blob: 2d42624c80512dfb6568980f59498374a3fbbaae [file] [log] [blame]
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001//===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
George Burgess IVe1100f52016-02-02 22:46:49 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00008//===----------------------------------------------------------------------===//
George Burgess IVe1100f52016-02-02 22:46:49 +00009//
10// This file implements the MemorySSA class.
11//
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000012//===----------------------------------------------------------------------===//
13
Daniel Berlin554dcd82017-04-11 20:06:36 +000014#include "llvm/Analysis/MemorySSA.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000015#include "llvm/ADT/DenseMap.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000016#include "llvm/ADT/DenseMapInfo.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000017#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/DepthFirstIterator.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000019#include "llvm/ADT/Hashing.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/Optional.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000022#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000024#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/iterator_range.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000027#include "llvm/Analysis/AliasAnalysis.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000028#include "llvm/Analysis/IteratedDominanceFrontier.h"
29#include "llvm/Analysis/MemoryLocation.h"
Nico Weber432a3882018-04-30 14:59:11 +000030#include "llvm/Config/llvm-config.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000031#include "llvm/IR/AssemblyAnnotationWriter.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000032#include "llvm/IR/BasicBlock.h"
33#include "llvm/IR/CallSite.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000034#include "llvm/IR/Dominators.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000035#include "llvm/IR/Function.h"
36#include "llvm/IR/Instruction.h"
37#include "llvm/IR/Instructions.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000038#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000039#include "llvm/IR/Intrinsics.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000040#include "llvm/IR/LLVMContext.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000041#include "llvm/IR/PassManager.h"
42#include "llvm/IR/Use.h"
43#include "llvm/Pass.h"
44#include "llvm/Support/AtomicOrdering.h"
45#include "llvm/Support/Casting.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Compiler.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000048#include "llvm/Support/Debug.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000049#include "llvm/Support/ErrorHandling.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000050#include "llvm/Support/FormattedStream.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000051#include "llvm/Support/raw_ostream.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000052#include <algorithm>
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000053#include <cassert>
54#include <iterator>
55#include <memory>
56#include <utility>
57
58using namespace llvm;
George Burgess IVe1100f52016-02-02 22:46:49 +000059
60#define DEBUG_TYPE "memoryssa"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000061
Geoff Berryefb0dd12016-06-14 21:19:40 +000062INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
Geoff Berryb96d3b22016-06-01 21:30:40 +000063 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000064INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
65INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Geoff Berryefb0dd12016-06-14 21:19:40 +000066INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
67 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000068
Chad Rosier232e29e2016-07-06 21:20:47 +000069INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
70 "Memory SSA Printer", false, false)
71INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
72INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
73 "Memory SSA Printer", false, false)
74
Daniel Berlinc43aa5a2016-08-02 16:24:03 +000075static cl::opt<unsigned> MaxCheckLimit(
76 "memssa-check-limit", cl::Hidden, cl::init(100),
77 cl::desc("The maximum number of stores/phis MemorySSA"
78 "will consider trying to walk past (default = 100)"));
79
Alina Sbirleacc2e8cc2018-08-15 17:34:55 +000080// Always verify MemorySSA if expensive checking is enabled.
81#ifdef EXPENSIVE_CHECKS
82bool llvm::VerifyMemorySSA = true;
83#else
84bool llvm::VerifyMemorySSA = false;
85#endif
86static cl::opt<bool, true>
87 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
88 cl::Hidden, cl::desc("Enable verification of MemorySSA."));
Chad Rosier232e29e2016-07-06 21:20:47 +000089
George Burgess IVe1100f52016-02-02 22:46:49 +000090namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000091
Adrian Prantl5f8f34e42018-05-01 15:54:18 +000092/// An assembly annotator class to print Memory SSA information in
George Burgess IVe1100f52016-02-02 22:46:49 +000093/// comments.
94class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
95 friend class MemorySSA;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000096
George Burgess IVe1100f52016-02-02 22:46:49 +000097 const MemorySSA *MSSA;
98
99public:
100 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
101
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000102 void emitBasicBlockStartAnnot(const BasicBlock *BB,
103 formatted_raw_ostream &OS) override {
George Burgess IVe1100f52016-02-02 22:46:49 +0000104 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
105 OS << "; " << *MA << "\n";
106 }
107
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000108 void emitInstructionAnnot(const Instruction *I,
109 formatted_raw_ostream &OS) override {
George Burgess IVe1100f52016-02-02 22:46:49 +0000110 if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
111 OS << "; " << *MA << "\n";
112 }
113};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000114
115} // end namespace llvm
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000116
George Burgess IV5f308972016-07-19 01:29:15 +0000117namespace {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000118
Daniel Berlindff31de2016-08-02 21:57:52 +0000119/// Our current alias analysis API differentiates heavily between calls and
120/// non-calls, and functions called on one usually assert on the other.
121/// This class encapsulates the distinction to simplify other code that wants
122/// "Memory affecting instructions and related data" to use as a key.
123/// For example, this class is used as a densemap key in the use optimizer.
124class MemoryLocOrCall {
125public:
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000126 bool IsCall = false;
127
128 MemoryLocOrCall() = default;
Daniel Berlindff31de2016-08-02 21:57:52 +0000129 MemoryLocOrCall(MemoryUseOrDef *MUD)
130 : MemoryLocOrCall(MUD->getMemoryInst()) {}
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000131 MemoryLocOrCall(const MemoryUseOrDef *MUD)
132 : MemoryLocOrCall(MUD->getMemoryInst()) {}
Daniel Berlindff31de2016-08-02 21:57:52 +0000133
134 MemoryLocOrCall(Instruction *Inst) {
135 if (ImmutableCallSite(Inst)) {
136 IsCall = true;
137 CS = ImmutableCallSite(Inst);
138 } else {
139 IsCall = false;
140 // There is no such thing as a memorylocation for a fence inst, and it is
141 // unique in that regard.
142 if (!isa<FenceInst>(Inst))
143 Loc = MemoryLocation::get(Inst);
144 }
145 }
146
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000147 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
Daniel Berlindff31de2016-08-02 21:57:52 +0000148
Daniel Berlindff31de2016-08-02 21:57:52 +0000149 ImmutableCallSite getCS() const {
150 assert(IsCall);
151 return CS;
152 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000153
Daniel Berlindff31de2016-08-02 21:57:52 +0000154 MemoryLocation getLoc() const {
155 assert(!IsCall);
156 return Loc;
157 }
158
159 bool operator==(const MemoryLocOrCall &Other) const {
160 if (IsCall != Other.IsCall)
161 return false;
162
George Burgess IV3588fd42018-03-29 00:54:39 +0000163 if (!IsCall)
164 return Loc == Other.Loc;
165
166 if (CS.getCalledValue() != Other.CS.getCalledValue())
167 return false;
168
George Burgess IVaf0b06f2018-03-29 03:12:03 +0000169 return CS.arg_size() == Other.CS.arg_size() &&
170 std::equal(CS.arg_begin(), CS.arg_end(), Other.CS.arg_begin());
Daniel Berlindff31de2016-08-02 21:57:52 +0000171 }
172
173private:
Daniel Berlinf5361132016-10-22 04:15:41 +0000174 union {
Daniel Berlind602e042017-01-25 20:56:19 +0000175 ImmutableCallSite CS;
176 MemoryLocation Loc;
Daniel Berlinf5361132016-10-22 04:15:41 +0000177 };
Daniel Berlindff31de2016-08-02 21:57:52 +0000178};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000179
180} // end anonymous namespace
Daniel Berlindff31de2016-08-02 21:57:52 +0000181
182namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000183
Daniel Berlindff31de2016-08-02 21:57:52 +0000184template <> struct DenseMapInfo<MemoryLocOrCall> {
185 static inline MemoryLocOrCall getEmptyKey() {
186 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
187 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000188
Daniel Berlindff31de2016-08-02 21:57:52 +0000189 static inline MemoryLocOrCall getTombstoneKey() {
190 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
191 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000192
Daniel Berlindff31de2016-08-02 21:57:52 +0000193 static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
George Burgess IV3588fd42018-03-29 00:54:39 +0000194 if (!MLOC.IsCall)
195 return hash_combine(
196 MLOC.IsCall,
197 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
198
199 hash_code hash =
200 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
201 MLOC.getCS().getCalledValue()));
202
203 for (const Value *Arg : MLOC.getCS().args())
204 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
205 return hash;
Daniel Berlindff31de2016-08-02 21:57:52 +0000206 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000207
Daniel Berlindff31de2016-08-02 21:57:52 +0000208 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
209 return LHS == RHS;
210 }
211};
Daniel Berlindf101192016-08-03 00:01:46 +0000212
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000213} // end namespace llvm
214
George Burgess IV82e355c2016-08-03 19:39:54 +0000215/// This does one-way checks to see if Use could theoretically be hoisted above
216/// MayClobber. This will not check the other way around.
217///
218/// This assumes that, for the purposes of MemorySSA, Use comes directly after
219/// MayClobber, with no potentially clobbering operations in between them.
220/// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
Alina Sbirleaca741a82017-12-22 19:54:03 +0000221static bool areLoadsReorderable(const LoadInst *Use,
222 const LoadInst *MayClobber) {
George Burgess IV82e355c2016-08-03 19:39:54 +0000223 bool VolatileUse = Use->isVolatile();
224 bool VolatileClobber = MayClobber->isVolatile();
225 // Volatile operations may never be reordered with other volatile operations.
226 if (VolatileUse && VolatileClobber)
Alina Sbirleaca741a82017-12-22 19:54:03 +0000227 return false;
228 // Otherwise, volatile doesn't matter here. From the language reference:
229 // 'optimizers may change the order of volatile operations relative to
230 // non-volatile operations.'"
George Burgess IV82e355c2016-08-03 19:39:54 +0000231
232 // If a load is seq_cst, it cannot be moved above other loads. If its ordering
233 // is weaker, it can be moved above other loads. We just need to be sure that
234 // MayClobber isn't an acquire load, because loads can't be moved above
235 // acquire loads.
236 //
237 // Note that this explicitly *does* allow the free reordering of monotonic (or
238 // weaker) loads of the same address.
239 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
240 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
241 AtomicOrdering::Acquire);
Alina Sbirleaca741a82017-12-22 19:54:03 +0000242 return !(SeqCstUse || MayClobberIsAcquire);
George Burgess IV82e355c2016-08-03 19:39:54 +0000243}
244
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000245namespace {
246
247struct ClobberAlias {
248 bool IsClobber;
249 Optional<AliasResult> AR;
250};
251
252} // end anonymous namespace
253
254// Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
255// ignored if IsClobber = false.
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000256static ClobberAlias instructionClobbersQuery(const MemoryDef *MD,
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000257 const MemoryLocation &UseLoc,
258 const Instruction *UseInst,
259 AliasAnalysis &AA) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +0000260 Instruction *DefInst = MD->getMemoryInst();
261 assert(DefInst && "Defining instruction not actually an instruction");
Daniel Berlin74603a62017-04-10 18:46:00 +0000262 ImmutableCallSite UseCS(UseInst);
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000263 Optional<AliasResult> AR;
George Burgess IV5f308972016-07-19 01:29:15 +0000264
Daniel Berlindf101192016-08-03 00:01:46 +0000265 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
266 // These intrinsics will show up as affecting memory, but they are just
George Burgess IVff08c802018-08-10 05:14:43 +0000267 // markers, mostly.
268 //
269 // FIXME: We probably don't actually want MemorySSA to model these at all
270 // (including creating MemoryAccesses for them): we just end up inventing
271 // clobbers where they don't really exist at all. Please see D43269 for
272 // context.
Daniel Berlindf101192016-08-03 00:01:46 +0000273 switch (II->getIntrinsicID()) {
274 case Intrinsic::lifetime_start:
Daniel Berlin74603a62017-04-10 18:46:00 +0000275 if (UseCS)
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000276 return {false, NoAlias};
277 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
George Burgess IVff08c802018-08-10 05:14:43 +0000278 return {AR != NoAlias, AR};
Daniel Berlindf101192016-08-03 00:01:46 +0000279 case Intrinsic::lifetime_end:
280 case Intrinsic::invariant_start:
281 case Intrinsic::invariant_end:
282 case Intrinsic::assume:
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000283 return {false, NoAlias};
Daniel Berlindf101192016-08-03 00:01:46 +0000284 default:
285 break;
286 }
287 }
288
Hans Wennborg70e22d12017-11-21 18:00:01 +0000289 if (UseCS) {
Daniel Berlindff31de2016-08-02 21:57:52 +0000290 ModRefInfo I = AA.getModRefInfo(DefInst, UseCS);
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000291 AR = isMustSet(I) ? MustAlias : MayAlias;
292 return {isModOrRefSet(I), AR};
Hans Wennborg70e22d12017-11-21 18:00:01 +0000293 }
George Burgess IV82e355c2016-08-03 19:39:54 +0000294
Alina Sbirleaca741a82017-12-22 19:54:03 +0000295 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
296 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000297 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
George Burgess IV82e355c2016-08-03 19:39:54 +0000298
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000299 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
300 AR = isMustSet(I) ? MustAlias : MayAlias;
301 return {isModSet(I), AR};
Daniel Berlindff31de2016-08-02 21:57:52 +0000302}
303
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000304static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
305 const MemoryUseOrDef *MU,
306 const MemoryLocOrCall &UseMLOC,
307 AliasAnalysis &AA) {
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000308 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
309 // to exist while MemoryLocOrCall is pushed through places.
310 if (UseMLOC.IsCall)
311 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
312 AA);
313 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
314 AA);
315}
316
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000317// Return true when MD may alias MU, return false otherwise.
Daniel Berlindcb004f2017-03-02 23:06:46 +0000318bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
319 AliasAnalysis &AA) {
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000320 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000321}
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000322
323namespace {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000324
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000325struct UpwardsMemoryQuery {
326 // True if our original query started off as a call
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000327 bool IsCall = false;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000328 // The pointer location we started the query with. This will be empty if
329 // IsCall is true.
330 MemoryLocation StartingLoc;
331 // This is the instruction we were querying about.
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000332 const Instruction *Inst = nullptr;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000333 // The MemoryAccess we actually got called with, used to test local domination
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000334 const MemoryAccess *OriginalAccess = nullptr;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000335 Optional<AliasResult> AR = MayAlias;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000336
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000337 UpwardsMemoryQuery() = default;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000338
339 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
340 : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) {
341 if (!IsCall)
342 StartingLoc = MemoryLocation::get(Inst);
343 }
344};
345
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000346} // end anonymous namespace
347
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000348static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
349 AliasAnalysis &AA) {
350 Instruction *Inst = MD->getMemoryInst();
351 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
352 switch (II->getIntrinsicID()) {
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000353 case Intrinsic::lifetime_end:
354 return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
355 default:
356 return false;
357 }
358 }
359 return false;
360}
361
362static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
363 const Instruction *I) {
364 // If the memory can't be changed, then loads of the memory can't be
365 // clobbered.
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000366 return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
Hal Finkela9d67cf2017-04-09 12:57:50 +0000367 AA.pointsToConstantMemory(cast<LoadInst>(I)->
368 getPointerOperand()));
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000369}
370
George Burgess IV5f308972016-07-19 01:29:15 +0000371/// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
372/// inbetween `Start` and `ClobberAt` can clobbers `Start`.
373///
374/// This is meant to be as simple and self-contained as possible. Because it
375/// uses no cache, etc., it can be relatively expensive.
376///
377/// \param Start The MemoryAccess that we want to walk from.
378/// \param ClobberAt A clobber for Start.
379/// \param StartLoc The MemoryLocation for Start.
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000380/// \param MSSA The MemorySSA instance that Start and ClobberAt belong to.
George Burgess IV5f308972016-07-19 01:29:15 +0000381/// \param Query The UpwardsMemoryQuery we used for our search.
382/// \param AA The AliasAnalysis we used for our search.
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000383static void
384checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
George Burgess IV5f308972016-07-19 01:29:15 +0000385 const MemoryLocation &StartLoc, const MemorySSA &MSSA,
386 const UpwardsMemoryQuery &Query, AliasAnalysis &AA) {
387 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
388
389 if (MSSA.isLiveOnEntryDef(Start)) {
390 assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
391 "liveOnEntry must clobber itself");
392 return;
393 }
394
George Burgess IV5f308972016-07-19 01:29:15 +0000395 bool FoundClobber = false;
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000396 DenseSet<ConstMemoryAccessPair> VisitedPhis;
397 SmallVector<ConstMemoryAccessPair, 8> Worklist;
George Burgess IV5f308972016-07-19 01:29:15 +0000398 Worklist.emplace_back(Start, StartLoc);
399 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
400 // is found, complain.
401 while (!Worklist.empty()) {
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000402 auto MAP = Worklist.pop_back_val();
George Burgess IV5f308972016-07-19 01:29:15 +0000403 // All we care about is that nothing from Start to ClobberAt clobbers Start.
404 // We learn nothing from revisiting nodes.
405 if (!VisitedPhis.insert(MAP).second)
406 continue;
407
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000408 for (const auto *MA : def_chain(MAP.first)) {
George Burgess IV5f308972016-07-19 01:29:15 +0000409 if (MA == ClobberAt) {
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000410 if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
George Burgess IV5f308972016-07-19 01:29:15 +0000411 // instructionClobbersQuery isn't essentially free, so don't use `|=`,
412 // since it won't let us short-circuit.
413 //
414 // Also, note that this can't be hoisted out of the `Worklist` loop,
415 // since MD may only act as a clobber for 1 of N MemoryLocations.
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000416 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
417 if (!FoundClobber) {
418 ClobberAlias CA =
419 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
420 if (CA.IsClobber) {
421 FoundClobber = true;
422 // Not used: CA.AR;
423 }
424 }
George Burgess IV5f308972016-07-19 01:29:15 +0000425 }
426 break;
427 }
428
429 // We should never hit liveOnEntry, unless it's the clobber.
430 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
431
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000432 if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
Alina Sbirlea5bce4d52018-08-29 22:38:51 +0000433 // If Start is a Def, skip self.
434 if (MD == Start)
435 continue;
436
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000437 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
438 .IsClobber &&
George Burgess IV5f308972016-07-19 01:29:15 +0000439 "Found clobber before reaching ClobberAt!");
440 continue;
441 }
442
Alina Sbirlea5bce4d52018-08-29 22:38:51 +0000443 if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
Alina Sbirlea6edcc9e2018-08-29 23:20:29 +0000444 (void)MU;
Alina Sbirlea5bce4d52018-08-29 22:38:51 +0000445 assert (MU == Start &&
446 "Can only find use in def chain if Start is a use");
447 continue;
448 }
449
George Burgess IV5f308972016-07-19 01:29:15 +0000450 assert(isa<MemoryPhi>(MA));
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000451 Worklist.append(
452 upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}),
453 upward_defs_end());
George Burgess IV5f308972016-07-19 01:29:15 +0000454 }
455 }
456
457 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
458 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
459 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
460 "ClobberAt never acted as a clobber");
461}
462
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000463namespace {
464
George Burgess IV5f308972016-07-19 01:29:15 +0000465/// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
466/// in one class.
467class ClobberWalker {
468 /// Save a few bytes by using unsigned instead of size_t.
469 using ListIndex = unsigned;
470
471 /// Represents a span of contiguous MemoryDefs, potentially ending in a
472 /// MemoryPhi.
473 struct DefPath {
474 MemoryLocation Loc;
475 // Note that, because we always walk in reverse, Last will always dominate
476 // First. Also note that First and Last are inclusive.
477 MemoryAccess *First;
478 MemoryAccess *Last;
George Burgess IV5f308972016-07-19 01:29:15 +0000479 Optional<ListIndex> Previous;
480
481 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
482 Optional<ListIndex> Previous)
483 : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
484
485 DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
486 Optional<ListIndex> Previous)
487 : DefPath(Loc, Init, Init, Previous) {}
488 };
489
490 const MemorySSA &MSSA;
491 AliasAnalysis &AA;
492 DominatorTree &DT;
George Burgess IV5f308972016-07-19 01:29:15 +0000493 UpwardsMemoryQuery *Query;
George Burgess IV5f308972016-07-19 01:29:15 +0000494
495 // Phi optimization bookkeeping
496 SmallVector<DefPath, 32> Paths;
497 DenseSet<ConstMemoryAccessPair> VisitedPhis;
George Burgess IV5f308972016-07-19 01:29:15 +0000498
George Burgess IV5f308972016-07-19 01:29:15 +0000499 /// Find the nearest def or phi that `From` can legally be optimized to.
Daniel Berlind0420312017-04-01 09:01:12 +0000500 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
George Burgess IV5f308972016-07-19 01:29:15 +0000501 assert(From->getNumOperands() && "Phi with no operands?");
502
503 BasicBlock *BB = From->getBlock();
George Burgess IV5f308972016-07-19 01:29:15 +0000504 MemoryAccess *Result = MSSA.getLiveOnEntryDef();
505 DomTreeNode *Node = DT.getNode(BB);
506 while ((Node = Node->getIDom())) {
Daniel Berlin7500c562017-04-01 08:59:45 +0000507 auto *Defs = MSSA.getBlockDefs(Node->getBlock());
508 if (Defs)
Daniel Berlind0420312017-04-01 09:01:12 +0000509 return &*Defs->rbegin();
George Burgess IV5f308972016-07-19 01:29:15 +0000510 }
George Burgess IV5f308972016-07-19 01:29:15 +0000511 return Result;
512 }
513
514 /// Result of calling walkToPhiOrClobber.
515 struct UpwardsWalkResult {
516 /// The "Result" of the walk. Either a clobber, the last thing we walked, or
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000517 /// both. Include alias info when clobber found.
George Burgess IV5f308972016-07-19 01:29:15 +0000518 MemoryAccess *Result;
519 bool IsKnownClobber;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000520 Optional<AliasResult> AR;
George Burgess IV5f308972016-07-19 01:29:15 +0000521 };
522
523 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
524 /// This will update Desc.Last as it walks. It will (optionally) also stop at
525 /// StopAt.
526 ///
527 /// This does not test for whether StopAt is a clobber
Daniel Berlind0420312017-04-01 09:01:12 +0000528 UpwardsWalkResult
529 walkToPhiOrClobber(DefPath &Desc,
530 const MemoryAccess *StopAt = nullptr) const {
George Burgess IV5f308972016-07-19 01:29:15 +0000531 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
532
533 for (MemoryAccess *Current : def_chain(Desc.Last)) {
534 Desc.Last = Current;
535 if (Current == StopAt)
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000536 return {Current, false, MayAlias};
George Burgess IV5f308972016-07-19 01:29:15 +0000537
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000538 if (auto *MD = dyn_cast<MemoryDef>(Current)) {
539 if (MSSA.isLiveOnEntryDef(MD))
540 return {MD, true, MustAlias};
541 ClobberAlias CA =
542 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
543 if (CA.IsClobber)
544 return {MD, true, CA.AR};
545 }
George Burgess IV5f308972016-07-19 01:29:15 +0000546 }
547
548 assert(isa<MemoryPhi>(Desc.Last) &&
549 "Ended at a non-clobber that's not a phi?");
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000550 return {Desc.Last, false, MayAlias};
George Burgess IV5f308972016-07-19 01:29:15 +0000551 }
552
553 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
554 ListIndex PriorNode) {
555 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
556 upward_defs_end());
557 for (const MemoryAccessPair &P : UpwardDefs) {
558 PausedSearches.push_back(Paths.size());
559 Paths.emplace_back(P.second, P.first, PriorNode);
560 }
561 }
562
563 /// Represents a search that terminated after finding a clobber. This clobber
564 /// may or may not be present in the path of defs from LastNode..SearchStart,
565 /// since it may have been retrieved from cache.
566 struct TerminatedPath {
567 MemoryAccess *Clobber;
568 ListIndex LastNode;
569 };
570
571 /// Get an access that keeps us from optimizing to the given phi.
572 ///
573 /// PausedSearches is an array of indices into the Paths array. Its incoming
574 /// value is the indices of searches that stopped at the last phi optimization
575 /// target. It's left in an unspecified state.
576 ///
577 /// If this returns None, NewPaused is a vector of searches that terminated
578 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
George Burgess IV14633b52016-08-03 01:22:19 +0000579 Optional<TerminatedPath>
Daniel Berlind0420312017-04-01 09:01:12 +0000580 getBlockingAccess(const MemoryAccess *StopWhere,
George Burgess IV5f308972016-07-19 01:29:15 +0000581 SmallVectorImpl<ListIndex> &PausedSearches,
582 SmallVectorImpl<ListIndex> &NewPaused,
583 SmallVectorImpl<TerminatedPath> &Terminated) {
584 assert(!PausedSearches.empty() && "No searches to continue?");
585
586 // BFS vs DFS really doesn't make a difference here, so just do a DFS with
587 // PausedSearches as our stack.
588 while (!PausedSearches.empty()) {
589 ListIndex PathIndex = PausedSearches.pop_back_val();
590 DefPath &Node = Paths[PathIndex];
591
592 // If we've already visited this path with this MemoryLocation, we don't
593 // need to do so again.
594 //
595 // NOTE: That we just drop these paths on the ground makes caching
596 // behavior sporadic. e.g. given a diamond:
597 // A
598 // B C
599 // D
600 //
601 // ...If we walk D, B, A, C, we'll only cache the result of phi
602 // optimization for A, B, and D; C will be skipped because it dies here.
603 // This arguably isn't the worst thing ever, since:
604 // - We generally query things in a top-down order, so if we got below D
605 // without needing cache entries for {C, MemLoc}, then chances are
606 // that those cache entries would end up ultimately unused.
607 // - We still cache things for A, so C only needs to walk up a bit.
608 // If this behavior becomes problematic, we can fix without a ton of extra
609 // work.
610 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
611 continue;
612
613 UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere);
614 if (Res.IsKnownClobber) {
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000615 assert(Res.Result != StopWhere);
George Burgess IV5f308972016-07-19 01:29:15 +0000616 // If this wasn't a cache hit, we hit a clobber when walking. That's a
617 // failure.
George Burgess IV14633b52016-08-03 01:22:19 +0000618 TerminatedPath Term{Res.Result, PathIndex};
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000619 if (!MSSA.dominates(Res.Result, StopWhere))
George Burgess IV14633b52016-08-03 01:22:19 +0000620 return Term;
George Burgess IV5f308972016-07-19 01:29:15 +0000621
622 // Otherwise, it's a valid thing to potentially optimize to.
George Burgess IV14633b52016-08-03 01:22:19 +0000623 Terminated.push_back(Term);
George Burgess IV5f308972016-07-19 01:29:15 +0000624 continue;
625 }
626
627 if (Res.Result == StopWhere) {
628 // We've hit our target. Save this path off for if we want to continue
629 // walking.
630 NewPaused.push_back(PathIndex);
631 continue;
632 }
633
634 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
635 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
636 }
637
638 return None;
639 }
640
641 template <typename T, typename Walker>
642 struct generic_def_path_iterator
643 : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
644 std::forward_iterator_tag, T *> {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000645 generic_def_path_iterator() = default;
George Burgess IV5f308972016-07-19 01:29:15 +0000646 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
647
648 T &operator*() const { return curNode(); }
649
650 generic_def_path_iterator &operator++() {
651 N = curNode().Previous;
652 return *this;
653 }
654
655 bool operator==(const generic_def_path_iterator &O) const {
656 if (N.hasValue() != O.N.hasValue())
657 return false;
658 return !N.hasValue() || *N == *O.N;
659 }
660
661 private:
662 T &curNode() const { return W->Paths[*N]; }
663
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000664 Walker *W = nullptr;
665 Optional<ListIndex> N = None;
George Burgess IV5f308972016-07-19 01:29:15 +0000666 };
667
668 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
669 using const_def_path_iterator =
670 generic_def_path_iterator<const DefPath, const ClobberWalker>;
671
672 iterator_range<def_path_iterator> def_path(ListIndex From) {
673 return make_range(def_path_iterator(this, From), def_path_iterator());
674 }
675
676 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
677 return make_range(const_def_path_iterator(this, From),
678 const_def_path_iterator());
679 }
680
681 struct OptznResult {
682 /// The path that contains our result.
683 TerminatedPath PrimaryClobber;
684 /// The paths that we can legally cache back from, but that aren't
685 /// necessarily the result of the Phi optimization.
686 SmallVector<TerminatedPath, 4> OtherClobbers;
687 };
688
689 ListIndex defPathIndex(const DefPath &N) const {
690 // The assert looks nicer if we don't need to do &N
691 const DefPath *NP = &N;
692 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
693 "Out of bounds DefPath!");
694 return NP - &Paths.front();
695 }
696
697 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
698 /// that act as legal clobbers. Note that this won't return *all* clobbers.
699 ///
700 /// Phi optimization algorithm tl;dr:
701 /// - Find the earliest def/phi, A, we can optimize to
702 /// - Find if all paths from the starting memory access ultimately reach A
703 /// - If not, optimization isn't possible.
704 /// - Otherwise, walk from A to another clobber or phi, A'.
705 /// - If A' is a def, we're done.
706 /// - If A' is a phi, try to optimize it.
707 ///
708 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
709 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
710 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
711 const MemoryLocation &Loc) {
712 assert(Paths.empty() && VisitedPhis.empty() &&
713 "Reset the optimization state.");
714
715 Paths.emplace_back(Loc, Start, Phi, None);
716 // Stores how many "valid" optimization nodes we had prior to calling
717 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
718 auto PriorPathsSize = Paths.size();
719
720 SmallVector<ListIndex, 16> PausedSearches;
721 SmallVector<ListIndex, 8> NewPaused;
722 SmallVector<TerminatedPath, 4> TerminatedPaths;
723
724 addSearches(Phi, PausedSearches, 0);
725
726 // Moves the TerminatedPath with the "most dominated" Clobber to the end of
727 // Paths.
728 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
729 assert(!Paths.empty() && "Need a path to move");
George Burgess IV5f308972016-07-19 01:29:15 +0000730 auto Dom = Paths.begin();
731 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
732 if (!MSSA.dominates(I->Clobber, Dom->Clobber))
733 Dom = I;
734 auto Last = Paths.end() - 1;
735 if (Last != Dom)
736 std::iter_swap(Last, Dom);
737 };
738
739 MemoryPhi *Current = Phi;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000740 while (true) {
George Burgess IV5f308972016-07-19 01:29:15 +0000741 assert(!MSSA.isLiveOnEntryDef(Current) &&
742 "liveOnEntry wasn't treated as a clobber?");
743
Daniel Berlind0420312017-04-01 09:01:12 +0000744 const auto *Target = getWalkTarget(Current);
George Burgess IV5f308972016-07-19 01:29:15 +0000745 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
746 // optimization for the prior phi.
747 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
748 return MSSA.dominates(P.Clobber, Target);
749 }));
750
751 // FIXME: This is broken, because the Blocker may be reported to be
752 // liveOnEntry, and we'll happily wait for that to disappear (read: never)
George Burgess IV7f414b92016-08-22 23:40:01 +0000753 // For the moment, this is fine, since we do nothing with blocker info.
George Burgess IV14633b52016-08-03 01:22:19 +0000754 if (Optional<TerminatedPath> Blocker = getBlockingAccess(
George Burgess IV5f308972016-07-19 01:29:15 +0000755 Target, PausedSearches, NewPaused, TerminatedPaths)) {
George Burgess IV5f308972016-07-19 01:29:15 +0000756
757 // Find the node we started at. We can't search based on N->Last, since
758 // we may have gone around a loop with a different MemoryLocation.
George Burgess IV14633b52016-08-03 01:22:19 +0000759 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
George Burgess IV5f308972016-07-19 01:29:15 +0000760 return defPathIndex(N) < PriorPathsSize;
761 });
762 assert(Iter != def_path_iterator());
763
764 DefPath &CurNode = *Iter;
765 assert(CurNode.Last == Current);
George Burgess IV5f308972016-07-19 01:29:15 +0000766
767 // Two things:
768 // A. We can't reliably cache all of NewPaused back. Consider a case
769 // where we have two paths in NewPaused; one of which can't optimize
770 // above this phi, whereas the other can. If we cache the second path
771 // back, we'll end up with suboptimal cache entries. We can handle
772 // cases like this a bit better when we either try to find all
773 // clobbers that block phi optimization, or when our cache starts
774 // supporting unfinished searches.
775 // B. We can't reliably cache TerminatedPaths back here without doing
776 // extra checks; consider a case like:
777 // T
778 // / \
779 // D C
780 // \ /
781 // S
782 // Where T is our target, C is a node with a clobber on it, D is a
783 // diamond (with a clobber *only* on the left or right node, N), and
784 // S is our start. Say we walk to D, through the node opposite N
785 // (read: ignoring the clobber), and see a cache entry in the top
786 // node of D. That cache entry gets put into TerminatedPaths. We then
787 // walk up to C (N is later in our worklist), find the clobber, and
788 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
789 // the bottom part of D to the cached clobber, ignoring the clobber
790 // in N. Again, this problem goes away if we start tracking all
791 // blockers for a given phi optimization.
792 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
793 return {Result, {}};
794 }
795
796 // If there's nothing left to search, then all paths led to valid clobbers
797 // that we got from our cache; pick the nearest to the start, and allow
798 // the rest to be cached back.
799 if (NewPaused.empty()) {
800 MoveDominatedPathToEnd(TerminatedPaths);
801 TerminatedPath Result = TerminatedPaths.pop_back_val();
802 return {Result, std::move(TerminatedPaths)};
803 }
804
805 MemoryAccess *DefChainEnd = nullptr;
806 SmallVector<TerminatedPath, 4> Clobbers;
807 for (ListIndex Paused : NewPaused) {
808 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
809 if (WR.IsKnownClobber)
810 Clobbers.push_back({WR.Result, Paused});
811 else
812 // Micro-opt: If we hit the end of the chain, save it.
813 DefChainEnd = WR.Result;
814 }
815
816 if (!TerminatedPaths.empty()) {
817 // If we couldn't find the dominating phi/liveOnEntry in the above loop,
818 // do it now.
819 if (!DefChainEnd)
Daniel Berlind0420312017-04-01 09:01:12 +0000820 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
George Burgess IV5f308972016-07-19 01:29:15 +0000821 DefChainEnd = MA;
822
823 // If any of the terminated paths don't dominate the phi we'll try to
824 // optimize, we need to figure out what they are and quit.
825 const BasicBlock *ChainBB = DefChainEnd->getBlock();
826 for (const TerminatedPath &TP : TerminatedPaths) {
827 // Because we know that DefChainEnd is as "high" as we can go, we
828 // don't need local dominance checks; BB dominance is sufficient.
829 if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
830 Clobbers.push_back(TP);
831 }
832 }
833
834 // If we have clobbers in the def chain, find the one closest to Current
835 // and quit.
836 if (!Clobbers.empty()) {
837 MoveDominatedPathToEnd(Clobbers);
838 TerminatedPath Result = Clobbers.pop_back_val();
839 return {Result, std::move(Clobbers)};
840 }
841
842 assert(all_of(NewPaused,
843 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
844
845 // Because liveOnEntry is a clobber, this must be a phi.
846 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
847
848 PriorPathsSize = Paths.size();
849 PausedSearches.clear();
850 for (ListIndex I : NewPaused)
851 addSearches(DefChainPhi, PausedSearches, I);
852 NewPaused.clear();
853
854 Current = DefChainPhi;
855 }
856 }
857
George Burgess IV5f308972016-07-19 01:29:15 +0000858 void verifyOptResult(const OptznResult &R) const {
859 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
860 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
861 }));
862 }
863
864 void resetPhiOptznState() {
865 Paths.clear();
866 VisitedPhis.clear();
867 }
868
869public:
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000870 ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
871 : MSSA(MSSA), AA(AA), DT(DT) {}
George Burgess IV5f308972016-07-19 01:29:15 +0000872
George Burgess IV5f308972016-07-19 01:29:15 +0000873 /// Finds the nearest clobber for the given query, optimizing phis if
874 /// possible.
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000875 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
George Burgess IV5f308972016-07-19 01:29:15 +0000876 Query = &Q;
877
878 MemoryAccess *Current = Start;
879 // This walker pretends uses don't exist. If we're handed one, silently grab
880 // its def. (This has the nice side-effect of ensuring we never cache uses)
881 if (auto *MU = dyn_cast<MemoryUse>(Start))
882 Current = MU->getDefiningAccess();
883
884 DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
885 // Fast path for the overly-common case (no crazy phi optimization
886 // necessary)
887 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
George Burgess IV93ea19b2016-07-24 07:03:49 +0000888 MemoryAccess *Result;
George Burgess IV5f308972016-07-19 01:29:15 +0000889 if (WalkResult.IsKnownClobber) {
George Burgess IV93ea19b2016-07-24 07:03:49 +0000890 Result = WalkResult.Result;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000891 Q.AR = WalkResult.AR;
George Burgess IV93ea19b2016-07-24 07:03:49 +0000892 } else {
893 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
894 Current, Q.StartingLoc);
895 verifyOptResult(OptRes);
George Burgess IV93ea19b2016-07-24 07:03:49 +0000896 resetPhiOptznState();
897 Result = OptRes.PrimaryClobber.Clobber;
George Burgess IV5f308972016-07-19 01:29:15 +0000898 }
899
George Burgess IV5f308972016-07-19 01:29:15 +0000900#ifdef EXPENSIVE_CHECKS
George Burgess IV93ea19b2016-07-24 07:03:49 +0000901 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
George Burgess IV5f308972016-07-19 01:29:15 +0000902#endif
George Burgess IV93ea19b2016-07-24 07:03:49 +0000903 return Result;
George Burgess IV5f308972016-07-19 01:29:15 +0000904 }
Geoff Berrycdf53332016-08-08 17:52:01 +0000905
906 void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
George Burgess IV5f308972016-07-19 01:29:15 +0000907};
908
909struct RenamePassData {
910 DomTreeNode *DTN;
911 DomTreeNode::const_iterator ChildIt;
912 MemoryAccess *IncomingVal;
913
914 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
915 MemoryAccess *M)
916 : DTN(D), ChildIt(It), IncomingVal(M) {}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000917
George Burgess IV5f308972016-07-19 01:29:15 +0000918 void swap(RenamePassData &RHS) {
919 std::swap(DTN, RHS.DTN);
920 std::swap(ChildIt, RHS.ChildIt);
921 std::swap(IncomingVal, RHS.IncomingVal);
922 }
923};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000924
925} // end anonymous namespace
George Burgess IV5f308972016-07-19 01:29:15 +0000926
927namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000928
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000929/// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
George Burgess IV45f263d2018-05-26 02:28:55 +0000930/// longer does caching on its own, but the name has been retained for the
931/// moment.
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000932class MemorySSA::CachingWalker final : public MemorySSAWalker {
George Burgess IV5f308972016-07-19 01:29:15 +0000933 ClobberWalker Walker;
George Burgess IV5f308972016-07-19 01:29:15 +0000934
935 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &);
George Burgess IV5f308972016-07-19 01:29:15 +0000936
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000937public:
938 CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000939 ~CachingWalker() override = default;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000940
George Burgess IV400ae402016-07-20 19:51:34 +0000941 using MemorySSAWalker::getClobberingMemoryAccess;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000942
George Burgess IV400ae402016-07-20 19:51:34 +0000943 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000944 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
George Burgess IV013fd732016-10-28 19:22:46 +0000945 const MemoryLocation &) override;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000946 void invalidateInfo(MemoryAccess *) override;
947
Geoff Berrycdf53332016-08-08 17:52:01 +0000948 void verify(const MemorySSA *MSSA) override {
949 MemorySSAWalker::verify(MSSA);
950 Walker.verify(MSSA);
951 }
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000952};
George Burgess IVe1100f52016-02-02 22:46:49 +0000953
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000954} // end namespace llvm
955
Daniel Berlin78cbd282017-02-20 22:26:03 +0000956void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
957 bool RenameAllUses) {
George Burgess IVe1100f52016-02-02 22:46:49 +0000958 // Pass through values to our successors
959 for (const BasicBlock *S : successors(BB)) {
960 auto It = PerBlockAccesses.find(S);
961 // Rename the phi nodes in our successor block
962 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
963 continue;
Daniel Berlinada263d2016-06-20 20:21:33 +0000964 AccessList *Accesses = It->second.get();
George Burgess IVe1100f52016-02-02 22:46:49 +0000965 auto *Phi = cast<MemoryPhi>(&Accesses->front());
Daniel Berlin78cbd282017-02-20 22:26:03 +0000966 if (RenameAllUses) {
967 int PhiIndex = Phi->getBasicBlockIndex(BB);
968 assert(PhiIndex != -1 && "Incomplete phi during partial rename");
969 Phi->setIncomingValue(PhiIndex, IncomingVal);
970 } else
971 Phi->addIncoming(IncomingVal, BB);
George Burgess IVe1100f52016-02-02 22:46:49 +0000972 }
Daniel Berlin78cbd282017-02-20 22:26:03 +0000973}
George Burgess IVe1100f52016-02-02 22:46:49 +0000974
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000975/// Rename a single basic block into MemorySSA form.
Daniel Berlin78cbd282017-02-20 22:26:03 +0000976/// Uses the standard SSA renaming algorithm.
977/// \returns The new incoming value.
978MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
979 bool RenameAllUses) {
980 auto It = PerBlockAccesses.find(BB);
981 // Skip most processing if the list is empty.
982 if (It != PerBlockAccesses.end()) {
983 AccessList *Accesses = It->second.get();
984 for (MemoryAccess &L : *Accesses) {
985 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
986 if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
987 MUD->setDefiningAccess(IncomingVal);
988 if (isa<MemoryDef>(&L))
989 IncomingVal = &L;
990 } else {
991 IncomingVal = &L;
992 }
993 }
994 }
George Burgess IVe1100f52016-02-02 22:46:49 +0000995 return IncomingVal;
996}
997
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000998/// This is the standard SSA renaming algorithm.
George Burgess IVe1100f52016-02-02 22:46:49 +0000999///
1000/// We walk the dominator tree in preorder, renaming accesses, and then filling
1001/// in phi nodes in our successors.
1002void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
Daniel Berlin78cbd282017-02-20 22:26:03 +00001003 SmallPtrSetImpl<BasicBlock *> &Visited,
1004 bool SkipVisited, bool RenameAllUses) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001005 SmallVector<RenamePassData, 32> WorkStack;
Daniel Berlin78cbd282017-02-20 22:26:03 +00001006 // Skip everything if we already renamed this block and we are skipping.
1007 // Note: You can't sink this into the if, because we need it to occur
1008 // regardless of whether we skip blocks or not.
1009 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
1010 if (SkipVisited && AlreadyVisited)
1011 return;
1012
1013 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1014 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
George Burgess IVe1100f52016-02-02 22:46:49 +00001015 WorkStack.push_back({Root, Root->begin(), IncomingVal});
George Burgess IVe1100f52016-02-02 22:46:49 +00001016
1017 while (!WorkStack.empty()) {
1018 DomTreeNode *Node = WorkStack.back().DTN;
1019 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1020 IncomingVal = WorkStack.back().IncomingVal;
1021
1022 if (ChildIt == Node->end()) {
1023 WorkStack.pop_back();
1024 } else {
1025 DomTreeNode *Child = *ChildIt;
1026 ++WorkStack.back().ChildIt;
1027 BasicBlock *BB = Child->getBlock();
Daniel Berlin78cbd282017-02-20 22:26:03 +00001028 // Note: You can't sink this into the if, because we need it to occur
1029 // regardless of whether we skip blocks or not.
1030 AlreadyVisited = !Visited.insert(BB).second;
1031 if (SkipVisited && AlreadyVisited) {
1032 // We already visited this during our renaming, which can happen when
1033 // being asked to rename multiple blocks. Figure out the incoming val,
1034 // which is the last def.
1035 // Incoming value can only change if there is a block def, and in that
1036 // case, it's the last block def in the list.
1037 if (auto *BlockDefs = getWritableBlockDefs(BB))
1038 IncomingVal = &*BlockDefs->rbegin();
1039 } else
1040 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1041 renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
George Burgess IVe1100f52016-02-02 22:46:49 +00001042 WorkStack.push_back({Child, Child->begin(), IncomingVal});
1043 }
1044 }
1045}
1046
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001047/// This handles unreachable block accesses by deleting phi nodes in
George Burgess IVe1100f52016-02-02 22:46:49 +00001048/// unreachable blocks, and marking all other unreachable MemoryAccess's as
1049/// being uses of the live on entry definition.
1050void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1051 assert(!DT->isReachableFromEntry(BB) &&
1052 "Reachable block found while handling unreachable blocks");
1053
Daniel Berlinfc7e6512016-07-06 05:32:05 +00001054 // Make sure phi nodes in our reachable successors end up with a
1055 // LiveOnEntryDef for our incoming edge, even though our block is forward
1056 // unreachable. We could just disconnect these blocks from the CFG fully,
1057 // but we do not right now.
1058 for (const BasicBlock *S : successors(BB)) {
1059 if (!DT->isReachableFromEntry(S))
1060 continue;
1061 auto It = PerBlockAccesses.find(S);
1062 // Rename the phi nodes in our successor block
1063 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1064 continue;
1065 AccessList *Accesses = It->second.get();
1066 auto *Phi = cast<MemoryPhi>(&Accesses->front());
1067 Phi->addIncoming(LiveOnEntryDef.get(), BB);
1068 }
1069
George Burgess IVe1100f52016-02-02 22:46:49 +00001070 auto It = PerBlockAccesses.find(BB);
1071 if (It == PerBlockAccesses.end())
1072 return;
1073
1074 auto &Accesses = It->second;
1075 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1076 auto Next = std::next(AI);
1077 // If we have a phi, just remove it. We are going to replace all
1078 // users with live on entry.
1079 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1080 UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1081 else
1082 Accesses->erase(AI);
1083 AI = Next;
1084 }
1085}
1086
Geoff Berryb96d3b22016-06-01 21:30:40 +00001087MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1088 : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
George Burgess IV68ac9412018-02-23 23:07:18 +00001089 NextID(0) {
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001090 buildMemorySSA();
Geoff Berryb96d3b22016-06-01 21:30:40 +00001091}
1092
George Burgess IVe1100f52016-02-02 22:46:49 +00001093MemorySSA::~MemorySSA() {
1094 // Drop all our references
1095 for (const auto &Pair : PerBlockAccesses)
1096 for (MemoryAccess &MA : *Pair.second)
1097 MA.dropAllReferences();
1098}
1099
Daniel Berlin14300262016-06-21 18:39:20 +00001100MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001101 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1102
1103 if (Res.second)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001104 Res.first->second = llvm::make_unique<AccessList>();
George Burgess IVe1100f52016-02-02 22:46:49 +00001105 return Res.first->second.get();
1106}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001107
Daniel Berlind602e042017-01-25 20:56:19 +00001108MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1109 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1110
1111 if (Res.second)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001112 Res.first->second = llvm::make_unique<DefsList>();
Daniel Berlind602e042017-01-25 20:56:19 +00001113 return Res.first->second.get();
1114}
George Burgess IVe1100f52016-02-02 22:46:49 +00001115
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001116namespace llvm {
1117
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001118/// This class is a batch walker of all MemoryUse's in the program, and points
1119/// their defining access at the thing that actually clobbers them. Because it
1120/// is a batch walker that touches everything, it does not operate like the
1121/// other walkers. This walker is basically performing a top-down SSA renaming
1122/// pass, where the version stack is used as the cache. This enables it to be
1123/// significantly more time and memory efficient than using the regular walker,
1124/// which is walking bottom-up.
1125class MemorySSA::OptimizeUses {
1126public:
1127 OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
1128 DominatorTree *DT)
1129 : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
1130 Walker = MSSA->getWalker();
1131 }
1132
1133 void optimizeUses();
1134
1135private:
1136 /// This represents where a given memorylocation is in the stack.
1137 struct MemlocStackInfo {
1138 // This essentially is keeping track of versions of the stack. Whenever
1139 // the stack changes due to pushes or pops, these versions increase.
1140 unsigned long StackEpoch;
1141 unsigned long PopEpoch;
1142 // This is the lower bound of places on the stack to check. It is equal to
1143 // the place the last stack walk ended.
1144 // Note: Correctness depends on this being initialized to 0, which densemap
1145 // does
1146 unsigned long LowerBound;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001147 const BasicBlock *LowerBoundBlock;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001148 // This is where the last walk for this memory location ended.
1149 unsigned long LastKill;
1150 bool LastKillValid;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001151 Optional<AliasResult> AR;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001152 };
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001153
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001154 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1155 SmallVectorImpl<MemoryAccess *> &,
1156 DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001157
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001158 MemorySSA *MSSA;
1159 MemorySSAWalker *Walker;
1160 AliasAnalysis *AA;
1161 DominatorTree *DT;
1162};
1163
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001164} // end namespace llvm
1165
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001166/// Optimize the uses in a given block This is basically the SSA renaming
1167/// algorithm, with one caveat: We are able to use a single stack for all
1168/// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
1169/// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
1170/// going to be some position in that stack of possible ones.
1171///
1172/// We track the stack positions that each MemoryLocation needs
1173/// to check, and last ended at. This is because we only want to check the
1174/// things that changed since last time. The same MemoryLocation should
1175/// get clobbered by the same store (getModRefInfo does not use invariantness or
1176/// things like this, and if they start, we can modify MemoryLocOrCall to
1177/// include relevant data)
1178void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1179 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1180 SmallVectorImpl<MemoryAccess *> &VersionStack,
1181 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1182
1183 /// If no accesses, nothing to do.
1184 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1185 if (Accesses == nullptr)
1186 return;
1187
1188 // Pop everything that doesn't dominate the current block off the stack,
1189 // increment the PopEpoch to account for this.
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001190 while (true) {
1191 assert(
1192 !VersionStack.empty() &&
1193 "Version stack should have liveOnEntry sentinel dominating everything");
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001194 BasicBlock *BackBlock = VersionStack.back()->getBlock();
1195 if (DT->dominates(BackBlock, BB))
1196 break;
1197 while (VersionStack.back()->getBlock() == BackBlock)
1198 VersionStack.pop_back();
1199 ++PopEpoch;
1200 }
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001201
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001202 for (MemoryAccess &MA : *Accesses) {
1203 auto *MU = dyn_cast<MemoryUse>(&MA);
1204 if (!MU) {
1205 VersionStack.push_back(&MA);
1206 ++StackEpoch;
1207 continue;
1208 }
1209
George Burgess IV024f3d22016-08-03 19:57:02 +00001210 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001211 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
George Burgess IV024f3d22016-08-03 19:57:02 +00001212 continue;
1213 }
1214
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001215 MemoryLocOrCall UseMLOC(MU);
1216 auto &LocInfo = LocStackInfo[UseMLOC];
Daniel Berlin26fcea92016-08-02 20:02:21 +00001217 // If the pop epoch changed, it means we've removed stuff from top of
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001218 // stack due to changing blocks. We may have to reset the lower bound or
1219 // last kill info.
1220 if (LocInfo.PopEpoch != PopEpoch) {
1221 LocInfo.PopEpoch = PopEpoch;
1222 LocInfo.StackEpoch = StackEpoch;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001223 // If the lower bound was in something that no longer dominates us, we
1224 // have to reset it.
1225 // We can't simply track stack size, because the stack may have had
1226 // pushes/pops in the meantime.
1227 // XXX: This is non-optimal, but only is slower cases with heavily
1228 // branching dominator trees. To get the optimal number of queries would
1229 // be to make lowerbound and lastkill a per-loc stack, and pop it until
1230 // the top of that stack dominates us. This does not seem worth it ATM.
1231 // A much cheaper optimization would be to always explore the deepest
1232 // branch of the dominator tree first. This will guarantee this resets on
1233 // the smallest set of blocks.
1234 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
Daniel Berlin1e98c042016-09-26 17:22:54 +00001235 !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001236 // Reset the lower bound of things to check.
1237 // TODO: Some day we should be able to reset to last kill, rather than
1238 // 0.
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001239 LocInfo.LowerBound = 0;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001240 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001241 LocInfo.LastKillValid = false;
1242 }
1243 } else if (LocInfo.StackEpoch != StackEpoch) {
1244 // If all that has changed is the StackEpoch, we only have to check the
1245 // new things on the stack, because we've checked everything before. In
1246 // this case, the lower bound of things to check remains the same.
1247 LocInfo.PopEpoch = PopEpoch;
1248 LocInfo.StackEpoch = StackEpoch;
1249 }
1250 if (!LocInfo.LastKillValid) {
1251 LocInfo.LastKill = VersionStack.size() - 1;
1252 LocInfo.LastKillValid = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001253 LocInfo.AR = MayAlias;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001254 }
1255
1256 // At this point, we should have corrected last kill and LowerBound to be
1257 // in bounds.
1258 assert(LocInfo.LowerBound < VersionStack.size() &&
1259 "Lower bound out of range");
1260 assert(LocInfo.LastKill < VersionStack.size() &&
1261 "Last kill info out of range");
1262 // In any case, the new upper bound is the top of the stack.
1263 unsigned long UpperBound = VersionStack.size() - 1;
1264
1265 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001266 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1267 << *(MU->getMemoryInst()) << ")"
1268 << " because there are "
1269 << UpperBound - LocInfo.LowerBound
1270 << " stores to disambiguate\n");
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001271 // Because we did not walk, LastKill is no longer valid, as this may
1272 // have been a kill.
1273 LocInfo.LastKillValid = false;
1274 continue;
1275 }
1276 bool FoundClobberResult = false;
1277 while (UpperBound > LocInfo.LowerBound) {
1278 if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1279 // For phis, use the walker, see where we ended up, go there
1280 Instruction *UseInst = MU->getMemoryInst();
1281 MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
1282 // We are guaranteed to find it or something is wrong
1283 while (VersionStack[UpperBound] != Result) {
1284 assert(UpperBound != 0);
1285 --UpperBound;
1286 }
1287 FoundClobberResult = true;
1288 break;
1289 }
1290
1291 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
Daniel Berlindf101192016-08-03 00:01:46 +00001292 // If the lifetime of the pointer ends at this instruction, it's live on
1293 // entry.
1294 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1295 // Reset UpperBound to liveOnEntryDef's place in the stack
1296 UpperBound = 0;
1297 FoundClobberResult = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001298 LocInfo.AR = MustAlias;
Daniel Berlindf101192016-08-03 00:01:46 +00001299 break;
1300 }
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001301 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1302 if (CA.IsClobber) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001303 FoundClobberResult = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001304 LocInfo.AR = CA.AR;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001305 break;
1306 }
1307 --UpperBound;
1308 }
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001309
1310 // Note: Phis always have AliasResult AR set to MayAlias ATM.
1311
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001312 // At the end of this loop, UpperBound is either a clobber, or lower bound
1313 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1314 if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001315 // We were last killed now by where we got to
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001316 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1317 LocInfo.AR = None;
1318 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001319 LocInfo.LastKill = UpperBound;
1320 } else {
1321 // Otherwise, we checked all the new ones, and now we know we can get to
1322 // LastKill.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001323 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001324 }
1325 LocInfo.LowerBound = VersionStack.size() - 1;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001326 LocInfo.LowerBoundBlock = BB;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001327 }
1328}
1329
1330/// Optimize uses to point to their actual clobbering definitions.
1331void MemorySSA::OptimizeUses::optimizeUses() {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001332 SmallVector<MemoryAccess *, 16> VersionStack;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001333 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001334 VersionStack.push_back(MSSA->getLiveOnEntryDef());
1335
1336 unsigned long StackEpoch = 1;
1337 unsigned long PopEpoch = 1;
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001338 // We perform a non-recursive top-down dominator tree walk.
Daniel Berlin7ac3d742016-08-05 22:09:14 +00001339 for (const auto *DomNode : depth_first(DT->getRootNode()))
1340 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1341 LocStackInfo);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001342}
1343
Daniel Berlin3d512a22016-08-22 19:14:30 +00001344void MemorySSA::placePHINodes(
Michael Zolotukhin67cfbaa2018-05-15 18:40:29 +00001345 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
Daniel Berlin3d512a22016-08-22 19:14:30 +00001346 // Determine where our MemoryPhi's should go
1347 ForwardIDFCalculator IDFs(*DT);
1348 IDFs.setDefiningBlocks(DefiningBlocks);
Daniel Berlin3d512a22016-08-22 19:14:30 +00001349 SmallVector<BasicBlock *, 32> IDFBlocks;
1350 IDFs.calculate(IDFBlocks);
1351
1352 // Now place MemoryPhi nodes.
Daniel Berlind602e042017-01-25 20:56:19 +00001353 for (auto &BB : IDFBlocks)
1354 createMemoryPhi(BB);
Daniel Berlin3d512a22016-08-22 19:14:30 +00001355}
1356
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001357void MemorySSA::buildMemorySSA() {
George Burgess IVe1100f52016-02-02 22:46:49 +00001358 // We create an access to represent "live on entry", for things like
1359 // arguments or users of globals, where the memory they use is defined before
1360 // the beginning of the function. We do not actually insert it into the IR.
1361 // We do not define a live on exit for the immediate uses, and thus our
1362 // semantics do *not* imply that something with no immediate uses can simply
1363 // be removed.
1364 BasicBlock &StartingPoint = F.getEntryBlock();
George Burgess IV612cf212018-02-27 06:43:19 +00001365 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1366 &StartingPoint, NextID++));
George Burgess IVe1100f52016-02-02 22:46:49 +00001367
1368 // We maintain lists of memory accesses per-block, trading memory for time. We
1369 // could just look up the memory access for every possible instruction in the
1370 // stream.
1371 SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
George Burgess IVe1100f52016-02-02 22:46:49 +00001372 // Go through each block, figure out where defs occur, and chain together all
1373 // the accesses.
1374 for (BasicBlock &B : F) {
Daniel Berlin7898ca62016-02-07 01:52:15 +00001375 bool InsertIntoDef = false;
Daniel Berlinada263d2016-06-20 20:21:33 +00001376 AccessList *Accesses = nullptr;
Daniel Berlind602e042017-01-25 20:56:19 +00001377 DefsList *Defs = nullptr;
George Burgess IVe1100f52016-02-02 22:46:49 +00001378 for (Instruction &I : B) {
Peter Collingbourneffecb142016-05-26 01:19:17 +00001379 MemoryUseOrDef *MUD = createNewAccess(&I);
George Burgess IVb42b7622016-03-11 19:34:03 +00001380 if (!MUD)
George Burgess IVe1100f52016-02-02 22:46:49 +00001381 continue;
Daniel Berlin1b51a292016-02-07 01:52:19 +00001382
George Burgess IVe1100f52016-02-02 22:46:49 +00001383 if (!Accesses)
1384 Accesses = getOrCreateAccessList(&B);
George Burgess IVb42b7622016-03-11 19:34:03 +00001385 Accesses->push_back(MUD);
Daniel Berlind602e042017-01-25 20:56:19 +00001386 if (isa<MemoryDef>(MUD)) {
1387 InsertIntoDef = true;
1388 if (!Defs)
1389 Defs = getOrCreateDefsList(&B);
1390 Defs->push_back(*MUD);
1391 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001392 }
Daniel Berlin7898ca62016-02-07 01:52:15 +00001393 if (InsertIntoDef)
1394 DefiningBlocks.insert(&B);
Daniel Berlin1b51a292016-02-07 01:52:19 +00001395 }
Michael Zolotukhin67cfbaa2018-05-15 18:40:29 +00001396 placePHINodes(DefiningBlocks);
George Burgess IVe1100f52016-02-02 22:46:49 +00001397
1398 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1399 // filled in with all blocks.
1400 SmallPtrSet<BasicBlock *, 16> Visited;
1401 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1402
George Burgess IV5f308972016-07-19 01:29:15 +00001403 CachingWalker *Walker = getWalkerImpl();
1404
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001405 OptimizeUses(this, Walker, AA, DT).optimizeUses();
George Burgess IV5f308972016-07-19 01:29:15 +00001406
George Burgess IVe1100f52016-02-02 22:46:49 +00001407 // Mark the uses in unreachable blocks as live on entry, so that they go
1408 // somewhere.
1409 for (auto &BB : F)
1410 if (!Visited.count(&BB))
1411 markUnreachableAsLiveOnEntry(&BB);
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001412}
George Burgess IVe1100f52016-02-02 22:46:49 +00001413
George Burgess IV5f308972016-07-19 01:29:15 +00001414MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1415
1416MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001417 if (Walker)
1418 return Walker.get();
1419
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001420 Walker = llvm::make_unique<CachingWalker>(this, AA, DT);
Geoff Berryb96d3b22016-06-01 21:30:40 +00001421 return Walker.get();
George Burgess IVe1100f52016-02-02 22:46:49 +00001422}
1423
Daniel Berlind602e042017-01-25 20:56:19 +00001424// This is a helper function used by the creation routines. It places NewAccess
1425// into the access and defs lists for a given basic block, at the given
1426// insertion point.
1427void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1428 const BasicBlock *BB,
1429 InsertionPlace Point) {
1430 auto *Accesses = getOrCreateAccessList(BB);
1431 if (Point == Beginning) {
1432 // If it's a phi node, it goes first, otherwise, it goes after any phi
1433 // nodes.
1434 if (isa<MemoryPhi>(NewAccess)) {
1435 Accesses->push_front(NewAccess);
1436 auto *Defs = getOrCreateDefsList(BB);
1437 Defs->push_front(*NewAccess);
1438 } else {
1439 auto AI = find_if_not(
1440 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1441 Accesses->insert(AI, NewAccess);
1442 if (!isa<MemoryUse>(NewAccess)) {
1443 auto *Defs = getOrCreateDefsList(BB);
1444 auto DI = find_if_not(
1445 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1446 Defs->insert(DI, *NewAccess);
1447 }
1448 }
1449 } else {
1450 Accesses->push_back(NewAccess);
1451 if (!isa<MemoryUse>(NewAccess)) {
1452 auto *Defs = getOrCreateDefsList(BB);
1453 Defs->push_back(*NewAccess);
1454 }
1455 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001456 BlockNumberingValid.erase(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001457}
1458
1459void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1460 AccessList::iterator InsertPt) {
1461 auto *Accesses = getWritableBlockAccesses(BB);
1462 bool WasEnd = InsertPt == Accesses->end();
1463 Accesses->insert(AccessList::iterator(InsertPt), What);
1464 if (!isa<MemoryUse>(What)) {
1465 auto *Defs = getOrCreateDefsList(BB);
1466 // If we got asked to insert at the end, we have an easy job, just shove it
1467 // at the end. If we got asked to insert before an existing def, we also get
Zhaoshi Zhenga5531f22018-04-04 21:08:11 +00001468 // an iterator. If we got asked to insert before a use, we have to hunt for
Daniel Berlind602e042017-01-25 20:56:19 +00001469 // the next def.
1470 if (WasEnd) {
1471 Defs->push_back(*What);
1472 } else if (isa<MemoryDef>(InsertPt)) {
1473 Defs->insert(InsertPt->getDefsIterator(), *What);
1474 } else {
1475 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1476 ++InsertPt;
1477 // Either we found a def, or we are inserting at the end
1478 if (InsertPt == Accesses->end())
1479 Defs->push_back(*What);
1480 else
1481 Defs->insert(InsertPt->getDefsIterator(), *What);
1482 }
1483 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001484 BlockNumberingValid.erase(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001485}
1486
George Burgess IV5676a5d2018-08-22 22:34:38 +00001487void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
1488 // Keep it in the lookup tables, remove from the lists
1489 removeFromLists(What, false);
1490
1491 // Note that moving should implicitly invalidate the optimized state of a
1492 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1493 // MemoryDef.
1494 if (auto *MD = dyn_cast<MemoryDef>(What))
1495 MD->resetOptimized();
1496 What->setBlock(BB);
1497}
1498
Zhaoshi Zhenga5531f22018-04-04 21:08:11 +00001499// Move What before Where in the IR. The end result is that What will belong to
Daniel Berlin60ead052017-01-28 01:23:13 +00001500// the right lists and have the right Block set, but will not otherwise be
1501// correct. It will not have the right defining access, and if it is a def,
1502// things below it will not properly be updated.
1503void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1504 AccessList::iterator Where) {
George Burgess IV5676a5d2018-08-22 22:34:38 +00001505 prepareForMoveTo(What, BB);
Daniel Berlin60ead052017-01-28 01:23:13 +00001506 insertIntoListsBefore(What, BB, Where);
1507}
1508
Alina Sbirlea0f533552018-07-11 22:11:46 +00001509void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001510 InsertionPlace Point) {
Alina Sbirlea0f533552018-07-11 22:11:46 +00001511 if (isa<MemoryPhi>(What)) {
1512 assert(Point == Beginning &&
1513 "Can only move a Phi at the beginning of the block");
1514 // Update lookup table entry
1515 ValueToMemoryAccess.erase(What->getBlock());
1516 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1517 (void)Inserted;
1518 assert(Inserted && "Cannot move a Phi to a block that already has one");
1519 }
1520
George Burgess IV5676a5d2018-08-22 22:34:38 +00001521 prepareForMoveTo(What, BB);
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001522 insertIntoListsForBlock(What, BB, Point);
1523}
1524
Daniel Berlin14300262016-06-21 18:39:20 +00001525MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1526 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
Daniel Berlin14300262016-06-21 18:39:20 +00001527 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001528 // Phi's always are placed at the front of the block.
Daniel Berlind602e042017-01-25 20:56:19 +00001529 insertIntoListsForBlock(Phi, BB, Beginning);
Daniel Berlin5130cc82016-07-31 21:08:20 +00001530 ValueToMemoryAccess[BB] = Phi;
Daniel Berlin14300262016-06-21 18:39:20 +00001531 return Phi;
1532}
1533
1534MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1535 MemoryAccess *Definition) {
1536 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1537 MemoryUseOrDef *NewAccess = createNewAccess(I);
1538 assert(
1539 NewAccess != nullptr &&
1540 "Tried to create a memory access for a non-memory touching instruction");
1541 NewAccess->setDefiningAccess(Definition);
1542 return NewAccess;
1543}
1544
Daniel Berlind952cea2017-04-07 01:28:36 +00001545// Return true if the instruction has ordering constraints.
1546// Note specifically that this only considers stores and loads
1547// because others are still considered ModRef by getModRefInfo.
1548static inline bool isOrdered(const Instruction *I) {
1549 if (auto *SI = dyn_cast<StoreInst>(I)) {
1550 if (!SI->isUnordered())
1551 return true;
1552 } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1553 if (!LI->isUnordered())
1554 return true;
1555 }
1556 return false;
1557}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001558
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001559/// Helper function to create new memory accesses
Peter Collingbourneffecb142016-05-26 01:19:17 +00001560MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) {
Peter Collingbourneb9aa1f42016-05-26 04:58:46 +00001561 // The assume intrinsic has a control dependency which we model by claiming
1562 // that it writes arbitrarily. Ignore that fake memory dependency here.
1563 // FIXME: Replace this special casing with a more accurate modelling of
1564 // assume's control dependency.
1565 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1566 if (II->getIntrinsicID() == Intrinsic::assume)
1567 return nullptr;
1568
George Burgess IVe1100f52016-02-02 22:46:49 +00001569 // Find out what affect this instruction has on memory.
Alina Sbirlea967e7962017-08-01 00:28:29 +00001570 ModRefInfo ModRef = AA->getModRefInfo(I, None);
Daniel Berlind952cea2017-04-07 01:28:36 +00001571 // The isOrdered check is used to ensure that volatiles end up as defs
1572 // (atomics end up as ModRef right now anyway). Until we separate the
1573 // ordering chain from the memory chain, this enables people to see at least
1574 // some relative ordering to volatiles. Note that getClobberingMemoryAccess
1575 // will still give an answer that bypasses other volatile loads. TODO:
1576 // Separate memory aliasing and ordering into two different chains so that we
1577 // can precisely represent both "what memory will this read/write/is clobbered
1578 // by" and "what instructions can I move this past".
Alina Sbirlea63d22502017-12-05 20:12:23 +00001579 bool Def = isModSet(ModRef) || isOrdered(I);
1580 bool Use = isRefSet(ModRef);
George Burgess IVe1100f52016-02-02 22:46:49 +00001581
1582 // It's possible for an instruction to not modify memory at all. During
1583 // construction, we ignore them.
Peter Collingbourneffecb142016-05-26 01:19:17 +00001584 if (!Def && !Use)
George Burgess IVe1100f52016-02-02 22:46:49 +00001585 return nullptr;
1586
George Burgess IVb42b7622016-03-11 19:34:03 +00001587 MemoryUseOrDef *MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +00001588 if (Def)
George Burgess IVb42b7622016-03-11 19:34:03 +00001589 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
George Burgess IVe1100f52016-02-02 22:46:49 +00001590 else
George Burgess IVb42b7622016-03-11 19:34:03 +00001591 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
Daniel Berlin5130cc82016-07-31 21:08:20 +00001592 ValueToMemoryAccess[I] = MUD;
George Burgess IVb42b7622016-03-11 19:34:03 +00001593 return MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +00001594}
1595
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001596/// Returns true if \p Replacer dominates \p Replacee .
George Burgess IVe1100f52016-02-02 22:46:49 +00001597bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1598 const MemoryAccess *Replacee) const {
1599 if (isa<MemoryUseOrDef>(Replacee))
1600 return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1601 const auto *MP = cast<MemoryPhi>(Replacee);
1602 // For a phi node, the use occurs in the predecessor block of the phi node.
1603 // Since we may occur multiple times in the phi node, we have to check each
1604 // operand to ensure Replacer dominates each operand where Replacee occurs.
1605 for (const Use &Arg : MP->operands()) {
George Burgess IVb5a229f2016-02-02 23:15:26 +00001606 if (Arg.get() != Replacee &&
George Burgess IVe1100f52016-02-02 22:46:49 +00001607 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1608 return false;
1609 }
1610 return true;
1611}
1612
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001613/// Properly remove \p MA from all of MemorySSA's lookup tables.
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001614void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1615 assert(MA->use_empty() &&
1616 "Trying to remove memory access that still has uses");
Daniel Berlin5c46b942016-07-19 22:49:43 +00001617 BlockNumbering.erase(MA);
George Burgess IV2cbf9732018-06-22 22:34:07 +00001618 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001619 MUD->setDefiningAccess(nullptr);
1620 // Invalidate our walker's cache if necessary
1621 if (!isa<MemoryUse>(MA))
1622 Walker->invalidateInfo(MA);
George Burgess IV2cbf9732018-06-22 22:34:07 +00001623
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001624 Value *MemoryInst;
George Burgess IV2cbf9732018-06-22 22:34:07 +00001625 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001626 MemoryInst = MUD->getMemoryInst();
George Burgess IV2cbf9732018-06-22 22:34:07 +00001627 else
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001628 MemoryInst = MA->getBlock();
George Burgess IV2cbf9732018-06-22 22:34:07 +00001629
Daniel Berlin5130cc82016-07-31 21:08:20 +00001630 auto VMA = ValueToMemoryAccess.find(MemoryInst);
1631 if (VMA->second == MA)
1632 ValueToMemoryAccess.erase(VMA);
Daniel Berlin60ead052017-01-28 01:23:13 +00001633}
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001634
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001635/// Properly remove \p MA from all of MemorySSA's lists.
Daniel Berlin60ead052017-01-28 01:23:13 +00001636///
1637/// Because of the way the intrusive list and use lists work, it is important to
1638/// do removal in the right order.
1639/// ShouldDelete defaults to true, and will cause the memory access to also be
1640/// deleted, not just removed.
1641void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001642 BasicBlock *BB = MA->getBlock();
Daniel Berlind602e042017-01-25 20:56:19 +00001643 // The access list owns the reference, so we erase it from the non-owning list
1644 // first.
1645 if (!isa<MemoryUse>(MA)) {
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001646 auto DefsIt = PerBlockDefs.find(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001647 std::unique_ptr<DefsList> &Defs = DefsIt->second;
1648 Defs->remove(*MA);
1649 if (Defs->empty())
1650 PerBlockDefs.erase(DefsIt);
1651 }
1652
Daniel Berlin60ead052017-01-28 01:23:13 +00001653 // The erase call here will delete it. If we don't want it deleted, we call
1654 // remove instead.
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001655 auto AccessIt = PerBlockAccesses.find(BB);
Daniel Berlinada263d2016-06-20 20:21:33 +00001656 std::unique_ptr<AccessList> &Accesses = AccessIt->second;
Daniel Berlin60ead052017-01-28 01:23:13 +00001657 if (ShouldDelete)
1658 Accesses->erase(MA);
1659 else
1660 Accesses->remove(MA);
1661
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001662 if (Accesses->empty()) {
George Burgess IVe0e6e482016-03-02 02:35:04 +00001663 PerBlockAccesses.erase(AccessIt);
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001664 BlockNumberingValid.erase(BB);
1665 }
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001666}
1667
George Burgess IVe1100f52016-02-02 22:46:49 +00001668void MemorySSA::print(raw_ostream &OS) const {
1669 MemorySSAAnnotatedWriter Writer(this);
1670 F.print(OS, &Writer);
1671}
1672
Aaron Ballman615eb472017-10-15 14:32:27 +00001673#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Daniel Berlin78cbd282017-02-20 22:26:03 +00001674LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
Matthias Braun8c209aa2017-01-28 02:02:38 +00001675#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001676
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001677void MemorySSA::verifyMemorySSA() const {
1678 verifyDefUses(F);
1679 verifyDomination(F);
Daniel Berlin14300262016-06-21 18:39:20 +00001680 verifyOrdering(F);
George Burgess IV97ec6242018-06-25 05:30:36 +00001681 verifyDominationNumbers(F);
Geoff Berrycdf53332016-08-08 17:52:01 +00001682 Walker->verify(this);
Alina Sbirleaf5403d82018-08-29 18:26:04 +00001683 verifyClobberSanity(F);
1684}
1685
1686/// Check sanity of the clobbering instruction for access MA.
1687void MemorySSA::checkClobberSanityAccess(const MemoryAccess *MA) const {
1688 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
1689 if (!MUD->isOptimized())
1690 return;
1691 auto *I = MUD->getMemoryInst();
1692 auto Loc = MemoryLocation::getOrNone(I);
1693 if (Loc == None)
1694 return;
1695 auto *Clobber = MUD->getOptimized();
1696 UpwardsMemoryQuery Q(I, MUD);
1697 checkClobberSanity(MUD, Clobber, *Loc, *this, Q, *AA);
1698 }
1699}
1700
1701void MemorySSA::verifyClobberSanity(const Function &F) const {
1702#if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
1703 for (const BasicBlock &BB : F) {
1704 const AccessList *Accesses = getBlockAccesses(&BB);
1705 if (!Accesses)
1706 continue;
1707 for (const MemoryAccess &MA : *Accesses)
1708 checkClobberSanityAccess(&MA);
1709 }
1710#endif
Daniel Berlin14300262016-06-21 18:39:20 +00001711}
1712
George Burgess IV97ec6242018-06-25 05:30:36 +00001713/// Verify that all of the blocks we believe to have valid domination numbers
1714/// actually have valid domination numbers.
1715void MemorySSA::verifyDominationNumbers(const Function &F) const {
1716#ifndef NDEBUG
1717 if (BlockNumberingValid.empty())
1718 return;
1719
1720 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1721 for (const BasicBlock &BB : F) {
1722 if (!ValidBlocks.count(&BB))
1723 continue;
1724
1725 ValidBlocks.erase(&BB);
1726
1727 const AccessList *Accesses = getBlockAccesses(&BB);
1728 // It's correct to say an empty block has valid numbering.
1729 if (!Accesses)
1730 continue;
1731
1732 // Block numbering starts at 1.
1733 unsigned long LastNumber = 0;
1734 for (const MemoryAccess &MA : *Accesses) {
1735 auto ThisNumberIter = BlockNumbering.find(&MA);
1736 assert(ThisNumberIter != BlockNumbering.end() &&
1737 "MemoryAccess has no domination number in a valid block!");
1738
1739 unsigned long ThisNumber = ThisNumberIter->second;
1740 assert(ThisNumber > LastNumber &&
1741 "Domination numbers should be strictly increasing!");
1742 LastNumber = ThisNumber;
1743 }
1744 }
1745
1746 assert(ValidBlocks.empty() &&
1747 "All valid BasicBlocks should exist in F -- dangling pointers?");
1748#endif
1749}
1750
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001751/// Verify that the order and existence of MemoryAccesses matches the
Daniel Berlin14300262016-06-21 18:39:20 +00001752/// order and existence of memory affecting instructions.
1753void MemorySSA::verifyOrdering(Function &F) const {
George Burgess IV6a9aa022018-08-28 00:32:32 +00001754#ifndef NDEBUG
Daniel Berlin14300262016-06-21 18:39:20 +00001755 // Walk all the blocks, comparing what the lookups think and what the access
1756 // lists think, as well as the order in the blocks vs the order in the access
1757 // lists.
1758 SmallVector<MemoryAccess *, 32> ActualAccesses;
Daniel Berlind602e042017-01-25 20:56:19 +00001759 SmallVector<MemoryAccess *, 32> ActualDefs;
Daniel Berlin14300262016-06-21 18:39:20 +00001760 for (BasicBlock &B : F) {
1761 const AccessList *AL = getBlockAccesses(&B);
Daniel Berlind602e042017-01-25 20:56:19 +00001762 const auto *DL = getBlockDefs(&B);
Daniel Berlin14300262016-06-21 18:39:20 +00001763 MemoryAccess *Phi = getMemoryAccess(&B);
Daniel Berlind602e042017-01-25 20:56:19 +00001764 if (Phi) {
Daniel Berlin14300262016-06-21 18:39:20 +00001765 ActualAccesses.push_back(Phi);
Daniel Berlind602e042017-01-25 20:56:19 +00001766 ActualDefs.push_back(Phi);
1767 }
1768
Daniel Berlin14300262016-06-21 18:39:20 +00001769 for (Instruction &I : B) {
1770 MemoryAccess *MA = getMemoryAccess(&I);
Daniel Berlind602e042017-01-25 20:56:19 +00001771 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1772 "We have memory affecting instructions "
1773 "in this block but they are not in the "
1774 "access list or defs list");
1775 if (MA) {
Daniel Berlin14300262016-06-21 18:39:20 +00001776 ActualAccesses.push_back(MA);
Daniel Berlind602e042017-01-25 20:56:19 +00001777 if (isa<MemoryDef>(MA))
1778 ActualDefs.push_back(MA);
1779 }
Daniel Berlin14300262016-06-21 18:39:20 +00001780 }
1781 // Either we hit the assert, really have no accesses, or we have both
Daniel Berlind602e042017-01-25 20:56:19 +00001782 // accesses and an access list.
1783 // Same with defs.
1784 if (!AL && !DL)
Daniel Berlin14300262016-06-21 18:39:20 +00001785 continue;
1786 assert(AL->size() == ActualAccesses.size() &&
1787 "We don't have the same number of accesses in the block as on the "
1788 "access list");
Davide Italiano6c77de02017-01-30 03:16:43 +00001789 assert((DL || ActualDefs.size() == 0) &&
1790 "Either we should have a defs list, or we should have no defs");
Daniel Berlind602e042017-01-25 20:56:19 +00001791 assert((!DL || DL->size() == ActualDefs.size()) &&
1792 "We don't have the same number of defs in the block as on the "
1793 "def list");
Daniel Berlin14300262016-06-21 18:39:20 +00001794 auto ALI = AL->begin();
1795 auto AAI = ActualAccesses.begin();
1796 while (ALI != AL->end() && AAI != ActualAccesses.end()) {
1797 assert(&*ALI == *AAI && "Not the same accesses in the same order");
1798 ++ALI;
1799 ++AAI;
1800 }
1801 ActualAccesses.clear();
Daniel Berlind602e042017-01-25 20:56:19 +00001802 if (DL) {
1803 auto DLI = DL->begin();
1804 auto ADI = ActualDefs.begin();
1805 while (DLI != DL->end() && ADI != ActualDefs.end()) {
1806 assert(&*DLI == *ADI && "Not the same defs in the same order");
1807 ++DLI;
1808 ++ADI;
1809 }
1810 }
1811 ActualDefs.clear();
Daniel Berlin14300262016-06-21 18:39:20 +00001812 }
George Burgess IV6a9aa022018-08-28 00:32:32 +00001813#endif
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001814}
1815
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001816/// Verify the domination properties of MemorySSA by checking that each
George Burgess IVe1100f52016-02-02 22:46:49 +00001817/// definition dominates all of its uses.
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001818void MemorySSA::verifyDomination(Function &F) const {
Daniel Berlin7af95872016-08-05 21:47:20 +00001819#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001820 for (BasicBlock &B : F) {
1821 // Phi nodes are attached to basic blocks
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001822 if (MemoryPhi *MP = getMemoryAccess(&B))
1823 for (const Use &U : MP->uses())
1824 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
Daniel Berlin7af95872016-08-05 21:47:20 +00001825
George Burgess IVe1100f52016-02-02 22:46:49 +00001826 for (Instruction &I : B) {
1827 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
1828 if (!MD)
1829 continue;
1830
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001831 for (const Use &U : MD->uses())
1832 assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
George Burgess IVe1100f52016-02-02 22:46:49 +00001833 }
1834 }
Daniel Berlin7af95872016-08-05 21:47:20 +00001835#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001836}
1837
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001838/// Verify the def-use lists in MemorySSA, by verifying that \p Use
George Burgess IVe1100f52016-02-02 22:46:49 +00001839/// appears in the use list of \p Def.
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001840void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
Daniel Berlin7af95872016-08-05 21:47:20 +00001841#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001842 // The live on entry use may cause us to get a NULL def here
Daniel Berlin7af95872016-08-05 21:47:20 +00001843 if (!Def)
1844 assert(isLiveOnEntryDef(Use) &&
1845 "Null def but use not point to live on entry def");
1846 else
Daniel Berlinda2f38e2016-08-11 21:26:50 +00001847 assert(is_contained(Def->users(), Use) &&
Daniel Berlin7af95872016-08-05 21:47:20 +00001848 "Did not find use in def's use list");
1849#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001850}
1851
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001852/// Verify the immediate use information, by walking all the memory
George Burgess IVe1100f52016-02-02 22:46:49 +00001853/// accesses and verifying that, for each use, it appears in the
1854/// appropriate def's use list
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001855void MemorySSA::verifyDefUses(Function &F) const {
George Burgess IV6a9aa022018-08-28 00:32:32 +00001856#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001857 for (BasicBlock &B : F) {
1858 // Phi nodes are attached to basic blocks
Daniel Berlin14300262016-06-21 18:39:20 +00001859 if (MemoryPhi *Phi = getMemoryAccess(&B)) {
David Majnemer580e7542016-06-25 00:04:06 +00001860 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1861 pred_begin(&B), pred_end(&B))) &&
Daniel Berlin14300262016-06-21 18:39:20 +00001862 "Incomplete MemoryPhi Node");
Alina Sbirlea201d02c2018-06-20 21:06:13 +00001863 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001864 verifyUseInDefs(Phi->getIncomingValue(I), Phi);
Alina Sbirlea201d02c2018-06-20 21:06:13 +00001865 assert(find(predecessors(&B), Phi->getIncomingBlock(I)) !=
1866 pred_end(&B) &&
1867 "Incoming phi block not a block predecessor");
1868 }
Daniel Berlin14300262016-06-21 18:39:20 +00001869 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001870
1871 for (Instruction &I : B) {
George Burgess IV66837ab2016-11-01 21:17:46 +00001872 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
1873 verifyUseInDefs(MA->getDefiningAccess(), MA);
George Burgess IVe1100f52016-02-02 22:46:49 +00001874 }
1875 }
1876 }
George Burgess IV6a9aa022018-08-28 00:32:32 +00001877#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001878}
1879
Daniel Berlin5c46b942016-07-19 22:49:43 +00001880/// Perform a local numbering on blocks so that instruction ordering can be
1881/// determined in constant time.
1882/// TODO: We currently just number in order. If we numbered by N, we could
1883/// allow at least N-1 sequences of insertBefore or insertAfter (and at least
1884/// log2(N) sequences of mixed before and after) without needing to invalidate
1885/// the numbering.
1886void MemorySSA::renumberBlock(const BasicBlock *B) const {
1887 // The pre-increment ensures the numbers really start at 1.
1888 unsigned long CurrentNumber = 0;
1889 const AccessList *AL = getBlockAccesses(B);
1890 assert(AL != nullptr && "Asking to renumber an empty block");
1891 for (const auto &I : *AL)
1892 BlockNumbering[&I] = ++CurrentNumber;
1893 BlockNumberingValid.insert(B);
1894}
1895
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001896/// Determine, for two memory accesses in the same block,
George Burgess IVe1100f52016-02-02 22:46:49 +00001897/// whether \p Dominator dominates \p Dominatee.
1898/// \returns True if \p Dominator dominates \p Dominatee.
1899bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
1900 const MemoryAccess *Dominatee) const {
Daniel Berlin5c46b942016-07-19 22:49:43 +00001901 const BasicBlock *DominatorBlock = Dominator->getBlock();
Daniel Berlin5c46b942016-07-19 22:49:43 +00001902
Daniel Berlin19860302016-07-19 23:08:08 +00001903 assert((DominatorBlock == Dominatee->getBlock()) &&
Daniel Berlin5c46b942016-07-19 22:49:43 +00001904 "Asking for local domination when accesses are in different blocks!");
Sebastian Pope1f60b12016-06-10 21:36:41 +00001905 // A node dominates itself.
1906 if (Dominatee == Dominator)
1907 return true;
1908
1909 // When Dominatee is defined on function entry, it is not dominated by another
1910 // memory access.
1911 if (isLiveOnEntryDef(Dominatee))
1912 return false;
1913
1914 // When Dominator is defined on function entry, it dominates the other memory
1915 // access.
1916 if (isLiveOnEntryDef(Dominator))
1917 return true;
1918
Daniel Berlin5c46b942016-07-19 22:49:43 +00001919 if (!BlockNumberingValid.count(DominatorBlock))
1920 renumberBlock(DominatorBlock);
George Burgess IVe1100f52016-02-02 22:46:49 +00001921
Daniel Berlin5c46b942016-07-19 22:49:43 +00001922 unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
1923 // All numbers start with 1
1924 assert(DominatorNum != 0 && "Block was not numbered properly");
1925 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
1926 assert(DominateeNum != 0 && "Block was not numbered properly");
1927 return DominatorNum < DominateeNum;
George Burgess IVe1100f52016-02-02 22:46:49 +00001928}
1929
George Burgess IV5f308972016-07-19 01:29:15 +00001930bool MemorySSA::dominates(const MemoryAccess *Dominator,
1931 const MemoryAccess *Dominatee) const {
1932 if (Dominator == Dominatee)
1933 return true;
1934
1935 if (isLiveOnEntryDef(Dominatee))
1936 return false;
1937
1938 if (Dominator->getBlock() != Dominatee->getBlock())
1939 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
1940 return locallyDominates(Dominator, Dominatee);
1941}
1942
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001943bool MemorySSA::dominates(const MemoryAccess *Dominator,
1944 const Use &Dominatee) const {
1945 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
1946 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
1947 // The def must dominate the incoming block of the phi.
1948 if (UseBB != Dominator->getBlock())
1949 return DT->dominates(Dominator->getBlock(), UseBB);
1950 // If the UseBB and the DefBB are the same, compare locally.
1951 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
1952 }
1953 // If it's not a PHI node use, the normal dominates can already handle it.
1954 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
1955}
1956
George Burgess IVe1100f52016-02-02 22:46:49 +00001957const static char LiveOnEntryStr[] = "liveOnEntry";
1958
Reid Kleckner96ab8722017-05-18 17:24:10 +00001959void MemoryAccess::print(raw_ostream &OS) const {
1960 switch (getValueID()) {
1961 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
1962 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
1963 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
1964 }
1965 llvm_unreachable("invalid value id");
1966}
1967
George Burgess IVe1100f52016-02-02 22:46:49 +00001968void MemoryDef::print(raw_ostream &OS) const {
1969 MemoryAccess *UO = getDefiningAccess();
1970
George Burgess IVaa283d82018-06-14 19:55:53 +00001971 auto printID = [&OS](MemoryAccess *A) {
1972 if (A && A->getID())
1973 OS << A->getID();
1974 else
1975 OS << LiveOnEntryStr;
1976 };
1977
George Burgess IVe1100f52016-02-02 22:46:49 +00001978 OS << getID() << " = MemoryDef(";
George Burgess IVaa283d82018-06-14 19:55:53 +00001979 printID(UO);
1980 OS << ")";
1981
1982 if (isOptimized()) {
1983 OS << "->";
1984 printID(getOptimized());
1985
1986 if (Optional<AliasResult> AR = getOptimizedAccessType())
1987 OS << " " << *AR;
1988 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001989}
1990
1991void MemoryPhi::print(raw_ostream &OS) const {
1992 bool First = true;
1993 OS << getID() << " = MemoryPhi(";
1994 for (const auto &Op : operands()) {
1995 BasicBlock *BB = getIncomingBlock(Op);
1996 MemoryAccess *MA = cast<MemoryAccess>(Op);
1997 if (!First)
1998 OS << ',';
1999 else
2000 First = false;
2001
2002 OS << '{';
2003 if (BB->hasName())
2004 OS << BB->getName();
2005 else
2006 BB->printAsOperand(OS, false);
2007 OS << ',';
2008 if (unsigned ID = MA->getID())
2009 OS << ID;
2010 else
2011 OS << LiveOnEntryStr;
2012 OS << '}';
2013 }
2014 OS << ')';
2015}
2016
George Burgess IVe1100f52016-02-02 22:46:49 +00002017void MemoryUse::print(raw_ostream &OS) const {
2018 MemoryAccess *UO = getDefiningAccess();
2019 OS << "MemoryUse(";
2020 if (UO && UO->getID())
2021 OS << UO->getID();
2022 else
2023 OS << LiveOnEntryStr;
2024 OS << ')';
George Burgess IVaa283d82018-06-14 19:55:53 +00002025
2026 if (Optional<AliasResult> AR = getOptimizedAccessType())
2027 OS << " " << *AR;
George Burgess IVe1100f52016-02-02 22:46:49 +00002028}
2029
2030void MemoryAccess::dump() const {
Daniel Berlin78cbd282017-02-20 22:26:03 +00002031// Cannot completely remove virtual function even in release mode.
Aaron Ballman615eb472017-10-15 14:32:27 +00002032#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
George Burgess IVe1100f52016-02-02 22:46:49 +00002033 print(dbgs());
2034 dbgs() << "\n";
Matthias Braun8c209aa2017-01-28 02:02:38 +00002035#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00002036}
2037
Chad Rosier232e29e2016-07-06 21:20:47 +00002038char MemorySSAPrinterLegacyPass::ID = 0;
2039
2040MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
2041 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
2042}
2043
2044void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
2045 AU.setPreservesAll();
2046 AU.addRequired<MemorySSAWrapperPass>();
Chad Rosier232e29e2016-07-06 21:20:47 +00002047}
2048
2049bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
2050 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2051 MSSA.print(dbgs());
2052 if (VerifyMemorySSA)
2053 MSSA.verifyMemorySSA();
2054 return false;
2055}
2056
Chandler Carruthdab4eae2016-11-23 17:53:26 +00002057AnalysisKey MemorySSAAnalysis::Key;
George Burgess IVe1100f52016-02-02 22:46:49 +00002058
Daniel Berlin1e98c042016-09-26 17:22:54 +00002059MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2060 FunctionAnalysisManager &AM) {
Geoff Berryb96d3b22016-06-01 21:30:40 +00002061 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2062 auto &AA = AM.getResult<AAManager>(F);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00002063 return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +00002064}
2065
Geoff Berryb96d3b22016-06-01 21:30:40 +00002066PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2067 FunctionAnalysisManager &AM) {
2068 OS << "MemorySSA for function: " << F.getName() << "\n";
Geoff Berry290a13e2016-08-08 18:27:22 +00002069 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
Geoff Berryb96d3b22016-06-01 21:30:40 +00002070
2071 return PreservedAnalyses::all();
George Burgess IVe1100f52016-02-02 22:46:49 +00002072}
2073
Geoff Berryb96d3b22016-06-01 21:30:40 +00002074PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2075 FunctionAnalysisManager &AM) {
Geoff Berry290a13e2016-08-08 18:27:22 +00002076 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
Geoff Berryb96d3b22016-06-01 21:30:40 +00002077
2078 return PreservedAnalyses::all();
2079}
2080
2081char MemorySSAWrapperPass::ID = 0;
2082
2083MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2084 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2085}
2086
2087void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2088
2089void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00002090 AU.setPreservesAll();
Geoff Berryb96d3b22016-06-01 21:30:40 +00002091 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2092 AU.addRequiredTransitive<AAResultsWrapperPass>();
George Burgess IVe1100f52016-02-02 22:46:49 +00002093}
2094
Geoff Berryb96d3b22016-06-01 21:30:40 +00002095bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2096 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2097 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2098 MSSA.reset(new MemorySSA(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +00002099 return false;
2100}
2101
Geoff Berryb96d3b22016-06-01 21:30:40 +00002102void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
George Burgess IVe1100f52016-02-02 22:46:49 +00002103
Geoff Berryb96d3b22016-06-01 21:30:40 +00002104void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00002105 MSSA->print(OS);
2106}
2107
George Burgess IVe1100f52016-02-02 22:46:49 +00002108MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2109
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002110MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A,
2111 DominatorTree *D)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00002112 : MemorySSAWalker(M), Walker(*M, *A, *D) {}
George Burgess IVe1100f52016-02-02 22:46:49 +00002113
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002114void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) {
Daniel Berlind7a7ae02017-04-05 19:01:58 +00002115 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
2116 MUD->resetOptimized();
Daniel Berlin83fc77b2016-03-01 18:46:54 +00002117}
2118
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00002119/// Walk the use-def chains starting at \p MA and find
George Burgess IVe1100f52016-02-02 22:46:49 +00002120/// the MemoryAccess that actually clobbers Loc.
2121///
2122/// \returns our clobbering memory access
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002123MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
2124 MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) {
George Burgess IV0034e392018-04-09 23:09:27 +00002125 return Walker.findClobber(StartingAccess, Q);
George Burgess IVe1100f52016-02-02 22:46:49 +00002126}
2127
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002128MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
George Burgess IV013fd732016-10-28 19:22:46 +00002129 MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002130 if (isa<MemoryPhi>(StartingAccess))
2131 return StartingAccess;
2132
2133 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2134 if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2135 return StartingUseOrDef;
2136
2137 Instruction *I = StartingUseOrDef->getMemoryInst();
2138
2139 // Conservatively, fences are always clobbers, so don't perform the walk if we
2140 // hit a fence.
David Majnemera940f362016-07-15 17:19:24 +00002141 if (!ImmutableCallSite(I) && I->isFenceLike())
George Burgess IVe1100f52016-02-02 22:46:49 +00002142 return StartingUseOrDef;
2143
2144 UpwardsMemoryQuery Q;
2145 Q.OriginalAccess = StartingUseOrDef;
2146 Q.StartingLoc = Loc;
George Burgess IV5f308972016-07-19 01:29:15 +00002147 Q.Inst = I;
George Burgess IVe1100f52016-02-02 22:46:49 +00002148 Q.IsCall = false;
George Burgess IVe1100f52016-02-02 22:46:49 +00002149
George Burgess IVe1100f52016-02-02 22:46:49 +00002150 // Unlike the other function, do not walk to the def of a def, because we are
2151 // handed something we already believe is the clobbering access.
2152 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2153 ? StartingUseOrDef->getDefiningAccess()
2154 : StartingUseOrDef;
2155
2156 MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002157 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2158 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n");
2159 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2160 LLVM_DEBUG(dbgs() << *Clobber << "\n");
George Burgess IVe1100f52016-02-02 22:46:49 +00002161 return Clobber;
2162}
2163
2164MemoryAccess *
George Burgess IV400ae402016-07-20 19:51:34 +00002165MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2166 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2167 // If this is a MemoryPhi, we can't do anything.
2168 if (!StartingAccess)
2169 return MA;
George Burgess IVe1100f52016-02-02 22:46:49 +00002170
Daniel Berlincd2deac2016-10-20 20:13:45 +00002171 // If this is an already optimized use or def, return the optimized result.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002172 // Note: Currently, we store the optimized def result in a separate field,
2173 // since we can't use the defining access.
George Burgess IV6f49f4a2018-02-24 00:15:21 +00002174 if (StartingAccess->isOptimized())
2175 return StartingAccess->getOptimized();
Daniel Berlincd2deac2016-10-20 20:13:45 +00002176
George Burgess IV400ae402016-07-20 19:51:34 +00002177 const Instruction *I = StartingAccess->getMemoryInst();
George Burgess IV5f308972016-07-19 01:29:15 +00002178 UpwardsMemoryQuery Q(I, StartingAccess);
George Burgess IV44477c62018-03-11 04:16:12 +00002179 // We can't sanely do anything with a fence, since they conservatively clobber
2180 // all memory, and have no locations to get pointers from to try to
2181 // disambiguate.
George Burgess IV5f308972016-07-19 01:29:15 +00002182 if (!Q.IsCall && I->isFenceLike())
George Burgess IVe1100f52016-02-02 22:46:49 +00002183 return StartingAccess;
2184
George Burgess IV024f3d22016-08-03 19:57:02 +00002185 if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
2186 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
George Burgess IV44477c62018-03-11 04:16:12 +00002187 StartingAccess->setOptimized(LiveOnEntry);
2188 StartingAccess->setOptimizedAccessType(None);
George Burgess IV024f3d22016-08-03 19:57:02 +00002189 return LiveOnEntry;
2190 }
2191
George Burgess IVe1100f52016-02-02 22:46:49 +00002192 // Start with the thing we already think clobbers this location
2193 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2194
2195 // At this point, DefiningAccess may be the live on entry def.
2196 // If it is, we will not get a better result.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002197 if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
George Burgess IV44477c62018-03-11 04:16:12 +00002198 StartingAccess->setOptimized(DefiningAccess);
2199 StartingAccess->setOptimizedAccessType(None);
George Burgess IVe1100f52016-02-02 22:46:49 +00002200 return DefiningAccess;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002201 }
George Burgess IVe1100f52016-02-02 22:46:49 +00002202
2203 MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002204 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2205 LLVM_DEBUG(dbgs() << *DefiningAccess << "\n");
2206 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2207 LLVM_DEBUG(dbgs() << *Result << "\n");
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002208
George Burgess IV44477c62018-03-11 04:16:12 +00002209 StartingAccess->setOptimized(Result);
2210 if (MSSA->isLiveOnEntryDef(Result))
2211 StartingAccess->setOptimizedAccessType(None);
2212 else if (Q.AR == MustAlias)
2213 StartingAccess->setOptimizedAccessType(MustAlias);
George Burgess IVe1100f52016-02-02 22:46:49 +00002214
2215 return Result;
2216}
2217
George Burgess IVe1100f52016-02-02 22:46:49 +00002218MemoryAccess *
George Burgess IV400ae402016-07-20 19:51:34 +00002219DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002220 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2221 return Use->getDefiningAccess();
2222 return MA;
2223}
2224
2225MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
George Burgess IV013fd732016-10-28 19:22:46 +00002226 MemoryAccess *StartingAccess, const MemoryLocation &) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002227 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2228 return Use->getDefiningAccess();
2229 return StartingAccess;
2230}
Reid Kleckner96ab8722017-05-18 17:24:10 +00002231
2232void MemoryPhi::deleteMe(DerivedUser *Self) {
2233 delete static_cast<MemoryPhi *>(Self);
2234}
2235
2236void MemoryDef::deleteMe(DerivedUser *Self) {
2237 delete static_cast<MemoryDef *>(Self);
2238}
2239
2240void MemoryUse::deleteMe(DerivedUser *Self) {
2241 delete static_cast<MemoryUse *>(Self);
2242}