blob: 7adb89621f4134c47371103a923c5fc8e41fc26a [file] [log] [blame]
Misha Brukmanc501f552004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman76307852003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencercb84e432004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman76307852003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattner757528b0b2004-05-23 21:06:01 +000012
Misha Brukman76307852003-11-08 01:05:38 +000013<body>
Chris Lattner757528b0b2004-05-23 21:06:01 +000014
Chris Lattner48b383b02003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner2f7c9632001-06-06 20:29:01 +000016<ol>
Misha Brukman76307852003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000023 <li><a href="#linkage">Linkage Types</a>
24 <ol>
Bill Wendling8693ef82009-07-20 02:41:50 +000025 <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26 <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
27 <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
28 <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
29 <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
30 <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
31 <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
32 <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
33 <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
Chris Lattner80d73c72009-10-10 18:26:06 +000034 <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000035 <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
36 <li><a href="#linkage_external">'<tt>externally visible</tt>' Linkage</a></li>
37 <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
38 <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000039 </ol>
40 </li>
Chris Lattner0132aff2005-05-06 22:57:40 +000041 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerbc088212009-01-11 20:53:49 +000042 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000043 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000044 <li><a href="#functionstructure">Functions</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000045 <li><a href="#aliasstructure">Aliases</a></li>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +000046 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel9eb525d2008-09-26 23:51:19 +000047 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen71183b62007-12-10 03:18:06 +000048 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000049 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencer50c723a2007-02-19 23:54:10 +000050 <li><a href="#datalayout">Data Layout</a></li>
Dan Gohman6154a012009-07-27 18:07:55 +000051 <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000052 </ol>
53 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000054 <li><a href="#typesystem">Type System</a>
55 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000056 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +000057 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner48b383b02003-11-25 01:02:51 +000058 <ol>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +000059 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner7824d182008-01-04 04:32:38 +000060 <li><a href="#t_floating">Floating Point Types</a></li>
61 <li><a href="#t_void">Void Type</a></li>
62 <li><a href="#t_label">Label Type</a></li>
Nick Lewyckyadbc2842009-05-30 05:06:04 +000063 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000064 </ol>
65 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000066 <li><a href="#t_derived">Derived Types</a>
67 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000068 <li><a href="#t_array">Array Type</a></li>
Misha Brukman76307852003-11-08 01:05:38 +000069 <li><a href="#t_function">Function Type</a></li>
70 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000071 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth8df88e22006-12-08 17:13:00 +000072 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer404a3252007-02-15 03:07:05 +000073 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner37b6b092005-04-25 17:34:15 +000074 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000075 </ol>
76 </li>
Chris Lattnercf7a5842009-02-02 07:32:36 +000077 <li><a href="#t_uprefs">Type Up-references</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000078 </ol>
79 </li>
Chris Lattner6af02f32004-12-09 16:11:40 +000080 <li><a href="#constants">Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +000081 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +000082 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner361bfcd2009-02-28 18:32:25 +000083 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000084 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
85 <li><a href="#undefvalues">Undefined Values</a></li>
86 <li><a href="#constantexprs">Constant Expressions</a></li>
Nick Lewycky49f89192009-04-04 07:22:01 +000087 <li><a href="#metadata">Embedded Metadata</a></li>
Chris Lattner74d3f822004-12-09 17:30:23 +000088 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000089 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +000090 <li><a href="#othervalues">Other Values</a>
91 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +000092 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Chris Lattner98f013c2006-01-25 23:47:57 +000093 </ol>
94 </li>
Chris Lattnerae76db52009-07-20 05:55:19 +000095 <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
96 <ol>
97 <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
Chris Lattner58f9bb22009-07-20 06:14:25 +000098 <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
99 Global Variable</a></li>
Chris Lattnerae76db52009-07-20 05:55:19 +0000100 <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
101 Global Variable</a></li>
102 <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
103 Global Variable</a></li>
104 </ol>
105 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000106 <li><a href="#instref">Instruction Reference</a>
107 <ol>
108 <li><a href="#terminators">Terminator Instructions</a>
109 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000110 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
111 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000112 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
113 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000114 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner08b7d5b2004-10-16 18:04:13 +0000115 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000116 </ol>
117 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000118 <li><a href="#binaryops">Binary Operations</a>
119 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000120 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000121 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000122 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000123 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000124 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000125 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer7e80b0b2006-10-26 06:15:43 +0000126 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
127 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
128 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer7eb55b32006-11-02 01:53:59 +0000129 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
130 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
131 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000132 </ol>
133 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000134 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
135 <ol>
Reid Spencer2ab01932007-02-02 13:57:07 +0000136 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
137 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
138 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000139 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000140 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000141 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000142 </ol>
143 </li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000144 <li><a href="#vectorops">Vector Operations</a>
145 <ol>
146 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
147 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
148 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000149 </ol>
150 </li>
Dan Gohmanb9d66602008-05-12 23:51:09 +0000151 <li><a href="#aggregateops">Aggregate Operations</a>
152 <ol>
153 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
154 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
155 </ol>
156 </li>
Chris Lattner6ab66722006-08-15 00:45:58 +0000157 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000158 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000159 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
160 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
161 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +0000162 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
163 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
164 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000165 </ol>
166 </li>
Reid Spencer97c5fa42006-11-08 01:18:52 +0000167 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000168 <ol>
169 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
170 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
171 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
172 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
173 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencer51b07252006-11-09 23:03:26 +0000174 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
175 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
176 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
177 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencerb7344ff2006-11-11 21:00:47 +0000178 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
179 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5b950642006-11-11 23:08:07 +0000180 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000181 </ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000182 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000183 <li><a href="#otherops">Other Operations</a>
184 <ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +0000185 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
186 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000187 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnerb53c28d2004-03-12 05:50:16 +0000188 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000189 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattner33337472006-01-13 23:26:01 +0000190 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000191 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000192 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000193 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000194 </li>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000195 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000196 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000197 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
198 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000199 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
200 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
201 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000202 </ol>
203 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000204 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
205 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000206 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
207 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
208 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000209 </ol>
210 </li>
Chris Lattner3649c3a2004-02-14 04:08:35 +0000211 <li><a href="#int_codegen">Code Generator Intrinsics</a>
212 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000213 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
214 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
215 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
216 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
217 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
218 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
219 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswellaa1c3c12004-04-09 16:43:20 +0000220 </ol>
221 </li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000222 <li><a href="#int_libc">Standard C Library Intrinsics</a>
223 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000224 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
225 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
226 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
227 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
228 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohmanb6324c12007-10-15 20:30:11 +0000229 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
230 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
231 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000232 </ol>
233 </li>
Nate Begeman0f223bb2006-01-13 23:26:38 +0000234 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000235 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000236 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattnerb748c672006-01-16 22:34:14 +0000237 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
238 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
239 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000240 </ol>
241 </li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000242 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
243 <ol>
Bill Wendlingfd2bd722009-02-08 04:04:40 +0000244 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
245 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
246 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
247 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
248 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingb9a73272009-02-08 23:00:09 +0000249 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000250 </ol>
251 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000252 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskey2211f492007-03-14 19:31:19 +0000253 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands86e01192007-09-11 14:10:23 +0000254 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands644f9172007-07-27 12:58:54 +0000255 <ol>
256 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands644f9172007-07-27 12:58:54 +0000257 </ol>
258 </li>
Bill Wendlingf85850f2008-11-18 22:10:53 +0000259 <li><a href="#int_atomics">Atomic intrinsics</a>
260 <ol>
261 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
262 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
263 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
264 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
265 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
266 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
267 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
268 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
269 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
270 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
271 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
272 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
273 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
274 </ol>
275 </li>
Nick Lewycky6f7d8342009-10-13 07:03:23 +0000276 <li><a href="#int_memorymarkers">Memory Use Markers</a>
277 <ol>
278 <li><a href="#int_lifetime_start"><tt>llvm.lifetime.start</tt></a></li>
279 <li><a href="#int_lifetime_end"><tt>llvm.lifetime.end</tt></a></li>
280 <li><a href="#int_invariant_start"><tt>llvm.invariant.start</tt></a></li>
281 <li><a href="#int_invariant_end"><tt>llvm.invariant.end</tt></a></li>
282 </ol>
283 </li>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000284 <li><a href="#int_general">General intrinsics</a>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000285 <ol>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000286 <li><a href="#int_var_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000287 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000288 <li><a href="#int_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000289 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +0000290 <li><a href="#int_trap">
Bill Wendling14313312008-11-19 05:56:17 +0000291 '<tt>llvm.trap</tt>' Intrinsic</a></li>
292 <li><a href="#int_stackprotector">
293 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000294 </ol>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000295 </li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000296 </ol>
297 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000298</ol>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000299
300<div class="doc_author">
301 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
302 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman76307852003-11-08 01:05:38 +0000303</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000304
Chris Lattner2f7c9632001-06-06 20:29:01 +0000305<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000306<div class="doc_section"> <a name="abstract">Abstract </a></div>
307<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000308
Misha Brukman76307852003-11-08 01:05:38 +0000309<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000310
311<p>This document is a reference manual for the LLVM assembly language. LLVM is
312 a Static Single Assignment (SSA) based representation that provides type
313 safety, low-level operations, flexibility, and the capability of representing
314 'all' high-level languages cleanly. It is the common code representation
315 used throughout all phases of the LLVM compilation strategy.</p>
316
Misha Brukman76307852003-11-08 01:05:38 +0000317</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000318
Chris Lattner2f7c9632001-06-06 20:29:01 +0000319<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000320<div class="doc_section"> <a name="introduction">Introduction</a> </div>
321<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000322
Misha Brukman76307852003-11-08 01:05:38 +0000323<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000324
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000325<p>The LLVM code representation is designed to be used in three different forms:
326 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
327 for fast loading by a Just-In-Time compiler), and as a human readable
328 assembly language representation. This allows LLVM to provide a powerful
329 intermediate representation for efficient compiler transformations and
330 analysis, while providing a natural means to debug and visualize the
331 transformations. The three different forms of LLVM are all equivalent. This
332 document describes the human readable representation and notation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000333
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000334<p>The LLVM representation aims to be light-weight and low-level while being
335 expressive, typed, and extensible at the same time. It aims to be a
336 "universal IR" of sorts, by being at a low enough level that high-level ideas
337 may be cleanly mapped to it (similar to how microprocessors are "universal
338 IR's", allowing many source languages to be mapped to them). By providing
339 type information, LLVM can be used as the target of optimizations: for
340 example, through pointer analysis, it can be proven that a C automatic
341 variable is never accessed outside of the current function... allowing it to
342 be promoted to a simple SSA value instead of a memory location.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000343
Misha Brukman76307852003-11-08 01:05:38 +0000344</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000345
Chris Lattner2f7c9632001-06-06 20:29:01 +0000346<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000347<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000348
Misha Brukman76307852003-11-08 01:05:38 +0000349<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000350
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000351<p>It is important to note that this document describes 'well formed' LLVM
352 assembly language. There is a difference between what the parser accepts and
353 what is considered 'well formed'. For example, the following instruction is
354 syntactically okay, but not well formed:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000355
Bill Wendling3716c5d2007-05-29 09:04:49 +0000356<div class="doc_code">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000357<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000358%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattner757528b0b2004-05-23 21:06:01 +0000359</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000360</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000361
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000362<p>...because the definition of <tt>%x</tt> does not dominate all of its
363 uses. The LLVM infrastructure provides a verification pass that may be used
364 to verify that an LLVM module is well formed. This pass is automatically run
365 by the parser after parsing input assembly and by the optimizer before it
366 outputs bitcode. The violations pointed out by the verifier pass indicate
367 bugs in transformation passes or input to the parser.</p>
368
Bill Wendling3716c5d2007-05-29 09:04:49 +0000369</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000370
Chris Lattner87a3dbe2007-10-03 17:34:29 +0000371<!-- Describe the typesetting conventions here. -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000372
Chris Lattner2f7c9632001-06-06 20:29:01 +0000373<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000374<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000375<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000376
Misha Brukman76307852003-11-08 01:05:38 +0000377<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000378
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000379<p>LLVM identifiers come in two basic types: global and local. Global
380 identifiers (functions, global variables) begin with the <tt>'@'</tt>
381 character. Local identifiers (register names, types) begin with
382 the <tt>'%'</tt> character. Additionally, there are three different formats
383 for identifiers, for different purposes:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000384
Chris Lattner2f7c9632001-06-06 20:29:01 +0000385<ol>
Reid Spencerb23b65f2007-08-07 14:34:28 +0000386 <li>Named values are represented as a string of characters with their prefix.
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000387 For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
388 <tt>%a.really.long.identifier</tt>. The actual regular expression used is
389 '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
390 other characters in their names can be surrounded with quotes. Special
391 characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
392 ASCII code for the character in hexadecimal. In this way, any character
393 can be used in a name value, even quotes themselves.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000394
Reid Spencerb23b65f2007-08-07 14:34:28 +0000395 <li>Unnamed values are represented as an unsigned numeric value with their
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000396 prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000397
Reid Spencer8f08d802004-12-09 18:02:53 +0000398 <li>Constants, which are described in a <a href="#constants">section about
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000399 constants</a>, below.</li>
Misha Brukman76307852003-11-08 01:05:38 +0000400</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000401
Reid Spencerb23b65f2007-08-07 14:34:28 +0000402<p>LLVM requires that values start with a prefix for two reasons: Compilers
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000403 don't need to worry about name clashes with reserved words, and the set of
404 reserved words may be expanded in the future without penalty. Additionally,
405 unnamed identifiers allow a compiler to quickly come up with a temporary
406 variable without having to avoid symbol table conflicts.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000407
Chris Lattner48b383b02003-11-25 01:02:51 +0000408<p>Reserved words in LLVM are very similar to reserved words in other
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000409 languages. There are keywords for different opcodes
410 ('<tt><a href="#i_add">add</a></tt>',
411 '<tt><a href="#i_bitcast">bitcast</a></tt>',
412 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
413 ('<tt><a href="#t_void">void</a></tt>',
414 '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
415 reserved words cannot conflict with variable names, because none of them
416 start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000417
418<p>Here is an example of LLVM code to multiply the integer variable
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000419 '<tt>%X</tt>' by 8:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000420
Misha Brukman76307852003-11-08 01:05:38 +0000421<p>The easy way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000422
Bill Wendling3716c5d2007-05-29 09:04:49 +0000423<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000424<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000425%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnerd79749a2004-12-09 16:36:40 +0000426</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000427</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000428
Misha Brukman76307852003-11-08 01:05:38 +0000429<p>After strength reduction:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000430
Bill Wendling3716c5d2007-05-29 09:04:49 +0000431<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000432<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000433%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnerd79749a2004-12-09 16:36:40 +0000434</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000435</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000436
Misha Brukman76307852003-11-08 01:05:38 +0000437<p>And the hard way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000438
Bill Wendling3716c5d2007-05-29 09:04:49 +0000439<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000440<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000441<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
442<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
443%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnerd79749a2004-12-09 16:36:40 +0000444</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000445</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000446
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000447<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
448 lexical features of LLVM:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000449
Chris Lattner2f7c9632001-06-06 20:29:01 +0000450<ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000451 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000452 line.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000453
454 <li>Unnamed temporaries are created when the result of a computation is not
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000455 assigned to a named value.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000456
Misha Brukman76307852003-11-08 01:05:38 +0000457 <li>Unnamed temporaries are numbered sequentially</li>
458</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000459
John Criswell02fdc6f2005-05-12 16:52:32 +0000460<p>...and it also shows a convention that we follow in this document. When
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000461 demonstrating instructions, we will follow an instruction with a comment that
462 defines the type and name of value produced. Comments are shown in italic
463 text.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000464
Misha Brukman76307852003-11-08 01:05:38 +0000465</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000466
467<!-- *********************************************************************** -->
468<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
469<!-- *********************************************************************** -->
470
471<!-- ======================================================================= -->
472<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
473</div>
474
475<div class="doc_text">
476
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000477<p>LLVM programs are composed of "Module"s, each of which is a translation unit
478 of the input programs. Each module consists of functions, global variables,
479 and symbol table entries. Modules may be combined together with the LLVM
480 linker, which merges function (and global variable) definitions, resolves
481 forward declarations, and merges symbol table entries. Here is an example of
482 the "hello world" module:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000483
Bill Wendling3716c5d2007-05-29 09:04:49 +0000484<div class="doc_code">
Chris Lattner6af02f32004-12-09 16:11:40 +0000485<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattner2b0bf4f2007-06-12 17:00:26 +0000486<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
487 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000488
489<i>; External declaration of the puts function</i>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000490<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000491
492<i>; Definition of main function</i>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000493define i32 @main() { <i>; i32()* </i>
Dan Gohman623806e2009-01-04 23:44:43 +0000494 <i>; Convert [13 x i8]* to i8 *...</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000495 %cast210 = <a
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000496 href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000497
498 <i>; Call puts function to write out the string to stdout...</i>
499 <a
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000500 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000501 <a
Bill Wendling3716c5d2007-05-29 09:04:49 +0000502 href="#i_ret">ret</a> i32 0<br>}<br>
503</pre>
504</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000505
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000506<p>This example is made up of a <a href="#globalvars">global variable</a> named
507 "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function, and
508 a <a href="#functionstructure">function definition</a> for
509 "<tt>main</tt>".</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000510
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000511<p>In general, a module is made up of a list of global values, where both
512 functions and global variables are global values. Global values are
513 represented by a pointer to a memory location (in this case, a pointer to an
514 array of char, and a pointer to a function), and have one of the
515 following <a href="#linkage">linkage types</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000516
Chris Lattnerd79749a2004-12-09 16:36:40 +0000517</div>
518
519<!-- ======================================================================= -->
520<div class="doc_subsection">
521 <a name="linkage">Linkage Types</a>
522</div>
523
524<div class="doc_text">
525
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000526<p>All Global Variables and Functions have one of the following types of
527 linkage:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000528
529<dl>
Rafael Espindola6de96a12009-01-15 20:18:42 +0000530 <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000531 <dd>Global values with private linkage are only directly accessible by objects
532 in the current module. In particular, linking code into a module with an
533 private global value may cause the private to be renamed as necessary to
534 avoid collisions. Because the symbol is private to the module, all
535 references can be updated. This doesn't show up in any symbol table in the
536 object file.</dd>
Rafael Espindola6de96a12009-01-15 20:18:42 +0000537
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +0000538 <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt>: </dt>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +0000539 <dd>Similar to private, but the symbol is passed through the assembler and
Chris Lattnere7f064e2009-08-24 04:32:16 +0000540 removed by the linker after evaluation. Note that (unlike private
541 symbols) linker_private symbols are subject to coalescing by the linker:
542 weak symbols get merged and redefinitions are rejected. However, unlike
543 normal strong symbols, they are removed by the linker from the final
544 linked image (executable or dynamic library).</dd>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +0000545
Dale Johannesen4188aad2008-05-23 23:13:41 +0000546 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000547 <dd>Similar to private, but the value shows as a local symbol
548 (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
549 corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000550
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000551 <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt>: </dt>
Chris Lattner184f1be2009-04-13 05:44:34 +0000552 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000553 into the object file corresponding to the LLVM module. They exist to
554 allow inlining and other optimizations to take place given knowledge of
555 the definition of the global, which is known to be somewhere outside the
556 module. Globals with <tt>available_externally</tt> linkage are allowed to
557 be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
558 This linkage type is only allowed on definitions, not declarations.</dd>
Chris Lattner184f1be2009-04-13 05:44:34 +0000559
Chris Lattner6af02f32004-12-09 16:11:40 +0000560 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere20b4702007-01-14 06:51:48 +0000561 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000562 the same name when linkage occurs. This is typically used to implement
563 inline functions, templates, or other code which must be generated in each
564 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
565 allowed to be discarded.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000566
Chris Lattner6af02f32004-12-09 16:11:40 +0000567 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnerd0554882009-08-05 05:21:07 +0000568 <dd>"<tt>weak</tt>" linkage has the same merging semantics as
569 <tt>linkonce</tt> linkage, except that unreferenced globals with
570 <tt>weak</tt> linkage may not be discarded. This is used for globals that
571 are declared "weak" in C source code.</dd>
572
573 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
574 <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
575 they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
576 global scope.
577 Symbols with "<tt>common</tt>" linkage are merged in the same way as
578 <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
Chris Lattner0aff0b22009-08-05 05:41:44 +0000579 <tt>common</tt> symbols may not have an explicit section,
580 must have a zero initializer, and may not be marked '<a
581 href="#globalvars"><tt>constant</tt></a>'. Functions and aliases may not
582 have common linkage.</dd>
Chris Lattnerd0554882009-08-05 05:21:07 +0000583
Chris Lattnerd79749a2004-12-09 16:36:40 +0000584
Chris Lattner6af02f32004-12-09 16:11:40 +0000585 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000586 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000587 pointer to array type. When two global variables with appending linkage
588 are linked together, the two global arrays are appended together. This is
589 the LLVM, typesafe, equivalent of having the system linker append together
590 "sections" with identical names when .o files are linked.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000591
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000592 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000593 <dd>The semantics of this linkage follow the ELF object file model: the symbol
594 is weak until linked, if not linked, the symbol becomes null instead of
595 being an undefined reference.</dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000596
Chris Lattner80d73c72009-10-10 18:26:06 +0000597 <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt>: </dt>
598 <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt>: </dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000599 <dd>Some languages allow differing globals to be merged, such as two functions
600 with different semantics. Other languages, such as <tt>C++</tt>, ensure
601 that only equivalent globals are ever merged (the "one definition rule" -
602 "ODR"). Such languages can use the <tt>linkonce_odr</tt>
603 and <tt>weak_odr</tt> linkage types to indicate that the global will only
604 be merged with equivalent globals. These linkage types are otherwise the
605 same as their non-<tt>odr</tt> versions.</dd>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000606
Chris Lattner6af02f32004-12-09 16:11:40 +0000607 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000608 <dd>If none of the above identifiers are used, the global is externally
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000609 visible, meaning that it participates in linkage and can be used to
610 resolve external symbol references.</dd>
Reid Spencer7972c472007-04-11 23:49:50 +0000611</dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000612
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000613<p>The next two types of linkage are targeted for Microsoft Windows platform
614 only. They are designed to support importing (exporting) symbols from (to)
615 DLLs (Dynamic Link Libraries).</p>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000616
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000617<dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000618 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000619 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000620 or variable via a global pointer to a pointer that is set up by the DLL
621 exporting the symbol. On Microsoft Windows targets, the pointer name is
622 formed by combining <code>__imp_</code> and the function or variable
623 name.</dd>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000624
625 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000626 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000627 pointer to a pointer in a DLL, so that it can be referenced with the
628 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
629 name is formed by combining <code>__imp_</code> and the function or
630 variable name.</dd>
Chris Lattner6af02f32004-12-09 16:11:40 +0000631</dl>
632
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000633<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
634 another module defined a "<tt>.LC0</tt>" variable and was linked with this
635 one, one of the two would be renamed, preventing a collision. Since
636 "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
637 declarations), they are accessible outside of the current module.</p>
638
639<p>It is illegal for a function <i>declaration</i> to have any linkage type
640 other than "externally visible", <tt>dllimport</tt>
641 or <tt>extern_weak</tt>.</p>
642
Duncan Sands12da8ce2009-03-07 15:45:40 +0000643<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000644 or <tt>weak_odr</tt> linkages.</p>
645
Chris Lattner6af02f32004-12-09 16:11:40 +0000646</div>
647
648<!-- ======================================================================= -->
649<div class="doc_subsection">
Chris Lattner0132aff2005-05-06 22:57:40 +0000650 <a name="callingconv">Calling Conventions</a>
651</div>
652
653<div class="doc_text">
654
655<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000656 and <a href="#i_invoke">invokes</a> can all have an optional calling
657 convention specified for the call. The calling convention of any pair of
658 dynamic caller/callee must match, or the behavior of the program is
659 undefined. The following calling conventions are supported by LLVM, and more
660 may be added in the future:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000661
662<dl>
663 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000664 <dd>This calling convention (the default if no other calling convention is
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000665 specified) matches the target C calling conventions. This calling
666 convention supports varargs function calls and tolerates some mismatch in
667 the declared prototype and implemented declaration of the function (as
668 does normal C).</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000669
670 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000671 <dd>This calling convention attempts to make calls as fast as possible
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000672 (e.g. by passing things in registers). This calling convention allows the
673 target to use whatever tricks it wants to produce fast code for the
674 target, without having to conform to an externally specified ABI
675 (Application Binary Interface). Implementations of this convention should
676 allow arbitrary <a href="CodeGenerator.html#tailcallopt">tail call
677 optimization</a> to be supported. This calling convention does not
678 support varargs and requires the prototype of all callees to exactly match
679 the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000680
681 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000682 <dd>This calling convention attempts to make code in the caller as efficient
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000683 as possible under the assumption that the call is not commonly executed.
684 As such, these calls often preserve all registers so that the call does
685 not break any live ranges in the caller side. This calling convention
686 does not support varargs and requires the prototype of all callees to
687 exactly match the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000688
Chris Lattner573f64e2005-05-07 01:46:40 +0000689 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000690 <dd>Any calling convention may be specified by number, allowing
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000691 target-specific calling conventions to be used. Target specific calling
692 conventions start at 64.</dd>
Chris Lattner573f64e2005-05-07 01:46:40 +0000693</dl>
Chris Lattner0132aff2005-05-06 22:57:40 +0000694
695<p>More calling conventions can be added/defined on an as-needed basis, to
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000696 support Pascal conventions or any other well-known target-independent
697 convention.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000698
699</div>
700
701<!-- ======================================================================= -->
702<div class="doc_subsection">
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000703 <a name="visibility">Visibility Styles</a>
704</div>
705
706<div class="doc_text">
707
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000708<p>All Global Variables and Functions have one of the following visibility
709 styles:</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000710
711<dl>
712 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
Chris Lattner67c37d12008-08-05 18:29:16 +0000713 <dd>On targets that use the ELF object file format, default visibility means
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000714 that the declaration is visible to other modules and, in shared libraries,
715 means that the declared entity may be overridden. On Darwin, default
716 visibility means that the declaration is visible to other modules. Default
717 visibility corresponds to "external linkage" in the language.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000718
719 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000720 <dd>Two declarations of an object with hidden visibility refer to the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000721 object if they are in the same shared object. Usually, hidden visibility
722 indicates that the symbol will not be placed into the dynamic symbol
723 table, so no other module (executable or shared library) can reference it
724 directly.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000725
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000726 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000727 <dd>On ELF, protected visibility indicates that the symbol will be placed in
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000728 the dynamic symbol table, but that references within the defining module
729 will bind to the local symbol. That is, the symbol cannot be overridden by
730 another module.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000731</dl>
732
733</div>
734
735<!-- ======================================================================= -->
736<div class="doc_subsection">
Chris Lattnerbc088212009-01-11 20:53:49 +0000737 <a name="namedtypes">Named Types</a>
738</div>
739
740<div class="doc_text">
741
742<p>LLVM IR allows you to specify name aliases for certain types. This can make
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000743 it easier to read the IR and make the IR more condensed (particularly when
744 recursive types are involved). An example of a name specification is:</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000745
746<div class="doc_code">
747<pre>
748%mytype = type { %mytype*, i32 }
749</pre>
750</div>
751
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000752<p>You may give a name to any <a href="#typesystem">type</a> except
753 "<a href="t_void">void</a>". Type name aliases may be used anywhere a type
754 is expected with the syntax "%mytype".</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000755
756<p>Note that type names are aliases for the structural type that they indicate,
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000757 and that you can therefore specify multiple names for the same type. This
758 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
759 uses structural typing, the name is not part of the type. When printing out
760 LLVM IR, the printer will pick <em>one name</em> to render all types of a
761 particular shape. This means that if you have code where two different
762 source types end up having the same LLVM type, that the dumper will sometimes
763 print the "wrong" or unexpected type. This is an important design point and
764 isn't going to change.</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000765
766</div>
767
Chris Lattnerbc088212009-01-11 20:53:49 +0000768<!-- ======================================================================= -->
769<div class="doc_subsection">
Chris Lattner6af02f32004-12-09 16:11:40 +0000770 <a name="globalvars">Global Variables</a>
771</div>
772
773<div class="doc_text">
774
Chris Lattner5d5aede2005-02-12 19:30:21 +0000775<p>Global variables define regions of memory allocated at compilation time
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000776 instead of run-time. Global variables may optionally be initialized, may
777 have an explicit section to be placed in, and may have an optional explicit
778 alignment specified. A variable may be defined as "thread_local", which
779 means that it will not be shared by threads (each thread will have a
780 separated copy of the variable). A variable may be defined as a global
781 "constant," which indicates that the contents of the variable
782 will <b>never</b> be modified (enabling better optimization, allowing the
783 global data to be placed in the read-only section of an executable, etc).
784 Note that variables that need runtime initialization cannot be marked
785 "constant" as there is a store to the variable.</p>
Chris Lattner5d5aede2005-02-12 19:30:21 +0000786
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000787<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
788 constant, even if the final definition of the global is not. This capability
789 can be used to enable slightly better optimization of the program, but
790 requires the language definition to guarantee that optimizations based on the
791 'constantness' are valid for the translation units that do not include the
792 definition.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000793
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000794<p>As SSA values, global variables define pointer values that are in scope
795 (i.e. they dominate) all basic blocks in the program. Global variables
796 always define a pointer to their "content" type because they describe a
797 region of memory, and all memory objects in LLVM are accessed through
798 pointers.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000799
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000800<p>A global variable may be declared to reside in a target-specific numbered
801 address space. For targets that support them, address spaces may affect how
802 optimizations are performed and/or what target instructions are used to
803 access the variable. The default address space is zero. The address space
804 qualifier must precede any other attributes.</p>
Christopher Lamb308121c2007-12-11 09:31:00 +0000805
Chris Lattner662c8722005-11-12 00:45:07 +0000806<p>LLVM allows an explicit section to be specified for globals. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000807 supports it, it will emit globals to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000808
Chris Lattner54611b42005-11-06 08:02:57 +0000809<p>An explicit alignment may be specified for a global. If not present, or if
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000810 the alignment is set to zero, the alignment of the global is set by the
811 target to whatever it feels convenient. If an explicit alignment is
812 specified, the global is forced to have at least that much alignment. All
813 alignments must be a power of 2.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000814
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000815<p>For example, the following defines a global in a numbered address space with
816 an initializer, section, and alignment:</p>
Chris Lattner5760c502007-01-14 00:27:09 +0000817
Bill Wendling3716c5d2007-05-29 09:04:49 +0000818<div class="doc_code">
Chris Lattner5760c502007-01-14 00:27:09 +0000819<pre>
Dan Gohmanaaa679b2009-01-11 00:40:00 +0000820@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner5760c502007-01-14 00:27:09 +0000821</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000822</div>
Chris Lattner5760c502007-01-14 00:27:09 +0000823
Chris Lattner6af02f32004-12-09 16:11:40 +0000824</div>
825
826
827<!-- ======================================================================= -->
828<div class="doc_subsection">
829 <a name="functionstructure">Functions</a>
830</div>
831
832<div class="doc_text">
833
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000834<p>LLVM function definitions consist of the "<tt>define</tt>" keyord, an
835 optional <a href="#linkage">linkage type</a>, an optional
836 <a href="#visibility">visibility style</a>, an optional
837 <a href="#callingconv">calling convention</a>, a return type, an optional
838 <a href="#paramattrs">parameter attribute</a> for the return type, a function
839 name, a (possibly empty) argument list (each with optional
840 <a href="#paramattrs">parameter attributes</a>), optional
841 <a href="#fnattrs">function attributes</a>, an optional section, an optional
842 alignment, an optional <a href="#gc">garbage collector name</a>, an opening
843 curly brace, a list of basic blocks, and a closing curly brace.</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000844
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000845<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
846 optional <a href="#linkage">linkage type</a>, an optional
847 <a href="#visibility">visibility style</a>, an optional
848 <a href="#callingconv">calling convention</a>, a return type, an optional
849 <a href="#paramattrs">parameter attribute</a> for the return type, a function
850 name, a possibly empty list of arguments, an optional alignment, and an
851 optional <a href="#gc">garbage collector name</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000852
Chris Lattner67c37d12008-08-05 18:29:16 +0000853<p>A function definition contains a list of basic blocks, forming the CFG
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000854 (Control Flow Graph) for the function. Each basic block may optionally start
855 with a label (giving the basic block a symbol table entry), contains a list
856 of instructions, and ends with a <a href="#terminators">terminator</a>
857 instruction (such as a branch or function return).</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000858
Chris Lattnera59fb102007-06-08 16:52:14 +0000859<p>The first basic block in a function is special in two ways: it is immediately
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000860 executed on entrance to the function, and it is not allowed to have
861 predecessor basic blocks (i.e. there can not be any branches to the entry
862 block of a function). Because the block can have no predecessors, it also
863 cannot have any <a href="#i_phi">PHI nodes</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000864
Chris Lattner662c8722005-11-12 00:45:07 +0000865<p>LLVM allows an explicit section to be specified for functions. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000866 supports it, it will emit functions to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000867
Chris Lattner54611b42005-11-06 08:02:57 +0000868<p>An explicit alignment may be specified for a function. If not present, or if
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000869 the alignment is set to zero, the alignment of the function is set by the
870 target to whatever it feels convenient. If an explicit alignment is
871 specified, the function is forced to have at least that much alignment. All
872 alignments must be a power of 2.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000873
Bill Wendling30235112009-07-20 02:39:26 +0000874<h5>Syntax:</h5>
Devang Patel02256232008-10-07 17:48:33 +0000875<div class="doc_code">
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000876<pre>
Chris Lattner0ae02092008-10-13 16:55:18 +0000877define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000878 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
879 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
880 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
881 [<a href="#gc">gc</a>] { ... }
882</pre>
Devang Patel02256232008-10-07 17:48:33 +0000883</div>
884
Chris Lattner6af02f32004-12-09 16:11:40 +0000885</div>
886
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000887<!-- ======================================================================= -->
888<div class="doc_subsection">
889 <a name="aliasstructure">Aliases</a>
890</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000891
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000892<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000893
894<p>Aliases act as "second name" for the aliasee value (which can be either
895 function, global variable, another alias or bitcast of global value). Aliases
896 may have an optional <a href="#linkage">linkage type</a>, and an
897 optional <a href="#visibility">visibility style</a>.</p>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000898
Bill Wendling30235112009-07-20 02:39:26 +0000899<h5>Syntax:</h5>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000900<div class="doc_code">
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000901<pre>
Duncan Sands7e99a942008-09-12 20:48:21 +0000902@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000903</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000904</div>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000905
906</div>
907
Chris Lattner91c15c42006-01-23 23:23:47 +0000908<!-- ======================================================================= -->
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000909<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000910
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000911<div class="doc_text">
912
913<p>The return type and each parameter of a function type may have a set of
914 <i>parameter attributes</i> associated with them. Parameter attributes are
915 used to communicate additional information about the result or parameters of
916 a function. Parameter attributes are considered to be part of the function,
917 not of the function type, so functions with different parameter attributes
918 can have the same function type.</p>
919
920<p>Parameter attributes are simple keywords that follow the type specified. If
921 multiple parameter attributes are needed, they are space separated. For
922 example:</p>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000923
924<div class="doc_code">
925<pre>
Nick Lewyckydac78d82009-02-15 23:06:14 +0000926declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattnerd2597d72008-10-04 18:33:34 +0000927declare i32 @atoi(i8 zeroext)
928declare signext i8 @returns_signed_char()
Bill Wendling3716c5d2007-05-29 09:04:49 +0000929</pre>
930</div>
931
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000932<p>Note that any attributes for the function result (<tt>nounwind</tt>,
933 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000934
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000935<p>Currently, only the following parameter attributes are defined:</p>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000936
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000937<dl>
938 <dt><tt>zeroext</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000939 <dd>This indicates to the code generator that the parameter or return value
940 should be zero-extended to a 32-bit value by the caller (for a parameter)
941 or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000942
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000943 <dt><tt>signext</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000944 <dd>This indicates to the code generator that the parameter or return value
945 should be sign-extended to a 32-bit value by the caller (for a parameter)
946 or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000947
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000948 <dt><tt>inreg</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000949 <dd>This indicates that this parameter or return value should be treated in a
950 special target-dependent fashion during while emitting code for a function
951 call or return (usually, by putting it in a register as opposed to memory,
952 though some targets use it to distinguish between two different kinds of
953 registers). Use of this attribute is target-specific.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000954
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000955 <dt><tt><a name="byval">byval</a></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000956 <dd>This indicates that the pointer parameter should really be passed by value
957 to the function. The attribute implies that a hidden copy of the pointee
958 is made between the caller and the callee, so the callee is unable to
959 modify the value in the callee. This attribute is only valid on LLVM
960 pointer arguments. It is generally used to pass structs and arrays by
961 value, but is also valid on pointers to scalars. The copy is considered
962 to belong to the caller not the callee (for example,
963 <tt><a href="#readonly">readonly</a></tt> functions should not write to
964 <tt>byval</tt> parameters). This is not a valid attribute for return
965 values. The byval attribute also supports specifying an alignment with
966 the align attribute. This has a target-specific effect on the code
967 generator that usually indicates a desired alignment for the synthesized
968 stack slot.</dd>
969
970 <dt><tt>sret</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000971 <dd>This indicates that the pointer parameter specifies the address of a
972 structure that is the return value of the function in the source program.
973 This pointer must be guaranteed by the caller to be valid: loads and
974 stores to the structure may be assumed by the callee to not to trap. This
975 may only be applied to the first parameter. This is not a valid attribute
976 for return values. </dd>
977
978 <dt><tt>noalias</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000979 <dd>This indicates that the pointer does not alias any global or any other
980 parameter. The caller is responsible for ensuring that this is the
981 case. On a function return value, <tt>noalias</tt> additionally indicates
982 that the pointer does not alias any other pointers visible to the
983 caller. For further details, please see the discussion of the NoAlias
984 response in
985 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
986 analysis</a>.</dd>
987
988 <dt><tt>nocapture</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000989 <dd>This indicates that the callee does not make any copies of the pointer
990 that outlive the callee itself. This is not a valid attribute for return
991 values.</dd>
992
993 <dt><tt>nest</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000994 <dd>This indicates that the pointer parameter can be excised using the
995 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
996 attribute for return values.</dd>
997</dl>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000998
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000999</div>
1000
1001<!-- ======================================================================= -->
Chris Lattner91c15c42006-01-23 23:23:47 +00001002<div class="doc_subsection">
Gordon Henriksen71183b62007-12-10 03:18:06 +00001003 <a name="gc">Garbage Collector Names</a>
1004</div>
1005
1006<div class="doc_text">
Gordon Henriksen71183b62007-12-10 03:18:06 +00001007
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001008<p>Each function may specify a garbage collector name, which is simply a
1009 string:</p>
1010
1011<div class="doc_code">
1012<pre>
1013define void @f() gc "name" { ...
1014</pre>
1015</div>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001016
1017<p>The compiler declares the supported values of <i>name</i>. Specifying a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001018 collector which will cause the compiler to alter its output in order to
1019 support the named garbage collection algorithm.</p>
1020
Gordon Henriksen71183b62007-12-10 03:18:06 +00001021</div>
1022
1023<!-- ======================================================================= -->
1024<div class="doc_subsection">
Devang Patel9eb525d2008-09-26 23:51:19 +00001025 <a name="fnattrs">Function Attributes</a>
Devang Patelcaacdba2008-09-04 23:05:13 +00001026</div>
1027
1028<div class="doc_text">
Devang Patel9eb525d2008-09-26 23:51:19 +00001029
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001030<p>Function attributes are set to communicate additional information about a
1031 function. Function attributes are considered to be part of the function, not
1032 of the function type, so functions with different parameter attributes can
1033 have the same function type.</p>
Devang Patel9eb525d2008-09-26 23:51:19 +00001034
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001035<p>Function attributes are simple keywords that follow the type specified. If
1036 multiple attributes are needed, they are space separated. For example:</p>
Devang Patelcaacdba2008-09-04 23:05:13 +00001037
1038<div class="doc_code">
Bill Wendlingb175fa42008-09-07 10:26:33 +00001039<pre>
Devang Patel9eb525d2008-09-26 23:51:19 +00001040define void @f() noinline { ... }
1041define void @f() alwaysinline { ... }
1042define void @f() alwaysinline optsize { ... }
1043define void @f() optsize
Bill Wendlingb175fa42008-09-07 10:26:33 +00001044</pre>
Devang Patelcaacdba2008-09-04 23:05:13 +00001045</div>
1046
Bill Wendlingb175fa42008-09-07 10:26:33 +00001047<dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001048 <dt><tt>alwaysinline</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001049 <dd>This attribute indicates that the inliner should attempt to inline this
1050 function into callers whenever possible, ignoring any active inlining size
1051 threshold for this caller.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001052
Dale Johannesen2aaf5392009-08-26 01:08:21 +00001053 <dt><tt>inlinehint</tt></dt>
1054 <dd>This attribute indicates that the source code contained a hint that inlining
1055 this function is desirable (such as the "inline" keyword in C/C++). It
1056 is just a hint; it imposes no requirements on the inliner.</dd>
1057
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001058 <dt><tt>noinline</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001059 <dd>This attribute indicates that the inliner should never inline this
1060 function in any situation. This attribute may not be used together with
1061 the <tt>alwaysinline</tt> attribute.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001062
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001063 <dt><tt>optsize</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001064 <dd>This attribute suggests that optimization passes and code generator passes
1065 make choices that keep the code size of this function low, and otherwise
1066 do optimizations specifically to reduce code size.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001067
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001068 <dt><tt>noreturn</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001069 <dd>This function attribute indicates that the function never returns
1070 normally. This produces undefined behavior at runtime if the function
1071 ever does dynamically return.</dd>
Bill Wendlinga8130172008-11-13 01:02:51 +00001072
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001073 <dt><tt>nounwind</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001074 <dd>This function attribute indicates that the function never returns with an
1075 unwind or exceptional control flow. If the function does unwind, its
1076 runtime behavior is undefined.</dd>
Bill Wendling0f5541e2008-11-26 19:07:40 +00001077
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001078 <dt><tt>readnone</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001079 <dd>This attribute indicates that the function computes its result (or decides
1080 to unwind an exception) based strictly on its arguments, without
1081 dereferencing any pointer arguments or otherwise accessing any mutable
1082 state (e.g. memory, control registers, etc) visible to caller functions.
1083 It does not write through any pointer arguments
1084 (including <tt><a href="#byval">byval</a></tt> arguments) and never
1085 changes any state visible to callers. This means that it cannot unwind
1086 exceptions by calling the <tt>C++</tt> exception throwing methods, but
1087 could use the <tt>unwind</tt> instruction.</dd>
Devang Patel310fd4a2009-06-12 19:45:19 +00001088
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001089 <dt><tt><a name="readonly">readonly</a></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001090 <dd>This attribute indicates that the function does not write through any
1091 pointer arguments (including <tt><a href="#byval">byval</a></tt>
1092 arguments) or otherwise modify any state (e.g. memory, control registers,
1093 etc) visible to caller functions. It may dereference pointer arguments
1094 and read state that may be set in the caller. A readonly function always
1095 returns the same value (or unwinds an exception identically) when called
1096 with the same set of arguments and global state. It cannot unwind an
1097 exception by calling the <tt>C++</tt> exception throwing methods, but may
1098 use the <tt>unwind</tt> instruction.</dd>
Anton Korobeynikovc8ce7b082009-07-17 18:07:26 +00001099
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001100 <dt><tt><a name="ssp">ssp</a></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001101 <dd>This attribute indicates that the function should emit a stack smashing
1102 protector. It is in the form of a "canary"&mdash;a random value placed on
1103 the stack before the local variables that's checked upon return from the
1104 function to see if it has been overwritten. A heuristic is used to
1105 determine if a function needs stack protectors or not.<br>
1106<br>
1107 If a function that has an <tt>ssp</tt> attribute is inlined into a
1108 function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1109 function will have an <tt>ssp</tt> attribute.</dd>
1110
1111 <dt><tt>sspreq</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001112 <dd>This attribute indicates that the function should <em>always</em> emit a
1113 stack smashing protector. This overrides
Bill Wendling30235112009-07-20 02:39:26 +00001114 the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1115<br>
1116 If a function that has an <tt>sspreq</tt> attribute is inlined into a
1117 function that doesn't have an <tt>sspreq</tt> attribute or which has
1118 an <tt>ssp</tt> attribute, then the resulting function will have
1119 an <tt>sspreq</tt> attribute.</dd>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001120
1121 <dt><tt>noredzone</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001122 <dd>This attribute indicates that the code generator should not use a red
1123 zone, even if the target-specific ABI normally permits it.</dd>
1124
1125 <dt><tt>noimplicitfloat</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001126 <dd>This attributes disables implicit floating point instructions.</dd>
1127
1128 <dt><tt>naked</tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001129 <dd>This attribute disables prologue / epilogue emission for the function.
1130 This can have very system-specific consequences.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001131</dl>
1132
Devang Patelcaacdba2008-09-04 23:05:13 +00001133</div>
1134
1135<!-- ======================================================================= -->
1136<div class="doc_subsection">
Chris Lattner93564892006-04-08 04:40:53 +00001137 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner91c15c42006-01-23 23:23:47 +00001138</div>
1139
1140<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001141
1142<p>Modules may contain "module-level inline asm" blocks, which corresponds to
1143 the GCC "file scope inline asm" blocks. These blocks are internally
1144 concatenated by LLVM and treated as a single unit, but may be separated in
1145 the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001146
Bill Wendling3716c5d2007-05-29 09:04:49 +00001147<div class="doc_code">
1148<pre>
1149module asm "inline asm code goes here"
1150module asm "more can go here"
1151</pre>
1152</div>
Chris Lattner91c15c42006-01-23 23:23:47 +00001153
1154<p>The strings can contain any character by escaping non-printable characters.
1155 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001156 for the number.</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001157
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001158<p>The inline asm code is simply printed to the machine code .s file when
1159 assembly code is generated.</p>
1160
Chris Lattner91c15c42006-01-23 23:23:47 +00001161</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001162
Reid Spencer50c723a2007-02-19 23:54:10 +00001163<!-- ======================================================================= -->
1164<div class="doc_subsection">
1165 <a name="datalayout">Data Layout</a>
1166</div>
1167
1168<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001169
Reid Spencer50c723a2007-02-19 23:54:10 +00001170<p>A module may specify a target specific data layout string that specifies how
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001171 data is to be laid out in memory. The syntax for the data layout is
1172 simply:</p>
1173
1174<div class="doc_code">
1175<pre>
1176target datalayout = "<i>layout specification</i>"
1177</pre>
1178</div>
1179
1180<p>The <i>layout specification</i> consists of a list of specifications
1181 separated by the minus sign character ('-'). Each specification starts with
1182 a letter and may include other information after the letter to define some
1183 aspect of the data layout. The specifications accepted are as follows:</p>
1184
Reid Spencer50c723a2007-02-19 23:54:10 +00001185<dl>
1186 <dt><tt>E</tt></dt>
1187 <dd>Specifies that the target lays out data in big-endian form. That is, the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001188 bits with the most significance have the lowest address location.</dd>
1189
Reid Spencer50c723a2007-02-19 23:54:10 +00001190 <dt><tt>e</tt></dt>
Chris Lattner67c37d12008-08-05 18:29:16 +00001191 <dd>Specifies that the target lays out data in little-endian form. That is,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001192 the bits with the least significance have the lowest address
1193 location.</dd>
1194
Reid Spencer50c723a2007-02-19 23:54:10 +00001195 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1196 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001197 <i>preferred</i> alignments. All sizes are in bits. Specifying
1198 the <i>pref</i> alignment is optional. If omitted, the
1199 preceding <tt>:</tt> should be omitted too.</dd>
1200
Reid Spencer50c723a2007-02-19 23:54:10 +00001201 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1202 <dd>This specifies the alignment for an integer type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001203 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1204
Reid Spencer50c723a2007-02-19 23:54:10 +00001205 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1206 <dd>This specifies the alignment for a vector type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001207 <i>size</i>.</dd>
1208
Reid Spencer50c723a2007-02-19 23:54:10 +00001209 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1210 <dd>This specifies the alignment for a floating point type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001211 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1212 (double).</dd>
1213
Reid Spencer50c723a2007-02-19 23:54:10 +00001214 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1215 <dd>This specifies the alignment for an aggregate type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001216 <i>size</i>.</dd>
1217
Daniel Dunbar7921a592009-06-08 22:17:53 +00001218 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1219 <dd>This specifies the alignment for a stack object of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001220 <i>size</i>.</dd>
Reid Spencer50c723a2007-02-19 23:54:10 +00001221</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001222
Reid Spencer50c723a2007-02-19 23:54:10 +00001223<p>When constructing the data layout for a given target, LLVM starts with a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001224 default set of specifications which are then (possibly) overriden by the
1225 specifications in the <tt>datalayout</tt> keyword. The default specifications
1226 are given in this list:</p>
1227
Reid Spencer50c723a2007-02-19 23:54:10 +00001228<ul>
1229 <li><tt>E</tt> - big endian</li>
1230 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1231 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1232 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1233 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1234 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner67c37d12008-08-05 18:29:16 +00001235 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencer50c723a2007-02-19 23:54:10 +00001236 alignment of 64-bits</li>
1237 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1238 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1239 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1240 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1241 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbar7921a592009-06-08 22:17:53 +00001242 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001243</ul>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001244
1245<p>When LLVM is determining the alignment for a given type, it uses the
1246 following rules:</p>
1247
Reid Spencer50c723a2007-02-19 23:54:10 +00001248<ol>
1249 <li>If the type sought is an exact match for one of the specifications, that
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001250 specification is used.</li>
1251
Reid Spencer50c723a2007-02-19 23:54:10 +00001252 <li>If no match is found, and the type sought is an integer type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001253 smallest integer type that is larger than the bitwidth of the sought type
1254 is used. If none of the specifications are larger than the bitwidth then
1255 the the largest integer type is used. For example, given the default
1256 specifications above, the i7 type will use the alignment of i8 (next
1257 largest) while both i65 and i256 will use the alignment of i64 (largest
1258 specified).</li>
1259
Reid Spencer50c723a2007-02-19 23:54:10 +00001260 <li>If no match is found, and the type sought is a vector type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001261 largest vector type that is smaller than the sought vector type will be
1262 used as a fall back. This happens because &lt;128 x double&gt; can be
1263 implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001264</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001265
Reid Spencer50c723a2007-02-19 23:54:10 +00001266</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001267
Dan Gohman6154a012009-07-27 18:07:55 +00001268<!-- ======================================================================= -->
1269<div class="doc_subsection">
1270 <a name="pointeraliasing">Pointer Aliasing Rules</a>
1271</div>
1272
1273<div class="doc_text">
1274
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001275<p>Any memory access must be done through a pointer value associated
Andreas Bolkae39f0332009-07-27 20:37:10 +00001276with an address range of the memory access, otherwise the behavior
Dan Gohman6154a012009-07-27 18:07:55 +00001277is undefined. Pointer values are associated with address ranges
1278according to the following rules:</p>
1279
1280<ul>
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001281 <li>A pointer value formed from a
1282 <tt><a href="#i_getelementptr">getelementptr</a></tt> instruction
1283 is associated with the addresses associated with the first operand
1284 of the <tt>getelementptr</tt>.</li>
1285 <li>An address of a global variable is associated with the address
Dan Gohman6154a012009-07-27 18:07:55 +00001286 range of the variable's storage.</li>
1287 <li>The result value of an allocation instruction is associated with
1288 the address range of the allocated storage.</li>
1289 <li>A null pointer in the default address-space is associated with
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001290 no address.</li>
1291 <li>A pointer value formed by an
1292 <tt><a href="#i_inttoptr">inttoptr</a></tt> is associated with all
1293 address ranges of all pointer values that contribute (directly or
1294 indirectly) to the computation of the pointer's value.</li>
1295 <li>The result value of a
1296 <tt><a href="#i_bitcast">bitcast</a></tt> is associated with all
Dan Gohman6154a012009-07-27 18:07:55 +00001297 addresses associated with the operand of the <tt>bitcast</tt>.</li>
1298 <li>An integer constant other than zero or a pointer value returned
1299 from a function not defined within LLVM may be associated with address
1300 ranges allocated through mechanisms other than those provided by
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001301 LLVM. Such ranges shall not overlap with any ranges of addresses
Dan Gohman6154a012009-07-27 18:07:55 +00001302 allocated by mechanisms provided by LLVM.</li>
1303 </ul>
1304
1305<p>LLVM IR does not associate types with memory. The result type of a
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001306<tt><a href="#i_load">load</a></tt> merely indicates the size and
1307alignment of the memory from which to load, as well as the
1308interpretation of the value. The first operand of a
1309<tt><a href="#i_store">store</a></tt> similarly only indicates the size
1310and alignment of the store.</p>
Dan Gohman6154a012009-07-27 18:07:55 +00001311
1312<p>Consequently, type-based alias analysis, aka TBAA, aka
1313<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1314LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1315additional information which specialized optimization passes may use
1316to implement type-based alias analysis.</p>
1317
1318</div>
1319
Chris Lattner2f7c9632001-06-06 20:29:01 +00001320<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001321<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1322<!-- *********************************************************************** -->
Chris Lattner6af02f32004-12-09 16:11:40 +00001323
Misha Brukman76307852003-11-08 01:05:38 +00001324<div class="doc_text">
Chris Lattner6af02f32004-12-09 16:11:40 +00001325
Misha Brukman76307852003-11-08 01:05:38 +00001326<p>The LLVM type system is one of the most important features of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001327 intermediate representation. Being typed enables a number of optimizations
1328 to be performed on the intermediate representation directly, without having
1329 to do extra analyses on the side before the transformation. A strong type
1330 system makes it easier to read the generated code and enables novel analyses
1331 and transformations that are not feasible to perform on normal three address
1332 code representations.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +00001333
1334</div>
1335
Chris Lattner2f7c9632001-06-06 20:29:01 +00001336<!-- ======================================================================= -->
Chris Lattner7824d182008-01-04 04:32:38 +00001337<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner48b383b02003-11-25 01:02:51 +00001338Classifications</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001339
Misha Brukman76307852003-11-08 01:05:38 +00001340<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001341
1342<p>The types fall into a few useful classifications:</p>
Misha Brukmanc501f552004-03-01 17:47:27 +00001343
1344<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00001345 <tbody>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001346 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001347 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001348 <td><a href="#t_integer">integer</a></td>
Reid Spencer138249b2007-05-16 18:44:01 +00001349 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001350 </tr>
1351 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001352 <td><a href="#t_floating">floating point</a></td>
1353 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001354 </tr>
1355 <tr>
1356 <td><a name="t_firstclass">first class</a></td>
Chris Lattner7824d182008-01-04 04:32:38 +00001357 <td><a href="#t_integer">integer</a>,
1358 <a href="#t_floating">floating point</a>,
1359 <a href="#t_pointer">pointer</a>,
Dan Gohman08783a882008-06-18 18:42:13 +00001360 <a href="#t_vector">vector</a>,
Dan Gohmanb9d66602008-05-12 23:51:09 +00001361 <a href="#t_struct">structure</a>,
1362 <a href="#t_array">array</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001363 <a href="#t_label">label</a>,
1364 <a href="#t_metadata">metadata</a>.
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001365 </td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001366 </tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001367 <tr>
1368 <td><a href="#t_primitive">primitive</a></td>
1369 <td><a href="#t_label">label</a>,
1370 <a href="#t_void">void</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001371 <a href="#t_floating">floating point</a>,
1372 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner7824d182008-01-04 04:32:38 +00001373 </tr>
1374 <tr>
1375 <td><a href="#t_derived">derived</a></td>
1376 <td><a href="#t_integer">integer</a>,
1377 <a href="#t_array">array</a>,
1378 <a href="#t_function">function</a>,
1379 <a href="#t_pointer">pointer</a>,
1380 <a href="#t_struct">structure</a>,
1381 <a href="#t_pstruct">packed structure</a>,
1382 <a href="#t_vector">vector</a>,
1383 <a href="#t_opaque">opaque</a>.
Dan Gohman93bf60d2008-10-14 16:32:04 +00001384 </td>
Chris Lattner7824d182008-01-04 04:32:38 +00001385 </tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001386 </tbody>
Misha Brukman76307852003-11-08 01:05:38 +00001387</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001388
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001389<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1390 important. Values of these types are the only ones which can be produced by
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001391 instructions.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001392
Misha Brukman76307852003-11-08 01:05:38 +00001393</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001394
Chris Lattner2f7c9632001-06-06 20:29:01 +00001395<!-- ======================================================================= -->
Chris Lattner7824d182008-01-04 04:32:38 +00001396<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner43542b32008-01-04 04:34:14 +00001397
Chris Lattner7824d182008-01-04 04:32:38 +00001398<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001399
Chris Lattner7824d182008-01-04 04:32:38 +00001400<p>The primitive types are the fundamental building blocks of the LLVM
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001401 system.</p>
Chris Lattner7824d182008-01-04 04:32:38 +00001402
Chris Lattner43542b32008-01-04 04:34:14 +00001403</div>
1404
Chris Lattner7824d182008-01-04 04:32:38 +00001405<!-- _______________________________________________________________________ -->
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001406<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1407
1408<div class="doc_text">
1409
1410<h5>Overview:</h5>
1411<p>The integer type is a very simple type that simply specifies an arbitrary
1412 bit width for the integer type desired. Any bit width from 1 bit to
1413 2<sup>23</sup>-1 (about 8 million) can be specified.</p>
1414
1415<h5>Syntax:</h5>
1416<pre>
1417 iN
1418</pre>
1419
1420<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1421 value.</p>
1422
1423<h5>Examples:</h5>
1424<table class="layout">
1425 <tr class="layout">
1426 <td class="left"><tt>i1</tt></td>
1427 <td class="left">a single-bit integer.</td>
1428 </tr>
1429 <tr class="layout">
1430 <td class="left"><tt>i32</tt></td>
1431 <td class="left">a 32-bit integer.</td>
1432 </tr>
1433 <tr class="layout">
1434 <td class="left"><tt>i1942652</tt></td>
1435 <td class="left">a really big integer of over 1 million bits.</td>
1436 </tr>
1437</table>
1438
1439<p>Note that the code generator does not yet support large integer types to be
1440 used as function return types. The specific limit on how large a return type
1441 the code generator can currently handle is target-dependent; currently it's
1442 often 64 bits for 32-bit targets and 128 bits for 64-bit targets.</p>
1443
1444</div>
1445
1446<!-- _______________________________________________________________________ -->
Chris Lattner7824d182008-01-04 04:32:38 +00001447<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1448
1449<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001450
1451<table>
1452 <tbody>
1453 <tr><th>Type</th><th>Description</th></tr>
1454 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1455 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1456 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1457 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1458 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1459 </tbody>
1460</table>
1461
Chris Lattner7824d182008-01-04 04:32:38 +00001462</div>
1463
1464<!-- _______________________________________________________________________ -->
1465<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1466
1467<div class="doc_text">
Bill Wendling30235112009-07-20 02:39:26 +00001468
Chris Lattner7824d182008-01-04 04:32:38 +00001469<h5>Overview:</h5>
1470<p>The void type does not represent any value and has no size.</p>
1471
1472<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001473<pre>
1474 void
1475</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001476
Chris Lattner7824d182008-01-04 04:32:38 +00001477</div>
1478
1479<!-- _______________________________________________________________________ -->
1480<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1481
1482<div class="doc_text">
Bill Wendling30235112009-07-20 02:39:26 +00001483
Chris Lattner7824d182008-01-04 04:32:38 +00001484<h5>Overview:</h5>
1485<p>The label type represents code labels.</p>
1486
1487<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001488<pre>
1489 label
1490</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001491
Chris Lattner7824d182008-01-04 04:32:38 +00001492</div>
1493
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001494<!-- _______________________________________________________________________ -->
1495<div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
1496
1497<div class="doc_text">
Bill Wendling30235112009-07-20 02:39:26 +00001498
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001499<h5>Overview:</h5>
Nick Lewycky93e06a52009-09-27 23:27:42 +00001500<p>The metadata type represents embedded metadata. No derived types may be
1501 created from metadata except for <a href="#t_function">function</a>
1502 arguments.
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001503
1504<h5>Syntax:</h5>
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001505<pre>
1506 metadata
1507</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001508
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001509</div>
1510
Chris Lattner7824d182008-01-04 04:32:38 +00001511
1512<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001513<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001514
Misha Brukman76307852003-11-08 01:05:38 +00001515<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001516
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001517<p>The real power in LLVM comes from the derived types in the system. This is
1518 what allows a programmer to represent arrays, functions, pointers, and other
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001519 useful types. Each of these types contain one or more element types which
1520 may be a primitive type, or another derived type. For example, it is
1521 possible to have a two dimensional array, using an array as the element type
1522 of another array.</p>
Dan Gohman142ccc02009-01-24 15:58:40 +00001523
Bill Wendling3716c5d2007-05-29 09:04:49 +00001524</div>
Reid Spencer138249b2007-05-16 18:44:01 +00001525
1526<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001527<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001528
Misha Brukman76307852003-11-08 01:05:38 +00001529<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001530
Chris Lattner2f7c9632001-06-06 20:29:01 +00001531<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00001532<p>The array type is a very simple derived type that arranges elements
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001533 sequentially in memory. The array type requires a size (number of elements)
1534 and an underlying data type.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001535
Chris Lattner590645f2002-04-14 06:13:44 +00001536<h5>Syntax:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +00001537<pre>
1538 [&lt;# elements&gt; x &lt;elementtype&gt;]
1539</pre>
1540
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001541<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1542 be any type with a size.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001543
Chris Lattner590645f2002-04-14 06:13:44 +00001544<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001545<table class="layout">
1546 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001547 <td class="left"><tt>[40 x i32]</tt></td>
1548 <td class="left">Array of 40 32-bit integer values.</td>
1549 </tr>
1550 <tr class="layout">
1551 <td class="left"><tt>[41 x i32]</tt></td>
1552 <td class="left">Array of 41 32-bit integer values.</td>
1553 </tr>
1554 <tr class="layout">
1555 <td class="left"><tt>[4 x i8]</tt></td>
1556 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001557 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001558</table>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001559<p>Here are some examples of multidimensional arrays:</p>
1560<table class="layout">
1561 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001562 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1563 <td class="left">3x4 array of 32-bit integer values.</td>
1564 </tr>
1565 <tr class="layout">
1566 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1567 <td class="left">12x10 array of single precision floating point values.</td>
1568 </tr>
1569 <tr class="layout">
1570 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1571 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001572 </tr>
1573</table>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001574
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001575<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1576 length array. Normally, accesses past the end of an array are undefined in
1577 LLVM (e.g. it is illegal to access the 5th element of a 3 element array). As
1578 a special case, however, zero length arrays are recognized to be variable
1579 length. This allows implementation of 'pascal style arrays' with the LLVM
1580 type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001581
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001582<p>Note that the code generator does not yet support large aggregate types to be
1583 used as function return types. The specific limit on how large an aggregate
1584 return type the code generator can currently handle is target-dependent, and
1585 also dependent on the aggregate element types.</p>
Dan Gohman142ccc02009-01-24 15:58:40 +00001586
Misha Brukman76307852003-11-08 01:05:38 +00001587</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001588
Chris Lattner2f7c9632001-06-06 20:29:01 +00001589<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001590<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001591
Misha Brukman76307852003-11-08 01:05:38 +00001592<div class="doc_text">
Chris Lattnerda508ac2008-04-23 04:59:35 +00001593
Chris Lattner2f7c9632001-06-06 20:29:01 +00001594<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001595<p>The function type can be thought of as a function signature. It consists of
1596 a return type and a list of formal parameter types. The return type of a
1597 function type is a scalar type, a void type, or a struct type. If the return
1598 type is a struct type then all struct elements must be of first class types,
1599 and the struct must have at least one element.</p>
Devang Pateld6cff512008-03-10 20:49:15 +00001600
Chris Lattner2f7c9632001-06-06 20:29:01 +00001601<h5>Syntax:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001602<pre>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00001603 &lt;returntype&gt; (&lt;parameter list&gt;)
Chris Lattnerda508ac2008-04-23 04:59:35 +00001604</pre>
1605
John Criswell4c0cf7f2005-10-24 16:17:18 +00001606<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001607 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1608 which indicates that the function takes a variable number of arguments.
1609 Variable argument functions can access their arguments with
1610 the <a href="#int_varargs">variable argument handling intrinsic</a>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00001611 functions. '<tt>&lt;returntype&gt;</tt>' is a any type except
Nick Lewycky93e06a52009-09-27 23:27:42 +00001612 <a href="#t_label">label</a>.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001613
Chris Lattner2f7c9632001-06-06 20:29:01 +00001614<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001615<table class="layout">
1616 <tr class="layout">
Reid Spencer58c08712006-12-31 07:18:34 +00001617 <td class="left"><tt>i32 (i32)</tt></td>
1618 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001619 </td>
Reid Spencer58c08712006-12-31 07:18:34 +00001620 </tr><tr class="layout">
Reid Spencer314e1cb2007-07-19 23:13:04 +00001621 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencer655dcc62006-12-31 07:20:23 +00001622 </tt></td>
Reid Spencer58c08712006-12-31 07:18:34 +00001623 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1624 an <tt>i16</tt> that should be sign extended and a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001625 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer58c08712006-12-31 07:18:34 +00001626 <tt>float</tt>.
1627 </td>
1628 </tr><tr class="layout">
1629 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1630 <td class="left">A vararg function that takes at least one
Reid Spencer3e628eb92007-01-04 16:43:23 +00001631 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer58c08712006-12-31 07:18:34 +00001632 which returns an integer. This is the signature for <tt>printf</tt> in
1633 LLVM.
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001634 </td>
Devang Patele3dfc1c2008-03-24 05:35:41 +00001635 </tr><tr class="layout">
1636 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00001637 <td class="left">A function taking an <tt>i32</tt>, returning a
1638 <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
Devang Patele3dfc1c2008-03-24 05:35:41 +00001639 </td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001640 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001641</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001642
Misha Brukman76307852003-11-08 01:05:38 +00001643</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001644
Chris Lattner2f7c9632001-06-06 20:29:01 +00001645<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001646<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001647
Misha Brukman76307852003-11-08 01:05:38 +00001648<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001649
Chris Lattner2f7c9632001-06-06 20:29:01 +00001650<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001651<p>The structure type is used to represent a collection of data members together
1652 in memory. The packing of the field types is defined to match the ABI of the
1653 underlying processor. The elements of a structure may be any type that has a
1654 size.</p>
1655
1656<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
1657 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1658 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
1659
Chris Lattner2f7c9632001-06-06 20:29:01 +00001660<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00001661<pre>
1662 { &lt;type list&gt; }
1663</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001664
Chris Lattner2f7c9632001-06-06 20:29:01 +00001665<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001666<table class="layout">
1667 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00001668 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1669 <td class="left">A triple of three <tt>i32</tt> values</td>
1670 </tr><tr class="layout">
1671 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1672 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1673 second element is a <a href="#t_pointer">pointer</a> to a
1674 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1675 an <tt>i32</tt>.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001676 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001677</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001678
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001679<p>Note that the code generator does not yet support large aggregate types to be
1680 used as function return types. The specific limit on how large an aggregate
1681 return type the code generator can currently handle is target-dependent, and
1682 also dependent on the aggregate element types.</p>
Dan Gohman142ccc02009-01-24 15:58:40 +00001683
Misha Brukman76307852003-11-08 01:05:38 +00001684</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001685
Chris Lattner2f7c9632001-06-06 20:29:01 +00001686<!-- _______________________________________________________________________ -->
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001687<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1688</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001689
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001690<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001691
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001692<h5>Overview:</h5>
1693<p>The packed structure type is used to represent a collection of data members
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001694 together in memory. There is no padding between fields. Further, the
1695 alignment of a packed structure is 1 byte. The elements of a packed
1696 structure may be any type that has a size.</p>
1697
1698<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
1699 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1700 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
1701
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001702<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00001703<pre>
1704 &lt; { &lt;type list&gt; } &gt;
1705</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001706
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001707<h5>Examples:</h5>
1708<table class="layout">
1709 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00001710 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1711 <td class="left">A triple of three <tt>i32</tt> values</td>
1712 </tr><tr class="layout">
Bill Wendlingb175fa42008-09-07 10:26:33 +00001713 <td class="left">
1714<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen5819f182007-04-22 01:17:39 +00001715 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1716 second element is a <a href="#t_pointer">pointer</a> to a
1717 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1718 an <tt>i32</tt>.</td>
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001719 </tr>
1720</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001721
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001722</div>
1723
1724<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001725<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Chris Lattner4a67c912009-02-08 19:53:29 +00001726
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001727<div class="doc_text">
1728
1729<h5>Overview:</h5>
1730<p>As in many languages, the pointer type represents a pointer or reference to
1731 another object, which must live in memory. Pointer types may have an optional
1732 address space attribute defining the target-specific numbered address space
1733 where the pointed-to object resides. The default address space is zero.</p>
1734
1735<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
1736 permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner4a67c912009-02-08 19:53:29 +00001737
Chris Lattner590645f2002-04-14 06:13:44 +00001738<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00001739<pre>
1740 &lt;type&gt; *
1741</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001742
Chris Lattner590645f2002-04-14 06:13:44 +00001743<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001744<table class="layout">
1745 <tr class="layout">
Dan Gohman623806e2009-01-04 23:44:43 +00001746 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00001747 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1748 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1749 </tr>
1750 <tr class="layout">
1751 <td class="left"><tt>i32 (i32 *) *</tt></td>
1752 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001753 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner747359f2007-12-19 05:04:11 +00001754 <tt>i32</tt>.</td>
1755 </tr>
1756 <tr class="layout">
1757 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1758 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1759 that resides in address space #5.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001760 </tr>
Misha Brukman76307852003-11-08 01:05:38 +00001761</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001762
Misha Brukman76307852003-11-08 01:05:38 +00001763</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001764
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001765<!-- _______________________________________________________________________ -->
Reid Spencer404a3252007-02-15 03:07:05 +00001766<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001767
Misha Brukman76307852003-11-08 01:05:38 +00001768<div class="doc_text">
Chris Lattner37b6b092005-04-25 17:34:15 +00001769
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001770<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001771<p>A vector type is a simple derived type that represents a vector of elements.
1772 Vector types are used when multiple primitive data are operated in parallel
1773 using a single instruction (SIMD). A vector type requires a size (number of
1774 elements) and an underlying primitive data type. Vectors must have a power
1775 of two length (1, 2, 4, 8, 16 ...). Vector types are considered
1776 <a href="#t_firstclass">first class</a>.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001777
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001778<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001779<pre>
1780 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1781</pre>
1782
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001783<p>The number of elements is a constant integer value; elementtype may be any
1784 integer or floating point type.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001785
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001786<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001787<table class="layout">
1788 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001789 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1790 <td class="left">Vector of 4 32-bit integer values.</td>
1791 </tr>
1792 <tr class="layout">
1793 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1794 <td class="left">Vector of 8 32-bit floating-point values.</td>
1795 </tr>
1796 <tr class="layout">
1797 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1798 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001799 </tr>
1800</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001801
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001802<p>Note that the code generator does not yet support large vector types to be
1803 used as function return types. The specific limit on how large a vector
1804 return type codegen can currently handle is target-dependent; currently it's
1805 often a few times longer than a hardware vector register.</p>
Dan Gohman142ccc02009-01-24 15:58:40 +00001806
Misha Brukman76307852003-11-08 01:05:38 +00001807</div>
1808
Chris Lattner37b6b092005-04-25 17:34:15 +00001809<!-- _______________________________________________________________________ -->
1810<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1811<div class="doc_text">
1812
1813<h5>Overview:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001814<p>Opaque types are used to represent unknown types in the system. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001815 corresponds (for example) to the C notion of a forward declared structure
1816 type. In LLVM, opaque types can eventually be resolved to any type (not just
1817 a structure type).</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001818
1819<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001820<pre>
1821 opaque
1822</pre>
1823
1824<h5>Examples:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001825<table class="layout">
1826 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001827 <td class="left"><tt>opaque</tt></td>
1828 <td class="left">An opaque type.</td>
Chris Lattner37b6b092005-04-25 17:34:15 +00001829 </tr>
1830</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001831
Chris Lattner37b6b092005-04-25 17:34:15 +00001832</div>
1833
Chris Lattnercf7a5842009-02-02 07:32:36 +00001834<!-- ======================================================================= -->
1835<div class="doc_subsection">
1836 <a name="t_uprefs">Type Up-references</a>
1837</div>
1838
1839<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001840
Chris Lattnercf7a5842009-02-02 07:32:36 +00001841<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001842<p>An "up reference" allows you to refer to a lexically enclosing type without
1843 requiring it to have a name. For instance, a structure declaration may
1844 contain a pointer to any of the types it is lexically a member of. Example
1845 of up references (with their equivalent as named type declarations)
1846 include:</p>
Chris Lattnercf7a5842009-02-02 07:32:36 +00001847
1848<pre>
Chris Lattnerbf1d5452009-02-09 10:00:56 +00001849 { \2 * } %x = type { %x* }
Chris Lattnercf7a5842009-02-02 07:32:36 +00001850 { \2 }* %y = type { %y }*
1851 \1* %z = type %z*
1852</pre>
1853
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001854<p>An up reference is needed by the asmprinter for printing out cyclic types
1855 when there is no declared name for a type in the cycle. Because the
1856 asmprinter does not want to print out an infinite type string, it needs a
1857 syntax to handle recursive types that have no names (all names are optional
1858 in llvm IR).</p>
Chris Lattnercf7a5842009-02-02 07:32:36 +00001859
1860<h5>Syntax:</h5>
1861<pre>
1862 \&lt;level&gt;
1863</pre>
1864
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001865<p>The level is the count of the lexical type that is being referred to.</p>
Chris Lattnercf7a5842009-02-02 07:32:36 +00001866
1867<h5>Examples:</h5>
Chris Lattnercf7a5842009-02-02 07:32:36 +00001868<table class="layout">
1869 <tr class="layout">
1870 <td class="left"><tt>\1*</tt></td>
1871 <td class="left">Self-referential pointer.</td>
1872 </tr>
1873 <tr class="layout">
1874 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1875 <td class="left">Recursive structure where the upref refers to the out-most
1876 structure.</td>
1877 </tr>
1878</table>
Chris Lattnercf7a5842009-02-02 07:32:36 +00001879
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001880</div>
Chris Lattner37b6b092005-04-25 17:34:15 +00001881
Chris Lattner74d3f822004-12-09 17:30:23 +00001882<!-- *********************************************************************** -->
1883<div class="doc_section"> <a name="constants">Constants</a> </div>
1884<!-- *********************************************************************** -->
1885
1886<div class="doc_text">
1887
1888<p>LLVM has several different basic types of constants. This section describes
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001889 them all and their syntax.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001890
1891</div>
1892
1893<!-- ======================================================================= -->
Reid Spencer8f08d802004-12-09 18:02:53 +00001894<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001895
1896<div class="doc_text">
1897
1898<dl>
1899 <dt><b>Boolean constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00001900 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001901 constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001902
1903 <dt><b>Integer constants</b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001904 <dd>Standard integers (such as '4') are constants of
1905 the <a href="#t_integer">integer</a> type. Negative numbers may be used
1906 with integer types.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001907
1908 <dt><b>Floating point constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00001909 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001910 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
1911 notation (see below). The assembler requires the exact decimal value of a
1912 floating-point constant. For example, the assembler accepts 1.25 but
1913 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1914 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001915
1916 <dt><b>Null pointer constants</b></dt>
John Criswelldfe6a862004-12-10 15:51:16 +00001917 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001918 and must be of <a href="#t_pointer">pointer type</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001919</dl>
1920
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001921<p>The one non-intuitive notation for constants is the hexadecimal form of
1922 floating point constants. For example, the form '<tt>double
1923 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
1924 '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
1925 constants are required (and the only time that they are generated by the
1926 disassembler) is when a floating point constant must be emitted but it cannot
1927 be represented as a decimal floating point number in a reasonable number of
1928 digits. For example, NaN's, infinities, and other special values are
1929 represented in their IEEE hexadecimal format so that assembly and disassembly
1930 do not cause any bits to change in the constants.</p>
1931
Dale Johannesencd4a3012009-02-11 22:14:51 +00001932<p>When using the hexadecimal form, constants of types float and double are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001933 represented using the 16-digit form shown above (which matches the IEEE754
1934 representation for double); float values must, however, be exactly
1935 representable as IEE754 single precision. Hexadecimal format is always used
1936 for long double, and there are three forms of long double. The 80-bit format
1937 used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
1938 The 128-bit format used by PowerPC (two adjacent doubles) is represented
1939 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
1940 is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
1941 currently supported target uses this format. Long doubles will only work if
1942 they match the long double format on your target. All hexadecimal formats
1943 are big-endian (sign bit at the left).</p>
1944
Chris Lattner74d3f822004-12-09 17:30:23 +00001945</div>
1946
1947<!-- ======================================================================= -->
Chris Lattner361bfcd2009-02-28 18:32:25 +00001948<div class="doc_subsection">
Bill Wendling972b7202009-07-20 02:32:41 +00001949<a name="aggregateconstants"></a> <!-- old anchor -->
1950<a name="complexconstants">Complex Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +00001951</div>
1952
1953<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001954
Chris Lattner361bfcd2009-02-28 18:32:25 +00001955<p>Complex constants are a (potentially recursive) combination of simple
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001956 constants and smaller complex constants.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001957
1958<dl>
1959 <dt><b>Structure constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00001960 <dd>Structure constants are represented with notation similar to structure
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001961 type definitions (a comma separated list of elements, surrounded by braces
1962 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1963 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
1964 Structure constants must have <a href="#t_struct">structure type</a>, and
1965 the number and types of elements must match those specified by the
1966 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001967
1968 <dt><b>Array constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00001969 <dd>Array constants are represented with notation similar to array type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001970 definitions (a comma separated list of elements, surrounded by square
1971 brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
1972 ]</tt>". Array constants must have <a href="#t_array">array type</a>, and
1973 the number and types of elements must match those specified by the
1974 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001975
Reid Spencer404a3252007-02-15 03:07:05 +00001976 <dt><b>Vector constants</b></dt>
Reid Spencer404a3252007-02-15 03:07:05 +00001977 <dd>Vector constants are represented with notation similar to vector type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001978 definitions (a comma separated list of elements, surrounded by
1979 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
1980 42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
1981 have <a href="#t_vector">vector type</a>, and the number and types of
1982 elements must match those specified by the type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001983
1984 <dt><b>Zero initialization</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00001985 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001986 value to zero of <em>any</em> type, including scalar and aggregate types.
1987 This is often used to avoid having to print large zero initializers
1988 (e.g. for large arrays) and is always exactly equivalent to using explicit
1989 zero initializers.</dd>
Nick Lewycky49f89192009-04-04 07:22:01 +00001990
1991 <dt><b>Metadata node</b></dt>
Nick Lewycky8e2c4f42009-05-30 16:08:30 +00001992 <dd>A metadata node is a structure-like constant with
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001993 <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
1994 i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
1995 be interpreted as part of the instruction stream, metadata is a place to
1996 attach additional information such as debug info.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001997</dl>
1998
1999</div>
2000
2001<!-- ======================================================================= -->
2002<div class="doc_subsection">
2003 <a name="globalconstants">Global Variable and Function Addresses</a>
2004</div>
2005
2006<div class="doc_text">
2007
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002008<p>The addresses of <a href="#globalvars">global variables</a>
2009 and <a href="#functionstructure">functions</a> are always implicitly valid
2010 (link-time) constants. These constants are explicitly referenced when
2011 the <a href="#identifiers">identifier for the global</a> is used and always
2012 have <a href="#t_pointer">pointer</a> type. For example, the following is a
2013 legal LLVM file:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002014
Bill Wendling3716c5d2007-05-29 09:04:49 +00002015<div class="doc_code">
Chris Lattner74d3f822004-12-09 17:30:23 +00002016<pre>
Chris Lattner00538a12007-06-06 18:28:13 +00002017@X = global i32 17
2018@Y = global i32 42
2019@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattner74d3f822004-12-09 17:30:23 +00002020</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002021</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002022
2023</div>
2024
2025<!-- ======================================================================= -->
Reid Spencer641f5c92004-12-09 18:13:12 +00002026<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002027<div class="doc_text">
2028
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002029<p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
Benjamin Kramer0f420382009-10-12 14:46:08 +00002030 indicates that the user of the value may receive an unspecified bit-pattern.
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002031 Undefined values may be of any type (other than label or void) and be used
2032 anywhere a constant is permitted.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002033
Chris Lattner92ada5d2009-09-11 01:49:31 +00002034<p>Undefined values are useful because they indicate to the compiler that the
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002035 program is well defined no matter what value is used. This gives the
2036 compiler more freedom to optimize. Here are some examples of (potentially
2037 surprising) transformations that are valid (in pseudo IR):</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002038
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002039
2040<div class="doc_code">
2041<pre>
2042 %A = add %X, undef
2043 %B = sub %X, undef
2044 %C = xor %X, undef
2045Safe:
2046 %A = undef
2047 %B = undef
2048 %C = undef
2049</pre>
2050</div>
2051
2052<p>This is safe because all of the output bits are affected by the undef bits.
2053Any output bit can have a zero or one depending on the input bits.</p>
2054
2055<div class="doc_code">
2056<pre>
2057 %A = or %X, undef
2058 %B = and %X, undef
2059Safe:
2060 %A = -1
2061 %B = 0
2062Unsafe:
2063 %A = undef
2064 %B = undef
2065</pre>
2066</div>
2067
2068<p>These logical operations have bits that are not always affected by the input.
2069For example, if "%X" has a zero bit, then the output of the 'and' operation will
2070always be a zero, no matter what the corresponding bit from the undef is. As
Chris Lattner92ada5d2009-09-11 01:49:31 +00002071such, it is unsafe to optimize or assume that the result of the and is undef.
2072However, it is safe to assume that all bits of the undef could be 0, and
2073optimize the and to 0. Likewise, it is safe to assume that all the bits of
2074the undef operand to the or could be set, allowing the or to be folded to
2075-1.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002076
2077<div class="doc_code">
2078<pre>
2079 %A = select undef, %X, %Y
2080 %B = select undef, 42, %Y
2081 %C = select %X, %Y, undef
2082Safe:
2083 %A = %X (or %Y)
2084 %B = 42 (or %Y)
2085 %C = %Y
2086Unsafe:
2087 %A = undef
2088 %B = undef
2089 %C = undef
2090</pre>
2091</div>
2092
2093<p>This set of examples show that undefined select (and conditional branch)
2094conditions can go "either way" but they have to come from one of the two
2095operands. In the %A example, if %X and %Y were both known to have a clear low
2096bit, then %A would have to have a cleared low bit. However, in the %C example,
2097the optimizer is allowed to assume that the undef operand could be the same as
2098%Y, allowing the whole select to be eliminated.</p>
2099
2100
2101<div class="doc_code">
2102<pre>
2103 %A = xor undef, undef
2104
2105 %B = undef
2106 %C = xor %B, %B
2107
2108 %D = undef
2109 %E = icmp lt %D, 4
2110 %F = icmp gte %D, 4
2111
2112Safe:
2113 %A = undef
2114 %B = undef
2115 %C = undef
2116 %D = undef
2117 %E = undef
2118 %F = undef
2119</pre>
2120</div>
2121
2122<p>This example points out that two undef operands are not necessarily the same.
2123This can be surprising to people (and also matches C semantics) where they
2124assume that "X^X" is always zero, even if X is undef. This isn't true for a
2125number of reasons, but the short answer is that an undef "variable" can
2126arbitrarily change its value over its "live range". This is true because the
2127"variable" doesn't actually <em>have a live range</em>. Instead, the value is
2128logically read from arbitrary registers that happen to be around when needed,
Benjamin Kramer0f420382009-10-12 14:46:08 +00002129so the value is not necessarily consistent over time. In fact, %A and %C need
Chris Lattner6760e542009-09-08 15:13:16 +00002130to have the same semantics or the core LLVM "replace all uses with" concept
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002131would not hold.</p>
Chris Lattnera34a7182009-09-07 23:33:52 +00002132
2133<div class="doc_code">
2134<pre>
2135 %A = fdiv undef, %X
2136 %B = fdiv %X, undef
2137Safe:
2138 %A = undef
2139b: unreachable
2140</pre>
2141</div>
2142
2143<p>These examples show the crucial difference between an <em>undefined
2144value</em> and <em>undefined behavior</em>. An undefined value (like undef) is
2145allowed to have an arbitrary bit-pattern. This means that the %A operation
2146can be constant folded to undef because the undef could be an SNaN, and fdiv is
2147not (currently) defined on SNaN's. However, in the second example, we can make
2148a more aggressive assumption: because the undef is allowed to be an arbitrary
2149value, we are allowed to assume that it could be zero. Since a divide by zero
Chris Lattner10ff0c12009-09-08 19:45:34 +00002150has <em>undefined behavior</em>, we are allowed to assume that the operation
Chris Lattnera34a7182009-09-07 23:33:52 +00002151does not execute at all. This allows us to delete the divide and all code after
2152it: since the undefined operation "can't happen", the optimizer can assume that
2153it occurs in dead code.
2154</p>
2155
2156<div class="doc_code">
2157<pre>
2158a: store undef -> %X
2159b: store %X -> undef
2160Safe:
2161a: &lt;deleted&gt;
2162b: unreachable
2163</pre>
2164</div>
2165
2166<p>These examples reiterate the fdiv example: a store "of" an undefined value
2167can be assumed to not have any effect: we can assume that the value is
2168overwritten with bits that happen to match what was already there. However, a
2169store "to" an undefined location could clobber arbitrary memory, therefore, it
2170has undefined behavior.</p>
2171
Chris Lattner74d3f822004-12-09 17:30:23 +00002172</div>
2173
2174<!-- ======================================================================= -->
2175<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
2176</div>
2177
2178<div class="doc_text">
2179
2180<p>Constant expressions are used to allow expressions involving other constants
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002181 to be used as constants. Constant expressions may be of
2182 any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2183 operation that does not have side effects (e.g. load and call are not
2184 supported). The following is the syntax for constant expressions:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002185
2186<dl>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002187 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002188 <dd>Truncate a constant to another type. The bit size of CST must be larger
2189 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002190
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002191 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002192 <dd>Zero extend a constant to another type. The bit size of CST must be
2193 smaller or equal to the bit size of TYPE. Both types must be
2194 integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002195
2196 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002197 <dd>Sign extend a constant to another type. The bit size of CST must be
2198 smaller or equal to the bit size of TYPE. Both types must be
2199 integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002200
2201 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002202 <dd>Truncate a floating point constant to another floating point type. The
2203 size of CST must be larger than the size of TYPE. Both types must be
2204 floating point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002205
2206 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002207 <dd>Floating point extend a constant to another type. The size of CST must be
2208 smaller or equal to the size of TYPE. Both types must be floating
2209 point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002210
Reid Spencer753163d2007-07-31 14:40:14 +00002211 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002212 <dd>Convert a floating point constant to the corresponding unsigned integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002213 constant. TYPE must be a scalar or vector integer type. CST must be of
2214 scalar or vector floating point type. Both CST and TYPE must be scalars,
2215 or vectors of the same number of elements. If the value won't fit in the
2216 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002217
Reid Spencer51b07252006-11-09 23:03:26 +00002218 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002219 <dd>Convert a floating point constant to the corresponding signed integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002220 constant. TYPE must be a scalar or vector integer type. CST must be of
2221 scalar or vector floating point type. Both CST and TYPE must be scalars,
2222 or vectors of the same number of elements. If the value won't fit in the
2223 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002224
Reid Spencer51b07252006-11-09 23:03:26 +00002225 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002226 <dd>Convert an unsigned integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002227 constant. TYPE must be a scalar or vector floating point type. CST must be
2228 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2229 vectors of the same number of elements. If the value won't fit in the
2230 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002231
Reid Spencer51b07252006-11-09 23:03:26 +00002232 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002233 <dd>Convert a signed integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002234 constant. TYPE must be a scalar or vector floating point type. CST must be
2235 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2236 vectors of the same number of elements. If the value won't fit in the
2237 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002238
Reid Spencer5b950642006-11-11 23:08:07 +00002239 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
2240 <dd>Convert a pointer typed constant to the corresponding integer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002241 <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2242 type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2243 make it fit in <tt>TYPE</tt>.</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002244
2245 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002246 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2247 type. CST must be of integer type. The CST value is zero extended,
2248 truncated, or unchanged to make it fit in a pointer size. This one is
2249 <i>really</i> dangerous!</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002250
2251 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Chris Lattner789dee32009-02-28 18:27:03 +00002252 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2253 are the same as those for the <a href="#i_bitcast">bitcast
2254 instruction</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002255
2256 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
Dan Gohman1639c392009-07-27 21:53:46 +00002257 <dt><b><tt>getelementptr inbounds ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002258 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002259 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2260 instruction, the index list may have zero or more indexes, which are
2261 required to make sense for the type of "CSTPTR".</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002262
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002263 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002264 <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
Reid Spencer9965ee72006-12-04 19:23:19 +00002265
2266 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
2267 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2268
2269 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
2270 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002271
2272 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002273 <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2274 constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002275
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00002276 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002277 <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2278 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002279
2280 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002281 <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2282 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002283
Chris Lattner74d3f822004-12-09 17:30:23 +00002284 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002285 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2286 be any of the <a href="#binaryops">binary</a>
2287 or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
2288 on operands are the same as those for the corresponding instruction
2289 (e.g. no bitwise operations on floating point values are allowed).</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002290</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002291
Chris Lattner74d3f822004-12-09 17:30:23 +00002292</div>
Chris Lattnerb1652612004-03-08 16:49:10 +00002293
Nick Lewycky49f89192009-04-04 07:22:01 +00002294<!-- ======================================================================= -->
2295<div class="doc_subsection"><a name="metadata">Embedded Metadata</a>
2296</div>
2297
2298<div class="doc_text">
2299
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002300<p>Embedded metadata provides a way to attach arbitrary data to the instruction
2301 stream without affecting the behaviour of the program. There are two
2302 metadata primitives, strings and nodes. All metadata has the
2303 <tt>metadata</tt> type and is identified in syntax by a preceding exclamation
2304 point ('<tt>!</tt>').</p>
Nick Lewycky49f89192009-04-04 07:22:01 +00002305
2306<p>A metadata string is a string surrounded by double quotes. It can contain
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002307 any character by escaping non-printable characters with "\xx" where "xx" is
2308 the two digit hex code. For example: "<tt>!"test\00"</tt>".</p>
Nick Lewycky49f89192009-04-04 07:22:01 +00002309
2310<p>Metadata nodes are represented with notation similar to structure constants
Benjamin Kramer0f420382009-10-12 14:46:08 +00002311 (a comma separated list of elements, surrounded by braces and preceded by an
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002312 exclamation point). For example: "<tt>!{ metadata !"test\00", i32
2313 10}</tt>".</p>
Nick Lewycky49f89192009-04-04 07:22:01 +00002314
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002315<p>A metadata node will attempt to track changes to the values it holds. In the
2316 event that a value is deleted, it will be replaced with a typeless
2317 "<tt>null</tt>", such as "<tt>metadata !{null, i32 10}</tt>".</p>
Nick Lewyckyb8f9b7a2009-05-10 20:57:05 +00002318
Nick Lewycky49f89192009-04-04 07:22:01 +00002319<p>Optimizations may rely on metadata to provide additional information about
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002320 the program that isn't available in the instructions, or that isn't easily
2321 computable. Similarly, the code generator may expect a certain metadata
2322 format to be used to express debugging information.</p>
2323
Nick Lewycky49f89192009-04-04 07:22:01 +00002324</div>
2325
Chris Lattner2f7c9632001-06-06 20:29:01 +00002326<!-- *********************************************************************** -->
Chris Lattner98f013c2006-01-25 23:47:57 +00002327<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2328<!-- *********************************************************************** -->
2329
2330<!-- ======================================================================= -->
2331<div class="doc_subsection">
2332<a name="inlineasm">Inline Assembler Expressions</a>
2333</div>
2334
2335<div class="doc_text">
2336
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002337<p>LLVM supports inline assembler expressions (as opposed
2338 to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
2339 a special value. This value represents the inline assembler as a string
2340 (containing the instructions to emit), a list of operand constraints (stored
2341 as a string), and a flag that indicates whether or not the inline asm
2342 expression has side effects. An example inline assembler expression is:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002343
Bill Wendling3716c5d2007-05-29 09:04:49 +00002344<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00002345<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002346i32 (i32) asm "bswap $0", "=r,r"
Chris Lattner98f013c2006-01-25 23:47:57 +00002347</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002348</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002349
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002350<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2351 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
2352 have:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002353
Bill Wendling3716c5d2007-05-29 09:04:49 +00002354<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00002355<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002356%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattner98f013c2006-01-25 23:47:57 +00002357</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002358</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002359
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002360<p>Inline asms with side effects not visible in the constraint list must be
2361 marked as having side effects. This is done through the use of the
2362 '<tt>sideeffect</tt>' keyword, like so:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002363
Bill Wendling3716c5d2007-05-29 09:04:49 +00002364<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00002365<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002366call void asm sideeffect "eieio", ""()
Chris Lattner98f013c2006-01-25 23:47:57 +00002367</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002368</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002369
2370<p>TODO: The format of the asm and constraints string still need to be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002371 documented here. Constraints on what can be done (e.g. duplication, moving,
2372 etc need to be documented). This is probably best done by reference to
2373 another document that covers inline asm from a holistic perspective.</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002374
2375</div>
2376
Chris Lattnerae76db52009-07-20 05:55:19 +00002377
2378<!-- *********************************************************************** -->
2379<div class="doc_section">
2380 <a name="intrinsic_globals">Intrinsic Global Variables</a>
2381</div>
2382<!-- *********************************************************************** -->
2383
2384<p>LLVM has a number of "magic" global variables that contain data that affect
2385code generation or other IR semantics. These are documented here. All globals
Chris Lattner58f9bb22009-07-20 06:14:25 +00002386of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
2387section and all globals that start with "<tt>llvm.</tt>" are reserved for use
2388by LLVM.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00002389
2390<!-- ======================================================================= -->
2391<div class="doc_subsection">
2392<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
2393</div>
2394
2395<div class="doc_text">
2396
2397<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
2398href="#linkage_appending">appending linkage</a>. This array contains a list of
2399pointers to global variables and functions which may optionally have a pointer
2400cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
2401
2402<pre>
2403 @X = global i8 4
2404 @Y = global i32 123
2405
2406 @llvm.used = appending global [2 x i8*] [
2407 i8* @X,
2408 i8* bitcast (i32* @Y to i8*)
2409 ], section "llvm.metadata"
2410</pre>
2411
2412<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
2413compiler, assembler, and linker are required to treat the symbol as if there is
2414a reference to the global that it cannot see. For example, if a variable has
2415internal linkage and no references other than that from the <tt>@llvm.used</tt>
2416list, it cannot be deleted. This is commonly used to represent references from
2417inline asms and other things the compiler cannot "see", and corresponds to
2418"attribute((used))" in GNU C.</p>
2419
2420<p>On some targets, the code generator must emit a directive to the assembler or
2421object file to prevent the assembler and linker from molesting the symbol.</p>
2422
2423</div>
2424
2425<!-- ======================================================================= -->
2426<div class="doc_subsection">
Chris Lattner58f9bb22009-07-20 06:14:25 +00002427<a name="intg_compiler_used">The '<tt>llvm.compiler.used</tt>' Global Variable</a>
2428</div>
2429
2430<div class="doc_text">
2431
2432<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
2433<tt>@llvm.used</tt> directive, except that it only prevents the compiler from
2434touching the symbol. On targets that support it, this allows an intelligent
2435linker to optimize references to the symbol without being impeded as it would be
2436by <tt>@llvm.used</tt>.</p>
2437
2438<p>This is a rare construct that should only be used in rare circumstances, and
2439should not be exposed to source languages.</p>
2440
2441</div>
2442
2443<!-- ======================================================================= -->
2444<div class="doc_subsection">
Chris Lattnerae76db52009-07-20 05:55:19 +00002445<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
2446</div>
2447
2448<div class="doc_text">
2449
2450<p>TODO: Describe this.</p>
2451
2452</div>
2453
2454<!-- ======================================================================= -->
2455<div class="doc_subsection">
2456<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
2457</div>
2458
2459<div class="doc_text">
2460
2461<p>TODO: Describe this.</p>
2462
2463</div>
2464
2465
Chris Lattner98f013c2006-01-25 23:47:57 +00002466<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002467<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2468<!-- *********************************************************************** -->
Chris Lattner74d3f822004-12-09 17:30:23 +00002469
Misha Brukman76307852003-11-08 01:05:38 +00002470<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00002471
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002472<p>The LLVM instruction set consists of several different classifications of
2473 instructions: <a href="#terminators">terminator
2474 instructions</a>, <a href="#binaryops">binary instructions</a>,
2475 <a href="#bitwiseops">bitwise binary instructions</a>,
2476 <a href="#memoryops">memory instructions</a>, and
2477 <a href="#otherops">other instructions</a>.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002478
Misha Brukman76307852003-11-08 01:05:38 +00002479</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002480
Chris Lattner2f7c9632001-06-06 20:29:01 +00002481<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002482<div class="doc_subsection"> <a name="terminators">Terminator
2483Instructions</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002484
Misha Brukman76307852003-11-08 01:05:38 +00002485<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00002486
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002487<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
2488 in a program ends with a "Terminator" instruction, which indicates which
2489 block should be executed after the current block is finished. These
2490 terminator instructions typically yield a '<tt>void</tt>' value: they produce
2491 control flow, not values (the one exception being the
2492 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
2493
2494<p>There are six different terminator instructions: the
2495 '<a href="#i_ret"><tt>ret</tt></a>' instruction, the
2496 '<a href="#i_br"><tt>br</tt></a>' instruction, the
2497 '<a href="#i_switch"><tt>switch</tt></a>' instruction, the
2498 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the
2499 '<a href="#i_unwind"><tt>unwind</tt></a>' instruction, and the
2500 '<a href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002501
Misha Brukman76307852003-11-08 01:05:38 +00002502</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002503
Chris Lattner2f7c9632001-06-06 20:29:01 +00002504<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002505<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2506Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002507
Misha Brukman76307852003-11-08 01:05:38 +00002508<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002509
Chris Lattner2f7c9632001-06-06 20:29:01 +00002510<h5>Syntax:</h5>
Dan Gohmancc3132e2008-10-04 19:00:07 +00002511<pre>
2512 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner590645f2002-04-14 06:13:44 +00002513 ret void <i>; Return from void function</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002514</pre>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002515
Chris Lattner2f7c9632001-06-06 20:29:01 +00002516<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002517<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
2518 a value) from a function back to the caller.</p>
2519
2520<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
2521 value and then causes control flow, and one that just causes control flow to
2522 occur.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002523
Chris Lattner2f7c9632001-06-06 20:29:01 +00002524<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002525<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
2526 return value. The type of the return value must be a
2527 '<a href="#t_firstclass">first class</a>' type.</p>
Dan Gohmancc3132e2008-10-04 19:00:07 +00002528
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002529<p>A function is not <a href="#wellformed">well formed</a> if it it has a
2530 non-void return type and contains a '<tt>ret</tt>' instruction with no return
2531 value or a return value with a type that does not match its type, or if it
2532 has a void return type and contains a '<tt>ret</tt>' instruction with a
2533 return value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002534
Chris Lattner2f7c9632001-06-06 20:29:01 +00002535<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002536<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
2537 the calling function's context. If the caller is a
2538 "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
2539 instruction after the call. If the caller was an
2540 "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
2541 the beginning of the "normal" destination block. If the instruction returns
2542 a value, that value shall set the call or invoke instruction's return
2543 value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002544
Chris Lattner2f7c9632001-06-06 20:29:01 +00002545<h5>Example:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002546<pre>
2547 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner590645f2002-04-14 06:13:44 +00002548 ret void <i>; Return from a void function</i>
Bill Wendling050ee8f2009-02-28 22:12:54 +00002549 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002550</pre>
Dan Gohman3065b612009-01-12 23:12:39 +00002551
Dan Gohman142ccc02009-01-24 15:58:40 +00002552<p>Note that the code generator does not yet fully support large
2553 return values. The specific sizes that are currently supported are
2554 dependent on the target. For integers, on 32-bit targets the limit
2555 is often 64 bits, and on 64-bit targets the limit is often 128 bits.
2556 For aggregate types, the current limits are dependent on the element
2557 types; for example targets are often limited to 2 total integer
2558 elements and 2 total floating-point elements.</p>
Dan Gohman3065b612009-01-12 23:12:39 +00002559
Misha Brukman76307852003-11-08 01:05:38 +00002560</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002561<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002562<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002563
Misha Brukman76307852003-11-08 01:05:38 +00002564<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002565
Chris Lattner2f7c9632001-06-06 20:29:01 +00002566<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002567<pre>
2568 br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002569</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002570
Chris Lattner2f7c9632001-06-06 20:29:01 +00002571<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002572<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
2573 different basic block in the current function. There are two forms of this
2574 instruction, corresponding to a conditional branch and an unconditional
2575 branch.</p>
2576
Chris Lattner2f7c9632001-06-06 20:29:01 +00002577<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002578<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
2579 '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
2580 of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
2581 target.</p>
2582
Chris Lattner2f7c9632001-06-06 20:29:01 +00002583<h5>Semantics:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00002584<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002585 argument is evaluated. If the value is <tt>true</tt>, control flows to the
2586 '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2587 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
2588
Chris Lattner2f7c9632001-06-06 20:29:01 +00002589<h5>Example:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002590<pre>
2591Test:
2592 %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
2593 br i1 %cond, label %IfEqual, label %IfUnequal
2594IfEqual:
2595 <a href="#i_ret">ret</a> i32 1
2596IfUnequal:
2597 <a href="#i_ret">ret</a> i32 0
2598</pre>
2599
Misha Brukman76307852003-11-08 01:05:38 +00002600</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002601
Chris Lattner2f7c9632001-06-06 20:29:01 +00002602<!-- _______________________________________________________________________ -->
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002603<div class="doc_subsubsection">
2604 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2605</div>
2606
Misha Brukman76307852003-11-08 01:05:38 +00002607<div class="doc_text">
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002608
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002609<h5>Syntax:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002610<pre>
2611 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2612</pre>
2613
Chris Lattner2f7c9632001-06-06 20:29:01 +00002614<h5>Overview:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002615<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002616 several different places. It is a generalization of the '<tt>br</tt>'
2617 instruction, allowing a branch to occur to one of many possible
2618 destinations.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002619
Chris Lattner2f7c9632001-06-06 20:29:01 +00002620<h5>Arguments:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002621<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002622 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
2623 and an array of pairs of comparison value constants and '<tt>label</tt>'s.
2624 The table is not allowed to contain duplicate constant entries.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002625
Chris Lattner2f7c9632001-06-06 20:29:01 +00002626<h5>Semantics:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002627<p>The <tt>switch</tt> instruction specifies a table of values and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002628 destinations. When the '<tt>switch</tt>' instruction is executed, this table
2629 is searched for the given value. If the value is found, control flow is
Benjamin Kramer0f420382009-10-12 14:46:08 +00002630 transferred to the corresponding destination; otherwise, control flow is
2631 transferred to the default destination.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002632
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002633<h5>Implementation:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002634<p>Depending on properties of the target machine and the particular
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002635 <tt>switch</tt> instruction, this instruction may be code generated in
2636 different ways. For example, it could be generated as a series of chained
2637 conditional branches or with a lookup table.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002638
2639<h5>Example:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002640<pre>
2641 <i>; Emulate a conditional br instruction</i>
Reid Spencer36a15422007-01-12 03:35:51 +00002642 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman623806e2009-01-04 23:44:43 +00002643 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002644
2645 <i>; Emulate an unconditional br instruction</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002646 switch i32 0, label %dest [ ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002647
2648 <i>; Implement a jump table:</i>
Dan Gohman623806e2009-01-04 23:44:43 +00002649 switch i32 %val, label %otherwise [ i32 0, label %onzero
2650 i32 1, label %onone
2651 i32 2, label %ontwo ]
Chris Lattner2f7c9632001-06-06 20:29:01 +00002652</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002653
Misha Brukman76307852003-11-08 01:05:38 +00002654</div>
Chris Lattner0132aff2005-05-06 22:57:40 +00002655
Chris Lattner2f7c9632001-06-06 20:29:01 +00002656<!-- _______________________________________________________________________ -->
Chris Lattner0132aff2005-05-06 22:57:40 +00002657<div class="doc_subsubsection">
2658 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2659</div>
2660
Misha Brukman76307852003-11-08 01:05:38 +00002661<div class="doc_text">
Chris Lattner0132aff2005-05-06 22:57:40 +00002662
Chris Lattner2f7c9632001-06-06 20:29:01 +00002663<h5>Syntax:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002664<pre>
Devang Patel02256232008-10-07 17:48:33 +00002665 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner6b7a0082006-05-14 18:23:06 +00002666 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattner0132aff2005-05-06 22:57:40 +00002667</pre>
2668
Chris Lattnera8292f32002-05-06 22:08:29 +00002669<h5>Overview:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002670<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002671 function, with the possibility of control flow transfer to either the
2672 '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
2673 function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
2674 control flow will return to the "normal" label. If the callee (or any
2675 indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
2676 instruction, control is interrupted and continued at the dynamically nearest
2677 "exception" label.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00002678
Chris Lattner2f7c9632001-06-06 20:29:01 +00002679<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002680<p>This instruction requires several arguments:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00002681
Chris Lattner2f7c9632001-06-06 20:29:01 +00002682<ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002683 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
2684 convention</a> the call should use. If none is specified, the call
2685 defaults to using C calling conventions.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00002686
2687 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002688 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
2689 '<tt>inreg</tt>' attributes are valid here.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00002690
Chris Lattner0132aff2005-05-06 22:57:40 +00002691 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002692 function value being invoked. In most cases, this is a direct function
2693 invocation, but indirect <tt>invoke</tt>s are just as possible, branching
2694 off an arbitrary pointer to function value.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00002695
2696 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002697 function to be invoked. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00002698
2699 <li>'<tt>function args</tt>': argument list whose types match the function
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002700 signature argument types. If the function signature indicates the
2701 function accepts a variable number of arguments, the extra arguments can
2702 be specified.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00002703
2704 <li>'<tt>normal label</tt>': the label reached when the called function
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002705 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00002706
2707 <li>'<tt>exception label</tt>': the label reached when a callee returns with
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002708 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00002709
Devang Patel02256232008-10-07 17:48:33 +00002710 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002711 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2712 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002713</ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00002714
Chris Lattner2f7c9632001-06-06 20:29:01 +00002715<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002716<p>This instruction is designed to operate as a standard
2717 '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
2718 primary difference is that it establishes an association with a label, which
2719 is used by the runtime library to unwind the stack.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00002720
2721<p>This instruction is used in languages with destructors to ensure that proper
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002722 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2723 exception. Additionally, this is important for implementation of
2724 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00002725
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002726<p>For the purposes of the SSA form, the definition of the value returned by the
2727 '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
2728 block to the "normal" label. If the callee unwinds then no return value is
2729 available.</p>
Dan Gohman9069d892009-05-22 21:47:08 +00002730
Chris Lattner2f7c9632001-06-06 20:29:01 +00002731<h5>Example:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002732<pre>
Nick Lewycky084ab472008-03-16 07:18:12 +00002733 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00002734 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewycky084ab472008-03-16 07:18:12 +00002735 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00002736 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002737</pre>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002738
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002739</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002740
Chris Lattner5ed60612003-09-03 00:41:47 +00002741<!-- _______________________________________________________________________ -->
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002742
Chris Lattner48b383b02003-11-25 01:02:51 +00002743<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2744Instruction</a> </div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002745
Misha Brukman76307852003-11-08 01:05:38 +00002746<div class="doc_text">
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002747
Chris Lattner5ed60612003-09-03 00:41:47 +00002748<h5>Syntax:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002749<pre>
2750 unwind
2751</pre>
2752
Chris Lattner5ed60612003-09-03 00:41:47 +00002753<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002754<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002755 at the first callee in the dynamic call stack which used
2756 an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
2757 This is primarily used to implement exception handling.</p>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002758
Chris Lattner5ed60612003-09-03 00:41:47 +00002759<h5>Semantics:</h5>
Chris Lattnerfe8519c2008-04-19 21:01:16 +00002760<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002761 immediately halt. The dynamic call stack is then searched for the
2762 first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
2763 Once found, execution continues at the "exceptional" destination block
2764 specified by the <tt>invoke</tt> instruction. If there is no <tt>invoke</tt>
2765 instruction in the dynamic call chain, undefined behavior results.</p>
2766
Misha Brukman76307852003-11-08 01:05:38 +00002767</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002768
2769<!-- _______________________________________________________________________ -->
2770
2771<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2772Instruction</a> </div>
2773
2774<div class="doc_text">
2775
2776<h5>Syntax:</h5>
2777<pre>
2778 unreachable
2779</pre>
2780
2781<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002782<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002783 instruction is used to inform the optimizer that a particular portion of the
2784 code is not reachable. This can be used to indicate that the code after a
2785 no-return function cannot be reached, and other facts.</p>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002786
2787<h5>Semantics:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002788<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002789
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002790</div>
2791
Chris Lattner2f7c9632001-06-06 20:29:01 +00002792<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002793<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002794
Misha Brukman76307852003-11-08 01:05:38 +00002795<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002796
2797<p>Binary operators are used to do most of the computation in a program. They
2798 require two operands of the same type, execute an operation on them, and
2799 produce a single value. The operands might represent multiple data, as is
2800 the case with the <a href="#t_vector">vector</a> data type. The result value
2801 has the same type as its operands.</p>
2802
Misha Brukman76307852003-11-08 01:05:38 +00002803<p>There are several different binary operators:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002804
Misha Brukman76307852003-11-08 01:05:38 +00002805</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002806
Chris Lattner2f7c9632001-06-06 20:29:01 +00002807<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002808<div class="doc_subsubsection">
2809 <a name="i_add">'<tt>add</tt>' Instruction</a>
2810</div>
2811
Misha Brukman76307852003-11-08 01:05:38 +00002812<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002813
Chris Lattner2f7c9632001-06-06 20:29:01 +00002814<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002815<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00002816 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00002817 &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2818 &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2819 &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002820</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002821
Chris Lattner2f7c9632001-06-06 20:29:01 +00002822<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002823<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002824
Chris Lattner2f7c9632001-06-06 20:29:01 +00002825<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002826<p>The two arguments to the '<tt>add</tt>' instruction must
2827 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2828 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002829
Chris Lattner2f7c9632001-06-06 20:29:01 +00002830<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002831<p>The value produced is the integer sum of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002832
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002833<p>If the sum has unsigned overflow, the result returned is the mathematical
2834 result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002835
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002836<p>Because LLVM integers use a two's complement representation, this instruction
2837 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002838
Dan Gohman902dfff2009-07-22 22:44:56 +00002839<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
2840 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
2841 <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
2842 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00002843
Chris Lattner2f7c9632001-06-06 20:29:01 +00002844<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002845<pre>
2846 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002847</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002848
Misha Brukman76307852003-11-08 01:05:38 +00002849</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002850
Chris Lattner2f7c9632001-06-06 20:29:01 +00002851<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002852<div class="doc_subsubsection">
Dan Gohmana5b96452009-06-04 22:49:04 +00002853 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
2854</div>
2855
2856<div class="doc_text">
2857
2858<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002859<pre>
2860 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2861</pre>
2862
2863<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002864<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
2865
2866<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002867<p>The two arguments to the '<tt>fadd</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002868 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2869 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00002870
2871<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002872<p>The value produced is the floating point sum of the two operands.</p>
2873
2874<h5>Example:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002875<pre>
2876 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
2877</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002878
Dan Gohmana5b96452009-06-04 22:49:04 +00002879</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002880
Dan Gohmana5b96452009-06-04 22:49:04 +00002881<!-- _______________________________________________________________________ -->
2882<div class="doc_subsubsection">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002883 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2884</div>
2885
Misha Brukman76307852003-11-08 01:05:38 +00002886<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002887
Chris Lattner2f7c9632001-06-06 20:29:01 +00002888<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002889<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00002890 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00002891 &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2892 &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2893 &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002894</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002895
Chris Lattner2f7c9632001-06-06 20:29:01 +00002896<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002897<p>The '<tt>sub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002898 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002899
2900<p>Note that the '<tt>sub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002901 '<tt>neg</tt>' instruction present in most other intermediate
2902 representations.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002903
Chris Lattner2f7c9632001-06-06 20:29:01 +00002904<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002905<p>The two arguments to the '<tt>sub</tt>' instruction must
2906 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2907 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002908
Chris Lattner2f7c9632001-06-06 20:29:01 +00002909<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002910<p>The value produced is the integer difference of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002911
Dan Gohmana5b96452009-06-04 22:49:04 +00002912<p>If the difference has unsigned overflow, the result returned is the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002913 mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
2914 result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002915
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002916<p>Because LLVM integers use a two's complement representation, this instruction
2917 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002918
Dan Gohman902dfff2009-07-22 22:44:56 +00002919<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
2920 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
2921 <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
2922 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00002923
Chris Lattner2f7c9632001-06-06 20:29:01 +00002924<h5>Example:</h5>
Bill Wendling2d8b9a82007-05-29 09:42:13 +00002925<pre>
2926 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002927 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002928</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002929
Misha Brukman76307852003-11-08 01:05:38 +00002930</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002931
Chris Lattner2f7c9632001-06-06 20:29:01 +00002932<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002933<div class="doc_subsubsection">
Dan Gohmana5b96452009-06-04 22:49:04 +00002934 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
2935</div>
2936
2937<div class="doc_text">
2938
2939<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002940<pre>
2941 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2942</pre>
2943
2944<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002945<p>The '<tt>fsub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002946 operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00002947
2948<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002949 '<tt>fneg</tt>' instruction present in most other intermediate
2950 representations.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00002951
2952<h5>Arguments:</h5>
Bill Wendling972b7202009-07-20 02:32:41 +00002953<p>The two arguments to the '<tt>fsub</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002954 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2955 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00002956
2957<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002958<p>The value produced is the floating point difference of the two operands.</p>
2959
2960<h5>Example:</h5>
2961<pre>
2962 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
2963 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
2964</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002965
Dan Gohmana5b96452009-06-04 22:49:04 +00002966</div>
2967
2968<!-- _______________________________________________________________________ -->
2969<div class="doc_subsubsection">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002970 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2971</div>
2972
Misha Brukman76307852003-11-08 01:05:38 +00002973<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002974
Chris Lattner2f7c9632001-06-06 20:29:01 +00002975<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002976<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00002977 &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00002978 &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2979 &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2980 &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002981</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002982
Chris Lattner2f7c9632001-06-06 20:29:01 +00002983<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002984<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002985
Chris Lattner2f7c9632001-06-06 20:29:01 +00002986<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002987<p>The two arguments to the '<tt>mul</tt>' instruction must
2988 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2989 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002990
Chris Lattner2f7c9632001-06-06 20:29:01 +00002991<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002992<p>The value produced is the integer product of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002993
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002994<p>If the result of the multiplication has unsigned overflow, the result
2995 returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
2996 width of the result.</p>
2997
2998<p>Because LLVM integers use a two's complement representation, and the result
2999 is the same width as the operands, this instruction returns the correct
3000 result for both signed and unsigned integers. If a full product
3001 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
3002 be sign-extended or zero-extended as appropriate to the width of the full
3003 product.</p>
3004
Dan Gohman902dfff2009-07-22 22:44:56 +00003005<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3006 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3007 <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
3008 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003009
Chris Lattner2f7c9632001-06-06 20:29:01 +00003010<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003011<pre>
3012 &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003013</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003014
Misha Brukman76307852003-11-08 01:05:38 +00003015</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003016
Chris Lattner2f7c9632001-06-06 20:29:01 +00003017<!-- _______________________________________________________________________ -->
Dan Gohmana5b96452009-06-04 22:49:04 +00003018<div class="doc_subsubsection">
3019 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
3020</div>
3021
3022<div class="doc_text">
3023
3024<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003025<pre>
3026 &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00003027</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003028
Dan Gohmana5b96452009-06-04 22:49:04 +00003029<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003030<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003031
3032<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003033<p>The two arguments to the '<tt>fmul</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003034 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3035 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003036
3037<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003038<p>The value produced is the floating point product of the two operands.</p>
3039
3040<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003041<pre>
3042 &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00003043</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003044
Dan Gohmana5b96452009-06-04 22:49:04 +00003045</div>
3046
3047<!-- _______________________________________________________________________ -->
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003048<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
3049</a></div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003050
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003051<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003052
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003053<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003054<pre>
3055 &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003056</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003057
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003058<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003059<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003060
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003061<h5>Arguments:</h5>
3062<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003063 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3064 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003065
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003066<h5>Semantics:</h5>
Chris Lattner2f2427e2008-01-28 00:36:27 +00003067<p>The value produced is the unsigned integer quotient of the two operands.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003068
Chris Lattner2f2427e2008-01-28 00:36:27 +00003069<p>Note that unsigned integer division and signed integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003070 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
3071
Chris Lattner2f2427e2008-01-28 00:36:27 +00003072<p>Division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003073
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003074<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003075<pre>
3076 &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003077</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003078
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003079</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003080
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003081<!-- _______________________________________________________________________ -->
3082<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
3083</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003084
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003085<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003086
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003087<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003088<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00003089 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003090 &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003091</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003092
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003093<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003094<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003095
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003096<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003097<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003098 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3099 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003100
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003101<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003102<p>The value produced is the signed integer quotient of the two operands rounded
3103 towards zero.</p>
3104
Chris Lattner2f2427e2008-01-28 00:36:27 +00003105<p>Note that signed integer division and unsigned integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003106 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
3107
Chris Lattner2f2427e2008-01-28 00:36:27 +00003108<p>Division by zero leads to undefined behavior. Overflow also leads to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003109 undefined behavior; this is a rare case, but can occur, for example, by doing
3110 a 32-bit division of -2147483648 by -1.</p>
3111
Dan Gohman71dfd782009-07-22 00:04:19 +00003112<p>If the <tt>exact</tt> keyword is present, the result value of the
3113 <tt>sdiv</tt> is undefined if the result would be rounded or if overflow
3114 would occur.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003115
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003116<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003117<pre>
3118 &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003119</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003120
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003121</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003122
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003123<!-- _______________________________________________________________________ -->
3124<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner48b383b02003-11-25 01:02:51 +00003125Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003126
Misha Brukman76307852003-11-08 01:05:38 +00003127<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003128
Chris Lattner2f7c9632001-06-06 20:29:01 +00003129<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003130<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003131 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003132</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003133
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003134<h5>Overview:</h5>
3135<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003136
Chris Lattner48b383b02003-11-25 01:02:51 +00003137<h5>Arguments:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00003138<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003139 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3140 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003141
Chris Lattner48b383b02003-11-25 01:02:51 +00003142<h5>Semantics:</h5>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003143<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003144
Chris Lattner48b383b02003-11-25 01:02:51 +00003145<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003146<pre>
3147 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003148</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003149
Chris Lattner48b383b02003-11-25 01:02:51 +00003150</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003151
Chris Lattner48b383b02003-11-25 01:02:51 +00003152<!-- _______________________________________________________________________ -->
Reid Spencer7eb55b32006-11-02 01:53:59 +00003153<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
3154</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003155
Reid Spencer7eb55b32006-11-02 01:53:59 +00003156<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003157
Reid Spencer7eb55b32006-11-02 01:53:59 +00003158<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003159<pre>
3160 &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003161</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003162
Reid Spencer7eb55b32006-11-02 01:53:59 +00003163<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003164<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
3165 division of its two arguments.</p>
3166
Reid Spencer7eb55b32006-11-02 01:53:59 +00003167<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003168<p>The two arguments to the '<tt>urem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003169 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3170 values. Both arguments must have identical types.</p>
3171
Reid Spencer7eb55b32006-11-02 01:53:59 +00003172<h5>Semantics:</h5>
3173<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003174 This instruction always performs an unsigned division to get the
3175 remainder.</p>
3176
Chris Lattner2f2427e2008-01-28 00:36:27 +00003177<p>Note that unsigned integer remainder and signed integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003178 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
3179
Chris Lattner2f2427e2008-01-28 00:36:27 +00003180<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003181
Reid Spencer7eb55b32006-11-02 01:53:59 +00003182<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003183<pre>
3184 &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003185</pre>
3186
3187</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003188
Reid Spencer7eb55b32006-11-02 01:53:59 +00003189<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003190<div class="doc_subsubsection">
3191 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
3192</div>
3193
Chris Lattner48b383b02003-11-25 01:02:51 +00003194<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003195
Chris Lattner48b383b02003-11-25 01:02:51 +00003196<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003197<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003198 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003199</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003200
Chris Lattner48b383b02003-11-25 01:02:51 +00003201<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003202<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
3203 division of its two operands. This instruction can also take
3204 <a href="#t_vector">vector</a> versions of the values in which case the
3205 elements must be integers.</p>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00003206
Chris Lattner48b383b02003-11-25 01:02:51 +00003207<h5>Arguments:</h5>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003208<p>The two arguments to the '<tt>srem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003209 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3210 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003211
Chris Lattner48b383b02003-11-25 01:02:51 +00003212<h5>Semantics:</h5>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003213<p>This instruction returns the <i>remainder</i> of a division (where the result
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003214 has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
3215 operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
3216 a value. For more information about the difference,
3217 see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
3218 Math Forum</a>. For a table of how this is implemented in various languages,
3219 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
3220 Wikipedia: modulo operation</a>.</p>
3221
Chris Lattner2f2427e2008-01-28 00:36:27 +00003222<p>Note that signed integer remainder and unsigned integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003223 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
3224
Chris Lattner2f2427e2008-01-28 00:36:27 +00003225<p>Taking the remainder of a division by zero leads to undefined behavior.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003226 Overflow also leads to undefined behavior; this is a rare case, but can
3227 occur, for example, by taking the remainder of a 32-bit division of
3228 -2147483648 by -1. (The remainder doesn't actually overflow, but this rule
3229 lets srem be implemented using instructions that return both the result of
3230 the division and the remainder.)</p>
3231
Chris Lattner48b383b02003-11-25 01:02:51 +00003232<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003233<pre>
3234 &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003235</pre>
3236
3237</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003238
Reid Spencer7eb55b32006-11-02 01:53:59 +00003239<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003240<div class="doc_subsubsection">
3241 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
3242
Reid Spencer7eb55b32006-11-02 01:53:59 +00003243<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003244
Reid Spencer7eb55b32006-11-02 01:53:59 +00003245<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003246<pre>
3247 &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003248</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003249
Reid Spencer7eb55b32006-11-02 01:53:59 +00003250<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003251<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
3252 its two operands.</p>
3253
Reid Spencer7eb55b32006-11-02 01:53:59 +00003254<h5>Arguments:</h5>
3255<p>The two arguments to the '<tt>frem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003256 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3257 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003258
Reid Spencer7eb55b32006-11-02 01:53:59 +00003259<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003260<p>This instruction returns the <i>remainder</i> of a division. The remainder
3261 has the same sign as the dividend.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003262
Reid Spencer7eb55b32006-11-02 01:53:59 +00003263<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003264<pre>
3265 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003266</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003267
Misha Brukman76307852003-11-08 01:05:38 +00003268</div>
Robert Bocchino820bc75b2006-02-17 21:18:08 +00003269
Reid Spencer2ab01932007-02-02 13:57:07 +00003270<!-- ======================================================================= -->
3271<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
3272Operations</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003273
Reid Spencer2ab01932007-02-02 13:57:07 +00003274<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003275
3276<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
3277 program. They are generally very efficient instructions and can commonly be
3278 strength reduced from other instructions. They require two operands of the
3279 same type, execute an operation on them, and produce a single value. The
3280 resulting value is the same type as its operands.</p>
3281
Reid Spencer2ab01932007-02-02 13:57:07 +00003282</div>
3283
Reid Spencer04e259b2007-01-31 21:39:12 +00003284<!-- _______________________________________________________________________ -->
3285<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
3286Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003287
Reid Spencer04e259b2007-01-31 21:39:12 +00003288<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003289
Reid Spencer04e259b2007-01-31 21:39:12 +00003290<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003291<pre>
3292 &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003293</pre>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003294
Reid Spencer04e259b2007-01-31 21:39:12 +00003295<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003296<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
3297 a specified number of bits.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003298
Reid Spencer04e259b2007-01-31 21:39:12 +00003299<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003300<p>Both arguments to the '<tt>shl</tt>' instruction must be the
3301 same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3302 integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003303
Reid Spencer04e259b2007-01-31 21:39:12 +00003304<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003305<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
3306 2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
3307 is (statically or dynamically) negative or equal to or larger than the number
3308 of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3309 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3310 shift amount in <tt>op2</tt>.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003311
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003312<h5>Example:</h5>
3313<pre>
Reid Spencer04e259b2007-01-31 21:39:12 +00003314 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
3315 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
3316 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003317 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00003318 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003319</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003320
Reid Spencer04e259b2007-01-31 21:39:12 +00003321</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003322
Reid Spencer04e259b2007-01-31 21:39:12 +00003323<!-- _______________________________________________________________________ -->
3324<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
3325Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003326
Reid Spencer04e259b2007-01-31 21:39:12 +00003327<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003328
Reid Spencer04e259b2007-01-31 21:39:12 +00003329<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003330<pre>
3331 &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003332</pre>
3333
3334<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003335<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
3336 operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003337
3338<h5>Arguments:</h5>
3339<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003340 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3341 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003342
3343<h5>Semantics:</h5>
3344<p>This instruction always performs a logical shift right operation. The most
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003345 significant bits of the result will be filled with zero bits after the shift.
3346 If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
3347 number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3348 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3349 shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003350
3351<h5>Example:</h5>
3352<pre>
3353 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
3354 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
3355 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
3356 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003357 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00003358 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003359</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003360
Reid Spencer04e259b2007-01-31 21:39:12 +00003361</div>
3362
Reid Spencer2ab01932007-02-02 13:57:07 +00003363<!-- _______________________________________________________________________ -->
Reid Spencer04e259b2007-01-31 21:39:12 +00003364<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
3365Instruction</a> </div>
3366<div class="doc_text">
3367
3368<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003369<pre>
3370 &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003371</pre>
3372
3373<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003374<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
3375 operand shifted to the right a specified number of bits with sign
3376 extension.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003377
3378<h5>Arguments:</h5>
3379<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003380 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3381 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003382
3383<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003384<p>This instruction always performs an arithmetic shift right operation, The
3385 most significant bits of the result will be filled with the sign bit
3386 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
3387 larger than the number of bits in <tt>op1</tt>, the result is undefined. If
3388 the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
3389 the corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003390
3391<h5>Example:</h5>
3392<pre>
3393 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
3394 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
3395 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
3396 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003397 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00003398 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003399</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003400
Reid Spencer04e259b2007-01-31 21:39:12 +00003401</div>
3402
Chris Lattner2f7c9632001-06-06 20:29:01 +00003403<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003404<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
3405Instruction</a> </div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003406
Misha Brukman76307852003-11-08 01:05:38 +00003407<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003408
Chris Lattner2f7c9632001-06-06 20:29:01 +00003409<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003410<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003411 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003412</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003413
Chris Lattner2f7c9632001-06-06 20:29:01 +00003414<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003415<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
3416 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003417
Chris Lattner2f7c9632001-06-06 20:29:01 +00003418<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003419<p>The two arguments to the '<tt>and</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003420 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3421 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003422
Chris Lattner2f7c9632001-06-06 20:29:01 +00003423<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003424<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003425
Misha Brukman76307852003-11-08 01:05:38 +00003426<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00003427 <tbody>
3428 <tr>
3429 <td>In0</td>
3430 <td>In1</td>
3431 <td>Out</td>
3432 </tr>
3433 <tr>
3434 <td>0</td>
3435 <td>0</td>
3436 <td>0</td>
3437 </tr>
3438 <tr>
3439 <td>0</td>
3440 <td>1</td>
3441 <td>0</td>
3442 </tr>
3443 <tr>
3444 <td>1</td>
3445 <td>0</td>
3446 <td>0</td>
3447 </tr>
3448 <tr>
3449 <td>1</td>
3450 <td>1</td>
3451 <td>1</td>
3452 </tr>
3453 </tbody>
3454</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003455
Chris Lattner2f7c9632001-06-06 20:29:01 +00003456<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003457<pre>
3458 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003459 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
3460 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003461</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003462</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003463<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003464<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003465
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003466<div class="doc_text">
3467
3468<h5>Syntax:</h5>
3469<pre>
3470 &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3471</pre>
3472
3473<h5>Overview:</h5>
3474<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
3475 two operands.</p>
3476
3477<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003478<p>The two arguments to the '<tt>or</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003479 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3480 values. Both arguments must have identical types.</p>
3481
Chris Lattner2f7c9632001-06-06 20:29:01 +00003482<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003483<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003484
Chris Lattner48b383b02003-11-25 01:02:51 +00003485<table border="1" cellspacing="0" cellpadding="4">
3486 <tbody>
3487 <tr>
3488 <td>In0</td>
3489 <td>In1</td>
3490 <td>Out</td>
3491 </tr>
3492 <tr>
3493 <td>0</td>
3494 <td>0</td>
3495 <td>0</td>
3496 </tr>
3497 <tr>
3498 <td>0</td>
3499 <td>1</td>
3500 <td>1</td>
3501 </tr>
3502 <tr>
3503 <td>1</td>
3504 <td>0</td>
3505 <td>1</td>
3506 </tr>
3507 <tr>
3508 <td>1</td>
3509 <td>1</td>
3510 <td>1</td>
3511 </tr>
3512 </tbody>
3513</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003514
Chris Lattner2f7c9632001-06-06 20:29:01 +00003515<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003516<pre>
3517 &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003518 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3519 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003520</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003521
Misha Brukman76307852003-11-08 01:05:38 +00003522</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003523
Chris Lattner2f7c9632001-06-06 20:29:01 +00003524<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003525<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
3526Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003527
Misha Brukman76307852003-11-08 01:05:38 +00003528<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003529
Chris Lattner2f7c9632001-06-06 20:29:01 +00003530<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003531<pre>
3532 &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003533</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003534
Chris Lattner2f7c9632001-06-06 20:29:01 +00003535<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003536<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
3537 its two operands. The <tt>xor</tt> is used to implement the "one's
3538 complement" operation, which is the "~" operator in C.</p>
3539
Chris Lattner2f7c9632001-06-06 20:29:01 +00003540<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003541<p>The two arguments to the '<tt>xor</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003542 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3543 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003544
Chris Lattner2f7c9632001-06-06 20:29:01 +00003545<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003546<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003547
Chris Lattner48b383b02003-11-25 01:02:51 +00003548<table border="1" cellspacing="0" cellpadding="4">
3549 <tbody>
3550 <tr>
3551 <td>In0</td>
3552 <td>In1</td>
3553 <td>Out</td>
3554 </tr>
3555 <tr>
3556 <td>0</td>
3557 <td>0</td>
3558 <td>0</td>
3559 </tr>
3560 <tr>
3561 <td>0</td>
3562 <td>1</td>
3563 <td>1</td>
3564 </tr>
3565 <tr>
3566 <td>1</td>
3567 <td>0</td>
3568 <td>1</td>
3569 </tr>
3570 <tr>
3571 <td>1</td>
3572 <td>1</td>
3573 <td>0</td>
3574 </tr>
3575 </tbody>
3576</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003577
Chris Lattner2f7c9632001-06-06 20:29:01 +00003578<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003579<pre>
3580 &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003581 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3582 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3583 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003584</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003585
Misha Brukman76307852003-11-08 01:05:38 +00003586</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003587
Chris Lattner2f7c9632001-06-06 20:29:01 +00003588<!-- ======================================================================= -->
Chris Lattner54611b42005-11-06 08:02:57 +00003589<div class="doc_subsection">
Chris Lattnerce83bff2006-04-08 23:07:04 +00003590 <a name="vectorops">Vector Operations</a>
3591</div>
3592
3593<div class="doc_text">
3594
3595<p>LLVM supports several instructions to represent vector operations in a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003596 target-independent manner. These instructions cover the element-access and
3597 vector-specific operations needed to process vectors effectively. While LLVM
3598 does directly support these vector operations, many sophisticated algorithms
3599 will want to use target-specific intrinsics to take full advantage of a
3600 specific target.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003601
3602</div>
3603
3604<!-- _______________________________________________________________________ -->
3605<div class="doc_subsubsection">
3606 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3607</div>
3608
3609<div class="doc_text">
3610
3611<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003612<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003613 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003614</pre>
3615
3616<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003617<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
3618 from a vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003619
3620
3621<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003622<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
3623 of <a href="#t_vector">vector</a> type. The second operand is an index
3624 indicating the position from which to extract the element. The index may be
3625 a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003626
3627<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003628<p>The result is a scalar of the same type as the element type of
3629 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3630 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3631 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003632
3633<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003634<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003635 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003636</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003637
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003638</div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003639
3640<!-- _______________________________________________________________________ -->
3641<div class="doc_subsubsection">
3642 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3643</div>
3644
3645<div class="doc_text">
3646
3647<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003648<pre>
Dan Gohman43ba0672008-05-12 23:38:42 +00003649 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003650</pre>
3651
3652<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003653<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
3654 vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003655
3656<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003657<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
3658 of <a href="#t_vector">vector</a> type. The second operand is a scalar value
3659 whose type must equal the element type of the first operand. The third
3660 operand is an index indicating the position at which to insert the value.
3661 The index may be a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003662
3663<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003664<p>The result is a vector of the same type as <tt>val</tt>. Its element values
3665 are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
3666 value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3667 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003668
3669<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003670<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003671 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003672</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003673
Chris Lattnerce83bff2006-04-08 23:07:04 +00003674</div>
3675
3676<!-- _______________________________________________________________________ -->
3677<div class="doc_subsubsection">
3678 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3679</div>
3680
3681<div class="doc_text">
3682
3683<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003684<pre>
Mon P Wang25f01062008-11-10 04:46:22 +00003685 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003686</pre>
3687
3688<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003689<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
3690 from two input vectors, returning a vector with the same element type as the
3691 input and length that is the same as the shuffle mask.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003692
3693<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003694<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3695 with types that match each other. The third argument is a shuffle mask whose
3696 element type is always 'i32'. The result of the instruction is a vector
3697 whose length is the same as the shuffle mask and whose element type is the
3698 same as the element type of the first two operands.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003699
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003700<p>The shuffle mask operand is required to be a constant vector with either
3701 constant integer or undef values.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003702
3703<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003704<p>The elements of the two input vectors are numbered from left to right across
3705 both of the vectors. The shuffle mask operand specifies, for each element of
3706 the result vector, which element of the two input vectors the result element
3707 gets. The element selector may be undef (meaning "don't care") and the
3708 second operand may be undef if performing a shuffle from only one vector.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003709
3710<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003711<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003712 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen5819f182007-04-22 01:17:39 +00003713 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003714 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
3715 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wang25f01062008-11-10 04:46:22 +00003716 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
3717 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
3718 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3719 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003720</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003721
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003722</div>
Tanya Lattnerb138bbe2006-04-14 19:24:33 +00003723
Chris Lattnerce83bff2006-04-08 23:07:04 +00003724<!-- ======================================================================= -->
3725<div class="doc_subsection">
Dan Gohmanb9d66602008-05-12 23:51:09 +00003726 <a name="aggregateops">Aggregate Operations</a>
3727</div>
3728
3729<div class="doc_text">
3730
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003731<p>LLVM supports several instructions for working with aggregate values.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003732
3733</div>
3734
3735<!-- _______________________________________________________________________ -->
3736<div class="doc_subsubsection">
3737 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3738</div>
3739
3740<div class="doc_text">
3741
3742<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003743<pre>
3744 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3745</pre>
3746
3747<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003748<p>The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3749 or array element from an aggregate value.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003750
3751<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003752<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
3753 of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type. The
3754 operands are constant indices to specify which value to extract in a similar
3755 manner as indices in a
3756 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003757
3758<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003759<p>The result is the value at the position in the aggregate specified by the
3760 index operands.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003761
3762<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003763<pre>
Dan Gohman1ecaf452008-05-31 00:58:22 +00003764 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003765</pre>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003766
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003767</div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003768
3769<!-- _______________________________________________________________________ -->
3770<div class="doc_subsubsection">
3771 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3772</div>
3773
3774<div class="doc_text">
3775
3776<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003777<pre>
Dan Gohman1ecaf452008-05-31 00:58:22 +00003778 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003779</pre>
3780
3781<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003782<p>The '<tt>insertvalue</tt>' instruction inserts a value into a struct field or
3783 array element in an aggregate.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003784
3785
3786<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003787<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
3788 of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type. The
3789 second operand is a first-class value to insert. The following operands are
3790 constant indices indicating the position at which to insert the value in a
3791 similar manner as indices in a
3792 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction. The
3793 value to insert must have the same type as the value identified by the
3794 indices.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003795
3796<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003797<p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
3798 that of <tt>val</tt> except that the value at the position specified by the
3799 indices is that of <tt>elt</tt>.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003800
3801<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003802<pre>
Dan Gohman88ce1a52008-06-23 15:26:37 +00003803 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003804</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003805
Dan Gohmanb9d66602008-05-12 23:51:09 +00003806</div>
3807
3808
3809<!-- ======================================================================= -->
3810<div class="doc_subsection">
Chris Lattner6ab66722006-08-15 00:45:58 +00003811 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner54611b42005-11-06 08:02:57 +00003812</div>
3813
Misha Brukman76307852003-11-08 01:05:38 +00003814<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003815
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003816<p>A key design point of an SSA-based representation is how it represents
3817 memory. In LLVM, no memory locations are in SSA form, which makes things
3818 very simple. This section describes how to read, write, allocate, and free
3819 memory in LLVM.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003820
Misha Brukman76307852003-11-08 01:05:38 +00003821</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003822
Chris Lattner2f7c9632001-06-06 20:29:01 +00003823<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00003824<div class="doc_subsubsection">
3825 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3826</div>
3827
Misha Brukman76307852003-11-08 01:05:38 +00003828<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003829
Chris Lattner2f7c9632001-06-06 20:29:01 +00003830<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003831<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003832 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003833</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00003834
Chris Lattner2f7c9632001-06-06 20:29:01 +00003835<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003836<p>The '<tt>malloc</tt>' instruction allocates memory from the system heap and
3837 returns a pointer to it. The object is always allocated in the generic
3838 address space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003839
Chris Lattner2f7c9632001-06-06 20:29:01 +00003840<h5>Arguments:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003841<p>The '<tt>malloc</tt>' instruction allocates
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003842 <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory from the operating
3843 system and returns a pointer of the appropriate type to the program. If
3844 "NumElements" is specified, it is the number of elements allocated, otherwise
3845 "NumElements" is defaulted to be one. If a constant alignment is specified,
3846 the value result of the allocation is guaranteed to be aligned to at least
3847 that boundary. If not specified, or if zero, the target can choose to align
3848 the allocation on any convenient boundary compatible with the type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003849
Misha Brukman76307852003-11-08 01:05:38 +00003850<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003851
Chris Lattner2f7c9632001-06-06 20:29:01 +00003852<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003853<p>Memory is allocated using the system "<tt>malloc</tt>" function, and a
3854 pointer is returned. The result of a zero byte allocation is undefined. The
3855 result is null if there is insufficient memory available.</p>
Misha Brukman76307852003-11-08 01:05:38 +00003856
Chris Lattner54611b42005-11-06 08:02:57 +00003857<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003858<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00003859 %array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner54611b42005-11-06 08:02:57 +00003860
Bill Wendling2d8b9a82007-05-29 09:42:13 +00003861 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3862 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3863 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3864 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3865 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003866</pre>
Dan Gohman3065b612009-01-12 23:12:39 +00003867
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003868<p>Note that the code generator does not yet respect the alignment value.</p>
Dan Gohman3065b612009-01-12 23:12:39 +00003869
Misha Brukman76307852003-11-08 01:05:38 +00003870</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003871
Chris Lattner2f7c9632001-06-06 20:29:01 +00003872<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00003873<div class="doc_subsubsection">
3874 <a name="i_free">'<tt>free</tt>' Instruction</a>
3875</div>
3876
Misha Brukman76307852003-11-08 01:05:38 +00003877<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003878
Chris Lattner2f7c9632001-06-06 20:29:01 +00003879<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003880<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00003881 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003882</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00003883
Chris Lattner2f7c9632001-06-06 20:29:01 +00003884<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003885<p>The '<tt>free</tt>' instruction returns memory back to the unused memory heap
3886 to be reallocated in the future.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003887
Chris Lattner2f7c9632001-06-06 20:29:01 +00003888<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003889<p>'<tt>value</tt>' shall be a pointer value that points to a value that was
3890 allocated with the '<tt><a href="#i_malloc">malloc</a></tt>' instruction.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003891
Chris Lattner2f7c9632001-06-06 20:29:01 +00003892<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003893<p>Access to the memory pointed to by the pointer is no longer defined after
3894 this instruction executes. If the pointer is null, the operation is a
3895 noop.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003896
Chris Lattner2f7c9632001-06-06 20:29:01 +00003897<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003898<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00003899 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003900 free [4 x i8]* %array
Chris Lattner2f7c9632001-06-06 20:29:01 +00003901</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003902
Misha Brukman76307852003-11-08 01:05:38 +00003903</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003904
Chris Lattner2f7c9632001-06-06 20:29:01 +00003905<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00003906<div class="doc_subsubsection">
3907 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3908</div>
3909
Misha Brukman76307852003-11-08 01:05:38 +00003910<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003911
Chris Lattner2f7c9632001-06-06 20:29:01 +00003912<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003913<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003914 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003915</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00003916
Chris Lattner2f7c9632001-06-06 20:29:01 +00003917<h5>Overview:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00003918<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003919 currently executing function, to be automatically released when this function
3920 returns to its caller. The object is always allocated in the generic address
3921 space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003922
Chris Lattner2f7c9632001-06-06 20:29:01 +00003923<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003924<p>The '<tt>alloca</tt>' instruction
3925 allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
3926 runtime stack, returning a pointer of the appropriate type to the program.
3927 If "NumElements" is specified, it is the number of elements allocated,
3928 otherwise "NumElements" is defaulted to be one. If a constant alignment is
3929 specified, the value result of the allocation is guaranteed to be aligned to
3930 at least that boundary. If not specified, or if zero, the target can choose
3931 to align the allocation on any convenient boundary compatible with the
3932 type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003933
Misha Brukman76307852003-11-08 01:05:38 +00003934<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003935
Chris Lattner2f7c9632001-06-06 20:29:01 +00003936<h5>Semantics:</h5>
Bill Wendling9ee6a312009-05-08 20:49:29 +00003937<p>Memory is allocated; a pointer is returned. The operation is undefined if
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003938 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
3939 memory is automatically released when the function returns. The
3940 '<tt>alloca</tt>' instruction is commonly used to represent automatic
3941 variables that must have an address available. When the function returns
3942 (either with the <tt><a href="#i_ret">ret</a></tt>
3943 or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
3944 reclaimed. Allocating zero bytes is legal, but the result is undefined.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003945
Chris Lattner2f7c9632001-06-06 20:29:01 +00003946<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003947<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00003948 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3949 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3950 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3951 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003952</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003953
Misha Brukman76307852003-11-08 01:05:38 +00003954</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003955
Chris Lattner2f7c9632001-06-06 20:29:01 +00003956<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003957<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3958Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003959
Misha Brukman76307852003-11-08 01:05:38 +00003960<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003961
Chris Lattner095735d2002-05-06 03:03:22 +00003962<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003963<pre>
3964 &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]
3965 &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]
3966</pre>
3967
Chris Lattner095735d2002-05-06 03:03:22 +00003968<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003969<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003970
Chris Lattner095735d2002-05-06 03:03:22 +00003971<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003972<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
3973 from which to load. The pointer must point to
3974 a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
3975 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
3976 number or order of execution of this <tt>load</tt> with other
3977 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3978 instructions. </p>
3979
3980<p>The optional constant "align" argument specifies the alignment of the
3981 operation (that is, the alignment of the memory address). A value of 0 or an
3982 omitted "align" argument means that the operation has the preferential
3983 alignment for the target. It is the responsibility of the code emitter to
3984 ensure that the alignment information is correct. Overestimating the
3985 alignment results in an undefined behavior. Underestimating the alignment may
3986 produce less efficient code. An alignment of 1 is always safe.</p>
3987
Chris Lattner095735d2002-05-06 03:03:22 +00003988<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003989<p>The location of memory pointed to is loaded. If the value being loaded is of
3990 scalar type then the number of bytes read does not exceed the minimum number
3991 of bytes needed to hold all bits of the type. For example, loading an
3992 <tt>i24</tt> reads at most three bytes. When loading a value of a type like
3993 <tt>i20</tt> with a size that is not an integral number of bytes, the result
3994 is undefined if the value was not originally written using a store of the
3995 same type.</p>
3996
Chris Lattner095735d2002-05-06 03:03:22 +00003997<h5>Examples:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003998<pre>
3999 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
4000 <a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004001 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004002</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004003
Misha Brukman76307852003-11-08 01:05:38 +00004004</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004005
Chris Lattner095735d2002-05-06 03:03:22 +00004006<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00004007<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
4008Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004009
Reid Spencera89fb182006-11-09 21:18:01 +00004010<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004011
Chris Lattner095735d2002-05-06 03:03:22 +00004012<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004013<pre>
4014 store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Christopher Lambbff50202007-04-21 08:16:25 +00004015 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004016</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004017
Chris Lattner095735d2002-05-06 03:03:22 +00004018<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004019<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004020
Chris Lattner095735d2002-05-06 03:03:22 +00004021<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004022<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
4023 and an address at which to store it. The type of the
4024 '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
4025 the <a href="#t_firstclass">first class</a> type of the
4026 '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked
4027 as <tt>volatile</tt>, then the optimizer is not allowed to modify the number
4028 or order of execution of this <tt>store</tt> with other
4029 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
4030 instructions.</p>
4031
4032<p>The optional constant "align" argument specifies the alignment of the
4033 operation (that is, the alignment of the memory address). A value of 0 or an
4034 omitted "align" argument means that the operation has the preferential
4035 alignment for the target. It is the responsibility of the code emitter to
4036 ensure that the alignment information is correct. Overestimating the
4037 alignment results in an undefined behavior. Underestimating the alignment may
4038 produce less efficient code. An alignment of 1 is always safe.</p>
4039
Chris Lattner48b383b02003-11-25 01:02:51 +00004040<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004041<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
4042 location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
4043 '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
4044 does not exceed the minimum number of bytes needed to hold all bits of the
4045 type. For example, storing an <tt>i24</tt> writes at most three bytes. When
4046 writing a value of a type like <tt>i20</tt> with a size that is not an
4047 integral number of bytes, it is unspecified what happens to the extra bits
4048 that do not belong to the type, but they will typically be overwritten.</p>
4049
Chris Lattner095735d2002-05-06 03:03:22 +00004050<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004051<pre>
4052 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8830ffe2007-10-22 05:10:05 +00004053 store i32 3, i32* %ptr <i>; yields {void}</i>
4054 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004055</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004056
Reid Spencer443460a2006-11-09 21:15:49 +00004057</div>
4058
Chris Lattner095735d2002-05-06 03:03:22 +00004059<!-- _______________________________________________________________________ -->
Chris Lattner33fd7022004-04-05 01:30:49 +00004060<div class="doc_subsubsection">
4061 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
4062</div>
4063
Misha Brukman76307852003-11-08 01:05:38 +00004064<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004065
Chris Lattner590645f2002-04-14 06:13:44 +00004066<h5>Syntax:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00004067<pre>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004068 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Dan Gohman1639c392009-07-27 21:53:46 +00004069 &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattner33fd7022004-04-05 01:30:49 +00004070</pre>
4071
Chris Lattner590645f2002-04-14 06:13:44 +00004072<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004073<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
4074 subelement of an aggregate data structure. It performs address calculation
4075 only and does not access memory.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004076
Chris Lattner590645f2002-04-14 06:13:44 +00004077<h5>Arguments:</h5>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004078<p>The first argument is always a pointer, and forms the basis of the
Chris Lattnera40b9122009-07-29 06:44:13 +00004079 calculation. The remaining arguments are indices that indicate which of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004080 elements of the aggregate object are indexed. The interpretation of each
4081 index is dependent on the type being indexed into. The first index always
4082 indexes the pointer value given as the first argument, the second index
4083 indexes a value of the type pointed to (not necessarily the value directly
4084 pointed to, since the first index can be non-zero), etc. The first type
4085 indexed into must be a pointer value, subsequent types can be arrays, vectors
4086 and structs. Note that subsequent types being indexed into can never be
4087 pointers, since that would require loading the pointer before continuing
4088 calculation.</p>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004089
4090<p>The type of each index argument depends on the type it is indexing into.
Chris Lattnera40b9122009-07-29 06:44:13 +00004091 When indexing into a (optionally packed) structure, only <tt>i32</tt> integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004092 <b>constants</b> are allowed. When indexing into an array, pointer or
Chris Lattnera40b9122009-07-29 06:44:13 +00004093 vector, integers of any width are allowed, and they are not required to be
4094 constant.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004095
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004096<p>For example, let's consider a C code fragment and how it gets compiled to
4097 LLVM:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004098
Bill Wendling3716c5d2007-05-29 09:04:49 +00004099<div class="doc_code">
Chris Lattner33fd7022004-04-05 01:30:49 +00004100<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00004101struct RT {
4102 char A;
Chris Lattnera446f1b2007-05-29 15:43:56 +00004103 int B[10][20];
Bill Wendling3716c5d2007-05-29 09:04:49 +00004104 char C;
4105};
4106struct ST {
Chris Lattnera446f1b2007-05-29 15:43:56 +00004107 int X;
Bill Wendling3716c5d2007-05-29 09:04:49 +00004108 double Y;
4109 struct RT Z;
4110};
Chris Lattner33fd7022004-04-05 01:30:49 +00004111
Chris Lattnera446f1b2007-05-29 15:43:56 +00004112int *foo(struct ST *s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00004113 return &amp;s[1].Z.B[5][13];
4114}
Chris Lattner33fd7022004-04-05 01:30:49 +00004115</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00004116</div>
Chris Lattner33fd7022004-04-05 01:30:49 +00004117
Misha Brukman76307852003-11-08 01:05:38 +00004118<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004119
Bill Wendling3716c5d2007-05-29 09:04:49 +00004120<div class="doc_code">
Chris Lattner33fd7022004-04-05 01:30:49 +00004121<pre>
Chris Lattnerbc088212009-01-11 20:53:49 +00004122%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
4123%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattner33fd7022004-04-05 01:30:49 +00004124
Dan Gohman6b867702009-07-25 02:23:48 +00004125define i32* @foo(%ST* %s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00004126entry:
4127 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
4128 ret i32* %reg
4129}
Chris Lattner33fd7022004-04-05 01:30:49 +00004130</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00004131</div>
Chris Lattner33fd7022004-04-05 01:30:49 +00004132
Chris Lattner590645f2002-04-14 06:13:44 +00004133<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004134<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004135 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
4136 }</tt>' type, a structure. The second index indexes into the third element
4137 of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
4138 i8 }</tt>' type, another structure. The third index indexes into the second
4139 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
4140 array. The two dimensions of the array are subscripted into, yielding an
4141 '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a
4142 pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004143
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004144<p>Note that it is perfectly legal to index partially through a structure,
4145 returning a pointer to an inner element. Because of this, the LLVM code for
4146 the given testcase is equivalent to:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004147
4148<pre>
Dan Gohman6b867702009-07-25 02:23:48 +00004149 define i32* @foo(%ST* %s) {
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004150 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen5819f182007-04-22 01:17:39 +00004151 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
4152 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004153 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
4154 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
4155 ret i32* %t5
Chris Lattner33fd7022004-04-05 01:30:49 +00004156 }
Chris Lattnera8292f32002-05-06 22:08:29 +00004157</pre>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00004158
Dan Gohman1639c392009-07-27 21:53:46 +00004159<p>If the <tt>inbounds</tt> keyword is present, the result value of the
Dan Gohman61acaaa2009-07-29 16:00:30 +00004160 <tt>getelementptr</tt> is undefined if the base pointer is not an
4161 <i>in bounds</i> address of an allocated object, or if any of the addresses
Dan Gohman2de532c2009-08-20 17:08:17 +00004162 that would be formed by successive addition of the offsets implied by the
4163 indices to the base address with infinitely precise arithmetic are not an
4164 <i>in bounds</i> address of that allocated object.
Dan Gohman61acaaa2009-07-29 16:00:30 +00004165 The <i>in bounds</i> addresses for an allocated object are all the addresses
Dan Gohman2de532c2009-08-20 17:08:17 +00004166 that point into the object, plus the address one byte past the end.</p>
Dan Gohman1639c392009-07-27 21:53:46 +00004167
4168<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
4169 the base address with silently-wrapping two's complement arithmetic, and
4170 the result value of the <tt>getelementptr</tt> may be outside the object
4171 pointed to by the base pointer. The result value may not necessarily be
4172 used to access memory though, even if it happens to point into allocated
4173 storage. See the <a href="#pointeraliasing">Pointer Aliasing Rules</a>
4174 section for more information.</p>
4175
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004176<p>The getelementptr instruction is often confusing. For some more insight into
4177 how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
Chris Lattner6ab66722006-08-15 00:45:58 +00004178
Chris Lattner590645f2002-04-14 06:13:44 +00004179<h5>Example:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00004180<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004181 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004182 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4183 <i>; yields i8*:vptr</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004184 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004185 <i>; yields i8*:eptr</i>
4186 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta0c155e62009-04-25 07:27:44 +00004187 <i>; yields i32*:iptr</i>
Sanjiv Gupta77abea02009-04-24 16:38:13 +00004188 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattner33fd7022004-04-05 01:30:49 +00004189</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004190
Chris Lattner33fd7022004-04-05 01:30:49 +00004191</div>
Reid Spencer443460a2006-11-09 21:15:49 +00004192
Chris Lattner2f7c9632001-06-06 20:29:01 +00004193<!-- ======================================================================= -->
Reid Spencer97c5fa42006-11-08 01:18:52 +00004194<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman76307852003-11-08 01:05:38 +00004195</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004196
Misha Brukman76307852003-11-08 01:05:38 +00004197<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004198
Reid Spencer97c5fa42006-11-08 01:18:52 +00004199<p>The instructions in this category are the conversion instructions (casting)
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004200 which all take a single operand and a type. They perform various bit
4201 conversions on the operand.</p>
4202
Misha Brukman76307852003-11-08 01:05:38 +00004203</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004204
Chris Lattnera8292f32002-05-06 22:08:29 +00004205<!-- _______________________________________________________________________ -->
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004206<div class="doc_subsubsection">
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004207 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
4208</div>
4209<div class="doc_text">
4210
4211<h5>Syntax:</h5>
4212<pre>
4213 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4214</pre>
4215
4216<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004217<p>The '<tt>trunc</tt>' instruction truncates its operand to the
4218 type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004219
4220<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004221<p>The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
4222 be an <a href="#t_integer">integer</a> type, and a type that specifies the
4223 size and type of the result, which must be
4224 an <a href="#t_integer">integer</a> type. The bit size of <tt>value</tt> must
4225 be larger than the bit size of <tt>ty2</tt>. Equal sized types are not
4226 allowed.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004227
4228<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004229<p>The '<tt>trunc</tt>' instruction truncates the high order bits
4230 in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
4231 source size must be larger than the destination size, <tt>trunc</tt> cannot
4232 be a <i>no-op cast</i>. It will always truncate bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004233
4234<h5>Example:</h5>
4235<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004236 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencer36a15422007-01-12 03:35:51 +00004237 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
4238 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004239</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004240
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004241</div>
4242
4243<!-- _______________________________________________________________________ -->
4244<div class="doc_subsubsection">
4245 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
4246</div>
4247<div class="doc_text">
4248
4249<h5>Syntax:</h5>
4250<pre>
4251 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4252</pre>
4253
4254<h5>Overview:</h5>
4255<p>The '<tt>zext</tt>' instruction zero extends its operand to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004256 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004257
4258
4259<h5>Arguments:</h5>
4260<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004261 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
4262 also be of <a href="#t_integer">integer</a> type. The bit size of the
4263 <tt>value</tt> must be smaller than the bit size of the destination type,
4264 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004265
4266<h5>Semantics:</h5>
4267<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004268 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004269
Reid Spencer07c9c682007-01-12 15:46:11 +00004270<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004271
4272<h5>Example:</h5>
4273<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004274 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencer36a15422007-01-12 03:35:51 +00004275 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004276</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004277
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004278</div>
4279
4280<!-- _______________________________________________________________________ -->
4281<div class="doc_subsubsection">
4282 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
4283</div>
4284<div class="doc_text">
4285
4286<h5>Syntax:</h5>
4287<pre>
4288 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4289</pre>
4290
4291<h5>Overview:</h5>
4292<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
4293
4294<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004295<p>The '<tt>sext</tt>' instruction takes a value to cast, which must be of
4296 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
4297 also be of <a href="#t_integer">integer</a> type. The bit size of the
4298 <tt>value</tt> must be smaller than the bit size of the destination type,
4299 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004300
4301<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004302<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
4303 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
4304 of the type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004305
Reid Spencer36a15422007-01-12 03:35:51 +00004306<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004307
4308<h5>Example:</h5>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004309<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004310 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencer36a15422007-01-12 03:35:51 +00004311 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004312</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004313
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004314</div>
4315
4316<!-- _______________________________________________________________________ -->
4317<div class="doc_subsubsection">
Reid Spencer2e2740d2006-11-09 21:48:10 +00004318 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
4319</div>
4320
4321<div class="doc_text">
4322
4323<h5>Syntax:</h5>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004324<pre>
4325 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4326</pre>
4327
4328<h5>Overview:</h5>
4329<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004330 <tt>ty2</tt>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004331
4332<h5>Arguments:</h5>
4333<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004334 point</a> value to cast and a <a href="#t_floating">floating point</a> type
4335 to cast it to. The size of <tt>value</tt> must be larger than the size of
4336 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
4337 <i>no-op cast</i>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004338
4339<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004340<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
4341 <a href="#t_floating">floating point</a> type to a smaller
4342 <a href="#t_floating">floating point</a> type. If the value cannot fit
4343 within the destination type, <tt>ty2</tt>, then the results are
4344 undefined.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004345
4346<h5>Example:</h5>
4347<pre>
4348 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
4349 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
4350</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004351
Reid Spencer2e2740d2006-11-09 21:48:10 +00004352</div>
4353
4354<!-- _______________________________________________________________________ -->
4355<div class="doc_subsubsection">
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004356 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
4357</div>
4358<div class="doc_text">
4359
4360<h5>Syntax:</h5>
4361<pre>
4362 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4363</pre>
4364
4365<h5>Overview:</h5>
4366<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004367 floating point value.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004368
4369<h5>Arguments:</h5>
4370<p>The '<tt>fpext</tt>' instruction takes a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004371 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
4372 a <a href="#t_floating">floating point</a> type to cast it to. The source
4373 type must be smaller than the destination type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004374
4375<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004376<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004377 <a href="#t_floating">floating point</a> type to a larger
4378 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
4379 used to make a <i>no-op cast</i> because it always changes bits. Use
4380 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004381
4382<h5>Example:</h5>
4383<pre>
4384 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
4385 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
4386</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004387
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004388</div>
4389
4390<!-- _______________________________________________________________________ -->
4391<div class="doc_subsubsection">
Reid Spencer2eadb532007-01-21 00:29:26 +00004392 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004393</div>
4394<div class="doc_text">
4395
4396<h5>Syntax:</h5>
4397<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00004398 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004399</pre>
4400
4401<h5>Overview:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00004402<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004403 unsigned integer equivalent of type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004404
4405<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004406<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
4407 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4408 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4409 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4410 vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004411
4412<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004413<p>The '<tt>fptoui</tt>' instruction converts its
4414 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4415 towards zero) unsigned integer value. If the value cannot fit
4416 in <tt>ty2</tt>, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004417
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004418<h5>Example:</h5>
4419<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00004420 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00004421 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer753163d2007-07-31 14:40:14 +00004422 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004423</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004424
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004425</div>
4426
4427<!-- _______________________________________________________________________ -->
4428<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00004429 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004430</div>
4431<div class="doc_text">
4432
4433<h5>Syntax:</h5>
4434<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004435 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004436</pre>
4437
4438<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004439<p>The '<tt>fptosi</tt>' instruction converts
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004440 <a href="#t_floating">floating point</a> <tt>value</tt> to
4441 type <tt>ty2</tt>.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004442
Chris Lattnera8292f32002-05-06 22:08:29 +00004443<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004444<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
4445 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4446 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4447 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4448 vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004449
Chris Lattnera8292f32002-05-06 22:08:29 +00004450<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004451<p>The '<tt>fptosi</tt>' instruction converts its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004452 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4453 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4454 the results are undefined.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004455
Chris Lattner70de6632001-07-09 00:26:23 +00004456<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004457<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00004458 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00004459 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004460 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004461</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004462
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004463</div>
4464
4465<!-- _______________________________________________________________________ -->
4466<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00004467 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004468</div>
4469<div class="doc_text">
4470
4471<h5>Syntax:</h5>
4472<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004473 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004474</pre>
4475
4476<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004477<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004478 integer and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004479
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004480<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00004481<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004482 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4483 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4484 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4485 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004486
4487<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004488<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004489 integer quantity and converts it to the corresponding floating point
4490 value. If the value cannot fit in the floating point value, the results are
4491 undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004492
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004493<h5>Example:</h5>
4494<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004495 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004496 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004497</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004498
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004499</div>
4500
4501<!-- _______________________________________________________________________ -->
4502<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00004503 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004504</div>
4505<div class="doc_text">
4506
4507<h5>Syntax:</h5>
4508<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004509 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004510</pre>
4511
4512<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004513<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
4514 and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004515
4516<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00004517<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004518 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4519 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4520 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4521 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004522
4523<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004524<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
4525 quantity and converts it to the corresponding floating point value. If the
4526 value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004527
4528<h5>Example:</h5>
4529<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004530 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004531 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004532</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004533
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004534</div>
4535
4536<!-- _______________________________________________________________________ -->
4537<div class="doc_subsubsection">
Reid Spencerb7344ff2006-11-11 21:00:47 +00004538 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4539</div>
4540<div class="doc_text">
4541
4542<h5>Syntax:</h5>
4543<pre>
4544 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4545</pre>
4546
4547<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004548<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4549 the integer type <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004550
4551<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004552<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
4553 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
4554 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004555
4556<h5>Semantics:</h5>
4557<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004558 <tt>ty2</tt> by interpreting the pointer value as an integer and either
4559 truncating or zero extending that value to the size of the integer type. If
4560 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4561 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
4562 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4563 change.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004564
4565<h5>Example:</h5>
4566<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004567 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4568 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004569</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004570
Reid Spencerb7344ff2006-11-11 21:00:47 +00004571</div>
4572
4573<!-- _______________________________________________________________________ -->
4574<div class="doc_subsubsection">
4575 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4576</div>
4577<div class="doc_text">
4578
4579<h5>Syntax:</h5>
4580<pre>
4581 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4582</pre>
4583
4584<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004585<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
4586 pointer type, <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004587
4588<h5>Arguments:</h5>
Duncan Sands16f122e2007-03-30 12:22:09 +00004589<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004590 value to cast, and a type to cast it to, which must be a
4591 <a href="#t_pointer">pointer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004592
4593<h5>Semantics:</h5>
4594<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004595 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
4596 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4597 size of a pointer then a truncation is done. If <tt>value</tt> is smaller
4598 than the size of a pointer then a zero extension is done. If they are the
4599 same size, nothing is done (<i>no-op cast</i>).</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004600
4601<h5>Example:</h5>
4602<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004603 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
4604 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4605 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004606</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004607
Reid Spencerb7344ff2006-11-11 21:00:47 +00004608</div>
4609
4610<!-- _______________________________________________________________________ -->
4611<div class="doc_subsubsection">
Reid Spencer5b950642006-11-11 23:08:07 +00004612 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004613</div>
4614<div class="doc_text">
4615
4616<h5>Syntax:</h5>
4617<pre>
Reid Spencer5b950642006-11-11 23:08:07 +00004618 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004619</pre>
4620
4621<h5>Overview:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00004622<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004623 <tt>ty2</tt> without changing any bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004624
4625<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004626<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
4627 non-aggregate first class value, and a type to cast it to, which must also be
4628 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
4629 of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
4630 identical. If the source type is a pointer, the destination type must also be
4631 a pointer. This instruction supports bitwise conversion of vectors to
4632 integers and to vectors of other types (as long as they have the same
4633 size).</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004634
4635<h5>Semantics:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00004636<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004637 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4638 this conversion. The conversion is done as if the <tt>value</tt> had been
4639 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
4640 be converted to other pointer types with this instruction. To convert
4641 pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
4642 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004643
4644<h5>Example:</h5>
4645<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004646 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004647 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004648 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner70de6632001-07-09 00:26:23 +00004649</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004650
Misha Brukman76307852003-11-08 01:05:38 +00004651</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004652
Reid Spencer97c5fa42006-11-08 01:18:52 +00004653<!-- ======================================================================= -->
4654<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004655
Reid Spencer97c5fa42006-11-08 01:18:52 +00004656<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004657
4658<p>The instructions in this category are the "miscellaneous" instructions, which
4659 defy better classification.</p>
4660
Reid Spencer97c5fa42006-11-08 01:18:52 +00004661</div>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004662
4663<!-- _______________________________________________________________________ -->
4664<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4665</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004666
Reid Spencerc828a0e2006-11-18 21:50:54 +00004667<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004668
Reid Spencerc828a0e2006-11-18 21:50:54 +00004669<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004670<pre>
4671 &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004672</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004673
Reid Spencerc828a0e2006-11-18 21:50:54 +00004674<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004675<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
4676 boolean values based on comparison of its two integer, integer vector, or
4677 pointer operands.</p>
4678
Reid Spencerc828a0e2006-11-18 21:50:54 +00004679<h5>Arguments:</h5>
4680<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004681 the condition code indicating the kind of comparison to perform. It is not a
4682 value, just a keyword. The possible condition code are:</p>
4683
Reid Spencerc828a0e2006-11-18 21:50:54 +00004684<ol>
4685 <li><tt>eq</tt>: equal</li>
4686 <li><tt>ne</tt>: not equal </li>
4687 <li><tt>ugt</tt>: unsigned greater than</li>
4688 <li><tt>uge</tt>: unsigned greater or equal</li>
4689 <li><tt>ult</tt>: unsigned less than</li>
4690 <li><tt>ule</tt>: unsigned less or equal</li>
4691 <li><tt>sgt</tt>: signed greater than</li>
4692 <li><tt>sge</tt>: signed greater or equal</li>
4693 <li><tt>slt</tt>: signed less than</li>
4694 <li><tt>sle</tt>: signed less or equal</li>
4695</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004696
Chris Lattnerc0f423a2007-01-15 01:54:13 +00004697<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004698 <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
4699 typed. They must also be identical types.</p>
4700
Reid Spencerc828a0e2006-11-18 21:50:54 +00004701<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004702<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
4703 condition code given as <tt>cond</tt>. The comparison performed always yields
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00004704 either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004705 result, as follows:</p>
4706
Reid Spencerc828a0e2006-11-18 21:50:54 +00004707<ol>
4708 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004709 <tt>false</tt> otherwise. No sign interpretation is necessary or
4710 performed.</li>
4711
Reid Spencerc828a0e2006-11-18 21:50:54 +00004712 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004713 <tt>false</tt> otherwise. No sign interpretation is necessary or
4714 performed.</li>
4715
Reid Spencerc828a0e2006-11-18 21:50:54 +00004716 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004717 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4718
Reid Spencerc828a0e2006-11-18 21:50:54 +00004719 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004720 <tt>true</tt> if <tt>op1</tt> is greater than or equal
4721 to <tt>op2</tt>.</li>
4722
Reid Spencerc828a0e2006-11-18 21:50:54 +00004723 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004724 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
4725
Reid Spencerc828a0e2006-11-18 21:50:54 +00004726 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004727 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4728
Reid Spencerc828a0e2006-11-18 21:50:54 +00004729 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004730 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4731
Reid Spencerc828a0e2006-11-18 21:50:54 +00004732 <li><tt>sge</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004733 <tt>true</tt> if <tt>op1</tt> is greater than or equal
4734 to <tt>op2</tt>.</li>
4735
Reid Spencerc828a0e2006-11-18 21:50:54 +00004736 <li><tt>slt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004737 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
4738
Reid Spencerc828a0e2006-11-18 21:50:54 +00004739 <li><tt>sle</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004740 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004741</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004742
Reid Spencerc828a0e2006-11-18 21:50:54 +00004743<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004744 values are compared as if they were integers.</p>
4745
4746<p>If the operands are integer vectors, then they are compared element by
4747 element. The result is an <tt>i1</tt> vector with the same number of elements
4748 as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004749
4750<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004751<pre>
4752 &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004753 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4754 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4755 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4756 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4757 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004758</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00004759
4760<p>Note that the code generator does not yet support vector types with
4761 the <tt>icmp</tt> instruction.</p>
4762
Reid Spencerc828a0e2006-11-18 21:50:54 +00004763</div>
4764
4765<!-- _______________________________________________________________________ -->
4766<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4767</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004768
Reid Spencerc828a0e2006-11-18 21:50:54 +00004769<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004770
Reid Spencerc828a0e2006-11-18 21:50:54 +00004771<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004772<pre>
4773 &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004774</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004775
Reid Spencerc828a0e2006-11-18 21:50:54 +00004776<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004777<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
4778 values based on comparison of its operands.</p>
4779
4780<p>If the operands are floating point scalars, then the result type is a boolean
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00004781(<a href="#t_integer"><tt>i1</tt></a>).</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004782
4783<p>If the operands are floating point vectors, then the result type is a vector
4784 of boolean with the same number of elements as the operands being
4785 compared.</p>
4786
Reid Spencerc828a0e2006-11-18 21:50:54 +00004787<h5>Arguments:</h5>
4788<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004789 the condition code indicating the kind of comparison to perform. It is not a
4790 value, just a keyword. The possible condition code are:</p>
4791
Reid Spencerc828a0e2006-11-18 21:50:54 +00004792<ol>
Reid Spencerf69acf32006-11-19 03:00:14 +00004793 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004794 <li><tt>oeq</tt>: ordered and equal</li>
4795 <li><tt>ogt</tt>: ordered and greater than </li>
4796 <li><tt>oge</tt>: ordered and greater than or equal</li>
4797 <li><tt>olt</tt>: ordered and less than </li>
4798 <li><tt>ole</tt>: ordered and less than or equal</li>
4799 <li><tt>one</tt>: ordered and not equal</li>
4800 <li><tt>ord</tt>: ordered (no nans)</li>
4801 <li><tt>ueq</tt>: unordered or equal</li>
4802 <li><tt>ugt</tt>: unordered or greater than </li>
4803 <li><tt>uge</tt>: unordered or greater than or equal</li>
4804 <li><tt>ult</tt>: unordered or less than </li>
4805 <li><tt>ule</tt>: unordered or less than or equal</li>
4806 <li><tt>une</tt>: unordered or not equal</li>
4807 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004808 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004809</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004810
Jeff Cohen222a8a42007-04-29 01:07:00 +00004811<p><i>Ordered</i> means that neither operand is a QNAN while
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004812 <i>unordered</i> means that either operand may be a QNAN.</p>
4813
4814<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
4815 a <a href="#t_floating">floating point</a> type or
4816 a <a href="#t_vector">vector</a> of floating point type. They must have
4817 identical types.</p>
4818
Reid Spencerc828a0e2006-11-18 21:50:54 +00004819<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004820<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004821 according to the condition code given as <tt>cond</tt>. If the operands are
4822 vectors, then the vectors are compared element by element. Each comparison
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00004823 performed always yields an <a href="#t_integer">i1</a> result, as
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004824 follows:</p>
4825
Reid Spencerc828a0e2006-11-18 21:50:54 +00004826<ol>
4827 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004828
Reid Spencerf69acf32006-11-19 03:00:14 +00004829 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004830 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
4831
Reid Spencerf69acf32006-11-19 03:00:14 +00004832 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004833 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
4834
Reid Spencerf69acf32006-11-19 03:00:14 +00004835 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004836 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
4837
Reid Spencerf69acf32006-11-19 03:00:14 +00004838 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004839 <tt>op1</tt> is less than <tt>op2</tt>.</li>
4840
Reid Spencerf69acf32006-11-19 03:00:14 +00004841 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004842 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4843
Reid Spencerf69acf32006-11-19 03:00:14 +00004844 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004845 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
4846
Reid Spencerf69acf32006-11-19 03:00:14 +00004847 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004848
Reid Spencerf69acf32006-11-19 03:00:14 +00004849 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004850 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
4851
Reid Spencerf69acf32006-11-19 03:00:14 +00004852 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004853 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4854
Reid Spencerf69acf32006-11-19 03:00:14 +00004855 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004856 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
4857
Reid Spencerf69acf32006-11-19 03:00:14 +00004858 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004859 <tt>op1</tt> is less than <tt>op2</tt>.</li>
4860
Reid Spencerf69acf32006-11-19 03:00:14 +00004861 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004862 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4863
Reid Spencerf69acf32006-11-19 03:00:14 +00004864 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004865 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
4866
Reid Spencerf69acf32006-11-19 03:00:14 +00004867 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004868
Reid Spencerc828a0e2006-11-18 21:50:54 +00004869 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4870</ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004871
4872<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004873<pre>
4874 &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanc579d972008-09-09 01:02:47 +00004875 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4876 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4877 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004878</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00004879
4880<p>Note that the code generator does not yet support vector types with
4881 the <tt>fcmp</tt> instruction.</p>
4882
Reid Spencerc828a0e2006-11-18 21:50:54 +00004883</div>
4884
Reid Spencer97c5fa42006-11-08 01:18:52 +00004885<!-- _______________________________________________________________________ -->
Nate Begemand2195702008-05-12 19:01:56 +00004886<div class="doc_subsubsection">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004887 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4888</div>
4889
Reid Spencer97c5fa42006-11-08 01:18:52 +00004890<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004891
Reid Spencer97c5fa42006-11-08 01:18:52 +00004892<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004893<pre>
4894 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
4895</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004896
Reid Spencer97c5fa42006-11-08 01:18:52 +00004897<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004898<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
4899 SSA graph representing the function.</p>
4900
Reid Spencer97c5fa42006-11-08 01:18:52 +00004901<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004902<p>The type of the incoming values is specified with the first type field. After
4903 this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
4904 one pair for each predecessor basic block of the current block. Only values
4905 of <a href="#t_firstclass">first class</a> type may be used as the value
4906 arguments to the PHI node. Only labels may be used as the label
4907 arguments.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004908
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004909<p>There must be no non-phi instructions between the start of a basic block and
4910 the PHI instructions: i.e. PHI instructions must be first in a basic
4911 block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004912
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004913<p>For the purposes of the SSA form, the use of each incoming value is deemed to
4914 occur on the edge from the corresponding predecessor block to the current
4915 block (but after any definition of an '<tt>invoke</tt>' instruction's return
4916 value on the same edge).</p>
Jay Foad1a4eea52009-06-03 10:20:10 +00004917
Reid Spencer97c5fa42006-11-08 01:18:52 +00004918<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004919<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004920 specified by the pair corresponding to the predecessor basic block that
4921 executed just prior to the current block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004922
Reid Spencer97c5fa42006-11-08 01:18:52 +00004923<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004924<pre>
4925Loop: ; Infinite loop that counts from 0 on up...
4926 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4927 %nextindvar = add i32 %indvar, 1
4928 br label %Loop
4929</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004930
Reid Spencer97c5fa42006-11-08 01:18:52 +00004931</div>
4932
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004933<!-- _______________________________________________________________________ -->
4934<div class="doc_subsubsection">
4935 <a name="i_select">'<tt>select</tt>' Instruction</a>
4936</div>
4937
4938<div class="doc_text">
4939
4940<h5>Syntax:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004941<pre>
Dan Gohmanc579d972008-09-09 01:02:47 +00004942 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4943
Dan Gohmanef9462f2008-10-14 16:51:45 +00004944 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004945</pre>
4946
4947<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004948<p>The '<tt>select</tt>' instruction is used to choose one value based on a
4949 condition, without branching.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004950
4951
4952<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004953<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
4954 values indicating the condition, and two values of the
4955 same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
4956 vectors and the condition is a scalar, then entire vectors are selected, not
4957 individual elements.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004958
4959<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004960<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
4961 first value argument; otherwise, it returns the second value argument.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004962
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004963<p>If the condition is a vector of i1, then the value arguments must be vectors
4964 of the same size, and the selection is done element by element.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004965
4966<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004967<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00004968 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004969</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00004970
4971<p>Note that the code generator does not yet support conditions
4972 with vector type.</p>
4973
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004974</div>
4975
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00004976<!-- _______________________________________________________________________ -->
4977<div class="doc_subsubsection">
Chris Lattnere23c1392005-05-06 05:47:36 +00004978 <a name="i_call">'<tt>call</tt>' Instruction</a>
4979</div>
4980
Misha Brukman76307852003-11-08 01:05:38 +00004981<div class="doc_text">
Chris Lattnere23c1392005-05-06 05:47:36 +00004982
Chris Lattner2f7c9632001-06-06 20:29:01 +00004983<h5>Syntax:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004984<pre>
Devang Patel02256232008-10-07 17:48:33 +00004985 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattnere23c1392005-05-06 05:47:36 +00004986</pre>
4987
Chris Lattner2f7c9632001-06-06 20:29:01 +00004988<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004989<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004990
Chris Lattner2f7c9632001-06-06 20:29:01 +00004991<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004992<p>This instruction requires several arguments:</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004993
Chris Lattnera8292f32002-05-06 22:08:29 +00004994<ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004995 <li>The optional "tail" marker indicates whether the callee function accesses
4996 any allocas or varargs in the caller. If the "tail" marker is present,
4997 the function call is eligible for tail call optimization. Note that calls
4998 may be marked "tail" even if they do not occur before
4999 a <a href="#i_ret"><tt>ret</tt></a> instruction.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00005000
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005001 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
5002 convention</a> the call should use. If none is specified, the call
5003 defaults to using C calling conventions.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00005004
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005005 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
5006 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
5007 '<tt>inreg</tt>' attributes are valid here.</li>
5008
5009 <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
5010 type of the return value. Functions that return no value are marked
5011 <tt><a href="#t_void">void</a></tt>.</li>
5012
5013 <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
5014 being invoked. The argument types must match the types implied by this
5015 signature. This type can be omitted if the function is not varargs and if
5016 the function type does not return a pointer to a function.</li>
5017
5018 <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
5019 be invoked. In most cases, this is a direct function invocation, but
5020 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
5021 to function value.</li>
5022
5023 <li>'<tt>function args</tt>': argument list whose types match the function
5024 signature argument types. All arguments must be of
5025 <a href="#t_firstclass">first class</a> type. If the function signature
5026 indicates the function accepts a variable number of arguments, the extra
5027 arguments can be specified.</li>
5028
5029 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
5030 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
5031 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattnera8292f32002-05-06 22:08:29 +00005032</ol>
Chris Lattnere23c1392005-05-06 05:47:36 +00005033
Chris Lattner2f7c9632001-06-06 20:29:01 +00005034<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005035<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
5036 a specified function, with its incoming arguments bound to the specified
5037 values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
5038 function, control flow continues with the instruction after the function
5039 call, and the return value of the function is bound to the result
5040 argument.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00005041
Chris Lattner2f7c9632001-06-06 20:29:01 +00005042<h5>Example:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00005043<pre>
Nick Lewyckya9b13d52007-09-08 13:57:50 +00005044 %retval = call i32 @test(i32 %argc)
Chris Lattnerfb7c88d2008-03-21 17:24:17 +00005045 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
5046 %X = tail call i32 @foo() <i>; yields i32</i>
5047 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
5048 call void %foo(i8 97 signext)
Devang Pateld6cff512008-03-10 20:49:15 +00005049
5050 %struct.A = type { i32, i8 }
Devang Patel7e9b05e2008-10-06 18:50:38 +00005051 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmancc3132e2008-10-04 19:00:07 +00005052 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
5053 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner6cbe8e92008-10-08 06:26:11 +00005054 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmaneefa7df2008-10-07 10:03:45 +00005055 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattnere23c1392005-05-06 05:47:36 +00005056</pre>
5057
Dale Johannesen68f971b2009-09-24 18:38:21 +00005058<p>llvm treats calls to some functions with names and arguments that match the
Dale Johannesen722212d2009-09-25 17:04:42 +00005059standard C99 library as being the C99 library functions, and may perform
5060optimizations or generate code for them under that assumption. This is
5061something we'd like to change in the future to provide better support for
5062freestanding environments and non-C-based langauges.</p>
Dale Johannesen68f971b2009-09-24 18:38:21 +00005063
Misha Brukman76307852003-11-08 01:05:38 +00005064</div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005065
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005066<!-- _______________________________________________________________________ -->
Chris Lattner6a4a0492004-09-27 21:51:25 +00005067<div class="doc_subsubsection">
Chris Lattner33337472006-01-13 23:26:01 +00005068 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005069</div>
5070
Misha Brukman76307852003-11-08 01:05:38 +00005071<div class="doc_text">
Chris Lattner6a4a0492004-09-27 21:51:25 +00005072
Chris Lattner26ca62e2003-10-18 05:51:36 +00005073<h5>Syntax:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005074<pre>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005075 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattner6a4a0492004-09-27 21:51:25 +00005076</pre>
5077
Chris Lattner26ca62e2003-10-18 05:51:36 +00005078<h5>Overview:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005079<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005080 the "variable argument" area of a function call. It is used to implement the
5081 <tt>va_arg</tt> macro in C.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005082
Chris Lattner26ca62e2003-10-18 05:51:36 +00005083<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005084<p>This instruction takes a <tt>va_list*</tt> value and the type of the
5085 argument. It returns a value of the specified argument type and increments
5086 the <tt>va_list</tt> to point to the next argument. The actual type
5087 of <tt>va_list</tt> is target specific.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005088
Chris Lattner26ca62e2003-10-18 05:51:36 +00005089<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005090<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
5091 from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
5092 to the next argument. For more information, see the variable argument
5093 handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005094
5095<p>It is legal for this instruction to be called in a function which does not
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005096 take a variable number of arguments, for example, the <tt>vfprintf</tt>
5097 function.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005098
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005099<p><tt>va_arg</tt> is an LLVM instruction instead of
5100 an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
5101 argument.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005102
Chris Lattner26ca62e2003-10-18 05:51:36 +00005103<h5>Example:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005104<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
5105
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005106<p>Note that the code generator does not yet fully support va_arg on many
5107 targets. Also, it does not currently support va_arg with aggregate types on
5108 any target.</p>
Dan Gohman3065b612009-01-12 23:12:39 +00005109
Misha Brukman76307852003-11-08 01:05:38 +00005110</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005111
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005112<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00005113<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
5114<!-- *********************************************************************** -->
Chris Lattner941515c2004-01-06 05:31:32 +00005115
Misha Brukman76307852003-11-08 01:05:38 +00005116<div class="doc_text">
Chris Lattnerfee11462004-02-12 17:01:32 +00005117
5118<p>LLVM supports the notion of an "intrinsic function". These functions have
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005119 well known names and semantics and are required to follow certain
5120 restrictions. Overall, these intrinsics represent an extension mechanism for
5121 the LLVM language that does not require changing all of the transformations
5122 in LLVM when adding to the language (or the bitcode reader/writer, the
5123 parser, etc...).</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005124
John Criswell88190562005-05-16 16:17:45 +00005125<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005126 prefix is reserved in LLVM for intrinsic names; thus, function names may not
5127 begin with this prefix. Intrinsic functions must always be external
5128 functions: you cannot define the body of intrinsic functions. Intrinsic
5129 functions may only be used in call or invoke instructions: it is illegal to
5130 take the address of an intrinsic function. Additionally, because intrinsic
5131 functions are part of the LLVM language, it is required if any are added that
5132 they be documented here.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005133
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005134<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
5135 family of functions that perform the same operation but on different data
5136 types. Because LLVM can represent over 8 million different integer types,
5137 overloading is used commonly to allow an intrinsic function to operate on any
5138 integer type. One or more of the argument types or the result type can be
5139 overloaded to accept any integer type. Argument types may also be defined as
5140 exactly matching a previous argument's type or the result type. This allows
5141 an intrinsic function which accepts multiple arguments, but needs all of them
5142 to be of the same type, to only be overloaded with respect to a single
5143 argument or the result.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005144
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005145<p>Overloaded intrinsics will have the names of its overloaded argument types
5146 encoded into its function name, each preceded by a period. Only those types
5147 which are overloaded result in a name suffix. Arguments whose type is matched
5148 against another type do not. For example, the <tt>llvm.ctpop</tt> function
5149 can take an integer of any width and returns an integer of exactly the same
5150 integer width. This leads to a family of functions such as
5151 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
5152 %val)</tt>. Only one type, the return type, is overloaded, and only one type
5153 suffix is required. Because the argument's type is matched against the return
5154 type, it does not require its own name suffix.</p>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005155
5156<p>To learn how to add an intrinsic function, please see the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005157 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005158
Misha Brukman76307852003-11-08 01:05:38 +00005159</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005160
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005161<!-- ======================================================================= -->
Chris Lattner941515c2004-01-06 05:31:32 +00005162<div class="doc_subsection">
5163 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
5164</div>
5165
Misha Brukman76307852003-11-08 01:05:38 +00005166<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +00005167
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005168<p>Variable argument support is defined in LLVM with
5169 the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
5170 intrinsic functions. These functions are related to the similarly named
5171 macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005172
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005173<p>All of these functions operate on arguments that use a target-specific value
5174 type "<tt>va_list</tt>". The LLVM assembly language reference manual does
5175 not define what this type is, so all transformations should be prepared to
5176 handle these functions regardless of the type used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005177
Chris Lattner30b868d2006-05-15 17:26:46 +00005178<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005179 instruction and the variable argument handling intrinsic functions are
5180 used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005181
Bill Wendling3716c5d2007-05-29 09:04:49 +00005182<div class="doc_code">
Chris Lattnerfee11462004-02-12 17:01:32 +00005183<pre>
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005184define i32 @test(i32 %X, ...) {
Chris Lattnerfee11462004-02-12 17:01:32 +00005185 ; Initialize variable argument processing
Jeff Cohen222a8a42007-04-29 01:07:00 +00005186 %ap = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005187 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005188 call void @llvm.va_start(i8* %ap2)
Chris Lattnerfee11462004-02-12 17:01:32 +00005189
5190 ; Read a single integer argument
Jeff Cohen222a8a42007-04-29 01:07:00 +00005191 %tmp = va_arg i8** %ap, i32
Chris Lattnerfee11462004-02-12 17:01:32 +00005192
5193 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohen222a8a42007-04-29 01:07:00 +00005194 %aq = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005195 %aq2 = bitcast i8** %aq to i8*
Jeff Cohen222a8a42007-04-29 01:07:00 +00005196 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005197 call void @llvm.va_end(i8* %aq2)
Chris Lattnerfee11462004-02-12 17:01:32 +00005198
5199 ; Stop processing of arguments.
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005200 call void @llvm.va_end(i8* %ap2)
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005201 ret i32 %tmp
Chris Lattnerfee11462004-02-12 17:01:32 +00005202}
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005203
5204declare void @llvm.va_start(i8*)
5205declare void @llvm.va_copy(i8*, i8*)
5206declare void @llvm.va_end(i8*)
Chris Lattnerfee11462004-02-12 17:01:32 +00005207</pre>
Misha Brukman76307852003-11-08 01:05:38 +00005208</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005209
Bill Wendling3716c5d2007-05-29 09:04:49 +00005210</div>
5211
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005212<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00005213<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005214 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00005215</div>
5216
5217
Misha Brukman76307852003-11-08 01:05:38 +00005218<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005219
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005220<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005221<pre>
5222 declare void %llvm.va_start(i8* &lt;arglist&gt;)
5223</pre>
5224
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005225<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005226<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
5227 for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005228
5229<h5>Arguments:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005230<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005231
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005232<h5>Semantics:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005233<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005234 macro available in C. In a target-dependent way, it initializes
5235 the <tt>va_list</tt> element to which the argument points, so that the next
5236 call to <tt>va_arg</tt> will produce the first variable argument passed to
5237 the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
5238 need to know the last argument of the function as the compiler can figure
5239 that out.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005240
Misha Brukman76307852003-11-08 01:05:38 +00005241</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005242
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005243<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00005244<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005245 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00005246</div>
5247
Misha Brukman76307852003-11-08 01:05:38 +00005248<div class="doc_text">
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005249
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005250<h5>Syntax:</h5>
5251<pre>
5252 declare void @llvm.va_end(i8* &lt;arglist&gt;)
5253</pre>
5254
5255<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005256<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005257 which has been initialized previously
5258 with <tt><a href="#int_va_start">llvm.va_start</a></tt>
5259 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005260
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005261<h5>Arguments:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005262<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005263
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005264<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005265<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005266 macro available in C. In a target-dependent way, it destroys
5267 the <tt>va_list</tt> element to which the argument points. Calls
5268 to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
5269 and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
5270 with calls to <tt>llvm.va_end</tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005271
Misha Brukman76307852003-11-08 01:05:38 +00005272</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005273
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005274<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00005275<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005276 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00005277</div>
5278
Misha Brukman76307852003-11-08 01:05:38 +00005279<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +00005280
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005281<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005282<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005283 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005284</pre>
5285
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005286<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005287<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005288 from the source argument list to the destination argument list.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005289
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005290<h5>Arguments:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005291<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005292 The second argument is a pointer to a <tt>va_list</tt> element to copy
5293 from.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005294
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005295<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005296<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005297 macro available in C. In a target-dependent way, it copies the
5298 source <tt>va_list</tt> element into the destination <tt>va_list</tt>
5299 element. This intrinsic is necessary because
5300 the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
5301 arbitrarily complex and require, for example, memory allocation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005302
Misha Brukman76307852003-11-08 01:05:38 +00005303</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005304
Chris Lattnerfee11462004-02-12 17:01:32 +00005305<!-- ======================================================================= -->
5306<div class="doc_subsection">
Chris Lattner757528b0b2004-05-23 21:06:01 +00005307 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
5308</div>
5309
5310<div class="doc_text">
5311
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005312<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner67c37d12008-08-05 18:29:16 +00005313Collection</a> (GC) requires the implementation and generation of these
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005314intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
5315roots on the stack</a>, as well as garbage collector implementations that
5316require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
5317barriers. Front-ends for type-safe garbage collected languages should generate
5318these intrinsics to make use of the LLVM garbage collectors. For more details,
5319see <a href="GarbageCollection.html">Accurate Garbage Collection with
5320LLVM</a>.</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00005321
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005322<p>The garbage collection intrinsics only operate on objects in the generic
5323 address space (address space zero).</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00005324
Chris Lattner757528b0b2004-05-23 21:06:01 +00005325</div>
5326
5327<!-- _______________________________________________________________________ -->
5328<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005329 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005330</div>
5331
5332<div class="doc_text">
5333
5334<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005335<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005336 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005337</pre>
5338
5339<h5>Overview:</h5>
John Criswelldfe6a862004-12-10 15:51:16 +00005340<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005341 the code generator, and allows some metadata to be associated with it.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005342
5343<h5>Arguments:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005344<p>The first argument specifies the address of a stack object that contains the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005345 root pointer. The second pointer (which must be either a constant or a
5346 global value address) contains the meta-data to be associated with the
5347 root.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005348
5349<h5>Semantics:</h5>
Chris Lattner851b7712008-04-24 05:59:56 +00005350<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005351 location. At compile-time, the code generator generates information to allow
5352 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5353 intrinsic may only be used in a function which <a href="#gc">specifies a GC
5354 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005355
5356</div>
5357
Chris Lattner757528b0b2004-05-23 21:06:01 +00005358<!-- _______________________________________________________________________ -->
5359<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005360 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005361</div>
5362
5363<div class="doc_text">
5364
5365<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005366<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005367 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005368</pre>
5369
5370<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005371<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005372 locations, allowing garbage collector implementations that require read
5373 barriers.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005374
5375<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00005376<p>The second argument is the address to read from, which should be an address
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005377 allocated from the garbage collector. The first object is a pointer to the
5378 start of the referenced object, if needed by the language runtime (otherwise
5379 null).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005380
5381<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005382<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005383 instruction, but may be replaced with substantially more complex code by the
5384 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5385 may only be used in a function which <a href="#gc">specifies a GC
5386 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005387
5388</div>
5389
Chris Lattner757528b0b2004-05-23 21:06:01 +00005390<!-- _______________________________________________________________________ -->
5391<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005392 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005393</div>
5394
5395<div class="doc_text">
5396
5397<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005398<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005399 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005400</pre>
5401
5402<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005403<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005404 locations, allowing garbage collector implementations that require write
5405 barriers (such as generational or reference counting collectors).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005406
5407<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00005408<p>The first argument is the reference to store, the second is the start of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005409 object to store it to, and the third is the address of the field of Obj to
5410 store to. If the runtime does not require a pointer to the object, Obj may
5411 be null.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005412
5413<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005414<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005415 instruction, but may be replaced with substantially more complex code by the
5416 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5417 may only be used in a function which <a href="#gc">specifies a GC
5418 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005419
5420</div>
5421
Chris Lattner757528b0b2004-05-23 21:06:01 +00005422<!-- ======================================================================= -->
5423<div class="doc_subsection">
Chris Lattner3649c3a2004-02-14 04:08:35 +00005424 <a name="int_codegen">Code Generator Intrinsics</a>
5425</div>
5426
5427<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005428
5429<p>These intrinsics are provided by LLVM to expose special features that may
5430 only be implemented with code generator support.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005431
5432</div>
5433
5434<!-- _______________________________________________________________________ -->
5435<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005436 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005437</div>
5438
5439<div class="doc_text">
5440
5441<h5>Syntax:</h5>
5442<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005443 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005444</pre>
5445
5446<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005447<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5448 target-specific value indicating the return address of the current function
5449 or one of its callers.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005450
5451<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005452<p>The argument to this intrinsic indicates which function to return the address
5453 for. Zero indicates the calling function, one indicates its caller, etc.
5454 The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005455
5456<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005457<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
5458 indicating the return address of the specified call frame, or zero if it
5459 cannot be identified. The value returned by this intrinsic is likely to be
5460 incorrect or 0 for arguments other than zero, so it should only be used for
5461 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005462
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005463<p>Note that calling this intrinsic does not prevent function inlining or other
5464 aggressive transformations, so the value returned may not be that of the
5465 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005466
Chris Lattner3649c3a2004-02-14 04:08:35 +00005467</div>
5468
Chris Lattner3649c3a2004-02-14 04:08:35 +00005469<!-- _______________________________________________________________________ -->
5470<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005471 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005472</div>
5473
5474<div class="doc_text">
5475
5476<h5>Syntax:</h5>
5477<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005478 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005479</pre>
5480
5481<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005482<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5483 target-specific frame pointer value for the specified stack frame.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005484
5485<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005486<p>The argument to this intrinsic indicates which function to return the frame
5487 pointer for. Zero indicates the calling function, one indicates its caller,
5488 etc. The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005489
5490<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005491<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
5492 indicating the frame address of the specified call frame, or zero if it
5493 cannot be identified. The value returned by this intrinsic is likely to be
5494 incorrect or 0 for arguments other than zero, so it should only be used for
5495 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005496
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005497<p>Note that calling this intrinsic does not prevent function inlining or other
5498 aggressive transformations, so the value returned may not be that of the
5499 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005500
Chris Lattner3649c3a2004-02-14 04:08:35 +00005501</div>
5502
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005503<!-- _______________________________________________________________________ -->
5504<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005505 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005506</div>
5507
5508<div class="doc_text">
5509
5510<h5>Syntax:</h5>
5511<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005512 declare i8 *@llvm.stacksave()
Chris Lattner2f0f0012006-01-13 02:03:13 +00005513</pre>
5514
5515<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005516<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
5517 of the function stack, for use
5518 with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
5519 useful for implementing language features like scoped automatic variable
5520 sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005521
5522<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005523<p>This intrinsic returns a opaque pointer value that can be passed
5524 to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
5525 an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
5526 from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
5527 to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
5528 In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
5529 stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005530
5531</div>
5532
5533<!-- _______________________________________________________________________ -->
5534<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005535 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005536</div>
5537
5538<div class="doc_text">
5539
5540<h5>Syntax:</h5>
5541<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005542 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner2f0f0012006-01-13 02:03:13 +00005543</pre>
5544
5545<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005546<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5547 the function stack to the state it was in when the
5548 corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
5549 executed. This is useful for implementing language features like scoped
5550 automatic variable sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005551
5552<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005553<p>See the description
5554 for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005555
5556</div>
5557
Chris Lattner2f0f0012006-01-13 02:03:13 +00005558<!-- _______________________________________________________________________ -->
5559<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005560 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005561</div>
5562
5563<div class="doc_text">
5564
5565<h5>Syntax:</h5>
5566<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005567 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005568</pre>
5569
5570<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005571<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
5572 insert a prefetch instruction if supported; otherwise, it is a noop.
5573 Prefetches have no effect on the behavior of the program but can change its
5574 performance characteristics.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005575
5576<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005577<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
5578 specifier determining if the fetch should be for a read (0) or write (1),
5579 and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
5580 locality, to (3) - extremely local keep in cache. The <tt>rw</tt>
5581 and <tt>locality</tt> arguments must be constant integers.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005582
5583<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005584<p>This intrinsic does not modify the behavior of the program. In particular,
5585 prefetches cannot trap and do not produce a value. On targets that support
5586 this intrinsic, the prefetch can provide hints to the processor cache for
5587 better performance.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005588
5589</div>
5590
Andrew Lenharthb4427912005-03-28 20:05:49 +00005591<!-- _______________________________________________________________________ -->
5592<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005593 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005594</div>
5595
5596<div class="doc_text">
5597
5598<h5>Syntax:</h5>
5599<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005600 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharthb4427912005-03-28 20:05:49 +00005601</pre>
5602
5603<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005604<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
5605 Counter (PC) in a region of code to simulators and other tools. The method
5606 is target specific, but it is expected that the marker will use exported
5607 symbols to transmit the PC of the marker. The marker makes no guarantees
5608 that it will remain with any specific instruction after optimizations. It is
5609 possible that the presence of a marker will inhibit optimizations. The
5610 intended use is to be inserted after optimizations to allow correlations of
5611 simulation runs.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005612
5613<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005614<p><tt>id</tt> is a numerical id identifying the marker.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005615
5616<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005617<p>This intrinsic does not modify the behavior of the program. Backends that do
5618 not support this intrinisic may ignore it.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005619
5620</div>
5621
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005622<!-- _______________________________________________________________________ -->
5623<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005624 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005625</div>
5626
5627<div class="doc_text">
5628
5629<h5>Syntax:</h5>
5630<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005631 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005632</pre>
5633
5634<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005635<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5636 counter register (or similar low latency, high accuracy clocks) on those
5637 targets that support it. On X86, it should map to RDTSC. On Alpha, it
5638 should map to RPCC. As the backing counters overflow quickly (on the order
5639 of 9 seconds on alpha), this should only be used for small timings.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005640
5641<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005642<p>When directly supported, reading the cycle counter should not modify any
5643 memory. Implementations are allowed to either return a application specific
5644 value or a system wide value. On backends without support, this is lowered
5645 to a constant 0.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005646
5647</div>
5648
Chris Lattner3649c3a2004-02-14 04:08:35 +00005649<!-- ======================================================================= -->
5650<div class="doc_subsection">
Chris Lattnerfee11462004-02-12 17:01:32 +00005651 <a name="int_libc">Standard C Library Intrinsics</a>
5652</div>
5653
5654<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005655
5656<p>LLVM provides intrinsics for a few important standard C library functions.
5657 These intrinsics allow source-language front-ends to pass information about
5658 the alignment of the pointer arguments to the code generator, providing
5659 opportunity for more efficient code generation.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005660
5661</div>
5662
5663<!-- _______________________________________________________________________ -->
5664<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005665 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattnerfee11462004-02-12 17:01:32 +00005666</div>
5667
5668<div class="doc_text">
5669
5670<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005671<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
5672 integer bit width. Not all targets support all bit widths however.</p>
5673
Chris Lattnerfee11462004-02-12 17:01:32 +00005674<pre>
Chris Lattnerdd708342008-11-21 16:42:48 +00005675 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005676 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerdd708342008-11-21 16:42:48 +00005677 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5678 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005679 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005680 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005681 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005682 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerfee11462004-02-12 17:01:32 +00005683</pre>
5684
5685<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005686<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
5687 source location to the destination location.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005688
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005689<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5690 intrinsics do not return a value, and takes an extra alignment argument.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005691
5692<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005693<p>The first argument is a pointer to the destination, the second is a pointer
5694 to the source. The third argument is an integer argument specifying the
5695 number of bytes to copy, and the fourth argument is the alignment of the
5696 source and destination locations.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005697
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005698<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5699 then the caller guarantees that both the source and destination pointers are
5700 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00005701
Chris Lattnerfee11462004-02-12 17:01:32 +00005702<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005703<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
5704 source location to the destination location, which are not allowed to
5705 overlap. It copies "len" bytes of memory over. If the argument is known to
5706 be aligned to some boundary, this can be specified as the fourth argument,
5707 otherwise it should be set to 0 or 1.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005708
Chris Lattnerfee11462004-02-12 17:01:32 +00005709</div>
5710
Chris Lattnerf30152e2004-02-12 18:10:10 +00005711<!-- _______________________________________________________________________ -->
5712<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005713 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005714</div>
5715
5716<div class="doc_text">
5717
5718<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00005719<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005720 width. Not all targets support all bit widths however.</p>
5721
Chris Lattnerf30152e2004-02-12 18:10:10 +00005722<pre>
Chris Lattnerdd708342008-11-21 16:42:48 +00005723 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005724 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerdd708342008-11-21 16:42:48 +00005725 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5726 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005727 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005728 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005729 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005730 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerf30152e2004-02-12 18:10:10 +00005731</pre>
5732
5733<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005734<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
5735 source location to the destination location. It is similar to the
5736 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
5737 overlap.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005738
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005739<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5740 intrinsics do not return a value, and takes an extra alignment argument.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005741
5742<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005743<p>The first argument is a pointer to the destination, the second is a pointer
5744 to the source. The third argument is an integer argument specifying the
5745 number of bytes to copy, and the fourth argument is the alignment of the
5746 source and destination locations.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005747
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005748<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5749 then the caller guarantees that the source and destination pointers are
5750 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00005751
Chris Lattnerf30152e2004-02-12 18:10:10 +00005752<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005753<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
5754 source location to the destination location, which may overlap. It copies
5755 "len" bytes of memory over. If the argument is known to be aligned to some
5756 boundary, this can be specified as the fourth argument, otherwise it should
5757 be set to 0 or 1.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005758
Chris Lattnerf30152e2004-02-12 18:10:10 +00005759</div>
5760
Chris Lattner3649c3a2004-02-14 04:08:35 +00005761<!-- _______________________________________________________________________ -->
5762<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005763 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005764</div>
5765
5766<div class="doc_text">
5767
5768<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00005769<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005770 width. Not all targets support all bit widths however.</p>
5771
Chris Lattner3649c3a2004-02-14 04:08:35 +00005772<pre>
Chris Lattnerdd708342008-11-21 16:42:48 +00005773 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005774 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerdd708342008-11-21 16:42:48 +00005775 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5776 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005777 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005778 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005779 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005780 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005781</pre>
5782
5783<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005784<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
5785 particular byte value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005786
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005787<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
5788 intrinsic does not return a value, and takes an extra alignment argument.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005789
5790<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005791<p>The first argument is a pointer to the destination to fill, the second is the
5792 byte value to fill it with, the third argument is an integer argument
5793 specifying the number of bytes to fill, and the fourth argument is the known
5794 alignment of destination location.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005795
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005796<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5797 then the caller guarantees that the destination pointer is aligned to that
5798 boundary.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005799
5800<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005801<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
5802 at the destination location. If the argument is known to be aligned to some
5803 boundary, this can be specified as the fourth argument, otherwise it should
5804 be set to 0 or 1.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005805
Chris Lattner3649c3a2004-02-14 04:08:35 +00005806</div>
5807
Chris Lattner3b4f4372004-06-11 02:28:03 +00005808<!-- _______________________________________________________________________ -->
5809<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005810 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005811</div>
5812
5813<div class="doc_text">
5814
5815<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005816<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
5817 floating point or vector of floating point type. Not all targets support all
5818 types however.</p>
5819
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005820<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00005821 declare float @llvm.sqrt.f32(float %Val)
5822 declare double @llvm.sqrt.f64(double %Val)
5823 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5824 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5825 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005826</pre>
5827
5828<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005829<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
5830 returning the same value as the libm '<tt>sqrt</tt>' functions would.
5831 Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
5832 behavior for negative numbers other than -0.0 (which allows for better
5833 optimization, because there is no need to worry about errno being
5834 set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005835
5836<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005837<p>The argument and return value are floating point numbers of the same
5838 type.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005839
5840<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005841<p>This function returns the sqrt of the specified operand if it is a
5842 nonnegative floating point number.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005843
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005844</div>
5845
Chris Lattner33b73f92006-09-08 06:34:02 +00005846<!-- _______________________________________________________________________ -->
5847<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005848 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattner33b73f92006-09-08 06:34:02 +00005849</div>
5850
5851<div class="doc_text">
5852
5853<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005854<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
5855 floating point or vector of floating point type. Not all targets support all
5856 types however.</p>
5857
Chris Lattner33b73f92006-09-08 06:34:02 +00005858<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00005859 declare float @llvm.powi.f32(float %Val, i32 %power)
5860 declare double @llvm.powi.f64(double %Val, i32 %power)
5861 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5862 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5863 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattner33b73f92006-09-08 06:34:02 +00005864</pre>
5865
5866<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005867<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5868 specified (positive or negative) power. The order of evaluation of
5869 multiplications is not defined. When a vector of floating point type is
5870 used, the second argument remains a scalar integer value.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00005871
5872<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005873<p>The second argument is an integer power, and the first is a value to raise to
5874 that power.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00005875
5876<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005877<p>This function returns the first value raised to the second power with an
5878 unspecified sequence of rounding operations.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00005879
Chris Lattner33b73f92006-09-08 06:34:02 +00005880</div>
5881
Dan Gohmanb6324c12007-10-15 20:30:11 +00005882<!-- _______________________________________________________________________ -->
5883<div class="doc_subsubsection">
5884 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5885</div>
5886
5887<div class="doc_text">
5888
5889<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005890<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5891 floating point or vector of floating point type. Not all targets support all
5892 types however.</p>
5893
Dan Gohmanb6324c12007-10-15 20:30:11 +00005894<pre>
5895 declare float @llvm.sin.f32(float %Val)
5896 declare double @llvm.sin.f64(double %Val)
5897 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5898 declare fp128 @llvm.sin.f128(fp128 %Val)
5899 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5900</pre>
5901
5902<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005903<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005904
5905<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005906<p>The argument and return value are floating point numbers of the same
5907 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005908
5909<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005910<p>This function returns the sine of the specified operand, returning the same
5911 values as the libm <tt>sin</tt> functions would, and handles error conditions
5912 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005913
Dan Gohmanb6324c12007-10-15 20:30:11 +00005914</div>
5915
5916<!-- _______________________________________________________________________ -->
5917<div class="doc_subsubsection">
5918 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5919</div>
5920
5921<div class="doc_text">
5922
5923<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005924<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5925 floating point or vector of floating point type. Not all targets support all
5926 types however.</p>
5927
Dan Gohmanb6324c12007-10-15 20:30:11 +00005928<pre>
5929 declare float @llvm.cos.f32(float %Val)
5930 declare double @llvm.cos.f64(double %Val)
5931 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5932 declare fp128 @llvm.cos.f128(fp128 %Val)
5933 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5934</pre>
5935
5936<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005937<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005938
5939<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005940<p>The argument and return value are floating point numbers of the same
5941 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005942
5943<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005944<p>This function returns the cosine of the specified operand, returning the same
5945 values as the libm <tt>cos</tt> functions would, and handles error conditions
5946 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005947
Dan Gohmanb6324c12007-10-15 20:30:11 +00005948</div>
5949
5950<!-- _______________________________________________________________________ -->
5951<div class="doc_subsubsection">
5952 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5953</div>
5954
5955<div class="doc_text">
5956
5957<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005958<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5959 floating point or vector of floating point type. Not all targets support all
5960 types however.</p>
5961
Dan Gohmanb6324c12007-10-15 20:30:11 +00005962<pre>
5963 declare float @llvm.pow.f32(float %Val, float %Power)
5964 declare double @llvm.pow.f64(double %Val, double %Power)
5965 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5966 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5967 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5968</pre>
5969
5970<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005971<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5972 specified (positive or negative) power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005973
5974<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005975<p>The second argument is a floating point power, and the first is a value to
5976 raise to that power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005977
5978<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005979<p>This function returns the first value raised to the second power, returning
5980 the same values as the libm <tt>pow</tt> functions would, and handles error
5981 conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005982
Dan Gohmanb6324c12007-10-15 20:30:11 +00005983</div>
5984
Andrew Lenharth1d463522005-05-03 18:01:48 +00005985<!-- ======================================================================= -->
5986<div class="doc_subsection">
Nate Begeman0f223bb2006-01-13 23:26:38 +00005987 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005988</div>
5989
5990<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005991
5992<p>LLVM provides intrinsics for a few important bit manipulation operations.
5993 These allow efficient code generation for some algorithms.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005994
5995</div>
5996
5997<!-- _______________________________________________________________________ -->
5998<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005999 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman0f223bb2006-01-13 23:26:38 +00006000</div>
6001
6002<div class="doc_text">
6003
6004<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00006005<p>This is an overloaded intrinsic function. You can use bswap on any integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006006 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
6007
Nate Begeman0f223bb2006-01-13 23:26:38 +00006008<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00006009 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
6010 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
6011 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman0f223bb2006-01-13 23:26:38 +00006012</pre>
6013
6014<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006015<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
6016 values with an even number of bytes (positive multiple of 16 bits). These
6017 are useful for performing operations on data that is not in the target's
6018 native byte order.</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00006019
6020<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006021<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
6022 and low byte of the input i16 swapped. Similarly,
6023 the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
6024 bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
6025 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
6026 The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
6027 extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
6028 more, respectively).</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00006029
6030</div>
6031
6032<!-- _______________________________________________________________________ -->
6033<div class="doc_subsubsection">
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00006034 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006035</div>
6036
6037<div class="doc_text">
6038
6039<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00006040<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006041 width. Not all targets support all bit widths however.</p>
6042
Andrew Lenharth1d463522005-05-03 18:01:48 +00006043<pre>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006044 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00006045 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006046 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00006047 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
6048 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00006049</pre>
6050
6051<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006052<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
6053 in a value.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006054
6055<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006056<p>The only argument is the value to be counted. The argument may be of any
6057 integer type. The return type must match the argument type.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006058
6059<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006060<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006061
Andrew Lenharth1d463522005-05-03 18:01:48 +00006062</div>
6063
6064<!-- _______________________________________________________________________ -->
6065<div class="doc_subsubsection">
Chris Lattnerb748c672006-01-16 22:34:14 +00006066 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006067</div>
6068
6069<div class="doc_text">
6070
6071<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006072<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
6073 integer bit width. Not all targets support all bit widths however.</p>
6074
Andrew Lenharth1d463522005-05-03 18:01:48 +00006075<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00006076 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
6077 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006078 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00006079 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
6080 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00006081</pre>
6082
6083<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006084<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
6085 leading zeros in a variable.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006086
6087<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006088<p>The only argument is the value to be counted. The argument may be of any
6089 integer type. The return type must match the argument type.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006090
6091<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006092<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
6093 zeros in a variable. If the src == 0 then the result is the size in bits of
6094 the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006095
Andrew Lenharth1d463522005-05-03 18:01:48 +00006096</div>
Chris Lattner3b4f4372004-06-11 02:28:03 +00006097
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006098<!-- _______________________________________________________________________ -->
6099<div class="doc_subsubsection">
Chris Lattnerb748c672006-01-16 22:34:14 +00006100 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006101</div>
6102
6103<div class="doc_text">
6104
6105<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006106<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
6107 integer bit width. Not all targets support all bit widths however.</p>
6108
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006109<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00006110 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
6111 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006112 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00006113 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
6114 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006115</pre>
6116
6117<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006118<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
6119 trailing zeros.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006120
6121<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006122<p>The only argument is the value to be counted. The argument may be of any
6123 integer type. The return type must match the argument type.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006124
6125<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006126<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
6127 zeros in a variable. If the src == 0 then the result is the size in bits of
6128 the type of src. For example, <tt>llvm.cttz(2) = 1</tt>.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006129
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006130</div>
6131
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006132<!-- ======================================================================= -->
6133<div class="doc_subsection">
6134 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
6135</div>
6136
6137<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006138
6139<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006140
6141</div>
6142
Bill Wendlingf4d70622009-02-08 01:40:31 +00006143<!-- _______________________________________________________________________ -->
6144<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006145 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006146</div>
6147
6148<div class="doc_text">
6149
6150<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006151<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006152 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006153
6154<pre>
6155 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
6156 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6157 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
6158</pre>
6159
6160<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006161<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006162 a signed addition of the two arguments, and indicate whether an overflow
6163 occurred during the signed summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006164
6165<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006166<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006167 be of integer types of any bit width, but they must have the same bit
6168 width. The second element of the result structure must be of
6169 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6170 undergo signed addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006171
6172<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006173<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006174 a signed addition of the two variables. They return a structure &mdash; the
6175 first element of which is the signed summation, and the second element of
6176 which is a bit specifying if the signed summation resulted in an
6177 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006178
6179<h5>Examples:</h5>
6180<pre>
6181 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6182 %sum = extractvalue {i32, i1} %res, 0
6183 %obit = extractvalue {i32, i1} %res, 1
6184 br i1 %obit, label %overflow, label %normal
6185</pre>
6186
6187</div>
6188
6189<!-- _______________________________________________________________________ -->
6190<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006191 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006192</div>
6193
6194<div class="doc_text">
6195
6196<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006197<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006198 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006199
6200<pre>
6201 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6202 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6203 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6204</pre>
6205
6206<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006207<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006208 an unsigned addition of the two arguments, and indicate whether a carry
6209 occurred during the unsigned summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006210
6211<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006212<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006213 be of integer types of any bit width, but they must have the same bit
6214 width. The second element of the result structure must be of
6215 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6216 undergo unsigned addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006217
6218<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006219<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006220 an unsigned addition of the two arguments. They return a structure &mdash;
6221 the first element of which is the sum, and the second element of which is a
6222 bit specifying if the unsigned summation resulted in a carry.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006223
6224<h5>Examples:</h5>
6225<pre>
6226 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6227 %sum = extractvalue {i32, i1} %res, 0
6228 %obit = extractvalue {i32, i1} %res, 1
6229 br i1 %obit, label %carry, label %normal
6230</pre>
6231
6232</div>
6233
6234<!-- _______________________________________________________________________ -->
6235<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006236 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006237</div>
6238
6239<div class="doc_text">
6240
6241<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006242<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006243 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006244
6245<pre>
6246 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6247 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6248 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6249</pre>
6250
6251<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006252<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006253 a signed subtraction of the two arguments, and indicate whether an overflow
6254 occurred during the signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006255
6256<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006257<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006258 be of integer types of any bit width, but they must have the same bit
6259 width. The second element of the result structure must be of
6260 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6261 undergo signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006262
6263<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006264<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006265 a signed subtraction of the two arguments. They return a structure &mdash;
6266 the first element of which is the subtraction, and the second element of
6267 which is a bit specifying if the signed subtraction resulted in an
6268 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006269
6270<h5>Examples:</h5>
6271<pre>
6272 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6273 %sum = extractvalue {i32, i1} %res, 0
6274 %obit = extractvalue {i32, i1} %res, 1
6275 br i1 %obit, label %overflow, label %normal
6276</pre>
6277
6278</div>
6279
6280<!-- _______________________________________________________________________ -->
6281<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006282 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006283</div>
6284
6285<div class="doc_text">
6286
6287<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006288<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006289 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006290
6291<pre>
6292 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6293 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6294 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6295</pre>
6296
6297<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006298<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006299 an unsigned subtraction of the two arguments, and indicate whether an
6300 overflow occurred during the unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006301
6302<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006303<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006304 be of integer types of any bit width, but they must have the same bit
6305 width. The second element of the result structure must be of
6306 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6307 undergo unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006308
6309<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006310<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006311 an unsigned subtraction of the two arguments. They return a structure &mdash;
6312 the first element of which is the subtraction, and the second element of
6313 which is a bit specifying if the unsigned subtraction resulted in an
6314 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006315
6316<h5>Examples:</h5>
6317<pre>
6318 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6319 %sum = extractvalue {i32, i1} %res, 0
6320 %obit = extractvalue {i32, i1} %res, 1
6321 br i1 %obit, label %overflow, label %normal
6322</pre>
6323
6324</div>
6325
6326<!-- _______________________________________________________________________ -->
6327<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006328 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006329</div>
6330
6331<div class="doc_text">
6332
6333<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006334<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006335 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006336
6337<pre>
6338 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6339 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6340 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6341</pre>
6342
6343<h5>Overview:</h5>
6344
6345<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006346 a signed multiplication of the two arguments, and indicate whether an
6347 overflow occurred during the signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006348
6349<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006350<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006351 be of integer types of any bit width, but they must have the same bit
6352 width. The second element of the result structure must be of
6353 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6354 undergo signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006355
6356<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006357<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006358 a signed multiplication of the two arguments. They return a structure &mdash;
6359 the first element of which is the multiplication, and the second element of
6360 which is a bit specifying if the signed multiplication resulted in an
6361 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006362
6363<h5>Examples:</h5>
6364<pre>
6365 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6366 %sum = extractvalue {i32, i1} %res, 0
6367 %obit = extractvalue {i32, i1} %res, 1
6368 br i1 %obit, label %overflow, label %normal
6369</pre>
6370
Reid Spencer5bf54c82007-04-11 23:23:49 +00006371</div>
6372
Bill Wendlingb9a73272009-02-08 23:00:09 +00006373<!-- _______________________________________________________________________ -->
6374<div class="doc_subsubsection">
6375 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6376</div>
6377
6378<div class="doc_text">
6379
6380<h5>Syntax:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006381<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006382 on any integer bit width.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006383
6384<pre>
6385 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6386 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6387 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6388</pre>
6389
6390<h5>Overview:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006391<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006392 a unsigned multiplication of the two arguments, and indicate whether an
6393 overflow occurred during the unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006394
6395<h5>Arguments:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006396<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006397 be of integer types of any bit width, but they must have the same bit
6398 width. The second element of the result structure must be of
6399 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6400 undergo unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006401
6402<h5>Semantics:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006403<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006404 an unsigned multiplication of the two arguments. They return a structure
6405 &mdash; the first element of which is the multiplication, and the second
6406 element of which is a bit specifying if the unsigned multiplication resulted
6407 in an overflow.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006408
6409<h5>Examples:</h5>
6410<pre>
6411 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6412 %sum = extractvalue {i32, i1} %res, 0
6413 %obit = extractvalue {i32, i1} %res, 1
6414 br i1 %obit, label %overflow, label %normal
6415</pre>
6416
6417</div>
6418
Chris Lattner941515c2004-01-06 05:31:32 +00006419<!-- ======================================================================= -->
6420<div class="doc_subsection">
6421 <a name="int_debugger">Debugger Intrinsics</a>
6422</div>
6423
6424<div class="doc_text">
Chris Lattner941515c2004-01-06 05:31:32 +00006425
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006426<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
6427 prefix), are described in
6428 the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
6429 Level Debugging</a> document.</p>
6430
6431</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006432
Jim Laskey2211f492007-03-14 19:31:19 +00006433<!-- ======================================================================= -->
6434<div class="doc_subsection">
6435 <a name="int_eh">Exception Handling Intrinsics</a>
6436</div>
6437
6438<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006439
6440<p>The LLVM exception handling intrinsics (which all start with
6441 <tt>llvm.eh.</tt> prefix), are described in
6442 the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6443 Handling</a> document.</p>
6444
Jim Laskey2211f492007-03-14 19:31:19 +00006445</div>
6446
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006447<!-- ======================================================================= -->
6448<div class="doc_subsection">
Duncan Sands86e01192007-09-11 14:10:23 +00006449 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands644f9172007-07-27 12:58:54 +00006450</div>
6451
6452<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006453
6454<p>This intrinsic makes it possible to excise one parameter, marked with
6455 the <tt>nest</tt> attribute, from a function. The result is a callable
6456 function pointer lacking the nest parameter - the caller does not need to
6457 provide a value for it. Instead, the value to use is stored in advance in a
6458 "trampoline", a block of memory usually allocated on the stack, which also
6459 contains code to splice the nest value into the argument list. This is used
6460 to implement the GCC nested function address extension.</p>
6461
6462<p>For example, if the function is
6463 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
6464 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
6465 follows:</p>
6466
6467<div class="doc_code">
Duncan Sands644f9172007-07-27 12:58:54 +00006468<pre>
Duncan Sands86e01192007-09-11 14:10:23 +00006469 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6470 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6471 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6472 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands644f9172007-07-27 12:58:54 +00006473</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006474</div>
6475
6476<p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6477 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
6478
Duncan Sands644f9172007-07-27 12:58:54 +00006479</div>
6480
6481<!-- _______________________________________________________________________ -->
6482<div class="doc_subsubsection">
6483 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6484</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006485
Duncan Sands644f9172007-07-27 12:58:54 +00006486<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006487
Duncan Sands644f9172007-07-27 12:58:54 +00006488<h5>Syntax:</h5>
6489<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006490 declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands644f9172007-07-27 12:58:54 +00006491</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006492
Duncan Sands644f9172007-07-27 12:58:54 +00006493<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006494<p>This fills the memory pointed to by <tt>tramp</tt> with code and returns a
6495 function pointer suitable for executing it.</p>
6496
Duncan Sands644f9172007-07-27 12:58:54 +00006497<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006498<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6499 pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
6500 sufficiently aligned block of memory; this memory is written to by the
6501 intrinsic. Note that the size and the alignment are target-specific - LLVM
6502 currently provides no portable way of determining them, so a front-end that
6503 generates this intrinsic needs to have some target-specific knowledge.
6504 The <tt>func</tt> argument must hold a function bitcast to
6505 an <tt>i8*</tt>.</p>
6506
Duncan Sands644f9172007-07-27 12:58:54 +00006507<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006508<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
6509 dependent code, turning it into a function. A pointer to this function is
6510 returned, but needs to be bitcast to an <a href="#int_trampoline">appropriate
6511 function pointer type</a> before being called. The new function's signature
6512 is the same as that of <tt>func</tt> with any arguments marked with
6513 the <tt>nest</tt> attribute removed. At most one such <tt>nest</tt> argument
6514 is allowed, and it must be of pointer type. Calling the new function is
6515 equivalent to calling <tt>func</tt> with the same argument list, but
6516 with <tt>nval</tt> used for the missing <tt>nest</tt> argument. If, after
6517 calling <tt>llvm.init.trampoline</tt>, the memory pointed to
6518 by <tt>tramp</tt> is modified, then the effect of any later call to the
6519 returned function pointer is undefined.</p>
6520
Duncan Sands644f9172007-07-27 12:58:54 +00006521</div>
6522
6523<!-- ======================================================================= -->
6524<div class="doc_subsection">
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006525 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6526</div>
6527
6528<div class="doc_text">
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006529
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006530<p>These intrinsic functions expand the "universal IR" of LLVM to represent
6531 hardware constructs for atomic operations and memory synchronization. This
6532 provides an interface to the hardware, not an interface to the programmer. It
6533 is aimed at a low enough level to allow any programming models or APIs
6534 (Application Programming Interfaces) which need atomic behaviors to map
6535 cleanly onto it. It is also modeled primarily on hardware behavior. Just as
6536 hardware provides a "universal IR" for source languages, it also provides a
6537 starting point for developing a "universal" atomic operation and
6538 synchronization IR.</p>
6539
6540<p>These do <em>not</em> form an API such as high-level threading libraries,
6541 software transaction memory systems, atomic primitives, and intrinsic
6542 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6543 application libraries. The hardware interface provided by LLVM should allow
6544 a clean implementation of all of these APIs and parallel programming models.
6545 No one model or paradigm should be selected above others unless the hardware
6546 itself ubiquitously does so.</p>
6547
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006548</div>
6549
6550<!-- _______________________________________________________________________ -->
6551<div class="doc_subsubsection">
6552 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6553</div>
6554<div class="doc_text">
6555<h5>Syntax:</h5>
6556<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006557 declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, i1 &lt;device&gt; )
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006558</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006559
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006560<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006561<p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6562 specific pairs of memory access types.</p>
6563
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006564<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006565<p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6566 The first four arguments enables a specific barrier as listed below. The
6567 fith argument specifies that the barrier applies to io or device or uncached
6568 memory.</p>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006569
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006570<ul>
6571 <li><tt>ll</tt>: load-load barrier</li>
6572 <li><tt>ls</tt>: load-store barrier</li>
6573 <li><tt>sl</tt>: store-load barrier</li>
6574 <li><tt>ss</tt>: store-store barrier</li>
6575 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
6576</ul>
6577
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006578<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006579<p>This intrinsic causes the system to enforce some ordering constraints upon
6580 the loads and stores of the program. This barrier does not
6581 indicate <em>when</em> any events will occur, it only enforces
6582 an <em>order</em> in which they occur. For any of the specified pairs of load
6583 and store operations (f.ex. load-load, or store-load), all of the first
6584 operations preceding the barrier will complete before any of the second
6585 operations succeeding the barrier begin. Specifically the semantics for each
6586 pairing is as follows:</p>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006587
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006588<ul>
6589 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6590 after the barrier begins.</li>
6591 <li><tt>ls</tt>: All loads before the barrier must complete before any
6592 store after the barrier begins.</li>
6593 <li><tt>ss</tt>: All stores before the barrier must complete before any
6594 store after the barrier begins.</li>
6595 <li><tt>sl</tt>: All stores before the barrier must complete before any
6596 load after the barrier begins.</li>
6597</ul>
6598
6599<p>These semantics are applied with a logical "and" behavior when more than one
6600 is enabled in a single memory barrier intrinsic.</p>
6601
6602<p>Backends may implement stronger barriers than those requested when they do
6603 not support as fine grained a barrier as requested. Some architectures do
6604 not need all types of barriers and on such architectures, these become
6605 noops.</p>
6606
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006607<h5>Example:</h5>
6608<pre>
6609%ptr = malloc i32
6610 store i32 4, %ptr
6611
6612%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6613 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6614 <i>; guarantee the above finishes</i>
6615 store i32 8, %ptr <i>; before this begins</i>
6616</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006617
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006618</div>
6619
Andrew Lenharth95528942008-02-21 06:45:13 +00006620<!-- _______________________________________________________________________ -->
6621<div class="doc_subsubsection">
Mon P Wang6a490372008-06-25 08:15:39 +00006622 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharth95528942008-02-21 06:45:13 +00006623</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006624
Andrew Lenharth95528942008-02-21 06:45:13 +00006625<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006626
Andrew Lenharth95528942008-02-21 06:45:13 +00006627<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006628<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6629 any integer bit width and for different address spaces. Not all targets
6630 support all bit widths however.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006631
6632<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006633 declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6634 declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6635 declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6636 declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00006637</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006638
Andrew Lenharth95528942008-02-21 06:45:13 +00006639<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006640<p>This loads a value in memory and compares it to a given value. If they are
6641 equal, it stores a new value into the memory.</p>
6642
Andrew Lenharth95528942008-02-21 06:45:13 +00006643<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006644<p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result
6645 as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6646 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6647 this integer type. While any bit width integer may be used, targets may only
6648 lower representations they support in hardware.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006649
Andrew Lenharth95528942008-02-21 06:45:13 +00006650<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006651<p>This entire intrinsic must be executed atomically. It first loads the value
6652 in memory pointed to by <tt>ptr</tt> and compares it with the
6653 value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the
6654 memory. The loaded value is yielded in all cases. This provides the
6655 equivalent of an atomic compare-and-swap operation within the SSA
6656 framework.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006657
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006658<h5>Examples:</h5>
Andrew Lenharth95528942008-02-21 06:45:13 +00006659<pre>
6660%ptr = malloc i32
6661 store i32 4, %ptr
6662
6663%val1 = add i32 4, 4
Mon P Wang2c839d42008-07-30 04:36:53 +00006664%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006665 <i>; yields {i32}:result1 = 4</i>
6666%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6667%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6668
6669%val2 = add i32 1, 1
Mon P Wang2c839d42008-07-30 04:36:53 +00006670%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006671 <i>; yields {i32}:result2 = 8</i>
6672%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6673
6674%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6675</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006676
Andrew Lenharth95528942008-02-21 06:45:13 +00006677</div>
6678
6679<!-- _______________________________________________________________________ -->
6680<div class="doc_subsubsection">
6681 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6682</div>
6683<div class="doc_text">
6684<h5>Syntax:</h5>
6685
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006686<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6687 integer bit width. Not all targets support all bit widths however.</p>
6688
Andrew Lenharth95528942008-02-21 06:45:13 +00006689<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006690 declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6691 declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6692 declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6693 declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00006694</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006695
Andrew Lenharth95528942008-02-21 06:45:13 +00006696<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006697<p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6698 the value from memory. It then stores the value in <tt>val</tt> in the memory
6699 at <tt>ptr</tt>.</p>
6700
Andrew Lenharth95528942008-02-21 06:45:13 +00006701<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006702<p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both
6703 the <tt>val</tt> argument and the result must be integers of the same bit
6704 width. The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6705 integer type. The targets may only lower integer representations they
6706 support.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006707
Andrew Lenharth95528942008-02-21 06:45:13 +00006708<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006709<p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6710 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6711 equivalent of an atomic swap operation within the SSA framework.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006712
Andrew Lenharth95528942008-02-21 06:45:13 +00006713<h5>Examples:</h5>
6714<pre>
6715%ptr = malloc i32
6716 store i32 4, %ptr
6717
6718%val1 = add i32 4, 4
Mon P Wang2c839d42008-07-30 04:36:53 +00006719%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006720 <i>; yields {i32}:result1 = 4</i>
6721%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6722%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6723
6724%val2 = add i32 1, 1
Mon P Wang2c839d42008-07-30 04:36:53 +00006725%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006726 <i>; yields {i32}:result2 = 8</i>
6727
6728%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6729%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6730</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006731
Andrew Lenharth95528942008-02-21 06:45:13 +00006732</div>
6733
6734<!-- _______________________________________________________________________ -->
6735<div class="doc_subsubsection">
Mon P Wang6a490372008-06-25 08:15:39 +00006736 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharth95528942008-02-21 06:45:13 +00006737
6738</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006739
Andrew Lenharth95528942008-02-21 06:45:13 +00006740<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006741
Andrew Lenharth95528942008-02-21 06:45:13 +00006742<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006743<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on
6744 any integer bit width. Not all targets support all bit widths however.</p>
6745
Andrew Lenharth95528942008-02-21 06:45:13 +00006746<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006747 declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6748 declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6749 declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6750 declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00006751</pre>
Andrew Lenharth95528942008-02-21 06:45:13 +00006752
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006753<h5>Overview:</h5>
6754<p>This intrinsic adds <tt>delta</tt> to the value stored in memory
6755 at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
6756
6757<h5>Arguments:</h5>
6758<p>The intrinsic takes two arguments, the first a pointer to an integer value
6759 and the second an integer value. The result is also an integer value. These
6760 integer types can have any bit width, but they must all have the same bit
6761 width. The targets may only lower integer representations they support.</p>
6762
Andrew Lenharth95528942008-02-21 06:45:13 +00006763<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006764<p>This intrinsic does a series of operations atomically. It first loads the
6765 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6766 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006767
6768<h5>Examples:</h5>
6769<pre>
6770%ptr = malloc i32
6771 store i32 4, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006772%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006773 <i>; yields {i32}:result1 = 4</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006774%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006775 <i>; yields {i32}:result2 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006776%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006777 <i>; yields {i32}:result3 = 10</i>
Mon P Wang6a490372008-06-25 08:15:39 +00006778%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharth95528942008-02-21 06:45:13 +00006779</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006780
Andrew Lenharth95528942008-02-21 06:45:13 +00006781</div>
6782
Mon P Wang6a490372008-06-25 08:15:39 +00006783<!-- _______________________________________________________________________ -->
6784<div class="doc_subsubsection">
6785 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6786
6787</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006788
Mon P Wang6a490372008-06-25 08:15:39 +00006789<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006790
Mon P Wang6a490372008-06-25 08:15:39 +00006791<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006792<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
6793 any integer bit width and for different address spaces. Not all targets
6794 support all bit widths however.</p>
6795
Mon P Wang6a490372008-06-25 08:15:39 +00006796<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006797 declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6798 declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6799 declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6800 declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006801</pre>
Mon P Wang6a490372008-06-25 08:15:39 +00006802
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006803<h5>Overview:</h5>
6804<p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6805 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
6806
6807<h5>Arguments:</h5>
6808<p>The intrinsic takes two arguments, the first a pointer to an integer value
6809 and the second an integer value. The result is also an integer value. These
6810 integer types can have any bit width, but they must all have the same bit
6811 width. The targets may only lower integer representations they support.</p>
6812
Mon P Wang6a490372008-06-25 08:15:39 +00006813<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006814<p>This intrinsic does a series of operations atomically. It first loads the
6815 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6816 result to <tt>ptr</tt>. It yields the original value stored
6817 at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006818
6819<h5>Examples:</h5>
6820<pre>
6821%ptr = malloc i32
6822 store i32 8, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006823%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang6a490372008-06-25 08:15:39 +00006824 <i>; yields {i32}:result1 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006825%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang6a490372008-06-25 08:15:39 +00006826 <i>; yields {i32}:result2 = 4</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006827%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang6a490372008-06-25 08:15:39 +00006828 <i>; yields {i32}:result3 = 2</i>
6829%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6830</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006831
Mon P Wang6a490372008-06-25 08:15:39 +00006832</div>
6833
6834<!-- _______________________________________________________________________ -->
6835<div class="doc_subsubsection">
6836 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6837 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6838 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6839 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
Mon P Wang6a490372008-06-25 08:15:39 +00006840</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006841
Mon P Wang6a490372008-06-25 08:15:39 +00006842<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006843
Mon P Wang6a490372008-06-25 08:15:39 +00006844<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006845<p>These are overloaded intrinsics. You can
6846 use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>,
6847 <tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer
6848 bit width and for different address spaces. Not all targets support all bit
6849 widths however.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006850
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006851<pre>
6852 declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6853 declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6854 declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6855 declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006856</pre>
6857
6858<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006859 declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6860 declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6861 declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6862 declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006863</pre>
6864
6865<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006866 declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6867 declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6868 declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6869 declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006870</pre>
6871
6872<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006873 declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6874 declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6875 declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6876 declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006877</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006878
Mon P Wang6a490372008-06-25 08:15:39 +00006879<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006880<p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6881 the value stored in memory at <tt>ptr</tt>. It yields the original value
6882 at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006883
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006884<h5>Arguments:</h5>
6885<p>These intrinsics take two arguments, the first a pointer to an integer value
6886 and the second an integer value. The result is also an integer value. These
6887 integer types can have any bit width, but they must all have the same bit
6888 width. The targets may only lower integer representations they support.</p>
6889
Mon P Wang6a490372008-06-25 08:15:39 +00006890<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006891<p>These intrinsics does a series of operations atomically. They first load the
6892 value stored at <tt>ptr</tt>. They then do the bitwise
6893 operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the
6894 original value stored at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006895
6896<h5>Examples:</h5>
6897<pre>
6898%ptr = malloc i32
6899 store i32 0x0F0F, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006900%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6a490372008-06-25 08:15:39 +00006901 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006902%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6a490372008-06-25 08:15:39 +00006903 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006904%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6a490372008-06-25 08:15:39 +00006905 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006906%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6a490372008-06-25 08:15:39 +00006907 <i>; yields {i32}:result3 = FF</i>
6908%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6909</pre>
Mon P Wang6a490372008-06-25 08:15:39 +00006910
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006911</div>
Mon P Wang6a490372008-06-25 08:15:39 +00006912
6913<!-- _______________________________________________________________________ -->
6914<div class="doc_subsubsection">
6915 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6916 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6917 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6918 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
Mon P Wang6a490372008-06-25 08:15:39 +00006919</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006920
Mon P Wang6a490372008-06-25 08:15:39 +00006921<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006922
Mon P Wang6a490372008-06-25 08:15:39 +00006923<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006924<p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6925 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
6926 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6927 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006928
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006929<pre>
6930 declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6931 declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6932 declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6933 declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006934</pre>
6935
6936<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006937 declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6938 declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6939 declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6940 declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006941</pre>
6942
6943<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006944 declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6945 declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6946 declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6947 declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006948</pre>
6949
6950<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006951 declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6952 declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6953 declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6954 declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006955</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006956
Mon P Wang6a490372008-06-25 08:15:39 +00006957<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006958<p>These intrinsics takes the signed or unsigned minimum or maximum of
6959 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6960 original value at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006961
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006962<h5>Arguments:</h5>
6963<p>These intrinsics take two arguments, the first a pointer to an integer value
6964 and the second an integer value. The result is also an integer value. These
6965 integer types can have any bit width, but they must all have the same bit
6966 width. The targets may only lower integer representations they support.</p>
6967
Mon P Wang6a490372008-06-25 08:15:39 +00006968<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006969<p>These intrinsics does a series of operations atomically. They first load the
6970 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or
6971 max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They
6972 yield the original value stored at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006973
6974<h5>Examples:</h5>
6975<pre>
6976%ptr = malloc i32
6977 store i32 7, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006978%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang6a490372008-06-25 08:15:39 +00006979 <i>; yields {i32}:result0 = 7</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006980%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang6a490372008-06-25 08:15:39 +00006981 <i>; yields {i32}:result1 = -2</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006982%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang6a490372008-06-25 08:15:39 +00006983 <i>; yields {i32}:result2 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006984%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang6a490372008-06-25 08:15:39 +00006985 <i>; yields {i32}:result3 = 8</i>
6986%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6987</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006988
Mon P Wang6a490372008-06-25 08:15:39 +00006989</div>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006990
Nick Lewycky6f7d8342009-10-13 07:03:23 +00006991
6992<!-- ======================================================================= -->
6993<div class="doc_subsection">
6994 <a name="int_memorymarkers">Memory Use Markers</a>
6995</div>
6996
6997<div class="doc_text">
6998
6999<p>This class of intrinsics exists to information about the lifetime of memory
7000 objects and ranges where variables are immutable.</p>
7001
7002</div>
7003
7004<!-- _______________________________________________________________________ -->
7005<div class="doc_subsubsection">
7006 <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
7007</div>
7008
7009<div class="doc_text">
7010
7011<h5>Syntax:</h5>
7012<pre>
7013 declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7014</pre>
7015
7016<h5>Overview:</h5>
7017<p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
7018 object's lifetime.</p>
7019
7020<h5>Arguments:</h5>
7021<p>The first argument is a the size of the object, or -1 if it is variable
7022 sized. The second argument is a pointer to the object.</p>
7023
7024<h5>Semantics:</h5>
7025<p>This intrinsic indicates that before this point in the code, the value of the
7026 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
7027 never be used and has an undefined value. A load from the pointer that is
7028 preceded by this intrinsic can be replaced with
7029 <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
7030
7031</div>
7032
7033<!-- _______________________________________________________________________ -->
7034<div class="doc_subsubsection">
7035 <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
7036</div>
7037
7038<div class="doc_text">
7039
7040<h5>Syntax:</h5>
7041<pre>
7042 declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7043</pre>
7044
7045<h5>Overview:</h5>
7046<p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
7047 object's lifetime.</p>
7048
7049<h5>Arguments:</h5>
7050<p>The first argument is a the size of the object, or -1 if it is variable
7051 sized. The second argument is a pointer to the object.</p>
7052
7053<h5>Semantics:</h5>
7054<p>This intrinsic indicates that after this point in the code, the value of the
7055 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
7056 never be used and has an undefined value. Any stores into the memory object
7057 following this intrinsic may be removed as dead.
7058
7059</div>
7060
7061<!-- _______________________________________________________________________ -->
7062<div class="doc_subsubsection">
7063 <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
7064</div>
7065
7066<div class="doc_text">
7067
7068<h5>Syntax:</h5>
7069<pre>
7070 declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;) readonly
7071</pre>
7072
7073<h5>Overview:</h5>
7074<p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
7075 a memory object will not change.</p>
7076
7077<h5>Arguments:</h5>
7078<p>The first argument is a the size of the object, or -1 if it is variable
7079 sized. The second argument is a pointer to the object.</p>
7080
7081<h5>Semantics:</h5>
7082<p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
7083 the return value, the referenced memory location is constant and
7084 unchanging.</p>
7085
7086</div>
7087
7088<!-- _______________________________________________________________________ -->
7089<div class="doc_subsubsection">
7090 <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
7091</div>
7092
7093<div class="doc_text">
7094
7095<h5>Syntax:</h5>
7096<pre>
7097 declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7098</pre>
7099
7100<h5>Overview:</h5>
7101<p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
7102 a memory object are mutable.</p>
7103
7104<h5>Arguments:</h5>
7105<p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
7106 The second argument is a the size of the object, or -1 if it is variable
7107 sized and the third argument is a pointer to the object.</p>
7108
7109<h5>Semantics:</h5>
7110<p>This intrinsic indicates that the memory is mutable again.</p>
7111
7112</div>
7113
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007114<!-- ======================================================================= -->
7115<div class="doc_subsection">
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007116 <a name="int_general">General Intrinsics</a>
7117</div>
7118
7119<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007120
7121<p>This class of intrinsics is designed to be generic and has no specific
7122 purpose.</p>
7123
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007124</div>
7125
7126<!-- _______________________________________________________________________ -->
7127<div class="doc_subsubsection">
7128 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
7129</div>
7130
7131<div class="doc_text">
7132
7133<h5>Syntax:</h5>
7134<pre>
Tanya Lattnerbed1d4d2007-06-18 23:42:37 +00007135 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007136</pre>
7137
7138<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007139<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007140
7141<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007142<p>The first argument is a pointer to a value, the second is a pointer to a
7143 global string, the third is a pointer to a global string which is the source
7144 file name, and the last argument is the line number.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007145
7146<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007147<p>This intrinsic allows annotation of local variables with arbitrary strings.
7148 This can be useful for special purpose optimizations that want to look for
7149 these annotations. These have no other defined use, they are ignored by code
7150 generation and optimization.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007151
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007152</div>
7153
Tanya Lattner293c0372007-09-21 22:59:12 +00007154<!-- _______________________________________________________________________ -->
7155<div class="doc_subsubsection">
Tanya Lattner0186a652007-09-21 23:57:59 +00007156 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattner293c0372007-09-21 22:59:12 +00007157</div>
7158
7159<div class="doc_text">
7160
7161<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007162<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
7163 any integer bit width.</p>
7164
Tanya Lattner293c0372007-09-21 22:59:12 +00007165<pre>
Tanya Lattnercf3e26f2007-09-22 00:03:01 +00007166 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7167 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7168 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7169 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7170 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner293c0372007-09-21 22:59:12 +00007171</pre>
7172
7173<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007174<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00007175
7176<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007177<p>The first argument is an integer value (result of some expression), the
7178 second is a pointer to a global string, the third is a pointer to a global
7179 string which is the source file name, and the last argument is the line
7180 number. It returns the value of the first argument.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00007181
7182<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007183<p>This intrinsic allows annotations to be put on arbitrary expressions with
7184 arbitrary strings. This can be useful for special purpose optimizations that
7185 want to look for these annotations. These have no other defined use, they
7186 are ignored by code generation and optimization.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00007187
Tanya Lattner293c0372007-09-21 22:59:12 +00007188</div>
Jim Laskey2211f492007-03-14 19:31:19 +00007189
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007190<!-- _______________________________________________________________________ -->
7191<div class="doc_subsubsection">
7192 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
7193</div>
7194
7195<div class="doc_text">
7196
7197<h5>Syntax:</h5>
7198<pre>
7199 declare void @llvm.trap()
7200</pre>
7201
7202<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007203<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007204
7205<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007206<p>None.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007207
7208<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007209<p>This intrinsics is lowered to the target dependent trap instruction. If the
7210 target does not have a trap instruction, this intrinsic will be lowered to
7211 the call of the <tt>abort()</tt> function.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007212
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007213</div>
7214
Bill Wendling14313312008-11-19 05:56:17 +00007215<!-- _______________________________________________________________________ -->
7216<div class="doc_subsubsection">
Misha Brukman50de2b22008-11-22 23:55:29 +00007217 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling14313312008-11-19 05:56:17 +00007218</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007219
Bill Wendling14313312008-11-19 05:56:17 +00007220<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007221
Bill Wendling14313312008-11-19 05:56:17 +00007222<h5>Syntax:</h5>
7223<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007224 declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
Bill Wendling14313312008-11-19 05:56:17 +00007225</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007226
Bill Wendling14313312008-11-19 05:56:17 +00007227<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007228<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
7229 stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
7230 ensure that it is placed on the stack before local variables.</p>
7231
Bill Wendling14313312008-11-19 05:56:17 +00007232<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007233<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
7234 arguments. The first argument is the value loaded from the stack
7235 guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
7236 that has enough space to hold the value of the guard.</p>
7237
Bill Wendling14313312008-11-19 05:56:17 +00007238<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007239<p>This intrinsic causes the prologue/epilogue inserter to force the position of
7240 the <tt>AllocaInst</tt> stack slot to be before local variables on the
7241 stack. This is to ensure that if a local variable on the stack is
7242 overwritten, it will destroy the value of the guard. When the function exits,
7243 the guard on the stack is checked against the original guard. If they're
7244 different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
7245 function.</p>
7246
Bill Wendling14313312008-11-19 05:56:17 +00007247</div>
7248
Chris Lattner2f7c9632001-06-06 20:29:01 +00007249<!-- *********************************************************************** -->
Chris Lattner2f7c9632001-06-06 20:29:01 +00007250<hr>
Misha Brukmanc501f552004-03-01 17:47:27 +00007251<address>
7252 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00007253 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00007254 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00007255 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00007256
7257 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencerca058542006-03-14 05:39:39 +00007258 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmanc501f552004-03-01 17:47:27 +00007259 Last modified: $Date$
7260</address>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00007261
Misha Brukman76307852003-11-08 01:05:38 +00007262</body>
7263</html>