blob: e54ac0650ac965afe9c01a329e9d448b866522e0 [file] [log] [blame]
Adam Nemet04563272015-02-01 16:56:15 +00001//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The implementation for the loop memory dependence that was originally
11// developed for the loop vectorizer.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/LoopAccessAnalysis.h"
16#include "llvm/Analysis/LoopInfo.h"
Xinliang David Li8a021312016-07-02 21:18:40 +000017#include "llvm/Analysis/LoopPassManager.h"
Adam Nemet5b3a5cf2016-07-20 21:44:26 +000018#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
Adam Nemet7206d7a2015-02-06 18:31:04 +000019#include "llvm/Analysis/ScalarEvolutionExpander.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000020#include "llvm/Analysis/TargetLibraryInfo.h"
Adam Nemet04563272015-02-01 16:56:15 +000021#include "llvm/Analysis/ValueTracking.h"
Adam Nemetf45594c2016-07-01 00:09:02 +000022#include "llvm/Analysis/VectorUtils.h"
Adam Nemet04563272015-02-01 16:56:15 +000023#include "llvm/IR/Dominators.h"
Adam Nemet7206d7a2015-02-06 18:31:04 +000024#include "llvm/IR/IRBuilder.h"
Xinliang David Li8a021312016-07-02 21:18:40 +000025#include "llvm/IR/PassManager.h"
Adam Nemet04563272015-02-01 16:56:15 +000026#include "llvm/Support/Debug.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000027#include "llvm/Support/raw_ostream.h"
Adam Nemet04563272015-02-01 16:56:15 +000028using namespace llvm;
29
Adam Nemet339f42b2015-02-19 19:15:07 +000030#define DEBUG_TYPE "loop-accesses"
Adam Nemet04563272015-02-01 16:56:15 +000031
Adam Nemetf219c642015-02-19 19:14:52 +000032static cl::opt<unsigned, true>
33VectorizationFactor("force-vector-width", cl::Hidden,
34 cl::desc("Sets the SIMD width. Zero is autoselect."),
35 cl::location(VectorizerParams::VectorizationFactor));
Adam Nemet1d862af2015-02-26 04:39:09 +000036unsigned VectorizerParams::VectorizationFactor;
Adam Nemetf219c642015-02-19 19:14:52 +000037
38static cl::opt<unsigned, true>
39VectorizationInterleave("force-vector-interleave", cl::Hidden,
40 cl::desc("Sets the vectorization interleave count. "
41 "Zero is autoselect."),
42 cl::location(
43 VectorizerParams::VectorizationInterleave));
Adam Nemet1d862af2015-02-26 04:39:09 +000044unsigned VectorizerParams::VectorizationInterleave;
Adam Nemetf219c642015-02-19 19:14:52 +000045
Adam Nemet1d862af2015-02-26 04:39:09 +000046static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
47 "runtime-memory-check-threshold", cl::Hidden,
48 cl::desc("When performing memory disambiguation checks at runtime do not "
49 "generate more than this number of comparisons (default = 8)."),
50 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
51unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
Adam Nemetf219c642015-02-19 19:14:52 +000052
Silviu Baranga1b6b50a2015-07-08 09:16:33 +000053/// \brief The maximum iterations used to merge memory checks
54static cl::opt<unsigned> MemoryCheckMergeThreshold(
55 "memory-check-merge-threshold", cl::Hidden,
56 cl::desc("Maximum number of comparisons done when trying to merge "
57 "runtime memory checks. (default = 100)"),
58 cl::init(100));
59
Adam Nemetf219c642015-02-19 19:14:52 +000060/// Maximum SIMD width.
61const unsigned VectorizerParams::MaxVectorWidth = 64;
62
Adam Nemeta2df7502015-11-03 21:39:52 +000063/// \brief We collect dependences up to this threshold.
64static cl::opt<unsigned>
65 MaxDependences("max-dependences", cl::Hidden,
66 cl::desc("Maximum number of dependences collected by "
67 "loop-access analysis (default = 100)"),
68 cl::init(100));
Adam Nemet9c926572015-03-10 17:40:37 +000069
Adam Nemeta9f09c62016-06-17 22:35:41 +000070/// This enables versioning on the strides of symbolically striding memory
71/// accesses in code like the following.
72/// for (i = 0; i < N; ++i)
73/// A[i * Stride1] += B[i * Stride2] ...
74///
75/// Will be roughly translated to
76/// if (Stride1 == 1 && Stride2 == 1) {
77/// for (i = 0; i < N; i+=4)
78/// A[i:i+3] += ...
79/// } else
80/// ...
81static cl::opt<bool> EnableMemAccessVersioning(
82 "enable-mem-access-versioning", cl::init(true), cl::Hidden,
83 cl::desc("Enable symbolic stride memory access versioning"));
84
Matthew Simpson37ec5f92016-05-16 17:00:56 +000085/// \brief Enable store-to-load forwarding conflict detection. This option can
86/// be disabled for correctness testing.
87static cl::opt<bool> EnableForwardingConflictDetection(
88 "store-to-load-forwarding-conflict-detection", cl::Hidden,
Matthew Simpsona250dc92016-05-16 14:14:49 +000089 cl::desc("Enable conflict detection in loop-access analysis"),
90 cl::init(true));
91
Adam Nemetf219c642015-02-19 19:14:52 +000092bool VectorizerParams::isInterleaveForced() {
93 return ::VectorizationInterleave.getNumOccurrences() > 0;
94}
95
Adam Nemet2bd6e982015-02-19 19:15:15 +000096void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
Adam Nemet5b3a5cf2016-07-20 21:44:26 +000097 const Loop *TheLoop, const char *PassName,
98 OptimizationRemarkEmitter &ORE) {
Adam Nemet04563272015-02-01 16:56:15 +000099 DebugLoc DL = TheLoop->getStartLoc();
Adam Nemet5b3a5cf2016-07-20 21:44:26 +0000100 const Value *V = TheLoop->getHeader();
101 if (const Instruction *I = Message.getInstr()) {
Adam Nemet04563272015-02-01 16:56:15 +0000102 DL = I->getDebugLoc();
Adam Nemet5b3a5cf2016-07-20 21:44:26 +0000103 V = I->getParent();
104 }
105 ORE.emitOptimizationRemarkAnalysis(PassName, DL, V, Message.str());
Adam Nemet04563272015-02-01 16:56:15 +0000106}
107
108Value *llvm::stripIntegerCast(Value *V) {
David Majnemer8b401012016-07-12 20:31:46 +0000109 if (auto *CI = dyn_cast<CastInst>(V))
Adam Nemet04563272015-02-01 16:56:15 +0000110 if (CI->getOperand(0)->getType()->isIntegerTy())
111 return CI->getOperand(0);
112 return V;
113}
114
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000115const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
Adam Nemet8bc61df2015-02-24 00:41:59 +0000116 const ValueToValueMap &PtrToStride,
Adam Nemet04563272015-02-01 16:56:15 +0000117 Value *Ptr, Value *OrigPtr) {
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000118 const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000119
120 // If there is an entry in the map return the SCEV of the pointer with the
121 // symbolic stride replaced by one.
Adam Nemet8bc61df2015-02-24 00:41:59 +0000122 ValueToValueMap::const_iterator SI =
123 PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000124 if (SI != PtrToStride.end()) {
125 Value *StrideVal = SI->second;
126
127 // Strip casts.
128 StrideVal = stripIntegerCast(StrideVal);
129
130 // Replace symbolic stride by one.
131 Value *One = ConstantInt::get(StrideVal->getType(), 1);
132 ValueToValueMap RewriteMap;
133 RewriteMap[StrideVal] = One;
134
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000135 ScalarEvolution *SE = PSE.getSE();
Silviu Barangae3c05342015-11-02 14:41:02 +0000136 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
137 const auto *CT =
138 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
139
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000140 PSE.addPredicate(*SE->getEqualPredicate(U, CT));
141 auto *Expr = PSE.getSCEV(Ptr);
Silviu Barangae3c05342015-11-02 14:41:02 +0000142
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000143 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr
Adam Nemet04563272015-02-01 16:56:15 +0000144 << "\n");
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000145 return Expr;
Adam Nemet04563272015-02-01 16:56:15 +0000146 }
147
148 // Otherwise, just return the SCEV of the original pointer.
Silviu Barangae3c05342015-11-02 14:41:02 +0000149 return OrigSCEV;
Adam Nemet04563272015-02-01 16:56:15 +0000150}
151
Adam Nemet7cdebac2015-07-14 22:32:44 +0000152void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
153 unsigned DepSetId, unsigned ASId,
Silviu Barangae3c05342015-11-02 14:41:02 +0000154 const ValueToValueMap &Strides,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000155 PredicatedScalarEvolution &PSE) {
Adam Nemet04563272015-02-01 16:56:15 +0000156 // Get the stride replaced scev.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000157 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000158 ScalarEvolution *SE = PSE.getSE();
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000159
Adam Nemet279784f2016-03-24 04:28:47 +0000160 const SCEV *ScStart;
161 const SCEV *ScEnd;
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000162
Adam Nemet59a65502016-03-24 05:15:24 +0000163 if (SE->isLoopInvariant(Sc, Lp))
Adam Nemet279784f2016-03-24 04:28:47 +0000164 ScStart = ScEnd = Sc;
Adam Nemet279784f2016-03-24 04:28:47 +0000165 else {
166 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
167 assert(AR && "Invalid addrec expression");
Silviu Baranga6f444df2016-04-08 14:29:09 +0000168 const SCEV *Ex = PSE.getBackedgeTakenCount();
Adam Nemet279784f2016-03-24 04:28:47 +0000169
170 ScStart = AR->getStart();
171 ScEnd = AR->evaluateAtIteration(Ex, *SE);
172 const SCEV *Step = AR->getStepRecurrence(*SE);
173
174 // For expressions with negative step, the upper bound is ScStart and the
175 // lower bound is ScEnd.
David Majnemer8b401012016-07-12 20:31:46 +0000176 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
Adam Nemet279784f2016-03-24 04:28:47 +0000177 if (CStep->getValue()->isNegative())
178 std::swap(ScStart, ScEnd);
179 } else {
180 // Fallback case: the step is not constant, but the we can still
181 // get the upper and lower bounds of the interval by using min/max
182 // expressions.
183 ScStart = SE->getUMinExpr(ScStart, ScEnd);
184 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
185 }
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000186 }
187
188 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000189}
190
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000191SmallVector<RuntimePointerChecking::PointerCheck, 4>
Adam Nemet38530882015-08-09 20:06:06 +0000192RuntimePointerChecking::generateChecks() const {
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000193 SmallVector<PointerCheck, 4> Checks;
194
Adam Nemet7c52e052015-07-27 19:38:50 +0000195 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
196 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
197 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
198 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000199
Adam Nemet38530882015-08-09 20:06:06 +0000200 if (needsChecking(CGI, CGJ))
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000201 Checks.push_back(std::make_pair(&CGI, &CGJ));
202 }
203 }
204 return Checks;
205}
206
Adam Nemet15840392015-08-07 22:44:15 +0000207void RuntimePointerChecking::generateChecks(
208 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
209 assert(Checks.empty() && "Checks is not empty");
210 groupChecks(DepCands, UseDependencies);
211 Checks = generateChecks();
212}
213
Adam Nemet651a5a22015-08-09 20:06:08 +0000214bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
215 const CheckingPtrGroup &N) const {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000216 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
217 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
Adam Nemet651a5a22015-08-09 20:06:08 +0000218 if (needsChecking(M.Members[I], N.Members[J]))
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000219 return true;
220 return false;
221}
222
223/// Compare \p I and \p J and return the minimum.
224/// Return nullptr in case we couldn't find an answer.
225static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
226 ScalarEvolution *SE) {
227 const SCEV *Diff = SE->getMinusSCEV(J, I);
228 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
229
230 if (!C)
231 return nullptr;
232 if (C->getValue()->isNegative())
233 return J;
234 return I;
235}
236
Adam Nemet7cdebac2015-07-14 22:32:44 +0000237bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000238 const SCEV *Start = RtCheck.Pointers[Index].Start;
239 const SCEV *End = RtCheck.Pointers[Index].End;
240
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000241 // Compare the starts and ends with the known minimum and maximum
242 // of this set. We need to know how we compare against the min/max
243 // of the set in order to be able to emit memchecks.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000244 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000245 if (!Min0)
246 return false;
247
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000248 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000249 if (!Min1)
250 return false;
251
252 // Update the low bound expression if we've found a new min value.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000253 if (Min0 == Start)
254 Low = Start;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000255
256 // Update the high bound expression if we've found a new max value.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000257 if (Min1 != End)
258 High = End;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000259
260 Members.push_back(Index);
261 return true;
262}
263
Adam Nemet7cdebac2015-07-14 22:32:44 +0000264void RuntimePointerChecking::groupChecks(
265 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000266 // We build the groups from dependency candidates equivalence classes
267 // because:
268 // - We know that pointers in the same equivalence class share
269 // the same underlying object and therefore there is a chance
270 // that we can compare pointers
271 // - We wouldn't be able to merge two pointers for which we need
272 // to emit a memcheck. The classes in DepCands are already
273 // conveniently built such that no two pointers in the same
274 // class need checking against each other.
275
276 // We use the following (greedy) algorithm to construct the groups
277 // For every pointer in the equivalence class:
278 // For each existing group:
279 // - if the difference between this pointer and the min/max bounds
280 // of the group is a constant, then make the pointer part of the
281 // group and update the min/max bounds of that group as required.
282
283 CheckingGroups.clear();
284
Silviu Baranga48250602015-07-28 13:44:08 +0000285 // If we need to check two pointers to the same underlying object
286 // with a non-constant difference, we shouldn't perform any pointer
287 // grouping with those pointers. This is because we can easily get
288 // into cases where the resulting check would return false, even when
289 // the accesses are safe.
290 //
291 // The following example shows this:
292 // for (i = 0; i < 1000; ++i)
293 // a[5000 + i * m] = a[i] + a[i + 9000]
294 //
295 // Here grouping gives a check of (5000, 5000 + 1000 * m) against
296 // (0, 10000) which is always false. However, if m is 1, there is no
297 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
298 // us to perform an accurate check in this case.
299 //
300 // The above case requires that we have an UnknownDependence between
301 // accesses to the same underlying object. This cannot happen unless
302 // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
303 // is also false. In this case we will use the fallback path and create
304 // separate checking groups for all pointers.
Mehdi Aminiafd13512015-11-05 05:49:43 +0000305
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000306 // If we don't have the dependency partitions, construct a new
Silviu Baranga48250602015-07-28 13:44:08 +0000307 // checking pointer group for each pointer. This is also required
308 // for correctness, because in this case we can have checking between
309 // pointers to the same underlying object.
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000310 if (!UseDependencies) {
311 for (unsigned I = 0; I < Pointers.size(); ++I)
312 CheckingGroups.push_back(CheckingPtrGroup(I, *this));
313 return;
314 }
315
316 unsigned TotalComparisons = 0;
317
318 DenseMap<Value *, unsigned> PositionMap;
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000319 for (unsigned Index = 0; Index < Pointers.size(); ++Index)
320 PositionMap[Pointers[Index].PointerValue] = Index;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000321
Silviu Barangace3877f2015-07-09 15:18:25 +0000322 // We need to keep track of what pointers we've already seen so we
323 // don't process them twice.
324 SmallSet<unsigned, 2> Seen;
325
Sanjay Patele4b9f502015-12-07 19:21:39 +0000326 // Go through all equivalence classes, get the "pointer check groups"
Silviu Barangace3877f2015-07-09 15:18:25 +0000327 // and add them to the overall solution. We use the order in which accesses
328 // appear in 'Pointers' to enforce determinism.
329 for (unsigned I = 0; I < Pointers.size(); ++I) {
330 // We've seen this pointer before, and therefore already processed
331 // its equivalence class.
332 if (Seen.count(I))
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000333 continue;
334
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000335 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
336 Pointers[I].IsWritePtr);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000337
Silviu Barangace3877f2015-07-09 15:18:25 +0000338 SmallVector<CheckingPtrGroup, 2> Groups;
339 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
340
Silviu Barangaa647c302015-07-13 14:48:24 +0000341 // Because DepCands is constructed by visiting accesses in the order in
342 // which they appear in alias sets (which is deterministic) and the
343 // iteration order within an equivalence class member is only dependent on
344 // the order in which unions and insertions are performed on the
345 // equivalence class, the iteration order is deterministic.
Silviu Barangace3877f2015-07-09 15:18:25 +0000346 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000347 MI != ME; ++MI) {
348 unsigned Pointer = PositionMap[MI->getPointer()];
349 bool Merged = false;
Silviu Barangace3877f2015-07-09 15:18:25 +0000350 // Mark this pointer as seen.
351 Seen.insert(Pointer);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000352
353 // Go through all the existing sets and see if we can find one
354 // which can include this pointer.
355 for (CheckingPtrGroup &Group : Groups) {
356 // Don't perform more than a certain amount of comparisons.
357 // This should limit the cost of grouping the pointers to something
358 // reasonable. If we do end up hitting this threshold, the algorithm
359 // will create separate groups for all remaining pointers.
360 if (TotalComparisons > MemoryCheckMergeThreshold)
361 break;
362
363 TotalComparisons++;
364
365 if (Group.addPointer(Pointer)) {
366 Merged = true;
367 break;
368 }
369 }
370
371 if (!Merged)
372 // We couldn't add this pointer to any existing set or the threshold
373 // for the number of comparisons has been reached. Create a new group
374 // to hold the current pointer.
375 Groups.push_back(CheckingPtrGroup(Pointer, *this));
376 }
377
378 // We've computed the grouped checks for this partition.
379 // Save the results and continue with the next one.
380 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
381 }
Adam Nemet04563272015-02-01 16:56:15 +0000382}
383
Adam Nemet041e6de2015-07-16 02:48:05 +0000384bool RuntimePointerChecking::arePointersInSamePartition(
385 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
386 unsigned PtrIdx2) {
387 return (PtrToPartition[PtrIdx1] != -1 &&
388 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
389}
390
Adam Nemet651a5a22015-08-09 20:06:08 +0000391bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000392 const PointerInfo &PointerI = Pointers[I];
393 const PointerInfo &PointerJ = Pointers[J];
394
Adam Nemeta8945b72015-02-18 03:43:58 +0000395 // No need to check if two readonly pointers intersect.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000396 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
Adam Nemeta8945b72015-02-18 03:43:58 +0000397 return false;
398
399 // Only need to check pointers between two different dependency sets.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000400 if (PointerI.DependencySetId == PointerJ.DependencySetId)
Adam Nemeta8945b72015-02-18 03:43:58 +0000401 return false;
402
403 // Only need to check pointers in the same alias set.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000404 if (PointerI.AliasSetId != PointerJ.AliasSetId)
Adam Nemeta8945b72015-02-18 03:43:58 +0000405 return false;
406
407 return true;
408}
409
Adam Nemet54f0b832015-07-27 23:54:41 +0000410void RuntimePointerChecking::printChecks(
411 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
412 unsigned Depth) const {
413 unsigned N = 0;
414 for (const auto &Check : Checks) {
415 const auto &First = Check.first->Members, &Second = Check.second->Members;
416
417 OS.indent(Depth) << "Check " << N++ << ":\n";
418
419 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
420 for (unsigned K = 0; K < First.size(); ++K)
421 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
422
423 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
424 for (unsigned K = 0; K < Second.size(); ++K)
425 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
426 }
427}
428
Adam Nemet3a91e942015-08-07 19:44:48 +0000429void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
Adam Nemete91cc6e2015-02-19 19:15:19 +0000430
431 OS.indent(Depth) << "Run-time memory checks:\n";
Adam Nemet15840392015-08-07 22:44:15 +0000432 printChecks(OS, Checks, Depth);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000433
434 OS.indent(Depth) << "Grouped accesses:\n";
435 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
Adam Nemet54f0b832015-07-27 23:54:41 +0000436 const auto &CG = CheckingGroups[I];
437
438 OS.indent(Depth + 2) << "Group " << &CG << ":\n";
439 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
440 << ")\n";
441 for (unsigned J = 0; J < CG.Members.size(); ++J) {
442 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000443 << "\n";
444 }
445 }
Adam Nemete91cc6e2015-02-19 19:15:19 +0000446}
447
Adam Nemet04563272015-02-01 16:56:15 +0000448namespace {
449/// \brief Analyses memory accesses in a loop.
450///
451/// Checks whether run time pointer checks are needed and builds sets for data
452/// dependence checking.
453class AccessAnalysis {
454public:
455 /// \brief Read or write access location.
456 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
457 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
458
Adam Nemete2b885c2015-04-23 20:09:20 +0000459 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000460 MemoryDepChecker::DepCandidates &DA,
461 PredicatedScalarEvolution &PSE)
Silviu Barangae3c05342015-11-02 14:41:02 +0000462 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000463 PSE(PSE) {}
Adam Nemet04563272015-02-01 16:56:15 +0000464
465 /// \brief Register a load and whether it is only read from.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000466 void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
Adam Nemet04563272015-02-01 16:56:15 +0000467 Value *Ptr = const_cast<Value*>(Loc.Ptr);
Chandler Carruthecbd1682015-06-17 07:21:38 +0000468 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000469 Accesses.insert(MemAccessInfo(Ptr, false));
470 if (IsReadOnly)
471 ReadOnlyPtr.insert(Ptr);
472 }
473
474 /// \brief Register a store.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000475 void addStore(MemoryLocation &Loc) {
Adam Nemet04563272015-02-01 16:56:15 +0000476 Value *Ptr = const_cast<Value*>(Loc.Ptr);
Chandler Carruthecbd1682015-06-17 07:21:38 +0000477 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000478 Accesses.insert(MemAccessInfo(Ptr, true));
479 }
480
481 /// \brief Check whether we can check the pointers at runtime for
Adam Nemetee614742015-07-09 22:17:38 +0000482 /// non-intersection.
483 ///
484 /// Returns true if we need no check or if we do and we can generate them
485 /// (i.e. the pointers have computable bounds).
Adam Nemet7cdebac2015-07-14 22:32:44 +0000486 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
487 Loop *TheLoop, const ValueToValueMap &Strides,
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000488 bool ShouldCheckWrap = false);
Adam Nemet04563272015-02-01 16:56:15 +0000489
490 /// \brief Goes over all memory accesses, checks whether a RT check is needed
491 /// and builds sets of dependent accesses.
492 void buildDependenceSets() {
493 processMemAccesses();
494 }
495
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000496 /// \brief Initial processing of memory accesses determined that we need to
497 /// perform dependency checking.
498 ///
499 /// Note that this can later be cleared if we retry memcheck analysis without
500 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
Adam Nemet04563272015-02-01 16:56:15 +0000501 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
Adam Nemetdf3dc5b2015-05-18 15:37:03 +0000502
503 /// We decided that no dependence analysis would be used. Reset the state.
504 void resetDepChecks(MemoryDepChecker &DepChecker) {
505 CheckDeps.clear();
Adam Nemeta2df7502015-11-03 21:39:52 +0000506 DepChecker.clearDependences();
Adam Nemetdf3dc5b2015-05-18 15:37:03 +0000507 }
Adam Nemet04563272015-02-01 16:56:15 +0000508
509 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
510
511private:
512 typedef SetVector<MemAccessInfo> PtrAccessSet;
513
514 /// \brief Go over all memory access and check whether runtime pointer checks
Adam Nemetb41d2d32015-07-09 06:47:21 +0000515 /// are needed and build sets of dependency check candidates.
Adam Nemet04563272015-02-01 16:56:15 +0000516 void processMemAccesses();
517
518 /// Set of all accesses.
519 PtrAccessSet Accesses;
520
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000521 const DataLayout &DL;
522
Adam Nemet04563272015-02-01 16:56:15 +0000523 /// Set of accesses that need a further dependence check.
524 MemAccessInfoSet CheckDeps;
525
526 /// Set of pointers that are read only.
527 SmallPtrSet<Value*, 16> ReadOnlyPtr;
528
Adam Nemet04563272015-02-01 16:56:15 +0000529 /// An alias set tracker to partition the access set by underlying object and
530 //intrinsic property (such as TBAA metadata).
531 AliasSetTracker AST;
532
Adam Nemete2b885c2015-04-23 20:09:20 +0000533 LoopInfo *LI;
534
Adam Nemet04563272015-02-01 16:56:15 +0000535 /// Sets of potentially dependent accesses - members of one set share an
536 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
537 /// dependence check.
Adam Nemetdee666b2015-03-10 17:40:34 +0000538 MemoryDepChecker::DepCandidates &DepCands;
Adam Nemet04563272015-02-01 16:56:15 +0000539
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000540 /// \brief Initial processing of memory accesses determined that we may need
541 /// to add memchecks. Perform the analysis to determine the necessary checks.
542 ///
543 /// Note that, this is different from isDependencyCheckNeeded. When we retry
544 /// memcheck analysis without dependency checking
545 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
546 /// while this remains set if we have potentially dependent accesses.
547 bool IsRTCheckAnalysisNeeded;
Silviu Barangae3c05342015-11-02 14:41:02 +0000548
549 /// The SCEV predicate containing all the SCEV-related assumptions.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000550 PredicatedScalarEvolution &PSE;
Adam Nemet04563272015-02-01 16:56:15 +0000551};
552
553} // end anonymous namespace
554
555/// \brief Check whether a pointer can participate in a runtime bounds check.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000556static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
Silviu Barangae3c05342015-11-02 14:41:02 +0000557 const ValueToValueMap &Strides, Value *Ptr,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000558 Loop *L) {
559 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
Adam Nemet279784f2016-03-24 04:28:47 +0000560
561 // The bounds for loop-invariant pointer is trivial.
562 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
563 return true;
564
Adam Nemet04563272015-02-01 16:56:15 +0000565 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
566 if (!AR)
567 return false;
568
569 return AR->isAffine();
570}
571
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000572/// \brief Check whether a pointer address cannot wrap.
573static bool isNoWrap(PredicatedScalarEvolution &PSE,
574 const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
575 const SCEV *PtrScev = PSE.getSCEV(Ptr);
576 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
577 return true;
578
David Majnemer7afb46d2016-07-07 06:24:36 +0000579 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000580 return Stride == 1;
581}
582
Adam Nemet7cdebac2015-07-14 22:32:44 +0000583bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
584 ScalarEvolution *SE, Loop *TheLoop,
585 const ValueToValueMap &StridesMap,
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000586 bool ShouldCheckWrap) {
Adam Nemet04563272015-02-01 16:56:15 +0000587 // Find pointers with computable bounds. We are going to use this information
588 // to place a runtime bound check.
589 bool CanDoRT = true;
590
Adam Nemetee614742015-07-09 22:17:38 +0000591 bool NeedRTCheck = false;
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000592 if (!IsRTCheckAnalysisNeeded) return true;
Silviu Baranga98a13712015-06-08 10:27:06 +0000593
Adam Nemet04563272015-02-01 16:56:15 +0000594 bool IsDepCheckNeeded = isDependencyCheckNeeded();
Adam Nemet04563272015-02-01 16:56:15 +0000595
596 // We assign a consecutive id to access from different alias sets.
597 // Accesses between different groups doesn't need to be checked.
598 unsigned ASId = 1;
599 for (auto &AS : AST) {
Adam Nemet424edc62015-07-08 22:58:48 +0000600 int NumReadPtrChecks = 0;
601 int NumWritePtrChecks = 0;
602
Adam Nemet04563272015-02-01 16:56:15 +0000603 // We assign consecutive id to access from different dependence sets.
604 // Accesses within the same set don't need a runtime check.
605 unsigned RunningDepId = 1;
606 DenseMap<Value *, unsigned> DepSetId;
607
608 for (auto A : AS) {
609 Value *Ptr = A.getValue();
610 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
611 MemAccessInfo Access(Ptr, IsWrite);
612
Adam Nemet424edc62015-07-08 22:58:48 +0000613 if (IsWrite)
614 ++NumWritePtrChecks;
615 else
616 ++NumReadPtrChecks;
617
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000618 if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000619 // When we run after a failing dependency check we have to make sure
620 // we don't have wrapping pointers.
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000621 (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) {
Adam Nemet04563272015-02-01 16:56:15 +0000622 // The id of the dependence set.
623 unsigned DepId;
624
625 if (IsDepCheckNeeded) {
626 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
627 unsigned &LeaderId = DepSetId[Leader];
628 if (!LeaderId)
629 LeaderId = RunningDepId++;
630 DepId = LeaderId;
631 } else
632 // Each access has its own dependence set.
633 DepId = RunningDepId++;
634
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000635 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
Adam Nemet04563272015-02-01 16:56:15 +0000636
Adam Nemet339f42b2015-02-19 19:15:07 +0000637 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000638 } else {
Adam Nemetf10ca272015-05-18 15:36:52 +0000639 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000640 CanDoRT = false;
641 }
642 }
643
Adam Nemet424edc62015-07-08 22:58:48 +0000644 // If we have at least two writes or one write and a read then we need to
645 // check them. But there is no need to checks if there is only one
646 // dependence set for this alias set.
647 //
648 // Note that this function computes CanDoRT and NeedRTCheck independently.
649 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
650 // for which we couldn't find the bounds but we don't actually need to emit
651 // any checks so it does not matter.
652 if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
653 NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
654 NumWritePtrChecks >= 1));
655
Adam Nemet04563272015-02-01 16:56:15 +0000656 ++ASId;
657 }
658
659 // If the pointers that we would use for the bounds comparison have different
660 // address spaces, assume the values aren't directly comparable, so we can't
661 // use them for the runtime check. We also have to assume they could
662 // overlap. In the future there should be metadata for whether address spaces
663 // are disjoint.
664 unsigned NumPointers = RtCheck.Pointers.size();
665 for (unsigned i = 0; i < NumPointers; ++i) {
666 for (unsigned j = i + 1; j < NumPointers; ++j) {
667 // Only need to check pointers between two different dependency sets.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000668 if (RtCheck.Pointers[i].DependencySetId ==
669 RtCheck.Pointers[j].DependencySetId)
Adam Nemet04563272015-02-01 16:56:15 +0000670 continue;
671 // Only need to check pointers in the same alias set.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000672 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
Adam Nemet04563272015-02-01 16:56:15 +0000673 continue;
674
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000675 Value *PtrI = RtCheck.Pointers[i].PointerValue;
676 Value *PtrJ = RtCheck.Pointers[j].PointerValue;
Adam Nemet04563272015-02-01 16:56:15 +0000677
678 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
679 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
680 if (ASi != ASj) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000681 DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
Adam Nemet04d41632015-02-19 19:14:34 +0000682 " different address spaces\n");
Adam Nemet04563272015-02-01 16:56:15 +0000683 return false;
684 }
685 }
686 }
687
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000688 if (NeedRTCheck && CanDoRT)
Adam Nemet15840392015-08-07 22:44:15 +0000689 RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000690
Adam Nemet155e8742015-08-07 22:44:21 +0000691 DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
Adam Nemetee614742015-07-09 22:17:38 +0000692 << " pointer comparisons.\n");
693
694 RtCheck.Need = NeedRTCheck;
695
696 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
697 if (!CanDoRTIfNeeded)
698 RtCheck.reset();
699 return CanDoRTIfNeeded;
Adam Nemet04563272015-02-01 16:56:15 +0000700}
701
702void AccessAnalysis::processMemAccesses() {
703 // We process the set twice: first we process read-write pointers, last we
704 // process read-only pointers. This allows us to skip dependence tests for
705 // read-only pointers.
706
Adam Nemet339f42b2015-02-19 19:15:07 +0000707 DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
Adam Nemet04563272015-02-01 16:56:15 +0000708 DEBUG(dbgs() << " AST: "; AST.dump());
Adam Nemet9c926572015-03-10 17:40:37 +0000709 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n");
Adam Nemet04563272015-02-01 16:56:15 +0000710 DEBUG({
711 for (auto A : Accesses)
712 dbgs() << "\t" << *A.getPointer() << " (" <<
713 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
714 "read-only" : "read")) << ")\n";
715 });
716
717 // The AliasSetTracker has nicely partitioned our pointers by metadata
718 // compatibility and potential for underlying-object overlap. As a result, we
719 // only need to check for potential pointer dependencies within each alias
720 // set.
721 for (auto &AS : AST) {
722 // Note that both the alias-set tracker and the alias sets themselves used
723 // linked lists internally and so the iteration order here is deterministic
724 // (matching the original instruction order within each set).
725
726 bool SetHasWrite = false;
727
728 // Map of pointers to last access encountered.
729 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
730 UnderlyingObjToAccessMap ObjToLastAccess;
731
732 // Set of access to check after all writes have been processed.
733 PtrAccessSet DeferredAccesses;
734
735 // Iterate over each alias set twice, once to process read/write pointers,
736 // and then to process read-only pointers.
737 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
738 bool UseDeferred = SetIteration > 0;
739 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
740
741 for (auto AV : AS) {
742 Value *Ptr = AV.getValue();
743
744 // For a single memory access in AliasSetTracker, Accesses may contain
745 // both read and write, and they both need to be handled for CheckDeps.
746 for (auto AC : S) {
747 if (AC.getPointer() != Ptr)
748 continue;
749
750 bool IsWrite = AC.getInt();
751
752 // If we're using the deferred access set, then it contains only
753 // reads.
754 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
755 if (UseDeferred && !IsReadOnlyPtr)
756 continue;
757 // Otherwise, the pointer must be in the PtrAccessSet, either as a
758 // read or a write.
759 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
760 S.count(MemAccessInfo(Ptr, false))) &&
761 "Alias-set pointer not in the access set?");
762
763 MemAccessInfo Access(Ptr, IsWrite);
764 DepCands.insert(Access);
765
766 // Memorize read-only pointers for later processing and skip them in
767 // the first round (they need to be checked after we have seen all
768 // write pointers). Note: we also mark pointer that are not
769 // consecutive as "read-only" pointers (so that we check
770 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
771 if (!UseDeferred && IsReadOnlyPtr) {
772 DeferredAccesses.insert(Access);
773 continue;
774 }
775
776 // If this is a write - check other reads and writes for conflicts. If
777 // this is a read only check other writes for conflicts (but only if
778 // there is no other write to the ptr - this is an optimization to
779 // catch "a[i] = a[i] + " without having to do a dependence check).
780 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
781 CheckDeps.insert(Access);
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000782 IsRTCheckAnalysisNeeded = true;
Adam Nemet04563272015-02-01 16:56:15 +0000783 }
784
785 if (IsWrite)
786 SetHasWrite = true;
787
788 // Create sets of pointers connected by a shared alias set and
789 // underlying object.
790 typedef SmallVector<Value *, 16> ValueVector;
791 ValueVector TempObjects;
Adam Nemete2b885c2015-04-23 20:09:20 +0000792
793 GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
794 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000795 for (Value *UnderlyingObj : TempObjects) {
Mehdi Aminiafd13512015-11-05 05:49:43 +0000796 // nullptr never alias, don't join sets for pointer that have "null"
797 // in their UnderlyingObjects list.
798 if (isa<ConstantPointerNull>(UnderlyingObj))
799 continue;
800
Adam Nemet04563272015-02-01 16:56:15 +0000801 UnderlyingObjToAccessMap::iterator Prev =
802 ObjToLastAccess.find(UnderlyingObj);
803 if (Prev != ObjToLastAccess.end())
804 DepCands.unionSets(Access, Prev->second);
805
806 ObjToLastAccess[UnderlyingObj] = Access;
Adam Nemete2b885c2015-04-23 20:09:20 +0000807 DEBUG(dbgs() << " " << *UnderlyingObj << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000808 }
809 }
810 }
811 }
812 }
813}
814
Adam Nemet04563272015-02-01 16:56:15 +0000815static bool isInBoundsGep(Value *Ptr) {
816 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
817 return GEP->isInBounds();
818 return false;
819}
820
Adam Nemetc4866d22015-06-26 17:25:43 +0000821/// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
822/// i.e. monotonically increasing/decreasing.
823static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000824 PredicatedScalarEvolution &PSE, const Loop *L) {
Adam Nemetc4866d22015-06-26 17:25:43 +0000825 // FIXME: This should probably only return true for NUW.
826 if (AR->getNoWrapFlags(SCEV::NoWrapMask))
827 return true;
828
829 // Scalar evolution does not propagate the non-wrapping flags to values that
830 // are derived from a non-wrapping induction variable because non-wrapping
831 // could be flow-sensitive.
832 //
833 // Look through the potentially overflowing instruction to try to prove
834 // non-wrapping for the *specific* value of Ptr.
835
836 // The arithmetic implied by an inbounds GEP can't overflow.
837 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
838 if (!GEP || !GEP->isInBounds())
839 return false;
840
841 // Make sure there is only one non-const index and analyze that.
842 Value *NonConstIndex = nullptr;
David Majnemer8b401012016-07-12 20:31:46 +0000843 for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end()))
844 if (!isa<ConstantInt>(Index)) {
Adam Nemetc4866d22015-06-26 17:25:43 +0000845 if (NonConstIndex)
846 return false;
David Majnemer8b401012016-07-12 20:31:46 +0000847 NonConstIndex = Index;
Adam Nemetc4866d22015-06-26 17:25:43 +0000848 }
849 if (!NonConstIndex)
850 // The recurrence is on the pointer, ignore for now.
851 return false;
852
853 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
854 // AddRec using a NSW operation.
855 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
856 if (OBO->hasNoSignedWrap() &&
857 // Assume constant for other the operand so that the AddRec can be
858 // easily found.
859 isa<ConstantInt>(OBO->getOperand(1))) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000860 auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
Adam Nemetc4866d22015-06-26 17:25:43 +0000861
862 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
863 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
864 }
865
866 return false;
867}
868
Adam Nemet04563272015-02-01 16:56:15 +0000869/// \brief Check whether the access through \p Ptr has a constant stride.
David Majnemer7afb46d2016-07-07 06:24:36 +0000870int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
871 const Loop *Lp, const ValueToValueMap &StridesMap,
872 bool Assume) {
Craig Toppere3dcce92015-08-01 22:20:21 +0000873 Type *Ty = Ptr->getType();
Adam Nemet04563272015-02-01 16:56:15 +0000874 assert(Ty->isPointerTy() && "Unexpected non-ptr");
875
876 // Make sure that the pointer does not point to aggregate types.
Craig Toppere3dcce92015-08-01 22:20:21 +0000877 auto *PtrTy = cast<PointerType>(Ty);
Adam Nemet04563272015-02-01 16:56:15 +0000878 if (PtrTy->getElementType()->isAggregateType()) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000879 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr
880 << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000881 return 0;
882 }
883
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000884 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000885
886 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000887 if (Assume && !AR)
Silviu Barangad68ed852016-03-23 15:29:30 +0000888 AR = PSE.getAsAddRec(Ptr);
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000889
Adam Nemet04563272015-02-01 16:56:15 +0000890 if (!AR) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000891 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
892 << " SCEV: " << *PtrScev << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000893 return 0;
894 }
895
896 // The accesss function must stride over the innermost loop.
897 if (Lp != AR->getLoop()) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000898 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000899 *Ptr << " SCEV: " << *AR << "\n");
Kyle Butta02ce982016-01-08 01:55:13 +0000900 return 0;
Adam Nemet04563272015-02-01 16:56:15 +0000901 }
902
903 // The address calculation must not wrap. Otherwise, a dependence could be
904 // inverted.
905 // An inbounds getelementptr that is a AddRec with a unit stride
906 // cannot wrap per definition. The unit stride requirement is checked later.
907 // An getelementptr without an inbounds attribute and unit stride would have
908 // to access the pointer value "0" which is undefined behavior in address
909 // space 0, therefore we can also vectorize this case.
910 bool IsInBoundsGEP = isInBoundsGep(Ptr);
Elena Demikhovsky5e21c942016-06-29 10:01:06 +0000911 bool IsNoWrapAddRec =
912 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
913 isNoWrapAddRec(Ptr, AR, PSE, Lp);
Adam Nemet04563272015-02-01 16:56:15 +0000914 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
915 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000916 if (Assume) {
917 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
918 IsNoWrapAddRec = true;
919 DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
920 << "LAA: Pointer: " << *Ptr << "\n"
921 << "LAA: SCEV: " << *AR << "\n"
922 << "LAA: Added an overflow assumption\n");
923 } else {
924 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
925 << *Ptr << " SCEV: " << *AR << "\n");
926 return 0;
927 }
Adam Nemet04563272015-02-01 16:56:15 +0000928 }
929
930 // Check the step is constant.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000931 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
Adam Nemet04563272015-02-01 16:56:15 +0000932
Adam Nemet943befe2015-07-09 00:03:22 +0000933 // Calculate the pointer stride and check if it is constant.
Adam Nemet04563272015-02-01 16:56:15 +0000934 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
935 if (!C) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000936 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000937 " SCEV: " << *AR << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000938 return 0;
939 }
940
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000941 auto &DL = Lp->getHeader()->getModule()->getDataLayout();
942 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000943 const APInt &APStepVal = C->getAPInt();
Adam Nemet04563272015-02-01 16:56:15 +0000944
945 // Huge step value - give up.
946 if (APStepVal.getBitWidth() > 64)
947 return 0;
948
949 int64_t StepVal = APStepVal.getSExtValue();
950
951 // Strided access.
952 int64_t Stride = StepVal / Size;
953 int64_t Rem = StepVal % Size;
954 if (Rem)
955 return 0;
956
957 // If the SCEV could wrap but we have an inbounds gep with a unit stride we
958 // know we can't "wrap around the address space". In case of address space
959 // zero we know that this won't happen without triggering undefined behavior.
960 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000961 Stride != 1 && Stride != -1) {
962 if (Assume) {
963 // We can avoid this case by adding a run-time check.
964 DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
965 << "inbouds or in address space 0 may wrap:\n"
966 << "LAA: Pointer: " << *Ptr << "\n"
967 << "LAA: SCEV: " << *AR << "\n"
968 << "LAA: Added an overflow assumption\n");
969 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
970 } else
971 return 0;
972 }
Adam Nemet04563272015-02-01 16:56:15 +0000973
974 return Stride;
975}
976
Haicheng Wuf1c00a22016-01-26 02:27:47 +0000977/// Take the pointer operand from the Load/Store instruction.
978/// Returns NULL if this is not a valid Load/Store instruction.
979static Value *getPointerOperand(Value *I) {
David Majnemer8b401012016-07-12 20:31:46 +0000980 if (auto *LI = dyn_cast<LoadInst>(I))
Haicheng Wuf1c00a22016-01-26 02:27:47 +0000981 return LI->getPointerOperand();
David Majnemer8b401012016-07-12 20:31:46 +0000982 if (auto *SI = dyn_cast<StoreInst>(I))
Haicheng Wuf1c00a22016-01-26 02:27:47 +0000983 return SI->getPointerOperand();
984 return nullptr;
985}
986
987/// Take the address space operand from the Load/Store instruction.
988/// Returns -1 if this is not a valid Load/Store instruction.
989static unsigned getAddressSpaceOperand(Value *I) {
990 if (LoadInst *L = dyn_cast<LoadInst>(I))
991 return L->getPointerAddressSpace();
992 if (StoreInst *S = dyn_cast<StoreInst>(I))
993 return S->getPointerAddressSpace();
994 return -1;
995}
996
997/// Returns true if the memory operations \p A and \p B are consecutive.
998bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
999 ScalarEvolution &SE, bool CheckType) {
1000 Value *PtrA = getPointerOperand(A);
1001 Value *PtrB = getPointerOperand(B);
1002 unsigned ASA = getAddressSpaceOperand(A);
1003 unsigned ASB = getAddressSpaceOperand(B);
1004
1005 // Check that the address spaces match and that the pointers are valid.
1006 if (!PtrA || !PtrB || (ASA != ASB))
1007 return false;
1008
1009 // Make sure that A and B are different pointers.
1010 if (PtrA == PtrB)
1011 return false;
1012
1013 // Make sure that A and B have the same type if required.
1014 if(CheckType && PtrA->getType() != PtrB->getType())
1015 return false;
1016
1017 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
1018 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1019 APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
1020
1021 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1022 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1023 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1024
1025 // OffsetDelta = OffsetB - OffsetA;
1026 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
1027 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1028 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1029 const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
1030 const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
1031 // Check if they are based on the same pointer. That makes the offsets
1032 // sufficient.
1033 if (PtrA == PtrB)
1034 return OffsetDelta == Size;
1035
1036 // Compute the necessary base pointer delta to have the necessary final delta
1037 // equal to the size.
1038 // BaseDelta = Size - OffsetDelta;
1039 const SCEV *SizeSCEV = SE.getConstant(Size);
1040 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1041
1042 // Otherwise compute the distance with SCEV between the base pointers.
1043 const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1044 const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1045 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1046 return X == PtrSCEVB;
1047}
1048
Adam Nemet9c926572015-03-10 17:40:37 +00001049bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1050 switch (Type) {
1051 case NoDep:
1052 case Forward:
1053 case BackwardVectorizable:
1054 return true;
1055
1056 case Unknown:
1057 case ForwardButPreventsForwarding:
1058 case Backward:
1059 case BackwardVectorizableButPreventsForwarding:
1060 return false;
1061 }
David Majnemerd388e932015-03-10 20:23:29 +00001062 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +00001063}
1064
Adam Nemet397f5822015-11-03 23:50:03 +00001065bool MemoryDepChecker::Dependence::isBackward() const {
Adam Nemet9c926572015-03-10 17:40:37 +00001066 switch (Type) {
1067 case NoDep:
1068 case Forward:
1069 case ForwardButPreventsForwarding:
Adam Nemet397f5822015-11-03 23:50:03 +00001070 case Unknown:
Adam Nemet9c926572015-03-10 17:40:37 +00001071 return false;
1072
Adam Nemet9c926572015-03-10 17:40:37 +00001073 case BackwardVectorizable:
1074 case Backward:
1075 case BackwardVectorizableButPreventsForwarding:
1076 return true;
1077 }
David Majnemerd388e932015-03-10 20:23:29 +00001078 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +00001079}
1080
Adam Nemet397f5822015-11-03 23:50:03 +00001081bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1082 return isBackward() || Type == Unknown;
1083}
1084
1085bool MemoryDepChecker::Dependence::isForward() const {
1086 switch (Type) {
1087 case Forward:
1088 case ForwardButPreventsForwarding:
1089 return true;
1090
1091 case NoDep:
1092 case Unknown:
1093 case BackwardVectorizable:
1094 case Backward:
1095 case BackwardVectorizableButPreventsForwarding:
1096 return false;
1097 }
1098 llvm_unreachable("unexpected DepType!");
1099}
1100
David Majnemer7afb46d2016-07-07 06:24:36 +00001101bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1102 uint64_t TypeByteSize) {
Adam Nemet04563272015-02-01 16:56:15 +00001103 // If loads occur at a distance that is not a multiple of a feasible vector
1104 // factor store-load forwarding does not take place.
1105 // Positive dependences might cause troubles because vectorizing them might
1106 // prevent store-load forwarding making vectorized code run a lot slower.
1107 // a[i] = a[i-3] ^ a[i-8];
1108 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1109 // hence on your typical architecture store-load forwarding does not take
1110 // place. Vectorizing in such cases does not make sense.
1111 // Store-load forwarding distance.
Adam Nemet884d3132016-05-16 16:57:47 +00001112
1113 // After this many iterations store-to-load forwarding conflicts should not
1114 // cause any slowdowns.
David Majnemer7afb46d2016-07-07 06:24:36 +00001115 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
Adam Nemet04563272015-02-01 16:56:15 +00001116 // Maximum vector factor.
David Majnemer7afb46d2016-07-07 06:24:36 +00001117 uint64_t MaxVFWithoutSLForwardIssues = std::min(
Adam Nemet2c34ab52016-05-12 21:41:53 +00001118 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
Adam Nemet04563272015-02-01 16:56:15 +00001119
Adam Nemet884d3132016-05-16 16:57:47 +00001120 // Compute the smallest VF at which the store and load would be misaligned.
David Majnemer7afb46d2016-07-07 06:24:36 +00001121 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
Adam Nemet9b5852a2016-05-16 16:57:42 +00001122 VF *= 2) {
Adam Nemet884d3132016-05-16 16:57:47 +00001123 // If the number of vector iteration between the store and the load are
1124 // small we could incur conflicts.
1125 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
Adam Nemet9b5852a2016-05-16 16:57:42 +00001126 MaxVFWithoutSLForwardIssues = (VF >>= 1);
Adam Nemet04563272015-02-01 16:56:15 +00001127 break;
1128 }
1129 }
1130
Adam Nemet9b5852a2016-05-16 16:57:42 +00001131 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1132 DEBUG(dbgs() << "LAA: Distance " << Distance
1133 << " that could cause a store-load forwarding conflict\n");
Adam Nemet04563272015-02-01 16:56:15 +00001134 return true;
1135 }
1136
1137 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
Adam Nemetf219c642015-02-19 19:14:52 +00001138 MaxVFWithoutSLForwardIssues !=
Adam Nemet9b5852a2016-05-16 16:57:42 +00001139 VectorizerParams::MaxVectorWidth * TypeByteSize)
Adam Nemet04563272015-02-01 16:56:15 +00001140 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1141 return false;
1142}
1143
Hao Liu751004a2015-06-08 04:48:37 +00001144/// \brief Check the dependence for two accesses with the same stride \p Stride.
1145/// \p Distance is the positive distance and \p TypeByteSize is type size in
1146/// bytes.
1147///
1148/// \returns true if they are independent.
David Majnemer7afb46d2016-07-07 06:24:36 +00001149static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1150 uint64_t TypeByteSize) {
Hao Liu751004a2015-06-08 04:48:37 +00001151 assert(Stride > 1 && "The stride must be greater than 1");
1152 assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1153 assert(Distance > 0 && "The distance must be non-zero");
1154
1155 // Skip if the distance is not multiple of type byte size.
1156 if (Distance % TypeByteSize)
1157 return false;
1158
David Majnemer7afb46d2016-07-07 06:24:36 +00001159 uint64_t ScaledDist = Distance / TypeByteSize;
Hao Liu751004a2015-06-08 04:48:37 +00001160
1161 // No dependence if the scaled distance is not multiple of the stride.
1162 // E.g.
1163 // for (i = 0; i < 1024 ; i += 4)
1164 // A[i+2] = A[i] + 1;
1165 //
1166 // Two accesses in memory (scaled distance is 2, stride is 4):
1167 // | A[0] | | | | A[4] | | | |
1168 // | | | A[2] | | | | A[6] | |
1169 //
1170 // E.g.
1171 // for (i = 0; i < 1024 ; i += 3)
1172 // A[i+4] = A[i] + 1;
1173 //
1174 // Two accesses in memory (scaled distance is 4, stride is 3):
1175 // | A[0] | | | A[3] | | | A[6] | | |
1176 // | | | | | A[4] | | | A[7] | |
1177 return ScaledDist % Stride;
1178}
1179
Adam Nemet9c926572015-03-10 17:40:37 +00001180MemoryDepChecker::Dependence::DepType
1181MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1182 const MemAccessInfo &B, unsigned BIdx,
1183 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001184 assert (AIdx < BIdx && "Must pass arguments in program order");
1185
1186 Value *APtr = A.getPointer();
1187 Value *BPtr = B.getPointer();
1188 bool AIsWrite = A.getInt();
1189 bool BIsWrite = B.getInt();
1190
1191 // Two reads are independent.
1192 if (!AIsWrite && !BIsWrite)
Adam Nemet9c926572015-03-10 17:40:37 +00001193 return Dependence::NoDep;
Adam Nemet04563272015-02-01 16:56:15 +00001194
1195 // We cannot check pointers in different address spaces.
1196 if (APtr->getType()->getPointerAddressSpace() !=
1197 BPtr->getType()->getPointerAddressSpace())
Adam Nemet9c926572015-03-10 17:40:37 +00001198 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001199
David Majnemer7afb46d2016-07-07 06:24:36 +00001200 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
1201 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
Adam Nemet04563272015-02-01 16:56:15 +00001202
Silviu Barangaadf4b732016-05-10 12:28:49 +00001203 const SCEV *Src = PSE.getSCEV(APtr);
1204 const SCEV *Sink = PSE.getSCEV(BPtr);
Adam Nemet04563272015-02-01 16:56:15 +00001205
1206 // If the induction step is negative we have to invert source and sink of the
1207 // dependence.
1208 if (StrideAPtr < 0) {
Adam Nemet04563272015-02-01 16:56:15 +00001209 std::swap(APtr, BPtr);
1210 std::swap(Src, Sink);
1211 std::swap(AIsWrite, BIsWrite);
1212 std::swap(AIdx, BIdx);
1213 std::swap(StrideAPtr, StrideBPtr);
1214 }
1215
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001216 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
Adam Nemet04563272015-02-01 16:56:15 +00001217
Adam Nemet339f42b2015-02-19 19:15:07 +00001218 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001219 << "(Induction step: " << StrideAPtr << ")\n");
Adam Nemet339f42b2015-02-19 19:15:07 +00001220 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001221 << *InstMap[BIdx] << ": " << *Dist << "\n");
Adam Nemet04563272015-02-01 16:56:15 +00001222
Adam Nemet943befe2015-07-09 00:03:22 +00001223 // Need accesses with constant stride. We don't want to vectorize
Adam Nemet04563272015-02-01 16:56:15 +00001224 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1225 // the address space.
1226 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
Adam Nemet943befe2015-07-09 00:03:22 +00001227 DEBUG(dbgs() << "Pointer access with non-constant stride\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001228 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001229 }
1230
1231 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1232 if (!C) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001233 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
Adam Nemet04563272015-02-01 16:56:15 +00001234 ShouldRetryWithRuntimeCheck = true;
Adam Nemet9c926572015-03-10 17:40:37 +00001235 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001236 }
1237
1238 Type *ATy = APtr->getType()->getPointerElementType();
1239 Type *BTy = BPtr->getType()->getPointerElementType();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001240 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
David Majnemer7afb46d2016-07-07 06:24:36 +00001241 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
Adam Nemet04563272015-02-01 16:56:15 +00001242
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001243 const APInt &Val = C->getAPInt();
Matthew Simpson6feebe92016-05-19 15:37:19 +00001244 int64_t Distance = Val.getSExtValue();
David Majnemer7afb46d2016-07-07 06:24:36 +00001245 uint64_t Stride = std::abs(StrideAPtr);
Matthew Simpson6feebe92016-05-19 15:37:19 +00001246
1247 // Attempt to prove strided accesses independent.
1248 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
1249 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1250 DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1251 return Dependence::NoDep;
1252 }
1253
1254 // Negative distances are not plausible dependencies.
Adam Nemet04563272015-02-01 16:56:15 +00001255 if (Val.isNegative()) {
1256 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
Matthew Simpson37ec5f92016-05-16 17:00:56 +00001257 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
Adam Nemet04563272015-02-01 16:56:15 +00001258 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
Adam Nemetb8486e52016-03-01 00:50:08 +00001259 ATy != BTy)) {
1260 DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001261 return Dependence::ForwardButPreventsForwarding;
Adam Nemetb8486e52016-03-01 00:50:08 +00001262 }
Adam Nemet04563272015-02-01 16:56:15 +00001263
Adam Nemet724ab222016-05-05 23:41:28 +00001264 DEBUG(dbgs() << "LAA: Dependence is negative\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001265 return Dependence::Forward;
Adam Nemet04563272015-02-01 16:56:15 +00001266 }
1267
1268 // Write to the same location with the same size.
1269 // Could be improved to assert type sizes are the same (i32 == float, etc).
1270 if (Val == 0) {
1271 if (ATy == BTy)
Adam Nemetd7037c52015-11-03 20:13:43 +00001272 return Dependence::Forward;
Adam Nemet339f42b2015-02-19 19:15:07 +00001273 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001274 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001275 }
1276
1277 assert(Val.isStrictlyPositive() && "Expect a positive value");
1278
Adam Nemet04563272015-02-01 16:56:15 +00001279 if (ATy != BTy) {
Adam Nemet04d41632015-02-19 19:14:34 +00001280 DEBUG(dbgs() <<
Adam Nemet339f42b2015-02-19 19:15:07 +00001281 "LAA: ReadWrite-Write positive dependency with different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001282 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001283 }
1284
Adam Nemet04563272015-02-01 16:56:15 +00001285 // Bail out early if passed-in parameters make vectorization not feasible.
Adam Nemetf219c642015-02-19 19:14:52 +00001286 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1287 VectorizerParams::VectorizationFactor : 1);
1288 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1289 VectorizerParams::VectorizationInterleave : 1);
Hao Liu751004a2015-06-08 04:48:37 +00001290 // The minimum number of iterations for a vectorized/unrolled version.
1291 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
Adam Nemet04563272015-02-01 16:56:15 +00001292
Hao Liu751004a2015-06-08 04:48:37 +00001293 // It's not vectorizable if the distance is smaller than the minimum distance
1294 // needed for a vectroized/unrolled version. Vectorizing one iteration in
1295 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1296 // TypeByteSize (No need to plus the last gap distance).
1297 //
1298 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1299 // foo(int *A) {
1300 // int *B = (int *)((char *)A + 14);
1301 // for (i = 0 ; i < 1024 ; i += 2)
1302 // B[i] = A[i] + 1;
1303 // }
1304 //
1305 // Two accesses in memory (stride is 2):
1306 // | A[0] | | A[2] | | A[4] | | A[6] | |
1307 // | B[0] | | B[2] | | B[4] |
1308 //
1309 // Distance needs for vectorizing iterations except the last iteration:
1310 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1311 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1312 //
1313 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1314 // 12, which is less than distance.
1315 //
1316 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1317 // the minimum distance needed is 28, which is greater than distance. It is
1318 // not safe to do vectorization.
David Majnemer7afb46d2016-07-07 06:24:36 +00001319 uint64_t MinDistanceNeeded =
Hao Liu751004a2015-06-08 04:48:37 +00001320 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
David Majnemer7afb46d2016-07-07 06:24:36 +00001321 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
Hao Liu751004a2015-06-08 04:48:37 +00001322 DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1323 << '\n');
1324 return Dependence::Backward;
1325 }
1326
1327 // Unsafe if the minimum distance needed is greater than max safe distance.
1328 if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1329 DEBUG(dbgs() << "LAA: Failure because it needs at least "
1330 << MinDistanceNeeded << " size in bytes");
Adam Nemet9c926572015-03-10 17:40:37 +00001331 return Dependence::Backward;
Adam Nemet04563272015-02-01 16:56:15 +00001332 }
1333
Adam Nemet9cc0c392015-02-26 17:58:48 +00001334 // Positive distance bigger than max vectorization factor.
Hao Liu751004a2015-06-08 04:48:37 +00001335 // FIXME: Should use max factor instead of max distance in bytes, which could
1336 // not handle different types.
1337 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1338 // void foo (int *A, char *B) {
1339 // for (unsigned i = 0; i < 1024; i++) {
1340 // A[i+2] = A[i] + 1;
1341 // B[i+2] = B[i] + 1;
1342 // }
1343 // }
1344 //
1345 // This case is currently unsafe according to the max safe distance. If we
1346 // analyze the two accesses on array B, the max safe dependence distance
1347 // is 2. Then we analyze the accesses on array A, the minimum distance needed
1348 // is 8, which is less than 2 and forbidden vectorization, But actually
1349 // both A and B could be vectorized by 2 iterations.
1350 MaxSafeDepDistBytes =
David Majnemer7afb46d2016-07-07 06:24:36 +00001351 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
Adam Nemet04563272015-02-01 16:56:15 +00001352
1353 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
Matthew Simpson37ec5f92016-05-16 17:00:56 +00001354 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
Adam Nemet04563272015-02-01 16:56:15 +00001355 couldPreventStoreLoadForward(Distance, TypeByteSize))
Adam Nemet9c926572015-03-10 17:40:37 +00001356 return Dependence::BackwardVectorizableButPreventsForwarding;
Adam Nemet04563272015-02-01 16:56:15 +00001357
Hao Liu751004a2015-06-08 04:48:37 +00001358 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1359 << " with max VF = "
1360 << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
Adam Nemet04563272015-02-01 16:56:15 +00001361
Adam Nemet9c926572015-03-10 17:40:37 +00001362 return Dependence::BackwardVectorizable;
Adam Nemet04563272015-02-01 16:56:15 +00001363}
1364
Adam Nemetdee666b2015-03-10 17:40:34 +00001365bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
Adam Nemet04563272015-02-01 16:56:15 +00001366 MemAccessInfoSet &CheckDeps,
Adam Nemet8bc61df2015-02-24 00:41:59 +00001367 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001368
David Majnemer7afb46d2016-07-07 06:24:36 +00001369 MaxSafeDepDistBytes = -1;
Adam Nemet04563272015-02-01 16:56:15 +00001370 while (!CheckDeps.empty()) {
1371 MemAccessInfo CurAccess = *CheckDeps.begin();
1372
1373 // Get the relevant memory access set.
1374 EquivalenceClasses<MemAccessInfo>::iterator I =
1375 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1376
1377 // Check accesses within this set.
Richard Trieu7a083812016-02-18 22:09:30 +00001378 EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1379 AccessSets.member_begin(I);
1380 EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1381 AccessSets.member_end();
Adam Nemet04563272015-02-01 16:56:15 +00001382
1383 // Check every access pair.
1384 while (AI != AE) {
1385 CheckDeps.erase(*AI);
1386 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1387 while (OI != AE) {
1388 // Check every accessing instruction pair in program order.
1389 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1390 I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1391 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1392 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
Adam Nemet9c926572015-03-10 17:40:37 +00001393 auto A = std::make_pair(&*AI, *I1);
1394 auto B = std::make_pair(&*OI, *I2);
1395
1396 assert(*I1 != *I2);
1397 if (*I1 > *I2)
1398 std::swap(A, B);
1399
1400 Dependence::DepType Type =
1401 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1402 SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1403
Adam Nemeta2df7502015-11-03 21:39:52 +00001404 // Gather dependences unless we accumulated MaxDependences
Adam Nemet9c926572015-03-10 17:40:37 +00001405 // dependences. In that case return as soon as we find the first
1406 // unsafe dependence. This puts a limit on this quadratic
1407 // algorithm.
Adam Nemeta2df7502015-11-03 21:39:52 +00001408 if (RecordDependences) {
1409 if (Type != Dependence::NoDep)
1410 Dependences.push_back(Dependence(A.second, B.second, Type));
Adam Nemet9c926572015-03-10 17:40:37 +00001411
Adam Nemeta2df7502015-11-03 21:39:52 +00001412 if (Dependences.size() >= MaxDependences) {
1413 RecordDependences = false;
1414 Dependences.clear();
Adam Nemet9c926572015-03-10 17:40:37 +00001415 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
1416 }
1417 }
Adam Nemeta2df7502015-11-03 21:39:52 +00001418 if (!RecordDependences && !SafeForVectorization)
Adam Nemet04563272015-02-01 16:56:15 +00001419 return false;
1420 }
1421 ++OI;
1422 }
1423 AI++;
1424 }
1425 }
Adam Nemet9c926572015-03-10 17:40:37 +00001426
Adam Nemeta2df7502015-11-03 21:39:52 +00001427 DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001428 return SafeForVectorization;
Adam Nemet04563272015-02-01 16:56:15 +00001429}
1430
Adam Nemetec1e2bb2015-03-10 18:54:26 +00001431SmallVector<Instruction *, 4>
1432MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1433 MemAccessInfo Access(Ptr, isWrite);
1434 auto &IndexVector = Accesses.find(Access)->second;
1435
1436 SmallVector<Instruction *, 4> Insts;
1437 std::transform(IndexVector.begin(), IndexVector.end(),
1438 std::back_inserter(Insts),
1439 [&](unsigned Idx) { return this->InstMap[Idx]; });
1440 return Insts;
1441}
1442
Adam Nemet58913d62015-03-10 17:40:43 +00001443const char *MemoryDepChecker::Dependence::DepName[] = {
1444 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1445 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1446
1447void MemoryDepChecker::Dependence::print(
1448 raw_ostream &OS, unsigned Depth,
1449 const SmallVectorImpl<Instruction *> &Instrs) const {
1450 OS.indent(Depth) << DepName[Type] << ":\n";
1451 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1452 OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1453}
1454
Adam Nemet929c38e2015-02-19 19:15:10 +00001455bool LoopAccessInfo::canAnalyzeLoop() {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001456 // We need to have a loop header.
Adam Nemetd8968f02016-01-18 21:16:33 +00001457 DEBUG(dbgs() << "LAA: Found a loop in "
1458 << TheLoop->getHeader()->getParent()->getName() << ": "
1459 << TheLoop->getHeader()->getName() << '\n');
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001460
Adam Nemetd8968f02016-01-18 21:16:33 +00001461 // We can only analyze innermost loops.
Adam Nemet929c38e2015-02-19 19:15:10 +00001462 if (!TheLoop->empty()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001463 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
Adam Nemet2bd6e982015-02-19 19:15:15 +00001464 emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
Adam Nemet929c38e2015-02-19 19:15:10 +00001465 return false;
1466 }
1467
1468 // We must have a single backedge.
1469 if (TheLoop->getNumBackEdges() != 1) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001470 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet929c38e2015-02-19 19:15:10 +00001471 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +00001472 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +00001473 "loop control flow is not understood by analyzer");
1474 return false;
1475 }
1476
1477 // We must have a single exiting block.
1478 if (!TheLoop->getExitingBlock()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001479 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet929c38e2015-02-19 19:15:10 +00001480 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +00001481 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +00001482 "loop control flow is not understood by analyzer");
1483 return false;
1484 }
1485
1486 // We only handle bottom-tested loops, i.e. loop in which the condition is
1487 // checked at the end of each iteration. With that we can assume that all
1488 // instructions in the loop are executed the same number of times.
1489 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001490 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet929c38e2015-02-19 19:15:10 +00001491 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +00001492 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +00001493 "loop control flow is not understood by analyzer");
1494 return false;
1495 }
1496
Adam Nemet929c38e2015-02-19 19:15:10 +00001497 // ScalarEvolution needs to be able to find the exit count.
Xinliang David Li94734ee2016-07-01 05:59:55 +00001498 const SCEV *ExitCount = PSE->getBackedgeTakenCount();
1499 if (ExitCount == PSE->getSE()->getCouldNotCompute()) {
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001500 emitAnalysis(LoopAccessReport()
1501 << "could not determine number of loop iterations");
Adam Nemet929c38e2015-02-19 19:15:10 +00001502 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1503 return false;
1504 }
1505
1506 return true;
1507}
1508
Adam Nemetb49d9a52016-07-13 22:36:27 +00001509void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
Adam Nemet7da74ab2016-07-13 22:36:35 +00001510 const TargetLibraryInfo *TLI,
1511 DominatorTree *DT) {
Adam Nemet04563272015-02-01 16:56:15 +00001512 typedef SmallPtrSet<Value*, 16> ValueSet;
1513
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001514 // Holds the Load and Store instructions.
1515 SmallVector<LoadInst *, 16> Loads;
1516 SmallVector<StoreInst *, 16> Stores;
Adam Nemet04563272015-02-01 16:56:15 +00001517
1518 // Holds all the different accesses in the loop.
1519 unsigned NumReads = 0;
1520 unsigned NumReadWrites = 0;
1521
Xinliang David Lice030ac2016-06-22 23:20:59 +00001522 PtrRtChecking->Pointers.clear();
1523 PtrRtChecking->Need = false;
Adam Nemet04563272015-02-01 16:56:15 +00001524
1525 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
Adam Nemet04563272015-02-01 16:56:15 +00001526
1527 // For each block.
David Majnemer8b401012016-07-12 20:31:46 +00001528 for (BasicBlock *BB : TheLoop->blocks()) {
Adam Nemet04563272015-02-01 16:56:15 +00001529 // Scan the BB and collect legal loads and stores.
David Majnemer8b401012016-07-12 20:31:46 +00001530 for (Instruction &I : *BB) {
Adam Nemet04563272015-02-01 16:56:15 +00001531 // If this is a load, save it. If this instruction can read from memory
1532 // but is not a load, then we quit. Notice that we don't handle function
1533 // calls that read or write.
David Majnemer8b401012016-07-12 20:31:46 +00001534 if (I.mayReadFromMemory()) {
Adam Nemet04563272015-02-01 16:56:15 +00001535 // Many math library functions read the rounding mode. We will only
1536 // vectorize a loop if it contains known function calls that don't set
1537 // the flag. Therefore, it is safe to ignore this read from memory.
David Majnemer8b401012016-07-12 20:31:46 +00001538 auto *Call = dyn_cast<CallInst>(&I);
David Majnemerb4b27232016-04-19 19:10:21 +00001539 if (Call && getVectorIntrinsicIDForCall(Call, TLI))
Adam Nemet04563272015-02-01 16:56:15 +00001540 continue;
1541
Michael Zolotukhin9b3cf602015-03-17 19:46:50 +00001542 // If the function has an explicit vectorized counterpart, we can safely
1543 // assume that it can be vectorized.
1544 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1545 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1546 continue;
1547
David Majnemer8b401012016-07-12 20:31:46 +00001548 auto *Ld = dyn_cast<LoadInst>(&I);
Adam Nemet04563272015-02-01 16:56:15 +00001549 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001550 emitAnalysis(LoopAccessReport(Ld)
Adam Nemet04563272015-02-01 16:56:15 +00001551 << "read with atomic ordering or volatile read");
Adam Nemet339f42b2015-02-19 19:15:07 +00001552 DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001553 CanVecMem = false;
1554 return;
Adam Nemet04563272015-02-01 16:56:15 +00001555 }
1556 NumLoads++;
1557 Loads.push_back(Ld);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001558 DepChecker->addAccess(Ld);
Adam Nemeta9f09c62016-06-17 22:35:41 +00001559 if (EnableMemAccessVersioning)
Adam Nemetc953bb92016-06-16 22:57:55 +00001560 collectStridedAccess(Ld);
Adam Nemet04563272015-02-01 16:56:15 +00001561 continue;
1562 }
1563
1564 // Save 'store' instructions. Abort if other instructions write to memory.
David Majnemer8b401012016-07-12 20:31:46 +00001565 if (I.mayWriteToMemory()) {
1566 auto *St = dyn_cast<StoreInst>(&I);
Adam Nemet04563272015-02-01 16:56:15 +00001567 if (!St) {
David Majnemer8b401012016-07-12 20:31:46 +00001568 emitAnalysis(LoopAccessReport(St)
1569 << "instruction cannot be vectorized");
Adam Nemet436018c2015-02-19 19:15:00 +00001570 CanVecMem = false;
1571 return;
Adam Nemet04563272015-02-01 16:56:15 +00001572 }
1573 if (!St->isSimple() && !IsAnnotatedParallel) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001574 emitAnalysis(LoopAccessReport(St)
Adam Nemet04563272015-02-01 16:56:15 +00001575 << "write with atomic ordering or volatile write");
Adam Nemet339f42b2015-02-19 19:15:07 +00001576 DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001577 CanVecMem = false;
1578 return;
Adam Nemet04563272015-02-01 16:56:15 +00001579 }
1580 NumStores++;
1581 Stores.push_back(St);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001582 DepChecker->addAccess(St);
Adam Nemeta9f09c62016-06-17 22:35:41 +00001583 if (EnableMemAccessVersioning)
Adam Nemetc953bb92016-06-16 22:57:55 +00001584 collectStridedAccess(St);
Adam Nemet04563272015-02-01 16:56:15 +00001585 }
1586 } // Next instr.
1587 } // Next block.
1588
1589 // Now we have two lists that hold the loads and the stores.
1590 // Next, we find the pointers that they use.
1591
1592 // Check if we see any stores. If there are no stores, then we don't
1593 // care if the pointers are *restrict*.
1594 if (!Stores.size()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001595 DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001596 CanVecMem = true;
1597 return;
Adam Nemet04563272015-02-01 16:56:15 +00001598 }
1599
Adam Nemetdee666b2015-03-10 17:40:34 +00001600 MemoryDepChecker::DepCandidates DependentAccesses;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001601 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
Xinliang David Li94734ee2016-07-01 05:59:55 +00001602 AA, LI, DependentAccesses, *PSE);
Adam Nemet04563272015-02-01 16:56:15 +00001603
1604 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1605 // multiple times on the same object. If the ptr is accessed twice, once
1606 // for read and once for write, it will only appear once (on the write
1607 // list). This is okay, since we are going to check for conflicts between
1608 // writes and between reads and writes, but not between reads and reads.
1609 ValueSet Seen;
1610
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001611 for (StoreInst *ST : Stores) {
1612 Value *Ptr = ST->getPointerOperand();
Adam Nemetce482502015-04-08 17:48:40 +00001613 // Check for store to loop invariant address.
1614 StoreToLoopInvariantAddress |= isUniform(Ptr);
Adam Nemet04563272015-02-01 16:56:15 +00001615 // If we did *not* see this pointer before, insert it to the read-write
1616 // list. At this phase it is only a 'write' list.
1617 if (Seen.insert(Ptr).second) {
1618 ++NumReadWrites;
1619
Chandler Carruthac80dc72015-06-17 07:18:54 +00001620 MemoryLocation Loc = MemoryLocation::get(ST);
Adam Nemet04563272015-02-01 16:56:15 +00001621 // The TBAA metadata could have a control dependency on the predication
1622 // condition, so we cannot rely on it when determining whether or not we
1623 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001624 if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001625 Loc.AATags.TBAA = nullptr;
1626
1627 Accesses.addStore(Loc);
1628 }
1629 }
1630
1631 if (IsAnnotatedParallel) {
Adam Nemet04d41632015-02-19 19:14:34 +00001632 DEBUG(dbgs()
Adam Nemet339f42b2015-02-19 19:15:07 +00001633 << "LAA: A loop annotated parallel, ignore memory dependency "
Adam Nemet04d41632015-02-19 19:14:34 +00001634 << "checks.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001635 CanVecMem = true;
1636 return;
Adam Nemet04563272015-02-01 16:56:15 +00001637 }
1638
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001639 for (LoadInst *LD : Loads) {
1640 Value *Ptr = LD->getPointerOperand();
Adam Nemet04563272015-02-01 16:56:15 +00001641 // If we did *not* see this pointer before, insert it to the
1642 // read list. If we *did* see it before, then it is already in
1643 // the read-write list. This allows us to vectorize expressions
1644 // such as A[i] += x; Because the address of A[i] is a read-write
1645 // pointer. This only works if the index of A[i] is consecutive.
1646 // If the address of i is unknown (for example A[B[i]]) then we may
1647 // read a few words, modify, and write a few words, and some of the
1648 // words may be written to the same address.
1649 bool IsReadOnlyPtr = false;
Adam Nemet139ffba2016-06-16 08:27:03 +00001650 if (Seen.insert(Ptr).second ||
Xinliang David Li94734ee2016-07-01 05:59:55 +00001651 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
Adam Nemet04563272015-02-01 16:56:15 +00001652 ++NumReads;
1653 IsReadOnlyPtr = true;
1654 }
1655
Chandler Carruthac80dc72015-06-17 07:18:54 +00001656 MemoryLocation Loc = MemoryLocation::get(LD);
Adam Nemet04563272015-02-01 16:56:15 +00001657 // The TBAA metadata could have a control dependency on the predication
1658 // condition, so we cannot rely on it when determining whether or not we
1659 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001660 if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001661 Loc.AATags.TBAA = nullptr;
1662
1663 Accesses.addLoad(Loc, IsReadOnlyPtr);
1664 }
1665
1666 // If we write (or read-write) to a single destination and there are no
1667 // other reads in this loop then is it safe to vectorize.
1668 if (NumReadWrites == 1 && NumReads == 0) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001669 DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001670 CanVecMem = true;
1671 return;
Adam Nemet04563272015-02-01 16:56:15 +00001672 }
1673
1674 // Build dependence sets and check whether we need a runtime pointer bounds
1675 // check.
1676 Accesses.buildDependenceSets();
Adam Nemet04563272015-02-01 16:56:15 +00001677
1678 // Find pointers with computable bounds. We are going to use this information
1679 // to place a runtime bound check.
Xinliang David Li94734ee2016-07-01 05:59:55 +00001680 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
Adam Nemet139ffba2016-06-16 08:27:03 +00001681 TheLoop, SymbolicStrides);
Adam Nemetee614742015-07-09 22:17:38 +00001682 if (!CanDoRTIfNeeded) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001683 emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
Adam Nemetee614742015-07-09 22:17:38 +00001684 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1685 << "the array bounds.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001686 CanVecMem = false;
1687 return;
Adam Nemet04563272015-02-01 16:56:15 +00001688 }
1689
Adam Nemetee614742015-07-09 22:17:38 +00001690 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
Adam Nemet04563272015-02-01 16:56:15 +00001691
Adam Nemet436018c2015-02-19 19:15:00 +00001692 CanVecMem = true;
Adam Nemet04563272015-02-01 16:56:15 +00001693 if (Accesses.isDependencyCheckNeeded()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001694 DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
Xinliang David Lice030ac2016-06-22 23:20:59 +00001695 CanVecMem = DepChecker->areDepsSafe(
Adam Nemet139ffba2016-06-16 08:27:03 +00001696 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001697 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
Adam Nemet04563272015-02-01 16:56:15 +00001698
Xinliang David Lice030ac2016-06-22 23:20:59 +00001699 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001700 DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
Adam Nemet04563272015-02-01 16:56:15 +00001701
1702 // Clear the dependency checks. We assume they are not needed.
Xinliang David Lice030ac2016-06-22 23:20:59 +00001703 Accesses.resetDepChecks(*DepChecker);
Adam Nemet04563272015-02-01 16:56:15 +00001704
Xinliang David Lice030ac2016-06-22 23:20:59 +00001705 PtrRtChecking->reset();
1706 PtrRtChecking->Need = true;
Adam Nemet04563272015-02-01 16:56:15 +00001707
Xinliang David Li94734ee2016-07-01 05:59:55 +00001708 auto *SE = PSE->getSE();
Xinliang David Lice030ac2016-06-22 23:20:59 +00001709 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
Adam Nemet139ffba2016-06-16 08:27:03 +00001710 SymbolicStrides, true);
Silviu Baranga98a13712015-06-08 10:27:06 +00001711
Adam Nemet949e91a2015-03-10 19:12:41 +00001712 // Check that we found the bounds for the pointer.
Adam Nemetee614742015-07-09 22:17:38 +00001713 if (!CanDoRTIfNeeded) {
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001714 emitAnalysis(LoopAccessReport()
1715 << "cannot check memory dependencies at runtime");
1716 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001717 CanVecMem = false;
1718 return;
1719 }
1720
Adam Nemet04563272015-02-01 16:56:15 +00001721 CanVecMem = true;
1722 }
1723 }
1724
Adam Nemet4bb90a72015-03-10 21:47:39 +00001725 if (CanVecMem)
1726 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
Xinliang David Lice030ac2016-06-22 23:20:59 +00001727 << (PtrRtChecking->Need ? "" : " don't")
Adam Nemet0f67c6c2015-07-09 22:17:41 +00001728 << " need runtime memory checks.\n");
Adam Nemet4bb90a72015-03-10 21:47:39 +00001729 else {
Adam Nemet0a77dfa2016-05-09 23:03:44 +00001730 emitAnalysis(
1731 LoopAccessReport()
1732 << "unsafe dependent memory operations in loop. Use "
1733 "#pragma loop distribute(enable) to allow loop distribution "
1734 "to attempt to isolate the offending operations into a separate "
1735 "loop");
Adam Nemet4bb90a72015-03-10 21:47:39 +00001736 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1737 }
Adam Nemet04563272015-02-01 16:56:15 +00001738}
1739
Adam Nemet01abb2c2015-02-18 03:43:19 +00001740bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1741 DominatorTree *DT) {
Adam Nemet04563272015-02-01 16:56:15 +00001742 assert(TheLoop->contains(BB) && "Unknown block used");
1743
1744 // Blocks that do not dominate the latch need predication.
1745 BasicBlock* Latch = TheLoop->getLoopLatch();
1746 return !DT->dominates(BB, Latch);
1747}
1748
Adam Nemet2bd6e982015-02-19 19:15:15 +00001749void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
Adam Nemetc9228532015-02-19 19:14:56 +00001750 assert(!Report && "Multiple reports generated");
1751 Report = Message;
Adam Nemet04563272015-02-01 16:56:15 +00001752}
1753
Adam Nemet57ac7662015-02-19 19:15:21 +00001754bool LoopAccessInfo::isUniform(Value *V) const {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +00001755 auto *SE = PSE->getSE();
1756 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
1757 // never considered uniform.
1758 // TODO: Is this really what we want? Even without FP SCEV, we may want some
1759 // trivially loop-invariant FP values to be considered uniform.
1760 if (!SE->isSCEVable(V->getType()))
1761 return false;
1762 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
Adam Nemet04563272015-02-01 16:56:15 +00001763}
Adam Nemet7206d7a2015-02-06 18:31:04 +00001764
1765// FIXME: this function is currently a duplicate of the one in
1766// LoopVectorize.cpp.
1767static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1768 Instruction *Loc) {
1769 if (FirstInst)
1770 return FirstInst;
1771 if (Instruction *I = dyn_cast<Instruction>(V))
1772 return I->getParent() == Loc->getParent() ? I : nullptr;
1773 return nullptr;
1774}
1775
Benjamin Kramer039b1042015-10-28 13:54:36 +00001776namespace {
Adam Nemet4e533ef2015-08-21 23:19:57 +00001777/// \brief IR Values for the lower and upper bounds of a pointer evolution. We
1778/// need to use value-handles because SCEV expansion can invalidate previously
1779/// expanded values. Thus expansion of a pointer can invalidate the bounds for
1780/// a previous one.
Adam Nemet1da7df32015-07-26 05:32:14 +00001781struct PointerBounds {
Adam Nemet4e533ef2015-08-21 23:19:57 +00001782 TrackingVH<Value> Start;
1783 TrackingVH<Value> End;
Adam Nemet1da7df32015-07-26 05:32:14 +00001784};
Benjamin Kramer039b1042015-10-28 13:54:36 +00001785} // end anonymous namespace
Adam Nemet7206d7a2015-02-06 18:31:04 +00001786
Adam Nemet1da7df32015-07-26 05:32:14 +00001787/// \brief Expand code for the lower and upper bound of the pointer group \p CG
1788/// in \p TheLoop. \return the values for the bounds.
1789static PointerBounds
1790expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
1791 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
1792 const RuntimePointerChecking &PtrRtChecking) {
1793 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
1794 const SCEV *Sc = SE->getSCEV(Ptr);
1795
1796 if (SE->isLoopInvariant(Sc, TheLoop)) {
1797 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
1798 << "\n");
1799 return {Ptr, Ptr};
1800 } else {
1801 unsigned AS = Ptr->getType()->getPointerAddressSpace();
1802 LLVMContext &Ctx = Loc->getContext();
1803
1804 // Use this type for pointer arithmetic.
1805 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1806 Value *Start = nullptr, *End = nullptr;
1807
1808 DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1809 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1810 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1811 DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1812 return {Start, End};
1813 }
1814}
1815
1816/// \brief Turns a collection of checks into a collection of expanded upper and
1817/// lower bounds for both pointers in the check.
1818static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
1819 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
1820 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
1821 const RuntimePointerChecking &PtrRtChecking) {
1822 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1823
1824 // Here we're relying on the SCEV Expander's cache to only emit code for the
1825 // same bounds once.
1826 std::transform(
1827 PointerChecks.begin(), PointerChecks.end(),
1828 std::back_inserter(ChecksWithBounds),
1829 [&](const RuntimePointerChecking::PointerCheck &Check) {
NAKAMURA Takumi94abbbd2015-07-27 01:35:30 +00001830 PointerBounds
1831 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
1832 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
1833 return std::make_pair(First, Second);
Adam Nemet1da7df32015-07-26 05:32:14 +00001834 });
1835
1836 return ChecksWithBounds;
1837}
1838
Adam Nemet5b0a4792015-08-11 00:09:37 +00001839std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
Adam Nemet1da7df32015-07-26 05:32:14 +00001840 Instruction *Loc,
1841 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
1842 const {
Adam Nemet1824e412016-07-13 22:18:51 +00001843 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
Xinliang David Li94734ee2016-07-01 05:59:55 +00001844 auto *SE = PSE->getSE();
Adam Nemet1824e412016-07-13 22:18:51 +00001845 SCEVExpander Exp(*SE, DL, "induction");
Adam Nemet1da7df32015-07-26 05:32:14 +00001846 auto ExpandedChecks =
Xinliang David Lice030ac2016-06-22 23:20:59 +00001847 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking);
Adam Nemet7206d7a2015-02-06 18:31:04 +00001848
1849 LLVMContext &Ctx = Loc->getContext();
Adam Nemet7206d7a2015-02-06 18:31:04 +00001850 Instruction *FirstInst = nullptr;
Adam Nemet7206d7a2015-02-06 18:31:04 +00001851 IRBuilder<> ChkBuilder(Loc);
1852 // Our instructions might fold to a constant.
1853 Value *MemoryRuntimeCheck = nullptr;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +00001854
Adam Nemet1da7df32015-07-26 05:32:14 +00001855 for (const auto &Check : ExpandedChecks) {
1856 const PointerBounds &A = Check.first, &B = Check.second;
Adam Nemetcdb791c2015-08-19 17:24:36 +00001857 // Check if two pointers (A and B) conflict where conflict is computed as:
1858 // start(A) <= end(B) && start(B) <= end(A)
Adam Nemet1da7df32015-07-26 05:32:14 +00001859 unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1860 unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
Adam Nemet7206d7a2015-02-06 18:31:04 +00001861
Adam Nemet1da7df32015-07-26 05:32:14 +00001862 assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1863 (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1864 "Trying to bounds check pointers with different address spaces");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001865
Adam Nemet1da7df32015-07-26 05:32:14 +00001866 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1867 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
Adam Nemet7206d7a2015-02-06 18:31:04 +00001868
Adam Nemet1da7df32015-07-26 05:32:14 +00001869 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1870 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1871 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
1872 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001873
Adam Nemet1da7df32015-07-26 05:32:14 +00001874 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1875 FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
1876 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1877 FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
1878 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1879 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1880 if (MemoryRuntimeCheck) {
1881 IsConflict =
1882 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001883 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
Adam Nemet7206d7a2015-02-06 18:31:04 +00001884 }
Adam Nemet1da7df32015-07-26 05:32:14 +00001885 MemoryRuntimeCheck = IsConflict;
Adam Nemet7206d7a2015-02-06 18:31:04 +00001886 }
1887
Adam Nemet90fec842015-04-02 17:51:57 +00001888 if (!MemoryRuntimeCheck)
1889 return std::make_pair(nullptr, nullptr);
1890
Adam Nemet7206d7a2015-02-06 18:31:04 +00001891 // We have to do this trickery because the IRBuilder might fold the check to a
1892 // constant expression in which case there is no Instruction anchored in a
1893 // the block.
1894 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1895 ConstantInt::getTrue(Ctx));
1896 ChkBuilder.Insert(Check, "memcheck.conflict");
1897 FirstInst = getFirstInst(FirstInst, Check, Loc);
1898 return std::make_pair(FirstInst, Check);
1899}
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001900
Adam Nemet5b0a4792015-08-11 00:09:37 +00001901std::pair<Instruction *, Instruction *>
1902LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
Xinliang David Lice030ac2016-06-22 23:20:59 +00001903 if (!PtrRtChecking->Need)
Adam Nemet1da7df32015-07-26 05:32:14 +00001904 return std::make_pair(nullptr, nullptr);
1905
Xinliang David Lice030ac2016-06-22 23:20:59 +00001906 return addRuntimeChecks(Loc, PtrRtChecking->getChecks());
Adam Nemet1da7df32015-07-26 05:32:14 +00001907}
1908
Adam Nemetc953bb92016-06-16 22:57:55 +00001909void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
1910 Value *Ptr = nullptr;
1911 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
1912 Ptr = LI->getPointerOperand();
1913 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
1914 Ptr = SI->getPointerOperand();
1915 else
1916 return;
1917
Xinliang David Li94734ee2016-07-01 05:59:55 +00001918 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
Adam Nemetc953bb92016-06-16 22:57:55 +00001919 if (!Stride)
1920 return;
1921
1922 DEBUG(dbgs() << "LAA: Found a strided access that we can version");
1923 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
1924 SymbolicStrides[Ptr] = Stride;
1925 StrideSet.insert(Stride);
1926}
1927
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001928LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001929 const TargetLibraryInfo *TLI, AliasAnalysis *AA,
Adam Nemeta9f09c62016-06-17 22:35:41 +00001930 DominatorTree *DT, LoopInfo *LI)
Xinliang David Li94734ee2016-07-01 05:59:55 +00001931 : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)),
Xinliang David Lice030ac2016-06-22 23:20:59 +00001932 PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)),
Xinliang David Li94734ee2016-07-01 05:59:55 +00001933 DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
Adam Nemet7da74ab2016-07-13 22:36:35 +00001934 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
1935 StoreToLoopInvariantAddress(false) {
Adam Nemet929c38e2015-02-19 19:15:10 +00001936 if (canAnalyzeLoop())
Adam Nemet7da74ab2016-07-13 22:36:35 +00001937 analyzeLoop(AA, LI, TLI, DT);
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001938}
1939
Adam Nemete91cc6e2015-02-19 19:15:19 +00001940void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
1941 if (CanVecMem) {
Adam Nemet4ad38b62016-05-13 22:49:09 +00001942 OS.indent(Depth) << "Memory dependences are safe";
David Majnemer7afb46d2016-07-07 06:24:36 +00001943 if (MaxSafeDepDistBytes != -1ULL)
Adam Nemetc62e5542016-05-13 22:49:13 +00001944 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
1945 << " bytes";
Xinliang David Lice030ac2016-06-22 23:20:59 +00001946 if (PtrRtChecking->Need)
Adam Nemet4ad38b62016-05-13 22:49:09 +00001947 OS << " with run-time checks";
1948 OS << "\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00001949 }
1950
1951 if (Report)
1952 OS.indent(Depth) << "Report: " << Report->str() << "\n";
1953
Xinliang David Lice030ac2016-06-22 23:20:59 +00001954 if (auto *Dependences = DepChecker->getDependences()) {
Adam Nemeta2df7502015-11-03 21:39:52 +00001955 OS.indent(Depth) << "Dependences:\n";
1956 for (auto &Dep : *Dependences) {
Xinliang David Lice030ac2016-06-22 23:20:59 +00001957 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
Adam Nemet58913d62015-03-10 17:40:43 +00001958 OS << "\n";
1959 }
1960 } else
Adam Nemeta2df7502015-11-03 21:39:52 +00001961 OS.indent(Depth) << "Too many dependences, not recorded\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00001962
1963 // List the pair of accesses need run-time checks to prove independence.
Xinliang David Lice030ac2016-06-22 23:20:59 +00001964 PtrRtChecking->print(OS, Depth);
Adam Nemete91cc6e2015-02-19 19:15:19 +00001965 OS << "\n";
Adam Nemetc3384322015-05-18 15:36:57 +00001966
1967 OS.indent(Depth) << "Store to invariant address was "
1968 << (StoreToLoopInvariantAddress ? "" : "not ")
1969 << "found in loop.\n";
Silviu Barangae3c05342015-11-02 14:41:02 +00001970
1971 OS.indent(Depth) << "SCEV assumptions:\n";
Xinliang David Li94734ee2016-07-01 05:59:55 +00001972 PSE->getUnionPredicate().print(OS, Depth);
Silviu Barangab77365b2016-04-14 16:08:45 +00001973
1974 OS << "\n";
1975
1976 OS.indent(Depth) << "Expressions re-written:\n";
Xinliang David Li94734ee2016-07-01 05:59:55 +00001977 PSE->print(OS, Depth);
Adam Nemete91cc6e2015-02-19 19:15:19 +00001978}
1979
Xinliang David Li7853c1d2016-07-08 20:55:26 +00001980const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001981 auto &LAI = LoopAccessInfoMap[L];
1982
Adam Nemet1824e412016-07-13 22:18:51 +00001983 if (!LAI)
1984 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
1985
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001986 return *LAI.get();
1987}
1988
Xinliang David Li7853c1d2016-07-08 20:55:26 +00001989void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
1990 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
Xinliang David Liecde1c72016-06-09 03:22:39 +00001991
Adam Nemete91cc6e2015-02-19 19:15:19 +00001992 for (Loop *TopLevelLoop : *LI)
1993 for (Loop *L : depth_first(TopLevelLoop)) {
1994 OS.indent(2) << L->getHeader()->getName() << ":\n";
Adam Nemetbdbc5222016-06-16 08:26:56 +00001995 auto &LAI = LAA.getInfo(L);
Adam Nemete91cc6e2015-02-19 19:15:19 +00001996 LAI.print(OS, 4);
1997 }
1998}
1999
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002000bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
Xinliang David Liecde1c72016-06-09 03:22:39 +00002001 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002002 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
Xinliang David Liecde1c72016-06-09 03:22:39 +00002003 TLI = TLIP ? &TLIP->getTLI() : nullptr;
2004 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2005 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2006 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002007
2008 return false;
2009}
2010
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002011void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002012 AU.addRequired<ScalarEvolutionWrapperPass>();
Chandler Carruth7b560d42015-09-09 17:55:00 +00002013 AU.addRequired<AAResultsWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002014 AU.addRequired<DominatorTreeWrapperPass>();
Adam Nemete91cc6e2015-02-19 19:15:19 +00002015 AU.addRequired<LoopInfoWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002016
2017 AU.setPreservesAll();
2018}
2019
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002020char LoopAccessLegacyAnalysis::ID = 0;
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002021static const char laa_name[] = "Loop Access Analysis";
2022#define LAA_NAME "loop-accesses"
2023
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002024INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
Chandler Carruth7b560d42015-09-09 17:55:00 +00002025INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002026INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002027INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Adam Nemete91cc6e2015-02-19 19:15:19 +00002028INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002029INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002030
Xinliang David Li07e08fa2016-07-08 21:21:44 +00002031char LoopAccessAnalysis::PassID;
Xinliang David Li8a021312016-07-02 21:18:40 +00002032
Xinliang David Li07e08fa2016-07-08 21:21:44 +00002033LoopAccessInfo LoopAccessAnalysis::run(Loop &L, AnalysisManager<Loop> &AM) {
Sean Silva284b0322016-07-07 01:01:53 +00002034 const AnalysisManager<Function> &FAM =
2035 AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager();
Xinliang David Li8a021312016-07-02 21:18:40 +00002036 Function &F = *L.getHeader()->getParent();
Sean Silva284b0322016-07-07 01:01:53 +00002037 auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(F);
Xinliang David Li8a021312016-07-02 21:18:40 +00002038 auto *TLI = FAM.getCachedResult<TargetLibraryAnalysis>(F);
Sean Silva284b0322016-07-07 01:01:53 +00002039 auto *AA = FAM.getCachedResult<AAManager>(F);
2040 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
2041 auto *LI = FAM.getCachedResult<LoopAnalysis>(F);
2042 if (!SE)
2043 report_fatal_error(
2044 "ScalarEvolution must have been cached at a higher level");
2045 if (!AA)
2046 report_fatal_error("AliasAnalysis must have been cached at a higher level");
2047 if (!DT)
2048 report_fatal_error("DominatorTree must have been cached at a higher level");
2049 if (!LI)
2050 report_fatal_error("LoopInfo must have been cached at a higher level");
Adam Nemet1824e412016-07-13 22:18:51 +00002051 return LoopAccessInfo(&L, SE, TLI, AA, DT, LI);
Xinliang David Li8a021312016-07-02 21:18:40 +00002052}
2053
2054PreservedAnalyses LoopAccessInfoPrinterPass::run(Loop &L,
2055 AnalysisManager<Loop> &AM) {
2056 Function &F = *L.getHeader()->getParent();
Xinliang David Li07e08fa2016-07-08 21:21:44 +00002057 auto &LAI = AM.getResult<LoopAccessAnalysis>(L);
Xinliang David Li8a021312016-07-02 21:18:40 +00002058 OS << "Loop access info in function '" << F.getName() << "':\n";
2059 OS.indent(2) << L.getHeader()->getName() << ":\n";
2060 LAI.print(OS, 4);
2061 return PreservedAnalyses::all();
2062}
2063
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002064namespace llvm {
2065 Pass *createLAAPass() {
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002066 return new LoopAccessLegacyAnalysis();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002067 }
2068}