blob: 10e963ba1cf7f26a12ec271820aec97caecc7bc3 [file] [log] [blame]
Adam Nemet04563272015-02-01 16:56:15 +00001//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The implementation for the loop memory dependence that was originally
11// developed for the loop vectorizer.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/LoopAccessAnalysis.h"
16#include "llvm/Analysis/LoopInfo.h"
Xinliang David Li8a021312016-07-02 21:18:40 +000017#include "llvm/Analysis/LoopPassManager.h"
Adam Nemet7206d7a2015-02-06 18:31:04 +000018#include "llvm/Analysis/ScalarEvolutionExpander.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000019#include "llvm/Analysis/TargetLibraryInfo.h"
Adam Nemet04563272015-02-01 16:56:15 +000020#include "llvm/Analysis/ValueTracking.h"
Adam Nemetf45594c2016-07-01 00:09:02 +000021#include "llvm/Analysis/VectorUtils.h"
Adam Nemet04563272015-02-01 16:56:15 +000022#include "llvm/IR/DiagnosticInfo.h"
23#include "llvm/IR/Dominators.h"
Adam Nemet7206d7a2015-02-06 18:31:04 +000024#include "llvm/IR/IRBuilder.h"
Xinliang David Li8a021312016-07-02 21:18:40 +000025#include "llvm/IR/PassManager.h"
Adam Nemet04563272015-02-01 16:56:15 +000026#include "llvm/Support/Debug.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000027#include "llvm/Support/raw_ostream.h"
Adam Nemet04563272015-02-01 16:56:15 +000028using namespace llvm;
29
Adam Nemet339f42b2015-02-19 19:15:07 +000030#define DEBUG_TYPE "loop-accesses"
Adam Nemet04563272015-02-01 16:56:15 +000031
Adam Nemetf219c642015-02-19 19:14:52 +000032static cl::opt<unsigned, true>
33VectorizationFactor("force-vector-width", cl::Hidden,
34 cl::desc("Sets the SIMD width. Zero is autoselect."),
35 cl::location(VectorizerParams::VectorizationFactor));
Adam Nemet1d862af2015-02-26 04:39:09 +000036unsigned VectorizerParams::VectorizationFactor;
Adam Nemetf219c642015-02-19 19:14:52 +000037
38static cl::opt<unsigned, true>
39VectorizationInterleave("force-vector-interleave", cl::Hidden,
40 cl::desc("Sets the vectorization interleave count. "
41 "Zero is autoselect."),
42 cl::location(
43 VectorizerParams::VectorizationInterleave));
Adam Nemet1d862af2015-02-26 04:39:09 +000044unsigned VectorizerParams::VectorizationInterleave;
Adam Nemetf219c642015-02-19 19:14:52 +000045
Adam Nemet1d862af2015-02-26 04:39:09 +000046static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
47 "runtime-memory-check-threshold", cl::Hidden,
48 cl::desc("When performing memory disambiguation checks at runtime do not "
49 "generate more than this number of comparisons (default = 8)."),
50 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
51unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
Adam Nemetf219c642015-02-19 19:14:52 +000052
Silviu Baranga1b6b50a2015-07-08 09:16:33 +000053/// \brief The maximum iterations used to merge memory checks
54static cl::opt<unsigned> MemoryCheckMergeThreshold(
55 "memory-check-merge-threshold", cl::Hidden,
56 cl::desc("Maximum number of comparisons done when trying to merge "
57 "runtime memory checks. (default = 100)"),
58 cl::init(100));
59
Adam Nemetf219c642015-02-19 19:14:52 +000060/// Maximum SIMD width.
61const unsigned VectorizerParams::MaxVectorWidth = 64;
62
Adam Nemeta2df7502015-11-03 21:39:52 +000063/// \brief We collect dependences up to this threshold.
64static cl::opt<unsigned>
65 MaxDependences("max-dependences", cl::Hidden,
66 cl::desc("Maximum number of dependences collected by "
67 "loop-access analysis (default = 100)"),
68 cl::init(100));
Adam Nemet9c926572015-03-10 17:40:37 +000069
Adam Nemeta9f09c62016-06-17 22:35:41 +000070/// This enables versioning on the strides of symbolically striding memory
71/// accesses in code like the following.
72/// for (i = 0; i < N; ++i)
73/// A[i * Stride1] += B[i * Stride2] ...
74///
75/// Will be roughly translated to
76/// if (Stride1 == 1 && Stride2 == 1) {
77/// for (i = 0; i < N; i+=4)
78/// A[i:i+3] += ...
79/// } else
80/// ...
81static cl::opt<bool> EnableMemAccessVersioning(
82 "enable-mem-access-versioning", cl::init(true), cl::Hidden,
83 cl::desc("Enable symbolic stride memory access versioning"));
84
Matthew Simpson37ec5f92016-05-16 17:00:56 +000085/// \brief Enable store-to-load forwarding conflict detection. This option can
86/// be disabled for correctness testing.
87static cl::opt<bool> EnableForwardingConflictDetection(
88 "store-to-load-forwarding-conflict-detection", cl::Hidden,
Matthew Simpsona250dc92016-05-16 14:14:49 +000089 cl::desc("Enable conflict detection in loop-access analysis"),
90 cl::init(true));
91
Adam Nemetf219c642015-02-19 19:14:52 +000092bool VectorizerParams::isInterleaveForced() {
93 return ::VectorizationInterleave.getNumOccurrences() > 0;
94}
95
Adam Nemet2bd6e982015-02-19 19:15:15 +000096void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
97 const Function *TheFunction,
98 const Loop *TheLoop,
99 const char *PassName) {
Adam Nemet04563272015-02-01 16:56:15 +0000100 DebugLoc DL = TheLoop->getStartLoc();
Adam Nemet3e876342015-02-19 19:15:13 +0000101 if (const Instruction *I = Message.getInstr())
Adam Nemet04563272015-02-01 16:56:15 +0000102 DL = I->getDebugLoc();
Adam Nemet339f42b2015-02-19 19:15:07 +0000103 emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
Adam Nemet04563272015-02-01 16:56:15 +0000104 *TheFunction, DL, Message.str());
105}
106
107Value *llvm::stripIntegerCast(Value *V) {
David Majnemer8b401012016-07-12 20:31:46 +0000108 if (auto *CI = dyn_cast<CastInst>(V))
Adam Nemet04563272015-02-01 16:56:15 +0000109 if (CI->getOperand(0)->getType()->isIntegerTy())
110 return CI->getOperand(0);
111 return V;
112}
113
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000114const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
Adam Nemet8bc61df2015-02-24 00:41:59 +0000115 const ValueToValueMap &PtrToStride,
Adam Nemet04563272015-02-01 16:56:15 +0000116 Value *Ptr, Value *OrigPtr) {
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000117 const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000118
119 // If there is an entry in the map return the SCEV of the pointer with the
120 // symbolic stride replaced by one.
Adam Nemet8bc61df2015-02-24 00:41:59 +0000121 ValueToValueMap::const_iterator SI =
122 PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000123 if (SI != PtrToStride.end()) {
124 Value *StrideVal = SI->second;
125
126 // Strip casts.
127 StrideVal = stripIntegerCast(StrideVal);
128
129 // Replace symbolic stride by one.
130 Value *One = ConstantInt::get(StrideVal->getType(), 1);
131 ValueToValueMap RewriteMap;
132 RewriteMap[StrideVal] = One;
133
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000134 ScalarEvolution *SE = PSE.getSE();
Silviu Barangae3c05342015-11-02 14:41:02 +0000135 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
136 const auto *CT =
137 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
138
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000139 PSE.addPredicate(*SE->getEqualPredicate(U, CT));
140 auto *Expr = PSE.getSCEV(Ptr);
Silviu Barangae3c05342015-11-02 14:41:02 +0000141
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000142 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr
Adam Nemet04563272015-02-01 16:56:15 +0000143 << "\n");
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000144 return Expr;
Adam Nemet04563272015-02-01 16:56:15 +0000145 }
146
147 // Otherwise, just return the SCEV of the original pointer.
Silviu Barangae3c05342015-11-02 14:41:02 +0000148 return OrigSCEV;
Adam Nemet04563272015-02-01 16:56:15 +0000149}
150
Adam Nemet7cdebac2015-07-14 22:32:44 +0000151void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
152 unsigned DepSetId, unsigned ASId,
Silviu Barangae3c05342015-11-02 14:41:02 +0000153 const ValueToValueMap &Strides,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000154 PredicatedScalarEvolution &PSE) {
Adam Nemet04563272015-02-01 16:56:15 +0000155 // Get the stride replaced scev.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000156 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000157 ScalarEvolution *SE = PSE.getSE();
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000158
Adam Nemet279784f2016-03-24 04:28:47 +0000159 const SCEV *ScStart;
160 const SCEV *ScEnd;
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000161
Adam Nemet59a65502016-03-24 05:15:24 +0000162 if (SE->isLoopInvariant(Sc, Lp))
Adam Nemet279784f2016-03-24 04:28:47 +0000163 ScStart = ScEnd = Sc;
Adam Nemet279784f2016-03-24 04:28:47 +0000164 else {
165 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
166 assert(AR && "Invalid addrec expression");
Silviu Baranga6f444df2016-04-08 14:29:09 +0000167 const SCEV *Ex = PSE.getBackedgeTakenCount();
Adam Nemet279784f2016-03-24 04:28:47 +0000168
169 ScStart = AR->getStart();
170 ScEnd = AR->evaluateAtIteration(Ex, *SE);
171 const SCEV *Step = AR->getStepRecurrence(*SE);
172
173 // For expressions with negative step, the upper bound is ScStart and the
174 // lower bound is ScEnd.
David Majnemer8b401012016-07-12 20:31:46 +0000175 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
Adam Nemet279784f2016-03-24 04:28:47 +0000176 if (CStep->getValue()->isNegative())
177 std::swap(ScStart, ScEnd);
178 } else {
179 // Fallback case: the step is not constant, but the we can still
180 // get the upper and lower bounds of the interval by using min/max
181 // expressions.
182 ScStart = SE->getUMinExpr(ScStart, ScEnd);
183 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
184 }
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000185 }
186
187 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000188}
189
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000190SmallVector<RuntimePointerChecking::PointerCheck, 4>
Adam Nemet38530882015-08-09 20:06:06 +0000191RuntimePointerChecking::generateChecks() const {
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000192 SmallVector<PointerCheck, 4> Checks;
193
Adam Nemet7c52e052015-07-27 19:38:50 +0000194 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
195 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
196 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
197 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000198
Adam Nemet38530882015-08-09 20:06:06 +0000199 if (needsChecking(CGI, CGJ))
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000200 Checks.push_back(std::make_pair(&CGI, &CGJ));
201 }
202 }
203 return Checks;
204}
205
Adam Nemet15840392015-08-07 22:44:15 +0000206void RuntimePointerChecking::generateChecks(
207 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
208 assert(Checks.empty() && "Checks is not empty");
209 groupChecks(DepCands, UseDependencies);
210 Checks = generateChecks();
211}
212
Adam Nemet651a5a22015-08-09 20:06:08 +0000213bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
214 const CheckingPtrGroup &N) const {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000215 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
216 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
Adam Nemet651a5a22015-08-09 20:06:08 +0000217 if (needsChecking(M.Members[I], N.Members[J]))
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000218 return true;
219 return false;
220}
221
222/// Compare \p I and \p J and return the minimum.
223/// Return nullptr in case we couldn't find an answer.
224static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
225 ScalarEvolution *SE) {
226 const SCEV *Diff = SE->getMinusSCEV(J, I);
227 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
228
229 if (!C)
230 return nullptr;
231 if (C->getValue()->isNegative())
232 return J;
233 return I;
234}
235
Adam Nemet7cdebac2015-07-14 22:32:44 +0000236bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000237 const SCEV *Start = RtCheck.Pointers[Index].Start;
238 const SCEV *End = RtCheck.Pointers[Index].End;
239
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000240 // Compare the starts and ends with the known minimum and maximum
241 // of this set. We need to know how we compare against the min/max
242 // of the set in order to be able to emit memchecks.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000243 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000244 if (!Min0)
245 return false;
246
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000247 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000248 if (!Min1)
249 return false;
250
251 // Update the low bound expression if we've found a new min value.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000252 if (Min0 == Start)
253 Low = Start;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000254
255 // Update the high bound expression if we've found a new max value.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000256 if (Min1 != End)
257 High = End;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000258
259 Members.push_back(Index);
260 return true;
261}
262
Adam Nemet7cdebac2015-07-14 22:32:44 +0000263void RuntimePointerChecking::groupChecks(
264 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000265 // We build the groups from dependency candidates equivalence classes
266 // because:
267 // - We know that pointers in the same equivalence class share
268 // the same underlying object and therefore there is a chance
269 // that we can compare pointers
270 // - We wouldn't be able to merge two pointers for which we need
271 // to emit a memcheck. The classes in DepCands are already
272 // conveniently built such that no two pointers in the same
273 // class need checking against each other.
274
275 // We use the following (greedy) algorithm to construct the groups
276 // For every pointer in the equivalence class:
277 // For each existing group:
278 // - if the difference between this pointer and the min/max bounds
279 // of the group is a constant, then make the pointer part of the
280 // group and update the min/max bounds of that group as required.
281
282 CheckingGroups.clear();
283
Silviu Baranga48250602015-07-28 13:44:08 +0000284 // If we need to check two pointers to the same underlying object
285 // with a non-constant difference, we shouldn't perform any pointer
286 // grouping with those pointers. This is because we can easily get
287 // into cases where the resulting check would return false, even when
288 // the accesses are safe.
289 //
290 // The following example shows this:
291 // for (i = 0; i < 1000; ++i)
292 // a[5000 + i * m] = a[i] + a[i + 9000]
293 //
294 // Here grouping gives a check of (5000, 5000 + 1000 * m) against
295 // (0, 10000) which is always false. However, if m is 1, there is no
296 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
297 // us to perform an accurate check in this case.
298 //
299 // The above case requires that we have an UnknownDependence between
300 // accesses to the same underlying object. This cannot happen unless
301 // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
302 // is also false. In this case we will use the fallback path and create
303 // separate checking groups for all pointers.
Mehdi Aminiafd13512015-11-05 05:49:43 +0000304
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000305 // If we don't have the dependency partitions, construct a new
Silviu Baranga48250602015-07-28 13:44:08 +0000306 // checking pointer group for each pointer. This is also required
307 // for correctness, because in this case we can have checking between
308 // pointers to the same underlying object.
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000309 if (!UseDependencies) {
310 for (unsigned I = 0; I < Pointers.size(); ++I)
311 CheckingGroups.push_back(CheckingPtrGroup(I, *this));
312 return;
313 }
314
315 unsigned TotalComparisons = 0;
316
317 DenseMap<Value *, unsigned> PositionMap;
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000318 for (unsigned Index = 0; Index < Pointers.size(); ++Index)
319 PositionMap[Pointers[Index].PointerValue] = Index;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000320
Silviu Barangace3877f2015-07-09 15:18:25 +0000321 // We need to keep track of what pointers we've already seen so we
322 // don't process them twice.
323 SmallSet<unsigned, 2> Seen;
324
Sanjay Patele4b9f502015-12-07 19:21:39 +0000325 // Go through all equivalence classes, get the "pointer check groups"
Silviu Barangace3877f2015-07-09 15:18:25 +0000326 // and add them to the overall solution. We use the order in which accesses
327 // appear in 'Pointers' to enforce determinism.
328 for (unsigned I = 0; I < Pointers.size(); ++I) {
329 // We've seen this pointer before, and therefore already processed
330 // its equivalence class.
331 if (Seen.count(I))
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000332 continue;
333
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000334 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
335 Pointers[I].IsWritePtr);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000336
Silviu Barangace3877f2015-07-09 15:18:25 +0000337 SmallVector<CheckingPtrGroup, 2> Groups;
338 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
339
Silviu Barangaa647c302015-07-13 14:48:24 +0000340 // Because DepCands is constructed by visiting accesses in the order in
341 // which they appear in alias sets (which is deterministic) and the
342 // iteration order within an equivalence class member is only dependent on
343 // the order in which unions and insertions are performed on the
344 // equivalence class, the iteration order is deterministic.
Silviu Barangace3877f2015-07-09 15:18:25 +0000345 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000346 MI != ME; ++MI) {
347 unsigned Pointer = PositionMap[MI->getPointer()];
348 bool Merged = false;
Silviu Barangace3877f2015-07-09 15:18:25 +0000349 // Mark this pointer as seen.
350 Seen.insert(Pointer);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000351
352 // Go through all the existing sets and see if we can find one
353 // which can include this pointer.
354 for (CheckingPtrGroup &Group : Groups) {
355 // Don't perform more than a certain amount of comparisons.
356 // This should limit the cost of grouping the pointers to something
357 // reasonable. If we do end up hitting this threshold, the algorithm
358 // will create separate groups for all remaining pointers.
359 if (TotalComparisons > MemoryCheckMergeThreshold)
360 break;
361
362 TotalComparisons++;
363
364 if (Group.addPointer(Pointer)) {
365 Merged = true;
366 break;
367 }
368 }
369
370 if (!Merged)
371 // We couldn't add this pointer to any existing set or the threshold
372 // for the number of comparisons has been reached. Create a new group
373 // to hold the current pointer.
374 Groups.push_back(CheckingPtrGroup(Pointer, *this));
375 }
376
377 // We've computed the grouped checks for this partition.
378 // Save the results and continue with the next one.
379 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
380 }
Adam Nemet04563272015-02-01 16:56:15 +0000381}
382
Adam Nemet041e6de2015-07-16 02:48:05 +0000383bool RuntimePointerChecking::arePointersInSamePartition(
384 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
385 unsigned PtrIdx2) {
386 return (PtrToPartition[PtrIdx1] != -1 &&
387 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
388}
389
Adam Nemet651a5a22015-08-09 20:06:08 +0000390bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000391 const PointerInfo &PointerI = Pointers[I];
392 const PointerInfo &PointerJ = Pointers[J];
393
Adam Nemeta8945b72015-02-18 03:43:58 +0000394 // No need to check if two readonly pointers intersect.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000395 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
Adam Nemeta8945b72015-02-18 03:43:58 +0000396 return false;
397
398 // Only need to check pointers between two different dependency sets.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000399 if (PointerI.DependencySetId == PointerJ.DependencySetId)
Adam Nemeta8945b72015-02-18 03:43:58 +0000400 return false;
401
402 // Only need to check pointers in the same alias set.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000403 if (PointerI.AliasSetId != PointerJ.AliasSetId)
Adam Nemeta8945b72015-02-18 03:43:58 +0000404 return false;
405
406 return true;
407}
408
Adam Nemet54f0b832015-07-27 23:54:41 +0000409void RuntimePointerChecking::printChecks(
410 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
411 unsigned Depth) const {
412 unsigned N = 0;
413 for (const auto &Check : Checks) {
414 const auto &First = Check.first->Members, &Second = Check.second->Members;
415
416 OS.indent(Depth) << "Check " << N++ << ":\n";
417
418 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
419 for (unsigned K = 0; K < First.size(); ++K)
420 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
421
422 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
423 for (unsigned K = 0; K < Second.size(); ++K)
424 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
425 }
426}
427
Adam Nemet3a91e942015-08-07 19:44:48 +0000428void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
Adam Nemete91cc6e2015-02-19 19:15:19 +0000429
430 OS.indent(Depth) << "Run-time memory checks:\n";
Adam Nemet15840392015-08-07 22:44:15 +0000431 printChecks(OS, Checks, Depth);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000432
433 OS.indent(Depth) << "Grouped accesses:\n";
434 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
Adam Nemet54f0b832015-07-27 23:54:41 +0000435 const auto &CG = CheckingGroups[I];
436
437 OS.indent(Depth + 2) << "Group " << &CG << ":\n";
438 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
439 << ")\n";
440 for (unsigned J = 0; J < CG.Members.size(); ++J) {
441 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000442 << "\n";
443 }
444 }
Adam Nemete91cc6e2015-02-19 19:15:19 +0000445}
446
Adam Nemet04563272015-02-01 16:56:15 +0000447namespace {
448/// \brief Analyses memory accesses in a loop.
449///
450/// Checks whether run time pointer checks are needed and builds sets for data
451/// dependence checking.
452class AccessAnalysis {
453public:
454 /// \brief Read or write access location.
455 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
456 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
457
Adam Nemete2b885c2015-04-23 20:09:20 +0000458 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000459 MemoryDepChecker::DepCandidates &DA,
460 PredicatedScalarEvolution &PSE)
Silviu Barangae3c05342015-11-02 14:41:02 +0000461 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000462 PSE(PSE) {}
Adam Nemet04563272015-02-01 16:56:15 +0000463
464 /// \brief Register a load and whether it is only read from.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000465 void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
Adam Nemet04563272015-02-01 16:56:15 +0000466 Value *Ptr = const_cast<Value*>(Loc.Ptr);
Chandler Carruthecbd1682015-06-17 07:21:38 +0000467 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000468 Accesses.insert(MemAccessInfo(Ptr, false));
469 if (IsReadOnly)
470 ReadOnlyPtr.insert(Ptr);
471 }
472
473 /// \brief Register a store.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000474 void addStore(MemoryLocation &Loc) {
Adam Nemet04563272015-02-01 16:56:15 +0000475 Value *Ptr = const_cast<Value*>(Loc.Ptr);
Chandler Carruthecbd1682015-06-17 07:21:38 +0000476 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000477 Accesses.insert(MemAccessInfo(Ptr, true));
478 }
479
480 /// \brief Check whether we can check the pointers at runtime for
Adam Nemetee614742015-07-09 22:17:38 +0000481 /// non-intersection.
482 ///
483 /// Returns true if we need no check or if we do and we can generate them
484 /// (i.e. the pointers have computable bounds).
Adam Nemet7cdebac2015-07-14 22:32:44 +0000485 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
486 Loop *TheLoop, const ValueToValueMap &Strides,
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000487 bool ShouldCheckWrap = false);
Adam Nemet04563272015-02-01 16:56:15 +0000488
489 /// \brief Goes over all memory accesses, checks whether a RT check is needed
490 /// and builds sets of dependent accesses.
491 void buildDependenceSets() {
492 processMemAccesses();
493 }
494
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000495 /// \brief Initial processing of memory accesses determined that we need to
496 /// perform dependency checking.
497 ///
498 /// Note that this can later be cleared if we retry memcheck analysis without
499 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
Adam Nemet04563272015-02-01 16:56:15 +0000500 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
Adam Nemetdf3dc5b2015-05-18 15:37:03 +0000501
502 /// We decided that no dependence analysis would be used. Reset the state.
503 void resetDepChecks(MemoryDepChecker &DepChecker) {
504 CheckDeps.clear();
Adam Nemeta2df7502015-11-03 21:39:52 +0000505 DepChecker.clearDependences();
Adam Nemetdf3dc5b2015-05-18 15:37:03 +0000506 }
Adam Nemet04563272015-02-01 16:56:15 +0000507
508 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
509
510private:
511 typedef SetVector<MemAccessInfo> PtrAccessSet;
512
513 /// \brief Go over all memory access and check whether runtime pointer checks
Adam Nemetb41d2d32015-07-09 06:47:21 +0000514 /// are needed and build sets of dependency check candidates.
Adam Nemet04563272015-02-01 16:56:15 +0000515 void processMemAccesses();
516
517 /// Set of all accesses.
518 PtrAccessSet Accesses;
519
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000520 const DataLayout &DL;
521
Adam Nemet04563272015-02-01 16:56:15 +0000522 /// Set of accesses that need a further dependence check.
523 MemAccessInfoSet CheckDeps;
524
525 /// Set of pointers that are read only.
526 SmallPtrSet<Value*, 16> ReadOnlyPtr;
527
Adam Nemet04563272015-02-01 16:56:15 +0000528 /// An alias set tracker to partition the access set by underlying object and
529 //intrinsic property (such as TBAA metadata).
530 AliasSetTracker AST;
531
Adam Nemete2b885c2015-04-23 20:09:20 +0000532 LoopInfo *LI;
533
Adam Nemet04563272015-02-01 16:56:15 +0000534 /// Sets of potentially dependent accesses - members of one set share an
535 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
536 /// dependence check.
Adam Nemetdee666b2015-03-10 17:40:34 +0000537 MemoryDepChecker::DepCandidates &DepCands;
Adam Nemet04563272015-02-01 16:56:15 +0000538
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000539 /// \brief Initial processing of memory accesses determined that we may need
540 /// to add memchecks. Perform the analysis to determine the necessary checks.
541 ///
542 /// Note that, this is different from isDependencyCheckNeeded. When we retry
543 /// memcheck analysis without dependency checking
544 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
545 /// while this remains set if we have potentially dependent accesses.
546 bool IsRTCheckAnalysisNeeded;
Silviu Barangae3c05342015-11-02 14:41:02 +0000547
548 /// The SCEV predicate containing all the SCEV-related assumptions.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000549 PredicatedScalarEvolution &PSE;
Adam Nemet04563272015-02-01 16:56:15 +0000550};
551
552} // end anonymous namespace
553
554/// \brief Check whether a pointer can participate in a runtime bounds check.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000555static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
Silviu Barangae3c05342015-11-02 14:41:02 +0000556 const ValueToValueMap &Strides, Value *Ptr,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000557 Loop *L) {
558 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
Adam Nemet279784f2016-03-24 04:28:47 +0000559
560 // The bounds for loop-invariant pointer is trivial.
561 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
562 return true;
563
Adam Nemet04563272015-02-01 16:56:15 +0000564 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
565 if (!AR)
566 return false;
567
568 return AR->isAffine();
569}
570
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000571/// \brief Check whether a pointer address cannot wrap.
572static bool isNoWrap(PredicatedScalarEvolution &PSE,
573 const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
574 const SCEV *PtrScev = PSE.getSCEV(Ptr);
575 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
576 return true;
577
David Majnemer7afb46d2016-07-07 06:24:36 +0000578 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000579 return Stride == 1;
580}
581
Adam Nemet7cdebac2015-07-14 22:32:44 +0000582bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
583 ScalarEvolution *SE, Loop *TheLoop,
584 const ValueToValueMap &StridesMap,
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000585 bool ShouldCheckWrap) {
Adam Nemet04563272015-02-01 16:56:15 +0000586 // Find pointers with computable bounds. We are going to use this information
587 // to place a runtime bound check.
588 bool CanDoRT = true;
589
Adam Nemetee614742015-07-09 22:17:38 +0000590 bool NeedRTCheck = false;
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000591 if (!IsRTCheckAnalysisNeeded) return true;
Silviu Baranga98a13712015-06-08 10:27:06 +0000592
Adam Nemet04563272015-02-01 16:56:15 +0000593 bool IsDepCheckNeeded = isDependencyCheckNeeded();
Adam Nemet04563272015-02-01 16:56:15 +0000594
595 // We assign a consecutive id to access from different alias sets.
596 // Accesses between different groups doesn't need to be checked.
597 unsigned ASId = 1;
598 for (auto &AS : AST) {
Adam Nemet424edc62015-07-08 22:58:48 +0000599 int NumReadPtrChecks = 0;
600 int NumWritePtrChecks = 0;
601
Adam Nemet04563272015-02-01 16:56:15 +0000602 // We assign consecutive id to access from different dependence sets.
603 // Accesses within the same set don't need a runtime check.
604 unsigned RunningDepId = 1;
605 DenseMap<Value *, unsigned> DepSetId;
606
607 for (auto A : AS) {
608 Value *Ptr = A.getValue();
609 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
610 MemAccessInfo Access(Ptr, IsWrite);
611
Adam Nemet424edc62015-07-08 22:58:48 +0000612 if (IsWrite)
613 ++NumWritePtrChecks;
614 else
615 ++NumReadPtrChecks;
616
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000617 if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000618 // When we run after a failing dependency check we have to make sure
619 // we don't have wrapping pointers.
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000620 (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) {
Adam Nemet04563272015-02-01 16:56:15 +0000621 // The id of the dependence set.
622 unsigned DepId;
623
624 if (IsDepCheckNeeded) {
625 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
626 unsigned &LeaderId = DepSetId[Leader];
627 if (!LeaderId)
628 LeaderId = RunningDepId++;
629 DepId = LeaderId;
630 } else
631 // Each access has its own dependence set.
632 DepId = RunningDepId++;
633
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000634 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
Adam Nemet04563272015-02-01 16:56:15 +0000635
Adam Nemet339f42b2015-02-19 19:15:07 +0000636 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000637 } else {
Adam Nemetf10ca272015-05-18 15:36:52 +0000638 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000639 CanDoRT = false;
640 }
641 }
642
Adam Nemet424edc62015-07-08 22:58:48 +0000643 // If we have at least two writes or one write and a read then we need to
644 // check them. But there is no need to checks if there is only one
645 // dependence set for this alias set.
646 //
647 // Note that this function computes CanDoRT and NeedRTCheck independently.
648 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
649 // for which we couldn't find the bounds but we don't actually need to emit
650 // any checks so it does not matter.
651 if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
652 NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
653 NumWritePtrChecks >= 1));
654
Adam Nemet04563272015-02-01 16:56:15 +0000655 ++ASId;
656 }
657
658 // If the pointers that we would use for the bounds comparison have different
659 // address spaces, assume the values aren't directly comparable, so we can't
660 // use them for the runtime check. We also have to assume they could
661 // overlap. In the future there should be metadata for whether address spaces
662 // are disjoint.
663 unsigned NumPointers = RtCheck.Pointers.size();
664 for (unsigned i = 0; i < NumPointers; ++i) {
665 for (unsigned j = i + 1; j < NumPointers; ++j) {
666 // Only need to check pointers between two different dependency sets.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000667 if (RtCheck.Pointers[i].DependencySetId ==
668 RtCheck.Pointers[j].DependencySetId)
Adam Nemet04563272015-02-01 16:56:15 +0000669 continue;
670 // Only need to check pointers in the same alias set.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000671 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
Adam Nemet04563272015-02-01 16:56:15 +0000672 continue;
673
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000674 Value *PtrI = RtCheck.Pointers[i].PointerValue;
675 Value *PtrJ = RtCheck.Pointers[j].PointerValue;
Adam Nemet04563272015-02-01 16:56:15 +0000676
677 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
678 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
679 if (ASi != ASj) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000680 DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
Adam Nemet04d41632015-02-19 19:14:34 +0000681 " different address spaces\n");
Adam Nemet04563272015-02-01 16:56:15 +0000682 return false;
683 }
684 }
685 }
686
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000687 if (NeedRTCheck && CanDoRT)
Adam Nemet15840392015-08-07 22:44:15 +0000688 RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000689
Adam Nemet155e8742015-08-07 22:44:21 +0000690 DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
Adam Nemetee614742015-07-09 22:17:38 +0000691 << " pointer comparisons.\n");
692
693 RtCheck.Need = NeedRTCheck;
694
695 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
696 if (!CanDoRTIfNeeded)
697 RtCheck.reset();
698 return CanDoRTIfNeeded;
Adam Nemet04563272015-02-01 16:56:15 +0000699}
700
701void AccessAnalysis::processMemAccesses() {
702 // We process the set twice: first we process read-write pointers, last we
703 // process read-only pointers. This allows us to skip dependence tests for
704 // read-only pointers.
705
Adam Nemet339f42b2015-02-19 19:15:07 +0000706 DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
Adam Nemet04563272015-02-01 16:56:15 +0000707 DEBUG(dbgs() << " AST: "; AST.dump());
Adam Nemet9c926572015-03-10 17:40:37 +0000708 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n");
Adam Nemet04563272015-02-01 16:56:15 +0000709 DEBUG({
710 for (auto A : Accesses)
711 dbgs() << "\t" << *A.getPointer() << " (" <<
712 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
713 "read-only" : "read")) << ")\n";
714 });
715
716 // The AliasSetTracker has nicely partitioned our pointers by metadata
717 // compatibility and potential for underlying-object overlap. As a result, we
718 // only need to check for potential pointer dependencies within each alias
719 // set.
720 for (auto &AS : AST) {
721 // Note that both the alias-set tracker and the alias sets themselves used
722 // linked lists internally and so the iteration order here is deterministic
723 // (matching the original instruction order within each set).
724
725 bool SetHasWrite = false;
726
727 // Map of pointers to last access encountered.
728 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
729 UnderlyingObjToAccessMap ObjToLastAccess;
730
731 // Set of access to check after all writes have been processed.
732 PtrAccessSet DeferredAccesses;
733
734 // Iterate over each alias set twice, once to process read/write pointers,
735 // and then to process read-only pointers.
736 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
737 bool UseDeferred = SetIteration > 0;
738 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
739
740 for (auto AV : AS) {
741 Value *Ptr = AV.getValue();
742
743 // For a single memory access in AliasSetTracker, Accesses may contain
744 // both read and write, and they both need to be handled for CheckDeps.
745 for (auto AC : S) {
746 if (AC.getPointer() != Ptr)
747 continue;
748
749 bool IsWrite = AC.getInt();
750
751 // If we're using the deferred access set, then it contains only
752 // reads.
753 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
754 if (UseDeferred && !IsReadOnlyPtr)
755 continue;
756 // Otherwise, the pointer must be in the PtrAccessSet, either as a
757 // read or a write.
758 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
759 S.count(MemAccessInfo(Ptr, false))) &&
760 "Alias-set pointer not in the access set?");
761
762 MemAccessInfo Access(Ptr, IsWrite);
763 DepCands.insert(Access);
764
765 // Memorize read-only pointers for later processing and skip them in
766 // the first round (they need to be checked after we have seen all
767 // write pointers). Note: we also mark pointer that are not
768 // consecutive as "read-only" pointers (so that we check
769 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
770 if (!UseDeferred && IsReadOnlyPtr) {
771 DeferredAccesses.insert(Access);
772 continue;
773 }
774
775 // If this is a write - check other reads and writes for conflicts. If
776 // this is a read only check other writes for conflicts (but only if
777 // there is no other write to the ptr - this is an optimization to
778 // catch "a[i] = a[i] + " without having to do a dependence check).
779 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
780 CheckDeps.insert(Access);
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000781 IsRTCheckAnalysisNeeded = true;
Adam Nemet04563272015-02-01 16:56:15 +0000782 }
783
784 if (IsWrite)
785 SetHasWrite = true;
786
787 // Create sets of pointers connected by a shared alias set and
788 // underlying object.
789 typedef SmallVector<Value *, 16> ValueVector;
790 ValueVector TempObjects;
Adam Nemete2b885c2015-04-23 20:09:20 +0000791
792 GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
793 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000794 for (Value *UnderlyingObj : TempObjects) {
Mehdi Aminiafd13512015-11-05 05:49:43 +0000795 // nullptr never alias, don't join sets for pointer that have "null"
796 // in their UnderlyingObjects list.
797 if (isa<ConstantPointerNull>(UnderlyingObj))
798 continue;
799
Adam Nemet04563272015-02-01 16:56:15 +0000800 UnderlyingObjToAccessMap::iterator Prev =
801 ObjToLastAccess.find(UnderlyingObj);
802 if (Prev != ObjToLastAccess.end())
803 DepCands.unionSets(Access, Prev->second);
804
805 ObjToLastAccess[UnderlyingObj] = Access;
Adam Nemete2b885c2015-04-23 20:09:20 +0000806 DEBUG(dbgs() << " " << *UnderlyingObj << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000807 }
808 }
809 }
810 }
811 }
812}
813
Adam Nemet04563272015-02-01 16:56:15 +0000814static bool isInBoundsGep(Value *Ptr) {
815 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
816 return GEP->isInBounds();
817 return false;
818}
819
Adam Nemetc4866d22015-06-26 17:25:43 +0000820/// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
821/// i.e. monotonically increasing/decreasing.
822static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000823 PredicatedScalarEvolution &PSE, const Loop *L) {
Adam Nemetc4866d22015-06-26 17:25:43 +0000824 // FIXME: This should probably only return true for NUW.
825 if (AR->getNoWrapFlags(SCEV::NoWrapMask))
826 return true;
827
828 // Scalar evolution does not propagate the non-wrapping flags to values that
829 // are derived from a non-wrapping induction variable because non-wrapping
830 // could be flow-sensitive.
831 //
832 // Look through the potentially overflowing instruction to try to prove
833 // non-wrapping for the *specific* value of Ptr.
834
835 // The arithmetic implied by an inbounds GEP can't overflow.
836 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
837 if (!GEP || !GEP->isInBounds())
838 return false;
839
840 // Make sure there is only one non-const index and analyze that.
841 Value *NonConstIndex = nullptr;
David Majnemer8b401012016-07-12 20:31:46 +0000842 for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end()))
843 if (!isa<ConstantInt>(Index)) {
Adam Nemetc4866d22015-06-26 17:25:43 +0000844 if (NonConstIndex)
845 return false;
David Majnemer8b401012016-07-12 20:31:46 +0000846 NonConstIndex = Index;
Adam Nemetc4866d22015-06-26 17:25:43 +0000847 }
848 if (!NonConstIndex)
849 // The recurrence is on the pointer, ignore for now.
850 return false;
851
852 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
853 // AddRec using a NSW operation.
854 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
855 if (OBO->hasNoSignedWrap() &&
856 // Assume constant for other the operand so that the AddRec can be
857 // easily found.
858 isa<ConstantInt>(OBO->getOperand(1))) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000859 auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
Adam Nemetc4866d22015-06-26 17:25:43 +0000860
861 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
862 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
863 }
864
865 return false;
866}
867
Adam Nemet04563272015-02-01 16:56:15 +0000868/// \brief Check whether the access through \p Ptr has a constant stride.
David Majnemer7afb46d2016-07-07 06:24:36 +0000869int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
870 const Loop *Lp, const ValueToValueMap &StridesMap,
871 bool Assume) {
Craig Toppere3dcce92015-08-01 22:20:21 +0000872 Type *Ty = Ptr->getType();
Adam Nemet04563272015-02-01 16:56:15 +0000873 assert(Ty->isPointerTy() && "Unexpected non-ptr");
874
875 // Make sure that the pointer does not point to aggregate types.
Craig Toppere3dcce92015-08-01 22:20:21 +0000876 auto *PtrTy = cast<PointerType>(Ty);
Adam Nemet04563272015-02-01 16:56:15 +0000877 if (PtrTy->getElementType()->isAggregateType()) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000878 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr
879 << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000880 return 0;
881 }
882
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000883 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000884
885 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000886 if (Assume && !AR)
Silviu Barangad68ed852016-03-23 15:29:30 +0000887 AR = PSE.getAsAddRec(Ptr);
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000888
Adam Nemet04563272015-02-01 16:56:15 +0000889 if (!AR) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000890 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
891 << " SCEV: " << *PtrScev << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000892 return 0;
893 }
894
895 // The accesss function must stride over the innermost loop.
896 if (Lp != AR->getLoop()) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000897 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000898 *Ptr << " SCEV: " << *AR << "\n");
Kyle Butta02ce982016-01-08 01:55:13 +0000899 return 0;
Adam Nemet04563272015-02-01 16:56:15 +0000900 }
901
902 // The address calculation must not wrap. Otherwise, a dependence could be
903 // inverted.
904 // An inbounds getelementptr that is a AddRec with a unit stride
905 // cannot wrap per definition. The unit stride requirement is checked later.
906 // An getelementptr without an inbounds attribute and unit stride would have
907 // to access the pointer value "0" which is undefined behavior in address
908 // space 0, therefore we can also vectorize this case.
909 bool IsInBoundsGEP = isInBoundsGep(Ptr);
Elena Demikhovsky5e21c942016-06-29 10:01:06 +0000910 bool IsNoWrapAddRec =
911 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
912 isNoWrapAddRec(Ptr, AR, PSE, Lp);
Adam Nemet04563272015-02-01 16:56:15 +0000913 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
914 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000915 if (Assume) {
916 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
917 IsNoWrapAddRec = true;
918 DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
919 << "LAA: Pointer: " << *Ptr << "\n"
920 << "LAA: SCEV: " << *AR << "\n"
921 << "LAA: Added an overflow assumption\n");
922 } else {
923 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
924 << *Ptr << " SCEV: " << *AR << "\n");
925 return 0;
926 }
Adam Nemet04563272015-02-01 16:56:15 +0000927 }
928
929 // Check the step is constant.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000930 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
Adam Nemet04563272015-02-01 16:56:15 +0000931
Adam Nemet943befe2015-07-09 00:03:22 +0000932 // Calculate the pointer stride and check if it is constant.
Adam Nemet04563272015-02-01 16:56:15 +0000933 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
934 if (!C) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000935 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000936 " SCEV: " << *AR << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000937 return 0;
938 }
939
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000940 auto &DL = Lp->getHeader()->getModule()->getDataLayout();
941 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000942 const APInt &APStepVal = C->getAPInt();
Adam Nemet04563272015-02-01 16:56:15 +0000943
944 // Huge step value - give up.
945 if (APStepVal.getBitWidth() > 64)
946 return 0;
947
948 int64_t StepVal = APStepVal.getSExtValue();
949
950 // Strided access.
951 int64_t Stride = StepVal / Size;
952 int64_t Rem = StepVal % Size;
953 if (Rem)
954 return 0;
955
956 // If the SCEV could wrap but we have an inbounds gep with a unit stride we
957 // know we can't "wrap around the address space". In case of address space
958 // zero we know that this won't happen without triggering undefined behavior.
959 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000960 Stride != 1 && Stride != -1) {
961 if (Assume) {
962 // We can avoid this case by adding a run-time check.
963 DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
964 << "inbouds or in address space 0 may wrap:\n"
965 << "LAA: Pointer: " << *Ptr << "\n"
966 << "LAA: SCEV: " << *AR << "\n"
967 << "LAA: Added an overflow assumption\n");
968 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
969 } else
970 return 0;
971 }
Adam Nemet04563272015-02-01 16:56:15 +0000972
973 return Stride;
974}
975
Haicheng Wuf1c00a22016-01-26 02:27:47 +0000976/// Take the pointer operand from the Load/Store instruction.
977/// Returns NULL if this is not a valid Load/Store instruction.
978static Value *getPointerOperand(Value *I) {
David Majnemer8b401012016-07-12 20:31:46 +0000979 if (auto *LI = dyn_cast<LoadInst>(I))
Haicheng Wuf1c00a22016-01-26 02:27:47 +0000980 return LI->getPointerOperand();
David Majnemer8b401012016-07-12 20:31:46 +0000981 if (auto *SI = dyn_cast<StoreInst>(I))
Haicheng Wuf1c00a22016-01-26 02:27:47 +0000982 return SI->getPointerOperand();
983 return nullptr;
984}
985
986/// Take the address space operand from the Load/Store instruction.
987/// Returns -1 if this is not a valid Load/Store instruction.
988static unsigned getAddressSpaceOperand(Value *I) {
989 if (LoadInst *L = dyn_cast<LoadInst>(I))
990 return L->getPointerAddressSpace();
991 if (StoreInst *S = dyn_cast<StoreInst>(I))
992 return S->getPointerAddressSpace();
993 return -1;
994}
995
996/// Returns true if the memory operations \p A and \p B are consecutive.
997bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
998 ScalarEvolution &SE, bool CheckType) {
999 Value *PtrA = getPointerOperand(A);
1000 Value *PtrB = getPointerOperand(B);
1001 unsigned ASA = getAddressSpaceOperand(A);
1002 unsigned ASB = getAddressSpaceOperand(B);
1003
1004 // Check that the address spaces match and that the pointers are valid.
1005 if (!PtrA || !PtrB || (ASA != ASB))
1006 return false;
1007
1008 // Make sure that A and B are different pointers.
1009 if (PtrA == PtrB)
1010 return false;
1011
1012 // Make sure that A and B have the same type if required.
1013 if(CheckType && PtrA->getType() != PtrB->getType())
1014 return false;
1015
1016 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
1017 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1018 APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
1019
1020 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1021 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1022 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1023
1024 // OffsetDelta = OffsetB - OffsetA;
1025 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
1026 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1027 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1028 const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
1029 const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
1030 // Check if they are based on the same pointer. That makes the offsets
1031 // sufficient.
1032 if (PtrA == PtrB)
1033 return OffsetDelta == Size;
1034
1035 // Compute the necessary base pointer delta to have the necessary final delta
1036 // equal to the size.
1037 // BaseDelta = Size - OffsetDelta;
1038 const SCEV *SizeSCEV = SE.getConstant(Size);
1039 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1040
1041 // Otherwise compute the distance with SCEV between the base pointers.
1042 const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1043 const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1044 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1045 return X == PtrSCEVB;
1046}
1047
Adam Nemet9c926572015-03-10 17:40:37 +00001048bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1049 switch (Type) {
1050 case NoDep:
1051 case Forward:
1052 case BackwardVectorizable:
1053 return true;
1054
1055 case Unknown:
1056 case ForwardButPreventsForwarding:
1057 case Backward:
1058 case BackwardVectorizableButPreventsForwarding:
1059 return false;
1060 }
David Majnemerd388e932015-03-10 20:23:29 +00001061 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +00001062}
1063
Adam Nemet397f5822015-11-03 23:50:03 +00001064bool MemoryDepChecker::Dependence::isBackward() const {
Adam Nemet9c926572015-03-10 17:40:37 +00001065 switch (Type) {
1066 case NoDep:
1067 case Forward:
1068 case ForwardButPreventsForwarding:
Adam Nemet397f5822015-11-03 23:50:03 +00001069 case Unknown:
Adam Nemet9c926572015-03-10 17:40:37 +00001070 return false;
1071
Adam Nemet9c926572015-03-10 17:40:37 +00001072 case BackwardVectorizable:
1073 case Backward:
1074 case BackwardVectorizableButPreventsForwarding:
1075 return true;
1076 }
David Majnemerd388e932015-03-10 20:23:29 +00001077 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +00001078}
1079
Adam Nemet397f5822015-11-03 23:50:03 +00001080bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1081 return isBackward() || Type == Unknown;
1082}
1083
1084bool MemoryDepChecker::Dependence::isForward() const {
1085 switch (Type) {
1086 case Forward:
1087 case ForwardButPreventsForwarding:
1088 return true;
1089
1090 case NoDep:
1091 case Unknown:
1092 case BackwardVectorizable:
1093 case Backward:
1094 case BackwardVectorizableButPreventsForwarding:
1095 return false;
1096 }
1097 llvm_unreachable("unexpected DepType!");
1098}
1099
David Majnemer7afb46d2016-07-07 06:24:36 +00001100bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1101 uint64_t TypeByteSize) {
Adam Nemet04563272015-02-01 16:56:15 +00001102 // If loads occur at a distance that is not a multiple of a feasible vector
1103 // factor store-load forwarding does not take place.
1104 // Positive dependences might cause troubles because vectorizing them might
1105 // prevent store-load forwarding making vectorized code run a lot slower.
1106 // a[i] = a[i-3] ^ a[i-8];
1107 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1108 // hence on your typical architecture store-load forwarding does not take
1109 // place. Vectorizing in such cases does not make sense.
1110 // Store-load forwarding distance.
Adam Nemet884d3132016-05-16 16:57:47 +00001111
1112 // After this many iterations store-to-load forwarding conflicts should not
1113 // cause any slowdowns.
David Majnemer7afb46d2016-07-07 06:24:36 +00001114 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
Adam Nemet04563272015-02-01 16:56:15 +00001115 // Maximum vector factor.
David Majnemer7afb46d2016-07-07 06:24:36 +00001116 uint64_t MaxVFWithoutSLForwardIssues = std::min(
Adam Nemet2c34ab52016-05-12 21:41:53 +00001117 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
Adam Nemet04563272015-02-01 16:56:15 +00001118
Adam Nemet884d3132016-05-16 16:57:47 +00001119 // Compute the smallest VF at which the store and load would be misaligned.
David Majnemer7afb46d2016-07-07 06:24:36 +00001120 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
Adam Nemet9b5852a2016-05-16 16:57:42 +00001121 VF *= 2) {
Adam Nemet884d3132016-05-16 16:57:47 +00001122 // If the number of vector iteration between the store and the load are
1123 // small we could incur conflicts.
1124 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
Adam Nemet9b5852a2016-05-16 16:57:42 +00001125 MaxVFWithoutSLForwardIssues = (VF >>= 1);
Adam Nemet04563272015-02-01 16:56:15 +00001126 break;
1127 }
1128 }
1129
Adam Nemet9b5852a2016-05-16 16:57:42 +00001130 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1131 DEBUG(dbgs() << "LAA: Distance " << Distance
1132 << " that could cause a store-load forwarding conflict\n");
Adam Nemet04563272015-02-01 16:56:15 +00001133 return true;
1134 }
1135
1136 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
Adam Nemetf219c642015-02-19 19:14:52 +00001137 MaxVFWithoutSLForwardIssues !=
Adam Nemet9b5852a2016-05-16 16:57:42 +00001138 VectorizerParams::MaxVectorWidth * TypeByteSize)
Adam Nemet04563272015-02-01 16:56:15 +00001139 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1140 return false;
1141}
1142
Hao Liu751004a2015-06-08 04:48:37 +00001143/// \brief Check the dependence for two accesses with the same stride \p Stride.
1144/// \p Distance is the positive distance and \p TypeByteSize is type size in
1145/// bytes.
1146///
1147/// \returns true if they are independent.
David Majnemer7afb46d2016-07-07 06:24:36 +00001148static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1149 uint64_t TypeByteSize) {
Hao Liu751004a2015-06-08 04:48:37 +00001150 assert(Stride > 1 && "The stride must be greater than 1");
1151 assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1152 assert(Distance > 0 && "The distance must be non-zero");
1153
1154 // Skip if the distance is not multiple of type byte size.
1155 if (Distance % TypeByteSize)
1156 return false;
1157
David Majnemer7afb46d2016-07-07 06:24:36 +00001158 uint64_t ScaledDist = Distance / TypeByteSize;
Hao Liu751004a2015-06-08 04:48:37 +00001159
1160 // No dependence if the scaled distance is not multiple of the stride.
1161 // E.g.
1162 // for (i = 0; i < 1024 ; i += 4)
1163 // A[i+2] = A[i] + 1;
1164 //
1165 // Two accesses in memory (scaled distance is 2, stride is 4):
1166 // | A[0] | | | | A[4] | | | |
1167 // | | | A[2] | | | | A[6] | |
1168 //
1169 // E.g.
1170 // for (i = 0; i < 1024 ; i += 3)
1171 // A[i+4] = A[i] + 1;
1172 //
1173 // Two accesses in memory (scaled distance is 4, stride is 3):
1174 // | A[0] | | | A[3] | | | A[6] | | |
1175 // | | | | | A[4] | | | A[7] | |
1176 return ScaledDist % Stride;
1177}
1178
Adam Nemet9c926572015-03-10 17:40:37 +00001179MemoryDepChecker::Dependence::DepType
1180MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1181 const MemAccessInfo &B, unsigned BIdx,
1182 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001183 assert (AIdx < BIdx && "Must pass arguments in program order");
1184
1185 Value *APtr = A.getPointer();
1186 Value *BPtr = B.getPointer();
1187 bool AIsWrite = A.getInt();
1188 bool BIsWrite = B.getInt();
1189
1190 // Two reads are independent.
1191 if (!AIsWrite && !BIsWrite)
Adam Nemet9c926572015-03-10 17:40:37 +00001192 return Dependence::NoDep;
Adam Nemet04563272015-02-01 16:56:15 +00001193
1194 // We cannot check pointers in different address spaces.
1195 if (APtr->getType()->getPointerAddressSpace() !=
1196 BPtr->getType()->getPointerAddressSpace())
Adam Nemet9c926572015-03-10 17:40:37 +00001197 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001198
David Majnemer7afb46d2016-07-07 06:24:36 +00001199 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
1200 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
Adam Nemet04563272015-02-01 16:56:15 +00001201
Silviu Barangaadf4b732016-05-10 12:28:49 +00001202 const SCEV *Src = PSE.getSCEV(APtr);
1203 const SCEV *Sink = PSE.getSCEV(BPtr);
Adam Nemet04563272015-02-01 16:56:15 +00001204
1205 // If the induction step is negative we have to invert source and sink of the
1206 // dependence.
1207 if (StrideAPtr < 0) {
Adam Nemet04563272015-02-01 16:56:15 +00001208 std::swap(APtr, BPtr);
1209 std::swap(Src, Sink);
1210 std::swap(AIsWrite, BIsWrite);
1211 std::swap(AIdx, BIdx);
1212 std::swap(StrideAPtr, StrideBPtr);
1213 }
1214
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001215 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
Adam Nemet04563272015-02-01 16:56:15 +00001216
Adam Nemet339f42b2015-02-19 19:15:07 +00001217 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001218 << "(Induction step: " << StrideAPtr << ")\n");
Adam Nemet339f42b2015-02-19 19:15:07 +00001219 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001220 << *InstMap[BIdx] << ": " << *Dist << "\n");
Adam Nemet04563272015-02-01 16:56:15 +00001221
Adam Nemet943befe2015-07-09 00:03:22 +00001222 // Need accesses with constant stride. We don't want to vectorize
Adam Nemet04563272015-02-01 16:56:15 +00001223 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1224 // the address space.
1225 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
Adam Nemet943befe2015-07-09 00:03:22 +00001226 DEBUG(dbgs() << "Pointer access with non-constant stride\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001227 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001228 }
1229
1230 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1231 if (!C) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001232 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
Adam Nemet04563272015-02-01 16:56:15 +00001233 ShouldRetryWithRuntimeCheck = true;
Adam Nemet9c926572015-03-10 17:40:37 +00001234 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001235 }
1236
1237 Type *ATy = APtr->getType()->getPointerElementType();
1238 Type *BTy = BPtr->getType()->getPointerElementType();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001239 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
David Majnemer7afb46d2016-07-07 06:24:36 +00001240 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
Adam Nemet04563272015-02-01 16:56:15 +00001241
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001242 const APInt &Val = C->getAPInt();
Matthew Simpson6feebe92016-05-19 15:37:19 +00001243 int64_t Distance = Val.getSExtValue();
David Majnemer7afb46d2016-07-07 06:24:36 +00001244 uint64_t Stride = std::abs(StrideAPtr);
Matthew Simpson6feebe92016-05-19 15:37:19 +00001245
1246 // Attempt to prove strided accesses independent.
1247 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
1248 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1249 DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1250 return Dependence::NoDep;
1251 }
1252
1253 // Negative distances are not plausible dependencies.
Adam Nemet04563272015-02-01 16:56:15 +00001254 if (Val.isNegative()) {
1255 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
Matthew Simpson37ec5f92016-05-16 17:00:56 +00001256 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
Adam Nemet04563272015-02-01 16:56:15 +00001257 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
Adam Nemetb8486e52016-03-01 00:50:08 +00001258 ATy != BTy)) {
1259 DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001260 return Dependence::ForwardButPreventsForwarding;
Adam Nemetb8486e52016-03-01 00:50:08 +00001261 }
Adam Nemet04563272015-02-01 16:56:15 +00001262
Adam Nemet724ab222016-05-05 23:41:28 +00001263 DEBUG(dbgs() << "LAA: Dependence is negative\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001264 return Dependence::Forward;
Adam Nemet04563272015-02-01 16:56:15 +00001265 }
1266
1267 // Write to the same location with the same size.
1268 // Could be improved to assert type sizes are the same (i32 == float, etc).
1269 if (Val == 0) {
1270 if (ATy == BTy)
Adam Nemetd7037c52015-11-03 20:13:43 +00001271 return Dependence::Forward;
Adam Nemet339f42b2015-02-19 19:15:07 +00001272 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001273 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001274 }
1275
1276 assert(Val.isStrictlyPositive() && "Expect a positive value");
1277
Adam Nemet04563272015-02-01 16:56:15 +00001278 if (ATy != BTy) {
Adam Nemet04d41632015-02-19 19:14:34 +00001279 DEBUG(dbgs() <<
Adam Nemet339f42b2015-02-19 19:15:07 +00001280 "LAA: ReadWrite-Write positive dependency with different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001281 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001282 }
1283
Adam Nemet04563272015-02-01 16:56:15 +00001284 // Bail out early if passed-in parameters make vectorization not feasible.
Adam Nemetf219c642015-02-19 19:14:52 +00001285 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1286 VectorizerParams::VectorizationFactor : 1);
1287 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1288 VectorizerParams::VectorizationInterleave : 1);
Hao Liu751004a2015-06-08 04:48:37 +00001289 // The minimum number of iterations for a vectorized/unrolled version.
1290 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
Adam Nemet04563272015-02-01 16:56:15 +00001291
Hao Liu751004a2015-06-08 04:48:37 +00001292 // It's not vectorizable if the distance is smaller than the minimum distance
1293 // needed for a vectroized/unrolled version. Vectorizing one iteration in
1294 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1295 // TypeByteSize (No need to plus the last gap distance).
1296 //
1297 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1298 // foo(int *A) {
1299 // int *B = (int *)((char *)A + 14);
1300 // for (i = 0 ; i < 1024 ; i += 2)
1301 // B[i] = A[i] + 1;
1302 // }
1303 //
1304 // Two accesses in memory (stride is 2):
1305 // | A[0] | | A[2] | | A[4] | | A[6] | |
1306 // | B[0] | | B[2] | | B[4] |
1307 //
1308 // Distance needs for vectorizing iterations except the last iteration:
1309 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1310 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1311 //
1312 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1313 // 12, which is less than distance.
1314 //
1315 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1316 // the minimum distance needed is 28, which is greater than distance. It is
1317 // not safe to do vectorization.
David Majnemer7afb46d2016-07-07 06:24:36 +00001318 uint64_t MinDistanceNeeded =
Hao Liu751004a2015-06-08 04:48:37 +00001319 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
David Majnemer7afb46d2016-07-07 06:24:36 +00001320 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
Hao Liu751004a2015-06-08 04:48:37 +00001321 DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1322 << '\n');
1323 return Dependence::Backward;
1324 }
1325
1326 // Unsafe if the minimum distance needed is greater than max safe distance.
1327 if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1328 DEBUG(dbgs() << "LAA: Failure because it needs at least "
1329 << MinDistanceNeeded << " size in bytes");
Adam Nemet9c926572015-03-10 17:40:37 +00001330 return Dependence::Backward;
Adam Nemet04563272015-02-01 16:56:15 +00001331 }
1332
Adam Nemet9cc0c392015-02-26 17:58:48 +00001333 // Positive distance bigger than max vectorization factor.
Hao Liu751004a2015-06-08 04:48:37 +00001334 // FIXME: Should use max factor instead of max distance in bytes, which could
1335 // not handle different types.
1336 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1337 // void foo (int *A, char *B) {
1338 // for (unsigned i = 0; i < 1024; i++) {
1339 // A[i+2] = A[i] + 1;
1340 // B[i+2] = B[i] + 1;
1341 // }
1342 // }
1343 //
1344 // This case is currently unsafe according to the max safe distance. If we
1345 // analyze the two accesses on array B, the max safe dependence distance
1346 // is 2. Then we analyze the accesses on array A, the minimum distance needed
1347 // is 8, which is less than 2 and forbidden vectorization, But actually
1348 // both A and B could be vectorized by 2 iterations.
1349 MaxSafeDepDistBytes =
David Majnemer7afb46d2016-07-07 06:24:36 +00001350 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
Adam Nemet04563272015-02-01 16:56:15 +00001351
1352 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
Matthew Simpson37ec5f92016-05-16 17:00:56 +00001353 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
Adam Nemet04563272015-02-01 16:56:15 +00001354 couldPreventStoreLoadForward(Distance, TypeByteSize))
Adam Nemet9c926572015-03-10 17:40:37 +00001355 return Dependence::BackwardVectorizableButPreventsForwarding;
Adam Nemet04563272015-02-01 16:56:15 +00001356
Hao Liu751004a2015-06-08 04:48:37 +00001357 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1358 << " with max VF = "
1359 << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
Adam Nemet04563272015-02-01 16:56:15 +00001360
Adam Nemet9c926572015-03-10 17:40:37 +00001361 return Dependence::BackwardVectorizable;
Adam Nemet04563272015-02-01 16:56:15 +00001362}
1363
Adam Nemetdee666b2015-03-10 17:40:34 +00001364bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
Adam Nemet04563272015-02-01 16:56:15 +00001365 MemAccessInfoSet &CheckDeps,
Adam Nemet8bc61df2015-02-24 00:41:59 +00001366 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001367
David Majnemer7afb46d2016-07-07 06:24:36 +00001368 MaxSafeDepDistBytes = -1;
Adam Nemet04563272015-02-01 16:56:15 +00001369 while (!CheckDeps.empty()) {
1370 MemAccessInfo CurAccess = *CheckDeps.begin();
1371
1372 // Get the relevant memory access set.
1373 EquivalenceClasses<MemAccessInfo>::iterator I =
1374 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1375
1376 // Check accesses within this set.
Richard Trieu7a083812016-02-18 22:09:30 +00001377 EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1378 AccessSets.member_begin(I);
1379 EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1380 AccessSets.member_end();
Adam Nemet04563272015-02-01 16:56:15 +00001381
1382 // Check every access pair.
1383 while (AI != AE) {
1384 CheckDeps.erase(*AI);
1385 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1386 while (OI != AE) {
1387 // Check every accessing instruction pair in program order.
1388 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1389 I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1390 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1391 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
Adam Nemet9c926572015-03-10 17:40:37 +00001392 auto A = std::make_pair(&*AI, *I1);
1393 auto B = std::make_pair(&*OI, *I2);
1394
1395 assert(*I1 != *I2);
1396 if (*I1 > *I2)
1397 std::swap(A, B);
1398
1399 Dependence::DepType Type =
1400 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1401 SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1402
Adam Nemeta2df7502015-11-03 21:39:52 +00001403 // Gather dependences unless we accumulated MaxDependences
Adam Nemet9c926572015-03-10 17:40:37 +00001404 // dependences. In that case return as soon as we find the first
1405 // unsafe dependence. This puts a limit on this quadratic
1406 // algorithm.
Adam Nemeta2df7502015-11-03 21:39:52 +00001407 if (RecordDependences) {
1408 if (Type != Dependence::NoDep)
1409 Dependences.push_back(Dependence(A.second, B.second, Type));
Adam Nemet9c926572015-03-10 17:40:37 +00001410
Adam Nemeta2df7502015-11-03 21:39:52 +00001411 if (Dependences.size() >= MaxDependences) {
1412 RecordDependences = false;
1413 Dependences.clear();
Adam Nemet9c926572015-03-10 17:40:37 +00001414 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
1415 }
1416 }
Adam Nemeta2df7502015-11-03 21:39:52 +00001417 if (!RecordDependences && !SafeForVectorization)
Adam Nemet04563272015-02-01 16:56:15 +00001418 return false;
1419 }
1420 ++OI;
1421 }
1422 AI++;
1423 }
1424 }
Adam Nemet9c926572015-03-10 17:40:37 +00001425
Adam Nemeta2df7502015-11-03 21:39:52 +00001426 DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001427 return SafeForVectorization;
Adam Nemet04563272015-02-01 16:56:15 +00001428}
1429
Adam Nemetec1e2bb2015-03-10 18:54:26 +00001430SmallVector<Instruction *, 4>
1431MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1432 MemAccessInfo Access(Ptr, isWrite);
1433 auto &IndexVector = Accesses.find(Access)->second;
1434
1435 SmallVector<Instruction *, 4> Insts;
1436 std::transform(IndexVector.begin(), IndexVector.end(),
1437 std::back_inserter(Insts),
1438 [&](unsigned Idx) { return this->InstMap[Idx]; });
1439 return Insts;
1440}
1441
Adam Nemet58913d62015-03-10 17:40:43 +00001442const char *MemoryDepChecker::Dependence::DepName[] = {
1443 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1444 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1445
1446void MemoryDepChecker::Dependence::print(
1447 raw_ostream &OS, unsigned Depth,
1448 const SmallVectorImpl<Instruction *> &Instrs) const {
1449 OS.indent(Depth) << DepName[Type] << ":\n";
1450 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1451 OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1452}
1453
Adam Nemet929c38e2015-02-19 19:15:10 +00001454bool LoopAccessInfo::canAnalyzeLoop() {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001455 // We need to have a loop header.
Adam Nemetd8968f02016-01-18 21:16:33 +00001456 DEBUG(dbgs() << "LAA: Found a loop in "
1457 << TheLoop->getHeader()->getParent()->getName() << ": "
1458 << TheLoop->getHeader()->getName() << '\n');
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001459
Adam Nemetd8968f02016-01-18 21:16:33 +00001460 // We can only analyze innermost loops.
Adam Nemet929c38e2015-02-19 19:15:10 +00001461 if (!TheLoop->empty()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001462 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
Adam Nemet2bd6e982015-02-19 19:15:15 +00001463 emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
Adam Nemet929c38e2015-02-19 19:15:10 +00001464 return false;
1465 }
1466
1467 // We must have a single backedge.
1468 if (TheLoop->getNumBackEdges() != 1) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001469 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet929c38e2015-02-19 19:15:10 +00001470 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +00001471 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +00001472 "loop control flow is not understood by analyzer");
1473 return false;
1474 }
1475
1476 // We must have a single exiting block.
1477 if (!TheLoop->getExitingBlock()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001478 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet929c38e2015-02-19 19:15:10 +00001479 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +00001480 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +00001481 "loop control flow is not understood by analyzer");
1482 return false;
1483 }
1484
1485 // We only handle bottom-tested loops, i.e. loop in which the condition is
1486 // checked at the end of each iteration. With that we can assume that all
1487 // instructions in the loop are executed the same number of times.
1488 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001489 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet929c38e2015-02-19 19:15:10 +00001490 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +00001491 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +00001492 "loop control flow is not understood by analyzer");
1493 return false;
1494 }
1495
Adam Nemet929c38e2015-02-19 19:15:10 +00001496 // ScalarEvolution needs to be able to find the exit count.
Xinliang David Li94734ee2016-07-01 05:59:55 +00001497 const SCEV *ExitCount = PSE->getBackedgeTakenCount();
1498 if (ExitCount == PSE->getSE()->getCouldNotCompute()) {
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001499 emitAnalysis(LoopAccessReport()
1500 << "could not determine number of loop iterations");
Adam Nemet929c38e2015-02-19 19:15:10 +00001501 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1502 return false;
1503 }
1504
1505 return true;
1506}
1507
Adam Nemetb49d9a52016-07-13 22:36:27 +00001508void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
1509 const TargetLibraryInfo *TLI) {
Adam Nemet04563272015-02-01 16:56:15 +00001510 typedef SmallPtrSet<Value*, 16> ValueSet;
1511
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001512 // Holds the Load and Store instructions.
1513 SmallVector<LoadInst *, 16> Loads;
1514 SmallVector<StoreInst *, 16> Stores;
Adam Nemet04563272015-02-01 16:56:15 +00001515
1516 // Holds all the different accesses in the loop.
1517 unsigned NumReads = 0;
1518 unsigned NumReadWrites = 0;
1519
Xinliang David Lice030ac2016-06-22 23:20:59 +00001520 PtrRtChecking->Pointers.clear();
1521 PtrRtChecking->Need = false;
Adam Nemet04563272015-02-01 16:56:15 +00001522
1523 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
Adam Nemet04563272015-02-01 16:56:15 +00001524
1525 // For each block.
David Majnemer8b401012016-07-12 20:31:46 +00001526 for (BasicBlock *BB : TheLoop->blocks()) {
Adam Nemet04563272015-02-01 16:56:15 +00001527 // Scan the BB and collect legal loads and stores.
David Majnemer8b401012016-07-12 20:31:46 +00001528 for (Instruction &I : *BB) {
Adam Nemet04563272015-02-01 16:56:15 +00001529 // If this is a load, save it. If this instruction can read from memory
1530 // but is not a load, then we quit. Notice that we don't handle function
1531 // calls that read or write.
David Majnemer8b401012016-07-12 20:31:46 +00001532 if (I.mayReadFromMemory()) {
Adam Nemet04563272015-02-01 16:56:15 +00001533 // Many math library functions read the rounding mode. We will only
1534 // vectorize a loop if it contains known function calls that don't set
1535 // the flag. Therefore, it is safe to ignore this read from memory.
David Majnemer8b401012016-07-12 20:31:46 +00001536 auto *Call = dyn_cast<CallInst>(&I);
David Majnemerb4b27232016-04-19 19:10:21 +00001537 if (Call && getVectorIntrinsicIDForCall(Call, TLI))
Adam Nemet04563272015-02-01 16:56:15 +00001538 continue;
1539
Michael Zolotukhin9b3cf602015-03-17 19:46:50 +00001540 // If the function has an explicit vectorized counterpart, we can safely
1541 // assume that it can be vectorized.
1542 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1543 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1544 continue;
1545
David Majnemer8b401012016-07-12 20:31:46 +00001546 auto *Ld = dyn_cast<LoadInst>(&I);
Adam Nemet04563272015-02-01 16:56:15 +00001547 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001548 emitAnalysis(LoopAccessReport(Ld)
Adam Nemet04563272015-02-01 16:56:15 +00001549 << "read with atomic ordering or volatile read");
Adam Nemet339f42b2015-02-19 19:15:07 +00001550 DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001551 CanVecMem = false;
1552 return;
Adam Nemet04563272015-02-01 16:56:15 +00001553 }
1554 NumLoads++;
1555 Loads.push_back(Ld);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001556 DepChecker->addAccess(Ld);
Adam Nemeta9f09c62016-06-17 22:35:41 +00001557 if (EnableMemAccessVersioning)
Adam Nemetc953bb92016-06-16 22:57:55 +00001558 collectStridedAccess(Ld);
Adam Nemet04563272015-02-01 16:56:15 +00001559 continue;
1560 }
1561
1562 // Save 'store' instructions. Abort if other instructions write to memory.
David Majnemer8b401012016-07-12 20:31:46 +00001563 if (I.mayWriteToMemory()) {
1564 auto *St = dyn_cast<StoreInst>(&I);
Adam Nemet04563272015-02-01 16:56:15 +00001565 if (!St) {
David Majnemer8b401012016-07-12 20:31:46 +00001566 emitAnalysis(LoopAccessReport(St)
1567 << "instruction cannot be vectorized");
Adam Nemet436018c2015-02-19 19:15:00 +00001568 CanVecMem = false;
1569 return;
Adam Nemet04563272015-02-01 16:56:15 +00001570 }
1571 if (!St->isSimple() && !IsAnnotatedParallel) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001572 emitAnalysis(LoopAccessReport(St)
Adam Nemet04563272015-02-01 16:56:15 +00001573 << "write with atomic ordering or volatile write");
Adam Nemet339f42b2015-02-19 19:15:07 +00001574 DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001575 CanVecMem = false;
1576 return;
Adam Nemet04563272015-02-01 16:56:15 +00001577 }
1578 NumStores++;
1579 Stores.push_back(St);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001580 DepChecker->addAccess(St);
Adam Nemeta9f09c62016-06-17 22:35:41 +00001581 if (EnableMemAccessVersioning)
Adam Nemetc953bb92016-06-16 22:57:55 +00001582 collectStridedAccess(St);
Adam Nemet04563272015-02-01 16:56:15 +00001583 }
1584 } // Next instr.
1585 } // Next block.
1586
1587 // Now we have two lists that hold the loads and the stores.
1588 // Next, we find the pointers that they use.
1589
1590 // Check if we see any stores. If there are no stores, then we don't
1591 // care if the pointers are *restrict*.
1592 if (!Stores.size()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001593 DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001594 CanVecMem = true;
1595 return;
Adam Nemet04563272015-02-01 16:56:15 +00001596 }
1597
Adam Nemetdee666b2015-03-10 17:40:34 +00001598 MemoryDepChecker::DepCandidates DependentAccesses;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001599 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
Xinliang David Li94734ee2016-07-01 05:59:55 +00001600 AA, LI, DependentAccesses, *PSE);
Adam Nemet04563272015-02-01 16:56:15 +00001601
1602 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1603 // multiple times on the same object. If the ptr is accessed twice, once
1604 // for read and once for write, it will only appear once (on the write
1605 // list). This is okay, since we are going to check for conflicts between
1606 // writes and between reads and writes, but not between reads and reads.
1607 ValueSet Seen;
1608
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001609 for (StoreInst *ST : Stores) {
1610 Value *Ptr = ST->getPointerOperand();
Adam Nemetce482502015-04-08 17:48:40 +00001611 // Check for store to loop invariant address.
1612 StoreToLoopInvariantAddress |= isUniform(Ptr);
Adam Nemet04563272015-02-01 16:56:15 +00001613 // If we did *not* see this pointer before, insert it to the read-write
1614 // list. At this phase it is only a 'write' list.
1615 if (Seen.insert(Ptr).second) {
1616 ++NumReadWrites;
1617
Chandler Carruthac80dc72015-06-17 07:18:54 +00001618 MemoryLocation Loc = MemoryLocation::get(ST);
Adam Nemet04563272015-02-01 16:56:15 +00001619 // The TBAA metadata could have a control dependency on the predication
1620 // condition, so we cannot rely on it when determining whether or not we
1621 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001622 if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001623 Loc.AATags.TBAA = nullptr;
1624
1625 Accesses.addStore(Loc);
1626 }
1627 }
1628
1629 if (IsAnnotatedParallel) {
Adam Nemet04d41632015-02-19 19:14:34 +00001630 DEBUG(dbgs()
Adam Nemet339f42b2015-02-19 19:15:07 +00001631 << "LAA: A loop annotated parallel, ignore memory dependency "
Adam Nemet04d41632015-02-19 19:14:34 +00001632 << "checks.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001633 CanVecMem = true;
1634 return;
Adam Nemet04563272015-02-01 16:56:15 +00001635 }
1636
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001637 for (LoadInst *LD : Loads) {
1638 Value *Ptr = LD->getPointerOperand();
Adam Nemet04563272015-02-01 16:56:15 +00001639 // If we did *not* see this pointer before, insert it to the
1640 // read list. If we *did* see it before, then it is already in
1641 // the read-write list. This allows us to vectorize expressions
1642 // such as A[i] += x; Because the address of A[i] is a read-write
1643 // pointer. This only works if the index of A[i] is consecutive.
1644 // If the address of i is unknown (for example A[B[i]]) then we may
1645 // read a few words, modify, and write a few words, and some of the
1646 // words may be written to the same address.
1647 bool IsReadOnlyPtr = false;
Adam Nemet139ffba2016-06-16 08:27:03 +00001648 if (Seen.insert(Ptr).second ||
Xinliang David Li94734ee2016-07-01 05:59:55 +00001649 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
Adam Nemet04563272015-02-01 16:56:15 +00001650 ++NumReads;
1651 IsReadOnlyPtr = true;
1652 }
1653
Chandler Carruthac80dc72015-06-17 07:18:54 +00001654 MemoryLocation Loc = MemoryLocation::get(LD);
Adam Nemet04563272015-02-01 16:56:15 +00001655 // The TBAA metadata could have a control dependency on the predication
1656 // condition, so we cannot rely on it when determining whether or not we
1657 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001658 if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001659 Loc.AATags.TBAA = nullptr;
1660
1661 Accesses.addLoad(Loc, IsReadOnlyPtr);
1662 }
1663
1664 // If we write (or read-write) to a single destination and there are no
1665 // other reads in this loop then is it safe to vectorize.
1666 if (NumReadWrites == 1 && NumReads == 0) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001667 DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001668 CanVecMem = true;
1669 return;
Adam Nemet04563272015-02-01 16:56:15 +00001670 }
1671
1672 // Build dependence sets and check whether we need a runtime pointer bounds
1673 // check.
1674 Accesses.buildDependenceSets();
Adam Nemet04563272015-02-01 16:56:15 +00001675
1676 // Find pointers with computable bounds. We are going to use this information
1677 // to place a runtime bound check.
Xinliang David Li94734ee2016-07-01 05:59:55 +00001678 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
Adam Nemet139ffba2016-06-16 08:27:03 +00001679 TheLoop, SymbolicStrides);
Adam Nemetee614742015-07-09 22:17:38 +00001680 if (!CanDoRTIfNeeded) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001681 emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
Adam Nemetee614742015-07-09 22:17:38 +00001682 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1683 << "the array bounds.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001684 CanVecMem = false;
1685 return;
Adam Nemet04563272015-02-01 16:56:15 +00001686 }
1687
Adam Nemetee614742015-07-09 22:17:38 +00001688 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
Adam Nemet04563272015-02-01 16:56:15 +00001689
Adam Nemet436018c2015-02-19 19:15:00 +00001690 CanVecMem = true;
Adam Nemet04563272015-02-01 16:56:15 +00001691 if (Accesses.isDependencyCheckNeeded()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001692 DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
Xinliang David Lice030ac2016-06-22 23:20:59 +00001693 CanVecMem = DepChecker->areDepsSafe(
Adam Nemet139ffba2016-06-16 08:27:03 +00001694 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001695 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
Adam Nemet04563272015-02-01 16:56:15 +00001696
Xinliang David Lice030ac2016-06-22 23:20:59 +00001697 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001698 DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
Adam Nemet04563272015-02-01 16:56:15 +00001699
1700 // Clear the dependency checks. We assume they are not needed.
Xinliang David Lice030ac2016-06-22 23:20:59 +00001701 Accesses.resetDepChecks(*DepChecker);
Adam Nemet04563272015-02-01 16:56:15 +00001702
Xinliang David Lice030ac2016-06-22 23:20:59 +00001703 PtrRtChecking->reset();
1704 PtrRtChecking->Need = true;
Adam Nemet04563272015-02-01 16:56:15 +00001705
Xinliang David Li94734ee2016-07-01 05:59:55 +00001706 auto *SE = PSE->getSE();
Xinliang David Lice030ac2016-06-22 23:20:59 +00001707 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
Adam Nemet139ffba2016-06-16 08:27:03 +00001708 SymbolicStrides, true);
Silviu Baranga98a13712015-06-08 10:27:06 +00001709
Adam Nemet949e91a2015-03-10 19:12:41 +00001710 // Check that we found the bounds for the pointer.
Adam Nemetee614742015-07-09 22:17:38 +00001711 if (!CanDoRTIfNeeded) {
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001712 emitAnalysis(LoopAccessReport()
1713 << "cannot check memory dependencies at runtime");
1714 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001715 CanVecMem = false;
1716 return;
1717 }
1718
Adam Nemet04563272015-02-01 16:56:15 +00001719 CanVecMem = true;
1720 }
1721 }
1722
Adam Nemet4bb90a72015-03-10 21:47:39 +00001723 if (CanVecMem)
1724 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
Xinliang David Lice030ac2016-06-22 23:20:59 +00001725 << (PtrRtChecking->Need ? "" : " don't")
Adam Nemet0f67c6c2015-07-09 22:17:41 +00001726 << " need runtime memory checks.\n");
Adam Nemet4bb90a72015-03-10 21:47:39 +00001727 else {
Adam Nemet0a77dfa2016-05-09 23:03:44 +00001728 emitAnalysis(
1729 LoopAccessReport()
1730 << "unsafe dependent memory operations in loop. Use "
1731 "#pragma loop distribute(enable) to allow loop distribution "
1732 "to attempt to isolate the offending operations into a separate "
1733 "loop");
Adam Nemet4bb90a72015-03-10 21:47:39 +00001734 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1735 }
Adam Nemet04563272015-02-01 16:56:15 +00001736}
1737
Adam Nemet01abb2c2015-02-18 03:43:19 +00001738bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1739 DominatorTree *DT) {
Adam Nemet04563272015-02-01 16:56:15 +00001740 assert(TheLoop->contains(BB) && "Unknown block used");
1741
1742 // Blocks that do not dominate the latch need predication.
1743 BasicBlock* Latch = TheLoop->getLoopLatch();
1744 return !DT->dominates(BB, Latch);
1745}
1746
Adam Nemet2bd6e982015-02-19 19:15:15 +00001747void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
Adam Nemetc9228532015-02-19 19:14:56 +00001748 assert(!Report && "Multiple reports generated");
1749 Report = Message;
Adam Nemet04563272015-02-01 16:56:15 +00001750}
1751
Adam Nemet57ac7662015-02-19 19:15:21 +00001752bool LoopAccessInfo::isUniform(Value *V) const {
Xinliang David Li94734ee2016-07-01 05:59:55 +00001753 return (PSE->getSE()->isLoopInvariant(PSE->getSE()->getSCEV(V), TheLoop));
Adam Nemet04563272015-02-01 16:56:15 +00001754}
Adam Nemet7206d7a2015-02-06 18:31:04 +00001755
1756// FIXME: this function is currently a duplicate of the one in
1757// LoopVectorize.cpp.
1758static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1759 Instruction *Loc) {
1760 if (FirstInst)
1761 return FirstInst;
1762 if (Instruction *I = dyn_cast<Instruction>(V))
1763 return I->getParent() == Loc->getParent() ? I : nullptr;
1764 return nullptr;
1765}
1766
Benjamin Kramer039b1042015-10-28 13:54:36 +00001767namespace {
Adam Nemet4e533ef2015-08-21 23:19:57 +00001768/// \brief IR Values for the lower and upper bounds of a pointer evolution. We
1769/// need to use value-handles because SCEV expansion can invalidate previously
1770/// expanded values. Thus expansion of a pointer can invalidate the bounds for
1771/// a previous one.
Adam Nemet1da7df32015-07-26 05:32:14 +00001772struct PointerBounds {
Adam Nemet4e533ef2015-08-21 23:19:57 +00001773 TrackingVH<Value> Start;
1774 TrackingVH<Value> End;
Adam Nemet1da7df32015-07-26 05:32:14 +00001775};
Benjamin Kramer039b1042015-10-28 13:54:36 +00001776} // end anonymous namespace
Adam Nemet7206d7a2015-02-06 18:31:04 +00001777
Adam Nemet1da7df32015-07-26 05:32:14 +00001778/// \brief Expand code for the lower and upper bound of the pointer group \p CG
1779/// in \p TheLoop. \return the values for the bounds.
1780static PointerBounds
1781expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
1782 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
1783 const RuntimePointerChecking &PtrRtChecking) {
1784 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
1785 const SCEV *Sc = SE->getSCEV(Ptr);
1786
1787 if (SE->isLoopInvariant(Sc, TheLoop)) {
1788 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
1789 << "\n");
1790 return {Ptr, Ptr};
1791 } else {
1792 unsigned AS = Ptr->getType()->getPointerAddressSpace();
1793 LLVMContext &Ctx = Loc->getContext();
1794
1795 // Use this type for pointer arithmetic.
1796 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1797 Value *Start = nullptr, *End = nullptr;
1798
1799 DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1800 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1801 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1802 DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1803 return {Start, End};
1804 }
1805}
1806
1807/// \brief Turns a collection of checks into a collection of expanded upper and
1808/// lower bounds for both pointers in the check.
1809static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
1810 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
1811 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
1812 const RuntimePointerChecking &PtrRtChecking) {
1813 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1814
1815 // Here we're relying on the SCEV Expander's cache to only emit code for the
1816 // same bounds once.
1817 std::transform(
1818 PointerChecks.begin(), PointerChecks.end(),
1819 std::back_inserter(ChecksWithBounds),
1820 [&](const RuntimePointerChecking::PointerCheck &Check) {
NAKAMURA Takumi94abbbd2015-07-27 01:35:30 +00001821 PointerBounds
1822 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
1823 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
1824 return std::make_pair(First, Second);
Adam Nemet1da7df32015-07-26 05:32:14 +00001825 });
1826
1827 return ChecksWithBounds;
1828}
1829
Adam Nemet5b0a4792015-08-11 00:09:37 +00001830std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
Adam Nemet1da7df32015-07-26 05:32:14 +00001831 Instruction *Loc,
1832 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
1833 const {
Adam Nemet1824e412016-07-13 22:18:51 +00001834 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
Xinliang David Li94734ee2016-07-01 05:59:55 +00001835 auto *SE = PSE->getSE();
Adam Nemet1824e412016-07-13 22:18:51 +00001836 SCEVExpander Exp(*SE, DL, "induction");
Adam Nemet1da7df32015-07-26 05:32:14 +00001837 auto ExpandedChecks =
Xinliang David Lice030ac2016-06-22 23:20:59 +00001838 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking);
Adam Nemet7206d7a2015-02-06 18:31:04 +00001839
1840 LLVMContext &Ctx = Loc->getContext();
Adam Nemet7206d7a2015-02-06 18:31:04 +00001841 Instruction *FirstInst = nullptr;
Adam Nemet7206d7a2015-02-06 18:31:04 +00001842 IRBuilder<> ChkBuilder(Loc);
1843 // Our instructions might fold to a constant.
1844 Value *MemoryRuntimeCheck = nullptr;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +00001845
Adam Nemet1da7df32015-07-26 05:32:14 +00001846 for (const auto &Check : ExpandedChecks) {
1847 const PointerBounds &A = Check.first, &B = Check.second;
Adam Nemetcdb791c2015-08-19 17:24:36 +00001848 // Check if two pointers (A and B) conflict where conflict is computed as:
1849 // start(A) <= end(B) && start(B) <= end(A)
Adam Nemet1da7df32015-07-26 05:32:14 +00001850 unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1851 unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
Adam Nemet7206d7a2015-02-06 18:31:04 +00001852
Adam Nemet1da7df32015-07-26 05:32:14 +00001853 assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1854 (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1855 "Trying to bounds check pointers with different address spaces");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001856
Adam Nemet1da7df32015-07-26 05:32:14 +00001857 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1858 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
Adam Nemet7206d7a2015-02-06 18:31:04 +00001859
Adam Nemet1da7df32015-07-26 05:32:14 +00001860 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1861 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1862 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
1863 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001864
Adam Nemet1da7df32015-07-26 05:32:14 +00001865 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1866 FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
1867 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1868 FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
1869 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1870 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1871 if (MemoryRuntimeCheck) {
1872 IsConflict =
1873 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001874 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
Adam Nemet7206d7a2015-02-06 18:31:04 +00001875 }
Adam Nemet1da7df32015-07-26 05:32:14 +00001876 MemoryRuntimeCheck = IsConflict;
Adam Nemet7206d7a2015-02-06 18:31:04 +00001877 }
1878
Adam Nemet90fec842015-04-02 17:51:57 +00001879 if (!MemoryRuntimeCheck)
1880 return std::make_pair(nullptr, nullptr);
1881
Adam Nemet7206d7a2015-02-06 18:31:04 +00001882 // We have to do this trickery because the IRBuilder might fold the check to a
1883 // constant expression in which case there is no Instruction anchored in a
1884 // the block.
1885 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1886 ConstantInt::getTrue(Ctx));
1887 ChkBuilder.Insert(Check, "memcheck.conflict");
1888 FirstInst = getFirstInst(FirstInst, Check, Loc);
1889 return std::make_pair(FirstInst, Check);
1890}
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001891
Adam Nemet5b0a4792015-08-11 00:09:37 +00001892std::pair<Instruction *, Instruction *>
1893LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
Xinliang David Lice030ac2016-06-22 23:20:59 +00001894 if (!PtrRtChecking->Need)
Adam Nemet1da7df32015-07-26 05:32:14 +00001895 return std::make_pair(nullptr, nullptr);
1896
Xinliang David Lice030ac2016-06-22 23:20:59 +00001897 return addRuntimeChecks(Loc, PtrRtChecking->getChecks());
Adam Nemet1da7df32015-07-26 05:32:14 +00001898}
1899
Adam Nemetc953bb92016-06-16 22:57:55 +00001900void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
1901 Value *Ptr = nullptr;
1902 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
1903 Ptr = LI->getPointerOperand();
1904 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
1905 Ptr = SI->getPointerOperand();
1906 else
1907 return;
1908
Xinliang David Li94734ee2016-07-01 05:59:55 +00001909 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
Adam Nemetc953bb92016-06-16 22:57:55 +00001910 if (!Stride)
1911 return;
1912
1913 DEBUG(dbgs() << "LAA: Found a strided access that we can version");
1914 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
1915 SymbolicStrides[Ptr] = Stride;
1916 StrideSet.insert(Stride);
1917}
1918
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001919LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001920 const TargetLibraryInfo *TLI, AliasAnalysis *AA,
Adam Nemeta9f09c62016-06-17 22:35:41 +00001921 DominatorTree *DT, LoopInfo *LI)
Xinliang David Li94734ee2016-07-01 05:59:55 +00001922 : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)),
Xinliang David Lice030ac2016-06-22 23:20:59 +00001923 PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)),
Xinliang David Li94734ee2016-07-01 05:59:55 +00001924 DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
Adam Nemetb49d9a52016-07-13 22:36:27 +00001925 DT(DT), NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1),
Adam Nemet1824e412016-07-13 22:18:51 +00001926 CanVecMem(false), StoreToLoopInvariantAddress(false) {
Adam Nemet929c38e2015-02-19 19:15:10 +00001927 if (canAnalyzeLoop())
Adam Nemetb49d9a52016-07-13 22:36:27 +00001928 analyzeLoop(AA, LI, TLI);
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001929}
1930
Adam Nemete91cc6e2015-02-19 19:15:19 +00001931void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
1932 if (CanVecMem) {
Adam Nemet4ad38b62016-05-13 22:49:09 +00001933 OS.indent(Depth) << "Memory dependences are safe";
David Majnemer7afb46d2016-07-07 06:24:36 +00001934 if (MaxSafeDepDistBytes != -1ULL)
Adam Nemetc62e5542016-05-13 22:49:13 +00001935 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
1936 << " bytes";
Xinliang David Lice030ac2016-06-22 23:20:59 +00001937 if (PtrRtChecking->Need)
Adam Nemet4ad38b62016-05-13 22:49:09 +00001938 OS << " with run-time checks";
1939 OS << "\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00001940 }
1941
1942 if (Report)
1943 OS.indent(Depth) << "Report: " << Report->str() << "\n";
1944
Xinliang David Lice030ac2016-06-22 23:20:59 +00001945 if (auto *Dependences = DepChecker->getDependences()) {
Adam Nemeta2df7502015-11-03 21:39:52 +00001946 OS.indent(Depth) << "Dependences:\n";
1947 for (auto &Dep : *Dependences) {
Xinliang David Lice030ac2016-06-22 23:20:59 +00001948 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
Adam Nemet58913d62015-03-10 17:40:43 +00001949 OS << "\n";
1950 }
1951 } else
Adam Nemeta2df7502015-11-03 21:39:52 +00001952 OS.indent(Depth) << "Too many dependences, not recorded\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00001953
1954 // List the pair of accesses need run-time checks to prove independence.
Xinliang David Lice030ac2016-06-22 23:20:59 +00001955 PtrRtChecking->print(OS, Depth);
Adam Nemete91cc6e2015-02-19 19:15:19 +00001956 OS << "\n";
Adam Nemetc3384322015-05-18 15:36:57 +00001957
1958 OS.indent(Depth) << "Store to invariant address was "
1959 << (StoreToLoopInvariantAddress ? "" : "not ")
1960 << "found in loop.\n";
Silviu Barangae3c05342015-11-02 14:41:02 +00001961
1962 OS.indent(Depth) << "SCEV assumptions:\n";
Xinliang David Li94734ee2016-07-01 05:59:55 +00001963 PSE->getUnionPredicate().print(OS, Depth);
Silviu Barangab77365b2016-04-14 16:08:45 +00001964
1965 OS << "\n";
1966
1967 OS.indent(Depth) << "Expressions re-written:\n";
Xinliang David Li94734ee2016-07-01 05:59:55 +00001968 PSE->print(OS, Depth);
Adam Nemete91cc6e2015-02-19 19:15:19 +00001969}
1970
Xinliang David Li7853c1d2016-07-08 20:55:26 +00001971const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001972 auto &LAI = LoopAccessInfoMap[L];
1973
Adam Nemet1824e412016-07-13 22:18:51 +00001974 if (!LAI)
1975 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
1976
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001977 return *LAI.get();
1978}
1979
Xinliang David Li7853c1d2016-07-08 20:55:26 +00001980void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
1981 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
Xinliang David Liecde1c72016-06-09 03:22:39 +00001982
Adam Nemete91cc6e2015-02-19 19:15:19 +00001983 for (Loop *TopLevelLoop : *LI)
1984 for (Loop *L : depth_first(TopLevelLoop)) {
1985 OS.indent(2) << L->getHeader()->getName() << ":\n";
Adam Nemetbdbc5222016-06-16 08:26:56 +00001986 auto &LAI = LAA.getInfo(L);
Adam Nemete91cc6e2015-02-19 19:15:19 +00001987 LAI.print(OS, 4);
1988 }
1989}
1990
Xinliang David Li7853c1d2016-07-08 20:55:26 +00001991bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
Xinliang David Liecde1c72016-06-09 03:22:39 +00001992 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001993 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
Xinliang David Liecde1c72016-06-09 03:22:39 +00001994 TLI = TLIP ? &TLIP->getTLI() : nullptr;
1995 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1996 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1997 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001998
1999 return false;
2000}
2001
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002002void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002003 AU.addRequired<ScalarEvolutionWrapperPass>();
Chandler Carruth7b560d42015-09-09 17:55:00 +00002004 AU.addRequired<AAResultsWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002005 AU.addRequired<DominatorTreeWrapperPass>();
Adam Nemete91cc6e2015-02-19 19:15:19 +00002006 AU.addRequired<LoopInfoWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002007
2008 AU.setPreservesAll();
2009}
2010
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002011char LoopAccessLegacyAnalysis::ID = 0;
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002012static const char laa_name[] = "Loop Access Analysis";
2013#define LAA_NAME "loop-accesses"
2014
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002015INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
Chandler Carruth7b560d42015-09-09 17:55:00 +00002016INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002017INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002018INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Adam Nemete91cc6e2015-02-19 19:15:19 +00002019INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002020INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002021
Xinliang David Li07e08fa2016-07-08 21:21:44 +00002022char LoopAccessAnalysis::PassID;
Xinliang David Li8a021312016-07-02 21:18:40 +00002023
Xinliang David Li07e08fa2016-07-08 21:21:44 +00002024LoopAccessInfo LoopAccessAnalysis::run(Loop &L, AnalysisManager<Loop> &AM) {
Sean Silva284b0322016-07-07 01:01:53 +00002025 const AnalysisManager<Function> &FAM =
2026 AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager();
Xinliang David Li8a021312016-07-02 21:18:40 +00002027 Function &F = *L.getHeader()->getParent();
Sean Silva284b0322016-07-07 01:01:53 +00002028 auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(F);
Xinliang David Li8a021312016-07-02 21:18:40 +00002029 auto *TLI = FAM.getCachedResult<TargetLibraryAnalysis>(F);
Sean Silva284b0322016-07-07 01:01:53 +00002030 auto *AA = FAM.getCachedResult<AAManager>(F);
2031 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
2032 auto *LI = FAM.getCachedResult<LoopAnalysis>(F);
2033 if (!SE)
2034 report_fatal_error(
2035 "ScalarEvolution must have been cached at a higher level");
2036 if (!AA)
2037 report_fatal_error("AliasAnalysis must have been cached at a higher level");
2038 if (!DT)
2039 report_fatal_error("DominatorTree must have been cached at a higher level");
2040 if (!LI)
2041 report_fatal_error("LoopInfo must have been cached at a higher level");
Adam Nemet1824e412016-07-13 22:18:51 +00002042 return LoopAccessInfo(&L, SE, TLI, AA, DT, LI);
Xinliang David Li8a021312016-07-02 21:18:40 +00002043}
2044
2045PreservedAnalyses LoopAccessInfoPrinterPass::run(Loop &L,
2046 AnalysisManager<Loop> &AM) {
2047 Function &F = *L.getHeader()->getParent();
Xinliang David Li07e08fa2016-07-08 21:21:44 +00002048 auto &LAI = AM.getResult<LoopAccessAnalysis>(L);
Xinliang David Li8a021312016-07-02 21:18:40 +00002049 OS << "Loop access info in function '" << F.getName() << "':\n";
2050 OS.indent(2) << L.getHeader()->getName() << ":\n";
2051 LAI.print(OS, 4);
2052 return PreservedAnalyses::all();
2053}
2054
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002055namespace llvm {
2056 Pass *createLAAPass() {
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002057 return new LoopAccessLegacyAnalysis();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002058 }
2059}