blob: d96518135e883b9294a7caea6e26c0f20db4ebca [file] [log] [blame]
Tim Northover3b0846e2014-05-24 12:50:23 +00001//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AArch64TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AArch64ISelLowering.h"
Tim Northover3c55cca2014-11-27 21:02:42 +000015#include "AArch64CallingConvention.h"
Benjamin Kramer1f8930e2014-07-25 11:42:14 +000016#include "AArch64MachineFunctionInfo.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000017#include "AArch64PerfectShuffle.h"
18#include "AArch64Subtarget.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000019#include "AArch64TargetMachine.h"
20#include "AArch64TargetObjectFile.h"
21#include "MCTargetDesc/AArch64AddressingModes.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/Intrinsics.h"
29#include "llvm/IR/Type.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Target/TargetOptions.h"
35using namespace llvm;
36
37#define DEBUG_TYPE "aarch64-lower"
38
39STATISTIC(NumTailCalls, "Number of tail calls");
40STATISTIC(NumShiftInserts, "Number of vector shift inserts");
41
Alexey Samsonovf17f03e2014-08-19 18:40:39 +000042namespace {
Tim Northover3b0846e2014-05-24 12:50:23 +000043enum AlignMode {
44 StrictAlign,
45 NoStrictAlign
46};
Alexey Samsonovf17f03e2014-08-19 18:40:39 +000047}
Tim Northover3b0846e2014-05-24 12:50:23 +000048
49static cl::opt<AlignMode>
50Align(cl::desc("Load/store alignment support"),
51 cl::Hidden, cl::init(NoStrictAlign),
52 cl::values(
53 clEnumValN(StrictAlign, "aarch64-strict-align",
54 "Disallow all unaligned memory accesses"),
55 clEnumValN(NoStrictAlign, "aarch64-no-strict-align",
56 "Allow unaligned memory accesses"),
57 clEnumValEnd));
58
59// Place holder until extr generation is tested fully.
60static cl::opt<bool>
61EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden,
62 cl::desc("Allow AArch64 (or (shift)(shift))->extract"),
63 cl::init(true));
64
65static cl::opt<bool>
66EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
67 cl::desc("Allow AArch64 SLI/SRI formation"),
68 cl::init(false));
69
Eric Christopher905f12d2015-01-29 00:19:42 +000070AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
71 const AArch64Subtarget &STI)
72 : TargetLowering(TM), Subtarget(&STI) {
Tim Northover3b0846e2014-05-24 12:50:23 +000073
74 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
75 // we have to make something up. Arbitrarily, choose ZeroOrOne.
76 setBooleanContents(ZeroOrOneBooleanContent);
77 // When comparing vectors the result sets the different elements in the
78 // vector to all-one or all-zero.
79 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
80
81 // Set up the register classes.
82 addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
83 addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
84
85 if (Subtarget->hasFPARMv8()) {
86 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
87 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
88 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
89 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
90 }
91
92 if (Subtarget->hasNEON()) {
93 addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
94 addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
95 // Someone set us up the NEON.
96 addDRTypeForNEON(MVT::v2f32);
97 addDRTypeForNEON(MVT::v8i8);
98 addDRTypeForNEON(MVT::v4i16);
99 addDRTypeForNEON(MVT::v2i32);
100 addDRTypeForNEON(MVT::v1i64);
101 addDRTypeForNEON(MVT::v1f64);
Oliver Stannard89d15422014-08-27 16:16:04 +0000102 addDRTypeForNEON(MVT::v4f16);
Tim Northover3b0846e2014-05-24 12:50:23 +0000103
104 addQRTypeForNEON(MVT::v4f32);
105 addQRTypeForNEON(MVT::v2f64);
106 addQRTypeForNEON(MVT::v16i8);
107 addQRTypeForNEON(MVT::v8i16);
108 addQRTypeForNEON(MVT::v4i32);
109 addQRTypeForNEON(MVT::v2i64);
Oliver Stannard89d15422014-08-27 16:16:04 +0000110 addQRTypeForNEON(MVT::v8f16);
Tim Northover3b0846e2014-05-24 12:50:23 +0000111 }
112
113 // Compute derived properties from the register classes
Eric Christopher23a3a7c2015-02-26 00:00:24 +0000114 computeRegisterProperties(Subtarget->getRegisterInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +0000115
116 // Provide all sorts of operation actions
117 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
118 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
119 setOperationAction(ISD::SETCC, MVT::i32, Custom);
120 setOperationAction(ISD::SETCC, MVT::i64, Custom);
121 setOperationAction(ISD::SETCC, MVT::f32, Custom);
122 setOperationAction(ISD::SETCC, MVT::f64, Custom);
123 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
124 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
125 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
126 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
127 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
128 setOperationAction(ISD::SELECT, MVT::i32, Custom);
129 setOperationAction(ISD::SELECT, MVT::i64, Custom);
130 setOperationAction(ISD::SELECT, MVT::f32, Custom);
131 setOperationAction(ISD::SELECT, MVT::f64, Custom);
132 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
133 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
134 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
135 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
136 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
137 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
138
139 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
140 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
141 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
142
143 setOperationAction(ISD::FREM, MVT::f32, Expand);
144 setOperationAction(ISD::FREM, MVT::f64, Expand);
145 setOperationAction(ISD::FREM, MVT::f80, Expand);
146
147 // Custom lowering hooks are needed for XOR
148 // to fold it into CSINC/CSINV.
149 setOperationAction(ISD::XOR, MVT::i32, Custom);
150 setOperationAction(ISD::XOR, MVT::i64, Custom);
151
152 // Virtually no operation on f128 is legal, but LLVM can't expand them when
153 // there's a valid register class, so we need custom operations in most cases.
154 setOperationAction(ISD::FABS, MVT::f128, Expand);
155 setOperationAction(ISD::FADD, MVT::f128, Custom);
156 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
157 setOperationAction(ISD::FCOS, MVT::f128, Expand);
158 setOperationAction(ISD::FDIV, MVT::f128, Custom);
159 setOperationAction(ISD::FMA, MVT::f128, Expand);
160 setOperationAction(ISD::FMUL, MVT::f128, Custom);
161 setOperationAction(ISD::FNEG, MVT::f128, Expand);
162 setOperationAction(ISD::FPOW, MVT::f128, Expand);
163 setOperationAction(ISD::FREM, MVT::f128, Expand);
164 setOperationAction(ISD::FRINT, MVT::f128, Expand);
165 setOperationAction(ISD::FSIN, MVT::f128, Expand);
166 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
167 setOperationAction(ISD::FSQRT, MVT::f128, Expand);
168 setOperationAction(ISD::FSUB, MVT::f128, Custom);
169 setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
170 setOperationAction(ISD::SETCC, MVT::f128, Custom);
171 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
172 setOperationAction(ISD::SELECT, MVT::f128, Custom);
173 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
174 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
175
176 // Lowering for many of the conversions is actually specified by the non-f128
177 // type. The LowerXXX function will be trivial when f128 isn't involved.
178 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
179 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
180 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
181 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
182 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
183 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
184 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
185 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
186 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
187 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
188 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
189 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
190 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
191 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
192
193 // Variable arguments.
194 setOperationAction(ISD::VASTART, MVT::Other, Custom);
195 setOperationAction(ISD::VAARG, MVT::Other, Custom);
196 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
197 setOperationAction(ISD::VAEND, MVT::Other, Expand);
198
199 // Variable-sized objects.
200 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
201 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
202 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
203
204 // Exception handling.
205 // FIXME: These are guesses. Has this been defined yet?
206 setExceptionPointerRegister(AArch64::X0);
207 setExceptionSelectorRegister(AArch64::X1);
208
209 // Constant pool entries
210 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
211
212 // BlockAddress
213 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
214
215 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
216 setOperationAction(ISD::ADDC, MVT::i32, Custom);
217 setOperationAction(ISD::ADDE, MVT::i32, Custom);
218 setOperationAction(ISD::SUBC, MVT::i32, Custom);
219 setOperationAction(ISD::SUBE, MVT::i32, Custom);
220 setOperationAction(ISD::ADDC, MVT::i64, Custom);
221 setOperationAction(ISD::ADDE, MVT::i64, Custom);
222 setOperationAction(ISD::SUBC, MVT::i64, Custom);
223 setOperationAction(ISD::SUBE, MVT::i64, Custom);
224
225 // AArch64 lacks both left-rotate and popcount instructions.
226 setOperationAction(ISD::ROTL, MVT::i32, Expand);
227 setOperationAction(ISD::ROTL, MVT::i64, Expand);
228
229 // AArch64 doesn't have {U|S}MUL_LOHI.
230 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
231 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
232
233
234 // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero
235 // counterparts, which AArch64 supports directly.
236 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
237 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
238 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
239 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
240
241 setOperationAction(ISD::CTPOP, MVT::i32, Custom);
242 setOperationAction(ISD::CTPOP, MVT::i64, Custom);
243
244 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
245 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
246 setOperationAction(ISD::SREM, MVT::i32, Expand);
247 setOperationAction(ISD::SREM, MVT::i64, Expand);
248 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
249 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
250 setOperationAction(ISD::UREM, MVT::i32, Expand);
251 setOperationAction(ISD::UREM, MVT::i64, Expand);
252
253 // Custom lower Add/Sub/Mul with overflow.
254 setOperationAction(ISD::SADDO, MVT::i32, Custom);
255 setOperationAction(ISD::SADDO, MVT::i64, Custom);
256 setOperationAction(ISD::UADDO, MVT::i32, Custom);
257 setOperationAction(ISD::UADDO, MVT::i64, Custom);
258 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
259 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
260 setOperationAction(ISD::USUBO, MVT::i32, Custom);
261 setOperationAction(ISD::USUBO, MVT::i64, Custom);
262 setOperationAction(ISD::SMULO, MVT::i32, Custom);
263 setOperationAction(ISD::SMULO, MVT::i64, Custom);
264 setOperationAction(ISD::UMULO, MVT::i32, Custom);
265 setOperationAction(ISD::UMULO, MVT::i64, Custom);
266
267 setOperationAction(ISD::FSIN, MVT::f32, Expand);
268 setOperationAction(ISD::FSIN, MVT::f64, Expand);
269 setOperationAction(ISD::FCOS, MVT::f32, Expand);
270 setOperationAction(ISD::FCOS, MVT::f64, Expand);
271 setOperationAction(ISD::FPOW, MVT::f32, Expand);
272 setOperationAction(ISD::FPOW, MVT::f64, Expand);
273 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
274 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
275
Oliver Stannardf5469be2014-08-18 14:22:39 +0000276 // f16 is storage-only, so we promote operations to f32 if we know this is
277 // valid, and ignore them otherwise. The operations not mentioned here will
278 // fail to select, but this is not a major problem as no source language
279 // should be emitting native f16 operations yet.
280 setOperationAction(ISD::FADD, MVT::f16, Promote);
281 setOperationAction(ISD::FDIV, MVT::f16, Promote);
282 setOperationAction(ISD::FMUL, MVT::f16, Promote);
283 setOperationAction(ISD::FSUB, MVT::f16, Promote);
284
Oliver Stannard89d15422014-08-27 16:16:04 +0000285 // v4f16 is also a storage-only type, so promote it to v4f32 when that is
286 // known to be safe.
287 setOperationAction(ISD::FADD, MVT::v4f16, Promote);
288 setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
289 setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
290 setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
291 setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote);
292 setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote);
293 AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
294 AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
295 AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
296 AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
297 AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32);
298 AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32);
299
300 // Expand all other v4f16 operations.
301 // FIXME: We could generate better code by promoting some operations to
302 // a pair of v4f32s
303 setOperationAction(ISD::FABS, MVT::v4f16, Expand);
304 setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
305 setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
306 setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
307 setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
308 setOperationAction(ISD::FMA, MVT::v4f16, Expand);
309 setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
310 setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
311 setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
312 setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
313 setOperationAction(ISD::FREM, MVT::v4f16, Expand);
314 setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
315 setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
316 setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
317 setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
318 setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
319 setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
320 setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
321 setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
322 setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
323 setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
324 setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
325 setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
326 setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
327 setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
328 setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
329
330
331 // v8f16 is also a storage-only type, so expand it.
332 setOperationAction(ISD::FABS, MVT::v8f16, Expand);
333 setOperationAction(ISD::FADD, MVT::v8f16, Expand);
334 setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
335 setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
336 setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
337 setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
338 setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
339 setOperationAction(ISD::FMA, MVT::v8f16, Expand);
340 setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
341 setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
342 setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
343 setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
344 setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
345 setOperationAction(ISD::FREM, MVT::v8f16, Expand);
346 setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
347 setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
348 setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
349 setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
350 setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
351 setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
352 setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
353 setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
354 setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
355 setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
356 setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
357 setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
358 setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
359 setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
360 setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
361 setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
362 setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
363
Tim Northover3b0846e2014-05-24 12:50:23 +0000364 // AArch64 has implementations of a lot of rounding-like FP operations.
365 static MVT RoundingTypes[] = { MVT::f32, MVT::f64};
366 for (unsigned I = 0; I < array_lengthof(RoundingTypes); ++I) {
367 MVT Ty = RoundingTypes[I];
368 setOperationAction(ISD::FFLOOR, Ty, Legal);
369 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
370 setOperationAction(ISD::FCEIL, Ty, Legal);
371 setOperationAction(ISD::FRINT, Ty, Legal);
372 setOperationAction(ISD::FTRUNC, Ty, Legal);
373 setOperationAction(ISD::FROUND, Ty, Legal);
374 }
375
376 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
377
378 if (Subtarget->isTargetMachO()) {
379 // For iOS, we don't want to the normal expansion of a libcall to
380 // sincos. We want to issue a libcall to __sincos_stret to avoid memory
381 // traffic.
382 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
383 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
384 } else {
385 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
386 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
387 }
388
Juergen Ributzka23266502014-12-10 19:43:32 +0000389 // Make floating-point constants legal for the large code model, so they don't
390 // become loads from the constant pool.
391 if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
392 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
393 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
394 }
395
Tim Northover3b0846e2014-05-24 12:50:23 +0000396 // AArch64 does not have floating-point extending loads, i1 sign-extending
397 // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000398 for (MVT VT : MVT::fp_valuetypes()) {
399 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
400 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
401 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
402 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
403 }
404 for (MVT VT : MVT::integer_valuetypes())
405 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
406
Tim Northover3b0846e2014-05-24 12:50:23 +0000407 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
408 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
409 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
410 setTruncStoreAction(MVT::f128, MVT::f80, Expand);
411 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
412 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
413 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
Tim Northoverf8bfe212014-07-18 13:07:05 +0000414
415 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
416 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
417
Tim Northover3b0846e2014-05-24 12:50:23 +0000418 // Indexed loads and stores are supported.
419 for (unsigned im = (unsigned)ISD::PRE_INC;
420 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
421 setIndexedLoadAction(im, MVT::i8, Legal);
422 setIndexedLoadAction(im, MVT::i16, Legal);
423 setIndexedLoadAction(im, MVT::i32, Legal);
424 setIndexedLoadAction(im, MVT::i64, Legal);
425 setIndexedLoadAction(im, MVT::f64, Legal);
426 setIndexedLoadAction(im, MVT::f32, Legal);
427 setIndexedStoreAction(im, MVT::i8, Legal);
428 setIndexedStoreAction(im, MVT::i16, Legal);
429 setIndexedStoreAction(im, MVT::i32, Legal);
430 setIndexedStoreAction(im, MVT::i64, Legal);
431 setIndexedStoreAction(im, MVT::f64, Legal);
432 setIndexedStoreAction(im, MVT::f32, Legal);
433 }
434
435 // Trap.
436 setOperationAction(ISD::TRAP, MVT::Other, Legal);
437
438 // We combine OR nodes for bitfield operations.
439 setTargetDAGCombine(ISD::OR);
440
441 // Vector add and sub nodes may conceal a high-half opportunity.
442 // Also, try to fold ADD into CSINC/CSINV..
443 setTargetDAGCombine(ISD::ADD);
444 setTargetDAGCombine(ISD::SUB);
445
446 setTargetDAGCombine(ISD::XOR);
447 setTargetDAGCombine(ISD::SINT_TO_FP);
448 setTargetDAGCombine(ISD::UINT_TO_FP);
449
450 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
451
452 setTargetDAGCombine(ISD::ANY_EXTEND);
453 setTargetDAGCombine(ISD::ZERO_EXTEND);
454 setTargetDAGCombine(ISD::SIGN_EXTEND);
455 setTargetDAGCombine(ISD::BITCAST);
456 setTargetDAGCombine(ISD::CONCAT_VECTORS);
457 setTargetDAGCombine(ISD::STORE);
458
459 setTargetDAGCombine(ISD::MUL);
460
461 setTargetDAGCombine(ISD::SELECT);
462 setTargetDAGCombine(ISD::VSELECT);
463
464 setTargetDAGCombine(ISD::INTRINSIC_VOID);
465 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
466 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
467
468 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
469 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
470 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
471
472 setStackPointerRegisterToSaveRestore(AArch64::SP);
473
474 setSchedulingPreference(Sched::Hybrid);
475
476 // Enable TBZ/TBNZ
477 MaskAndBranchFoldingIsLegal = true;
478
479 setMinFunctionAlignment(2);
480
481 RequireStrictAlign = (Align == StrictAlign);
482
483 setHasExtractBitsInsn(true);
484
485 if (Subtarget->hasNEON()) {
486 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
487 // silliness like this:
488 setOperationAction(ISD::FABS, MVT::v1f64, Expand);
489 setOperationAction(ISD::FADD, MVT::v1f64, Expand);
490 setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
491 setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
492 setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
493 setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
494 setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
495 setOperationAction(ISD::FMA, MVT::v1f64, Expand);
496 setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
497 setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
498 setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
499 setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
500 setOperationAction(ISD::FREM, MVT::v1f64, Expand);
501 setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
502 setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
503 setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
504 setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
505 setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
506 setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
507 setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
508 setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
509 setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
510 setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
511 setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
512 setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
513
514 setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
515 setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
516 setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
517 setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
518 setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
519
520 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
521
522 // AArch64 doesn't have a direct vector ->f32 conversion instructions for
523 // elements smaller than i32, so promote the input to i32 first.
524 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
525 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
526 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
527 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
528 // Similarly, there is no direct i32 -> f64 vector conversion instruction.
529 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
530 setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
531 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
532 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
533
534 // AArch64 doesn't have MUL.2d:
535 setOperationAction(ISD::MUL, MVT::v2i64, Expand);
Chad Rosierd9d0f862014-10-08 02:31:24 +0000536 // Custom handling for some quad-vector types to detect MULL.
537 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
538 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
539 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
540
Tim Northover3b0846e2014-05-24 12:50:23 +0000541 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
542 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
543 // Likewise, narrowing and extending vector loads/stores aren't handled
544 // directly.
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000545 for (MVT VT : MVT::vector_valuetypes()) {
546 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000547
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000548 setOperationAction(ISD::MULHS, VT, Expand);
549 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
550 setOperationAction(ISD::MULHU, VT, Expand);
551 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000552
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000553 setOperationAction(ISD::BSWAP, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000554
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000555 for (MVT InnerVT : MVT::vector_valuetypes()) {
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000556 setTruncStoreAction(VT, InnerVT, Expand);
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000557 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
558 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
559 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
560 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000561 }
562
563 // AArch64 has implementations of a lot of rounding-like FP operations.
564 static MVT RoundingVecTypes[] = {MVT::v2f32, MVT::v4f32, MVT::v2f64 };
565 for (unsigned I = 0; I < array_lengthof(RoundingVecTypes); ++I) {
566 MVT Ty = RoundingVecTypes[I];
567 setOperationAction(ISD::FFLOOR, Ty, Legal);
568 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
569 setOperationAction(ISD::FCEIL, Ty, Legal);
570 setOperationAction(ISD::FRINT, Ty, Legal);
571 setOperationAction(ISD::FTRUNC, Ty, Legal);
572 setOperationAction(ISD::FROUND, Ty, Legal);
573 }
574 }
James Molloyf089ab72014-08-06 10:42:18 +0000575
576 // Prefer likely predicted branches to selects on out-of-order cores.
577 if (Subtarget->isCortexA57())
578 PredictableSelectIsExpensive = true;
Tim Northover3b0846e2014-05-24 12:50:23 +0000579}
580
581void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) {
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000582 if (VT == MVT::v2f32 || VT == MVT::v4f16) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000583 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
584 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32);
585
586 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
587 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32);
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000588 } else if (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000589 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
590 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64);
591
592 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
593 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64);
594 }
595
596 // Mark vector float intrinsics as expand.
597 if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
598 setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand);
599 setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand);
600 setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand);
601 setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand);
602 setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand);
603 setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand);
604 setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand);
605 setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand);
606 setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand);
607 }
608
609 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
610 setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
611 setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
612 setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
613 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom);
614 setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
615 setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
616 setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
617 setOperationAction(ISD::AND, VT.getSimpleVT(), Custom);
618 setOperationAction(ISD::OR, VT.getSimpleVT(), Custom);
619 setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
620 setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
621
622 setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
623 setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
624 setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand);
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000625 for (MVT InnerVT : MVT::all_valuetypes())
626 setLoadExtAction(ISD::EXTLOAD, InnerVT, VT.getSimpleVT(), Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000627
628 // CNT supports only B element sizes.
629 if (VT != MVT::v8i8 && VT != MVT::v16i8)
630 setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand);
631
632 setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
633 setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
634 setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
635 setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
636 setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
637
638 setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
639 setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
640
641 if (Subtarget->isLittleEndian()) {
642 for (unsigned im = (unsigned)ISD::PRE_INC;
643 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
644 setIndexedLoadAction(im, VT.getSimpleVT(), Legal);
645 setIndexedStoreAction(im, VT.getSimpleVT(), Legal);
646 }
647 }
648}
649
650void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
651 addRegisterClass(VT, &AArch64::FPR64RegClass);
652 addTypeForNEON(VT, MVT::v2i32);
653}
654
655void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
656 addRegisterClass(VT, &AArch64::FPR128RegClass);
657 addTypeForNEON(VT, MVT::v4i32);
658}
659
660EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
661 if (!VT.isVector())
662 return MVT::i32;
663 return VT.changeVectorElementTypeToInteger();
664}
665
666/// computeKnownBitsForTargetNode - Determine which of the bits specified in
667/// Mask are known to be either zero or one and return them in the
668/// KnownZero/KnownOne bitsets.
669void AArch64TargetLowering::computeKnownBitsForTargetNode(
670 const SDValue Op, APInt &KnownZero, APInt &KnownOne,
671 const SelectionDAG &DAG, unsigned Depth) const {
672 switch (Op.getOpcode()) {
673 default:
674 break;
675 case AArch64ISD::CSEL: {
676 APInt KnownZero2, KnownOne2;
677 DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
678 DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
679 KnownZero &= KnownZero2;
680 KnownOne &= KnownOne2;
681 break;
682 }
683 case ISD::INTRINSIC_W_CHAIN: {
684 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
685 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
686 switch (IntID) {
687 default: return;
688 case Intrinsic::aarch64_ldaxr:
689 case Intrinsic::aarch64_ldxr: {
690 unsigned BitWidth = KnownOne.getBitWidth();
691 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
692 unsigned MemBits = VT.getScalarType().getSizeInBits();
693 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
694 return;
695 }
696 }
697 break;
698 }
699 case ISD::INTRINSIC_WO_CHAIN:
700 case ISD::INTRINSIC_VOID: {
701 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
702 switch (IntNo) {
703 default:
704 break;
705 case Intrinsic::aarch64_neon_umaxv:
706 case Intrinsic::aarch64_neon_uminv: {
707 // Figure out the datatype of the vector operand. The UMINV instruction
708 // will zero extend the result, so we can mark as known zero all the
709 // bits larger than the element datatype. 32-bit or larget doesn't need
710 // this as those are legal types and will be handled by isel directly.
711 MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
712 unsigned BitWidth = KnownZero.getBitWidth();
713 if (VT == MVT::v8i8 || VT == MVT::v16i8) {
714 assert(BitWidth >= 8 && "Unexpected width!");
715 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
716 KnownZero |= Mask;
717 } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
718 assert(BitWidth >= 16 && "Unexpected width!");
719 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
720 KnownZero |= Mask;
721 }
722 break;
723 } break;
724 }
725 }
726 }
727}
728
729MVT AArch64TargetLowering::getScalarShiftAmountTy(EVT LHSTy) const {
730 return MVT::i64;
731}
732
Tim Northover3b0846e2014-05-24 12:50:23 +0000733FastISel *
734AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
735 const TargetLibraryInfo *libInfo) const {
736 return AArch64::createFastISel(funcInfo, libInfo);
737}
738
739const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
740 switch (Opcode) {
741 default:
742 return nullptr;
743 case AArch64ISD::CALL: return "AArch64ISD::CALL";
744 case AArch64ISD::ADRP: return "AArch64ISD::ADRP";
745 case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow";
746 case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot";
747 case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG";
748 case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND";
749 case AArch64ISD::CSEL: return "AArch64ISD::CSEL";
750 case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL";
751 case AArch64ISD::CSINV: return "AArch64ISD::CSINV";
752 case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG";
753 case AArch64ISD::CSINC: return "AArch64ISD::CSINC";
754 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
755 case AArch64ISD::TLSDESC_CALL: return "AArch64ISD::TLSDESC_CALL";
756 case AArch64ISD::ADC: return "AArch64ISD::ADC";
757 case AArch64ISD::SBC: return "AArch64ISD::SBC";
758 case AArch64ISD::ADDS: return "AArch64ISD::ADDS";
759 case AArch64ISD::SUBS: return "AArch64ISD::SUBS";
760 case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
761 case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
762 case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
763 case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
764 case AArch64ISD::FMIN: return "AArch64ISD::FMIN";
765 case AArch64ISD::FMAX: return "AArch64ISD::FMAX";
766 case AArch64ISD::DUP: return "AArch64ISD::DUP";
767 case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8";
768 case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16";
769 case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32";
770 case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64";
771 case AArch64ISD::MOVI: return "AArch64ISD::MOVI";
772 case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift";
773 case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit";
774 case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl";
775 case AArch64ISD::FMOV: return "AArch64ISD::FMOV";
776 case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift";
777 case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl";
778 case AArch64ISD::BICi: return "AArch64ISD::BICi";
779 case AArch64ISD::ORRi: return "AArch64ISD::ORRi";
780 case AArch64ISD::BSL: return "AArch64ISD::BSL";
781 case AArch64ISD::NEG: return "AArch64ISD::NEG";
782 case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
783 case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1";
784 case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2";
785 case AArch64ISD::UZP1: return "AArch64ISD::UZP1";
786 case AArch64ISD::UZP2: return "AArch64ISD::UZP2";
787 case AArch64ISD::TRN1: return "AArch64ISD::TRN1";
788 case AArch64ISD::TRN2: return "AArch64ISD::TRN2";
789 case AArch64ISD::REV16: return "AArch64ISD::REV16";
790 case AArch64ISD::REV32: return "AArch64ISD::REV32";
791 case AArch64ISD::REV64: return "AArch64ISD::REV64";
792 case AArch64ISD::EXT: return "AArch64ISD::EXT";
793 case AArch64ISD::VSHL: return "AArch64ISD::VSHL";
794 case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR";
795 case AArch64ISD::VASHR: return "AArch64ISD::VASHR";
796 case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ";
797 case AArch64ISD::CMGE: return "AArch64ISD::CMGE";
798 case AArch64ISD::CMGT: return "AArch64ISD::CMGT";
799 case AArch64ISD::CMHI: return "AArch64ISD::CMHI";
800 case AArch64ISD::CMHS: return "AArch64ISD::CMHS";
801 case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ";
802 case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE";
803 case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT";
804 case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz";
805 case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz";
806 case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz";
807 case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz";
808 case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz";
809 case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz";
810 case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz";
811 case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz";
812 case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz";
813 case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz";
814 case AArch64ISD::NOT: return "AArch64ISD::NOT";
815 case AArch64ISD::BIT: return "AArch64ISD::BIT";
816 case AArch64ISD::CBZ: return "AArch64ISD::CBZ";
817 case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ";
818 case AArch64ISD::TBZ: return "AArch64ISD::TBZ";
819 case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ";
820 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
821 case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
822 case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
Asiri Rathnayake530b3ed2014-10-01 09:59:45 +0000823 case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST";
Tim Northover3b0846e2014-05-24 12:50:23 +0000824 case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
825 case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
826 case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
827 case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I";
828 case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I";
829 case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
830 case AArch64ISD::LD2post: return "AArch64ISD::LD2post";
831 case AArch64ISD::LD3post: return "AArch64ISD::LD3post";
832 case AArch64ISD::LD4post: return "AArch64ISD::LD4post";
833 case AArch64ISD::ST2post: return "AArch64ISD::ST2post";
834 case AArch64ISD::ST3post: return "AArch64ISD::ST3post";
835 case AArch64ISD::ST4post: return "AArch64ISD::ST4post";
836 case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post";
837 case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post";
838 case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post";
839 case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post";
840 case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post";
841 case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post";
842 case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost";
843 case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost";
844 case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost";
845 case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost";
846 case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost";
847 case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost";
848 case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost";
849 case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost";
850 case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
851 case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
852 case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
Chad Rosierd9d0f862014-10-08 02:31:24 +0000853 case AArch64ISD::SMULL: return "AArch64ISD::SMULL";
854 case AArch64ISD::UMULL: return "AArch64ISD::UMULL";
Tim Northover3b0846e2014-05-24 12:50:23 +0000855 }
856}
857
858MachineBasicBlock *
859AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
860 MachineBasicBlock *MBB) const {
861 // We materialise the F128CSEL pseudo-instruction as some control flow and a
862 // phi node:
863
864 // OrigBB:
865 // [... previous instrs leading to comparison ...]
866 // b.ne TrueBB
867 // b EndBB
868 // TrueBB:
869 // ; Fallthrough
870 // EndBB:
871 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
872
Tim Northover3b0846e2014-05-24 12:50:23 +0000873 MachineFunction *MF = MBB->getParent();
Eric Christopher905f12d2015-01-29 00:19:42 +0000874 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +0000875 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
876 DebugLoc DL = MI->getDebugLoc();
877 MachineFunction::iterator It = MBB;
878 ++It;
879
880 unsigned DestReg = MI->getOperand(0).getReg();
881 unsigned IfTrueReg = MI->getOperand(1).getReg();
882 unsigned IfFalseReg = MI->getOperand(2).getReg();
883 unsigned CondCode = MI->getOperand(3).getImm();
884 bool NZCVKilled = MI->getOperand(4).isKill();
885
886 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
887 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
888 MF->insert(It, TrueBB);
889 MF->insert(It, EndBB);
890
891 // Transfer rest of current basic-block to EndBB
892 EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
893 MBB->end());
894 EndBB->transferSuccessorsAndUpdatePHIs(MBB);
895
896 BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
897 BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
898 MBB->addSuccessor(TrueBB);
899 MBB->addSuccessor(EndBB);
900
901 // TrueBB falls through to the end.
902 TrueBB->addSuccessor(EndBB);
903
904 if (!NZCVKilled) {
905 TrueBB->addLiveIn(AArch64::NZCV);
906 EndBB->addLiveIn(AArch64::NZCV);
907 }
908
909 BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
910 .addReg(IfTrueReg)
911 .addMBB(TrueBB)
912 .addReg(IfFalseReg)
913 .addMBB(MBB);
914
915 MI->eraseFromParent();
916 return EndBB;
917}
918
919MachineBasicBlock *
920AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
921 MachineBasicBlock *BB) const {
922 switch (MI->getOpcode()) {
923 default:
924#ifndef NDEBUG
925 MI->dump();
926#endif
Craig Topper35b2f752014-06-19 06:10:58 +0000927 llvm_unreachable("Unexpected instruction for custom inserter!");
Tim Northover3b0846e2014-05-24 12:50:23 +0000928
929 case AArch64::F128CSEL:
930 return EmitF128CSEL(MI, BB);
931
932 case TargetOpcode::STACKMAP:
933 case TargetOpcode::PATCHPOINT:
934 return emitPatchPoint(MI, BB);
935 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000936}
937
938//===----------------------------------------------------------------------===//
939// AArch64 Lowering private implementation.
940//===----------------------------------------------------------------------===//
941
942//===----------------------------------------------------------------------===//
943// Lowering Code
944//===----------------------------------------------------------------------===//
945
946/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
947/// CC
948static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
949 switch (CC) {
950 default:
951 llvm_unreachable("Unknown condition code!");
952 case ISD::SETNE:
953 return AArch64CC::NE;
954 case ISD::SETEQ:
955 return AArch64CC::EQ;
956 case ISD::SETGT:
957 return AArch64CC::GT;
958 case ISD::SETGE:
959 return AArch64CC::GE;
960 case ISD::SETLT:
961 return AArch64CC::LT;
962 case ISD::SETLE:
963 return AArch64CC::LE;
964 case ISD::SETUGT:
965 return AArch64CC::HI;
966 case ISD::SETUGE:
967 return AArch64CC::HS;
968 case ISD::SETULT:
969 return AArch64CC::LO;
970 case ISD::SETULE:
971 return AArch64CC::LS;
972 }
973}
974
975/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
976static void changeFPCCToAArch64CC(ISD::CondCode CC,
977 AArch64CC::CondCode &CondCode,
978 AArch64CC::CondCode &CondCode2) {
979 CondCode2 = AArch64CC::AL;
980 switch (CC) {
981 default:
982 llvm_unreachable("Unknown FP condition!");
983 case ISD::SETEQ:
984 case ISD::SETOEQ:
985 CondCode = AArch64CC::EQ;
986 break;
987 case ISD::SETGT:
988 case ISD::SETOGT:
989 CondCode = AArch64CC::GT;
990 break;
991 case ISD::SETGE:
992 case ISD::SETOGE:
993 CondCode = AArch64CC::GE;
994 break;
995 case ISD::SETOLT:
996 CondCode = AArch64CC::MI;
997 break;
998 case ISD::SETOLE:
999 CondCode = AArch64CC::LS;
1000 break;
1001 case ISD::SETONE:
1002 CondCode = AArch64CC::MI;
1003 CondCode2 = AArch64CC::GT;
1004 break;
1005 case ISD::SETO:
1006 CondCode = AArch64CC::VC;
1007 break;
1008 case ISD::SETUO:
1009 CondCode = AArch64CC::VS;
1010 break;
1011 case ISD::SETUEQ:
1012 CondCode = AArch64CC::EQ;
1013 CondCode2 = AArch64CC::VS;
1014 break;
1015 case ISD::SETUGT:
1016 CondCode = AArch64CC::HI;
1017 break;
1018 case ISD::SETUGE:
1019 CondCode = AArch64CC::PL;
1020 break;
1021 case ISD::SETLT:
1022 case ISD::SETULT:
1023 CondCode = AArch64CC::LT;
1024 break;
1025 case ISD::SETLE:
1026 case ISD::SETULE:
1027 CondCode = AArch64CC::LE;
1028 break;
1029 case ISD::SETNE:
1030 case ISD::SETUNE:
1031 CondCode = AArch64CC::NE;
1032 break;
1033 }
1034}
1035
1036/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1037/// CC usable with the vector instructions. Fewer operations are available
1038/// without a real NZCV register, so we have to use less efficient combinations
1039/// to get the same effect.
1040static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1041 AArch64CC::CondCode &CondCode,
1042 AArch64CC::CondCode &CondCode2,
1043 bool &Invert) {
1044 Invert = false;
1045 switch (CC) {
1046 default:
1047 // Mostly the scalar mappings work fine.
1048 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1049 break;
1050 case ISD::SETUO:
1051 Invert = true; // Fallthrough
1052 case ISD::SETO:
1053 CondCode = AArch64CC::MI;
1054 CondCode2 = AArch64CC::GE;
1055 break;
1056 case ISD::SETUEQ:
1057 case ISD::SETULT:
1058 case ISD::SETULE:
1059 case ISD::SETUGT:
1060 case ISD::SETUGE:
1061 // All of the compare-mask comparisons are ordered, but we can switch
1062 // between the two by a double inversion. E.g. ULE == !OGT.
1063 Invert = true;
1064 changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
1065 break;
1066 }
1067}
1068
1069static bool isLegalArithImmed(uint64_t C) {
1070 // Matches AArch64DAGToDAGISel::SelectArithImmed().
1071 return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1072}
1073
1074static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1075 SDLoc dl, SelectionDAG &DAG) {
1076 EVT VT = LHS.getValueType();
1077
1078 if (VT.isFloatingPoint())
1079 return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
1080
1081 // The CMP instruction is just an alias for SUBS, and representing it as
1082 // SUBS means that it's possible to get CSE with subtract operations.
1083 // A later phase can perform the optimization of setting the destination
1084 // register to WZR/XZR if it ends up being unused.
1085 unsigned Opcode = AArch64ISD::SUBS;
1086
1087 if (RHS.getOpcode() == ISD::SUB && isa<ConstantSDNode>(RHS.getOperand(0)) &&
1088 cast<ConstantSDNode>(RHS.getOperand(0))->getZExtValue() == 0 &&
1089 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1090 // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
1091 // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
1092 // can be set differently by this operation. It comes down to whether
1093 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1094 // everything is fine. If not then the optimization is wrong. Thus general
1095 // comparisons are only valid if op2 != 0.
1096
1097 // So, finally, the only LLVM-native comparisons that don't mention C and V
1098 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1099 // the absence of information about op2.
1100 Opcode = AArch64ISD::ADDS;
1101 RHS = RHS.getOperand(1);
1102 } else if (LHS.getOpcode() == ISD::AND && isa<ConstantSDNode>(RHS) &&
1103 cast<ConstantSDNode>(RHS)->getZExtValue() == 0 &&
1104 !isUnsignedIntSetCC(CC)) {
1105 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1106 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1107 // of the signed comparisons.
1108 Opcode = AArch64ISD::ANDS;
1109 RHS = LHS.getOperand(1);
1110 LHS = LHS.getOperand(0);
1111 }
1112
1113 return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS)
1114 .getValue(1);
1115}
1116
1117static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1118 SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) {
David Xuee978202014-08-28 04:59:53 +00001119 SDValue Cmp;
1120 AArch64CC::CondCode AArch64CC;
Tim Northover3b0846e2014-05-24 12:50:23 +00001121 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1122 EVT VT = RHS.getValueType();
1123 uint64_t C = RHSC->getZExtValue();
1124 if (!isLegalArithImmed(C)) {
1125 // Constant does not fit, try adjusting it by one?
1126 switch (CC) {
1127 default:
1128 break;
1129 case ISD::SETLT:
1130 case ISD::SETGE:
1131 if ((VT == MVT::i32 && C != 0x80000000 &&
1132 isLegalArithImmed((uint32_t)(C - 1))) ||
1133 (VT == MVT::i64 && C != 0x80000000ULL &&
1134 isLegalArithImmed(C - 1ULL))) {
1135 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1136 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1137 RHS = DAG.getConstant(C, VT);
1138 }
1139 break;
1140 case ISD::SETULT:
1141 case ISD::SETUGE:
1142 if ((VT == MVT::i32 && C != 0 &&
1143 isLegalArithImmed((uint32_t)(C - 1))) ||
1144 (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1145 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1146 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1147 RHS = DAG.getConstant(C, VT);
1148 }
1149 break;
1150 case ISD::SETLE:
1151 case ISD::SETGT:
Oliver Stannard269a275c2014-11-03 15:28:40 +00001152 if ((VT == MVT::i32 && C != INT32_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001153 isLegalArithImmed((uint32_t)(C + 1))) ||
Oliver Stannard269a275c2014-11-03 15:28:40 +00001154 (VT == MVT::i64 && C != INT64_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001155 isLegalArithImmed(C + 1ULL))) {
1156 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1157 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1158 RHS = DAG.getConstant(C, VT);
1159 }
1160 break;
1161 case ISD::SETULE:
1162 case ISD::SETUGT:
Oliver Stannard269a275c2014-11-03 15:28:40 +00001163 if ((VT == MVT::i32 && C != UINT32_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001164 isLegalArithImmed((uint32_t)(C + 1))) ||
Oliver Stannard269a275c2014-11-03 15:28:40 +00001165 (VT == MVT::i64 && C != UINT64_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001166 isLegalArithImmed(C + 1ULL))) {
1167 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1168 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1169 RHS = DAG.getConstant(C, VT);
1170 }
1171 break;
1172 }
1173 }
1174 }
David Xuee978202014-08-28 04:59:53 +00001175 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
1176 // For the i8 operand, the largest immediate is 255, so this can be easily
1177 // encoded in the compare instruction. For the i16 operand, however, the
1178 // largest immediate cannot be encoded in the compare.
1179 // Therefore, use a sign extending load and cmn to avoid materializing the -1
1180 // constant. For example,
1181 // movz w1, #65535
1182 // ldrh w0, [x0, #0]
1183 // cmp w0, w1
1184 // >
1185 // ldrsh w0, [x0, #0]
1186 // cmn w0, #1
1187 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
1188 // if and only if (sext LHS) == (sext RHS). The checks are in place to ensure
1189 // both the LHS and RHS are truely zero extended and to make sure the
1190 // transformation is profitable.
1191 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
1192 if ((cast<ConstantSDNode>(RHS)->getZExtValue() >> 16 == 0) &&
1193 isa<LoadSDNode>(LHS)) {
1194 if (cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
1195 cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
1196 LHS.getNode()->hasNUsesOfValue(1, 0)) {
1197 int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
1198 if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
1199 SDValue SExt =
1200 DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
1201 DAG.getValueType(MVT::i16));
1202 Cmp = emitComparison(SExt,
1203 DAG.getConstant(ValueofRHS, RHS.getValueType()),
1204 CC, dl, DAG);
1205 AArch64CC = changeIntCCToAArch64CC(CC);
1206 AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
1207 return Cmp;
1208 }
1209 }
1210 }
1211 }
1212 Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
1213 AArch64CC = changeIntCCToAArch64CC(CC);
Tim Northover3b0846e2014-05-24 12:50:23 +00001214 AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
1215 return Cmp;
1216}
1217
1218static std::pair<SDValue, SDValue>
1219getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
1220 assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
1221 "Unsupported value type");
1222 SDValue Value, Overflow;
1223 SDLoc DL(Op);
1224 SDValue LHS = Op.getOperand(0);
1225 SDValue RHS = Op.getOperand(1);
1226 unsigned Opc = 0;
1227 switch (Op.getOpcode()) {
1228 default:
1229 llvm_unreachable("Unknown overflow instruction!");
1230 case ISD::SADDO:
1231 Opc = AArch64ISD::ADDS;
1232 CC = AArch64CC::VS;
1233 break;
1234 case ISD::UADDO:
1235 Opc = AArch64ISD::ADDS;
1236 CC = AArch64CC::HS;
1237 break;
1238 case ISD::SSUBO:
1239 Opc = AArch64ISD::SUBS;
1240 CC = AArch64CC::VS;
1241 break;
1242 case ISD::USUBO:
1243 Opc = AArch64ISD::SUBS;
1244 CC = AArch64CC::LO;
1245 break;
1246 // Multiply needs a little bit extra work.
1247 case ISD::SMULO:
1248 case ISD::UMULO: {
1249 CC = AArch64CC::NE;
1250 bool IsSigned = (Op.getOpcode() == ISD::SMULO) ? true : false;
1251 if (Op.getValueType() == MVT::i32) {
1252 unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1253 // For a 32 bit multiply with overflow check we want the instruction
1254 // selector to generate a widening multiply (SMADDL/UMADDL). For that we
1255 // need to generate the following pattern:
1256 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
1257 LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
1258 RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
1259 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1260 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
1261 DAG.getConstant(0, MVT::i64));
1262 // On AArch64 the upper 32 bits are always zero extended for a 32 bit
1263 // operation. We need to clear out the upper 32 bits, because we used a
1264 // widening multiply that wrote all 64 bits. In the end this should be a
1265 // noop.
1266 Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
1267 if (IsSigned) {
1268 // The signed overflow check requires more than just a simple check for
1269 // any bit set in the upper 32 bits of the result. These bits could be
1270 // just the sign bits of a negative number. To perform the overflow
1271 // check we have to arithmetic shift right the 32nd bit of the result by
1272 // 31 bits. Then we compare the result to the upper 32 bits.
1273 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
1274 DAG.getConstant(32, MVT::i64));
1275 UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
1276 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
1277 DAG.getConstant(31, MVT::i64));
1278 // It is important that LowerBits is last, otherwise the arithmetic
1279 // shift will not be folded into the compare (SUBS).
1280 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
1281 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1282 .getValue(1);
1283 } else {
1284 // The overflow check for unsigned multiply is easy. We only need to
1285 // check if any of the upper 32 bits are set. This can be done with a
1286 // CMP (shifted register). For that we need to generate the following
1287 // pattern:
1288 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
1289 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
1290 DAG.getConstant(32, MVT::i64));
1291 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1292 Overflow =
1293 DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
1294 UpperBits).getValue(1);
1295 }
1296 break;
1297 }
1298 assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
1299 // For the 64 bit multiply
1300 Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1301 if (IsSigned) {
1302 SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
1303 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
1304 DAG.getConstant(63, MVT::i64));
1305 // It is important that LowerBits is last, otherwise the arithmetic
1306 // shift will not be folded into the compare (SUBS).
1307 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1308 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1309 .getValue(1);
1310 } else {
1311 SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
1312 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1313 Overflow =
1314 DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
1315 UpperBits).getValue(1);
1316 }
1317 break;
1318 }
1319 } // switch (...)
1320
1321 if (Opc) {
1322 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
1323
1324 // Emit the AArch64 operation with overflow check.
1325 Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
1326 Overflow = Value.getValue(1);
1327 }
1328 return std::make_pair(Value, Overflow);
1329}
1330
1331SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
1332 RTLIB::Libcall Call) const {
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00001333 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
Tim Northover3b0846e2014-05-24 12:50:23 +00001334 return makeLibCall(DAG, Call, MVT::f128, &Ops[0], Ops.size(), false,
1335 SDLoc(Op)).first;
1336}
1337
1338static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
1339 SDValue Sel = Op.getOperand(0);
1340 SDValue Other = Op.getOperand(1);
1341
1342 // If neither operand is a SELECT_CC, give up.
1343 if (Sel.getOpcode() != ISD::SELECT_CC)
1344 std::swap(Sel, Other);
1345 if (Sel.getOpcode() != ISD::SELECT_CC)
1346 return Op;
1347
1348 // The folding we want to perform is:
1349 // (xor x, (select_cc a, b, cc, 0, -1) )
1350 // -->
1351 // (csel x, (xor x, -1), cc ...)
1352 //
1353 // The latter will get matched to a CSINV instruction.
1354
1355 ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
1356 SDValue LHS = Sel.getOperand(0);
1357 SDValue RHS = Sel.getOperand(1);
1358 SDValue TVal = Sel.getOperand(2);
1359 SDValue FVal = Sel.getOperand(3);
1360 SDLoc dl(Sel);
1361
1362 // FIXME: This could be generalized to non-integer comparisons.
1363 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
1364 return Op;
1365
1366 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
1367 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
1368
1369 // The the values aren't constants, this isn't the pattern we're looking for.
1370 if (!CFVal || !CTVal)
1371 return Op;
1372
1373 // We can commute the SELECT_CC by inverting the condition. This
1374 // might be needed to make this fit into a CSINV pattern.
1375 if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
1376 std::swap(TVal, FVal);
1377 std::swap(CTVal, CFVal);
1378 CC = ISD::getSetCCInverse(CC, true);
1379 }
1380
1381 // If the constants line up, perform the transform!
1382 if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
1383 SDValue CCVal;
1384 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
1385
1386 FVal = Other;
1387 TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
1388 DAG.getConstant(-1ULL, Other.getValueType()));
1389
1390 return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
1391 CCVal, Cmp);
1392 }
1393
1394 return Op;
1395}
1396
1397static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
1398 EVT VT = Op.getValueType();
1399
1400 // Let legalize expand this if it isn't a legal type yet.
1401 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
1402 return SDValue();
1403
1404 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
1405
1406 unsigned Opc;
1407 bool ExtraOp = false;
1408 switch (Op.getOpcode()) {
1409 default:
Craig Topper2a30d782014-06-18 05:05:13 +00001410 llvm_unreachable("Invalid code");
Tim Northover3b0846e2014-05-24 12:50:23 +00001411 case ISD::ADDC:
1412 Opc = AArch64ISD::ADDS;
1413 break;
1414 case ISD::SUBC:
1415 Opc = AArch64ISD::SUBS;
1416 break;
1417 case ISD::ADDE:
1418 Opc = AArch64ISD::ADCS;
1419 ExtraOp = true;
1420 break;
1421 case ISD::SUBE:
1422 Opc = AArch64ISD::SBCS;
1423 ExtraOp = true;
1424 break;
1425 }
1426
1427 if (!ExtraOp)
1428 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
1429 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
1430 Op.getOperand(2));
1431}
1432
1433static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
1434 // Let legalize expand this if it isn't a legal type yet.
1435 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
1436 return SDValue();
1437
1438 AArch64CC::CondCode CC;
1439 // The actual operation that sets the overflow or carry flag.
1440 SDValue Value, Overflow;
1441 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
1442
1443 // We use 0 and 1 as false and true values.
1444 SDValue TVal = DAG.getConstant(1, MVT::i32);
1445 SDValue FVal = DAG.getConstant(0, MVT::i32);
1446
1447 // We use an inverted condition, because the conditional select is inverted
1448 // too. This will allow it to be selected to a single instruction:
1449 // CSINC Wd, WZR, WZR, invert(cond).
1450 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), MVT::i32);
1451 Overflow = DAG.getNode(AArch64ISD::CSEL, SDLoc(Op), MVT::i32, FVal, TVal,
1452 CCVal, Overflow);
1453
1454 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
1455 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow);
1456}
1457
1458// Prefetch operands are:
1459// 1: Address to prefetch
1460// 2: bool isWrite
1461// 3: int locality (0 = no locality ... 3 = extreme locality)
1462// 4: bool isDataCache
1463static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
1464 SDLoc DL(Op);
1465 unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1466 unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
Yi Konge56de692014-08-05 12:46:47 +00001467 unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00001468
1469 bool IsStream = !Locality;
1470 // When the locality number is set
1471 if (Locality) {
1472 // The front-end should have filtered out the out-of-range values
1473 assert(Locality <= 3 && "Prefetch locality out-of-range");
1474 // The locality degree is the opposite of the cache speed.
1475 // Put the number the other way around.
1476 // The encoding starts at 0 for level 1
1477 Locality = 3 - Locality;
1478 }
1479
1480 // built the mask value encoding the expected behavior.
1481 unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
Yi Konge56de692014-08-05 12:46:47 +00001482 (!IsData << 3) | // IsDataCache bit
Tim Northover3b0846e2014-05-24 12:50:23 +00001483 (Locality << 1) | // Cache level bits
1484 (unsigned)IsStream; // Stream bit
1485 return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
1486 DAG.getConstant(PrfOp, MVT::i32), Op.getOperand(1));
1487}
1488
1489SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
1490 SelectionDAG &DAG) const {
1491 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1492
1493 RTLIB::Libcall LC;
1494 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1495
1496 return LowerF128Call(Op, DAG, LC);
1497}
1498
1499SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
1500 SelectionDAG &DAG) const {
1501 if (Op.getOperand(0).getValueType() != MVT::f128) {
1502 // It's legal except when f128 is involved
1503 return Op;
1504 }
1505
1506 RTLIB::Libcall LC;
1507 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1508
1509 // FP_ROUND node has a second operand indicating whether it is known to be
1510 // precise. That doesn't take part in the LibCall so we can't directly use
1511 // LowerF128Call.
1512 SDValue SrcVal = Op.getOperand(0);
1513 return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
1514 /*isSigned*/ false, SDLoc(Op)).first;
1515}
1516
1517static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1518 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1519 // Any additional optimization in this function should be recorded
1520 // in the cost tables.
1521 EVT InVT = Op.getOperand(0).getValueType();
1522 EVT VT = Op.getValueType();
1523
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001524 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001525 SDLoc dl(Op);
1526 SDValue Cv =
1527 DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
1528 Op.getOperand(0));
1529 return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001530 }
1531
1532 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001533 SDLoc dl(Op);
Oliver Stannard89d15422014-08-27 16:16:04 +00001534 MVT ExtVT =
1535 MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
1536 VT.getVectorNumElements());
1537 SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
Tim Northover3b0846e2014-05-24 12:50:23 +00001538 return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
1539 }
1540
1541 // Type changing conversions are illegal.
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001542 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00001543}
1544
1545SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
1546 SelectionDAG &DAG) const {
1547 if (Op.getOperand(0).getValueType().isVector())
1548 return LowerVectorFP_TO_INT(Op, DAG);
1549
1550 if (Op.getOperand(0).getValueType() != MVT::f128) {
1551 // It's legal except when f128 is involved
1552 return Op;
1553 }
1554
1555 RTLIB::Libcall LC;
1556 if (Op.getOpcode() == ISD::FP_TO_SINT)
1557 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1558 else
1559 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1560
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00001561 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
Tim Northover3b0846e2014-05-24 12:50:23 +00001562 return makeLibCall(DAG, LC, Op.getValueType(), &Ops[0], Ops.size(), false,
1563 SDLoc(Op)).first;
1564}
1565
1566static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1567 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1568 // Any additional optimization in this function should be recorded
1569 // in the cost tables.
1570 EVT VT = Op.getValueType();
1571 SDLoc dl(Op);
1572 SDValue In = Op.getOperand(0);
1573 EVT InVT = In.getValueType();
1574
Tim Northoveref0d7602014-06-15 09:27:06 +00001575 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1576 MVT CastVT =
1577 MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
1578 InVT.getVectorNumElements());
1579 In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
1580 return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0));
Tim Northover3b0846e2014-05-24 12:50:23 +00001581 }
1582
Tim Northoveref0d7602014-06-15 09:27:06 +00001583 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
1584 unsigned CastOpc =
1585 Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1586 EVT CastVT = VT.changeVectorElementTypeToInteger();
1587 In = DAG.getNode(CastOpc, dl, CastVT, In);
1588 return DAG.getNode(Op.getOpcode(), dl, VT, In);
Tim Northover3b0846e2014-05-24 12:50:23 +00001589 }
1590
Tim Northoveref0d7602014-06-15 09:27:06 +00001591 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00001592}
1593
1594SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
1595 SelectionDAG &DAG) const {
1596 if (Op.getValueType().isVector())
1597 return LowerVectorINT_TO_FP(Op, DAG);
1598
1599 // i128 conversions are libcalls.
1600 if (Op.getOperand(0).getValueType() == MVT::i128)
1601 return SDValue();
1602
1603 // Other conversions are legal, unless it's to the completely software-based
1604 // fp128.
1605 if (Op.getValueType() != MVT::f128)
1606 return Op;
1607
1608 RTLIB::Libcall LC;
1609 if (Op.getOpcode() == ISD::SINT_TO_FP)
1610 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1611 else
1612 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1613
1614 return LowerF128Call(Op, DAG, LC);
1615}
1616
1617SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
1618 SelectionDAG &DAG) const {
1619 // For iOS, we want to call an alternative entry point: __sincos_stret,
1620 // which returns the values in two S / D registers.
1621 SDLoc dl(Op);
1622 SDValue Arg = Op.getOperand(0);
1623 EVT ArgVT = Arg.getValueType();
1624 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1625
1626 ArgListTy Args;
1627 ArgListEntry Entry;
1628
1629 Entry.Node = Arg;
1630 Entry.Ty = ArgTy;
1631 Entry.isSExt = false;
1632 Entry.isZExt = false;
1633 Args.push_back(Entry);
1634
1635 const char *LibcallName =
1636 (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
1637 SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
1638
Reid Kleckner343c3952014-11-20 23:51:47 +00001639 StructType *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
Tim Northover3b0846e2014-05-24 12:50:23 +00001640 TargetLowering::CallLoweringInfo CLI(DAG);
1641 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
Juergen Ributzka3bd03c72014-07-01 22:01:54 +00001642 .setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args), 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00001643
1644 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1645 return CallResult.first;
1646}
1647
Tim Northoverf8bfe212014-07-18 13:07:05 +00001648static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
1649 if (Op.getValueType() != MVT::f16)
1650 return SDValue();
1651
1652 assert(Op.getOperand(0).getValueType() == MVT::i16);
1653 SDLoc DL(Op);
1654
1655 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
1656 Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
1657 return SDValue(
1658 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
1659 DAG.getTargetConstant(AArch64::hsub, MVT::i32)),
1660 0);
1661}
1662
Chad Rosierd9d0f862014-10-08 02:31:24 +00001663static EVT getExtensionTo64Bits(const EVT &OrigVT) {
1664 if (OrigVT.getSizeInBits() >= 64)
1665 return OrigVT;
1666
1667 assert(OrigVT.isSimple() && "Expecting a simple value type");
1668
1669 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
1670 switch (OrigSimpleTy) {
1671 default: llvm_unreachable("Unexpected Vector Type");
1672 case MVT::v2i8:
1673 case MVT::v2i16:
1674 return MVT::v2i32;
1675 case MVT::v4i8:
1676 return MVT::v4i16;
1677 }
1678}
1679
1680static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
1681 const EVT &OrigTy,
1682 const EVT &ExtTy,
1683 unsigned ExtOpcode) {
1684 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
1685 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
1686 // 64-bits we need to insert a new extension so that it will be 64-bits.
1687 assert(ExtTy.is128BitVector() && "Unexpected extension size");
1688 if (OrigTy.getSizeInBits() >= 64)
1689 return N;
1690
1691 // Must extend size to at least 64 bits to be used as an operand for VMULL.
1692 EVT NewVT = getExtensionTo64Bits(OrigTy);
1693
1694 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
1695}
1696
1697static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
1698 bool isSigned) {
1699 EVT VT = N->getValueType(0);
1700
1701 if (N->getOpcode() != ISD::BUILD_VECTOR)
1702 return false;
1703
1704 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1705 SDNode *Elt = N->getOperand(i).getNode();
1706 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
1707 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
1708 unsigned HalfSize = EltSize / 2;
1709 if (isSigned) {
1710 if (!isIntN(HalfSize, C->getSExtValue()))
1711 return false;
1712 } else {
1713 if (!isUIntN(HalfSize, C->getZExtValue()))
1714 return false;
1715 }
1716 continue;
1717 }
1718 return false;
1719 }
1720
1721 return true;
1722}
1723
1724static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
1725 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
1726 return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
1727 N->getOperand(0)->getValueType(0),
1728 N->getValueType(0),
1729 N->getOpcode());
1730
1731 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
1732 EVT VT = N->getValueType(0);
1733 unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
1734 unsigned NumElts = VT.getVectorNumElements();
1735 MVT TruncVT = MVT::getIntegerVT(EltSize);
1736 SmallVector<SDValue, 8> Ops;
1737 for (unsigned i = 0; i != NumElts; ++i) {
1738 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
1739 const APInt &CInt = C->getAPIntValue();
1740 // Element types smaller than 32 bits are not legal, so use i32 elements.
1741 // The values are implicitly truncated so sext vs. zext doesn't matter.
1742 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
1743 }
1744 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
1745 MVT::getVectorVT(TruncVT, NumElts), Ops);
1746}
1747
1748static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
1749 if (N->getOpcode() == ISD::SIGN_EXTEND)
1750 return true;
1751 if (isExtendedBUILD_VECTOR(N, DAG, true))
1752 return true;
1753 return false;
1754}
1755
1756static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
1757 if (N->getOpcode() == ISD::ZERO_EXTEND)
1758 return true;
1759 if (isExtendedBUILD_VECTOR(N, DAG, false))
1760 return true;
1761 return false;
1762}
1763
1764static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
1765 unsigned Opcode = N->getOpcode();
1766 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
1767 SDNode *N0 = N->getOperand(0).getNode();
1768 SDNode *N1 = N->getOperand(1).getNode();
1769 return N0->hasOneUse() && N1->hasOneUse() &&
1770 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
1771 }
1772 return false;
1773}
1774
1775static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
1776 unsigned Opcode = N->getOpcode();
1777 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
1778 SDNode *N0 = N->getOperand(0).getNode();
1779 SDNode *N1 = N->getOperand(1).getNode();
1780 return N0->hasOneUse() && N1->hasOneUse() &&
1781 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
1782 }
1783 return false;
1784}
1785
1786static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
1787 // Multiplications are only custom-lowered for 128-bit vectors so that
1788 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
1789 EVT VT = Op.getValueType();
1790 assert(VT.is128BitVector() && VT.isInteger() &&
1791 "unexpected type for custom-lowering ISD::MUL");
1792 SDNode *N0 = Op.getOperand(0).getNode();
1793 SDNode *N1 = Op.getOperand(1).getNode();
1794 unsigned NewOpc = 0;
1795 bool isMLA = false;
1796 bool isN0SExt = isSignExtended(N0, DAG);
1797 bool isN1SExt = isSignExtended(N1, DAG);
1798 if (isN0SExt && isN1SExt)
1799 NewOpc = AArch64ISD::SMULL;
1800 else {
1801 bool isN0ZExt = isZeroExtended(N0, DAG);
1802 bool isN1ZExt = isZeroExtended(N1, DAG);
1803 if (isN0ZExt && isN1ZExt)
1804 NewOpc = AArch64ISD::UMULL;
1805 else if (isN1SExt || isN1ZExt) {
1806 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
1807 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
1808 if (isN1SExt && isAddSubSExt(N0, DAG)) {
1809 NewOpc = AArch64ISD::SMULL;
1810 isMLA = true;
1811 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
1812 NewOpc = AArch64ISD::UMULL;
1813 isMLA = true;
1814 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
1815 std::swap(N0, N1);
1816 NewOpc = AArch64ISD::UMULL;
1817 isMLA = true;
1818 }
1819 }
1820
1821 if (!NewOpc) {
1822 if (VT == MVT::v2i64)
1823 // Fall through to expand this. It is not legal.
1824 return SDValue();
1825 else
1826 // Other vector multiplications are legal.
1827 return Op;
1828 }
1829 }
1830
1831 // Legalize to a S/UMULL instruction
1832 SDLoc DL(Op);
1833 SDValue Op0;
1834 SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
1835 if (!isMLA) {
1836 Op0 = skipExtensionForVectorMULL(N0, DAG);
1837 assert(Op0.getValueType().is64BitVector() &&
1838 Op1.getValueType().is64BitVector() &&
1839 "unexpected types for extended operands to VMULL");
1840 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
1841 }
1842 // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
1843 // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
1844 // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
1845 SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
1846 SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
1847 EVT Op1VT = Op1.getValueType();
1848 return DAG.getNode(N0->getOpcode(), DL, VT,
1849 DAG.getNode(NewOpc, DL, VT,
1850 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
1851 DAG.getNode(NewOpc, DL, VT,
1852 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
1853}
Tim Northoverf8bfe212014-07-18 13:07:05 +00001854
Tim Northover3b0846e2014-05-24 12:50:23 +00001855SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
1856 SelectionDAG &DAG) const {
1857 switch (Op.getOpcode()) {
1858 default:
1859 llvm_unreachable("unimplemented operand");
1860 return SDValue();
Tim Northoverf8bfe212014-07-18 13:07:05 +00001861 case ISD::BITCAST:
1862 return LowerBITCAST(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00001863 case ISD::GlobalAddress:
1864 return LowerGlobalAddress(Op, DAG);
1865 case ISD::GlobalTLSAddress:
1866 return LowerGlobalTLSAddress(Op, DAG);
1867 case ISD::SETCC:
1868 return LowerSETCC(Op, DAG);
1869 case ISD::BR_CC:
1870 return LowerBR_CC(Op, DAG);
1871 case ISD::SELECT:
1872 return LowerSELECT(Op, DAG);
1873 case ISD::SELECT_CC:
1874 return LowerSELECT_CC(Op, DAG);
1875 case ISD::JumpTable:
1876 return LowerJumpTable(Op, DAG);
1877 case ISD::ConstantPool:
1878 return LowerConstantPool(Op, DAG);
1879 case ISD::BlockAddress:
1880 return LowerBlockAddress(Op, DAG);
1881 case ISD::VASTART:
1882 return LowerVASTART(Op, DAG);
1883 case ISD::VACOPY:
1884 return LowerVACOPY(Op, DAG);
1885 case ISD::VAARG:
1886 return LowerVAARG(Op, DAG);
1887 case ISD::ADDC:
1888 case ISD::ADDE:
1889 case ISD::SUBC:
1890 case ISD::SUBE:
1891 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
1892 case ISD::SADDO:
1893 case ISD::UADDO:
1894 case ISD::SSUBO:
1895 case ISD::USUBO:
1896 case ISD::SMULO:
1897 case ISD::UMULO:
1898 return LowerXALUO(Op, DAG);
1899 case ISD::FADD:
1900 return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
1901 case ISD::FSUB:
1902 return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
1903 case ISD::FMUL:
1904 return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
1905 case ISD::FDIV:
1906 return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
1907 case ISD::FP_ROUND:
1908 return LowerFP_ROUND(Op, DAG);
1909 case ISD::FP_EXTEND:
1910 return LowerFP_EXTEND(Op, DAG);
1911 case ISD::FRAMEADDR:
1912 return LowerFRAMEADDR(Op, DAG);
1913 case ISD::RETURNADDR:
1914 return LowerRETURNADDR(Op, DAG);
1915 case ISD::INSERT_VECTOR_ELT:
1916 return LowerINSERT_VECTOR_ELT(Op, DAG);
1917 case ISD::EXTRACT_VECTOR_ELT:
1918 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
1919 case ISD::BUILD_VECTOR:
1920 return LowerBUILD_VECTOR(Op, DAG);
1921 case ISD::VECTOR_SHUFFLE:
1922 return LowerVECTOR_SHUFFLE(Op, DAG);
1923 case ISD::EXTRACT_SUBVECTOR:
1924 return LowerEXTRACT_SUBVECTOR(Op, DAG);
1925 case ISD::SRA:
1926 case ISD::SRL:
1927 case ISD::SHL:
1928 return LowerVectorSRA_SRL_SHL(Op, DAG);
1929 case ISD::SHL_PARTS:
1930 return LowerShiftLeftParts(Op, DAG);
1931 case ISD::SRL_PARTS:
1932 case ISD::SRA_PARTS:
1933 return LowerShiftRightParts(Op, DAG);
1934 case ISD::CTPOP:
1935 return LowerCTPOP(Op, DAG);
1936 case ISD::FCOPYSIGN:
1937 return LowerFCOPYSIGN(Op, DAG);
1938 case ISD::AND:
1939 return LowerVectorAND(Op, DAG);
1940 case ISD::OR:
1941 return LowerVectorOR(Op, DAG);
1942 case ISD::XOR:
1943 return LowerXOR(Op, DAG);
1944 case ISD::PREFETCH:
1945 return LowerPREFETCH(Op, DAG);
1946 case ISD::SINT_TO_FP:
1947 case ISD::UINT_TO_FP:
1948 return LowerINT_TO_FP(Op, DAG);
1949 case ISD::FP_TO_SINT:
1950 case ISD::FP_TO_UINT:
1951 return LowerFP_TO_INT(Op, DAG);
1952 case ISD::FSINCOS:
1953 return LowerFSINCOS(Op, DAG);
Chad Rosierd9d0f862014-10-08 02:31:24 +00001954 case ISD::MUL:
1955 return LowerMUL(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00001956 }
1957}
1958
1959/// getFunctionAlignment - Return the Log2 alignment of this function.
1960unsigned AArch64TargetLowering::getFunctionAlignment(const Function *F) const {
1961 return 2;
1962}
1963
1964//===----------------------------------------------------------------------===//
1965// Calling Convention Implementation
1966//===----------------------------------------------------------------------===//
1967
1968#include "AArch64GenCallingConv.inc"
1969
Robin Morisset039781e2014-08-29 21:53:01 +00001970/// Selects the correct CCAssignFn for a given CallingConvention value.
Tim Northover3b0846e2014-05-24 12:50:23 +00001971CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1972 bool IsVarArg) const {
1973 switch (CC) {
1974 default:
1975 llvm_unreachable("Unsupported calling convention.");
1976 case CallingConv::WebKit_JS:
1977 return CC_AArch64_WebKit_JS;
Greg Fitzgeraldfa78d082015-01-19 17:40:05 +00001978 case CallingConv::GHC:
1979 return CC_AArch64_GHC;
Tim Northover3b0846e2014-05-24 12:50:23 +00001980 case CallingConv::C:
1981 case CallingConv::Fast:
1982 if (!Subtarget->isTargetDarwin())
1983 return CC_AArch64_AAPCS;
1984 return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
1985 }
1986}
1987
1988SDValue AArch64TargetLowering::LowerFormalArguments(
1989 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1990 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
1991 SmallVectorImpl<SDValue> &InVals) const {
1992 MachineFunction &MF = DAG.getMachineFunction();
1993 MachineFrameInfo *MFI = MF.getFrameInfo();
1994
1995 // Assign locations to all of the incoming arguments.
1996 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00001997 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1998 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00001999
2000 // At this point, Ins[].VT may already be promoted to i32. To correctly
2001 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2002 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2003 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
2004 // we use a special version of AnalyzeFormalArguments to pass in ValVT and
2005 // LocVT.
2006 unsigned NumArgs = Ins.size();
2007 Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2008 unsigned CurArgIdx = 0;
2009 for (unsigned i = 0; i != NumArgs; ++i) {
2010 MVT ValVT = Ins[i].VT;
Andrew Trick05938a52015-02-16 18:10:47 +00002011 if (Ins[i].isOrigArg()) {
2012 std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
2013 CurArgIdx = Ins[i].getOrigArgIndex();
Tim Northover3b0846e2014-05-24 12:50:23 +00002014
Andrew Trick05938a52015-02-16 18:10:47 +00002015 // Get type of the original argument.
2016 EVT ActualVT = getValueType(CurOrigArg->getType(), /*AllowUnknown*/ true);
2017 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
2018 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
2019 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
2020 ValVT = MVT::i8;
2021 else if (ActualMVT == MVT::i16)
2022 ValVT = MVT::i16;
2023 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002024 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2025 bool Res =
Tim Northover47e003c2014-05-26 17:21:53 +00002026 AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00002027 assert(!Res && "Call operand has unhandled type");
2028 (void)Res;
2029 }
2030 assert(ArgLocs.size() == Ins.size());
2031 SmallVector<SDValue, 16> ArgValues;
2032 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2033 CCValAssign &VA = ArgLocs[i];
2034
2035 if (Ins[i].Flags.isByVal()) {
2036 // Byval is used for HFAs in the PCS, but the system should work in a
2037 // non-compliant manner for larger structs.
2038 EVT PtrTy = getPointerTy();
2039 int Size = Ins[i].Flags.getByValSize();
2040 unsigned NumRegs = (Size + 7) / 8;
2041
2042 // FIXME: This works on big-endian for composite byvals, which are the common
2043 // case. It should also work for fundamental types too.
2044 unsigned FrameIdx =
2045 MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
2046 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
2047 InVals.push_back(FrameIdxN);
2048
2049 continue;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002050 }
2051
2052 if (VA.isRegLoc()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00002053 // Arguments stored in registers.
2054 EVT RegVT = VA.getLocVT();
2055
2056 SDValue ArgValue;
2057 const TargetRegisterClass *RC;
2058
2059 if (RegVT == MVT::i32)
2060 RC = &AArch64::GPR32RegClass;
2061 else if (RegVT == MVT::i64)
2062 RC = &AArch64::GPR64RegClass;
Oliver Stannard6eda6ff2014-07-11 13:33:46 +00002063 else if (RegVT == MVT::f16)
2064 RC = &AArch64::FPR16RegClass;
Tim Northover3b0846e2014-05-24 12:50:23 +00002065 else if (RegVT == MVT::f32)
2066 RC = &AArch64::FPR32RegClass;
2067 else if (RegVT == MVT::f64 || RegVT.is64BitVector())
2068 RC = &AArch64::FPR64RegClass;
2069 else if (RegVT == MVT::f128 || RegVT.is128BitVector())
2070 RC = &AArch64::FPR128RegClass;
2071 else
2072 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2073
2074 // Transform the arguments in physical registers into virtual ones.
2075 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2076 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2077
2078 // If this is an 8, 16 or 32-bit value, it is really passed promoted
2079 // to 64 bits. Insert an assert[sz]ext to capture this, then
2080 // truncate to the right size.
2081 switch (VA.getLocInfo()) {
2082 default:
2083 llvm_unreachable("Unknown loc info!");
2084 case CCValAssign::Full:
2085 break;
2086 case CCValAssign::BCvt:
2087 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
2088 break;
Tim Northover47e003c2014-05-26 17:21:53 +00002089 case CCValAssign::AExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00002090 case CCValAssign::SExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00002091 case CCValAssign::ZExt:
Tim Northover47e003c2014-05-26 17:21:53 +00002092 // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
2093 // nodes after our lowering.
2094 assert(RegVT == Ins[i].VT && "incorrect register location selected");
Tim Northover3b0846e2014-05-24 12:50:23 +00002095 break;
2096 }
2097
2098 InVals.push_back(ArgValue);
2099
2100 } else { // VA.isRegLoc()
2101 assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
2102 unsigned ArgOffset = VA.getLocMemOffset();
Amara Emerson82da7d02014-08-15 14:29:57 +00002103 unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002104
2105 uint32_t BEAlign = 0;
Tim Northover293d4142014-12-03 17:49:26 +00002106 if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
2107 !Ins[i].Flags.isInConsecutiveRegs())
Tim Northover3b0846e2014-05-24 12:50:23 +00002108 BEAlign = 8 - ArgSize;
2109
2110 int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
2111
2112 // Create load nodes to retrieve arguments from the stack.
2113 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2114 SDValue ArgValue;
2115
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002116 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
Tim Northover47e003c2014-05-26 17:21:53 +00002117 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002118 MVT MemVT = VA.getValVT();
2119
Tim Northover47e003c2014-05-26 17:21:53 +00002120 switch (VA.getLocInfo()) {
2121 default:
2122 break;
Tim Northover6890add2014-06-03 13:54:53 +00002123 case CCValAssign::BCvt:
2124 MemVT = VA.getLocVT();
2125 break;
Tim Northover47e003c2014-05-26 17:21:53 +00002126 case CCValAssign::SExt:
2127 ExtType = ISD::SEXTLOAD;
2128 break;
2129 case CCValAssign::ZExt:
2130 ExtType = ISD::ZEXTLOAD;
2131 break;
2132 case CCValAssign::AExt:
2133 ExtType = ISD::EXTLOAD;
2134 break;
Tim Northover3b0846e2014-05-24 12:50:23 +00002135 }
2136
Tim Northover6890add2014-06-03 13:54:53 +00002137 ArgValue = DAG.getExtLoad(ExtType, DL, VA.getLocVT(), Chain, FIN,
Tim Northover47e003c2014-05-26 17:21:53 +00002138 MachinePointerInfo::getFixedStack(FI),
Benjamin Kramer2e52f022014-10-04 22:44:29 +00002139 MemVT, false, false, false, 0);
Tim Northover47e003c2014-05-26 17:21:53 +00002140
Tim Northover3b0846e2014-05-24 12:50:23 +00002141 InVals.push_back(ArgValue);
2142 }
2143 }
2144
2145 // varargs
2146 if (isVarArg) {
2147 if (!Subtarget->isTargetDarwin()) {
2148 // The AAPCS variadic function ABI is identical to the non-variadic
2149 // one. As a result there may be more arguments in registers and we should
2150 // save them for future reference.
2151 saveVarArgRegisters(CCInfo, DAG, DL, Chain);
2152 }
2153
2154 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2155 // This will point to the next argument passed via stack.
2156 unsigned StackOffset = CCInfo.getNextStackOffset();
2157 // We currently pass all varargs at 8-byte alignment.
2158 StackOffset = ((StackOffset + 7) & ~7);
2159 AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
2160 }
2161
2162 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2163 unsigned StackArgSize = CCInfo.getNextStackOffset();
2164 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2165 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
2166 // This is a non-standard ABI so by fiat I say we're allowed to make full
2167 // use of the stack area to be popped, which must be aligned to 16 bytes in
2168 // any case:
2169 StackArgSize = RoundUpToAlignment(StackArgSize, 16);
2170
2171 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
2172 // a multiple of 16.
2173 FuncInfo->setArgumentStackToRestore(StackArgSize);
2174
2175 // This realignment carries over to the available bytes below. Our own
2176 // callers will guarantee the space is free by giving an aligned value to
2177 // CALLSEQ_START.
2178 }
2179 // Even if we're not expected to free up the space, it's useful to know how
2180 // much is there while considering tail calls (because we can reuse it).
2181 FuncInfo->setBytesInStackArgArea(StackArgSize);
2182
2183 return Chain;
2184}
2185
2186void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
2187 SelectionDAG &DAG, SDLoc DL,
2188 SDValue &Chain) const {
2189 MachineFunction &MF = DAG.getMachineFunction();
2190 MachineFrameInfo *MFI = MF.getFrameInfo();
2191 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2192
2193 SmallVector<SDValue, 8> MemOps;
2194
2195 static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
2196 AArch64::X3, AArch64::X4, AArch64::X5,
2197 AArch64::X6, AArch64::X7 };
2198 static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
Tim Northover3b6b7ca2015-02-21 02:11:17 +00002199 unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
Tim Northover3b0846e2014-05-24 12:50:23 +00002200
2201 unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
2202 int GPRIdx = 0;
2203 if (GPRSaveSize != 0) {
2204 GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
2205
2206 SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
2207
2208 for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
2209 unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
2210 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
2211 SDValue Store =
2212 DAG.getStore(Val.getValue(1), DL, Val, FIN,
2213 MachinePointerInfo::getStack(i * 8), false, false, 0);
2214 MemOps.push_back(Store);
2215 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
2216 DAG.getConstant(8, getPointerTy()));
2217 }
2218 }
2219 FuncInfo->setVarArgsGPRIndex(GPRIdx);
2220 FuncInfo->setVarArgsGPRSize(GPRSaveSize);
2221
2222 if (Subtarget->hasFPARMv8()) {
2223 static const MCPhysReg FPRArgRegs[] = {
2224 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
2225 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
2226 static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
Tim Northover3b6b7ca2015-02-21 02:11:17 +00002227 unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
Tim Northover3b0846e2014-05-24 12:50:23 +00002228
2229 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
2230 int FPRIdx = 0;
2231 if (FPRSaveSize != 0) {
2232 FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
2233
2234 SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
2235
2236 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
2237 unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
2238 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
2239
2240 SDValue Store =
2241 DAG.getStore(Val.getValue(1), DL, Val, FIN,
2242 MachinePointerInfo::getStack(i * 16), false, false, 0);
2243 MemOps.push_back(Store);
2244 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
2245 DAG.getConstant(16, getPointerTy()));
2246 }
2247 }
2248 FuncInfo->setVarArgsFPRIndex(FPRIdx);
2249 FuncInfo->setVarArgsFPRSize(FPRSaveSize);
2250 }
2251
2252 if (!MemOps.empty()) {
2253 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2254 }
2255}
2256
2257/// LowerCallResult - Lower the result values of a call into the
2258/// appropriate copies out of appropriate physical registers.
2259SDValue AArch64TargetLowering::LowerCallResult(
2260 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
2261 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2262 SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2263 SDValue ThisVal) const {
2264 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2265 ? RetCC_AArch64_WebKit_JS
2266 : RetCC_AArch64_AAPCS;
2267 // Assign locations to each value returned by this call.
2268 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002269 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2270 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002271 CCInfo.AnalyzeCallResult(Ins, RetCC);
2272
2273 // Copy all of the result registers out of their specified physreg.
2274 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2275 CCValAssign VA = RVLocs[i];
2276
2277 // Pass 'this' value directly from the argument to return value, to avoid
2278 // reg unit interference
2279 if (i == 0 && isThisReturn) {
2280 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
2281 "unexpected return calling convention register assignment");
2282 InVals.push_back(ThisVal);
2283 continue;
2284 }
2285
2286 SDValue Val =
2287 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2288 Chain = Val.getValue(1);
2289 InFlag = Val.getValue(2);
2290
2291 switch (VA.getLocInfo()) {
2292 default:
2293 llvm_unreachable("Unknown loc info!");
2294 case CCValAssign::Full:
2295 break;
2296 case CCValAssign::BCvt:
2297 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2298 break;
2299 }
2300
2301 InVals.push_back(Val);
2302 }
2303
2304 return Chain;
2305}
2306
2307bool AArch64TargetLowering::isEligibleForTailCallOptimization(
2308 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2309 bool isCalleeStructRet, bool isCallerStructRet,
2310 const SmallVectorImpl<ISD::OutputArg> &Outs,
2311 const SmallVectorImpl<SDValue> &OutVals,
2312 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2313 // For CallingConv::C this function knows whether the ABI needs
2314 // changing. That's not true for other conventions so they will have to opt in
2315 // manually.
2316 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
2317 return false;
2318
2319 const MachineFunction &MF = DAG.getMachineFunction();
2320 const Function *CallerF = MF.getFunction();
2321 CallingConv::ID CallerCC = CallerF->getCallingConv();
2322 bool CCMatch = CallerCC == CalleeCC;
2323
2324 // Byval parameters hand the function a pointer directly into the stack area
2325 // we want to reuse during a tail call. Working around this *is* possible (see
2326 // X86) but less efficient and uglier in LowerCall.
2327 for (Function::const_arg_iterator i = CallerF->arg_begin(),
2328 e = CallerF->arg_end();
2329 i != e; ++i)
2330 if (i->hasByValAttr())
2331 return false;
2332
2333 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2334 if (IsTailCallConvention(CalleeCC) && CCMatch)
2335 return true;
2336 return false;
2337 }
2338
Oliver Stannard12993dd2014-08-18 12:42:15 +00002339 // Externally-defined functions with weak linkage should not be
2340 // tail-called on AArch64 when the OS does not support dynamic
2341 // pre-emption of symbols, as the AAELF spec requires normal calls
2342 // to undefined weak functions to be replaced with a NOP or jump to the
2343 // next instruction. The behaviour of branch instructions in this
2344 // situation (as used for tail calls) is implementation-defined, so we
2345 // cannot rely on the linker replacing the tail call with a return.
2346 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2347 const GlobalValue *GV = G->getGlobal();
Saleem Abdulrasool67f72992015-01-03 21:35:00 +00002348 const Triple TT(getTargetMachine().getTargetTriple());
2349 if (GV->hasExternalWeakLinkage() &&
2350 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
Oliver Stannard12993dd2014-08-18 12:42:15 +00002351 return false;
2352 }
2353
Tim Northover3b0846e2014-05-24 12:50:23 +00002354 // Now we search for cases where we can use a tail call without changing the
2355 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
2356 // concept.
2357
2358 // I want anyone implementing a new calling convention to think long and hard
2359 // about this assert.
2360 assert((!isVarArg || CalleeCC == CallingConv::C) &&
2361 "Unexpected variadic calling convention");
2362
2363 if (isVarArg && !Outs.empty()) {
2364 // At least two cases here: if caller is fastcc then we can't have any
2365 // memory arguments (we'd be expected to clean up the stack afterwards). If
2366 // caller is C then we could potentially use its argument area.
2367
2368 // FIXME: for now we take the most conservative of these in both cases:
2369 // disallow all variadic memory operands.
2370 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002371 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2372 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002373
2374 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
2375 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2376 if (!ArgLocs[i].isRegLoc())
2377 return false;
2378 }
2379
2380 // If the calling conventions do not match, then we'd better make sure the
2381 // results are returned in the same way as what the caller expects.
2382 if (!CCMatch) {
2383 SmallVector<CCValAssign, 16> RVLocs1;
Eric Christopherb5217502014-08-06 18:45:26 +00002384 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
2385 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002386 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg));
2387
2388 SmallVector<CCValAssign, 16> RVLocs2;
Eric Christopherb5217502014-08-06 18:45:26 +00002389 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
2390 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002391 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg));
2392
2393 if (RVLocs1.size() != RVLocs2.size())
2394 return false;
2395 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2396 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2397 return false;
2398 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2399 return false;
2400 if (RVLocs1[i].isRegLoc()) {
2401 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2402 return false;
2403 } else {
2404 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2405 return false;
2406 }
2407 }
2408 }
2409
2410 // Nothing more to check if the callee is taking no arguments
2411 if (Outs.empty())
2412 return true;
2413
2414 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002415 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2416 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002417
2418 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2419
2420 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2421
2422 // If the stack arguments for this call would fit into our own save area then
2423 // the call can be made tail.
2424 return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
2425}
2426
2427SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
2428 SelectionDAG &DAG,
2429 MachineFrameInfo *MFI,
2430 int ClobberedFI) const {
2431 SmallVector<SDValue, 8> ArgChains;
2432 int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
2433 int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
2434
2435 // Include the original chain at the beginning of the list. When this is
2436 // used by target LowerCall hooks, this helps legalize find the
2437 // CALLSEQ_BEGIN node.
2438 ArgChains.push_back(Chain);
2439
2440 // Add a chain value for each stack argument corresponding
2441 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
2442 UE = DAG.getEntryNode().getNode()->use_end();
2443 U != UE; ++U)
2444 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2445 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2446 if (FI->getIndex() < 0) {
2447 int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
2448 int64_t InLastByte = InFirstByte;
2449 InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
2450
2451 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
2452 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
2453 ArgChains.push_back(SDValue(L, 1));
2454 }
2455
2456 // Build a tokenfactor for all the chains.
2457 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
2458}
2459
2460bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
2461 bool TailCallOpt) const {
2462 return CallCC == CallingConv::Fast && TailCallOpt;
2463}
2464
2465bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
2466 return CallCC == CallingConv::Fast;
2467}
2468
2469/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
2470/// and add input and output parameter nodes.
2471SDValue
2472AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
2473 SmallVectorImpl<SDValue> &InVals) const {
2474 SelectionDAG &DAG = CLI.DAG;
2475 SDLoc &DL = CLI.DL;
2476 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2477 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2478 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2479 SDValue Chain = CLI.Chain;
2480 SDValue Callee = CLI.Callee;
2481 bool &IsTailCall = CLI.IsTailCall;
2482 CallingConv::ID CallConv = CLI.CallConv;
2483 bool IsVarArg = CLI.IsVarArg;
2484
2485 MachineFunction &MF = DAG.getMachineFunction();
2486 bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2487 bool IsThisReturn = false;
2488
2489 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2490 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2491 bool IsSibCall = false;
2492
2493 if (IsTailCall) {
2494 // Check if it's really possible to do a tail call.
2495 IsTailCall = isEligibleForTailCallOptimization(
2496 Callee, CallConv, IsVarArg, IsStructRet,
2497 MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG);
2498 if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2499 report_fatal_error("failed to perform tail call elimination on a call "
2500 "site marked musttail");
2501
2502 // A sibling call is one where we're under the usual C ABI and not planning
2503 // to change that but can still do a tail call:
2504 if (!TailCallOpt && IsTailCall)
2505 IsSibCall = true;
2506
2507 if (IsTailCall)
2508 ++NumTailCalls;
2509 }
2510
2511 // Analyze operands of the call, assigning locations to each operand.
2512 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002513 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
2514 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002515
2516 if (IsVarArg) {
2517 // Handle fixed and variable vector arguments differently.
2518 // Variable vector arguments always go into memory.
2519 unsigned NumArgs = Outs.size();
2520
2521 for (unsigned i = 0; i != NumArgs; ++i) {
2522 MVT ArgVT = Outs[i].VT;
2523 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2524 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
2525 /*IsVarArg=*/ !Outs[i].IsFixed);
2526 bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2527 assert(!Res && "Call operand has unhandled type");
2528 (void)Res;
2529 }
2530 } else {
2531 // At this point, Outs[].VT may already be promoted to i32. To correctly
2532 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2533 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2534 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
2535 // we use a special version of AnalyzeCallOperands to pass in ValVT and
2536 // LocVT.
2537 unsigned NumArgs = Outs.size();
2538 for (unsigned i = 0; i != NumArgs; ++i) {
2539 MVT ValVT = Outs[i].VT;
2540 // Get type of the original argument.
2541 EVT ActualVT = getValueType(CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
2542 /*AllowUnknown*/ true);
2543 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
2544 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2545 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
Tim Northover3b0846e2014-05-24 12:50:23 +00002546 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
Tim Northover47e003c2014-05-26 17:21:53 +00002547 ValVT = MVT::i8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002548 else if (ActualMVT == MVT::i16)
Tim Northover47e003c2014-05-26 17:21:53 +00002549 ValVT = MVT::i16;
Tim Northover3b0846e2014-05-24 12:50:23 +00002550
2551 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
Tim Northover47e003c2014-05-26 17:21:53 +00002552 bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00002553 assert(!Res && "Call operand has unhandled type");
2554 (void)Res;
2555 }
2556 }
2557
2558 // Get a count of how many bytes are to be pushed on the stack.
2559 unsigned NumBytes = CCInfo.getNextStackOffset();
2560
2561 if (IsSibCall) {
2562 // Since we're not changing the ABI to make this a tail call, the memory
2563 // operands are already available in the caller's incoming argument space.
2564 NumBytes = 0;
2565 }
2566
2567 // FPDiff is the byte offset of the call's argument area from the callee's.
2568 // Stores to callee stack arguments will be placed in FixedStackSlots offset
2569 // by this amount for a tail call. In a sibling call it must be 0 because the
2570 // caller will deallocate the entire stack and the callee still expects its
2571 // arguments to begin at SP+0. Completely unused for non-tail calls.
2572 int FPDiff = 0;
2573
2574 if (IsTailCall && !IsSibCall) {
2575 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
2576
2577 // Since callee will pop argument stack as a tail call, we must keep the
2578 // popped size 16-byte aligned.
2579 NumBytes = RoundUpToAlignment(NumBytes, 16);
2580
2581 // FPDiff will be negative if this tail call requires more space than we
2582 // would automatically have in our incoming argument space. Positive if we
2583 // can actually shrink the stack.
2584 FPDiff = NumReusableBytes - NumBytes;
2585
2586 // The stack pointer must be 16-byte aligned at all times it's used for a
2587 // memory operation, which in practice means at *all* times and in
2588 // particular across call boundaries. Therefore our own arguments started at
2589 // a 16-byte aligned SP and the delta applied for the tail call should
2590 // satisfy the same constraint.
2591 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
2592 }
2593
2594 // Adjust the stack pointer for the new arguments...
2595 // These operations are automatically eliminated by the prolog/epilog pass
2596 if (!IsSibCall)
2597 Chain =
2598 DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), DL);
2599
2600 SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, getPointerTy());
2601
2602 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2603 SmallVector<SDValue, 8> MemOpChains;
2604
2605 // Walk the register/memloc assignments, inserting copies/loads.
2606 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
2607 ++i, ++realArgIdx) {
2608 CCValAssign &VA = ArgLocs[i];
2609 SDValue Arg = OutVals[realArgIdx];
2610 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2611
2612 // Promote the value if needed.
2613 switch (VA.getLocInfo()) {
2614 default:
2615 llvm_unreachable("Unknown loc info!");
2616 case CCValAssign::Full:
2617 break;
2618 case CCValAssign::SExt:
2619 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2620 break;
2621 case CCValAssign::ZExt:
2622 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2623 break;
2624 case CCValAssign::AExt:
Tim Northover68ae5032014-05-26 17:22:07 +00002625 if (Outs[realArgIdx].ArgVT == MVT::i1) {
2626 // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
2627 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2628 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
2629 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002630 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2631 break;
2632 case CCValAssign::BCvt:
2633 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2634 break;
2635 case CCValAssign::FPExt:
2636 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2637 break;
2638 }
2639
2640 if (VA.isRegLoc()) {
2641 if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
2642 assert(VA.getLocVT() == MVT::i64 &&
2643 "unexpected calling convention register assignment");
2644 assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
2645 "unexpected use of 'returned'");
2646 IsThisReturn = true;
2647 }
2648 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2649 } else {
2650 assert(VA.isMemLoc());
2651
2652 SDValue DstAddr;
2653 MachinePointerInfo DstInfo;
2654
2655 // FIXME: This works on big-endian for composite byvals, which are the
2656 // common case. It should also work for fundamental types too.
2657 uint32_t BEAlign = 0;
2658 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
Amara Emerson82da7d02014-08-15 14:29:57 +00002659 : VA.getValVT().getSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00002660 OpSize = (OpSize + 7) / 8;
Tim Northover293d4142014-12-03 17:49:26 +00002661 if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
2662 !Flags.isInConsecutiveRegs()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00002663 if (OpSize < 8)
2664 BEAlign = 8 - OpSize;
2665 }
2666 unsigned LocMemOffset = VA.getLocMemOffset();
2667 int32_t Offset = LocMemOffset + BEAlign;
2668 SDValue PtrOff = DAG.getIntPtrConstant(Offset);
2669 PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2670
2671 if (IsTailCall) {
2672 Offset = Offset + FPDiff;
2673 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2674
2675 DstAddr = DAG.getFrameIndex(FI, getPointerTy());
2676 DstInfo = MachinePointerInfo::getFixedStack(FI);
2677
2678 // Make sure any stack arguments overlapping with where we're storing
2679 // are loaded before this eventual operation. Otherwise they'll be
2680 // clobbered.
2681 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
2682 } else {
2683 SDValue PtrOff = DAG.getIntPtrConstant(Offset);
2684
2685 DstAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2686 DstInfo = MachinePointerInfo::getStack(LocMemOffset);
2687 }
2688
2689 if (Outs[i].Flags.isByVal()) {
2690 SDValue SizeNode =
2691 DAG.getConstant(Outs[i].Flags.getByValSize(), MVT::i64);
2692 SDValue Cpy = DAG.getMemcpy(
2693 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
Jim Grosbach8e810ba2014-08-11 22:42:28 +00002694 /*isVol = */ false,
2695 /*AlwaysInline = */ false, DstInfo, MachinePointerInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +00002696
2697 MemOpChains.push_back(Cpy);
2698 } else {
2699 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
2700 // promoted to a legal register type i32, we should truncate Arg back to
2701 // i1/i8/i16.
Tim Northover6890add2014-06-03 13:54:53 +00002702 if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
2703 VA.getValVT() == MVT::i16)
2704 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
Tim Northover3b0846e2014-05-24 12:50:23 +00002705
2706 SDValue Store =
2707 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0);
2708 MemOpChains.push_back(Store);
2709 }
2710 }
2711 }
2712
2713 if (!MemOpChains.empty())
2714 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2715
2716 // Build a sequence of copy-to-reg nodes chained together with token chain
2717 // and flag operands which copy the outgoing args into the appropriate regs.
2718 SDValue InFlag;
2719 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2720 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
2721 RegsToPass[i].second, InFlag);
2722 InFlag = Chain.getValue(1);
2723 }
2724
2725 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2726 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2727 // node so that legalize doesn't hack it.
2728 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
2729 Subtarget->isTargetMachO()) {
2730 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2731 const GlobalValue *GV = G->getGlobal();
2732 bool InternalLinkage = GV->hasInternalLinkage();
2733 if (InternalLinkage)
2734 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2735 else {
2736 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0,
2737 AArch64II::MO_GOT);
2738 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2739 }
2740 } else if (ExternalSymbolSDNode *S =
2741 dyn_cast<ExternalSymbolSDNode>(Callee)) {
2742 const char *Sym = S->getSymbol();
2743 Callee =
2744 DAG.getTargetExternalSymbol(Sym, getPointerTy(), AArch64II::MO_GOT);
2745 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2746 }
2747 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2748 const GlobalValue *GV = G->getGlobal();
2749 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2750 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2751 const char *Sym = S->getSymbol();
2752 Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), 0);
2753 }
2754
2755 // We don't usually want to end the call-sequence here because we would tidy
2756 // the frame up *after* the call, however in the ABI-changing tail-call case
2757 // we've carefully laid out the parameters so that when sp is reset they'll be
2758 // in the correct location.
2759 if (IsTailCall && !IsSibCall) {
2760 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2761 DAG.getIntPtrConstant(0, true), InFlag, DL);
2762 InFlag = Chain.getValue(1);
2763 }
2764
2765 std::vector<SDValue> Ops;
2766 Ops.push_back(Chain);
2767 Ops.push_back(Callee);
2768
2769 if (IsTailCall) {
2770 // Each tail call may have to adjust the stack by a different amount, so
2771 // this information must travel along with the operation for eventual
2772 // consumption by emitEpilogue.
2773 Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
2774 }
2775
2776 // Add argument registers to the end of the list so that they are known live
2777 // into the call.
2778 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2779 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2780 RegsToPass[i].second.getValueType()));
2781
2782 // Add a register mask operand representing the call-preserved registers.
2783 const uint32_t *Mask;
Eric Christopher905f12d2015-01-29 00:19:42 +00002784 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +00002785 if (IsThisReturn) {
2786 // For 'this' returns, use the X0-preserving mask if applicable
Eric Christopher6c901622015-01-28 03:51:33 +00002787 Mask = TRI->getThisReturnPreservedMask(CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00002788 if (!Mask) {
2789 IsThisReturn = false;
Eric Christopher6c901622015-01-28 03:51:33 +00002790 Mask = TRI->getCallPreservedMask(CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00002791 }
2792 } else
Eric Christopher6c901622015-01-28 03:51:33 +00002793 Mask = TRI->getCallPreservedMask(CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00002794
2795 assert(Mask && "Missing call preserved mask for calling convention");
2796 Ops.push_back(DAG.getRegisterMask(Mask));
2797
2798 if (InFlag.getNode())
2799 Ops.push_back(InFlag);
2800
2801 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2802
2803 // If we're doing a tall call, use a TC_RETURN here rather than an
2804 // actual call instruction.
2805 if (IsTailCall)
2806 return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
2807
2808 // Returns a chain and a flag for retval copy to use.
2809 Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
2810 InFlag = Chain.getValue(1);
2811
2812 uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt)
2813 ? RoundUpToAlignment(NumBytes, 16)
2814 : 0;
2815
2816 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2817 DAG.getIntPtrConstant(CalleePopBytes, true),
2818 InFlag, DL);
2819 if (!Ins.empty())
2820 InFlag = Chain.getValue(1);
2821
2822 // Handle result values, copying them out of physregs into vregs that we
2823 // return.
2824 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2825 InVals, IsThisReturn,
2826 IsThisReturn ? OutVals[0] : SDValue());
2827}
2828
2829bool AArch64TargetLowering::CanLowerReturn(
2830 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
2831 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
2832 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2833 ? RetCC_AArch64_WebKit_JS
2834 : RetCC_AArch64_AAPCS;
2835 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002836 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
Tim Northover3b0846e2014-05-24 12:50:23 +00002837 return CCInfo.CheckReturn(Outs, RetCC);
2838}
2839
2840SDValue
2841AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2842 bool isVarArg,
2843 const SmallVectorImpl<ISD::OutputArg> &Outs,
2844 const SmallVectorImpl<SDValue> &OutVals,
2845 SDLoc DL, SelectionDAG &DAG) const {
2846 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2847 ? RetCC_AArch64_WebKit_JS
2848 : RetCC_AArch64_AAPCS;
2849 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002850 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2851 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002852 CCInfo.AnalyzeReturn(Outs, RetCC);
2853
2854 // Copy the result values into the output registers.
2855 SDValue Flag;
2856 SmallVector<SDValue, 4> RetOps(1, Chain);
2857 for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
2858 ++i, ++realRVLocIdx) {
2859 CCValAssign &VA = RVLocs[i];
2860 assert(VA.isRegLoc() && "Can only return in registers!");
2861 SDValue Arg = OutVals[realRVLocIdx];
2862
2863 switch (VA.getLocInfo()) {
2864 default:
2865 llvm_unreachable("Unknown loc info!");
2866 case CCValAssign::Full:
Tim Northover68ae5032014-05-26 17:22:07 +00002867 if (Outs[i].ArgVT == MVT::i1) {
2868 // AAPCS requires i1 to be zero-extended to i8 by the producer of the
2869 // value. This is strictly redundant on Darwin (which uses "zeroext
2870 // i1"), but will be optimised out before ISel.
2871 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2872 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2873 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002874 break;
2875 case CCValAssign::BCvt:
2876 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2877 break;
2878 }
2879
2880 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2881 Flag = Chain.getValue(1);
2882 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2883 }
2884
2885 RetOps[0] = Chain; // Update chain.
2886
2887 // Add the flag if we have it.
2888 if (Flag.getNode())
2889 RetOps.push_back(Flag);
2890
2891 return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
2892}
2893
2894//===----------------------------------------------------------------------===//
2895// Other Lowering Code
2896//===----------------------------------------------------------------------===//
2897
2898SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
2899 SelectionDAG &DAG) const {
2900 EVT PtrVT = getPointerTy();
2901 SDLoc DL(Op);
Asiri Rathnayake369c0302014-09-10 13:54:38 +00002902 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
2903 const GlobalValue *GV = GN->getGlobal();
Tim Northover3b0846e2014-05-24 12:50:23 +00002904 unsigned char OpFlags =
2905 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
2906
2907 assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
2908 "unexpected offset in global node");
2909
2910 // This also catched the large code model case for Darwin.
2911 if ((OpFlags & AArch64II::MO_GOT) != 0) {
2912 SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2913 // FIXME: Once remat is capable of dealing with instructions with register
2914 // operands, expand this into two nodes instead of using a wrapper node.
2915 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
2916 }
2917
Asiri Rathnayake369c0302014-09-10 13:54:38 +00002918 if ((OpFlags & AArch64II::MO_CONSTPOOL) != 0) {
2919 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
2920 "use of MO_CONSTPOOL only supported on small model");
2921 SDValue Hi = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, AArch64II::MO_PAGE);
2922 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
2923 unsigned char LoFlags = AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
2924 SDValue Lo = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, LoFlags);
2925 SDValue PoolAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
2926 SDValue GlobalAddr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), PoolAddr,
2927 MachinePointerInfo::getConstantPool(),
2928 /*isVolatile=*/ false,
2929 /*isNonTemporal=*/ true,
2930 /*isInvariant=*/ true, 8);
2931 if (GN->getOffset() != 0)
2932 return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalAddr,
2933 DAG.getConstant(GN->getOffset(), PtrVT));
2934 return GlobalAddr;
2935 }
2936
Tim Northover3b0846e2014-05-24 12:50:23 +00002937 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2938 const unsigned char MO_NC = AArch64II::MO_NC;
2939 return DAG.getNode(
2940 AArch64ISD::WrapperLarge, DL, PtrVT,
2941 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
2942 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
2943 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
2944 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
2945 } else {
2946 // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
2947 // the only correct model on Darwin.
2948 SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2949 OpFlags | AArch64II::MO_PAGE);
2950 unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
2951 SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
2952
2953 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
2954 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
2955 }
2956}
2957
2958/// \brief Convert a TLS address reference into the correct sequence of loads
2959/// and calls to compute the variable's address (for Darwin, currently) and
2960/// return an SDValue containing the final node.
2961
2962/// Darwin only has one TLS scheme which must be capable of dealing with the
2963/// fully general situation, in the worst case. This means:
2964/// + "extern __thread" declaration.
2965/// + Defined in a possibly unknown dynamic library.
2966///
2967/// The general system is that each __thread variable has a [3 x i64] descriptor
2968/// which contains information used by the runtime to calculate the address. The
2969/// only part of this the compiler needs to know about is the first xword, which
2970/// contains a function pointer that must be called with the address of the
2971/// entire descriptor in "x0".
2972///
2973/// Since this descriptor may be in a different unit, in general even the
2974/// descriptor must be accessed via an indirect load. The "ideal" code sequence
2975/// is:
2976/// adrp x0, _var@TLVPPAGE
2977/// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
2978/// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
2979/// ; the function pointer
2980/// blr x1 ; Uses descriptor address in x0
2981/// ; Address of _var is now in x0.
2982///
2983/// If the address of _var's descriptor *is* known to the linker, then it can
2984/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
2985/// a slight efficiency gain.
2986SDValue
2987AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
2988 SelectionDAG &DAG) const {
2989 assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
2990
2991 SDLoc DL(Op);
2992 MVT PtrVT = getPointerTy();
2993 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2994
2995 SDValue TLVPAddr =
2996 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
2997 SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
2998
2999 // The first entry in the descriptor is a function pointer that we must call
3000 // to obtain the address of the variable.
3001 SDValue Chain = DAG.getEntryNode();
3002 SDValue FuncTLVGet =
3003 DAG.getLoad(MVT::i64, DL, Chain, DescAddr, MachinePointerInfo::getGOT(),
3004 false, true, true, 8);
3005 Chain = FuncTLVGet.getValue(1);
3006
3007 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3008 MFI->setAdjustsStack(true);
3009
3010 // TLS calls preserve all registers except those that absolutely must be
3011 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3012 // silly).
Eric Christopher6c901622015-01-28 03:51:33 +00003013 const uint32_t *Mask =
Eric Christopher905f12d2015-01-29 00:19:42 +00003014 Subtarget->getRegisterInfo()->getTLSCallPreservedMask();
Tim Northover3b0846e2014-05-24 12:50:23 +00003015
3016 // Finally, we can make the call. This is just a degenerate version of a
3017 // normal AArch64 call node: x0 takes the address of the descriptor, and
3018 // returns the address of the variable in this thread.
3019 Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
3020 Chain =
3021 DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3022 Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
3023 DAG.getRegisterMask(Mask), Chain.getValue(1));
3024 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
3025}
3026
3027/// When accessing thread-local variables under either the general-dynamic or
3028/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
3029/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
3030/// is a function pointer to carry out the resolution. This function takes the
3031/// address of the descriptor in X0 and returns the TPIDR_EL0 offset in X0. All
3032/// other registers (except LR, NZCV) are preserved.
3033///
3034/// Thus, the ideal call sequence on AArch64 is:
3035///
3036/// adrp x0, :tlsdesc:thread_var
3037/// ldr x8, [x0, :tlsdesc_lo12:thread_var]
3038/// add x0, x0, :tlsdesc_lo12:thread_var
3039/// .tlsdesccall thread_var
3040/// blr x8
3041/// (TPIDR_EL0 offset now in x0).
3042///
3043/// The ".tlsdesccall" directive instructs the assembler to insert a particular
3044/// relocation to help the linker relax this sequence if it turns out to be too
3045/// conservative.
3046///
3047/// FIXME: we currently produce an extra, duplicated, ADRP instruction, but this
3048/// is harmless.
3049SDValue AArch64TargetLowering::LowerELFTLSDescCall(SDValue SymAddr,
3050 SDValue DescAddr, SDLoc DL,
3051 SelectionDAG &DAG) const {
3052 EVT PtrVT = getPointerTy();
3053
3054 // The function we need to call is simply the first entry in the GOT for this
3055 // descriptor, load it in preparation.
3056 SDValue Func = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, SymAddr);
3057
3058 // TLS calls preserve all registers except those that absolutely must be
3059 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3060 // silly).
Eric Christopher6c901622015-01-28 03:51:33 +00003061 const uint32_t *Mask =
Eric Christopher905f12d2015-01-29 00:19:42 +00003062 Subtarget->getRegisterInfo()->getTLSCallPreservedMask();
Tim Northover3b0846e2014-05-24 12:50:23 +00003063
3064 // The function takes only one argument: the address of the descriptor itself
3065 // in X0.
3066 SDValue Glue, Chain;
3067 Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
3068 Glue = Chain.getValue(1);
3069
3070 // We're now ready to populate the argument list, as with a normal call:
3071 SmallVector<SDValue, 6> Ops;
3072 Ops.push_back(Chain);
3073 Ops.push_back(Func);
3074 Ops.push_back(SymAddr);
3075 Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
3076 Ops.push_back(DAG.getRegisterMask(Mask));
3077 Ops.push_back(Glue);
3078
3079 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3080 Chain = DAG.getNode(AArch64ISD::TLSDESC_CALL, DL, NodeTys, Ops);
3081 Glue = Chain.getValue(1);
3082
3083 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
3084}
3085
3086SDValue
3087AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
3088 SelectionDAG &DAG) const {
3089 assert(Subtarget->isTargetELF() && "This function expects an ELF target");
3090 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
3091 "ELF TLS only supported in small memory model");
3092 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3093
3094 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
3095
3096 SDValue TPOff;
3097 EVT PtrVT = getPointerTy();
3098 SDLoc DL(Op);
3099 const GlobalValue *GV = GA->getGlobal();
3100
3101 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
3102
3103 if (Model == TLSModel::LocalExec) {
3104 SDValue HiVar = DAG.getTargetGlobalAddress(
3105 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
3106 SDValue LoVar = DAG.getTargetGlobalAddress(
3107 GV, DL, PtrVT, 0,
3108 AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
3109
3110 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
3111 DAG.getTargetConstant(16, MVT::i32)),
3112 0);
3113 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar,
3114 DAG.getTargetConstant(0, MVT::i32)),
3115 0);
3116 } else if (Model == TLSModel::InitialExec) {
3117 TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3118 TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
3119 } else if (Model == TLSModel::LocalDynamic) {
3120 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
3121 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
3122 // the beginning of the module's TLS region, followed by a DTPREL offset
3123 // calculation.
3124
3125 // These accesses will need deduplicating if there's more than one.
3126 AArch64FunctionInfo *MFI =
3127 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3128 MFI->incNumLocalDynamicTLSAccesses();
3129
3130 // Accesses used in this sequence go via the TLS descriptor which lives in
3131 // the GOT. Prepare an address we can use to handle this.
3132 SDValue HiDesc = DAG.getTargetExternalSymbol(
3133 "_TLS_MODULE_BASE_", PtrVT, AArch64II::MO_TLS | AArch64II::MO_PAGE);
3134 SDValue LoDesc = DAG.getTargetExternalSymbol(
3135 "_TLS_MODULE_BASE_", PtrVT,
3136 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3137
3138 // First argument to the descriptor call is the address of the descriptor
3139 // itself.
3140 SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc);
3141 DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
3142
3143 // The call needs a relocation too for linker relaxation. It doesn't make
3144 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3145 // the address.
3146 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
3147 AArch64II::MO_TLS);
3148
3149 // Now we can calculate the offset from TPIDR_EL0 to this module's
3150 // thread-local area.
3151 TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
3152
3153 // Now use :dtprel_whatever: operations to calculate this variable's offset
3154 // in its thread-storage area.
3155 SDValue HiVar = DAG.getTargetGlobalAddress(
3156 GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
3157 SDValue LoVar = DAG.getTargetGlobalAddress(
3158 GV, DL, MVT::i64, 0,
3159 AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
3160
3161 SDValue DTPOff =
3162 SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
3163 DAG.getTargetConstant(16, MVT::i32)),
3164 0);
3165 DTPOff =
3166 SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, DTPOff, LoVar,
3167 DAG.getTargetConstant(0, MVT::i32)),
3168 0);
3169
3170 TPOff = DAG.getNode(ISD::ADD, DL, PtrVT, TPOff, DTPOff);
3171 } else if (Model == TLSModel::GeneralDynamic) {
3172 // Accesses used in this sequence go via the TLS descriptor which lives in
3173 // the GOT. Prepare an address we can use to handle this.
3174 SDValue HiDesc = DAG.getTargetGlobalAddress(
3175 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGE);
3176 SDValue LoDesc = DAG.getTargetGlobalAddress(
3177 GV, DL, PtrVT, 0,
3178 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3179
3180 // First argument to the descriptor call is the address of the descriptor
3181 // itself.
3182 SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc);
3183 DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
3184
3185 // The call needs a relocation too for linker relaxation. It doesn't make
3186 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3187 // the address.
3188 SDValue SymAddr =
3189 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3190
3191 // Finally we can make a call to calculate the offset from tpidr_el0.
3192 TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
3193 } else
3194 llvm_unreachable("Unsupported ELF TLS access model");
3195
3196 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
3197}
3198
3199SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
3200 SelectionDAG &DAG) const {
3201 if (Subtarget->isTargetDarwin())
3202 return LowerDarwinGlobalTLSAddress(Op, DAG);
3203 else if (Subtarget->isTargetELF())
3204 return LowerELFGlobalTLSAddress(Op, DAG);
3205
3206 llvm_unreachable("Unexpected platform trying to use TLS");
3207}
3208SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3209 SDValue Chain = Op.getOperand(0);
3210 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3211 SDValue LHS = Op.getOperand(2);
3212 SDValue RHS = Op.getOperand(3);
3213 SDValue Dest = Op.getOperand(4);
3214 SDLoc dl(Op);
3215
3216 // Handle f128 first, since lowering it will result in comparing the return
3217 // value of a libcall against zero, which is just what the rest of LowerBR_CC
3218 // is expecting to deal with.
3219 if (LHS.getValueType() == MVT::f128) {
3220 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3221
3222 // If softenSetCCOperands returned a scalar, we need to compare the result
3223 // against zero to select between true and false values.
3224 if (!RHS.getNode()) {
3225 RHS = DAG.getConstant(0, LHS.getValueType());
3226 CC = ISD::SETNE;
3227 }
3228 }
3229
3230 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
3231 // instruction.
3232 unsigned Opc = LHS.getOpcode();
3233 if (LHS.getResNo() == 1 && isa<ConstantSDNode>(RHS) &&
3234 cast<ConstantSDNode>(RHS)->isOne() &&
3235 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3236 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3237 assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
3238 "Unexpected condition code.");
3239 // Only lower legal XALUO ops.
3240 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
3241 return SDValue();
3242
3243 // The actual operation with overflow check.
3244 AArch64CC::CondCode OFCC;
3245 SDValue Value, Overflow;
3246 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
3247
3248 if (CC == ISD::SETNE)
3249 OFCC = getInvertedCondCode(OFCC);
3250 SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
3251
Ahmed Bougachadf956a22015-02-06 23:15:39 +00003252 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3253 Overflow);
Tim Northover3b0846e2014-05-24 12:50:23 +00003254 }
3255
3256 if (LHS.getValueType().isInteger()) {
3257 assert((LHS.getValueType() == RHS.getValueType()) &&
3258 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3259
3260 // If the RHS of the comparison is zero, we can potentially fold this
3261 // to a specialized branch.
3262 const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
3263 if (RHSC && RHSC->getZExtValue() == 0) {
3264 if (CC == ISD::SETEQ) {
3265 // See if we can use a TBZ to fold in an AND as well.
3266 // TBZ has a smaller branch displacement than CBZ. If the offset is
3267 // out of bounds, a late MI-layer pass rewrites branches.
3268 // 403.gcc is an example that hits this case.
3269 if (LHS.getOpcode() == ISD::AND &&
3270 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3271 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3272 SDValue Test = LHS.getOperand(0);
3273 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003274 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
3275 DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
3276 }
3277
3278 return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
3279 } else if (CC == ISD::SETNE) {
3280 // See if we can use a TBZ to fold in an AND as well.
3281 // TBZ has a smaller branch displacement than CBZ. If the offset is
3282 // out of bounds, a late MI-layer pass rewrites branches.
3283 // 403.gcc is an example that hits this case.
3284 if (LHS.getOpcode() == ISD::AND &&
3285 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3286 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3287 SDValue Test = LHS.getOperand(0);
3288 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003289 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
3290 DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
3291 }
3292
3293 return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
Chad Rosier579c02c2014-08-01 14:48:56 +00003294 } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
3295 // Don't combine AND since emitComparison converts the AND to an ANDS
3296 // (a.k.a. TST) and the test in the test bit and branch instruction
3297 // becomes redundant. This would also increase register pressure.
3298 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3299 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
3300 DAG.getConstant(Mask, MVT::i64), Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003301 }
3302 }
Chad Rosier579c02c2014-08-01 14:48:56 +00003303 if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
3304 LHS.getOpcode() != ISD::AND) {
3305 // Don't combine AND since emitComparison converts the AND to an ANDS
3306 // (a.k.a. TST) and the test in the test bit and branch instruction
3307 // becomes redundant. This would also increase register pressure.
3308 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3309 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
3310 DAG.getConstant(Mask, MVT::i64), Dest);
3311 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003312
3313 SDValue CCVal;
3314 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3315 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3316 Cmp);
3317 }
3318
3319 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3320
3321 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3322 // clean. Some of them require two branches to implement.
3323 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3324 AArch64CC::CondCode CC1, CC2;
3325 changeFPCCToAArch64CC(CC, CC1, CC2);
3326 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3327 SDValue BR1 =
3328 DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
3329 if (CC2 != AArch64CC::AL) {
3330 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3331 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
3332 Cmp);
3333 }
3334
3335 return BR1;
3336}
3337
3338SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
3339 SelectionDAG &DAG) const {
3340 EVT VT = Op.getValueType();
3341 SDLoc DL(Op);
3342
3343 SDValue In1 = Op.getOperand(0);
3344 SDValue In2 = Op.getOperand(1);
3345 EVT SrcVT = In2.getValueType();
3346 if (SrcVT != VT) {
3347 if (SrcVT == MVT::f32 && VT == MVT::f64)
3348 In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
3349 else if (SrcVT == MVT::f64 && VT == MVT::f32)
3350 In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0));
3351 else
3352 // FIXME: Src type is different, bail out for now. Can VT really be a
3353 // vector type?
3354 return SDValue();
3355 }
3356
3357 EVT VecVT;
3358 EVT EltVT;
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003359 uint64_t EltMask;
3360 SDValue VecVal1, VecVal2;
Tim Northover3b0846e2014-05-24 12:50:23 +00003361 if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
3362 EltVT = MVT::i32;
3363 VecVT = MVT::v4i32;
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003364 EltMask = 0x80000000ULL;
Tim Northover3b0846e2014-05-24 12:50:23 +00003365
3366 if (!VT.isVector()) {
3367 VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3368 DAG.getUNDEF(VecVT), In1);
3369 VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3370 DAG.getUNDEF(VecVT), In2);
3371 } else {
3372 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3373 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3374 }
3375 } else if (VT == MVT::f64 || VT == MVT::v2f64) {
3376 EltVT = MVT::i64;
3377 VecVT = MVT::v2i64;
3378
3379 // We want to materialize a mask with the the high bit set, but the AdvSIMD
3380 // immediate moves cannot materialize that in a single instruction for
3381 // 64-bit elements. Instead, materialize zero and then negate it.
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003382 EltMask = 0;
Tim Northover3b0846e2014-05-24 12:50:23 +00003383
3384 if (!VT.isVector()) {
3385 VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3386 DAG.getUNDEF(VecVT), In1);
3387 VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3388 DAG.getUNDEF(VecVT), In2);
3389 } else {
3390 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3391 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3392 }
3393 } else {
3394 llvm_unreachable("Invalid type for copysign!");
3395 }
3396
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003397 SDValue BuildVec = DAG.getConstant(EltMask, VecVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00003398
3399 // If we couldn't materialize the mask above, then the mask vector will be
3400 // the zero vector, and we need to negate it here.
3401 if (VT == MVT::f64 || VT == MVT::v2f64) {
3402 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
3403 BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
3404 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
3405 }
3406
3407 SDValue Sel =
3408 DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
3409
3410 if (VT == MVT::f32)
3411 return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
3412 else if (VT == MVT::f64)
3413 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
3414 else
3415 return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
3416}
3417
3418SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
Duncan P. N. Exon Smith003bb7d2015-02-14 02:09:06 +00003419 if (DAG.getMachineFunction().getFunction()->hasFnAttribute(
3420 Attribute::NoImplicitFloat))
Tim Northover3b0846e2014-05-24 12:50:23 +00003421 return SDValue();
3422
Weiming Zhao7a2d1562014-11-19 00:29:14 +00003423 if (!Subtarget->hasNEON())
3424 return SDValue();
3425
Tim Northover3b0846e2014-05-24 12:50:23 +00003426 // While there is no integer popcount instruction, it can
3427 // be more efficiently lowered to the following sequence that uses
3428 // AdvSIMD registers/instructions as long as the copies to/from
3429 // the AdvSIMD registers are cheap.
3430 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
3431 // CNT V0.8B, V0.8B // 8xbyte pop-counts
3432 // ADDV B0, V0.8B // sum 8xbyte pop-counts
3433 // UMOV X0, V0.B[0] // copy byte result back to integer reg
3434 SDValue Val = Op.getOperand(0);
3435 SDLoc DL(Op);
3436 EVT VT = Op.getValueType();
Tim Northover3b0846e2014-05-24 12:50:23 +00003437
Hao Liue0335d72015-01-30 02:13:53 +00003438 if (VT == MVT::i32)
3439 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
3440 Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
Tim Northover3b0846e2014-05-24 12:50:23 +00003441
Hao Liue0335d72015-01-30 02:13:53 +00003442 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
Tim Northover3b0846e2014-05-24 12:50:23 +00003443 SDValue UaddLV = DAG.getNode(
3444 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
3445 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, MVT::i32), CtPop);
3446
3447 if (VT == MVT::i64)
3448 UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
3449 return UaddLV;
3450}
3451
3452SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3453
3454 if (Op.getValueType().isVector())
3455 return LowerVSETCC(Op, DAG);
3456
3457 SDValue LHS = Op.getOperand(0);
3458 SDValue RHS = Op.getOperand(1);
3459 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3460 SDLoc dl(Op);
3461
3462 // We chose ZeroOrOneBooleanContents, so use zero and one.
3463 EVT VT = Op.getValueType();
3464 SDValue TVal = DAG.getConstant(1, VT);
3465 SDValue FVal = DAG.getConstant(0, VT);
3466
3467 // Handle f128 first, since one possible outcome is a normal integer
3468 // comparison which gets picked up by the next if statement.
3469 if (LHS.getValueType() == MVT::f128) {
3470 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3471
3472 // If softenSetCCOperands returned a scalar, use it.
3473 if (!RHS.getNode()) {
3474 assert(LHS.getValueType() == Op.getValueType() &&
3475 "Unexpected setcc expansion!");
3476 return LHS;
3477 }
3478 }
3479
3480 if (LHS.getValueType().isInteger()) {
3481 SDValue CCVal;
3482 SDValue Cmp =
3483 getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
3484
3485 // Note that we inverted the condition above, so we reverse the order of
3486 // the true and false operands here. This will allow the setcc to be
3487 // matched to a single CSINC instruction.
3488 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
3489 }
3490
3491 // Now we know we're dealing with FP values.
3492 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3493
3494 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3495 // and do the comparison.
3496 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3497
3498 AArch64CC::CondCode CC1, CC2;
3499 changeFPCCToAArch64CC(CC, CC1, CC2);
3500 if (CC2 == AArch64CC::AL) {
3501 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
3502 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3503
3504 // Note that we inverted the condition above, so we reverse the order of
3505 // the true and false operands here. This will allow the setcc to be
3506 // matched to a single CSINC instruction.
3507 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
3508 } else {
3509 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
3510 // totally clean. Some of them require two CSELs to implement. As is in
3511 // this case, we emit the first CSEL and then emit a second using the output
3512 // of the first as the RHS. We're effectively OR'ing the two CC's together.
3513
3514 // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
3515 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3516 SDValue CS1 =
3517 DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3518
3519 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3520 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3521 }
3522}
3523
3524/// A SELECT_CC operation is really some kind of max or min if both values being
3525/// compared are, in some sense, equal to the results in either case. However,
3526/// it is permissible to compare f32 values and produce directly extended f64
3527/// values.
3528///
3529/// Extending the comparison operands would also be allowed, but is less likely
3530/// to happen in practice since their use is right here. Note that truncate
3531/// operations would *not* be semantically equivalent.
3532static bool selectCCOpsAreFMaxCompatible(SDValue Cmp, SDValue Result) {
3533 if (Cmp == Result)
3534 return true;
3535
3536 ConstantFPSDNode *CCmp = dyn_cast<ConstantFPSDNode>(Cmp);
3537 ConstantFPSDNode *CResult = dyn_cast<ConstantFPSDNode>(Result);
3538 if (CCmp && CResult && Cmp.getValueType() == MVT::f32 &&
3539 Result.getValueType() == MVT::f64) {
3540 bool Lossy;
3541 APFloat CmpVal = CCmp->getValueAPF();
3542 CmpVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Lossy);
3543 return CResult->getValueAPF().bitwiseIsEqual(CmpVal);
3544 }
3545
3546 return Result->getOpcode() == ISD::FP_EXTEND && Result->getOperand(0) == Cmp;
3547}
3548
3549SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
3550 SelectionDAG &DAG) const {
3551 SDValue CC = Op->getOperand(0);
3552 SDValue TVal = Op->getOperand(1);
3553 SDValue FVal = Op->getOperand(2);
3554 SDLoc DL(Op);
3555
3556 unsigned Opc = CC.getOpcode();
3557 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
3558 // instruction.
3559 if (CC.getResNo() == 1 &&
3560 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3561 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3562 // Only lower legal XALUO ops.
3563 if (!DAG.getTargetLoweringInfo().isTypeLegal(CC->getValueType(0)))
3564 return SDValue();
3565
3566 AArch64CC::CondCode OFCC;
3567 SDValue Value, Overflow;
3568 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CC.getValue(0), DAG);
3569 SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
3570
3571 return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
3572 CCVal, Overflow);
3573 }
3574
3575 if (CC.getOpcode() == ISD::SETCC)
3576 return DAG.getSelectCC(DL, CC.getOperand(0), CC.getOperand(1), TVal, FVal,
3577 cast<CondCodeSDNode>(CC.getOperand(2))->get());
3578 else
3579 return DAG.getSelectCC(DL, CC, DAG.getConstant(0, CC.getValueType()), TVal,
3580 FVal, ISD::SETNE);
3581}
3582
3583SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
3584 SelectionDAG &DAG) const {
3585 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3586 SDValue LHS = Op.getOperand(0);
3587 SDValue RHS = Op.getOperand(1);
3588 SDValue TVal = Op.getOperand(2);
3589 SDValue FVal = Op.getOperand(3);
3590 SDLoc dl(Op);
3591
3592 // Handle f128 first, because it will result in a comparison of some RTLIB
3593 // call result against zero.
3594 if (LHS.getValueType() == MVT::f128) {
3595 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3596
3597 // If softenSetCCOperands returned a scalar, we need to compare the result
3598 // against zero to select between true and false values.
3599 if (!RHS.getNode()) {
3600 RHS = DAG.getConstant(0, LHS.getValueType());
3601 CC = ISD::SETNE;
3602 }
3603 }
3604
3605 // Handle integers first.
3606 if (LHS.getValueType().isInteger()) {
3607 assert((LHS.getValueType() == RHS.getValueType()) &&
3608 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3609
3610 unsigned Opcode = AArch64ISD::CSEL;
3611
3612 // If both the TVal and the FVal are constants, see if we can swap them in
3613 // order to for a CSINV or CSINC out of them.
3614 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
3615 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
3616
3617 if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
3618 std::swap(TVal, FVal);
3619 std::swap(CTVal, CFVal);
3620 CC = ISD::getSetCCInverse(CC, true);
3621 } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
3622 std::swap(TVal, FVal);
3623 std::swap(CTVal, CFVal);
3624 CC = ISD::getSetCCInverse(CC, true);
3625 } else if (TVal.getOpcode() == ISD::XOR) {
3626 // If TVal is a NOT we want to swap TVal and FVal so that we can match
3627 // with a CSINV rather than a CSEL.
3628 ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(1));
3629
3630 if (CVal && CVal->isAllOnesValue()) {
3631 std::swap(TVal, FVal);
3632 std::swap(CTVal, CFVal);
3633 CC = ISD::getSetCCInverse(CC, true);
3634 }
3635 } else if (TVal.getOpcode() == ISD::SUB) {
3636 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
3637 // that we can match with a CSNEG rather than a CSEL.
3638 ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(0));
3639
3640 if (CVal && CVal->isNullValue()) {
3641 std::swap(TVal, FVal);
3642 std::swap(CTVal, CFVal);
3643 CC = ISD::getSetCCInverse(CC, true);
3644 }
3645 } else if (CTVal && CFVal) {
3646 const int64_t TrueVal = CTVal->getSExtValue();
3647 const int64_t FalseVal = CFVal->getSExtValue();
3648 bool Swap = false;
3649
3650 // If both TVal and FVal are constants, see if FVal is the
3651 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
3652 // instead of a CSEL in that case.
3653 if (TrueVal == ~FalseVal) {
3654 Opcode = AArch64ISD::CSINV;
3655 } else if (TrueVal == -FalseVal) {
3656 Opcode = AArch64ISD::CSNEG;
3657 } else if (TVal.getValueType() == MVT::i32) {
3658 // If our operands are only 32-bit wide, make sure we use 32-bit
3659 // arithmetic for the check whether we can use CSINC. This ensures that
3660 // the addition in the check will wrap around properly in case there is
3661 // an overflow (which would not be the case if we do the check with
3662 // 64-bit arithmetic).
3663 const uint32_t TrueVal32 = CTVal->getZExtValue();
3664 const uint32_t FalseVal32 = CFVal->getZExtValue();
3665
3666 if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
3667 Opcode = AArch64ISD::CSINC;
3668
3669 if (TrueVal32 > FalseVal32) {
3670 Swap = true;
3671 }
3672 }
3673 // 64-bit check whether we can use CSINC.
3674 } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
3675 Opcode = AArch64ISD::CSINC;
3676
3677 if (TrueVal > FalseVal) {
3678 Swap = true;
3679 }
3680 }
3681
3682 // Swap TVal and FVal if necessary.
3683 if (Swap) {
3684 std::swap(TVal, FVal);
3685 std::swap(CTVal, CFVal);
3686 CC = ISD::getSetCCInverse(CC, true);
3687 }
3688
3689 if (Opcode != AArch64ISD::CSEL) {
3690 // Drop FVal since we can get its value by simply inverting/negating
3691 // TVal.
3692 FVal = TVal;
3693 }
3694 }
3695
3696 SDValue CCVal;
3697 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3698
3699 EVT VT = Op.getValueType();
3700 return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
3701 }
3702
3703 // Now we know we're dealing with FP values.
3704 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3705 assert(LHS.getValueType() == RHS.getValueType());
3706 EVT VT = Op.getValueType();
3707
3708 // Try to match this select into a max/min operation, which have dedicated
3709 // opcode in the instruction set.
3710 // FIXME: This is not correct in the presence of NaNs, so we only enable this
3711 // in no-NaNs mode.
3712 if (getTargetMachine().Options.NoNaNsFPMath) {
3713 SDValue MinMaxLHS = TVal, MinMaxRHS = FVal;
3714 if (selectCCOpsAreFMaxCompatible(LHS, MinMaxRHS) &&
3715 selectCCOpsAreFMaxCompatible(RHS, MinMaxLHS)) {
3716 CC = ISD::getSetCCSwappedOperands(CC);
3717 std::swap(MinMaxLHS, MinMaxRHS);
3718 }
3719
3720 if (selectCCOpsAreFMaxCompatible(LHS, MinMaxLHS) &&
3721 selectCCOpsAreFMaxCompatible(RHS, MinMaxRHS)) {
3722 switch (CC) {
3723 default:
3724 break;
3725 case ISD::SETGT:
3726 case ISD::SETGE:
3727 case ISD::SETUGT:
3728 case ISD::SETUGE:
3729 case ISD::SETOGT:
3730 case ISD::SETOGE:
3731 return DAG.getNode(AArch64ISD::FMAX, dl, VT, MinMaxLHS, MinMaxRHS);
3732 break;
3733 case ISD::SETLT:
3734 case ISD::SETLE:
3735 case ISD::SETULT:
3736 case ISD::SETULE:
3737 case ISD::SETOLT:
3738 case ISD::SETOLE:
3739 return DAG.getNode(AArch64ISD::FMIN, dl, VT, MinMaxLHS, MinMaxRHS);
3740 break;
3741 }
3742 }
3743 }
3744
3745 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3746 // and do the comparison.
3747 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3748
3749 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3750 // clean. Some of them require two CSELs to implement.
3751 AArch64CC::CondCode CC1, CC2;
3752 changeFPCCToAArch64CC(CC, CC1, CC2);
3753 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3754 SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3755
3756 // If we need a second CSEL, emit it, using the output of the first as the
3757 // RHS. We're effectively OR'ing the two CC's together.
3758 if (CC2 != AArch64CC::AL) {
3759 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3760 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3761 }
3762
3763 // Otherwise, return the output of the first CSEL.
3764 return CS1;
3765}
3766
3767SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
3768 SelectionDAG &DAG) const {
3769 // Jump table entries as PC relative offsets. No additional tweaking
3770 // is necessary here. Just get the address of the jump table.
3771 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3772 EVT PtrVT = getPointerTy();
3773 SDLoc DL(Op);
3774
3775 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3776 !Subtarget->isTargetMachO()) {
3777 const unsigned char MO_NC = AArch64II::MO_NC;
3778 return DAG.getNode(
3779 AArch64ISD::WrapperLarge, DL, PtrVT,
3780 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
3781 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
3782 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
3783 DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3784 AArch64II::MO_G0 | MO_NC));
3785 }
3786
3787 SDValue Hi =
3788 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
3789 SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3790 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3791 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3792 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3793}
3794
3795SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
3796 SelectionDAG &DAG) const {
3797 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3798 EVT PtrVT = getPointerTy();
3799 SDLoc DL(Op);
3800
3801 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3802 // Use the GOT for the large code model on iOS.
3803 if (Subtarget->isTargetMachO()) {
3804 SDValue GotAddr = DAG.getTargetConstantPool(
3805 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3806 AArch64II::MO_GOT);
3807 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
3808 }
3809
3810 const unsigned char MO_NC = AArch64II::MO_NC;
3811 return DAG.getNode(
3812 AArch64ISD::WrapperLarge, DL, PtrVT,
3813 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3814 CP->getOffset(), AArch64II::MO_G3),
3815 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3816 CP->getOffset(), AArch64II::MO_G2 | MO_NC),
3817 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3818 CP->getOffset(), AArch64II::MO_G1 | MO_NC),
3819 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3820 CP->getOffset(), AArch64II::MO_G0 | MO_NC));
3821 } else {
3822 // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
3823 // ELF, the only valid one on Darwin.
3824 SDValue Hi =
3825 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3826 CP->getOffset(), AArch64II::MO_PAGE);
3827 SDValue Lo = DAG.getTargetConstantPool(
3828 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3829 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3830
3831 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3832 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3833 }
3834}
3835
3836SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
3837 SelectionDAG &DAG) const {
3838 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
3839 EVT PtrVT = getPointerTy();
3840 SDLoc DL(Op);
3841 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3842 !Subtarget->isTargetMachO()) {
3843 const unsigned char MO_NC = AArch64II::MO_NC;
3844 return DAG.getNode(
3845 AArch64ISD::WrapperLarge, DL, PtrVT,
3846 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
3847 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
3848 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
3849 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
3850 } else {
3851 SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
3852 SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
3853 AArch64II::MO_NC);
3854 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3855 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3856 }
3857}
3858
3859SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
3860 SelectionDAG &DAG) const {
3861 AArch64FunctionInfo *FuncInfo =
3862 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3863
3864 SDLoc DL(Op);
3865 SDValue FR =
3866 DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3867 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3868 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3869 MachinePointerInfo(SV), false, false, 0);
3870}
3871
3872SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
3873 SelectionDAG &DAG) const {
3874 // The layout of the va_list struct is specified in the AArch64 Procedure Call
3875 // Standard, section B.3.
3876 MachineFunction &MF = DAG.getMachineFunction();
3877 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3878 SDLoc DL(Op);
3879
3880 SDValue Chain = Op.getOperand(0);
3881 SDValue VAList = Op.getOperand(1);
3882 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3883 SmallVector<SDValue, 4> MemOps;
3884
3885 // void *__stack at offset 0
3886 SDValue Stack =
3887 DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3888 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
3889 MachinePointerInfo(SV), false, false, 8));
3890
3891 // void *__gr_top at offset 8
3892 int GPRSize = FuncInfo->getVarArgsGPRSize();
3893 if (GPRSize > 0) {
3894 SDValue GRTop, GRTopAddr;
3895
3896 GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3897 DAG.getConstant(8, getPointerTy()));
3898
3899 GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), getPointerTy());
3900 GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
3901 DAG.getConstant(GPRSize, getPointerTy()));
3902
3903 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
3904 MachinePointerInfo(SV, 8), false, false, 8));
3905 }
3906
3907 // void *__vr_top at offset 16
3908 int FPRSize = FuncInfo->getVarArgsFPRSize();
3909 if (FPRSize > 0) {
3910 SDValue VRTop, VRTopAddr;
3911 VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3912 DAG.getConstant(16, getPointerTy()));
3913
3914 VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), getPointerTy());
3915 VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
3916 DAG.getConstant(FPRSize, getPointerTy()));
3917
3918 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
3919 MachinePointerInfo(SV, 16), false, false, 8));
3920 }
3921
3922 // int __gr_offs at offset 24
3923 SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3924 DAG.getConstant(24, getPointerTy()));
3925 MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
3926 GROffsAddr, MachinePointerInfo(SV, 24), false,
3927 false, 4));
3928
3929 // int __vr_offs at offset 28
3930 SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3931 DAG.getConstant(28, getPointerTy()));
3932 MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
3933 VROffsAddr, MachinePointerInfo(SV, 28), false,
3934 false, 4));
3935
3936 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3937}
3938
3939SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
3940 SelectionDAG &DAG) const {
3941 return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
3942 : LowerAAPCS_VASTART(Op, DAG);
3943}
3944
3945SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
3946 SelectionDAG &DAG) const {
3947 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
3948 // pointer.
3949 unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
3950 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3951 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3952
3953 return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op), Op.getOperand(1),
3954 Op.getOperand(2), DAG.getConstant(VaListSize, MVT::i32),
3955 8, false, false, MachinePointerInfo(DestSV),
3956 MachinePointerInfo(SrcSV));
3957}
3958
3959SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3960 assert(Subtarget->isTargetDarwin() &&
3961 "automatic va_arg instruction only works on Darwin");
3962
3963 const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3964 EVT VT = Op.getValueType();
3965 SDLoc DL(Op);
3966 SDValue Chain = Op.getOperand(0);
3967 SDValue Addr = Op.getOperand(1);
3968 unsigned Align = Op.getConstantOperandVal(3);
3969
3970 SDValue VAList = DAG.getLoad(getPointerTy(), DL, Chain, Addr,
3971 MachinePointerInfo(V), false, false, false, 0);
3972 Chain = VAList.getValue(1);
3973
3974 if (Align > 8) {
3975 assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
3976 VAList = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3977 DAG.getConstant(Align - 1, getPointerTy()));
3978 VAList = DAG.getNode(ISD::AND, DL, getPointerTy(), VAList,
3979 DAG.getConstant(-(int64_t)Align, getPointerTy()));
3980 }
3981
3982 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
3983 uint64_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
3984
3985 // Scalar integer and FP values smaller than 64 bits are implicitly extended
3986 // up to 64 bits. At the very least, we have to increase the striding of the
3987 // vaargs list to match this, and for FP values we need to introduce
3988 // FP_ROUND nodes as well.
3989 if (VT.isInteger() && !VT.isVector())
3990 ArgSize = 8;
3991 bool NeedFPTrunc = false;
3992 if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
3993 ArgSize = 8;
3994 NeedFPTrunc = true;
3995 }
3996
3997 // Increment the pointer, VAList, to the next vaarg
3998 SDValue VANext = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3999 DAG.getConstant(ArgSize, getPointerTy()));
4000 // Store the incremented VAList to the legalized pointer
4001 SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
4002 false, false, 0);
4003
4004 // Load the actual argument out of the pointer VAList
4005 if (NeedFPTrunc) {
4006 // Load the value as an f64.
4007 SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
4008 MachinePointerInfo(), false, false, false, 0);
4009 // Round the value down to an f32.
4010 SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
4011 DAG.getIntPtrConstant(1));
4012 SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
4013 // Merge the rounded value with the chain output of the load.
4014 return DAG.getMergeValues(Ops, DL);
4015 }
4016
4017 return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
4018 false, false, 0);
4019}
4020
4021SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
4022 SelectionDAG &DAG) const {
4023 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4024 MFI->setFrameAddressIsTaken(true);
4025
4026 EVT VT = Op.getValueType();
4027 SDLoc DL(Op);
4028 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4029 SDValue FrameAddr =
4030 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
4031 while (Depth--)
4032 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
4033 MachinePointerInfo(), false, false, false, 0);
4034 return FrameAddr;
4035}
4036
4037// FIXME? Maybe this could be a TableGen attribute on some registers and
4038// this table could be generated automatically from RegInfo.
4039unsigned AArch64TargetLowering::getRegisterByName(const char* RegName,
4040 EVT VT) const {
4041 unsigned Reg = StringSwitch<unsigned>(RegName)
4042 .Case("sp", AArch64::SP)
4043 .Default(0);
4044 if (Reg)
4045 return Reg;
4046 report_fatal_error("Invalid register name global variable");
4047}
4048
4049SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
4050 SelectionDAG &DAG) const {
4051 MachineFunction &MF = DAG.getMachineFunction();
4052 MachineFrameInfo *MFI = MF.getFrameInfo();
4053 MFI->setReturnAddressIsTaken(true);
4054
4055 EVT VT = Op.getValueType();
4056 SDLoc DL(Op);
4057 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4058 if (Depth) {
4059 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
4060 SDValue Offset = DAG.getConstant(8, getPointerTy());
4061 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4062 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4063 MachinePointerInfo(), false, false, false, 0);
4064 }
4065
4066 // Return LR, which contains the return address. Mark it an implicit live-in.
4067 unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
4068 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
4069}
4070
4071/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
4072/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4073SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
4074 SelectionDAG &DAG) const {
4075 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4076 EVT VT = Op.getValueType();
4077 unsigned VTBits = VT.getSizeInBits();
4078 SDLoc dl(Op);
4079 SDValue ShOpLo = Op.getOperand(0);
4080 SDValue ShOpHi = Op.getOperand(1);
4081 SDValue ShAmt = Op.getOperand(2);
4082 SDValue ARMcc;
4083 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
4084
4085 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
4086
4087 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
4088 DAG.getConstant(VTBits, MVT::i64), ShAmt);
4089 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
4090 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
4091 DAG.getConstant(VTBits, MVT::i64));
4092 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
4093
4094 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
4095 ISD::SETGE, dl, DAG);
4096 SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
4097
4098 SDValue FalseValLo = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4099 SDValue TrueValLo = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
4100 SDValue Lo =
4101 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
4102
4103 // AArch64 shifts larger than the register width are wrapped rather than
4104 // clamped, so we can't just emit "hi >> x".
4105 SDValue FalseValHi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
4106 SDValue TrueValHi = Opc == ISD::SRA
4107 ? DAG.getNode(Opc, dl, VT, ShOpHi,
4108 DAG.getConstant(VTBits - 1, MVT::i64))
4109 : DAG.getConstant(0, VT);
4110 SDValue Hi =
4111 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValHi, FalseValHi, CCVal, Cmp);
4112
4113 SDValue Ops[2] = { Lo, Hi };
4114 return DAG.getMergeValues(Ops, dl);
4115}
4116
4117/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
4118/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4119SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
4120 SelectionDAG &DAG) const {
4121 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4122 EVT VT = Op.getValueType();
4123 unsigned VTBits = VT.getSizeInBits();
4124 SDLoc dl(Op);
4125 SDValue ShOpLo = Op.getOperand(0);
4126 SDValue ShOpHi = Op.getOperand(1);
4127 SDValue ShAmt = Op.getOperand(2);
4128 SDValue ARMcc;
4129
4130 assert(Op.getOpcode() == ISD::SHL_PARTS);
4131 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
4132 DAG.getConstant(VTBits, MVT::i64), ShAmt);
4133 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
4134 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
4135 DAG.getConstant(VTBits, MVT::i64));
4136 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
4137 SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
4138
4139 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4140
4141 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
4142 ISD::SETGE, dl, DAG);
4143 SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
4144 SDValue Hi =
4145 DAG.getNode(AArch64ISD::CSEL, dl, VT, Tmp3, FalseVal, CCVal, Cmp);
4146
4147 // AArch64 shifts of larger than register sizes are wrapped rather than
4148 // clamped, so we can't just emit "lo << a" if a is too big.
4149 SDValue TrueValLo = DAG.getConstant(0, VT);
4150 SDValue FalseValLo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4151 SDValue Lo =
4152 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
4153
4154 SDValue Ops[2] = { Lo, Hi };
4155 return DAG.getMergeValues(Ops, dl);
4156}
4157
4158bool AArch64TargetLowering::isOffsetFoldingLegal(
4159 const GlobalAddressSDNode *GA) const {
4160 // The AArch64 target doesn't support folding offsets into global addresses.
4161 return false;
4162}
4163
4164bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4165 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
4166 // FIXME: We should be able to handle f128 as well with a clever lowering.
4167 if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
4168 return true;
4169
4170 if (VT == MVT::f64)
4171 return AArch64_AM::getFP64Imm(Imm) != -1;
4172 else if (VT == MVT::f32)
4173 return AArch64_AM::getFP32Imm(Imm) != -1;
4174 return false;
4175}
4176
4177//===----------------------------------------------------------------------===//
4178// AArch64 Optimization Hooks
4179//===----------------------------------------------------------------------===//
4180
4181//===----------------------------------------------------------------------===//
4182// AArch64 Inline Assembly Support
4183//===----------------------------------------------------------------------===//
4184
4185// Table of Constraints
4186// TODO: This is the current set of constraints supported by ARM for the
4187// compiler, not all of them may make sense, e.g. S may be difficult to support.
4188//
4189// r - A general register
4190// w - An FP/SIMD register of some size in the range v0-v31
4191// x - An FP/SIMD register of some size in the range v0-v15
4192// I - Constant that can be used with an ADD instruction
4193// J - Constant that can be used with a SUB instruction
4194// K - Constant that can be used with a 32-bit logical instruction
4195// L - Constant that can be used with a 64-bit logical instruction
4196// M - Constant that can be used as a 32-bit MOV immediate
4197// N - Constant that can be used as a 64-bit MOV immediate
4198// Q - A memory reference with base register and no offset
4199// S - A symbolic address
4200// Y - Floating point constant zero
4201// Z - Integer constant zero
4202//
4203// Note that general register operands will be output using their 64-bit x
4204// register name, whatever the size of the variable, unless the asm operand
4205// is prefixed by the %w modifier. Floating-point and SIMD register operands
4206// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
4207// %q modifier.
4208
4209/// getConstraintType - Given a constraint letter, return the type of
4210/// constraint it is for this target.
4211AArch64TargetLowering::ConstraintType
4212AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
4213 if (Constraint.size() == 1) {
4214 switch (Constraint[0]) {
4215 default:
4216 break;
4217 case 'z':
4218 return C_Other;
4219 case 'x':
4220 case 'w':
4221 return C_RegisterClass;
4222 // An address with a single base register. Due to the way we
4223 // currently handle addresses it is the same as 'r'.
4224 case 'Q':
4225 return C_Memory;
4226 }
4227 }
4228 return TargetLowering::getConstraintType(Constraint);
4229}
4230
4231/// Examine constraint type and operand type and determine a weight value.
4232/// This object must already have been set up with the operand type
4233/// and the current alternative constraint selected.
4234TargetLowering::ConstraintWeight
4235AArch64TargetLowering::getSingleConstraintMatchWeight(
4236 AsmOperandInfo &info, const char *constraint) const {
4237 ConstraintWeight weight = CW_Invalid;
4238 Value *CallOperandVal = info.CallOperandVal;
4239 // If we don't have a value, we can't do a match,
4240 // but allow it at the lowest weight.
4241 if (!CallOperandVal)
4242 return CW_Default;
4243 Type *type = CallOperandVal->getType();
4244 // Look at the constraint type.
4245 switch (*constraint) {
4246 default:
4247 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
4248 break;
4249 case 'x':
4250 case 'w':
4251 if (type->isFloatingPointTy() || type->isVectorTy())
4252 weight = CW_Register;
4253 break;
4254 case 'z':
4255 weight = CW_Constant;
4256 break;
4257 }
4258 return weight;
4259}
4260
4261std::pair<unsigned, const TargetRegisterClass *>
4262AArch64TargetLowering::getRegForInlineAsmConstraint(
Eric Christopher11e4df72015-02-26 22:38:43 +00004263 const TargetRegisterInfo *TRI, const std::string &Constraint,
4264 MVT VT) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00004265 if (Constraint.size() == 1) {
4266 switch (Constraint[0]) {
4267 case 'r':
4268 if (VT.getSizeInBits() == 64)
4269 return std::make_pair(0U, &AArch64::GPR64commonRegClass);
4270 return std::make_pair(0U, &AArch64::GPR32commonRegClass);
4271 case 'w':
4272 if (VT == MVT::f32)
4273 return std::make_pair(0U, &AArch64::FPR32RegClass);
4274 if (VT.getSizeInBits() == 64)
4275 return std::make_pair(0U, &AArch64::FPR64RegClass);
4276 if (VT.getSizeInBits() == 128)
4277 return std::make_pair(0U, &AArch64::FPR128RegClass);
4278 break;
4279 // The instructions that this constraint is designed for can
4280 // only take 128-bit registers so just use that regclass.
4281 case 'x':
4282 if (VT.getSizeInBits() == 128)
4283 return std::make_pair(0U, &AArch64::FPR128_loRegClass);
4284 break;
4285 }
4286 }
4287 if (StringRef("{cc}").equals_lower(Constraint))
4288 return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
4289
4290 // Use the default implementation in TargetLowering to convert the register
4291 // constraint into a member of a register class.
4292 std::pair<unsigned, const TargetRegisterClass *> Res;
Eric Christopher11e4df72015-02-26 22:38:43 +00004293 Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00004294
4295 // Not found as a standard register?
4296 if (!Res.second) {
4297 unsigned Size = Constraint.size();
4298 if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
4299 tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
4300 const std::string Reg =
4301 std::string(&Constraint[2], &Constraint[Size - 1]);
4302 int RegNo = atoi(Reg.c_str());
4303 if (RegNo >= 0 && RegNo <= 31) {
4304 // v0 - v31 are aliases of q0 - q31.
4305 // By default we'll emit v0-v31 for this unless there's a modifier where
4306 // we'll emit the correct register as well.
4307 Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
4308 Res.second = &AArch64::FPR128RegClass;
4309 }
4310 }
4311 }
4312
4313 return Res;
4314}
4315
4316/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4317/// vector. If it is invalid, don't add anything to Ops.
4318void AArch64TargetLowering::LowerAsmOperandForConstraint(
4319 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
4320 SelectionDAG &DAG) const {
4321 SDValue Result;
4322
4323 // Currently only support length 1 constraints.
4324 if (Constraint.length() != 1)
4325 return;
4326
4327 char ConstraintLetter = Constraint[0];
4328 switch (ConstraintLetter) {
4329 default:
4330 break;
4331
4332 // This set of constraints deal with valid constants for various instructions.
4333 // Validate and return a target constant for them if we can.
4334 case 'z': {
4335 // 'z' maps to xzr or wzr so it needs an input of 0.
4336 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4337 if (!C || C->getZExtValue() != 0)
4338 return;
4339
4340 if (Op.getValueType() == MVT::i64)
4341 Result = DAG.getRegister(AArch64::XZR, MVT::i64);
4342 else
4343 Result = DAG.getRegister(AArch64::WZR, MVT::i32);
4344 break;
4345 }
4346
4347 case 'I':
4348 case 'J':
4349 case 'K':
4350 case 'L':
4351 case 'M':
4352 case 'N':
4353 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4354 if (!C)
4355 return;
4356
4357 // Grab the value and do some validation.
4358 uint64_t CVal = C->getZExtValue();
4359 switch (ConstraintLetter) {
4360 // The I constraint applies only to simple ADD or SUB immediate operands:
4361 // i.e. 0 to 4095 with optional shift by 12
4362 // The J constraint applies only to ADD or SUB immediates that would be
4363 // valid when negated, i.e. if [an add pattern] were to be output as a SUB
4364 // instruction [or vice versa], in other words -1 to -4095 with optional
4365 // left shift by 12.
4366 case 'I':
4367 if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
4368 break;
4369 return;
4370 case 'J': {
4371 uint64_t NVal = -C->getSExtValue();
Tim Northover2c46beb2014-07-27 07:10:29 +00004372 if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
4373 CVal = C->getSExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00004374 break;
Tim Northover2c46beb2014-07-27 07:10:29 +00004375 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004376 return;
4377 }
4378 // The K and L constraints apply *only* to logical immediates, including
4379 // what used to be the MOVI alias for ORR (though the MOVI alias has now
4380 // been removed and MOV should be used). So these constraints have to
4381 // distinguish between bit patterns that are valid 32-bit or 64-bit
4382 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
4383 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
4384 // versa.
4385 case 'K':
4386 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4387 break;
4388 return;
4389 case 'L':
4390 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4391 break;
4392 return;
4393 // The M and N constraints are a superset of K and L respectively, for use
4394 // with the MOV (immediate) alias. As well as the logical immediates they
4395 // also match 32 or 64-bit immediates that can be loaded either using a
4396 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
4397 // (M) or 64-bit 0x1234000000000000 (N) etc.
4398 // As a note some of this code is liberally stolen from the asm parser.
4399 case 'M': {
4400 if (!isUInt<32>(CVal))
4401 return;
4402 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4403 break;
4404 if ((CVal & 0xFFFF) == CVal)
4405 break;
4406 if ((CVal & 0xFFFF0000ULL) == CVal)
4407 break;
4408 uint64_t NCVal = ~(uint32_t)CVal;
4409 if ((NCVal & 0xFFFFULL) == NCVal)
4410 break;
4411 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4412 break;
4413 return;
4414 }
4415 case 'N': {
4416 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4417 break;
4418 if ((CVal & 0xFFFFULL) == CVal)
4419 break;
4420 if ((CVal & 0xFFFF0000ULL) == CVal)
4421 break;
4422 if ((CVal & 0xFFFF00000000ULL) == CVal)
4423 break;
4424 if ((CVal & 0xFFFF000000000000ULL) == CVal)
4425 break;
4426 uint64_t NCVal = ~CVal;
4427 if ((NCVal & 0xFFFFULL) == NCVal)
4428 break;
4429 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4430 break;
4431 if ((NCVal & 0xFFFF00000000ULL) == NCVal)
4432 break;
4433 if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
4434 break;
4435 return;
4436 }
4437 default:
4438 return;
4439 }
4440
4441 // All assembler immediates are 64-bit integers.
4442 Result = DAG.getTargetConstant(CVal, MVT::i64);
4443 break;
4444 }
4445
4446 if (Result.getNode()) {
4447 Ops.push_back(Result);
4448 return;
4449 }
4450
4451 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4452}
4453
4454//===----------------------------------------------------------------------===//
4455// AArch64 Advanced SIMD Support
4456//===----------------------------------------------------------------------===//
4457
4458/// WidenVector - Given a value in the V64 register class, produce the
4459/// equivalent value in the V128 register class.
4460static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
4461 EVT VT = V64Reg.getValueType();
4462 unsigned NarrowSize = VT.getVectorNumElements();
4463 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4464 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
4465 SDLoc DL(V64Reg);
4466
4467 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
4468 V64Reg, DAG.getConstant(0, MVT::i32));
4469}
4470
4471/// getExtFactor - Determine the adjustment factor for the position when
4472/// generating an "extract from vector registers" instruction.
4473static unsigned getExtFactor(SDValue &V) {
4474 EVT EltType = V.getValueType().getVectorElementType();
4475 return EltType.getSizeInBits() / 8;
4476}
4477
4478/// NarrowVector - Given a value in the V128 register class, produce the
4479/// equivalent value in the V64 register class.
4480static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
4481 EVT VT = V128Reg.getValueType();
4482 unsigned WideSize = VT.getVectorNumElements();
4483 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4484 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
4485 SDLoc DL(V128Reg);
4486
4487 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
4488}
4489
4490// Gather data to see if the operation can be modelled as a
4491// shuffle in combination with VEXTs.
4492SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
4493 SelectionDAG &DAG) const {
Kevin Qinf0ec9af2014-06-18 05:54:42 +00004494 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00004495 SDLoc dl(Op);
4496 EVT VT = Op.getValueType();
4497 unsigned NumElts = VT.getVectorNumElements();
4498
Tim Northover7324e842014-07-24 15:39:55 +00004499 struct ShuffleSourceInfo {
4500 SDValue Vec;
4501 unsigned MinElt;
4502 unsigned MaxElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00004503
Tim Northover7324e842014-07-24 15:39:55 +00004504 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
4505 // be compatible with the shuffle we intend to construct. As a result
4506 // ShuffleVec will be some sliding window into the original Vec.
4507 SDValue ShuffleVec;
4508
4509 // Code should guarantee that element i in Vec starts at element "WindowBase
4510 // + i * WindowScale in ShuffleVec".
4511 int WindowBase;
4512 int WindowScale;
4513
4514 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
4515 ShuffleSourceInfo(SDValue Vec)
4516 : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
4517 WindowScale(1) {}
4518 };
4519
4520 // First gather all vectors used as an immediate source for this BUILD_VECTOR
4521 // node.
4522 SmallVector<ShuffleSourceInfo, 2> Sources;
Tim Northover3b0846e2014-05-24 12:50:23 +00004523 for (unsigned i = 0; i < NumElts; ++i) {
4524 SDValue V = Op.getOperand(i);
4525 if (V.getOpcode() == ISD::UNDEF)
4526 continue;
4527 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4528 // A shuffle can only come from building a vector from various
4529 // elements of other vectors.
4530 return SDValue();
4531 }
4532
Tim Northover7324e842014-07-24 15:39:55 +00004533 // Add this element source to the list if it's not already there.
Tim Northover3b0846e2014-05-24 12:50:23 +00004534 SDValue SourceVec = V.getOperand(0);
Tim Northover7324e842014-07-24 15:39:55 +00004535 auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
4536 if (Source == Sources.end())
James Molloyf497d552014-10-17 17:06:31 +00004537 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
Tim Northover3b0846e2014-05-24 12:50:23 +00004538
Tim Northover7324e842014-07-24 15:39:55 +00004539 // Update the minimum and maximum lane number seen.
4540 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4541 Source->MinElt = std::min(Source->MinElt, EltNo);
4542 Source->MaxElt = std::max(Source->MaxElt, EltNo);
Tim Northover3b0846e2014-05-24 12:50:23 +00004543 }
4544
4545 // Currently only do something sane when at most two source vectors
Tim Northover7324e842014-07-24 15:39:55 +00004546 // are involved.
4547 if (Sources.size() > 2)
Tim Northover3b0846e2014-05-24 12:50:23 +00004548 return SDValue();
4549
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004550 // Find out the smallest element size among result and two sources, and use
4551 // it as element size to build the shuffle_vector.
4552 EVT SmallestEltTy = VT.getVectorElementType();
Tim Northover7324e842014-07-24 15:39:55 +00004553 for (auto &Source : Sources) {
4554 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004555 if (SrcEltTy.bitsLT(SmallestEltTy)) {
4556 SmallestEltTy = SrcEltTy;
4557 }
4558 }
4559 unsigned ResMultiplier =
4560 VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004561 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
4562 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00004563
Tim Northover7324e842014-07-24 15:39:55 +00004564 // If the source vector is too wide or too narrow, we may nevertheless be able
4565 // to construct a compatible shuffle either by concatenating it with UNDEF or
4566 // extracting a suitable range of elements.
4567 for (auto &Src : Sources) {
4568 EVT SrcVT = Src.ShuffleVec.getValueType();
Kevin Qinf0ec9af2014-06-18 05:54:42 +00004569
Tim Northover7324e842014-07-24 15:39:55 +00004570 if (SrcVT.getSizeInBits() == VT.getSizeInBits())
Tim Northover3b0846e2014-05-24 12:50:23 +00004571 continue;
Tim Northover7324e842014-07-24 15:39:55 +00004572
4573 // This stage of the search produces a source with the same element type as
4574 // the original, but with a total width matching the BUILD_VECTOR output.
4575 EVT EltVT = SrcVT.getVectorElementType();
James Molloyf497d552014-10-17 17:06:31 +00004576 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
4577 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
Tim Northover7324e842014-07-24 15:39:55 +00004578
4579 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
4580 assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00004581 // We can pad out the smaller vector for free, so if it's part of a
4582 // shuffle...
Tim Northover7324e842014-07-24 15:39:55 +00004583 Src.ShuffleVec =
4584 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
4585 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004586 continue;
4587 }
4588
Tim Northover7324e842014-07-24 15:39:55 +00004589 assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00004590
James Molloyf497d552014-10-17 17:06:31 +00004591 if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004592 // Span too large for a VEXT to cope
4593 return SDValue();
4594 }
4595
James Molloyf497d552014-10-17 17:06:31 +00004596 if (Src.MinElt >= NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004597 // The extraction can just take the second half
Tim Northover7324e842014-07-24 15:39:55 +00004598 Src.ShuffleVec =
4599 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Tim Northover5e84fe32014-12-06 00:33:37 +00004600 DAG.getConstant(NumSrcElts, MVT::i64));
James Molloyf497d552014-10-17 17:06:31 +00004601 Src.WindowBase = -NumSrcElts;
4602 } else if (Src.MaxElt < NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004603 // The extraction can just take the first half
Tim Northover5e84fe32014-12-06 00:33:37 +00004604 Src.ShuffleVec =
4605 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
4606 DAG.getConstant(0, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00004607 } else {
4608 // An actual VEXT is needed
Tim Northover5e84fe32014-12-06 00:33:37 +00004609 SDValue VEXTSrc1 =
4610 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
4611 DAG.getConstant(0, MVT::i64));
Tim Northover7324e842014-07-24 15:39:55 +00004612 SDValue VEXTSrc2 =
4613 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Tim Northover5e84fe32014-12-06 00:33:37 +00004614 DAG.getConstant(NumSrcElts, MVT::i64));
Tim Northover7324e842014-07-24 15:39:55 +00004615 unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
4616
4617 Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004618 VEXTSrc2, DAG.getConstant(Imm, MVT::i32));
Tim Northover7324e842014-07-24 15:39:55 +00004619 Src.WindowBase = -Src.MinElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00004620 }
4621 }
4622
Tim Northover7324e842014-07-24 15:39:55 +00004623 // Another possible incompatibility occurs from the vector element types. We
4624 // can fix this by bitcasting the source vectors to the same type we intend
4625 // for the shuffle.
4626 for (auto &Src : Sources) {
4627 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
4628 if (SrcEltTy == SmallestEltTy)
4629 continue;
4630 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
4631 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
4632 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
4633 Src.WindowBase *= Src.WindowScale;
4634 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004635
Tim Northover7324e842014-07-24 15:39:55 +00004636 // Final sanity check before we try to actually produce a shuffle.
4637 DEBUG(
4638 for (auto Src : Sources)
4639 assert(Src.ShuffleVec.getValueType() == ShuffleVT);
4640 );
4641
4642 // The stars all align, our next step is to produce the mask for the shuffle.
4643 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
4644 int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004645 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004646 SDValue Entry = Op.getOperand(i);
Tim Northover7324e842014-07-24 15:39:55 +00004647 if (Entry.getOpcode() == ISD::UNDEF)
4648 continue;
Tim Northover3b0846e2014-05-24 12:50:23 +00004649
Tim Northover7324e842014-07-24 15:39:55 +00004650 auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
4651 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
4652
4653 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
4654 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
4655 // segment.
4656 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
4657 int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
4658 VT.getVectorElementType().getSizeInBits());
4659 int LanesDefined = BitsDefined / BitsPerShuffleLane;
4660
4661 // This source is expected to fill ResMultiplier lanes of the final shuffle,
4662 // starting at the appropriate offset.
4663 int *LaneMask = &Mask[i * ResMultiplier];
4664
4665 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
4666 ExtractBase += NumElts * (Src - Sources.begin());
4667 for (int j = 0; j < LanesDefined; ++j)
4668 LaneMask[j] = ExtractBase + j;
Tim Northover3b0846e2014-05-24 12:50:23 +00004669 }
4670
4671 // Final check before we try to produce nonsense...
Tim Northover7324e842014-07-24 15:39:55 +00004672 if (!isShuffleMaskLegal(Mask, ShuffleVT))
4673 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00004674
Tim Northover7324e842014-07-24 15:39:55 +00004675 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
4676 for (unsigned i = 0; i < Sources.size(); ++i)
4677 ShuffleOps[i] = Sources[i].ShuffleVec;
4678
4679 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
4680 ShuffleOps[1], &Mask[0]);
4681 return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
Tim Northover3b0846e2014-05-24 12:50:23 +00004682}
4683
4684// check if an EXT instruction can handle the shuffle mask when the
4685// vector sources of the shuffle are the same.
4686static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
4687 unsigned NumElts = VT.getVectorNumElements();
4688
4689 // Assume that the first shuffle index is not UNDEF. Fail if it is.
4690 if (M[0] < 0)
4691 return false;
4692
4693 Imm = M[0];
4694
4695 // If this is a VEXT shuffle, the immediate value is the index of the first
4696 // element. The other shuffle indices must be the successive elements after
4697 // the first one.
4698 unsigned ExpectedElt = Imm;
4699 for (unsigned i = 1; i < NumElts; ++i) {
4700 // Increment the expected index. If it wraps around, just follow it
4701 // back to index zero and keep going.
4702 ++ExpectedElt;
4703 if (ExpectedElt == NumElts)
4704 ExpectedElt = 0;
4705
4706 if (M[i] < 0)
4707 continue; // ignore UNDEF indices
4708 if (ExpectedElt != static_cast<unsigned>(M[i]))
4709 return false;
4710 }
4711
4712 return true;
4713}
4714
4715// check if an EXT instruction can handle the shuffle mask when the
4716// vector sources of the shuffle are different.
4717static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
4718 unsigned &Imm) {
4719 // Look for the first non-undef element.
4720 const int *FirstRealElt = std::find_if(M.begin(), M.end(),
4721 [](int Elt) {return Elt >= 0;});
4722
4723 // Benefit form APInt to handle overflow when calculating expected element.
4724 unsigned NumElts = VT.getVectorNumElements();
4725 unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
4726 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
4727 // The following shuffle indices must be the successive elements after the
4728 // first real element.
4729 const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
4730 [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
4731 if (FirstWrongElt != M.end())
4732 return false;
4733
4734 // The index of an EXT is the first element if it is not UNDEF.
4735 // Watch out for the beginning UNDEFs. The EXT index should be the expected
4736 // value of the first element. E.g.
4737 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
4738 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
4739 // ExpectedElt is the last mask index plus 1.
4740 Imm = ExpectedElt.getZExtValue();
4741
4742 // There are two difference cases requiring to reverse input vectors.
4743 // For example, for vector <4 x i32> we have the following cases,
4744 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
4745 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
4746 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
4747 // to reverse two input vectors.
4748 if (Imm < NumElts)
4749 ReverseEXT = true;
4750 else
4751 Imm -= NumElts;
4752
4753 return true;
4754}
4755
4756/// isREVMask - Check if a vector shuffle corresponds to a REV
4757/// instruction with the specified blocksize. (The order of the elements
4758/// within each block of the vector is reversed.)
4759static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
4760 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
4761 "Only possible block sizes for REV are: 16, 32, 64");
4762
4763 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4764 if (EltSz == 64)
4765 return false;
4766
4767 unsigned NumElts = VT.getVectorNumElements();
4768 unsigned BlockElts = M[0] + 1;
4769 // If the first shuffle index is UNDEF, be optimistic.
4770 if (M[0] < 0)
4771 BlockElts = BlockSize / EltSz;
4772
4773 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
4774 return false;
4775
4776 for (unsigned i = 0; i < NumElts; ++i) {
4777 if (M[i] < 0)
4778 continue; // ignore UNDEF indices
4779 if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
4780 return false;
4781 }
4782
4783 return true;
4784}
4785
4786static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4787 unsigned NumElts = VT.getVectorNumElements();
4788 WhichResult = (M[0] == 0 ? 0 : 1);
4789 unsigned Idx = WhichResult * NumElts / 2;
4790 for (unsigned i = 0; i != NumElts; i += 2) {
4791 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4792 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
4793 return false;
4794 Idx += 1;
4795 }
4796
4797 return true;
4798}
4799
4800static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4801 unsigned NumElts = VT.getVectorNumElements();
4802 WhichResult = (M[0] == 0 ? 0 : 1);
4803 for (unsigned i = 0; i != NumElts; ++i) {
4804 if (M[i] < 0)
4805 continue; // ignore UNDEF indices
4806 if ((unsigned)M[i] != 2 * i + WhichResult)
4807 return false;
4808 }
4809
4810 return true;
4811}
4812
4813static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4814 unsigned NumElts = VT.getVectorNumElements();
4815 WhichResult = (M[0] == 0 ? 0 : 1);
4816 for (unsigned i = 0; i < NumElts; i += 2) {
4817 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4818 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
4819 return false;
4820 }
4821 return true;
4822}
4823
4824/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
4825/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4826/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
4827static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4828 unsigned NumElts = VT.getVectorNumElements();
4829 WhichResult = (M[0] == 0 ? 0 : 1);
4830 unsigned Idx = WhichResult * NumElts / 2;
4831 for (unsigned i = 0; i != NumElts; i += 2) {
4832 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4833 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
4834 return false;
4835 Idx += 1;
4836 }
4837
4838 return true;
4839}
4840
4841/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
4842/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4843/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
4844static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4845 unsigned Half = VT.getVectorNumElements() / 2;
4846 WhichResult = (M[0] == 0 ? 0 : 1);
4847 for (unsigned j = 0; j != 2; ++j) {
4848 unsigned Idx = WhichResult;
4849 for (unsigned i = 0; i != Half; ++i) {
4850 int MIdx = M[i + j * Half];
4851 if (MIdx >= 0 && (unsigned)MIdx != Idx)
4852 return false;
4853 Idx += 2;
4854 }
4855 }
4856
4857 return true;
4858}
4859
4860/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
4861/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4862/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
4863static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4864 unsigned NumElts = VT.getVectorNumElements();
4865 WhichResult = (M[0] == 0 ? 0 : 1);
4866 for (unsigned i = 0; i < NumElts; i += 2) {
4867 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4868 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
4869 return false;
4870 }
4871 return true;
4872}
4873
4874static bool isINSMask(ArrayRef<int> M, int NumInputElements,
4875 bool &DstIsLeft, int &Anomaly) {
4876 if (M.size() != static_cast<size_t>(NumInputElements))
4877 return false;
4878
4879 int NumLHSMatch = 0, NumRHSMatch = 0;
4880 int LastLHSMismatch = -1, LastRHSMismatch = -1;
4881
4882 for (int i = 0; i < NumInputElements; ++i) {
4883 if (M[i] == -1) {
4884 ++NumLHSMatch;
4885 ++NumRHSMatch;
4886 continue;
4887 }
4888
4889 if (M[i] == i)
4890 ++NumLHSMatch;
4891 else
4892 LastLHSMismatch = i;
4893
4894 if (M[i] == i + NumInputElements)
4895 ++NumRHSMatch;
4896 else
4897 LastRHSMismatch = i;
4898 }
4899
4900 if (NumLHSMatch == NumInputElements - 1) {
4901 DstIsLeft = true;
4902 Anomaly = LastLHSMismatch;
4903 return true;
4904 } else if (NumRHSMatch == NumInputElements - 1) {
4905 DstIsLeft = false;
4906 Anomaly = LastRHSMismatch;
4907 return true;
4908 }
4909
4910 return false;
4911}
4912
4913static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
4914 if (VT.getSizeInBits() != 128)
4915 return false;
4916
4917 unsigned NumElts = VT.getVectorNumElements();
4918
4919 for (int I = 0, E = NumElts / 2; I != E; I++) {
4920 if (Mask[I] != I)
4921 return false;
4922 }
4923
4924 int Offset = NumElts / 2;
4925 for (int I = NumElts / 2, E = NumElts; I != E; I++) {
4926 if (Mask[I] != I + SplitLHS * Offset)
4927 return false;
4928 }
4929
4930 return true;
4931}
4932
4933static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
4934 SDLoc DL(Op);
4935 EVT VT = Op.getValueType();
4936 SDValue V0 = Op.getOperand(0);
4937 SDValue V1 = Op.getOperand(1);
4938 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
4939
4940 if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
4941 VT.getVectorElementType() != V1.getValueType().getVectorElementType())
4942 return SDValue();
4943
4944 bool SplitV0 = V0.getValueType().getSizeInBits() == 128;
4945
4946 if (!isConcatMask(Mask, VT, SplitV0))
4947 return SDValue();
4948
4949 EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
4950 VT.getVectorNumElements() / 2);
4951 if (SplitV0) {
4952 V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
4953 DAG.getConstant(0, MVT::i64));
4954 }
4955 if (V1.getValueType().getSizeInBits() == 128) {
4956 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
4957 DAG.getConstant(0, MVT::i64));
4958 }
4959 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
4960}
4961
4962/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4963/// the specified operations to build the shuffle.
4964static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4965 SDValue RHS, SelectionDAG &DAG,
4966 SDLoc dl) {
4967 unsigned OpNum = (PFEntry >> 26) & 0x0F;
4968 unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
4969 unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
4970
4971 enum {
4972 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4973 OP_VREV,
4974 OP_VDUP0,
4975 OP_VDUP1,
4976 OP_VDUP2,
4977 OP_VDUP3,
4978 OP_VEXT1,
4979 OP_VEXT2,
4980 OP_VEXT3,
4981 OP_VUZPL, // VUZP, left result
4982 OP_VUZPR, // VUZP, right result
4983 OP_VZIPL, // VZIP, left result
4984 OP_VZIPR, // VZIP, right result
4985 OP_VTRNL, // VTRN, left result
4986 OP_VTRNR // VTRN, right result
4987 };
4988
4989 if (OpNum == OP_COPY) {
4990 if (LHSID == (1 * 9 + 2) * 9 + 3)
4991 return LHS;
4992 assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
4993 return RHS;
4994 }
4995
4996 SDValue OpLHS, OpRHS;
4997 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4998 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4999 EVT VT = OpLHS.getValueType();
5000
5001 switch (OpNum) {
5002 default:
5003 llvm_unreachable("Unknown shuffle opcode!");
5004 case OP_VREV:
5005 // VREV divides the vector in half and swaps within the half.
5006 if (VT.getVectorElementType() == MVT::i32 ||
5007 VT.getVectorElementType() == MVT::f32)
5008 return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
5009 // vrev <4 x i16> -> REV32
Oliver Stannard89d15422014-08-27 16:16:04 +00005010 if (VT.getVectorElementType() == MVT::i16 ||
5011 VT.getVectorElementType() == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005012 return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
5013 // vrev <4 x i8> -> REV16
5014 assert(VT.getVectorElementType() == MVT::i8);
5015 return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
5016 case OP_VDUP0:
5017 case OP_VDUP1:
5018 case OP_VDUP2:
5019 case OP_VDUP3: {
5020 EVT EltTy = VT.getVectorElementType();
5021 unsigned Opcode;
5022 if (EltTy == MVT::i8)
5023 Opcode = AArch64ISD::DUPLANE8;
5024 else if (EltTy == MVT::i16)
5025 Opcode = AArch64ISD::DUPLANE16;
5026 else if (EltTy == MVT::i32 || EltTy == MVT::f32)
5027 Opcode = AArch64ISD::DUPLANE32;
5028 else if (EltTy == MVT::i64 || EltTy == MVT::f64)
5029 Opcode = AArch64ISD::DUPLANE64;
5030 else
5031 llvm_unreachable("Invalid vector element type?");
5032
5033 if (VT.getSizeInBits() == 64)
5034 OpLHS = WidenVector(OpLHS, DAG);
5035 SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, MVT::i64);
5036 return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
5037 }
5038 case OP_VEXT1:
5039 case OP_VEXT2:
5040 case OP_VEXT3: {
5041 unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
5042 return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
5043 DAG.getConstant(Imm, MVT::i32));
5044 }
5045 case OP_VUZPL:
5046 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
5047 OpRHS);
5048 case OP_VUZPR:
5049 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
5050 OpRHS);
5051 case OP_VZIPL:
5052 return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
5053 OpRHS);
5054 case OP_VZIPR:
5055 return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
5056 OpRHS);
5057 case OP_VTRNL:
5058 return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
5059 OpRHS);
5060 case OP_VTRNR:
5061 return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
5062 OpRHS);
5063 }
5064}
5065
5066static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
5067 SelectionDAG &DAG) {
5068 // Check to see if we can use the TBL instruction.
5069 SDValue V1 = Op.getOperand(0);
5070 SDValue V2 = Op.getOperand(1);
5071 SDLoc DL(Op);
5072
5073 EVT EltVT = Op.getValueType().getVectorElementType();
5074 unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
5075
5076 SmallVector<SDValue, 8> TBLMask;
5077 for (int Val : ShuffleMask) {
5078 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
5079 unsigned Offset = Byte + Val * BytesPerElt;
5080 TBLMask.push_back(DAG.getConstant(Offset, MVT::i32));
5081 }
5082 }
5083
5084 MVT IndexVT = MVT::v8i8;
5085 unsigned IndexLen = 8;
5086 if (Op.getValueType().getSizeInBits() == 128) {
5087 IndexVT = MVT::v16i8;
5088 IndexLen = 16;
5089 }
5090
5091 SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
5092 SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
5093
5094 SDValue Shuffle;
5095 if (V2.getNode()->getOpcode() == ISD::UNDEF) {
5096 if (IndexLen == 8)
5097 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
5098 Shuffle = DAG.getNode(
5099 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5100 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
5101 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5102 makeArrayRef(TBLMask.data(), IndexLen)));
5103 } else {
5104 if (IndexLen == 8) {
5105 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
5106 Shuffle = DAG.getNode(
5107 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5108 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
5109 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5110 makeArrayRef(TBLMask.data(), IndexLen)));
5111 } else {
5112 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
5113 // cannot currently represent the register constraints on the input
5114 // table registers.
5115 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
5116 // DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5117 // &TBLMask[0], IndexLen));
5118 Shuffle = DAG.getNode(
5119 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5120 DAG.getConstant(Intrinsic::aarch64_neon_tbl2, MVT::i32), V1Cst, V2Cst,
5121 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5122 makeArrayRef(TBLMask.data(), IndexLen)));
5123 }
5124 }
5125 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
5126}
5127
5128static unsigned getDUPLANEOp(EVT EltType) {
5129 if (EltType == MVT::i8)
5130 return AArch64ISD::DUPLANE8;
Oliver Stannard89d15422014-08-27 16:16:04 +00005131 if (EltType == MVT::i16 || EltType == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005132 return AArch64ISD::DUPLANE16;
5133 if (EltType == MVT::i32 || EltType == MVT::f32)
5134 return AArch64ISD::DUPLANE32;
5135 if (EltType == MVT::i64 || EltType == MVT::f64)
5136 return AArch64ISD::DUPLANE64;
5137
5138 llvm_unreachable("Invalid vector element type?");
5139}
5140
5141SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5142 SelectionDAG &DAG) const {
5143 SDLoc dl(Op);
5144 EVT VT = Op.getValueType();
5145
5146 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
5147
5148 // Convert shuffles that are directly supported on NEON to target-specific
5149 // DAG nodes, instead of keeping them as shuffles and matching them again
5150 // during code selection. This is more efficient and avoids the possibility
5151 // of inconsistencies between legalization and selection.
5152 ArrayRef<int> ShuffleMask = SVN->getMask();
5153
5154 SDValue V1 = Op.getOperand(0);
5155 SDValue V2 = Op.getOperand(1);
5156
5157 if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0],
5158 V1.getValueType().getSimpleVT())) {
5159 int Lane = SVN->getSplatIndex();
5160 // If this is undef splat, generate it via "just" vdup, if possible.
5161 if (Lane == -1)
5162 Lane = 0;
5163
5164 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
5165 return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
5166 V1.getOperand(0));
5167 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
5168 // constant. If so, we can just reference the lane's definition directly.
5169 if (V1.getOpcode() == ISD::BUILD_VECTOR &&
5170 !isa<ConstantSDNode>(V1.getOperand(Lane)))
5171 return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
5172
5173 // Otherwise, duplicate from the lane of the input vector.
5174 unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
5175
5176 // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
5177 // to make a vector of the same size as this SHUFFLE. We can ignore the
5178 // extract entirely, and canonicalise the concat using WidenVector.
5179 if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
5180 Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
5181 V1 = V1.getOperand(0);
5182 } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
5183 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
5184 Lane -= Idx * VT.getVectorNumElements() / 2;
5185 V1 = WidenVector(V1.getOperand(Idx), DAG);
5186 } else if (VT.getSizeInBits() == 64)
5187 V1 = WidenVector(V1, DAG);
5188
5189 return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, MVT::i64));
5190 }
5191
5192 if (isREVMask(ShuffleMask, VT, 64))
5193 return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
5194 if (isREVMask(ShuffleMask, VT, 32))
5195 return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
5196 if (isREVMask(ShuffleMask, VT, 16))
5197 return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
5198
5199 bool ReverseEXT = false;
5200 unsigned Imm;
5201 if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
5202 if (ReverseEXT)
5203 std::swap(V1, V2);
5204 Imm *= getExtFactor(V1);
5205 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
5206 DAG.getConstant(Imm, MVT::i32));
5207 } else if (V2->getOpcode() == ISD::UNDEF &&
5208 isSingletonEXTMask(ShuffleMask, VT, Imm)) {
5209 Imm *= getExtFactor(V1);
5210 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
5211 DAG.getConstant(Imm, MVT::i32));
5212 }
5213
5214 unsigned WhichResult;
5215 if (isZIPMask(ShuffleMask, VT, WhichResult)) {
5216 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5217 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5218 }
5219 if (isUZPMask(ShuffleMask, VT, WhichResult)) {
5220 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5221 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5222 }
5223 if (isTRNMask(ShuffleMask, VT, WhichResult)) {
5224 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5225 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5226 }
5227
5228 if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5229 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5230 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5231 }
5232 if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5233 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5234 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5235 }
5236 if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5237 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5238 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5239 }
5240
5241 SDValue Concat = tryFormConcatFromShuffle(Op, DAG);
5242 if (Concat.getNode())
5243 return Concat;
5244
5245 bool DstIsLeft;
5246 int Anomaly;
5247 int NumInputElements = V1.getValueType().getVectorNumElements();
5248 if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
5249 SDValue DstVec = DstIsLeft ? V1 : V2;
5250 SDValue DstLaneV = DAG.getConstant(Anomaly, MVT::i64);
5251
5252 SDValue SrcVec = V1;
5253 int SrcLane = ShuffleMask[Anomaly];
5254 if (SrcLane >= NumInputElements) {
5255 SrcVec = V2;
5256 SrcLane -= VT.getVectorNumElements();
5257 }
5258 SDValue SrcLaneV = DAG.getConstant(SrcLane, MVT::i64);
5259
5260 EVT ScalarVT = VT.getVectorElementType();
Oliver Stannard89d15422014-08-27 16:16:04 +00005261
5262 if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00005263 ScalarVT = MVT::i32;
5264
5265 return DAG.getNode(
5266 ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
5267 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
5268 DstLaneV);
5269 }
5270
5271 // If the shuffle is not directly supported and it has 4 elements, use
5272 // the PerfectShuffle-generated table to synthesize it from other shuffles.
5273 unsigned NumElts = VT.getVectorNumElements();
5274 if (NumElts == 4) {
5275 unsigned PFIndexes[4];
5276 for (unsigned i = 0; i != 4; ++i) {
5277 if (ShuffleMask[i] < 0)
5278 PFIndexes[i] = 8;
5279 else
5280 PFIndexes[i] = ShuffleMask[i];
5281 }
5282
5283 // Compute the index in the perfect shuffle table.
5284 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
5285 PFIndexes[2] * 9 + PFIndexes[3];
5286 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5287 unsigned Cost = (PFEntry >> 30);
5288
5289 if (Cost <= 4)
5290 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5291 }
5292
5293 return GenerateTBL(Op, ShuffleMask, DAG);
5294}
5295
5296static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
5297 APInt &UndefBits) {
5298 EVT VT = BVN->getValueType(0);
5299 APInt SplatBits, SplatUndef;
5300 unsigned SplatBitSize;
5301 bool HasAnyUndefs;
5302 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5303 unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
5304
5305 for (unsigned i = 0; i < NumSplats; ++i) {
5306 CnstBits <<= SplatBitSize;
5307 UndefBits <<= SplatBitSize;
5308 CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
5309 UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
5310 }
5311
5312 return true;
5313 }
5314
5315 return false;
5316}
5317
5318SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
5319 SelectionDAG &DAG) const {
5320 BuildVectorSDNode *BVN =
5321 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5322 SDValue LHS = Op.getOperand(0);
5323 SDLoc dl(Op);
5324 EVT VT = Op.getValueType();
5325
5326 if (!BVN)
5327 return Op;
5328
5329 APInt CnstBits(VT.getSizeInBits(), 0);
5330 APInt UndefBits(VT.getSizeInBits(), 0);
5331 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5332 // We only have BIC vector immediate instruction, which is and-not.
5333 CnstBits = ~CnstBits;
5334
5335 // We make use of a little bit of goto ickiness in order to avoid having to
5336 // duplicate the immediate matching logic for the undef toggled case.
5337 bool SecondTry = false;
5338 AttemptModImm:
5339
5340 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5341 CnstBits = CnstBits.zextOrTrunc(64);
5342 uint64_t CnstVal = CnstBits.getZExtValue();
5343
5344 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5345 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5346 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5347 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5348 DAG.getConstant(CnstVal, MVT::i32),
5349 DAG.getConstant(0, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005350 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005351 }
5352
5353 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5354 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5355 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5356 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5357 DAG.getConstant(CnstVal, MVT::i32),
5358 DAG.getConstant(8, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005359 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005360 }
5361
5362 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5363 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5364 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5365 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5366 DAG.getConstant(CnstVal, MVT::i32),
5367 DAG.getConstant(16, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005368 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005369 }
5370
5371 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5372 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5373 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5374 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5375 DAG.getConstant(CnstVal, MVT::i32),
5376 DAG.getConstant(24, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005377 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005378 }
5379
5380 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5381 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5382 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5383 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5384 DAG.getConstant(CnstVal, MVT::i32),
5385 DAG.getConstant(0, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005386 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005387 }
5388
5389 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5390 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5391 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5392 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5393 DAG.getConstant(CnstVal, MVT::i32),
5394 DAG.getConstant(8, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005395 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005396 }
5397 }
5398
5399 if (SecondTry)
5400 goto FailedModImm;
5401 SecondTry = true;
5402 CnstBits = ~UndefBits;
5403 goto AttemptModImm;
5404 }
5405
5406// We can always fall back to a non-immediate AND.
5407FailedModImm:
5408 return Op;
5409}
5410
5411// Specialized code to quickly find if PotentialBVec is a BuildVector that
5412// consists of only the same constant int value, returned in reference arg
5413// ConstVal
5414static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
5415 uint64_t &ConstVal) {
5416 BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
5417 if (!Bvec)
5418 return false;
5419 ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
5420 if (!FirstElt)
5421 return false;
5422 EVT VT = Bvec->getValueType(0);
5423 unsigned NumElts = VT.getVectorNumElements();
5424 for (unsigned i = 1; i < NumElts; ++i)
5425 if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
5426 return false;
5427 ConstVal = FirstElt->getZExtValue();
5428 return true;
5429}
5430
5431static unsigned getIntrinsicID(const SDNode *N) {
5432 unsigned Opcode = N->getOpcode();
5433 switch (Opcode) {
5434 default:
5435 return Intrinsic::not_intrinsic;
5436 case ISD::INTRINSIC_WO_CHAIN: {
5437 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5438 if (IID < Intrinsic::num_intrinsics)
5439 return IID;
5440 return Intrinsic::not_intrinsic;
5441 }
5442 }
5443}
5444
5445// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
5446// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
5447// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
5448// Also, logical shift right -> sri, with the same structure.
5449static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
5450 EVT VT = N->getValueType(0);
5451
5452 if (!VT.isVector())
5453 return SDValue();
5454
5455 SDLoc DL(N);
5456
5457 // Is the first op an AND?
5458 const SDValue And = N->getOperand(0);
5459 if (And.getOpcode() != ISD::AND)
5460 return SDValue();
5461
5462 // Is the second op an shl or lshr?
5463 SDValue Shift = N->getOperand(1);
5464 // This will have been turned into: AArch64ISD::VSHL vector, #shift
5465 // or AArch64ISD::VLSHR vector, #shift
5466 unsigned ShiftOpc = Shift.getOpcode();
5467 if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
5468 return SDValue();
5469 bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
5470
5471 // Is the shift amount constant?
5472 ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
5473 if (!C2node)
5474 return SDValue();
5475
5476 // Is the and mask vector all constant?
5477 uint64_t C1;
5478 if (!isAllConstantBuildVector(And.getOperand(1), C1))
5479 return SDValue();
5480
5481 // Is C1 == ~C2, taking into account how much one can shift elements of a
5482 // particular size?
5483 uint64_t C2 = C2node->getZExtValue();
5484 unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
5485 if (C2 > ElemSizeInBits)
5486 return SDValue();
5487 unsigned ElemMask = (1 << ElemSizeInBits) - 1;
5488 if ((C1 & ElemMask) != (~C2 & ElemMask))
5489 return SDValue();
5490
5491 SDValue X = And.getOperand(0);
5492 SDValue Y = Shift.getOperand(0);
5493
5494 unsigned Intrin =
5495 IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
5496 SDValue ResultSLI =
5497 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
5498 DAG.getConstant(Intrin, MVT::i32), X, Y, Shift.getOperand(1));
5499
5500 DEBUG(dbgs() << "aarch64-lower: transformed: \n");
5501 DEBUG(N->dump(&DAG));
5502 DEBUG(dbgs() << "into: \n");
5503 DEBUG(ResultSLI->dump(&DAG));
5504
5505 ++NumShiftInserts;
5506 return ResultSLI;
5507}
5508
5509SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
5510 SelectionDAG &DAG) const {
5511 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
5512 if (EnableAArch64SlrGeneration) {
5513 SDValue Res = tryLowerToSLI(Op.getNode(), DAG);
5514 if (Res.getNode())
5515 return Res;
5516 }
5517
5518 BuildVectorSDNode *BVN =
5519 dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
5520 SDValue LHS = Op.getOperand(1);
5521 SDLoc dl(Op);
5522 EVT VT = Op.getValueType();
5523
5524 // OR commutes, so try swapping the operands.
5525 if (!BVN) {
5526 LHS = Op.getOperand(0);
5527 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5528 }
5529 if (!BVN)
5530 return Op;
5531
5532 APInt CnstBits(VT.getSizeInBits(), 0);
5533 APInt UndefBits(VT.getSizeInBits(), 0);
5534 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5535 // We make use of a little bit of goto ickiness in order to avoid having to
5536 // duplicate the immediate matching logic for the undef toggled case.
5537 bool SecondTry = false;
5538 AttemptModImm:
5539
5540 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5541 CnstBits = CnstBits.zextOrTrunc(64);
5542 uint64_t CnstVal = CnstBits.getZExtValue();
5543
5544 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5545 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5546 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5547 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5548 DAG.getConstant(CnstVal, MVT::i32),
5549 DAG.getConstant(0, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005550 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005551 }
5552
5553 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5554 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5555 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5556 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5557 DAG.getConstant(CnstVal, MVT::i32),
5558 DAG.getConstant(8, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005559 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005560 }
5561
5562 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5563 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5564 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5565 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5566 DAG.getConstant(CnstVal, MVT::i32),
5567 DAG.getConstant(16, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005568 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005569 }
5570
5571 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5572 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5573 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5574 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5575 DAG.getConstant(CnstVal, MVT::i32),
5576 DAG.getConstant(24, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005577 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005578 }
5579
5580 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5581 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5582 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5583 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5584 DAG.getConstant(CnstVal, MVT::i32),
5585 DAG.getConstant(0, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005586 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005587 }
5588
5589 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5590 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5591 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5592 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5593 DAG.getConstant(CnstVal, MVT::i32),
5594 DAG.getConstant(8, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005595 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005596 }
5597 }
5598
5599 if (SecondTry)
5600 goto FailedModImm;
5601 SecondTry = true;
5602 CnstBits = UndefBits;
5603 goto AttemptModImm;
5604 }
5605
5606// We can always fall back to a non-immediate OR.
5607FailedModImm:
5608 return Op;
5609}
5610
Kevin Qin4473c192014-07-07 02:45:40 +00005611// Normalize the operands of BUILD_VECTOR. The value of constant operands will
5612// be truncated to fit element width.
5613static SDValue NormalizeBuildVector(SDValue Op,
5614 SelectionDAG &DAG) {
5615 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00005616 SDLoc dl(Op);
5617 EVT VT = Op.getValueType();
Kevin Qin4473c192014-07-07 02:45:40 +00005618 EVT EltTy= VT.getVectorElementType();
5619
5620 if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
5621 return Op;
5622
5623 SmallVector<SDValue, 16> Ops;
5624 for (unsigned I = 0, E = VT.getVectorNumElements(); I != E; ++I) {
5625 SDValue Lane = Op.getOperand(I);
5626 if (Lane.getOpcode() == ISD::Constant) {
5627 APInt LowBits(EltTy.getSizeInBits(),
5628 cast<ConstantSDNode>(Lane)->getZExtValue());
5629 Lane = DAG.getConstant(LowBits.getZExtValue(), MVT::i32);
5630 }
5631 Ops.push_back(Lane);
5632 }
5633 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
5634}
5635
5636SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
5637 SelectionDAG &DAG) const {
5638 SDLoc dl(Op);
5639 EVT VT = Op.getValueType();
5640 Op = NormalizeBuildVector(Op, DAG);
5641 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
Tim Northover3b0846e2014-05-24 12:50:23 +00005642
5643 APInt CnstBits(VT.getSizeInBits(), 0);
5644 APInt UndefBits(VT.getSizeInBits(), 0);
5645 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5646 // We make use of a little bit of goto ickiness in order to avoid having to
5647 // duplicate the immediate matching logic for the undef toggled case.
5648 bool SecondTry = false;
5649 AttemptModImm:
5650
5651 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5652 CnstBits = CnstBits.zextOrTrunc(64);
5653 uint64_t CnstVal = CnstBits.getZExtValue();
5654
5655 // Certain magic vector constants (used to express things like NOT
5656 // and NEG) are passed through unmodified. This allows codegen patterns
5657 // for these operations to match. Special-purpose patterns will lower
5658 // these immediates to MOVIs if it proves necessary.
5659 if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
5660 return Op;
5661
5662 // The many faces of MOVI...
5663 if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
5664 CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
5665 if (VT.getSizeInBits() == 128) {
5666 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
5667 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005668 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005669 }
5670
5671 // Support the V64 version via subregister insertion.
5672 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
5673 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005674 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005675 }
5676
5677 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5678 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5679 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5680 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5681 DAG.getConstant(CnstVal, MVT::i32),
5682 DAG.getConstant(0, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005683 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005684 }
5685
5686 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5687 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5688 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5689 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5690 DAG.getConstant(CnstVal, MVT::i32),
5691 DAG.getConstant(8, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005692 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005693 }
5694
5695 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5696 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5697 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5698 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5699 DAG.getConstant(CnstVal, MVT::i32),
5700 DAG.getConstant(16, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005701 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005702 }
5703
5704 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5705 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5706 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5707 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5708 DAG.getConstant(CnstVal, MVT::i32),
5709 DAG.getConstant(24, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005710 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005711 }
5712
5713 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5714 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5715 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5716 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5717 DAG.getConstant(CnstVal, MVT::i32),
5718 DAG.getConstant(0, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005719 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005720 }
5721
5722 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5723 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5724 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5725 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5726 DAG.getConstant(CnstVal, MVT::i32),
5727 DAG.getConstant(8, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005728 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005729 }
5730
5731 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5732 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5733 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5734 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
5735 DAG.getConstant(CnstVal, MVT::i32),
5736 DAG.getConstant(264, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005737 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005738 }
5739
5740 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5741 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5742 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5743 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
5744 DAG.getConstant(CnstVal, MVT::i32),
5745 DAG.getConstant(272, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005746 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005747 }
5748
5749 if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
5750 CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
5751 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
5752 SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
5753 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005754 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005755 }
5756
5757 // The few faces of FMOV...
5758 if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
5759 CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
5760 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
5761 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
5762 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005763 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005764 }
5765
5766 if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
5767 VT.getSizeInBits() == 128) {
5768 CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
5769 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
5770 DAG.getConstant(CnstVal, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005771 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005772 }
5773
5774 // The many faces of MVNI...
5775 CnstVal = ~CnstVal;
5776 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5777 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5778 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5779 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5780 DAG.getConstant(CnstVal, MVT::i32),
5781 DAG.getConstant(0, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005782 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005783 }
5784
5785 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5786 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5787 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5788 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5789 DAG.getConstant(CnstVal, MVT::i32),
5790 DAG.getConstant(8, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005791 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005792 }
5793
5794 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5795 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5796 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5797 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5798 DAG.getConstant(CnstVal, MVT::i32),
5799 DAG.getConstant(16, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005800 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005801 }
5802
5803 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5804 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5805 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5806 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5807 DAG.getConstant(CnstVal, MVT::i32),
5808 DAG.getConstant(24, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005809 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005810 }
5811
5812 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5813 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5814 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5815 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5816 DAG.getConstant(CnstVal, MVT::i32),
5817 DAG.getConstant(0, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005818 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005819 }
5820
5821 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5822 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5823 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5824 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5825 DAG.getConstant(CnstVal, MVT::i32),
5826 DAG.getConstant(8, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005827 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005828 }
5829
5830 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5831 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5832 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5833 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
5834 DAG.getConstant(CnstVal, MVT::i32),
5835 DAG.getConstant(264, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005836 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005837 }
5838
5839 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5840 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5841 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5842 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
5843 DAG.getConstant(CnstVal, MVT::i32),
5844 DAG.getConstant(272, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005845 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005846 }
5847 }
5848
5849 if (SecondTry)
5850 goto FailedModImm;
5851 SecondTry = true;
5852 CnstBits = UndefBits;
5853 goto AttemptModImm;
5854 }
5855FailedModImm:
5856
5857 // Scan through the operands to find some interesting properties we can
5858 // exploit:
5859 // 1) If only one value is used, we can use a DUP, or
5860 // 2) if only the low element is not undef, we can just insert that, or
5861 // 3) if only one constant value is used (w/ some non-constant lanes),
5862 // we can splat the constant value into the whole vector then fill
5863 // in the non-constant lanes.
5864 // 4) FIXME: If different constant values are used, but we can intelligently
5865 // select the values we'll be overwriting for the non-constant
5866 // lanes such that we can directly materialize the vector
5867 // some other way (MOVI, e.g.), we can be sneaky.
5868 unsigned NumElts = VT.getVectorNumElements();
5869 bool isOnlyLowElement = true;
5870 bool usesOnlyOneValue = true;
5871 bool usesOnlyOneConstantValue = true;
5872 bool isConstant = true;
5873 unsigned NumConstantLanes = 0;
5874 SDValue Value;
5875 SDValue ConstantValue;
5876 for (unsigned i = 0; i < NumElts; ++i) {
5877 SDValue V = Op.getOperand(i);
5878 if (V.getOpcode() == ISD::UNDEF)
5879 continue;
5880 if (i > 0)
5881 isOnlyLowElement = false;
5882 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
5883 isConstant = false;
5884
5885 if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
5886 ++NumConstantLanes;
5887 if (!ConstantValue.getNode())
5888 ConstantValue = V;
5889 else if (ConstantValue != V)
5890 usesOnlyOneConstantValue = false;
5891 }
5892
5893 if (!Value.getNode())
5894 Value = V;
5895 else if (V != Value)
5896 usesOnlyOneValue = false;
5897 }
5898
5899 if (!Value.getNode())
5900 return DAG.getUNDEF(VT);
5901
5902 if (isOnlyLowElement)
5903 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
5904
5905 // Use DUP for non-constant splats. For f32 constant splats, reduce to
5906 // i32 and try again.
5907 if (usesOnlyOneValue) {
5908 if (!isConstant) {
5909 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5910 Value.getValueType() != VT)
5911 return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
5912
5913 // This is actually a DUPLANExx operation, which keeps everything vectory.
5914
5915 // DUPLANE works on 128-bit vectors, widen it if necessary.
5916 SDValue Lane = Value.getOperand(1);
5917 Value = Value.getOperand(0);
5918 if (Value.getValueType().getSizeInBits() == 64)
5919 Value = WidenVector(Value, DAG);
5920
5921 unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
5922 return DAG.getNode(Opcode, dl, VT, Value, Lane);
5923 }
5924
5925 if (VT.getVectorElementType().isFloatingPoint()) {
5926 SmallVector<SDValue, 8> Ops;
5927 MVT NewType =
5928 (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5929 for (unsigned i = 0; i < NumElts; ++i)
5930 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
5931 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
5932 SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
5933 Val = LowerBUILD_VECTOR(Val, DAG);
5934 if (Val.getNode())
5935 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5936 }
5937 }
5938
5939 // If there was only one constant value used and for more than one lane,
5940 // start by splatting that value, then replace the non-constant lanes. This
5941 // is better than the default, which will perform a separate initialization
5942 // for each lane.
5943 if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
5944 SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
5945 // Now insert the non-constant lanes.
5946 for (unsigned i = 0; i < NumElts; ++i) {
5947 SDValue V = Op.getOperand(i);
5948 SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
5949 if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
5950 // Note that type legalization likely mucked about with the VT of the
5951 // source operand, so we may have to convert it here before inserting.
5952 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
5953 }
5954 }
5955 return Val;
5956 }
5957
5958 // If all elements are constants and the case above didn't get hit, fall back
5959 // to the default expansion, which will generate a load from the constant
5960 // pool.
5961 if (isConstant)
5962 return SDValue();
5963
5964 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
5965 if (NumElts >= 4) {
5966 SDValue shuffle = ReconstructShuffle(Op, DAG);
5967 if (shuffle != SDValue())
5968 return shuffle;
5969 }
5970
5971 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
5972 // know the default expansion would otherwise fall back on something even
5973 // worse. For a vector with one or two non-undef values, that's
5974 // scalar_to_vector for the elements followed by a shuffle (provided the
5975 // shuffle is valid for the target) and materialization element by element
5976 // on the stack followed by a load for everything else.
5977 if (!isConstant && !usesOnlyOneValue) {
5978 SDValue Vec = DAG.getUNDEF(VT);
5979 SDValue Op0 = Op.getOperand(0);
5980 unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
5981 unsigned i = 0;
5982 // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
5983 // a) Avoid a RMW dependency on the full vector register, and
5984 // b) Allow the register coalescer to fold away the copy if the
5985 // value is already in an S or D register.
5986 if (Op0.getOpcode() != ISD::UNDEF && (ElemSize == 32 || ElemSize == 64)) {
5987 unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
5988 MachineSDNode *N =
5989 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
5990 DAG.getTargetConstant(SubIdx, MVT::i32));
5991 Vec = SDValue(N, 0);
5992 ++i;
5993 }
5994 for (; i < NumElts; ++i) {
5995 SDValue V = Op.getOperand(i);
5996 if (V.getOpcode() == ISD::UNDEF)
5997 continue;
5998 SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
5999 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
6000 }
6001 return Vec;
6002 }
6003
6004 // Just use the default expansion. We failed to find a better alternative.
6005 return SDValue();
6006}
6007
6008SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
6009 SelectionDAG &DAG) const {
6010 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
6011
Tim Northovere4b8e132014-07-15 10:00:26 +00006012 // Check for non-constant or out of range lane.
6013 EVT VT = Op.getOperand(0).getValueType();
6014 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
6015 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00006016 return SDValue();
6017
Tim Northover3b0846e2014-05-24 12:50:23 +00006018
6019 // Insertion/extraction are legal for V128 types.
6020 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00006021 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6022 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006023 return Op;
6024
6025 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00006026 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006027 return SDValue();
6028
6029 // For V64 types, we perform insertion by expanding the value
6030 // to a V128 type and perform the insertion on that.
6031 SDLoc DL(Op);
6032 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6033 EVT WideTy = WideVec.getValueType();
6034
6035 SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
6036 Op.getOperand(1), Op.getOperand(2));
6037 // Re-narrow the resultant vector.
6038 return NarrowVector(Node, DAG);
6039}
6040
6041SDValue
6042AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6043 SelectionDAG &DAG) const {
6044 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
6045
Tim Northovere4b8e132014-07-15 10:00:26 +00006046 // Check for non-constant or out of range lane.
6047 EVT VT = Op.getOperand(0).getValueType();
6048 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6049 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00006050 return SDValue();
6051
Tim Northover3b0846e2014-05-24 12:50:23 +00006052
6053 // Insertion/extraction are legal for V128 types.
6054 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00006055 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6056 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006057 return Op;
6058
6059 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00006060 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006061 return SDValue();
6062
6063 // For V64 types, we perform extraction by expanding the value
6064 // to a V128 type and perform the extraction on that.
6065 SDLoc DL(Op);
6066 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6067 EVT WideTy = WideVec.getValueType();
6068
6069 EVT ExtrTy = WideTy.getVectorElementType();
6070 if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
6071 ExtrTy = MVT::i32;
6072
6073 // For extractions, we just return the result directly.
6074 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
6075 Op.getOperand(1));
6076}
6077
6078SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
6079 SelectionDAG &DAG) const {
6080 EVT VT = Op.getOperand(0).getValueType();
6081 SDLoc dl(Op);
6082 // Just in case...
6083 if (!VT.isVector())
6084 return SDValue();
6085
6086 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6087 if (!Cst)
6088 return SDValue();
6089 unsigned Val = Cst->getZExtValue();
6090
6091 unsigned Size = Op.getValueType().getSizeInBits();
6092 if (Val == 0) {
6093 switch (Size) {
6094 case 8:
6095 return DAG.getTargetExtractSubreg(AArch64::bsub, dl, Op.getValueType(),
6096 Op.getOperand(0));
6097 case 16:
6098 return DAG.getTargetExtractSubreg(AArch64::hsub, dl, Op.getValueType(),
6099 Op.getOperand(0));
6100 case 32:
6101 return DAG.getTargetExtractSubreg(AArch64::ssub, dl, Op.getValueType(),
6102 Op.getOperand(0));
6103 case 64:
6104 return DAG.getTargetExtractSubreg(AArch64::dsub, dl, Op.getValueType(),
6105 Op.getOperand(0));
6106 default:
6107 llvm_unreachable("Unexpected vector type in extract_subvector!");
6108 }
6109 }
6110 // If this is extracting the upper 64-bits of a 128-bit vector, we match
6111 // that directly.
6112 if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
6113 return Op;
6114
6115 return SDValue();
6116}
6117
6118bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
6119 EVT VT) const {
6120 if (VT.getVectorNumElements() == 4 &&
6121 (VT.is128BitVector() || VT.is64BitVector())) {
6122 unsigned PFIndexes[4];
6123 for (unsigned i = 0; i != 4; ++i) {
6124 if (M[i] < 0)
6125 PFIndexes[i] = 8;
6126 else
6127 PFIndexes[i] = M[i];
6128 }
6129
6130 // Compute the index in the perfect shuffle table.
6131 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
6132 PFIndexes[2] * 9 + PFIndexes[3];
6133 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6134 unsigned Cost = (PFEntry >> 30);
6135
6136 if (Cost <= 4)
6137 return true;
6138 }
6139
6140 bool DummyBool;
6141 int DummyInt;
6142 unsigned DummyUnsigned;
6143
6144 return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
6145 isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
6146 isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
6147 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
6148 isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
6149 isZIPMask(M, VT, DummyUnsigned) ||
6150 isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
6151 isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
6152 isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
6153 isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
6154 isConcatMask(M, VT, VT.getSizeInBits() == 128));
6155}
6156
6157/// getVShiftImm - Check if this is a valid build_vector for the immediate
6158/// operand of a vector shift operation, where all the elements of the
6159/// build_vector must have the same constant integer value.
6160static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6161 // Ignore bit_converts.
6162 while (Op.getOpcode() == ISD::BITCAST)
6163 Op = Op.getOperand(0);
6164 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6165 APInt SplatBits, SplatUndef;
6166 unsigned SplatBitSize;
6167 bool HasAnyUndefs;
6168 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
6169 HasAnyUndefs, ElementBits) ||
6170 SplatBitSize > ElementBits)
6171 return false;
6172 Cnt = SplatBits.getSExtValue();
6173 return true;
6174}
6175
6176/// isVShiftLImm - Check if this is a valid build_vector for the immediate
6177/// operand of a vector shift left operation. That value must be in the range:
6178/// 0 <= Value < ElementBits for a left shift; or
6179/// 0 <= Value <= ElementBits for a long left shift.
6180static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6181 assert(VT.isVector() && "vector shift count is not a vector type");
6182 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6183 if (!getVShiftImm(Op, ElementBits, Cnt))
6184 return false;
6185 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6186}
6187
6188/// isVShiftRImm - Check if this is a valid build_vector for the immediate
6189/// operand of a vector shift right operation. For a shift opcode, the value
6190/// is positive, but for an intrinsic the value count must be negative. The
6191/// absolute value must be in the range:
6192/// 1 <= |Value| <= ElementBits for a right shift; or
6193/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
6194static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
6195 int64_t &Cnt) {
6196 assert(VT.isVector() && "vector shift count is not a vector type");
6197 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6198 if (!getVShiftImm(Op, ElementBits, Cnt))
6199 return false;
6200 if (isIntrinsic)
6201 Cnt = -Cnt;
6202 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6203}
6204
6205SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
6206 SelectionDAG &DAG) const {
6207 EVT VT = Op.getValueType();
6208 SDLoc DL(Op);
6209 int64_t Cnt;
6210
6211 if (!Op.getOperand(1).getValueType().isVector())
6212 return Op;
6213 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6214
6215 switch (Op.getOpcode()) {
6216 default:
6217 llvm_unreachable("unexpected shift opcode");
6218
6219 case ISD::SHL:
6220 if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
6221 return DAG.getNode(AArch64ISD::VSHL, SDLoc(Op), VT, Op.getOperand(0),
6222 DAG.getConstant(Cnt, MVT::i32));
6223 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6224 DAG.getConstant(Intrinsic::aarch64_neon_ushl, MVT::i32),
6225 Op.getOperand(0), Op.getOperand(1));
6226 case ISD::SRA:
6227 case ISD::SRL:
6228 // Right shift immediate
6229 if (isVShiftRImm(Op.getOperand(1), VT, false, false, Cnt) &&
6230 Cnt < EltSize) {
6231 unsigned Opc =
6232 (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
6233 return DAG.getNode(Opc, SDLoc(Op), VT, Op.getOperand(0),
6234 DAG.getConstant(Cnt, MVT::i32));
6235 }
6236
6237 // Right shift register. Note, there is not a shift right register
6238 // instruction, but the shift left register instruction takes a signed
6239 // value, where negative numbers specify a right shift.
6240 unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
6241 : Intrinsic::aarch64_neon_ushl;
6242 // negate the shift amount
6243 SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
6244 SDValue NegShiftLeft =
6245 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6246 DAG.getConstant(Opc, MVT::i32), Op.getOperand(0), NegShift);
6247 return NegShiftLeft;
6248 }
6249
6250 return SDValue();
6251}
6252
6253static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
6254 AArch64CC::CondCode CC, bool NoNans, EVT VT,
6255 SDLoc dl, SelectionDAG &DAG) {
6256 EVT SrcVT = LHS.getValueType();
Tim Northover45aa89c2015-02-08 00:50:47 +00006257 assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
6258 "function only supposed to emit natural comparisons");
Tim Northover3b0846e2014-05-24 12:50:23 +00006259
6260 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
6261 APInt CnstBits(VT.getSizeInBits(), 0);
6262 APInt UndefBits(VT.getSizeInBits(), 0);
6263 bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
6264 bool IsZero = IsCnst && (CnstBits == 0);
6265
6266 if (SrcVT.getVectorElementType().isFloatingPoint()) {
6267 switch (CC) {
6268 default:
6269 return SDValue();
6270 case AArch64CC::NE: {
6271 SDValue Fcmeq;
6272 if (IsZero)
6273 Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6274 else
6275 Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6276 return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
6277 }
6278 case AArch64CC::EQ:
6279 if (IsZero)
6280 return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6281 return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6282 case AArch64CC::GE:
6283 if (IsZero)
6284 return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
6285 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
6286 case AArch64CC::GT:
6287 if (IsZero)
6288 return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
6289 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
6290 case AArch64CC::LS:
6291 if (IsZero)
6292 return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
6293 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
6294 case AArch64CC::LT:
6295 if (!NoNans)
6296 return SDValue();
6297 // If we ignore NaNs then we can use to the MI implementation.
6298 // Fallthrough.
6299 case AArch64CC::MI:
6300 if (IsZero)
6301 return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
6302 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
6303 }
6304 }
6305
6306 switch (CC) {
6307 default:
6308 return SDValue();
6309 case AArch64CC::NE: {
6310 SDValue Cmeq;
6311 if (IsZero)
6312 Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6313 else
6314 Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6315 return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
6316 }
6317 case AArch64CC::EQ:
6318 if (IsZero)
6319 return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6320 return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6321 case AArch64CC::GE:
6322 if (IsZero)
6323 return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
6324 return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
6325 case AArch64CC::GT:
6326 if (IsZero)
6327 return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
6328 return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
6329 case AArch64CC::LE:
6330 if (IsZero)
6331 return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
6332 return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
6333 case AArch64CC::LS:
6334 return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
6335 case AArch64CC::LO:
6336 return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
6337 case AArch64CC::LT:
6338 if (IsZero)
6339 return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
6340 return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
6341 case AArch64CC::HI:
6342 return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
6343 case AArch64CC::HS:
6344 return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
6345 }
6346}
6347
6348SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
6349 SelectionDAG &DAG) const {
6350 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6351 SDValue LHS = Op.getOperand(0);
6352 SDValue RHS = Op.getOperand(1);
Tim Northover45aa89c2015-02-08 00:50:47 +00006353 EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
Tim Northover3b0846e2014-05-24 12:50:23 +00006354 SDLoc dl(Op);
6355
6356 if (LHS.getValueType().getVectorElementType().isInteger()) {
6357 assert(LHS.getValueType() == RHS.getValueType());
6358 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
Tim Northover45aa89c2015-02-08 00:50:47 +00006359 SDValue Cmp =
6360 EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
6361 return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
Tim Northover3b0846e2014-05-24 12:50:23 +00006362 }
6363
6364 assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
6365 LHS.getValueType().getVectorElementType() == MVT::f64);
6366
6367 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
6368 // clean. Some of them require two branches to implement.
6369 AArch64CC::CondCode CC1, CC2;
6370 bool ShouldInvert;
6371 changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
6372
6373 bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
6374 SDValue Cmp =
Tim Northover45aa89c2015-02-08 00:50:47 +00006375 EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00006376 if (!Cmp.getNode())
6377 return SDValue();
6378
6379 if (CC2 != AArch64CC::AL) {
6380 SDValue Cmp2 =
Tim Northover45aa89c2015-02-08 00:50:47 +00006381 EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00006382 if (!Cmp2.getNode())
6383 return SDValue();
6384
Tim Northover45aa89c2015-02-08 00:50:47 +00006385 Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
Tim Northover3b0846e2014-05-24 12:50:23 +00006386 }
6387
Tim Northover45aa89c2015-02-08 00:50:47 +00006388 Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
6389
Tim Northover3b0846e2014-05-24 12:50:23 +00006390 if (ShouldInvert)
6391 return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
6392
6393 return Cmp;
6394}
6395
6396/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
6397/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
6398/// specified in the intrinsic calls.
6399bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
6400 const CallInst &I,
6401 unsigned Intrinsic) const {
6402 switch (Intrinsic) {
6403 case Intrinsic::aarch64_neon_ld2:
6404 case Intrinsic::aarch64_neon_ld3:
6405 case Intrinsic::aarch64_neon_ld4:
6406 case Intrinsic::aarch64_neon_ld1x2:
6407 case Intrinsic::aarch64_neon_ld1x3:
6408 case Intrinsic::aarch64_neon_ld1x4:
6409 case Intrinsic::aarch64_neon_ld2lane:
6410 case Intrinsic::aarch64_neon_ld3lane:
6411 case Intrinsic::aarch64_neon_ld4lane:
6412 case Intrinsic::aarch64_neon_ld2r:
6413 case Intrinsic::aarch64_neon_ld3r:
6414 case Intrinsic::aarch64_neon_ld4r: {
6415 Info.opc = ISD::INTRINSIC_W_CHAIN;
6416 // Conservatively set memVT to the entire set of vectors loaded.
6417 uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
6418 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6419 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6420 Info.offset = 0;
6421 Info.align = 0;
6422 Info.vol = false; // volatile loads with NEON intrinsics not supported
6423 Info.readMem = true;
6424 Info.writeMem = false;
6425 return true;
6426 }
6427 case Intrinsic::aarch64_neon_st2:
6428 case Intrinsic::aarch64_neon_st3:
6429 case Intrinsic::aarch64_neon_st4:
6430 case Intrinsic::aarch64_neon_st1x2:
6431 case Intrinsic::aarch64_neon_st1x3:
6432 case Intrinsic::aarch64_neon_st1x4:
6433 case Intrinsic::aarch64_neon_st2lane:
6434 case Intrinsic::aarch64_neon_st3lane:
6435 case Intrinsic::aarch64_neon_st4lane: {
6436 Info.opc = ISD::INTRINSIC_VOID;
6437 // Conservatively set memVT to the entire set of vectors stored.
6438 unsigned NumElts = 0;
6439 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
6440 Type *ArgTy = I.getArgOperand(ArgI)->getType();
6441 if (!ArgTy->isVectorTy())
6442 break;
6443 NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
6444 }
6445 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6446 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6447 Info.offset = 0;
6448 Info.align = 0;
6449 Info.vol = false; // volatile stores with NEON intrinsics not supported
6450 Info.readMem = false;
6451 Info.writeMem = true;
6452 return true;
6453 }
6454 case Intrinsic::aarch64_ldaxr:
6455 case Intrinsic::aarch64_ldxr: {
6456 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
6457 Info.opc = ISD::INTRINSIC_W_CHAIN;
6458 Info.memVT = MVT::getVT(PtrTy->getElementType());
6459 Info.ptrVal = I.getArgOperand(0);
6460 Info.offset = 0;
6461 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
6462 Info.vol = true;
6463 Info.readMem = true;
6464 Info.writeMem = false;
6465 return true;
6466 }
6467 case Intrinsic::aarch64_stlxr:
6468 case Intrinsic::aarch64_stxr: {
6469 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
6470 Info.opc = ISD::INTRINSIC_W_CHAIN;
6471 Info.memVT = MVT::getVT(PtrTy->getElementType());
6472 Info.ptrVal = I.getArgOperand(1);
6473 Info.offset = 0;
6474 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
6475 Info.vol = true;
6476 Info.readMem = false;
6477 Info.writeMem = true;
6478 return true;
6479 }
6480 case Intrinsic::aarch64_ldaxp:
6481 case Intrinsic::aarch64_ldxp: {
6482 Info.opc = ISD::INTRINSIC_W_CHAIN;
6483 Info.memVT = MVT::i128;
6484 Info.ptrVal = I.getArgOperand(0);
6485 Info.offset = 0;
6486 Info.align = 16;
6487 Info.vol = true;
6488 Info.readMem = true;
6489 Info.writeMem = false;
6490 return true;
6491 }
6492 case Intrinsic::aarch64_stlxp:
6493 case Intrinsic::aarch64_stxp: {
6494 Info.opc = ISD::INTRINSIC_W_CHAIN;
6495 Info.memVT = MVT::i128;
6496 Info.ptrVal = I.getArgOperand(2);
6497 Info.offset = 0;
6498 Info.align = 16;
6499 Info.vol = true;
6500 Info.readMem = false;
6501 Info.writeMem = true;
6502 return true;
6503 }
6504 default:
6505 break;
6506 }
6507
6508 return false;
6509}
6510
6511// Truncations from 64-bit GPR to 32-bit GPR is free.
6512bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
6513 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6514 return false;
6515 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6516 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006517 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006518}
6519bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006520 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006521 return false;
6522 unsigned NumBits1 = VT1.getSizeInBits();
6523 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006524 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006525}
6526
Chad Rosier54390052015-02-23 19:15:16 +00006527/// Check if it is profitable to hoist instruction in then/else to if.
6528/// Not profitable if I and it's user can form a FMA instruction
6529/// because we prefer FMSUB/FMADD.
6530bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
6531 if (I->getOpcode() != Instruction::FMul)
6532 return true;
6533
6534 if (I->getNumUses() != 1)
6535 return true;
6536
6537 Instruction *User = I->user_back();
6538
6539 if (User &&
6540 !(User->getOpcode() == Instruction::FSub ||
6541 User->getOpcode() == Instruction::FAdd))
6542 return true;
6543
6544 const TargetOptions &Options = getTargetMachine().Options;
6545 EVT VT = getValueType(User->getOperand(0)->getType());
6546
6547 if (isFMAFasterThanFMulAndFAdd(VT) &&
6548 isOperationLegalOrCustom(ISD::FMA, VT) &&
6549 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath))
6550 return false;
6551
6552 return true;
6553}
6554
Tim Northover3b0846e2014-05-24 12:50:23 +00006555// All 32-bit GPR operations implicitly zero the high-half of the corresponding
6556// 64-bit GPR.
6557bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
6558 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6559 return false;
6560 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6561 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006562 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006563}
6564bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006565 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006566 return false;
6567 unsigned NumBits1 = VT1.getSizeInBits();
6568 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006569 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006570}
6571
6572bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
6573 EVT VT1 = Val.getValueType();
6574 if (isZExtFree(VT1, VT2)) {
6575 return true;
6576 }
6577
6578 if (Val.getOpcode() != ISD::LOAD)
6579 return false;
6580
6581 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
Hao Liu40914502014-05-29 09:19:07 +00006582 return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
6583 VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
6584 VT1.getSizeInBits() <= 32);
Tim Northover3b0846e2014-05-24 12:50:23 +00006585}
6586
6587bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType,
6588 unsigned &RequiredAligment) const {
6589 if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
6590 return false;
6591 // Cyclone supports unaligned accesses.
6592 RequiredAligment = 0;
6593 unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
6594 return NumBits == 32 || NumBits == 64;
6595}
6596
6597bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
6598 unsigned &RequiredAligment) const {
6599 if (!LoadedType.isSimple() ||
6600 (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
6601 return false;
6602 // Cyclone supports unaligned accesses.
6603 RequiredAligment = 0;
6604 unsigned NumBits = LoadedType.getSizeInBits();
6605 return NumBits == 32 || NumBits == 64;
6606}
6607
6608static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
6609 unsigned AlignCheck) {
6610 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
6611 (DstAlign == 0 || DstAlign % AlignCheck == 0));
6612}
6613
6614EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
6615 unsigned SrcAlign, bool IsMemset,
6616 bool ZeroMemset,
6617 bool MemcpyStrSrc,
6618 MachineFunction &MF) const {
6619 // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
6620 // instruction to materialize the v2i64 zero and one store (with restrictive
6621 // addressing mode). Just do two i64 store of zero-registers.
6622 bool Fast;
6623 const Function *F = MF.getFunction();
6624 if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
Duncan P. N. Exon Smith003bb7d2015-02-14 02:09:06 +00006625 !F->hasFnAttribute(Attribute::NoImplicitFloat) &&
Tim Northover3b0846e2014-05-24 12:50:23 +00006626 (memOpAlign(SrcAlign, DstAlign, 16) ||
Matt Arsenault6f2a5262014-07-27 17:46:40 +00006627 (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast)))
Tim Northover3b0846e2014-05-24 12:50:23 +00006628 return MVT::f128;
6629
6630 return Size >= 8 ? MVT::i64 : MVT::i32;
6631}
6632
6633// 12-bit optionally shifted immediates are legal for adds.
6634bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
6635 if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0))
6636 return true;
6637 return false;
6638}
6639
6640// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
6641// immediates is the same as for an add or a sub.
6642bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
6643 if (Immed < 0)
6644 Immed *= -1;
6645 return isLegalAddImmediate(Immed);
6646}
6647
6648/// isLegalAddressingMode - Return true if the addressing mode represented
6649/// by AM is legal for this target, for a load/store of the specified type.
6650bool AArch64TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6651 Type *Ty) const {
6652 // AArch64 has five basic addressing modes:
6653 // reg
6654 // reg + 9-bit signed offset
6655 // reg + SIZE_IN_BYTES * 12-bit unsigned offset
6656 // reg1 + reg2
6657 // reg + SIZE_IN_BYTES * reg
6658
6659 // No global is ever allowed as a base.
6660 if (AM.BaseGV)
6661 return false;
6662
6663 // No reg+reg+imm addressing.
6664 if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
6665 return false;
6666
6667 // check reg + imm case:
6668 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
6669 uint64_t NumBytes = 0;
6670 if (Ty->isSized()) {
6671 uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty);
6672 NumBytes = NumBits / 8;
6673 if (!isPowerOf2_64(NumBits))
6674 NumBytes = 0;
6675 }
6676
6677 if (!AM.Scale) {
6678 int64_t Offset = AM.BaseOffs;
6679
6680 // 9-bit signed offset
6681 if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
6682 return true;
6683
6684 // 12-bit unsigned offset
6685 unsigned shift = Log2_64(NumBytes);
6686 if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
6687 // Must be a multiple of NumBytes (NumBytes is a power of 2)
6688 (Offset >> shift) << shift == Offset)
6689 return true;
6690 return false;
6691 }
6692
6693 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
6694
6695 if (!AM.Scale || AM.Scale == 1 ||
6696 (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
6697 return true;
6698 return false;
6699}
6700
6701int AArch64TargetLowering::getScalingFactorCost(const AddrMode &AM,
6702 Type *Ty) const {
6703 // Scaling factors are not free at all.
6704 // Operands | Rt Latency
6705 // -------------------------------------------
6706 // Rt, [Xn, Xm] | 4
6707 // -------------------------------------------
6708 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
6709 // Rt, [Xn, Wm, <extend> #imm] |
6710 if (isLegalAddressingMode(AM, Ty))
6711 // Scale represents reg2 * scale, thus account for 1 if
6712 // it is not equal to 0 or 1.
6713 return AM.Scale != 0 && AM.Scale != 1;
6714 return -1;
6715}
6716
6717bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
6718 VT = VT.getScalarType();
6719
6720 if (!VT.isSimple())
6721 return false;
6722
6723 switch (VT.getSimpleVT().SimpleTy) {
6724 case MVT::f32:
6725 case MVT::f64:
6726 return true;
6727 default:
6728 break;
6729 }
6730
6731 return false;
6732}
6733
6734const MCPhysReg *
6735AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
6736 // LR is a callee-save register, but we must treat it as clobbered by any call
6737 // site. Hence we include LR in the scratch registers, which are in turn added
6738 // as implicit-defs for stackmaps and patchpoints.
6739 static const MCPhysReg ScratchRegs[] = {
6740 AArch64::X16, AArch64::X17, AArch64::LR, 0
6741 };
6742 return ScratchRegs;
6743}
6744
6745bool
6746AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
6747 EVT VT = N->getValueType(0);
6748 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
6749 // it with shift to let it be lowered to UBFX.
6750 if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
6751 isa<ConstantSDNode>(N->getOperand(1))) {
6752 uint64_t TruncMask = N->getConstantOperandVal(1);
6753 if (isMask_64(TruncMask) &&
6754 N->getOperand(0).getOpcode() == ISD::SRL &&
6755 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
6756 return false;
6757 }
6758 return true;
6759}
6760
6761bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
6762 Type *Ty) const {
6763 assert(Ty->isIntegerTy());
6764
6765 unsigned BitSize = Ty->getPrimitiveSizeInBits();
6766 if (BitSize == 0)
6767 return false;
6768
6769 int64_t Val = Imm.getSExtValue();
6770 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
6771 return true;
6772
6773 if ((int64_t)Val < 0)
6774 Val = ~Val;
6775 if (BitSize == 32)
6776 Val &= (1LL << 32) - 1;
6777
6778 unsigned LZ = countLeadingZeros((uint64_t)Val);
6779 unsigned Shift = (63 - LZ) / 16;
6780 // MOVZ is free so return true for one or fewer MOVK.
6781 return (Shift < 3) ? true : false;
6782}
6783
6784// Generate SUBS and CSEL for integer abs.
6785static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
6786 EVT VT = N->getValueType(0);
6787
6788 SDValue N0 = N->getOperand(0);
6789 SDValue N1 = N->getOperand(1);
6790 SDLoc DL(N);
6791
6792 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
6793 // and change it to SUB and CSEL.
6794 if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
6795 N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
6796 N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
6797 if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
6798 if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
6799 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
6800 N0.getOperand(0));
6801 // Generate SUBS & CSEL.
6802 SDValue Cmp =
6803 DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
6804 N0.getOperand(0), DAG.getConstant(0, VT));
6805 return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
6806 DAG.getConstant(AArch64CC::PL, MVT::i32),
6807 SDValue(Cmp.getNode(), 1));
6808 }
6809 return SDValue();
6810}
6811
6812// performXorCombine - Attempts to handle integer ABS.
6813static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
6814 TargetLowering::DAGCombinerInfo &DCI,
6815 const AArch64Subtarget *Subtarget) {
6816 if (DCI.isBeforeLegalizeOps())
6817 return SDValue();
6818
6819 return performIntegerAbsCombine(N, DAG);
6820}
6821
Chad Rosier17020f92014-07-23 14:57:52 +00006822SDValue
6823AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
6824 SelectionDAG &DAG,
6825 std::vector<SDNode *> *Created) const {
6826 // fold (sdiv X, pow2)
6827 EVT VT = N->getValueType(0);
6828 if ((VT != MVT::i32 && VT != MVT::i64) ||
6829 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
6830 return SDValue();
6831
6832 SDLoc DL(N);
6833 SDValue N0 = N->getOperand(0);
6834 unsigned Lg2 = Divisor.countTrailingZeros();
6835 SDValue Zero = DAG.getConstant(0, VT);
Juergen Ributzka03a06112014-10-16 16:41:15 +00006836 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, VT);
Chad Rosier17020f92014-07-23 14:57:52 +00006837
6838 // Add (N0 < 0) ? Pow2 - 1 : 0;
6839 SDValue CCVal;
6840 SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
6841 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
6842 SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
6843
6844 if (Created) {
6845 Created->push_back(Cmp.getNode());
6846 Created->push_back(Add.getNode());
6847 Created->push_back(CSel.getNode());
6848 }
6849
6850 // Divide by pow2.
6851 SDValue SRA =
6852 DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, MVT::i64));
6853
6854 // If we're dividing by a positive value, we're done. Otherwise, we must
6855 // negate the result.
6856 if (Divisor.isNonNegative())
6857 return SRA;
6858
6859 if (Created)
6860 Created->push_back(SRA.getNode());
6861 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT), SRA);
6862}
6863
Tim Northover3b0846e2014-05-24 12:50:23 +00006864static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
6865 TargetLowering::DAGCombinerInfo &DCI,
6866 const AArch64Subtarget *Subtarget) {
6867 if (DCI.isBeforeLegalizeOps())
6868 return SDValue();
6869
6870 // Multiplication of a power of two plus/minus one can be done more
6871 // cheaply as as shift+add/sub. For now, this is true unilaterally. If
6872 // future CPUs have a cheaper MADD instruction, this may need to be
6873 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
6874 // 64-bit is 5 cycles, so this is always a win.
6875 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6876 APInt Value = C->getAPIntValue();
6877 EVT VT = N->getValueType(0);
Chad Rosiere6b87612014-06-30 14:51:14 +00006878 if (Value.isNonNegative()) {
6879 // (mul x, 2^N + 1) => (add (shl x, N), x)
6880 APInt VM1 = Value - 1;
6881 if (VM1.isPowerOf2()) {
6882 SDValue ShiftedVal =
6883 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6884 DAG.getConstant(VM1.logBase2(), MVT::i64));
6885 return DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal,
6886 N->getOperand(0));
6887 }
6888 // (mul x, 2^N - 1) => (sub (shl x, N), x)
6889 APInt VP1 = Value + 1;
6890 if (VP1.isPowerOf2()) {
6891 SDValue ShiftedVal =
6892 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6893 DAG.getConstant(VP1.logBase2(), MVT::i64));
6894 return DAG.getNode(ISD::SUB, SDLoc(N), VT, ShiftedVal,
6895 N->getOperand(0));
6896 }
6897 } else {
6898 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
6899 APInt VNM1 = -Value - 1;
6900 if (VNM1.isPowerOf2()) {
6901 SDValue ShiftedVal =
6902 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6903 DAG.getConstant(VNM1.logBase2(), MVT::i64));
6904 SDValue Add =
6905 DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal, N->getOperand(0));
6906 return DAG.getNode(ISD::SUB, SDLoc(N), VT, DAG.getConstant(0, VT), Add);
6907 }
6908 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
6909 APInt VNP1 = -Value + 1;
6910 if (VNP1.isPowerOf2()) {
6911 SDValue ShiftedVal =
6912 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6913 DAG.getConstant(VNP1.logBase2(), MVT::i64));
6914 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N->getOperand(0),
6915 ShiftedVal);
6916 }
Chad Rosierd96e9f12014-06-09 01:25:51 +00006917 }
Tim Northover3b0846e2014-05-24 12:50:23 +00006918 }
6919 return SDValue();
6920}
6921
Jim Grosbachf7502c42014-07-18 00:40:52 +00006922static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
6923 SelectionDAG &DAG) {
6924 // Take advantage of vector comparisons producing 0 or -1 in each lane to
6925 // optimize away operation when it's from a constant.
6926 //
6927 // The general transformation is:
6928 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
6929 // AND(VECTOR_CMP(x,y), constant2)
6930 // constant2 = UNARYOP(constant)
6931
Jim Grosbach8f6f0852014-07-23 20:41:38 +00006932 // Early exit if this isn't a vector operation, the operand of the
6933 // unary operation isn't a bitwise AND, or if the sizes of the operations
6934 // aren't the same.
Jim Grosbachf7502c42014-07-18 00:40:52 +00006935 EVT VT = N->getValueType(0);
6936 if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
Jim Grosbach8f6f0852014-07-23 20:41:38 +00006937 N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
6938 VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
Jim Grosbachf7502c42014-07-18 00:40:52 +00006939 return SDValue();
6940
Jim Grosbach724e4382014-07-23 20:41:43 +00006941 // Now check that the other operand of the AND is a constant. We could
Jim Grosbachf7502c42014-07-18 00:40:52 +00006942 // make the transformation for non-constant splats as well, but it's unclear
6943 // that would be a benefit as it would not eliminate any operations, just
6944 // perform one more step in scalar code before moving to the vector unit.
6945 if (BuildVectorSDNode *BV =
6946 dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
Jim Grosbach724e4382014-07-23 20:41:43 +00006947 // Bail out if the vector isn't a constant.
6948 if (!BV->isConstant())
Jim Grosbachf7502c42014-07-18 00:40:52 +00006949 return SDValue();
6950
6951 // Everything checks out. Build up the new and improved node.
6952 SDLoc DL(N);
6953 EVT IntVT = BV->getValueType(0);
6954 // Create a new constant of the appropriate type for the transformed
6955 // DAG.
6956 SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
6957 // The AND node needs bitcasts to/from an integer vector type around it.
6958 SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
6959 SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
6960 N->getOperand(0)->getOperand(0), MaskConst);
6961 SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
6962 return Res;
6963 }
6964
6965 return SDValue();
6966}
6967
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00006968static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
6969 const AArch64Subtarget *Subtarget) {
Jim Grosbachf7502c42014-07-18 00:40:52 +00006970 // First try to optimize away the conversion when it's conditionally from
6971 // a constant. Vectors only.
6972 SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG);
6973 if (Res != SDValue())
6974 return Res;
6975
Tim Northover3b0846e2014-05-24 12:50:23 +00006976 EVT VT = N->getValueType(0);
6977 if (VT != MVT::f32 && VT != MVT::f64)
6978 return SDValue();
Jim Grosbachf7502c42014-07-18 00:40:52 +00006979
Tim Northover3b0846e2014-05-24 12:50:23 +00006980 // Only optimize when the source and destination types have the same width.
6981 if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
6982 return SDValue();
6983
6984 // If the result of an integer load is only used by an integer-to-float
6985 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
6986 // This eliminates an "integer-to-vector-move UOP and improve throughput.
6987 SDValue N0 = N->getOperand(0);
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00006988 if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
Tim Northover3b0846e2014-05-24 12:50:23 +00006989 // Do not change the width of a volatile load.
6990 !cast<LoadSDNode>(N0)->isVolatile()) {
6991 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6992 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
6993 LN0->getPointerInfo(), LN0->isVolatile(),
6994 LN0->isNonTemporal(), LN0->isInvariant(),
6995 LN0->getAlignment());
6996
6997 // Make sure successors of the original load stay after it by updating them
6998 // to use the new Chain.
6999 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
7000
7001 unsigned Opcode =
7002 (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
7003 return DAG.getNode(Opcode, SDLoc(N), VT, Load);
7004 }
7005
7006 return SDValue();
7007}
7008
7009/// An EXTR instruction is made up of two shifts, ORed together. This helper
7010/// searches for and classifies those shifts.
7011static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
7012 bool &FromHi) {
7013 if (N.getOpcode() == ISD::SHL)
7014 FromHi = false;
7015 else if (N.getOpcode() == ISD::SRL)
7016 FromHi = true;
7017 else
7018 return false;
7019
7020 if (!isa<ConstantSDNode>(N.getOperand(1)))
7021 return false;
7022
7023 ShiftAmount = N->getConstantOperandVal(1);
7024 Src = N->getOperand(0);
7025 return true;
7026}
7027
7028/// EXTR instruction extracts a contiguous chunk of bits from two existing
7029/// registers viewed as a high/low pair. This function looks for the pattern:
7030/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
7031/// EXTR. Can't quite be done in TableGen because the two immediates aren't
7032/// independent.
7033static SDValue tryCombineToEXTR(SDNode *N,
7034 TargetLowering::DAGCombinerInfo &DCI) {
7035 SelectionDAG &DAG = DCI.DAG;
7036 SDLoc DL(N);
7037 EVT VT = N->getValueType(0);
7038
7039 assert(N->getOpcode() == ISD::OR && "Unexpected root");
7040
7041 if (VT != MVT::i32 && VT != MVT::i64)
7042 return SDValue();
7043
7044 SDValue LHS;
7045 uint32_t ShiftLHS = 0;
7046 bool LHSFromHi = 0;
7047 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
7048 return SDValue();
7049
7050 SDValue RHS;
7051 uint32_t ShiftRHS = 0;
7052 bool RHSFromHi = 0;
7053 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
7054 return SDValue();
7055
7056 // If they're both trying to come from the high part of the register, they're
7057 // not really an EXTR.
7058 if (LHSFromHi == RHSFromHi)
7059 return SDValue();
7060
7061 if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
7062 return SDValue();
7063
7064 if (LHSFromHi) {
7065 std::swap(LHS, RHS);
7066 std::swap(ShiftLHS, ShiftRHS);
7067 }
7068
7069 return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
7070 DAG.getConstant(ShiftRHS, MVT::i64));
7071}
7072
7073static SDValue tryCombineToBSL(SDNode *N,
7074 TargetLowering::DAGCombinerInfo &DCI) {
7075 EVT VT = N->getValueType(0);
7076 SelectionDAG &DAG = DCI.DAG;
7077 SDLoc DL(N);
7078
7079 if (!VT.isVector())
7080 return SDValue();
7081
7082 SDValue N0 = N->getOperand(0);
7083 if (N0.getOpcode() != ISD::AND)
7084 return SDValue();
7085
7086 SDValue N1 = N->getOperand(1);
7087 if (N1.getOpcode() != ISD::AND)
7088 return SDValue();
7089
7090 // We only have to look for constant vectors here since the general, variable
7091 // case can be handled in TableGen.
7092 unsigned Bits = VT.getVectorElementType().getSizeInBits();
7093 uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
7094 for (int i = 1; i >= 0; --i)
7095 for (int j = 1; j >= 0; --j) {
7096 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
7097 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
7098 if (!BVN0 || !BVN1)
7099 continue;
7100
7101 bool FoundMatch = true;
7102 for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
7103 ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
7104 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
7105 if (!CN0 || !CN1 ||
7106 CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
7107 FoundMatch = false;
7108 break;
7109 }
7110 }
7111
7112 if (FoundMatch)
7113 return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
7114 N0->getOperand(1 - i), N1->getOperand(1 - j));
7115 }
7116
7117 return SDValue();
7118}
7119
7120static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
7121 const AArch64Subtarget *Subtarget) {
7122 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
7123 if (!EnableAArch64ExtrGeneration)
7124 return SDValue();
7125 SelectionDAG &DAG = DCI.DAG;
7126 EVT VT = N->getValueType(0);
7127
7128 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7129 return SDValue();
7130
7131 SDValue Res = tryCombineToEXTR(N, DCI);
7132 if (Res.getNode())
7133 return Res;
7134
7135 Res = tryCombineToBSL(N, DCI);
7136 if (Res.getNode())
7137 return Res;
7138
7139 return SDValue();
7140}
7141
7142static SDValue performBitcastCombine(SDNode *N,
7143 TargetLowering::DAGCombinerInfo &DCI,
7144 SelectionDAG &DAG) {
7145 // Wait 'til after everything is legalized to try this. That way we have
7146 // legal vector types and such.
7147 if (DCI.isBeforeLegalizeOps())
7148 return SDValue();
7149
7150 // Remove extraneous bitcasts around an extract_subvector.
7151 // For example,
7152 // (v4i16 (bitconvert
7153 // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
7154 // becomes
7155 // (extract_subvector ((v8i16 ...), (i64 4)))
7156
7157 // Only interested in 64-bit vectors as the ultimate result.
7158 EVT VT = N->getValueType(0);
7159 if (!VT.isVector())
7160 return SDValue();
7161 if (VT.getSimpleVT().getSizeInBits() != 64)
7162 return SDValue();
7163 // Is the operand an extract_subvector starting at the beginning or halfway
7164 // point of the vector? A low half may also come through as an
7165 // EXTRACT_SUBREG, so look for that, too.
7166 SDValue Op0 = N->getOperand(0);
7167 if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
7168 !(Op0->isMachineOpcode() &&
7169 Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
7170 return SDValue();
7171 uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
7172 if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
7173 if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
7174 return SDValue();
7175 } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
7176 if (idx != AArch64::dsub)
7177 return SDValue();
7178 // The dsub reference is equivalent to a lane zero subvector reference.
7179 idx = 0;
7180 }
7181 // Look through the bitcast of the input to the extract.
7182 if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
7183 return SDValue();
7184 SDValue Source = Op0->getOperand(0)->getOperand(0);
7185 // If the source type has twice the number of elements as our destination
7186 // type, we know this is an extract of the high or low half of the vector.
7187 EVT SVT = Source->getValueType(0);
7188 if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
7189 return SDValue();
7190
7191 DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
7192
7193 // Create the simplified form to just extract the low or high half of the
7194 // vector directly rather than bothering with the bitcasts.
7195 SDLoc dl(N);
7196 unsigned NumElements = VT.getVectorNumElements();
7197 if (idx) {
7198 SDValue HalfIdx = DAG.getConstant(NumElements, MVT::i64);
7199 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
7200 } else {
7201 SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, MVT::i32);
7202 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
7203 Source, SubReg),
7204 0);
7205 }
7206}
7207
7208static SDValue performConcatVectorsCombine(SDNode *N,
7209 TargetLowering::DAGCombinerInfo &DCI,
7210 SelectionDAG &DAG) {
7211 // Wait 'til after everything is legalized to try this. That way we have
7212 // legal vector types and such.
7213 if (DCI.isBeforeLegalizeOps())
7214 return SDValue();
7215
7216 SDLoc dl(N);
7217 EVT VT = N->getValueType(0);
7218
7219 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
7220 // splat. The indexed instructions are going to be expecting a DUPLANE64, so
7221 // canonicalise to that.
7222 if (N->getOperand(0) == N->getOperand(1) && VT.getVectorNumElements() == 2) {
7223 assert(VT.getVectorElementType().getSizeInBits() == 64);
7224 return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT,
7225 WidenVector(N->getOperand(0), DAG),
7226 DAG.getConstant(0, MVT::i64));
7227 }
7228
7229 // Canonicalise concat_vectors so that the right-hand vector has as few
7230 // bit-casts as possible before its real operation. The primary matching
7231 // destination for these operations will be the narrowing "2" instructions,
7232 // which depend on the operation being performed on this right-hand vector.
7233 // For example,
7234 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
7235 // becomes
7236 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
7237
7238 SDValue Op1 = N->getOperand(1);
7239 if (Op1->getOpcode() != ISD::BITCAST)
7240 return SDValue();
7241 SDValue RHS = Op1->getOperand(0);
7242 MVT RHSTy = RHS.getValueType().getSimpleVT();
7243 // If the RHS is not a vector, this is not the pattern we're looking for.
7244 if (!RHSTy.isVector())
7245 return SDValue();
7246
7247 DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
7248
7249 MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
7250 RHSTy.getVectorNumElements() * 2);
7251 return DAG.getNode(
7252 ISD::BITCAST, dl, VT,
7253 DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
7254 DAG.getNode(ISD::BITCAST, dl, RHSTy, N->getOperand(0)), RHS));
7255}
7256
7257static SDValue tryCombineFixedPointConvert(SDNode *N,
7258 TargetLowering::DAGCombinerInfo &DCI,
7259 SelectionDAG &DAG) {
7260 // Wait 'til after everything is legalized to try this. That way we have
7261 // legal vector types and such.
7262 if (DCI.isBeforeLegalizeOps())
7263 return SDValue();
7264 // Transform a scalar conversion of a value from a lane extract into a
7265 // lane extract of a vector conversion. E.g., from foo1 to foo2:
7266 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
7267 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
7268 //
7269 // The second form interacts better with instruction selection and the
7270 // register allocator to avoid cross-class register copies that aren't
7271 // coalescable due to a lane reference.
7272
7273 // Check the operand and see if it originates from a lane extract.
7274 SDValue Op1 = N->getOperand(1);
7275 if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7276 // Yep, no additional predication needed. Perform the transform.
7277 SDValue IID = N->getOperand(0);
7278 SDValue Shift = N->getOperand(2);
7279 SDValue Vec = Op1.getOperand(0);
7280 SDValue Lane = Op1.getOperand(1);
7281 EVT ResTy = N->getValueType(0);
7282 EVT VecResTy;
7283 SDLoc DL(N);
7284
7285 // The vector width should be 128 bits by the time we get here, even
7286 // if it started as 64 bits (the extract_vector handling will have
7287 // done so).
7288 assert(Vec.getValueType().getSizeInBits() == 128 &&
7289 "unexpected vector size on extract_vector_elt!");
7290 if (Vec.getValueType() == MVT::v4i32)
7291 VecResTy = MVT::v4f32;
7292 else if (Vec.getValueType() == MVT::v2i64)
7293 VecResTy = MVT::v2f64;
7294 else
Craig Topper2a30d782014-06-18 05:05:13 +00007295 llvm_unreachable("unexpected vector type!");
Tim Northover3b0846e2014-05-24 12:50:23 +00007296
7297 SDValue Convert =
7298 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
7299 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
7300 }
7301 return SDValue();
7302}
7303
7304// AArch64 high-vector "long" operations are formed by performing the non-high
7305// version on an extract_subvector of each operand which gets the high half:
7306//
7307// (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
7308//
7309// However, there are cases which don't have an extract_high explicitly, but
7310// have another operation that can be made compatible with one for free. For
7311// example:
7312//
7313// (dupv64 scalar) --> (extract_high (dup128 scalar))
7314//
7315// This routine does the actual conversion of such DUPs, once outer routines
7316// have determined that everything else is in order.
7317static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
7318 // We can handle most types of duplicate, but the lane ones have an extra
7319 // operand saying *which* lane, so we need to know.
7320 bool IsDUPLANE;
7321 switch (N.getOpcode()) {
7322 case AArch64ISD::DUP:
7323 IsDUPLANE = false;
7324 break;
7325 case AArch64ISD::DUPLANE8:
7326 case AArch64ISD::DUPLANE16:
7327 case AArch64ISD::DUPLANE32:
7328 case AArch64ISD::DUPLANE64:
7329 IsDUPLANE = true;
7330 break;
7331 default:
7332 return SDValue();
7333 }
7334
7335 MVT NarrowTy = N.getSimpleValueType();
7336 if (!NarrowTy.is64BitVector())
7337 return SDValue();
7338
7339 MVT ElementTy = NarrowTy.getVectorElementType();
7340 unsigned NumElems = NarrowTy.getVectorNumElements();
7341 MVT NewDUPVT = MVT::getVectorVT(ElementTy, NumElems * 2);
7342
7343 SDValue NewDUP;
7344 if (IsDUPLANE)
7345 NewDUP = DAG.getNode(N.getOpcode(), SDLoc(N), NewDUPVT, N.getOperand(0),
7346 N.getOperand(1));
7347 else
7348 NewDUP = DAG.getNode(AArch64ISD::DUP, SDLoc(N), NewDUPVT, N.getOperand(0));
7349
7350 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N.getNode()), NarrowTy,
7351 NewDUP, DAG.getConstant(NumElems, MVT::i64));
7352}
7353
7354static bool isEssentiallyExtractSubvector(SDValue N) {
7355 if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
7356 return true;
7357
7358 return N.getOpcode() == ISD::BITCAST &&
7359 N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
7360}
7361
7362/// \brief Helper structure to keep track of ISD::SET_CC operands.
7363struct GenericSetCCInfo {
7364 const SDValue *Opnd0;
7365 const SDValue *Opnd1;
7366 ISD::CondCode CC;
7367};
7368
7369/// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
7370struct AArch64SetCCInfo {
7371 const SDValue *Cmp;
7372 AArch64CC::CondCode CC;
7373};
7374
7375/// \brief Helper structure to keep track of SetCC information.
7376union SetCCInfo {
7377 GenericSetCCInfo Generic;
7378 AArch64SetCCInfo AArch64;
7379};
7380
7381/// \brief Helper structure to be able to read SetCC information. If set to
7382/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
7383/// GenericSetCCInfo.
7384struct SetCCInfoAndKind {
7385 SetCCInfo Info;
7386 bool IsAArch64;
7387};
7388
7389/// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
7390/// an
7391/// AArch64 lowered one.
7392/// \p SetCCInfo is filled accordingly.
7393/// \post SetCCInfo is meanginfull only when this function returns true.
7394/// \return True when Op is a kind of SET_CC operation.
7395static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
7396 // If this is a setcc, this is straight forward.
7397 if (Op.getOpcode() == ISD::SETCC) {
7398 SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
7399 SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
7400 SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7401 SetCCInfo.IsAArch64 = false;
7402 return true;
7403 }
7404 // Otherwise, check if this is a matching csel instruction.
7405 // In other words:
7406 // - csel 1, 0, cc
7407 // - csel 0, 1, !cc
7408 if (Op.getOpcode() != AArch64ISD::CSEL)
7409 return false;
7410 // Set the information about the operands.
7411 // TODO: we want the operands of the Cmp not the csel
7412 SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
7413 SetCCInfo.IsAArch64 = true;
7414 SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
7415 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
7416
7417 // Check that the operands matches the constraints:
7418 // (1) Both operands must be constants.
7419 // (2) One must be 1 and the other must be 0.
7420 ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
7421 ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7422
7423 // Check (1).
7424 if (!TValue || !FValue)
7425 return false;
7426
7427 // Check (2).
7428 if (!TValue->isOne()) {
7429 // Update the comparison when we are interested in !cc.
7430 std::swap(TValue, FValue);
7431 SetCCInfo.Info.AArch64.CC =
7432 AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
7433 }
7434 return TValue->isOne() && FValue->isNullValue();
7435}
7436
7437// Returns true if Op is setcc or zext of setcc.
7438static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
7439 if (isSetCC(Op, Info))
7440 return true;
7441 return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
7442 isSetCC(Op->getOperand(0), Info));
7443}
7444
7445// The folding we want to perform is:
7446// (add x, [zext] (setcc cc ...) )
7447// -->
7448// (csel x, (add x, 1), !cc ...)
7449//
7450// The latter will get matched to a CSINC instruction.
7451static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
7452 assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
7453 SDValue LHS = Op->getOperand(0);
7454 SDValue RHS = Op->getOperand(1);
7455 SetCCInfoAndKind InfoAndKind;
7456
7457 // If neither operand is a SET_CC, give up.
7458 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
7459 std::swap(LHS, RHS);
7460 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
7461 return SDValue();
7462 }
7463
7464 // FIXME: This could be generatized to work for FP comparisons.
7465 EVT CmpVT = InfoAndKind.IsAArch64
7466 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
7467 : InfoAndKind.Info.Generic.Opnd0->getValueType();
7468 if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
7469 return SDValue();
7470
7471 SDValue CCVal;
7472 SDValue Cmp;
7473 SDLoc dl(Op);
7474 if (InfoAndKind.IsAArch64) {
7475 CCVal = DAG.getConstant(
7476 AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), MVT::i32);
7477 Cmp = *InfoAndKind.Info.AArch64.Cmp;
7478 } else
7479 Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
7480 *InfoAndKind.Info.Generic.Opnd1,
7481 ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
7482 CCVal, DAG, dl);
7483
7484 EVT VT = Op->getValueType(0);
7485 LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, VT));
7486 return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
7487}
7488
7489// The basic add/sub long vector instructions have variants with "2" on the end
7490// which act on the high-half of their inputs. They are normally matched by
7491// patterns like:
7492//
7493// (add (zeroext (extract_high LHS)),
7494// (zeroext (extract_high RHS)))
7495// -> uaddl2 vD, vN, vM
7496//
7497// However, if one of the extracts is something like a duplicate, this
7498// instruction can still be used profitably. This function puts the DAG into a
7499// more appropriate form for those patterns to trigger.
7500static SDValue performAddSubLongCombine(SDNode *N,
7501 TargetLowering::DAGCombinerInfo &DCI,
7502 SelectionDAG &DAG) {
7503 if (DCI.isBeforeLegalizeOps())
7504 return SDValue();
7505
7506 MVT VT = N->getSimpleValueType(0);
7507 if (!VT.is128BitVector()) {
7508 if (N->getOpcode() == ISD::ADD)
7509 return performSetccAddFolding(N, DAG);
7510 return SDValue();
7511 }
7512
7513 // Make sure both branches are extended in the same way.
7514 SDValue LHS = N->getOperand(0);
7515 SDValue RHS = N->getOperand(1);
7516 if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
7517 LHS.getOpcode() != ISD::SIGN_EXTEND) ||
7518 LHS.getOpcode() != RHS.getOpcode())
7519 return SDValue();
7520
7521 unsigned ExtType = LHS.getOpcode();
7522
7523 // It's not worth doing if at least one of the inputs isn't already an
7524 // extract, but we don't know which it'll be so we have to try both.
7525 if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
7526 RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
7527 if (!RHS.getNode())
7528 return SDValue();
7529
7530 RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
7531 } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
7532 LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
7533 if (!LHS.getNode())
7534 return SDValue();
7535
7536 LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
7537 }
7538
7539 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
7540}
7541
7542// Massage DAGs which we can use the high-half "long" operations on into
7543// something isel will recognize better. E.g.
7544//
7545// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
7546// (aarch64_neon_umull (extract_high (v2i64 vec)))
7547// (extract_high (v2i64 (dup128 scalar)))))
7548//
7549static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
7550 TargetLowering::DAGCombinerInfo &DCI,
7551 SelectionDAG &DAG) {
7552 if (DCI.isBeforeLegalizeOps())
7553 return SDValue();
7554
7555 SDValue LHS = N->getOperand(1);
7556 SDValue RHS = N->getOperand(2);
7557 assert(LHS.getValueType().is64BitVector() &&
7558 RHS.getValueType().is64BitVector() &&
7559 "unexpected shape for long operation");
7560
7561 // Either node could be a DUP, but it's not worth doing both of them (you'd
7562 // just as well use the non-high version) so look for a corresponding extract
7563 // operation on the other "wing".
7564 if (isEssentiallyExtractSubvector(LHS)) {
7565 RHS = tryExtendDUPToExtractHigh(RHS, DAG);
7566 if (!RHS.getNode())
7567 return SDValue();
7568 } else if (isEssentiallyExtractSubvector(RHS)) {
7569 LHS = tryExtendDUPToExtractHigh(LHS, DAG);
7570 if (!LHS.getNode())
7571 return SDValue();
7572 }
7573
7574 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
7575 N->getOperand(0), LHS, RHS);
7576}
7577
7578static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
7579 MVT ElemTy = N->getSimpleValueType(0).getScalarType();
7580 unsigned ElemBits = ElemTy.getSizeInBits();
7581
7582 int64_t ShiftAmount;
7583 if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
7584 APInt SplatValue, SplatUndef;
7585 unsigned SplatBitSize;
7586 bool HasAnyUndefs;
7587 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
7588 HasAnyUndefs, ElemBits) ||
7589 SplatBitSize != ElemBits)
7590 return SDValue();
7591
7592 ShiftAmount = SplatValue.getSExtValue();
7593 } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
7594 ShiftAmount = CVN->getSExtValue();
7595 } else
7596 return SDValue();
7597
7598 unsigned Opcode;
7599 bool IsRightShift;
7600 switch (IID) {
7601 default:
7602 llvm_unreachable("Unknown shift intrinsic");
7603 case Intrinsic::aarch64_neon_sqshl:
7604 Opcode = AArch64ISD::SQSHL_I;
7605 IsRightShift = false;
7606 break;
7607 case Intrinsic::aarch64_neon_uqshl:
7608 Opcode = AArch64ISD::UQSHL_I;
7609 IsRightShift = false;
7610 break;
7611 case Intrinsic::aarch64_neon_srshl:
7612 Opcode = AArch64ISD::SRSHR_I;
7613 IsRightShift = true;
7614 break;
7615 case Intrinsic::aarch64_neon_urshl:
7616 Opcode = AArch64ISD::URSHR_I;
7617 IsRightShift = true;
7618 break;
7619 case Intrinsic::aarch64_neon_sqshlu:
7620 Opcode = AArch64ISD::SQSHLU_I;
7621 IsRightShift = false;
7622 break;
7623 }
7624
7625 if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits)
7626 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
7627 DAG.getConstant(-ShiftAmount, MVT::i32));
James Molloy1e3b5a42014-06-16 10:39:21 +00007628 else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits)
Tim Northover3b0846e2014-05-24 12:50:23 +00007629 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
7630 DAG.getConstant(ShiftAmount, MVT::i32));
7631
7632 return SDValue();
7633}
7634
7635// The CRC32[BH] instructions ignore the high bits of their data operand. Since
7636// the intrinsics must be legal and take an i32, this means there's almost
7637// certainly going to be a zext in the DAG which we can eliminate.
7638static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
7639 SDValue AndN = N->getOperand(2);
7640 if (AndN.getOpcode() != ISD::AND)
7641 return SDValue();
7642
7643 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
7644 if (!CMask || CMask->getZExtValue() != Mask)
7645 return SDValue();
7646
7647 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
7648 N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
7649}
7650
7651static SDValue performIntrinsicCombine(SDNode *N,
7652 TargetLowering::DAGCombinerInfo &DCI,
7653 const AArch64Subtarget *Subtarget) {
7654 SelectionDAG &DAG = DCI.DAG;
7655 unsigned IID = getIntrinsicID(N);
7656 switch (IID) {
7657 default:
7658 break;
7659 case Intrinsic::aarch64_neon_vcvtfxs2fp:
7660 case Intrinsic::aarch64_neon_vcvtfxu2fp:
7661 return tryCombineFixedPointConvert(N, DCI, DAG);
7662 break;
7663 case Intrinsic::aarch64_neon_fmax:
7664 return DAG.getNode(AArch64ISD::FMAX, SDLoc(N), N->getValueType(0),
7665 N->getOperand(1), N->getOperand(2));
7666 case Intrinsic::aarch64_neon_fmin:
7667 return DAG.getNode(AArch64ISD::FMIN, SDLoc(N), N->getValueType(0),
7668 N->getOperand(1), N->getOperand(2));
7669 case Intrinsic::aarch64_neon_smull:
7670 case Intrinsic::aarch64_neon_umull:
7671 case Intrinsic::aarch64_neon_pmull:
7672 case Intrinsic::aarch64_neon_sqdmull:
7673 return tryCombineLongOpWithDup(IID, N, DCI, DAG);
7674 case Intrinsic::aarch64_neon_sqshl:
7675 case Intrinsic::aarch64_neon_uqshl:
7676 case Intrinsic::aarch64_neon_sqshlu:
7677 case Intrinsic::aarch64_neon_srshl:
7678 case Intrinsic::aarch64_neon_urshl:
7679 return tryCombineShiftImm(IID, N, DAG);
7680 case Intrinsic::aarch64_crc32b:
7681 case Intrinsic::aarch64_crc32cb:
7682 return tryCombineCRC32(0xff, N, DAG);
7683 case Intrinsic::aarch64_crc32h:
7684 case Intrinsic::aarch64_crc32ch:
7685 return tryCombineCRC32(0xffff, N, DAG);
7686 }
7687 return SDValue();
7688}
7689
7690static SDValue performExtendCombine(SDNode *N,
7691 TargetLowering::DAGCombinerInfo &DCI,
7692 SelectionDAG &DAG) {
7693 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
7694 // we can convert that DUP into another extract_high (of a bigger DUP), which
7695 // helps the backend to decide that an sabdl2 would be useful, saving a real
7696 // extract_high operation.
7697 if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
7698 N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
7699 SDNode *ABDNode = N->getOperand(0).getNode();
7700 unsigned IID = getIntrinsicID(ABDNode);
7701 if (IID == Intrinsic::aarch64_neon_sabd ||
7702 IID == Intrinsic::aarch64_neon_uabd) {
7703 SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
7704 if (!NewABD.getNode())
7705 return SDValue();
7706
7707 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
7708 NewABD);
7709 }
7710 }
7711
7712 // This is effectively a custom type legalization for AArch64.
7713 //
7714 // Type legalization will split an extend of a small, legal, type to a larger
7715 // illegal type by first splitting the destination type, often creating
7716 // illegal source types, which then get legalized in isel-confusing ways,
7717 // leading to really terrible codegen. E.g.,
7718 // %result = v8i32 sext v8i8 %value
7719 // becomes
7720 // %losrc = extract_subreg %value, ...
7721 // %hisrc = extract_subreg %value, ...
7722 // %lo = v4i32 sext v4i8 %losrc
7723 // %hi = v4i32 sext v4i8 %hisrc
7724 // Things go rapidly downhill from there.
7725 //
7726 // For AArch64, the [sz]ext vector instructions can only go up one element
7727 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
7728 // take two instructions.
7729 //
7730 // This implies that the most efficient way to do the extend from v8i8
7731 // to two v4i32 values is to first extend the v8i8 to v8i16, then do
7732 // the normal splitting to happen for the v8i16->v8i32.
7733
7734 // This is pre-legalization to catch some cases where the default
7735 // type legalization will create ill-tempered code.
7736 if (!DCI.isBeforeLegalizeOps())
7737 return SDValue();
7738
7739 // We're only interested in cleaning things up for non-legal vector types
7740 // here. If both the source and destination are legal, things will just
7741 // work naturally without any fiddling.
7742 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7743 EVT ResVT = N->getValueType(0);
7744 if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
7745 return SDValue();
7746 // If the vector type isn't a simple VT, it's beyond the scope of what
7747 // we're worried about here. Let legalization do its thing and hope for
7748 // the best.
Jim Grosbachec2b0d02014-08-28 22:08:28 +00007749 SDValue Src = N->getOperand(0);
7750 EVT SrcVT = Src->getValueType(0);
7751 if (!ResVT.isSimple() || !SrcVT.isSimple())
Tim Northover3b0846e2014-05-24 12:50:23 +00007752 return SDValue();
7753
Tim Northover3b0846e2014-05-24 12:50:23 +00007754 // If the source VT is a 64-bit vector, we can play games and get the
7755 // better results we want.
7756 if (SrcVT.getSizeInBits() != 64)
7757 return SDValue();
7758
7759 unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
7760 unsigned ElementCount = SrcVT.getVectorNumElements();
7761 SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
7762 SDLoc DL(N);
7763 Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
7764
7765 // Now split the rest of the operation into two halves, each with a 64
7766 // bit source.
7767 EVT LoVT, HiVT;
7768 SDValue Lo, Hi;
7769 unsigned NumElements = ResVT.getVectorNumElements();
7770 assert(!(NumElements & 1) && "Splitting vector, but not in half!");
7771 LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
7772 ResVT.getVectorElementType(), NumElements / 2);
7773
7774 EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
7775 LoVT.getVectorNumElements());
7776 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
Tim Northover5e84fe32014-12-06 00:33:37 +00007777 DAG.getConstant(0, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007778 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
Tim Northover5e84fe32014-12-06 00:33:37 +00007779 DAG.getConstant(InNVT.getVectorNumElements(), MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007780 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
7781 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
7782
7783 // Now combine the parts back together so we still have a single result
7784 // like the combiner expects.
7785 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
7786}
7787
7788/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
7789/// value. The load store optimizer pass will merge them to store pair stores.
7790/// This has better performance than a splat of the scalar followed by a split
7791/// vector store. Even if the stores are not merged it is four stores vs a dup,
7792/// followed by an ext.b and two stores.
7793static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
7794 SDValue StVal = St->getValue();
7795 EVT VT = StVal.getValueType();
7796
7797 // Don't replace floating point stores, they possibly won't be transformed to
7798 // stp because of the store pair suppress pass.
7799 if (VT.isFloatingPoint())
7800 return SDValue();
7801
7802 // Check for insert vector elements.
7803 if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
7804 return SDValue();
7805
7806 // We can express a splat as store pair(s) for 2 or 4 elements.
7807 unsigned NumVecElts = VT.getVectorNumElements();
7808 if (NumVecElts != 4 && NumVecElts != 2)
7809 return SDValue();
7810 SDValue SplatVal = StVal.getOperand(1);
7811 unsigned RemainInsertElts = NumVecElts - 1;
7812
7813 // Check that this is a splat.
7814 while (--RemainInsertElts) {
7815 SDValue NextInsertElt = StVal.getOperand(0);
7816 if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
7817 return SDValue();
7818 if (NextInsertElt.getOperand(1) != SplatVal)
7819 return SDValue();
7820 StVal = NextInsertElt;
7821 }
7822 unsigned OrigAlignment = St->getAlignment();
7823 unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
7824 unsigned Alignment = std::min(OrigAlignment, EltOffset);
7825
7826 // Create scalar stores. This is at least as good as the code sequence for a
7827 // split unaligned store wich is a dup.s, ext.b, and two stores.
7828 // Most of the time the three stores should be replaced by store pair
7829 // instructions (stp).
7830 SDLoc DL(St);
7831 SDValue BasePtr = St->getBasePtr();
7832 SDValue NewST1 =
7833 DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
7834 St->isVolatile(), St->isNonTemporal(), St->getAlignment());
7835
7836 unsigned Offset = EltOffset;
7837 while (--NumVecElts) {
7838 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
7839 DAG.getConstant(Offset, MVT::i64));
7840 NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
7841 St->getPointerInfo(), St->isVolatile(),
7842 St->isNonTemporal(), Alignment);
7843 Offset += EltOffset;
7844 }
7845 return NewST1;
7846}
7847
7848static SDValue performSTORECombine(SDNode *N,
7849 TargetLowering::DAGCombinerInfo &DCI,
7850 SelectionDAG &DAG,
7851 const AArch64Subtarget *Subtarget) {
7852 if (!DCI.isBeforeLegalize())
7853 return SDValue();
7854
7855 StoreSDNode *S = cast<StoreSDNode>(N);
7856 if (S->isVolatile())
7857 return SDValue();
7858
7859 // Cyclone has bad performance on unaligned 16B stores when crossing line and
Sanjay Patel08efcd92015-01-28 22:37:32 +00007860 // page boundaries. We want to split such stores.
Tim Northover3b0846e2014-05-24 12:50:23 +00007861 if (!Subtarget->isCyclone())
7862 return SDValue();
7863
7864 // Don't split at Oz.
7865 MachineFunction &MF = DAG.getMachineFunction();
Duncan P. N. Exon Smith003bb7d2015-02-14 02:09:06 +00007866 bool IsMinSize = MF.getFunction()->hasFnAttribute(Attribute::MinSize);
Tim Northover3b0846e2014-05-24 12:50:23 +00007867 if (IsMinSize)
7868 return SDValue();
7869
7870 SDValue StVal = S->getValue();
7871 EVT VT = StVal.getValueType();
7872
7873 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
7874 // those up regresses performance on micro-benchmarks and olden/bh.
7875 if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
7876 return SDValue();
7877
7878 // Split unaligned 16B stores. They are terrible for performance.
7879 // Don't split stores with alignment of 1 or 2. Code that uses clang vector
7880 // extensions can use this to mark that it does not want splitting to happen
7881 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
7882 // eliminating alignment hazards is only 1 in 8 for alignment of 2.
7883 if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
7884 S->getAlignment() <= 2)
7885 return SDValue();
7886
7887 // If we get a splat of a scalar convert this vector store to a store of
7888 // scalars. They will be merged into store pairs thereby removing two
7889 // instructions.
7890 SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S);
7891 if (ReplacedSplat != SDValue())
7892 return ReplacedSplat;
7893
7894 SDLoc DL(S);
7895 unsigned NumElts = VT.getVectorNumElements() / 2;
7896 // Split VT into two.
7897 EVT HalfVT =
7898 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
7899 SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
Tim Northover5e84fe32014-12-06 00:33:37 +00007900 DAG.getConstant(0, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007901 SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
Tim Northover5e84fe32014-12-06 00:33:37 +00007902 DAG.getConstant(NumElts, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007903 SDValue BasePtr = S->getBasePtr();
7904 SDValue NewST1 =
7905 DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
7906 S->isVolatile(), S->isNonTemporal(), S->getAlignment());
7907 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
7908 DAG.getConstant(8, MVT::i64));
7909 return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
7910 S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
7911 S->getAlignment());
7912}
7913
7914/// Target-specific DAG combine function for post-increment LD1 (lane) and
7915/// post-increment LD1R.
7916static SDValue performPostLD1Combine(SDNode *N,
7917 TargetLowering::DAGCombinerInfo &DCI,
7918 bool IsLaneOp) {
7919 if (DCI.isBeforeLegalizeOps())
7920 return SDValue();
7921
7922 SelectionDAG &DAG = DCI.DAG;
7923 EVT VT = N->getValueType(0);
7924
7925 unsigned LoadIdx = IsLaneOp ? 1 : 0;
7926 SDNode *LD = N->getOperand(LoadIdx).getNode();
7927 // If it is not LOAD, can not do such combine.
7928 if (LD->getOpcode() != ISD::LOAD)
7929 return SDValue();
7930
7931 LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
7932 EVT MemVT = LoadSDN->getMemoryVT();
7933 // Check if memory operand is the same type as the vector element.
7934 if (MemVT != VT.getVectorElementType())
7935 return SDValue();
7936
7937 // Check if there are other uses. If so, do not combine as it will introduce
7938 // an extra load.
7939 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
7940 ++UI) {
7941 if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
7942 continue;
7943 if (*UI != N)
7944 return SDValue();
7945 }
7946
7947 SDValue Addr = LD->getOperand(1);
7948 SDValue Vector = N->getOperand(0);
7949 // Search for a use of the address operand that is an increment.
7950 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
7951 Addr.getNode()->use_end(); UI != UE; ++UI) {
7952 SDNode *User = *UI;
7953 if (User->getOpcode() != ISD::ADD
7954 || UI.getUse().getResNo() != Addr.getResNo())
7955 continue;
7956
7957 // Check that the add is independent of the load. Otherwise, folding it
7958 // would create a cycle.
7959 if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
7960 continue;
7961 // Also check that add is not used in the vector operand. This would also
7962 // create a cycle.
7963 if (User->isPredecessorOf(Vector.getNode()))
7964 continue;
7965
7966 // If the increment is a constant, it must match the memory ref size.
7967 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7968 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7969 uint32_t IncVal = CInc->getZExtValue();
7970 unsigned NumBytes = VT.getScalarSizeInBits() / 8;
7971 if (IncVal != NumBytes)
7972 continue;
7973 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
7974 }
7975
7976 SmallVector<SDValue, 8> Ops;
7977 Ops.push_back(LD->getOperand(0)); // Chain
7978 if (IsLaneOp) {
7979 Ops.push_back(Vector); // The vector to be inserted
7980 Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
7981 }
7982 Ops.push_back(Addr);
7983 Ops.push_back(Inc);
7984
7985 EVT Tys[3] = { VT, MVT::i64, MVT::Other };
Craig Toppere1d12942014-08-27 05:25:25 +00007986 SDVTList SDTys = DAG.getVTList(Tys);
Tim Northover3b0846e2014-05-24 12:50:23 +00007987 unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
7988 SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
7989 MemVT,
7990 LoadSDN->getMemOperand());
7991
7992 // Update the uses.
Ahmed Bougacha4c2b0782015-02-19 23:13:10 +00007993 SmallVector<SDValue, 2> NewResults;
Tim Northover3b0846e2014-05-24 12:50:23 +00007994 NewResults.push_back(SDValue(LD, 0)); // The result of load
7995 NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain
7996 DCI.CombineTo(LD, NewResults);
7997 DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
7998 DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
7999
8000 break;
8001 }
8002 return SDValue();
8003}
8004
8005/// Target-specific DAG combine function for NEON load/store intrinsics
8006/// to merge base address updates.
8007static SDValue performNEONPostLDSTCombine(SDNode *N,
8008 TargetLowering::DAGCombinerInfo &DCI,
8009 SelectionDAG &DAG) {
8010 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8011 return SDValue();
8012
8013 unsigned AddrOpIdx = N->getNumOperands() - 1;
8014 SDValue Addr = N->getOperand(AddrOpIdx);
8015
8016 // Search for a use of the address operand that is an increment.
8017 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
8018 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
8019 SDNode *User = *UI;
8020 if (User->getOpcode() != ISD::ADD ||
8021 UI.getUse().getResNo() != Addr.getResNo())
8022 continue;
8023
8024 // Check that the add is independent of the load/store. Otherwise, folding
8025 // it would create a cycle.
8026 if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
8027 continue;
8028
8029 // Find the new opcode for the updating load/store.
8030 bool IsStore = false;
8031 bool IsLaneOp = false;
8032 bool IsDupOp = false;
8033 unsigned NewOpc = 0;
8034 unsigned NumVecs = 0;
8035 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8036 switch (IntNo) {
8037 default: llvm_unreachable("unexpected intrinsic for Neon base update");
8038 case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
8039 NumVecs = 2; break;
8040 case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
8041 NumVecs = 3; break;
8042 case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
8043 NumVecs = 4; break;
8044 case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
8045 NumVecs = 2; IsStore = true; break;
8046 case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
8047 NumVecs = 3; IsStore = true; break;
8048 case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
8049 NumVecs = 4; IsStore = true; break;
8050 case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
8051 NumVecs = 2; break;
8052 case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
8053 NumVecs = 3; break;
8054 case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
8055 NumVecs = 4; break;
8056 case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
8057 NumVecs = 2; IsStore = true; break;
8058 case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
8059 NumVecs = 3; IsStore = true; break;
8060 case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
8061 NumVecs = 4; IsStore = true; break;
8062 case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
8063 NumVecs = 2; IsDupOp = true; break;
8064 case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
8065 NumVecs = 3; IsDupOp = true; break;
8066 case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
8067 NumVecs = 4; IsDupOp = true; break;
8068 case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
8069 NumVecs = 2; IsLaneOp = true; break;
8070 case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
8071 NumVecs = 3; IsLaneOp = true; break;
8072 case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
8073 NumVecs = 4; IsLaneOp = true; break;
8074 case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
8075 NumVecs = 2; IsStore = true; IsLaneOp = true; break;
8076 case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
8077 NumVecs = 3; IsStore = true; IsLaneOp = true; break;
8078 case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
8079 NumVecs = 4; IsStore = true; IsLaneOp = true; break;
8080 }
8081
8082 EVT VecTy;
8083 if (IsStore)
8084 VecTy = N->getOperand(2).getValueType();
8085 else
8086 VecTy = N->getValueType(0);
8087
8088 // If the increment is a constant, it must match the memory ref size.
8089 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8090 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8091 uint32_t IncVal = CInc->getZExtValue();
8092 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
8093 if (IsLaneOp || IsDupOp)
8094 NumBytes /= VecTy.getVectorNumElements();
8095 if (IncVal != NumBytes)
8096 continue;
8097 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
8098 }
8099 SmallVector<SDValue, 8> Ops;
8100 Ops.push_back(N->getOperand(0)); // Incoming chain
8101 // Load lane and store have vector list as input.
8102 if (IsLaneOp || IsStore)
8103 for (unsigned i = 2; i < AddrOpIdx; ++i)
8104 Ops.push_back(N->getOperand(i));
8105 Ops.push_back(Addr); // Base register
8106 Ops.push_back(Inc);
8107
8108 // Return Types.
8109 EVT Tys[6];
8110 unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
8111 unsigned n;
8112 for (n = 0; n < NumResultVecs; ++n)
8113 Tys[n] = VecTy;
8114 Tys[n++] = MVT::i64; // Type of write back register
8115 Tys[n] = MVT::Other; // Type of the chain
Craig Toppere1d12942014-08-27 05:25:25 +00008116 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
Tim Northover3b0846e2014-05-24 12:50:23 +00008117
8118 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
8119 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
8120 MemInt->getMemoryVT(),
8121 MemInt->getMemOperand());
8122
8123 // Update the uses.
8124 std::vector<SDValue> NewResults;
8125 for (unsigned i = 0; i < NumResultVecs; ++i) {
8126 NewResults.push_back(SDValue(UpdN.getNode(), i));
8127 }
8128 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
8129 DCI.CombineTo(N, NewResults);
8130 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
8131
8132 break;
8133 }
8134 return SDValue();
8135}
8136
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008137// Checks to see if the value is the prescribed width and returns information
8138// about its extension mode.
8139static
8140bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
8141 ExtType = ISD::NON_EXTLOAD;
8142 switch(V.getNode()->getOpcode()) {
8143 default:
8144 return false;
8145 case ISD::LOAD: {
8146 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
8147 if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
8148 || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
8149 ExtType = LoadNode->getExtensionType();
8150 return true;
8151 }
8152 return false;
8153 }
8154 case ISD::AssertSext: {
8155 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
8156 if ((TypeNode->getVT() == MVT::i8 && width == 8)
8157 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
8158 ExtType = ISD::SEXTLOAD;
8159 return true;
8160 }
8161 return false;
8162 }
8163 case ISD::AssertZext: {
8164 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
8165 if ((TypeNode->getVT() == MVT::i8 && width == 8)
8166 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
8167 ExtType = ISD::ZEXTLOAD;
8168 return true;
8169 }
8170 return false;
8171 }
8172 case ISD::Constant:
8173 case ISD::TargetConstant: {
Reid Kleckner39ad7c92014-08-29 22:14:26 +00008174 if (std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
Aaron Ballman8ca53882014-09-02 12:19:02 +00008175 1LL << (width - 1))
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008176 return true;
8177 return false;
8178 }
8179 }
8180
8181 return true;
8182}
8183
8184// This function does a whole lot of voodoo to determine if the tests are
8185// equivalent without and with a mask. Essentially what happens is that given a
8186// DAG resembling:
8187//
8188// +-------------+ +-------------+ +-------------+ +-------------+
8189// | Input | | AddConstant | | CompConstant| | CC |
8190// +-------------+ +-------------+ +-------------+ +-------------+
8191// | | | |
8192// V V | +----------+
8193// +-------------+ +----+ | |
8194// | ADD | |0xff| | |
8195// +-------------+ +----+ | |
8196// | | | |
8197// V V | |
8198// +-------------+ | |
8199// | AND | | |
8200// +-------------+ | |
8201// | | |
8202// +-----+ | |
8203// | | |
8204// V V V
8205// +-------------+
8206// | CMP |
8207// +-------------+
8208//
8209// The AND node may be safely removed for some combinations of inputs. In
8210// particular we need to take into account the extension type of the Input,
8211// the exact values of AddConstant, CompConstant, and CC, along with the nominal
8212// width of the input (this can work for any width inputs, the above graph is
8213// specific to 8 bits.
8214//
8215// The specific equations were worked out by generating output tables for each
8216// AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
8217// problem was simplified by working with 4 bit inputs, which means we only
8218// needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
8219// extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
8220// patterns present in both extensions (0,7). For every distinct set of
8221// AddConstant and CompConstants bit patterns we can consider the masked and
8222// unmasked versions to be equivalent if the result of this function is true for
8223// all 16 distinct bit patterns of for the current extension type of Input (w0).
8224//
8225// sub w8, w0, w1
8226// and w10, w8, #0x0f
8227// cmp w8, w2
8228// cset w9, AArch64CC
8229// cmp w10, w2
8230// cset w11, AArch64CC
8231// cmp w9, w11
8232// cset w0, eq
8233// ret
8234//
8235// Since the above function shows when the outputs are equivalent it defines
8236// when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
8237// would be expensive to run during compiles. The equations below were written
8238// in a test harness that confirmed they gave equivalent outputs to the above
8239// for all inputs function, so they can be used determine if the removal is
8240// legal instead.
8241//
8242// isEquivalentMaskless() is the code for testing if the AND can be removed
8243// factored out of the DAG recognition as the DAG can take several forms.
8244
8245static
8246bool isEquivalentMaskless(unsigned CC, unsigned width,
8247 ISD::LoadExtType ExtType, signed AddConstant,
8248 signed CompConstant) {
8249 // By being careful about our equations and only writing the in term
8250 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
8251 // make them generally applicable to all bit widths.
8252 signed MaxUInt = (1 << width);
8253
8254 // For the purposes of these comparisons sign extending the type is
8255 // equivalent to zero extending the add and displacing it by half the integer
8256 // width. Provided we are careful and make sure our equations are valid over
8257 // the whole range we can just adjust the input and avoid writing equations
8258 // for sign extended inputs.
8259 if (ExtType == ISD::SEXTLOAD)
8260 AddConstant -= (1 << (width-1));
8261
8262 switch(CC) {
8263 case AArch64CC::LE:
8264 case AArch64CC::GT: {
8265 if ((AddConstant == 0) ||
8266 (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
8267 (AddConstant >= 0 && CompConstant < 0) ||
8268 (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
8269 return true;
8270 } break;
8271 case AArch64CC::LT:
8272 case AArch64CC::GE: {
8273 if ((AddConstant == 0) ||
8274 (AddConstant >= 0 && CompConstant <= 0) ||
8275 (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
8276 return true;
8277 } break;
8278 case AArch64CC::HI:
8279 case AArch64CC::LS: {
8280 if ((AddConstant >= 0 && CompConstant < 0) ||
8281 (AddConstant <= 0 && CompConstant >= -1 &&
8282 CompConstant < AddConstant + MaxUInt))
8283 return true;
8284 } break;
8285 case AArch64CC::PL:
8286 case AArch64CC::MI: {
8287 if ((AddConstant == 0) ||
8288 (AddConstant > 0 && CompConstant <= 0) ||
8289 (AddConstant < 0 && CompConstant <= AddConstant))
8290 return true;
8291 } break;
8292 case AArch64CC::LO:
8293 case AArch64CC::HS: {
8294 if ((AddConstant >= 0 && CompConstant <= 0) ||
8295 (AddConstant <= 0 && CompConstant >= 0 &&
8296 CompConstant <= AddConstant + MaxUInt))
8297 return true;
8298 } break;
8299 case AArch64CC::EQ:
8300 case AArch64CC::NE: {
8301 if ((AddConstant > 0 && CompConstant < 0) ||
8302 (AddConstant < 0 && CompConstant >= 0 &&
8303 CompConstant < AddConstant + MaxUInt) ||
8304 (AddConstant >= 0 && CompConstant >= 0 &&
8305 CompConstant >= AddConstant) ||
8306 (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
8307
8308 return true;
8309 } break;
8310 case AArch64CC::VS:
8311 case AArch64CC::VC:
8312 case AArch64CC::AL:
8313 case AArch64CC::NV:
8314 return true;
8315 case AArch64CC::Invalid:
8316 break;
8317 }
8318
8319 return false;
8320}
8321
8322static
8323SDValue performCONDCombine(SDNode *N,
8324 TargetLowering::DAGCombinerInfo &DCI,
8325 SelectionDAG &DAG, unsigned CCIndex,
8326 unsigned CmpIndex) {
8327 unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
8328 SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
8329 unsigned CondOpcode = SubsNode->getOpcode();
8330
8331 if (CondOpcode != AArch64ISD::SUBS)
8332 return SDValue();
8333
8334 // There is a SUBS feeding this condition. Is it fed by a mask we can
8335 // use?
8336
8337 SDNode *AndNode = SubsNode->getOperand(0).getNode();
8338 unsigned MaskBits = 0;
8339
8340 if (AndNode->getOpcode() != ISD::AND)
8341 return SDValue();
8342
8343 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
8344 uint32_t CNV = CN->getZExtValue();
8345 if (CNV == 255)
8346 MaskBits = 8;
8347 else if (CNV == 65535)
8348 MaskBits = 16;
8349 }
8350
8351 if (!MaskBits)
8352 return SDValue();
8353
8354 SDValue AddValue = AndNode->getOperand(0);
8355
8356 if (AddValue.getOpcode() != ISD::ADD)
8357 return SDValue();
8358
8359 // The basic dag structure is correct, grab the inputs and validate them.
8360
8361 SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
8362 SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
8363 SDValue SubsInputValue = SubsNode->getOperand(1);
8364
8365 // The mask is present and the provenance of all the values is a smaller type,
8366 // lets see if the mask is superfluous.
8367
8368 if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
8369 !isa<ConstantSDNode>(SubsInputValue.getNode()))
8370 return SDValue();
8371
8372 ISD::LoadExtType ExtType;
8373
8374 if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
8375 !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
8376 !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
8377 return SDValue();
8378
8379 if(!isEquivalentMaskless(CC, MaskBits, ExtType,
8380 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
8381 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
8382 return SDValue();
8383
8384 // The AND is not necessary, remove it.
8385
8386 SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
8387 SubsNode->getValueType(1));
8388 SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
8389
8390 SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
8391 DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
8392
8393 return SDValue(N, 0);
8394}
8395
Tim Northover3b0846e2014-05-24 12:50:23 +00008396// Optimize compare with zero and branch.
8397static SDValue performBRCONDCombine(SDNode *N,
8398 TargetLowering::DAGCombinerInfo &DCI,
8399 SelectionDAG &DAG) {
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008400 SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3);
8401 if (NV.getNode())
8402 N = NV.getNode();
Tim Northover3b0846e2014-05-24 12:50:23 +00008403 SDValue Chain = N->getOperand(0);
8404 SDValue Dest = N->getOperand(1);
8405 SDValue CCVal = N->getOperand(2);
8406 SDValue Cmp = N->getOperand(3);
8407
8408 assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
8409 unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
8410 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
8411 return SDValue();
8412
8413 unsigned CmpOpc = Cmp.getOpcode();
8414 if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
8415 return SDValue();
8416
8417 // Only attempt folding if there is only one use of the flag and no use of the
8418 // value.
8419 if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
8420 return SDValue();
8421
8422 SDValue LHS = Cmp.getOperand(0);
8423 SDValue RHS = Cmp.getOperand(1);
8424
8425 assert(LHS.getValueType() == RHS.getValueType() &&
8426 "Expected the value type to be the same for both operands!");
8427 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
8428 return SDValue();
8429
8430 if (isa<ConstantSDNode>(LHS) && cast<ConstantSDNode>(LHS)->isNullValue())
8431 std::swap(LHS, RHS);
8432
8433 if (!isa<ConstantSDNode>(RHS) || !cast<ConstantSDNode>(RHS)->isNullValue())
8434 return SDValue();
8435
8436 if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
8437 LHS.getOpcode() == ISD::SRL)
8438 return SDValue();
8439
8440 // Fold the compare into the branch instruction.
8441 SDValue BR;
8442 if (CC == AArch64CC::EQ)
8443 BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
8444 else
8445 BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
8446
8447 // Do not add new nodes to DAG combiner worklist.
8448 DCI.CombineTo(N, BR, false);
8449
8450 return SDValue();
8451}
8452
8453// vselect (v1i1 setcc) ->
8454// vselect (v1iXX setcc) (XX is the size of the compared operand type)
8455// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
8456// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
8457// such VSELECT.
8458static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
8459 SDValue N0 = N->getOperand(0);
8460 EVT CCVT = N0.getValueType();
8461
8462 if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
8463 CCVT.getVectorElementType() != MVT::i1)
8464 return SDValue();
8465
8466 EVT ResVT = N->getValueType(0);
8467 EVT CmpVT = N0.getOperand(0).getValueType();
8468 // Only combine when the result type is of the same size as the compared
8469 // operands.
8470 if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
8471 return SDValue();
8472
8473 SDValue IfTrue = N->getOperand(1);
8474 SDValue IfFalse = N->getOperand(2);
8475 SDValue SetCC =
8476 DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
8477 N0.getOperand(0), N0.getOperand(1),
8478 cast<CondCodeSDNode>(N0.getOperand(2))->get());
8479 return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
8480 IfTrue, IfFalse);
8481}
8482
8483/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
8484/// the compare-mask instructions rather than going via NZCV, even if LHS and
8485/// RHS are really scalar. This replaces any scalar setcc in the above pattern
8486/// with a vector one followed by a DUP shuffle on the result.
8487static SDValue performSelectCombine(SDNode *N, SelectionDAG &DAG) {
8488 SDValue N0 = N->getOperand(0);
8489 EVT ResVT = N->getValueType(0);
Tim Northover3c0915e2014-08-29 15:34:58 +00008490
8491 if (N0.getOpcode() != ISD::SETCC || N0.getValueType() != MVT::i1)
8492 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00008493
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008494 // If NumMaskElts == 0, the comparison is larger than select result. The
8495 // largest real NEON comparison is 64-bits per lane, which means the result is
8496 // at most 32-bits and an illegal vector. Just bail out for now.
Tim Northover3c0915e2014-08-29 15:34:58 +00008497 EVT SrcVT = N0.getOperand(0).getValueType();
Ahmed Bougachad0ce0582014-12-01 20:59:00 +00008498
8499 // Don't try to do this optimization when the setcc itself has i1 operands.
8500 // There are no legal vectors of i1, so this would be pointless.
8501 if (SrcVT == MVT::i1)
8502 return SDValue();
8503
Tim Northover3c0915e2014-08-29 15:34:58 +00008504 int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008505 if (!ResVT.isVector() || NumMaskElts == 0)
Tim Northover3b0846e2014-05-24 12:50:23 +00008506 return SDValue();
8507
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008508 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00008509 EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
8510
8511 // First perform a vector comparison, where lane 0 is the one we're interested
8512 // in.
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008513 SDLoc DL(N0);
Tim Northover3b0846e2014-05-24 12:50:23 +00008514 SDValue LHS =
8515 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
8516 SDValue RHS =
8517 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
8518 SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
8519
8520 // Now duplicate the comparison mask we want across all other lanes.
8521 SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
8522 SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data());
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008523 Mask = DAG.getNode(ISD::BITCAST, DL,
8524 ResVT.changeVectorElementTypeToInteger(), Mask);
Tim Northover3b0846e2014-05-24 12:50:23 +00008525
8526 return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
8527}
8528
8529SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
8530 DAGCombinerInfo &DCI) const {
8531 SelectionDAG &DAG = DCI.DAG;
8532 switch (N->getOpcode()) {
8533 default:
8534 break;
8535 case ISD::ADD:
8536 case ISD::SUB:
8537 return performAddSubLongCombine(N, DCI, DAG);
8538 case ISD::XOR:
8539 return performXorCombine(N, DAG, DCI, Subtarget);
8540 case ISD::MUL:
8541 return performMulCombine(N, DAG, DCI, Subtarget);
8542 case ISD::SINT_TO_FP:
8543 case ISD::UINT_TO_FP:
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00008544 return performIntToFpCombine(N, DAG, Subtarget);
Tim Northover3b0846e2014-05-24 12:50:23 +00008545 case ISD::OR:
8546 return performORCombine(N, DCI, Subtarget);
8547 case ISD::INTRINSIC_WO_CHAIN:
8548 return performIntrinsicCombine(N, DCI, Subtarget);
8549 case ISD::ANY_EXTEND:
8550 case ISD::ZERO_EXTEND:
8551 case ISD::SIGN_EXTEND:
8552 return performExtendCombine(N, DCI, DAG);
8553 case ISD::BITCAST:
8554 return performBitcastCombine(N, DCI, DAG);
8555 case ISD::CONCAT_VECTORS:
8556 return performConcatVectorsCombine(N, DCI, DAG);
8557 case ISD::SELECT:
8558 return performSelectCombine(N, DAG);
8559 case ISD::VSELECT:
8560 return performVSelectCombine(N, DCI.DAG);
8561 case ISD::STORE:
8562 return performSTORECombine(N, DCI, DAG, Subtarget);
8563 case AArch64ISD::BRCOND:
8564 return performBRCONDCombine(N, DCI, DAG);
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008565 case AArch64ISD::CSEL:
8566 return performCONDCombine(N, DCI, DAG, 2, 3);
Tim Northover3b0846e2014-05-24 12:50:23 +00008567 case AArch64ISD::DUP:
8568 return performPostLD1Combine(N, DCI, false);
8569 case ISD::INSERT_VECTOR_ELT:
8570 return performPostLD1Combine(N, DCI, true);
8571 case ISD::INTRINSIC_VOID:
8572 case ISD::INTRINSIC_W_CHAIN:
8573 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
8574 case Intrinsic::aarch64_neon_ld2:
8575 case Intrinsic::aarch64_neon_ld3:
8576 case Intrinsic::aarch64_neon_ld4:
8577 case Intrinsic::aarch64_neon_ld1x2:
8578 case Intrinsic::aarch64_neon_ld1x3:
8579 case Intrinsic::aarch64_neon_ld1x4:
8580 case Intrinsic::aarch64_neon_ld2lane:
8581 case Intrinsic::aarch64_neon_ld3lane:
8582 case Intrinsic::aarch64_neon_ld4lane:
8583 case Intrinsic::aarch64_neon_ld2r:
8584 case Intrinsic::aarch64_neon_ld3r:
8585 case Intrinsic::aarch64_neon_ld4r:
8586 case Intrinsic::aarch64_neon_st2:
8587 case Intrinsic::aarch64_neon_st3:
8588 case Intrinsic::aarch64_neon_st4:
8589 case Intrinsic::aarch64_neon_st1x2:
8590 case Intrinsic::aarch64_neon_st1x3:
8591 case Intrinsic::aarch64_neon_st1x4:
8592 case Intrinsic::aarch64_neon_st2lane:
8593 case Intrinsic::aarch64_neon_st3lane:
8594 case Intrinsic::aarch64_neon_st4lane:
8595 return performNEONPostLDSTCombine(N, DCI, DAG);
8596 default:
8597 break;
8598 }
8599 }
8600 return SDValue();
8601}
8602
8603// Check if the return value is used as only a return value, as otherwise
8604// we can't perform a tail-call. In particular, we need to check for
8605// target ISD nodes that are returns and any other "odd" constructs
8606// that the generic analysis code won't necessarily catch.
8607bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
8608 SDValue &Chain) const {
8609 if (N->getNumValues() != 1)
8610 return false;
8611 if (!N->hasNUsesOfValue(1, 0))
8612 return false;
8613
8614 SDValue TCChain = Chain;
8615 SDNode *Copy = *N->use_begin();
8616 if (Copy->getOpcode() == ISD::CopyToReg) {
8617 // If the copy has a glue operand, we conservatively assume it isn't safe to
8618 // perform a tail call.
8619 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
8620 MVT::Glue)
8621 return false;
8622 TCChain = Copy->getOperand(0);
8623 } else if (Copy->getOpcode() != ISD::FP_EXTEND)
8624 return false;
8625
8626 bool HasRet = false;
8627 for (SDNode *Node : Copy->uses()) {
8628 if (Node->getOpcode() != AArch64ISD::RET_FLAG)
8629 return false;
8630 HasRet = true;
8631 }
8632
8633 if (!HasRet)
8634 return false;
8635
8636 Chain = TCChain;
8637 return true;
8638}
8639
8640// Return whether the an instruction can potentially be optimized to a tail
8641// call. This will cause the optimizers to attempt to move, or duplicate,
8642// return instructions to help enable tail call optimizations for this
8643// instruction.
8644bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
8645 if (!CI->isTailCall())
8646 return false;
8647
8648 return true;
8649}
8650
8651bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
8652 SDValue &Offset,
8653 ISD::MemIndexedMode &AM,
8654 bool &IsInc,
8655 SelectionDAG &DAG) const {
8656 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
8657 return false;
8658
8659 Base = Op->getOperand(0);
8660 // All of the indexed addressing mode instructions take a signed
8661 // 9 bit immediate offset.
8662 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
8663 int64_t RHSC = (int64_t)RHS->getZExtValue();
8664 if (RHSC >= 256 || RHSC <= -256)
8665 return false;
8666 IsInc = (Op->getOpcode() == ISD::ADD);
8667 Offset = Op->getOperand(1);
8668 return true;
8669 }
8670 return false;
8671}
8672
8673bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
8674 SDValue &Offset,
8675 ISD::MemIndexedMode &AM,
8676 SelectionDAG &DAG) const {
8677 EVT VT;
8678 SDValue Ptr;
8679 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8680 VT = LD->getMemoryVT();
8681 Ptr = LD->getBasePtr();
8682 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8683 VT = ST->getMemoryVT();
8684 Ptr = ST->getBasePtr();
8685 } else
8686 return false;
8687
8688 bool IsInc;
8689 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
8690 return false;
8691 AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
8692 return true;
8693}
8694
8695bool AArch64TargetLowering::getPostIndexedAddressParts(
8696 SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
8697 ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
8698 EVT VT;
8699 SDValue Ptr;
8700 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8701 VT = LD->getMemoryVT();
8702 Ptr = LD->getBasePtr();
8703 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8704 VT = ST->getMemoryVT();
8705 Ptr = ST->getBasePtr();
8706 } else
8707 return false;
8708
8709 bool IsInc;
8710 if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
8711 return false;
8712 // Post-indexing updates the base, so it's not a valid transform
8713 // if that's not the same as the load's pointer.
8714 if (Ptr != Base)
8715 return false;
8716 AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
8717 return true;
8718}
8719
Tim Northoverf8bfe212014-07-18 13:07:05 +00008720static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
8721 SelectionDAG &DAG) {
Tim Northoverf8bfe212014-07-18 13:07:05 +00008722 SDLoc DL(N);
8723 SDValue Op = N->getOperand(0);
Ahmed Bougacha87946322014-12-01 20:52:32 +00008724
8725 if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
8726 return;
8727
Tim Northoverf8bfe212014-07-18 13:07:05 +00008728 Op = SDValue(
8729 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
8730 DAG.getUNDEF(MVT::i32), Op,
8731 DAG.getTargetConstant(AArch64::hsub, MVT::i32)),
8732 0);
8733 Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
8734 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
8735}
8736
Tim Northover3b0846e2014-05-24 12:50:23 +00008737void AArch64TargetLowering::ReplaceNodeResults(
8738 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
8739 switch (N->getOpcode()) {
8740 default:
8741 llvm_unreachable("Don't know how to custom expand this");
Tim Northoverf8bfe212014-07-18 13:07:05 +00008742 case ISD::BITCAST:
8743 ReplaceBITCASTResults(N, Results, DAG);
8744 return;
Tim Northover3b0846e2014-05-24 12:50:23 +00008745 case ISD::FP_TO_UINT:
8746 case ISD::FP_TO_SINT:
8747 assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
8748 // Let normal code take care of it by not adding anything to Results.
8749 return;
8750 }
8751}
8752
Akira Hatanakae5b6e0d2014-07-25 19:31:34 +00008753bool AArch64TargetLowering::useLoadStackGuardNode() const {
8754 return true;
8755}
8756
Hao Liu44e5d7a2014-11-21 06:39:58 +00008757bool AArch64TargetLowering::combineRepeatedFPDivisors(unsigned NumUsers) const {
8758 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
8759 // reciprocal if there are three or more FDIVs.
8760 return NumUsers > 2;
8761}
8762
Chandler Carruth9d010ff2014-07-03 00:23:43 +00008763TargetLoweringBase::LegalizeTypeAction
8764AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
8765 MVT SVT = VT.getSimpleVT();
8766 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
8767 // v4i16, v2i32 instead of to promote.
8768 if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
8769 || SVT == MVT::v1f32)
8770 return TypeWidenVector;
8771
8772 return TargetLoweringBase::getPreferredVectorAction(VT);
8773}
8774
Robin Morisseted3d48f2014-09-03 21:29:59 +00008775// Loads and stores less than 128-bits are already atomic; ones above that
8776// are doomed anyway, so defer to the default libcall and blame the OS when
8777// things go wrong.
8778bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
8779 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
8780 return Size == 128;
8781}
8782
8783// Loads and stores less than 128-bits are already atomic; ones above that
8784// are doomed anyway, so defer to the default libcall and blame the OS when
8785// things go wrong.
8786bool AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
8787 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
8788 return Size == 128;
8789}
8790
8791// For the real atomic operations, we have ldxr/stxr up to 128 bits,
8792bool AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
8793 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
8794 return Size <= 128;
8795}
8796
Robin Morisset25c8e312014-09-17 00:06:58 +00008797bool AArch64TargetLowering::hasLoadLinkedStoreConditional() const {
8798 return true;
8799}
8800
Tim Northover3b0846e2014-05-24 12:50:23 +00008801Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
8802 AtomicOrdering Ord) const {
8803 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
8804 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
Robin Morissetb155f522014-08-18 16:48:58 +00008805 bool IsAcquire = isAtLeastAcquire(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +00008806
8807 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
8808 // intrinsic must return {i64, i64} and we have to recombine them into a
8809 // single i128 here.
8810 if (ValTy->getPrimitiveSizeInBits() == 128) {
8811 Intrinsic::ID Int =
8812 IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
8813 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int);
8814
8815 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
8816 Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
8817
8818 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
8819 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
8820 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
8821 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
8822 return Builder.CreateOr(
8823 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
8824 }
8825
8826 Type *Tys[] = { Addr->getType() };
8827 Intrinsic::ID Int =
8828 IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
8829 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys);
8830
8831 return Builder.CreateTruncOrBitCast(
8832 Builder.CreateCall(Ldxr, Addr),
8833 cast<PointerType>(Addr->getType())->getElementType());
8834}
8835
8836Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
8837 Value *Val, Value *Addr,
8838 AtomicOrdering Ord) const {
8839 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Robin Morissetb155f522014-08-18 16:48:58 +00008840 bool IsRelease = isAtLeastRelease(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +00008841
8842 // Since the intrinsics must have legal type, the i128 intrinsics take two
8843 // parameters: "i64, i64". We must marshal Val into the appropriate form
8844 // before the call.
8845 if (Val->getType()->getPrimitiveSizeInBits() == 128) {
8846 Intrinsic::ID Int =
8847 IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
8848 Function *Stxr = Intrinsic::getDeclaration(M, Int);
8849 Type *Int64Ty = Type::getInt64Ty(M->getContext());
8850
8851 Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
8852 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
8853 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
8854 return Builder.CreateCall3(Stxr, Lo, Hi, Addr);
8855 }
8856
8857 Intrinsic::ID Int =
8858 IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
8859 Type *Tys[] = { Addr->getType() };
8860 Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
8861
8862 return Builder.CreateCall2(
8863 Stxr, Builder.CreateZExtOrBitCast(
8864 Val, Stxr->getFunctionType()->getParamType(0)),
8865 Addr);
8866}
Tim Northover3c55cca2014-11-27 21:02:42 +00008867
8868bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
8869 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
8870 return Ty->isArrayTy();
8871}