blob: 78a34f01bab9e8ff7557e404f9b758825680c072 [file] [log] [blame]
Eugene Zelenko32a40562017-09-11 23:00:48 +00001//===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
Brendon Cahoon254f8892016-07-29 16:44:44 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
11//
12// Software pipelining (SWP) is an instruction scheduling technique for loops
Roorda, Jan-Willem20a0e552018-03-06 16:26:01 +000013// that overlap loop iterations and exploits ILP via a compiler transformation.
Brendon Cahoon254f8892016-07-29 16:44:44 +000014//
15// Swing Modulo Scheduling is an implementation of software pipelining
16// that generates schedules that are near optimal in terms of initiation
17// interval, register requirements, and stage count. See the papers:
18//
19// "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
20// A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996
21// Conference on Parallel Architectures and Compilation Techiniques.
22//
23// "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
24// Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
25// Transactions on Computers, Vol. 50, No. 3, 2001.
26//
27// "An Implementation of Swing Modulo Scheduling With Extensions for
28// Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
29// Urbana-Chambpain, 2005.
30//
31//
32// The SMS algorithm consists of three main steps after computing the minimal
33// initiation interval (MII).
34// 1) Analyze the dependence graph and compute information about each
35// instruction in the graph.
36// 2) Order the nodes (instructions) by priority based upon the heuristics
37// described in the algorithm.
38// 3) Attempt to schedule the nodes in the specified order using the MII.
39//
40// This SMS implementation is a target-independent back-end pass. When enabled,
41// the pass runs just prior to the register allocation pass, while the machine
42// IR is in SSA form. If software pipelining is successful, then the original
43// loop is replaced by the optimized loop. The optimized loop contains one or
44// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
45// the instructions cannot be scheduled in a given MII, we increase the MII by
46// one and try again.
47//
48// The SMS implementation is an extension of the ScheduleDAGInstrs class. We
49// represent loop carried dependences in the DAG as order edges to the Phi
50// nodes. We also perform several passes over the DAG to eliminate unnecessary
51// edges that inhibit the ability to pipeline. The implementation uses the
52// DFAPacketizer class to compute the minimum initiation interval and the check
53// where an instruction may be inserted in the pipelined schedule.
54//
55// In order for the SMS pass to work, several target specific hooks need to be
56// implemented to get information about the loop structure and to rewrite
57// instructions.
58//
59//===----------------------------------------------------------------------===//
60
Eugene Zelenkocdc71612016-08-11 17:20:18 +000061#include "llvm/ADT/ArrayRef.h"
62#include "llvm/ADT/BitVector.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000063#include "llvm/ADT/DenseMap.h"
64#include "llvm/ADT/MapVector.h"
65#include "llvm/ADT/PriorityQueue.h"
66#include "llvm/ADT/SetVector.h"
67#include "llvm/ADT/SmallPtrSet.h"
68#include "llvm/ADT/SmallSet.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000069#include "llvm/ADT/SmallVector.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000070#include "llvm/ADT/Statistic.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000071#include "llvm/ADT/iterator_range.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000072#include "llvm/Analysis/AliasAnalysis.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000073#include "llvm/Analysis/MemoryLocation.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000074#include "llvm/Analysis/ValueTracking.h"
75#include "llvm/CodeGen/DFAPacketizer.h"
Matthias Braunf8422972017-12-13 02:51:04 +000076#include "llvm/CodeGen/LiveIntervals.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000077#include "llvm/CodeGen/MachineBasicBlock.h"
78#include "llvm/CodeGen/MachineDominators.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000079#include "llvm/CodeGen/MachineFunction.h"
80#include "llvm/CodeGen/MachineFunctionPass.h"
81#include "llvm/CodeGen/MachineInstr.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000082#include "llvm/CodeGen/MachineInstrBuilder.h"
83#include "llvm/CodeGen/MachineLoopInfo.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000084#include "llvm/CodeGen/MachineMemOperand.h"
85#include "llvm/CodeGen/MachineOperand.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000086#include "llvm/CodeGen/MachineRegisterInfo.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000087#include "llvm/CodeGen/RegisterClassInfo.h"
88#include "llvm/CodeGen/RegisterPressure.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000089#include "llvm/CodeGen/ScheduleDAG.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000090#include "llvm/CodeGen/ScheduleDAGInstrs.h"
Krzysztof Parzyszek88391242016-12-22 19:21:20 +000091#include "llvm/CodeGen/ScheduleDAGMutation.h"
David Blaikie3f833ed2017-11-08 01:01:31 +000092#include "llvm/CodeGen/TargetInstrInfo.h"
David Blaikieb3bde2e2017-11-17 01:07:10 +000093#include "llvm/CodeGen/TargetOpcodes.h"
94#include "llvm/CodeGen/TargetRegisterInfo.h"
95#include "llvm/CodeGen/TargetSubtargetInfo.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000096#include "llvm/IR/Attributes.h"
97#include "llvm/IR/DebugLoc.h"
Eugene Zelenko32a40562017-09-11 23:00:48 +000098#include "llvm/IR/Function.h"
99#include "llvm/MC/LaneBitmask.h"
100#include "llvm/MC/MCInstrDesc.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000101#include "llvm/MC/MCInstrItineraries.h"
Eugene Zelenko32a40562017-09-11 23:00:48 +0000102#include "llvm/MC/MCRegisterInfo.h"
103#include "llvm/Pass.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000104#include "llvm/Support/CommandLine.h"
Eugene Zelenko32a40562017-09-11 23:00:48 +0000105#include "llvm/Support/Compiler.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000106#include "llvm/Support/Debug.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000107#include "llvm/Support/MathExtras.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000108#include "llvm/Support/raw_ostream.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000109#include <algorithm>
110#include <cassert>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000111#include <climits>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000112#include <cstdint>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000113#include <deque>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000114#include <functional>
115#include <iterator>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000116#include <map>
Eugene Zelenko32a40562017-09-11 23:00:48 +0000117#include <memory>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000118#include <tuple>
119#include <utility>
120#include <vector>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000121
122using namespace llvm;
123
124#define DEBUG_TYPE "pipeliner"
125
126STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
127STATISTIC(NumPipelined, "Number of loops software pipelined");
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000128STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
Brendon Cahoon254f8892016-07-29 16:44:44 +0000129
130/// A command line option to turn software pipelining on or off.
Benjamin Kramerb7d33112016-08-06 11:13:10 +0000131static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
132 cl::ZeroOrMore,
133 cl::desc("Enable Software Pipelining"));
Brendon Cahoon254f8892016-07-29 16:44:44 +0000134
135/// A command line option to enable SWP at -Os.
136static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
137 cl::desc("Enable SWP at Os."), cl::Hidden,
138 cl::init(false));
139
140/// A command line argument to limit minimum initial interval for pipelining.
141static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
Hiroshi Inoue8f976ba2018-01-17 12:29:38 +0000142 cl::desc("Size limit for the MII."),
Brendon Cahoon254f8892016-07-29 16:44:44 +0000143 cl::Hidden, cl::init(27));
144
145/// A command line argument to limit the number of stages in the pipeline.
146static cl::opt<int>
147 SwpMaxStages("pipeliner-max-stages",
148 cl::desc("Maximum stages allowed in the generated scheduled."),
149 cl::Hidden, cl::init(3));
150
151/// A command line option to disable the pruning of chain dependences due to
152/// an unrelated Phi.
153static cl::opt<bool>
154 SwpPruneDeps("pipeliner-prune-deps",
155 cl::desc("Prune dependences between unrelated Phi nodes."),
156 cl::Hidden, cl::init(true));
157
158/// A command line option to disable the pruning of loop carried order
159/// dependences.
160static cl::opt<bool>
161 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
162 cl::desc("Prune loop carried order dependences."),
163 cl::Hidden, cl::init(true));
164
165#ifndef NDEBUG
166static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
167#endif
168
169static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
170 cl::ReallyHidden, cl::init(false),
171 cl::ZeroOrMore, cl::desc("Ignore RecMII"));
172
173namespace {
174
175class NodeSet;
176class SMSchedule;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000177
178/// The main class in the implementation of the target independent
179/// software pipeliner pass.
180class MachinePipeliner : public MachineFunctionPass {
181public:
182 MachineFunction *MF = nullptr;
183 const MachineLoopInfo *MLI = nullptr;
184 const MachineDominatorTree *MDT = nullptr;
185 const InstrItineraryData *InstrItins;
186 const TargetInstrInfo *TII = nullptr;
187 RegisterClassInfo RegClassInfo;
188
189#ifndef NDEBUG
190 static int NumTries;
191#endif
Eugene Zelenko32a40562017-09-11 23:00:48 +0000192
Brendon Cahoon254f8892016-07-29 16:44:44 +0000193 /// Cache the target analysis information about the loop.
194 struct LoopInfo {
195 MachineBasicBlock *TBB = nullptr;
196 MachineBasicBlock *FBB = nullptr;
197 SmallVector<MachineOperand, 4> BrCond;
198 MachineInstr *LoopInductionVar = nullptr;
199 MachineInstr *LoopCompare = nullptr;
200 };
201 LoopInfo LI;
202
203 static char ID;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000204
Brendon Cahoon254f8892016-07-29 16:44:44 +0000205 MachinePipeliner() : MachineFunctionPass(ID) {
206 initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
207 }
208
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000209 bool runOnMachineFunction(MachineFunction &MF) override;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000210
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000211 void getAnalysisUsage(AnalysisUsage &AU) const override {
Brendon Cahoon254f8892016-07-29 16:44:44 +0000212 AU.addRequired<AAResultsWrapperPass>();
213 AU.addPreserved<AAResultsWrapperPass>();
214 AU.addRequired<MachineLoopInfo>();
215 AU.addRequired<MachineDominatorTree>();
216 AU.addRequired<LiveIntervals>();
217 MachineFunctionPass::getAnalysisUsage(AU);
218 }
219
220private:
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000221 void preprocessPhiNodes(MachineBasicBlock &B);
Brendon Cahoon254f8892016-07-29 16:44:44 +0000222 bool canPipelineLoop(MachineLoop &L);
223 bool scheduleLoop(MachineLoop &L);
224 bool swingModuloScheduler(MachineLoop &L);
225};
226
227/// This class builds the dependence graph for the instructions in a loop,
228/// and attempts to schedule the instructions using the SMS algorithm.
229class SwingSchedulerDAG : public ScheduleDAGInstrs {
230 MachinePipeliner &Pass;
231 /// The minimum initiation interval between iterations for this schedule.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000232 unsigned MII = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000233 /// Set to true if a valid pipelined schedule is found for the loop.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000234 bool Scheduled = false;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000235 MachineLoop &Loop;
236 LiveIntervals &LIS;
237 const RegisterClassInfo &RegClassInfo;
238
239 /// A toplogical ordering of the SUnits, which is needed for changing
240 /// dependences and iterating over the SUnits.
241 ScheduleDAGTopologicalSort Topo;
242
243 struct NodeInfo {
Eugene Zelenko32a40562017-09-11 23:00:48 +0000244 int ASAP = 0;
245 int ALAP = 0;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000246 int ZeroLatencyDepth = 0;
247 int ZeroLatencyHeight = 0;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000248
249 NodeInfo() = default;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000250 };
251 /// Computed properties for each node in the graph.
252 std::vector<NodeInfo> ScheduleInfo;
253
254 enum OrderKind { BottomUp = 0, TopDown = 1 };
255 /// Computed node ordering for scheduling.
256 SetVector<SUnit *> NodeOrder;
257
Eugene Zelenko32a40562017-09-11 23:00:48 +0000258 using NodeSetType = SmallVector<NodeSet, 8>;
259 using ValueMapTy = DenseMap<unsigned, unsigned>;
260 using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>;
261 using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000262
263 /// Instructions to change when emitting the final schedule.
264 DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;
265
266 /// We may create a new instruction, so remember it because it
267 /// must be deleted when the pass is finished.
268 SmallPtrSet<MachineInstr *, 4> NewMIs;
269
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000270 /// Ordered list of DAG postprocessing steps.
271 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
272
Brendon Cahoon254f8892016-07-29 16:44:44 +0000273 /// Helper class to implement Johnson's circuit finding algorithm.
274 class Circuits {
275 std::vector<SUnit> &SUnits;
276 SetVector<SUnit *> Stack;
277 BitVector Blocked;
278 SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
279 SmallVector<SmallVector<int, 4>, 16> AdjK;
280 unsigned NumPaths;
281 static unsigned MaxPaths;
282
283 public:
284 Circuits(std::vector<SUnit> &SUs)
Eugene Zelenko32a40562017-09-11 23:00:48 +0000285 : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {}
286
Brendon Cahoon254f8892016-07-29 16:44:44 +0000287 /// Reset the data structures used in the circuit algorithm.
288 void reset() {
289 Stack.clear();
290 Blocked.reset();
291 B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
292 NumPaths = 0;
293 }
Eugene Zelenko32a40562017-09-11 23:00:48 +0000294
Brendon Cahoon254f8892016-07-29 16:44:44 +0000295 void createAdjacencyStructure(SwingSchedulerDAG *DAG);
296 bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
297 void unblock(int U);
298 };
299
300public:
301 SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
302 const RegisterClassInfo &rci)
Eugene Zelenko32a40562017-09-11 23:00:48 +0000303 : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis),
304 RegClassInfo(rci), Topo(SUnits, &ExitSU) {
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000305 P.MF->getSubtarget().getSMSMutations(Mutations);
306 }
Brendon Cahoon254f8892016-07-29 16:44:44 +0000307
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000308 void schedule() override;
309 void finishBlock() override;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000310
311 /// Return true if the loop kernel has been scheduled.
312 bool hasNewSchedule() { return Scheduled; }
313
314 /// Return the earliest time an instruction may be scheduled.
315 int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }
316
317 /// Return the latest time an instruction my be scheduled.
318 int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }
319
Hiroshi Inoue8f976ba2018-01-17 12:29:38 +0000320 /// The mobility function, which the number of slots in which
Brendon Cahoon254f8892016-07-29 16:44:44 +0000321 /// an instruction may be scheduled.
322 int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }
323
324 /// The depth, in the dependence graph, for a node.
325 int getDepth(SUnit *Node) { return Node->getDepth(); }
326
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000327 /// The maximum unweighted length of a path from an arbitrary node to the
328 /// given node in which each edge has latency 0
329 int getZeroLatencyDepth(SUnit *Node) {
330 return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth;
331 }
332
Brendon Cahoon254f8892016-07-29 16:44:44 +0000333 /// The height, in the dependence graph, for a node.
334 int getHeight(SUnit *Node) { return Node->getHeight(); }
335
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000336 /// The maximum unweighted length of a path from the given node to an
337 /// arbitrary node in which each edge has latency 0
338 int getZeroLatencyHeight(SUnit *Node) {
339 return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight;
340 }
341
Brendon Cahoon254f8892016-07-29 16:44:44 +0000342 /// Return true if the dependence is a back-edge in the data dependence graph.
343 /// Since the DAG doesn't contain cycles, we represent a cycle in the graph
344 /// using an anti dependence from a Phi to an instruction.
345 bool isBackedge(SUnit *Source, const SDep &Dep) {
346 if (Dep.getKind() != SDep::Anti)
347 return false;
348 return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
349 }
350
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +0000351 bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true);
Brendon Cahoon254f8892016-07-29 16:44:44 +0000352
Brendon Cahoon254f8892016-07-29 16:44:44 +0000353 /// The distance function, which indicates that operation V of iteration I
354 /// depends on operations U of iteration I-distance.
355 unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
356 // Instructions that feed a Phi have a distance of 1. Computing larger
357 // values for arrays requires data dependence information.
358 if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
359 return 1;
360 return 0;
361 }
362
363 /// Set the Minimum Initiation Interval for this schedule attempt.
364 void setMII(unsigned mii) { MII = mii; }
365
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +0000366 void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule);
367
368 void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs);
Brendon Cahoon254f8892016-07-29 16:44:44 +0000369
370 /// Return the new base register that was stored away for the changed
371 /// instruction.
372 unsigned getInstrBaseReg(SUnit *SU) {
373 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
374 InstrChanges.find(SU);
375 if (It != InstrChanges.end())
376 return It->second.first;
377 return 0;
378 }
379
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000380 void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
381 Mutations.push_back(std::move(Mutation));
382 }
383
Brendon Cahoon254f8892016-07-29 16:44:44 +0000384private:
385 void addLoopCarriedDependences(AliasAnalysis *AA);
386 void updatePhiDependences();
387 void changeDependences();
388 unsigned calculateResMII();
389 unsigned calculateRecMII(NodeSetType &RecNodeSets);
390 void findCircuits(NodeSetType &NodeSets);
391 void fuseRecs(NodeSetType &NodeSets);
392 void removeDuplicateNodes(NodeSetType &NodeSets);
393 void computeNodeFunctions(NodeSetType &NodeSets);
394 void registerPressureFilter(NodeSetType &NodeSets);
395 void colocateNodeSets(NodeSetType &NodeSets);
396 void checkNodeSets(NodeSetType &NodeSets);
397 void groupRemainingNodes(NodeSetType &NodeSets);
398 void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
399 SetVector<SUnit *> &NodesAdded);
400 void computeNodeOrder(NodeSetType &NodeSets);
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000401 void checkValidNodeOrder(const NodeSetType &Circuits) const;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000402 bool schedulePipeline(SMSchedule &Schedule);
403 void generatePipelinedLoop(SMSchedule &Schedule);
404 void generateProlog(SMSchedule &Schedule, unsigned LastStage,
405 MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
406 MBBVectorTy &PrologBBs);
407 void generateEpilog(SMSchedule &Schedule, unsigned LastStage,
408 MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
409 MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs);
410 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
411 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
412 SMSchedule &Schedule, ValueMapTy *VRMap,
413 InstrMapTy &InstrMap, unsigned LastStageNum,
414 unsigned CurStageNum, bool IsLast);
415 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
416 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
417 SMSchedule &Schedule, ValueMapTy *VRMap,
418 InstrMapTy &InstrMap, unsigned LastStageNum,
419 unsigned CurStageNum, bool IsLast);
420 void removeDeadInstructions(MachineBasicBlock *KernelBB,
421 MBBVectorTy &EpilogBBs);
422 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
423 SMSchedule &Schedule);
424 void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB,
425 MBBVectorTy &EpilogBBs, SMSchedule &Schedule,
426 ValueMapTy *VRMap);
427 bool computeDelta(MachineInstr &MI, unsigned &Delta);
428 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
429 unsigned Num);
430 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
431 unsigned InstStageNum);
432 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
433 unsigned InstStageNum,
434 SMSchedule &Schedule);
435 void updateInstruction(MachineInstr *NewMI, bool LastDef,
436 unsigned CurStageNum, unsigned InstStageNum,
437 SMSchedule &Schedule, ValueMapTy *VRMap);
438 MachineInstr *findDefInLoop(unsigned Reg);
439 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
440 unsigned LoopStage, ValueMapTy *VRMap,
441 MachineBasicBlock *BB);
442 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
443 SMSchedule &Schedule, ValueMapTy *VRMap,
444 InstrMapTy &InstrMap);
445 void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule,
446 InstrMapTy &InstrMap, unsigned CurStageNum,
447 unsigned PhiNum, MachineInstr *Phi,
448 unsigned OldReg, unsigned NewReg,
449 unsigned PrevReg = 0);
450 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
451 unsigned &OffsetPos, unsigned &NewBase,
452 int64_t &NewOffset);
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000453 void postprocessDAG();
Brendon Cahoon254f8892016-07-29 16:44:44 +0000454};
455
456/// A NodeSet contains a set of SUnit DAG nodes with additional information
457/// that assigns a priority to the set.
458class NodeSet {
459 SetVector<SUnit *> Nodes;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000460 bool HasRecurrence = false;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000461 unsigned RecMII = 0;
462 int MaxMOV = 0;
463 int MaxDepth = 0;
464 unsigned Colocate = 0;
465 SUnit *ExceedPressure = nullptr;
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000466 unsigned Latency = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000467
468public:
Eugene Zelenko32a40562017-09-11 23:00:48 +0000469 using iterator = SetVector<SUnit *>::const_iterator;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000470
Eugene Zelenko32a40562017-09-11 23:00:48 +0000471 NodeSet() = default;
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000472 NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {
473 Latency = 0;
474 for (unsigned i = 0, e = Nodes.size(); i < e; ++i)
475 for (const SDep &Succ : Nodes[i]->Succs)
476 if (Nodes.count(Succ.getSUnit()))
477 Latency += Succ.getLatency();
478 }
Brendon Cahoon254f8892016-07-29 16:44:44 +0000479
480 bool insert(SUnit *SU) { return Nodes.insert(SU); }
481
482 void insert(iterator S, iterator E) { Nodes.insert(S, E); }
483
484 template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
485 return Nodes.remove_if(P);
486 }
487
488 unsigned count(SUnit *SU) const { return Nodes.count(SU); }
489
490 bool hasRecurrence() { return HasRecurrence; };
491
492 unsigned size() const { return Nodes.size(); }
493
494 bool empty() const { return Nodes.empty(); }
495
496 SUnit *getNode(unsigned i) const { return Nodes[i]; };
497
498 void setRecMII(unsigned mii) { RecMII = mii; };
499
500 void setColocate(unsigned c) { Colocate = c; };
501
502 void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }
503
504 bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }
505
506 int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }
507
508 int getRecMII() { return RecMII; }
509
510 /// Summarize node functions for the entire node set.
511 void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
512 for (SUnit *SU : *this) {
513 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
514 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
515 }
516 }
517
518 void clear() {
519 Nodes.clear();
520 RecMII = 0;
521 HasRecurrence = false;
522 MaxMOV = 0;
523 MaxDepth = 0;
524 Colocate = 0;
525 ExceedPressure = nullptr;
526 }
527
528 operator SetVector<SUnit *> &() { return Nodes; }
529
530 /// Sort the node sets by importance. First, rank them by recurrence MII,
531 /// then by mobility (least mobile done first), and finally by depth.
532 /// Each node set may contain a colocate value which is used as the first
533 /// tie breaker, if it's set.
534 bool operator>(const NodeSet &RHS) const {
535 if (RecMII == RHS.RecMII) {
536 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
537 return Colocate < RHS.Colocate;
538 if (MaxMOV == RHS.MaxMOV)
539 return MaxDepth > RHS.MaxDepth;
540 return MaxMOV < RHS.MaxMOV;
541 }
542 return RecMII > RHS.RecMII;
543 }
544
545 bool operator==(const NodeSet &RHS) const {
546 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
547 MaxDepth == RHS.MaxDepth;
548 }
549
550 bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }
551
552 iterator begin() { return Nodes.begin(); }
553 iterator end() { return Nodes.end(); }
554
555 void print(raw_ostream &os) const {
556 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
557 << " depth " << MaxDepth << " col " << Colocate << "\n";
558 for (const auto &I : Nodes)
559 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
560 os << "\n";
561 }
562
Aaron Ballman615eb472017-10-15 14:32:27 +0000563#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Matthias Braun8c209aa2017-01-28 02:02:38 +0000564 LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
565#endif
Brendon Cahoon254f8892016-07-29 16:44:44 +0000566};
567
568/// This class repesents the scheduled code. The main data structure is a
569/// map from scheduled cycle to instructions. During scheduling, the
570/// data structure explicitly represents all stages/iterations. When
571/// the algorithm finshes, the schedule is collapsed into a single stage,
572/// which represents instructions from different loop iterations.
573///
574/// The SMS algorithm allows negative values for cycles, so the first cycle
575/// in the schedule is the smallest cycle value.
576class SMSchedule {
577private:
578 /// Map from execution cycle to instructions.
579 DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;
580
581 /// Map from instruction to execution cycle.
582 std::map<SUnit *, int> InstrToCycle;
583
584 /// Map for each register and the max difference between its uses and def.
585 /// The first element in the pair is the max difference in stages. The
586 /// second is true if the register defines a Phi value and loop value is
587 /// scheduled before the Phi.
588 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
589
590 /// Keep track of the first cycle value in the schedule. It starts
591 /// as zero, but the algorithm allows negative values.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000592 int FirstCycle = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000593
594 /// Keep track of the last cycle value in the schedule.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000595 int LastCycle = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000596
597 /// The initiation interval (II) for the schedule.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000598 int InitiationInterval = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000599
600 /// Target machine information.
601 const TargetSubtargetInfo &ST;
602
603 /// Virtual register information.
604 MachineRegisterInfo &MRI;
605
Benjamin Kramer3f6260c2017-02-16 20:26:51 +0000606 std::unique_ptr<DFAPacketizer> Resources;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000607
608public:
609 SMSchedule(MachineFunction *mf)
610 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
Eugene Zelenko32a40562017-09-11 23:00:48 +0000611 Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {}
Brendon Cahoon254f8892016-07-29 16:44:44 +0000612
Brendon Cahoon254f8892016-07-29 16:44:44 +0000613 void reset() {
614 ScheduledInstrs.clear();
615 InstrToCycle.clear();
616 RegToStageDiff.clear();
617 FirstCycle = 0;
618 LastCycle = 0;
619 InitiationInterval = 0;
620 }
621
622 /// Set the initiation interval for this schedule.
623 void setInitiationInterval(int ii) { InitiationInterval = ii; }
624
625 /// Return the first cycle in the completed schedule. This
626 /// can be a negative value.
627 int getFirstCycle() const { return FirstCycle; }
628
629 /// Return the last cycle in the finalized schedule.
630 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
631
632 /// Return the cycle of the earliest scheduled instruction in the dependence
633 /// chain.
634 int earliestCycleInChain(const SDep &Dep);
635
636 /// Return the cycle of the latest scheduled instruction in the dependence
637 /// chain.
638 int latestCycleInChain(const SDep &Dep);
639
640 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
641 int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
642 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
643
644 /// Iterators for the cycle to instruction map.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000645 using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator;
646 using const_sched_iterator =
647 DenseMap<int, std::deque<SUnit *>>::const_iterator;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000648
649 /// Return true if the instruction is scheduled at the specified stage.
650 bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
651 return (stageScheduled(SU) == (int)StageNum);
652 }
653
654 /// Return the stage for a scheduled instruction. Return -1 if
655 /// the instruction has not been scheduled.
656 int stageScheduled(SUnit *SU) const {
657 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
658 if (it == InstrToCycle.end())
659 return -1;
660 return (it->second - FirstCycle) / InitiationInterval;
661 }
662
663 /// Return the cycle for a scheduled instruction. This function normalizes
664 /// the first cycle to be 0.
665 unsigned cycleScheduled(SUnit *SU) const {
666 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
667 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
668 return (it->second - FirstCycle) % InitiationInterval;
669 }
670
671 /// Return the maximum stage count needed for this schedule.
672 unsigned getMaxStageCount() {
673 return (LastCycle - FirstCycle) / InitiationInterval;
674 }
675
676 /// Return the max. number of stages/iterations that can occur between a
677 /// register definition and its uses.
678 unsigned getStagesForReg(int Reg, unsigned CurStage) {
679 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
680 if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second)
681 return 1;
682 return Stages.first;
683 }
684
685 /// The number of stages for a Phi is a little different than other
686 /// instructions. The minimum value computed in RegToStageDiff is 1
687 /// because we assume the Phi is needed for at least 1 iteration.
688 /// This is not the case if the loop value is scheduled prior to the
689 /// Phi in the same stage. This function returns the number of stages
690 /// or iterations needed between the Phi definition and any uses.
691 unsigned getStagesForPhi(int Reg) {
692 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
693 if (Stages.second)
694 return Stages.first;
695 return Stages.first - 1;
696 }
697
698 /// Return the instructions that are scheduled at the specified cycle.
699 std::deque<SUnit *> &getInstructions(int cycle) {
700 return ScheduledInstrs[cycle];
701 }
702
703 bool isValidSchedule(SwingSchedulerDAG *SSD);
704 void finalizeSchedule(SwingSchedulerDAG *SSD);
705 bool orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
706 std::deque<SUnit *> &Insts);
707 bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
708 bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst,
709 MachineOperand &MO);
710 void print(raw_ostream &os) const;
711 void dump() const;
712};
713
714} // end anonymous namespace
715
716unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
717char MachinePipeliner::ID = 0;
718#ifndef NDEBUG
719int MachinePipeliner::NumTries = 0;
720#endif
721char &llvm::MachinePipelinerID = MachinePipeliner::ID;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000722
Matthias Braun1527baa2017-05-25 21:26:32 +0000723INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
Brendon Cahoon254f8892016-07-29 16:44:44 +0000724 "Modulo Software Pipelining", false, false)
725INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
726INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
727INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
728INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
Matthias Braun1527baa2017-05-25 21:26:32 +0000729INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
Brendon Cahoon254f8892016-07-29 16:44:44 +0000730 "Modulo Software Pipelining", false, false)
731
732/// The "main" function for implementing Swing Modulo Scheduling.
733bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
Matthias Braunf1caa282017-12-15 22:22:58 +0000734 if (skipFunction(mf.getFunction()))
Brendon Cahoon254f8892016-07-29 16:44:44 +0000735 return false;
736
737 if (!EnableSWP)
738 return false;
739
Matthias Braunf1caa282017-12-15 22:22:58 +0000740 if (mf.getFunction().getAttributes().hasAttribute(
Reid Klecknerb5180542017-03-21 16:57:19 +0000741 AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
Brendon Cahoon254f8892016-07-29 16:44:44 +0000742 !EnableSWPOptSize.getPosition())
743 return false;
744
745 MF = &mf;
746 MLI = &getAnalysis<MachineLoopInfo>();
747 MDT = &getAnalysis<MachineDominatorTree>();
748 TII = MF->getSubtarget().getInstrInfo();
749 RegClassInfo.runOnMachineFunction(*MF);
750
751 for (auto &L : *MLI)
752 scheduleLoop(*L);
753
754 return false;
755}
756
757/// Attempt to perform the SMS algorithm on the specified loop. This function is
758/// the main entry point for the algorithm. The function identifies candidate
759/// loops, calculates the minimum initiation interval, and attempts to schedule
760/// the loop.
761bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
762 bool Changed = false;
763 for (auto &InnerLoop : L)
764 Changed |= scheduleLoop(*InnerLoop);
765
766#ifndef NDEBUG
767 // Stop trying after reaching the limit (if any).
768 int Limit = SwpLoopLimit;
769 if (Limit >= 0) {
770 if (NumTries >= SwpLoopLimit)
771 return Changed;
772 NumTries++;
773 }
774#endif
775
776 if (!canPipelineLoop(L))
777 return Changed;
778
779 ++NumTrytoPipeline;
780
781 Changed = swingModuloScheduler(L);
782
783 return Changed;
784}
785
786/// Return true if the loop can be software pipelined. The algorithm is
787/// restricted to loops with a single basic block. Make sure that the
788/// branch in the loop can be analyzed.
789bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
790 if (L.getNumBlocks() != 1)
791 return false;
792
793 // Check if the branch can't be understood because we can't do pipelining
794 // if that's the case.
795 LI.TBB = nullptr;
796 LI.FBB = nullptr;
797 LI.BrCond.clear();
798 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond))
799 return false;
800
801 LI.LoopInductionVar = nullptr;
802 LI.LoopCompare = nullptr;
803 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare))
804 return false;
805
806 if (!L.getLoopPreheader())
807 return false;
808
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000809 // Remove any subregisters from inputs to phi nodes.
810 preprocessPhiNodes(*L.getHeader());
Brendon Cahoon254f8892016-07-29 16:44:44 +0000811 return true;
812}
813
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000814void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
815 MachineRegisterInfo &MRI = MF->getRegInfo();
816 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
817
818 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) {
819 MachineOperand &DefOp = PI.getOperand(0);
820 assert(DefOp.getSubReg() == 0);
821 auto *RC = MRI.getRegClass(DefOp.getReg());
822
823 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
824 MachineOperand &RegOp = PI.getOperand(i);
825 if (RegOp.getSubReg() == 0)
826 continue;
827
828 // If the operand uses a subregister, replace it with a new register
829 // without subregisters, and generate a copy to the new register.
830 unsigned NewReg = MRI.createVirtualRegister(RC);
831 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
832 MachineBasicBlock::iterator At = PredB.getFirstTerminator();
833 const DebugLoc &DL = PredB.findDebugLoc(At);
834 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
835 .addReg(RegOp.getReg(), getRegState(RegOp),
836 RegOp.getSubReg());
837 Slots.insertMachineInstrInMaps(*Copy);
838 RegOp.setReg(NewReg);
839 RegOp.setSubReg(0);
840 }
841 }
842}
843
Brendon Cahoon254f8892016-07-29 16:44:44 +0000844/// The SMS algorithm consists of the following main steps:
845/// 1. Computation and analysis of the dependence graph.
846/// 2. Ordering of the nodes (instructions).
847/// 3. Attempt to Schedule the loop.
848bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
849 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
850
851 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo);
852
853 MachineBasicBlock *MBB = L.getHeader();
854 // The kernel should not include any terminator instructions. These
855 // will be added back later.
856 SMS.startBlock(MBB);
857
858 // Compute the number of 'real' instructions in the basic block by
859 // ignoring terminators.
860 unsigned size = MBB->size();
861 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
862 E = MBB->instr_end();
863 I != E; ++I, --size)
864 ;
865
866 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
867 SMS.schedule();
868 SMS.exitRegion();
869
870 SMS.finishBlock();
871 return SMS.hasNewSchedule();
872}
873
874/// We override the schedule function in ScheduleDAGInstrs to implement the
875/// scheduling part of the Swing Modulo Scheduling algorithm.
876void SwingSchedulerDAG::schedule() {
877 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
878 buildSchedGraph(AA);
879 addLoopCarriedDependences(AA);
880 updatePhiDependences();
881 Topo.InitDAGTopologicalSorting();
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000882 postprocessDAG();
Brendon Cahoon254f8892016-07-29 16:44:44 +0000883 changeDependences();
884 DEBUG({
885 for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
886 SUnits[su].dumpAll(this);
887 });
888
889 NodeSetType NodeSets;
890 findCircuits(NodeSets);
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000891 NodeSetType Circuits = NodeSets;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000892
893 // Calculate the MII.
894 unsigned ResMII = calculateResMII();
895 unsigned RecMII = calculateRecMII(NodeSets);
896
897 fuseRecs(NodeSets);
898
899 // This flag is used for testing and can cause correctness problems.
900 if (SwpIgnoreRecMII)
901 RecMII = 0;
902
903 MII = std::max(ResMII, RecMII);
904 DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII
905 << ")\n");
906
907 // Can't schedule a loop without a valid MII.
908 if (MII == 0)
909 return;
910
911 // Don't pipeline large loops.
912 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii)
913 return;
914
915 computeNodeFunctions(NodeSets);
916
917 registerPressureFilter(NodeSets);
918
919 colocateNodeSets(NodeSets);
920
921 checkNodeSets(NodeSets);
922
923 DEBUG({
924 for (auto &I : NodeSets) {
925 dbgs() << " Rec NodeSet ";
926 I.dump();
927 }
928 });
929
930 std::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>());
931
932 groupRemainingNodes(NodeSets);
933
934 removeDuplicateNodes(NodeSets);
935
936 DEBUG({
937 for (auto &I : NodeSets) {
938 dbgs() << " NodeSet ";
939 I.dump();
940 }
941 });
942
943 computeNodeOrder(NodeSets);
944
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000945 // check for node order issues
946 checkValidNodeOrder(Circuits);
947
Brendon Cahoon254f8892016-07-29 16:44:44 +0000948 SMSchedule Schedule(Pass.MF);
949 Scheduled = schedulePipeline(Schedule);
950
951 if (!Scheduled)
952 return;
953
954 unsigned numStages = Schedule.getMaxStageCount();
955 // No need to generate pipeline if there are no overlapped iterations.
956 if (numStages == 0)
957 return;
958
959 // Check that the maximum stage count is less than user-defined limit.
960 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages)
961 return;
962
963 generatePipelinedLoop(Schedule);
964 ++NumPipelined;
965}
966
967/// Clean up after the software pipeliner runs.
968void SwingSchedulerDAG::finishBlock() {
969 for (MachineInstr *I : NewMIs)
970 MF.DeleteMachineInstr(I);
971 NewMIs.clear();
972
973 // Call the superclass.
974 ScheduleDAGInstrs::finishBlock();
975}
976
977/// Return the register values for the operands of a Phi instruction.
978/// This function assume the instruction is a Phi.
979static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
980 unsigned &InitVal, unsigned &LoopVal) {
981 assert(Phi.isPHI() && "Expecting a Phi.");
982
983 InitVal = 0;
984 LoopVal = 0;
985 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
986 if (Phi.getOperand(i + 1).getMBB() != Loop)
987 InitVal = Phi.getOperand(i).getReg();
Simon Pilgrimfbfb19b2017-03-16 19:52:00 +0000988 else
Brendon Cahoon254f8892016-07-29 16:44:44 +0000989 LoopVal = Phi.getOperand(i).getReg();
990
991 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
992}
993
994/// Return the Phi register value that comes from the incoming block.
995static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
996 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
997 if (Phi.getOperand(i + 1).getMBB() != LoopBB)
998 return Phi.getOperand(i).getReg();
999 return 0;
1000}
1001
Hiroshi Inoue8f976ba2018-01-17 12:29:38 +00001002/// Return the Phi register value that comes the loop block.
Brendon Cahoon254f8892016-07-29 16:44:44 +00001003static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
1004 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
1005 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
1006 return Phi.getOperand(i).getReg();
1007 return 0;
1008}
1009
1010/// Return true if SUb can be reached from SUa following the chain edges.
1011static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
1012 SmallPtrSet<SUnit *, 8> Visited;
1013 SmallVector<SUnit *, 8> Worklist;
1014 Worklist.push_back(SUa);
1015 while (!Worklist.empty()) {
1016 const SUnit *SU = Worklist.pop_back_val();
1017 for (auto &SI : SU->Succs) {
1018 SUnit *SuccSU = SI.getSUnit();
1019 if (SI.getKind() == SDep::Order) {
1020 if (Visited.count(SuccSU))
1021 continue;
1022 if (SuccSU == SUb)
1023 return true;
1024 Worklist.push_back(SuccSU);
1025 Visited.insert(SuccSU);
1026 }
1027 }
1028 }
1029 return false;
1030}
1031
1032/// Return true if the instruction causes a chain between memory
1033/// references before and after it.
1034static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
1035 return MI.isCall() || MI.hasUnmodeledSideEffects() ||
1036 (MI.hasOrderedMemoryRef() &&
Justin Lebard98cf002016-09-10 01:03:20 +00001037 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001038}
1039
1040/// Return the underlying objects for the memory references of an instruction.
1041/// This function calls the code in ValueTracking, but first checks that the
1042/// instruction has a memory operand.
1043static void getUnderlyingObjects(MachineInstr *MI,
1044 SmallVectorImpl<Value *> &Objs,
1045 const DataLayout &DL) {
1046 if (!MI->hasOneMemOperand())
1047 return;
1048 MachineMemOperand *MM = *MI->memoperands_begin();
1049 if (!MM->getValue())
1050 return;
1051 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL);
1052}
1053
1054/// Add a chain edge between a load and store if the store can be an
1055/// alias of the load on a subsequent iteration, i.e., a loop carried
1056/// dependence. This code is very similar to the code in ScheduleDAGInstrs
1057/// but that code doesn't create loop carried dependences.
1058void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
1059 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads;
1060 for (auto &SU : SUnits) {
1061 MachineInstr &MI = *SU.getInstr();
1062 if (isDependenceBarrier(MI, AA))
1063 PendingLoads.clear();
1064 else if (MI.mayLoad()) {
1065 SmallVector<Value *, 4> Objs;
1066 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
1067 for (auto V : Objs) {
1068 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
1069 SUs.push_back(&SU);
1070 }
1071 } else if (MI.mayStore()) {
1072 SmallVector<Value *, 4> Objs;
1073 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
1074 for (auto V : Objs) {
1075 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I =
1076 PendingLoads.find(V);
1077 if (I == PendingLoads.end())
1078 continue;
1079 for (auto Load : I->second) {
1080 if (isSuccOrder(Load, &SU))
1081 continue;
1082 MachineInstr &LdMI = *Load->getInstr();
1083 // First, perform the cheaper check that compares the base register.
1084 // If they are the same and the load offset is less than the store
1085 // offset, then mark the dependence as loop carried potentially.
1086 unsigned BaseReg1, BaseReg2;
1087 int64_t Offset1, Offset2;
1088 if (!TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) ||
1089 !TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001090 SDep Dep(Load, SDep::Barrier);
1091 Dep.setLatency(1);
1092 SU.addPred(Dep);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001093 continue;
1094 }
1095 if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) {
1096 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
1097 "What happened to the chain edge?");
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001098 SDep Dep(Load, SDep::Barrier);
1099 Dep.setLatency(1);
1100 SU.addPred(Dep);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001101 continue;
1102 }
1103 // Second, the more expensive check that uses alias analysis on the
1104 // base registers. If they alias, and the load offset is less than
1105 // the store offset, the mark the dependence as loop carried.
1106 if (!AA) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001107 SDep Dep(Load, SDep::Barrier);
1108 Dep.setLatency(1);
1109 SU.addPred(Dep);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001110 continue;
1111 }
1112 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
1113 MachineMemOperand *MMO2 = *MI.memoperands_begin();
1114 if (!MMO1->getValue() || !MMO2->getValue()) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001115 SDep Dep(Load, SDep::Barrier);
1116 Dep.setLatency(1);
1117 SU.addPred(Dep);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001118 continue;
1119 }
1120 if (MMO1->getValue() == MMO2->getValue() &&
1121 MMO1->getOffset() <= MMO2->getOffset()) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001122 SDep Dep(Load, SDep::Barrier);
1123 Dep.setLatency(1);
1124 SU.addPred(Dep);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001125 continue;
1126 }
1127 AliasResult AAResult = AA->alias(
1128 MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize,
1129 MMO1->getAAInfo()),
1130 MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize,
1131 MMO2->getAAInfo()));
1132
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001133 if (AAResult != NoAlias) {
1134 SDep Dep(Load, SDep::Barrier);
1135 Dep.setLatency(1);
1136 SU.addPred(Dep);
1137 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00001138 }
1139 }
1140 }
1141 }
1142}
1143
1144/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
1145/// processes dependences for PHIs. This function adds true dependences
1146/// from a PHI to a use, and a loop carried dependence from the use to the
1147/// PHI. The loop carried dependence is represented as an anti dependence
1148/// edge. This function also removes chain dependences between unrelated
1149/// PHIs.
1150void SwingSchedulerDAG::updatePhiDependences() {
1151 SmallVector<SDep, 4> RemoveDeps;
1152 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
1153
1154 // Iterate over each DAG node.
1155 for (SUnit &I : SUnits) {
1156 RemoveDeps.clear();
1157 // Set to true if the instruction has an operand defined by a Phi.
1158 unsigned HasPhiUse = 0;
1159 unsigned HasPhiDef = 0;
1160 MachineInstr *MI = I.getInstr();
1161 // Iterate over each operand, and we process the definitions.
1162 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
1163 MOE = MI->operands_end();
1164 MOI != MOE; ++MOI) {
1165 if (!MOI->isReg())
1166 continue;
1167 unsigned Reg = MOI->getReg();
1168 if (MOI->isDef()) {
1169 // If the register is used by a Phi, then create an anti dependence.
1170 for (MachineRegisterInfo::use_instr_iterator
1171 UI = MRI.use_instr_begin(Reg),
1172 UE = MRI.use_instr_end();
1173 UI != UE; ++UI) {
1174 MachineInstr *UseMI = &*UI;
1175 SUnit *SU = getSUnit(UseMI);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001176 if (SU != nullptr && UseMI->isPHI()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001177 if (!MI->isPHI()) {
1178 SDep Dep(SU, SDep::Anti, Reg);
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001179 Dep.setLatency(1);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001180 I.addPred(Dep);
1181 } else {
1182 HasPhiDef = Reg;
1183 // Add a chain edge to a dependent Phi that isn't an existing
1184 // predecessor.
1185 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1186 I.addPred(SDep(SU, SDep::Barrier));
1187 }
1188 }
1189 }
1190 } else if (MOI->isUse()) {
1191 // If the register is defined by a Phi, then create a true dependence.
1192 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001193 if (DefMI == nullptr)
Brendon Cahoon254f8892016-07-29 16:44:44 +00001194 continue;
1195 SUnit *SU = getSUnit(DefMI);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001196 if (SU != nullptr && DefMI->isPHI()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001197 if (!MI->isPHI()) {
1198 SDep Dep(SU, SDep::Data, Reg);
1199 Dep.setLatency(0);
1200 ST.adjustSchedDependency(SU, &I, Dep);
1201 I.addPred(Dep);
1202 } else {
1203 HasPhiUse = Reg;
1204 // Add a chain edge to a dependent Phi that isn't an existing
1205 // predecessor.
1206 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1207 I.addPred(SDep(SU, SDep::Barrier));
1208 }
1209 }
1210 }
1211 }
1212 // Remove order dependences from an unrelated Phi.
1213 if (!SwpPruneDeps)
1214 continue;
1215 for (auto &PI : I.Preds) {
1216 MachineInstr *PMI = PI.getSUnit()->getInstr();
1217 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
1218 if (I.getInstr()->isPHI()) {
1219 if (PMI->getOperand(0).getReg() == HasPhiUse)
1220 continue;
1221 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
1222 continue;
1223 }
1224 RemoveDeps.push_back(PI);
1225 }
1226 }
1227 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
1228 I.removePred(RemoveDeps[i]);
1229 }
1230}
1231
1232/// Iterate over each DAG node and see if we can change any dependences
1233/// in order to reduce the recurrence MII.
1234void SwingSchedulerDAG::changeDependences() {
1235 // See if an instruction can use a value from the previous iteration.
1236 // If so, we update the base and offset of the instruction and change
1237 // the dependences.
1238 for (SUnit &I : SUnits) {
1239 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
1240 int64_t NewOffset = 0;
1241 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
1242 NewOffset))
1243 continue;
1244
1245 // Get the MI and SUnit for the instruction that defines the original base.
1246 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg();
1247 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
1248 if (!DefMI)
1249 continue;
1250 SUnit *DefSU = getSUnit(DefMI);
1251 if (!DefSU)
1252 continue;
1253 // Get the MI and SUnit for the instruction that defins the new base.
1254 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
1255 if (!LastMI)
1256 continue;
1257 SUnit *LastSU = getSUnit(LastMI);
1258 if (!LastSU)
1259 continue;
1260
1261 if (Topo.IsReachable(&I, LastSU))
1262 continue;
1263
1264 // Remove the dependence. The value now depends on a prior iteration.
1265 SmallVector<SDep, 4> Deps;
1266 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
1267 ++P)
1268 if (P->getSUnit() == DefSU)
1269 Deps.push_back(*P);
1270 for (int i = 0, e = Deps.size(); i != e; i++) {
1271 Topo.RemovePred(&I, Deps[i].getSUnit());
1272 I.removePred(Deps[i]);
1273 }
1274 // Remove the chain dependence between the instructions.
1275 Deps.clear();
1276 for (auto &P : LastSU->Preds)
1277 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
1278 Deps.push_back(P);
1279 for (int i = 0, e = Deps.size(); i != e; i++) {
1280 Topo.RemovePred(LastSU, Deps[i].getSUnit());
1281 LastSU->removePred(Deps[i]);
1282 }
1283
1284 // Add a dependence between the new instruction and the instruction
1285 // that defines the new base.
1286 SDep Dep(&I, SDep::Anti, NewBase);
1287 LastSU->addPred(Dep);
1288
1289 // Remember the base and offset information so that we can update the
1290 // instruction during code generation.
1291 InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
1292 }
1293}
1294
1295namespace {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001296
Brendon Cahoon254f8892016-07-29 16:44:44 +00001297// FuncUnitSorter - Comparison operator used to sort instructions by
1298// the number of functional unit choices.
1299struct FuncUnitSorter {
1300 const InstrItineraryData *InstrItins;
1301 DenseMap<unsigned, unsigned> Resources;
1302
Eugene Zelenko32a40562017-09-11 23:00:48 +00001303 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {}
1304
Brendon Cahoon254f8892016-07-29 16:44:44 +00001305 // Compute the number of functional unit alternatives needed
1306 // at each stage, and take the minimum value. We prioritize the
1307 // instructions by the least number of choices first.
1308 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
1309 unsigned schedClass = Inst->getDesc().getSchedClass();
1310 unsigned min = UINT_MAX;
1311 for (const InstrStage *IS = InstrItins->beginStage(schedClass),
1312 *IE = InstrItins->endStage(schedClass);
1313 IS != IE; ++IS) {
1314 unsigned funcUnits = IS->getUnits();
1315 unsigned numAlternatives = countPopulation(funcUnits);
1316 if (numAlternatives < min) {
1317 min = numAlternatives;
1318 F = funcUnits;
1319 }
1320 }
1321 return min;
1322 }
1323
1324 // Compute the critical resources needed by the instruction. This
1325 // function records the functional units needed by instructions that
1326 // must use only one functional unit. We use this as a tie breaker
1327 // for computing the resource MII. The instrutions that require
1328 // the same, highly used, functional unit have high priority.
1329 void calcCriticalResources(MachineInstr &MI) {
1330 unsigned SchedClass = MI.getDesc().getSchedClass();
1331 for (const InstrStage *IS = InstrItins->beginStage(SchedClass),
1332 *IE = InstrItins->endStage(SchedClass);
1333 IS != IE; ++IS) {
1334 unsigned FuncUnits = IS->getUnits();
1335 if (countPopulation(FuncUnits) == 1)
1336 Resources[FuncUnits]++;
1337 }
1338 }
1339
Brendon Cahoon254f8892016-07-29 16:44:44 +00001340 /// Return true if IS1 has less priority than IS2.
1341 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1342 unsigned F1 = 0, F2 = 0;
1343 unsigned MFUs1 = minFuncUnits(IS1, F1);
1344 unsigned MFUs2 = minFuncUnits(IS2, F2);
1345 if (MFUs1 == 1 && MFUs2 == 1)
1346 return Resources.lookup(F1) < Resources.lookup(F2);
1347 return MFUs1 > MFUs2;
1348 }
1349};
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001350
1351} // end anonymous namespace
Brendon Cahoon254f8892016-07-29 16:44:44 +00001352
1353/// Calculate the resource constrained minimum initiation interval for the
1354/// specified loop. We use the DFA to model the resources needed for
1355/// each instruction, and we ignore dependences. A different DFA is created
1356/// for each cycle that is required. When adding a new instruction, we attempt
1357/// to add it to each existing DFA, until a legal space is found. If the
1358/// instruction cannot be reserved in an existing DFA, we create a new one.
1359unsigned SwingSchedulerDAG::calculateResMII() {
1360 SmallVector<DFAPacketizer *, 8> Resources;
1361 MachineBasicBlock *MBB = Loop.getHeader();
1362 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget()));
1363
1364 // Sort the instructions by the number of available choices for scheduling,
1365 // least to most. Use the number of critical resources as the tie breaker.
1366 FuncUnitSorter FUS =
1367 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData());
1368 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1369 E = MBB->getFirstTerminator();
1370 I != E; ++I)
1371 FUS.calcCriticalResources(*I);
1372 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
1373 FuncUnitOrder(FUS);
1374
1375 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1376 E = MBB->getFirstTerminator();
1377 I != E; ++I)
1378 FuncUnitOrder.push(&*I);
1379
1380 while (!FuncUnitOrder.empty()) {
1381 MachineInstr *MI = FuncUnitOrder.top();
1382 FuncUnitOrder.pop();
1383 if (TII->isZeroCost(MI->getOpcode()))
1384 continue;
1385 // Attempt to reserve the instruction in an existing DFA. At least one
1386 // DFA is needed for each cycle.
1387 unsigned NumCycles = getSUnit(MI)->Latency;
1388 unsigned ReservedCycles = 0;
1389 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin();
1390 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end();
1391 for (unsigned C = 0; C < NumCycles; ++C)
1392 while (RI != RE) {
1393 if ((*RI++)->canReserveResources(*MI)) {
1394 ++ReservedCycles;
1395 break;
1396 }
1397 }
1398 // Start reserving resources using existing DFAs.
1399 for (unsigned C = 0; C < ReservedCycles; ++C) {
1400 --RI;
1401 (*RI)->reserveResources(*MI);
1402 }
1403 // Add new DFAs, if needed, to reserve resources.
1404 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1405 DFAPacketizer *NewResource =
1406 TII->CreateTargetScheduleState(MF.getSubtarget());
1407 assert(NewResource->canReserveResources(*MI) && "Reserve error.");
1408 NewResource->reserveResources(*MI);
1409 Resources.push_back(NewResource);
1410 }
1411 }
1412 int Resmii = Resources.size();
1413 // Delete the memory for each of the DFAs that were created earlier.
1414 for (DFAPacketizer *RI : Resources) {
1415 DFAPacketizer *D = RI;
1416 delete D;
1417 }
1418 Resources.clear();
1419 return Resmii;
1420}
1421
1422/// Calculate the recurrence-constrainted minimum initiation interval.
1423/// Iterate over each circuit. Compute the delay(c) and distance(c)
1424/// for each circuit. The II needs to satisfy the inequality
1425/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1426/// II that satistifies the inequality, and the RecMII is the maximum
1427/// of those values.
1428unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1429 unsigned RecMII = 0;
1430
1431 for (NodeSet &Nodes : NodeSets) {
Eugene Zelenko32a40562017-09-11 23:00:48 +00001432 if (Nodes.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001433 continue;
1434
1435 unsigned Delay = Nodes.size() - 1;
1436 unsigned Distance = 1;
1437
1438 // ii = ceil(delay / distance)
1439 unsigned CurMII = (Delay + Distance - 1) / Distance;
1440 Nodes.setRecMII(CurMII);
1441 if (CurMII > RecMII)
1442 RecMII = CurMII;
1443 }
1444
1445 return RecMII;
1446}
1447
1448/// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1449/// but we do this to find the circuits, and then change them back.
1450static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1451 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1452 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1453 SUnit *SU = &SUnits[i];
1454 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
1455 IP != EP; ++IP) {
1456 if (IP->getKind() != SDep::Anti)
1457 continue;
1458 DepsAdded.push_back(std::make_pair(SU, *IP));
1459 }
1460 }
1461 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
1462 E = DepsAdded.end();
1463 I != E; ++I) {
1464 // Remove this anti dependency and add one in the reverse direction.
1465 SUnit *SU = I->first;
1466 SDep &D = I->second;
1467 SUnit *TargetSU = D.getSUnit();
1468 unsigned Reg = D.getReg();
1469 unsigned Lat = D.getLatency();
1470 SU->removePred(D);
1471 SDep Dep(SU, SDep::Anti, Reg);
1472 Dep.setLatency(Lat);
1473 TargetSU->addPred(Dep);
1474 }
1475}
1476
1477/// Create the adjacency structure of the nodes in the graph.
1478void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1479 SwingSchedulerDAG *DAG) {
1480 BitVector Added(SUnits.size());
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00001481 DenseMap<int, int> OutputDeps;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001482 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1483 Added.reset();
1484 // Add any successor to the adjacency matrix and exclude duplicates.
1485 for (auto &SI : SUnits[i].Succs) {
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00001486 // Only create a back-edge on the first and last nodes of a dependence
1487 // chain. This records any chains and adds them later.
1488 if (SI.getKind() == SDep::Output) {
1489 int N = SI.getSUnit()->NodeNum;
1490 int BackEdge = i;
1491 auto Dep = OutputDeps.find(BackEdge);
1492 if (Dep != OutputDeps.end()) {
1493 BackEdge = Dep->second;
1494 OutputDeps.erase(Dep);
1495 }
1496 OutputDeps[N] = BackEdge;
1497 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00001498 // Do not process a boundary node and a back-edge is processed only
1499 // if it goes to a Phi.
1500 if (SI.getSUnit()->isBoundaryNode() ||
1501 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1502 continue;
1503 int N = SI.getSUnit()->NodeNum;
1504 if (!Added.test(N)) {
1505 AdjK[i].push_back(N);
1506 Added.set(N);
1507 }
1508 }
1509 // A chain edge between a store and a load is treated as a back-edge in the
1510 // adjacency matrix.
1511 for (auto &PI : SUnits[i].Preds) {
1512 if (!SUnits[i].getInstr()->mayStore() ||
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00001513 !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
Brendon Cahoon254f8892016-07-29 16:44:44 +00001514 continue;
1515 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1516 int N = PI.getSUnit()->NodeNum;
1517 if (!Added.test(N)) {
1518 AdjK[i].push_back(N);
1519 Added.set(N);
1520 }
1521 }
1522 }
1523 }
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00001524 // Add back-eges in the adjacency matrix for the output dependences.
1525 for (auto &OD : OutputDeps)
1526 if (!Added.test(OD.second)) {
1527 AdjK[OD.first].push_back(OD.second);
1528 Added.set(OD.second);
1529 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00001530}
1531
1532/// Identify an elementary circuit in the dependence graph starting at the
1533/// specified node.
1534bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1535 bool HasBackedge) {
1536 SUnit *SV = &SUnits[V];
1537 bool F = false;
1538 Stack.insert(SV);
1539 Blocked.set(V);
1540
1541 for (auto W : AdjK[V]) {
1542 if (NumPaths > MaxPaths)
1543 break;
1544 if (W < S)
1545 continue;
1546 if (W == S) {
1547 if (!HasBackedge)
1548 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1549 F = true;
1550 ++NumPaths;
1551 break;
1552 } else if (!Blocked.test(W)) {
1553 if (circuit(W, S, NodeSets, W < V ? true : HasBackedge))
1554 F = true;
1555 }
1556 }
1557
1558 if (F)
1559 unblock(V);
1560 else {
1561 for (auto W : AdjK[V]) {
1562 if (W < S)
1563 continue;
1564 if (B[W].count(SV) == 0)
1565 B[W].insert(SV);
1566 }
1567 }
1568 Stack.pop_back();
1569 return F;
1570}
1571
1572/// Unblock a node in the circuit finding algorithm.
1573void SwingSchedulerDAG::Circuits::unblock(int U) {
1574 Blocked.reset(U);
1575 SmallPtrSet<SUnit *, 4> &BU = B[U];
1576 while (!BU.empty()) {
1577 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1578 assert(SI != BU.end() && "Invalid B set.");
1579 SUnit *W = *SI;
1580 BU.erase(W);
1581 if (Blocked.test(W->NodeNum))
1582 unblock(W->NodeNum);
1583 }
1584}
1585
1586/// Identify all the elementary circuits in the dependence graph using
1587/// Johnson's circuit algorithm.
1588void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1589 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1590 // but we do this to find the circuits, and then change them back.
1591 swapAntiDependences(SUnits);
1592
1593 Circuits Cir(SUnits);
1594 // Create the adjacency structure.
1595 Cir.createAdjacencyStructure(this);
1596 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1597 Cir.reset();
1598 Cir.circuit(i, i, NodeSets);
1599 }
1600
1601 // Change the dependences back so that we've created a DAG again.
1602 swapAntiDependences(SUnits);
1603}
1604
1605/// Return true for DAG nodes that we ignore when computing the cost functions.
1606/// We ignore the back-edge recurrence in order to avoid unbounded recurison
1607/// in the calculation of the ASAP, ALAP, etc functions.
1608static bool ignoreDependence(const SDep &D, bool isPred) {
1609 if (D.isArtificial())
1610 return true;
1611 return D.getKind() == SDep::Anti && isPred;
1612}
1613
1614/// Compute several functions need to order the nodes for scheduling.
1615/// ASAP - Earliest time to schedule a node.
1616/// ALAP - Latest time to schedule a node.
1617/// MOV - Mobility function, difference between ALAP and ASAP.
1618/// D - Depth of each node.
1619/// H - Height of each node.
1620void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001621 ScheduleInfo.resize(SUnits.size());
1622
1623 DEBUG({
1624 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1625 E = Topo.end();
1626 I != E; ++I) {
1627 SUnit *SU = &SUnits[*I];
1628 SU->dump(this);
1629 }
1630 });
1631
1632 int maxASAP = 0;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001633 // Compute ASAP and ZeroLatencyDepth.
Brendon Cahoon254f8892016-07-29 16:44:44 +00001634 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1635 E = Topo.end();
1636 I != E; ++I) {
1637 int asap = 0;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001638 int zeroLatencyDepth = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001639 SUnit *SU = &SUnits[*I];
1640 for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
1641 EP = SU->Preds.end();
1642 IP != EP; ++IP) {
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001643 SUnit *pred = IP->getSUnit();
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001644 if (IP->getLatency() == 0)
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001645 zeroLatencyDepth =
1646 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001647 if (ignoreDependence(*IP, true))
1648 continue;
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001649 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() -
Brendon Cahoon254f8892016-07-29 16:44:44 +00001650 getDistance(pred, SU, *IP) * MII));
1651 }
1652 maxASAP = std::max(maxASAP, asap);
1653 ScheduleInfo[*I].ASAP = asap;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001654 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001655 }
1656
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001657 // Compute ALAP, ZeroLatencyHeight, and MOV.
Brendon Cahoon254f8892016-07-29 16:44:44 +00001658 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
1659 E = Topo.rend();
1660 I != E; ++I) {
1661 int alap = maxASAP;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001662 int zeroLatencyHeight = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001663 SUnit *SU = &SUnits[*I];
1664 for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
1665 ES = SU->Succs.end();
1666 IS != ES; ++IS) {
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001667 SUnit *succ = IS->getSUnit();
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001668 if (IS->getLatency() == 0)
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001669 zeroLatencyHeight =
1670 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001671 if (ignoreDependence(*IS, true))
1672 continue;
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001673 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() +
Brendon Cahoon254f8892016-07-29 16:44:44 +00001674 getDistance(SU, succ, *IS) * MII));
1675 }
1676
1677 ScheduleInfo[*I].ALAP = alap;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001678 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001679 }
1680
1681 // After computing the node functions, compute the summary for each node set.
1682 for (NodeSet &I : NodeSets)
1683 I.computeNodeSetInfo(this);
1684
1685 DEBUG({
1686 for (unsigned i = 0; i < SUnits.size(); i++) {
1687 dbgs() << "\tNode " << i << ":\n";
1688 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
1689 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
1690 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
1691 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
1692 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001693 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1694 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
Brendon Cahoon254f8892016-07-29 16:44:44 +00001695 }
1696 });
1697}
1698
1699/// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1700/// as the predecessors of the elements of NodeOrder that are not also in
1701/// NodeOrder.
1702static bool pred_L(SetVector<SUnit *> &NodeOrder,
1703 SmallSetVector<SUnit *, 8> &Preds,
1704 const NodeSet *S = nullptr) {
1705 Preds.clear();
1706 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1707 I != E; ++I) {
1708 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
1709 PI != PE; ++PI) {
1710 if (S && S->count(PI->getSUnit()) == 0)
1711 continue;
1712 if (ignoreDependence(*PI, true))
1713 continue;
1714 if (NodeOrder.count(PI->getSUnit()) == 0)
1715 Preds.insert(PI->getSUnit());
1716 }
1717 // Back-edges are predecessors with an anti-dependence.
1718 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
1719 ES = (*I)->Succs.end();
1720 IS != ES; ++IS) {
1721 if (IS->getKind() != SDep::Anti)
1722 continue;
1723 if (S && S->count(IS->getSUnit()) == 0)
1724 continue;
1725 if (NodeOrder.count(IS->getSUnit()) == 0)
1726 Preds.insert(IS->getSUnit());
1727 }
1728 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001729 return !Preds.empty();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001730}
1731
1732/// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1733/// as the successors of the elements of NodeOrder that are not also in
1734/// NodeOrder.
1735static bool succ_L(SetVector<SUnit *> &NodeOrder,
1736 SmallSetVector<SUnit *, 8> &Succs,
1737 const NodeSet *S = nullptr) {
1738 Succs.clear();
1739 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1740 I != E; ++I) {
1741 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
1742 SI != SE; ++SI) {
1743 if (S && S->count(SI->getSUnit()) == 0)
1744 continue;
1745 if (ignoreDependence(*SI, false))
1746 continue;
1747 if (NodeOrder.count(SI->getSUnit()) == 0)
1748 Succs.insert(SI->getSUnit());
1749 }
1750 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
1751 PE = (*I)->Preds.end();
1752 PI != PE; ++PI) {
1753 if (PI->getKind() != SDep::Anti)
1754 continue;
1755 if (S && S->count(PI->getSUnit()) == 0)
1756 continue;
1757 if (NodeOrder.count(PI->getSUnit()) == 0)
1758 Succs.insert(PI->getSUnit());
1759 }
1760 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001761 return !Succs.empty();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001762}
1763
1764/// Return true if there is a path from the specified node to any of the nodes
1765/// in DestNodes. Keep track and return the nodes in any path.
1766static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1767 SetVector<SUnit *> &DestNodes,
1768 SetVector<SUnit *> &Exclude,
1769 SmallPtrSet<SUnit *, 8> &Visited) {
1770 if (Cur->isBoundaryNode())
1771 return false;
1772 if (Exclude.count(Cur) != 0)
1773 return false;
1774 if (DestNodes.count(Cur) != 0)
1775 return true;
1776 if (!Visited.insert(Cur).second)
1777 return Path.count(Cur) != 0;
1778 bool FoundPath = false;
1779 for (auto &SI : Cur->Succs)
1780 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1781 for (auto &PI : Cur->Preds)
1782 if (PI.getKind() == SDep::Anti)
1783 FoundPath |=
1784 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1785 if (FoundPath)
1786 Path.insert(Cur);
1787 return FoundPath;
1788}
1789
1790/// Return true if Set1 is a subset of Set2.
1791template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
1792 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
1793 if (Set2.count(*I) == 0)
1794 return false;
1795 return true;
1796}
1797
1798/// Compute the live-out registers for the instructions in a node-set.
1799/// The live-out registers are those that are defined in the node-set,
1800/// but not used. Except for use operands of Phis.
1801static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1802 NodeSet &NS) {
1803 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1804 MachineRegisterInfo &MRI = MF.getRegInfo();
1805 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1806 SmallSet<unsigned, 4> Uses;
1807 for (SUnit *SU : NS) {
1808 const MachineInstr *MI = SU->getInstr();
1809 if (MI->isPHI())
1810 continue;
Matthias Braunfc371552016-10-24 21:36:43 +00001811 for (const MachineOperand &MO : MI->operands())
1812 if (MO.isReg() && MO.isUse()) {
1813 unsigned Reg = MO.getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001814 if (TargetRegisterInfo::isVirtualRegister(Reg))
1815 Uses.insert(Reg);
1816 else if (MRI.isAllocatable(Reg))
1817 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1818 Uses.insert(*Units);
1819 }
1820 }
1821 for (SUnit *SU : NS)
Matthias Braunfc371552016-10-24 21:36:43 +00001822 for (const MachineOperand &MO : SU->getInstr()->operands())
1823 if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1824 unsigned Reg = MO.getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001825 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1826 if (!Uses.count(Reg))
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +00001827 LiveOutRegs.push_back(RegisterMaskPair(Reg,
1828 LaneBitmask::getNone()));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001829 } else if (MRI.isAllocatable(Reg)) {
1830 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1831 if (!Uses.count(*Units))
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +00001832 LiveOutRegs.push_back(RegisterMaskPair(*Units,
1833 LaneBitmask::getNone()));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001834 }
1835 }
1836 RPTracker.addLiveRegs(LiveOutRegs);
1837}
1838
1839/// A heuristic to filter nodes in recurrent node-sets if the register
1840/// pressure of a set is too high.
1841void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1842 for (auto &NS : NodeSets) {
1843 // Skip small node-sets since they won't cause register pressure problems.
1844 if (NS.size() <= 2)
1845 continue;
1846 IntervalPressure RecRegPressure;
1847 RegPressureTracker RecRPTracker(RecRegPressure);
1848 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1849 computeLiveOuts(MF, RecRPTracker, NS);
1850 RecRPTracker.closeBottom();
1851
1852 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1853 std::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) {
1854 return A->NodeNum > B->NodeNum;
1855 });
1856
1857 for (auto &SU : SUnits) {
1858 // Since we're computing the register pressure for a subset of the
1859 // instructions in a block, we need to set the tracker for each
1860 // instruction in the node-set. The tracker is set to the instruction
1861 // just after the one we're interested in.
1862 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1863 RecRPTracker.setPos(std::next(CurInstI));
1864
1865 RegPressureDelta RPDelta;
1866 ArrayRef<PressureChange> CriticalPSets;
1867 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1868 CriticalPSets,
1869 RecRegPressure.MaxSetPressure);
1870 if (RPDelta.Excess.isValid()) {
1871 DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1872 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1873 << ":" << RPDelta.Excess.getUnitInc());
1874 NS.setExceedPressure(SU);
1875 break;
1876 }
1877 RecRPTracker.recede();
1878 }
1879 }
1880}
1881
1882/// A heuristic to colocate node sets that have the same set of
1883/// successors.
1884void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1885 unsigned Colocate = 0;
1886 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1887 NodeSet &N1 = NodeSets[i];
1888 SmallSetVector<SUnit *, 8> S1;
1889 if (N1.empty() || !succ_L(N1, S1))
1890 continue;
1891 for (int j = i + 1; j < e; ++j) {
1892 NodeSet &N2 = NodeSets[j];
1893 if (N1.compareRecMII(N2) != 0)
1894 continue;
1895 SmallSetVector<SUnit *, 8> S2;
1896 if (N2.empty() || !succ_L(N2, S2))
1897 continue;
1898 if (isSubset(S1, S2) && S1.size() == S2.size()) {
1899 N1.setColocate(++Colocate);
1900 N2.setColocate(Colocate);
1901 break;
1902 }
1903 }
1904 }
1905}
1906
1907/// Check if the existing node-sets are profitable. If not, then ignore the
1908/// recurrent node-sets, and attempt to schedule all nodes together. This is
1909/// a heuristic. If the MII is large and there is a non-recurrent node with
1910/// a large depth compared to the MII, then it's best to try and schedule
1911/// all instruction together instead of starting with the recurrent node-sets.
1912void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1913 // Look for loops with a large MII.
1914 if (MII <= 20)
1915 return;
1916 // Check if the node-set contains only a simple add recurrence.
1917 for (auto &NS : NodeSets)
1918 if (NS.size() > 2)
1919 return;
1920 // If the depth of any instruction is significantly larger than the MII, then
1921 // ignore the recurrent node-sets and treat all instructions equally.
1922 for (auto &SU : SUnits)
1923 if (SU.getDepth() > MII * 1.5) {
1924 NodeSets.clear();
1925 DEBUG(dbgs() << "Clear recurrence node-sets\n");
1926 return;
1927 }
1928}
1929
1930/// Add the nodes that do not belong to a recurrence set into groups
1931/// based upon connected componenets.
1932void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1933 SetVector<SUnit *> NodesAdded;
1934 SmallPtrSet<SUnit *, 8> Visited;
1935 // Add the nodes that are on a path between the previous node sets and
1936 // the current node set.
1937 for (NodeSet &I : NodeSets) {
1938 SmallSetVector<SUnit *, 8> N;
1939 // Add the nodes from the current node set to the previous node set.
1940 if (succ_L(I, N)) {
1941 SetVector<SUnit *> Path;
1942 for (SUnit *NI : N) {
1943 Visited.clear();
1944 computePath(NI, Path, NodesAdded, I, Visited);
1945 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001946 if (!Path.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001947 I.insert(Path.begin(), Path.end());
1948 }
1949 // Add the nodes from the previous node set to the current node set.
1950 N.clear();
1951 if (succ_L(NodesAdded, N)) {
1952 SetVector<SUnit *> Path;
1953 for (SUnit *NI : N) {
1954 Visited.clear();
1955 computePath(NI, Path, I, NodesAdded, Visited);
1956 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001957 if (!Path.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001958 I.insert(Path.begin(), Path.end());
1959 }
1960 NodesAdded.insert(I.begin(), I.end());
1961 }
1962
1963 // Create a new node set with the connected nodes of any successor of a node
1964 // in a recurrent set.
1965 NodeSet NewSet;
1966 SmallSetVector<SUnit *, 8> N;
1967 if (succ_L(NodesAdded, N))
1968 for (SUnit *I : N)
1969 addConnectedNodes(I, NewSet, NodesAdded);
Eugene Zelenko32a40562017-09-11 23:00:48 +00001970 if (!NewSet.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001971 NodeSets.push_back(NewSet);
1972
1973 // Create a new node set with the connected nodes of any predecessor of a node
1974 // in a recurrent set.
1975 NewSet.clear();
1976 if (pred_L(NodesAdded, N))
1977 for (SUnit *I : N)
1978 addConnectedNodes(I, NewSet, NodesAdded);
Eugene Zelenko32a40562017-09-11 23:00:48 +00001979 if (!NewSet.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001980 NodeSets.push_back(NewSet);
1981
1982 // Create new nodes sets with the connected nodes any any remaining node that
1983 // has no predecessor.
1984 for (unsigned i = 0; i < SUnits.size(); ++i) {
1985 SUnit *SU = &SUnits[i];
1986 if (NodesAdded.count(SU) == 0) {
1987 NewSet.clear();
1988 addConnectedNodes(SU, NewSet, NodesAdded);
Eugene Zelenko32a40562017-09-11 23:00:48 +00001989 if (!NewSet.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001990 NodeSets.push_back(NewSet);
1991 }
1992 }
1993}
1994
1995/// Add the node to the set, and add all is its connected nodes to the set.
1996void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1997 SetVector<SUnit *> &NodesAdded) {
1998 NewSet.insert(SU);
1999 NodesAdded.insert(SU);
2000 for (auto &SI : SU->Succs) {
2001 SUnit *Successor = SI.getSUnit();
2002 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
2003 addConnectedNodes(Successor, NewSet, NodesAdded);
2004 }
2005 for (auto &PI : SU->Preds) {
2006 SUnit *Predecessor = PI.getSUnit();
2007 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
2008 addConnectedNodes(Predecessor, NewSet, NodesAdded);
2009 }
2010}
2011
2012/// Return true if Set1 contains elements in Set2. The elements in common
2013/// are returned in a different container.
2014static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
2015 SmallSetVector<SUnit *, 8> &Result) {
2016 Result.clear();
2017 for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
2018 SUnit *SU = Set1[i];
2019 if (Set2.count(SU) != 0)
2020 Result.insert(SU);
2021 }
2022 return !Result.empty();
2023}
2024
2025/// Merge the recurrence node sets that have the same initial node.
2026void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
2027 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
2028 ++I) {
2029 NodeSet &NI = *I;
2030 for (NodeSetType::iterator J = I + 1; J != E;) {
2031 NodeSet &NJ = *J;
2032 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
2033 if (NJ.compareRecMII(NI) > 0)
2034 NI.setRecMII(NJ.getRecMII());
2035 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
2036 ++NII)
2037 I->insert(*NII);
2038 NodeSets.erase(J);
2039 E = NodeSets.end();
2040 } else {
2041 ++J;
2042 }
2043 }
2044 }
2045}
2046
2047/// Remove nodes that have been scheduled in previous NodeSets.
2048void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
2049 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
2050 ++I)
2051 for (NodeSetType::iterator J = I + 1; J != E;) {
2052 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
2053
Eugene Zelenko32a40562017-09-11 23:00:48 +00002054 if (J->empty()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00002055 NodeSets.erase(J);
2056 E = NodeSets.end();
2057 } else {
2058 ++J;
2059 }
2060 }
2061}
2062
Brendon Cahoon254f8892016-07-29 16:44:44 +00002063/// Compute an ordered list of the dependence graph nodes, which
2064/// indicates the order that the nodes will be scheduled. This is a
2065/// two-level algorithm. First, a partial order is created, which
2066/// consists of a list of sets ordered from highest to lowest priority.
2067void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
2068 SmallSetVector<SUnit *, 8> R;
2069 NodeOrder.clear();
2070
2071 for (auto &Nodes : NodeSets) {
2072 DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
2073 OrderKind Order;
2074 SmallSetVector<SUnit *, 8> N;
2075 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
2076 R.insert(N.begin(), N.end());
2077 Order = BottomUp;
2078 DEBUG(dbgs() << " Bottom up (preds) ");
2079 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
2080 R.insert(N.begin(), N.end());
2081 Order = TopDown;
2082 DEBUG(dbgs() << " Top down (succs) ");
2083 } else if (isIntersect(N, Nodes, R)) {
2084 // If some of the successors are in the existing node-set, then use the
2085 // top-down ordering.
2086 Order = TopDown;
2087 DEBUG(dbgs() << " Top down (intersect) ");
2088 } else if (NodeSets.size() == 1) {
2089 for (auto &N : Nodes)
2090 if (N->Succs.size() == 0)
2091 R.insert(N);
2092 Order = BottomUp;
2093 DEBUG(dbgs() << " Bottom up (all) ");
2094 } else {
2095 // Find the node with the highest ASAP.
2096 SUnit *maxASAP = nullptr;
2097 for (SUnit *SU : Nodes) {
2098 if (maxASAP == nullptr || getASAP(SU) >= getASAP(maxASAP))
2099 maxASAP = SU;
2100 }
2101 R.insert(maxASAP);
2102 Order = BottomUp;
2103 DEBUG(dbgs() << " Bottom up (default) ");
2104 }
2105
2106 while (!R.empty()) {
2107 if (Order == TopDown) {
2108 // Choose the node with the maximum height. If more than one, choose
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002109 // the node with the maximum ZeroLatencyHeight. If still more than one,
2110 // choose the node with the lowest MOV.
Brendon Cahoon254f8892016-07-29 16:44:44 +00002111 while (!R.empty()) {
2112 SUnit *maxHeight = nullptr;
2113 for (SUnit *I : R) {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00002114 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002115 maxHeight = I;
2116 else if (getHeight(I) == getHeight(maxHeight) &&
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002117 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002118 maxHeight = I;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002119 else if (getHeight(I) == getHeight(maxHeight) &&
2120 getZeroLatencyHeight(I) ==
2121 getZeroLatencyHeight(maxHeight) &&
2122 getMOV(I) < getMOV(maxHeight))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002123 maxHeight = I;
2124 }
2125 NodeOrder.insert(maxHeight);
2126 DEBUG(dbgs() << maxHeight->NodeNum << " ");
2127 R.remove(maxHeight);
2128 for (const auto &I : maxHeight->Succs) {
2129 if (Nodes.count(I.getSUnit()) == 0)
2130 continue;
2131 if (NodeOrder.count(I.getSUnit()) != 0)
2132 continue;
2133 if (ignoreDependence(I, false))
2134 continue;
2135 R.insert(I.getSUnit());
2136 }
2137 // Back-edges are predecessors with an anti-dependence.
2138 for (const auto &I : maxHeight->Preds) {
2139 if (I.getKind() != SDep::Anti)
2140 continue;
2141 if (Nodes.count(I.getSUnit()) == 0)
2142 continue;
2143 if (NodeOrder.count(I.getSUnit()) != 0)
2144 continue;
2145 R.insert(I.getSUnit());
2146 }
2147 }
2148 Order = BottomUp;
2149 DEBUG(dbgs() << "\n Switching order to bottom up ");
2150 SmallSetVector<SUnit *, 8> N;
2151 if (pred_L(NodeOrder, N, &Nodes))
2152 R.insert(N.begin(), N.end());
2153 } else {
2154 // Choose the node with the maximum depth. If more than one, choose
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002155 // the node with the maximum ZeroLatencyDepth. If still more than one,
2156 // choose the node with the lowest MOV.
Brendon Cahoon254f8892016-07-29 16:44:44 +00002157 while (!R.empty()) {
2158 SUnit *maxDepth = nullptr;
2159 for (SUnit *I : R) {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00002160 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002161 maxDepth = I;
2162 else if (getDepth(I) == getDepth(maxDepth) &&
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002163 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002164 maxDepth = I;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00002165 else if (getDepth(I) == getDepth(maxDepth) &&
2166 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
2167 getMOV(I) < getMOV(maxDepth))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002168 maxDepth = I;
2169 }
2170 NodeOrder.insert(maxDepth);
2171 DEBUG(dbgs() << maxDepth->NodeNum << " ");
2172 R.remove(maxDepth);
2173 if (Nodes.isExceedSU(maxDepth)) {
2174 Order = TopDown;
2175 R.clear();
2176 R.insert(Nodes.getNode(0));
2177 break;
2178 }
2179 for (const auto &I : maxDepth->Preds) {
2180 if (Nodes.count(I.getSUnit()) == 0)
2181 continue;
2182 if (NodeOrder.count(I.getSUnit()) != 0)
2183 continue;
2184 if (I.getKind() == SDep::Anti)
2185 continue;
2186 R.insert(I.getSUnit());
2187 }
2188 // Back-edges are predecessors with an anti-dependence.
2189 for (const auto &I : maxDepth->Succs) {
2190 if (I.getKind() != SDep::Anti)
2191 continue;
2192 if (Nodes.count(I.getSUnit()) == 0)
2193 continue;
2194 if (NodeOrder.count(I.getSUnit()) != 0)
2195 continue;
2196 R.insert(I.getSUnit());
2197 }
2198 }
2199 Order = TopDown;
2200 DEBUG(dbgs() << "\n Switching order to top down ");
2201 SmallSetVector<SUnit *, 8> N;
2202 if (succ_L(NodeOrder, N, &Nodes))
2203 R.insert(N.begin(), N.end());
2204 }
2205 }
2206 DEBUG(dbgs() << "\nDone with Nodeset\n");
2207 }
2208
2209 DEBUG({
2210 dbgs() << "Node order: ";
2211 for (SUnit *I : NodeOrder)
2212 dbgs() << " " << I->NodeNum << " ";
2213 dbgs() << "\n";
2214 });
2215}
2216
2217/// Process the nodes in the computed order and create the pipelined schedule
2218/// of the instructions, if possible. Return true if a schedule is found.
2219bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
Eugene Zelenko32a40562017-09-11 23:00:48 +00002220 if (NodeOrder.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00002221 return false;
2222
2223 bool scheduleFound = false;
2224 // Keep increasing II until a valid schedule is found.
2225 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) {
2226 Schedule.reset();
2227 Schedule.setInitiationInterval(II);
2228 DEBUG(dbgs() << "Try to schedule with " << II << "\n");
2229
2230 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
2231 SetVector<SUnit *>::iterator NE = NodeOrder.end();
2232 do {
2233 SUnit *SU = *NI;
2234
2235 // Compute the schedule time for the instruction, which is based
2236 // upon the scheduled time for any predecessors/successors.
2237 int EarlyStart = INT_MIN;
2238 int LateStart = INT_MAX;
2239 // These values are set when the size of the schedule window is limited
2240 // due to chain dependences.
2241 int SchedEnd = INT_MAX;
2242 int SchedStart = INT_MIN;
2243 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
2244 II, this);
2245 DEBUG({
2246 dbgs() << "Inst (" << SU->NodeNum << ") ";
2247 SU->getInstr()->dump();
2248 dbgs() << "\n";
2249 });
2250 DEBUG({
2251 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart
2252 << " me: " << SchedEnd << " ms: " << SchedStart << "\n";
2253 });
2254
2255 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2256 SchedStart > LateStart)
2257 scheduleFound = false;
2258 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2259 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2260 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2261 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2262 SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2263 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2264 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2265 SchedEnd =
2266 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2267 // When scheduling a Phi it is better to start at the late cycle and go
2268 // backwards. The default order may insert the Phi too far away from
2269 // its first dependence.
2270 if (SU->getInstr()->isPHI())
2271 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2272 else
2273 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2274 } else {
2275 int FirstCycle = Schedule.getFirstCycle();
2276 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2277 FirstCycle + getASAP(SU) + II - 1, II);
2278 }
2279 // Even if we find a schedule, make sure the schedule doesn't exceed the
2280 // allowable number of stages. We keep trying if this happens.
2281 if (scheduleFound)
2282 if (SwpMaxStages > -1 &&
2283 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2284 scheduleFound = false;
2285
2286 DEBUG({
2287 if (!scheduleFound)
2288 dbgs() << "\tCan't schedule\n";
2289 });
2290 } while (++NI != NE && scheduleFound);
2291
2292 // If a schedule is found, check if it is a valid schedule too.
2293 if (scheduleFound)
2294 scheduleFound = Schedule.isValidSchedule(this);
2295 }
2296
2297 DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n");
2298
2299 if (scheduleFound)
2300 Schedule.finalizeSchedule(this);
2301 else
2302 Schedule.reset();
2303
2304 return scheduleFound && Schedule.getMaxStageCount() > 0;
2305}
2306
2307/// Given a schedule for the loop, generate a new version of the loop,
2308/// and replace the old version. This function generates a prolog
2309/// that contains the initial iterations in the pipeline, and kernel
2310/// loop, and the epilogue that contains the code for the final
2311/// iterations.
2312void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
2313 // Create a new basic block for the kernel and add it to the CFG.
2314 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2315
2316 unsigned MaxStageCount = Schedule.getMaxStageCount();
2317
2318 // Remember the registers that are used in different stages. The index is
2319 // the iteration, or stage, that the instruction is scheduled in. This is
2320 // a map between register names in the orignal block and the names created
2321 // in each stage of the pipelined loop.
2322 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
2323 InstrMapTy InstrMap;
2324
2325 SmallVector<MachineBasicBlock *, 4> PrologBBs;
2326 // Generate the prolog instructions that set up the pipeline.
2327 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
2328 MF.insert(BB->getIterator(), KernelBB);
2329
2330 // Rearrange the instructions to generate the new, pipelined loop,
2331 // and update register names as needed.
2332 for (int Cycle = Schedule.getFirstCycle(),
2333 LastCycle = Schedule.getFinalCycle();
2334 Cycle <= LastCycle; ++Cycle) {
2335 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
2336 // This inner loop schedules each instruction in the cycle.
2337 for (SUnit *CI : CycleInstrs) {
2338 if (CI->getInstr()->isPHI())
2339 continue;
2340 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
2341 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
2342 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
2343 KernelBB->push_back(NewMI);
2344 InstrMap[NewMI] = CI->getInstr();
2345 }
2346 }
2347
2348 // Copy any terminator instructions to the new kernel, and update
2349 // names as needed.
2350 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
2351 E = BB->instr_end();
2352 I != E; ++I) {
2353 MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
2354 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
2355 KernelBB->push_back(NewMI);
2356 InstrMap[NewMI] = &*I;
2357 }
2358
2359 KernelBB->transferSuccessors(BB);
2360 KernelBB->replaceSuccessor(BB, KernelBB);
2361
2362 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
2363 VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
2364 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
2365 InstrMap, MaxStageCount, MaxStageCount, false);
2366
2367 DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
2368
2369 SmallVector<MachineBasicBlock *, 4> EpilogBBs;
2370 // Generate the epilog instructions to complete the pipeline.
2371 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
2372 PrologBBs);
2373
2374 // We need this step because the register allocation doesn't handle some
2375 // situations well, so we insert copies to help out.
2376 splitLifetimes(KernelBB, EpilogBBs, Schedule);
2377
2378 // Remove dead instructions due to loop induction variables.
2379 removeDeadInstructions(KernelBB, EpilogBBs);
2380
2381 // Add branches between prolog and epilog blocks.
2382 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);
2383
2384 // Remove the original loop since it's no longer referenced.
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00002385 for (auto &I : *BB)
2386 LIS.RemoveMachineInstrFromMaps(I);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002387 BB->clear();
2388 BB->eraseFromParent();
2389
2390 delete[] VRMap;
2391}
2392
2393/// Generate the pipeline prolog code.
2394void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
2395 MachineBasicBlock *KernelBB,
2396 ValueMapTy *VRMap,
2397 MBBVectorTy &PrologBBs) {
2398 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
Eugene Zelenko32a40562017-09-11 23:00:48 +00002399 assert(PreheaderBB != nullptr &&
Brendon Cahoon254f8892016-07-29 16:44:44 +00002400 "Need to add code to handle loops w/o preheader");
2401 MachineBasicBlock *PredBB = PreheaderBB;
2402 InstrMapTy InstrMap;
2403
2404 // Generate a basic block for each stage, not including the last stage,
2405 // which will be generated in the kernel. Each basic block may contain
2406 // instructions from multiple stages/iterations.
2407 for (unsigned i = 0; i < LastStage; ++i) {
2408 // Create and insert the prolog basic block prior to the original loop
2409 // basic block. The original loop is removed later.
2410 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2411 PrologBBs.push_back(NewBB);
2412 MF.insert(BB->getIterator(), NewBB);
2413 NewBB->transferSuccessors(PredBB);
2414 PredBB->addSuccessor(NewBB);
2415 PredBB = NewBB;
2416
2417 // Generate instructions for each appropriate stage. Process instructions
2418 // in original program order.
2419 for (int StageNum = i; StageNum >= 0; --StageNum) {
2420 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2421 BBE = BB->getFirstTerminator();
2422 BBI != BBE; ++BBI) {
2423 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
2424 if (BBI->isPHI())
2425 continue;
2426 MachineInstr *NewMI =
2427 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
2428 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
2429 VRMap);
2430 NewBB->push_back(NewMI);
2431 InstrMap[NewMI] = &*BBI;
2432 }
2433 }
2434 }
2435 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
2436 DEBUG({
2437 dbgs() << "prolog:\n";
2438 NewBB->dump();
2439 });
2440 }
2441
2442 PredBB->replaceSuccessor(BB, KernelBB);
2443
2444 // Check if we need to remove the branch from the preheader to the original
2445 // loop, and replace it with a branch to the new loop.
Matt Arsenault1b9fc8e2016-09-14 20:43:16 +00002446 unsigned numBranches = TII->removeBranch(*PreheaderBB);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002447 if (numBranches) {
2448 SmallVector<MachineOperand, 0> Cond;
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002449 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002450 }
2451}
2452
2453/// Generate the pipeline epilog code. The epilog code finishes the iterations
2454/// that were started in either the prolog or the kernel. We create a basic
2455/// block for each stage that needs to complete.
2456void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
2457 MachineBasicBlock *KernelBB,
2458 ValueMapTy *VRMap,
2459 MBBVectorTy &EpilogBBs,
2460 MBBVectorTy &PrologBBs) {
2461 // We need to change the branch from the kernel to the first epilog block, so
2462 // this call to analyze branch uses the kernel rather than the original BB.
2463 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2464 SmallVector<MachineOperand, 4> Cond;
2465 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
2466 assert(!checkBranch && "generateEpilog must be able to analyze the branch");
2467 if (checkBranch)
2468 return;
2469
2470 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
2471 if (*LoopExitI == KernelBB)
2472 ++LoopExitI;
2473 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
2474 MachineBasicBlock *LoopExitBB = *LoopExitI;
2475
2476 MachineBasicBlock *PredBB = KernelBB;
2477 MachineBasicBlock *EpilogStart = LoopExitBB;
2478 InstrMapTy InstrMap;
2479
2480 // Generate a basic block for each stage, not including the last stage,
2481 // which was generated for the kernel. Each basic block may contain
2482 // instructions from multiple stages/iterations.
2483 int EpilogStage = LastStage + 1;
2484 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
2485 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
2486 EpilogBBs.push_back(NewBB);
2487 MF.insert(BB->getIterator(), NewBB);
2488
2489 PredBB->replaceSuccessor(LoopExitBB, NewBB);
2490 NewBB->addSuccessor(LoopExitBB);
2491
2492 if (EpilogStart == LoopExitBB)
2493 EpilogStart = NewBB;
2494
2495 // Add instructions to the epilog depending on the current block.
2496 // Process instructions in original program order.
2497 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
2498 for (auto &BBI : *BB) {
2499 if (BBI.isPHI())
2500 continue;
2501 MachineInstr *In = &BBI;
2502 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
Krzysztof Parzyszek785b6ce2018-03-26 15:45:55 +00002503 // Instructions with memoperands in the epilog are updated with
2504 // conservative values.
2505 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002506 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
2507 NewBB->push_back(NewMI);
2508 InstrMap[NewMI] = In;
2509 }
2510 }
2511 }
2512 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
2513 VRMap, InstrMap, LastStage, EpilogStage, i == 1);
2514 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
2515 InstrMap, LastStage, EpilogStage, i == 1);
2516 PredBB = NewBB;
2517
2518 DEBUG({
2519 dbgs() << "epilog:\n";
2520 NewBB->dump();
2521 });
2522 }
2523
2524 // Fix any Phi nodes in the loop exit block.
2525 for (MachineInstr &MI : *LoopExitBB) {
2526 if (!MI.isPHI())
2527 break;
2528 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
2529 MachineOperand &MO = MI.getOperand(i);
2530 if (MO.getMBB() == BB)
2531 MO.setMBB(PredBB);
2532 }
2533 }
2534
2535 // Create a branch to the new epilog from the kernel.
2536 // Remove the original branch and add a new branch to the epilog.
Matt Arsenault1b9fc8e2016-09-14 20:43:16 +00002537 TII->removeBranch(*KernelBB);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002538 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002539 // Add a branch to the loop exit.
2540 if (EpilogBBs.size() > 0) {
2541 MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
2542 SmallVector<MachineOperand, 4> Cond1;
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002543 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002544 }
2545}
2546
2547/// Replace all uses of FromReg that appear outside the specified
2548/// basic block with ToReg.
2549static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
2550 MachineBasicBlock *MBB,
2551 MachineRegisterInfo &MRI,
2552 LiveIntervals &LIS) {
2553 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
2554 E = MRI.use_end();
2555 I != E;) {
2556 MachineOperand &O = *I;
2557 ++I;
2558 if (O.getParent()->getParent() != MBB)
2559 O.setReg(ToReg);
2560 }
2561 if (!LIS.hasInterval(ToReg))
2562 LIS.createEmptyInterval(ToReg);
2563}
2564
2565/// Return true if the register has a use that occurs outside the
2566/// specified loop.
2567static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
2568 MachineRegisterInfo &MRI) {
2569 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
2570 E = MRI.use_end();
2571 I != E; ++I)
2572 if (I->getParent()->getParent() != BB)
2573 return true;
2574 return false;
2575}
2576
2577/// Generate Phis for the specific block in the generated pipelined code.
2578/// This function looks at the Phis from the original code to guide the
2579/// creation of new Phis.
2580void SwingSchedulerDAG::generateExistingPhis(
2581 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2582 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2583 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2584 bool IsLast) {
Simon Pilgrim6bdc7552017-03-31 10:59:37 +00002585 // Compute the stage number for the initial value of the Phi, which
Brendon Cahoon254f8892016-07-29 16:44:44 +00002586 // comes from the prolog. The prolog to use depends on to which kernel/
2587 // epilog that we're adding the Phi.
2588 unsigned PrologStage = 0;
2589 unsigned PrevStage = 0;
2590 bool InKernel = (LastStageNum == CurStageNum);
2591 if (InKernel) {
2592 PrologStage = LastStageNum - 1;
2593 PrevStage = CurStageNum;
2594 } else {
2595 PrologStage = LastStageNum - (CurStageNum - LastStageNum);
2596 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
2597 }
2598
2599 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2600 BBE = BB->getFirstNonPHI();
2601 BBI != BBE; ++BBI) {
2602 unsigned Def = BBI->getOperand(0).getReg();
2603
2604 unsigned InitVal = 0;
2605 unsigned LoopVal = 0;
2606 getPhiRegs(*BBI, BB, InitVal, LoopVal);
2607
2608 unsigned PhiOp1 = 0;
2609 // The Phi value from the loop body typically is defined in the loop, but
2610 // not always. So, we need to check if the value is defined in the loop.
2611 unsigned PhiOp2 = LoopVal;
2612 if (VRMap[LastStageNum].count(LoopVal))
2613 PhiOp2 = VRMap[LastStageNum][LoopVal];
2614
2615 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2616 int LoopValStage =
2617 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
2618 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
2619 if (NumStages == 0) {
2620 // We don't need to generate a Phi anymore, but we need to rename any uses
2621 // of the Phi value.
2622 unsigned NewReg = VRMap[PrevStage][LoopVal];
2623 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
2624 Def, NewReg);
2625 if (VRMap[CurStageNum].count(LoopVal))
2626 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
2627 }
2628 // Adjust the number of Phis needed depending on the number of prologs left,
2629 // and the distance from where the Phi is first scheduled.
2630 unsigned NumPhis = NumStages;
2631 if (!InKernel && (int)PrologStage < LoopValStage)
2632 // The NumPhis is the maximum number of new Phis needed during the steady
2633 // state. If the Phi has not been scheduled in current prolog, then we
2634 // need to generate less Phis.
2635 NumPhis = std::max((int)NumPhis - (int)(LoopValStage - PrologStage), 1);
2636 // The number of Phis cannot exceed the number of prolog stages. Each
2637 // stage can potentially define two values.
2638 NumPhis = std::min(NumPhis, PrologStage + 2);
2639
2640 unsigned NewReg = 0;
2641
2642 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
2643 // In the epilog, we may need to look back one stage to get the correct
2644 // Phi name because the epilog and prolog blocks execute the same stage.
2645 // The correct name is from the previous block only when the Phi has
2646 // been completely scheduled prior to the epilog, and Phi value is not
2647 // needed in multiple stages.
2648 int StageDiff = 0;
2649 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
2650 NumPhis == 1)
2651 StageDiff = 1;
2652 // Adjust the computations below when the phi and the loop definition
2653 // are scheduled in different stages.
2654 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
2655 StageDiff = StageScheduled - LoopValStage;
2656 for (unsigned np = 0; np < NumPhis; ++np) {
2657 // If the Phi hasn't been scheduled, then use the initial Phi operand
2658 // value. Otherwise, use the scheduled version of the instruction. This
2659 // is a little complicated when a Phi references another Phi.
2660 if (np > PrologStage || StageScheduled >= (int)LastStageNum)
2661 PhiOp1 = InitVal;
2662 // Check if the Phi has already been scheduled in a prolog stage.
2663 else if (PrologStage >= AccessStage + StageDiff + np &&
2664 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
2665 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
2666 // Check if the Phi has already been scheduled, but the loop intruction
2667 // is either another Phi, or doesn't occur in the loop.
2668 else if (PrologStage >= AccessStage + StageDiff + np) {
2669 // If the Phi references another Phi, we need to examine the other
2670 // Phi to get the correct value.
2671 PhiOp1 = LoopVal;
2672 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
2673 int Indirects = 1;
2674 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
2675 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
2676 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
2677 PhiOp1 = getInitPhiReg(*InstOp1, BB);
2678 else
2679 PhiOp1 = getLoopPhiReg(*InstOp1, BB);
2680 InstOp1 = MRI.getVRegDef(PhiOp1);
2681 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
2682 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
2683 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
2684 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
2685 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
2686 break;
2687 }
2688 ++Indirects;
2689 }
2690 } else
2691 PhiOp1 = InitVal;
2692 // If this references a generated Phi in the kernel, get the Phi operand
2693 // from the incoming block.
2694 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
2695 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2696 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2697
2698 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
2699 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
2700 // In the epilog, a map lookup is needed to get the value from the kernel,
2701 // or previous epilog block. How is does this depends on if the
2702 // instruction is scheduled in the previous block.
2703 if (!InKernel) {
2704 int StageDiffAdj = 0;
2705 if (LoopValStage != -1 && StageScheduled > LoopValStage)
2706 StageDiffAdj = StageScheduled - LoopValStage;
2707 // Use the loop value defined in the kernel, unless the kernel
2708 // contains the last definition of the Phi.
2709 if (np == 0 && PrevStage == LastStageNum &&
2710 (StageScheduled != 0 || LoopValStage != 0) &&
2711 VRMap[PrevStage - StageDiffAdj].count(LoopVal))
2712 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
2713 // Use the value defined by the Phi. We add one because we switch
2714 // from looking at the loop value to the Phi definition.
2715 else if (np > 0 && PrevStage == LastStageNum &&
2716 VRMap[PrevStage - np + 1].count(Def))
2717 PhiOp2 = VRMap[PrevStage - np + 1][Def];
2718 // Use the loop value defined in the kernel.
2719 else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 &&
2720 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
2721 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
2722 // Use the value defined by the Phi, unless we're generating the first
2723 // epilog and the Phi refers to a Phi in a different stage.
2724 else if (VRMap[PrevStage - np].count(Def) &&
2725 (!LoopDefIsPhi || PrevStage != LastStageNum))
2726 PhiOp2 = VRMap[PrevStage - np][Def];
2727 }
2728
2729 // Check if we can reuse an existing Phi. This occurs when a Phi
2730 // references another Phi, and the other Phi is scheduled in an
2731 // earlier stage. We can try to reuse an existing Phi up until the last
2732 // stage of the current Phi.
Krzysztof Parzyszek55cb49862018-03-26 16:10:48 +00002733 if (LoopDefIsPhi && (int)(PrologStage - np) >= StageScheduled) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00002734 int LVNumStages = Schedule.getStagesForPhi(LoopVal);
2735 int StageDiff = (StageScheduled - LoopValStage);
2736 LVNumStages -= StageDiff;
Krzysztof Parzyszek3a0a15a2018-03-26 15:58:16 +00002737 // Make sure the loop value Phi has been processed already.
2738 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00002739 NewReg = PhiOp2;
2740 unsigned ReuseStage = CurStageNum;
2741 if (Schedule.isLoopCarried(this, *PhiInst))
2742 ReuseStage -= LVNumStages;
2743 // Check if the Phi to reuse has been generated yet. If not, then
2744 // there is nothing to reuse.
Krzysztof Parzyszek55cb49862018-03-26 16:10:48 +00002745 if (VRMap[ReuseStage - np].count(LoopVal)) {
2746 NewReg = VRMap[ReuseStage - np][LoopVal];
Brendon Cahoon254f8892016-07-29 16:44:44 +00002747
2748 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2749 &*BBI, Def, NewReg);
2750 // Update the map with the new Phi name.
2751 VRMap[CurStageNum - np][Def] = NewReg;
2752 PhiOp2 = NewReg;
2753 if (VRMap[LastStageNum - np - 1].count(LoopVal))
2754 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
2755
2756 if (IsLast && np == NumPhis - 1)
2757 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2758 continue;
2759 }
Krzysztof Parzyszekdf24da22016-12-22 18:49:55 +00002760 } else if (InKernel && StageDiff > 0 &&
Brendon Cahoon254f8892016-07-29 16:44:44 +00002761 VRMap[CurStageNum - StageDiff - np].count(LoopVal))
2762 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
2763 }
2764
2765 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2766 NewReg = MRI.createVirtualRegister(RC);
2767
2768 MachineInstrBuilder NewPhi =
2769 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2770 TII->get(TargetOpcode::PHI), NewReg);
2771 NewPhi.addReg(PhiOp1).addMBB(BB1);
2772 NewPhi.addReg(PhiOp2).addMBB(BB2);
2773 if (np == 0)
2774 InstrMap[NewPhi] = &*BBI;
2775
2776 // We define the Phis after creating the new pipelined code, so
2777 // we need to rename the Phi values in scheduled instructions.
2778
2779 unsigned PrevReg = 0;
2780 if (InKernel && VRMap[PrevStage - np].count(LoopVal))
2781 PrevReg = VRMap[PrevStage - np][LoopVal];
2782 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2783 Def, NewReg, PrevReg);
2784 // If the Phi has been scheduled, use the new name for rewriting.
2785 if (VRMap[CurStageNum - np].count(Def)) {
2786 unsigned R = VRMap[CurStageNum - np][Def];
2787 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2788 R, NewReg);
2789 }
2790
2791 // Check if we need to rename any uses that occurs after the loop. The
2792 // register to replace depends on whether the Phi is scheduled in the
2793 // epilog.
2794 if (IsLast && np == NumPhis - 1)
2795 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2796
2797 // In the kernel, a dependent Phi uses the value from this Phi.
2798 if (InKernel)
2799 PhiOp2 = NewReg;
2800
2801 // Update the map with the new Phi name.
2802 VRMap[CurStageNum - np][Def] = NewReg;
2803 }
2804
2805 while (NumPhis++ < NumStages) {
2806 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
2807 &*BBI, Def, NewReg, 0);
2808 }
2809
2810 // Check if we need to rename a Phi that has been eliminated due to
2811 // scheduling.
2812 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
2813 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
2814 }
2815}
2816
2817/// Generate Phis for the specified block in the generated pipelined code.
2818/// These are new Phis needed because the definition is scheduled after the
2819/// use in the pipelened sequence.
2820void SwingSchedulerDAG::generatePhis(
2821 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2822 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2823 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2824 bool IsLast) {
2825 // Compute the stage number that contains the initial Phi value, and
2826 // the Phi from the previous stage.
2827 unsigned PrologStage = 0;
2828 unsigned PrevStage = 0;
2829 unsigned StageDiff = CurStageNum - LastStageNum;
2830 bool InKernel = (StageDiff == 0);
2831 if (InKernel) {
2832 PrologStage = LastStageNum - 1;
2833 PrevStage = CurStageNum;
2834 } else {
2835 PrologStage = LastStageNum - StageDiff;
2836 PrevStage = LastStageNum + StageDiff - 1;
2837 }
2838
2839 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
2840 BBE = BB->instr_end();
2841 BBI != BBE; ++BBI) {
2842 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
2843 MachineOperand &MO = BBI->getOperand(i);
2844 if (!MO.isReg() || !MO.isDef() ||
2845 !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2846 continue;
2847
2848 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2849 assert(StageScheduled != -1 && "Expecting scheduled instruction.");
2850 unsigned Def = MO.getReg();
2851 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
2852 // An instruction scheduled in stage 0 and is used after the loop
2853 // requires a phi in the epilog for the last definition from either
2854 // the kernel or prolog.
2855 if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
2856 hasUseAfterLoop(Def, BB, MRI))
2857 NumPhis = 1;
2858 if (!InKernel && (unsigned)StageScheduled > PrologStage)
2859 continue;
2860
2861 unsigned PhiOp2 = VRMap[PrevStage][Def];
2862 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
2863 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
2864 PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
2865 // The number of Phis can't exceed the number of prolog stages. The
2866 // prolog stage number is zero based.
2867 if (NumPhis > PrologStage + 1 - StageScheduled)
2868 NumPhis = PrologStage + 1 - StageScheduled;
2869 for (unsigned np = 0; np < NumPhis; ++np) {
2870 unsigned PhiOp1 = VRMap[PrologStage][Def];
2871 if (np <= PrologStage)
2872 PhiOp1 = VRMap[PrologStage - np][Def];
2873 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
2874 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2875 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2876 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
2877 PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
2878 }
2879 if (!InKernel)
2880 PhiOp2 = VRMap[PrevStage - np][Def];
2881
2882 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2883 unsigned NewReg = MRI.createVirtualRegister(RC);
2884
2885 MachineInstrBuilder NewPhi =
2886 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2887 TII->get(TargetOpcode::PHI), NewReg);
2888 NewPhi.addReg(PhiOp1).addMBB(BB1);
2889 NewPhi.addReg(PhiOp2).addMBB(BB2);
2890 if (np == 0)
2891 InstrMap[NewPhi] = &*BBI;
2892
2893 // Rewrite uses and update the map. The actions depend upon whether
2894 // we generating code for the kernel or epilog blocks.
2895 if (InKernel) {
2896 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2897 &*BBI, PhiOp1, NewReg);
2898 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2899 &*BBI, PhiOp2, NewReg);
2900
2901 PhiOp2 = NewReg;
2902 VRMap[PrevStage - np - 1][Def] = NewReg;
2903 } else {
2904 VRMap[CurStageNum - np][Def] = NewReg;
2905 if (np == NumPhis - 1)
2906 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2907 &*BBI, Def, NewReg);
2908 }
2909 if (IsLast && np == NumPhis - 1)
2910 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2911 }
2912 }
2913 }
2914}
2915
2916/// Remove instructions that generate values with no uses.
2917/// Typically, these are induction variable operations that generate values
2918/// used in the loop itself. A dead instruction has a definition with
2919/// no uses, or uses that occur in the original loop only.
2920void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
2921 MBBVectorTy &EpilogBBs) {
2922 // For each epilog block, check that the value defined by each instruction
2923 // is used. If not, delete it.
2924 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
2925 MBE = EpilogBBs.rend();
2926 MBB != MBE; ++MBB)
2927 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
2928 ME = (*MBB)->instr_rend();
2929 MI != ME;) {
2930 // From DeadMachineInstructionElem. Don't delete inline assembly.
2931 if (MI->isInlineAsm()) {
2932 ++MI;
2933 continue;
2934 }
2935 bool SawStore = false;
2936 // Check if it's safe to remove the instruction due to side effects.
2937 // We can, and want to, remove Phis here.
2938 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
2939 ++MI;
2940 continue;
2941 }
2942 bool used = true;
2943 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
2944 MOE = MI->operands_end();
2945 MOI != MOE; ++MOI) {
2946 if (!MOI->isReg() || !MOI->isDef())
2947 continue;
2948 unsigned reg = MOI->getReg();
Krzysztof Parzyszekb9b75b82018-03-26 15:53:23 +00002949 // Assume physical registers are used, unless they are marked dead.
2950 if (TargetRegisterInfo::isPhysicalRegister(reg)) {
2951 used = !MOI->isDead();
2952 if (used)
2953 break;
2954 continue;
2955 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00002956 unsigned realUses = 0;
2957 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
2958 EI = MRI.use_end();
2959 UI != EI; ++UI) {
2960 // Check if there are any uses that occur only in the original
2961 // loop. If so, that's not a real use.
2962 if (UI->getParent()->getParent() != BB) {
2963 realUses++;
2964 used = true;
2965 break;
2966 }
2967 }
2968 if (realUses > 0)
2969 break;
2970 used = false;
2971 }
2972 if (!used) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00002973 LIS.RemoveMachineInstrFromMaps(*MI);
Duncan P. N. Exon Smith5c001c32016-08-30 00:13:12 +00002974 MI++->eraseFromParent();
Brendon Cahoon254f8892016-07-29 16:44:44 +00002975 continue;
2976 }
2977 ++MI;
2978 }
2979 // In the kernel block, check if we can remove a Phi that generates a value
2980 // used in an instruction removed in the epilog block.
2981 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
2982 BBE = KernelBB->getFirstNonPHI();
2983 BBI != BBE;) {
2984 MachineInstr *MI = &*BBI;
2985 ++BBI;
2986 unsigned reg = MI->getOperand(0).getReg();
2987 if (MRI.use_begin(reg) == MRI.use_end()) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00002988 LIS.RemoveMachineInstrFromMaps(*MI);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002989 MI->eraseFromParent();
2990 }
2991 }
2992}
2993
2994/// For loop carried definitions, we split the lifetime of a virtual register
2995/// that has uses past the definition in the next iteration. A copy with a new
2996/// virtual register is inserted before the definition, which helps with
2997/// generating a better register assignment.
2998///
2999/// v1 = phi(a, v2) v1 = phi(a, v2)
3000/// v2 = phi(b, v3) v2 = phi(b, v3)
3001/// v3 = .. v4 = copy v1
3002/// .. = V1 v3 = ..
3003/// .. = v4
3004void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
3005 MBBVectorTy &EpilogBBs,
3006 SMSchedule &Schedule) {
3007 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
Bob Wilson90ecac02018-01-04 02:58:15 +00003008 for (auto &PHI : KernelBB->phis()) {
3009 unsigned Def = PHI.getOperand(0).getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00003010 // Check for any Phi definition that used as an operand of another Phi
3011 // in the same block.
3012 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
3013 E = MRI.use_instr_end();
3014 I != E; ++I) {
3015 if (I->isPHI() && I->getParent() == KernelBB) {
3016 // Get the loop carried definition.
Bob Wilson90ecac02018-01-04 02:58:15 +00003017 unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003018 if (!LCDef)
3019 continue;
3020 MachineInstr *MI = MRI.getVRegDef(LCDef);
3021 if (!MI || MI->getParent() != KernelBB || MI->isPHI())
3022 continue;
3023 // Search through the rest of the block looking for uses of the Phi
3024 // definition. If one occurs, then split the lifetime.
3025 unsigned SplitReg = 0;
3026 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
3027 KernelBB->instr_end()))
3028 if (BBJ.readsRegister(Def)) {
3029 // We split the lifetime when we find the first use.
3030 if (SplitReg == 0) {
3031 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
3032 BuildMI(*KernelBB, MI, MI->getDebugLoc(),
3033 TII->get(TargetOpcode::COPY), SplitReg)
3034 .addReg(Def);
3035 }
3036 BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
3037 }
3038 if (!SplitReg)
3039 continue;
3040 // Search through each of the epilog blocks for any uses to be renamed.
3041 for (auto &Epilog : EpilogBBs)
3042 for (auto &I : *Epilog)
3043 if (I.readsRegister(Def))
3044 I.substituteRegister(Def, SplitReg, 0, *TRI);
3045 break;
3046 }
3047 }
3048 }
3049}
3050
3051/// Remove the incoming block from the Phis in a basic block.
3052static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
3053 for (MachineInstr &MI : *BB) {
3054 if (!MI.isPHI())
3055 break;
3056 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
3057 if (MI.getOperand(i + 1).getMBB() == Incoming) {
3058 MI.RemoveOperand(i + 1);
3059 MI.RemoveOperand(i);
3060 break;
3061 }
3062 }
3063}
3064
3065/// Create branches from each prolog basic block to the appropriate epilog
3066/// block. These edges are needed if the loop ends before reaching the
3067/// kernel.
3068void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs,
3069 MachineBasicBlock *KernelBB,
3070 MBBVectorTy &EpilogBBs,
3071 SMSchedule &Schedule, ValueMapTy *VRMap) {
3072 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
3073 MachineInstr *IndVar = Pass.LI.LoopInductionVar;
3074 MachineInstr *Cmp = Pass.LI.LoopCompare;
3075 MachineBasicBlock *LastPro = KernelBB;
3076 MachineBasicBlock *LastEpi = KernelBB;
3077
3078 // Start from the blocks connected to the kernel and work "out"
3079 // to the first prolog and the last epilog blocks.
3080 SmallVector<MachineInstr *, 4> PrevInsts;
3081 unsigned MaxIter = PrologBBs.size() - 1;
3082 unsigned LC = UINT_MAX;
3083 unsigned LCMin = UINT_MAX;
3084 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
3085 // Add branches to the prolog that go to the corresponding
3086 // epilog, and the fall-thru prolog/kernel block.
3087 MachineBasicBlock *Prolog = PrologBBs[j];
3088 MachineBasicBlock *Epilog = EpilogBBs[i];
3089 // We've executed one iteration, so decrement the loop count and check for
3090 // the loop end.
3091 SmallVector<MachineOperand, 4> Cond;
3092 // Check if the LOOP0 has already been removed. If so, then there is no need
3093 // to reduce the trip count.
3094 if (LC != 0)
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003095 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j,
Brendon Cahoon254f8892016-07-29 16:44:44 +00003096 MaxIter);
3097
3098 // Record the value of the first trip count, which is used to determine if
3099 // branches and blocks can be removed for constant trip counts.
3100 if (LCMin == UINT_MAX)
3101 LCMin = LC;
3102
3103 unsigned numAdded = 0;
3104 if (TargetRegisterInfo::isVirtualRegister(LC)) {
3105 Prolog->addSuccessor(Epilog);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00003106 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003107 } else if (j >= LCMin) {
3108 Prolog->addSuccessor(Epilog);
3109 Prolog->removeSuccessor(LastPro);
3110 LastEpi->removeSuccessor(Epilog);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00003111 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003112 removePhis(Epilog, LastEpi);
3113 // Remove the blocks that are no longer referenced.
3114 if (LastPro != LastEpi) {
3115 LastEpi->clear();
3116 LastEpi->eraseFromParent();
3117 }
3118 LastPro->clear();
3119 LastPro->eraseFromParent();
3120 } else {
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00003121 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003122 removePhis(Epilog, Prolog);
3123 }
3124 LastPro = Prolog;
3125 LastEpi = Epilog;
3126 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
3127 E = Prolog->instr_rend();
3128 I != E && numAdded > 0; ++I, --numAdded)
3129 updateInstruction(&*I, false, j, 0, Schedule, VRMap);
3130 }
3131}
3132
3133/// Return true if we can compute the amount the instruction changes
3134/// during each iteration. Set Delta to the amount of the change.
3135bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
3136 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3137 unsigned BaseReg;
3138 int64_t Offset;
3139 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
3140 return false;
3141
3142 MachineRegisterInfo &MRI = MF.getRegInfo();
3143 // Check if there is a Phi. If so, get the definition in the loop.
3144 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
3145 if (BaseDef && BaseDef->isPHI()) {
3146 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
3147 BaseDef = MRI.getVRegDef(BaseReg);
3148 }
3149 if (!BaseDef)
3150 return false;
3151
3152 int D = 0;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003153 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003154 return false;
3155
3156 Delta = D;
3157 return true;
3158}
3159
3160/// Update the memory operand with a new offset when the pipeliner
Justin Lebarcf56e922016-08-12 23:58:19 +00003161/// generates a new copy of the instruction that refers to a
Brendon Cahoon254f8892016-07-29 16:44:44 +00003162/// different memory location.
3163void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
3164 MachineInstr &OldMI, unsigned Num) {
3165 if (Num == 0)
3166 return;
3167 // If the instruction has memory operands, then adjust the offset
3168 // when the instruction appears in different stages.
3169 unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin();
3170 if (NumRefs == 0)
3171 return;
3172 MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs);
3173 unsigned Refs = 0;
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003174 for (MachineMemOperand *MMO : NewMI.memoperands()) {
Justin Lebaradbf09e2016-09-11 01:38:58 +00003175 if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) ||
3176 (!MMO->getValue())) {
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003177 NewMemRefs[Refs++] = MMO;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003178 continue;
3179 }
3180 unsigned Delta;
Krzysztof Parzyszek785b6ce2018-03-26 15:45:55 +00003181 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003182 int64_t AdjOffset = Delta * Num;
3183 NewMemRefs[Refs++] =
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003184 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize());
Krzysztof Parzyszek2d790172018-02-27 22:40:52 +00003185 } else {
3186 NewMI.dropMemRefs();
3187 return;
3188 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003189 }
3190 NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs);
3191}
3192
3193/// Clone the instruction for the new pipelined loop and update the
3194/// memory operands, if needed.
3195MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
3196 unsigned CurStageNum,
3197 unsigned InstStageNum) {
3198 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3199 // Check for tied operands in inline asm instructions. This should be handled
3200 // elsewhere, but I'm not sure of the best solution.
3201 if (OldMI->isInlineAsm())
3202 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
3203 const auto &MO = OldMI->getOperand(i);
3204 if (MO.isReg() && MO.isUse())
3205 break;
3206 unsigned UseIdx;
3207 if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
3208 NewMI->tieOperands(i, UseIdx);
3209 }
3210 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3211 return NewMI;
3212}
3213
3214/// Clone the instruction for the new pipelined loop. If needed, this
3215/// function updates the instruction using the values saved in the
3216/// InstrChanges structure.
3217MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
3218 unsigned CurStageNum,
3219 unsigned InstStageNum,
3220 SMSchedule &Schedule) {
3221 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3222 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3223 InstrChanges.find(getSUnit(OldMI));
3224 if (It != InstrChanges.end()) {
3225 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3226 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003227 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003228 return nullptr;
3229 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
3230 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
3231 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
3232 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
3233 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3234 }
3235 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3236 return NewMI;
3237}
3238
3239/// Update the machine instruction with new virtual registers. This
3240/// function may change the defintions and/or uses.
3241void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
3242 unsigned CurStageNum,
3243 unsigned InstrStageNum,
3244 SMSchedule &Schedule,
3245 ValueMapTy *VRMap) {
3246 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
3247 MachineOperand &MO = NewMI->getOperand(i);
3248 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3249 continue;
3250 unsigned reg = MO.getReg();
3251 if (MO.isDef()) {
3252 // Create a new virtual register for the definition.
3253 const TargetRegisterClass *RC = MRI.getRegClass(reg);
3254 unsigned NewReg = MRI.createVirtualRegister(RC);
3255 MO.setReg(NewReg);
3256 VRMap[CurStageNum][reg] = NewReg;
3257 if (LastDef)
3258 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
3259 } else if (MO.isUse()) {
3260 MachineInstr *Def = MRI.getVRegDef(reg);
3261 // Compute the stage that contains the last definition for instruction.
3262 int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
3263 unsigned StageNum = CurStageNum;
3264 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
3265 // Compute the difference in stages between the defintion and the use.
3266 unsigned StageDiff = (InstrStageNum - DefStageNum);
3267 // Make an adjustment to get the last definition.
3268 StageNum -= StageDiff;
3269 }
3270 if (VRMap[StageNum].count(reg))
3271 MO.setReg(VRMap[StageNum][reg]);
3272 }
3273 }
3274}
3275
3276/// Return the instruction in the loop that defines the register.
3277/// If the definition is a Phi, then follow the Phi operand to
3278/// the instruction in the loop.
3279MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
3280 SmallPtrSet<MachineInstr *, 8> Visited;
3281 MachineInstr *Def = MRI.getVRegDef(Reg);
3282 while (Def->isPHI()) {
3283 if (!Visited.insert(Def).second)
3284 break;
3285 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
3286 if (Def->getOperand(i + 1).getMBB() == BB) {
3287 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
3288 break;
3289 }
3290 }
3291 return Def;
3292}
3293
3294/// Return the new name for the value from the previous stage.
3295unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
3296 unsigned LoopVal, unsigned LoopStage,
3297 ValueMapTy *VRMap,
3298 MachineBasicBlock *BB) {
3299 unsigned PrevVal = 0;
3300 if (StageNum > PhiStage) {
3301 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
3302 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
3303 // The name is defined in the previous stage.
3304 PrevVal = VRMap[StageNum - 1][LoopVal];
3305 else if (VRMap[StageNum].count(LoopVal))
3306 // The previous name is defined in the current stage when the instruction
3307 // order is swapped.
3308 PrevVal = VRMap[StageNum][LoopVal];
Krzysztof Parzyszekdf24da22016-12-22 18:49:55 +00003309 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003310 // The loop value hasn't yet been scheduled.
3311 PrevVal = LoopVal;
3312 else if (StageNum == PhiStage + 1)
3313 // The loop value is another phi, which has not been scheduled.
3314 PrevVal = getInitPhiReg(*LoopInst, BB);
3315 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
3316 // The loop value is another phi, which has been scheduled.
3317 PrevVal =
3318 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
3319 LoopStage, VRMap, BB);
3320 }
3321 return PrevVal;
3322}
3323
3324/// Rewrite the Phi values in the specified block to use the mappings
3325/// from the initial operand. Once the Phi is scheduled, we switch
3326/// to using the loop value instead of the Phi value, so those names
3327/// do not need to be rewritten.
3328void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
3329 unsigned StageNum,
3330 SMSchedule &Schedule,
3331 ValueMapTy *VRMap,
3332 InstrMapTy &InstrMap) {
Bob Wilson90ecac02018-01-04 02:58:15 +00003333 for (auto &PHI : BB->phis()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003334 unsigned InitVal = 0;
3335 unsigned LoopVal = 0;
Bob Wilson90ecac02018-01-04 02:58:15 +00003336 getPhiRegs(PHI, BB, InitVal, LoopVal);
3337 unsigned PhiDef = PHI.getOperand(0).getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00003338
3339 unsigned PhiStage =
3340 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
3341 unsigned LoopStage =
3342 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
3343 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
3344 if (NumPhis > StageNum)
3345 NumPhis = StageNum;
3346 for (unsigned np = 0; np <= NumPhis; ++np) {
3347 unsigned NewVal =
3348 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
3349 if (!NewVal)
3350 NewVal = InitVal;
Bob Wilson90ecac02018-01-04 02:58:15 +00003351 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI,
Brendon Cahoon254f8892016-07-29 16:44:44 +00003352 PhiDef, NewVal);
3353 }
3354 }
3355}
3356
3357/// Rewrite a previously scheduled instruction to use the register value
3358/// from the new instruction. Make sure the instruction occurs in the
3359/// basic block, and we don't change the uses in the new instruction.
3360void SwingSchedulerDAG::rewriteScheduledInstr(
3361 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
3362 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
3363 unsigned NewReg, unsigned PrevReg) {
3364 bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
3365 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
3366 // Rewrite uses that have been scheduled already to use the new
3367 // Phi register.
3368 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
3369 EI = MRI.use_end();
3370 UI != EI;) {
3371 MachineOperand &UseOp = *UI;
3372 MachineInstr *UseMI = UseOp.getParent();
3373 ++UI;
3374 if (UseMI->getParent() != BB)
3375 continue;
3376 if (UseMI->isPHI()) {
3377 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
3378 continue;
3379 if (getLoopPhiReg(*UseMI, BB) != OldReg)
3380 continue;
3381 }
3382 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
3383 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
3384 SUnit *OrigMISU = getSUnit(OrigInstr->second);
3385 int StageSched = Schedule.stageScheduled(OrigMISU);
3386 int CycleSched = Schedule.cycleScheduled(OrigMISU);
3387 unsigned ReplaceReg = 0;
3388 // This is the stage for the scheduled instruction.
3389 if (StagePhi == StageSched && Phi->isPHI()) {
3390 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
3391 if (PrevReg && InProlog)
3392 ReplaceReg = PrevReg;
3393 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
3394 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
3395 ReplaceReg = PrevReg;
3396 else
3397 ReplaceReg = NewReg;
3398 }
3399 // The scheduled instruction occurs before the scheduled Phi, and the
3400 // Phi is not loop carried.
3401 if (!InProlog && StagePhi + 1 == StageSched &&
3402 !Schedule.isLoopCarried(this, *Phi))
3403 ReplaceReg = NewReg;
3404 if (StagePhi > StageSched && Phi->isPHI())
3405 ReplaceReg = NewReg;
3406 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
3407 ReplaceReg = NewReg;
3408 if (ReplaceReg) {
3409 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
3410 UseOp.setReg(ReplaceReg);
3411 }
3412 }
3413}
3414
3415/// Check if we can change the instruction to use an offset value from the
3416/// previous iteration. If so, return true and set the base and offset values
3417/// so that we can rewrite the load, if necessary.
3418/// v1 = Phi(v0, v3)
3419/// v2 = load v1, 0
3420/// v3 = post_store v1, 4, x
3421/// This function enables the load to be rewritten as v2 = load v3, 4.
3422bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
3423 unsigned &BasePos,
3424 unsigned &OffsetPos,
3425 unsigned &NewBase,
3426 int64_t &Offset) {
3427 // Get the load instruction.
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003428 if (TII->isPostIncrement(*MI))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003429 return false;
3430 unsigned BasePosLd, OffsetPosLd;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003431 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003432 return false;
3433 unsigned BaseReg = MI->getOperand(BasePosLd).getReg();
3434
3435 // Look for the Phi instruction.
Justin Bognerfdf9bf42017-10-10 23:50:49 +00003436 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
Brendon Cahoon254f8892016-07-29 16:44:44 +00003437 MachineInstr *Phi = MRI.getVRegDef(BaseReg);
3438 if (!Phi || !Phi->isPHI())
3439 return false;
3440 // Get the register defined in the loop block.
3441 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
3442 if (!PrevReg)
3443 return false;
3444
3445 // Check for the post-increment load/store instruction.
3446 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
3447 if (!PrevDef || PrevDef == MI)
3448 return false;
3449
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003450 if (!TII->isPostIncrement(*PrevDef))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003451 return false;
3452
3453 unsigned BasePos1 = 0, OffsetPos1 = 0;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003454 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003455 return false;
3456
Krzysztof Parzyszek40df8a22018-03-26 16:17:06 +00003457 // Make sure that the instructions do not access the same memory location in
3458 // the next iteration.
Brendon Cahoon254f8892016-07-29 16:44:44 +00003459 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
3460 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
Krzysztof Parzyszek40df8a22018-03-26 16:17:06 +00003461 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3462 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
3463 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
3464 MF.DeleteMachineInstr(NewMI);
3465 if (!Disjoint)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003466 return false;
3467
3468 // Set the return value once we determine that we return true.
3469 BasePos = BasePosLd;
3470 OffsetPos = OffsetPosLd;
3471 NewBase = PrevReg;
3472 Offset = StoreOffset;
3473 return true;
3474}
3475
3476/// Apply changes to the instruction if needed. The changes are need
3477/// to improve the scheduling and depend up on the final schedule.
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00003478void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
3479 SMSchedule &Schedule) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003480 SUnit *SU = getSUnit(MI);
3481 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3482 InstrChanges.find(SU);
3483 if (It != InstrChanges.end()) {
3484 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3485 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003486 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00003487 return;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003488 unsigned BaseReg = MI->getOperand(BasePos).getReg();
3489 MachineInstr *LoopDef = findDefInLoop(BaseReg);
3490 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
3491 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
3492 int BaseStageNum = Schedule.stageScheduled(SU);
3493 int BaseCycleNum = Schedule.cycleScheduled(SU);
3494 if (BaseStageNum < DefStageNum) {
3495 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3496 int OffsetDiff = DefStageNum - BaseStageNum;
3497 if (DefCycleNum < BaseCycleNum) {
3498 NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
3499 if (OffsetDiff > 0)
3500 --OffsetDiff;
3501 }
3502 int64_t NewOffset =
3503 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
3504 NewMI->getOperand(OffsetPos).setImm(NewOffset);
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00003505 SU->setInstr(NewMI);
3506 MISUnitMap[NewMI] = SU;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003507 NewMIs.insert(NewMI);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003508 }
3509 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003510}
3511
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003512/// Return true for an order or output dependence that is loop carried
3513/// potentially. A dependence is loop carried if the destination defines a valu
3514/// that may be used or defined by the source in a subsequent iteration.
3515bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
3516 bool isSucc) {
3517 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
3518 Dep.isArtificial())
Brendon Cahoon254f8892016-07-29 16:44:44 +00003519 return false;
3520
3521 if (!SwpPruneLoopCarried)
3522 return true;
3523
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003524 if (Dep.getKind() == SDep::Output)
3525 return true;
3526
Brendon Cahoon254f8892016-07-29 16:44:44 +00003527 MachineInstr *SI = Source->getInstr();
3528 MachineInstr *DI = Dep.getSUnit()->getInstr();
3529 if (!isSucc)
3530 std::swap(SI, DI);
3531 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
3532
3533 // Assume ordered loads and stores may have a loop carried dependence.
3534 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
3535 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
3536 return true;
3537
3538 // Only chain dependences between a load and store can be loop carried.
3539 if (!DI->mayStore() || !SI->mayLoad())
3540 return false;
3541
3542 unsigned DeltaS, DeltaD;
3543 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
3544 return true;
3545
3546 unsigned BaseRegS, BaseRegD;
3547 int64_t OffsetS, OffsetD;
3548 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3549 if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) ||
3550 !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI))
3551 return true;
3552
3553 if (BaseRegS != BaseRegD)
3554 return true;
3555
3556 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
3557 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
3558
3559 // This is the main test, which checks the offset values and the loop
3560 // increment value to determine if the accesses may be loop carried.
3561 if (OffsetS >= OffsetD)
3562 return OffsetS + AccessSizeS > DeltaS;
Simon Pilgrimfbfb19b2017-03-16 19:52:00 +00003563 else
Brendon Cahoon254f8892016-07-29 16:44:44 +00003564 return OffsetD + AccessSizeD > DeltaD;
3565
3566 return true;
3567}
3568
Krzysztof Parzyszek88391242016-12-22 19:21:20 +00003569void SwingSchedulerDAG::postprocessDAG() {
3570 for (auto &M : Mutations)
3571 M->apply(this);
3572}
3573
Brendon Cahoon254f8892016-07-29 16:44:44 +00003574/// Try to schedule the node at the specified StartCycle and continue
3575/// until the node is schedule or the EndCycle is reached. This function
3576/// returns true if the node is scheduled. This routine may search either
3577/// forward or backward for a place to insert the instruction based upon
3578/// the relative values of StartCycle and EndCycle.
3579bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
3580 bool forward = true;
3581 if (StartCycle > EndCycle)
3582 forward = false;
3583
3584 // The terminating condition depends on the direction.
3585 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
3586 for (int curCycle = StartCycle; curCycle != termCycle;
3587 forward ? ++curCycle : --curCycle) {
3588
3589 // Add the already scheduled instructions at the specified cycle to the DFA.
3590 Resources->clearResources();
3591 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
3592 checkCycle <= LastCycle; checkCycle += II) {
3593 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
3594
3595 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
3596 E = cycleInstrs.end();
3597 I != E; ++I) {
3598 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
3599 continue;
3600 assert(Resources->canReserveResources(*(*I)->getInstr()) &&
3601 "These instructions have already been scheduled.");
3602 Resources->reserveResources(*(*I)->getInstr());
3603 }
3604 }
3605 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
3606 Resources->canReserveResources(*SU->getInstr())) {
3607 DEBUG({
3608 dbgs() << "\tinsert at cycle " << curCycle << " ";
3609 SU->getInstr()->dump();
3610 });
3611
3612 ScheduledInstrs[curCycle].push_back(SU);
3613 InstrToCycle.insert(std::make_pair(SU, curCycle));
3614 if (curCycle > LastCycle)
3615 LastCycle = curCycle;
3616 if (curCycle < FirstCycle)
3617 FirstCycle = curCycle;
3618 return true;
3619 }
3620 DEBUG({
3621 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
3622 SU->getInstr()->dump();
3623 });
3624 }
3625 return false;
3626}
3627
3628// Return the cycle of the earliest scheduled instruction in the chain.
3629int SMSchedule::earliestCycleInChain(const SDep &Dep) {
3630 SmallPtrSet<SUnit *, 8> Visited;
3631 SmallVector<SDep, 8> Worklist;
3632 Worklist.push_back(Dep);
3633 int EarlyCycle = INT_MAX;
3634 while (!Worklist.empty()) {
3635 const SDep &Cur = Worklist.pop_back_val();
3636 SUnit *PrevSU = Cur.getSUnit();
3637 if (Visited.count(PrevSU))
3638 continue;
3639 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
3640 if (it == InstrToCycle.end())
3641 continue;
3642 EarlyCycle = std::min(EarlyCycle, it->second);
3643 for (const auto &PI : PrevSU->Preds)
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003644 if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003645 Worklist.push_back(PI);
3646 Visited.insert(PrevSU);
3647 }
3648 return EarlyCycle;
3649}
3650
3651// Return the cycle of the latest scheduled instruction in the chain.
3652int SMSchedule::latestCycleInChain(const SDep &Dep) {
3653 SmallPtrSet<SUnit *, 8> Visited;
3654 SmallVector<SDep, 8> Worklist;
3655 Worklist.push_back(Dep);
3656 int LateCycle = INT_MIN;
3657 while (!Worklist.empty()) {
3658 const SDep &Cur = Worklist.pop_back_val();
3659 SUnit *SuccSU = Cur.getSUnit();
3660 if (Visited.count(SuccSU))
3661 continue;
3662 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
3663 if (it == InstrToCycle.end())
3664 continue;
3665 LateCycle = std::max(LateCycle, it->second);
3666 for (const auto &SI : SuccSU->Succs)
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003667 if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003668 Worklist.push_back(SI);
3669 Visited.insert(SuccSU);
3670 }
3671 return LateCycle;
3672}
3673
3674/// If an instruction has a use that spans multiple iterations, then
3675/// return true. These instructions are characterized by having a back-ege
3676/// to a Phi, which contains a reference to another Phi.
3677static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
3678 for (auto &P : SU->Preds)
3679 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
3680 for (auto &S : P.getSUnit()->Succs)
Krzysztof Parzyszekb9b75b82018-03-26 15:53:23 +00003681 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
Brendon Cahoon254f8892016-07-29 16:44:44 +00003682 return P.getSUnit();
3683 return nullptr;
3684}
3685
3686/// Compute the scheduling start slot for the instruction. The start slot
3687/// depends on any predecessor or successor nodes scheduled already.
3688void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
3689 int *MinEnd, int *MaxStart, int II,
3690 SwingSchedulerDAG *DAG) {
3691 // Iterate over each instruction that has been scheduled already. The start
3692 // slot computuation depends on whether the previously scheduled instruction
3693 // is a predecessor or successor of the specified instruction.
3694 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
3695
3696 // Iterate over each instruction in the current cycle.
3697 for (SUnit *I : getInstructions(cycle)) {
3698 // Because we're processing a DAG for the dependences, we recognize
3699 // the back-edge in recurrences by anti dependences.
3700 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
3701 const SDep &Dep = SU->Preds[i];
3702 if (Dep.getSUnit() == I) {
3703 if (!DAG->isBackedge(SU, Dep)) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00003704 int EarlyStart = cycle + Dep.getLatency() -
Brendon Cahoon254f8892016-07-29 16:44:44 +00003705 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3706 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003707 if (DAG->isLoopCarriedDep(SU, Dep, false)) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003708 int End = earliestCycleInChain(Dep) + (II - 1);
3709 *MinEnd = std::min(*MinEnd, End);
3710 }
3711 } else {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00003712 int LateStart = cycle - Dep.getLatency() +
Brendon Cahoon254f8892016-07-29 16:44:44 +00003713 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3714 *MinLateStart = std::min(*MinLateStart, LateStart);
3715 }
3716 }
3717 // For instruction that requires multiple iterations, make sure that
3718 // the dependent instruction is not scheduled past the definition.
3719 SUnit *BE = multipleIterations(I, DAG);
3720 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
3721 !SU->isPred(I))
3722 *MinLateStart = std::min(*MinLateStart, cycle);
3723 }
3724 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i)
3725 if (SU->Succs[i].getSUnit() == I) {
3726 const SDep &Dep = SU->Succs[i];
3727 if (!DAG->isBackedge(SU, Dep)) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00003728 int LateStart = cycle - Dep.getLatency() +
Brendon Cahoon254f8892016-07-29 16:44:44 +00003729 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3730 *MinLateStart = std::min(*MinLateStart, LateStart);
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003731 if (DAG->isLoopCarriedDep(SU, Dep)) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003732 int Start = latestCycleInChain(Dep) + 1 - II;
3733 *MaxStart = std::max(*MaxStart, Start);
3734 }
3735 } else {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00003736 int EarlyStart = cycle + Dep.getLatency() -
Brendon Cahoon254f8892016-07-29 16:44:44 +00003737 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3738 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3739 }
3740 }
3741 }
3742 }
3743}
3744
3745/// Order the instructions within a cycle so that the definitions occur
3746/// before the uses. Returns true if the instruction is added to the start
3747/// of the list, or false if added to the end.
3748bool SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
3749 std::deque<SUnit *> &Insts) {
3750 MachineInstr *MI = SU->getInstr();
3751 bool OrderBeforeUse = false;
3752 bool OrderAfterDef = false;
3753 bool OrderBeforeDef = false;
3754 unsigned MoveDef = 0;
3755 unsigned MoveUse = 0;
3756 int StageInst1 = stageScheduled(SU);
3757
3758 unsigned Pos = 0;
3759 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
3760 ++I, ++Pos) {
3761 // Relative order of Phis does not matter.
3762 if (MI->isPHI() && (*I)->getInstr()->isPHI())
3763 continue;
3764 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3765 MachineOperand &MO = MI->getOperand(i);
3766 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3767 continue;
3768 unsigned Reg = MO.getReg();
3769 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003770 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003771 if (MI->getOperand(BasePos).getReg() == Reg)
3772 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
3773 Reg = NewReg;
3774 bool Reads, Writes;
3775 std::tie(Reads, Writes) =
3776 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
3777 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
3778 OrderBeforeUse = true;
3779 MoveUse = Pos;
3780 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
3781 // Add the instruction after the scheduled instruction.
3782 OrderAfterDef = true;
3783 MoveDef = Pos;
3784 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
3785 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
3786 OrderBeforeUse = true;
3787 MoveUse = Pos;
3788 } else {
3789 OrderAfterDef = true;
3790 MoveDef = Pos;
3791 }
3792 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
3793 OrderBeforeUse = true;
3794 MoveUse = Pos;
3795 if (MoveUse != 0) {
3796 OrderAfterDef = true;
3797 MoveDef = Pos - 1;
3798 }
3799 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
3800 // Add the instruction before the scheduled instruction.
3801 OrderBeforeUse = true;
3802 MoveUse = Pos;
3803 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
3804 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
3805 OrderBeforeDef = true;
3806 MoveUse = Pos;
3807 }
3808 }
3809 // Check for order dependences between instructions. Make sure the source
3810 // is ordered before the destination.
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003811 for (auto &S : SU->Succs) {
3812 if (S.getSUnit() != *I)
3813 continue;
3814 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
3815 OrderBeforeUse = true;
3816 if (Pos < MoveUse)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003817 MoveUse = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003818 }
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003819 }
3820 for (auto &P : SU->Preds) {
3821 if (P.getSUnit() != *I)
3822 continue;
3823 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
3824 OrderAfterDef = true;
3825 MoveDef = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003826 }
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003827 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003828 }
3829
3830 // A circular dependence.
3831 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
3832 OrderBeforeUse = false;
3833
3834 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
3835 // to a loop-carried dependence.
3836 if (OrderBeforeDef)
3837 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
3838
3839 // The uncommon case when the instruction order needs to be updated because
3840 // there is both a use and def.
3841 if (OrderBeforeUse && OrderAfterDef) {
3842 SUnit *UseSU = Insts.at(MoveUse);
3843 SUnit *DefSU = Insts.at(MoveDef);
3844 if (MoveUse > MoveDef) {
3845 Insts.erase(Insts.begin() + MoveUse);
3846 Insts.erase(Insts.begin() + MoveDef);
3847 } else {
3848 Insts.erase(Insts.begin() + MoveDef);
3849 Insts.erase(Insts.begin() + MoveUse);
3850 }
3851 if (orderDependence(SSD, UseSU, Insts)) {
3852 Insts.push_front(SU);
3853 orderDependence(SSD, DefSU, Insts);
3854 return true;
3855 }
3856 Insts.pop_back();
3857 Insts.push_back(SU);
3858 Insts.push_back(UseSU);
3859 orderDependence(SSD, DefSU, Insts);
3860 return false;
3861 }
3862 // Put the new instruction first if there is a use in the list. Otherwise,
3863 // put it at the end of the list.
3864 if (OrderBeforeUse)
3865 Insts.push_front(SU);
3866 else
3867 Insts.push_back(SU);
3868 return OrderBeforeUse;
3869}
3870
3871/// Return true if the scheduled Phi has a loop carried operand.
3872bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
3873 if (!Phi.isPHI())
3874 return false;
3875 assert(Phi.isPHI() && "Expecing a Phi.");
3876 SUnit *DefSU = SSD->getSUnit(&Phi);
3877 unsigned DefCycle = cycleScheduled(DefSU);
3878 int DefStage = stageScheduled(DefSU);
3879
3880 unsigned InitVal = 0;
3881 unsigned LoopVal = 0;
3882 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
3883 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
3884 if (!UseSU)
3885 return true;
3886 if (UseSU->getInstr()->isPHI())
3887 return true;
3888 unsigned LoopCycle = cycleScheduled(UseSU);
3889 int LoopStage = stageScheduled(UseSU);
Simon Pilgrim3d8482a2016-11-14 10:40:23 +00003890 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003891}
3892
3893/// Return true if the instruction is a definition that is loop carried
3894/// and defines the use on the next iteration.
3895/// v1 = phi(v2, v3)
3896/// (Def) v3 = op v1
3897/// (MO) = v1
3898/// If MO appears before Def, then then v1 and v3 may get assigned to the same
3899/// register.
3900bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
3901 MachineInstr *Def, MachineOperand &MO) {
3902 if (!MO.isReg())
3903 return false;
3904 if (Def->isPHI())
3905 return false;
3906 MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
3907 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
3908 return false;
3909 if (!isLoopCarried(SSD, *Phi))
3910 return false;
3911 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
3912 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
3913 MachineOperand &DMO = Def->getOperand(i);
3914 if (!DMO.isReg() || !DMO.isDef())
3915 continue;
3916 if (DMO.getReg() == LoopReg)
3917 return true;
3918 }
3919 return false;
3920}
3921
3922// Check if the generated schedule is valid. This function checks if
3923// an instruction that uses a physical register is scheduled in a
3924// different stage than the definition. The pipeliner does not handle
3925// physical register values that may cross a basic block boundary.
3926bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003927 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
3928 SUnit &SU = SSD->SUnits[i];
3929 if (!SU.hasPhysRegDefs)
3930 continue;
3931 int StageDef = stageScheduled(&SU);
3932 assert(StageDef != -1 && "Instruction should have been scheduled.");
3933 for (auto &SI : SU.Succs)
3934 if (SI.isAssignedRegDep())
Simon Pilgrimb39236b2016-07-29 18:57:32 +00003935 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg()))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003936 if (stageScheduled(SI.getSUnit()) != StageDef)
3937 return false;
3938 }
3939 return true;
3940}
3941
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00003942/// A property of the node order in swing-modulo-scheduling is
3943/// that for nodes outside circuits the following holds:
3944/// none of them is scheduled after both a successor and a
3945/// predecessor.
3946/// The method below checks whether the property is met.
3947/// If not, debug information is printed and statistics information updated.
3948/// Note that we do not use an assert statement.
3949/// The reason is that although an invalid node oder may prevent
3950/// the pipeliner from finding a pipelined schedule for arbitrary II,
3951/// it does not lead to the generation of incorrect code.
3952void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
3953
3954 // a sorted vector that maps each SUnit to its index in the NodeOrder
3955 typedef std::pair<SUnit *, unsigned> UnitIndex;
3956 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
3957
3958 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
3959 Indices.push_back(std::make_pair(NodeOrder[i], i));
3960
3961 auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
3962 return std::get<0>(i1) < std::get<0>(i2);
3963 };
3964
3965 // sort, so that we can perform a binary search
3966 std::sort(Indices.begin(), Indices.end(), CompareKey);
3967
3968 bool Valid = true;
David L Kreitzerfebf70a2018-03-16 21:21:23 +00003969 (void)Valid;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00003970 // for each SUnit in the NodeOrder, check whether
3971 // it appears after both a successor and a predecessor
3972 // of the SUnit. If this is the case, and the SUnit
3973 // is not part of circuit, then the NodeOrder is not
3974 // valid.
3975 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
3976 SUnit *SU = NodeOrder[i];
3977 unsigned Index = i;
3978
3979 bool PredBefore = false;
3980 bool SuccBefore = false;
3981
3982 SUnit *Succ;
3983 SUnit *Pred;
David L Kreitzerfebf70a2018-03-16 21:21:23 +00003984 (void)Succ;
3985 (void)Pred;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00003986
3987 for (SDep &PredEdge : SU->Preds) {
3988 SUnit *PredSU = PredEdge.getSUnit();
3989 unsigned PredIndex =
3990 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(),
3991 std::make_pair(PredSU, 0), CompareKey));
3992 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
3993 PredBefore = true;
3994 Pred = PredSU;
3995 break;
3996 }
3997 }
3998
3999 for (SDep &SuccEdge : SU->Succs) {
4000 SUnit *SuccSU = SuccEdge.getSUnit();
4001 unsigned SuccIndex =
4002 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(),
4003 std::make_pair(SuccSU, 0), CompareKey));
4004 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
4005 SuccBefore = true;
4006 Succ = SuccSU;
4007 break;
4008 }
4009 }
4010
4011 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
4012 // instructions in circuits are allowed to be scheduled
4013 // after both a successor and predecessor.
4014 bool InCircuit = std::any_of(
4015 Circuits.begin(), Circuits.end(),
4016 [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
4017 if (InCircuit)
4018 DEBUG(dbgs() << "In a circuit, predecessor ";);
4019 else {
4020 Valid = false;
4021 NumNodeOrderIssues++;
4022 DEBUG(dbgs() << "Predecessor ";);
4023 }
4024 DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
4025 << " are scheduled before node " << SU->NodeNum << "\n";);
4026 }
4027 }
4028
4029 DEBUG({
4030 if (!Valid)
4031 dbgs() << "Invalid node order found!\n";
4032 });
4033}
4034
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00004035/// Attempt to fix the degenerate cases when the instruction serialization
4036/// causes the register lifetimes to overlap. For example,
4037/// p' = store_pi(p, b)
4038/// = load p, offset
4039/// In this case p and p' overlap, which means that two registers are needed.
4040/// Instead, this function changes the load to use p' and updates the offset.
4041void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
4042 unsigned OverlapReg = 0;
4043 unsigned NewBaseReg = 0;
4044 for (SUnit *SU : Instrs) {
4045 MachineInstr *MI = SU->getInstr();
4046 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
4047 const MachineOperand &MO = MI->getOperand(i);
4048 // Look for an instruction that uses p. The instruction occurs in the
4049 // same cycle but occurs later in the serialized order.
4050 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
4051 // Check that the instruction appears in the InstrChanges structure,
4052 // which contains instructions that can have the offset updated.
4053 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
4054 InstrChanges.find(SU);
4055 if (It != InstrChanges.end()) {
4056 unsigned BasePos, OffsetPos;
4057 // Update the base register and adjust the offset.
4058 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
Krzysztof Parzyszek12bdcab2017-10-11 15:59:51 +00004059 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
4060 NewMI->getOperand(BasePos).setReg(NewBaseReg);
4061 int64_t NewOffset =
4062 MI->getOperand(OffsetPos).getImm() - It->second.second;
4063 NewMI->getOperand(OffsetPos).setImm(NewOffset);
4064 SU->setInstr(NewMI);
4065 MISUnitMap[NewMI] = SU;
4066 NewMIs.insert(NewMI);
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00004067 }
4068 }
4069 OverlapReg = 0;
4070 NewBaseReg = 0;
4071 break;
4072 }
4073 // Look for an instruction of the form p' = op(p), which uses and defines
4074 // two virtual registers that get allocated to the same physical register.
4075 unsigned TiedUseIdx = 0;
4076 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
4077 // OverlapReg is p in the example above.
4078 OverlapReg = MI->getOperand(TiedUseIdx).getReg();
4079 // NewBaseReg is p' in the example above.
4080 NewBaseReg = MI->getOperand(i).getReg();
4081 break;
4082 }
4083 }
4084 }
4085}
4086
Brendon Cahoon254f8892016-07-29 16:44:44 +00004087/// After the schedule has been formed, call this function to combine
4088/// the instructions from the different stages/cycles. That is, this
4089/// function creates a schedule that represents a single iteration.
4090void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
4091 // Move all instructions to the first stage from later stages.
4092 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
4093 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
4094 ++stage) {
4095 std::deque<SUnit *> &cycleInstrs =
4096 ScheduledInstrs[cycle + (stage * InitiationInterval)];
4097 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
4098 E = cycleInstrs.rend();
4099 I != E; ++I)
4100 ScheduledInstrs[cycle].push_front(*I);
4101 }
4102 }
4103 // Iterate over the definitions in each instruction, and compute the
4104 // stage difference for each use. Keep the maximum value.
4105 for (auto &I : InstrToCycle) {
4106 int DefStage = stageScheduled(I.first);
4107 MachineInstr *MI = I.first->getInstr();
4108 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
4109 MachineOperand &Op = MI->getOperand(i);
4110 if (!Op.isReg() || !Op.isDef())
4111 continue;
4112
4113 unsigned Reg = Op.getReg();
4114 unsigned MaxDiff = 0;
4115 bool PhiIsSwapped = false;
4116 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
4117 EI = MRI.use_end();
4118 UI != EI; ++UI) {
4119 MachineOperand &UseOp = *UI;
4120 MachineInstr *UseMI = UseOp.getParent();
4121 SUnit *SUnitUse = SSD->getSUnit(UseMI);
4122 int UseStage = stageScheduled(SUnitUse);
4123 unsigned Diff = 0;
4124 if (UseStage != -1 && UseStage >= DefStage)
4125 Diff = UseStage - DefStage;
4126 if (MI->isPHI()) {
4127 if (isLoopCarried(SSD, *MI))
4128 ++Diff;
4129 else
4130 PhiIsSwapped = true;
4131 }
4132 MaxDiff = std::max(Diff, MaxDiff);
4133 }
4134 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
4135 }
4136 }
4137
4138 // Erase all the elements in the later stages. Only one iteration should
4139 // remain in the scheduled list, and it contains all the instructions.
4140 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
4141 ScheduledInstrs.erase(cycle);
4142
4143 // Change the registers in instruction as specified in the InstrChanges
4144 // map. We need to use the new registers to create the correct order.
4145 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
4146 SUnit *SU = &SSD->SUnits[i];
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00004147 SSD->applyInstrChange(SU->getInstr(), *this);
Brendon Cahoon254f8892016-07-29 16:44:44 +00004148 }
4149
4150 // Reorder the instructions in each cycle to fix and improve the
4151 // generated code.
4152 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
4153 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
4154 std::deque<SUnit *> newOrderZC;
4155 // Put the zero-cost, pseudo instructions at the start of the cycle.
4156 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
4157 SUnit *SU = cycleInstrs[i];
4158 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
4159 orderDependence(SSD, SU, newOrderZC);
4160 }
4161 std::deque<SUnit *> newOrderI;
4162 // Then, add the regular instructions back.
4163 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
4164 SUnit *SU = cycleInstrs[i];
4165 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
4166 orderDependence(SSD, SU, newOrderI);
4167 }
4168 // Replace the old order with the new order.
4169 cycleInstrs.swap(newOrderZC);
4170 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00004171 SSD->fixupRegisterOverlaps(cycleInstrs);
Brendon Cahoon254f8892016-07-29 16:44:44 +00004172 }
4173
4174 DEBUG(dump(););
4175}
4176
Aaron Ballman615eb472017-10-15 14:32:27 +00004177#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Brendon Cahoon254f8892016-07-29 16:44:44 +00004178/// Print the schedule information to the given output.
4179void SMSchedule::print(raw_ostream &os) const {
4180 // Iterate over each cycle.
4181 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
4182 // Iterate over each instruction in the cycle.
4183 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
4184 for (SUnit *CI : cycleInstrs->second) {
4185 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
4186 os << "(" << CI->NodeNum << ") ";
4187 CI->getInstr()->print(os);
4188 os << "\n";
4189 }
4190 }
4191}
4192
4193/// Utility function used for debugging to print the schedule.
Matthias Braun8c209aa2017-01-28 02:02:38 +00004194LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
4195#endif