blob: effb0c0d18c6722ef3fd72eed9162cf92c6825f7 [file] [log] [blame]
Tim Northover3b0846e2014-05-24 12:50:23 +00001//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AArch64TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AArch64ISelLowering.h"
Tim Northover3c55cca2014-11-27 21:02:42 +000015#include "AArch64CallingConvention.h"
Benjamin Kramer1f8930e2014-07-25 11:42:14 +000016#include "AArch64MachineFunctionInfo.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000017#include "AArch64PerfectShuffle.h"
18#include "AArch64Subtarget.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000019#include "AArch64TargetMachine.h"
20#include "AArch64TargetObjectFile.h"
21#include "MCTargetDesc/AArch64AddressingModes.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/Intrinsics.h"
29#include "llvm/IR/Type.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Target/TargetOptions.h"
35using namespace llvm;
36
37#define DEBUG_TYPE "aarch64-lower"
38
39STATISTIC(NumTailCalls, "Number of tail calls");
40STATISTIC(NumShiftInserts, "Number of vector shift inserts");
41
Alexey Samsonovf17f03e2014-08-19 18:40:39 +000042namespace {
Tim Northover3b0846e2014-05-24 12:50:23 +000043enum AlignMode {
44 StrictAlign,
45 NoStrictAlign
46};
Alexey Samsonovf17f03e2014-08-19 18:40:39 +000047}
Tim Northover3b0846e2014-05-24 12:50:23 +000048
49static cl::opt<AlignMode>
50Align(cl::desc("Load/store alignment support"),
51 cl::Hidden, cl::init(NoStrictAlign),
52 cl::values(
53 clEnumValN(StrictAlign, "aarch64-strict-align",
54 "Disallow all unaligned memory accesses"),
55 clEnumValN(NoStrictAlign, "aarch64-no-strict-align",
56 "Allow unaligned memory accesses"),
57 clEnumValEnd));
58
59// Place holder until extr generation is tested fully.
60static cl::opt<bool>
61EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden,
62 cl::desc("Allow AArch64 (or (shift)(shift))->extract"),
63 cl::init(true));
64
65static cl::opt<bool>
66EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
Kristof Beylsaea84612015-03-04 09:12:08 +000067 cl::desc("Allow AArch64 SLI/SRI formation"),
68 cl::init(false));
69
70// FIXME: The necessary dtprel relocations don't seem to be supported
71// well in the GNU bfd and gold linkers at the moment. Therefore, by
72// default, for now, fall back to GeneralDynamic code generation.
73cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
74 "aarch64-elf-ldtls-generation", cl::Hidden,
75 cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
76 cl::init(false));
Tim Northover3b0846e2014-05-24 12:50:23 +000077
Eric Christopher905f12d2015-01-29 00:19:42 +000078AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
79 const AArch64Subtarget &STI)
80 : TargetLowering(TM), Subtarget(&STI) {
Tim Northover3b0846e2014-05-24 12:50:23 +000081
82 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
83 // we have to make something up. Arbitrarily, choose ZeroOrOne.
84 setBooleanContents(ZeroOrOneBooleanContent);
85 // When comparing vectors the result sets the different elements in the
86 // vector to all-one or all-zero.
87 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
88
89 // Set up the register classes.
90 addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
91 addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
92
93 if (Subtarget->hasFPARMv8()) {
94 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
95 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
96 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
97 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
98 }
99
100 if (Subtarget->hasNEON()) {
101 addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
102 addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
103 // Someone set us up the NEON.
104 addDRTypeForNEON(MVT::v2f32);
105 addDRTypeForNEON(MVT::v8i8);
106 addDRTypeForNEON(MVT::v4i16);
107 addDRTypeForNEON(MVT::v2i32);
108 addDRTypeForNEON(MVT::v1i64);
109 addDRTypeForNEON(MVT::v1f64);
Oliver Stannard89d15422014-08-27 16:16:04 +0000110 addDRTypeForNEON(MVT::v4f16);
Tim Northover3b0846e2014-05-24 12:50:23 +0000111
112 addQRTypeForNEON(MVT::v4f32);
113 addQRTypeForNEON(MVT::v2f64);
114 addQRTypeForNEON(MVT::v16i8);
115 addQRTypeForNEON(MVT::v8i16);
116 addQRTypeForNEON(MVT::v4i32);
117 addQRTypeForNEON(MVT::v2i64);
Oliver Stannard89d15422014-08-27 16:16:04 +0000118 addQRTypeForNEON(MVT::v8f16);
Tim Northover3b0846e2014-05-24 12:50:23 +0000119 }
120
121 // Compute derived properties from the register classes
Eric Christopher23a3a7c2015-02-26 00:00:24 +0000122 computeRegisterProperties(Subtarget->getRegisterInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +0000123
124 // Provide all sorts of operation actions
125 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
126 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
127 setOperationAction(ISD::SETCC, MVT::i32, Custom);
128 setOperationAction(ISD::SETCC, MVT::i64, Custom);
129 setOperationAction(ISD::SETCC, MVT::f32, Custom);
130 setOperationAction(ISD::SETCC, MVT::f64, Custom);
131 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
132 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
133 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
134 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
135 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
136 setOperationAction(ISD::SELECT, MVT::i32, Custom);
137 setOperationAction(ISD::SELECT, MVT::i64, Custom);
138 setOperationAction(ISD::SELECT, MVT::f32, Custom);
139 setOperationAction(ISD::SELECT, MVT::f64, Custom);
140 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
141 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
142 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
143 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
144 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
145 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
146
147 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
148 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
149 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
150
151 setOperationAction(ISD::FREM, MVT::f32, Expand);
152 setOperationAction(ISD::FREM, MVT::f64, Expand);
153 setOperationAction(ISD::FREM, MVT::f80, Expand);
154
155 // Custom lowering hooks are needed for XOR
156 // to fold it into CSINC/CSINV.
157 setOperationAction(ISD::XOR, MVT::i32, Custom);
158 setOperationAction(ISD::XOR, MVT::i64, Custom);
159
160 // Virtually no operation on f128 is legal, but LLVM can't expand them when
161 // there's a valid register class, so we need custom operations in most cases.
162 setOperationAction(ISD::FABS, MVT::f128, Expand);
163 setOperationAction(ISD::FADD, MVT::f128, Custom);
164 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
165 setOperationAction(ISD::FCOS, MVT::f128, Expand);
166 setOperationAction(ISD::FDIV, MVT::f128, Custom);
167 setOperationAction(ISD::FMA, MVT::f128, Expand);
168 setOperationAction(ISD::FMUL, MVT::f128, Custom);
169 setOperationAction(ISD::FNEG, MVT::f128, Expand);
170 setOperationAction(ISD::FPOW, MVT::f128, Expand);
171 setOperationAction(ISD::FREM, MVT::f128, Expand);
172 setOperationAction(ISD::FRINT, MVT::f128, Expand);
173 setOperationAction(ISD::FSIN, MVT::f128, Expand);
174 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
175 setOperationAction(ISD::FSQRT, MVT::f128, Expand);
176 setOperationAction(ISD::FSUB, MVT::f128, Custom);
177 setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
178 setOperationAction(ISD::SETCC, MVT::f128, Custom);
179 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
180 setOperationAction(ISD::SELECT, MVT::f128, Custom);
181 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
182 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
183
184 // Lowering for many of the conversions is actually specified by the non-f128
185 // type. The LowerXXX function will be trivial when f128 isn't involved.
186 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
187 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
188 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
189 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
190 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
191 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
192 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
193 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
194 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
195 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
196 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
197 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
198 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
199 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
200
201 // Variable arguments.
202 setOperationAction(ISD::VASTART, MVT::Other, Custom);
203 setOperationAction(ISD::VAARG, MVT::Other, Custom);
204 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
205 setOperationAction(ISD::VAEND, MVT::Other, Expand);
206
207 // Variable-sized objects.
208 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
209 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
210 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
211
212 // Exception handling.
213 // FIXME: These are guesses. Has this been defined yet?
214 setExceptionPointerRegister(AArch64::X0);
215 setExceptionSelectorRegister(AArch64::X1);
216
217 // Constant pool entries
218 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
219
220 // BlockAddress
221 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
222
223 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
224 setOperationAction(ISD::ADDC, MVT::i32, Custom);
225 setOperationAction(ISD::ADDE, MVT::i32, Custom);
226 setOperationAction(ISD::SUBC, MVT::i32, Custom);
227 setOperationAction(ISD::SUBE, MVT::i32, Custom);
228 setOperationAction(ISD::ADDC, MVT::i64, Custom);
229 setOperationAction(ISD::ADDE, MVT::i64, Custom);
230 setOperationAction(ISD::SUBC, MVT::i64, Custom);
231 setOperationAction(ISD::SUBE, MVT::i64, Custom);
232
233 // AArch64 lacks both left-rotate and popcount instructions.
234 setOperationAction(ISD::ROTL, MVT::i32, Expand);
235 setOperationAction(ISD::ROTL, MVT::i64, Expand);
236
237 // AArch64 doesn't have {U|S}MUL_LOHI.
238 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
239 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
240
241
242 // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero
243 // counterparts, which AArch64 supports directly.
244 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
245 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
246 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
247 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
248
249 setOperationAction(ISD::CTPOP, MVT::i32, Custom);
250 setOperationAction(ISD::CTPOP, MVT::i64, Custom);
251
252 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
253 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
254 setOperationAction(ISD::SREM, MVT::i32, Expand);
255 setOperationAction(ISD::SREM, MVT::i64, Expand);
256 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
257 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
258 setOperationAction(ISD::UREM, MVT::i32, Expand);
259 setOperationAction(ISD::UREM, MVT::i64, Expand);
260
261 // Custom lower Add/Sub/Mul with overflow.
262 setOperationAction(ISD::SADDO, MVT::i32, Custom);
263 setOperationAction(ISD::SADDO, MVT::i64, Custom);
264 setOperationAction(ISD::UADDO, MVT::i32, Custom);
265 setOperationAction(ISD::UADDO, MVT::i64, Custom);
266 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
267 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
268 setOperationAction(ISD::USUBO, MVT::i32, Custom);
269 setOperationAction(ISD::USUBO, MVT::i64, Custom);
270 setOperationAction(ISD::SMULO, MVT::i32, Custom);
271 setOperationAction(ISD::SMULO, MVT::i64, Custom);
272 setOperationAction(ISD::UMULO, MVT::i32, Custom);
273 setOperationAction(ISD::UMULO, MVT::i64, Custom);
274
275 setOperationAction(ISD::FSIN, MVT::f32, Expand);
276 setOperationAction(ISD::FSIN, MVT::f64, Expand);
277 setOperationAction(ISD::FCOS, MVT::f32, Expand);
278 setOperationAction(ISD::FCOS, MVT::f64, Expand);
279 setOperationAction(ISD::FPOW, MVT::f32, Expand);
280 setOperationAction(ISD::FPOW, MVT::f64, Expand);
281 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
282 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
283
Oliver Stannardf5469be2014-08-18 14:22:39 +0000284 // f16 is storage-only, so we promote operations to f32 if we know this is
285 // valid, and ignore them otherwise. The operations not mentioned here will
286 // fail to select, but this is not a major problem as no source language
287 // should be emitting native f16 operations yet.
288 setOperationAction(ISD::FADD, MVT::f16, Promote);
289 setOperationAction(ISD::FDIV, MVT::f16, Promote);
290 setOperationAction(ISD::FMUL, MVT::f16, Promote);
291 setOperationAction(ISD::FSUB, MVT::f16, Promote);
292
Oliver Stannard89d15422014-08-27 16:16:04 +0000293 // v4f16 is also a storage-only type, so promote it to v4f32 when that is
294 // known to be safe.
295 setOperationAction(ISD::FADD, MVT::v4f16, Promote);
296 setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
297 setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
298 setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
299 setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote);
300 setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote);
301 AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
302 AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
303 AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
304 AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
305 AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32);
306 AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32);
307
308 // Expand all other v4f16 operations.
309 // FIXME: We could generate better code by promoting some operations to
310 // a pair of v4f32s
311 setOperationAction(ISD::FABS, MVT::v4f16, Expand);
312 setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
313 setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
314 setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
315 setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
316 setOperationAction(ISD::FMA, MVT::v4f16, Expand);
317 setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
318 setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
319 setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
320 setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
321 setOperationAction(ISD::FREM, MVT::v4f16, Expand);
322 setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
323 setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
324 setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
325 setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
326 setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
327 setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
328 setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
329 setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
330 setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
331 setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
332 setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
333 setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
334 setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
335 setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
336 setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
337
338
339 // v8f16 is also a storage-only type, so expand it.
340 setOperationAction(ISD::FABS, MVT::v8f16, Expand);
341 setOperationAction(ISD::FADD, MVT::v8f16, Expand);
342 setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
343 setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
344 setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
345 setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
346 setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
347 setOperationAction(ISD::FMA, MVT::v8f16, Expand);
348 setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
349 setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
350 setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
351 setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
352 setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
353 setOperationAction(ISD::FREM, MVT::v8f16, Expand);
354 setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
355 setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
356 setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
357 setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
358 setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
359 setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
360 setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
361 setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
362 setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
363 setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
364 setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
365 setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
366 setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
367 setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
368 setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
369 setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
370 setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
371
Tim Northover3b0846e2014-05-24 12:50:23 +0000372 // AArch64 has implementations of a lot of rounding-like FP operations.
373 static MVT RoundingTypes[] = { MVT::f32, MVT::f64};
374 for (unsigned I = 0; I < array_lengthof(RoundingTypes); ++I) {
375 MVT Ty = RoundingTypes[I];
376 setOperationAction(ISD::FFLOOR, Ty, Legal);
377 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
378 setOperationAction(ISD::FCEIL, Ty, Legal);
379 setOperationAction(ISD::FRINT, Ty, Legal);
380 setOperationAction(ISD::FTRUNC, Ty, Legal);
381 setOperationAction(ISD::FROUND, Ty, Legal);
382 }
383
384 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
385
386 if (Subtarget->isTargetMachO()) {
387 // For iOS, we don't want to the normal expansion of a libcall to
388 // sincos. We want to issue a libcall to __sincos_stret to avoid memory
389 // traffic.
390 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
391 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
392 } else {
393 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
394 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
395 }
396
Juergen Ributzka23266502014-12-10 19:43:32 +0000397 // Make floating-point constants legal for the large code model, so they don't
398 // become loads from the constant pool.
399 if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
400 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
401 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
402 }
403
Tim Northover3b0846e2014-05-24 12:50:23 +0000404 // AArch64 does not have floating-point extending loads, i1 sign-extending
405 // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000406 for (MVT VT : MVT::fp_valuetypes()) {
407 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
408 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
409 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
410 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
411 }
412 for (MVT VT : MVT::integer_valuetypes())
413 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
414
Tim Northover3b0846e2014-05-24 12:50:23 +0000415 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
416 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
417 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
418 setTruncStoreAction(MVT::f128, MVT::f80, Expand);
419 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
420 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
421 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
Tim Northoverf8bfe212014-07-18 13:07:05 +0000422
423 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
424 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
425
Tim Northover3b0846e2014-05-24 12:50:23 +0000426 // Indexed loads and stores are supported.
427 for (unsigned im = (unsigned)ISD::PRE_INC;
428 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
429 setIndexedLoadAction(im, MVT::i8, Legal);
430 setIndexedLoadAction(im, MVT::i16, Legal);
431 setIndexedLoadAction(im, MVT::i32, Legal);
432 setIndexedLoadAction(im, MVT::i64, Legal);
433 setIndexedLoadAction(im, MVT::f64, Legal);
434 setIndexedLoadAction(im, MVT::f32, Legal);
435 setIndexedStoreAction(im, MVT::i8, Legal);
436 setIndexedStoreAction(im, MVT::i16, Legal);
437 setIndexedStoreAction(im, MVT::i32, Legal);
438 setIndexedStoreAction(im, MVT::i64, Legal);
439 setIndexedStoreAction(im, MVT::f64, Legal);
440 setIndexedStoreAction(im, MVT::f32, Legal);
441 }
442
443 // Trap.
444 setOperationAction(ISD::TRAP, MVT::Other, Legal);
445
446 // We combine OR nodes for bitfield operations.
447 setTargetDAGCombine(ISD::OR);
448
449 // Vector add and sub nodes may conceal a high-half opportunity.
450 // Also, try to fold ADD into CSINC/CSINV..
451 setTargetDAGCombine(ISD::ADD);
452 setTargetDAGCombine(ISD::SUB);
453
454 setTargetDAGCombine(ISD::XOR);
455 setTargetDAGCombine(ISD::SINT_TO_FP);
456 setTargetDAGCombine(ISD::UINT_TO_FP);
457
458 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
459
460 setTargetDAGCombine(ISD::ANY_EXTEND);
461 setTargetDAGCombine(ISD::ZERO_EXTEND);
462 setTargetDAGCombine(ISD::SIGN_EXTEND);
463 setTargetDAGCombine(ISD::BITCAST);
464 setTargetDAGCombine(ISD::CONCAT_VECTORS);
465 setTargetDAGCombine(ISD::STORE);
466
467 setTargetDAGCombine(ISD::MUL);
468
469 setTargetDAGCombine(ISD::SELECT);
470 setTargetDAGCombine(ISD::VSELECT);
471
472 setTargetDAGCombine(ISD::INTRINSIC_VOID);
473 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
474 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
475
476 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
477 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
478 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
479
480 setStackPointerRegisterToSaveRestore(AArch64::SP);
481
482 setSchedulingPreference(Sched::Hybrid);
483
484 // Enable TBZ/TBNZ
485 MaskAndBranchFoldingIsLegal = true;
486
487 setMinFunctionAlignment(2);
488
489 RequireStrictAlign = (Align == StrictAlign);
490
491 setHasExtractBitsInsn(true);
492
493 if (Subtarget->hasNEON()) {
494 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
495 // silliness like this:
496 setOperationAction(ISD::FABS, MVT::v1f64, Expand);
497 setOperationAction(ISD::FADD, MVT::v1f64, Expand);
498 setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
499 setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
500 setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
501 setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
502 setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
503 setOperationAction(ISD::FMA, MVT::v1f64, Expand);
504 setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
505 setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
506 setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
507 setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
508 setOperationAction(ISD::FREM, MVT::v1f64, Expand);
509 setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
510 setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
511 setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
512 setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
513 setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
514 setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
515 setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
516 setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
517 setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
518 setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
519 setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
520 setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
521
522 setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
523 setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
524 setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
525 setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
526 setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
527
528 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
529
530 // AArch64 doesn't have a direct vector ->f32 conversion instructions for
531 // elements smaller than i32, so promote the input to i32 first.
532 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
533 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
534 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
535 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
536 // Similarly, there is no direct i32 -> f64 vector conversion instruction.
537 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
538 setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
539 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
540 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
541
542 // AArch64 doesn't have MUL.2d:
543 setOperationAction(ISD::MUL, MVT::v2i64, Expand);
Chad Rosierd9d0f862014-10-08 02:31:24 +0000544 // Custom handling for some quad-vector types to detect MULL.
545 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
546 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
547 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
548
Tim Northover3b0846e2014-05-24 12:50:23 +0000549 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
550 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
551 // Likewise, narrowing and extending vector loads/stores aren't handled
552 // directly.
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000553 for (MVT VT : MVT::vector_valuetypes()) {
554 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000555
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000556 setOperationAction(ISD::MULHS, VT, Expand);
557 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
558 setOperationAction(ISD::MULHU, VT, Expand);
559 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000560
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000561 setOperationAction(ISD::BSWAP, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000562
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000563 for (MVT InnerVT : MVT::vector_valuetypes()) {
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000564 setTruncStoreAction(VT, InnerVT, Expand);
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000565 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
566 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
567 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
568 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000569 }
570
571 // AArch64 has implementations of a lot of rounding-like FP operations.
572 static MVT RoundingVecTypes[] = {MVT::v2f32, MVT::v4f32, MVT::v2f64 };
573 for (unsigned I = 0; I < array_lengthof(RoundingVecTypes); ++I) {
574 MVT Ty = RoundingVecTypes[I];
575 setOperationAction(ISD::FFLOOR, Ty, Legal);
576 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
577 setOperationAction(ISD::FCEIL, Ty, Legal);
578 setOperationAction(ISD::FRINT, Ty, Legal);
579 setOperationAction(ISD::FTRUNC, Ty, Legal);
580 setOperationAction(ISD::FROUND, Ty, Legal);
581 }
582 }
James Molloyf089ab72014-08-06 10:42:18 +0000583
584 // Prefer likely predicted branches to selects on out-of-order cores.
585 if (Subtarget->isCortexA57())
586 PredictableSelectIsExpensive = true;
Tim Northover3b0846e2014-05-24 12:50:23 +0000587}
588
589void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) {
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000590 if (VT == MVT::v2f32 || VT == MVT::v4f16) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000591 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
592 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32);
593
594 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
595 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32);
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000596 } else if (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000597 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
598 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64);
599
600 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
601 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64);
602 }
603
604 // Mark vector float intrinsics as expand.
605 if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
606 setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand);
607 setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand);
608 setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand);
609 setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand);
610 setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand);
611 setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand);
612 setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand);
613 setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand);
614 setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand);
615 }
616
617 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
618 setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
619 setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
620 setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
621 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom);
622 setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
623 setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
624 setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
625 setOperationAction(ISD::AND, VT.getSimpleVT(), Custom);
626 setOperationAction(ISD::OR, VT.getSimpleVT(), Custom);
627 setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
628 setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
629
630 setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
631 setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
632 setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand);
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000633 for (MVT InnerVT : MVT::all_valuetypes())
634 setLoadExtAction(ISD::EXTLOAD, InnerVT, VT.getSimpleVT(), Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000635
636 // CNT supports only B element sizes.
637 if (VT != MVT::v8i8 && VT != MVT::v16i8)
638 setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand);
639
640 setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
641 setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
642 setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
643 setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
644 setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
645
646 setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
647 setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
648
649 if (Subtarget->isLittleEndian()) {
650 for (unsigned im = (unsigned)ISD::PRE_INC;
651 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
652 setIndexedLoadAction(im, VT.getSimpleVT(), Legal);
653 setIndexedStoreAction(im, VT.getSimpleVT(), Legal);
654 }
655 }
656}
657
658void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
659 addRegisterClass(VT, &AArch64::FPR64RegClass);
660 addTypeForNEON(VT, MVT::v2i32);
661}
662
663void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
664 addRegisterClass(VT, &AArch64::FPR128RegClass);
665 addTypeForNEON(VT, MVT::v4i32);
666}
667
668EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
669 if (!VT.isVector())
670 return MVT::i32;
671 return VT.changeVectorElementTypeToInteger();
672}
673
674/// computeKnownBitsForTargetNode - Determine which of the bits specified in
675/// Mask are known to be either zero or one and return them in the
676/// KnownZero/KnownOne bitsets.
677void AArch64TargetLowering::computeKnownBitsForTargetNode(
678 const SDValue Op, APInt &KnownZero, APInt &KnownOne,
679 const SelectionDAG &DAG, unsigned Depth) const {
680 switch (Op.getOpcode()) {
681 default:
682 break;
683 case AArch64ISD::CSEL: {
684 APInt KnownZero2, KnownOne2;
685 DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
686 DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
687 KnownZero &= KnownZero2;
688 KnownOne &= KnownOne2;
689 break;
690 }
691 case ISD::INTRINSIC_W_CHAIN: {
692 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
693 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
694 switch (IntID) {
695 default: return;
696 case Intrinsic::aarch64_ldaxr:
697 case Intrinsic::aarch64_ldxr: {
698 unsigned BitWidth = KnownOne.getBitWidth();
699 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
700 unsigned MemBits = VT.getScalarType().getSizeInBits();
701 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
702 return;
703 }
704 }
705 break;
706 }
707 case ISD::INTRINSIC_WO_CHAIN:
708 case ISD::INTRINSIC_VOID: {
709 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
710 switch (IntNo) {
711 default:
712 break;
713 case Intrinsic::aarch64_neon_umaxv:
714 case Intrinsic::aarch64_neon_uminv: {
715 // Figure out the datatype of the vector operand. The UMINV instruction
716 // will zero extend the result, so we can mark as known zero all the
717 // bits larger than the element datatype. 32-bit or larget doesn't need
718 // this as those are legal types and will be handled by isel directly.
719 MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
720 unsigned BitWidth = KnownZero.getBitWidth();
721 if (VT == MVT::v8i8 || VT == MVT::v16i8) {
722 assert(BitWidth >= 8 && "Unexpected width!");
723 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
724 KnownZero |= Mask;
725 } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
726 assert(BitWidth >= 16 && "Unexpected width!");
727 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
728 KnownZero |= Mask;
729 }
730 break;
731 } break;
732 }
733 }
734 }
735}
736
737MVT AArch64TargetLowering::getScalarShiftAmountTy(EVT LHSTy) const {
738 return MVT::i64;
739}
740
Tim Northover3b0846e2014-05-24 12:50:23 +0000741FastISel *
742AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
743 const TargetLibraryInfo *libInfo) const {
744 return AArch64::createFastISel(funcInfo, libInfo);
745}
746
747const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
748 switch (Opcode) {
749 default:
750 return nullptr;
751 case AArch64ISD::CALL: return "AArch64ISD::CALL";
752 case AArch64ISD::ADRP: return "AArch64ISD::ADRP";
753 case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow";
754 case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot";
755 case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG";
756 case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND";
757 case AArch64ISD::CSEL: return "AArch64ISD::CSEL";
758 case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL";
759 case AArch64ISD::CSINV: return "AArch64ISD::CSINV";
760 case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG";
761 case AArch64ISD::CSINC: return "AArch64ISD::CSINC";
762 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
Kristof Beylsaea84612015-03-04 09:12:08 +0000763 case AArch64ISD::TLSDESC_CALLSEQ: return "AArch64ISD::TLSDESC_CALLSEQ";
Tim Northover3b0846e2014-05-24 12:50:23 +0000764 case AArch64ISD::ADC: return "AArch64ISD::ADC";
765 case AArch64ISD::SBC: return "AArch64ISD::SBC";
766 case AArch64ISD::ADDS: return "AArch64ISD::ADDS";
767 case AArch64ISD::SUBS: return "AArch64ISD::SUBS";
768 case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
769 case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
770 case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
771 case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
772 case AArch64ISD::FMIN: return "AArch64ISD::FMIN";
773 case AArch64ISD::FMAX: return "AArch64ISD::FMAX";
774 case AArch64ISD::DUP: return "AArch64ISD::DUP";
775 case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8";
776 case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16";
777 case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32";
778 case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64";
779 case AArch64ISD::MOVI: return "AArch64ISD::MOVI";
780 case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift";
781 case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit";
782 case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl";
783 case AArch64ISD::FMOV: return "AArch64ISD::FMOV";
784 case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift";
785 case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl";
786 case AArch64ISD::BICi: return "AArch64ISD::BICi";
787 case AArch64ISD::ORRi: return "AArch64ISD::ORRi";
788 case AArch64ISD::BSL: return "AArch64ISD::BSL";
789 case AArch64ISD::NEG: return "AArch64ISD::NEG";
790 case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
791 case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1";
792 case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2";
793 case AArch64ISD::UZP1: return "AArch64ISD::UZP1";
794 case AArch64ISD::UZP2: return "AArch64ISD::UZP2";
795 case AArch64ISD::TRN1: return "AArch64ISD::TRN1";
796 case AArch64ISD::TRN2: return "AArch64ISD::TRN2";
797 case AArch64ISD::REV16: return "AArch64ISD::REV16";
798 case AArch64ISD::REV32: return "AArch64ISD::REV32";
799 case AArch64ISD::REV64: return "AArch64ISD::REV64";
800 case AArch64ISD::EXT: return "AArch64ISD::EXT";
801 case AArch64ISD::VSHL: return "AArch64ISD::VSHL";
802 case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR";
803 case AArch64ISD::VASHR: return "AArch64ISD::VASHR";
804 case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ";
805 case AArch64ISD::CMGE: return "AArch64ISD::CMGE";
806 case AArch64ISD::CMGT: return "AArch64ISD::CMGT";
807 case AArch64ISD::CMHI: return "AArch64ISD::CMHI";
808 case AArch64ISD::CMHS: return "AArch64ISD::CMHS";
809 case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ";
810 case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE";
811 case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT";
812 case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz";
813 case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz";
814 case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz";
815 case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz";
816 case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz";
817 case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz";
818 case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz";
819 case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz";
820 case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz";
821 case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz";
822 case AArch64ISD::NOT: return "AArch64ISD::NOT";
823 case AArch64ISD::BIT: return "AArch64ISD::BIT";
824 case AArch64ISD::CBZ: return "AArch64ISD::CBZ";
825 case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ";
826 case AArch64ISD::TBZ: return "AArch64ISD::TBZ";
827 case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ";
828 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
829 case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
830 case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
Asiri Rathnayake530b3ed2014-10-01 09:59:45 +0000831 case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST";
Tim Northover3b0846e2014-05-24 12:50:23 +0000832 case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
833 case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
834 case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
835 case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I";
836 case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I";
837 case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
838 case AArch64ISD::LD2post: return "AArch64ISD::LD2post";
839 case AArch64ISD::LD3post: return "AArch64ISD::LD3post";
840 case AArch64ISD::LD4post: return "AArch64ISD::LD4post";
841 case AArch64ISD::ST2post: return "AArch64ISD::ST2post";
842 case AArch64ISD::ST3post: return "AArch64ISD::ST3post";
843 case AArch64ISD::ST4post: return "AArch64ISD::ST4post";
844 case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post";
845 case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post";
846 case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post";
847 case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post";
848 case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post";
849 case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post";
850 case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost";
851 case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost";
852 case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost";
853 case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost";
854 case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost";
855 case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost";
856 case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost";
857 case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost";
858 case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
859 case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
860 case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
Chad Rosierd9d0f862014-10-08 02:31:24 +0000861 case AArch64ISD::SMULL: return "AArch64ISD::SMULL";
862 case AArch64ISD::UMULL: return "AArch64ISD::UMULL";
Tim Northover3b0846e2014-05-24 12:50:23 +0000863 }
864}
865
866MachineBasicBlock *
867AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
868 MachineBasicBlock *MBB) const {
869 // We materialise the F128CSEL pseudo-instruction as some control flow and a
870 // phi node:
871
872 // OrigBB:
873 // [... previous instrs leading to comparison ...]
874 // b.ne TrueBB
875 // b EndBB
876 // TrueBB:
877 // ; Fallthrough
878 // EndBB:
879 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
880
Tim Northover3b0846e2014-05-24 12:50:23 +0000881 MachineFunction *MF = MBB->getParent();
Eric Christopher905f12d2015-01-29 00:19:42 +0000882 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +0000883 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
884 DebugLoc DL = MI->getDebugLoc();
885 MachineFunction::iterator It = MBB;
886 ++It;
887
888 unsigned DestReg = MI->getOperand(0).getReg();
889 unsigned IfTrueReg = MI->getOperand(1).getReg();
890 unsigned IfFalseReg = MI->getOperand(2).getReg();
891 unsigned CondCode = MI->getOperand(3).getImm();
892 bool NZCVKilled = MI->getOperand(4).isKill();
893
894 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
895 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
896 MF->insert(It, TrueBB);
897 MF->insert(It, EndBB);
898
899 // Transfer rest of current basic-block to EndBB
900 EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
901 MBB->end());
902 EndBB->transferSuccessorsAndUpdatePHIs(MBB);
903
904 BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
905 BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
906 MBB->addSuccessor(TrueBB);
907 MBB->addSuccessor(EndBB);
908
909 // TrueBB falls through to the end.
910 TrueBB->addSuccessor(EndBB);
911
912 if (!NZCVKilled) {
913 TrueBB->addLiveIn(AArch64::NZCV);
914 EndBB->addLiveIn(AArch64::NZCV);
915 }
916
917 BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
918 .addReg(IfTrueReg)
919 .addMBB(TrueBB)
920 .addReg(IfFalseReg)
921 .addMBB(MBB);
922
923 MI->eraseFromParent();
924 return EndBB;
925}
926
927MachineBasicBlock *
928AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
929 MachineBasicBlock *BB) const {
930 switch (MI->getOpcode()) {
931 default:
932#ifndef NDEBUG
933 MI->dump();
934#endif
Craig Topper35b2f752014-06-19 06:10:58 +0000935 llvm_unreachable("Unexpected instruction for custom inserter!");
Tim Northover3b0846e2014-05-24 12:50:23 +0000936
937 case AArch64::F128CSEL:
938 return EmitF128CSEL(MI, BB);
939
940 case TargetOpcode::STACKMAP:
941 case TargetOpcode::PATCHPOINT:
942 return emitPatchPoint(MI, BB);
943 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000944}
945
946//===----------------------------------------------------------------------===//
947// AArch64 Lowering private implementation.
948//===----------------------------------------------------------------------===//
949
950//===----------------------------------------------------------------------===//
951// Lowering Code
952//===----------------------------------------------------------------------===//
953
954/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
955/// CC
956static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
957 switch (CC) {
958 default:
959 llvm_unreachable("Unknown condition code!");
960 case ISD::SETNE:
961 return AArch64CC::NE;
962 case ISD::SETEQ:
963 return AArch64CC::EQ;
964 case ISD::SETGT:
965 return AArch64CC::GT;
966 case ISD::SETGE:
967 return AArch64CC::GE;
968 case ISD::SETLT:
969 return AArch64CC::LT;
970 case ISD::SETLE:
971 return AArch64CC::LE;
972 case ISD::SETUGT:
973 return AArch64CC::HI;
974 case ISD::SETUGE:
975 return AArch64CC::HS;
976 case ISD::SETULT:
977 return AArch64CC::LO;
978 case ISD::SETULE:
979 return AArch64CC::LS;
980 }
981}
982
983/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
984static void changeFPCCToAArch64CC(ISD::CondCode CC,
985 AArch64CC::CondCode &CondCode,
986 AArch64CC::CondCode &CondCode2) {
987 CondCode2 = AArch64CC::AL;
988 switch (CC) {
989 default:
990 llvm_unreachable("Unknown FP condition!");
991 case ISD::SETEQ:
992 case ISD::SETOEQ:
993 CondCode = AArch64CC::EQ;
994 break;
995 case ISD::SETGT:
996 case ISD::SETOGT:
997 CondCode = AArch64CC::GT;
998 break;
999 case ISD::SETGE:
1000 case ISD::SETOGE:
1001 CondCode = AArch64CC::GE;
1002 break;
1003 case ISD::SETOLT:
1004 CondCode = AArch64CC::MI;
1005 break;
1006 case ISD::SETOLE:
1007 CondCode = AArch64CC::LS;
1008 break;
1009 case ISD::SETONE:
1010 CondCode = AArch64CC::MI;
1011 CondCode2 = AArch64CC::GT;
1012 break;
1013 case ISD::SETO:
1014 CondCode = AArch64CC::VC;
1015 break;
1016 case ISD::SETUO:
1017 CondCode = AArch64CC::VS;
1018 break;
1019 case ISD::SETUEQ:
1020 CondCode = AArch64CC::EQ;
1021 CondCode2 = AArch64CC::VS;
1022 break;
1023 case ISD::SETUGT:
1024 CondCode = AArch64CC::HI;
1025 break;
1026 case ISD::SETUGE:
1027 CondCode = AArch64CC::PL;
1028 break;
1029 case ISD::SETLT:
1030 case ISD::SETULT:
1031 CondCode = AArch64CC::LT;
1032 break;
1033 case ISD::SETLE:
1034 case ISD::SETULE:
1035 CondCode = AArch64CC::LE;
1036 break;
1037 case ISD::SETNE:
1038 case ISD::SETUNE:
1039 CondCode = AArch64CC::NE;
1040 break;
1041 }
1042}
1043
1044/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1045/// CC usable with the vector instructions. Fewer operations are available
1046/// without a real NZCV register, so we have to use less efficient combinations
1047/// to get the same effect.
1048static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1049 AArch64CC::CondCode &CondCode,
1050 AArch64CC::CondCode &CondCode2,
1051 bool &Invert) {
1052 Invert = false;
1053 switch (CC) {
1054 default:
1055 // Mostly the scalar mappings work fine.
1056 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1057 break;
1058 case ISD::SETUO:
1059 Invert = true; // Fallthrough
1060 case ISD::SETO:
1061 CondCode = AArch64CC::MI;
1062 CondCode2 = AArch64CC::GE;
1063 break;
1064 case ISD::SETUEQ:
1065 case ISD::SETULT:
1066 case ISD::SETULE:
1067 case ISD::SETUGT:
1068 case ISD::SETUGE:
1069 // All of the compare-mask comparisons are ordered, but we can switch
1070 // between the two by a double inversion. E.g. ULE == !OGT.
1071 Invert = true;
1072 changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
1073 break;
1074 }
1075}
1076
1077static bool isLegalArithImmed(uint64_t C) {
1078 // Matches AArch64DAGToDAGISel::SelectArithImmed().
1079 return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1080}
1081
1082static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1083 SDLoc dl, SelectionDAG &DAG) {
1084 EVT VT = LHS.getValueType();
1085
1086 if (VT.isFloatingPoint())
1087 return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
1088
1089 // The CMP instruction is just an alias for SUBS, and representing it as
1090 // SUBS means that it's possible to get CSE with subtract operations.
1091 // A later phase can perform the optimization of setting the destination
1092 // register to WZR/XZR if it ends up being unused.
1093 unsigned Opcode = AArch64ISD::SUBS;
1094
1095 if (RHS.getOpcode() == ISD::SUB && isa<ConstantSDNode>(RHS.getOperand(0)) &&
1096 cast<ConstantSDNode>(RHS.getOperand(0))->getZExtValue() == 0 &&
1097 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1098 // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
1099 // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
1100 // can be set differently by this operation. It comes down to whether
1101 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1102 // everything is fine. If not then the optimization is wrong. Thus general
1103 // comparisons are only valid if op2 != 0.
1104
1105 // So, finally, the only LLVM-native comparisons that don't mention C and V
1106 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1107 // the absence of information about op2.
1108 Opcode = AArch64ISD::ADDS;
1109 RHS = RHS.getOperand(1);
1110 } else if (LHS.getOpcode() == ISD::AND && isa<ConstantSDNode>(RHS) &&
1111 cast<ConstantSDNode>(RHS)->getZExtValue() == 0 &&
1112 !isUnsignedIntSetCC(CC)) {
1113 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1114 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1115 // of the signed comparisons.
1116 Opcode = AArch64ISD::ANDS;
1117 RHS = LHS.getOperand(1);
1118 LHS = LHS.getOperand(0);
1119 }
1120
1121 return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS)
1122 .getValue(1);
1123}
1124
1125static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1126 SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) {
David Xuee978202014-08-28 04:59:53 +00001127 SDValue Cmp;
1128 AArch64CC::CondCode AArch64CC;
Tim Northover3b0846e2014-05-24 12:50:23 +00001129 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1130 EVT VT = RHS.getValueType();
1131 uint64_t C = RHSC->getZExtValue();
1132 if (!isLegalArithImmed(C)) {
1133 // Constant does not fit, try adjusting it by one?
1134 switch (CC) {
1135 default:
1136 break;
1137 case ISD::SETLT:
1138 case ISD::SETGE:
1139 if ((VT == MVT::i32 && C != 0x80000000 &&
1140 isLegalArithImmed((uint32_t)(C - 1))) ||
1141 (VT == MVT::i64 && C != 0x80000000ULL &&
1142 isLegalArithImmed(C - 1ULL))) {
1143 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1144 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1145 RHS = DAG.getConstant(C, VT);
1146 }
1147 break;
1148 case ISD::SETULT:
1149 case ISD::SETUGE:
1150 if ((VT == MVT::i32 && C != 0 &&
1151 isLegalArithImmed((uint32_t)(C - 1))) ||
1152 (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1153 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1154 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1155 RHS = DAG.getConstant(C, VT);
1156 }
1157 break;
1158 case ISD::SETLE:
1159 case ISD::SETGT:
Oliver Stannard269a275c2014-11-03 15:28:40 +00001160 if ((VT == MVT::i32 && C != INT32_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001161 isLegalArithImmed((uint32_t)(C + 1))) ||
Oliver Stannard269a275c2014-11-03 15:28:40 +00001162 (VT == MVT::i64 && C != INT64_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001163 isLegalArithImmed(C + 1ULL))) {
1164 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1165 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1166 RHS = DAG.getConstant(C, VT);
1167 }
1168 break;
1169 case ISD::SETULE:
1170 case ISD::SETUGT:
Oliver Stannard269a275c2014-11-03 15:28:40 +00001171 if ((VT == MVT::i32 && C != UINT32_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001172 isLegalArithImmed((uint32_t)(C + 1))) ||
Oliver Stannard269a275c2014-11-03 15:28:40 +00001173 (VT == MVT::i64 && C != UINT64_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001174 isLegalArithImmed(C + 1ULL))) {
1175 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1176 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1177 RHS = DAG.getConstant(C, VT);
1178 }
1179 break;
1180 }
1181 }
1182 }
David Xuee978202014-08-28 04:59:53 +00001183 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
1184 // For the i8 operand, the largest immediate is 255, so this can be easily
1185 // encoded in the compare instruction. For the i16 operand, however, the
1186 // largest immediate cannot be encoded in the compare.
1187 // Therefore, use a sign extending load and cmn to avoid materializing the -1
1188 // constant. For example,
1189 // movz w1, #65535
1190 // ldrh w0, [x0, #0]
1191 // cmp w0, w1
1192 // >
1193 // ldrsh w0, [x0, #0]
1194 // cmn w0, #1
1195 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
1196 // if and only if (sext LHS) == (sext RHS). The checks are in place to ensure
1197 // both the LHS and RHS are truely zero extended and to make sure the
1198 // transformation is profitable.
1199 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
1200 if ((cast<ConstantSDNode>(RHS)->getZExtValue() >> 16 == 0) &&
1201 isa<LoadSDNode>(LHS)) {
1202 if (cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
1203 cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
1204 LHS.getNode()->hasNUsesOfValue(1, 0)) {
1205 int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
1206 if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
1207 SDValue SExt =
1208 DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
1209 DAG.getValueType(MVT::i16));
1210 Cmp = emitComparison(SExt,
1211 DAG.getConstant(ValueofRHS, RHS.getValueType()),
1212 CC, dl, DAG);
1213 AArch64CC = changeIntCCToAArch64CC(CC);
1214 AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
1215 return Cmp;
1216 }
1217 }
1218 }
1219 }
1220 Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
1221 AArch64CC = changeIntCCToAArch64CC(CC);
Tim Northover3b0846e2014-05-24 12:50:23 +00001222 AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
1223 return Cmp;
1224}
1225
1226static std::pair<SDValue, SDValue>
1227getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
1228 assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
1229 "Unsupported value type");
1230 SDValue Value, Overflow;
1231 SDLoc DL(Op);
1232 SDValue LHS = Op.getOperand(0);
1233 SDValue RHS = Op.getOperand(1);
1234 unsigned Opc = 0;
1235 switch (Op.getOpcode()) {
1236 default:
1237 llvm_unreachable("Unknown overflow instruction!");
1238 case ISD::SADDO:
1239 Opc = AArch64ISD::ADDS;
1240 CC = AArch64CC::VS;
1241 break;
1242 case ISD::UADDO:
1243 Opc = AArch64ISD::ADDS;
1244 CC = AArch64CC::HS;
1245 break;
1246 case ISD::SSUBO:
1247 Opc = AArch64ISD::SUBS;
1248 CC = AArch64CC::VS;
1249 break;
1250 case ISD::USUBO:
1251 Opc = AArch64ISD::SUBS;
1252 CC = AArch64CC::LO;
1253 break;
1254 // Multiply needs a little bit extra work.
1255 case ISD::SMULO:
1256 case ISD::UMULO: {
1257 CC = AArch64CC::NE;
1258 bool IsSigned = (Op.getOpcode() == ISD::SMULO) ? true : false;
1259 if (Op.getValueType() == MVT::i32) {
1260 unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1261 // For a 32 bit multiply with overflow check we want the instruction
1262 // selector to generate a widening multiply (SMADDL/UMADDL). For that we
1263 // need to generate the following pattern:
1264 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
1265 LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
1266 RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
1267 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1268 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
1269 DAG.getConstant(0, MVT::i64));
1270 // On AArch64 the upper 32 bits are always zero extended for a 32 bit
1271 // operation. We need to clear out the upper 32 bits, because we used a
1272 // widening multiply that wrote all 64 bits. In the end this should be a
1273 // noop.
1274 Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
1275 if (IsSigned) {
1276 // The signed overflow check requires more than just a simple check for
1277 // any bit set in the upper 32 bits of the result. These bits could be
1278 // just the sign bits of a negative number. To perform the overflow
1279 // check we have to arithmetic shift right the 32nd bit of the result by
1280 // 31 bits. Then we compare the result to the upper 32 bits.
1281 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
1282 DAG.getConstant(32, MVT::i64));
1283 UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
1284 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
1285 DAG.getConstant(31, MVT::i64));
1286 // It is important that LowerBits is last, otherwise the arithmetic
1287 // shift will not be folded into the compare (SUBS).
1288 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
1289 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1290 .getValue(1);
1291 } else {
1292 // The overflow check for unsigned multiply is easy. We only need to
1293 // check if any of the upper 32 bits are set. This can be done with a
1294 // CMP (shifted register). For that we need to generate the following
1295 // pattern:
1296 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
1297 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
1298 DAG.getConstant(32, MVT::i64));
1299 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1300 Overflow =
1301 DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
1302 UpperBits).getValue(1);
1303 }
1304 break;
1305 }
1306 assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
1307 // For the 64 bit multiply
1308 Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1309 if (IsSigned) {
1310 SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
1311 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
1312 DAG.getConstant(63, MVT::i64));
1313 // It is important that LowerBits is last, otherwise the arithmetic
1314 // shift will not be folded into the compare (SUBS).
1315 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1316 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1317 .getValue(1);
1318 } else {
1319 SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
1320 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1321 Overflow =
1322 DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
1323 UpperBits).getValue(1);
1324 }
1325 break;
1326 }
1327 } // switch (...)
1328
1329 if (Opc) {
1330 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
1331
1332 // Emit the AArch64 operation with overflow check.
1333 Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
1334 Overflow = Value.getValue(1);
1335 }
1336 return std::make_pair(Value, Overflow);
1337}
1338
1339SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
1340 RTLIB::Libcall Call) const {
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00001341 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
Tim Northover3b0846e2014-05-24 12:50:23 +00001342 return makeLibCall(DAG, Call, MVT::f128, &Ops[0], Ops.size(), false,
1343 SDLoc(Op)).first;
1344}
1345
1346static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
1347 SDValue Sel = Op.getOperand(0);
1348 SDValue Other = Op.getOperand(1);
1349
1350 // If neither operand is a SELECT_CC, give up.
1351 if (Sel.getOpcode() != ISD::SELECT_CC)
1352 std::swap(Sel, Other);
1353 if (Sel.getOpcode() != ISD::SELECT_CC)
1354 return Op;
1355
1356 // The folding we want to perform is:
1357 // (xor x, (select_cc a, b, cc, 0, -1) )
1358 // -->
1359 // (csel x, (xor x, -1), cc ...)
1360 //
1361 // The latter will get matched to a CSINV instruction.
1362
1363 ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
1364 SDValue LHS = Sel.getOperand(0);
1365 SDValue RHS = Sel.getOperand(1);
1366 SDValue TVal = Sel.getOperand(2);
1367 SDValue FVal = Sel.getOperand(3);
1368 SDLoc dl(Sel);
1369
1370 // FIXME: This could be generalized to non-integer comparisons.
1371 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
1372 return Op;
1373
1374 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
1375 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
1376
1377 // The the values aren't constants, this isn't the pattern we're looking for.
1378 if (!CFVal || !CTVal)
1379 return Op;
1380
1381 // We can commute the SELECT_CC by inverting the condition. This
1382 // might be needed to make this fit into a CSINV pattern.
1383 if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
1384 std::swap(TVal, FVal);
1385 std::swap(CTVal, CFVal);
1386 CC = ISD::getSetCCInverse(CC, true);
1387 }
1388
1389 // If the constants line up, perform the transform!
1390 if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
1391 SDValue CCVal;
1392 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
1393
1394 FVal = Other;
1395 TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
1396 DAG.getConstant(-1ULL, Other.getValueType()));
1397
1398 return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
1399 CCVal, Cmp);
1400 }
1401
1402 return Op;
1403}
1404
1405static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
1406 EVT VT = Op.getValueType();
1407
1408 // Let legalize expand this if it isn't a legal type yet.
1409 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
1410 return SDValue();
1411
1412 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
1413
1414 unsigned Opc;
1415 bool ExtraOp = false;
1416 switch (Op.getOpcode()) {
1417 default:
Craig Topper2a30d782014-06-18 05:05:13 +00001418 llvm_unreachable("Invalid code");
Tim Northover3b0846e2014-05-24 12:50:23 +00001419 case ISD::ADDC:
1420 Opc = AArch64ISD::ADDS;
1421 break;
1422 case ISD::SUBC:
1423 Opc = AArch64ISD::SUBS;
1424 break;
1425 case ISD::ADDE:
1426 Opc = AArch64ISD::ADCS;
1427 ExtraOp = true;
1428 break;
1429 case ISD::SUBE:
1430 Opc = AArch64ISD::SBCS;
1431 ExtraOp = true;
1432 break;
1433 }
1434
1435 if (!ExtraOp)
1436 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
1437 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
1438 Op.getOperand(2));
1439}
1440
1441static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
1442 // Let legalize expand this if it isn't a legal type yet.
1443 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
1444 return SDValue();
1445
1446 AArch64CC::CondCode CC;
1447 // The actual operation that sets the overflow or carry flag.
1448 SDValue Value, Overflow;
1449 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
1450
1451 // We use 0 and 1 as false and true values.
1452 SDValue TVal = DAG.getConstant(1, MVT::i32);
1453 SDValue FVal = DAG.getConstant(0, MVT::i32);
1454
1455 // We use an inverted condition, because the conditional select is inverted
1456 // too. This will allow it to be selected to a single instruction:
1457 // CSINC Wd, WZR, WZR, invert(cond).
1458 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), MVT::i32);
1459 Overflow = DAG.getNode(AArch64ISD::CSEL, SDLoc(Op), MVT::i32, FVal, TVal,
1460 CCVal, Overflow);
1461
1462 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
1463 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow);
1464}
1465
1466// Prefetch operands are:
1467// 1: Address to prefetch
1468// 2: bool isWrite
1469// 3: int locality (0 = no locality ... 3 = extreme locality)
1470// 4: bool isDataCache
1471static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
1472 SDLoc DL(Op);
1473 unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1474 unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
Yi Konge56de692014-08-05 12:46:47 +00001475 unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00001476
1477 bool IsStream = !Locality;
1478 // When the locality number is set
1479 if (Locality) {
1480 // The front-end should have filtered out the out-of-range values
1481 assert(Locality <= 3 && "Prefetch locality out-of-range");
1482 // The locality degree is the opposite of the cache speed.
1483 // Put the number the other way around.
1484 // The encoding starts at 0 for level 1
1485 Locality = 3 - Locality;
1486 }
1487
1488 // built the mask value encoding the expected behavior.
1489 unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
Yi Konge56de692014-08-05 12:46:47 +00001490 (!IsData << 3) | // IsDataCache bit
Tim Northover3b0846e2014-05-24 12:50:23 +00001491 (Locality << 1) | // Cache level bits
1492 (unsigned)IsStream; // Stream bit
1493 return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
1494 DAG.getConstant(PrfOp, MVT::i32), Op.getOperand(1));
1495}
1496
1497SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
1498 SelectionDAG &DAG) const {
1499 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1500
1501 RTLIB::Libcall LC;
1502 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1503
1504 return LowerF128Call(Op, DAG, LC);
1505}
1506
1507SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
1508 SelectionDAG &DAG) const {
1509 if (Op.getOperand(0).getValueType() != MVT::f128) {
1510 // It's legal except when f128 is involved
1511 return Op;
1512 }
1513
1514 RTLIB::Libcall LC;
1515 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1516
1517 // FP_ROUND node has a second operand indicating whether it is known to be
1518 // precise. That doesn't take part in the LibCall so we can't directly use
1519 // LowerF128Call.
1520 SDValue SrcVal = Op.getOperand(0);
1521 return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
1522 /*isSigned*/ false, SDLoc(Op)).first;
1523}
1524
1525static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1526 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1527 // Any additional optimization in this function should be recorded
1528 // in the cost tables.
1529 EVT InVT = Op.getOperand(0).getValueType();
1530 EVT VT = Op.getValueType();
1531
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001532 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001533 SDLoc dl(Op);
1534 SDValue Cv =
1535 DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
1536 Op.getOperand(0));
1537 return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001538 }
1539
1540 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001541 SDLoc dl(Op);
Oliver Stannard89d15422014-08-27 16:16:04 +00001542 MVT ExtVT =
1543 MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
1544 VT.getVectorNumElements());
1545 SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
Tim Northover3b0846e2014-05-24 12:50:23 +00001546 return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
1547 }
1548
1549 // Type changing conversions are illegal.
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001550 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00001551}
1552
1553SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
1554 SelectionDAG &DAG) const {
1555 if (Op.getOperand(0).getValueType().isVector())
1556 return LowerVectorFP_TO_INT(Op, DAG);
1557
1558 if (Op.getOperand(0).getValueType() != MVT::f128) {
1559 // It's legal except when f128 is involved
1560 return Op;
1561 }
1562
1563 RTLIB::Libcall LC;
1564 if (Op.getOpcode() == ISD::FP_TO_SINT)
1565 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1566 else
1567 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1568
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00001569 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
Tim Northover3b0846e2014-05-24 12:50:23 +00001570 return makeLibCall(DAG, LC, Op.getValueType(), &Ops[0], Ops.size(), false,
1571 SDLoc(Op)).first;
1572}
1573
1574static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1575 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1576 // Any additional optimization in this function should be recorded
1577 // in the cost tables.
1578 EVT VT = Op.getValueType();
1579 SDLoc dl(Op);
1580 SDValue In = Op.getOperand(0);
1581 EVT InVT = In.getValueType();
1582
Tim Northoveref0d7602014-06-15 09:27:06 +00001583 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1584 MVT CastVT =
1585 MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
1586 InVT.getVectorNumElements());
1587 In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
1588 return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0));
Tim Northover3b0846e2014-05-24 12:50:23 +00001589 }
1590
Tim Northoveref0d7602014-06-15 09:27:06 +00001591 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
1592 unsigned CastOpc =
1593 Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1594 EVT CastVT = VT.changeVectorElementTypeToInteger();
1595 In = DAG.getNode(CastOpc, dl, CastVT, In);
1596 return DAG.getNode(Op.getOpcode(), dl, VT, In);
Tim Northover3b0846e2014-05-24 12:50:23 +00001597 }
1598
Tim Northoveref0d7602014-06-15 09:27:06 +00001599 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00001600}
1601
1602SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
1603 SelectionDAG &DAG) const {
1604 if (Op.getValueType().isVector())
1605 return LowerVectorINT_TO_FP(Op, DAG);
1606
1607 // i128 conversions are libcalls.
1608 if (Op.getOperand(0).getValueType() == MVT::i128)
1609 return SDValue();
1610
1611 // Other conversions are legal, unless it's to the completely software-based
1612 // fp128.
1613 if (Op.getValueType() != MVT::f128)
1614 return Op;
1615
1616 RTLIB::Libcall LC;
1617 if (Op.getOpcode() == ISD::SINT_TO_FP)
1618 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1619 else
1620 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1621
1622 return LowerF128Call(Op, DAG, LC);
1623}
1624
1625SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
1626 SelectionDAG &DAG) const {
1627 // For iOS, we want to call an alternative entry point: __sincos_stret,
1628 // which returns the values in two S / D registers.
1629 SDLoc dl(Op);
1630 SDValue Arg = Op.getOperand(0);
1631 EVT ArgVT = Arg.getValueType();
1632 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1633
1634 ArgListTy Args;
1635 ArgListEntry Entry;
1636
1637 Entry.Node = Arg;
1638 Entry.Ty = ArgTy;
1639 Entry.isSExt = false;
1640 Entry.isZExt = false;
1641 Args.push_back(Entry);
1642
1643 const char *LibcallName =
1644 (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
1645 SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
1646
Reid Kleckner343c3952014-11-20 23:51:47 +00001647 StructType *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
Tim Northover3b0846e2014-05-24 12:50:23 +00001648 TargetLowering::CallLoweringInfo CLI(DAG);
1649 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
Juergen Ributzka3bd03c72014-07-01 22:01:54 +00001650 .setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args), 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00001651
1652 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1653 return CallResult.first;
1654}
1655
Tim Northoverf8bfe212014-07-18 13:07:05 +00001656static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
1657 if (Op.getValueType() != MVT::f16)
1658 return SDValue();
1659
1660 assert(Op.getOperand(0).getValueType() == MVT::i16);
1661 SDLoc DL(Op);
1662
1663 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
1664 Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
1665 return SDValue(
1666 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
1667 DAG.getTargetConstant(AArch64::hsub, MVT::i32)),
1668 0);
1669}
1670
Chad Rosierd9d0f862014-10-08 02:31:24 +00001671static EVT getExtensionTo64Bits(const EVT &OrigVT) {
1672 if (OrigVT.getSizeInBits() >= 64)
1673 return OrigVT;
1674
1675 assert(OrigVT.isSimple() && "Expecting a simple value type");
1676
1677 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
1678 switch (OrigSimpleTy) {
1679 default: llvm_unreachable("Unexpected Vector Type");
1680 case MVT::v2i8:
1681 case MVT::v2i16:
1682 return MVT::v2i32;
1683 case MVT::v4i8:
1684 return MVT::v4i16;
1685 }
1686}
1687
1688static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
1689 const EVT &OrigTy,
1690 const EVT &ExtTy,
1691 unsigned ExtOpcode) {
1692 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
1693 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
1694 // 64-bits we need to insert a new extension so that it will be 64-bits.
1695 assert(ExtTy.is128BitVector() && "Unexpected extension size");
1696 if (OrigTy.getSizeInBits() >= 64)
1697 return N;
1698
1699 // Must extend size to at least 64 bits to be used as an operand for VMULL.
1700 EVT NewVT = getExtensionTo64Bits(OrigTy);
1701
1702 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
1703}
1704
1705static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
1706 bool isSigned) {
1707 EVT VT = N->getValueType(0);
1708
1709 if (N->getOpcode() != ISD::BUILD_VECTOR)
1710 return false;
1711
1712 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1713 SDNode *Elt = N->getOperand(i).getNode();
1714 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
1715 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
1716 unsigned HalfSize = EltSize / 2;
1717 if (isSigned) {
1718 if (!isIntN(HalfSize, C->getSExtValue()))
1719 return false;
1720 } else {
1721 if (!isUIntN(HalfSize, C->getZExtValue()))
1722 return false;
1723 }
1724 continue;
1725 }
1726 return false;
1727 }
1728
1729 return true;
1730}
1731
1732static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
1733 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
1734 return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
1735 N->getOperand(0)->getValueType(0),
1736 N->getValueType(0),
1737 N->getOpcode());
1738
1739 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
1740 EVT VT = N->getValueType(0);
1741 unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
1742 unsigned NumElts = VT.getVectorNumElements();
1743 MVT TruncVT = MVT::getIntegerVT(EltSize);
1744 SmallVector<SDValue, 8> Ops;
1745 for (unsigned i = 0; i != NumElts; ++i) {
1746 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
1747 const APInt &CInt = C->getAPIntValue();
1748 // Element types smaller than 32 bits are not legal, so use i32 elements.
1749 // The values are implicitly truncated so sext vs. zext doesn't matter.
1750 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
1751 }
1752 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
1753 MVT::getVectorVT(TruncVT, NumElts), Ops);
1754}
1755
1756static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
1757 if (N->getOpcode() == ISD::SIGN_EXTEND)
1758 return true;
1759 if (isExtendedBUILD_VECTOR(N, DAG, true))
1760 return true;
1761 return false;
1762}
1763
1764static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
1765 if (N->getOpcode() == ISD::ZERO_EXTEND)
1766 return true;
1767 if (isExtendedBUILD_VECTOR(N, DAG, false))
1768 return true;
1769 return false;
1770}
1771
1772static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
1773 unsigned Opcode = N->getOpcode();
1774 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
1775 SDNode *N0 = N->getOperand(0).getNode();
1776 SDNode *N1 = N->getOperand(1).getNode();
1777 return N0->hasOneUse() && N1->hasOneUse() &&
1778 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
1779 }
1780 return false;
1781}
1782
1783static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
1784 unsigned Opcode = N->getOpcode();
1785 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
1786 SDNode *N0 = N->getOperand(0).getNode();
1787 SDNode *N1 = N->getOperand(1).getNode();
1788 return N0->hasOneUse() && N1->hasOneUse() &&
1789 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
1790 }
1791 return false;
1792}
1793
1794static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
1795 // Multiplications are only custom-lowered for 128-bit vectors so that
1796 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
1797 EVT VT = Op.getValueType();
1798 assert(VT.is128BitVector() && VT.isInteger() &&
1799 "unexpected type for custom-lowering ISD::MUL");
1800 SDNode *N0 = Op.getOperand(0).getNode();
1801 SDNode *N1 = Op.getOperand(1).getNode();
1802 unsigned NewOpc = 0;
1803 bool isMLA = false;
1804 bool isN0SExt = isSignExtended(N0, DAG);
1805 bool isN1SExt = isSignExtended(N1, DAG);
1806 if (isN0SExt && isN1SExt)
1807 NewOpc = AArch64ISD::SMULL;
1808 else {
1809 bool isN0ZExt = isZeroExtended(N0, DAG);
1810 bool isN1ZExt = isZeroExtended(N1, DAG);
1811 if (isN0ZExt && isN1ZExt)
1812 NewOpc = AArch64ISD::UMULL;
1813 else if (isN1SExt || isN1ZExt) {
1814 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
1815 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
1816 if (isN1SExt && isAddSubSExt(N0, DAG)) {
1817 NewOpc = AArch64ISD::SMULL;
1818 isMLA = true;
1819 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
1820 NewOpc = AArch64ISD::UMULL;
1821 isMLA = true;
1822 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
1823 std::swap(N0, N1);
1824 NewOpc = AArch64ISD::UMULL;
1825 isMLA = true;
1826 }
1827 }
1828
1829 if (!NewOpc) {
1830 if (VT == MVT::v2i64)
1831 // Fall through to expand this. It is not legal.
1832 return SDValue();
1833 else
1834 // Other vector multiplications are legal.
1835 return Op;
1836 }
1837 }
1838
1839 // Legalize to a S/UMULL instruction
1840 SDLoc DL(Op);
1841 SDValue Op0;
1842 SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
1843 if (!isMLA) {
1844 Op0 = skipExtensionForVectorMULL(N0, DAG);
1845 assert(Op0.getValueType().is64BitVector() &&
1846 Op1.getValueType().is64BitVector() &&
1847 "unexpected types for extended operands to VMULL");
1848 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
1849 }
1850 // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
1851 // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
1852 // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
1853 SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
1854 SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
1855 EVT Op1VT = Op1.getValueType();
1856 return DAG.getNode(N0->getOpcode(), DL, VT,
1857 DAG.getNode(NewOpc, DL, VT,
1858 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
1859 DAG.getNode(NewOpc, DL, VT,
1860 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
1861}
Tim Northoverf8bfe212014-07-18 13:07:05 +00001862
Tim Northover3b0846e2014-05-24 12:50:23 +00001863SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
1864 SelectionDAG &DAG) const {
1865 switch (Op.getOpcode()) {
1866 default:
1867 llvm_unreachable("unimplemented operand");
1868 return SDValue();
Tim Northoverf8bfe212014-07-18 13:07:05 +00001869 case ISD::BITCAST:
1870 return LowerBITCAST(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00001871 case ISD::GlobalAddress:
1872 return LowerGlobalAddress(Op, DAG);
1873 case ISD::GlobalTLSAddress:
1874 return LowerGlobalTLSAddress(Op, DAG);
1875 case ISD::SETCC:
1876 return LowerSETCC(Op, DAG);
1877 case ISD::BR_CC:
1878 return LowerBR_CC(Op, DAG);
1879 case ISD::SELECT:
1880 return LowerSELECT(Op, DAG);
1881 case ISD::SELECT_CC:
1882 return LowerSELECT_CC(Op, DAG);
1883 case ISD::JumpTable:
1884 return LowerJumpTable(Op, DAG);
1885 case ISD::ConstantPool:
1886 return LowerConstantPool(Op, DAG);
1887 case ISD::BlockAddress:
1888 return LowerBlockAddress(Op, DAG);
1889 case ISD::VASTART:
1890 return LowerVASTART(Op, DAG);
1891 case ISD::VACOPY:
1892 return LowerVACOPY(Op, DAG);
1893 case ISD::VAARG:
1894 return LowerVAARG(Op, DAG);
1895 case ISD::ADDC:
1896 case ISD::ADDE:
1897 case ISD::SUBC:
1898 case ISD::SUBE:
1899 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
1900 case ISD::SADDO:
1901 case ISD::UADDO:
1902 case ISD::SSUBO:
1903 case ISD::USUBO:
1904 case ISD::SMULO:
1905 case ISD::UMULO:
1906 return LowerXALUO(Op, DAG);
1907 case ISD::FADD:
1908 return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
1909 case ISD::FSUB:
1910 return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
1911 case ISD::FMUL:
1912 return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
1913 case ISD::FDIV:
1914 return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
1915 case ISD::FP_ROUND:
1916 return LowerFP_ROUND(Op, DAG);
1917 case ISD::FP_EXTEND:
1918 return LowerFP_EXTEND(Op, DAG);
1919 case ISD::FRAMEADDR:
1920 return LowerFRAMEADDR(Op, DAG);
1921 case ISD::RETURNADDR:
1922 return LowerRETURNADDR(Op, DAG);
1923 case ISD::INSERT_VECTOR_ELT:
1924 return LowerINSERT_VECTOR_ELT(Op, DAG);
1925 case ISD::EXTRACT_VECTOR_ELT:
1926 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
1927 case ISD::BUILD_VECTOR:
1928 return LowerBUILD_VECTOR(Op, DAG);
1929 case ISD::VECTOR_SHUFFLE:
1930 return LowerVECTOR_SHUFFLE(Op, DAG);
1931 case ISD::EXTRACT_SUBVECTOR:
1932 return LowerEXTRACT_SUBVECTOR(Op, DAG);
1933 case ISD::SRA:
1934 case ISD::SRL:
1935 case ISD::SHL:
1936 return LowerVectorSRA_SRL_SHL(Op, DAG);
1937 case ISD::SHL_PARTS:
1938 return LowerShiftLeftParts(Op, DAG);
1939 case ISD::SRL_PARTS:
1940 case ISD::SRA_PARTS:
1941 return LowerShiftRightParts(Op, DAG);
1942 case ISD::CTPOP:
1943 return LowerCTPOP(Op, DAG);
1944 case ISD::FCOPYSIGN:
1945 return LowerFCOPYSIGN(Op, DAG);
1946 case ISD::AND:
1947 return LowerVectorAND(Op, DAG);
1948 case ISD::OR:
1949 return LowerVectorOR(Op, DAG);
1950 case ISD::XOR:
1951 return LowerXOR(Op, DAG);
1952 case ISD::PREFETCH:
1953 return LowerPREFETCH(Op, DAG);
1954 case ISD::SINT_TO_FP:
1955 case ISD::UINT_TO_FP:
1956 return LowerINT_TO_FP(Op, DAG);
1957 case ISD::FP_TO_SINT:
1958 case ISD::FP_TO_UINT:
1959 return LowerFP_TO_INT(Op, DAG);
1960 case ISD::FSINCOS:
1961 return LowerFSINCOS(Op, DAG);
Chad Rosierd9d0f862014-10-08 02:31:24 +00001962 case ISD::MUL:
1963 return LowerMUL(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00001964 }
1965}
1966
1967/// getFunctionAlignment - Return the Log2 alignment of this function.
1968unsigned AArch64TargetLowering::getFunctionAlignment(const Function *F) const {
1969 return 2;
1970}
1971
1972//===----------------------------------------------------------------------===//
1973// Calling Convention Implementation
1974//===----------------------------------------------------------------------===//
1975
1976#include "AArch64GenCallingConv.inc"
1977
Robin Morisset039781e2014-08-29 21:53:01 +00001978/// Selects the correct CCAssignFn for a given CallingConvention value.
Tim Northover3b0846e2014-05-24 12:50:23 +00001979CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1980 bool IsVarArg) const {
1981 switch (CC) {
1982 default:
1983 llvm_unreachable("Unsupported calling convention.");
1984 case CallingConv::WebKit_JS:
1985 return CC_AArch64_WebKit_JS;
Greg Fitzgeraldfa78d082015-01-19 17:40:05 +00001986 case CallingConv::GHC:
1987 return CC_AArch64_GHC;
Tim Northover3b0846e2014-05-24 12:50:23 +00001988 case CallingConv::C:
1989 case CallingConv::Fast:
1990 if (!Subtarget->isTargetDarwin())
1991 return CC_AArch64_AAPCS;
1992 return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
1993 }
1994}
1995
1996SDValue AArch64TargetLowering::LowerFormalArguments(
1997 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1998 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
1999 SmallVectorImpl<SDValue> &InVals) const {
2000 MachineFunction &MF = DAG.getMachineFunction();
2001 MachineFrameInfo *MFI = MF.getFrameInfo();
2002
2003 // Assign locations to all of the incoming arguments.
2004 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002005 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2006 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002007
2008 // At this point, Ins[].VT may already be promoted to i32. To correctly
2009 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2010 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2011 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
2012 // we use a special version of AnalyzeFormalArguments to pass in ValVT and
2013 // LocVT.
2014 unsigned NumArgs = Ins.size();
2015 Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2016 unsigned CurArgIdx = 0;
2017 for (unsigned i = 0; i != NumArgs; ++i) {
2018 MVT ValVT = Ins[i].VT;
Andrew Trick05938a52015-02-16 18:10:47 +00002019 if (Ins[i].isOrigArg()) {
2020 std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
2021 CurArgIdx = Ins[i].getOrigArgIndex();
Tim Northover3b0846e2014-05-24 12:50:23 +00002022
Andrew Trick05938a52015-02-16 18:10:47 +00002023 // Get type of the original argument.
2024 EVT ActualVT = getValueType(CurOrigArg->getType(), /*AllowUnknown*/ true);
2025 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
2026 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
2027 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
2028 ValVT = MVT::i8;
2029 else if (ActualMVT == MVT::i16)
2030 ValVT = MVT::i16;
2031 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002032 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2033 bool Res =
Tim Northover47e003c2014-05-26 17:21:53 +00002034 AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00002035 assert(!Res && "Call operand has unhandled type");
2036 (void)Res;
2037 }
2038 assert(ArgLocs.size() == Ins.size());
2039 SmallVector<SDValue, 16> ArgValues;
2040 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2041 CCValAssign &VA = ArgLocs[i];
2042
2043 if (Ins[i].Flags.isByVal()) {
2044 // Byval is used for HFAs in the PCS, but the system should work in a
2045 // non-compliant manner for larger structs.
2046 EVT PtrTy = getPointerTy();
2047 int Size = Ins[i].Flags.getByValSize();
2048 unsigned NumRegs = (Size + 7) / 8;
2049
2050 // FIXME: This works on big-endian for composite byvals, which are the common
2051 // case. It should also work for fundamental types too.
2052 unsigned FrameIdx =
2053 MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
2054 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
2055 InVals.push_back(FrameIdxN);
2056
2057 continue;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002058 }
2059
2060 if (VA.isRegLoc()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00002061 // Arguments stored in registers.
2062 EVT RegVT = VA.getLocVT();
2063
2064 SDValue ArgValue;
2065 const TargetRegisterClass *RC;
2066
2067 if (RegVT == MVT::i32)
2068 RC = &AArch64::GPR32RegClass;
2069 else if (RegVT == MVT::i64)
2070 RC = &AArch64::GPR64RegClass;
Oliver Stannard6eda6ff2014-07-11 13:33:46 +00002071 else if (RegVT == MVT::f16)
2072 RC = &AArch64::FPR16RegClass;
Tim Northover3b0846e2014-05-24 12:50:23 +00002073 else if (RegVT == MVT::f32)
2074 RC = &AArch64::FPR32RegClass;
2075 else if (RegVT == MVT::f64 || RegVT.is64BitVector())
2076 RC = &AArch64::FPR64RegClass;
2077 else if (RegVT == MVT::f128 || RegVT.is128BitVector())
2078 RC = &AArch64::FPR128RegClass;
2079 else
2080 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2081
2082 // Transform the arguments in physical registers into virtual ones.
2083 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2084 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2085
2086 // If this is an 8, 16 or 32-bit value, it is really passed promoted
2087 // to 64 bits. Insert an assert[sz]ext to capture this, then
2088 // truncate to the right size.
2089 switch (VA.getLocInfo()) {
2090 default:
2091 llvm_unreachable("Unknown loc info!");
2092 case CCValAssign::Full:
2093 break;
2094 case CCValAssign::BCvt:
2095 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
2096 break;
Tim Northover47e003c2014-05-26 17:21:53 +00002097 case CCValAssign::AExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00002098 case CCValAssign::SExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00002099 case CCValAssign::ZExt:
Tim Northover47e003c2014-05-26 17:21:53 +00002100 // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
2101 // nodes after our lowering.
2102 assert(RegVT == Ins[i].VT && "incorrect register location selected");
Tim Northover3b0846e2014-05-24 12:50:23 +00002103 break;
2104 }
2105
2106 InVals.push_back(ArgValue);
2107
2108 } else { // VA.isRegLoc()
2109 assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
2110 unsigned ArgOffset = VA.getLocMemOffset();
Amara Emerson82da7d02014-08-15 14:29:57 +00002111 unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002112
2113 uint32_t BEAlign = 0;
Tim Northover293d4142014-12-03 17:49:26 +00002114 if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
2115 !Ins[i].Flags.isInConsecutiveRegs())
Tim Northover3b0846e2014-05-24 12:50:23 +00002116 BEAlign = 8 - ArgSize;
2117
2118 int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
2119
2120 // Create load nodes to retrieve arguments from the stack.
2121 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2122 SDValue ArgValue;
2123
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002124 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
Tim Northover47e003c2014-05-26 17:21:53 +00002125 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002126 MVT MemVT = VA.getValVT();
2127
Tim Northover47e003c2014-05-26 17:21:53 +00002128 switch (VA.getLocInfo()) {
2129 default:
2130 break;
Tim Northover6890add2014-06-03 13:54:53 +00002131 case CCValAssign::BCvt:
2132 MemVT = VA.getLocVT();
2133 break;
Tim Northover47e003c2014-05-26 17:21:53 +00002134 case CCValAssign::SExt:
2135 ExtType = ISD::SEXTLOAD;
2136 break;
2137 case CCValAssign::ZExt:
2138 ExtType = ISD::ZEXTLOAD;
2139 break;
2140 case CCValAssign::AExt:
2141 ExtType = ISD::EXTLOAD;
2142 break;
Tim Northover3b0846e2014-05-24 12:50:23 +00002143 }
2144
Tim Northover6890add2014-06-03 13:54:53 +00002145 ArgValue = DAG.getExtLoad(ExtType, DL, VA.getLocVT(), Chain, FIN,
Tim Northover47e003c2014-05-26 17:21:53 +00002146 MachinePointerInfo::getFixedStack(FI),
Benjamin Kramer2e52f022014-10-04 22:44:29 +00002147 MemVT, false, false, false, 0);
Tim Northover47e003c2014-05-26 17:21:53 +00002148
Tim Northover3b0846e2014-05-24 12:50:23 +00002149 InVals.push_back(ArgValue);
2150 }
2151 }
2152
2153 // varargs
2154 if (isVarArg) {
2155 if (!Subtarget->isTargetDarwin()) {
2156 // The AAPCS variadic function ABI is identical to the non-variadic
2157 // one. As a result there may be more arguments in registers and we should
2158 // save them for future reference.
2159 saveVarArgRegisters(CCInfo, DAG, DL, Chain);
2160 }
2161
2162 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2163 // This will point to the next argument passed via stack.
2164 unsigned StackOffset = CCInfo.getNextStackOffset();
2165 // We currently pass all varargs at 8-byte alignment.
2166 StackOffset = ((StackOffset + 7) & ~7);
2167 AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
2168 }
2169
2170 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2171 unsigned StackArgSize = CCInfo.getNextStackOffset();
2172 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2173 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
2174 // This is a non-standard ABI so by fiat I say we're allowed to make full
2175 // use of the stack area to be popped, which must be aligned to 16 bytes in
2176 // any case:
2177 StackArgSize = RoundUpToAlignment(StackArgSize, 16);
2178
2179 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
2180 // a multiple of 16.
2181 FuncInfo->setArgumentStackToRestore(StackArgSize);
2182
2183 // This realignment carries over to the available bytes below. Our own
2184 // callers will guarantee the space is free by giving an aligned value to
2185 // CALLSEQ_START.
2186 }
2187 // Even if we're not expected to free up the space, it's useful to know how
2188 // much is there while considering tail calls (because we can reuse it).
2189 FuncInfo->setBytesInStackArgArea(StackArgSize);
2190
2191 return Chain;
2192}
2193
2194void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
2195 SelectionDAG &DAG, SDLoc DL,
2196 SDValue &Chain) const {
2197 MachineFunction &MF = DAG.getMachineFunction();
2198 MachineFrameInfo *MFI = MF.getFrameInfo();
2199 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2200
2201 SmallVector<SDValue, 8> MemOps;
2202
2203 static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
2204 AArch64::X3, AArch64::X4, AArch64::X5,
2205 AArch64::X6, AArch64::X7 };
2206 static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
Tim Northover3b6b7ca2015-02-21 02:11:17 +00002207 unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
Tim Northover3b0846e2014-05-24 12:50:23 +00002208
2209 unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
2210 int GPRIdx = 0;
2211 if (GPRSaveSize != 0) {
2212 GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
2213
2214 SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
2215
2216 for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
2217 unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
2218 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
2219 SDValue Store =
2220 DAG.getStore(Val.getValue(1), DL, Val, FIN,
2221 MachinePointerInfo::getStack(i * 8), false, false, 0);
2222 MemOps.push_back(Store);
2223 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
2224 DAG.getConstant(8, getPointerTy()));
2225 }
2226 }
2227 FuncInfo->setVarArgsGPRIndex(GPRIdx);
2228 FuncInfo->setVarArgsGPRSize(GPRSaveSize);
2229
2230 if (Subtarget->hasFPARMv8()) {
2231 static const MCPhysReg FPRArgRegs[] = {
2232 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
2233 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
2234 static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
Tim Northover3b6b7ca2015-02-21 02:11:17 +00002235 unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
Tim Northover3b0846e2014-05-24 12:50:23 +00002236
2237 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
2238 int FPRIdx = 0;
2239 if (FPRSaveSize != 0) {
2240 FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
2241
2242 SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
2243
2244 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
2245 unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
2246 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
2247
2248 SDValue Store =
2249 DAG.getStore(Val.getValue(1), DL, Val, FIN,
2250 MachinePointerInfo::getStack(i * 16), false, false, 0);
2251 MemOps.push_back(Store);
2252 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
2253 DAG.getConstant(16, getPointerTy()));
2254 }
2255 }
2256 FuncInfo->setVarArgsFPRIndex(FPRIdx);
2257 FuncInfo->setVarArgsFPRSize(FPRSaveSize);
2258 }
2259
2260 if (!MemOps.empty()) {
2261 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2262 }
2263}
2264
2265/// LowerCallResult - Lower the result values of a call into the
2266/// appropriate copies out of appropriate physical registers.
2267SDValue AArch64TargetLowering::LowerCallResult(
2268 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
2269 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2270 SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2271 SDValue ThisVal) const {
2272 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2273 ? RetCC_AArch64_WebKit_JS
2274 : RetCC_AArch64_AAPCS;
2275 // Assign locations to each value returned by this call.
2276 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002277 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2278 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002279 CCInfo.AnalyzeCallResult(Ins, RetCC);
2280
2281 // Copy all of the result registers out of their specified physreg.
2282 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2283 CCValAssign VA = RVLocs[i];
2284
2285 // Pass 'this' value directly from the argument to return value, to avoid
2286 // reg unit interference
2287 if (i == 0 && isThisReturn) {
2288 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
2289 "unexpected return calling convention register assignment");
2290 InVals.push_back(ThisVal);
2291 continue;
2292 }
2293
2294 SDValue Val =
2295 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2296 Chain = Val.getValue(1);
2297 InFlag = Val.getValue(2);
2298
2299 switch (VA.getLocInfo()) {
2300 default:
2301 llvm_unreachable("Unknown loc info!");
2302 case CCValAssign::Full:
2303 break;
2304 case CCValAssign::BCvt:
2305 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2306 break;
2307 }
2308
2309 InVals.push_back(Val);
2310 }
2311
2312 return Chain;
2313}
2314
2315bool AArch64TargetLowering::isEligibleForTailCallOptimization(
2316 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2317 bool isCalleeStructRet, bool isCallerStructRet,
2318 const SmallVectorImpl<ISD::OutputArg> &Outs,
2319 const SmallVectorImpl<SDValue> &OutVals,
2320 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2321 // For CallingConv::C this function knows whether the ABI needs
2322 // changing. That's not true for other conventions so they will have to opt in
2323 // manually.
2324 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
2325 return false;
2326
2327 const MachineFunction &MF = DAG.getMachineFunction();
2328 const Function *CallerF = MF.getFunction();
2329 CallingConv::ID CallerCC = CallerF->getCallingConv();
2330 bool CCMatch = CallerCC == CalleeCC;
2331
2332 // Byval parameters hand the function a pointer directly into the stack area
2333 // we want to reuse during a tail call. Working around this *is* possible (see
2334 // X86) but less efficient and uglier in LowerCall.
2335 for (Function::const_arg_iterator i = CallerF->arg_begin(),
2336 e = CallerF->arg_end();
2337 i != e; ++i)
2338 if (i->hasByValAttr())
2339 return false;
2340
2341 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2342 if (IsTailCallConvention(CalleeCC) && CCMatch)
2343 return true;
2344 return false;
2345 }
2346
Oliver Stannard12993dd2014-08-18 12:42:15 +00002347 // Externally-defined functions with weak linkage should not be
2348 // tail-called on AArch64 when the OS does not support dynamic
2349 // pre-emption of symbols, as the AAELF spec requires normal calls
2350 // to undefined weak functions to be replaced with a NOP or jump to the
2351 // next instruction. The behaviour of branch instructions in this
2352 // situation (as used for tail calls) is implementation-defined, so we
2353 // cannot rely on the linker replacing the tail call with a return.
2354 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2355 const GlobalValue *GV = G->getGlobal();
Saleem Abdulrasool67f72992015-01-03 21:35:00 +00002356 const Triple TT(getTargetMachine().getTargetTriple());
2357 if (GV->hasExternalWeakLinkage() &&
2358 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
Oliver Stannard12993dd2014-08-18 12:42:15 +00002359 return false;
2360 }
2361
Tim Northover3b0846e2014-05-24 12:50:23 +00002362 // Now we search for cases where we can use a tail call without changing the
2363 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
2364 // concept.
2365
2366 // I want anyone implementing a new calling convention to think long and hard
2367 // about this assert.
2368 assert((!isVarArg || CalleeCC == CallingConv::C) &&
2369 "Unexpected variadic calling convention");
2370
2371 if (isVarArg && !Outs.empty()) {
2372 // At least two cases here: if caller is fastcc then we can't have any
2373 // memory arguments (we'd be expected to clean up the stack afterwards). If
2374 // caller is C then we could potentially use its argument area.
2375
2376 // FIXME: for now we take the most conservative of these in both cases:
2377 // disallow all variadic memory operands.
2378 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002379 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2380 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002381
2382 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
2383 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2384 if (!ArgLocs[i].isRegLoc())
2385 return false;
2386 }
2387
2388 // If the calling conventions do not match, then we'd better make sure the
2389 // results are returned in the same way as what the caller expects.
2390 if (!CCMatch) {
2391 SmallVector<CCValAssign, 16> RVLocs1;
Eric Christopherb5217502014-08-06 18:45:26 +00002392 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
2393 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002394 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg));
2395
2396 SmallVector<CCValAssign, 16> RVLocs2;
Eric Christopherb5217502014-08-06 18:45:26 +00002397 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
2398 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002399 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg));
2400
2401 if (RVLocs1.size() != RVLocs2.size())
2402 return false;
2403 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2404 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2405 return false;
2406 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2407 return false;
2408 if (RVLocs1[i].isRegLoc()) {
2409 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2410 return false;
2411 } else {
2412 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2413 return false;
2414 }
2415 }
2416 }
2417
2418 // Nothing more to check if the callee is taking no arguments
2419 if (Outs.empty())
2420 return true;
2421
2422 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002423 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2424 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002425
2426 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2427
2428 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2429
2430 // If the stack arguments for this call would fit into our own save area then
2431 // the call can be made tail.
2432 return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
2433}
2434
2435SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
2436 SelectionDAG &DAG,
2437 MachineFrameInfo *MFI,
2438 int ClobberedFI) const {
2439 SmallVector<SDValue, 8> ArgChains;
2440 int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
2441 int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
2442
2443 // Include the original chain at the beginning of the list. When this is
2444 // used by target LowerCall hooks, this helps legalize find the
2445 // CALLSEQ_BEGIN node.
2446 ArgChains.push_back(Chain);
2447
2448 // Add a chain value for each stack argument corresponding
2449 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
2450 UE = DAG.getEntryNode().getNode()->use_end();
2451 U != UE; ++U)
2452 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2453 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2454 if (FI->getIndex() < 0) {
2455 int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
2456 int64_t InLastByte = InFirstByte;
2457 InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
2458
2459 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
2460 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
2461 ArgChains.push_back(SDValue(L, 1));
2462 }
2463
2464 // Build a tokenfactor for all the chains.
2465 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
2466}
2467
2468bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
2469 bool TailCallOpt) const {
2470 return CallCC == CallingConv::Fast && TailCallOpt;
2471}
2472
2473bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
2474 return CallCC == CallingConv::Fast;
2475}
2476
2477/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
2478/// and add input and output parameter nodes.
2479SDValue
2480AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
2481 SmallVectorImpl<SDValue> &InVals) const {
2482 SelectionDAG &DAG = CLI.DAG;
2483 SDLoc &DL = CLI.DL;
2484 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2485 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2486 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2487 SDValue Chain = CLI.Chain;
2488 SDValue Callee = CLI.Callee;
2489 bool &IsTailCall = CLI.IsTailCall;
2490 CallingConv::ID CallConv = CLI.CallConv;
2491 bool IsVarArg = CLI.IsVarArg;
2492
2493 MachineFunction &MF = DAG.getMachineFunction();
2494 bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2495 bool IsThisReturn = false;
2496
2497 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2498 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2499 bool IsSibCall = false;
2500
2501 if (IsTailCall) {
2502 // Check if it's really possible to do a tail call.
2503 IsTailCall = isEligibleForTailCallOptimization(
2504 Callee, CallConv, IsVarArg, IsStructRet,
2505 MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG);
2506 if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2507 report_fatal_error("failed to perform tail call elimination on a call "
2508 "site marked musttail");
2509
2510 // A sibling call is one where we're under the usual C ABI and not planning
2511 // to change that but can still do a tail call:
2512 if (!TailCallOpt && IsTailCall)
2513 IsSibCall = true;
2514
2515 if (IsTailCall)
2516 ++NumTailCalls;
2517 }
2518
2519 // Analyze operands of the call, assigning locations to each operand.
2520 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002521 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
2522 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002523
2524 if (IsVarArg) {
2525 // Handle fixed and variable vector arguments differently.
2526 // Variable vector arguments always go into memory.
2527 unsigned NumArgs = Outs.size();
2528
2529 for (unsigned i = 0; i != NumArgs; ++i) {
2530 MVT ArgVT = Outs[i].VT;
2531 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2532 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
2533 /*IsVarArg=*/ !Outs[i].IsFixed);
2534 bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2535 assert(!Res && "Call operand has unhandled type");
2536 (void)Res;
2537 }
2538 } else {
2539 // At this point, Outs[].VT may already be promoted to i32. To correctly
2540 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2541 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2542 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
2543 // we use a special version of AnalyzeCallOperands to pass in ValVT and
2544 // LocVT.
2545 unsigned NumArgs = Outs.size();
2546 for (unsigned i = 0; i != NumArgs; ++i) {
2547 MVT ValVT = Outs[i].VT;
2548 // Get type of the original argument.
2549 EVT ActualVT = getValueType(CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
2550 /*AllowUnknown*/ true);
2551 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
2552 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2553 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
Tim Northover3b0846e2014-05-24 12:50:23 +00002554 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
Tim Northover47e003c2014-05-26 17:21:53 +00002555 ValVT = MVT::i8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002556 else if (ActualMVT == MVT::i16)
Tim Northover47e003c2014-05-26 17:21:53 +00002557 ValVT = MVT::i16;
Tim Northover3b0846e2014-05-24 12:50:23 +00002558
2559 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
Tim Northover47e003c2014-05-26 17:21:53 +00002560 bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00002561 assert(!Res && "Call operand has unhandled type");
2562 (void)Res;
2563 }
2564 }
2565
2566 // Get a count of how many bytes are to be pushed on the stack.
2567 unsigned NumBytes = CCInfo.getNextStackOffset();
2568
2569 if (IsSibCall) {
2570 // Since we're not changing the ABI to make this a tail call, the memory
2571 // operands are already available in the caller's incoming argument space.
2572 NumBytes = 0;
2573 }
2574
2575 // FPDiff is the byte offset of the call's argument area from the callee's.
2576 // Stores to callee stack arguments will be placed in FixedStackSlots offset
2577 // by this amount for a tail call. In a sibling call it must be 0 because the
2578 // caller will deallocate the entire stack and the callee still expects its
2579 // arguments to begin at SP+0. Completely unused for non-tail calls.
2580 int FPDiff = 0;
2581
2582 if (IsTailCall && !IsSibCall) {
2583 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
2584
2585 // Since callee will pop argument stack as a tail call, we must keep the
2586 // popped size 16-byte aligned.
2587 NumBytes = RoundUpToAlignment(NumBytes, 16);
2588
2589 // FPDiff will be negative if this tail call requires more space than we
2590 // would automatically have in our incoming argument space. Positive if we
2591 // can actually shrink the stack.
2592 FPDiff = NumReusableBytes - NumBytes;
2593
2594 // The stack pointer must be 16-byte aligned at all times it's used for a
2595 // memory operation, which in practice means at *all* times and in
2596 // particular across call boundaries. Therefore our own arguments started at
2597 // a 16-byte aligned SP and the delta applied for the tail call should
2598 // satisfy the same constraint.
2599 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
2600 }
2601
2602 // Adjust the stack pointer for the new arguments...
2603 // These operations are automatically eliminated by the prolog/epilog pass
2604 if (!IsSibCall)
2605 Chain =
2606 DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), DL);
2607
2608 SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, getPointerTy());
2609
2610 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2611 SmallVector<SDValue, 8> MemOpChains;
2612
2613 // Walk the register/memloc assignments, inserting copies/loads.
2614 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
2615 ++i, ++realArgIdx) {
2616 CCValAssign &VA = ArgLocs[i];
2617 SDValue Arg = OutVals[realArgIdx];
2618 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2619
2620 // Promote the value if needed.
2621 switch (VA.getLocInfo()) {
2622 default:
2623 llvm_unreachable("Unknown loc info!");
2624 case CCValAssign::Full:
2625 break;
2626 case CCValAssign::SExt:
2627 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2628 break;
2629 case CCValAssign::ZExt:
2630 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2631 break;
2632 case CCValAssign::AExt:
Tim Northover68ae5032014-05-26 17:22:07 +00002633 if (Outs[realArgIdx].ArgVT == MVT::i1) {
2634 // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
2635 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2636 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
2637 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002638 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2639 break;
2640 case CCValAssign::BCvt:
2641 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2642 break;
2643 case CCValAssign::FPExt:
2644 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2645 break;
2646 }
2647
2648 if (VA.isRegLoc()) {
2649 if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
2650 assert(VA.getLocVT() == MVT::i64 &&
2651 "unexpected calling convention register assignment");
2652 assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
2653 "unexpected use of 'returned'");
2654 IsThisReturn = true;
2655 }
2656 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2657 } else {
2658 assert(VA.isMemLoc());
2659
2660 SDValue DstAddr;
2661 MachinePointerInfo DstInfo;
2662
2663 // FIXME: This works on big-endian for composite byvals, which are the
2664 // common case. It should also work for fundamental types too.
2665 uint32_t BEAlign = 0;
2666 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
Amara Emerson82da7d02014-08-15 14:29:57 +00002667 : VA.getValVT().getSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00002668 OpSize = (OpSize + 7) / 8;
Tim Northover293d4142014-12-03 17:49:26 +00002669 if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
2670 !Flags.isInConsecutiveRegs()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00002671 if (OpSize < 8)
2672 BEAlign = 8 - OpSize;
2673 }
2674 unsigned LocMemOffset = VA.getLocMemOffset();
2675 int32_t Offset = LocMemOffset + BEAlign;
2676 SDValue PtrOff = DAG.getIntPtrConstant(Offset);
2677 PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2678
2679 if (IsTailCall) {
2680 Offset = Offset + FPDiff;
2681 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2682
2683 DstAddr = DAG.getFrameIndex(FI, getPointerTy());
2684 DstInfo = MachinePointerInfo::getFixedStack(FI);
2685
2686 // Make sure any stack arguments overlapping with where we're storing
2687 // are loaded before this eventual operation. Otherwise they'll be
2688 // clobbered.
2689 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
2690 } else {
2691 SDValue PtrOff = DAG.getIntPtrConstant(Offset);
2692
2693 DstAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2694 DstInfo = MachinePointerInfo::getStack(LocMemOffset);
2695 }
2696
2697 if (Outs[i].Flags.isByVal()) {
2698 SDValue SizeNode =
2699 DAG.getConstant(Outs[i].Flags.getByValSize(), MVT::i64);
2700 SDValue Cpy = DAG.getMemcpy(
2701 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
Jim Grosbach8e810ba2014-08-11 22:42:28 +00002702 /*isVol = */ false,
2703 /*AlwaysInline = */ false, DstInfo, MachinePointerInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +00002704
2705 MemOpChains.push_back(Cpy);
2706 } else {
2707 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
2708 // promoted to a legal register type i32, we should truncate Arg back to
2709 // i1/i8/i16.
Tim Northover6890add2014-06-03 13:54:53 +00002710 if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
2711 VA.getValVT() == MVT::i16)
2712 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
Tim Northover3b0846e2014-05-24 12:50:23 +00002713
2714 SDValue Store =
2715 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0);
2716 MemOpChains.push_back(Store);
2717 }
2718 }
2719 }
2720
2721 if (!MemOpChains.empty())
2722 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2723
2724 // Build a sequence of copy-to-reg nodes chained together with token chain
2725 // and flag operands which copy the outgoing args into the appropriate regs.
2726 SDValue InFlag;
2727 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2728 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
2729 RegsToPass[i].second, InFlag);
2730 InFlag = Chain.getValue(1);
2731 }
2732
2733 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2734 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2735 // node so that legalize doesn't hack it.
2736 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
2737 Subtarget->isTargetMachO()) {
2738 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2739 const GlobalValue *GV = G->getGlobal();
2740 bool InternalLinkage = GV->hasInternalLinkage();
2741 if (InternalLinkage)
2742 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2743 else {
2744 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0,
2745 AArch64II::MO_GOT);
2746 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2747 }
2748 } else if (ExternalSymbolSDNode *S =
2749 dyn_cast<ExternalSymbolSDNode>(Callee)) {
2750 const char *Sym = S->getSymbol();
2751 Callee =
2752 DAG.getTargetExternalSymbol(Sym, getPointerTy(), AArch64II::MO_GOT);
2753 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2754 }
2755 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2756 const GlobalValue *GV = G->getGlobal();
2757 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2758 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2759 const char *Sym = S->getSymbol();
2760 Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), 0);
2761 }
2762
2763 // We don't usually want to end the call-sequence here because we would tidy
2764 // the frame up *after* the call, however in the ABI-changing tail-call case
2765 // we've carefully laid out the parameters so that when sp is reset they'll be
2766 // in the correct location.
2767 if (IsTailCall && !IsSibCall) {
2768 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2769 DAG.getIntPtrConstant(0, true), InFlag, DL);
2770 InFlag = Chain.getValue(1);
2771 }
2772
2773 std::vector<SDValue> Ops;
2774 Ops.push_back(Chain);
2775 Ops.push_back(Callee);
2776
2777 if (IsTailCall) {
2778 // Each tail call may have to adjust the stack by a different amount, so
2779 // this information must travel along with the operation for eventual
2780 // consumption by emitEpilogue.
2781 Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
2782 }
2783
2784 // Add argument registers to the end of the list so that they are known live
2785 // into the call.
2786 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2787 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2788 RegsToPass[i].second.getValueType()));
2789
2790 // Add a register mask operand representing the call-preserved registers.
2791 const uint32_t *Mask;
Eric Christopher905f12d2015-01-29 00:19:42 +00002792 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +00002793 if (IsThisReturn) {
2794 // For 'this' returns, use the X0-preserving mask if applicable
Eric Christopher6c901622015-01-28 03:51:33 +00002795 Mask = TRI->getThisReturnPreservedMask(CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00002796 if (!Mask) {
2797 IsThisReturn = false;
Eric Christopher6c901622015-01-28 03:51:33 +00002798 Mask = TRI->getCallPreservedMask(CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00002799 }
2800 } else
Eric Christopher6c901622015-01-28 03:51:33 +00002801 Mask = TRI->getCallPreservedMask(CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00002802
2803 assert(Mask && "Missing call preserved mask for calling convention");
2804 Ops.push_back(DAG.getRegisterMask(Mask));
2805
2806 if (InFlag.getNode())
2807 Ops.push_back(InFlag);
2808
2809 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2810
2811 // If we're doing a tall call, use a TC_RETURN here rather than an
2812 // actual call instruction.
2813 if (IsTailCall)
2814 return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
2815
2816 // Returns a chain and a flag for retval copy to use.
2817 Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
2818 InFlag = Chain.getValue(1);
2819
2820 uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt)
2821 ? RoundUpToAlignment(NumBytes, 16)
2822 : 0;
2823
2824 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2825 DAG.getIntPtrConstant(CalleePopBytes, true),
2826 InFlag, DL);
2827 if (!Ins.empty())
2828 InFlag = Chain.getValue(1);
2829
2830 // Handle result values, copying them out of physregs into vregs that we
2831 // return.
2832 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2833 InVals, IsThisReturn,
2834 IsThisReturn ? OutVals[0] : SDValue());
2835}
2836
2837bool AArch64TargetLowering::CanLowerReturn(
2838 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
2839 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
2840 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2841 ? RetCC_AArch64_WebKit_JS
2842 : RetCC_AArch64_AAPCS;
2843 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002844 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
Tim Northover3b0846e2014-05-24 12:50:23 +00002845 return CCInfo.CheckReturn(Outs, RetCC);
2846}
2847
2848SDValue
2849AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2850 bool isVarArg,
2851 const SmallVectorImpl<ISD::OutputArg> &Outs,
2852 const SmallVectorImpl<SDValue> &OutVals,
2853 SDLoc DL, SelectionDAG &DAG) const {
2854 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2855 ? RetCC_AArch64_WebKit_JS
2856 : RetCC_AArch64_AAPCS;
2857 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002858 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2859 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002860 CCInfo.AnalyzeReturn(Outs, RetCC);
2861
2862 // Copy the result values into the output registers.
2863 SDValue Flag;
2864 SmallVector<SDValue, 4> RetOps(1, Chain);
2865 for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
2866 ++i, ++realRVLocIdx) {
2867 CCValAssign &VA = RVLocs[i];
2868 assert(VA.isRegLoc() && "Can only return in registers!");
2869 SDValue Arg = OutVals[realRVLocIdx];
2870
2871 switch (VA.getLocInfo()) {
2872 default:
2873 llvm_unreachable("Unknown loc info!");
2874 case CCValAssign::Full:
Tim Northover68ae5032014-05-26 17:22:07 +00002875 if (Outs[i].ArgVT == MVT::i1) {
2876 // AAPCS requires i1 to be zero-extended to i8 by the producer of the
2877 // value. This is strictly redundant on Darwin (which uses "zeroext
2878 // i1"), but will be optimised out before ISel.
2879 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2880 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2881 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002882 break;
2883 case CCValAssign::BCvt:
2884 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2885 break;
2886 }
2887
2888 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2889 Flag = Chain.getValue(1);
2890 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2891 }
2892
2893 RetOps[0] = Chain; // Update chain.
2894
2895 // Add the flag if we have it.
2896 if (Flag.getNode())
2897 RetOps.push_back(Flag);
2898
2899 return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
2900}
2901
2902//===----------------------------------------------------------------------===//
2903// Other Lowering Code
2904//===----------------------------------------------------------------------===//
2905
2906SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
2907 SelectionDAG &DAG) const {
2908 EVT PtrVT = getPointerTy();
2909 SDLoc DL(Op);
Asiri Rathnayake369c0302014-09-10 13:54:38 +00002910 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
2911 const GlobalValue *GV = GN->getGlobal();
Tim Northover3b0846e2014-05-24 12:50:23 +00002912 unsigned char OpFlags =
2913 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
2914
2915 assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
2916 "unexpected offset in global node");
2917
2918 // This also catched the large code model case for Darwin.
2919 if ((OpFlags & AArch64II::MO_GOT) != 0) {
2920 SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2921 // FIXME: Once remat is capable of dealing with instructions with register
2922 // operands, expand this into two nodes instead of using a wrapper node.
2923 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
2924 }
2925
Asiri Rathnayake369c0302014-09-10 13:54:38 +00002926 if ((OpFlags & AArch64II::MO_CONSTPOOL) != 0) {
2927 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
2928 "use of MO_CONSTPOOL only supported on small model");
2929 SDValue Hi = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, AArch64II::MO_PAGE);
2930 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
2931 unsigned char LoFlags = AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
2932 SDValue Lo = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, LoFlags);
2933 SDValue PoolAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
2934 SDValue GlobalAddr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), PoolAddr,
2935 MachinePointerInfo::getConstantPool(),
2936 /*isVolatile=*/ false,
2937 /*isNonTemporal=*/ true,
2938 /*isInvariant=*/ true, 8);
2939 if (GN->getOffset() != 0)
2940 return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalAddr,
2941 DAG.getConstant(GN->getOffset(), PtrVT));
2942 return GlobalAddr;
2943 }
2944
Tim Northover3b0846e2014-05-24 12:50:23 +00002945 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2946 const unsigned char MO_NC = AArch64II::MO_NC;
2947 return DAG.getNode(
2948 AArch64ISD::WrapperLarge, DL, PtrVT,
2949 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
2950 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
2951 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
2952 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
2953 } else {
2954 // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
2955 // the only correct model on Darwin.
2956 SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2957 OpFlags | AArch64II::MO_PAGE);
2958 unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
2959 SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
2960
2961 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
2962 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
2963 }
2964}
2965
2966/// \brief Convert a TLS address reference into the correct sequence of loads
2967/// and calls to compute the variable's address (for Darwin, currently) and
2968/// return an SDValue containing the final node.
2969
2970/// Darwin only has one TLS scheme which must be capable of dealing with the
2971/// fully general situation, in the worst case. This means:
2972/// + "extern __thread" declaration.
2973/// + Defined in a possibly unknown dynamic library.
2974///
2975/// The general system is that each __thread variable has a [3 x i64] descriptor
2976/// which contains information used by the runtime to calculate the address. The
2977/// only part of this the compiler needs to know about is the first xword, which
2978/// contains a function pointer that must be called with the address of the
2979/// entire descriptor in "x0".
2980///
2981/// Since this descriptor may be in a different unit, in general even the
2982/// descriptor must be accessed via an indirect load. The "ideal" code sequence
2983/// is:
2984/// adrp x0, _var@TLVPPAGE
2985/// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
2986/// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
2987/// ; the function pointer
2988/// blr x1 ; Uses descriptor address in x0
2989/// ; Address of _var is now in x0.
2990///
2991/// If the address of _var's descriptor *is* known to the linker, then it can
2992/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
2993/// a slight efficiency gain.
2994SDValue
2995AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
2996 SelectionDAG &DAG) const {
2997 assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
2998
2999 SDLoc DL(Op);
3000 MVT PtrVT = getPointerTy();
3001 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3002
3003 SDValue TLVPAddr =
3004 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3005 SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
3006
3007 // The first entry in the descriptor is a function pointer that we must call
3008 // to obtain the address of the variable.
3009 SDValue Chain = DAG.getEntryNode();
3010 SDValue FuncTLVGet =
3011 DAG.getLoad(MVT::i64, DL, Chain, DescAddr, MachinePointerInfo::getGOT(),
3012 false, true, true, 8);
3013 Chain = FuncTLVGet.getValue(1);
3014
3015 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3016 MFI->setAdjustsStack(true);
3017
3018 // TLS calls preserve all registers except those that absolutely must be
3019 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3020 // silly).
Eric Christopher6c901622015-01-28 03:51:33 +00003021 const uint32_t *Mask =
Eric Christopher905f12d2015-01-29 00:19:42 +00003022 Subtarget->getRegisterInfo()->getTLSCallPreservedMask();
Tim Northover3b0846e2014-05-24 12:50:23 +00003023
3024 // Finally, we can make the call. This is just a degenerate version of a
3025 // normal AArch64 call node: x0 takes the address of the descriptor, and
3026 // returns the address of the variable in this thread.
3027 Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
3028 Chain =
3029 DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3030 Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
3031 DAG.getRegisterMask(Mask), Chain.getValue(1));
3032 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
3033}
3034
3035/// When accessing thread-local variables under either the general-dynamic or
3036/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
3037/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
Kristof Beylsaea84612015-03-04 09:12:08 +00003038/// is a function pointer to carry out the resolution.
Tim Northover3b0846e2014-05-24 12:50:23 +00003039///
Kristof Beylsaea84612015-03-04 09:12:08 +00003040/// The sequence is:
3041/// adrp x0, :tlsdesc:var
3042/// ldr x1, [x0, #:tlsdesc_lo12:var]
3043/// add x0, x0, #:tlsdesc_lo12:var
3044/// .tlsdesccall var
3045/// blr x1
3046/// (TPIDR_EL0 offset now in x0)
Tim Northover3b0846e2014-05-24 12:50:23 +00003047///
Kristof Beylsaea84612015-03-04 09:12:08 +00003048/// The above sequence must be produced unscheduled, to enable the linker to
3049/// optimize/relax this sequence.
3050/// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
3051/// above sequence, and expanded really late in the compilation flow, to ensure
3052/// the sequence is produced as per above.
3053SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr, SDLoc DL,
3054 SelectionDAG &DAG) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00003055 EVT PtrVT = getPointerTy();
3056
Kristof Beylsaea84612015-03-04 09:12:08 +00003057 SDValue Chain = DAG.getEntryNode();
Tim Northover3b0846e2014-05-24 12:50:23 +00003058 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Kristof Beylsaea84612015-03-04 09:12:08 +00003059
3060 SmallVector<SDValue, 2> Ops;
3061 Ops.push_back(Chain);
3062 Ops.push_back(SymAddr);
3063
3064 Chain = DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, Ops);
3065 SDValue Glue = Chain.getValue(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003066
3067 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
3068}
3069
3070SDValue
3071AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
3072 SelectionDAG &DAG) const {
3073 assert(Subtarget->isTargetELF() && "This function expects an ELF target");
3074 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
3075 "ELF TLS only supported in small memory model");
Kristof Beylsaea84612015-03-04 09:12:08 +00003076 // Different choices can be made for the maximum size of the TLS area for a
3077 // module. For the small address model, the default TLS size is 16MiB and the
3078 // maximum TLS size is 4GiB.
3079 // FIXME: add -mtls-size command line option and make it control the 16MiB
3080 // vs. 4GiB code sequence generation.
Tim Northover3b0846e2014-05-24 12:50:23 +00003081 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3082
3083 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
Kristof Beylsaea84612015-03-04 09:12:08 +00003084 if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
3085 if (Model == TLSModel::LocalDynamic)
3086 Model = TLSModel::GeneralDynamic;
3087 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003088
3089 SDValue TPOff;
3090 EVT PtrVT = getPointerTy();
3091 SDLoc DL(Op);
3092 const GlobalValue *GV = GA->getGlobal();
3093
3094 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
3095
3096 if (Model == TLSModel::LocalExec) {
3097 SDValue HiVar = DAG.getTargetGlobalAddress(
Kristof Beylsaea84612015-03-04 09:12:08 +00003098 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
Tim Northover3b0846e2014-05-24 12:50:23 +00003099 SDValue LoVar = DAG.getTargetGlobalAddress(
3100 GV, DL, PtrVT, 0,
Kristof Beylsaea84612015-03-04 09:12:08 +00003101 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
Tim Northover3b0846e2014-05-24 12:50:23 +00003102
Kristof Beylsaea84612015-03-04 09:12:08 +00003103 SDValue TPWithOff_lo =
3104 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
3105 HiVar, DAG.getTargetConstant(0, MVT::i32)),
3106 0);
3107 SDValue TPWithOff =
3108 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPWithOff_lo,
3109 LoVar, DAG.getTargetConstant(0, MVT::i32)),
3110 0);
3111 return TPWithOff;
Tim Northover3b0846e2014-05-24 12:50:23 +00003112 } else if (Model == TLSModel::InitialExec) {
3113 TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3114 TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
3115 } else if (Model == TLSModel::LocalDynamic) {
3116 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
3117 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
3118 // the beginning of the module's TLS region, followed by a DTPREL offset
3119 // calculation.
3120
3121 // These accesses will need deduplicating if there's more than one.
3122 AArch64FunctionInfo *MFI =
3123 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3124 MFI->incNumLocalDynamicTLSAccesses();
3125
Tim Northover3b0846e2014-05-24 12:50:23 +00003126 // The call needs a relocation too for linker relaxation. It doesn't make
3127 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3128 // the address.
3129 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
3130 AArch64II::MO_TLS);
3131
3132 // Now we can calculate the offset from TPIDR_EL0 to this module's
3133 // thread-local area.
Kristof Beylsaea84612015-03-04 09:12:08 +00003134 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00003135
3136 // Now use :dtprel_whatever: operations to calculate this variable's offset
3137 // in its thread-storage area.
3138 SDValue HiVar = DAG.getTargetGlobalAddress(
Kristof Beylsaea84612015-03-04 09:12:08 +00003139 GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
Tim Northover3b0846e2014-05-24 12:50:23 +00003140 SDValue LoVar = DAG.getTargetGlobalAddress(
3141 GV, DL, MVT::i64, 0,
Tim Northover3b0846e2014-05-24 12:50:23 +00003142 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3143
Kristof Beylsaea84612015-03-04 09:12:08 +00003144 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
3145 DAG.getTargetConstant(0, MVT::i32)),
3146 0);
3147 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
3148 DAG.getTargetConstant(0, MVT::i32)),
3149 0);
3150 } else if (Model == TLSModel::GeneralDynamic) {
Tim Northover3b0846e2014-05-24 12:50:23 +00003151 // The call needs a relocation too for linker relaxation. It doesn't make
3152 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3153 // the address.
3154 SDValue SymAddr =
3155 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3156
3157 // Finally we can make a call to calculate the offset from tpidr_el0.
Kristof Beylsaea84612015-03-04 09:12:08 +00003158 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00003159 } else
3160 llvm_unreachable("Unsupported ELF TLS access model");
3161
3162 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
3163}
3164
3165SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
3166 SelectionDAG &DAG) const {
3167 if (Subtarget->isTargetDarwin())
3168 return LowerDarwinGlobalTLSAddress(Op, DAG);
3169 else if (Subtarget->isTargetELF())
3170 return LowerELFGlobalTLSAddress(Op, DAG);
3171
3172 llvm_unreachable("Unexpected platform trying to use TLS");
3173}
3174SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3175 SDValue Chain = Op.getOperand(0);
3176 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3177 SDValue LHS = Op.getOperand(2);
3178 SDValue RHS = Op.getOperand(3);
3179 SDValue Dest = Op.getOperand(4);
3180 SDLoc dl(Op);
3181
3182 // Handle f128 first, since lowering it will result in comparing the return
3183 // value of a libcall against zero, which is just what the rest of LowerBR_CC
3184 // is expecting to deal with.
3185 if (LHS.getValueType() == MVT::f128) {
3186 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3187
3188 // If softenSetCCOperands returned a scalar, we need to compare the result
3189 // against zero to select between true and false values.
3190 if (!RHS.getNode()) {
3191 RHS = DAG.getConstant(0, LHS.getValueType());
3192 CC = ISD::SETNE;
3193 }
3194 }
3195
3196 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
3197 // instruction.
3198 unsigned Opc = LHS.getOpcode();
3199 if (LHS.getResNo() == 1 && isa<ConstantSDNode>(RHS) &&
3200 cast<ConstantSDNode>(RHS)->isOne() &&
3201 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3202 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3203 assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
3204 "Unexpected condition code.");
3205 // Only lower legal XALUO ops.
3206 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
3207 return SDValue();
3208
3209 // The actual operation with overflow check.
3210 AArch64CC::CondCode OFCC;
3211 SDValue Value, Overflow;
3212 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
3213
3214 if (CC == ISD::SETNE)
3215 OFCC = getInvertedCondCode(OFCC);
3216 SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
3217
Ahmed Bougachadf956a22015-02-06 23:15:39 +00003218 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3219 Overflow);
Tim Northover3b0846e2014-05-24 12:50:23 +00003220 }
3221
3222 if (LHS.getValueType().isInteger()) {
3223 assert((LHS.getValueType() == RHS.getValueType()) &&
3224 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3225
3226 // If the RHS of the comparison is zero, we can potentially fold this
3227 // to a specialized branch.
3228 const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
3229 if (RHSC && RHSC->getZExtValue() == 0) {
3230 if (CC == ISD::SETEQ) {
3231 // See if we can use a TBZ to fold in an AND as well.
3232 // TBZ has a smaller branch displacement than CBZ. If the offset is
3233 // out of bounds, a late MI-layer pass rewrites branches.
3234 // 403.gcc is an example that hits this case.
3235 if (LHS.getOpcode() == ISD::AND &&
3236 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3237 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3238 SDValue Test = LHS.getOperand(0);
3239 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003240 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
3241 DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
3242 }
3243
3244 return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
3245 } else if (CC == ISD::SETNE) {
3246 // See if we can use a TBZ to fold in an AND as well.
3247 // TBZ has a smaller branch displacement than CBZ. If the offset is
3248 // out of bounds, a late MI-layer pass rewrites branches.
3249 // 403.gcc is an example that hits this case.
3250 if (LHS.getOpcode() == ISD::AND &&
3251 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3252 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3253 SDValue Test = LHS.getOperand(0);
3254 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003255 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
3256 DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
3257 }
3258
3259 return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
Chad Rosier579c02c2014-08-01 14:48:56 +00003260 } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
3261 // Don't combine AND since emitComparison converts the AND to an ANDS
3262 // (a.k.a. TST) and the test in the test bit and branch instruction
3263 // becomes redundant. This would also increase register pressure.
3264 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3265 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
3266 DAG.getConstant(Mask, MVT::i64), Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003267 }
3268 }
Chad Rosier579c02c2014-08-01 14:48:56 +00003269 if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
3270 LHS.getOpcode() != ISD::AND) {
3271 // Don't combine AND since emitComparison converts the AND to an ANDS
3272 // (a.k.a. TST) and the test in the test bit and branch instruction
3273 // becomes redundant. This would also increase register pressure.
3274 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3275 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
3276 DAG.getConstant(Mask, MVT::i64), Dest);
3277 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003278
3279 SDValue CCVal;
3280 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3281 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3282 Cmp);
3283 }
3284
3285 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3286
3287 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3288 // clean. Some of them require two branches to implement.
3289 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3290 AArch64CC::CondCode CC1, CC2;
3291 changeFPCCToAArch64CC(CC, CC1, CC2);
3292 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3293 SDValue BR1 =
3294 DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
3295 if (CC2 != AArch64CC::AL) {
3296 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3297 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
3298 Cmp);
3299 }
3300
3301 return BR1;
3302}
3303
3304SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
3305 SelectionDAG &DAG) const {
3306 EVT VT = Op.getValueType();
3307 SDLoc DL(Op);
3308
3309 SDValue In1 = Op.getOperand(0);
3310 SDValue In2 = Op.getOperand(1);
3311 EVT SrcVT = In2.getValueType();
3312 if (SrcVT != VT) {
3313 if (SrcVT == MVT::f32 && VT == MVT::f64)
3314 In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
3315 else if (SrcVT == MVT::f64 && VT == MVT::f32)
3316 In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0));
3317 else
3318 // FIXME: Src type is different, bail out for now. Can VT really be a
3319 // vector type?
3320 return SDValue();
3321 }
3322
3323 EVT VecVT;
3324 EVT EltVT;
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003325 uint64_t EltMask;
3326 SDValue VecVal1, VecVal2;
Tim Northover3b0846e2014-05-24 12:50:23 +00003327 if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
3328 EltVT = MVT::i32;
3329 VecVT = MVT::v4i32;
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003330 EltMask = 0x80000000ULL;
Tim Northover3b0846e2014-05-24 12:50:23 +00003331
3332 if (!VT.isVector()) {
3333 VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3334 DAG.getUNDEF(VecVT), In1);
3335 VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3336 DAG.getUNDEF(VecVT), In2);
3337 } else {
3338 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3339 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3340 }
3341 } else if (VT == MVT::f64 || VT == MVT::v2f64) {
3342 EltVT = MVT::i64;
3343 VecVT = MVT::v2i64;
3344
3345 // We want to materialize a mask with the the high bit set, but the AdvSIMD
3346 // immediate moves cannot materialize that in a single instruction for
3347 // 64-bit elements. Instead, materialize zero and then negate it.
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003348 EltMask = 0;
Tim Northover3b0846e2014-05-24 12:50:23 +00003349
3350 if (!VT.isVector()) {
3351 VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3352 DAG.getUNDEF(VecVT), In1);
3353 VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3354 DAG.getUNDEF(VecVT), In2);
3355 } else {
3356 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3357 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3358 }
3359 } else {
3360 llvm_unreachable("Invalid type for copysign!");
3361 }
3362
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003363 SDValue BuildVec = DAG.getConstant(EltMask, VecVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00003364
3365 // If we couldn't materialize the mask above, then the mask vector will be
3366 // the zero vector, and we need to negate it here.
3367 if (VT == MVT::f64 || VT == MVT::v2f64) {
3368 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
3369 BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
3370 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
3371 }
3372
3373 SDValue Sel =
3374 DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
3375
3376 if (VT == MVT::f32)
3377 return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
3378 else if (VT == MVT::f64)
3379 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
3380 else
3381 return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
3382}
3383
3384SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
Duncan P. N. Exon Smith003bb7d2015-02-14 02:09:06 +00003385 if (DAG.getMachineFunction().getFunction()->hasFnAttribute(
3386 Attribute::NoImplicitFloat))
Tim Northover3b0846e2014-05-24 12:50:23 +00003387 return SDValue();
3388
Weiming Zhao7a2d1562014-11-19 00:29:14 +00003389 if (!Subtarget->hasNEON())
3390 return SDValue();
3391
Tim Northover3b0846e2014-05-24 12:50:23 +00003392 // While there is no integer popcount instruction, it can
3393 // be more efficiently lowered to the following sequence that uses
3394 // AdvSIMD registers/instructions as long as the copies to/from
3395 // the AdvSIMD registers are cheap.
3396 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
3397 // CNT V0.8B, V0.8B // 8xbyte pop-counts
3398 // ADDV B0, V0.8B // sum 8xbyte pop-counts
3399 // UMOV X0, V0.B[0] // copy byte result back to integer reg
3400 SDValue Val = Op.getOperand(0);
3401 SDLoc DL(Op);
3402 EVT VT = Op.getValueType();
Tim Northover3b0846e2014-05-24 12:50:23 +00003403
Hao Liue0335d72015-01-30 02:13:53 +00003404 if (VT == MVT::i32)
3405 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
3406 Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
Tim Northover3b0846e2014-05-24 12:50:23 +00003407
Hao Liue0335d72015-01-30 02:13:53 +00003408 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
Tim Northover3b0846e2014-05-24 12:50:23 +00003409 SDValue UaddLV = DAG.getNode(
3410 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
3411 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, MVT::i32), CtPop);
3412
3413 if (VT == MVT::i64)
3414 UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
3415 return UaddLV;
3416}
3417
3418SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3419
3420 if (Op.getValueType().isVector())
3421 return LowerVSETCC(Op, DAG);
3422
3423 SDValue LHS = Op.getOperand(0);
3424 SDValue RHS = Op.getOperand(1);
3425 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3426 SDLoc dl(Op);
3427
3428 // We chose ZeroOrOneBooleanContents, so use zero and one.
3429 EVT VT = Op.getValueType();
3430 SDValue TVal = DAG.getConstant(1, VT);
3431 SDValue FVal = DAG.getConstant(0, VT);
3432
3433 // Handle f128 first, since one possible outcome is a normal integer
3434 // comparison which gets picked up by the next if statement.
3435 if (LHS.getValueType() == MVT::f128) {
3436 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3437
3438 // If softenSetCCOperands returned a scalar, use it.
3439 if (!RHS.getNode()) {
3440 assert(LHS.getValueType() == Op.getValueType() &&
3441 "Unexpected setcc expansion!");
3442 return LHS;
3443 }
3444 }
3445
3446 if (LHS.getValueType().isInteger()) {
3447 SDValue CCVal;
3448 SDValue Cmp =
3449 getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
3450
3451 // Note that we inverted the condition above, so we reverse the order of
3452 // the true and false operands here. This will allow the setcc to be
3453 // matched to a single CSINC instruction.
3454 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
3455 }
3456
3457 // Now we know we're dealing with FP values.
3458 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3459
3460 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3461 // and do the comparison.
3462 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3463
3464 AArch64CC::CondCode CC1, CC2;
3465 changeFPCCToAArch64CC(CC, CC1, CC2);
3466 if (CC2 == AArch64CC::AL) {
3467 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
3468 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3469
3470 // Note that we inverted the condition above, so we reverse the order of
3471 // the true and false operands here. This will allow the setcc to be
3472 // matched to a single CSINC instruction.
3473 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
3474 } else {
3475 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
3476 // totally clean. Some of them require two CSELs to implement. As is in
3477 // this case, we emit the first CSEL and then emit a second using the output
3478 // of the first as the RHS. We're effectively OR'ing the two CC's together.
3479
3480 // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
3481 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3482 SDValue CS1 =
3483 DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3484
3485 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3486 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3487 }
3488}
3489
3490/// A SELECT_CC operation is really some kind of max or min if both values being
3491/// compared are, in some sense, equal to the results in either case. However,
3492/// it is permissible to compare f32 values and produce directly extended f64
3493/// values.
3494///
3495/// Extending the comparison operands would also be allowed, but is less likely
3496/// to happen in practice since their use is right here. Note that truncate
3497/// operations would *not* be semantically equivalent.
3498static bool selectCCOpsAreFMaxCompatible(SDValue Cmp, SDValue Result) {
3499 if (Cmp == Result)
3500 return true;
3501
3502 ConstantFPSDNode *CCmp = dyn_cast<ConstantFPSDNode>(Cmp);
3503 ConstantFPSDNode *CResult = dyn_cast<ConstantFPSDNode>(Result);
3504 if (CCmp && CResult && Cmp.getValueType() == MVT::f32 &&
3505 Result.getValueType() == MVT::f64) {
3506 bool Lossy;
3507 APFloat CmpVal = CCmp->getValueAPF();
3508 CmpVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Lossy);
3509 return CResult->getValueAPF().bitwiseIsEqual(CmpVal);
3510 }
3511
3512 return Result->getOpcode() == ISD::FP_EXTEND && Result->getOperand(0) == Cmp;
3513}
3514
3515SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
3516 SelectionDAG &DAG) const {
3517 SDValue CC = Op->getOperand(0);
3518 SDValue TVal = Op->getOperand(1);
3519 SDValue FVal = Op->getOperand(2);
3520 SDLoc DL(Op);
3521
3522 unsigned Opc = CC.getOpcode();
3523 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
3524 // instruction.
3525 if (CC.getResNo() == 1 &&
3526 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3527 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3528 // Only lower legal XALUO ops.
3529 if (!DAG.getTargetLoweringInfo().isTypeLegal(CC->getValueType(0)))
3530 return SDValue();
3531
3532 AArch64CC::CondCode OFCC;
3533 SDValue Value, Overflow;
3534 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CC.getValue(0), DAG);
3535 SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
3536
3537 return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
3538 CCVal, Overflow);
3539 }
3540
3541 if (CC.getOpcode() == ISD::SETCC)
3542 return DAG.getSelectCC(DL, CC.getOperand(0), CC.getOperand(1), TVal, FVal,
3543 cast<CondCodeSDNode>(CC.getOperand(2))->get());
3544 else
3545 return DAG.getSelectCC(DL, CC, DAG.getConstant(0, CC.getValueType()), TVal,
3546 FVal, ISD::SETNE);
3547}
3548
3549SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
3550 SelectionDAG &DAG) const {
3551 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3552 SDValue LHS = Op.getOperand(0);
3553 SDValue RHS = Op.getOperand(1);
3554 SDValue TVal = Op.getOperand(2);
3555 SDValue FVal = Op.getOperand(3);
3556 SDLoc dl(Op);
3557
3558 // Handle f128 first, because it will result in a comparison of some RTLIB
3559 // call result against zero.
3560 if (LHS.getValueType() == MVT::f128) {
3561 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3562
3563 // If softenSetCCOperands returned a scalar, we need to compare the result
3564 // against zero to select between true and false values.
3565 if (!RHS.getNode()) {
3566 RHS = DAG.getConstant(0, LHS.getValueType());
3567 CC = ISD::SETNE;
3568 }
3569 }
3570
3571 // Handle integers first.
3572 if (LHS.getValueType().isInteger()) {
3573 assert((LHS.getValueType() == RHS.getValueType()) &&
3574 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3575
3576 unsigned Opcode = AArch64ISD::CSEL;
3577
3578 // If both the TVal and the FVal are constants, see if we can swap them in
3579 // order to for a CSINV or CSINC out of them.
3580 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
3581 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
3582
3583 if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
3584 std::swap(TVal, FVal);
3585 std::swap(CTVal, CFVal);
3586 CC = ISD::getSetCCInverse(CC, true);
3587 } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
3588 std::swap(TVal, FVal);
3589 std::swap(CTVal, CFVal);
3590 CC = ISD::getSetCCInverse(CC, true);
3591 } else if (TVal.getOpcode() == ISD::XOR) {
3592 // If TVal is a NOT we want to swap TVal and FVal so that we can match
3593 // with a CSINV rather than a CSEL.
3594 ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(1));
3595
3596 if (CVal && CVal->isAllOnesValue()) {
3597 std::swap(TVal, FVal);
3598 std::swap(CTVal, CFVal);
3599 CC = ISD::getSetCCInverse(CC, true);
3600 }
3601 } else if (TVal.getOpcode() == ISD::SUB) {
3602 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
3603 // that we can match with a CSNEG rather than a CSEL.
3604 ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(0));
3605
3606 if (CVal && CVal->isNullValue()) {
3607 std::swap(TVal, FVal);
3608 std::swap(CTVal, CFVal);
3609 CC = ISD::getSetCCInverse(CC, true);
3610 }
3611 } else if (CTVal && CFVal) {
3612 const int64_t TrueVal = CTVal->getSExtValue();
3613 const int64_t FalseVal = CFVal->getSExtValue();
3614 bool Swap = false;
3615
3616 // If both TVal and FVal are constants, see if FVal is the
3617 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
3618 // instead of a CSEL in that case.
3619 if (TrueVal == ~FalseVal) {
3620 Opcode = AArch64ISD::CSINV;
3621 } else if (TrueVal == -FalseVal) {
3622 Opcode = AArch64ISD::CSNEG;
3623 } else if (TVal.getValueType() == MVT::i32) {
3624 // If our operands are only 32-bit wide, make sure we use 32-bit
3625 // arithmetic for the check whether we can use CSINC. This ensures that
3626 // the addition in the check will wrap around properly in case there is
3627 // an overflow (which would not be the case if we do the check with
3628 // 64-bit arithmetic).
3629 const uint32_t TrueVal32 = CTVal->getZExtValue();
3630 const uint32_t FalseVal32 = CFVal->getZExtValue();
3631
3632 if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
3633 Opcode = AArch64ISD::CSINC;
3634
3635 if (TrueVal32 > FalseVal32) {
3636 Swap = true;
3637 }
3638 }
3639 // 64-bit check whether we can use CSINC.
3640 } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
3641 Opcode = AArch64ISD::CSINC;
3642
3643 if (TrueVal > FalseVal) {
3644 Swap = true;
3645 }
3646 }
3647
3648 // Swap TVal and FVal if necessary.
3649 if (Swap) {
3650 std::swap(TVal, FVal);
3651 std::swap(CTVal, CFVal);
3652 CC = ISD::getSetCCInverse(CC, true);
3653 }
3654
3655 if (Opcode != AArch64ISD::CSEL) {
3656 // Drop FVal since we can get its value by simply inverting/negating
3657 // TVal.
3658 FVal = TVal;
3659 }
3660 }
3661
3662 SDValue CCVal;
3663 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3664
3665 EVT VT = Op.getValueType();
3666 return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
3667 }
3668
3669 // Now we know we're dealing with FP values.
3670 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3671 assert(LHS.getValueType() == RHS.getValueType());
3672 EVT VT = Op.getValueType();
3673
3674 // Try to match this select into a max/min operation, which have dedicated
3675 // opcode in the instruction set.
3676 // FIXME: This is not correct in the presence of NaNs, so we only enable this
3677 // in no-NaNs mode.
3678 if (getTargetMachine().Options.NoNaNsFPMath) {
3679 SDValue MinMaxLHS = TVal, MinMaxRHS = FVal;
3680 if (selectCCOpsAreFMaxCompatible(LHS, MinMaxRHS) &&
3681 selectCCOpsAreFMaxCompatible(RHS, MinMaxLHS)) {
3682 CC = ISD::getSetCCSwappedOperands(CC);
3683 std::swap(MinMaxLHS, MinMaxRHS);
3684 }
3685
3686 if (selectCCOpsAreFMaxCompatible(LHS, MinMaxLHS) &&
3687 selectCCOpsAreFMaxCompatible(RHS, MinMaxRHS)) {
3688 switch (CC) {
3689 default:
3690 break;
3691 case ISD::SETGT:
3692 case ISD::SETGE:
3693 case ISD::SETUGT:
3694 case ISD::SETUGE:
3695 case ISD::SETOGT:
3696 case ISD::SETOGE:
3697 return DAG.getNode(AArch64ISD::FMAX, dl, VT, MinMaxLHS, MinMaxRHS);
3698 break;
3699 case ISD::SETLT:
3700 case ISD::SETLE:
3701 case ISD::SETULT:
3702 case ISD::SETULE:
3703 case ISD::SETOLT:
3704 case ISD::SETOLE:
3705 return DAG.getNode(AArch64ISD::FMIN, dl, VT, MinMaxLHS, MinMaxRHS);
3706 break;
3707 }
3708 }
3709 }
3710
3711 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3712 // and do the comparison.
3713 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3714
3715 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3716 // clean. Some of them require two CSELs to implement.
3717 AArch64CC::CondCode CC1, CC2;
3718 changeFPCCToAArch64CC(CC, CC1, CC2);
3719 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3720 SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3721
3722 // If we need a second CSEL, emit it, using the output of the first as the
3723 // RHS. We're effectively OR'ing the two CC's together.
3724 if (CC2 != AArch64CC::AL) {
3725 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3726 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3727 }
3728
3729 // Otherwise, return the output of the first CSEL.
3730 return CS1;
3731}
3732
3733SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
3734 SelectionDAG &DAG) const {
3735 // Jump table entries as PC relative offsets. No additional tweaking
3736 // is necessary here. Just get the address of the jump table.
3737 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3738 EVT PtrVT = getPointerTy();
3739 SDLoc DL(Op);
3740
3741 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3742 !Subtarget->isTargetMachO()) {
3743 const unsigned char MO_NC = AArch64II::MO_NC;
3744 return DAG.getNode(
3745 AArch64ISD::WrapperLarge, DL, PtrVT,
3746 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
3747 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
3748 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
3749 DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3750 AArch64II::MO_G0 | MO_NC));
3751 }
3752
3753 SDValue Hi =
3754 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
3755 SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3756 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3757 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3758 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3759}
3760
3761SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
3762 SelectionDAG &DAG) const {
3763 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3764 EVT PtrVT = getPointerTy();
3765 SDLoc DL(Op);
3766
3767 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3768 // Use the GOT for the large code model on iOS.
3769 if (Subtarget->isTargetMachO()) {
3770 SDValue GotAddr = DAG.getTargetConstantPool(
3771 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3772 AArch64II::MO_GOT);
3773 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
3774 }
3775
3776 const unsigned char MO_NC = AArch64II::MO_NC;
3777 return DAG.getNode(
3778 AArch64ISD::WrapperLarge, DL, PtrVT,
3779 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3780 CP->getOffset(), AArch64II::MO_G3),
3781 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3782 CP->getOffset(), AArch64II::MO_G2 | MO_NC),
3783 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3784 CP->getOffset(), AArch64II::MO_G1 | MO_NC),
3785 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3786 CP->getOffset(), AArch64II::MO_G0 | MO_NC));
3787 } else {
3788 // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
3789 // ELF, the only valid one on Darwin.
3790 SDValue Hi =
3791 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3792 CP->getOffset(), AArch64II::MO_PAGE);
3793 SDValue Lo = DAG.getTargetConstantPool(
3794 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3795 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3796
3797 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3798 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3799 }
3800}
3801
3802SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
3803 SelectionDAG &DAG) const {
3804 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
3805 EVT PtrVT = getPointerTy();
3806 SDLoc DL(Op);
3807 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3808 !Subtarget->isTargetMachO()) {
3809 const unsigned char MO_NC = AArch64II::MO_NC;
3810 return DAG.getNode(
3811 AArch64ISD::WrapperLarge, DL, PtrVT,
3812 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
3813 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
3814 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
3815 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
3816 } else {
3817 SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
3818 SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
3819 AArch64II::MO_NC);
3820 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3821 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3822 }
3823}
3824
3825SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
3826 SelectionDAG &DAG) const {
3827 AArch64FunctionInfo *FuncInfo =
3828 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3829
3830 SDLoc DL(Op);
3831 SDValue FR =
3832 DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3833 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3834 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3835 MachinePointerInfo(SV), false, false, 0);
3836}
3837
3838SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
3839 SelectionDAG &DAG) const {
3840 // The layout of the va_list struct is specified in the AArch64 Procedure Call
3841 // Standard, section B.3.
3842 MachineFunction &MF = DAG.getMachineFunction();
3843 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3844 SDLoc DL(Op);
3845
3846 SDValue Chain = Op.getOperand(0);
3847 SDValue VAList = Op.getOperand(1);
3848 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3849 SmallVector<SDValue, 4> MemOps;
3850
3851 // void *__stack at offset 0
3852 SDValue Stack =
3853 DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3854 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
3855 MachinePointerInfo(SV), false, false, 8));
3856
3857 // void *__gr_top at offset 8
3858 int GPRSize = FuncInfo->getVarArgsGPRSize();
3859 if (GPRSize > 0) {
3860 SDValue GRTop, GRTopAddr;
3861
3862 GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3863 DAG.getConstant(8, getPointerTy()));
3864
3865 GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), getPointerTy());
3866 GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
3867 DAG.getConstant(GPRSize, getPointerTy()));
3868
3869 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
3870 MachinePointerInfo(SV, 8), false, false, 8));
3871 }
3872
3873 // void *__vr_top at offset 16
3874 int FPRSize = FuncInfo->getVarArgsFPRSize();
3875 if (FPRSize > 0) {
3876 SDValue VRTop, VRTopAddr;
3877 VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3878 DAG.getConstant(16, getPointerTy()));
3879
3880 VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), getPointerTy());
3881 VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
3882 DAG.getConstant(FPRSize, getPointerTy()));
3883
3884 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
3885 MachinePointerInfo(SV, 16), false, false, 8));
3886 }
3887
3888 // int __gr_offs at offset 24
3889 SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3890 DAG.getConstant(24, getPointerTy()));
3891 MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
3892 GROffsAddr, MachinePointerInfo(SV, 24), false,
3893 false, 4));
3894
3895 // int __vr_offs at offset 28
3896 SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3897 DAG.getConstant(28, getPointerTy()));
3898 MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
3899 VROffsAddr, MachinePointerInfo(SV, 28), false,
3900 false, 4));
3901
3902 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3903}
3904
3905SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
3906 SelectionDAG &DAG) const {
3907 return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
3908 : LowerAAPCS_VASTART(Op, DAG);
3909}
3910
3911SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
3912 SelectionDAG &DAG) const {
3913 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
3914 // pointer.
3915 unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
3916 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3917 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3918
3919 return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op), Op.getOperand(1),
3920 Op.getOperand(2), DAG.getConstant(VaListSize, MVT::i32),
3921 8, false, false, MachinePointerInfo(DestSV),
3922 MachinePointerInfo(SrcSV));
3923}
3924
3925SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3926 assert(Subtarget->isTargetDarwin() &&
3927 "automatic va_arg instruction only works on Darwin");
3928
3929 const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3930 EVT VT = Op.getValueType();
3931 SDLoc DL(Op);
3932 SDValue Chain = Op.getOperand(0);
3933 SDValue Addr = Op.getOperand(1);
3934 unsigned Align = Op.getConstantOperandVal(3);
3935
3936 SDValue VAList = DAG.getLoad(getPointerTy(), DL, Chain, Addr,
3937 MachinePointerInfo(V), false, false, false, 0);
3938 Chain = VAList.getValue(1);
3939
3940 if (Align > 8) {
3941 assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
3942 VAList = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3943 DAG.getConstant(Align - 1, getPointerTy()));
3944 VAList = DAG.getNode(ISD::AND, DL, getPointerTy(), VAList,
3945 DAG.getConstant(-(int64_t)Align, getPointerTy()));
3946 }
3947
3948 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
3949 uint64_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
3950
3951 // Scalar integer and FP values smaller than 64 bits are implicitly extended
3952 // up to 64 bits. At the very least, we have to increase the striding of the
3953 // vaargs list to match this, and for FP values we need to introduce
3954 // FP_ROUND nodes as well.
3955 if (VT.isInteger() && !VT.isVector())
3956 ArgSize = 8;
3957 bool NeedFPTrunc = false;
3958 if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
3959 ArgSize = 8;
3960 NeedFPTrunc = true;
3961 }
3962
3963 // Increment the pointer, VAList, to the next vaarg
3964 SDValue VANext = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3965 DAG.getConstant(ArgSize, getPointerTy()));
3966 // Store the incremented VAList to the legalized pointer
3967 SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
3968 false, false, 0);
3969
3970 // Load the actual argument out of the pointer VAList
3971 if (NeedFPTrunc) {
3972 // Load the value as an f64.
3973 SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
3974 MachinePointerInfo(), false, false, false, 0);
3975 // Round the value down to an f32.
3976 SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
3977 DAG.getIntPtrConstant(1));
3978 SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
3979 // Merge the rounded value with the chain output of the load.
3980 return DAG.getMergeValues(Ops, DL);
3981 }
3982
3983 return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
3984 false, false, 0);
3985}
3986
3987SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
3988 SelectionDAG &DAG) const {
3989 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3990 MFI->setFrameAddressIsTaken(true);
3991
3992 EVT VT = Op.getValueType();
3993 SDLoc DL(Op);
3994 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3995 SDValue FrameAddr =
3996 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
3997 while (Depth--)
3998 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
3999 MachinePointerInfo(), false, false, false, 0);
4000 return FrameAddr;
4001}
4002
4003// FIXME? Maybe this could be a TableGen attribute on some registers and
4004// this table could be generated automatically from RegInfo.
4005unsigned AArch64TargetLowering::getRegisterByName(const char* RegName,
4006 EVT VT) const {
4007 unsigned Reg = StringSwitch<unsigned>(RegName)
4008 .Case("sp", AArch64::SP)
4009 .Default(0);
4010 if (Reg)
4011 return Reg;
4012 report_fatal_error("Invalid register name global variable");
4013}
4014
4015SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
4016 SelectionDAG &DAG) const {
4017 MachineFunction &MF = DAG.getMachineFunction();
4018 MachineFrameInfo *MFI = MF.getFrameInfo();
4019 MFI->setReturnAddressIsTaken(true);
4020
4021 EVT VT = Op.getValueType();
4022 SDLoc DL(Op);
4023 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4024 if (Depth) {
4025 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
4026 SDValue Offset = DAG.getConstant(8, getPointerTy());
4027 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4028 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4029 MachinePointerInfo(), false, false, false, 0);
4030 }
4031
4032 // Return LR, which contains the return address. Mark it an implicit live-in.
4033 unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
4034 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
4035}
4036
4037/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
4038/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4039SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
4040 SelectionDAG &DAG) const {
4041 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4042 EVT VT = Op.getValueType();
4043 unsigned VTBits = VT.getSizeInBits();
4044 SDLoc dl(Op);
4045 SDValue ShOpLo = Op.getOperand(0);
4046 SDValue ShOpHi = Op.getOperand(1);
4047 SDValue ShAmt = Op.getOperand(2);
4048 SDValue ARMcc;
4049 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
4050
4051 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
4052
4053 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
4054 DAG.getConstant(VTBits, MVT::i64), ShAmt);
4055 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
4056 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
4057 DAG.getConstant(VTBits, MVT::i64));
4058 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
4059
4060 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
4061 ISD::SETGE, dl, DAG);
4062 SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
4063
4064 SDValue FalseValLo = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4065 SDValue TrueValLo = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
4066 SDValue Lo =
4067 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
4068
4069 // AArch64 shifts larger than the register width are wrapped rather than
4070 // clamped, so we can't just emit "hi >> x".
4071 SDValue FalseValHi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
4072 SDValue TrueValHi = Opc == ISD::SRA
4073 ? DAG.getNode(Opc, dl, VT, ShOpHi,
4074 DAG.getConstant(VTBits - 1, MVT::i64))
4075 : DAG.getConstant(0, VT);
4076 SDValue Hi =
4077 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValHi, FalseValHi, CCVal, Cmp);
4078
4079 SDValue Ops[2] = { Lo, Hi };
4080 return DAG.getMergeValues(Ops, dl);
4081}
4082
4083/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
4084/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4085SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
4086 SelectionDAG &DAG) const {
4087 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4088 EVT VT = Op.getValueType();
4089 unsigned VTBits = VT.getSizeInBits();
4090 SDLoc dl(Op);
4091 SDValue ShOpLo = Op.getOperand(0);
4092 SDValue ShOpHi = Op.getOperand(1);
4093 SDValue ShAmt = Op.getOperand(2);
4094 SDValue ARMcc;
4095
4096 assert(Op.getOpcode() == ISD::SHL_PARTS);
4097 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
4098 DAG.getConstant(VTBits, MVT::i64), ShAmt);
4099 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
4100 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
4101 DAG.getConstant(VTBits, MVT::i64));
4102 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
4103 SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
4104
4105 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4106
4107 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
4108 ISD::SETGE, dl, DAG);
4109 SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
4110 SDValue Hi =
4111 DAG.getNode(AArch64ISD::CSEL, dl, VT, Tmp3, FalseVal, CCVal, Cmp);
4112
4113 // AArch64 shifts of larger than register sizes are wrapped rather than
4114 // clamped, so we can't just emit "lo << a" if a is too big.
4115 SDValue TrueValLo = DAG.getConstant(0, VT);
4116 SDValue FalseValLo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4117 SDValue Lo =
4118 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
4119
4120 SDValue Ops[2] = { Lo, Hi };
4121 return DAG.getMergeValues(Ops, dl);
4122}
4123
4124bool AArch64TargetLowering::isOffsetFoldingLegal(
4125 const GlobalAddressSDNode *GA) const {
4126 // The AArch64 target doesn't support folding offsets into global addresses.
4127 return false;
4128}
4129
4130bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4131 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
4132 // FIXME: We should be able to handle f128 as well with a clever lowering.
4133 if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
4134 return true;
4135
4136 if (VT == MVT::f64)
4137 return AArch64_AM::getFP64Imm(Imm) != -1;
4138 else if (VT == MVT::f32)
4139 return AArch64_AM::getFP32Imm(Imm) != -1;
4140 return false;
4141}
4142
4143//===----------------------------------------------------------------------===//
4144// AArch64 Optimization Hooks
4145//===----------------------------------------------------------------------===//
4146
4147//===----------------------------------------------------------------------===//
4148// AArch64 Inline Assembly Support
4149//===----------------------------------------------------------------------===//
4150
4151// Table of Constraints
4152// TODO: This is the current set of constraints supported by ARM for the
4153// compiler, not all of them may make sense, e.g. S may be difficult to support.
4154//
4155// r - A general register
4156// w - An FP/SIMD register of some size in the range v0-v31
4157// x - An FP/SIMD register of some size in the range v0-v15
4158// I - Constant that can be used with an ADD instruction
4159// J - Constant that can be used with a SUB instruction
4160// K - Constant that can be used with a 32-bit logical instruction
4161// L - Constant that can be used with a 64-bit logical instruction
4162// M - Constant that can be used as a 32-bit MOV immediate
4163// N - Constant that can be used as a 64-bit MOV immediate
4164// Q - A memory reference with base register and no offset
4165// S - A symbolic address
4166// Y - Floating point constant zero
4167// Z - Integer constant zero
4168//
4169// Note that general register operands will be output using their 64-bit x
4170// register name, whatever the size of the variable, unless the asm operand
4171// is prefixed by the %w modifier. Floating-point and SIMD register operands
4172// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
4173// %q modifier.
4174
4175/// getConstraintType - Given a constraint letter, return the type of
4176/// constraint it is for this target.
4177AArch64TargetLowering::ConstraintType
4178AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
4179 if (Constraint.size() == 1) {
4180 switch (Constraint[0]) {
4181 default:
4182 break;
4183 case 'z':
4184 return C_Other;
4185 case 'x':
4186 case 'w':
4187 return C_RegisterClass;
4188 // An address with a single base register. Due to the way we
4189 // currently handle addresses it is the same as 'r'.
4190 case 'Q':
4191 return C_Memory;
4192 }
4193 }
4194 return TargetLowering::getConstraintType(Constraint);
4195}
4196
4197/// Examine constraint type and operand type and determine a weight value.
4198/// This object must already have been set up with the operand type
4199/// and the current alternative constraint selected.
4200TargetLowering::ConstraintWeight
4201AArch64TargetLowering::getSingleConstraintMatchWeight(
4202 AsmOperandInfo &info, const char *constraint) const {
4203 ConstraintWeight weight = CW_Invalid;
4204 Value *CallOperandVal = info.CallOperandVal;
4205 // If we don't have a value, we can't do a match,
4206 // but allow it at the lowest weight.
4207 if (!CallOperandVal)
4208 return CW_Default;
4209 Type *type = CallOperandVal->getType();
4210 // Look at the constraint type.
4211 switch (*constraint) {
4212 default:
4213 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
4214 break;
4215 case 'x':
4216 case 'w':
4217 if (type->isFloatingPointTy() || type->isVectorTy())
4218 weight = CW_Register;
4219 break;
4220 case 'z':
4221 weight = CW_Constant;
4222 break;
4223 }
4224 return weight;
4225}
4226
4227std::pair<unsigned, const TargetRegisterClass *>
4228AArch64TargetLowering::getRegForInlineAsmConstraint(
Eric Christopher11e4df72015-02-26 22:38:43 +00004229 const TargetRegisterInfo *TRI, const std::string &Constraint,
4230 MVT VT) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00004231 if (Constraint.size() == 1) {
4232 switch (Constraint[0]) {
4233 case 'r':
4234 if (VT.getSizeInBits() == 64)
4235 return std::make_pair(0U, &AArch64::GPR64commonRegClass);
4236 return std::make_pair(0U, &AArch64::GPR32commonRegClass);
4237 case 'w':
4238 if (VT == MVT::f32)
4239 return std::make_pair(0U, &AArch64::FPR32RegClass);
4240 if (VT.getSizeInBits() == 64)
4241 return std::make_pair(0U, &AArch64::FPR64RegClass);
4242 if (VT.getSizeInBits() == 128)
4243 return std::make_pair(0U, &AArch64::FPR128RegClass);
4244 break;
4245 // The instructions that this constraint is designed for can
4246 // only take 128-bit registers so just use that regclass.
4247 case 'x':
4248 if (VT.getSizeInBits() == 128)
4249 return std::make_pair(0U, &AArch64::FPR128_loRegClass);
4250 break;
4251 }
4252 }
4253 if (StringRef("{cc}").equals_lower(Constraint))
4254 return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
4255
4256 // Use the default implementation in TargetLowering to convert the register
4257 // constraint into a member of a register class.
4258 std::pair<unsigned, const TargetRegisterClass *> Res;
Eric Christopher11e4df72015-02-26 22:38:43 +00004259 Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00004260
4261 // Not found as a standard register?
4262 if (!Res.second) {
4263 unsigned Size = Constraint.size();
4264 if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
4265 tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
4266 const std::string Reg =
4267 std::string(&Constraint[2], &Constraint[Size - 1]);
4268 int RegNo = atoi(Reg.c_str());
4269 if (RegNo >= 0 && RegNo <= 31) {
4270 // v0 - v31 are aliases of q0 - q31.
4271 // By default we'll emit v0-v31 for this unless there's a modifier where
4272 // we'll emit the correct register as well.
4273 Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
4274 Res.second = &AArch64::FPR128RegClass;
4275 }
4276 }
4277 }
4278
4279 return Res;
4280}
4281
4282/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4283/// vector. If it is invalid, don't add anything to Ops.
4284void AArch64TargetLowering::LowerAsmOperandForConstraint(
4285 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
4286 SelectionDAG &DAG) const {
4287 SDValue Result;
4288
4289 // Currently only support length 1 constraints.
4290 if (Constraint.length() != 1)
4291 return;
4292
4293 char ConstraintLetter = Constraint[0];
4294 switch (ConstraintLetter) {
4295 default:
4296 break;
4297
4298 // This set of constraints deal with valid constants for various instructions.
4299 // Validate and return a target constant for them if we can.
4300 case 'z': {
4301 // 'z' maps to xzr or wzr so it needs an input of 0.
4302 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4303 if (!C || C->getZExtValue() != 0)
4304 return;
4305
4306 if (Op.getValueType() == MVT::i64)
4307 Result = DAG.getRegister(AArch64::XZR, MVT::i64);
4308 else
4309 Result = DAG.getRegister(AArch64::WZR, MVT::i32);
4310 break;
4311 }
4312
4313 case 'I':
4314 case 'J':
4315 case 'K':
4316 case 'L':
4317 case 'M':
4318 case 'N':
4319 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4320 if (!C)
4321 return;
4322
4323 // Grab the value and do some validation.
4324 uint64_t CVal = C->getZExtValue();
4325 switch (ConstraintLetter) {
4326 // The I constraint applies only to simple ADD or SUB immediate operands:
4327 // i.e. 0 to 4095 with optional shift by 12
4328 // The J constraint applies only to ADD or SUB immediates that would be
4329 // valid when negated, i.e. if [an add pattern] were to be output as a SUB
4330 // instruction [or vice versa], in other words -1 to -4095 with optional
4331 // left shift by 12.
4332 case 'I':
4333 if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
4334 break;
4335 return;
4336 case 'J': {
4337 uint64_t NVal = -C->getSExtValue();
Tim Northover2c46beb2014-07-27 07:10:29 +00004338 if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
4339 CVal = C->getSExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00004340 break;
Tim Northover2c46beb2014-07-27 07:10:29 +00004341 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004342 return;
4343 }
4344 // The K and L constraints apply *only* to logical immediates, including
4345 // what used to be the MOVI alias for ORR (though the MOVI alias has now
4346 // been removed and MOV should be used). So these constraints have to
4347 // distinguish between bit patterns that are valid 32-bit or 64-bit
4348 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
4349 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
4350 // versa.
4351 case 'K':
4352 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4353 break;
4354 return;
4355 case 'L':
4356 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4357 break;
4358 return;
4359 // The M and N constraints are a superset of K and L respectively, for use
4360 // with the MOV (immediate) alias. As well as the logical immediates they
4361 // also match 32 or 64-bit immediates that can be loaded either using a
4362 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
4363 // (M) or 64-bit 0x1234000000000000 (N) etc.
4364 // As a note some of this code is liberally stolen from the asm parser.
4365 case 'M': {
4366 if (!isUInt<32>(CVal))
4367 return;
4368 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4369 break;
4370 if ((CVal & 0xFFFF) == CVal)
4371 break;
4372 if ((CVal & 0xFFFF0000ULL) == CVal)
4373 break;
4374 uint64_t NCVal = ~(uint32_t)CVal;
4375 if ((NCVal & 0xFFFFULL) == NCVal)
4376 break;
4377 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4378 break;
4379 return;
4380 }
4381 case 'N': {
4382 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4383 break;
4384 if ((CVal & 0xFFFFULL) == CVal)
4385 break;
4386 if ((CVal & 0xFFFF0000ULL) == CVal)
4387 break;
4388 if ((CVal & 0xFFFF00000000ULL) == CVal)
4389 break;
4390 if ((CVal & 0xFFFF000000000000ULL) == CVal)
4391 break;
4392 uint64_t NCVal = ~CVal;
4393 if ((NCVal & 0xFFFFULL) == NCVal)
4394 break;
4395 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4396 break;
4397 if ((NCVal & 0xFFFF00000000ULL) == NCVal)
4398 break;
4399 if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
4400 break;
4401 return;
4402 }
4403 default:
4404 return;
4405 }
4406
4407 // All assembler immediates are 64-bit integers.
4408 Result = DAG.getTargetConstant(CVal, MVT::i64);
4409 break;
4410 }
4411
4412 if (Result.getNode()) {
4413 Ops.push_back(Result);
4414 return;
4415 }
4416
4417 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4418}
4419
4420//===----------------------------------------------------------------------===//
4421// AArch64 Advanced SIMD Support
4422//===----------------------------------------------------------------------===//
4423
4424/// WidenVector - Given a value in the V64 register class, produce the
4425/// equivalent value in the V128 register class.
4426static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
4427 EVT VT = V64Reg.getValueType();
4428 unsigned NarrowSize = VT.getVectorNumElements();
4429 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4430 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
4431 SDLoc DL(V64Reg);
4432
4433 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
4434 V64Reg, DAG.getConstant(0, MVT::i32));
4435}
4436
4437/// getExtFactor - Determine the adjustment factor for the position when
4438/// generating an "extract from vector registers" instruction.
4439static unsigned getExtFactor(SDValue &V) {
4440 EVT EltType = V.getValueType().getVectorElementType();
4441 return EltType.getSizeInBits() / 8;
4442}
4443
4444/// NarrowVector - Given a value in the V128 register class, produce the
4445/// equivalent value in the V64 register class.
4446static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
4447 EVT VT = V128Reg.getValueType();
4448 unsigned WideSize = VT.getVectorNumElements();
4449 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4450 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
4451 SDLoc DL(V128Reg);
4452
4453 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
4454}
4455
4456// Gather data to see if the operation can be modelled as a
4457// shuffle in combination with VEXTs.
4458SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
4459 SelectionDAG &DAG) const {
Kevin Qinf0ec9af2014-06-18 05:54:42 +00004460 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00004461 SDLoc dl(Op);
4462 EVT VT = Op.getValueType();
4463 unsigned NumElts = VT.getVectorNumElements();
4464
Tim Northover7324e842014-07-24 15:39:55 +00004465 struct ShuffleSourceInfo {
4466 SDValue Vec;
4467 unsigned MinElt;
4468 unsigned MaxElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00004469
Tim Northover7324e842014-07-24 15:39:55 +00004470 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
4471 // be compatible with the shuffle we intend to construct. As a result
4472 // ShuffleVec will be some sliding window into the original Vec.
4473 SDValue ShuffleVec;
4474
4475 // Code should guarantee that element i in Vec starts at element "WindowBase
4476 // + i * WindowScale in ShuffleVec".
4477 int WindowBase;
4478 int WindowScale;
4479
4480 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
4481 ShuffleSourceInfo(SDValue Vec)
4482 : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
4483 WindowScale(1) {}
4484 };
4485
4486 // First gather all vectors used as an immediate source for this BUILD_VECTOR
4487 // node.
4488 SmallVector<ShuffleSourceInfo, 2> Sources;
Tim Northover3b0846e2014-05-24 12:50:23 +00004489 for (unsigned i = 0; i < NumElts; ++i) {
4490 SDValue V = Op.getOperand(i);
4491 if (V.getOpcode() == ISD::UNDEF)
4492 continue;
4493 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4494 // A shuffle can only come from building a vector from various
4495 // elements of other vectors.
4496 return SDValue();
4497 }
4498
Tim Northover7324e842014-07-24 15:39:55 +00004499 // Add this element source to the list if it's not already there.
Tim Northover3b0846e2014-05-24 12:50:23 +00004500 SDValue SourceVec = V.getOperand(0);
Tim Northover7324e842014-07-24 15:39:55 +00004501 auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
4502 if (Source == Sources.end())
James Molloyf497d552014-10-17 17:06:31 +00004503 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
Tim Northover3b0846e2014-05-24 12:50:23 +00004504
Tim Northover7324e842014-07-24 15:39:55 +00004505 // Update the minimum and maximum lane number seen.
4506 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4507 Source->MinElt = std::min(Source->MinElt, EltNo);
4508 Source->MaxElt = std::max(Source->MaxElt, EltNo);
Tim Northover3b0846e2014-05-24 12:50:23 +00004509 }
4510
4511 // Currently only do something sane when at most two source vectors
Tim Northover7324e842014-07-24 15:39:55 +00004512 // are involved.
4513 if (Sources.size() > 2)
Tim Northover3b0846e2014-05-24 12:50:23 +00004514 return SDValue();
4515
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004516 // Find out the smallest element size among result and two sources, and use
4517 // it as element size to build the shuffle_vector.
4518 EVT SmallestEltTy = VT.getVectorElementType();
Tim Northover7324e842014-07-24 15:39:55 +00004519 for (auto &Source : Sources) {
4520 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004521 if (SrcEltTy.bitsLT(SmallestEltTy)) {
4522 SmallestEltTy = SrcEltTy;
4523 }
4524 }
4525 unsigned ResMultiplier =
4526 VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004527 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
4528 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00004529
Tim Northover7324e842014-07-24 15:39:55 +00004530 // If the source vector is too wide or too narrow, we may nevertheless be able
4531 // to construct a compatible shuffle either by concatenating it with UNDEF or
4532 // extracting a suitable range of elements.
4533 for (auto &Src : Sources) {
4534 EVT SrcVT = Src.ShuffleVec.getValueType();
Kevin Qinf0ec9af2014-06-18 05:54:42 +00004535
Tim Northover7324e842014-07-24 15:39:55 +00004536 if (SrcVT.getSizeInBits() == VT.getSizeInBits())
Tim Northover3b0846e2014-05-24 12:50:23 +00004537 continue;
Tim Northover7324e842014-07-24 15:39:55 +00004538
4539 // This stage of the search produces a source with the same element type as
4540 // the original, but with a total width matching the BUILD_VECTOR output.
4541 EVT EltVT = SrcVT.getVectorElementType();
James Molloyf497d552014-10-17 17:06:31 +00004542 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
4543 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
Tim Northover7324e842014-07-24 15:39:55 +00004544
4545 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
4546 assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00004547 // We can pad out the smaller vector for free, so if it's part of a
4548 // shuffle...
Tim Northover7324e842014-07-24 15:39:55 +00004549 Src.ShuffleVec =
4550 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
4551 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004552 continue;
4553 }
4554
Tim Northover7324e842014-07-24 15:39:55 +00004555 assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00004556
James Molloyf497d552014-10-17 17:06:31 +00004557 if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004558 // Span too large for a VEXT to cope
4559 return SDValue();
4560 }
4561
James Molloyf497d552014-10-17 17:06:31 +00004562 if (Src.MinElt >= NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004563 // The extraction can just take the second half
Tim Northover7324e842014-07-24 15:39:55 +00004564 Src.ShuffleVec =
4565 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Tim Northover5e84fe32014-12-06 00:33:37 +00004566 DAG.getConstant(NumSrcElts, MVT::i64));
James Molloyf497d552014-10-17 17:06:31 +00004567 Src.WindowBase = -NumSrcElts;
4568 } else if (Src.MaxElt < NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004569 // The extraction can just take the first half
Tim Northover5e84fe32014-12-06 00:33:37 +00004570 Src.ShuffleVec =
4571 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
4572 DAG.getConstant(0, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00004573 } else {
4574 // An actual VEXT is needed
Tim Northover5e84fe32014-12-06 00:33:37 +00004575 SDValue VEXTSrc1 =
4576 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
4577 DAG.getConstant(0, MVT::i64));
Tim Northover7324e842014-07-24 15:39:55 +00004578 SDValue VEXTSrc2 =
4579 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Tim Northover5e84fe32014-12-06 00:33:37 +00004580 DAG.getConstant(NumSrcElts, MVT::i64));
Tim Northover7324e842014-07-24 15:39:55 +00004581 unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
4582
4583 Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004584 VEXTSrc2, DAG.getConstant(Imm, MVT::i32));
Tim Northover7324e842014-07-24 15:39:55 +00004585 Src.WindowBase = -Src.MinElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00004586 }
4587 }
4588
Tim Northover7324e842014-07-24 15:39:55 +00004589 // Another possible incompatibility occurs from the vector element types. We
4590 // can fix this by bitcasting the source vectors to the same type we intend
4591 // for the shuffle.
4592 for (auto &Src : Sources) {
4593 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
4594 if (SrcEltTy == SmallestEltTy)
4595 continue;
4596 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
4597 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
4598 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
4599 Src.WindowBase *= Src.WindowScale;
4600 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004601
Tim Northover7324e842014-07-24 15:39:55 +00004602 // Final sanity check before we try to actually produce a shuffle.
4603 DEBUG(
4604 for (auto Src : Sources)
4605 assert(Src.ShuffleVec.getValueType() == ShuffleVT);
4606 );
4607
4608 // The stars all align, our next step is to produce the mask for the shuffle.
4609 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
4610 int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004611 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004612 SDValue Entry = Op.getOperand(i);
Tim Northover7324e842014-07-24 15:39:55 +00004613 if (Entry.getOpcode() == ISD::UNDEF)
4614 continue;
Tim Northover3b0846e2014-05-24 12:50:23 +00004615
Tim Northover7324e842014-07-24 15:39:55 +00004616 auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
4617 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
4618
4619 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
4620 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
4621 // segment.
4622 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
4623 int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
4624 VT.getVectorElementType().getSizeInBits());
4625 int LanesDefined = BitsDefined / BitsPerShuffleLane;
4626
4627 // This source is expected to fill ResMultiplier lanes of the final shuffle,
4628 // starting at the appropriate offset.
4629 int *LaneMask = &Mask[i * ResMultiplier];
4630
4631 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
4632 ExtractBase += NumElts * (Src - Sources.begin());
4633 for (int j = 0; j < LanesDefined; ++j)
4634 LaneMask[j] = ExtractBase + j;
Tim Northover3b0846e2014-05-24 12:50:23 +00004635 }
4636
4637 // Final check before we try to produce nonsense...
Tim Northover7324e842014-07-24 15:39:55 +00004638 if (!isShuffleMaskLegal(Mask, ShuffleVT))
4639 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00004640
Tim Northover7324e842014-07-24 15:39:55 +00004641 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
4642 for (unsigned i = 0; i < Sources.size(); ++i)
4643 ShuffleOps[i] = Sources[i].ShuffleVec;
4644
4645 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
4646 ShuffleOps[1], &Mask[0]);
4647 return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
Tim Northover3b0846e2014-05-24 12:50:23 +00004648}
4649
4650// check if an EXT instruction can handle the shuffle mask when the
4651// vector sources of the shuffle are the same.
4652static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
4653 unsigned NumElts = VT.getVectorNumElements();
4654
4655 // Assume that the first shuffle index is not UNDEF. Fail if it is.
4656 if (M[0] < 0)
4657 return false;
4658
4659 Imm = M[0];
4660
4661 // If this is a VEXT shuffle, the immediate value is the index of the first
4662 // element. The other shuffle indices must be the successive elements after
4663 // the first one.
4664 unsigned ExpectedElt = Imm;
4665 for (unsigned i = 1; i < NumElts; ++i) {
4666 // Increment the expected index. If it wraps around, just follow it
4667 // back to index zero and keep going.
4668 ++ExpectedElt;
4669 if (ExpectedElt == NumElts)
4670 ExpectedElt = 0;
4671
4672 if (M[i] < 0)
4673 continue; // ignore UNDEF indices
4674 if (ExpectedElt != static_cast<unsigned>(M[i]))
4675 return false;
4676 }
4677
4678 return true;
4679}
4680
4681// check if an EXT instruction can handle the shuffle mask when the
4682// vector sources of the shuffle are different.
4683static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
4684 unsigned &Imm) {
4685 // Look for the first non-undef element.
4686 const int *FirstRealElt = std::find_if(M.begin(), M.end(),
4687 [](int Elt) {return Elt >= 0;});
4688
4689 // Benefit form APInt to handle overflow when calculating expected element.
4690 unsigned NumElts = VT.getVectorNumElements();
4691 unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
4692 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
4693 // The following shuffle indices must be the successive elements after the
4694 // first real element.
4695 const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
4696 [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
4697 if (FirstWrongElt != M.end())
4698 return false;
4699
4700 // The index of an EXT is the first element if it is not UNDEF.
4701 // Watch out for the beginning UNDEFs. The EXT index should be the expected
4702 // value of the first element. E.g.
4703 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
4704 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
4705 // ExpectedElt is the last mask index plus 1.
4706 Imm = ExpectedElt.getZExtValue();
4707
4708 // There are two difference cases requiring to reverse input vectors.
4709 // For example, for vector <4 x i32> we have the following cases,
4710 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
4711 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
4712 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
4713 // to reverse two input vectors.
4714 if (Imm < NumElts)
4715 ReverseEXT = true;
4716 else
4717 Imm -= NumElts;
4718
4719 return true;
4720}
4721
4722/// isREVMask - Check if a vector shuffle corresponds to a REV
4723/// instruction with the specified blocksize. (The order of the elements
4724/// within each block of the vector is reversed.)
4725static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
4726 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
4727 "Only possible block sizes for REV are: 16, 32, 64");
4728
4729 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4730 if (EltSz == 64)
4731 return false;
4732
4733 unsigned NumElts = VT.getVectorNumElements();
4734 unsigned BlockElts = M[0] + 1;
4735 // If the first shuffle index is UNDEF, be optimistic.
4736 if (M[0] < 0)
4737 BlockElts = BlockSize / EltSz;
4738
4739 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
4740 return false;
4741
4742 for (unsigned i = 0; i < NumElts; ++i) {
4743 if (M[i] < 0)
4744 continue; // ignore UNDEF indices
4745 if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
4746 return false;
4747 }
4748
4749 return true;
4750}
4751
4752static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4753 unsigned NumElts = VT.getVectorNumElements();
4754 WhichResult = (M[0] == 0 ? 0 : 1);
4755 unsigned Idx = WhichResult * NumElts / 2;
4756 for (unsigned i = 0; i != NumElts; i += 2) {
4757 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4758 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
4759 return false;
4760 Idx += 1;
4761 }
4762
4763 return true;
4764}
4765
4766static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4767 unsigned NumElts = VT.getVectorNumElements();
4768 WhichResult = (M[0] == 0 ? 0 : 1);
4769 for (unsigned i = 0; i != NumElts; ++i) {
4770 if (M[i] < 0)
4771 continue; // ignore UNDEF indices
4772 if ((unsigned)M[i] != 2 * i + WhichResult)
4773 return false;
4774 }
4775
4776 return true;
4777}
4778
4779static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4780 unsigned NumElts = VT.getVectorNumElements();
4781 WhichResult = (M[0] == 0 ? 0 : 1);
4782 for (unsigned i = 0; i < NumElts; i += 2) {
4783 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4784 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
4785 return false;
4786 }
4787 return true;
4788}
4789
4790/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
4791/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4792/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
4793static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4794 unsigned NumElts = VT.getVectorNumElements();
4795 WhichResult = (M[0] == 0 ? 0 : 1);
4796 unsigned Idx = WhichResult * NumElts / 2;
4797 for (unsigned i = 0; i != NumElts; i += 2) {
4798 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4799 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
4800 return false;
4801 Idx += 1;
4802 }
4803
4804 return true;
4805}
4806
4807/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
4808/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4809/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
4810static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4811 unsigned Half = VT.getVectorNumElements() / 2;
4812 WhichResult = (M[0] == 0 ? 0 : 1);
4813 for (unsigned j = 0; j != 2; ++j) {
4814 unsigned Idx = WhichResult;
4815 for (unsigned i = 0; i != Half; ++i) {
4816 int MIdx = M[i + j * Half];
4817 if (MIdx >= 0 && (unsigned)MIdx != Idx)
4818 return false;
4819 Idx += 2;
4820 }
4821 }
4822
4823 return true;
4824}
4825
4826/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
4827/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4828/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
4829static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4830 unsigned NumElts = VT.getVectorNumElements();
4831 WhichResult = (M[0] == 0 ? 0 : 1);
4832 for (unsigned i = 0; i < NumElts; i += 2) {
4833 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4834 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
4835 return false;
4836 }
4837 return true;
4838}
4839
4840static bool isINSMask(ArrayRef<int> M, int NumInputElements,
4841 bool &DstIsLeft, int &Anomaly) {
4842 if (M.size() != static_cast<size_t>(NumInputElements))
4843 return false;
4844
4845 int NumLHSMatch = 0, NumRHSMatch = 0;
4846 int LastLHSMismatch = -1, LastRHSMismatch = -1;
4847
4848 for (int i = 0; i < NumInputElements; ++i) {
4849 if (M[i] == -1) {
4850 ++NumLHSMatch;
4851 ++NumRHSMatch;
4852 continue;
4853 }
4854
4855 if (M[i] == i)
4856 ++NumLHSMatch;
4857 else
4858 LastLHSMismatch = i;
4859
4860 if (M[i] == i + NumInputElements)
4861 ++NumRHSMatch;
4862 else
4863 LastRHSMismatch = i;
4864 }
4865
4866 if (NumLHSMatch == NumInputElements - 1) {
4867 DstIsLeft = true;
4868 Anomaly = LastLHSMismatch;
4869 return true;
4870 } else if (NumRHSMatch == NumInputElements - 1) {
4871 DstIsLeft = false;
4872 Anomaly = LastRHSMismatch;
4873 return true;
4874 }
4875
4876 return false;
4877}
4878
4879static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
4880 if (VT.getSizeInBits() != 128)
4881 return false;
4882
4883 unsigned NumElts = VT.getVectorNumElements();
4884
4885 for (int I = 0, E = NumElts / 2; I != E; I++) {
4886 if (Mask[I] != I)
4887 return false;
4888 }
4889
4890 int Offset = NumElts / 2;
4891 for (int I = NumElts / 2, E = NumElts; I != E; I++) {
4892 if (Mask[I] != I + SplitLHS * Offset)
4893 return false;
4894 }
4895
4896 return true;
4897}
4898
4899static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
4900 SDLoc DL(Op);
4901 EVT VT = Op.getValueType();
4902 SDValue V0 = Op.getOperand(0);
4903 SDValue V1 = Op.getOperand(1);
4904 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
4905
4906 if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
4907 VT.getVectorElementType() != V1.getValueType().getVectorElementType())
4908 return SDValue();
4909
4910 bool SplitV0 = V0.getValueType().getSizeInBits() == 128;
4911
4912 if (!isConcatMask(Mask, VT, SplitV0))
4913 return SDValue();
4914
4915 EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
4916 VT.getVectorNumElements() / 2);
4917 if (SplitV0) {
4918 V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
4919 DAG.getConstant(0, MVT::i64));
4920 }
4921 if (V1.getValueType().getSizeInBits() == 128) {
4922 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
4923 DAG.getConstant(0, MVT::i64));
4924 }
4925 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
4926}
4927
4928/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4929/// the specified operations to build the shuffle.
4930static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4931 SDValue RHS, SelectionDAG &DAG,
4932 SDLoc dl) {
4933 unsigned OpNum = (PFEntry >> 26) & 0x0F;
4934 unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
4935 unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
4936
4937 enum {
4938 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4939 OP_VREV,
4940 OP_VDUP0,
4941 OP_VDUP1,
4942 OP_VDUP2,
4943 OP_VDUP3,
4944 OP_VEXT1,
4945 OP_VEXT2,
4946 OP_VEXT3,
4947 OP_VUZPL, // VUZP, left result
4948 OP_VUZPR, // VUZP, right result
4949 OP_VZIPL, // VZIP, left result
4950 OP_VZIPR, // VZIP, right result
4951 OP_VTRNL, // VTRN, left result
4952 OP_VTRNR // VTRN, right result
4953 };
4954
4955 if (OpNum == OP_COPY) {
4956 if (LHSID == (1 * 9 + 2) * 9 + 3)
4957 return LHS;
4958 assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
4959 return RHS;
4960 }
4961
4962 SDValue OpLHS, OpRHS;
4963 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4964 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4965 EVT VT = OpLHS.getValueType();
4966
4967 switch (OpNum) {
4968 default:
4969 llvm_unreachable("Unknown shuffle opcode!");
4970 case OP_VREV:
4971 // VREV divides the vector in half and swaps within the half.
4972 if (VT.getVectorElementType() == MVT::i32 ||
4973 VT.getVectorElementType() == MVT::f32)
4974 return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
4975 // vrev <4 x i16> -> REV32
Oliver Stannard89d15422014-08-27 16:16:04 +00004976 if (VT.getVectorElementType() == MVT::i16 ||
4977 VT.getVectorElementType() == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00004978 return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
4979 // vrev <4 x i8> -> REV16
4980 assert(VT.getVectorElementType() == MVT::i8);
4981 return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
4982 case OP_VDUP0:
4983 case OP_VDUP1:
4984 case OP_VDUP2:
4985 case OP_VDUP3: {
4986 EVT EltTy = VT.getVectorElementType();
4987 unsigned Opcode;
4988 if (EltTy == MVT::i8)
4989 Opcode = AArch64ISD::DUPLANE8;
4990 else if (EltTy == MVT::i16)
4991 Opcode = AArch64ISD::DUPLANE16;
4992 else if (EltTy == MVT::i32 || EltTy == MVT::f32)
4993 Opcode = AArch64ISD::DUPLANE32;
4994 else if (EltTy == MVT::i64 || EltTy == MVT::f64)
4995 Opcode = AArch64ISD::DUPLANE64;
4996 else
4997 llvm_unreachable("Invalid vector element type?");
4998
4999 if (VT.getSizeInBits() == 64)
5000 OpLHS = WidenVector(OpLHS, DAG);
5001 SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, MVT::i64);
5002 return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
5003 }
5004 case OP_VEXT1:
5005 case OP_VEXT2:
5006 case OP_VEXT3: {
5007 unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
5008 return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
5009 DAG.getConstant(Imm, MVT::i32));
5010 }
5011 case OP_VUZPL:
5012 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
5013 OpRHS);
5014 case OP_VUZPR:
5015 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
5016 OpRHS);
5017 case OP_VZIPL:
5018 return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
5019 OpRHS);
5020 case OP_VZIPR:
5021 return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
5022 OpRHS);
5023 case OP_VTRNL:
5024 return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
5025 OpRHS);
5026 case OP_VTRNR:
5027 return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
5028 OpRHS);
5029 }
5030}
5031
5032static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
5033 SelectionDAG &DAG) {
5034 // Check to see if we can use the TBL instruction.
5035 SDValue V1 = Op.getOperand(0);
5036 SDValue V2 = Op.getOperand(1);
5037 SDLoc DL(Op);
5038
5039 EVT EltVT = Op.getValueType().getVectorElementType();
5040 unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
5041
5042 SmallVector<SDValue, 8> TBLMask;
5043 for (int Val : ShuffleMask) {
5044 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
5045 unsigned Offset = Byte + Val * BytesPerElt;
5046 TBLMask.push_back(DAG.getConstant(Offset, MVT::i32));
5047 }
5048 }
5049
5050 MVT IndexVT = MVT::v8i8;
5051 unsigned IndexLen = 8;
5052 if (Op.getValueType().getSizeInBits() == 128) {
5053 IndexVT = MVT::v16i8;
5054 IndexLen = 16;
5055 }
5056
5057 SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
5058 SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
5059
5060 SDValue Shuffle;
5061 if (V2.getNode()->getOpcode() == ISD::UNDEF) {
5062 if (IndexLen == 8)
5063 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
5064 Shuffle = DAG.getNode(
5065 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5066 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
5067 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5068 makeArrayRef(TBLMask.data(), IndexLen)));
5069 } else {
5070 if (IndexLen == 8) {
5071 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
5072 Shuffle = DAG.getNode(
5073 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5074 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
5075 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5076 makeArrayRef(TBLMask.data(), IndexLen)));
5077 } else {
5078 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
5079 // cannot currently represent the register constraints on the input
5080 // table registers.
5081 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
5082 // DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5083 // &TBLMask[0], IndexLen));
5084 Shuffle = DAG.getNode(
5085 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5086 DAG.getConstant(Intrinsic::aarch64_neon_tbl2, MVT::i32), V1Cst, V2Cst,
5087 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5088 makeArrayRef(TBLMask.data(), IndexLen)));
5089 }
5090 }
5091 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
5092}
5093
5094static unsigned getDUPLANEOp(EVT EltType) {
5095 if (EltType == MVT::i8)
5096 return AArch64ISD::DUPLANE8;
Oliver Stannard89d15422014-08-27 16:16:04 +00005097 if (EltType == MVT::i16 || EltType == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005098 return AArch64ISD::DUPLANE16;
5099 if (EltType == MVT::i32 || EltType == MVT::f32)
5100 return AArch64ISD::DUPLANE32;
5101 if (EltType == MVT::i64 || EltType == MVT::f64)
5102 return AArch64ISD::DUPLANE64;
5103
5104 llvm_unreachable("Invalid vector element type?");
5105}
5106
5107SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5108 SelectionDAG &DAG) const {
5109 SDLoc dl(Op);
5110 EVT VT = Op.getValueType();
5111
5112 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
5113
5114 // Convert shuffles that are directly supported on NEON to target-specific
5115 // DAG nodes, instead of keeping them as shuffles and matching them again
5116 // during code selection. This is more efficient and avoids the possibility
5117 // of inconsistencies between legalization and selection.
5118 ArrayRef<int> ShuffleMask = SVN->getMask();
5119
5120 SDValue V1 = Op.getOperand(0);
5121 SDValue V2 = Op.getOperand(1);
5122
5123 if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0],
5124 V1.getValueType().getSimpleVT())) {
5125 int Lane = SVN->getSplatIndex();
5126 // If this is undef splat, generate it via "just" vdup, if possible.
5127 if (Lane == -1)
5128 Lane = 0;
5129
5130 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
5131 return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
5132 V1.getOperand(0));
5133 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
5134 // constant. If so, we can just reference the lane's definition directly.
5135 if (V1.getOpcode() == ISD::BUILD_VECTOR &&
5136 !isa<ConstantSDNode>(V1.getOperand(Lane)))
5137 return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
5138
5139 // Otherwise, duplicate from the lane of the input vector.
5140 unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
5141
5142 // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
5143 // to make a vector of the same size as this SHUFFLE. We can ignore the
5144 // extract entirely, and canonicalise the concat using WidenVector.
5145 if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
5146 Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
5147 V1 = V1.getOperand(0);
5148 } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
5149 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
5150 Lane -= Idx * VT.getVectorNumElements() / 2;
5151 V1 = WidenVector(V1.getOperand(Idx), DAG);
5152 } else if (VT.getSizeInBits() == 64)
5153 V1 = WidenVector(V1, DAG);
5154
5155 return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, MVT::i64));
5156 }
5157
5158 if (isREVMask(ShuffleMask, VT, 64))
5159 return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
5160 if (isREVMask(ShuffleMask, VT, 32))
5161 return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
5162 if (isREVMask(ShuffleMask, VT, 16))
5163 return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
5164
5165 bool ReverseEXT = false;
5166 unsigned Imm;
5167 if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
5168 if (ReverseEXT)
5169 std::swap(V1, V2);
5170 Imm *= getExtFactor(V1);
5171 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
5172 DAG.getConstant(Imm, MVT::i32));
5173 } else if (V2->getOpcode() == ISD::UNDEF &&
5174 isSingletonEXTMask(ShuffleMask, VT, Imm)) {
5175 Imm *= getExtFactor(V1);
5176 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
5177 DAG.getConstant(Imm, MVT::i32));
5178 }
5179
5180 unsigned WhichResult;
5181 if (isZIPMask(ShuffleMask, VT, WhichResult)) {
5182 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5183 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5184 }
5185 if (isUZPMask(ShuffleMask, VT, WhichResult)) {
5186 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5187 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5188 }
5189 if (isTRNMask(ShuffleMask, VT, WhichResult)) {
5190 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5191 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5192 }
5193
5194 if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5195 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5196 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5197 }
5198 if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5199 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5200 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5201 }
5202 if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5203 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5204 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5205 }
5206
5207 SDValue Concat = tryFormConcatFromShuffle(Op, DAG);
5208 if (Concat.getNode())
5209 return Concat;
5210
5211 bool DstIsLeft;
5212 int Anomaly;
5213 int NumInputElements = V1.getValueType().getVectorNumElements();
5214 if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
5215 SDValue DstVec = DstIsLeft ? V1 : V2;
5216 SDValue DstLaneV = DAG.getConstant(Anomaly, MVT::i64);
5217
5218 SDValue SrcVec = V1;
5219 int SrcLane = ShuffleMask[Anomaly];
5220 if (SrcLane >= NumInputElements) {
5221 SrcVec = V2;
5222 SrcLane -= VT.getVectorNumElements();
5223 }
5224 SDValue SrcLaneV = DAG.getConstant(SrcLane, MVT::i64);
5225
5226 EVT ScalarVT = VT.getVectorElementType();
Oliver Stannard89d15422014-08-27 16:16:04 +00005227
5228 if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00005229 ScalarVT = MVT::i32;
5230
5231 return DAG.getNode(
5232 ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
5233 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
5234 DstLaneV);
5235 }
5236
5237 // If the shuffle is not directly supported and it has 4 elements, use
5238 // the PerfectShuffle-generated table to synthesize it from other shuffles.
5239 unsigned NumElts = VT.getVectorNumElements();
5240 if (NumElts == 4) {
5241 unsigned PFIndexes[4];
5242 for (unsigned i = 0; i != 4; ++i) {
5243 if (ShuffleMask[i] < 0)
5244 PFIndexes[i] = 8;
5245 else
5246 PFIndexes[i] = ShuffleMask[i];
5247 }
5248
5249 // Compute the index in the perfect shuffle table.
5250 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
5251 PFIndexes[2] * 9 + PFIndexes[3];
5252 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5253 unsigned Cost = (PFEntry >> 30);
5254
5255 if (Cost <= 4)
5256 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5257 }
5258
5259 return GenerateTBL(Op, ShuffleMask, DAG);
5260}
5261
5262static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
5263 APInt &UndefBits) {
5264 EVT VT = BVN->getValueType(0);
5265 APInt SplatBits, SplatUndef;
5266 unsigned SplatBitSize;
5267 bool HasAnyUndefs;
5268 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5269 unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
5270
5271 for (unsigned i = 0; i < NumSplats; ++i) {
5272 CnstBits <<= SplatBitSize;
5273 UndefBits <<= SplatBitSize;
5274 CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
5275 UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
5276 }
5277
5278 return true;
5279 }
5280
5281 return false;
5282}
5283
5284SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
5285 SelectionDAG &DAG) const {
5286 BuildVectorSDNode *BVN =
5287 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5288 SDValue LHS = Op.getOperand(0);
5289 SDLoc dl(Op);
5290 EVT VT = Op.getValueType();
5291
5292 if (!BVN)
5293 return Op;
5294
5295 APInt CnstBits(VT.getSizeInBits(), 0);
5296 APInt UndefBits(VT.getSizeInBits(), 0);
5297 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5298 // We only have BIC vector immediate instruction, which is and-not.
5299 CnstBits = ~CnstBits;
5300
5301 // We make use of a little bit of goto ickiness in order to avoid having to
5302 // duplicate the immediate matching logic for the undef toggled case.
5303 bool SecondTry = false;
5304 AttemptModImm:
5305
5306 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5307 CnstBits = CnstBits.zextOrTrunc(64);
5308 uint64_t CnstVal = CnstBits.getZExtValue();
5309
5310 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5311 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5312 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5313 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5314 DAG.getConstant(CnstVal, MVT::i32),
5315 DAG.getConstant(0, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005316 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005317 }
5318
5319 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5320 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5321 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5322 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5323 DAG.getConstant(CnstVal, MVT::i32),
5324 DAG.getConstant(8, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005325 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005326 }
5327
5328 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5329 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5330 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5331 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5332 DAG.getConstant(CnstVal, MVT::i32),
5333 DAG.getConstant(16, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005334 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005335 }
5336
5337 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5338 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5339 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5340 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5341 DAG.getConstant(CnstVal, MVT::i32),
5342 DAG.getConstant(24, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005343 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005344 }
5345
5346 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5347 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5348 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5349 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5350 DAG.getConstant(CnstVal, MVT::i32),
5351 DAG.getConstant(0, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005352 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005353 }
5354
5355 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5356 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5357 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5358 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5359 DAG.getConstant(CnstVal, MVT::i32),
5360 DAG.getConstant(8, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005361 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005362 }
5363 }
5364
5365 if (SecondTry)
5366 goto FailedModImm;
5367 SecondTry = true;
5368 CnstBits = ~UndefBits;
5369 goto AttemptModImm;
5370 }
5371
5372// We can always fall back to a non-immediate AND.
5373FailedModImm:
5374 return Op;
5375}
5376
5377// Specialized code to quickly find if PotentialBVec is a BuildVector that
5378// consists of only the same constant int value, returned in reference arg
5379// ConstVal
5380static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
5381 uint64_t &ConstVal) {
5382 BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
5383 if (!Bvec)
5384 return false;
5385 ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
5386 if (!FirstElt)
5387 return false;
5388 EVT VT = Bvec->getValueType(0);
5389 unsigned NumElts = VT.getVectorNumElements();
5390 for (unsigned i = 1; i < NumElts; ++i)
5391 if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
5392 return false;
5393 ConstVal = FirstElt->getZExtValue();
5394 return true;
5395}
5396
5397static unsigned getIntrinsicID(const SDNode *N) {
5398 unsigned Opcode = N->getOpcode();
5399 switch (Opcode) {
5400 default:
5401 return Intrinsic::not_intrinsic;
5402 case ISD::INTRINSIC_WO_CHAIN: {
5403 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5404 if (IID < Intrinsic::num_intrinsics)
5405 return IID;
5406 return Intrinsic::not_intrinsic;
5407 }
5408 }
5409}
5410
5411// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
5412// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
5413// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
5414// Also, logical shift right -> sri, with the same structure.
5415static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
5416 EVT VT = N->getValueType(0);
5417
5418 if (!VT.isVector())
5419 return SDValue();
5420
5421 SDLoc DL(N);
5422
5423 // Is the first op an AND?
5424 const SDValue And = N->getOperand(0);
5425 if (And.getOpcode() != ISD::AND)
5426 return SDValue();
5427
5428 // Is the second op an shl or lshr?
5429 SDValue Shift = N->getOperand(1);
5430 // This will have been turned into: AArch64ISD::VSHL vector, #shift
5431 // or AArch64ISD::VLSHR vector, #shift
5432 unsigned ShiftOpc = Shift.getOpcode();
5433 if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
5434 return SDValue();
5435 bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
5436
5437 // Is the shift amount constant?
5438 ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
5439 if (!C2node)
5440 return SDValue();
5441
5442 // Is the and mask vector all constant?
5443 uint64_t C1;
5444 if (!isAllConstantBuildVector(And.getOperand(1), C1))
5445 return SDValue();
5446
5447 // Is C1 == ~C2, taking into account how much one can shift elements of a
5448 // particular size?
5449 uint64_t C2 = C2node->getZExtValue();
5450 unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
5451 if (C2 > ElemSizeInBits)
5452 return SDValue();
5453 unsigned ElemMask = (1 << ElemSizeInBits) - 1;
5454 if ((C1 & ElemMask) != (~C2 & ElemMask))
5455 return SDValue();
5456
5457 SDValue X = And.getOperand(0);
5458 SDValue Y = Shift.getOperand(0);
5459
5460 unsigned Intrin =
5461 IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
5462 SDValue ResultSLI =
5463 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
5464 DAG.getConstant(Intrin, MVT::i32), X, Y, Shift.getOperand(1));
5465
5466 DEBUG(dbgs() << "aarch64-lower: transformed: \n");
5467 DEBUG(N->dump(&DAG));
5468 DEBUG(dbgs() << "into: \n");
5469 DEBUG(ResultSLI->dump(&DAG));
5470
5471 ++NumShiftInserts;
5472 return ResultSLI;
5473}
5474
5475SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
5476 SelectionDAG &DAG) const {
5477 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
5478 if (EnableAArch64SlrGeneration) {
5479 SDValue Res = tryLowerToSLI(Op.getNode(), DAG);
5480 if (Res.getNode())
5481 return Res;
5482 }
5483
5484 BuildVectorSDNode *BVN =
5485 dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
5486 SDValue LHS = Op.getOperand(1);
5487 SDLoc dl(Op);
5488 EVT VT = Op.getValueType();
5489
5490 // OR commutes, so try swapping the operands.
5491 if (!BVN) {
5492 LHS = Op.getOperand(0);
5493 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5494 }
5495 if (!BVN)
5496 return Op;
5497
5498 APInt CnstBits(VT.getSizeInBits(), 0);
5499 APInt UndefBits(VT.getSizeInBits(), 0);
5500 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5501 // We make use of a little bit of goto ickiness in order to avoid having to
5502 // duplicate the immediate matching logic for the undef toggled case.
5503 bool SecondTry = false;
5504 AttemptModImm:
5505
5506 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5507 CnstBits = CnstBits.zextOrTrunc(64);
5508 uint64_t CnstVal = CnstBits.getZExtValue();
5509
5510 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5511 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5512 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5513 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5514 DAG.getConstant(CnstVal, MVT::i32),
5515 DAG.getConstant(0, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005516 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005517 }
5518
5519 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5520 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5521 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5522 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5523 DAG.getConstant(CnstVal, MVT::i32),
5524 DAG.getConstant(8, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005525 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005526 }
5527
5528 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5529 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5530 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5531 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5532 DAG.getConstant(CnstVal, MVT::i32),
5533 DAG.getConstant(16, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005534 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005535 }
5536
5537 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5538 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5539 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5540 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5541 DAG.getConstant(CnstVal, MVT::i32),
5542 DAG.getConstant(24, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005543 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005544 }
5545
5546 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5547 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5548 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5549 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5550 DAG.getConstant(CnstVal, MVT::i32),
5551 DAG.getConstant(0, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005552 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005553 }
5554
5555 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5556 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5557 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5558 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5559 DAG.getConstant(CnstVal, MVT::i32),
5560 DAG.getConstant(8, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005561 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005562 }
5563 }
5564
5565 if (SecondTry)
5566 goto FailedModImm;
5567 SecondTry = true;
5568 CnstBits = UndefBits;
5569 goto AttemptModImm;
5570 }
5571
5572// We can always fall back to a non-immediate OR.
5573FailedModImm:
5574 return Op;
5575}
5576
Kevin Qin4473c192014-07-07 02:45:40 +00005577// Normalize the operands of BUILD_VECTOR. The value of constant operands will
5578// be truncated to fit element width.
5579static SDValue NormalizeBuildVector(SDValue Op,
5580 SelectionDAG &DAG) {
5581 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00005582 SDLoc dl(Op);
5583 EVT VT = Op.getValueType();
Kevin Qin4473c192014-07-07 02:45:40 +00005584 EVT EltTy= VT.getVectorElementType();
5585
5586 if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
5587 return Op;
5588
5589 SmallVector<SDValue, 16> Ops;
5590 for (unsigned I = 0, E = VT.getVectorNumElements(); I != E; ++I) {
5591 SDValue Lane = Op.getOperand(I);
5592 if (Lane.getOpcode() == ISD::Constant) {
5593 APInt LowBits(EltTy.getSizeInBits(),
5594 cast<ConstantSDNode>(Lane)->getZExtValue());
5595 Lane = DAG.getConstant(LowBits.getZExtValue(), MVT::i32);
5596 }
5597 Ops.push_back(Lane);
5598 }
5599 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
5600}
5601
5602SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
5603 SelectionDAG &DAG) const {
5604 SDLoc dl(Op);
5605 EVT VT = Op.getValueType();
5606 Op = NormalizeBuildVector(Op, DAG);
5607 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
Tim Northover3b0846e2014-05-24 12:50:23 +00005608
5609 APInt CnstBits(VT.getSizeInBits(), 0);
5610 APInt UndefBits(VT.getSizeInBits(), 0);
5611 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5612 // We make use of a little bit of goto ickiness in order to avoid having to
5613 // duplicate the immediate matching logic for the undef toggled case.
5614 bool SecondTry = false;
5615 AttemptModImm:
5616
5617 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5618 CnstBits = CnstBits.zextOrTrunc(64);
5619 uint64_t CnstVal = CnstBits.getZExtValue();
5620
5621 // Certain magic vector constants (used to express things like NOT
5622 // and NEG) are passed through unmodified. This allows codegen patterns
5623 // for these operations to match. Special-purpose patterns will lower
5624 // these immediates to MOVIs if it proves necessary.
5625 if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
5626 return Op;
5627
5628 // The many faces of MOVI...
5629 if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
5630 CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
5631 if (VT.getSizeInBits() == 128) {
5632 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
5633 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005634 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005635 }
5636
5637 // Support the V64 version via subregister insertion.
5638 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
5639 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005640 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005641 }
5642
5643 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5644 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5645 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5646 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5647 DAG.getConstant(CnstVal, MVT::i32),
5648 DAG.getConstant(0, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005649 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005650 }
5651
5652 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5653 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5654 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5655 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5656 DAG.getConstant(CnstVal, MVT::i32),
5657 DAG.getConstant(8, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005658 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005659 }
5660
5661 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5662 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5663 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5664 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5665 DAG.getConstant(CnstVal, MVT::i32),
5666 DAG.getConstant(16, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005667 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005668 }
5669
5670 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5671 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5672 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5673 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5674 DAG.getConstant(CnstVal, MVT::i32),
5675 DAG.getConstant(24, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005676 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005677 }
5678
5679 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5680 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5681 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5682 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5683 DAG.getConstant(CnstVal, MVT::i32),
5684 DAG.getConstant(0, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005685 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005686 }
5687
5688 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5689 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5690 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5691 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5692 DAG.getConstant(CnstVal, MVT::i32),
5693 DAG.getConstant(8, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005694 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005695 }
5696
5697 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5698 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5699 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5700 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
5701 DAG.getConstant(CnstVal, MVT::i32),
5702 DAG.getConstant(264, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005703 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005704 }
5705
5706 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5707 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5708 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5709 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
5710 DAG.getConstant(CnstVal, MVT::i32),
5711 DAG.getConstant(272, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005712 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005713 }
5714
5715 if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
5716 CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
5717 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
5718 SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
5719 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005720 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005721 }
5722
5723 // The few faces of FMOV...
5724 if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
5725 CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
5726 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
5727 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
5728 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005729 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005730 }
5731
5732 if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
5733 VT.getSizeInBits() == 128) {
5734 CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
5735 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
5736 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005737 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005738 }
5739
5740 // The many faces of MVNI...
5741 CnstVal = ~CnstVal;
5742 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5743 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5744 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5745 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5746 DAG.getConstant(CnstVal, MVT::i32),
5747 DAG.getConstant(0, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005748 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005749 }
5750
5751 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5752 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5753 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5754 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5755 DAG.getConstant(CnstVal, MVT::i32),
5756 DAG.getConstant(8, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005757 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005758 }
5759
5760 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5761 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5762 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5763 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5764 DAG.getConstant(CnstVal, MVT::i32),
5765 DAG.getConstant(16, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005766 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005767 }
5768
5769 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5770 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5771 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5772 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5773 DAG.getConstant(CnstVal, MVT::i32),
5774 DAG.getConstant(24, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005775 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005776 }
5777
5778 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5779 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5780 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5781 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5782 DAG.getConstant(CnstVal, MVT::i32),
5783 DAG.getConstant(0, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005784 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005785 }
5786
5787 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5788 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5789 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5790 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5791 DAG.getConstant(CnstVal, MVT::i32),
5792 DAG.getConstant(8, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005793 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005794 }
5795
5796 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5797 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5798 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5799 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
5800 DAG.getConstant(CnstVal, MVT::i32),
5801 DAG.getConstant(264, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005802 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005803 }
5804
5805 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5806 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5807 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5808 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
5809 DAG.getConstant(CnstVal, MVT::i32),
5810 DAG.getConstant(272, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005811 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005812 }
5813 }
5814
5815 if (SecondTry)
5816 goto FailedModImm;
5817 SecondTry = true;
5818 CnstBits = UndefBits;
5819 goto AttemptModImm;
5820 }
5821FailedModImm:
5822
5823 // Scan through the operands to find some interesting properties we can
5824 // exploit:
5825 // 1) If only one value is used, we can use a DUP, or
5826 // 2) if only the low element is not undef, we can just insert that, or
5827 // 3) if only one constant value is used (w/ some non-constant lanes),
5828 // we can splat the constant value into the whole vector then fill
5829 // in the non-constant lanes.
5830 // 4) FIXME: If different constant values are used, but we can intelligently
5831 // select the values we'll be overwriting for the non-constant
5832 // lanes such that we can directly materialize the vector
5833 // some other way (MOVI, e.g.), we can be sneaky.
5834 unsigned NumElts = VT.getVectorNumElements();
5835 bool isOnlyLowElement = true;
5836 bool usesOnlyOneValue = true;
5837 bool usesOnlyOneConstantValue = true;
5838 bool isConstant = true;
5839 unsigned NumConstantLanes = 0;
5840 SDValue Value;
5841 SDValue ConstantValue;
5842 for (unsigned i = 0; i < NumElts; ++i) {
5843 SDValue V = Op.getOperand(i);
5844 if (V.getOpcode() == ISD::UNDEF)
5845 continue;
5846 if (i > 0)
5847 isOnlyLowElement = false;
5848 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
5849 isConstant = false;
5850
5851 if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
5852 ++NumConstantLanes;
5853 if (!ConstantValue.getNode())
5854 ConstantValue = V;
5855 else if (ConstantValue != V)
5856 usesOnlyOneConstantValue = false;
5857 }
5858
5859 if (!Value.getNode())
5860 Value = V;
5861 else if (V != Value)
5862 usesOnlyOneValue = false;
5863 }
5864
5865 if (!Value.getNode())
5866 return DAG.getUNDEF(VT);
5867
5868 if (isOnlyLowElement)
5869 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
5870
5871 // Use DUP for non-constant splats. For f32 constant splats, reduce to
5872 // i32 and try again.
5873 if (usesOnlyOneValue) {
5874 if (!isConstant) {
5875 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5876 Value.getValueType() != VT)
5877 return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
5878
5879 // This is actually a DUPLANExx operation, which keeps everything vectory.
5880
5881 // DUPLANE works on 128-bit vectors, widen it if necessary.
5882 SDValue Lane = Value.getOperand(1);
5883 Value = Value.getOperand(0);
5884 if (Value.getValueType().getSizeInBits() == 64)
5885 Value = WidenVector(Value, DAG);
5886
5887 unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
5888 return DAG.getNode(Opcode, dl, VT, Value, Lane);
5889 }
5890
5891 if (VT.getVectorElementType().isFloatingPoint()) {
5892 SmallVector<SDValue, 8> Ops;
5893 MVT NewType =
5894 (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5895 for (unsigned i = 0; i < NumElts; ++i)
5896 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
5897 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
5898 SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
5899 Val = LowerBUILD_VECTOR(Val, DAG);
5900 if (Val.getNode())
5901 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5902 }
5903 }
5904
5905 // If there was only one constant value used and for more than one lane,
5906 // start by splatting that value, then replace the non-constant lanes. This
5907 // is better than the default, which will perform a separate initialization
5908 // for each lane.
5909 if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
5910 SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
5911 // Now insert the non-constant lanes.
5912 for (unsigned i = 0; i < NumElts; ++i) {
5913 SDValue V = Op.getOperand(i);
5914 SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
5915 if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
5916 // Note that type legalization likely mucked about with the VT of the
5917 // source operand, so we may have to convert it here before inserting.
5918 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
5919 }
5920 }
5921 return Val;
5922 }
5923
5924 // If all elements are constants and the case above didn't get hit, fall back
5925 // to the default expansion, which will generate a load from the constant
5926 // pool.
5927 if (isConstant)
5928 return SDValue();
5929
5930 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
5931 if (NumElts >= 4) {
5932 SDValue shuffle = ReconstructShuffle(Op, DAG);
5933 if (shuffle != SDValue())
5934 return shuffle;
5935 }
5936
5937 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
5938 // know the default expansion would otherwise fall back on something even
5939 // worse. For a vector with one or two non-undef values, that's
5940 // scalar_to_vector for the elements followed by a shuffle (provided the
5941 // shuffle is valid for the target) and materialization element by element
5942 // on the stack followed by a load for everything else.
5943 if (!isConstant && !usesOnlyOneValue) {
5944 SDValue Vec = DAG.getUNDEF(VT);
5945 SDValue Op0 = Op.getOperand(0);
5946 unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
5947 unsigned i = 0;
5948 // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
5949 // a) Avoid a RMW dependency on the full vector register, and
5950 // b) Allow the register coalescer to fold away the copy if the
5951 // value is already in an S or D register.
5952 if (Op0.getOpcode() != ISD::UNDEF && (ElemSize == 32 || ElemSize == 64)) {
5953 unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
5954 MachineSDNode *N =
5955 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
5956 DAG.getTargetConstant(SubIdx, MVT::i32));
5957 Vec = SDValue(N, 0);
5958 ++i;
5959 }
5960 for (; i < NumElts; ++i) {
5961 SDValue V = Op.getOperand(i);
5962 if (V.getOpcode() == ISD::UNDEF)
5963 continue;
5964 SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
5965 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
5966 }
5967 return Vec;
5968 }
5969
5970 // Just use the default expansion. We failed to find a better alternative.
5971 return SDValue();
5972}
5973
5974SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
5975 SelectionDAG &DAG) const {
5976 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
5977
Tim Northovere4b8e132014-07-15 10:00:26 +00005978 // Check for non-constant or out of range lane.
5979 EVT VT = Op.getOperand(0).getValueType();
5980 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
5981 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00005982 return SDValue();
5983
Tim Northover3b0846e2014-05-24 12:50:23 +00005984
5985 // Insertion/extraction are legal for V128 types.
5986 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00005987 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
5988 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005989 return Op;
5990
5991 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00005992 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005993 return SDValue();
5994
5995 // For V64 types, we perform insertion by expanding the value
5996 // to a V128 type and perform the insertion on that.
5997 SDLoc DL(Op);
5998 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
5999 EVT WideTy = WideVec.getValueType();
6000
6001 SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
6002 Op.getOperand(1), Op.getOperand(2));
6003 // Re-narrow the resultant vector.
6004 return NarrowVector(Node, DAG);
6005}
6006
6007SDValue
6008AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6009 SelectionDAG &DAG) const {
6010 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
6011
Tim Northovere4b8e132014-07-15 10:00:26 +00006012 // Check for non-constant or out of range lane.
6013 EVT VT = Op.getOperand(0).getValueType();
6014 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6015 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00006016 return SDValue();
6017
Tim Northover3b0846e2014-05-24 12:50:23 +00006018
6019 // Insertion/extraction are legal for V128 types.
6020 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00006021 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6022 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006023 return Op;
6024
6025 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00006026 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006027 return SDValue();
6028
6029 // For V64 types, we perform extraction by expanding the value
6030 // to a V128 type and perform the extraction on that.
6031 SDLoc DL(Op);
6032 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6033 EVT WideTy = WideVec.getValueType();
6034
6035 EVT ExtrTy = WideTy.getVectorElementType();
6036 if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
6037 ExtrTy = MVT::i32;
6038
6039 // For extractions, we just return the result directly.
6040 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
6041 Op.getOperand(1));
6042}
6043
6044SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
6045 SelectionDAG &DAG) const {
6046 EVT VT = Op.getOperand(0).getValueType();
6047 SDLoc dl(Op);
6048 // Just in case...
6049 if (!VT.isVector())
6050 return SDValue();
6051
6052 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6053 if (!Cst)
6054 return SDValue();
6055 unsigned Val = Cst->getZExtValue();
6056
6057 unsigned Size = Op.getValueType().getSizeInBits();
6058 if (Val == 0) {
6059 switch (Size) {
6060 case 8:
6061 return DAG.getTargetExtractSubreg(AArch64::bsub, dl, Op.getValueType(),
6062 Op.getOperand(0));
6063 case 16:
6064 return DAG.getTargetExtractSubreg(AArch64::hsub, dl, Op.getValueType(),
6065 Op.getOperand(0));
6066 case 32:
6067 return DAG.getTargetExtractSubreg(AArch64::ssub, dl, Op.getValueType(),
6068 Op.getOperand(0));
6069 case 64:
6070 return DAG.getTargetExtractSubreg(AArch64::dsub, dl, Op.getValueType(),
6071 Op.getOperand(0));
6072 default:
6073 llvm_unreachable("Unexpected vector type in extract_subvector!");
6074 }
6075 }
6076 // If this is extracting the upper 64-bits of a 128-bit vector, we match
6077 // that directly.
6078 if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
6079 return Op;
6080
6081 return SDValue();
6082}
6083
6084bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
6085 EVT VT) const {
6086 if (VT.getVectorNumElements() == 4 &&
6087 (VT.is128BitVector() || VT.is64BitVector())) {
6088 unsigned PFIndexes[4];
6089 for (unsigned i = 0; i != 4; ++i) {
6090 if (M[i] < 0)
6091 PFIndexes[i] = 8;
6092 else
6093 PFIndexes[i] = M[i];
6094 }
6095
6096 // Compute the index in the perfect shuffle table.
6097 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
6098 PFIndexes[2] * 9 + PFIndexes[3];
6099 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6100 unsigned Cost = (PFEntry >> 30);
6101
6102 if (Cost <= 4)
6103 return true;
6104 }
6105
6106 bool DummyBool;
6107 int DummyInt;
6108 unsigned DummyUnsigned;
6109
6110 return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
6111 isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
6112 isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
6113 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
6114 isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
6115 isZIPMask(M, VT, DummyUnsigned) ||
6116 isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
6117 isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
6118 isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
6119 isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
6120 isConcatMask(M, VT, VT.getSizeInBits() == 128));
6121}
6122
6123/// getVShiftImm - Check if this is a valid build_vector for the immediate
6124/// operand of a vector shift operation, where all the elements of the
6125/// build_vector must have the same constant integer value.
6126static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6127 // Ignore bit_converts.
6128 while (Op.getOpcode() == ISD::BITCAST)
6129 Op = Op.getOperand(0);
6130 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6131 APInt SplatBits, SplatUndef;
6132 unsigned SplatBitSize;
6133 bool HasAnyUndefs;
6134 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
6135 HasAnyUndefs, ElementBits) ||
6136 SplatBitSize > ElementBits)
6137 return false;
6138 Cnt = SplatBits.getSExtValue();
6139 return true;
6140}
6141
6142/// isVShiftLImm - Check if this is a valid build_vector for the immediate
6143/// operand of a vector shift left operation. That value must be in the range:
6144/// 0 <= Value < ElementBits for a left shift; or
6145/// 0 <= Value <= ElementBits for a long left shift.
6146static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6147 assert(VT.isVector() && "vector shift count is not a vector type");
6148 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6149 if (!getVShiftImm(Op, ElementBits, Cnt))
6150 return false;
6151 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6152}
6153
6154/// isVShiftRImm - Check if this is a valid build_vector for the immediate
6155/// operand of a vector shift right operation. For a shift opcode, the value
6156/// is positive, but for an intrinsic the value count must be negative. The
6157/// absolute value must be in the range:
6158/// 1 <= |Value| <= ElementBits for a right shift; or
6159/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
6160static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
6161 int64_t &Cnt) {
6162 assert(VT.isVector() && "vector shift count is not a vector type");
6163 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6164 if (!getVShiftImm(Op, ElementBits, Cnt))
6165 return false;
6166 if (isIntrinsic)
6167 Cnt = -Cnt;
6168 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6169}
6170
6171SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
6172 SelectionDAG &DAG) const {
6173 EVT VT = Op.getValueType();
6174 SDLoc DL(Op);
6175 int64_t Cnt;
6176
6177 if (!Op.getOperand(1).getValueType().isVector())
6178 return Op;
6179 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6180
6181 switch (Op.getOpcode()) {
6182 default:
6183 llvm_unreachable("unexpected shift opcode");
6184
6185 case ISD::SHL:
6186 if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
6187 return DAG.getNode(AArch64ISD::VSHL, SDLoc(Op), VT, Op.getOperand(0),
6188 DAG.getConstant(Cnt, MVT::i32));
6189 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6190 DAG.getConstant(Intrinsic::aarch64_neon_ushl, MVT::i32),
6191 Op.getOperand(0), Op.getOperand(1));
6192 case ISD::SRA:
6193 case ISD::SRL:
6194 // Right shift immediate
6195 if (isVShiftRImm(Op.getOperand(1), VT, false, false, Cnt) &&
6196 Cnt < EltSize) {
6197 unsigned Opc =
6198 (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
6199 return DAG.getNode(Opc, SDLoc(Op), VT, Op.getOperand(0),
6200 DAG.getConstant(Cnt, MVT::i32));
6201 }
6202
6203 // Right shift register. Note, there is not a shift right register
6204 // instruction, but the shift left register instruction takes a signed
6205 // value, where negative numbers specify a right shift.
6206 unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
6207 : Intrinsic::aarch64_neon_ushl;
6208 // negate the shift amount
6209 SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
6210 SDValue NegShiftLeft =
6211 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6212 DAG.getConstant(Opc, MVT::i32), Op.getOperand(0), NegShift);
6213 return NegShiftLeft;
6214 }
6215
6216 return SDValue();
6217}
6218
6219static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
6220 AArch64CC::CondCode CC, bool NoNans, EVT VT,
6221 SDLoc dl, SelectionDAG &DAG) {
6222 EVT SrcVT = LHS.getValueType();
Tim Northover45aa89c2015-02-08 00:50:47 +00006223 assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
6224 "function only supposed to emit natural comparisons");
Tim Northover3b0846e2014-05-24 12:50:23 +00006225
6226 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
6227 APInt CnstBits(VT.getSizeInBits(), 0);
6228 APInt UndefBits(VT.getSizeInBits(), 0);
6229 bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
6230 bool IsZero = IsCnst && (CnstBits == 0);
6231
6232 if (SrcVT.getVectorElementType().isFloatingPoint()) {
6233 switch (CC) {
6234 default:
6235 return SDValue();
6236 case AArch64CC::NE: {
6237 SDValue Fcmeq;
6238 if (IsZero)
6239 Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6240 else
6241 Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6242 return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
6243 }
6244 case AArch64CC::EQ:
6245 if (IsZero)
6246 return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6247 return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6248 case AArch64CC::GE:
6249 if (IsZero)
6250 return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
6251 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
6252 case AArch64CC::GT:
6253 if (IsZero)
6254 return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
6255 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
6256 case AArch64CC::LS:
6257 if (IsZero)
6258 return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
6259 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
6260 case AArch64CC::LT:
6261 if (!NoNans)
6262 return SDValue();
6263 // If we ignore NaNs then we can use to the MI implementation.
6264 // Fallthrough.
6265 case AArch64CC::MI:
6266 if (IsZero)
6267 return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
6268 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
6269 }
6270 }
6271
6272 switch (CC) {
6273 default:
6274 return SDValue();
6275 case AArch64CC::NE: {
6276 SDValue Cmeq;
6277 if (IsZero)
6278 Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6279 else
6280 Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6281 return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
6282 }
6283 case AArch64CC::EQ:
6284 if (IsZero)
6285 return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6286 return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6287 case AArch64CC::GE:
6288 if (IsZero)
6289 return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
6290 return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
6291 case AArch64CC::GT:
6292 if (IsZero)
6293 return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
6294 return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
6295 case AArch64CC::LE:
6296 if (IsZero)
6297 return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
6298 return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
6299 case AArch64CC::LS:
6300 return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
6301 case AArch64CC::LO:
6302 return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
6303 case AArch64CC::LT:
6304 if (IsZero)
6305 return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
6306 return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
6307 case AArch64CC::HI:
6308 return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
6309 case AArch64CC::HS:
6310 return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
6311 }
6312}
6313
6314SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
6315 SelectionDAG &DAG) const {
6316 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6317 SDValue LHS = Op.getOperand(0);
6318 SDValue RHS = Op.getOperand(1);
Tim Northover45aa89c2015-02-08 00:50:47 +00006319 EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
Tim Northover3b0846e2014-05-24 12:50:23 +00006320 SDLoc dl(Op);
6321
6322 if (LHS.getValueType().getVectorElementType().isInteger()) {
6323 assert(LHS.getValueType() == RHS.getValueType());
6324 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
Tim Northover45aa89c2015-02-08 00:50:47 +00006325 SDValue Cmp =
6326 EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
6327 return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
Tim Northover3b0846e2014-05-24 12:50:23 +00006328 }
6329
6330 assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
6331 LHS.getValueType().getVectorElementType() == MVT::f64);
6332
6333 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
6334 // clean. Some of them require two branches to implement.
6335 AArch64CC::CondCode CC1, CC2;
6336 bool ShouldInvert;
6337 changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
6338
6339 bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
6340 SDValue Cmp =
Tim Northover45aa89c2015-02-08 00:50:47 +00006341 EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00006342 if (!Cmp.getNode())
6343 return SDValue();
6344
6345 if (CC2 != AArch64CC::AL) {
6346 SDValue Cmp2 =
Tim Northover45aa89c2015-02-08 00:50:47 +00006347 EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00006348 if (!Cmp2.getNode())
6349 return SDValue();
6350
Tim Northover45aa89c2015-02-08 00:50:47 +00006351 Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
Tim Northover3b0846e2014-05-24 12:50:23 +00006352 }
6353
Tim Northover45aa89c2015-02-08 00:50:47 +00006354 Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
6355
Tim Northover3b0846e2014-05-24 12:50:23 +00006356 if (ShouldInvert)
6357 return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
6358
6359 return Cmp;
6360}
6361
6362/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
6363/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
6364/// specified in the intrinsic calls.
6365bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
6366 const CallInst &I,
6367 unsigned Intrinsic) const {
6368 switch (Intrinsic) {
6369 case Intrinsic::aarch64_neon_ld2:
6370 case Intrinsic::aarch64_neon_ld3:
6371 case Intrinsic::aarch64_neon_ld4:
6372 case Intrinsic::aarch64_neon_ld1x2:
6373 case Intrinsic::aarch64_neon_ld1x3:
6374 case Intrinsic::aarch64_neon_ld1x4:
6375 case Intrinsic::aarch64_neon_ld2lane:
6376 case Intrinsic::aarch64_neon_ld3lane:
6377 case Intrinsic::aarch64_neon_ld4lane:
6378 case Intrinsic::aarch64_neon_ld2r:
6379 case Intrinsic::aarch64_neon_ld3r:
6380 case Intrinsic::aarch64_neon_ld4r: {
6381 Info.opc = ISD::INTRINSIC_W_CHAIN;
6382 // Conservatively set memVT to the entire set of vectors loaded.
6383 uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
6384 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6385 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6386 Info.offset = 0;
6387 Info.align = 0;
6388 Info.vol = false; // volatile loads with NEON intrinsics not supported
6389 Info.readMem = true;
6390 Info.writeMem = false;
6391 return true;
6392 }
6393 case Intrinsic::aarch64_neon_st2:
6394 case Intrinsic::aarch64_neon_st3:
6395 case Intrinsic::aarch64_neon_st4:
6396 case Intrinsic::aarch64_neon_st1x2:
6397 case Intrinsic::aarch64_neon_st1x3:
6398 case Intrinsic::aarch64_neon_st1x4:
6399 case Intrinsic::aarch64_neon_st2lane:
6400 case Intrinsic::aarch64_neon_st3lane:
6401 case Intrinsic::aarch64_neon_st4lane: {
6402 Info.opc = ISD::INTRINSIC_VOID;
6403 // Conservatively set memVT to the entire set of vectors stored.
6404 unsigned NumElts = 0;
6405 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
6406 Type *ArgTy = I.getArgOperand(ArgI)->getType();
6407 if (!ArgTy->isVectorTy())
6408 break;
6409 NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
6410 }
6411 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6412 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6413 Info.offset = 0;
6414 Info.align = 0;
6415 Info.vol = false; // volatile stores with NEON intrinsics not supported
6416 Info.readMem = false;
6417 Info.writeMem = true;
6418 return true;
6419 }
6420 case Intrinsic::aarch64_ldaxr:
6421 case Intrinsic::aarch64_ldxr: {
6422 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
6423 Info.opc = ISD::INTRINSIC_W_CHAIN;
6424 Info.memVT = MVT::getVT(PtrTy->getElementType());
6425 Info.ptrVal = I.getArgOperand(0);
6426 Info.offset = 0;
6427 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
6428 Info.vol = true;
6429 Info.readMem = true;
6430 Info.writeMem = false;
6431 return true;
6432 }
6433 case Intrinsic::aarch64_stlxr:
6434 case Intrinsic::aarch64_stxr: {
6435 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
6436 Info.opc = ISD::INTRINSIC_W_CHAIN;
6437 Info.memVT = MVT::getVT(PtrTy->getElementType());
6438 Info.ptrVal = I.getArgOperand(1);
6439 Info.offset = 0;
6440 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
6441 Info.vol = true;
6442 Info.readMem = false;
6443 Info.writeMem = true;
6444 return true;
6445 }
6446 case Intrinsic::aarch64_ldaxp:
6447 case Intrinsic::aarch64_ldxp: {
6448 Info.opc = ISD::INTRINSIC_W_CHAIN;
6449 Info.memVT = MVT::i128;
6450 Info.ptrVal = I.getArgOperand(0);
6451 Info.offset = 0;
6452 Info.align = 16;
6453 Info.vol = true;
6454 Info.readMem = true;
6455 Info.writeMem = false;
6456 return true;
6457 }
6458 case Intrinsic::aarch64_stlxp:
6459 case Intrinsic::aarch64_stxp: {
6460 Info.opc = ISD::INTRINSIC_W_CHAIN;
6461 Info.memVT = MVT::i128;
6462 Info.ptrVal = I.getArgOperand(2);
6463 Info.offset = 0;
6464 Info.align = 16;
6465 Info.vol = true;
6466 Info.readMem = false;
6467 Info.writeMem = true;
6468 return true;
6469 }
6470 default:
6471 break;
6472 }
6473
6474 return false;
6475}
6476
6477// Truncations from 64-bit GPR to 32-bit GPR is free.
6478bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
6479 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6480 return false;
6481 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6482 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006483 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006484}
6485bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006486 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006487 return false;
6488 unsigned NumBits1 = VT1.getSizeInBits();
6489 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006490 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006491}
6492
Chad Rosier54390052015-02-23 19:15:16 +00006493/// Check if it is profitable to hoist instruction in then/else to if.
6494/// Not profitable if I and it's user can form a FMA instruction
6495/// because we prefer FMSUB/FMADD.
6496bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
6497 if (I->getOpcode() != Instruction::FMul)
6498 return true;
6499
6500 if (I->getNumUses() != 1)
6501 return true;
6502
6503 Instruction *User = I->user_back();
6504
6505 if (User &&
6506 !(User->getOpcode() == Instruction::FSub ||
6507 User->getOpcode() == Instruction::FAdd))
6508 return true;
6509
6510 const TargetOptions &Options = getTargetMachine().Options;
6511 EVT VT = getValueType(User->getOperand(0)->getType());
6512
6513 if (isFMAFasterThanFMulAndFAdd(VT) &&
6514 isOperationLegalOrCustom(ISD::FMA, VT) &&
6515 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath))
6516 return false;
6517
6518 return true;
6519}
6520
Tim Northover3b0846e2014-05-24 12:50:23 +00006521// All 32-bit GPR operations implicitly zero the high-half of the corresponding
6522// 64-bit GPR.
6523bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
6524 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6525 return false;
6526 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6527 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006528 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006529}
6530bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006531 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006532 return false;
6533 unsigned NumBits1 = VT1.getSizeInBits();
6534 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006535 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006536}
6537
6538bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
6539 EVT VT1 = Val.getValueType();
6540 if (isZExtFree(VT1, VT2)) {
6541 return true;
6542 }
6543
6544 if (Val.getOpcode() != ISD::LOAD)
6545 return false;
6546
6547 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
Hao Liu40914502014-05-29 09:19:07 +00006548 return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
6549 VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
6550 VT1.getSizeInBits() <= 32);
Tim Northover3b0846e2014-05-24 12:50:23 +00006551}
6552
6553bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType,
6554 unsigned &RequiredAligment) const {
6555 if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
6556 return false;
6557 // Cyclone supports unaligned accesses.
6558 RequiredAligment = 0;
6559 unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
6560 return NumBits == 32 || NumBits == 64;
6561}
6562
6563bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
6564 unsigned &RequiredAligment) const {
6565 if (!LoadedType.isSimple() ||
6566 (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
6567 return false;
6568 // Cyclone supports unaligned accesses.
6569 RequiredAligment = 0;
6570 unsigned NumBits = LoadedType.getSizeInBits();
6571 return NumBits == 32 || NumBits == 64;
6572}
6573
6574static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
6575 unsigned AlignCheck) {
6576 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
6577 (DstAlign == 0 || DstAlign % AlignCheck == 0));
6578}
6579
6580EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
6581 unsigned SrcAlign, bool IsMemset,
6582 bool ZeroMemset,
6583 bool MemcpyStrSrc,
6584 MachineFunction &MF) const {
6585 // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
6586 // instruction to materialize the v2i64 zero and one store (with restrictive
6587 // addressing mode). Just do two i64 store of zero-registers.
6588 bool Fast;
6589 const Function *F = MF.getFunction();
6590 if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
Duncan P. N. Exon Smith003bb7d2015-02-14 02:09:06 +00006591 !F->hasFnAttribute(Attribute::NoImplicitFloat) &&
Tim Northover3b0846e2014-05-24 12:50:23 +00006592 (memOpAlign(SrcAlign, DstAlign, 16) ||
Matt Arsenault6f2a5262014-07-27 17:46:40 +00006593 (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast)))
Tim Northover3b0846e2014-05-24 12:50:23 +00006594 return MVT::f128;
6595
6596 return Size >= 8 ? MVT::i64 : MVT::i32;
6597}
6598
6599// 12-bit optionally shifted immediates are legal for adds.
6600bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
6601 if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0))
6602 return true;
6603 return false;
6604}
6605
6606// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
6607// immediates is the same as for an add or a sub.
6608bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
6609 if (Immed < 0)
6610 Immed *= -1;
6611 return isLegalAddImmediate(Immed);
6612}
6613
6614/// isLegalAddressingMode - Return true if the addressing mode represented
6615/// by AM is legal for this target, for a load/store of the specified type.
6616bool AArch64TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6617 Type *Ty) const {
6618 // AArch64 has five basic addressing modes:
6619 // reg
6620 // reg + 9-bit signed offset
6621 // reg + SIZE_IN_BYTES * 12-bit unsigned offset
6622 // reg1 + reg2
6623 // reg + SIZE_IN_BYTES * reg
6624
6625 // No global is ever allowed as a base.
6626 if (AM.BaseGV)
6627 return false;
6628
6629 // No reg+reg+imm addressing.
6630 if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
6631 return false;
6632
6633 // check reg + imm case:
6634 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
6635 uint64_t NumBytes = 0;
6636 if (Ty->isSized()) {
6637 uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty);
6638 NumBytes = NumBits / 8;
6639 if (!isPowerOf2_64(NumBits))
6640 NumBytes = 0;
6641 }
6642
6643 if (!AM.Scale) {
6644 int64_t Offset = AM.BaseOffs;
6645
6646 // 9-bit signed offset
6647 if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
6648 return true;
6649
6650 // 12-bit unsigned offset
6651 unsigned shift = Log2_64(NumBytes);
6652 if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
6653 // Must be a multiple of NumBytes (NumBytes is a power of 2)
6654 (Offset >> shift) << shift == Offset)
6655 return true;
6656 return false;
6657 }
6658
6659 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
6660
6661 if (!AM.Scale || AM.Scale == 1 ||
6662 (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
6663 return true;
6664 return false;
6665}
6666
6667int AArch64TargetLowering::getScalingFactorCost(const AddrMode &AM,
6668 Type *Ty) const {
6669 // Scaling factors are not free at all.
6670 // Operands | Rt Latency
6671 // -------------------------------------------
6672 // Rt, [Xn, Xm] | 4
6673 // -------------------------------------------
6674 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
6675 // Rt, [Xn, Wm, <extend> #imm] |
6676 if (isLegalAddressingMode(AM, Ty))
6677 // Scale represents reg2 * scale, thus account for 1 if
6678 // it is not equal to 0 or 1.
6679 return AM.Scale != 0 && AM.Scale != 1;
6680 return -1;
6681}
6682
6683bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
6684 VT = VT.getScalarType();
6685
6686 if (!VT.isSimple())
6687 return false;
6688
6689 switch (VT.getSimpleVT().SimpleTy) {
6690 case MVT::f32:
6691 case MVT::f64:
6692 return true;
6693 default:
6694 break;
6695 }
6696
6697 return false;
6698}
6699
6700const MCPhysReg *
6701AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
6702 // LR is a callee-save register, but we must treat it as clobbered by any call
6703 // site. Hence we include LR in the scratch registers, which are in turn added
6704 // as implicit-defs for stackmaps and patchpoints.
6705 static const MCPhysReg ScratchRegs[] = {
6706 AArch64::X16, AArch64::X17, AArch64::LR, 0
6707 };
6708 return ScratchRegs;
6709}
6710
6711bool
6712AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
6713 EVT VT = N->getValueType(0);
6714 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
6715 // it with shift to let it be lowered to UBFX.
6716 if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
6717 isa<ConstantSDNode>(N->getOperand(1))) {
6718 uint64_t TruncMask = N->getConstantOperandVal(1);
6719 if (isMask_64(TruncMask) &&
6720 N->getOperand(0).getOpcode() == ISD::SRL &&
6721 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
6722 return false;
6723 }
6724 return true;
6725}
6726
6727bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
6728 Type *Ty) const {
6729 assert(Ty->isIntegerTy());
6730
6731 unsigned BitSize = Ty->getPrimitiveSizeInBits();
6732 if (BitSize == 0)
6733 return false;
6734
6735 int64_t Val = Imm.getSExtValue();
6736 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
6737 return true;
6738
6739 if ((int64_t)Val < 0)
6740 Val = ~Val;
6741 if (BitSize == 32)
6742 Val &= (1LL << 32) - 1;
6743
6744 unsigned LZ = countLeadingZeros((uint64_t)Val);
6745 unsigned Shift = (63 - LZ) / 16;
6746 // MOVZ is free so return true for one or fewer MOVK.
6747 return (Shift < 3) ? true : false;
6748}
6749
6750// Generate SUBS and CSEL for integer abs.
6751static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
6752 EVT VT = N->getValueType(0);
6753
6754 SDValue N0 = N->getOperand(0);
6755 SDValue N1 = N->getOperand(1);
6756 SDLoc DL(N);
6757
6758 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
6759 // and change it to SUB and CSEL.
6760 if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
6761 N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
6762 N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
6763 if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
6764 if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
6765 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
6766 N0.getOperand(0));
6767 // Generate SUBS & CSEL.
6768 SDValue Cmp =
6769 DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
6770 N0.getOperand(0), DAG.getConstant(0, VT));
6771 return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
6772 DAG.getConstant(AArch64CC::PL, MVT::i32),
6773 SDValue(Cmp.getNode(), 1));
6774 }
6775 return SDValue();
6776}
6777
6778// performXorCombine - Attempts to handle integer ABS.
6779static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
6780 TargetLowering::DAGCombinerInfo &DCI,
6781 const AArch64Subtarget *Subtarget) {
6782 if (DCI.isBeforeLegalizeOps())
6783 return SDValue();
6784
6785 return performIntegerAbsCombine(N, DAG);
6786}
6787
Chad Rosier17020f92014-07-23 14:57:52 +00006788SDValue
6789AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
6790 SelectionDAG &DAG,
6791 std::vector<SDNode *> *Created) const {
6792 // fold (sdiv X, pow2)
6793 EVT VT = N->getValueType(0);
6794 if ((VT != MVT::i32 && VT != MVT::i64) ||
6795 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
6796 return SDValue();
6797
6798 SDLoc DL(N);
6799 SDValue N0 = N->getOperand(0);
6800 unsigned Lg2 = Divisor.countTrailingZeros();
6801 SDValue Zero = DAG.getConstant(0, VT);
Juergen Ributzka03a06112014-10-16 16:41:15 +00006802 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, VT);
Chad Rosier17020f92014-07-23 14:57:52 +00006803
6804 // Add (N0 < 0) ? Pow2 - 1 : 0;
6805 SDValue CCVal;
6806 SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
6807 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
6808 SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
6809
6810 if (Created) {
6811 Created->push_back(Cmp.getNode());
6812 Created->push_back(Add.getNode());
6813 Created->push_back(CSel.getNode());
6814 }
6815
6816 // Divide by pow2.
6817 SDValue SRA =
6818 DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, MVT::i64));
6819
6820 // If we're dividing by a positive value, we're done. Otherwise, we must
6821 // negate the result.
6822 if (Divisor.isNonNegative())
6823 return SRA;
6824
6825 if (Created)
6826 Created->push_back(SRA.getNode());
6827 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT), SRA);
6828}
6829
Tim Northover3b0846e2014-05-24 12:50:23 +00006830static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
6831 TargetLowering::DAGCombinerInfo &DCI,
6832 const AArch64Subtarget *Subtarget) {
6833 if (DCI.isBeforeLegalizeOps())
6834 return SDValue();
6835
6836 // Multiplication of a power of two plus/minus one can be done more
6837 // cheaply as as shift+add/sub. For now, this is true unilaterally. If
6838 // future CPUs have a cheaper MADD instruction, this may need to be
6839 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
6840 // 64-bit is 5 cycles, so this is always a win.
6841 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6842 APInt Value = C->getAPIntValue();
6843 EVT VT = N->getValueType(0);
Chad Rosiere6b87612014-06-30 14:51:14 +00006844 if (Value.isNonNegative()) {
6845 // (mul x, 2^N + 1) => (add (shl x, N), x)
6846 APInt VM1 = Value - 1;
6847 if (VM1.isPowerOf2()) {
6848 SDValue ShiftedVal =
6849 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6850 DAG.getConstant(VM1.logBase2(), MVT::i64));
6851 return DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal,
6852 N->getOperand(0));
6853 }
6854 // (mul x, 2^N - 1) => (sub (shl x, N), x)
6855 APInt VP1 = Value + 1;
6856 if (VP1.isPowerOf2()) {
6857 SDValue ShiftedVal =
6858 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6859 DAG.getConstant(VP1.logBase2(), MVT::i64));
6860 return DAG.getNode(ISD::SUB, SDLoc(N), VT, ShiftedVal,
6861 N->getOperand(0));
6862 }
6863 } else {
Chad Rosier8e38f302015-03-03 17:31:01 +00006864 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
6865 APInt VNP1 = -Value + 1;
6866 if (VNP1.isPowerOf2()) {
6867 SDValue ShiftedVal =
6868 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6869 DAG.getConstant(VNP1.logBase2(), MVT::i64));
6870 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N->getOperand(0),
6871 ShiftedVal);
6872 }
Chad Rosiere6b87612014-06-30 14:51:14 +00006873 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
6874 APInt VNM1 = -Value - 1;
6875 if (VNM1.isPowerOf2()) {
6876 SDValue ShiftedVal =
6877 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6878 DAG.getConstant(VNM1.logBase2(), MVT::i64));
6879 SDValue Add =
6880 DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal, N->getOperand(0));
6881 return DAG.getNode(ISD::SUB, SDLoc(N), VT, DAG.getConstant(0, VT), Add);
6882 }
Chad Rosierd96e9f12014-06-09 01:25:51 +00006883 }
Tim Northover3b0846e2014-05-24 12:50:23 +00006884 }
6885 return SDValue();
6886}
6887
Jim Grosbachf7502c42014-07-18 00:40:52 +00006888static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
6889 SelectionDAG &DAG) {
6890 // Take advantage of vector comparisons producing 0 or -1 in each lane to
6891 // optimize away operation when it's from a constant.
6892 //
6893 // The general transformation is:
6894 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
6895 // AND(VECTOR_CMP(x,y), constant2)
6896 // constant2 = UNARYOP(constant)
6897
Jim Grosbach8f6f0852014-07-23 20:41:38 +00006898 // Early exit if this isn't a vector operation, the operand of the
6899 // unary operation isn't a bitwise AND, or if the sizes of the operations
6900 // aren't the same.
Jim Grosbachf7502c42014-07-18 00:40:52 +00006901 EVT VT = N->getValueType(0);
6902 if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
Jim Grosbach8f6f0852014-07-23 20:41:38 +00006903 N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
6904 VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
Jim Grosbachf7502c42014-07-18 00:40:52 +00006905 return SDValue();
6906
Jim Grosbach724e4382014-07-23 20:41:43 +00006907 // Now check that the other operand of the AND is a constant. We could
Jim Grosbachf7502c42014-07-18 00:40:52 +00006908 // make the transformation for non-constant splats as well, but it's unclear
6909 // that would be a benefit as it would not eliminate any operations, just
6910 // perform one more step in scalar code before moving to the vector unit.
6911 if (BuildVectorSDNode *BV =
6912 dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
Jim Grosbach724e4382014-07-23 20:41:43 +00006913 // Bail out if the vector isn't a constant.
6914 if (!BV->isConstant())
Jim Grosbachf7502c42014-07-18 00:40:52 +00006915 return SDValue();
6916
6917 // Everything checks out. Build up the new and improved node.
6918 SDLoc DL(N);
6919 EVT IntVT = BV->getValueType(0);
6920 // Create a new constant of the appropriate type for the transformed
6921 // DAG.
6922 SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
6923 // The AND node needs bitcasts to/from an integer vector type around it.
6924 SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
6925 SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
6926 N->getOperand(0)->getOperand(0), MaskConst);
6927 SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
6928 return Res;
6929 }
6930
6931 return SDValue();
6932}
6933
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00006934static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
6935 const AArch64Subtarget *Subtarget) {
Jim Grosbachf7502c42014-07-18 00:40:52 +00006936 // First try to optimize away the conversion when it's conditionally from
6937 // a constant. Vectors only.
6938 SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG);
6939 if (Res != SDValue())
6940 return Res;
6941
Tim Northover3b0846e2014-05-24 12:50:23 +00006942 EVT VT = N->getValueType(0);
6943 if (VT != MVT::f32 && VT != MVT::f64)
6944 return SDValue();
Jim Grosbachf7502c42014-07-18 00:40:52 +00006945
Tim Northover3b0846e2014-05-24 12:50:23 +00006946 // Only optimize when the source and destination types have the same width.
6947 if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
6948 return SDValue();
6949
6950 // If the result of an integer load is only used by an integer-to-float
6951 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
6952 // This eliminates an "integer-to-vector-move UOP and improve throughput.
6953 SDValue N0 = N->getOperand(0);
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00006954 if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
Tim Northover3b0846e2014-05-24 12:50:23 +00006955 // Do not change the width of a volatile load.
6956 !cast<LoadSDNode>(N0)->isVolatile()) {
6957 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6958 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
6959 LN0->getPointerInfo(), LN0->isVolatile(),
6960 LN0->isNonTemporal(), LN0->isInvariant(),
6961 LN0->getAlignment());
6962
6963 // Make sure successors of the original load stay after it by updating them
6964 // to use the new Chain.
6965 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
6966
6967 unsigned Opcode =
6968 (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
6969 return DAG.getNode(Opcode, SDLoc(N), VT, Load);
6970 }
6971
6972 return SDValue();
6973}
6974
6975/// An EXTR instruction is made up of two shifts, ORed together. This helper
6976/// searches for and classifies those shifts.
6977static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
6978 bool &FromHi) {
6979 if (N.getOpcode() == ISD::SHL)
6980 FromHi = false;
6981 else if (N.getOpcode() == ISD::SRL)
6982 FromHi = true;
6983 else
6984 return false;
6985
6986 if (!isa<ConstantSDNode>(N.getOperand(1)))
6987 return false;
6988
6989 ShiftAmount = N->getConstantOperandVal(1);
6990 Src = N->getOperand(0);
6991 return true;
6992}
6993
6994/// EXTR instruction extracts a contiguous chunk of bits from two existing
6995/// registers viewed as a high/low pair. This function looks for the pattern:
6996/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
6997/// EXTR. Can't quite be done in TableGen because the two immediates aren't
6998/// independent.
6999static SDValue tryCombineToEXTR(SDNode *N,
7000 TargetLowering::DAGCombinerInfo &DCI) {
7001 SelectionDAG &DAG = DCI.DAG;
7002 SDLoc DL(N);
7003 EVT VT = N->getValueType(0);
7004
7005 assert(N->getOpcode() == ISD::OR && "Unexpected root");
7006
7007 if (VT != MVT::i32 && VT != MVT::i64)
7008 return SDValue();
7009
7010 SDValue LHS;
7011 uint32_t ShiftLHS = 0;
7012 bool LHSFromHi = 0;
7013 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
7014 return SDValue();
7015
7016 SDValue RHS;
7017 uint32_t ShiftRHS = 0;
7018 bool RHSFromHi = 0;
7019 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
7020 return SDValue();
7021
7022 // If they're both trying to come from the high part of the register, they're
7023 // not really an EXTR.
7024 if (LHSFromHi == RHSFromHi)
7025 return SDValue();
7026
7027 if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
7028 return SDValue();
7029
7030 if (LHSFromHi) {
7031 std::swap(LHS, RHS);
7032 std::swap(ShiftLHS, ShiftRHS);
7033 }
7034
7035 return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
7036 DAG.getConstant(ShiftRHS, MVT::i64));
7037}
7038
7039static SDValue tryCombineToBSL(SDNode *N,
7040 TargetLowering::DAGCombinerInfo &DCI) {
7041 EVT VT = N->getValueType(0);
7042 SelectionDAG &DAG = DCI.DAG;
7043 SDLoc DL(N);
7044
7045 if (!VT.isVector())
7046 return SDValue();
7047
7048 SDValue N0 = N->getOperand(0);
7049 if (N0.getOpcode() != ISD::AND)
7050 return SDValue();
7051
7052 SDValue N1 = N->getOperand(1);
7053 if (N1.getOpcode() != ISD::AND)
7054 return SDValue();
7055
7056 // We only have to look for constant vectors here since the general, variable
7057 // case can be handled in TableGen.
7058 unsigned Bits = VT.getVectorElementType().getSizeInBits();
7059 uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
7060 for (int i = 1; i >= 0; --i)
7061 for (int j = 1; j >= 0; --j) {
7062 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
7063 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
7064 if (!BVN0 || !BVN1)
7065 continue;
7066
7067 bool FoundMatch = true;
7068 for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
7069 ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
7070 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
7071 if (!CN0 || !CN1 ||
7072 CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
7073 FoundMatch = false;
7074 break;
7075 }
7076 }
7077
7078 if (FoundMatch)
7079 return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
7080 N0->getOperand(1 - i), N1->getOperand(1 - j));
7081 }
7082
7083 return SDValue();
7084}
7085
7086static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
7087 const AArch64Subtarget *Subtarget) {
7088 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
7089 if (!EnableAArch64ExtrGeneration)
7090 return SDValue();
7091 SelectionDAG &DAG = DCI.DAG;
7092 EVT VT = N->getValueType(0);
7093
7094 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7095 return SDValue();
7096
7097 SDValue Res = tryCombineToEXTR(N, DCI);
7098 if (Res.getNode())
7099 return Res;
7100
7101 Res = tryCombineToBSL(N, DCI);
7102 if (Res.getNode())
7103 return Res;
7104
7105 return SDValue();
7106}
7107
7108static SDValue performBitcastCombine(SDNode *N,
7109 TargetLowering::DAGCombinerInfo &DCI,
7110 SelectionDAG &DAG) {
7111 // Wait 'til after everything is legalized to try this. That way we have
7112 // legal vector types and such.
7113 if (DCI.isBeforeLegalizeOps())
7114 return SDValue();
7115
7116 // Remove extraneous bitcasts around an extract_subvector.
7117 // For example,
7118 // (v4i16 (bitconvert
7119 // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
7120 // becomes
7121 // (extract_subvector ((v8i16 ...), (i64 4)))
7122
7123 // Only interested in 64-bit vectors as the ultimate result.
7124 EVT VT = N->getValueType(0);
7125 if (!VT.isVector())
7126 return SDValue();
7127 if (VT.getSimpleVT().getSizeInBits() != 64)
7128 return SDValue();
7129 // Is the operand an extract_subvector starting at the beginning or halfway
7130 // point of the vector? A low half may also come through as an
7131 // EXTRACT_SUBREG, so look for that, too.
7132 SDValue Op0 = N->getOperand(0);
7133 if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
7134 !(Op0->isMachineOpcode() &&
7135 Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
7136 return SDValue();
7137 uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
7138 if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
7139 if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
7140 return SDValue();
7141 } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
7142 if (idx != AArch64::dsub)
7143 return SDValue();
7144 // The dsub reference is equivalent to a lane zero subvector reference.
7145 idx = 0;
7146 }
7147 // Look through the bitcast of the input to the extract.
7148 if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
7149 return SDValue();
7150 SDValue Source = Op0->getOperand(0)->getOperand(0);
7151 // If the source type has twice the number of elements as our destination
7152 // type, we know this is an extract of the high or low half of the vector.
7153 EVT SVT = Source->getValueType(0);
7154 if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
7155 return SDValue();
7156
7157 DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
7158
7159 // Create the simplified form to just extract the low or high half of the
7160 // vector directly rather than bothering with the bitcasts.
7161 SDLoc dl(N);
7162 unsigned NumElements = VT.getVectorNumElements();
7163 if (idx) {
7164 SDValue HalfIdx = DAG.getConstant(NumElements, MVT::i64);
7165 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
7166 } else {
7167 SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, MVT::i32);
7168 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
7169 Source, SubReg),
7170 0);
7171 }
7172}
7173
7174static SDValue performConcatVectorsCombine(SDNode *N,
7175 TargetLowering::DAGCombinerInfo &DCI,
7176 SelectionDAG &DAG) {
7177 // Wait 'til after everything is legalized to try this. That way we have
7178 // legal vector types and such.
7179 if (DCI.isBeforeLegalizeOps())
7180 return SDValue();
7181
7182 SDLoc dl(N);
7183 EVT VT = N->getValueType(0);
7184
7185 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
7186 // splat. The indexed instructions are going to be expecting a DUPLANE64, so
7187 // canonicalise to that.
7188 if (N->getOperand(0) == N->getOperand(1) && VT.getVectorNumElements() == 2) {
7189 assert(VT.getVectorElementType().getSizeInBits() == 64);
7190 return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT,
7191 WidenVector(N->getOperand(0), DAG),
7192 DAG.getConstant(0, MVT::i64));
7193 }
7194
7195 // Canonicalise concat_vectors so that the right-hand vector has as few
7196 // bit-casts as possible before its real operation. The primary matching
7197 // destination for these operations will be the narrowing "2" instructions,
7198 // which depend on the operation being performed on this right-hand vector.
7199 // For example,
7200 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
7201 // becomes
7202 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
7203
7204 SDValue Op1 = N->getOperand(1);
7205 if (Op1->getOpcode() != ISD::BITCAST)
7206 return SDValue();
7207 SDValue RHS = Op1->getOperand(0);
7208 MVT RHSTy = RHS.getValueType().getSimpleVT();
7209 // If the RHS is not a vector, this is not the pattern we're looking for.
7210 if (!RHSTy.isVector())
7211 return SDValue();
7212
7213 DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
7214
7215 MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
7216 RHSTy.getVectorNumElements() * 2);
7217 return DAG.getNode(
7218 ISD::BITCAST, dl, VT,
7219 DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
7220 DAG.getNode(ISD::BITCAST, dl, RHSTy, N->getOperand(0)), RHS));
7221}
7222
7223static SDValue tryCombineFixedPointConvert(SDNode *N,
7224 TargetLowering::DAGCombinerInfo &DCI,
7225 SelectionDAG &DAG) {
7226 // Wait 'til after everything is legalized to try this. That way we have
7227 // legal vector types and such.
7228 if (DCI.isBeforeLegalizeOps())
7229 return SDValue();
7230 // Transform a scalar conversion of a value from a lane extract into a
7231 // lane extract of a vector conversion. E.g., from foo1 to foo2:
7232 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
7233 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
7234 //
7235 // The second form interacts better with instruction selection and the
7236 // register allocator to avoid cross-class register copies that aren't
7237 // coalescable due to a lane reference.
7238
7239 // Check the operand and see if it originates from a lane extract.
7240 SDValue Op1 = N->getOperand(1);
7241 if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7242 // Yep, no additional predication needed. Perform the transform.
7243 SDValue IID = N->getOperand(0);
7244 SDValue Shift = N->getOperand(2);
7245 SDValue Vec = Op1.getOperand(0);
7246 SDValue Lane = Op1.getOperand(1);
7247 EVT ResTy = N->getValueType(0);
7248 EVT VecResTy;
7249 SDLoc DL(N);
7250
7251 // The vector width should be 128 bits by the time we get here, even
7252 // if it started as 64 bits (the extract_vector handling will have
7253 // done so).
7254 assert(Vec.getValueType().getSizeInBits() == 128 &&
7255 "unexpected vector size on extract_vector_elt!");
7256 if (Vec.getValueType() == MVT::v4i32)
7257 VecResTy = MVT::v4f32;
7258 else if (Vec.getValueType() == MVT::v2i64)
7259 VecResTy = MVT::v2f64;
7260 else
Craig Topper2a30d782014-06-18 05:05:13 +00007261 llvm_unreachable("unexpected vector type!");
Tim Northover3b0846e2014-05-24 12:50:23 +00007262
7263 SDValue Convert =
7264 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
7265 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
7266 }
7267 return SDValue();
7268}
7269
7270// AArch64 high-vector "long" operations are formed by performing the non-high
7271// version on an extract_subvector of each operand which gets the high half:
7272//
7273// (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
7274//
7275// However, there are cases which don't have an extract_high explicitly, but
7276// have another operation that can be made compatible with one for free. For
7277// example:
7278//
7279// (dupv64 scalar) --> (extract_high (dup128 scalar))
7280//
7281// This routine does the actual conversion of such DUPs, once outer routines
7282// have determined that everything else is in order.
7283static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
7284 // We can handle most types of duplicate, but the lane ones have an extra
7285 // operand saying *which* lane, so we need to know.
7286 bool IsDUPLANE;
7287 switch (N.getOpcode()) {
7288 case AArch64ISD::DUP:
7289 IsDUPLANE = false;
7290 break;
7291 case AArch64ISD::DUPLANE8:
7292 case AArch64ISD::DUPLANE16:
7293 case AArch64ISD::DUPLANE32:
7294 case AArch64ISD::DUPLANE64:
7295 IsDUPLANE = true;
7296 break;
7297 default:
7298 return SDValue();
7299 }
7300
7301 MVT NarrowTy = N.getSimpleValueType();
7302 if (!NarrowTy.is64BitVector())
7303 return SDValue();
7304
7305 MVT ElementTy = NarrowTy.getVectorElementType();
7306 unsigned NumElems = NarrowTy.getVectorNumElements();
7307 MVT NewDUPVT = MVT::getVectorVT(ElementTy, NumElems * 2);
7308
7309 SDValue NewDUP;
7310 if (IsDUPLANE)
7311 NewDUP = DAG.getNode(N.getOpcode(), SDLoc(N), NewDUPVT, N.getOperand(0),
7312 N.getOperand(1));
7313 else
7314 NewDUP = DAG.getNode(AArch64ISD::DUP, SDLoc(N), NewDUPVT, N.getOperand(0));
7315
7316 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N.getNode()), NarrowTy,
7317 NewDUP, DAG.getConstant(NumElems, MVT::i64));
7318}
7319
7320static bool isEssentiallyExtractSubvector(SDValue N) {
7321 if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
7322 return true;
7323
7324 return N.getOpcode() == ISD::BITCAST &&
7325 N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
7326}
7327
7328/// \brief Helper structure to keep track of ISD::SET_CC operands.
7329struct GenericSetCCInfo {
7330 const SDValue *Opnd0;
7331 const SDValue *Opnd1;
7332 ISD::CondCode CC;
7333};
7334
7335/// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
7336struct AArch64SetCCInfo {
7337 const SDValue *Cmp;
7338 AArch64CC::CondCode CC;
7339};
7340
7341/// \brief Helper structure to keep track of SetCC information.
7342union SetCCInfo {
7343 GenericSetCCInfo Generic;
7344 AArch64SetCCInfo AArch64;
7345};
7346
7347/// \brief Helper structure to be able to read SetCC information. If set to
7348/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
7349/// GenericSetCCInfo.
7350struct SetCCInfoAndKind {
7351 SetCCInfo Info;
7352 bool IsAArch64;
7353};
7354
7355/// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
7356/// an
7357/// AArch64 lowered one.
7358/// \p SetCCInfo is filled accordingly.
7359/// \post SetCCInfo is meanginfull only when this function returns true.
7360/// \return True when Op is a kind of SET_CC operation.
7361static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
7362 // If this is a setcc, this is straight forward.
7363 if (Op.getOpcode() == ISD::SETCC) {
7364 SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
7365 SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
7366 SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7367 SetCCInfo.IsAArch64 = false;
7368 return true;
7369 }
7370 // Otherwise, check if this is a matching csel instruction.
7371 // In other words:
7372 // - csel 1, 0, cc
7373 // - csel 0, 1, !cc
7374 if (Op.getOpcode() != AArch64ISD::CSEL)
7375 return false;
7376 // Set the information about the operands.
7377 // TODO: we want the operands of the Cmp not the csel
7378 SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
7379 SetCCInfo.IsAArch64 = true;
7380 SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
7381 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
7382
7383 // Check that the operands matches the constraints:
7384 // (1) Both operands must be constants.
7385 // (2) One must be 1 and the other must be 0.
7386 ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
7387 ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7388
7389 // Check (1).
7390 if (!TValue || !FValue)
7391 return false;
7392
7393 // Check (2).
7394 if (!TValue->isOne()) {
7395 // Update the comparison when we are interested in !cc.
7396 std::swap(TValue, FValue);
7397 SetCCInfo.Info.AArch64.CC =
7398 AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
7399 }
7400 return TValue->isOne() && FValue->isNullValue();
7401}
7402
7403// Returns true if Op is setcc or zext of setcc.
7404static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
7405 if (isSetCC(Op, Info))
7406 return true;
7407 return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
7408 isSetCC(Op->getOperand(0), Info));
7409}
7410
7411// The folding we want to perform is:
7412// (add x, [zext] (setcc cc ...) )
7413// -->
7414// (csel x, (add x, 1), !cc ...)
7415//
7416// The latter will get matched to a CSINC instruction.
7417static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
7418 assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
7419 SDValue LHS = Op->getOperand(0);
7420 SDValue RHS = Op->getOperand(1);
7421 SetCCInfoAndKind InfoAndKind;
7422
7423 // If neither operand is a SET_CC, give up.
7424 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
7425 std::swap(LHS, RHS);
7426 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
7427 return SDValue();
7428 }
7429
7430 // FIXME: This could be generatized to work for FP comparisons.
7431 EVT CmpVT = InfoAndKind.IsAArch64
7432 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
7433 : InfoAndKind.Info.Generic.Opnd0->getValueType();
7434 if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
7435 return SDValue();
7436
7437 SDValue CCVal;
7438 SDValue Cmp;
7439 SDLoc dl(Op);
7440 if (InfoAndKind.IsAArch64) {
7441 CCVal = DAG.getConstant(
7442 AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), MVT::i32);
7443 Cmp = *InfoAndKind.Info.AArch64.Cmp;
7444 } else
7445 Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
7446 *InfoAndKind.Info.Generic.Opnd1,
7447 ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
7448 CCVal, DAG, dl);
7449
7450 EVT VT = Op->getValueType(0);
7451 LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, VT));
7452 return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
7453}
7454
7455// The basic add/sub long vector instructions have variants with "2" on the end
7456// which act on the high-half of their inputs. They are normally matched by
7457// patterns like:
7458//
7459// (add (zeroext (extract_high LHS)),
7460// (zeroext (extract_high RHS)))
7461// -> uaddl2 vD, vN, vM
7462//
7463// However, if one of the extracts is something like a duplicate, this
7464// instruction can still be used profitably. This function puts the DAG into a
7465// more appropriate form for those patterns to trigger.
7466static SDValue performAddSubLongCombine(SDNode *N,
7467 TargetLowering::DAGCombinerInfo &DCI,
7468 SelectionDAG &DAG) {
7469 if (DCI.isBeforeLegalizeOps())
7470 return SDValue();
7471
7472 MVT VT = N->getSimpleValueType(0);
7473 if (!VT.is128BitVector()) {
7474 if (N->getOpcode() == ISD::ADD)
7475 return performSetccAddFolding(N, DAG);
7476 return SDValue();
7477 }
7478
7479 // Make sure both branches are extended in the same way.
7480 SDValue LHS = N->getOperand(0);
7481 SDValue RHS = N->getOperand(1);
7482 if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
7483 LHS.getOpcode() != ISD::SIGN_EXTEND) ||
7484 LHS.getOpcode() != RHS.getOpcode())
7485 return SDValue();
7486
7487 unsigned ExtType = LHS.getOpcode();
7488
7489 // It's not worth doing if at least one of the inputs isn't already an
7490 // extract, but we don't know which it'll be so we have to try both.
7491 if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
7492 RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
7493 if (!RHS.getNode())
7494 return SDValue();
7495
7496 RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
7497 } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
7498 LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
7499 if (!LHS.getNode())
7500 return SDValue();
7501
7502 LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
7503 }
7504
7505 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
7506}
7507
7508// Massage DAGs which we can use the high-half "long" operations on into
7509// something isel will recognize better. E.g.
7510//
7511// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
7512// (aarch64_neon_umull (extract_high (v2i64 vec)))
7513// (extract_high (v2i64 (dup128 scalar)))))
7514//
7515static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
7516 TargetLowering::DAGCombinerInfo &DCI,
7517 SelectionDAG &DAG) {
7518 if (DCI.isBeforeLegalizeOps())
7519 return SDValue();
7520
7521 SDValue LHS = N->getOperand(1);
7522 SDValue RHS = N->getOperand(2);
7523 assert(LHS.getValueType().is64BitVector() &&
7524 RHS.getValueType().is64BitVector() &&
7525 "unexpected shape for long operation");
7526
7527 // Either node could be a DUP, but it's not worth doing both of them (you'd
7528 // just as well use the non-high version) so look for a corresponding extract
7529 // operation on the other "wing".
7530 if (isEssentiallyExtractSubvector(LHS)) {
7531 RHS = tryExtendDUPToExtractHigh(RHS, DAG);
7532 if (!RHS.getNode())
7533 return SDValue();
7534 } else if (isEssentiallyExtractSubvector(RHS)) {
7535 LHS = tryExtendDUPToExtractHigh(LHS, DAG);
7536 if (!LHS.getNode())
7537 return SDValue();
7538 }
7539
7540 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
7541 N->getOperand(0), LHS, RHS);
7542}
7543
7544static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
7545 MVT ElemTy = N->getSimpleValueType(0).getScalarType();
7546 unsigned ElemBits = ElemTy.getSizeInBits();
7547
7548 int64_t ShiftAmount;
7549 if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
7550 APInt SplatValue, SplatUndef;
7551 unsigned SplatBitSize;
7552 bool HasAnyUndefs;
7553 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
7554 HasAnyUndefs, ElemBits) ||
7555 SplatBitSize != ElemBits)
7556 return SDValue();
7557
7558 ShiftAmount = SplatValue.getSExtValue();
7559 } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
7560 ShiftAmount = CVN->getSExtValue();
7561 } else
7562 return SDValue();
7563
7564 unsigned Opcode;
7565 bool IsRightShift;
7566 switch (IID) {
7567 default:
7568 llvm_unreachable("Unknown shift intrinsic");
7569 case Intrinsic::aarch64_neon_sqshl:
7570 Opcode = AArch64ISD::SQSHL_I;
7571 IsRightShift = false;
7572 break;
7573 case Intrinsic::aarch64_neon_uqshl:
7574 Opcode = AArch64ISD::UQSHL_I;
7575 IsRightShift = false;
7576 break;
7577 case Intrinsic::aarch64_neon_srshl:
7578 Opcode = AArch64ISD::SRSHR_I;
7579 IsRightShift = true;
7580 break;
7581 case Intrinsic::aarch64_neon_urshl:
7582 Opcode = AArch64ISD::URSHR_I;
7583 IsRightShift = true;
7584 break;
7585 case Intrinsic::aarch64_neon_sqshlu:
7586 Opcode = AArch64ISD::SQSHLU_I;
7587 IsRightShift = false;
7588 break;
7589 }
7590
7591 if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits)
7592 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
7593 DAG.getConstant(-ShiftAmount, MVT::i32));
James Molloy1e3b5a42014-06-16 10:39:21 +00007594 else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits)
Tim Northover3b0846e2014-05-24 12:50:23 +00007595 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
7596 DAG.getConstant(ShiftAmount, MVT::i32));
7597
7598 return SDValue();
7599}
7600
7601// The CRC32[BH] instructions ignore the high bits of their data operand. Since
7602// the intrinsics must be legal and take an i32, this means there's almost
7603// certainly going to be a zext in the DAG which we can eliminate.
7604static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
7605 SDValue AndN = N->getOperand(2);
7606 if (AndN.getOpcode() != ISD::AND)
7607 return SDValue();
7608
7609 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
7610 if (!CMask || CMask->getZExtValue() != Mask)
7611 return SDValue();
7612
7613 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
7614 N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
7615}
7616
7617static SDValue performIntrinsicCombine(SDNode *N,
7618 TargetLowering::DAGCombinerInfo &DCI,
7619 const AArch64Subtarget *Subtarget) {
7620 SelectionDAG &DAG = DCI.DAG;
7621 unsigned IID = getIntrinsicID(N);
7622 switch (IID) {
7623 default:
7624 break;
7625 case Intrinsic::aarch64_neon_vcvtfxs2fp:
7626 case Intrinsic::aarch64_neon_vcvtfxu2fp:
7627 return tryCombineFixedPointConvert(N, DCI, DAG);
7628 break;
7629 case Intrinsic::aarch64_neon_fmax:
7630 return DAG.getNode(AArch64ISD::FMAX, SDLoc(N), N->getValueType(0),
7631 N->getOperand(1), N->getOperand(2));
7632 case Intrinsic::aarch64_neon_fmin:
7633 return DAG.getNode(AArch64ISD::FMIN, SDLoc(N), N->getValueType(0),
7634 N->getOperand(1), N->getOperand(2));
7635 case Intrinsic::aarch64_neon_smull:
7636 case Intrinsic::aarch64_neon_umull:
7637 case Intrinsic::aarch64_neon_pmull:
7638 case Intrinsic::aarch64_neon_sqdmull:
7639 return tryCombineLongOpWithDup(IID, N, DCI, DAG);
7640 case Intrinsic::aarch64_neon_sqshl:
7641 case Intrinsic::aarch64_neon_uqshl:
7642 case Intrinsic::aarch64_neon_sqshlu:
7643 case Intrinsic::aarch64_neon_srshl:
7644 case Intrinsic::aarch64_neon_urshl:
7645 return tryCombineShiftImm(IID, N, DAG);
7646 case Intrinsic::aarch64_crc32b:
7647 case Intrinsic::aarch64_crc32cb:
7648 return tryCombineCRC32(0xff, N, DAG);
7649 case Intrinsic::aarch64_crc32h:
7650 case Intrinsic::aarch64_crc32ch:
7651 return tryCombineCRC32(0xffff, N, DAG);
7652 }
7653 return SDValue();
7654}
7655
7656static SDValue performExtendCombine(SDNode *N,
7657 TargetLowering::DAGCombinerInfo &DCI,
7658 SelectionDAG &DAG) {
7659 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
7660 // we can convert that DUP into another extract_high (of a bigger DUP), which
7661 // helps the backend to decide that an sabdl2 would be useful, saving a real
7662 // extract_high operation.
7663 if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
7664 N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
7665 SDNode *ABDNode = N->getOperand(0).getNode();
7666 unsigned IID = getIntrinsicID(ABDNode);
7667 if (IID == Intrinsic::aarch64_neon_sabd ||
7668 IID == Intrinsic::aarch64_neon_uabd) {
7669 SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
7670 if (!NewABD.getNode())
7671 return SDValue();
7672
7673 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
7674 NewABD);
7675 }
7676 }
7677
7678 // This is effectively a custom type legalization for AArch64.
7679 //
7680 // Type legalization will split an extend of a small, legal, type to a larger
7681 // illegal type by first splitting the destination type, often creating
7682 // illegal source types, which then get legalized in isel-confusing ways,
7683 // leading to really terrible codegen. E.g.,
7684 // %result = v8i32 sext v8i8 %value
7685 // becomes
7686 // %losrc = extract_subreg %value, ...
7687 // %hisrc = extract_subreg %value, ...
7688 // %lo = v4i32 sext v4i8 %losrc
7689 // %hi = v4i32 sext v4i8 %hisrc
7690 // Things go rapidly downhill from there.
7691 //
7692 // For AArch64, the [sz]ext vector instructions can only go up one element
7693 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
7694 // take two instructions.
7695 //
7696 // This implies that the most efficient way to do the extend from v8i8
7697 // to two v4i32 values is to first extend the v8i8 to v8i16, then do
7698 // the normal splitting to happen for the v8i16->v8i32.
7699
7700 // This is pre-legalization to catch some cases where the default
7701 // type legalization will create ill-tempered code.
7702 if (!DCI.isBeforeLegalizeOps())
7703 return SDValue();
7704
7705 // We're only interested in cleaning things up for non-legal vector types
7706 // here. If both the source and destination are legal, things will just
7707 // work naturally without any fiddling.
7708 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7709 EVT ResVT = N->getValueType(0);
7710 if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
7711 return SDValue();
7712 // If the vector type isn't a simple VT, it's beyond the scope of what
7713 // we're worried about here. Let legalization do its thing and hope for
7714 // the best.
Jim Grosbachec2b0d02014-08-28 22:08:28 +00007715 SDValue Src = N->getOperand(0);
7716 EVT SrcVT = Src->getValueType(0);
7717 if (!ResVT.isSimple() || !SrcVT.isSimple())
Tim Northover3b0846e2014-05-24 12:50:23 +00007718 return SDValue();
7719
Tim Northover3b0846e2014-05-24 12:50:23 +00007720 // If the source VT is a 64-bit vector, we can play games and get the
7721 // better results we want.
7722 if (SrcVT.getSizeInBits() != 64)
7723 return SDValue();
7724
7725 unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
7726 unsigned ElementCount = SrcVT.getVectorNumElements();
7727 SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
7728 SDLoc DL(N);
7729 Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
7730
7731 // Now split the rest of the operation into two halves, each with a 64
7732 // bit source.
7733 EVT LoVT, HiVT;
7734 SDValue Lo, Hi;
7735 unsigned NumElements = ResVT.getVectorNumElements();
7736 assert(!(NumElements & 1) && "Splitting vector, but not in half!");
7737 LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
7738 ResVT.getVectorElementType(), NumElements / 2);
7739
7740 EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
7741 LoVT.getVectorNumElements());
7742 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
Tim Northover5e84fe32014-12-06 00:33:37 +00007743 DAG.getConstant(0, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007744 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
Tim Northover5e84fe32014-12-06 00:33:37 +00007745 DAG.getConstant(InNVT.getVectorNumElements(), MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007746 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
7747 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
7748
7749 // Now combine the parts back together so we still have a single result
7750 // like the combiner expects.
7751 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
7752}
7753
7754/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
7755/// value. The load store optimizer pass will merge them to store pair stores.
7756/// This has better performance than a splat of the scalar followed by a split
7757/// vector store. Even if the stores are not merged it is four stores vs a dup,
7758/// followed by an ext.b and two stores.
7759static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
7760 SDValue StVal = St->getValue();
7761 EVT VT = StVal.getValueType();
7762
7763 // Don't replace floating point stores, they possibly won't be transformed to
7764 // stp because of the store pair suppress pass.
7765 if (VT.isFloatingPoint())
7766 return SDValue();
7767
7768 // Check for insert vector elements.
7769 if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
7770 return SDValue();
7771
7772 // We can express a splat as store pair(s) for 2 or 4 elements.
7773 unsigned NumVecElts = VT.getVectorNumElements();
7774 if (NumVecElts != 4 && NumVecElts != 2)
7775 return SDValue();
7776 SDValue SplatVal = StVal.getOperand(1);
7777 unsigned RemainInsertElts = NumVecElts - 1;
7778
7779 // Check that this is a splat.
7780 while (--RemainInsertElts) {
7781 SDValue NextInsertElt = StVal.getOperand(0);
7782 if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
7783 return SDValue();
7784 if (NextInsertElt.getOperand(1) != SplatVal)
7785 return SDValue();
7786 StVal = NextInsertElt;
7787 }
7788 unsigned OrigAlignment = St->getAlignment();
7789 unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
7790 unsigned Alignment = std::min(OrigAlignment, EltOffset);
7791
7792 // Create scalar stores. This is at least as good as the code sequence for a
7793 // split unaligned store wich is a dup.s, ext.b, and two stores.
7794 // Most of the time the three stores should be replaced by store pair
7795 // instructions (stp).
7796 SDLoc DL(St);
7797 SDValue BasePtr = St->getBasePtr();
7798 SDValue NewST1 =
7799 DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
7800 St->isVolatile(), St->isNonTemporal(), St->getAlignment());
7801
7802 unsigned Offset = EltOffset;
7803 while (--NumVecElts) {
7804 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
7805 DAG.getConstant(Offset, MVT::i64));
7806 NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
7807 St->getPointerInfo(), St->isVolatile(),
7808 St->isNonTemporal(), Alignment);
7809 Offset += EltOffset;
7810 }
7811 return NewST1;
7812}
7813
7814static SDValue performSTORECombine(SDNode *N,
7815 TargetLowering::DAGCombinerInfo &DCI,
7816 SelectionDAG &DAG,
7817 const AArch64Subtarget *Subtarget) {
7818 if (!DCI.isBeforeLegalize())
7819 return SDValue();
7820
7821 StoreSDNode *S = cast<StoreSDNode>(N);
7822 if (S->isVolatile())
7823 return SDValue();
7824
7825 // Cyclone has bad performance on unaligned 16B stores when crossing line and
Sanjay Patel08efcd92015-01-28 22:37:32 +00007826 // page boundaries. We want to split such stores.
Tim Northover3b0846e2014-05-24 12:50:23 +00007827 if (!Subtarget->isCyclone())
7828 return SDValue();
7829
7830 // Don't split at Oz.
7831 MachineFunction &MF = DAG.getMachineFunction();
Duncan P. N. Exon Smith003bb7d2015-02-14 02:09:06 +00007832 bool IsMinSize = MF.getFunction()->hasFnAttribute(Attribute::MinSize);
Tim Northover3b0846e2014-05-24 12:50:23 +00007833 if (IsMinSize)
7834 return SDValue();
7835
7836 SDValue StVal = S->getValue();
7837 EVT VT = StVal.getValueType();
7838
7839 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
7840 // those up regresses performance on micro-benchmarks and olden/bh.
7841 if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
7842 return SDValue();
7843
7844 // Split unaligned 16B stores. They are terrible for performance.
7845 // Don't split stores with alignment of 1 or 2. Code that uses clang vector
7846 // extensions can use this to mark that it does not want splitting to happen
7847 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
7848 // eliminating alignment hazards is only 1 in 8 for alignment of 2.
7849 if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
7850 S->getAlignment() <= 2)
7851 return SDValue();
7852
7853 // If we get a splat of a scalar convert this vector store to a store of
7854 // scalars. They will be merged into store pairs thereby removing two
7855 // instructions.
7856 SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S);
7857 if (ReplacedSplat != SDValue())
7858 return ReplacedSplat;
7859
7860 SDLoc DL(S);
7861 unsigned NumElts = VT.getVectorNumElements() / 2;
7862 // Split VT into two.
7863 EVT HalfVT =
7864 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
7865 SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
Tim Northover5e84fe32014-12-06 00:33:37 +00007866 DAG.getConstant(0, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007867 SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
Tim Northover5e84fe32014-12-06 00:33:37 +00007868 DAG.getConstant(NumElts, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007869 SDValue BasePtr = S->getBasePtr();
7870 SDValue NewST1 =
7871 DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
7872 S->isVolatile(), S->isNonTemporal(), S->getAlignment());
7873 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
7874 DAG.getConstant(8, MVT::i64));
7875 return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
7876 S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
7877 S->getAlignment());
7878}
7879
7880/// Target-specific DAG combine function for post-increment LD1 (lane) and
7881/// post-increment LD1R.
7882static SDValue performPostLD1Combine(SDNode *N,
7883 TargetLowering::DAGCombinerInfo &DCI,
7884 bool IsLaneOp) {
7885 if (DCI.isBeforeLegalizeOps())
7886 return SDValue();
7887
7888 SelectionDAG &DAG = DCI.DAG;
7889 EVT VT = N->getValueType(0);
7890
7891 unsigned LoadIdx = IsLaneOp ? 1 : 0;
7892 SDNode *LD = N->getOperand(LoadIdx).getNode();
7893 // If it is not LOAD, can not do such combine.
7894 if (LD->getOpcode() != ISD::LOAD)
7895 return SDValue();
7896
7897 LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
7898 EVT MemVT = LoadSDN->getMemoryVT();
7899 // Check if memory operand is the same type as the vector element.
7900 if (MemVT != VT.getVectorElementType())
7901 return SDValue();
7902
7903 // Check if there are other uses. If so, do not combine as it will introduce
7904 // an extra load.
7905 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
7906 ++UI) {
7907 if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
7908 continue;
7909 if (*UI != N)
7910 return SDValue();
7911 }
7912
7913 SDValue Addr = LD->getOperand(1);
7914 SDValue Vector = N->getOperand(0);
7915 // Search for a use of the address operand that is an increment.
7916 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
7917 Addr.getNode()->use_end(); UI != UE; ++UI) {
7918 SDNode *User = *UI;
7919 if (User->getOpcode() != ISD::ADD
7920 || UI.getUse().getResNo() != Addr.getResNo())
7921 continue;
7922
7923 // Check that the add is independent of the load. Otherwise, folding it
7924 // would create a cycle.
7925 if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
7926 continue;
7927 // Also check that add is not used in the vector operand. This would also
7928 // create a cycle.
7929 if (User->isPredecessorOf(Vector.getNode()))
7930 continue;
7931
7932 // If the increment is a constant, it must match the memory ref size.
7933 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7934 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7935 uint32_t IncVal = CInc->getZExtValue();
7936 unsigned NumBytes = VT.getScalarSizeInBits() / 8;
7937 if (IncVal != NumBytes)
7938 continue;
7939 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
7940 }
7941
7942 SmallVector<SDValue, 8> Ops;
7943 Ops.push_back(LD->getOperand(0)); // Chain
7944 if (IsLaneOp) {
7945 Ops.push_back(Vector); // The vector to be inserted
7946 Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
7947 }
7948 Ops.push_back(Addr);
7949 Ops.push_back(Inc);
7950
7951 EVT Tys[3] = { VT, MVT::i64, MVT::Other };
Craig Toppere1d12942014-08-27 05:25:25 +00007952 SDVTList SDTys = DAG.getVTList(Tys);
Tim Northover3b0846e2014-05-24 12:50:23 +00007953 unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
7954 SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
7955 MemVT,
7956 LoadSDN->getMemOperand());
7957
7958 // Update the uses.
Ahmed Bougacha4c2b0782015-02-19 23:13:10 +00007959 SmallVector<SDValue, 2> NewResults;
Tim Northover3b0846e2014-05-24 12:50:23 +00007960 NewResults.push_back(SDValue(LD, 0)); // The result of load
7961 NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain
7962 DCI.CombineTo(LD, NewResults);
7963 DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
7964 DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
7965
7966 break;
7967 }
7968 return SDValue();
7969}
7970
7971/// Target-specific DAG combine function for NEON load/store intrinsics
7972/// to merge base address updates.
7973static SDValue performNEONPostLDSTCombine(SDNode *N,
7974 TargetLowering::DAGCombinerInfo &DCI,
7975 SelectionDAG &DAG) {
7976 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
7977 return SDValue();
7978
7979 unsigned AddrOpIdx = N->getNumOperands() - 1;
7980 SDValue Addr = N->getOperand(AddrOpIdx);
7981
7982 // Search for a use of the address operand that is an increment.
7983 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
7984 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
7985 SDNode *User = *UI;
7986 if (User->getOpcode() != ISD::ADD ||
7987 UI.getUse().getResNo() != Addr.getResNo())
7988 continue;
7989
7990 // Check that the add is independent of the load/store. Otherwise, folding
7991 // it would create a cycle.
7992 if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
7993 continue;
7994
7995 // Find the new opcode for the updating load/store.
7996 bool IsStore = false;
7997 bool IsLaneOp = false;
7998 bool IsDupOp = false;
7999 unsigned NewOpc = 0;
8000 unsigned NumVecs = 0;
8001 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8002 switch (IntNo) {
8003 default: llvm_unreachable("unexpected intrinsic for Neon base update");
8004 case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
8005 NumVecs = 2; break;
8006 case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
8007 NumVecs = 3; break;
8008 case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
8009 NumVecs = 4; break;
8010 case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
8011 NumVecs = 2; IsStore = true; break;
8012 case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
8013 NumVecs = 3; IsStore = true; break;
8014 case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
8015 NumVecs = 4; IsStore = true; break;
8016 case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
8017 NumVecs = 2; break;
8018 case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
8019 NumVecs = 3; break;
8020 case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
8021 NumVecs = 4; break;
8022 case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
8023 NumVecs = 2; IsStore = true; break;
8024 case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
8025 NumVecs = 3; IsStore = true; break;
8026 case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
8027 NumVecs = 4; IsStore = true; break;
8028 case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
8029 NumVecs = 2; IsDupOp = true; break;
8030 case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
8031 NumVecs = 3; IsDupOp = true; break;
8032 case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
8033 NumVecs = 4; IsDupOp = true; break;
8034 case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
8035 NumVecs = 2; IsLaneOp = true; break;
8036 case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
8037 NumVecs = 3; IsLaneOp = true; break;
8038 case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
8039 NumVecs = 4; IsLaneOp = true; break;
8040 case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
8041 NumVecs = 2; IsStore = true; IsLaneOp = true; break;
8042 case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
8043 NumVecs = 3; IsStore = true; IsLaneOp = true; break;
8044 case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
8045 NumVecs = 4; IsStore = true; IsLaneOp = true; break;
8046 }
8047
8048 EVT VecTy;
8049 if (IsStore)
8050 VecTy = N->getOperand(2).getValueType();
8051 else
8052 VecTy = N->getValueType(0);
8053
8054 // If the increment is a constant, it must match the memory ref size.
8055 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8056 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8057 uint32_t IncVal = CInc->getZExtValue();
8058 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
8059 if (IsLaneOp || IsDupOp)
8060 NumBytes /= VecTy.getVectorNumElements();
8061 if (IncVal != NumBytes)
8062 continue;
8063 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
8064 }
8065 SmallVector<SDValue, 8> Ops;
8066 Ops.push_back(N->getOperand(0)); // Incoming chain
8067 // Load lane and store have vector list as input.
8068 if (IsLaneOp || IsStore)
8069 for (unsigned i = 2; i < AddrOpIdx; ++i)
8070 Ops.push_back(N->getOperand(i));
8071 Ops.push_back(Addr); // Base register
8072 Ops.push_back(Inc);
8073
8074 // Return Types.
8075 EVT Tys[6];
8076 unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
8077 unsigned n;
8078 for (n = 0; n < NumResultVecs; ++n)
8079 Tys[n] = VecTy;
8080 Tys[n++] = MVT::i64; // Type of write back register
8081 Tys[n] = MVT::Other; // Type of the chain
Craig Toppere1d12942014-08-27 05:25:25 +00008082 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
Tim Northover3b0846e2014-05-24 12:50:23 +00008083
8084 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
8085 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
8086 MemInt->getMemoryVT(),
8087 MemInt->getMemOperand());
8088
8089 // Update the uses.
8090 std::vector<SDValue> NewResults;
8091 for (unsigned i = 0; i < NumResultVecs; ++i) {
8092 NewResults.push_back(SDValue(UpdN.getNode(), i));
8093 }
8094 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
8095 DCI.CombineTo(N, NewResults);
8096 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
8097
8098 break;
8099 }
8100 return SDValue();
8101}
8102
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008103// Checks to see if the value is the prescribed width and returns information
8104// about its extension mode.
8105static
8106bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
8107 ExtType = ISD::NON_EXTLOAD;
8108 switch(V.getNode()->getOpcode()) {
8109 default:
8110 return false;
8111 case ISD::LOAD: {
8112 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
8113 if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
8114 || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
8115 ExtType = LoadNode->getExtensionType();
8116 return true;
8117 }
8118 return false;
8119 }
8120 case ISD::AssertSext: {
8121 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
8122 if ((TypeNode->getVT() == MVT::i8 && width == 8)
8123 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
8124 ExtType = ISD::SEXTLOAD;
8125 return true;
8126 }
8127 return false;
8128 }
8129 case ISD::AssertZext: {
8130 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
8131 if ((TypeNode->getVT() == MVT::i8 && width == 8)
8132 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
8133 ExtType = ISD::ZEXTLOAD;
8134 return true;
8135 }
8136 return false;
8137 }
8138 case ISD::Constant:
8139 case ISD::TargetConstant: {
Reid Kleckner39ad7c92014-08-29 22:14:26 +00008140 if (std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
Aaron Ballman8ca53882014-09-02 12:19:02 +00008141 1LL << (width - 1))
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008142 return true;
8143 return false;
8144 }
8145 }
8146
8147 return true;
8148}
8149
8150// This function does a whole lot of voodoo to determine if the tests are
8151// equivalent without and with a mask. Essentially what happens is that given a
8152// DAG resembling:
8153//
8154// +-------------+ +-------------+ +-------------+ +-------------+
8155// | Input | | AddConstant | | CompConstant| | CC |
8156// +-------------+ +-------------+ +-------------+ +-------------+
8157// | | | |
8158// V V | +----------+
8159// +-------------+ +----+ | |
8160// | ADD | |0xff| | |
8161// +-------------+ +----+ | |
8162// | | | |
8163// V V | |
8164// +-------------+ | |
8165// | AND | | |
8166// +-------------+ | |
8167// | | |
8168// +-----+ | |
8169// | | |
8170// V V V
8171// +-------------+
8172// | CMP |
8173// +-------------+
8174//
8175// The AND node may be safely removed for some combinations of inputs. In
8176// particular we need to take into account the extension type of the Input,
8177// the exact values of AddConstant, CompConstant, and CC, along with the nominal
8178// width of the input (this can work for any width inputs, the above graph is
8179// specific to 8 bits.
8180//
8181// The specific equations were worked out by generating output tables for each
8182// AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
8183// problem was simplified by working with 4 bit inputs, which means we only
8184// needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
8185// extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
8186// patterns present in both extensions (0,7). For every distinct set of
8187// AddConstant and CompConstants bit patterns we can consider the masked and
8188// unmasked versions to be equivalent if the result of this function is true for
8189// all 16 distinct bit patterns of for the current extension type of Input (w0).
8190//
8191// sub w8, w0, w1
8192// and w10, w8, #0x0f
8193// cmp w8, w2
8194// cset w9, AArch64CC
8195// cmp w10, w2
8196// cset w11, AArch64CC
8197// cmp w9, w11
8198// cset w0, eq
8199// ret
8200//
8201// Since the above function shows when the outputs are equivalent it defines
8202// when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
8203// would be expensive to run during compiles. The equations below were written
8204// in a test harness that confirmed they gave equivalent outputs to the above
8205// for all inputs function, so they can be used determine if the removal is
8206// legal instead.
8207//
8208// isEquivalentMaskless() is the code for testing if the AND can be removed
8209// factored out of the DAG recognition as the DAG can take several forms.
8210
8211static
8212bool isEquivalentMaskless(unsigned CC, unsigned width,
8213 ISD::LoadExtType ExtType, signed AddConstant,
8214 signed CompConstant) {
8215 // By being careful about our equations and only writing the in term
8216 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
8217 // make them generally applicable to all bit widths.
8218 signed MaxUInt = (1 << width);
8219
8220 // For the purposes of these comparisons sign extending the type is
8221 // equivalent to zero extending the add and displacing it by half the integer
8222 // width. Provided we are careful and make sure our equations are valid over
8223 // the whole range we can just adjust the input and avoid writing equations
8224 // for sign extended inputs.
8225 if (ExtType == ISD::SEXTLOAD)
8226 AddConstant -= (1 << (width-1));
8227
8228 switch(CC) {
8229 case AArch64CC::LE:
8230 case AArch64CC::GT: {
8231 if ((AddConstant == 0) ||
8232 (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
8233 (AddConstant >= 0 && CompConstant < 0) ||
8234 (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
8235 return true;
8236 } break;
8237 case AArch64CC::LT:
8238 case AArch64CC::GE: {
8239 if ((AddConstant == 0) ||
8240 (AddConstant >= 0 && CompConstant <= 0) ||
8241 (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
8242 return true;
8243 } break;
8244 case AArch64CC::HI:
8245 case AArch64CC::LS: {
8246 if ((AddConstant >= 0 && CompConstant < 0) ||
8247 (AddConstant <= 0 && CompConstant >= -1 &&
8248 CompConstant < AddConstant + MaxUInt))
8249 return true;
8250 } break;
8251 case AArch64CC::PL:
8252 case AArch64CC::MI: {
8253 if ((AddConstant == 0) ||
8254 (AddConstant > 0 && CompConstant <= 0) ||
8255 (AddConstant < 0 && CompConstant <= AddConstant))
8256 return true;
8257 } break;
8258 case AArch64CC::LO:
8259 case AArch64CC::HS: {
8260 if ((AddConstant >= 0 && CompConstant <= 0) ||
8261 (AddConstant <= 0 && CompConstant >= 0 &&
8262 CompConstant <= AddConstant + MaxUInt))
8263 return true;
8264 } break;
8265 case AArch64CC::EQ:
8266 case AArch64CC::NE: {
8267 if ((AddConstant > 0 && CompConstant < 0) ||
8268 (AddConstant < 0 && CompConstant >= 0 &&
8269 CompConstant < AddConstant + MaxUInt) ||
8270 (AddConstant >= 0 && CompConstant >= 0 &&
8271 CompConstant >= AddConstant) ||
8272 (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
8273
8274 return true;
8275 } break;
8276 case AArch64CC::VS:
8277 case AArch64CC::VC:
8278 case AArch64CC::AL:
8279 case AArch64CC::NV:
8280 return true;
8281 case AArch64CC::Invalid:
8282 break;
8283 }
8284
8285 return false;
8286}
8287
8288static
8289SDValue performCONDCombine(SDNode *N,
8290 TargetLowering::DAGCombinerInfo &DCI,
8291 SelectionDAG &DAG, unsigned CCIndex,
8292 unsigned CmpIndex) {
8293 unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
8294 SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
8295 unsigned CondOpcode = SubsNode->getOpcode();
8296
8297 if (CondOpcode != AArch64ISD::SUBS)
8298 return SDValue();
8299
8300 // There is a SUBS feeding this condition. Is it fed by a mask we can
8301 // use?
8302
8303 SDNode *AndNode = SubsNode->getOperand(0).getNode();
8304 unsigned MaskBits = 0;
8305
8306 if (AndNode->getOpcode() != ISD::AND)
8307 return SDValue();
8308
8309 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
8310 uint32_t CNV = CN->getZExtValue();
8311 if (CNV == 255)
8312 MaskBits = 8;
8313 else if (CNV == 65535)
8314 MaskBits = 16;
8315 }
8316
8317 if (!MaskBits)
8318 return SDValue();
8319
8320 SDValue AddValue = AndNode->getOperand(0);
8321
8322 if (AddValue.getOpcode() != ISD::ADD)
8323 return SDValue();
8324
8325 // The basic dag structure is correct, grab the inputs and validate them.
8326
8327 SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
8328 SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
8329 SDValue SubsInputValue = SubsNode->getOperand(1);
8330
8331 // The mask is present and the provenance of all the values is a smaller type,
8332 // lets see if the mask is superfluous.
8333
8334 if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
8335 !isa<ConstantSDNode>(SubsInputValue.getNode()))
8336 return SDValue();
8337
8338 ISD::LoadExtType ExtType;
8339
8340 if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
8341 !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
8342 !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
8343 return SDValue();
8344
8345 if(!isEquivalentMaskless(CC, MaskBits, ExtType,
8346 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
8347 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
8348 return SDValue();
8349
8350 // The AND is not necessary, remove it.
8351
8352 SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
8353 SubsNode->getValueType(1));
8354 SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
8355
8356 SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
8357 DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
8358
8359 return SDValue(N, 0);
8360}
8361
Tim Northover3b0846e2014-05-24 12:50:23 +00008362// Optimize compare with zero and branch.
8363static SDValue performBRCONDCombine(SDNode *N,
8364 TargetLowering::DAGCombinerInfo &DCI,
8365 SelectionDAG &DAG) {
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008366 SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3);
8367 if (NV.getNode())
8368 N = NV.getNode();
Tim Northover3b0846e2014-05-24 12:50:23 +00008369 SDValue Chain = N->getOperand(0);
8370 SDValue Dest = N->getOperand(1);
8371 SDValue CCVal = N->getOperand(2);
8372 SDValue Cmp = N->getOperand(3);
8373
8374 assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
8375 unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
8376 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
8377 return SDValue();
8378
8379 unsigned CmpOpc = Cmp.getOpcode();
8380 if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
8381 return SDValue();
8382
8383 // Only attempt folding if there is only one use of the flag and no use of the
8384 // value.
8385 if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
8386 return SDValue();
8387
8388 SDValue LHS = Cmp.getOperand(0);
8389 SDValue RHS = Cmp.getOperand(1);
8390
8391 assert(LHS.getValueType() == RHS.getValueType() &&
8392 "Expected the value type to be the same for both operands!");
8393 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
8394 return SDValue();
8395
8396 if (isa<ConstantSDNode>(LHS) && cast<ConstantSDNode>(LHS)->isNullValue())
8397 std::swap(LHS, RHS);
8398
8399 if (!isa<ConstantSDNode>(RHS) || !cast<ConstantSDNode>(RHS)->isNullValue())
8400 return SDValue();
8401
8402 if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
8403 LHS.getOpcode() == ISD::SRL)
8404 return SDValue();
8405
8406 // Fold the compare into the branch instruction.
8407 SDValue BR;
8408 if (CC == AArch64CC::EQ)
8409 BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
8410 else
8411 BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
8412
8413 // Do not add new nodes to DAG combiner worklist.
8414 DCI.CombineTo(N, BR, false);
8415
8416 return SDValue();
8417}
8418
8419// vselect (v1i1 setcc) ->
8420// vselect (v1iXX setcc) (XX is the size of the compared operand type)
8421// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
8422// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
8423// such VSELECT.
8424static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
8425 SDValue N0 = N->getOperand(0);
8426 EVT CCVT = N0.getValueType();
8427
8428 if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
8429 CCVT.getVectorElementType() != MVT::i1)
8430 return SDValue();
8431
8432 EVT ResVT = N->getValueType(0);
8433 EVT CmpVT = N0.getOperand(0).getValueType();
8434 // Only combine when the result type is of the same size as the compared
8435 // operands.
8436 if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
8437 return SDValue();
8438
8439 SDValue IfTrue = N->getOperand(1);
8440 SDValue IfFalse = N->getOperand(2);
8441 SDValue SetCC =
8442 DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
8443 N0.getOperand(0), N0.getOperand(1),
8444 cast<CondCodeSDNode>(N0.getOperand(2))->get());
8445 return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
8446 IfTrue, IfFalse);
8447}
8448
8449/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
8450/// the compare-mask instructions rather than going via NZCV, even if LHS and
8451/// RHS are really scalar. This replaces any scalar setcc in the above pattern
8452/// with a vector one followed by a DUP shuffle on the result.
8453static SDValue performSelectCombine(SDNode *N, SelectionDAG &DAG) {
8454 SDValue N0 = N->getOperand(0);
8455 EVT ResVT = N->getValueType(0);
Tim Northover3c0915e2014-08-29 15:34:58 +00008456
8457 if (N0.getOpcode() != ISD::SETCC || N0.getValueType() != MVT::i1)
8458 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00008459
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008460 // If NumMaskElts == 0, the comparison is larger than select result. The
8461 // largest real NEON comparison is 64-bits per lane, which means the result is
8462 // at most 32-bits and an illegal vector. Just bail out for now.
Tim Northover3c0915e2014-08-29 15:34:58 +00008463 EVT SrcVT = N0.getOperand(0).getValueType();
Ahmed Bougachad0ce0582014-12-01 20:59:00 +00008464
8465 // Don't try to do this optimization when the setcc itself has i1 operands.
8466 // There are no legal vectors of i1, so this would be pointless.
8467 if (SrcVT == MVT::i1)
8468 return SDValue();
8469
Tim Northover3c0915e2014-08-29 15:34:58 +00008470 int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008471 if (!ResVT.isVector() || NumMaskElts == 0)
Tim Northover3b0846e2014-05-24 12:50:23 +00008472 return SDValue();
8473
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008474 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00008475 EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
8476
8477 // First perform a vector comparison, where lane 0 is the one we're interested
8478 // in.
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008479 SDLoc DL(N0);
Tim Northover3b0846e2014-05-24 12:50:23 +00008480 SDValue LHS =
8481 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
8482 SDValue RHS =
8483 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
8484 SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
8485
8486 // Now duplicate the comparison mask we want across all other lanes.
8487 SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
8488 SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data());
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008489 Mask = DAG.getNode(ISD::BITCAST, DL,
8490 ResVT.changeVectorElementTypeToInteger(), Mask);
Tim Northover3b0846e2014-05-24 12:50:23 +00008491
8492 return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
8493}
8494
8495SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
8496 DAGCombinerInfo &DCI) const {
8497 SelectionDAG &DAG = DCI.DAG;
8498 switch (N->getOpcode()) {
8499 default:
8500 break;
8501 case ISD::ADD:
8502 case ISD::SUB:
8503 return performAddSubLongCombine(N, DCI, DAG);
8504 case ISD::XOR:
8505 return performXorCombine(N, DAG, DCI, Subtarget);
8506 case ISD::MUL:
8507 return performMulCombine(N, DAG, DCI, Subtarget);
8508 case ISD::SINT_TO_FP:
8509 case ISD::UINT_TO_FP:
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00008510 return performIntToFpCombine(N, DAG, Subtarget);
Tim Northover3b0846e2014-05-24 12:50:23 +00008511 case ISD::OR:
8512 return performORCombine(N, DCI, Subtarget);
8513 case ISD::INTRINSIC_WO_CHAIN:
8514 return performIntrinsicCombine(N, DCI, Subtarget);
8515 case ISD::ANY_EXTEND:
8516 case ISD::ZERO_EXTEND:
8517 case ISD::SIGN_EXTEND:
8518 return performExtendCombine(N, DCI, DAG);
8519 case ISD::BITCAST:
8520 return performBitcastCombine(N, DCI, DAG);
8521 case ISD::CONCAT_VECTORS:
8522 return performConcatVectorsCombine(N, DCI, DAG);
8523 case ISD::SELECT:
8524 return performSelectCombine(N, DAG);
8525 case ISD::VSELECT:
8526 return performVSelectCombine(N, DCI.DAG);
8527 case ISD::STORE:
8528 return performSTORECombine(N, DCI, DAG, Subtarget);
8529 case AArch64ISD::BRCOND:
8530 return performBRCONDCombine(N, DCI, DAG);
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008531 case AArch64ISD::CSEL:
8532 return performCONDCombine(N, DCI, DAG, 2, 3);
Tim Northover3b0846e2014-05-24 12:50:23 +00008533 case AArch64ISD::DUP:
8534 return performPostLD1Combine(N, DCI, false);
8535 case ISD::INSERT_VECTOR_ELT:
8536 return performPostLD1Combine(N, DCI, true);
8537 case ISD::INTRINSIC_VOID:
8538 case ISD::INTRINSIC_W_CHAIN:
8539 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
8540 case Intrinsic::aarch64_neon_ld2:
8541 case Intrinsic::aarch64_neon_ld3:
8542 case Intrinsic::aarch64_neon_ld4:
8543 case Intrinsic::aarch64_neon_ld1x2:
8544 case Intrinsic::aarch64_neon_ld1x3:
8545 case Intrinsic::aarch64_neon_ld1x4:
8546 case Intrinsic::aarch64_neon_ld2lane:
8547 case Intrinsic::aarch64_neon_ld3lane:
8548 case Intrinsic::aarch64_neon_ld4lane:
8549 case Intrinsic::aarch64_neon_ld2r:
8550 case Intrinsic::aarch64_neon_ld3r:
8551 case Intrinsic::aarch64_neon_ld4r:
8552 case Intrinsic::aarch64_neon_st2:
8553 case Intrinsic::aarch64_neon_st3:
8554 case Intrinsic::aarch64_neon_st4:
8555 case Intrinsic::aarch64_neon_st1x2:
8556 case Intrinsic::aarch64_neon_st1x3:
8557 case Intrinsic::aarch64_neon_st1x4:
8558 case Intrinsic::aarch64_neon_st2lane:
8559 case Intrinsic::aarch64_neon_st3lane:
8560 case Intrinsic::aarch64_neon_st4lane:
8561 return performNEONPostLDSTCombine(N, DCI, DAG);
8562 default:
8563 break;
8564 }
8565 }
8566 return SDValue();
8567}
8568
8569// Check if the return value is used as only a return value, as otherwise
8570// we can't perform a tail-call. In particular, we need to check for
8571// target ISD nodes that are returns and any other "odd" constructs
8572// that the generic analysis code won't necessarily catch.
8573bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
8574 SDValue &Chain) const {
8575 if (N->getNumValues() != 1)
8576 return false;
8577 if (!N->hasNUsesOfValue(1, 0))
8578 return false;
8579
8580 SDValue TCChain = Chain;
8581 SDNode *Copy = *N->use_begin();
8582 if (Copy->getOpcode() == ISD::CopyToReg) {
8583 // If the copy has a glue operand, we conservatively assume it isn't safe to
8584 // perform a tail call.
8585 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
8586 MVT::Glue)
8587 return false;
8588 TCChain = Copy->getOperand(0);
8589 } else if (Copy->getOpcode() != ISD::FP_EXTEND)
8590 return false;
8591
8592 bool HasRet = false;
8593 for (SDNode *Node : Copy->uses()) {
8594 if (Node->getOpcode() != AArch64ISD::RET_FLAG)
8595 return false;
8596 HasRet = true;
8597 }
8598
8599 if (!HasRet)
8600 return false;
8601
8602 Chain = TCChain;
8603 return true;
8604}
8605
8606// Return whether the an instruction can potentially be optimized to a tail
8607// call. This will cause the optimizers to attempt to move, or duplicate,
8608// return instructions to help enable tail call optimizations for this
8609// instruction.
8610bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
8611 if (!CI->isTailCall())
8612 return false;
8613
8614 return true;
8615}
8616
8617bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
8618 SDValue &Offset,
8619 ISD::MemIndexedMode &AM,
8620 bool &IsInc,
8621 SelectionDAG &DAG) const {
8622 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
8623 return false;
8624
8625 Base = Op->getOperand(0);
8626 // All of the indexed addressing mode instructions take a signed
8627 // 9 bit immediate offset.
8628 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
8629 int64_t RHSC = (int64_t)RHS->getZExtValue();
8630 if (RHSC >= 256 || RHSC <= -256)
8631 return false;
8632 IsInc = (Op->getOpcode() == ISD::ADD);
8633 Offset = Op->getOperand(1);
8634 return true;
8635 }
8636 return false;
8637}
8638
8639bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
8640 SDValue &Offset,
8641 ISD::MemIndexedMode &AM,
8642 SelectionDAG &DAG) const {
8643 EVT VT;
8644 SDValue Ptr;
8645 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8646 VT = LD->getMemoryVT();
8647 Ptr = LD->getBasePtr();
8648 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8649 VT = ST->getMemoryVT();
8650 Ptr = ST->getBasePtr();
8651 } else
8652 return false;
8653
8654 bool IsInc;
8655 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
8656 return false;
8657 AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
8658 return true;
8659}
8660
8661bool AArch64TargetLowering::getPostIndexedAddressParts(
8662 SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
8663 ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
8664 EVT VT;
8665 SDValue Ptr;
8666 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8667 VT = LD->getMemoryVT();
8668 Ptr = LD->getBasePtr();
8669 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8670 VT = ST->getMemoryVT();
8671 Ptr = ST->getBasePtr();
8672 } else
8673 return false;
8674
8675 bool IsInc;
8676 if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
8677 return false;
8678 // Post-indexing updates the base, so it's not a valid transform
8679 // if that's not the same as the load's pointer.
8680 if (Ptr != Base)
8681 return false;
8682 AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
8683 return true;
8684}
8685
Tim Northoverf8bfe212014-07-18 13:07:05 +00008686static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
8687 SelectionDAG &DAG) {
Tim Northoverf8bfe212014-07-18 13:07:05 +00008688 SDLoc DL(N);
8689 SDValue Op = N->getOperand(0);
Ahmed Bougacha87946322014-12-01 20:52:32 +00008690
8691 if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
8692 return;
8693
Tim Northoverf8bfe212014-07-18 13:07:05 +00008694 Op = SDValue(
8695 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
8696 DAG.getUNDEF(MVT::i32), Op,
8697 DAG.getTargetConstant(AArch64::hsub, MVT::i32)),
8698 0);
8699 Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
8700 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
8701}
8702
Tim Northover3b0846e2014-05-24 12:50:23 +00008703void AArch64TargetLowering::ReplaceNodeResults(
8704 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
8705 switch (N->getOpcode()) {
8706 default:
8707 llvm_unreachable("Don't know how to custom expand this");
Tim Northoverf8bfe212014-07-18 13:07:05 +00008708 case ISD::BITCAST:
8709 ReplaceBITCASTResults(N, Results, DAG);
8710 return;
Tim Northover3b0846e2014-05-24 12:50:23 +00008711 case ISD::FP_TO_UINT:
8712 case ISD::FP_TO_SINT:
8713 assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
8714 // Let normal code take care of it by not adding anything to Results.
8715 return;
8716 }
8717}
8718
Akira Hatanakae5b6e0d2014-07-25 19:31:34 +00008719bool AArch64TargetLowering::useLoadStackGuardNode() const {
8720 return true;
8721}
8722
Hao Liu44e5d7a2014-11-21 06:39:58 +00008723bool AArch64TargetLowering::combineRepeatedFPDivisors(unsigned NumUsers) const {
8724 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
8725 // reciprocal if there are three or more FDIVs.
8726 return NumUsers > 2;
8727}
8728
Chandler Carruth9d010ff2014-07-03 00:23:43 +00008729TargetLoweringBase::LegalizeTypeAction
8730AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
8731 MVT SVT = VT.getSimpleVT();
8732 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
8733 // v4i16, v2i32 instead of to promote.
8734 if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
8735 || SVT == MVT::v1f32)
8736 return TypeWidenVector;
8737
8738 return TargetLoweringBase::getPreferredVectorAction(VT);
8739}
8740
Robin Morisseted3d48f2014-09-03 21:29:59 +00008741// Loads and stores less than 128-bits are already atomic; ones above that
8742// are doomed anyway, so defer to the default libcall and blame the OS when
8743// things go wrong.
8744bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
8745 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
8746 return Size == 128;
8747}
8748
8749// Loads and stores less than 128-bits are already atomic; ones above that
8750// are doomed anyway, so defer to the default libcall and blame the OS when
8751// things go wrong.
8752bool AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
8753 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
8754 return Size == 128;
8755}
8756
8757// For the real atomic operations, we have ldxr/stxr up to 128 bits,
JF Bastienf14889e2015-03-04 15:47:57 +00008758TargetLoweringBase::AtomicRMWExpansionKind
8759AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
Robin Morisseted3d48f2014-09-03 21:29:59 +00008760 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
JF Bastienf14889e2015-03-04 15:47:57 +00008761 return Size <= 128 ? AtomicRMWExpansionKind::LLSC
8762 : AtomicRMWExpansionKind::None;
Robin Morisseted3d48f2014-09-03 21:29:59 +00008763}
8764
Robin Morisset25c8e312014-09-17 00:06:58 +00008765bool AArch64TargetLowering::hasLoadLinkedStoreConditional() const {
8766 return true;
8767}
8768
Tim Northover3b0846e2014-05-24 12:50:23 +00008769Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
8770 AtomicOrdering Ord) const {
8771 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
8772 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
Robin Morissetb155f522014-08-18 16:48:58 +00008773 bool IsAcquire = isAtLeastAcquire(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +00008774
8775 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
8776 // intrinsic must return {i64, i64} and we have to recombine them into a
8777 // single i128 here.
8778 if (ValTy->getPrimitiveSizeInBits() == 128) {
8779 Intrinsic::ID Int =
8780 IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
8781 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int);
8782
8783 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
8784 Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
8785
8786 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
8787 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
8788 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
8789 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
8790 return Builder.CreateOr(
8791 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
8792 }
8793
8794 Type *Tys[] = { Addr->getType() };
8795 Intrinsic::ID Int =
8796 IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
8797 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys);
8798
8799 return Builder.CreateTruncOrBitCast(
8800 Builder.CreateCall(Ldxr, Addr),
8801 cast<PointerType>(Addr->getType())->getElementType());
8802}
8803
8804Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
8805 Value *Val, Value *Addr,
8806 AtomicOrdering Ord) const {
8807 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Robin Morissetb155f522014-08-18 16:48:58 +00008808 bool IsRelease = isAtLeastRelease(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +00008809
8810 // Since the intrinsics must have legal type, the i128 intrinsics take two
8811 // parameters: "i64, i64". We must marshal Val into the appropriate form
8812 // before the call.
8813 if (Val->getType()->getPrimitiveSizeInBits() == 128) {
8814 Intrinsic::ID Int =
8815 IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
8816 Function *Stxr = Intrinsic::getDeclaration(M, Int);
8817 Type *Int64Ty = Type::getInt64Ty(M->getContext());
8818
8819 Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
8820 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
8821 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
8822 return Builder.CreateCall3(Stxr, Lo, Hi, Addr);
8823 }
8824
8825 Intrinsic::ID Int =
8826 IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
8827 Type *Tys[] = { Addr->getType() };
8828 Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
8829
8830 return Builder.CreateCall2(
8831 Stxr, Builder.CreateZExtOrBitCast(
8832 Val, Stxr->getFunctionType()->getParamType(0)),
8833 Addr);
8834}
Tim Northover3c55cca2014-11-27 21:02:42 +00008835
8836bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
8837 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
8838 return Ty->isArrayTy();
8839}