blob: bf800721309746b39e8b88ab68e13032f1317432 [file] [log] [blame]
Adam Nemet04563272015-02-01 16:56:15 +00001//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The implementation for the loop memory dependence that was originally
11// developed for the loop vectorizer.
12//
13//===----------------------------------------------------------------------===//
14
Chandler Carruth3bab7e12017-01-11 09:43:56 +000015#include "llvm/Analysis/LoopAccessAnalysis.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000016#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/DepthFirstIterator.h"
19#include "llvm/ADT/EquivalenceClasses.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000020#include "llvm/ADT/PointerIntPair.h"
Chandler Carruth3bab7e12017-01-11 09:43:56 +000021#include "llvm/ADT/STLExtras.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000022#include "llvm/ADT/SetVector.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/SmallSet.h"
25#include "llvm/ADT/SmallVector.h"
Chandler Carruth3bab7e12017-01-11 09:43:56 +000026#include "llvm/ADT/iterator_range.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000027#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/Analysis/AliasSetTracker.h"
Chandler Carruth3bab7e12017-01-11 09:43:56 +000029#include "llvm/Analysis/LoopAnalysisManager.h"
Adam Nemet04563272015-02-01 16:56:15 +000030#include "llvm/Analysis/LoopInfo.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000031#include "llvm/Analysis/MemoryLocation.h"
Adam Nemet5b3a5cf2016-07-20 21:44:26 +000032#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000033#include "llvm/Analysis/ScalarEvolution.h"
Adam Nemet7206d7a2015-02-06 18:31:04 +000034#include "llvm/Analysis/ScalarEvolutionExpander.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000035#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000036#include "llvm/Analysis/TargetLibraryInfo.h"
Adam Nemet04563272015-02-01 16:56:15 +000037#include "llvm/Analysis/ValueTracking.h"
Adam Nemetf45594c2016-07-01 00:09:02 +000038#include "llvm/Analysis/VectorUtils.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000039#include "llvm/IR/BasicBlock.h"
40#include "llvm/IR/Constants.h"
41#include "llvm/IR/DataLayout.h"
42#include "llvm/IR/DebugLoc.h"
43#include "llvm/IR/DerivedTypes.h"
44#include "llvm/IR/DiagnosticInfo.h"
Adam Nemet04563272015-02-01 16:56:15 +000045#include "llvm/IR/Dominators.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000046#include "llvm/IR/Function.h"
Chandler Carruth3bab7e12017-01-11 09:43:56 +000047#include "llvm/IR/IRBuilder.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000048#include "llvm/IR/InstrTypes.h"
49#include "llvm/IR/Instruction.h"
50#include "llvm/IR/Instructions.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000051#include "llvm/IR/Operator.h"
Xinliang David Li8a021312016-07-02 21:18:40 +000052#include "llvm/IR/PassManager.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000053#include "llvm/IR/Type.h"
54#include "llvm/IR/Value.h"
55#include "llvm/IR/ValueHandle.h"
56#include "llvm/Pass.h"
57#include "llvm/Support/Casting.h"
58#include "llvm/Support/CommandLine.h"
Adam Nemet04563272015-02-01 16:56:15 +000059#include "llvm/Support/Debug.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000060#include "llvm/Support/ErrorHandling.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000061#include "llvm/Support/raw_ostream.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000062#include <algorithm>
63#include <cassert>
64#include <cstdint>
65#include <cstdlib>
66#include <iterator>
67#include <utility>
68#include <vector>
69
Adam Nemet04563272015-02-01 16:56:15 +000070using namespace llvm;
71
Adam Nemet339f42b2015-02-19 19:15:07 +000072#define DEBUG_TYPE "loop-accesses"
Adam Nemet04563272015-02-01 16:56:15 +000073
Adam Nemetf219c642015-02-19 19:14:52 +000074static cl::opt<unsigned, true>
75VectorizationFactor("force-vector-width", cl::Hidden,
76 cl::desc("Sets the SIMD width. Zero is autoselect."),
77 cl::location(VectorizerParams::VectorizationFactor));
Adam Nemet1d862af2015-02-26 04:39:09 +000078unsigned VectorizerParams::VectorizationFactor;
Adam Nemetf219c642015-02-19 19:14:52 +000079
80static cl::opt<unsigned, true>
81VectorizationInterleave("force-vector-interleave", cl::Hidden,
82 cl::desc("Sets the vectorization interleave count. "
83 "Zero is autoselect."),
84 cl::location(
85 VectorizerParams::VectorizationInterleave));
Adam Nemet1d862af2015-02-26 04:39:09 +000086unsigned VectorizerParams::VectorizationInterleave;
Adam Nemetf219c642015-02-19 19:14:52 +000087
Adam Nemet1d862af2015-02-26 04:39:09 +000088static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
89 "runtime-memory-check-threshold", cl::Hidden,
90 cl::desc("When performing memory disambiguation checks at runtime do not "
91 "generate more than this number of comparisons (default = 8)."),
92 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
93unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
Adam Nemetf219c642015-02-19 19:14:52 +000094
Silviu Baranga1b6b50a2015-07-08 09:16:33 +000095/// \brief The maximum iterations used to merge memory checks
96static cl::opt<unsigned> MemoryCheckMergeThreshold(
97 "memory-check-merge-threshold", cl::Hidden,
98 cl::desc("Maximum number of comparisons done when trying to merge "
99 "runtime memory checks. (default = 100)"),
100 cl::init(100));
101
Adam Nemetf219c642015-02-19 19:14:52 +0000102/// Maximum SIMD width.
103const unsigned VectorizerParams::MaxVectorWidth = 64;
104
Adam Nemeta2df7502015-11-03 21:39:52 +0000105/// \brief We collect dependences up to this threshold.
106static cl::opt<unsigned>
107 MaxDependences("max-dependences", cl::Hidden,
108 cl::desc("Maximum number of dependences collected by "
109 "loop-access analysis (default = 100)"),
110 cl::init(100));
Adam Nemet9c926572015-03-10 17:40:37 +0000111
Adam Nemeta9f09c62016-06-17 22:35:41 +0000112/// This enables versioning on the strides of symbolically striding memory
113/// accesses in code like the following.
114/// for (i = 0; i < N; ++i)
115/// A[i * Stride1] += B[i * Stride2] ...
116///
117/// Will be roughly translated to
118/// if (Stride1 == 1 && Stride2 == 1) {
119/// for (i = 0; i < N; i+=4)
120/// A[i:i+3] += ...
121/// } else
122/// ...
123static cl::opt<bool> EnableMemAccessVersioning(
124 "enable-mem-access-versioning", cl::init(true), cl::Hidden,
125 cl::desc("Enable symbolic stride memory access versioning"));
126
Matthew Simpson37ec5f92016-05-16 17:00:56 +0000127/// \brief Enable store-to-load forwarding conflict detection. This option can
128/// be disabled for correctness testing.
129static cl::opt<bool> EnableForwardingConflictDetection(
130 "store-to-load-forwarding-conflict-detection", cl::Hidden,
Matthew Simpsona250dc92016-05-16 14:14:49 +0000131 cl::desc("Enable conflict detection in loop-access analysis"),
132 cl::init(true));
133
Adam Nemetf219c642015-02-19 19:14:52 +0000134bool VectorizerParams::isInterleaveForced() {
135 return ::VectorizationInterleave.getNumOccurrences() > 0;
136}
137
Adam Nemet2bd6e982015-02-19 19:15:15 +0000138void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
Adam Nemet5b3a5cf2016-07-20 21:44:26 +0000139 const Loop *TheLoop, const char *PassName,
140 OptimizationRemarkEmitter &ORE) {
Adam Nemet04563272015-02-01 16:56:15 +0000141 DebugLoc DL = TheLoop->getStartLoc();
Adam Nemet5b3a5cf2016-07-20 21:44:26 +0000142 const Value *V = TheLoop->getHeader();
143 if (const Instruction *I = Message.getInstr()) {
Adam Nemete3cef932016-09-21 03:14:20 +0000144 // If there is no debug location attached to the instruction, revert back to
145 // using the loop's.
146 if (I->getDebugLoc())
147 DL = I->getDebugLoc();
Adam Nemet5b3a5cf2016-07-20 21:44:26 +0000148 V = I->getParent();
149 }
150 ORE.emitOptimizationRemarkAnalysis(PassName, DL, V, Message.str());
Adam Nemet04563272015-02-01 16:56:15 +0000151}
152
153Value *llvm::stripIntegerCast(Value *V) {
David Majnemer8b401012016-07-12 20:31:46 +0000154 if (auto *CI = dyn_cast<CastInst>(V))
Adam Nemet04563272015-02-01 16:56:15 +0000155 if (CI->getOperand(0)->getType()->isIntegerTy())
156 return CI->getOperand(0);
157 return V;
158}
159
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000160const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
Adam Nemet8bc61df2015-02-24 00:41:59 +0000161 const ValueToValueMap &PtrToStride,
Adam Nemet04563272015-02-01 16:56:15 +0000162 Value *Ptr, Value *OrigPtr) {
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000163 const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000164
165 // If there is an entry in the map return the SCEV of the pointer with the
166 // symbolic stride replaced by one.
Adam Nemet8bc61df2015-02-24 00:41:59 +0000167 ValueToValueMap::const_iterator SI =
168 PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000169 if (SI != PtrToStride.end()) {
170 Value *StrideVal = SI->second;
171
172 // Strip casts.
173 StrideVal = stripIntegerCast(StrideVal);
174
175 // Replace symbolic stride by one.
176 Value *One = ConstantInt::get(StrideVal->getType(), 1);
177 ValueToValueMap RewriteMap;
178 RewriteMap[StrideVal] = One;
179
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000180 ScalarEvolution *SE = PSE.getSE();
Silviu Barangae3c05342015-11-02 14:41:02 +0000181 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
182 const auto *CT =
183 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
184
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000185 PSE.addPredicate(*SE->getEqualPredicate(U, CT));
186 auto *Expr = PSE.getSCEV(Ptr);
Silviu Barangae3c05342015-11-02 14:41:02 +0000187
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000188 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr
Adam Nemet04563272015-02-01 16:56:15 +0000189 << "\n");
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000190 return Expr;
Adam Nemet04563272015-02-01 16:56:15 +0000191 }
192
193 // Otherwise, just return the SCEV of the original pointer.
Silviu Barangae3c05342015-11-02 14:41:02 +0000194 return OrigSCEV;
Adam Nemet04563272015-02-01 16:56:15 +0000195}
196
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +0000197/// Calculate Start and End points of memory access.
198/// Let's assume A is the first access and B is a memory access on N-th loop
199/// iteration. Then B is calculated as:
200/// B = A + Step*N .
201/// Step value may be positive or negative.
202/// N is a calculated back-edge taken count:
203/// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
204/// Start and End points are calculated in the following way:
205/// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
206/// where SizeOfElt is the size of single memory access in bytes.
207///
208/// There is no conflict when the intervals are disjoint:
209/// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
Adam Nemet7cdebac2015-07-14 22:32:44 +0000210void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
211 unsigned DepSetId, unsigned ASId,
Silviu Barangae3c05342015-11-02 14:41:02 +0000212 const ValueToValueMap &Strides,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000213 PredicatedScalarEvolution &PSE) {
Adam Nemet04563272015-02-01 16:56:15 +0000214 // Get the stride replaced scev.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000215 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000216 ScalarEvolution *SE = PSE.getSE();
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000217
Adam Nemet279784f2016-03-24 04:28:47 +0000218 const SCEV *ScStart;
219 const SCEV *ScEnd;
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000220
Adam Nemet59a65502016-03-24 05:15:24 +0000221 if (SE->isLoopInvariant(Sc, Lp))
Adam Nemet279784f2016-03-24 04:28:47 +0000222 ScStart = ScEnd = Sc;
Adam Nemet279784f2016-03-24 04:28:47 +0000223 else {
224 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
225 assert(AR && "Invalid addrec expression");
Silviu Baranga6f444df2016-04-08 14:29:09 +0000226 const SCEV *Ex = PSE.getBackedgeTakenCount();
Adam Nemet279784f2016-03-24 04:28:47 +0000227
228 ScStart = AR->getStart();
229 ScEnd = AR->evaluateAtIteration(Ex, *SE);
230 const SCEV *Step = AR->getStepRecurrence(*SE);
231
232 // For expressions with negative step, the upper bound is ScStart and the
233 // lower bound is ScEnd.
David Majnemer8b401012016-07-12 20:31:46 +0000234 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
Adam Nemet279784f2016-03-24 04:28:47 +0000235 if (CStep->getValue()->isNegative())
236 std::swap(ScStart, ScEnd);
237 } else {
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +0000238 // Fallback case: the step is not constant, but we can still
Adam Nemet279784f2016-03-24 04:28:47 +0000239 // get the upper and lower bounds of the interval by using min/max
240 // expressions.
241 ScStart = SE->getUMinExpr(ScStart, ScEnd);
242 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
243 }
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +0000244 // Add the size of the pointed element to ScEnd.
245 unsigned EltSize =
246 Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8;
247 const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize);
248 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000249 }
250
251 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000252}
253
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000254SmallVector<RuntimePointerChecking::PointerCheck, 4>
Adam Nemet38530882015-08-09 20:06:06 +0000255RuntimePointerChecking::generateChecks() const {
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000256 SmallVector<PointerCheck, 4> Checks;
257
Adam Nemet7c52e052015-07-27 19:38:50 +0000258 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
259 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
260 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
261 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000262
Adam Nemet38530882015-08-09 20:06:06 +0000263 if (needsChecking(CGI, CGJ))
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000264 Checks.push_back(std::make_pair(&CGI, &CGJ));
265 }
266 }
267 return Checks;
268}
269
Adam Nemet15840392015-08-07 22:44:15 +0000270void RuntimePointerChecking::generateChecks(
271 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
272 assert(Checks.empty() && "Checks is not empty");
273 groupChecks(DepCands, UseDependencies);
274 Checks = generateChecks();
275}
276
Adam Nemet651a5a22015-08-09 20:06:08 +0000277bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
278 const CheckingPtrGroup &N) const {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000279 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
280 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
Adam Nemet651a5a22015-08-09 20:06:08 +0000281 if (needsChecking(M.Members[I], N.Members[J]))
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000282 return true;
283 return false;
284}
285
286/// Compare \p I and \p J and return the minimum.
287/// Return nullptr in case we couldn't find an answer.
288static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
289 ScalarEvolution *SE) {
290 const SCEV *Diff = SE->getMinusSCEV(J, I);
291 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
292
293 if (!C)
294 return nullptr;
295 if (C->getValue()->isNegative())
296 return J;
297 return I;
298}
299
Adam Nemet7cdebac2015-07-14 22:32:44 +0000300bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000301 const SCEV *Start = RtCheck.Pointers[Index].Start;
302 const SCEV *End = RtCheck.Pointers[Index].End;
303
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000304 // Compare the starts and ends with the known minimum and maximum
305 // of this set. We need to know how we compare against the min/max
306 // of the set in order to be able to emit memchecks.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000307 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000308 if (!Min0)
309 return false;
310
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000311 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000312 if (!Min1)
313 return false;
314
315 // Update the low bound expression if we've found a new min value.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000316 if (Min0 == Start)
317 Low = Start;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000318
319 // Update the high bound expression if we've found a new max value.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000320 if (Min1 != End)
321 High = End;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000322
323 Members.push_back(Index);
324 return true;
325}
326
Adam Nemet7cdebac2015-07-14 22:32:44 +0000327void RuntimePointerChecking::groupChecks(
328 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000329 // We build the groups from dependency candidates equivalence classes
330 // because:
331 // - We know that pointers in the same equivalence class share
332 // the same underlying object and therefore there is a chance
333 // that we can compare pointers
334 // - We wouldn't be able to merge two pointers for which we need
335 // to emit a memcheck. The classes in DepCands are already
336 // conveniently built such that no two pointers in the same
337 // class need checking against each other.
338
339 // We use the following (greedy) algorithm to construct the groups
340 // For every pointer in the equivalence class:
341 // For each existing group:
342 // - if the difference between this pointer and the min/max bounds
343 // of the group is a constant, then make the pointer part of the
344 // group and update the min/max bounds of that group as required.
345
346 CheckingGroups.clear();
347
Silviu Baranga48250602015-07-28 13:44:08 +0000348 // If we need to check two pointers to the same underlying object
349 // with a non-constant difference, we shouldn't perform any pointer
350 // grouping with those pointers. This is because we can easily get
351 // into cases where the resulting check would return false, even when
352 // the accesses are safe.
353 //
354 // The following example shows this:
355 // for (i = 0; i < 1000; ++i)
356 // a[5000 + i * m] = a[i] + a[i + 9000]
357 //
358 // Here grouping gives a check of (5000, 5000 + 1000 * m) against
359 // (0, 10000) which is always false. However, if m is 1, there is no
360 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
361 // us to perform an accurate check in this case.
362 //
363 // The above case requires that we have an UnknownDependence between
364 // accesses to the same underlying object. This cannot happen unless
365 // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
366 // is also false. In this case we will use the fallback path and create
367 // separate checking groups for all pointers.
Mehdi Aminiafd13512015-11-05 05:49:43 +0000368
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000369 // If we don't have the dependency partitions, construct a new
Silviu Baranga48250602015-07-28 13:44:08 +0000370 // checking pointer group for each pointer. This is also required
371 // for correctness, because in this case we can have checking between
372 // pointers to the same underlying object.
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000373 if (!UseDependencies) {
374 for (unsigned I = 0; I < Pointers.size(); ++I)
375 CheckingGroups.push_back(CheckingPtrGroup(I, *this));
376 return;
377 }
378
379 unsigned TotalComparisons = 0;
380
381 DenseMap<Value *, unsigned> PositionMap;
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000382 for (unsigned Index = 0; Index < Pointers.size(); ++Index)
383 PositionMap[Pointers[Index].PointerValue] = Index;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000384
Silviu Barangace3877f2015-07-09 15:18:25 +0000385 // We need to keep track of what pointers we've already seen so we
386 // don't process them twice.
387 SmallSet<unsigned, 2> Seen;
388
Sanjay Patele4b9f502015-12-07 19:21:39 +0000389 // Go through all equivalence classes, get the "pointer check groups"
Silviu Barangace3877f2015-07-09 15:18:25 +0000390 // and add them to the overall solution. We use the order in which accesses
391 // appear in 'Pointers' to enforce determinism.
392 for (unsigned I = 0; I < Pointers.size(); ++I) {
393 // We've seen this pointer before, and therefore already processed
394 // its equivalence class.
395 if (Seen.count(I))
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000396 continue;
397
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000398 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
399 Pointers[I].IsWritePtr);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000400
Silviu Barangace3877f2015-07-09 15:18:25 +0000401 SmallVector<CheckingPtrGroup, 2> Groups;
402 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
403
Silviu Barangaa647c302015-07-13 14:48:24 +0000404 // Because DepCands is constructed by visiting accesses in the order in
405 // which they appear in alias sets (which is deterministic) and the
406 // iteration order within an equivalence class member is only dependent on
407 // the order in which unions and insertions are performed on the
408 // equivalence class, the iteration order is deterministic.
Silviu Barangace3877f2015-07-09 15:18:25 +0000409 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000410 MI != ME; ++MI) {
411 unsigned Pointer = PositionMap[MI->getPointer()];
412 bool Merged = false;
Silviu Barangace3877f2015-07-09 15:18:25 +0000413 // Mark this pointer as seen.
414 Seen.insert(Pointer);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000415
416 // Go through all the existing sets and see if we can find one
417 // which can include this pointer.
418 for (CheckingPtrGroup &Group : Groups) {
419 // Don't perform more than a certain amount of comparisons.
420 // This should limit the cost of grouping the pointers to something
421 // reasonable. If we do end up hitting this threshold, the algorithm
422 // will create separate groups for all remaining pointers.
423 if (TotalComparisons > MemoryCheckMergeThreshold)
424 break;
425
426 TotalComparisons++;
427
428 if (Group.addPointer(Pointer)) {
429 Merged = true;
430 break;
431 }
432 }
433
434 if (!Merged)
435 // We couldn't add this pointer to any existing set or the threshold
436 // for the number of comparisons has been reached. Create a new group
437 // to hold the current pointer.
438 Groups.push_back(CheckingPtrGroup(Pointer, *this));
439 }
440
441 // We've computed the grouped checks for this partition.
442 // Save the results and continue with the next one.
443 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
444 }
Adam Nemet04563272015-02-01 16:56:15 +0000445}
446
Adam Nemet041e6de2015-07-16 02:48:05 +0000447bool RuntimePointerChecking::arePointersInSamePartition(
448 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
449 unsigned PtrIdx2) {
450 return (PtrToPartition[PtrIdx1] != -1 &&
451 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
452}
453
Adam Nemet651a5a22015-08-09 20:06:08 +0000454bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000455 const PointerInfo &PointerI = Pointers[I];
456 const PointerInfo &PointerJ = Pointers[J];
457
Adam Nemeta8945b72015-02-18 03:43:58 +0000458 // No need to check if two readonly pointers intersect.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000459 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
Adam Nemeta8945b72015-02-18 03:43:58 +0000460 return false;
461
462 // Only need to check pointers between two different dependency sets.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000463 if (PointerI.DependencySetId == PointerJ.DependencySetId)
Adam Nemeta8945b72015-02-18 03:43:58 +0000464 return false;
465
466 // Only need to check pointers in the same alias set.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000467 if (PointerI.AliasSetId != PointerJ.AliasSetId)
Adam Nemeta8945b72015-02-18 03:43:58 +0000468 return false;
469
470 return true;
471}
472
Adam Nemet54f0b832015-07-27 23:54:41 +0000473void RuntimePointerChecking::printChecks(
474 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
475 unsigned Depth) const {
476 unsigned N = 0;
477 for (const auto &Check : Checks) {
478 const auto &First = Check.first->Members, &Second = Check.second->Members;
479
480 OS.indent(Depth) << "Check " << N++ << ":\n";
481
482 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
483 for (unsigned K = 0; K < First.size(); ++K)
484 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
485
486 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
487 for (unsigned K = 0; K < Second.size(); ++K)
488 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
489 }
490}
491
Adam Nemet3a91e942015-08-07 19:44:48 +0000492void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
Adam Nemete91cc6e2015-02-19 19:15:19 +0000493
494 OS.indent(Depth) << "Run-time memory checks:\n";
Adam Nemet15840392015-08-07 22:44:15 +0000495 printChecks(OS, Checks, Depth);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000496
497 OS.indent(Depth) << "Grouped accesses:\n";
498 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
Adam Nemet54f0b832015-07-27 23:54:41 +0000499 const auto &CG = CheckingGroups[I];
500
501 OS.indent(Depth + 2) << "Group " << &CG << ":\n";
502 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
503 << ")\n";
504 for (unsigned J = 0; J < CG.Members.size(); ++J) {
505 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000506 << "\n";
507 }
508 }
Adam Nemete91cc6e2015-02-19 19:15:19 +0000509}
510
Adam Nemet04563272015-02-01 16:56:15 +0000511namespace {
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +0000512
Adam Nemet04563272015-02-01 16:56:15 +0000513/// \brief Analyses memory accesses in a loop.
514///
515/// Checks whether run time pointer checks are needed and builds sets for data
516/// dependence checking.
517class AccessAnalysis {
518public:
519 /// \brief Read or write access location.
520 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
521 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
522
Adam Nemete2b885c2015-04-23 20:09:20 +0000523 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000524 MemoryDepChecker::DepCandidates &DA,
525 PredicatedScalarEvolution &PSE)
Silviu Barangae3c05342015-11-02 14:41:02 +0000526 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000527 PSE(PSE) {}
Adam Nemet04563272015-02-01 16:56:15 +0000528
529 /// \brief Register a load and whether it is only read from.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000530 void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
Adam Nemet04563272015-02-01 16:56:15 +0000531 Value *Ptr = const_cast<Value*>(Loc.Ptr);
Chandler Carruthecbd1682015-06-17 07:21:38 +0000532 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000533 Accesses.insert(MemAccessInfo(Ptr, false));
534 if (IsReadOnly)
535 ReadOnlyPtr.insert(Ptr);
536 }
537
538 /// \brief Register a store.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000539 void addStore(MemoryLocation &Loc) {
Adam Nemet04563272015-02-01 16:56:15 +0000540 Value *Ptr = const_cast<Value*>(Loc.Ptr);
Chandler Carruthecbd1682015-06-17 07:21:38 +0000541 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000542 Accesses.insert(MemAccessInfo(Ptr, true));
543 }
544
545 /// \brief Check whether we can check the pointers at runtime for
Adam Nemetee614742015-07-09 22:17:38 +0000546 /// non-intersection.
547 ///
548 /// Returns true if we need no check or if we do and we can generate them
549 /// (i.e. the pointers have computable bounds).
Adam Nemet7cdebac2015-07-14 22:32:44 +0000550 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
551 Loop *TheLoop, const ValueToValueMap &Strides,
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000552 bool ShouldCheckWrap = false);
Adam Nemet04563272015-02-01 16:56:15 +0000553
554 /// \brief Goes over all memory accesses, checks whether a RT check is needed
555 /// and builds sets of dependent accesses.
556 void buildDependenceSets() {
557 processMemAccesses();
558 }
559
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000560 /// \brief Initial processing of memory accesses determined that we need to
561 /// perform dependency checking.
562 ///
563 /// Note that this can later be cleared if we retry memcheck analysis without
564 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
Adam Nemet04563272015-02-01 16:56:15 +0000565 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
Adam Nemetdf3dc5b2015-05-18 15:37:03 +0000566
567 /// We decided that no dependence analysis would be used. Reset the state.
568 void resetDepChecks(MemoryDepChecker &DepChecker) {
569 CheckDeps.clear();
Adam Nemeta2df7502015-11-03 21:39:52 +0000570 DepChecker.clearDependences();
Adam Nemetdf3dc5b2015-05-18 15:37:03 +0000571 }
Adam Nemet04563272015-02-01 16:56:15 +0000572
573 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
574
575private:
576 typedef SetVector<MemAccessInfo> PtrAccessSet;
577
578 /// \brief Go over all memory access and check whether runtime pointer checks
Adam Nemetb41d2d32015-07-09 06:47:21 +0000579 /// are needed and build sets of dependency check candidates.
Adam Nemet04563272015-02-01 16:56:15 +0000580 void processMemAccesses();
581
582 /// Set of all accesses.
583 PtrAccessSet Accesses;
584
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000585 const DataLayout &DL;
586
Adam Nemet04563272015-02-01 16:56:15 +0000587 /// Set of accesses that need a further dependence check.
588 MemAccessInfoSet CheckDeps;
589
590 /// Set of pointers that are read only.
591 SmallPtrSet<Value*, 16> ReadOnlyPtr;
592
Adam Nemet04563272015-02-01 16:56:15 +0000593 /// An alias set tracker to partition the access set by underlying object and
594 //intrinsic property (such as TBAA metadata).
595 AliasSetTracker AST;
596
Adam Nemete2b885c2015-04-23 20:09:20 +0000597 LoopInfo *LI;
598
Adam Nemet04563272015-02-01 16:56:15 +0000599 /// Sets of potentially dependent accesses - members of one set share an
600 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
601 /// dependence check.
Adam Nemetdee666b2015-03-10 17:40:34 +0000602 MemoryDepChecker::DepCandidates &DepCands;
Adam Nemet04563272015-02-01 16:56:15 +0000603
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000604 /// \brief Initial processing of memory accesses determined that we may need
605 /// to add memchecks. Perform the analysis to determine the necessary checks.
606 ///
607 /// Note that, this is different from isDependencyCheckNeeded. When we retry
608 /// memcheck analysis without dependency checking
609 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
610 /// while this remains set if we have potentially dependent accesses.
611 bool IsRTCheckAnalysisNeeded;
Silviu Barangae3c05342015-11-02 14:41:02 +0000612
613 /// The SCEV predicate containing all the SCEV-related assumptions.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000614 PredicatedScalarEvolution &PSE;
Adam Nemet04563272015-02-01 16:56:15 +0000615};
616
617} // end anonymous namespace
618
619/// \brief Check whether a pointer can participate in a runtime bounds check.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000620static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
Silviu Barangae3c05342015-11-02 14:41:02 +0000621 const ValueToValueMap &Strides, Value *Ptr,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000622 Loop *L) {
623 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
Adam Nemet279784f2016-03-24 04:28:47 +0000624
625 // The bounds for loop-invariant pointer is trivial.
626 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
627 return true;
628
Adam Nemet04563272015-02-01 16:56:15 +0000629 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
630 if (!AR)
631 return false;
632
633 return AR->isAffine();
634}
635
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000636/// \brief Check whether a pointer address cannot wrap.
637static bool isNoWrap(PredicatedScalarEvolution &PSE,
638 const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
639 const SCEV *PtrScev = PSE.getSCEV(Ptr);
640 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
641 return true;
642
David Majnemer7afb46d2016-07-07 06:24:36 +0000643 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000644 return Stride == 1;
645}
646
Adam Nemet7cdebac2015-07-14 22:32:44 +0000647bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
648 ScalarEvolution *SE, Loop *TheLoop,
649 const ValueToValueMap &StridesMap,
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000650 bool ShouldCheckWrap) {
Adam Nemet04563272015-02-01 16:56:15 +0000651 // Find pointers with computable bounds. We are going to use this information
652 // to place a runtime bound check.
653 bool CanDoRT = true;
654
Adam Nemetee614742015-07-09 22:17:38 +0000655 bool NeedRTCheck = false;
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000656 if (!IsRTCheckAnalysisNeeded) return true;
Silviu Baranga98a13712015-06-08 10:27:06 +0000657
Adam Nemet04563272015-02-01 16:56:15 +0000658 bool IsDepCheckNeeded = isDependencyCheckNeeded();
Adam Nemet04563272015-02-01 16:56:15 +0000659
660 // We assign a consecutive id to access from different alias sets.
661 // Accesses between different groups doesn't need to be checked.
662 unsigned ASId = 1;
663 for (auto &AS : AST) {
Adam Nemet424edc62015-07-08 22:58:48 +0000664 int NumReadPtrChecks = 0;
665 int NumWritePtrChecks = 0;
666
Adam Nemet04563272015-02-01 16:56:15 +0000667 // We assign consecutive id to access from different dependence sets.
668 // Accesses within the same set don't need a runtime check.
669 unsigned RunningDepId = 1;
670 DenseMap<Value *, unsigned> DepSetId;
671
672 for (auto A : AS) {
673 Value *Ptr = A.getValue();
674 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
675 MemAccessInfo Access(Ptr, IsWrite);
676
Adam Nemet424edc62015-07-08 22:58:48 +0000677 if (IsWrite)
678 ++NumWritePtrChecks;
679 else
680 ++NumReadPtrChecks;
681
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000682 if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000683 // When we run after a failing dependency check we have to make sure
684 // we don't have wrapping pointers.
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000685 (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) {
Adam Nemet04563272015-02-01 16:56:15 +0000686 // The id of the dependence set.
687 unsigned DepId;
688
689 if (IsDepCheckNeeded) {
690 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
691 unsigned &LeaderId = DepSetId[Leader];
692 if (!LeaderId)
693 LeaderId = RunningDepId++;
694 DepId = LeaderId;
695 } else
696 // Each access has its own dependence set.
697 DepId = RunningDepId++;
698
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000699 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
Adam Nemet04563272015-02-01 16:56:15 +0000700
Adam Nemet339f42b2015-02-19 19:15:07 +0000701 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000702 } else {
Adam Nemetf10ca272015-05-18 15:36:52 +0000703 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000704 CanDoRT = false;
705 }
706 }
707
Adam Nemet424edc62015-07-08 22:58:48 +0000708 // If we have at least two writes or one write and a read then we need to
709 // check them. But there is no need to checks if there is only one
710 // dependence set for this alias set.
711 //
712 // Note that this function computes CanDoRT and NeedRTCheck independently.
713 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
714 // for which we couldn't find the bounds but we don't actually need to emit
715 // any checks so it does not matter.
716 if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
717 NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
718 NumWritePtrChecks >= 1));
719
Adam Nemet04563272015-02-01 16:56:15 +0000720 ++ASId;
721 }
722
723 // If the pointers that we would use for the bounds comparison have different
724 // address spaces, assume the values aren't directly comparable, so we can't
725 // use them for the runtime check. We also have to assume they could
726 // overlap. In the future there should be metadata for whether address spaces
727 // are disjoint.
728 unsigned NumPointers = RtCheck.Pointers.size();
729 for (unsigned i = 0; i < NumPointers; ++i) {
730 for (unsigned j = i + 1; j < NumPointers; ++j) {
731 // Only need to check pointers between two different dependency sets.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000732 if (RtCheck.Pointers[i].DependencySetId ==
733 RtCheck.Pointers[j].DependencySetId)
Adam Nemet04563272015-02-01 16:56:15 +0000734 continue;
735 // Only need to check pointers in the same alias set.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000736 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
Adam Nemet04563272015-02-01 16:56:15 +0000737 continue;
738
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000739 Value *PtrI = RtCheck.Pointers[i].PointerValue;
740 Value *PtrJ = RtCheck.Pointers[j].PointerValue;
Adam Nemet04563272015-02-01 16:56:15 +0000741
742 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
743 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
744 if (ASi != ASj) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000745 DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
Adam Nemet04d41632015-02-19 19:14:34 +0000746 " different address spaces\n");
Adam Nemet04563272015-02-01 16:56:15 +0000747 return false;
748 }
749 }
750 }
751
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000752 if (NeedRTCheck && CanDoRT)
Adam Nemet15840392015-08-07 22:44:15 +0000753 RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000754
Adam Nemet155e8742015-08-07 22:44:21 +0000755 DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
Adam Nemetee614742015-07-09 22:17:38 +0000756 << " pointer comparisons.\n");
757
758 RtCheck.Need = NeedRTCheck;
759
760 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
761 if (!CanDoRTIfNeeded)
762 RtCheck.reset();
763 return CanDoRTIfNeeded;
Adam Nemet04563272015-02-01 16:56:15 +0000764}
765
766void AccessAnalysis::processMemAccesses() {
767 // We process the set twice: first we process read-write pointers, last we
768 // process read-only pointers. This allows us to skip dependence tests for
769 // read-only pointers.
770
Adam Nemet339f42b2015-02-19 19:15:07 +0000771 DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
Adam Nemet04563272015-02-01 16:56:15 +0000772 DEBUG(dbgs() << " AST: "; AST.dump());
Adam Nemet9c926572015-03-10 17:40:37 +0000773 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n");
Adam Nemet04563272015-02-01 16:56:15 +0000774 DEBUG({
775 for (auto A : Accesses)
776 dbgs() << "\t" << *A.getPointer() << " (" <<
777 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
778 "read-only" : "read")) << ")\n";
779 });
780
781 // The AliasSetTracker has nicely partitioned our pointers by metadata
782 // compatibility and potential for underlying-object overlap. As a result, we
783 // only need to check for potential pointer dependencies within each alias
784 // set.
785 for (auto &AS : AST) {
786 // Note that both the alias-set tracker and the alias sets themselves used
787 // linked lists internally and so the iteration order here is deterministic
788 // (matching the original instruction order within each set).
789
790 bool SetHasWrite = false;
791
792 // Map of pointers to last access encountered.
793 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
794 UnderlyingObjToAccessMap ObjToLastAccess;
795
796 // Set of access to check after all writes have been processed.
797 PtrAccessSet DeferredAccesses;
798
799 // Iterate over each alias set twice, once to process read/write pointers,
800 // and then to process read-only pointers.
801 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
802 bool UseDeferred = SetIteration > 0;
803 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
804
805 for (auto AV : AS) {
806 Value *Ptr = AV.getValue();
807
808 // For a single memory access in AliasSetTracker, Accesses may contain
809 // both read and write, and they both need to be handled for CheckDeps.
810 for (auto AC : S) {
811 if (AC.getPointer() != Ptr)
812 continue;
813
814 bool IsWrite = AC.getInt();
815
816 // If we're using the deferred access set, then it contains only
817 // reads.
818 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
819 if (UseDeferred && !IsReadOnlyPtr)
820 continue;
821 // Otherwise, the pointer must be in the PtrAccessSet, either as a
822 // read or a write.
823 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
824 S.count(MemAccessInfo(Ptr, false))) &&
825 "Alias-set pointer not in the access set?");
826
827 MemAccessInfo Access(Ptr, IsWrite);
828 DepCands.insert(Access);
829
830 // Memorize read-only pointers for later processing and skip them in
831 // the first round (they need to be checked after we have seen all
832 // write pointers). Note: we also mark pointer that are not
833 // consecutive as "read-only" pointers (so that we check
834 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
835 if (!UseDeferred && IsReadOnlyPtr) {
836 DeferredAccesses.insert(Access);
837 continue;
838 }
839
840 // If this is a write - check other reads and writes for conflicts. If
841 // this is a read only check other writes for conflicts (but only if
842 // there is no other write to the ptr - this is an optimization to
843 // catch "a[i] = a[i] + " without having to do a dependence check).
844 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
845 CheckDeps.insert(Access);
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000846 IsRTCheckAnalysisNeeded = true;
Adam Nemet04563272015-02-01 16:56:15 +0000847 }
848
849 if (IsWrite)
850 SetHasWrite = true;
851
852 // Create sets of pointers connected by a shared alias set and
853 // underlying object.
854 typedef SmallVector<Value *, 16> ValueVector;
855 ValueVector TempObjects;
Adam Nemete2b885c2015-04-23 20:09:20 +0000856
857 GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
858 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000859 for (Value *UnderlyingObj : TempObjects) {
Mehdi Aminiafd13512015-11-05 05:49:43 +0000860 // nullptr never alias, don't join sets for pointer that have "null"
861 // in their UnderlyingObjects list.
862 if (isa<ConstantPointerNull>(UnderlyingObj))
863 continue;
864
Adam Nemet04563272015-02-01 16:56:15 +0000865 UnderlyingObjToAccessMap::iterator Prev =
866 ObjToLastAccess.find(UnderlyingObj);
867 if (Prev != ObjToLastAccess.end())
868 DepCands.unionSets(Access, Prev->second);
869
870 ObjToLastAccess[UnderlyingObj] = Access;
Adam Nemete2b885c2015-04-23 20:09:20 +0000871 DEBUG(dbgs() << " " << *UnderlyingObj << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000872 }
873 }
874 }
875 }
876 }
877}
878
Adam Nemet04563272015-02-01 16:56:15 +0000879static bool isInBoundsGep(Value *Ptr) {
880 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
881 return GEP->isInBounds();
882 return false;
883}
884
Adam Nemetc4866d22015-06-26 17:25:43 +0000885/// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
886/// i.e. monotonically increasing/decreasing.
887static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000888 PredicatedScalarEvolution &PSE, const Loop *L) {
Adam Nemetc4866d22015-06-26 17:25:43 +0000889 // FIXME: This should probably only return true for NUW.
890 if (AR->getNoWrapFlags(SCEV::NoWrapMask))
891 return true;
892
893 // Scalar evolution does not propagate the non-wrapping flags to values that
894 // are derived from a non-wrapping induction variable because non-wrapping
895 // could be flow-sensitive.
896 //
897 // Look through the potentially overflowing instruction to try to prove
898 // non-wrapping for the *specific* value of Ptr.
899
900 // The arithmetic implied by an inbounds GEP can't overflow.
901 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
902 if (!GEP || !GEP->isInBounds())
903 return false;
904
905 // Make sure there is only one non-const index and analyze that.
906 Value *NonConstIndex = nullptr;
David Majnemer8b401012016-07-12 20:31:46 +0000907 for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end()))
908 if (!isa<ConstantInt>(Index)) {
Adam Nemetc4866d22015-06-26 17:25:43 +0000909 if (NonConstIndex)
910 return false;
David Majnemer8b401012016-07-12 20:31:46 +0000911 NonConstIndex = Index;
Adam Nemetc4866d22015-06-26 17:25:43 +0000912 }
913 if (!NonConstIndex)
914 // The recurrence is on the pointer, ignore for now.
915 return false;
916
917 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
918 // AddRec using a NSW operation.
919 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
920 if (OBO->hasNoSignedWrap() &&
921 // Assume constant for other the operand so that the AddRec can be
922 // easily found.
923 isa<ConstantInt>(OBO->getOperand(1))) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000924 auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
Adam Nemetc4866d22015-06-26 17:25:43 +0000925
926 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
927 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
928 }
929
930 return false;
931}
932
Adam Nemet04563272015-02-01 16:56:15 +0000933/// \brief Check whether the access through \p Ptr has a constant stride.
David Majnemer7afb46d2016-07-07 06:24:36 +0000934int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
935 const Loop *Lp, const ValueToValueMap &StridesMap,
Elena Demikhovsky5f8cc0c2016-09-18 13:56:08 +0000936 bool Assume, bool ShouldCheckWrap) {
Craig Toppere3dcce92015-08-01 22:20:21 +0000937 Type *Ty = Ptr->getType();
Adam Nemet04563272015-02-01 16:56:15 +0000938 assert(Ty->isPointerTy() && "Unexpected non-ptr");
939
940 // Make sure that the pointer does not point to aggregate types.
Craig Toppere3dcce92015-08-01 22:20:21 +0000941 auto *PtrTy = cast<PointerType>(Ty);
Adam Nemet04563272015-02-01 16:56:15 +0000942 if (PtrTy->getElementType()->isAggregateType()) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000943 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr
944 << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000945 return 0;
946 }
947
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000948 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000949
950 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000951 if (Assume && !AR)
Silviu Barangad68ed852016-03-23 15:29:30 +0000952 AR = PSE.getAsAddRec(Ptr);
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000953
Adam Nemet04563272015-02-01 16:56:15 +0000954 if (!AR) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000955 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
956 << " SCEV: " << *PtrScev << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000957 return 0;
958 }
959
960 // The accesss function must stride over the innermost loop.
961 if (Lp != AR->getLoop()) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000962 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000963 *Ptr << " SCEV: " << *AR << "\n");
Kyle Butta02ce982016-01-08 01:55:13 +0000964 return 0;
Adam Nemet04563272015-02-01 16:56:15 +0000965 }
966
967 // The address calculation must not wrap. Otherwise, a dependence could be
968 // inverted.
969 // An inbounds getelementptr that is a AddRec with a unit stride
970 // cannot wrap per definition. The unit stride requirement is checked later.
971 // An getelementptr without an inbounds attribute and unit stride would have
972 // to access the pointer value "0" which is undefined behavior in address
973 // space 0, therefore we can also vectorize this case.
974 bool IsInBoundsGEP = isInBoundsGep(Ptr);
Elena Demikhovsky5f8cc0c2016-09-18 13:56:08 +0000975 bool IsNoWrapAddRec = !ShouldCheckWrap ||
976 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
977 isNoWrapAddRec(Ptr, AR, PSE, Lp);
Adam Nemet04563272015-02-01 16:56:15 +0000978 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
979 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000980 if (Assume) {
981 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
982 IsNoWrapAddRec = true;
983 DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
984 << "LAA: Pointer: " << *Ptr << "\n"
985 << "LAA: SCEV: " << *AR << "\n"
986 << "LAA: Added an overflow assumption\n");
987 } else {
988 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
989 << *Ptr << " SCEV: " << *AR << "\n");
990 return 0;
991 }
Adam Nemet04563272015-02-01 16:56:15 +0000992 }
993
994 // Check the step is constant.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000995 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
Adam Nemet04563272015-02-01 16:56:15 +0000996
Adam Nemet943befe2015-07-09 00:03:22 +0000997 // Calculate the pointer stride and check if it is constant.
Adam Nemet04563272015-02-01 16:56:15 +0000998 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
999 if (!C) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001000 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
Silviu Barangaea63a7f2016-02-08 17:02:45 +00001001 " SCEV: " << *AR << "\n");
Adam Nemet04563272015-02-01 16:56:15 +00001002 return 0;
1003 }
1004
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001005 auto &DL = Lp->getHeader()->getModule()->getDataLayout();
1006 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001007 const APInt &APStepVal = C->getAPInt();
Adam Nemet04563272015-02-01 16:56:15 +00001008
1009 // Huge step value - give up.
1010 if (APStepVal.getBitWidth() > 64)
1011 return 0;
1012
1013 int64_t StepVal = APStepVal.getSExtValue();
1014
1015 // Strided access.
1016 int64_t Stride = StepVal / Size;
1017 int64_t Rem = StepVal % Size;
1018 if (Rem)
1019 return 0;
1020
1021 // If the SCEV could wrap but we have an inbounds gep with a unit stride we
1022 // know we can't "wrap around the address space". In case of address space
1023 // zero we know that this won't happen without triggering undefined behavior.
1024 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
Silviu Barangaea63a7f2016-02-08 17:02:45 +00001025 Stride != 1 && Stride != -1) {
1026 if (Assume) {
1027 // We can avoid this case by adding a run-time check.
1028 DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
1029 << "inbouds or in address space 0 may wrap:\n"
1030 << "LAA: Pointer: " << *Ptr << "\n"
1031 << "LAA: SCEV: " << *AR << "\n"
1032 << "LAA: Added an overflow assumption\n");
1033 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1034 } else
1035 return 0;
1036 }
Adam Nemet04563272015-02-01 16:56:15 +00001037
1038 return Stride;
1039}
1040
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001041/// Take the pointer operand from the Load/Store instruction.
1042/// Returns NULL if this is not a valid Load/Store instruction.
1043static Value *getPointerOperand(Value *I) {
David Majnemer8b401012016-07-12 20:31:46 +00001044 if (auto *LI = dyn_cast<LoadInst>(I))
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001045 return LI->getPointerOperand();
David Majnemer8b401012016-07-12 20:31:46 +00001046 if (auto *SI = dyn_cast<StoreInst>(I))
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001047 return SI->getPointerOperand();
1048 return nullptr;
1049}
1050
1051/// Take the address space operand from the Load/Store instruction.
1052/// Returns -1 if this is not a valid Load/Store instruction.
1053static unsigned getAddressSpaceOperand(Value *I) {
1054 if (LoadInst *L = dyn_cast<LoadInst>(I))
1055 return L->getPointerAddressSpace();
1056 if (StoreInst *S = dyn_cast<StoreInst>(I))
1057 return S->getPointerAddressSpace();
1058 return -1;
1059}
1060
1061/// Returns true if the memory operations \p A and \p B are consecutive.
1062bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1063 ScalarEvolution &SE, bool CheckType) {
1064 Value *PtrA = getPointerOperand(A);
1065 Value *PtrB = getPointerOperand(B);
1066 unsigned ASA = getAddressSpaceOperand(A);
1067 unsigned ASB = getAddressSpaceOperand(B);
1068
1069 // Check that the address spaces match and that the pointers are valid.
1070 if (!PtrA || !PtrB || (ASA != ASB))
1071 return false;
1072
1073 // Make sure that A and B are different pointers.
1074 if (PtrA == PtrB)
1075 return false;
1076
1077 // Make sure that A and B have the same type if required.
Chad Rosier83a12032016-08-31 18:37:52 +00001078 if (CheckType && PtrA->getType() != PtrB->getType())
1079 return false;
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001080
1081 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
1082 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1083 APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
1084
1085 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1086 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1087 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1088
1089 // OffsetDelta = OffsetB - OffsetA;
1090 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
1091 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1092 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1093 const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
1094 const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
1095 // Check if they are based on the same pointer. That makes the offsets
1096 // sufficient.
1097 if (PtrA == PtrB)
1098 return OffsetDelta == Size;
1099
1100 // Compute the necessary base pointer delta to have the necessary final delta
1101 // equal to the size.
1102 // BaseDelta = Size - OffsetDelta;
1103 const SCEV *SizeSCEV = SE.getConstant(Size);
1104 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1105
1106 // Otherwise compute the distance with SCEV between the base pointers.
1107 const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1108 const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1109 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1110 return X == PtrSCEVB;
1111}
1112
Adam Nemet9c926572015-03-10 17:40:37 +00001113bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1114 switch (Type) {
1115 case NoDep:
1116 case Forward:
1117 case BackwardVectorizable:
1118 return true;
1119
1120 case Unknown:
1121 case ForwardButPreventsForwarding:
1122 case Backward:
1123 case BackwardVectorizableButPreventsForwarding:
1124 return false;
1125 }
David Majnemerd388e932015-03-10 20:23:29 +00001126 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +00001127}
1128
Adam Nemet397f5822015-11-03 23:50:03 +00001129bool MemoryDepChecker::Dependence::isBackward() const {
Adam Nemet9c926572015-03-10 17:40:37 +00001130 switch (Type) {
1131 case NoDep:
1132 case Forward:
1133 case ForwardButPreventsForwarding:
Adam Nemet397f5822015-11-03 23:50:03 +00001134 case Unknown:
Adam Nemet9c926572015-03-10 17:40:37 +00001135 return false;
1136
Adam Nemet9c926572015-03-10 17:40:37 +00001137 case BackwardVectorizable:
1138 case Backward:
1139 case BackwardVectorizableButPreventsForwarding:
1140 return true;
1141 }
David Majnemerd388e932015-03-10 20:23:29 +00001142 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +00001143}
1144
Adam Nemet397f5822015-11-03 23:50:03 +00001145bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1146 return isBackward() || Type == Unknown;
1147}
1148
1149bool MemoryDepChecker::Dependence::isForward() const {
1150 switch (Type) {
1151 case Forward:
1152 case ForwardButPreventsForwarding:
1153 return true;
1154
1155 case NoDep:
1156 case Unknown:
1157 case BackwardVectorizable:
1158 case Backward:
1159 case BackwardVectorizableButPreventsForwarding:
1160 return false;
1161 }
1162 llvm_unreachable("unexpected DepType!");
1163}
1164
David Majnemer7afb46d2016-07-07 06:24:36 +00001165bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1166 uint64_t TypeByteSize) {
Adam Nemet04563272015-02-01 16:56:15 +00001167 // If loads occur at a distance that is not a multiple of a feasible vector
1168 // factor store-load forwarding does not take place.
1169 // Positive dependences might cause troubles because vectorizing them might
1170 // prevent store-load forwarding making vectorized code run a lot slower.
1171 // a[i] = a[i-3] ^ a[i-8];
1172 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1173 // hence on your typical architecture store-load forwarding does not take
1174 // place. Vectorizing in such cases does not make sense.
1175 // Store-load forwarding distance.
Adam Nemet884d3132016-05-16 16:57:47 +00001176
1177 // After this many iterations store-to-load forwarding conflicts should not
1178 // cause any slowdowns.
David Majnemer7afb46d2016-07-07 06:24:36 +00001179 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
Adam Nemet04563272015-02-01 16:56:15 +00001180 // Maximum vector factor.
David Majnemer7afb46d2016-07-07 06:24:36 +00001181 uint64_t MaxVFWithoutSLForwardIssues = std::min(
Adam Nemet2c34ab52016-05-12 21:41:53 +00001182 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
Adam Nemet04563272015-02-01 16:56:15 +00001183
Adam Nemet884d3132016-05-16 16:57:47 +00001184 // Compute the smallest VF at which the store and load would be misaligned.
David Majnemer7afb46d2016-07-07 06:24:36 +00001185 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
Adam Nemet9b5852a2016-05-16 16:57:42 +00001186 VF *= 2) {
Adam Nemet884d3132016-05-16 16:57:47 +00001187 // If the number of vector iteration between the store and the load are
1188 // small we could incur conflicts.
1189 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
Adam Nemet9b5852a2016-05-16 16:57:42 +00001190 MaxVFWithoutSLForwardIssues = (VF >>= 1);
Adam Nemet04563272015-02-01 16:56:15 +00001191 break;
1192 }
1193 }
1194
Adam Nemet9b5852a2016-05-16 16:57:42 +00001195 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1196 DEBUG(dbgs() << "LAA: Distance " << Distance
1197 << " that could cause a store-load forwarding conflict\n");
Adam Nemet04563272015-02-01 16:56:15 +00001198 return true;
1199 }
1200
1201 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
Adam Nemetf219c642015-02-19 19:14:52 +00001202 MaxVFWithoutSLForwardIssues !=
Adam Nemet9b5852a2016-05-16 16:57:42 +00001203 VectorizerParams::MaxVectorWidth * TypeByteSize)
Adam Nemet04563272015-02-01 16:56:15 +00001204 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1205 return false;
1206}
1207
Hao Liu751004a2015-06-08 04:48:37 +00001208/// \brief Check the dependence for two accesses with the same stride \p Stride.
1209/// \p Distance is the positive distance and \p TypeByteSize is type size in
1210/// bytes.
1211///
1212/// \returns true if they are independent.
David Majnemer7afb46d2016-07-07 06:24:36 +00001213static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1214 uint64_t TypeByteSize) {
Hao Liu751004a2015-06-08 04:48:37 +00001215 assert(Stride > 1 && "The stride must be greater than 1");
1216 assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1217 assert(Distance > 0 && "The distance must be non-zero");
1218
1219 // Skip if the distance is not multiple of type byte size.
1220 if (Distance % TypeByteSize)
1221 return false;
1222
David Majnemer7afb46d2016-07-07 06:24:36 +00001223 uint64_t ScaledDist = Distance / TypeByteSize;
Hao Liu751004a2015-06-08 04:48:37 +00001224
1225 // No dependence if the scaled distance is not multiple of the stride.
1226 // E.g.
1227 // for (i = 0; i < 1024 ; i += 4)
1228 // A[i+2] = A[i] + 1;
1229 //
1230 // Two accesses in memory (scaled distance is 2, stride is 4):
1231 // | A[0] | | | | A[4] | | | |
1232 // | | | A[2] | | | | A[6] | |
1233 //
1234 // E.g.
1235 // for (i = 0; i < 1024 ; i += 3)
1236 // A[i+4] = A[i] + 1;
1237 //
1238 // Two accesses in memory (scaled distance is 4, stride is 3):
1239 // | A[0] | | | A[3] | | | A[6] | | |
1240 // | | | | | A[4] | | | A[7] | |
1241 return ScaledDist % Stride;
1242}
1243
Adam Nemet9c926572015-03-10 17:40:37 +00001244MemoryDepChecker::Dependence::DepType
1245MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1246 const MemAccessInfo &B, unsigned BIdx,
1247 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001248 assert (AIdx < BIdx && "Must pass arguments in program order");
1249
1250 Value *APtr = A.getPointer();
1251 Value *BPtr = B.getPointer();
1252 bool AIsWrite = A.getInt();
1253 bool BIsWrite = B.getInt();
1254
1255 // Two reads are independent.
1256 if (!AIsWrite && !BIsWrite)
Adam Nemet9c926572015-03-10 17:40:37 +00001257 return Dependence::NoDep;
Adam Nemet04563272015-02-01 16:56:15 +00001258
1259 // We cannot check pointers in different address spaces.
1260 if (APtr->getType()->getPointerAddressSpace() !=
1261 BPtr->getType()->getPointerAddressSpace())
Adam Nemet9c926572015-03-10 17:40:37 +00001262 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001263
David Majnemer7afb46d2016-07-07 06:24:36 +00001264 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
1265 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
Adam Nemet04563272015-02-01 16:56:15 +00001266
Silviu Barangaadf4b732016-05-10 12:28:49 +00001267 const SCEV *Src = PSE.getSCEV(APtr);
1268 const SCEV *Sink = PSE.getSCEV(BPtr);
Adam Nemet04563272015-02-01 16:56:15 +00001269
1270 // If the induction step is negative we have to invert source and sink of the
1271 // dependence.
1272 if (StrideAPtr < 0) {
Adam Nemet04563272015-02-01 16:56:15 +00001273 std::swap(APtr, BPtr);
1274 std::swap(Src, Sink);
1275 std::swap(AIsWrite, BIsWrite);
1276 std::swap(AIdx, BIdx);
1277 std::swap(StrideAPtr, StrideBPtr);
1278 }
1279
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001280 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
Adam Nemet04563272015-02-01 16:56:15 +00001281
Adam Nemet339f42b2015-02-19 19:15:07 +00001282 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001283 << "(Induction step: " << StrideAPtr << ")\n");
Adam Nemet339f42b2015-02-19 19:15:07 +00001284 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001285 << *InstMap[BIdx] << ": " << *Dist << "\n");
Adam Nemet04563272015-02-01 16:56:15 +00001286
Adam Nemet943befe2015-07-09 00:03:22 +00001287 // Need accesses with constant stride. We don't want to vectorize
Adam Nemet04563272015-02-01 16:56:15 +00001288 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1289 // the address space.
1290 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
Adam Nemet943befe2015-07-09 00:03:22 +00001291 DEBUG(dbgs() << "Pointer access with non-constant stride\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001292 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001293 }
1294
1295 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1296 if (!C) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001297 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
Adam Nemet04563272015-02-01 16:56:15 +00001298 ShouldRetryWithRuntimeCheck = true;
Adam Nemet9c926572015-03-10 17:40:37 +00001299 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001300 }
1301
1302 Type *ATy = APtr->getType()->getPointerElementType();
1303 Type *BTy = BPtr->getType()->getPointerElementType();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001304 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
David Majnemer7afb46d2016-07-07 06:24:36 +00001305 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
Adam Nemet04563272015-02-01 16:56:15 +00001306
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001307 const APInt &Val = C->getAPInt();
Matthew Simpson6feebe92016-05-19 15:37:19 +00001308 int64_t Distance = Val.getSExtValue();
David Majnemer7afb46d2016-07-07 06:24:36 +00001309 uint64_t Stride = std::abs(StrideAPtr);
Matthew Simpson6feebe92016-05-19 15:37:19 +00001310
1311 // Attempt to prove strided accesses independent.
1312 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
1313 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1314 DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1315 return Dependence::NoDep;
1316 }
1317
1318 // Negative distances are not plausible dependencies.
Adam Nemet04563272015-02-01 16:56:15 +00001319 if (Val.isNegative()) {
1320 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
Matthew Simpson37ec5f92016-05-16 17:00:56 +00001321 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
Adam Nemet04563272015-02-01 16:56:15 +00001322 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
Adam Nemetb8486e52016-03-01 00:50:08 +00001323 ATy != BTy)) {
1324 DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001325 return Dependence::ForwardButPreventsForwarding;
Adam Nemetb8486e52016-03-01 00:50:08 +00001326 }
Adam Nemet04563272015-02-01 16:56:15 +00001327
Adam Nemet724ab222016-05-05 23:41:28 +00001328 DEBUG(dbgs() << "LAA: Dependence is negative\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001329 return Dependence::Forward;
Adam Nemet04563272015-02-01 16:56:15 +00001330 }
1331
1332 // Write to the same location with the same size.
1333 // Could be improved to assert type sizes are the same (i32 == float, etc).
1334 if (Val == 0) {
1335 if (ATy == BTy)
Adam Nemetd7037c52015-11-03 20:13:43 +00001336 return Dependence::Forward;
Adam Nemet339f42b2015-02-19 19:15:07 +00001337 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001338 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001339 }
1340
1341 assert(Val.isStrictlyPositive() && "Expect a positive value");
1342
Adam Nemet04563272015-02-01 16:56:15 +00001343 if (ATy != BTy) {
Adam Nemet04d41632015-02-19 19:14:34 +00001344 DEBUG(dbgs() <<
Adam Nemet339f42b2015-02-19 19:15:07 +00001345 "LAA: ReadWrite-Write positive dependency with different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001346 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001347 }
1348
Adam Nemet04563272015-02-01 16:56:15 +00001349 // Bail out early if passed-in parameters make vectorization not feasible.
Adam Nemetf219c642015-02-19 19:14:52 +00001350 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1351 VectorizerParams::VectorizationFactor : 1);
1352 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1353 VectorizerParams::VectorizationInterleave : 1);
Hao Liu751004a2015-06-08 04:48:37 +00001354 // The minimum number of iterations for a vectorized/unrolled version.
1355 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
Adam Nemet04563272015-02-01 16:56:15 +00001356
Hao Liu751004a2015-06-08 04:48:37 +00001357 // It's not vectorizable if the distance is smaller than the minimum distance
1358 // needed for a vectroized/unrolled version. Vectorizing one iteration in
1359 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1360 // TypeByteSize (No need to plus the last gap distance).
1361 //
1362 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1363 // foo(int *A) {
1364 // int *B = (int *)((char *)A + 14);
1365 // for (i = 0 ; i < 1024 ; i += 2)
1366 // B[i] = A[i] + 1;
1367 // }
1368 //
1369 // Two accesses in memory (stride is 2):
1370 // | A[0] | | A[2] | | A[4] | | A[6] | |
1371 // | B[0] | | B[2] | | B[4] |
1372 //
1373 // Distance needs for vectorizing iterations except the last iteration:
1374 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1375 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1376 //
1377 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1378 // 12, which is less than distance.
1379 //
1380 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1381 // the minimum distance needed is 28, which is greater than distance. It is
1382 // not safe to do vectorization.
David Majnemer7afb46d2016-07-07 06:24:36 +00001383 uint64_t MinDistanceNeeded =
Hao Liu751004a2015-06-08 04:48:37 +00001384 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
David Majnemer7afb46d2016-07-07 06:24:36 +00001385 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
Hao Liu751004a2015-06-08 04:48:37 +00001386 DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1387 << '\n');
1388 return Dependence::Backward;
1389 }
1390
1391 // Unsafe if the minimum distance needed is greater than max safe distance.
1392 if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1393 DEBUG(dbgs() << "LAA: Failure because it needs at least "
1394 << MinDistanceNeeded << " size in bytes");
Adam Nemet9c926572015-03-10 17:40:37 +00001395 return Dependence::Backward;
Adam Nemet04563272015-02-01 16:56:15 +00001396 }
1397
Adam Nemet9cc0c392015-02-26 17:58:48 +00001398 // Positive distance bigger than max vectorization factor.
Hao Liu751004a2015-06-08 04:48:37 +00001399 // FIXME: Should use max factor instead of max distance in bytes, which could
1400 // not handle different types.
1401 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1402 // void foo (int *A, char *B) {
1403 // for (unsigned i = 0; i < 1024; i++) {
1404 // A[i+2] = A[i] + 1;
1405 // B[i+2] = B[i] + 1;
1406 // }
1407 // }
1408 //
1409 // This case is currently unsafe according to the max safe distance. If we
1410 // analyze the two accesses on array B, the max safe dependence distance
1411 // is 2. Then we analyze the accesses on array A, the minimum distance needed
1412 // is 8, which is less than 2 and forbidden vectorization, But actually
1413 // both A and B could be vectorized by 2 iterations.
1414 MaxSafeDepDistBytes =
David Majnemer7afb46d2016-07-07 06:24:36 +00001415 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
Adam Nemet04563272015-02-01 16:56:15 +00001416
1417 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
Matthew Simpson37ec5f92016-05-16 17:00:56 +00001418 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
Adam Nemet04563272015-02-01 16:56:15 +00001419 couldPreventStoreLoadForward(Distance, TypeByteSize))
Adam Nemet9c926572015-03-10 17:40:37 +00001420 return Dependence::BackwardVectorizableButPreventsForwarding;
Adam Nemet04563272015-02-01 16:56:15 +00001421
Hao Liu751004a2015-06-08 04:48:37 +00001422 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1423 << " with max VF = "
1424 << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
Adam Nemet04563272015-02-01 16:56:15 +00001425
Adam Nemet9c926572015-03-10 17:40:37 +00001426 return Dependence::BackwardVectorizable;
Adam Nemet04563272015-02-01 16:56:15 +00001427}
1428
Adam Nemetdee666b2015-03-10 17:40:34 +00001429bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
Adam Nemet04563272015-02-01 16:56:15 +00001430 MemAccessInfoSet &CheckDeps,
Adam Nemet8bc61df2015-02-24 00:41:59 +00001431 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001432
David Majnemer7afb46d2016-07-07 06:24:36 +00001433 MaxSafeDepDistBytes = -1;
Adam Nemet04563272015-02-01 16:56:15 +00001434 while (!CheckDeps.empty()) {
1435 MemAccessInfo CurAccess = *CheckDeps.begin();
1436
1437 // Get the relevant memory access set.
1438 EquivalenceClasses<MemAccessInfo>::iterator I =
1439 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1440
1441 // Check accesses within this set.
Richard Trieu7a083812016-02-18 22:09:30 +00001442 EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1443 AccessSets.member_begin(I);
1444 EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1445 AccessSets.member_end();
Adam Nemet04563272015-02-01 16:56:15 +00001446
1447 // Check every access pair.
1448 while (AI != AE) {
1449 CheckDeps.erase(*AI);
1450 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1451 while (OI != AE) {
1452 // Check every accessing instruction pair in program order.
1453 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1454 I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1455 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1456 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
Adam Nemet9c926572015-03-10 17:40:37 +00001457 auto A = std::make_pair(&*AI, *I1);
1458 auto B = std::make_pair(&*OI, *I2);
1459
1460 assert(*I1 != *I2);
1461 if (*I1 > *I2)
1462 std::swap(A, B);
1463
1464 Dependence::DepType Type =
1465 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1466 SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1467
Adam Nemeta2df7502015-11-03 21:39:52 +00001468 // Gather dependences unless we accumulated MaxDependences
Adam Nemet9c926572015-03-10 17:40:37 +00001469 // dependences. In that case return as soon as we find the first
1470 // unsafe dependence. This puts a limit on this quadratic
1471 // algorithm.
Adam Nemeta2df7502015-11-03 21:39:52 +00001472 if (RecordDependences) {
1473 if (Type != Dependence::NoDep)
1474 Dependences.push_back(Dependence(A.second, B.second, Type));
Adam Nemet9c926572015-03-10 17:40:37 +00001475
Adam Nemeta2df7502015-11-03 21:39:52 +00001476 if (Dependences.size() >= MaxDependences) {
1477 RecordDependences = false;
1478 Dependences.clear();
Adam Nemet9c926572015-03-10 17:40:37 +00001479 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
1480 }
1481 }
Adam Nemeta2df7502015-11-03 21:39:52 +00001482 if (!RecordDependences && !SafeForVectorization)
Adam Nemet04563272015-02-01 16:56:15 +00001483 return false;
1484 }
1485 ++OI;
1486 }
1487 AI++;
1488 }
1489 }
Adam Nemet9c926572015-03-10 17:40:37 +00001490
Adam Nemeta2df7502015-11-03 21:39:52 +00001491 DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001492 return SafeForVectorization;
Adam Nemet04563272015-02-01 16:56:15 +00001493}
1494
Adam Nemetec1e2bb2015-03-10 18:54:26 +00001495SmallVector<Instruction *, 4>
1496MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1497 MemAccessInfo Access(Ptr, isWrite);
1498 auto &IndexVector = Accesses.find(Access)->second;
1499
1500 SmallVector<Instruction *, 4> Insts;
David Majnemer2d006e72016-08-12 04:32:42 +00001501 transform(IndexVector,
Adam Nemetec1e2bb2015-03-10 18:54:26 +00001502 std::back_inserter(Insts),
1503 [&](unsigned Idx) { return this->InstMap[Idx]; });
1504 return Insts;
1505}
1506
Adam Nemet58913d62015-03-10 17:40:43 +00001507const char *MemoryDepChecker::Dependence::DepName[] = {
1508 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1509 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1510
1511void MemoryDepChecker::Dependence::print(
1512 raw_ostream &OS, unsigned Depth,
1513 const SmallVectorImpl<Instruction *> &Instrs) const {
1514 OS.indent(Depth) << DepName[Type] << ":\n";
1515 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1516 OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1517}
1518
Adam Nemet929c38e2015-02-19 19:15:10 +00001519bool LoopAccessInfo::canAnalyzeLoop() {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001520 // We need to have a loop header.
Adam Nemetd8968f02016-01-18 21:16:33 +00001521 DEBUG(dbgs() << "LAA: Found a loop in "
1522 << TheLoop->getHeader()->getParent()->getName() << ": "
1523 << TheLoop->getHeader()->getName() << '\n');
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001524
Adam Nemetd8968f02016-01-18 21:16:33 +00001525 // We can only analyze innermost loops.
Adam Nemet929c38e2015-02-19 19:15:10 +00001526 if (!TheLoop->empty()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001527 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
Adam Nemet877ccee2016-09-30 00:01:30 +00001528 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
Adam Nemet929c38e2015-02-19 19:15:10 +00001529 return false;
1530 }
1531
1532 // We must have a single backedge.
1533 if (TheLoop->getNumBackEdges() != 1) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001534 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet877ccee2016-09-30 00:01:30 +00001535 recordAnalysis("CFGNotUnderstood")
1536 << "loop control flow is not understood by analyzer";
Adam Nemet929c38e2015-02-19 19:15:10 +00001537 return false;
1538 }
1539
1540 // We must have a single exiting block.
1541 if (!TheLoop->getExitingBlock()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001542 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet877ccee2016-09-30 00:01:30 +00001543 recordAnalysis("CFGNotUnderstood")
1544 << "loop control flow is not understood by analyzer";
Adam Nemet929c38e2015-02-19 19:15:10 +00001545 return false;
1546 }
1547
1548 // We only handle bottom-tested loops, i.e. loop in which the condition is
1549 // checked at the end of each iteration. With that we can assume that all
1550 // instructions in the loop are executed the same number of times.
1551 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001552 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet877ccee2016-09-30 00:01:30 +00001553 recordAnalysis("CFGNotUnderstood")
1554 << "loop control flow is not understood by analyzer";
Adam Nemet929c38e2015-02-19 19:15:10 +00001555 return false;
1556 }
1557
Adam Nemet929c38e2015-02-19 19:15:10 +00001558 // ScalarEvolution needs to be able to find the exit count.
Xinliang David Li94734ee2016-07-01 05:59:55 +00001559 const SCEV *ExitCount = PSE->getBackedgeTakenCount();
1560 if (ExitCount == PSE->getSE()->getCouldNotCompute()) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001561 recordAnalysis("CantComputeNumberOfIterations")
1562 << "could not determine number of loop iterations";
Adam Nemet929c38e2015-02-19 19:15:10 +00001563 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1564 return false;
1565 }
1566
1567 return true;
1568}
1569
Adam Nemetb49d9a52016-07-13 22:36:27 +00001570void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
Adam Nemet7da74ab2016-07-13 22:36:35 +00001571 const TargetLibraryInfo *TLI,
1572 DominatorTree *DT) {
Adam Nemet04563272015-02-01 16:56:15 +00001573 typedef SmallPtrSet<Value*, 16> ValueSet;
1574
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001575 // Holds the Load and Store instructions.
1576 SmallVector<LoadInst *, 16> Loads;
1577 SmallVector<StoreInst *, 16> Stores;
Adam Nemet04563272015-02-01 16:56:15 +00001578
1579 // Holds all the different accesses in the loop.
1580 unsigned NumReads = 0;
1581 unsigned NumReadWrites = 0;
1582
Xinliang David Lice030ac2016-06-22 23:20:59 +00001583 PtrRtChecking->Pointers.clear();
1584 PtrRtChecking->Need = false;
Adam Nemet04563272015-02-01 16:56:15 +00001585
1586 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
Adam Nemet04563272015-02-01 16:56:15 +00001587
1588 // For each block.
David Majnemer8b401012016-07-12 20:31:46 +00001589 for (BasicBlock *BB : TheLoop->blocks()) {
Adam Nemet04563272015-02-01 16:56:15 +00001590 // Scan the BB and collect legal loads and stores.
David Majnemer8b401012016-07-12 20:31:46 +00001591 for (Instruction &I : *BB) {
Adam Nemet04563272015-02-01 16:56:15 +00001592 // If this is a load, save it. If this instruction can read from memory
1593 // but is not a load, then we quit. Notice that we don't handle function
1594 // calls that read or write.
David Majnemer8b401012016-07-12 20:31:46 +00001595 if (I.mayReadFromMemory()) {
Adam Nemet04563272015-02-01 16:56:15 +00001596 // Many math library functions read the rounding mode. We will only
1597 // vectorize a loop if it contains known function calls that don't set
1598 // the flag. Therefore, it is safe to ignore this read from memory.
David Majnemer8b401012016-07-12 20:31:46 +00001599 auto *Call = dyn_cast<CallInst>(&I);
David Majnemerb4b27232016-04-19 19:10:21 +00001600 if (Call && getVectorIntrinsicIDForCall(Call, TLI))
Adam Nemet04563272015-02-01 16:56:15 +00001601 continue;
1602
Michael Zolotukhin9b3cf602015-03-17 19:46:50 +00001603 // If the function has an explicit vectorized counterpart, we can safely
1604 // assume that it can be vectorized.
1605 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1606 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1607 continue;
1608
David Majnemer8b401012016-07-12 20:31:46 +00001609 auto *Ld = dyn_cast<LoadInst>(&I);
Adam Nemet04563272015-02-01 16:56:15 +00001610 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001611 recordAnalysis("NonSimpleLoad", Ld)
1612 << "read with atomic ordering or volatile read";
Adam Nemet339f42b2015-02-19 19:15:07 +00001613 DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001614 CanVecMem = false;
1615 return;
Adam Nemet04563272015-02-01 16:56:15 +00001616 }
1617 NumLoads++;
1618 Loads.push_back(Ld);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001619 DepChecker->addAccess(Ld);
Adam Nemeta9f09c62016-06-17 22:35:41 +00001620 if (EnableMemAccessVersioning)
Adam Nemetc953bb92016-06-16 22:57:55 +00001621 collectStridedAccess(Ld);
Adam Nemet04563272015-02-01 16:56:15 +00001622 continue;
1623 }
1624
1625 // Save 'store' instructions. Abort if other instructions write to memory.
David Majnemer8b401012016-07-12 20:31:46 +00001626 if (I.mayWriteToMemory()) {
1627 auto *St = dyn_cast<StoreInst>(&I);
Adam Nemet04563272015-02-01 16:56:15 +00001628 if (!St) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001629 recordAnalysis("CantVectorizeInstruction", St)
1630 << "instruction cannot be vectorized";
Adam Nemet436018c2015-02-19 19:15:00 +00001631 CanVecMem = false;
1632 return;
Adam Nemet04563272015-02-01 16:56:15 +00001633 }
1634 if (!St->isSimple() && !IsAnnotatedParallel) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001635 recordAnalysis("NonSimpleStore", St)
1636 << "write with atomic ordering or volatile write";
Adam Nemet339f42b2015-02-19 19:15:07 +00001637 DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001638 CanVecMem = false;
1639 return;
Adam Nemet04563272015-02-01 16:56:15 +00001640 }
1641 NumStores++;
1642 Stores.push_back(St);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001643 DepChecker->addAccess(St);
Adam Nemeta9f09c62016-06-17 22:35:41 +00001644 if (EnableMemAccessVersioning)
Adam Nemetc953bb92016-06-16 22:57:55 +00001645 collectStridedAccess(St);
Adam Nemet04563272015-02-01 16:56:15 +00001646 }
1647 } // Next instr.
1648 } // Next block.
1649
1650 // Now we have two lists that hold the loads and the stores.
1651 // Next, we find the pointers that they use.
1652
1653 // Check if we see any stores. If there are no stores, then we don't
1654 // care if the pointers are *restrict*.
1655 if (!Stores.size()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001656 DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001657 CanVecMem = true;
1658 return;
Adam Nemet04563272015-02-01 16:56:15 +00001659 }
1660
Adam Nemetdee666b2015-03-10 17:40:34 +00001661 MemoryDepChecker::DepCandidates DependentAccesses;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001662 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
Xinliang David Li94734ee2016-07-01 05:59:55 +00001663 AA, LI, DependentAccesses, *PSE);
Adam Nemet04563272015-02-01 16:56:15 +00001664
1665 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1666 // multiple times on the same object. If the ptr is accessed twice, once
1667 // for read and once for write, it will only appear once (on the write
1668 // list). This is okay, since we are going to check for conflicts between
1669 // writes and between reads and writes, but not between reads and reads.
1670 ValueSet Seen;
1671
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001672 for (StoreInst *ST : Stores) {
1673 Value *Ptr = ST->getPointerOperand();
Adam Nemetce482502015-04-08 17:48:40 +00001674 // Check for store to loop invariant address.
1675 StoreToLoopInvariantAddress |= isUniform(Ptr);
Adam Nemet04563272015-02-01 16:56:15 +00001676 // If we did *not* see this pointer before, insert it to the read-write
1677 // list. At this phase it is only a 'write' list.
1678 if (Seen.insert(Ptr).second) {
1679 ++NumReadWrites;
1680
Chandler Carruthac80dc72015-06-17 07:18:54 +00001681 MemoryLocation Loc = MemoryLocation::get(ST);
Adam Nemet04563272015-02-01 16:56:15 +00001682 // The TBAA metadata could have a control dependency on the predication
1683 // condition, so we cannot rely on it when determining whether or not we
1684 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001685 if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001686 Loc.AATags.TBAA = nullptr;
1687
1688 Accesses.addStore(Loc);
1689 }
1690 }
1691
1692 if (IsAnnotatedParallel) {
Adam Nemet04d41632015-02-19 19:14:34 +00001693 DEBUG(dbgs()
Adam Nemet339f42b2015-02-19 19:15:07 +00001694 << "LAA: A loop annotated parallel, ignore memory dependency "
Adam Nemet04d41632015-02-19 19:14:34 +00001695 << "checks.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001696 CanVecMem = true;
1697 return;
Adam Nemet04563272015-02-01 16:56:15 +00001698 }
1699
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001700 for (LoadInst *LD : Loads) {
1701 Value *Ptr = LD->getPointerOperand();
Adam Nemet04563272015-02-01 16:56:15 +00001702 // If we did *not* see this pointer before, insert it to the
1703 // read list. If we *did* see it before, then it is already in
1704 // the read-write list. This allows us to vectorize expressions
1705 // such as A[i] += x; Because the address of A[i] is a read-write
1706 // pointer. This only works if the index of A[i] is consecutive.
1707 // If the address of i is unknown (for example A[B[i]]) then we may
1708 // read a few words, modify, and write a few words, and some of the
1709 // words may be written to the same address.
1710 bool IsReadOnlyPtr = false;
Adam Nemet139ffba2016-06-16 08:27:03 +00001711 if (Seen.insert(Ptr).second ||
Xinliang David Li94734ee2016-07-01 05:59:55 +00001712 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
Adam Nemet04563272015-02-01 16:56:15 +00001713 ++NumReads;
1714 IsReadOnlyPtr = true;
1715 }
1716
Chandler Carruthac80dc72015-06-17 07:18:54 +00001717 MemoryLocation Loc = MemoryLocation::get(LD);
Adam Nemet04563272015-02-01 16:56:15 +00001718 // The TBAA metadata could have a control dependency on the predication
1719 // condition, so we cannot rely on it when determining whether or not we
1720 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001721 if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001722 Loc.AATags.TBAA = nullptr;
1723
1724 Accesses.addLoad(Loc, IsReadOnlyPtr);
1725 }
1726
1727 // If we write (or read-write) to a single destination and there are no
1728 // other reads in this loop then is it safe to vectorize.
1729 if (NumReadWrites == 1 && NumReads == 0) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001730 DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001731 CanVecMem = true;
1732 return;
Adam Nemet04563272015-02-01 16:56:15 +00001733 }
1734
1735 // Build dependence sets and check whether we need a runtime pointer bounds
1736 // check.
1737 Accesses.buildDependenceSets();
Adam Nemet04563272015-02-01 16:56:15 +00001738
1739 // Find pointers with computable bounds. We are going to use this information
1740 // to place a runtime bound check.
Xinliang David Li94734ee2016-07-01 05:59:55 +00001741 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
Adam Nemet139ffba2016-06-16 08:27:03 +00001742 TheLoop, SymbolicStrides);
Adam Nemetee614742015-07-09 22:17:38 +00001743 if (!CanDoRTIfNeeded) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001744 recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds";
Adam Nemetee614742015-07-09 22:17:38 +00001745 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1746 << "the array bounds.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001747 CanVecMem = false;
1748 return;
Adam Nemet04563272015-02-01 16:56:15 +00001749 }
1750
Adam Nemetee614742015-07-09 22:17:38 +00001751 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
Adam Nemet04563272015-02-01 16:56:15 +00001752
Adam Nemet436018c2015-02-19 19:15:00 +00001753 CanVecMem = true;
Adam Nemet04563272015-02-01 16:56:15 +00001754 if (Accesses.isDependencyCheckNeeded()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001755 DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
Xinliang David Lice030ac2016-06-22 23:20:59 +00001756 CanVecMem = DepChecker->areDepsSafe(
Adam Nemet139ffba2016-06-16 08:27:03 +00001757 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001758 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
Adam Nemet04563272015-02-01 16:56:15 +00001759
Xinliang David Lice030ac2016-06-22 23:20:59 +00001760 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001761 DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
Adam Nemet04563272015-02-01 16:56:15 +00001762
1763 // Clear the dependency checks. We assume they are not needed.
Xinliang David Lice030ac2016-06-22 23:20:59 +00001764 Accesses.resetDepChecks(*DepChecker);
Adam Nemet04563272015-02-01 16:56:15 +00001765
Xinliang David Lice030ac2016-06-22 23:20:59 +00001766 PtrRtChecking->reset();
1767 PtrRtChecking->Need = true;
Adam Nemet04563272015-02-01 16:56:15 +00001768
Xinliang David Li94734ee2016-07-01 05:59:55 +00001769 auto *SE = PSE->getSE();
Xinliang David Lice030ac2016-06-22 23:20:59 +00001770 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
Adam Nemet139ffba2016-06-16 08:27:03 +00001771 SymbolicStrides, true);
Silviu Baranga98a13712015-06-08 10:27:06 +00001772
Adam Nemet949e91a2015-03-10 19:12:41 +00001773 // Check that we found the bounds for the pointer.
Adam Nemetee614742015-07-09 22:17:38 +00001774 if (!CanDoRTIfNeeded) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001775 recordAnalysis("CantCheckMemDepsAtRunTime")
1776 << "cannot check memory dependencies at runtime";
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001777 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001778 CanVecMem = false;
1779 return;
1780 }
1781
Adam Nemet04563272015-02-01 16:56:15 +00001782 CanVecMem = true;
1783 }
1784 }
1785
Adam Nemet4bb90a72015-03-10 21:47:39 +00001786 if (CanVecMem)
1787 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
Xinliang David Lice030ac2016-06-22 23:20:59 +00001788 << (PtrRtChecking->Need ? "" : " don't")
Adam Nemet0f67c6c2015-07-09 22:17:41 +00001789 << " need runtime memory checks.\n");
Adam Nemet4bb90a72015-03-10 21:47:39 +00001790 else {
Adam Nemet877ccee2016-09-30 00:01:30 +00001791 recordAnalysis("UnsafeMemDep")
Adam Nemet0a77dfa2016-05-09 23:03:44 +00001792 << "unsafe dependent memory operations in loop. Use "
1793 "#pragma loop distribute(enable) to allow loop distribution "
1794 "to attempt to isolate the offending operations into a separate "
Adam Nemet877ccee2016-09-30 00:01:30 +00001795 "loop";
Adam Nemet4bb90a72015-03-10 21:47:39 +00001796 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1797 }
Adam Nemet04563272015-02-01 16:56:15 +00001798}
1799
Adam Nemet01abb2c2015-02-18 03:43:19 +00001800bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1801 DominatorTree *DT) {
Adam Nemet04563272015-02-01 16:56:15 +00001802 assert(TheLoop->contains(BB) && "Unknown block used");
1803
1804 // Blocks that do not dominate the latch need predication.
1805 BasicBlock* Latch = TheLoop->getLoopLatch();
1806 return !DT->dominates(BB, Latch);
1807}
1808
Adam Nemet877ccee2016-09-30 00:01:30 +00001809OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
1810 Instruction *I) {
Adam Nemetc9228532015-02-19 19:14:56 +00001811 assert(!Report && "Multiple reports generated");
Adam Nemet877ccee2016-09-30 00:01:30 +00001812
1813 Value *CodeRegion = TheLoop->getHeader();
1814 DebugLoc DL = TheLoop->getStartLoc();
1815
1816 if (I) {
1817 CodeRegion = I->getParent();
1818 // If there is no debug location attached to the instruction, revert back to
1819 // using the loop's.
1820 if (I->getDebugLoc())
1821 DL = I->getDebugLoc();
1822 }
1823
1824 Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
1825 CodeRegion);
1826 return *Report;
Adam Nemet04563272015-02-01 16:56:15 +00001827}
1828
Adam Nemet57ac7662015-02-19 19:15:21 +00001829bool LoopAccessInfo::isUniform(Value *V) const {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +00001830 auto *SE = PSE->getSE();
1831 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
1832 // never considered uniform.
1833 // TODO: Is this really what we want? Even without FP SCEV, we may want some
1834 // trivially loop-invariant FP values to be considered uniform.
1835 if (!SE->isSCEVable(V->getType()))
1836 return false;
1837 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
Adam Nemet04563272015-02-01 16:56:15 +00001838}
Adam Nemet7206d7a2015-02-06 18:31:04 +00001839
1840// FIXME: this function is currently a duplicate of the one in
1841// LoopVectorize.cpp.
1842static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1843 Instruction *Loc) {
1844 if (FirstInst)
1845 return FirstInst;
1846 if (Instruction *I = dyn_cast<Instruction>(V))
1847 return I->getParent() == Loc->getParent() ? I : nullptr;
1848 return nullptr;
1849}
1850
Benjamin Kramer039b1042015-10-28 13:54:36 +00001851namespace {
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +00001852
Adam Nemet4e533ef2015-08-21 23:19:57 +00001853/// \brief IR Values for the lower and upper bounds of a pointer evolution. We
1854/// need to use value-handles because SCEV expansion can invalidate previously
1855/// expanded values. Thus expansion of a pointer can invalidate the bounds for
1856/// a previous one.
Adam Nemet1da7df32015-07-26 05:32:14 +00001857struct PointerBounds {
Adam Nemet4e533ef2015-08-21 23:19:57 +00001858 TrackingVH<Value> Start;
1859 TrackingVH<Value> End;
Adam Nemet1da7df32015-07-26 05:32:14 +00001860};
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +00001861
Benjamin Kramer039b1042015-10-28 13:54:36 +00001862} // end anonymous namespace
Adam Nemet7206d7a2015-02-06 18:31:04 +00001863
Adam Nemet1da7df32015-07-26 05:32:14 +00001864/// \brief Expand code for the lower and upper bound of the pointer group \p CG
1865/// in \p TheLoop. \return the values for the bounds.
1866static PointerBounds
1867expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
1868 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
1869 const RuntimePointerChecking &PtrRtChecking) {
1870 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
1871 const SCEV *Sc = SE->getSCEV(Ptr);
1872
Keno Fischer92f377b2016-12-05 21:25:03 +00001873 unsigned AS = Ptr->getType()->getPointerAddressSpace();
1874 LLVMContext &Ctx = Loc->getContext();
1875
1876 // Use this type for pointer arithmetic.
1877 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1878
Adam Nemet1da7df32015-07-26 05:32:14 +00001879 if (SE->isLoopInvariant(Sc, TheLoop)) {
1880 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
1881 << "\n");
Keno Fischer92f377b2016-12-05 21:25:03 +00001882 // Ptr could be in the loop body. If so, expand a new one at the correct
1883 // location.
1884 Instruction *Inst = dyn_cast<Instruction>(Ptr);
1885 Value *NewPtr = (Inst && TheLoop->contains(Inst))
1886 ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
1887 : Ptr;
1888 return {NewPtr, NewPtr};
Adam Nemet1da7df32015-07-26 05:32:14 +00001889 } else {
Adam Nemet1da7df32015-07-26 05:32:14 +00001890 Value *Start = nullptr, *End = nullptr;
Adam Nemet1da7df32015-07-26 05:32:14 +00001891 DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1892 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1893 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1894 DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1895 return {Start, End};
1896 }
1897}
1898
1899/// \brief Turns a collection of checks into a collection of expanded upper and
1900/// lower bounds for both pointers in the check.
1901static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
1902 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
1903 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
1904 const RuntimePointerChecking &PtrRtChecking) {
1905 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1906
1907 // Here we're relying on the SCEV Expander's cache to only emit code for the
1908 // same bounds once.
David Majnemer2d006e72016-08-12 04:32:42 +00001909 transform(
1910 PointerChecks, std::back_inserter(ChecksWithBounds),
Adam Nemet1da7df32015-07-26 05:32:14 +00001911 [&](const RuntimePointerChecking::PointerCheck &Check) {
NAKAMURA Takumi94abbbd2015-07-27 01:35:30 +00001912 PointerBounds
1913 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
1914 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
1915 return std::make_pair(First, Second);
Adam Nemet1da7df32015-07-26 05:32:14 +00001916 });
1917
1918 return ChecksWithBounds;
1919}
1920
Adam Nemet5b0a4792015-08-11 00:09:37 +00001921std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
Adam Nemet1da7df32015-07-26 05:32:14 +00001922 Instruction *Loc,
1923 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
1924 const {
Adam Nemet1824e412016-07-13 22:18:51 +00001925 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
Xinliang David Li94734ee2016-07-01 05:59:55 +00001926 auto *SE = PSE->getSE();
Adam Nemet1824e412016-07-13 22:18:51 +00001927 SCEVExpander Exp(*SE, DL, "induction");
Adam Nemet1da7df32015-07-26 05:32:14 +00001928 auto ExpandedChecks =
Xinliang David Lice030ac2016-06-22 23:20:59 +00001929 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking);
Adam Nemet7206d7a2015-02-06 18:31:04 +00001930
1931 LLVMContext &Ctx = Loc->getContext();
Adam Nemet7206d7a2015-02-06 18:31:04 +00001932 Instruction *FirstInst = nullptr;
Adam Nemet7206d7a2015-02-06 18:31:04 +00001933 IRBuilder<> ChkBuilder(Loc);
1934 // Our instructions might fold to a constant.
1935 Value *MemoryRuntimeCheck = nullptr;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +00001936
Adam Nemet1da7df32015-07-26 05:32:14 +00001937 for (const auto &Check : ExpandedChecks) {
1938 const PointerBounds &A = Check.first, &B = Check.second;
Adam Nemetcdb791c2015-08-19 17:24:36 +00001939 // Check if two pointers (A and B) conflict where conflict is computed as:
1940 // start(A) <= end(B) && start(B) <= end(A)
Adam Nemet1da7df32015-07-26 05:32:14 +00001941 unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1942 unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
Adam Nemet7206d7a2015-02-06 18:31:04 +00001943
Adam Nemet1da7df32015-07-26 05:32:14 +00001944 assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1945 (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1946 "Trying to bounds check pointers with different address spaces");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001947
Adam Nemet1da7df32015-07-26 05:32:14 +00001948 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1949 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
Adam Nemet7206d7a2015-02-06 18:31:04 +00001950
Adam Nemet1da7df32015-07-26 05:32:14 +00001951 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1952 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1953 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
1954 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001955
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +00001956 // [A|B].Start points to the first accessed byte under base [A|B].
1957 // [A|B].End points to the last accessed byte, plus one.
1958 // There is no conflict when the intervals are disjoint:
1959 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1960 //
1961 // bound0 = (B.Start < A.End)
1962 // bound1 = (A.Start < B.End)
1963 // IsConflict = bound0 & bound1
1964 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
Adam Nemet1da7df32015-07-26 05:32:14 +00001965 FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +00001966 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
Adam Nemet1da7df32015-07-26 05:32:14 +00001967 FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
1968 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1969 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1970 if (MemoryRuntimeCheck) {
1971 IsConflict =
1972 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001973 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
Adam Nemet7206d7a2015-02-06 18:31:04 +00001974 }
Adam Nemet1da7df32015-07-26 05:32:14 +00001975 MemoryRuntimeCheck = IsConflict;
Adam Nemet7206d7a2015-02-06 18:31:04 +00001976 }
1977
Adam Nemet90fec842015-04-02 17:51:57 +00001978 if (!MemoryRuntimeCheck)
1979 return std::make_pair(nullptr, nullptr);
1980
Adam Nemet7206d7a2015-02-06 18:31:04 +00001981 // We have to do this trickery because the IRBuilder might fold the check to a
1982 // constant expression in which case there is no Instruction anchored in a
1983 // the block.
1984 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1985 ConstantInt::getTrue(Ctx));
1986 ChkBuilder.Insert(Check, "memcheck.conflict");
1987 FirstInst = getFirstInst(FirstInst, Check, Loc);
1988 return std::make_pair(FirstInst, Check);
1989}
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001990
Adam Nemet5b0a4792015-08-11 00:09:37 +00001991std::pair<Instruction *, Instruction *>
1992LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
Xinliang David Lice030ac2016-06-22 23:20:59 +00001993 if (!PtrRtChecking->Need)
Adam Nemet1da7df32015-07-26 05:32:14 +00001994 return std::make_pair(nullptr, nullptr);
1995
Xinliang David Lice030ac2016-06-22 23:20:59 +00001996 return addRuntimeChecks(Loc, PtrRtChecking->getChecks());
Adam Nemet1da7df32015-07-26 05:32:14 +00001997}
1998
Adam Nemetc953bb92016-06-16 22:57:55 +00001999void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2000 Value *Ptr = nullptr;
2001 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
2002 Ptr = LI->getPointerOperand();
2003 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
2004 Ptr = SI->getPointerOperand();
2005 else
2006 return;
2007
Xinliang David Li94734ee2016-07-01 05:59:55 +00002008 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
Adam Nemetc953bb92016-06-16 22:57:55 +00002009 if (!Stride)
2010 return;
2011
2012 DEBUG(dbgs() << "LAA: Found a strided access that we can version");
2013 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
2014 SymbolicStrides[Ptr] = Stride;
2015 StrideSet.insert(Stride);
2016}
2017
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002018LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002019 const TargetLibraryInfo *TLI, AliasAnalysis *AA,
Adam Nemeta9f09c62016-06-17 22:35:41 +00002020 DominatorTree *DT, LoopInfo *LI)
Xinliang David Li94734ee2016-07-01 05:59:55 +00002021 : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)),
Xinliang David Lice030ac2016-06-22 23:20:59 +00002022 PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)),
Xinliang David Li94734ee2016-07-01 05:59:55 +00002023 DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
Adam Nemet7da74ab2016-07-13 22:36:35 +00002024 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
2025 StoreToLoopInvariantAddress(false) {
Adam Nemet929c38e2015-02-19 19:15:10 +00002026 if (canAnalyzeLoop())
Adam Nemet7da74ab2016-07-13 22:36:35 +00002027 analyzeLoop(AA, LI, TLI, DT);
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002028}
2029
Adam Nemete91cc6e2015-02-19 19:15:19 +00002030void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2031 if (CanVecMem) {
Adam Nemet4ad38b62016-05-13 22:49:09 +00002032 OS.indent(Depth) << "Memory dependences are safe";
David Majnemer7afb46d2016-07-07 06:24:36 +00002033 if (MaxSafeDepDistBytes != -1ULL)
Adam Nemetc62e5542016-05-13 22:49:13 +00002034 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
2035 << " bytes";
Xinliang David Lice030ac2016-06-22 23:20:59 +00002036 if (PtrRtChecking->Need)
Adam Nemet4ad38b62016-05-13 22:49:09 +00002037 OS << " with run-time checks";
2038 OS << "\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00002039 }
2040
2041 if (Report)
Adam Nemet877ccee2016-09-30 00:01:30 +00002042 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00002043
Xinliang David Lice030ac2016-06-22 23:20:59 +00002044 if (auto *Dependences = DepChecker->getDependences()) {
Adam Nemeta2df7502015-11-03 21:39:52 +00002045 OS.indent(Depth) << "Dependences:\n";
2046 for (auto &Dep : *Dependences) {
Xinliang David Lice030ac2016-06-22 23:20:59 +00002047 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
Adam Nemet58913d62015-03-10 17:40:43 +00002048 OS << "\n";
2049 }
2050 } else
Adam Nemeta2df7502015-11-03 21:39:52 +00002051 OS.indent(Depth) << "Too many dependences, not recorded\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00002052
2053 // List the pair of accesses need run-time checks to prove independence.
Xinliang David Lice030ac2016-06-22 23:20:59 +00002054 PtrRtChecking->print(OS, Depth);
Adam Nemete91cc6e2015-02-19 19:15:19 +00002055 OS << "\n";
Adam Nemetc3384322015-05-18 15:36:57 +00002056
2057 OS.indent(Depth) << "Store to invariant address was "
2058 << (StoreToLoopInvariantAddress ? "" : "not ")
2059 << "found in loop.\n";
Silviu Barangae3c05342015-11-02 14:41:02 +00002060
2061 OS.indent(Depth) << "SCEV assumptions:\n";
Xinliang David Li94734ee2016-07-01 05:59:55 +00002062 PSE->getUnionPredicate().print(OS, Depth);
Silviu Barangab77365b2016-04-14 16:08:45 +00002063
2064 OS << "\n";
2065
2066 OS.indent(Depth) << "Expressions re-written:\n";
Xinliang David Li94734ee2016-07-01 05:59:55 +00002067 PSE->print(OS, Depth);
Adam Nemete91cc6e2015-02-19 19:15:19 +00002068}
2069
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002070const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002071 auto &LAI = LoopAccessInfoMap[L];
2072
Adam Nemet1824e412016-07-13 22:18:51 +00002073 if (!LAI)
2074 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
2075
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002076 return *LAI.get();
2077}
2078
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002079void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
2080 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
Xinliang David Liecde1c72016-06-09 03:22:39 +00002081
Adam Nemete91cc6e2015-02-19 19:15:19 +00002082 for (Loop *TopLevelLoop : *LI)
2083 for (Loop *L : depth_first(TopLevelLoop)) {
2084 OS.indent(2) << L->getHeader()->getName() << ":\n";
Adam Nemetbdbc5222016-06-16 08:26:56 +00002085 auto &LAI = LAA.getInfo(L);
Adam Nemete91cc6e2015-02-19 19:15:19 +00002086 LAI.print(OS, 4);
2087 }
2088}
2089
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002090bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
Xinliang David Liecde1c72016-06-09 03:22:39 +00002091 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002092 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
Xinliang David Liecde1c72016-06-09 03:22:39 +00002093 TLI = TLIP ? &TLIP->getTLI() : nullptr;
2094 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2095 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2096 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002097
2098 return false;
2099}
2100
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002101void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002102 AU.addRequired<ScalarEvolutionWrapperPass>();
Chandler Carruth7b560d42015-09-09 17:55:00 +00002103 AU.addRequired<AAResultsWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002104 AU.addRequired<DominatorTreeWrapperPass>();
Adam Nemete91cc6e2015-02-19 19:15:19 +00002105 AU.addRequired<LoopInfoWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002106
2107 AU.setPreservesAll();
2108}
2109
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002110char LoopAccessLegacyAnalysis::ID = 0;
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002111static const char laa_name[] = "Loop Access Analysis";
2112#define LAA_NAME "loop-accesses"
2113
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002114INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
Chandler Carruth7b560d42015-09-09 17:55:00 +00002115INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002116INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002117INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Adam Nemete91cc6e2015-02-19 19:15:19 +00002118INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002119INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002120
Chandler Carruthdab4eae2016-11-23 17:53:26 +00002121AnalysisKey LoopAccessAnalysis::Key;
Xinliang David Li8a021312016-07-02 21:18:40 +00002122
Chandler Carruth410eaeb2017-01-11 06:23:21 +00002123LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM,
2124 LoopStandardAnalysisResults &AR) {
2125 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI);
Xinliang David Li8a021312016-07-02 21:18:40 +00002126}
2127
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002128namespace llvm {
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +00002129
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002130 Pass *createLAAPass() {
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002131 return new LoopAccessLegacyAnalysis();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002132 }
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +00002133
2134} // end namespace llvm