
802
803 /// \brief Compute the origin address for a retval.
804 Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
805 // We keep a single origin for the entire retval. Might be too optimistic.
806 return MS.RetvalOriginTLS;
807 }
808
809 /// \brief Set SV to be the shadow value for V.
810 void setShadow(Value *V, Value *SV) {
811 assert(!ShadowMap.count(V) && "Values may only have one shadow");
812 ShadowMap[V] = SV;
813 }
814
815 /// \brief Set Origin to be the origin value for V.
816 void setOrigin(Value *V, Value *Origin) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000817 if (!MS.TrackOrigins) return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000818 assert(!OriginMap.count(V) && "Values may only have one origin");
819 DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
820 OriginMap[V] = Origin;
821 }
822
823 /// \brief Create a clean shadow value for a given value.
824 ///
825 /// Clean shadow (all zeroes) means all bits of the value are defined
826 /// (initialized).
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000827 Constant *getCleanShadow(Value *V) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000828 Type *ShadowTy = getShadowTy(V);
829 if (!ShadowTy)
830 return 0;
831 return Constant::getNullValue(ShadowTy);
832 }
833
834 /// \brief Create a dirty shadow of a given shadow type.
835 Constant *getPoisonedShadow(Type *ShadowTy) {
836 assert(ShadowTy);
837 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
838 return Constant::getAllOnesValue(ShadowTy);
839 StructType *ST = cast<StructType>(ShadowTy);
840 SmallVector<Constant *, 4> Vals;
841 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
842 Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
843 return ConstantStruct::get(ST, Vals);
844 }
845
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000846 /// \brief Create a dirty shadow for a given value.
847 Constant *getPoisonedShadow(Value *V) {
848 Type *ShadowTy = getShadowTy(V);
849 if (!ShadowTy)
850 return 0;
851 return getPoisonedShadow(ShadowTy);
852 }
853
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000854 /// \brief Create a clean (zero) origin.
855 Value *getCleanOrigin() {
856 return Constant::getNullValue(MS.OriginTy);
857 }
858
859 /// \brief Get the shadow value for a given Value.
860 ///
861 /// This function either returns the value set earlier with setShadow,
862 /// or extracts if from ParamTLS (for function arguments).
863 Value *getShadow(Value *V) {
864 if (Instruction *I = dyn_cast<Instruction>(V)) {
865 // For instructions the shadow is already stored in the map.
866 Value *Shadow = ShadowMap[V];
867 if (!Shadow) {
868 DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000869 (void)I;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000870 assert(Shadow && "No shadow for a value");
871 }
872 return Shadow;
873 }
874 if (UndefValue *U = dyn_cast<UndefValue>(V)) {
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000875 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000876 DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000877 (void)U;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000878 return AllOnes;
879 }
880 if (Argument *A = dyn_cast<Argument>(V)) {
881 // For arguments we compute the shadow on demand and store it in the map.
882 Value **ShadowPtr = &ShadowMap[V];
883 if (*ShadowPtr)
884 return *ShadowPtr;
885 Function *F = A->getParent();
886 IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
887 unsigned ArgOffset = 0;
888 for (Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
889 AI != AE; ++AI) {
890 if (!AI->getType()->isSized()) {
891 DEBUG(dbgs() << "Arg is not sized\n");
892 continue;
893 }
894 unsigned Size = AI->hasByValAttr()
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000895 ? MS.DL->getTypeAllocSize(AI->getType()->getPointerElementType())
896 : MS.DL->getTypeAllocSize(AI->getType());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000897 if (A == AI) {
898 Value *Base = getShadowPtrForArgument(AI, EntryIRB, ArgOffset);
899 if (AI->hasByValAttr()) {
900 // ByVal pointer itself has clean shadow. We copy the actual
901 // argument shadow to the underlying memory.
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000902 // Figure out maximal valid memcpy alignment.
903 unsigned ArgAlign = AI->getParamAlignment();
904 if (ArgAlign == 0) {
905 Type *EltType = A->getType()->getPointerElementType();
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000906 ArgAlign = MS.DL->getABITypeAlignment(EltType);
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000907 }
908 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000909 Value *Cpy = EntryIRB.CreateMemCpy(
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000910 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size,
911 CopyAlign);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000912 DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000913 (void)Cpy;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000914 *ShadowPtr = getCleanShadow(V);
915 } else {
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000916 *ShadowPtr = EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000917 }
918 DEBUG(dbgs() << " ARG: " << *AI << " ==> " <<
919 **ShadowPtr << "\n");
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000920 if (MS.TrackOrigins) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000921 Value* OriginPtr = getOriginPtrForArgument(AI, EntryIRB, ArgOffset);
922 setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
923 }
924 }
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000925 ArgOffset += DataLayout::RoundUpAlignment(Size, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000926 }
927 assert(*ShadowPtr && "Could not find shadow for an argument");
928 return *ShadowPtr;
929 }
930 // For everything else the shadow is zero.
931 return getCleanShadow(V);
932 }
933
934 /// \brief Get the shadow for i-th argument of the instruction I.
935 Value *getShadow(Instruction *I, int i) {
936 return getShadow(I->getOperand(i));
937 }
938
939 /// \brief Get the origin for a value.
940 Value *getOrigin(Value *V) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000941 if (!MS.TrackOrigins) return 0;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000942 if (isa<Instruction>(V) || isa<Argument>(V)) {
943 Value *Origin = OriginMap[V];
944 if (!Origin) {
945 DEBUG(dbgs() << "NO ORIGIN: " << *V << "\n");
946 Origin = getCleanOrigin();
947 }
948 return Origin;
949 }
950 return getCleanOrigin();
951 }
952
953 /// \brief Get the origin for i-th argument of the instruction I.
954 Value *getOrigin(Instruction *I, int i) {
955 return getOrigin(I->getOperand(i));
956 }
957
958 /// \brief Remember the place where a shadow check should be inserted.
959 ///
960 /// This location will be later instrumented with a check that will print a
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000961 /// UMR warning in runtime if the shadow value is not 0.
962 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
963 assert(Shadow);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000964 if (!InsertChecks) return;
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000965#ifndef NDEBUG
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000966 Type *ShadowTy = Shadow->getType();
967 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
968 "Can only insert checks for integer and vector shadow types");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000969#endif
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000970 InstrumentationList.push_back(
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000971 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
972 }
973
974 /// \brief Remember the place where a shadow check should be inserted.
975 ///
976 /// This location will be later instrumented with a check that will print a
977 /// UMR warning in runtime if the value is not fully defined.
978 void insertShadowCheck(Value *Val, Instruction *OrigIns) {
979 assert(Val);
980 Instruction *Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
981 if (!Shadow) return;
982 Instruction *Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
983 insertShadowCheck(Shadow, Origin, OrigIns);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000984 }
985
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000986 AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
987 switch (a) {
988 case NotAtomic:
989 return NotAtomic;
990 case Unordered:
991 case Monotonic:
992 case Release:
993 return Release;
994 case Acquire:
995 case AcquireRelease:
996 return AcquireRelease;
997 case SequentiallyConsistent:
998 return SequentiallyConsistent;
999 }
Evgeniy Stepanov32be0342013-09-25 08:56:00 +00001000 llvm_unreachable("Unknown ordering");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001001 }
1002
1003 AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
1004 switch (a) {
1005 case NotAtomic:
1006 return NotAtomic;
1007 case Unordered:
1008 case Monotonic:
1009 case Acquire:
1010 return Acquire;
1011 case Release:
1012 case AcquireRelease:
1013 return AcquireRelease;
1014 case SequentiallyConsistent:
1015 return SequentiallyConsistent;
1016 }
Evgeniy Stepanov32be0342013-09-25 08:56:00 +00001017 llvm_unreachable("Unknown ordering");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001018 }
1019
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001020 // ------------------- Visitors.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001021
1022 /// \brief Instrument LoadInst
1023 ///
1024 /// Loads the corresponding shadow and (optionally) origin.
1025 /// Optionally, checks that the load address is fully defined.
1026 void visitLoadInst(LoadInst &I) {
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +00001027 assert(I.getType()->isSized() && "Load type must have size");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001028 IRBuilder<> IRB(I.getNextNode());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001029 Type *ShadowTy = getShadowTy(&I);
1030 Value *Addr = I.getPointerOperand();
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001031 if (LoadShadow) {
1032 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1033 setShadow(&I,
1034 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
1035 } else {
1036 setShadow(&I, getCleanShadow(&I));
1037 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001038
1039 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001040 insertShadowCheck(I.getPointerOperand(), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001041
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001042 if (I.isAtomic())
1043 I.setOrdering(addAcquireOrdering(I.getOrdering()));
1044
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +00001045 if (MS.TrackOrigins) {
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001046 if (LoadShadow) {
1047 unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
1048 setOrigin(&I,
1049 IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB), Alignment));
1050 } else {
1051 setOrigin(&I, getCleanOrigin());
1052 }
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +00001053 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001054 }
1055
1056 /// \brief Instrument StoreInst
1057 ///
1058 /// Stores the corresponding shadow and (optionally) origin.
1059 /// Optionally, checks that the store address is fully defined.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001060 void visitStoreInst(StoreInst &I) {
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +00001061 StoreList.push_back(&I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001062 }
1063
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001064 void handleCASOrRMW(Instruction &I) {
1065 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
1066
1067 IRBuilder<> IRB(&I);
1068 Value *Addr = I.getOperand(0);
1069 Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB);
1070
1071 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001072 insertShadowCheck(Addr, &I);
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001073
1074 // Only test the conditional argument of cmpxchg instruction.
1075 // The other argument can potentially be uninitialized, but we can not
1076 // detect this situation reliably without possible false positives.
1077 if (isa<AtomicCmpXchgInst>(I))
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001078 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001079
1080 IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
1081
1082 setShadow(&I, getCleanShadow(&I));
1083 }
1084
1085 void visitAtomicRMWInst(AtomicRMWInst &I) {
1086 handleCASOrRMW(I);
1087 I.setOrdering(addReleaseOrdering(I.getOrdering()));
1088 }
1089
1090 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
1091 handleCASOrRMW(I);
Tim Northovere94a5182014-03-11 10:48:52 +00001092 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001093 }
1094
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001095 // Vector manipulation.
1096 void visitExtractElementInst(ExtractElementInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001097 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001098 IRBuilder<> IRB(&I);
1099 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
1100 "_msprop"));
1101 setOrigin(&I, getOrigin(&I, 0));
1102 }
1103
1104 void visitInsertElementInst(InsertElementInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001105 insertShadowCheck(I.getOperand(2), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001106 IRBuilder<> IRB(&I);
1107 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
1108 I.getOperand(2), "_msprop"));
1109 setOriginForNaryOp(I);
1110 }
1111
1112 void visitShuffleVectorInst(ShuffleVectorInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001113 insertShadowCheck(I.getOperand(2), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001114 IRBuilder<> IRB(&I);
1115 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
1116 I.getOperand(2), "_msprop"));
1117 setOriginForNaryOp(I);
1118 }
1119
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001120 // Casts.
1121 void visitSExtInst(SExtInst &I) {
1122 IRBuilder<> IRB(&I);
1123 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
1124 setOrigin(&I, getOrigin(&I, 0));
1125 }
1126
1127 void visitZExtInst(ZExtInst &I) {
1128 IRBuilder<> IRB(&I);
1129 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
1130 setOrigin(&I, getOrigin(&I, 0));
1131 }
1132
1133 void visitTruncInst(TruncInst &I) {
1134 IRBuilder<> IRB(&I);
1135 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
1136 setOrigin(&I, getOrigin(&I, 0));
1137 }
1138
1139 void visitBitCastInst(BitCastInst &I) {
1140 IRBuilder<> IRB(&I);
1141 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
1142 setOrigin(&I, getOrigin(&I, 0));
1143 }
1144
1145 void visitPtrToIntInst(PtrToIntInst &I) {
1146 IRBuilder<> IRB(&I);
1147 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1148 "_msprop_ptrtoint"));
1149 setOrigin(&I, getOrigin(&I, 0));
1150 }
1151
1152 void visitIntToPtrInst(IntToPtrInst &I) {
1153 IRBuilder<> IRB(&I);
1154 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1155 "_msprop_inttoptr"));
1156 setOrigin(&I, getOrigin(&I, 0));
1157 }
1158
1159 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
1160 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
1161 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
1162 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
1163 void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
1164 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
1165
1166 /// \brief Propagate shadow for bitwise AND.
1167 ///
1168 /// This code is exact, i.e. if, for example, a bit in the left argument
1169 /// is defined and 0, then neither the value not definedness of the
1170 /// corresponding bit in B don't affect the resulting shadow.
1171 void visitAnd(BinaryOperator &I) {
1172 IRBuilder<> IRB(&I);
1173 // "And" of 0 and a poisoned value results in unpoisoned value.
1174 // 1&1 => 1; 0&1 => 0; p&1 => p;
1175 // 1&0 => 0; 0&0 => 0; p&0 => 0;
1176 // 1&p => p; 0&p => 0; p&p => p;
1177 // S = (S1 & S2) | (V1 & S2) | (S1 & V2)
1178 Value *S1 = getShadow(&I, 0);
1179 Value *S2 = getShadow(&I, 1);
1180 Value *V1 = I.getOperand(0);
1181 Value *V2 = I.getOperand(1);
1182 if (V1->getType() != S1->getType()) {
1183 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1184 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1185 }
1186 Value *S1S2 = IRB.CreateAnd(S1, S2);
1187 Value *V1S2 = IRB.CreateAnd(V1, S2);
1188 Value *S1V2 = IRB.CreateAnd(S1, V2);
1189 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1190 setOriginForNaryOp(I);
1191 }
1192
1193 void visitOr(BinaryOperator &I) {
1194 IRBuilder<> IRB(&I);
1195 // "Or" of 1 and a poisoned value results in unpoisoned value.
1196 // 1|1 => 1; 0|1 => 1; p|1 => 1;
1197 // 1|0 => 1; 0|0 => 0; p|0 => p;
1198 // 1|p => 1; 0|p => p; p|p => p;
1199 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
1200 Value *S1 = getShadow(&I, 0);
1201 Value *S2 = getShadow(&I, 1);
1202 Value *V1 = IRB.CreateNot(I.getOperand(0));
1203 Value *V2 = IRB.CreateNot(I.getOperand(1));
1204 if (V1->getType() != S1->getType()) {
1205 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1206 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1207 }
1208 Value *S1S2 = IRB.CreateAnd(S1, S2);
1209 Value *V1S2 = IRB.CreateAnd(V1, S2);
1210 Value *S1V2 = IRB.CreateAnd(S1, V2);
1211 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1212 setOriginForNaryOp(I);
1213 }
1214
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001215 /// \brief Default propagation of shadow and/or origin.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001216 ///
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001217 /// This class implements the general case of shadow propagation, used in all
1218 /// cases where we don't know and/or don't care about what the operation
1219 /// actually does. It converts all input shadow values to a common type
1220 /// (extending or truncating as necessary), and bitwise OR's them.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001221 ///
1222 /// This is much cheaper than inserting checks (i.e. requiring inputs to be
1223 /// fully initialized), and less prone to false positives.
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001224 ///
1225 /// This class also implements the general case of origin propagation. For a
1226 /// Nary operation, result origin is set to the origin of an argument that is
1227 /// not entirely initialized. If there is more than one such arguments, the
1228 /// rightmost of them is picked. It does not matter which one is picked if all
1229 /// arguments are initialized.
1230 template <bool CombineShadow>
1231 class Combiner {
1232 Value *Shadow;
1233 Value *Origin;
1234 IRBuilder<> &IRB;
1235 MemorySanitizerVisitor *MSV;
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001236
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001237 public:
1238 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
1239 Shadow(0), Origin(0), IRB(IRB), MSV(MSV) {}
1240
1241 /// \brief Add a pair of shadow and origin values to the mix.
1242 Combiner &Add(Value *OpShadow, Value *OpOrigin) {
1243 if (CombineShadow) {
1244 assert(OpShadow);
1245 if (!Shadow)
1246 Shadow = OpShadow;
1247 else {
1248 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
1249 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
1250 }
1251 }
1252
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001253 if (MSV->MS.TrackOrigins) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001254 assert(OpOrigin);
1255 if (!Origin) {
1256 Origin = OpOrigin;
1257 } else {
1258 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
1259 Value *Cond = IRB.CreateICmpNE(FlatShadow,
1260 MSV->getCleanShadow(FlatShadow));
1261 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
1262 }
1263 }
1264 return *this;
1265 }
1266
1267 /// \brief Add an application value to the mix.
1268 Combiner &Add(Value *V) {
1269 Value *OpShadow = MSV->getShadow(V);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001270 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : 0;
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001271 return Add(OpShadow, OpOrigin);
1272 }
1273
1274 /// \brief Set the current combined values as the given instruction's shadow
1275 /// and origin.
1276 void Done(Instruction *I) {
1277 if (CombineShadow) {
1278 assert(Shadow);
1279 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
1280 MSV->setShadow(I, Shadow);
1281 }
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001282 if (MSV->MS.TrackOrigins) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001283 assert(Origin);
1284 MSV->setOrigin(I, Origin);
1285 }
1286 }
1287 };
1288
1289 typedef Combiner<true> ShadowAndOriginCombiner;
1290 typedef Combiner<false> OriginCombiner;
1291
1292 /// \brief Propagate origin for arbitrary operation.
1293 void setOriginForNaryOp(Instruction &I) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001294 if (!MS.TrackOrigins) return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001295 IRBuilder<> IRB(&I);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001296 OriginCombiner OC(this, IRB);
1297 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1298 OC.Add(OI->get());
1299 OC.Done(&I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001300 }
1301
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001302 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +00001303 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
1304 "Vector of pointers is not a valid shadow type");
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001305 return Ty->isVectorTy() ?
1306 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
1307 Ty->getPrimitiveSizeInBits();
1308 }
1309
1310 /// \brief Cast between two shadow types, extending or truncating as
1311 /// necessary.
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001312 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
1313 bool Signed = false) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001314 Type *srcTy = V->getType();
1315 if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001316 return IRB.CreateIntCast(V, dstTy, Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001317 if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
1318 dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001319 return IRB.CreateIntCast(V, dstTy, Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001320 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
1321 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
1322 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
1323 Value *V2 =
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001324 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001325 return IRB.CreateBitCast(V2, dstTy);
1326 // TODO: handle struct types.
1327 }
1328
1329 /// \brief Propagate shadow for arbitrary operation.
1330 void handleShadowOr(Instruction &I) {
1331 IRBuilder<> IRB(&I);
1332 ShadowAndOriginCombiner SC(this, IRB);
1333 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1334 SC.Add(OI->get());
1335 SC.Done(&I);
1336 }
1337
1338 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
1339 void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
1340 void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
1341 void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
1342 void visitSub(BinaryOperator &I) { handleShadowOr(I); }
1343 void visitXor(BinaryOperator &I) { handleShadowOr(I); }
1344 void visitMul(BinaryOperator &I) { handleShadowOr(I); }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001345
1346 void handleDiv(Instruction &I) {
1347 IRBuilder<> IRB(&I);
1348 // Strict on the second argument.
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001349 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001350 setShadow(&I, getShadow(&I, 0));
1351 setOrigin(&I, getOrigin(&I, 0));
1352 }
1353
1354 void visitUDiv(BinaryOperator &I) { handleDiv(I); }
1355 void visitSDiv(BinaryOperator &I) { handleDiv(I); }
1356 void visitFDiv(BinaryOperator &I) { handleDiv(I); }
1357 void visitURem(BinaryOperator &I) { handleDiv(I); }
1358 void visitSRem(BinaryOperator &I) { handleDiv(I); }
1359 void visitFRem(BinaryOperator &I) { handleDiv(I); }
1360
1361 /// \brief Instrument == and != comparisons.
1362 ///
1363 /// Sometimes the comparison result is known even if some of the bits of the
1364 /// arguments are not.
1365 void handleEqualityComparison(ICmpInst &I) {
1366 IRBuilder<> IRB(&I);
1367 Value *A = I.getOperand(0);
1368 Value *B = I.getOperand(1);
1369 Value *Sa = getShadow(A);
1370 Value *Sb = getShadow(B);
Evgeniy Stepanovd14e47b2013-01-15 16:44:52 +00001371
1372 // Get rid of pointers and vectors of pointers.
1373 // For ints (and vectors of ints), types of A and Sa match,
1374 // and this is a no-op.
1375 A = IRB.CreatePointerCast(A, Sa->getType());
1376 B = IRB.CreatePointerCast(B, Sb->getType());
1377
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001378 // A == B <==> (C = A^B) == 0
1379 // A != B <==> (C = A^B) != 0
1380 // Sc = Sa | Sb
1381 Value *C = IRB.CreateXor(A, B);
1382 Value *Sc = IRB.CreateOr(Sa, Sb);
1383 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
1384 // Result is defined if one of the following is true
1385 // * there is a defined 1 bit in C
1386 // * C is fully defined
1387 // Si = !(C & ~Sc) && Sc
1388 Value *Zero = Constant::getNullValue(Sc->getType());
1389 Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
1390 Value *Si =
1391 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
1392 IRB.CreateICmpEQ(
1393 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
1394 Si->setName("_msprop_icmp");
1395 setShadow(&I, Si);
1396 setOriginForNaryOp(I);
1397 }
1398
Evgeniy Stepanovfac84032013-01-25 15:31:10 +00001399 /// \brief Build the lowest possible value of V, taking into account V's
1400 /// uninitialized bits.
1401 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1402 bool isSigned) {
1403 if (isSigned) {
1404 // Split shadow into sign bit and other bits.
1405 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1406 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1407 // Maximise the undefined shadow bit, minimize other undefined bits.
1408 return
1409 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
1410 } else {
1411 // Minimize undefined bits.
1412 return IRB.CreateAnd(A, IRB.CreateNot(Sa));
1413 }
1414 }
1415
1416 /// \brief Build the highest possible value of V, taking into account V's
1417 /// uninitialized bits.
1418 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1419 bool isSigned) {
1420 if (isSigned) {
1421 // Split shadow into sign bit and other bits.
1422 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1423 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1424 // Minimise the undefined shadow bit, maximise other undefined bits.
1425 return
1426 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
1427 } else {
1428 // Maximize undefined bits.
1429 return IRB.CreateOr(A, Sa);
1430 }
1431 }
1432
1433 /// \brief Instrument relational comparisons.
1434 ///
1435 /// This function does exact shadow propagation for all relational
1436 /// comparisons of integers, pointers and vectors of those.
1437 /// FIXME: output seems suboptimal when one of the operands is a constant
1438 void handleRelationalComparisonExact(ICmpInst &I) {
1439 IRBuilder<> IRB(&I);
1440 Value *A = I.getOperand(0);
1441 Value *B = I.getOperand(1);
1442 Value *Sa = getShadow(A);
1443 Value *Sb = getShadow(B);
1444
1445 // Get rid of pointers and vectors of pointers.
1446 // For ints (and vectors of ints), types of A and Sa match,
1447 // and this is a no-op.
1448 A = IRB.CreatePointerCast(A, Sa->getType());
1449 B = IRB.CreatePointerCast(B, Sb->getType());
1450
Evgeniy Stepanov2cb0fa12013-01-25 15:35:29 +00001451 // Let [a0, a1] be the interval of possible values of A, taking into account
1452 // its undefined bits. Let [b0, b1] be the interval of possible values of B.
1453 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
Evgeniy Stepanovfac84032013-01-25 15:31:10 +00001454 bool IsSigned = I.isSigned();
1455 Value *S1 = IRB.CreateICmp(I.getPredicate(),
1456 getLowestPossibleValue(IRB, A, Sa, IsSigned),
1457 getHighestPossibleValue(IRB, B, Sb, IsSigned));
1458 Value *S2 = IRB.CreateICmp(I.getPredicate(),
1459 getHighestPossibleValue(IRB, A, Sa, IsSigned),
1460 getLowestPossibleValue(IRB, B, Sb, IsSigned));
1461 Value *Si = IRB.CreateXor(S1, S2);
1462 setShadow(&I, Si);
1463 setOriginForNaryOp(I);
1464 }
1465
Evgeniy Stepanov857d9d22012-11-29 14:25:47 +00001466 /// \brief Instrument signed relational comparisons.
1467 ///
1468 /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
1469 /// propagating the highest bit of the shadow. Everything else is delegated
1470 /// to handleShadowOr().
1471 void handleSignedRelationalComparison(ICmpInst &I) {
1472 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1473 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
1474 Value* op = NULL;
1475 CmpInst::Predicate pre = I.getPredicate();
1476 if (constOp0 && constOp0->isNullValue() &&
1477 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
1478 op = I.getOperand(1);
1479 } else if (constOp1 && constOp1->isNullValue() &&
1480 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
1481 op = I.getOperand(0);
1482 }
1483 if (op) {
1484 IRBuilder<> IRB(&I);
1485 Value* Shadow =
1486 IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
1487 setShadow(&I, Shadow);
1488 setOrigin(&I, getOrigin(op));
1489 } else {
1490 handleShadowOr(I);
1491 }
1492 }
1493
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001494 void visitICmpInst(ICmpInst &I) {
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +00001495 if (!ClHandleICmp) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001496 handleShadowOr(I);
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +00001497 return;
1498 }
1499 if (I.isEquality()) {
1500 handleEqualityComparison(I);
1501 return;
1502 }
1503
1504 assert(I.isRelational());
1505 if (ClHandleICmpExact) {
1506 handleRelationalComparisonExact(I);
1507 return;
1508 }
1509 if (I.isSigned()) {
1510 handleSignedRelationalComparison(I);
1511 return;
1512 }
1513
1514 assert(I.isUnsigned());
1515 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
1516 handleRelationalComparisonExact(I);
1517 return;
1518 }
1519
1520 handleShadowOr(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001521 }
1522
1523 void visitFCmpInst(FCmpInst &I) {
1524 handleShadowOr(I);
1525 }
1526
1527 void handleShift(BinaryOperator &I) {
1528 IRBuilder<> IRB(&I);
1529 // If any of the S2 bits are poisoned, the whole thing is poisoned.
1530 // Otherwise perform the same shift on S1.
1531 Value *S1 = getShadow(&I, 0);
1532 Value *S2 = getShadow(&I, 1);
1533 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
1534 S2->getType());
1535 Value *V2 = I.getOperand(1);
1536 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
1537 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1538 setOriginForNaryOp(I);
1539 }
1540
1541 void visitShl(BinaryOperator &I) { handleShift(I); }
1542 void visitAShr(BinaryOperator &I) { handleShift(I); }
1543 void visitLShr(BinaryOperator &I) { handleShift(I); }
1544
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001545 /// \brief Instrument llvm.memmove
1546 ///
1547 /// At this point we don't know if llvm.memmove will be inlined or not.
1548 /// If we don't instrument it and it gets inlined,
1549 /// our interceptor will not kick in and we will lose the memmove.
1550 /// If we instrument the call here, but it does not get inlined,
1551 /// we will memove the shadow twice: which is bad in case
1552 /// of overlapping regions. So, we simply lower the intrinsic to a call.
1553 ///
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001554 /// Similar situation exists for memcpy and memset.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001555 void visitMemMoveInst(MemMoveInst &I) {
1556 IRBuilder<> IRB(&I);
1557 IRB.CreateCall3(
1558 MS.MemmoveFn,
1559 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1560 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1561 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1562 I.eraseFromParent();
1563 }
1564
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001565 // Similar to memmove: avoid copying shadow twice.
1566 // This is somewhat unfortunate as it may slowdown small constant memcpys.
1567 // FIXME: consider doing manual inline for small constant sizes and proper
1568 // alignment.
1569 void visitMemCpyInst(MemCpyInst &I) {
1570 IRBuilder<> IRB(&I);
1571 IRB.CreateCall3(
1572 MS.MemcpyFn,
1573 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1574 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1575 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1576 I.eraseFromParent();
1577 }
1578
1579 // Same as memcpy.
1580 void visitMemSetInst(MemSetInst &I) {
1581 IRBuilder<> IRB(&I);
1582 IRB.CreateCall3(
1583 MS.MemsetFn,
1584 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1585 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
1586 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1587 I.eraseFromParent();
1588 }
1589
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001590 void visitVAStartInst(VAStartInst &I) {
1591 VAHelper->visitVAStartInst(I);
1592 }
1593
1594 void visitVACopyInst(VACopyInst &I) {
1595 VAHelper->visitVACopyInst(I);
1596 }
1597
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001598 enum IntrinsicKind {
1599 IK_DoesNotAccessMemory,
1600 IK_OnlyReadsMemory,
1601 IK_WritesMemory
1602 };
1603
1604 static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
1605 const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
1606 const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
1607 const int OnlyReadsMemory = IK_OnlyReadsMemory;
1608 const int OnlyAccessesArgumentPointees = IK_WritesMemory;
1609 const int UnknownModRefBehavior = IK_WritesMemory;
1610#define GET_INTRINSIC_MODREF_BEHAVIOR
1611#define ModRefBehavior IntrinsicKind
Chandler Carruthdb25c6c2013-01-02 12:09:16 +00001612#include "llvm/IR/Intrinsics.gen"
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001613#undef ModRefBehavior
1614#undef GET_INTRINSIC_MODREF_BEHAVIOR
1615 }
1616
1617 /// \brief Handle vector store-like intrinsics.
1618 ///
1619 /// Instrument intrinsics that look like a simple SIMD store: writes memory,
1620 /// has 1 pointer argument and 1 vector argument, returns void.
1621 bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
1622 IRBuilder<> IRB(&I);
1623 Value* Addr = I.getArgOperand(0);
1624 Value *Shadow = getShadow(&I, 1);
1625 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
1626
1627 // We don't know the pointer alignment (could be unaligned SSE store!).
1628 // Have to assume to worst case.
1629 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
1630
1631 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001632 insertShadowCheck(Addr, &I);
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001633
1634 // FIXME: use ClStoreCleanOrigin
1635 // FIXME: factor out common code from materializeStores
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001636 if (MS.TrackOrigins)
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001637 IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB));
1638 return true;
1639 }
1640
1641 /// \brief Handle vector load-like intrinsics.
1642 ///
1643 /// Instrument intrinsics that look like a simple SIMD load: reads memory,
1644 /// has 1 pointer argument, returns a vector.
1645 bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
1646 IRBuilder<> IRB(&I);
1647 Value *Addr = I.getArgOperand(0);
1648
1649 Type *ShadowTy = getShadowTy(&I);
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001650 if (LoadShadow) {
1651 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1652 // We don't know the pointer alignment (could be unaligned SSE load!).
1653 // Have to assume to worst case.
1654 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
1655 } else {
1656 setShadow(&I, getCleanShadow(&I));
1657 }
1658
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001659 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001660 insertShadowCheck(Addr, &I);
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001661
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001662 if (MS.TrackOrigins) {
1663 if (LoadShadow)
1664 setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB)));
1665 else
1666 setOrigin(&I, getCleanOrigin());
1667 }
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001668 return true;
1669 }
1670
1671 /// \brief Handle (SIMD arithmetic)-like intrinsics.
1672 ///
1673 /// Instrument intrinsics with any number of arguments of the same type,
1674 /// equal to the return type. The type should be simple (no aggregates or
1675 /// pointers; vectors are fine).
1676 /// Caller guarantees that this intrinsic does not access memory.
1677 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
1678 Type *RetTy = I.getType();
1679 if (!(RetTy->isIntOrIntVectorTy() ||
1680 RetTy->isFPOrFPVectorTy() ||
1681 RetTy->isX86_MMXTy()))
1682 return false;
1683
1684 unsigned NumArgOperands = I.getNumArgOperands();
1685
1686 for (unsigned i = 0; i < NumArgOperands; ++i) {
1687 Type *Ty = I.getArgOperand(i)->getType();
1688 if (Ty != RetTy)
1689 return false;
1690 }
1691
1692 IRBuilder<> IRB(&I);
1693 ShadowAndOriginCombiner SC(this, IRB);
1694 for (unsigned i = 0; i < NumArgOperands; ++i)
1695 SC.Add(I.getArgOperand(i));
1696 SC.Done(&I);
1697
1698 return true;
1699 }
1700
1701 /// \brief Heuristically instrument unknown intrinsics.
1702 ///
1703 /// The main purpose of this code is to do something reasonable with all
1704 /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
1705 /// We recognize several classes of intrinsics by their argument types and
1706 /// ModRefBehaviour and apply special intrumentation when we are reasonably
1707 /// sure that we know what the intrinsic does.
1708 ///
1709 /// We special-case intrinsics where this approach fails. See llvm.bswap
1710 /// handling as an example of that.
1711 bool handleUnknownIntrinsic(IntrinsicInst &I) {
1712 unsigned NumArgOperands = I.getNumArgOperands();
1713 if (NumArgOperands == 0)
1714 return false;
1715
1716 Intrinsic::ID iid = I.getIntrinsicID();
1717 IntrinsicKind IK = getIntrinsicKind(iid);
1718 bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
1719 bool WritesMemory = IK == IK_WritesMemory;
1720 assert(!(OnlyReadsMemory && WritesMemory));
1721
1722 if (NumArgOperands == 2 &&
1723 I.getArgOperand(0)->getType()->isPointerTy() &&
1724 I.getArgOperand(1)->getType()->isVectorTy() &&
1725 I.getType()->isVoidTy() &&
1726 WritesMemory) {
1727 // This looks like a vector store.
1728 return handleVectorStoreIntrinsic(I);
1729 }
1730
1731 if (NumArgOperands == 1 &&
1732 I.getArgOperand(0)->getType()->isPointerTy() &&
1733 I.getType()->isVectorTy() &&
1734 OnlyReadsMemory) {
1735 // This looks like a vector load.
1736 return handleVectorLoadIntrinsic(I);
1737 }
1738
1739 if (!OnlyReadsMemory && !WritesMemory)
1740 if (maybeHandleSimpleNomemIntrinsic(I))
1741 return true;
1742
1743 // FIXME: detect and handle SSE maskstore/maskload
1744 return false;
1745 }
1746
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001747 void handleBswap(IntrinsicInst &I) {
1748 IRBuilder<> IRB(&I);
1749 Value *Op = I.getArgOperand(0);
1750 Type *OpType = Op->getType();
1751 Function *BswapFunc = Intrinsic::getDeclaration(
1752 F.getParent(), Intrinsic::bswap, ArrayRef<Type*>(&OpType, 1));
1753 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
1754 setOrigin(&I, getOrigin(Op));
1755 }
1756
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001757 // \brief Instrument vector convert instrinsic.
1758 //
1759 // This function instruments intrinsics like cvtsi2ss:
1760 // %Out = int_xxx_cvtyyy(%ConvertOp)
1761 // or
1762 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
1763 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
1764 // number \p Out elements, and (if has 2 arguments) copies the rest of the
1765 // elements from \p CopyOp.
1766 // In most cases conversion involves floating-point value which may trigger a
1767 // hardware exception when not fully initialized. For this reason we require
1768 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
1769 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
1770 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
1771 // return a fully initialized value.
1772 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
1773 IRBuilder<> IRB(&I);
1774 Value *CopyOp, *ConvertOp;
1775
1776 switch (I.getNumArgOperands()) {
1777 case 2:
1778 CopyOp = I.getArgOperand(0);
1779 ConvertOp = I.getArgOperand(1);
1780 break;
1781 case 1:
1782 ConvertOp = I.getArgOperand(0);
1783 CopyOp = NULL;
1784 break;
1785 default:
1786 llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
1787 }
1788
1789 // The first *NumUsedElements* elements of ConvertOp are converted to the
1790 // same number of output elements. The rest of the output is copied from
1791 // CopyOp, or (if not available) filled with zeroes.
1792 // Combine shadow for elements of ConvertOp that are used in this operation,
1793 // and insert a check.
1794 // FIXME: consider propagating shadow of ConvertOp, at least in the case of
1795 // int->any conversion.
1796 Value *ConvertShadow = getShadow(ConvertOp);
1797 Value *AggShadow = 0;
1798 if (ConvertOp->getType()->isVectorTy()) {
1799 AggShadow = IRB.CreateExtractElement(
1800 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
1801 for (int i = 1; i < NumUsedElements; ++i) {
1802 Value *MoreShadow = IRB.CreateExtractElement(
1803 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
1804 AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
1805 }
1806 } else {
1807 AggShadow = ConvertShadow;
1808 }
1809 assert(AggShadow->getType()->isIntegerTy());
1810 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
1811
1812 // Build result shadow by zero-filling parts of CopyOp shadow that come from
1813 // ConvertOp.
1814 if (CopyOp) {
1815 assert(CopyOp->getType() == I.getType());
1816 assert(CopyOp->getType()->isVectorTy());
1817 Value *ResultShadow = getShadow(CopyOp);
1818 Type *EltTy = ResultShadow->getType()->getVectorElementType();
1819 for (int i = 0; i < NumUsedElements; ++i) {
1820 ResultShadow = IRB.CreateInsertElement(
1821 ResultShadow, ConstantInt::getNullValue(EltTy),
1822 ConstantInt::get(IRB.getInt32Ty(), i));
1823 }
1824 setShadow(&I, ResultShadow);
1825 setOrigin(&I, getOrigin(CopyOp));
1826 } else {
1827 setShadow(&I, getCleanShadow(&I));
1828 }
1829 }
1830
Evgeniy Stepanov77be5322014-03-03 13:47:42 +00001831 // Given a scalar or vector, extract lower 64 bits (or less), and return all
1832 // zeroes if it is zero, and all ones otherwise.
1833 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
1834 if (S->getType()->isVectorTy())
1835 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
1836 assert(S->getType()->getPrimitiveSizeInBits() <= 64);
1837 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
1838 return CreateShadowCast(IRB, S2, T, /* Signed */ true);
1839 }
1840
1841 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
1842 Type *T = S->getType();
1843 assert(T->isVectorTy());
1844 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
1845 return IRB.CreateSExt(S2, T);
1846 }
1847
1848 // \brief Instrument vector shift instrinsic.
1849 //
1850 // This function instruments intrinsics like int_x86_avx2_psll_w.
1851 // Intrinsic shifts %In by %ShiftSize bits.
1852 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
1853 // size, and the rest is ignored. Behavior is defined even if shift size is
1854 // greater than register (or field) width.
1855 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
1856 assert(I.getNumArgOperands() == 2);
1857 IRBuilder<> IRB(&I);
1858 // If any of the S2 bits are poisoned, the whole thing is poisoned.
1859 // Otherwise perform the same shift on S1.
1860 Value *S1 = getShadow(&I, 0);
1861 Value *S2 = getShadow(&I, 1);
1862 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
1863 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
1864 Value *V1 = I.getOperand(0);
1865 Value *V2 = I.getOperand(1);
1866 Value *Shift = IRB.CreateCall2(I.getCalledValue(),
1867 IRB.CreateBitCast(S1, V1->getType()), V2);
1868 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
1869 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1870 setOriginForNaryOp(I);
1871 }
1872
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001873 void visitIntrinsicInst(IntrinsicInst &I) {
1874 switch (I.getIntrinsicID()) {
1875 case llvm::Intrinsic::bswap:
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001876 handleBswap(I);
1877 break;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001878 case llvm::Intrinsic::x86_avx512_cvtsd2usi64:
1879 case llvm::Intrinsic::x86_avx512_cvtsd2usi:
1880 case llvm::Intrinsic::x86_avx512_cvtss2usi64:
1881 case llvm::Intrinsic::x86_avx512_cvtss2usi:
1882 case llvm::Intrinsic::x86_avx512_cvttss2usi64:
1883 case llvm::Intrinsic::x86_avx512_cvttss2usi:
1884 case llvm::Intrinsic::x86_avx512_cvttsd2usi64:
1885 case llvm::Intrinsic::x86_avx512_cvttsd2usi:
1886 case llvm::Intrinsic::x86_avx512_cvtusi2sd:
1887 case llvm::Intrinsic::x86_avx512_cvtusi2ss:
1888 case llvm::Intrinsic::x86_avx512_cvtusi642sd:
1889 case llvm::Intrinsic::x86_avx512_cvtusi642ss:
1890 case llvm::Intrinsic::x86_sse2_cvtsd2si64:
1891 case llvm::Intrinsic::x86_sse2_cvtsd2si:
1892 case llvm::Intrinsic::x86_sse2_cvtsd2ss:
1893 case llvm::Intrinsic::x86_sse2_cvtsi2sd:
1894 case llvm::Intrinsic::x86_sse2_cvtsi642sd:
1895 case llvm::Intrinsic::x86_sse2_cvtss2sd:
1896 case llvm::Intrinsic::x86_sse2_cvttsd2si64:
1897 case llvm::Intrinsic::x86_sse2_cvttsd2si:
1898 case llvm::Intrinsic::x86_sse_cvtsi2ss:
1899 case llvm::Intrinsic::x86_sse_cvtsi642ss:
1900 case llvm::Intrinsic::x86_sse_cvtss2si64:
1901 case llvm::Intrinsic::x86_sse_cvtss2si:
1902 case llvm::Intrinsic::x86_sse_cvttss2si64:
1903 case llvm::Intrinsic::x86_sse_cvttss2si:
1904 handleVectorConvertIntrinsic(I, 1);
1905 break;
1906 case llvm::Intrinsic::x86_sse2_cvtdq2pd:
1907 case llvm::Intrinsic::x86_sse2_cvtps2pd:
1908 case llvm::Intrinsic::x86_sse_cvtps2pi:
1909 case llvm::Intrinsic::x86_sse_cvttps2pi:
1910 handleVectorConvertIntrinsic(I, 2);
1911 break;
Evgeniy Stepanov77be5322014-03-03 13:47:42 +00001912 case llvm::Intrinsic::x86_avx512_psll_dq:
1913 case llvm::Intrinsic::x86_avx512_psrl_dq:
1914 case llvm::Intrinsic::x86_avx2_psll_w:
1915 case llvm::Intrinsic::x86_avx2_psll_d:
1916 case llvm::Intrinsic::x86_avx2_psll_q:
1917 case llvm::Intrinsic::x86_avx2_pslli_w:
1918 case llvm::Intrinsic::x86_avx2_pslli_d:
1919 case llvm::Intrinsic::x86_avx2_pslli_q:
1920 case llvm::Intrinsic::x86_avx2_psll_dq:
1921 case llvm::Intrinsic::x86_avx2_psrl_w:
1922 case llvm::Intrinsic::x86_avx2_psrl_d:
1923 case llvm::Intrinsic::x86_avx2_psrl_q:
1924 case llvm::Intrinsic::x86_avx2_psra_w:
1925 case llvm::Intrinsic::x86_avx2_psra_d:
1926 case llvm::Intrinsic::x86_avx2_psrli_w:
1927 case llvm::Intrinsic::x86_avx2_psrli_d:
1928 case llvm::Intrinsic::x86_avx2_psrli_q:
1929 case llvm::Intrinsic::x86_avx2_psrai_w:
1930 case llvm::Intrinsic::x86_avx2_psrai_d:
1931 case llvm::Intrinsic::x86_avx2_psrl_dq:
1932 case llvm::Intrinsic::x86_sse2_psll_w:
1933 case llvm::Intrinsic::x86_sse2_psll_d:
1934 case llvm::Intrinsic::x86_sse2_psll_q:
1935 case llvm::Intrinsic::x86_sse2_pslli_w:
1936 case llvm::Intrinsic::x86_sse2_pslli_d:
1937 case llvm::Intrinsic::x86_sse2_pslli_q:
1938 case llvm::Intrinsic::x86_sse2_psll_dq:
1939 case llvm::Intrinsic::x86_sse2_psrl_w:
1940 case llvm::Intrinsic::x86_sse2_psrl_d:
1941 case llvm::Intrinsic::x86_sse2_psrl_q:
1942 case llvm::Intrinsic::x86_sse2_psra_w:
1943 case llvm::Intrinsic::x86_sse2_psra_d:
1944 case llvm::Intrinsic::x86_sse2_psrli_w:
1945 case llvm::Intrinsic::x86_sse2_psrli_d:
1946 case llvm::Intrinsic::x86_sse2_psrli_q:
1947 case llvm::Intrinsic::x86_sse2_psrai_w:
1948 case llvm::Intrinsic::x86_sse2_psrai_d:
1949 case llvm::Intrinsic::x86_sse2_psrl_dq:
1950 case llvm::Intrinsic::x86_mmx_psll_w:
1951 case llvm::Intrinsic::x86_mmx_psll_d:
1952 case llvm::Intrinsic::x86_mmx_psll_q:
1953 case llvm::Intrinsic::x86_mmx_pslli_w:
1954 case llvm::Intrinsic::x86_mmx_pslli_d:
1955 case llvm::Intrinsic::x86_mmx_pslli_q:
1956 case llvm::Intrinsic::x86_mmx_psrl_w:
1957 case llvm::Intrinsic::x86_mmx_psrl_d:
1958 case llvm::Intrinsic::x86_mmx_psrl_q:
1959 case llvm::Intrinsic::x86_mmx_psra_w:
1960 case llvm::Intrinsic::x86_mmx_psra_d:
1961 case llvm::Intrinsic::x86_mmx_psrli_w:
1962 case llvm::Intrinsic::x86_mmx_psrli_d:
1963 case llvm::Intrinsic::x86_mmx_psrli_q:
1964 case llvm::Intrinsic::x86_mmx_psrai_w:
1965 case llvm::Intrinsic::x86_mmx_psrai_d:
1966 handleVectorShiftIntrinsic(I, /* Variable */ false);
1967 break;
1968 case llvm::Intrinsic::x86_avx2_psllv_d:
1969 case llvm::Intrinsic::x86_avx2_psllv_d_256:
1970 case llvm::Intrinsic::x86_avx2_psllv_q:
1971 case llvm::Intrinsic::x86_avx2_psllv_q_256:
1972 case llvm::Intrinsic::x86_avx2_psrlv_d:
1973 case llvm::Intrinsic::x86_avx2_psrlv_d_256:
1974 case llvm::Intrinsic::x86_avx2_psrlv_q:
1975 case llvm::Intrinsic::x86_avx2_psrlv_q_256:
1976 case llvm::Intrinsic::x86_avx2_psrav_d:
1977 case llvm::Intrinsic::x86_avx2_psrav_d_256:
1978 handleVectorShiftIntrinsic(I, /* Variable */ true);
1979 break;
1980
1981 // Byte shifts are not implemented.
1982 // case llvm::Intrinsic::x86_avx512_psll_dq_bs:
1983 // case llvm::Intrinsic::x86_avx512_psrl_dq_bs:
1984 // case llvm::Intrinsic::x86_avx2_psll_dq_bs:
1985 // case llvm::Intrinsic::x86_avx2_psrl_dq_bs:
1986 // case llvm::Intrinsic::x86_sse2_psll_dq_bs:
1987 // case llvm::Intrinsic::x86_sse2_psrl_dq_bs:
1988
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001989 default:
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001990 if (!handleUnknownIntrinsic(I))
1991 visitInstruction(I);
Evgeniy Stepanov88b8dce2012-12-17 16:30:05 +00001992 break;
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001993 }
1994 }
1995
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001996 void visitCallSite(CallSite CS) {
1997 Instruction &I = *CS.getInstruction();
1998 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
1999 if (CS.isCall()) {
Evgeniy Stepanov7ad7e832012-11-29 14:32:03 +00002000 CallInst *Call = cast<CallInst>(&I);
2001
2002 // For inline asm, do the usual thing: check argument shadow and mark all
2003 // outputs as clean. Note that any side effects of the inline asm that are
2004 // not immediately visible in its constraints are not handled.
2005 if (Call->isInlineAsm()) {
2006 visitInstruction(I);
2007 return;
2008 }
2009
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002010 // Allow only tail calls with the same types, otherwise
2011 // we may have a false positive: shadow for a non-void RetVal
2012 // will get propagated to a void RetVal.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002013 if (Call->isTailCall() && Call->getType() != Call->getParent()->getType())
2014 Call->setTailCall(false);
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00002015
2016 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
Evgeniy Stepanov383b61e2012-12-07 09:08:32 +00002017
2018 // We are going to insert code that relies on the fact that the callee
2019 // will become a non-readonly function after it is instrumented by us. To
2020 // prevent this code from being optimized out, mark that function
2021 // non-readonly in advance.
2022 if (Function *Func = Call->getCalledFunction()) {
2023 // Clear out readonly/readnone attributes.
2024 AttrBuilder B;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002025 B.addAttribute(Attribute::ReadOnly)
2026 .addAttribute(Attribute::ReadNone);
Bill Wendling430fa9b2013-01-23 00:45:55 +00002027 Func->removeAttributes(AttributeSet::FunctionIndex,
2028 AttributeSet::get(Func->getContext(),
2029 AttributeSet::FunctionIndex,
2030 B));
Evgeniy Stepanov383b61e2012-12-07 09:08:32 +00002031 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002032 }
2033 IRBuilder<> IRB(&I);
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00002034
2035 if (MS.WrapIndirectCalls && !CS.getCalledFunction())
Evgeniy Stepanov585813e2013-11-14 12:29:04 +00002036 IndirectCallList.push_back(CS);
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00002037
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002038 unsigned ArgOffset = 0;
2039 DEBUG(dbgs() << " CallSite: " << I << "\n");
2040 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2041 ArgIt != End; ++ArgIt) {
2042 Value *A = *ArgIt;
2043 unsigned i = ArgIt - CS.arg_begin();
2044 if (!A->getType()->isSized()) {
2045 DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
2046 continue;
2047 }
2048 unsigned Size = 0;
2049 Value *Store = 0;
2050 // Compute the Shadow for arg even if it is ByVal, because
2051 // in that case getShadow() will copy the actual arg shadow to
2052 // __msan_param_tls.
2053 Value *ArgShadow = getShadow(A);
2054 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
2055 DEBUG(dbgs() << " Arg#" << i << ": " << *A <<
2056 " Shadow: " << *ArgShadow << "\n");
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002057 if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002058 assert(A->getType()->isPointerTy() &&
2059 "ByVal argument is not a pointer!");
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002060 Size = MS.DL->getTypeAllocSize(A->getType()->getPointerElementType());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002061 unsigned Alignment = CS.getParamAlignment(i + 1);
2062 Store = IRB.CreateMemCpy(ArgShadowBase,
2063 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
2064 Size, Alignment);
2065 } else {
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002066 Size = MS.DL->getTypeAllocSize(A->getType());
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002067 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
2068 kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002069 }
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002070 if (MS.TrackOrigins)
Evgeniy Stepanov49175b22012-12-14 13:43:11 +00002071 IRB.CreateStore(getOrigin(A),
2072 getOriginPtrForArgument(A, IRB, ArgOffset));
Edwin Vane82f80d42013-01-29 17:42:24 +00002073 (void)Store;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002074 assert(Size != 0 && Store != 0);
2075 DEBUG(dbgs() << " Param:" << *Store << "\n");
2076 ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
2077 }
2078 DEBUG(dbgs() << " done with call args\n");
2079
2080 FunctionType *FT =
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00002081 cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002082 if (FT->isVarArg()) {
2083 VAHelper->visitCallSite(CS, IRB);
2084 }
2085
2086 // Now, get the shadow for the RetVal.
2087 if (!I.getType()->isSized()) return;
2088 IRBuilder<> IRBBefore(&I);
Alp Tokercb402912014-01-24 17:20:08 +00002089 // Until we have full dynamic coverage, make sure the retval shadow is 0.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002090 Value *Base = getShadowPtrForRetval(&I, IRBBefore);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002091 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002092 Instruction *NextInsn = 0;
2093 if (CS.isCall()) {
2094 NextInsn = I.getNextNode();
2095 } else {
2096 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
2097 if (!NormalDest->getSinglePredecessor()) {
2098 // FIXME: this case is tricky, so we are just conservative here.
2099 // Perhaps we need to split the edge between this BB and NormalDest,
2100 // but a naive attempt to use SplitEdge leads to a crash.
2101 setShadow(&I, getCleanShadow(&I));
2102 setOrigin(&I, getCleanOrigin());
2103 return;
2104 }
2105 NextInsn = NormalDest->getFirstInsertionPt();
2106 assert(NextInsn &&
2107 "Could not find insertion point for retval shadow load");
2108 }
2109 IRBuilder<> IRBAfter(NextInsn);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002110 Value *RetvalShadow =
2111 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
2112 kShadowTLSAlignment, "_msret");
2113 setShadow(&I, RetvalShadow);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002114 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002115 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
2116 }
2117
2118 void visitReturnInst(ReturnInst &I) {
2119 IRBuilder<> IRB(&I);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002120 Value *RetVal = I.getReturnValue();
2121 if (!RetVal) return;
2122 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
2123 if (CheckReturnValue) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00002124 insertShadowCheck(RetVal, &I);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002125 Value *Shadow = getCleanShadow(RetVal);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002126 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002127 } else {
2128 Value *Shadow = getShadow(RetVal);
2129 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
2130 // FIXME: make it conditional if ClStoreCleanOrigin==0
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002131 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002132 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
2133 }
2134 }
2135
2136 void visitPHINode(PHINode &I) {
2137 IRBuilder<> IRB(&I);
2138 ShadowPHINodes.push_back(&I);
2139 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
2140 "_msphi_s"));
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002141 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002142 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
2143 "_msphi_o"));
2144 }
2145
2146 void visitAllocaInst(AllocaInst &I) {
2147 setShadow(&I, getCleanShadow(&I));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002148 IRBuilder<> IRB(I.getNextNode());
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002149 uint64_t Size = MS.DL->getTypeAllocSize(I.getAllocatedType());
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002150 if (PoisonStack && ClPoisonStackWithCall) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002151 IRB.CreateCall2(MS.MsanPoisonStackFn,
2152 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2153 ConstantInt::get(MS.IntptrTy, Size));
2154 } else {
2155 Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002156 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
2157 IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002158 }
2159
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002160 if (PoisonStack && MS.TrackOrigins) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002161 setOrigin(&I, getCleanOrigin());
2162 SmallString<2048> StackDescriptionStorage;
2163 raw_svector_ostream StackDescription(StackDescriptionStorage);
2164 // We create a string with a description of the stack allocation and
2165 // pass it into __msan_set_alloca_origin.
2166 // It will be printed by the run-time if stack-originated UMR is found.
2167 // The first 4 bytes of the string are set to '----' and will be replaced
2168 // by __msan_va_arg_overflow_size_tls at the first call.
2169 StackDescription << "----" << I.getName() << "@" << F.getName();
2170 Value *Descr =
2171 createPrivateNonConstGlobalForString(*F.getParent(),
2172 StackDescription.str());
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +00002173
2174 IRB.CreateCall4(MS.MsanSetAllocaOrigin4Fn,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002175 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2176 ConstantInt::get(MS.IntptrTy, Size),
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +00002177 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
2178 IRB.CreatePointerCast(&F, MS.IntptrTy));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002179 }
2180 }
2181
2182 void visitSelectInst(SelectInst& I) {
2183 IRBuilder<> IRB(&I);
Evgeniy Stepanov566f5912013-09-03 10:04:11 +00002184 // a = select b, c, d
Evgeniy Stepanov566f5912013-09-03 10:04:11 +00002185 Value *S = IRB.CreateSelect(I.getCondition(), getShadow(I.getTrueValue()),
2186 getShadow(I.getFalseValue()));
Evgeniy Stepanove95d37c2013-09-03 13:05:29 +00002187 if (I.getType()->isAggregateType()) {
2188 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
2189 // an extra "select". This results in much more compact IR.
2190 // Sa = select Sb, poisoned, (select b, Sc, Sd)
2191 S = IRB.CreateSelect(getShadow(I.getCondition()),
2192 getPoisonedShadow(getShadowTy(I.getType())), S,
2193 "_msprop_select_agg");
2194 } else {
2195 // Sa = (sext Sb) | (select b, Sc, Sd)
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00002196 S = IRB.CreateOr(S, CreateShadowCast(IRB, getShadow(I.getCondition()),
2197 S->getType(), true),
2198 "_msprop_select");
Evgeniy Stepanove95d37c2013-09-03 13:05:29 +00002199 }
2200 setShadow(&I, S);
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002201 if (MS.TrackOrigins) {
2202 // Origins are always i32, so any vector conditions must be flattened.
2203 // FIXME: consider tracking vector origins for app vectors?
2204 Value *Cond = I.getCondition();
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002205 Value *CondShadow = getShadow(Cond);
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002206 if (Cond->getType()->isVectorTy()) {
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002207 Type *FlatTy = getShadowTyNoVec(Cond->getType());
2208 Cond = IRB.CreateICmpNE(IRB.CreateBitCast(Cond, FlatTy),
2209 ConstantInt::getNullValue(FlatTy));
2210 CondShadow = IRB.CreateICmpNE(IRB.CreateBitCast(CondShadow, FlatTy),
2211 ConstantInt::getNullValue(FlatTy));
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002212 }
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002213 // a = select b, c, d
2214 // Oa = Sb ? Ob : (b ? Oc : Od)
2215 setOrigin(&I, IRB.CreateSelect(
2216 CondShadow, getOrigin(I.getCondition()),
2217 IRB.CreateSelect(Cond, getOrigin(I.getTrueValue()),
2218 getOrigin(I.getFalseValue()))));
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002219 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002220 }
2221
2222 void visitLandingPadInst(LandingPadInst &I) {
2223 // Do nothing.
2224 // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
2225 setShadow(&I, getCleanShadow(&I));
2226 setOrigin(&I, getCleanOrigin());
2227 }
2228
2229 void visitGetElementPtrInst(GetElementPtrInst &I) {
2230 handleShadowOr(I);
2231 }
2232
2233 void visitExtractValueInst(ExtractValueInst &I) {
2234 IRBuilder<> IRB(&I);
2235 Value *Agg = I.getAggregateOperand();
2236 DEBUG(dbgs() << "ExtractValue: " << I << "\n");
2237 Value *AggShadow = getShadow(Agg);
2238 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
2239 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
2240 DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n");
2241 setShadow(&I, ResShadow);
Evgeniy Stepanov560e08932013-11-11 13:37:10 +00002242 setOriginForNaryOp(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002243 }
2244
2245 void visitInsertValueInst(InsertValueInst &I) {
2246 IRBuilder<> IRB(&I);
2247 DEBUG(dbgs() << "InsertValue: " << I << "\n");
2248 Value *AggShadow = getShadow(I.getAggregateOperand());
2249 Value *InsShadow = getShadow(I.getInsertedValueOperand());
2250 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
2251 DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n");
2252 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
2253 DEBUG(dbgs() << " Res: " << *Res << "\n");
2254 setShadow(&I, Res);
Evgeniy Stepanov560e08932013-11-11 13:37:10 +00002255 setOriginForNaryOp(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002256 }
2257
2258 void dumpInst(Instruction &I) {
2259 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2260 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
2261 } else {
2262 errs() << "ZZZ " << I.getOpcodeName() << "\n";
2263 }
2264 errs() << "QQQ " << I << "\n";
2265 }
2266
2267 void visitResumeInst(ResumeInst &I) {
2268 DEBUG(dbgs() << "Resume: " << I << "\n");
2269 // Nothing to do here.
2270 }
2271
2272 void visitInstruction(Instruction &I) {
2273 // Everything else: stop propagating and check for poisoned shadow.
2274 if (ClDumpStrictInstructions)
2275 dumpInst(I);
2276 DEBUG(dbgs() << "DEFAULT: " << I << "\n");
2277 for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00002278 insertShadowCheck(I.getOperand(i), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002279 setShadow(&I, getCleanShadow(&I));
2280 setOrigin(&I, getCleanOrigin());
2281 }
2282};
2283
2284/// \brief AMD64-specific implementation of VarArgHelper.
2285struct VarArgAMD64Helper : public VarArgHelper {
2286 // An unfortunate workaround for asymmetric lowering of va_arg stuff.
2287 // See a comment in visitCallSite for more details.
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00002288 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002289 static const unsigned AMD64FpEndOffset = 176;
2290
2291 Function &F;
2292 MemorySanitizer &MS;
2293 MemorySanitizerVisitor &MSV;
2294 Value *VAArgTLSCopy;
2295 Value *VAArgOverflowSize;
2296
2297 SmallVector<CallInst*, 16> VAStartInstrumentationList;
2298
2299 VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
2300 MemorySanitizerVisitor &MSV)
2301 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(0), VAArgOverflowSize(0) { }
2302
2303 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
2304
2305 ArgKind classifyArgument(Value* arg) {
2306 // A very rough approximation of X86_64 argument classification rules.
2307 Type *T = arg->getType();
2308 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
2309 return AK_FloatingPoint;
2310 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
2311 return AK_GeneralPurpose;
2312 if (T->isPointerTy())
2313 return AK_GeneralPurpose;
2314 return AK_Memory;
2315 }
2316
2317 // For VarArg functions, store the argument shadow in an ABI-specific format
2318 // that corresponds to va_list layout.
2319 // We do this because Clang lowers va_arg in the frontend, and this pass
2320 // only sees the low level code that deals with va_list internals.
2321 // A much easier alternative (provided that Clang emits va_arg instructions)
2322 // would have been to associate each live instance of va_list with a copy of
2323 // MSanParamTLS, and extract shadow on va_arg() call in the argument list
2324 // order.
Craig Topper3e4c6972014-03-05 09:10:37 +00002325 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002326 unsigned GpOffset = 0;
2327 unsigned FpOffset = AMD64GpEndOffset;
2328 unsigned OverflowOffset = AMD64FpEndOffset;
2329 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2330 ArgIt != End; ++ArgIt) {
2331 Value *A = *ArgIt;
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002332 unsigned ArgNo = CS.getArgumentNo(ArgIt);
2333 bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal);
2334 if (IsByVal) {
2335 // ByVal arguments always go to the overflow area.
2336 assert(A->getType()->isPointerTy());
2337 Type *RealTy = A->getType()->getPointerElementType();
2338 uint64_t ArgSize = MS.DL->getTypeAllocSize(RealTy);
2339 Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002340 OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002341 IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB),
2342 ArgSize, kShadowTLSAlignment);
2343 } else {
2344 ArgKind AK = classifyArgument(A);
2345 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
2346 AK = AK_Memory;
2347 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
2348 AK = AK_Memory;
2349 Value *Base;
2350 switch (AK) {
2351 case AK_GeneralPurpose:
2352 Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset);
2353 GpOffset += 8;
2354 break;
2355 case AK_FloatingPoint:
2356 Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset);
2357 FpOffset += 16;
2358 break;
2359 case AK_Memory:
2360 uint64_t ArgSize = MS.DL->getTypeAllocSize(A->getType());
2361 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
2362 OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
2363 }
2364 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002365 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002366 }
2367 Constant *OverflowSize =
2368 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
2369 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
2370 }
2371
2372 /// \brief Compute the shadow address for a given va_arg.
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002373 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002374 int ArgOffset) {
2375 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
2376 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002377 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002378 "_msarg");
2379 }
2380
Craig Topper3e4c6972014-03-05 09:10:37 +00002381 void visitVAStartInst(VAStartInst &I) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002382 IRBuilder<> IRB(&I);
2383 VAStartInstrumentationList.push_back(&I);
2384 Value *VAListTag = I.getArgOperand(0);
2385 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2386
2387 // Unpoison the whole __va_list_tag.
2388 // FIXME: magic ABI constants.
2389 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
Peter Collingbournef7d65c42013-01-10 22:36:33 +00002390 /* size */24, /* alignment */8, false);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002391 }
2392
Craig Topper3e4c6972014-03-05 09:10:37 +00002393 void visitVACopyInst(VACopyInst &I) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002394 IRBuilder<> IRB(&I);
2395 Value *VAListTag = I.getArgOperand(0);
2396 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2397
2398 // Unpoison the whole __va_list_tag.
2399 // FIXME: magic ABI constants.
2400 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
Peter Collingbournef7d65c42013-01-10 22:36:33 +00002401 /* size */24, /* alignment */8, false);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002402 }
2403
Craig Topper3e4c6972014-03-05 09:10:37 +00002404 void finalizeInstrumentation() override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002405 assert(!VAArgOverflowSize && !VAArgTLSCopy &&
2406 "finalizeInstrumentation called twice");
2407 if (!VAStartInstrumentationList.empty()) {
2408 // If there is a va_start in this function, make a backup copy of
2409 // va_arg_tls somewhere in the function entry block.
2410 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
2411 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
2412 Value *CopySize =
2413 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
2414 VAArgOverflowSize);
2415 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
2416 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
2417 }
2418
2419 // Instrument va_start.
2420 // Copy va_list shadow from the backup copy of the TLS contents.
2421 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
2422 CallInst *OrigInst = VAStartInstrumentationList[i];
2423 IRBuilder<> IRB(OrigInst->getNextNode());
2424 Value *VAListTag = OrigInst->getArgOperand(0);
2425
2426 Value *RegSaveAreaPtrPtr =
2427 IRB.CreateIntToPtr(
2428 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2429 ConstantInt::get(MS.IntptrTy, 16)),
2430 Type::getInt64PtrTy(*MS.C));
2431 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
2432 Value *RegSaveAreaShadowPtr =
2433 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
2434 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
2435 AMD64FpEndOffset, 16);
2436
2437 Value *OverflowArgAreaPtrPtr =
2438 IRB.CreateIntToPtr(
2439 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2440 ConstantInt::get(MS.IntptrTy, 8)),
2441 Type::getInt64PtrTy(*MS.C));
2442 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
2443 Value *OverflowArgAreaShadowPtr =
2444 MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
Evgeniy Stepanovd42863c2013-08-23 12:11:00 +00002445 Value *SrcPtr = IRB.CreateConstGEP1_32(VAArgTLSCopy, AMD64FpEndOffset);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002446 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
2447 }
2448 }
2449};
2450
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002451/// \brief A no-op implementation of VarArgHelper.
2452struct VarArgNoOpHelper : public VarArgHelper {
2453 VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
2454 MemorySanitizerVisitor &MSV) {}
2455
Craig Topper3e4c6972014-03-05 09:10:37 +00002456 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002457
Craig Topper3e4c6972014-03-05 09:10:37 +00002458 void visitVAStartInst(VAStartInst &I) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002459
Craig Topper3e4c6972014-03-05 09:10:37 +00002460 void visitVACopyInst(VACopyInst &I) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002461
Craig Topper3e4c6972014-03-05 09:10:37 +00002462 void finalizeInstrumentation() override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002463};
2464
2465VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002466 MemorySanitizerVisitor &Visitor) {
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002467 // VarArg handling is only implemented on AMD64. False positives are possible
2468 // on other platforms.
2469 llvm::Triple TargetTriple(Func.getParent()->getTargetTriple());
2470 if (TargetTriple.getArch() == llvm::Triple::x86_64)
2471 return new VarArgAMD64Helper(Func, Msan, Visitor);
2472 else
2473 return new VarArgNoOpHelper(Func, Msan, Visitor);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002474}
2475
2476} // namespace
2477
2478bool MemorySanitizer::runOnFunction(Function &F) {
2479 MemorySanitizerVisitor Visitor(F, *this);
2480
2481 // Clear out readonly/readnone attributes.
2482 AttrBuilder B;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002483 B.addAttribute(Attribute::ReadOnly)
2484 .addAttribute(Attribute::ReadNone);
Bill Wendling430fa9b2013-01-23 00:45:55 +00002485 F.removeAttributes(AttributeSet::FunctionIndex,
2486 AttributeSet::get(F.getContext(),
2487 AttributeSet::FunctionIndex, B));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002488
2489 return Visitor.runOnFunction();
2490}