blob: b2fc3e40897a7f363c6dffd0d81a946e3dbf2dbf [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
131 incrementing counter, starting with 0).
Sean Silvab084af42012-12-07 10:36:55 +0000132
133It also shows a convention that we follow in this document. When
134demonstrating instructions, we will follow an instruction with a comment
135that defines the type and name of value produced.
136
137High Level Structure
138====================
139
140Module Structure
141----------------
142
143LLVM programs are composed of ``Module``'s, each of which is a
144translation unit of the input programs. Each module consists of
145functions, global variables, and symbol table entries. Modules may be
146combined together with the LLVM linker, which merges function (and
147global variable) definitions, resolves forward declarations, and merges
148symbol table entries. Here is an example of the "hello world" module:
149
150.. code-block:: llvm
151
Michael Liaoa7699082013-03-06 18:24:34 +0000152 ; Declare the string constant as a global constant.
153 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000154
Michael Liaoa7699082013-03-06 18:24:34 +0000155 ; External declaration of the puts function
156 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000157
158 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000159 define i32 @main() { ; i32()*
160 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000161 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
162
Michael Liaoa7699082013-03-06 18:24:34 +0000163 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000164 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000166 }
167
168 ; Named metadata
169 !1 = metadata !{i32 42}
170 !foo = !{!1, null}
171
172This example is made up of a :ref:`global variable <globalvars>` named
173"``.str``", an external declaration of the "``puts``" function, a
174:ref:`function definition <functionstructure>` for "``main``" and
175:ref:`named metadata <namedmetadatastructure>` "``foo``".
176
177In general, a module is made up of a list of global values (where both
178functions and global variables are global values). Global values are
179represented by a pointer to a memory location (in this case, a pointer
180to an array of char, and a pointer to a function), and have one of the
181following :ref:`linkage types <linkage>`.
182
183.. _linkage:
184
185Linkage Types
186-------------
187
188All Global Variables and Functions have one of the following types of
189linkage:
190
191``private``
192 Global values with "``private``" linkage are only directly
193 accessible by objects in the current module. In particular, linking
194 code into a module with an private global value may cause the
195 private to be renamed as necessary to avoid collisions. Because the
196 symbol is private to the module, all references can be updated. This
197 doesn't show up in any symbol table in the object file.
198``linker_private``
199 Similar to ``private``, but the symbol is passed through the
200 assembler and evaluated by the linker. Unlike normal strong symbols,
201 they are removed by the linker from the final linked image
202 (executable or dynamic library).
203``linker_private_weak``
204 Similar to "``linker_private``", but the symbol is weak. Note that
205 ``linker_private_weak`` symbols are subject to coalescing by the
206 linker. The symbols are removed by the linker from the final linked
207 image (executable or dynamic library).
208``internal``
209 Similar to private, but the value shows as a local symbol
210 (``STB_LOCAL`` in the case of ELF) in the object file. This
211 corresponds to the notion of the '``static``' keyword in C.
212``available_externally``
213 Globals with "``available_externally``" linkage are never emitted
214 into the object file corresponding to the LLVM module. They exist to
215 allow inlining and other optimizations to take place given knowledge
216 of the definition of the global, which is known to be somewhere
217 outside the module. Globals with ``available_externally`` linkage
218 are allowed to be discarded at will, and are otherwise the same as
219 ``linkonce_odr``. This linkage type is only allowed on definitions,
220 not declarations.
221``linkonce``
222 Globals with "``linkonce``" linkage are merged with other globals of
223 the same name when linkage occurs. This can be used to implement
224 some forms of inline functions, templates, or other code which must
225 be generated in each translation unit that uses it, but where the
226 body may be overridden with a more definitive definition later.
227 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
228 that ``linkonce`` linkage does not actually allow the optimizer to
229 inline the body of this function into callers because it doesn't
230 know if this definition of the function is the definitive definition
231 within the program or whether it will be overridden by a stronger
232 definition. To enable inlining and other optimizations, use
233 "``linkonce_odr``" linkage.
234``weak``
235 "``weak``" linkage has the same merging semantics as ``linkonce``
236 linkage, except that unreferenced globals with ``weak`` linkage may
237 not be discarded. This is used for globals that are declared "weak"
238 in C source code.
239``common``
240 "``common``" linkage is most similar to "``weak``" linkage, but they
241 are used for tentative definitions in C, such as "``int X;``" at
242 global scope. Symbols with "``common``" linkage are merged in the
243 same way as ``weak symbols``, and they may not be deleted if
244 unreferenced. ``common`` symbols may not have an explicit section,
245 must have a zero initializer, and may not be marked
246 ':ref:`constant <globalvars>`'. Functions and aliases may not have
247 common linkage.
248
249.. _linkage_appending:
250
251``appending``
252 "``appending``" linkage may only be applied to global variables of
253 pointer to array type. When two global variables with appending
254 linkage are linked together, the two global arrays are appended
255 together. This is the LLVM, typesafe, equivalent of having the
256 system linker append together "sections" with identical names when
257 .o files are linked.
258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
270``linkonce_odr_auto_hide``
271 Similar to "``linkonce_odr``", but nothing in the translation unit
272 takes the address of this definition. For instance, functions that
273 had an inline definition, but the compiler decided not to inline it.
274 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
275 symbols are removed by the linker from the final linked image
276 (executable or dynamic library).
277``external``
278 If none of the above identifiers are used, the global is externally
279 visible, meaning that it participates in linkage and can be used to
280 resolve external symbol references.
281
282The next two types of linkage are targeted for Microsoft Windows
283platform only. They are designed to support importing (exporting)
284symbols from (to) DLLs (Dynamic Link Libraries).
285
286``dllimport``
287 "``dllimport``" linkage causes the compiler to reference a function
288 or variable via a global pointer to a pointer that is set up by the
289 DLL exporting the symbol. On Microsoft Windows targets, the pointer
290 name is formed by combining ``__imp_`` and the function or variable
291 name.
292``dllexport``
293 "``dllexport``" linkage causes the compiler to provide a global
294 pointer to a pointer in a DLL, so that it can be referenced with the
295 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
296 name is formed by combining ``__imp_`` and the function or variable
297 name.
298
299For example, since the "``.LC0``" variable is defined to be internal, if
300another module defined a "``.LC0``" variable and was linked with this
301one, one of the two would be renamed, preventing a collision. Since
302"``main``" and "``puts``" are external (i.e., lacking any linkage
303declarations), they are accessible outside of the current module.
304
305It is illegal for a function *declaration* to have any linkage type
306other than ``external``, ``dllimport`` or ``extern_weak``.
307
Sean Silvab084af42012-12-07 10:36:55 +0000308.. _callingconv:
309
310Calling Conventions
311-------------------
312
313LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
314:ref:`invokes <i_invoke>` can all have an optional calling convention
315specified for the call. The calling convention of any pair of dynamic
316caller/callee must match, or the behavior of the program is undefined.
317The following calling conventions are supported by LLVM, and more may be
318added in the future:
319
320"``ccc``" - The C calling convention
321 This calling convention (the default if no other calling convention
322 is specified) matches the target C calling conventions. This calling
323 convention supports varargs function calls and tolerates some
324 mismatch in the declared prototype and implemented declaration of
325 the function (as does normal C).
326"``fastcc``" - The fast calling convention
327 This calling convention attempts to make calls as fast as possible
328 (e.g. by passing things in registers). This calling convention
329 allows the target to use whatever tricks it wants to produce fast
330 code for the target, without having to conform to an externally
331 specified ABI (Application Binary Interface). `Tail calls can only
332 be optimized when this, the GHC or the HiPE convention is
333 used. <CodeGenerator.html#id80>`_ This calling convention does not
334 support varargs and requires the prototype of all callees to exactly
335 match the prototype of the function definition.
336"``coldcc``" - The cold calling convention
337 This calling convention attempts to make code in the caller as
338 efficient as possible under the assumption that the call is not
339 commonly executed. As such, these calls often preserve all registers
340 so that the call does not break any live ranges in the caller side.
341 This calling convention does not support varargs and requires the
342 prototype of all callees to exactly match the prototype of the
343 function definition.
344"``cc 10``" - GHC convention
345 This calling convention has been implemented specifically for use by
346 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
347 It passes everything in registers, going to extremes to achieve this
348 by disabling callee save registers. This calling convention should
349 not be used lightly but only for specific situations such as an
350 alternative to the *register pinning* performance technique often
351 used when implementing functional programming languages. At the
352 moment only X86 supports this convention and it has the following
353 limitations:
354
355 - On *X86-32* only supports up to 4 bit type parameters. No
356 floating point types are supported.
357 - On *X86-64* only supports up to 10 bit type parameters and 6
358 floating point parameters.
359
360 This calling convention supports `tail call
361 optimization <CodeGenerator.html#id80>`_ but requires both the
362 caller and callee are using it.
363"``cc 11``" - The HiPE calling convention
364 This calling convention has been implemented specifically for use by
365 the `High-Performance Erlang
366 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
367 native code compiler of the `Ericsson's Open Source Erlang/OTP
368 system <http://www.erlang.org/download.shtml>`_. It uses more
369 registers for argument passing than the ordinary C calling
370 convention and defines no callee-saved registers. The calling
371 convention properly supports `tail call
372 optimization <CodeGenerator.html#id80>`_ but requires that both the
373 caller and the callee use it. It uses a *register pinning*
374 mechanism, similar to GHC's convention, for keeping frequently
375 accessed runtime components pinned to specific hardware registers.
376 At the moment only X86 supports this convention (both 32 and 64
377 bit).
378"``cc <n>``" - Numbered convention
379 Any calling convention may be specified by number, allowing
380 target-specific calling conventions to be used. Target specific
381 calling conventions start at 64.
382
383More calling conventions can be added/defined on an as-needed basis, to
384support Pascal conventions or any other well-known target-independent
385convention.
386
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000387.. _visibilitystyles:
388
Sean Silvab084af42012-12-07 10:36:55 +0000389Visibility Styles
390-----------------
391
392All Global Variables and Functions have one of the following visibility
393styles:
394
395"``default``" - Default style
396 On targets that use the ELF object file format, default visibility
397 means that the declaration is visible to other modules and, in
398 shared libraries, means that the declared entity may be overridden.
399 On Darwin, default visibility means that the declaration is visible
400 to other modules. Default visibility corresponds to "external
401 linkage" in the language.
402"``hidden``" - Hidden style
403 Two declarations of an object with hidden visibility refer to the
404 same object if they are in the same shared object. Usually, hidden
405 visibility indicates that the symbol will not be placed into the
406 dynamic symbol table, so no other module (executable or shared
407 library) can reference it directly.
408"``protected``" - Protected style
409 On ELF, protected visibility indicates that the symbol will be
410 placed in the dynamic symbol table, but that references within the
411 defining module will bind to the local symbol. That is, the symbol
412 cannot be overridden by another module.
413
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000414.. _namedtypes:
415
Sean Silvab084af42012-12-07 10:36:55 +0000416Named Types
417-----------
418
419LLVM IR allows you to specify name aliases for certain types. This can
420make it easier to read the IR and make the IR more condensed
421(particularly when recursive types are involved). An example of a name
422specification is:
423
424.. code-block:: llvm
425
426 %mytype = type { %mytype*, i32 }
427
428You may give a name to any :ref:`type <typesystem>` except
429":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
430expected with the syntax "%mytype".
431
432Note that type names are aliases for the structural type that they
433indicate, and that you can therefore specify multiple names for the same
434type. This often leads to confusing behavior when dumping out a .ll
435file. Since LLVM IR uses structural typing, the name is not part of the
436type. When printing out LLVM IR, the printer will pick *one name* to
437render all types of a particular shape. This means that if you have code
438where two different source types end up having the same LLVM type, that
439the dumper will sometimes print the "wrong" or unexpected type. This is
440an important design point and isn't going to change.
441
442.. _globalvars:
443
444Global Variables
445----------------
446
447Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000448instead of run-time.
449
450Global variables definitions must be initialized, may have an explicit section
451to be placed in, and may have an optional explicit alignment specified.
452
453Global variables in other translation units can also be declared, in which
454case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000455
456A variable may be defined as ``thread_local``, which means that it will
457not be shared by threads (each thread will have a separated copy of the
458variable). Not all targets support thread-local variables. Optionally, a
459TLS model may be specified:
460
461``localdynamic``
462 For variables that are only used within the current shared library.
463``initialexec``
464 For variables in modules that will not be loaded dynamically.
465``localexec``
466 For variables defined in the executable and only used within it.
467
468The models correspond to the ELF TLS models; see `ELF Handling For
469Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
470more information on under which circumstances the different models may
471be used. The target may choose a different TLS model if the specified
472model is not supported, or if a better choice of model can be made.
473
Michael Gottesman006039c2013-01-31 05:48:48 +0000474A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000475the contents of the variable will **never** be modified (enabling better
476optimization, allowing the global data to be placed in the read-only
477section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000478initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000479variable.
480
481LLVM explicitly allows *declarations* of global variables to be marked
482constant, even if the final definition of the global is not. This
483capability can be used to enable slightly better optimization of the
484program, but requires the language definition to guarantee that
485optimizations based on the 'constantness' are valid for the translation
486units that do not include the definition.
487
488As SSA values, global variables define pointer values that are in scope
489(i.e. they dominate) all basic blocks in the program. Global variables
490always define a pointer to their "content" type because they describe a
491region of memory, and all memory objects in LLVM are accessed through
492pointers.
493
494Global variables can be marked with ``unnamed_addr`` which indicates
495that the address is not significant, only the content. Constants marked
496like this can be merged with other constants if they have the same
497initializer. Note that a constant with significant address *can* be
498merged with a ``unnamed_addr`` constant, the result being a constant
499whose address is significant.
500
501A global variable may be declared to reside in a target-specific
502numbered address space. For targets that support them, address spaces
503may affect how optimizations are performed and/or what target
504instructions are used to access the variable. The default address space
505is zero. The address space qualifier must precede any other attributes.
506
507LLVM allows an explicit section to be specified for globals. If the
508target supports it, it will emit globals to the section specified.
509
Michael Gottesmane743a302013-02-04 03:22:00 +0000510By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000511variables defined within the module are not modified from their
512initial values before the start of the global initializer. This is
513true even for variables potentially accessible from outside the
514module, including those with external linkage or appearing in
Michael Gottesman8901bb62013-02-03 09:57:18 +0000515``@llvm.used``. This assumption may be suppressed by marking the
516variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000517
Sean Silvab084af42012-12-07 10:36:55 +0000518An explicit alignment may be specified for a global, which must be a
519power of 2. If not present, or if the alignment is set to zero, the
520alignment of the global is set by the target to whatever it feels
521convenient. If an explicit alignment is specified, the global is forced
522to have exactly that alignment. Targets and optimizers are not allowed
523to over-align the global if the global has an assigned section. In this
524case, the extra alignment could be observable: for example, code could
525assume that the globals are densely packed in their section and try to
526iterate over them as an array, alignment padding would break this
527iteration.
528
529For example, the following defines a global in a numbered address space
530with an initializer, section, and alignment:
531
532.. code-block:: llvm
533
534 @G = addrspace(5) constant float 1.0, section "foo", align 4
535
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000536The following example just declares a global variable
537
538.. code-block:: llvm
539
540 @G = external global i32
541
Sean Silvab084af42012-12-07 10:36:55 +0000542The following example defines a thread-local global with the
543``initialexec`` TLS model:
544
545.. code-block:: llvm
546
547 @G = thread_local(initialexec) global i32 0, align 4
548
549.. _functionstructure:
550
551Functions
552---------
553
554LLVM function definitions consist of the "``define``" keyword, an
555optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
556style <visibility>`, an optional :ref:`calling convention <callingconv>`,
557an optional ``unnamed_addr`` attribute, a return type, an optional
558:ref:`parameter attribute <paramattrs>` for the return type, a function
559name, a (possibly empty) argument list (each with optional :ref:`parameter
560attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
561an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000562collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
563curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000564
565LLVM function declarations consist of the "``declare``" keyword, an
566optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
567style <visibility>`, an optional :ref:`calling convention <callingconv>`,
568an optional ``unnamed_addr`` attribute, a return type, an optional
569:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000570name, a possibly empty list of arguments, an optional alignment, an optional
571:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000572
Bill Wendling6822ecb2013-10-27 05:09:12 +0000573A function definition contains a list of basic blocks, forming the CFG (Control
574Flow Graph) for the function. Each basic block may optionally start with a label
575(giving the basic block a symbol table entry), contains a list of instructions,
576and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
577function return). If an explicit label is not provided, a block is assigned an
578implicit numbered label, using the next value from the same counter as used for
579unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
580entry block does not have an explicit label, it will be assigned label "%0",
581then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000582
583The first basic block in a function is special in two ways: it is
584immediately executed on entrance to the function, and it is not allowed
585to have predecessor basic blocks (i.e. there can not be any branches to
586the entry block of a function). Because the block can have no
587predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
588
589LLVM allows an explicit section to be specified for functions. If the
590target supports it, it will emit functions to the section specified.
591
592An explicit alignment may be specified for a function. If not present,
593or if the alignment is set to zero, the alignment of the function is set
594by the target to whatever it feels convenient. If an explicit alignment
595is specified, the function is forced to have at least that much
596alignment. All alignments must be a power of 2.
597
598If the ``unnamed_addr`` attribute is given, the address is know to not
599be significant and two identical functions can be merged.
600
601Syntax::
602
603 define [linkage] [visibility]
604 [cconv] [ret attrs]
605 <ResultType> @<FunctionName> ([argument list])
606 [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000607 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000608
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000609.. _langref_aliases:
610
Sean Silvab084af42012-12-07 10:36:55 +0000611Aliases
612-------
613
614Aliases act as "second name" for the aliasee value (which can be either
615function, global variable, another alias or bitcast of global value).
616Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
617:ref:`visibility style <visibility>`.
618
619Syntax::
620
621 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
622
Rafael Espindola65785492013-10-07 13:57:59 +0000623The linkage must be one of ``private``, ``linker_private``,
Rafael Espindola78527052013-10-06 15:10:43 +0000624``linker_private_weak``, ``internal``, ``linkonce``, ``weak``,
625``linkonce_odr``, ``weak_odr``, ``linkonce_odr_auto_hide``, ``external``. Note
626that some system linkers might not correctly handle dropping a weak symbol that
627is aliased by a non weak alias.
628
Sean Silvab084af42012-12-07 10:36:55 +0000629.. _namedmetadatastructure:
630
631Named Metadata
632--------------
633
634Named metadata is a collection of metadata. :ref:`Metadata
635nodes <metadata>` (but not metadata strings) are the only valid
636operands for a named metadata.
637
638Syntax::
639
640 ; Some unnamed metadata nodes, which are referenced by the named metadata.
641 !0 = metadata !{metadata !"zero"}
642 !1 = metadata !{metadata !"one"}
643 !2 = metadata !{metadata !"two"}
644 ; A named metadata.
645 !name = !{!0, !1, !2}
646
647.. _paramattrs:
648
649Parameter Attributes
650--------------------
651
652The return type and each parameter of a function type may have a set of
653*parameter attributes* associated with them. Parameter attributes are
654used to communicate additional information about the result or
655parameters of a function. Parameter attributes are considered to be part
656of the function, not of the function type, so functions with different
657parameter attributes can have the same function type.
658
659Parameter attributes are simple keywords that follow the type specified.
660If multiple parameter attributes are needed, they are space separated.
661For example:
662
663.. code-block:: llvm
664
665 declare i32 @printf(i8* noalias nocapture, ...)
666 declare i32 @atoi(i8 zeroext)
667 declare signext i8 @returns_signed_char()
668
669Note that any attributes for the function result (``nounwind``,
670``readonly``) come immediately after the argument list.
671
672Currently, only the following parameter attributes are defined:
673
674``zeroext``
675 This indicates to the code generator that the parameter or return
676 value should be zero-extended to the extent required by the target's
677 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
678 the caller (for a parameter) or the callee (for a return value).
679``signext``
680 This indicates to the code generator that the parameter or return
681 value should be sign-extended to the extent required by the target's
682 ABI (which is usually 32-bits) by the caller (for a parameter) or
683 the callee (for a return value).
684``inreg``
685 This indicates that this parameter or return value should be treated
686 in a special target-dependent fashion during while emitting code for
687 a function call or return (usually, by putting it in a register as
688 opposed to memory, though some targets use it to distinguish between
689 two different kinds of registers). Use of this attribute is
690 target-specific.
691``byval``
692 This indicates that the pointer parameter should really be passed by
693 value to the function. The attribute implies that a hidden copy of
694 the pointee is made between the caller and the callee, so the callee
695 is unable to modify the value in the caller. This attribute is only
696 valid on LLVM pointer arguments. It is generally used to pass
697 structs and arrays by value, but is also valid on pointers to
698 scalars. The copy is considered to belong to the caller not the
699 callee (for example, ``readonly`` functions should not write to
700 ``byval`` parameters). This is not a valid attribute for return
701 values.
702
703 The byval attribute also supports specifying an alignment with the
704 align attribute. It indicates the alignment of the stack slot to
705 form and the known alignment of the pointer specified to the call
706 site. If the alignment is not specified, then the code generator
707 makes a target-specific assumption.
708
709``sret``
710 This indicates that the pointer parameter specifies the address of a
711 structure that is the return value of the function in the source
712 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000713 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000714 not to trap and to be properly aligned. This may only be applied to
715 the first parameter. This is not a valid attribute for return
716 values.
717``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000718 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000719 the argument or return value do not alias pointer values which are
720 not *based* on it, ignoring certain "irrelevant" dependencies. For a
721 call to the parent function, dependencies between memory references
722 from before or after the call and from those during the call are
723 "irrelevant" to the ``noalias`` keyword for the arguments and return
724 value used in that call. The caller shares the responsibility with
725 the callee for ensuring that these requirements are met. For further
726 details, please see the discussion of the NoAlias response in `alias
727 analysis <AliasAnalysis.html#MustMayNo>`_.
728
729 Note that this definition of ``noalias`` is intentionally similar
730 to the definition of ``restrict`` in C99 for function arguments,
731 though it is slightly weaker.
732
733 For function return values, C99's ``restrict`` is not meaningful,
734 while LLVM's ``noalias`` is.
735``nocapture``
736 This indicates that the callee does not make any copies of the
737 pointer that outlive the callee itself. This is not a valid
738 attribute for return values.
739
740.. _nest:
741
742``nest``
743 This indicates that the pointer parameter can be excised using the
744 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000745 attribute for return values and can only be applied to one parameter.
746
747``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000748 This indicates that the function always returns the argument as its return
749 value. This is an optimization hint to the code generator when generating
750 the caller, allowing tail call optimization and omission of register saves
751 and restores in some cases; it is not checked or enforced when generating
752 the callee. The parameter and the function return type must be valid
753 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
754 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000755
756.. _gc:
757
758Garbage Collector Names
759-----------------------
760
761Each function may specify a garbage collector name, which is simply a
762string:
763
764.. code-block:: llvm
765
766 define void @f() gc "name" { ... }
767
768The compiler declares the supported values of *name*. Specifying a
769collector which will cause the compiler to alter its output in order to
770support the named garbage collection algorithm.
771
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000772.. _prefixdata:
773
774Prefix Data
775-----------
776
777Prefix data is data associated with a function which the code generator
778will emit immediately before the function body. The purpose of this feature
779is to allow frontends to associate language-specific runtime metadata with
780specific functions and make it available through the function pointer while
781still allowing the function pointer to be called. To access the data for a
782given function, a program may bitcast the function pointer to a pointer to
783the constant's type. This implies that the IR symbol points to the start
784of the prefix data.
785
786To maintain the semantics of ordinary function calls, the prefix data must
787have a particular format. Specifically, it must begin with a sequence of
788bytes which decode to a sequence of machine instructions, valid for the
789module's target, which transfer control to the point immediately succeeding
790the prefix data, without performing any other visible action. This allows
791the inliner and other passes to reason about the semantics of the function
792definition without needing to reason about the prefix data. Obviously this
793makes the format of the prefix data highly target dependent.
794
Peter Collingbourne213358a2013-09-23 20:14:21 +0000795Prefix data is laid out as if it were an initializer for a global variable
796of the prefix data's type. No padding is automatically placed between the
797prefix data and the function body. If padding is required, it must be part
798of the prefix data.
799
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000800A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
801which encodes the ``nop`` instruction:
802
803.. code-block:: llvm
804
805 define void @f() prefix i8 144 { ... }
806
807Generally prefix data can be formed by encoding a relative branch instruction
808which skips the metadata, as in this example of valid prefix data for the
809x86_64 architecture, where the first two bytes encode ``jmp .+10``:
810
811.. code-block:: llvm
812
813 %0 = type <{ i8, i8, i8* }>
814
815 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
816
817A function may have prefix data but no body. This has similar semantics
818to the ``available_externally`` linkage in that the data may be used by the
819optimizers but will not be emitted in the object file.
820
Bill Wendling63b88192013-02-06 06:52:58 +0000821.. _attrgrp:
822
823Attribute Groups
824----------------
825
826Attribute groups are groups of attributes that are referenced by objects within
827the IR. They are important for keeping ``.ll`` files readable, because a lot of
828functions will use the same set of attributes. In the degenerative case of a
829``.ll`` file that corresponds to a single ``.c`` file, the single attribute
830group will capture the important command line flags used to build that file.
831
832An attribute group is a module-level object. To use an attribute group, an
833object references the attribute group's ID (e.g. ``#37``). An object may refer
834to more than one attribute group. In that situation, the attributes from the
835different groups are merged.
836
837Here is an example of attribute groups for a function that should always be
838inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
839
840.. code-block:: llvm
841
842 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000843 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000844
845 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000846 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000847
848 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
849 define void @f() #0 #1 { ... }
850
Sean Silvab084af42012-12-07 10:36:55 +0000851.. _fnattrs:
852
853Function Attributes
854-------------------
855
856Function attributes are set to communicate additional information about
857a function. Function attributes are considered to be part of the
858function, not of the function type, so functions with different function
859attributes can have the same function type.
860
861Function attributes are simple keywords that follow the type specified.
862If multiple attributes are needed, they are space separated. For
863example:
864
865.. code-block:: llvm
866
867 define void @f() noinline { ... }
868 define void @f() alwaysinline { ... }
869 define void @f() alwaysinline optsize { ... }
870 define void @f() optsize { ... }
871
Sean Silvab084af42012-12-07 10:36:55 +0000872``alignstack(<n>)``
873 This attribute indicates that, when emitting the prologue and
874 epilogue, the backend should forcibly align the stack pointer.
875 Specify the desired alignment, which must be a power of two, in
876 parentheses.
877``alwaysinline``
878 This attribute indicates that the inliner should attempt to inline
879 this function into callers whenever possible, ignoring any active
880 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +0000881``builtin``
882 This indicates that the callee function at a call site should be
883 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +0000884 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +0000885 direct calls to functions which are declared with the ``nobuiltin``
886 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +0000887``cold``
888 This attribute indicates that this function is rarely called. When
889 computing edge weights, basic blocks post-dominated by a cold
890 function call are also considered to be cold; and, thus, given low
891 weight.
Sean Silvab084af42012-12-07 10:36:55 +0000892``inlinehint``
893 This attribute indicates that the source code contained a hint that
894 inlining this function is desirable (such as the "inline" keyword in
895 C/C++). It is just a hint; it imposes no requirements on the
896 inliner.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000897``minsize``
898 This attribute suggests that optimization passes and code generator
899 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000900 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000901 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +0000902``naked``
903 This attribute disables prologue / epilogue emission for the
904 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +0000905``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +0000906 This indicates that the callee function at a call site is not recognized as
907 a built-in function. LLVM will retain the original call and not replace it
908 with equivalent code based on the semantics of the built-in function, unless
909 the call site uses the ``builtin`` attribute. This is valid at call sites
910 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +0000911``noduplicate``
912 This attribute indicates that calls to the function cannot be
913 duplicated. A call to a ``noduplicate`` function may be moved
914 within its parent function, but may not be duplicated within
915 its parent function.
916
917 A function containing a ``noduplicate`` call may still
918 be an inlining candidate, provided that the call is not
919 duplicated by inlining. That implies that the function has
920 internal linkage and only has one call site, so the original
921 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000922``noimplicitfloat``
923 This attributes disables implicit floating point instructions.
924``noinline``
925 This attribute indicates that the inliner should never inline this
926 function in any situation. This attribute may not be used together
927 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +0000928``nonlazybind``
929 This attribute suppresses lazy symbol binding for the function. This
930 may make calls to the function faster, at the cost of extra program
931 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +0000932``noredzone``
933 This attribute indicates that the code generator should not use a
934 red zone, even if the target-specific ABI normally permits it.
935``noreturn``
936 This function attribute indicates that the function never returns
937 normally. This produces undefined behavior at runtime if the
938 function ever does dynamically return.
939``nounwind``
940 This function attribute indicates that the function never returns
941 with an unwind or exceptional control flow. If the function does
942 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +0000943``optnone``
944 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000945 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +0000946 exception of interprocedural optimization passes.
947 This attribute cannot be used together with the ``alwaysinline``
948 attribute; this attribute is also incompatible
949 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000950
Andrea Di Biagio377496b2013-08-23 11:53:55 +0000951 The inliner should never inline this function in any situation.
952 Only functions with the ``alwaysinline`` attribute are valid
953 candidates for inlining inside the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +0000954``optsize``
955 This attribute suggests that optimization passes and code generator
956 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000957 and otherwise do optimizations specifically to reduce code size as
958 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +0000959``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +0000960 On a function, this attribute indicates that the function computes its
961 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +0000962 without dereferencing any pointer arguments or otherwise accessing
963 any mutable state (e.g. memory, control registers, etc) visible to
964 caller functions. It does not write through any pointer arguments
965 (including ``byval`` arguments) and never changes any state visible
966 to callers. This means that it cannot unwind exceptions by calling
967 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000968
Nick Lewyckyc2ec0722013-07-06 00:29:58 +0000969 On an argument, this attribute indicates that the function does not
970 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +0000971 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +0000972``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +0000973 On a function, this attribute indicates that the function does not write
974 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +0000975 modify any state (e.g. memory, control registers, etc) visible to
976 caller functions. It may dereference pointer arguments and read
977 state that may be set in the caller. A readonly function always
978 returns the same value (or unwinds an exception identically) when
979 called with the same set of arguments and global state. It cannot
980 unwind an exception by calling the ``C++`` exception throwing
981 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000982
Nick Lewyckyc2ec0722013-07-06 00:29:58 +0000983 On an argument, this attribute indicates that the function does not write
984 through this pointer argument, even though it may write to the memory that
985 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +0000986``returns_twice``
987 This attribute indicates that this function can return twice. The C
988 ``setjmp`` is an example of such a function. The compiler disables
989 some optimizations (like tail calls) in the caller of these
990 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +0000991``sanitize_address``
992 This attribute indicates that AddressSanitizer checks
993 (dynamic address safety analysis) are enabled for this function.
994``sanitize_memory``
995 This attribute indicates that MemorySanitizer checks (dynamic detection
996 of accesses to uninitialized memory) are enabled for this function.
997``sanitize_thread``
998 This attribute indicates that ThreadSanitizer checks
999 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001000``ssp``
1001 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001002 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001003 placed on the stack before the local variables that's checked upon
1004 return from the function to see if it has been overwritten. A
1005 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001006 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001007
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001008 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1009 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1010 - Calls to alloca() with variable sizes or constant sizes greater than
1011 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001012
1013 If a function that has an ``ssp`` attribute is inlined into a
1014 function that doesn't have an ``ssp`` attribute, then the resulting
1015 function will have an ``ssp`` attribute.
1016``sspreq``
1017 This attribute indicates that the function should *always* emit a
1018 stack smashing protector. This overrides the ``ssp`` function
1019 attribute.
1020
1021 If a function that has an ``sspreq`` attribute is inlined into a
1022 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001023 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1024 an ``sspreq`` attribute.
1025``sspstrong``
1026 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001027 protector. This attribute causes a strong heuristic to be used when
1028 determining if a function needs stack protectors. The strong heuristic
1029 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001030
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001031 - Arrays of any size and type
1032 - Aggregates containing an array of any size and type.
1033 - Calls to alloca().
1034 - Local variables that have had their address taken.
1035
1036 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001037
1038 If a function that has an ``sspstrong`` attribute is inlined into a
1039 function that doesn't have an ``sspstrong`` attribute, then the
1040 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001041``uwtable``
1042 This attribute indicates that the ABI being targeted requires that
1043 an unwind table entry be produce for this function even if we can
1044 show that no exceptions passes by it. This is normally the case for
1045 the ELF x86-64 abi, but it can be disabled for some compilation
1046 units.
Sean Silvab084af42012-12-07 10:36:55 +00001047
1048.. _moduleasm:
1049
1050Module-Level Inline Assembly
1051----------------------------
1052
1053Modules may contain "module-level inline asm" blocks, which corresponds
1054to the GCC "file scope inline asm" blocks. These blocks are internally
1055concatenated by LLVM and treated as a single unit, but may be separated
1056in the ``.ll`` file if desired. The syntax is very simple:
1057
1058.. code-block:: llvm
1059
1060 module asm "inline asm code goes here"
1061 module asm "more can go here"
1062
1063The strings can contain any character by escaping non-printable
1064characters. The escape sequence used is simply "\\xx" where "xx" is the
1065two digit hex code for the number.
1066
1067The inline asm code is simply printed to the machine code .s file when
1068assembly code is generated.
1069
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001070.. _langref_datalayout:
1071
Sean Silvab084af42012-12-07 10:36:55 +00001072Data Layout
1073-----------
1074
1075A module may specify a target specific data layout string that specifies
1076how data is to be laid out in memory. The syntax for the data layout is
1077simply:
1078
1079.. code-block:: llvm
1080
1081 target datalayout = "layout specification"
1082
1083The *layout specification* consists of a list of specifications
1084separated by the minus sign character ('-'). Each specification starts
1085with a letter and may include other information after the letter to
1086define some aspect of the data layout. The specifications accepted are
1087as follows:
1088
1089``E``
1090 Specifies that the target lays out data in big-endian form. That is,
1091 the bits with the most significance have the lowest address
1092 location.
1093``e``
1094 Specifies that the target lays out data in little-endian form. That
1095 is, the bits with the least significance have the lowest address
1096 location.
1097``S<size>``
1098 Specifies the natural alignment of the stack in bits. Alignment
1099 promotion of stack variables is limited to the natural stack
1100 alignment to avoid dynamic stack realignment. The stack alignment
1101 must be a multiple of 8-bits. If omitted, the natural stack
1102 alignment defaults to "unspecified", which does not prevent any
1103 alignment promotions.
1104``p[n]:<size>:<abi>:<pref>``
1105 This specifies the *size* of a pointer and its ``<abi>`` and
1106 ``<pref>``\erred alignments for address space ``n``. All sizes are in
1107 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
1108 preceding ``:`` should be omitted too. The address space, ``n`` is
1109 optional, and if not specified, denotes the default address space 0.
1110 The value of ``n`` must be in the range [1,2^23).
1111``i<size>:<abi>:<pref>``
1112 This specifies the alignment for an integer type of a given bit
1113 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1114``v<size>:<abi>:<pref>``
1115 This specifies the alignment for a vector type of a given bit
1116 ``<size>``.
1117``f<size>:<abi>:<pref>``
1118 This specifies the alignment for a floating point type of a given bit
1119 ``<size>``. Only values of ``<size>`` that are supported by the target
1120 will work. 32 (float) and 64 (double) are supported on all targets; 80
1121 or 128 (different flavors of long double) are also supported on some
1122 targets.
1123``a<size>:<abi>:<pref>``
1124 This specifies the alignment for an aggregate type of a given bit
1125 ``<size>``.
1126``s<size>:<abi>:<pref>``
1127 This specifies the alignment for a stack object of a given bit
1128 ``<size>``.
1129``n<size1>:<size2>:<size3>...``
1130 This specifies a set of native integer widths for the target CPU in
1131 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1132 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1133 this set are considered to support most general arithmetic operations
1134 efficiently.
1135
1136When constructing the data layout for a given target, LLVM starts with a
1137default set of specifications which are then (possibly) overridden by
1138the specifications in the ``datalayout`` keyword. The default
1139specifications are given in this list:
1140
1141- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001142- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1143- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1144 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001145- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001146- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1147- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1148- ``i16:16:16`` - i16 is 16-bit aligned
1149- ``i32:32:32`` - i32 is 32-bit aligned
1150- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1151 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001152- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001153- ``f32:32:32`` - float is 32-bit aligned
1154- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001155- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001156- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1157- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001158- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001159
1160When LLVM is determining the alignment for a given type, it uses the
1161following rules:
1162
1163#. If the type sought is an exact match for one of the specifications,
1164 that specification is used.
1165#. If no match is found, and the type sought is an integer type, then
1166 the smallest integer type that is larger than the bitwidth of the
1167 sought type is used. If none of the specifications are larger than
1168 the bitwidth then the largest integer type is used. For example,
1169 given the default specifications above, the i7 type will use the
1170 alignment of i8 (next largest) while both i65 and i256 will use the
1171 alignment of i64 (largest specified).
1172#. If no match is found, and the type sought is a vector type, then the
1173 largest vector type that is smaller than the sought vector type will
1174 be used as a fall back. This happens because <128 x double> can be
1175 implemented in terms of 64 <2 x double>, for example.
1176
1177The function of the data layout string may not be what you expect.
1178Notably, this is not a specification from the frontend of what alignment
1179the code generator should use.
1180
1181Instead, if specified, the target data layout is required to match what
1182the ultimate *code generator* expects. This string is used by the
1183mid-level optimizers to improve code, and this only works if it matches
1184what the ultimate code generator uses. If you would like to generate IR
1185that does not embed this target-specific detail into the IR, then you
1186don't have to specify the string. This will disable some optimizations
1187that require precise layout information, but this also prevents those
1188optimizations from introducing target specificity into the IR.
1189
Bill Wendling5cc90842013-10-18 23:41:25 +00001190.. _langref_triple:
1191
1192Target Triple
1193-------------
1194
1195A module may specify a target triple string that describes the target
1196host. The syntax for the target triple is simply:
1197
1198.. code-block:: llvm
1199
1200 target triple = "x86_64-apple-macosx10.7.0"
1201
1202The *target triple* string consists of a series of identifiers delimited
1203by the minus sign character ('-'). The canonical forms are:
1204
1205::
1206
1207 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1208 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1209
1210This information is passed along to the backend so that it generates
1211code for the proper architecture. It's possible to override this on the
1212command line with the ``-mtriple`` command line option.
1213
Sean Silvab084af42012-12-07 10:36:55 +00001214.. _pointeraliasing:
1215
1216Pointer Aliasing Rules
1217----------------------
1218
1219Any memory access must be done through a pointer value associated with
1220an address range of the memory access, otherwise the behavior is
1221undefined. Pointer values are associated with address ranges according
1222to the following rules:
1223
1224- A pointer value is associated with the addresses associated with any
1225 value it is *based* on.
1226- An address of a global variable is associated with the address range
1227 of the variable's storage.
1228- The result value of an allocation instruction is associated with the
1229 address range of the allocated storage.
1230- A null pointer in the default address-space is associated with no
1231 address.
1232- An integer constant other than zero or a pointer value returned from
1233 a function not defined within LLVM may be associated with address
1234 ranges allocated through mechanisms other than those provided by
1235 LLVM. Such ranges shall not overlap with any ranges of addresses
1236 allocated by mechanisms provided by LLVM.
1237
1238A pointer value is *based* on another pointer value according to the
1239following rules:
1240
1241- A pointer value formed from a ``getelementptr`` operation is *based*
1242 on the first operand of the ``getelementptr``.
1243- The result value of a ``bitcast`` is *based* on the operand of the
1244 ``bitcast``.
1245- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1246 values that contribute (directly or indirectly) to the computation of
1247 the pointer's value.
1248- The "*based* on" relationship is transitive.
1249
1250Note that this definition of *"based"* is intentionally similar to the
1251definition of *"based"* in C99, though it is slightly weaker.
1252
1253LLVM IR does not associate types with memory. The result type of a
1254``load`` merely indicates the size and alignment of the memory from
1255which to load, as well as the interpretation of the value. The first
1256operand type of a ``store`` similarly only indicates the size and
1257alignment of the store.
1258
1259Consequently, type-based alias analysis, aka TBAA, aka
1260``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1261:ref:`Metadata <metadata>` may be used to encode additional information
1262which specialized optimization passes may use to implement type-based
1263alias analysis.
1264
1265.. _volatile:
1266
1267Volatile Memory Accesses
1268------------------------
1269
1270Certain memory accesses, such as :ref:`load <i_load>`'s,
1271:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1272marked ``volatile``. The optimizers must not change the number of
1273volatile operations or change their order of execution relative to other
1274volatile operations. The optimizers *may* change the order of volatile
1275operations relative to non-volatile operations. This is not Java's
1276"volatile" and has no cross-thread synchronization behavior.
1277
Andrew Trick89fc5a62013-01-30 21:19:35 +00001278IR-level volatile loads and stores cannot safely be optimized into
1279llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1280flagged volatile. Likewise, the backend should never split or merge
1281target-legal volatile load/store instructions.
1282
Andrew Trick7e6f9282013-01-31 00:49:39 +00001283.. admonition:: Rationale
1284
1285 Platforms may rely on volatile loads and stores of natively supported
1286 data width to be executed as single instruction. For example, in C
1287 this holds for an l-value of volatile primitive type with native
1288 hardware support, but not necessarily for aggregate types. The
1289 frontend upholds these expectations, which are intentionally
1290 unspecified in the IR. The rules above ensure that IR transformation
1291 do not violate the frontend's contract with the language.
1292
Sean Silvab084af42012-12-07 10:36:55 +00001293.. _memmodel:
1294
1295Memory Model for Concurrent Operations
1296--------------------------------------
1297
1298The LLVM IR does not define any way to start parallel threads of
1299execution or to register signal handlers. Nonetheless, there are
1300platform-specific ways to create them, and we define LLVM IR's behavior
1301in their presence. This model is inspired by the C++0x memory model.
1302
1303For a more informal introduction to this model, see the :doc:`Atomics`.
1304
1305We define a *happens-before* partial order as the least partial order
1306that
1307
1308- Is a superset of single-thread program order, and
1309- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1310 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1311 techniques, like pthread locks, thread creation, thread joining,
1312 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1313 Constraints <ordering>`).
1314
1315Note that program order does not introduce *happens-before* edges
1316between a thread and signals executing inside that thread.
1317
1318Every (defined) read operation (load instructions, memcpy, atomic
1319loads/read-modify-writes, etc.) R reads a series of bytes written by
1320(defined) write operations (store instructions, atomic
1321stores/read-modify-writes, memcpy, etc.). For the purposes of this
1322section, initialized globals are considered to have a write of the
1323initializer which is atomic and happens before any other read or write
1324of the memory in question. For each byte of a read R, R\ :sub:`byte`
1325may see any write to the same byte, except:
1326
1327- If write\ :sub:`1` happens before write\ :sub:`2`, and
1328 write\ :sub:`2` happens before R\ :sub:`byte`, then
1329 R\ :sub:`byte` does not see write\ :sub:`1`.
1330- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1331 R\ :sub:`byte` does not see write\ :sub:`3`.
1332
1333Given that definition, R\ :sub:`byte` is defined as follows:
1334
1335- If R is volatile, the result is target-dependent. (Volatile is
1336 supposed to give guarantees which can support ``sig_atomic_t`` in
1337 C/C++, and may be used for accesses to addresses which do not behave
1338 like normal memory. It does not generally provide cross-thread
1339 synchronization.)
1340- Otherwise, if there is no write to the same byte that happens before
1341 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1342- Otherwise, if R\ :sub:`byte` may see exactly one write,
1343 R\ :sub:`byte` returns the value written by that write.
1344- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1345 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1346 Memory Ordering Constraints <ordering>` section for additional
1347 constraints on how the choice is made.
1348- Otherwise R\ :sub:`byte` returns ``undef``.
1349
1350R returns the value composed of the series of bytes it read. This
1351implies that some bytes within the value may be ``undef`` **without**
1352the entire value being ``undef``. Note that this only defines the
1353semantics of the operation; it doesn't mean that targets will emit more
1354than one instruction to read the series of bytes.
1355
1356Note that in cases where none of the atomic intrinsics are used, this
1357model places only one restriction on IR transformations on top of what
1358is required for single-threaded execution: introducing a store to a byte
1359which might not otherwise be stored is not allowed in general.
1360(Specifically, in the case where another thread might write to and read
1361from an address, introducing a store can change a load that may see
1362exactly one write into a load that may see multiple writes.)
1363
1364.. _ordering:
1365
1366Atomic Memory Ordering Constraints
1367----------------------------------
1368
1369Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1370:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1371:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1372an ordering parameter that determines which other atomic instructions on
1373the same address they *synchronize with*. These semantics are borrowed
1374from Java and C++0x, but are somewhat more colloquial. If these
1375descriptions aren't precise enough, check those specs (see spec
1376references in the :doc:`atomics guide <Atomics>`).
1377:ref:`fence <i_fence>` instructions treat these orderings somewhat
1378differently since they don't take an address. See that instruction's
1379documentation for details.
1380
1381For a simpler introduction to the ordering constraints, see the
1382:doc:`Atomics`.
1383
1384``unordered``
1385 The set of values that can be read is governed by the happens-before
1386 partial order. A value cannot be read unless some operation wrote
1387 it. This is intended to provide a guarantee strong enough to model
1388 Java's non-volatile shared variables. This ordering cannot be
1389 specified for read-modify-write operations; it is not strong enough
1390 to make them atomic in any interesting way.
1391``monotonic``
1392 In addition to the guarantees of ``unordered``, there is a single
1393 total order for modifications by ``monotonic`` operations on each
1394 address. All modification orders must be compatible with the
1395 happens-before order. There is no guarantee that the modification
1396 orders can be combined to a global total order for the whole program
1397 (and this often will not be possible). The read in an atomic
1398 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1399 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1400 order immediately before the value it writes. If one atomic read
1401 happens before another atomic read of the same address, the later
1402 read must see the same value or a later value in the address's
1403 modification order. This disallows reordering of ``monotonic`` (or
1404 stronger) operations on the same address. If an address is written
1405 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1406 read that address repeatedly, the other threads must eventually see
1407 the write. This corresponds to the C++0x/C1x
1408 ``memory_order_relaxed``.
1409``acquire``
1410 In addition to the guarantees of ``monotonic``, a
1411 *synchronizes-with* edge may be formed with a ``release`` operation.
1412 This is intended to model C++'s ``memory_order_acquire``.
1413``release``
1414 In addition to the guarantees of ``monotonic``, if this operation
1415 writes a value which is subsequently read by an ``acquire``
1416 operation, it *synchronizes-with* that operation. (This isn't a
1417 complete description; see the C++0x definition of a release
1418 sequence.) This corresponds to the C++0x/C1x
1419 ``memory_order_release``.
1420``acq_rel`` (acquire+release)
1421 Acts as both an ``acquire`` and ``release`` operation on its
1422 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1423``seq_cst`` (sequentially consistent)
1424 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1425 operation which only reads, ``release`` for an operation which only
1426 writes), there is a global total order on all
1427 sequentially-consistent operations on all addresses, which is
1428 consistent with the *happens-before* partial order and with the
1429 modification orders of all the affected addresses. Each
1430 sequentially-consistent read sees the last preceding write to the
1431 same address in this global order. This corresponds to the C++0x/C1x
1432 ``memory_order_seq_cst`` and Java volatile.
1433
1434.. _singlethread:
1435
1436If an atomic operation is marked ``singlethread``, it only *synchronizes
1437with* or participates in modification and seq\_cst total orderings with
1438other operations running in the same thread (for example, in signal
1439handlers).
1440
1441.. _fastmath:
1442
1443Fast-Math Flags
1444---------------
1445
1446LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1447:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1448:ref:`frem <i_frem>`) have the following flags that can set to enable
1449otherwise unsafe floating point operations
1450
1451``nnan``
1452 No NaNs - Allow optimizations to assume the arguments and result are not
1453 NaN. Such optimizations are required to retain defined behavior over
1454 NaNs, but the value of the result is undefined.
1455
1456``ninf``
1457 No Infs - Allow optimizations to assume the arguments and result are not
1458 +/-Inf. Such optimizations are required to retain defined behavior over
1459 +/-Inf, but the value of the result is undefined.
1460
1461``nsz``
1462 No Signed Zeros - Allow optimizations to treat the sign of a zero
1463 argument or result as insignificant.
1464
1465``arcp``
1466 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1467 argument rather than perform division.
1468
1469``fast``
1470 Fast - Allow algebraically equivalent transformations that may
1471 dramatically change results in floating point (e.g. reassociate). This
1472 flag implies all the others.
1473
1474.. _typesystem:
1475
1476Type System
1477===========
1478
1479The LLVM type system is one of the most important features of the
1480intermediate representation. Being typed enables a number of
1481optimizations to be performed on the intermediate representation
1482directly, without having to do extra analyses on the side before the
1483transformation. A strong type system makes it easier to read the
1484generated code and enables novel analyses and transformations that are
1485not feasible to perform on normal three address code representations.
1486
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001487.. _typeclassifications:
1488
Sean Silvab084af42012-12-07 10:36:55 +00001489Type Classifications
1490--------------------
1491
1492The types fall into a few useful classifications:
1493
1494
1495.. list-table::
1496 :header-rows: 1
1497
1498 * - Classification
1499 - Types
1500
1501 * - :ref:`integer <t_integer>`
1502 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1503 ``i64``, ...
1504
1505 * - :ref:`floating point <t_floating>`
1506 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1507 ``ppc_fp128``
1508
1509
1510 * - first class
1511
1512 .. _t_firstclass:
1513
1514 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1515 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1516 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1517 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1518
1519 * - :ref:`primitive <t_primitive>`
1520 - :ref:`label <t_label>`,
1521 :ref:`void <t_void>`,
1522 :ref:`integer <t_integer>`,
1523 :ref:`floating point <t_floating>`,
1524 :ref:`x86mmx <t_x86mmx>`,
1525 :ref:`metadata <t_metadata>`.
1526
1527 * - :ref:`derived <t_derived>`
1528 - :ref:`array <t_array>`,
1529 :ref:`function <t_function>`,
1530 :ref:`pointer <t_pointer>`,
1531 :ref:`structure <t_struct>`,
1532 :ref:`vector <t_vector>`,
1533 :ref:`opaque <t_opaque>`.
1534
1535The :ref:`first class <t_firstclass>` types are perhaps the most important.
1536Values of these types are the only ones which can be produced by
1537instructions.
1538
1539.. _t_primitive:
1540
1541Primitive Types
1542---------------
1543
1544The primitive types are the fundamental building blocks of the LLVM
1545system.
1546
1547.. _t_integer:
1548
1549Integer Type
1550^^^^^^^^^^^^
1551
1552Overview:
1553"""""""""
1554
1555The integer type is a very simple type that simply specifies an
1556arbitrary bit width for the integer type desired. Any bit width from 1
1557bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1558
1559Syntax:
1560"""""""
1561
1562::
1563
1564 iN
1565
1566The number of bits the integer will occupy is specified by the ``N``
1567value.
1568
1569Examples:
1570"""""""""
1571
1572+----------------+------------------------------------------------+
1573| ``i1`` | a single-bit integer. |
1574+----------------+------------------------------------------------+
1575| ``i32`` | a 32-bit integer. |
1576+----------------+------------------------------------------------+
1577| ``i1942652`` | a really big integer of over 1 million bits. |
1578+----------------+------------------------------------------------+
1579
1580.. _t_floating:
1581
1582Floating Point Types
1583^^^^^^^^^^^^^^^^^^^^
1584
1585.. list-table::
1586 :header-rows: 1
1587
1588 * - Type
1589 - Description
1590
1591 * - ``half``
1592 - 16-bit floating point value
1593
1594 * - ``float``
1595 - 32-bit floating point value
1596
1597 * - ``double``
1598 - 64-bit floating point value
1599
1600 * - ``fp128``
1601 - 128-bit floating point value (112-bit mantissa)
1602
1603 * - ``x86_fp80``
1604 - 80-bit floating point value (X87)
1605
1606 * - ``ppc_fp128``
1607 - 128-bit floating point value (two 64-bits)
1608
1609.. _t_x86mmx:
1610
1611X86mmx Type
1612^^^^^^^^^^^
1613
1614Overview:
1615"""""""""
1616
1617The x86mmx type represents a value held in an MMX register on an x86
1618machine. The operations allowed on it are quite limited: parameters and
1619return values, load and store, and bitcast. User-specified MMX
1620instructions are represented as intrinsic or asm calls with arguments
1621and/or results of this type. There are no arrays, vectors or constants
1622of this type.
1623
1624Syntax:
1625"""""""
1626
1627::
1628
1629 x86mmx
1630
1631.. _t_void:
1632
1633Void Type
1634^^^^^^^^^
1635
1636Overview:
1637"""""""""
1638
1639The void type does not represent any value and has no size.
1640
1641Syntax:
1642"""""""
1643
1644::
1645
1646 void
1647
1648.. _t_label:
1649
1650Label Type
1651^^^^^^^^^^
1652
1653Overview:
1654"""""""""
1655
1656The label type represents code labels.
1657
1658Syntax:
1659"""""""
1660
1661::
1662
1663 label
1664
1665.. _t_metadata:
1666
1667Metadata Type
1668^^^^^^^^^^^^^
1669
1670Overview:
1671"""""""""
1672
1673The metadata type represents embedded metadata. No derived types may be
1674created from metadata except for :ref:`function <t_function>` arguments.
1675
1676Syntax:
1677"""""""
1678
1679::
1680
1681 metadata
1682
1683.. _t_derived:
1684
1685Derived Types
1686-------------
1687
1688The real power in LLVM comes from the derived types in the system. This
1689is what allows a programmer to represent arrays, functions, pointers,
1690and other useful types. Each of these types contain one or more element
1691types which may be a primitive type, or another derived type. For
1692example, it is possible to have a two dimensional array, using an array
1693as the element type of another array.
1694
1695.. _t_aggregate:
1696
1697Aggregate Types
1698^^^^^^^^^^^^^^^
1699
1700Aggregate Types are a subset of derived types that can contain multiple
1701member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1702aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1703aggregate types.
1704
1705.. _t_array:
1706
1707Array Type
1708^^^^^^^^^^
1709
1710Overview:
1711"""""""""
1712
1713The array type is a very simple derived type that arranges elements
1714sequentially in memory. The array type requires a size (number of
1715elements) and an underlying data type.
1716
1717Syntax:
1718"""""""
1719
1720::
1721
1722 [<# elements> x <elementtype>]
1723
1724The number of elements is a constant integer value; ``elementtype`` may
1725be any type with a size.
1726
1727Examples:
1728"""""""""
1729
1730+------------------+--------------------------------------+
1731| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1732+------------------+--------------------------------------+
1733| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1734+------------------+--------------------------------------+
1735| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1736+------------------+--------------------------------------+
1737
1738Here are some examples of multidimensional arrays:
1739
1740+-----------------------------+----------------------------------------------------------+
1741| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1742+-----------------------------+----------------------------------------------------------+
1743| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1744+-----------------------------+----------------------------------------------------------+
1745| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1746+-----------------------------+----------------------------------------------------------+
1747
1748There is no restriction on indexing beyond the end of the array implied
1749by a static type (though there are restrictions on indexing beyond the
1750bounds of an allocated object in some cases). This means that
1751single-dimension 'variable sized array' addressing can be implemented in
1752LLVM with a zero length array type. An implementation of 'pascal style
1753arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1754example.
1755
1756.. _t_function:
1757
1758Function Type
1759^^^^^^^^^^^^^
1760
1761Overview:
1762"""""""""
1763
Bill Wendlinge9d5c482013-10-27 04:19:29 +00001764The function type can be thought of as a function signature. It consists of a
1765return type and a list of formal parameter types. The return type of a function
1766type is a void type or first class type --- except for :ref:`label <t_label>`
1767and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001768
1769Syntax:
1770"""""""
1771
1772::
1773
1774 <returntype> (<parameter list>)
1775
1776...where '``<parameter list>``' is a comma-separated list of type
Bill Wendlinge9d5c482013-10-27 04:19:29 +00001777specifiers. Optionally, the parameter list may include a type ``...``, which
1778indicates that the function takes a variable number of arguments. Variable
1779argument functions can access their arguments with the :ref:`variable argument
1780handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1781except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001782
1783Examples:
1784"""""""""
1785
1786+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1787| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1788+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001789| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvab084af42012-12-07 10:36:55 +00001790+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1791| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1792+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1793| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1794+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1795
1796.. _t_struct:
1797
1798Structure Type
1799^^^^^^^^^^^^^^
1800
1801Overview:
1802"""""""""
1803
1804The structure type is used to represent a collection of data members
1805together in memory. The elements of a structure may be any type that has
1806a size.
1807
1808Structures in memory are accessed using '``load``' and '``store``' by
1809getting a pointer to a field with the '``getelementptr``' instruction.
1810Structures in registers are accessed using the '``extractvalue``' and
1811'``insertvalue``' instructions.
1812
1813Structures may optionally be "packed" structures, which indicate that
1814the alignment of the struct is one byte, and that there is no padding
1815between the elements. In non-packed structs, padding between field types
1816is inserted as defined by the DataLayout string in the module, which is
1817required to match what the underlying code generator expects.
1818
1819Structures can either be "literal" or "identified". A literal structure
1820is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1821identified types are always defined at the top level with a name.
1822Literal types are uniqued by their contents and can never be recursive
1823or opaque since there is no way to write one. Identified types can be
1824recursive, can be opaqued, and are never uniqued.
1825
1826Syntax:
1827"""""""
1828
1829::
1830
1831 %T1 = type { <type list> } ; Identified normal struct type
1832 %T2 = type <{ <type list> }> ; Identified packed struct type
1833
1834Examples:
1835"""""""""
1836
1837+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1838| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1839+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001840| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001841+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1842| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1843+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1844
1845.. _t_opaque:
1846
1847Opaque Structure Types
1848^^^^^^^^^^^^^^^^^^^^^^
1849
1850Overview:
1851"""""""""
1852
1853Opaque structure types are used to represent named structure types that
1854do not have a body specified. This corresponds (for example) to the C
1855notion of a forward declared structure.
1856
1857Syntax:
1858"""""""
1859
1860::
1861
1862 %X = type opaque
1863 %52 = type opaque
1864
1865Examples:
1866"""""""""
1867
1868+--------------+-------------------+
1869| ``opaque`` | An opaque type. |
1870+--------------+-------------------+
1871
1872.. _t_pointer:
1873
1874Pointer Type
1875^^^^^^^^^^^^
1876
1877Overview:
1878"""""""""
1879
1880The pointer type is used to specify memory locations. Pointers are
1881commonly used to reference objects in memory.
1882
1883Pointer types may have an optional address space attribute defining the
1884numbered address space where the pointed-to object resides. The default
1885address space is number zero. The semantics of non-zero address spaces
1886are target-specific.
1887
1888Note that LLVM does not permit pointers to void (``void*``) nor does it
1889permit pointers to labels (``label*``). Use ``i8*`` instead.
1890
1891Syntax:
1892"""""""
1893
1894::
1895
1896 <type> *
1897
1898Examples:
1899"""""""""
1900
1901+-------------------------+--------------------------------------------------------------------------------------------------------------+
1902| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1903+-------------------------+--------------------------------------------------------------------------------------------------------------+
1904| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1905+-------------------------+--------------------------------------------------------------------------------------------------------------+
1906| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1907+-------------------------+--------------------------------------------------------------------------------------------------------------+
1908
1909.. _t_vector:
1910
1911Vector Type
1912^^^^^^^^^^^
1913
1914Overview:
1915"""""""""
1916
1917A vector type is a simple derived type that represents a vector of
1918elements. Vector types are used when multiple primitive data are
1919operated in parallel using a single instruction (SIMD). A vector type
1920requires a size (number of elements) and an underlying primitive data
1921type. Vector types are considered :ref:`first class <t_firstclass>`.
1922
1923Syntax:
1924"""""""
1925
1926::
1927
1928 < <# elements> x <elementtype> >
1929
1930The number of elements is a constant integer value larger than 0;
1931elementtype may be any integer or floating point type, or a pointer to
1932these types. Vectors of size zero are not allowed.
1933
1934Examples:
1935"""""""""
1936
1937+-------------------+--------------------------------------------------+
1938| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1939+-------------------+--------------------------------------------------+
1940| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1941+-------------------+--------------------------------------------------+
1942| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1943+-------------------+--------------------------------------------------+
1944| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1945+-------------------+--------------------------------------------------+
1946
1947Constants
1948=========
1949
1950LLVM has several different basic types of constants. This section
1951describes them all and their syntax.
1952
1953Simple Constants
1954----------------
1955
1956**Boolean constants**
1957 The two strings '``true``' and '``false``' are both valid constants
1958 of the ``i1`` type.
1959**Integer constants**
1960 Standard integers (such as '4') are constants of the
1961 :ref:`integer <t_integer>` type. Negative numbers may be used with
1962 integer types.
1963**Floating point constants**
1964 Floating point constants use standard decimal notation (e.g.
1965 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1966 hexadecimal notation (see below). The assembler requires the exact
1967 decimal value of a floating-point constant. For example, the
1968 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1969 decimal in binary. Floating point constants must have a :ref:`floating
1970 point <t_floating>` type.
1971**Null pointer constants**
1972 The identifier '``null``' is recognized as a null pointer constant
1973 and must be of :ref:`pointer type <t_pointer>`.
1974
1975The one non-intuitive notation for constants is the hexadecimal form of
1976floating point constants. For example, the form
1977'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1978than) '``double 4.5e+15``'. The only time hexadecimal floating point
1979constants are required (and the only time that they are generated by the
1980disassembler) is when a floating point constant must be emitted but it
1981cannot be represented as a decimal floating point number in a reasonable
1982number of digits. For example, NaN's, infinities, and other special
1983values are represented in their IEEE hexadecimal format so that assembly
1984and disassembly do not cause any bits to change in the constants.
1985
1986When using the hexadecimal form, constants of types half, float, and
1987double are represented using the 16-digit form shown above (which
1988matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00001989must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00001990precision, respectively. Hexadecimal format is always used for long
1991double, and there are three forms of long double. The 80-bit format used
1992by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1993128-bit format used by PowerPC (two adjacent doubles) is represented by
1994``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00001995represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1996will only work if they match the long double format on your target.
1997The IEEE 16-bit format (half precision) is represented by ``0xH``
1998followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1999(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002000
2001There are no constants of type x86mmx.
2002
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002003.. _complexconstants:
2004
Sean Silvab084af42012-12-07 10:36:55 +00002005Complex Constants
2006-----------------
2007
2008Complex constants are a (potentially recursive) combination of simple
2009constants and smaller complex constants.
2010
2011**Structure constants**
2012 Structure constants are represented with notation similar to
2013 structure type definitions (a comma separated list of elements,
2014 surrounded by braces (``{}``)). For example:
2015 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2016 "``@G = external global i32``". Structure constants must have
2017 :ref:`structure type <t_struct>`, and the number and types of elements
2018 must match those specified by the type.
2019**Array constants**
2020 Array constants are represented with notation similar to array type
2021 definitions (a comma separated list of elements, surrounded by
2022 square brackets (``[]``)). For example:
2023 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2024 :ref:`array type <t_array>`, and the number and types of elements must
2025 match those specified by the type.
2026**Vector constants**
2027 Vector constants are represented with notation similar to vector
2028 type definitions (a comma separated list of elements, surrounded by
2029 less-than/greater-than's (``<>``)). For example:
2030 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2031 must have :ref:`vector type <t_vector>`, and the number and types of
2032 elements must match those specified by the type.
2033**Zero initialization**
2034 The string '``zeroinitializer``' can be used to zero initialize a
2035 value to zero of *any* type, including scalar and
2036 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2037 having to print large zero initializers (e.g. for large arrays) and
2038 is always exactly equivalent to using explicit zero initializers.
2039**Metadata node**
2040 A metadata node is a structure-like constant with :ref:`metadata
2041 type <t_metadata>`. For example:
2042 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2043 constants that are meant to be interpreted as part of the
2044 instruction stream, metadata is a place to attach additional
2045 information such as debug info.
2046
2047Global Variable and Function Addresses
2048--------------------------------------
2049
2050The addresses of :ref:`global variables <globalvars>` and
2051:ref:`functions <functionstructure>` are always implicitly valid
2052(link-time) constants. These constants are explicitly referenced when
2053the :ref:`identifier for the global <identifiers>` is used and always have
2054:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2055file:
2056
2057.. code-block:: llvm
2058
2059 @X = global i32 17
2060 @Y = global i32 42
2061 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2062
2063.. _undefvalues:
2064
2065Undefined Values
2066----------------
2067
2068The string '``undef``' can be used anywhere a constant is expected, and
2069indicates that the user of the value may receive an unspecified
2070bit-pattern. Undefined values may be of any type (other than '``label``'
2071or '``void``') and be used anywhere a constant is permitted.
2072
2073Undefined values are useful because they indicate to the compiler that
2074the program is well defined no matter what value is used. This gives the
2075compiler more freedom to optimize. Here are some examples of
2076(potentially surprising) transformations that are valid (in pseudo IR):
2077
2078.. code-block:: llvm
2079
2080 %A = add %X, undef
2081 %B = sub %X, undef
2082 %C = xor %X, undef
2083 Safe:
2084 %A = undef
2085 %B = undef
2086 %C = undef
2087
2088This is safe because all of the output bits are affected by the undef
2089bits. Any output bit can have a zero or one depending on the input bits.
2090
2091.. code-block:: llvm
2092
2093 %A = or %X, undef
2094 %B = and %X, undef
2095 Safe:
2096 %A = -1
2097 %B = 0
2098 Unsafe:
2099 %A = undef
2100 %B = undef
2101
2102These logical operations have bits that are not always affected by the
2103input. For example, if ``%X`` has a zero bit, then the output of the
2104'``and``' operation will always be a zero for that bit, no matter what
2105the corresponding bit from the '``undef``' is. As such, it is unsafe to
2106optimize or assume that the result of the '``and``' is '``undef``'.
2107However, it is safe to assume that all bits of the '``undef``' could be
21080, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2109all the bits of the '``undef``' operand to the '``or``' could be set,
2110allowing the '``or``' to be folded to -1.
2111
2112.. code-block:: llvm
2113
2114 %A = select undef, %X, %Y
2115 %B = select undef, 42, %Y
2116 %C = select %X, %Y, undef
2117 Safe:
2118 %A = %X (or %Y)
2119 %B = 42 (or %Y)
2120 %C = %Y
2121 Unsafe:
2122 %A = undef
2123 %B = undef
2124 %C = undef
2125
2126This set of examples shows that undefined '``select``' (and conditional
2127branch) conditions can go *either way*, but they have to come from one
2128of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2129both known to have a clear low bit, then ``%A`` would have to have a
2130cleared low bit. However, in the ``%C`` example, the optimizer is
2131allowed to assume that the '``undef``' operand could be the same as
2132``%Y``, allowing the whole '``select``' to be eliminated.
2133
2134.. code-block:: llvm
2135
2136 %A = xor undef, undef
2137
2138 %B = undef
2139 %C = xor %B, %B
2140
2141 %D = undef
2142 %E = icmp lt %D, 4
2143 %F = icmp gte %D, 4
2144
2145 Safe:
2146 %A = undef
2147 %B = undef
2148 %C = undef
2149 %D = undef
2150 %E = undef
2151 %F = undef
2152
2153This example points out that two '``undef``' operands are not
2154necessarily the same. This can be surprising to people (and also matches
2155C semantics) where they assume that "``X^X``" is always zero, even if
2156``X`` is undefined. This isn't true for a number of reasons, but the
2157short answer is that an '``undef``' "variable" can arbitrarily change
2158its value over its "live range". This is true because the variable
2159doesn't actually *have a live range*. Instead, the value is logically
2160read from arbitrary registers that happen to be around when needed, so
2161the value is not necessarily consistent over time. In fact, ``%A`` and
2162``%C`` need to have the same semantics or the core LLVM "replace all
2163uses with" concept would not hold.
2164
2165.. code-block:: llvm
2166
2167 %A = fdiv undef, %X
2168 %B = fdiv %X, undef
2169 Safe:
2170 %A = undef
2171 b: unreachable
2172
2173These examples show the crucial difference between an *undefined value*
2174and *undefined behavior*. An undefined value (like '``undef``') is
2175allowed to have an arbitrary bit-pattern. This means that the ``%A``
2176operation can be constant folded to '``undef``', because the '``undef``'
2177could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2178However, in the second example, we can make a more aggressive
2179assumption: because the ``undef`` is allowed to be an arbitrary value,
2180we are allowed to assume that it could be zero. Since a divide by zero
2181has *undefined behavior*, we are allowed to assume that the operation
2182does not execute at all. This allows us to delete the divide and all
2183code after it. Because the undefined operation "can't happen", the
2184optimizer can assume that it occurs in dead code.
2185
2186.. code-block:: llvm
2187
2188 a: store undef -> %X
2189 b: store %X -> undef
2190 Safe:
2191 a: <deleted>
2192 b: unreachable
2193
2194These examples reiterate the ``fdiv`` example: a store *of* an undefined
2195value can be assumed to not have any effect; we can assume that the
2196value is overwritten with bits that happen to match what was already
2197there. However, a store *to* an undefined location could clobber
2198arbitrary memory, therefore, it has undefined behavior.
2199
2200.. _poisonvalues:
2201
2202Poison Values
2203-------------
2204
2205Poison values are similar to :ref:`undef values <undefvalues>`, however
2206they also represent the fact that an instruction or constant expression
2207which cannot evoke side effects has nevertheless detected a condition
2208which results in undefined behavior.
2209
2210There is currently no way of representing a poison value in the IR; they
2211only exist when produced by operations such as :ref:`add <i_add>` with
2212the ``nsw`` flag.
2213
2214Poison value behavior is defined in terms of value *dependence*:
2215
2216- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2217- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2218 their dynamic predecessor basic block.
2219- Function arguments depend on the corresponding actual argument values
2220 in the dynamic callers of their functions.
2221- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2222 instructions that dynamically transfer control back to them.
2223- :ref:`Invoke <i_invoke>` instructions depend on the
2224 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2225 call instructions that dynamically transfer control back to them.
2226- Non-volatile loads and stores depend on the most recent stores to all
2227 of the referenced memory addresses, following the order in the IR
2228 (including loads and stores implied by intrinsics such as
2229 :ref:`@llvm.memcpy <int_memcpy>`.)
2230- An instruction with externally visible side effects depends on the
2231 most recent preceding instruction with externally visible side
2232 effects, following the order in the IR. (This includes :ref:`volatile
2233 operations <volatile>`.)
2234- An instruction *control-depends* on a :ref:`terminator
2235 instruction <terminators>` if the terminator instruction has
2236 multiple successors and the instruction is always executed when
2237 control transfers to one of the successors, and may not be executed
2238 when control is transferred to another.
2239- Additionally, an instruction also *control-depends* on a terminator
2240 instruction if the set of instructions it otherwise depends on would
2241 be different if the terminator had transferred control to a different
2242 successor.
2243- Dependence is transitive.
2244
2245Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2246with the additional affect that any instruction which has a *dependence*
2247on a poison value has undefined behavior.
2248
2249Here are some examples:
2250
2251.. code-block:: llvm
2252
2253 entry:
2254 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2255 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2256 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2257 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2258
2259 store i32 %poison, i32* @g ; Poison value stored to memory.
2260 %poison2 = load i32* @g ; Poison value loaded back from memory.
2261
2262 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2263
2264 %narrowaddr = bitcast i32* @g to i16*
2265 %wideaddr = bitcast i32* @g to i64*
2266 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2267 %poison4 = load i64* %wideaddr ; Returns a poison value.
2268
2269 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2270 br i1 %cmp, label %true, label %end ; Branch to either destination.
2271
2272 true:
2273 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2274 ; it has undefined behavior.
2275 br label %end
2276
2277 end:
2278 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2279 ; Both edges into this PHI are
2280 ; control-dependent on %cmp, so this
2281 ; always results in a poison value.
2282
2283 store volatile i32 0, i32* @g ; This would depend on the store in %true
2284 ; if %cmp is true, or the store in %entry
2285 ; otherwise, so this is undefined behavior.
2286
2287 br i1 %cmp, label %second_true, label %second_end
2288 ; The same branch again, but this time the
2289 ; true block doesn't have side effects.
2290
2291 second_true:
2292 ; No side effects!
2293 ret void
2294
2295 second_end:
2296 store volatile i32 0, i32* @g ; This time, the instruction always depends
2297 ; on the store in %end. Also, it is
2298 ; control-equivalent to %end, so this is
2299 ; well-defined (ignoring earlier undefined
2300 ; behavior in this example).
2301
2302.. _blockaddress:
2303
2304Addresses of Basic Blocks
2305-------------------------
2306
2307``blockaddress(@function, %block)``
2308
2309The '``blockaddress``' constant computes the address of the specified
2310basic block in the specified function, and always has an ``i8*`` type.
2311Taking the address of the entry block is illegal.
2312
2313This value only has defined behavior when used as an operand to the
2314':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2315against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002316undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002317no label is equal to the null pointer. This may be passed around as an
2318opaque pointer sized value as long as the bits are not inspected. This
2319allows ``ptrtoint`` and arithmetic to be performed on these values so
2320long as the original value is reconstituted before the ``indirectbr``
2321instruction.
2322
2323Finally, some targets may provide defined semantics when using the value
2324as the operand to an inline assembly, but that is target specific.
2325
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002326.. _constantexprs:
2327
Sean Silvab084af42012-12-07 10:36:55 +00002328Constant Expressions
2329--------------------
2330
2331Constant expressions are used to allow expressions involving other
2332constants to be used as constants. Constant expressions may be of any
2333:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2334that does not have side effects (e.g. load and call are not supported).
2335The following is the syntax for constant expressions:
2336
2337``trunc (CST to TYPE)``
2338 Truncate a constant to another type. The bit size of CST must be
2339 larger than the bit size of TYPE. Both types must be integers.
2340``zext (CST to TYPE)``
2341 Zero extend a constant to another type. The bit size of CST must be
2342 smaller than the bit size of TYPE. Both types must be integers.
2343``sext (CST to TYPE)``
2344 Sign extend a constant to another type. The bit size of CST must be
2345 smaller than the bit size of TYPE. Both types must be integers.
2346``fptrunc (CST to TYPE)``
2347 Truncate a floating point constant to another floating point type.
2348 The size of CST must be larger than the size of TYPE. Both types
2349 must be floating point.
2350``fpext (CST to TYPE)``
2351 Floating point extend a constant to another type. The size of CST
2352 must be smaller or equal to the size of TYPE. Both types must be
2353 floating point.
2354``fptoui (CST to TYPE)``
2355 Convert a floating point constant to the corresponding unsigned
2356 integer constant. TYPE must be a scalar or vector integer type. CST
2357 must be of scalar or vector floating point type. Both CST and TYPE
2358 must be scalars, or vectors of the same number of elements. If the
2359 value won't fit in the integer type, the results are undefined.
2360``fptosi (CST to TYPE)``
2361 Convert a floating point constant to the corresponding signed
2362 integer constant. TYPE must be a scalar or vector integer type. CST
2363 must be of scalar or vector floating point type. Both CST and TYPE
2364 must be scalars, or vectors of the same number of elements. If the
2365 value won't fit in the integer type, the results are undefined.
2366``uitofp (CST to TYPE)``
2367 Convert an unsigned integer constant to the corresponding floating
2368 point constant. TYPE must be a scalar or vector floating point type.
2369 CST must be of scalar or vector integer type. Both CST and TYPE must
2370 be scalars, or vectors of the same number of elements. If the value
2371 won't fit in the floating point type, the results are undefined.
2372``sitofp (CST to TYPE)``
2373 Convert a signed integer constant to the corresponding floating
2374 point constant. TYPE must be a scalar or vector floating point type.
2375 CST must be of scalar or vector integer type. Both CST and TYPE must
2376 be scalars, or vectors of the same number of elements. If the value
2377 won't fit in the floating point type, the results are undefined.
2378``ptrtoint (CST to TYPE)``
2379 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002380 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002381 pointer type. The ``CST`` value is zero extended, truncated, or
2382 unchanged to make it fit in ``TYPE``.
2383``inttoptr (CST to TYPE)``
2384 Convert an integer constant to a pointer constant. TYPE must be a
2385 pointer type. CST must be of integer type. The CST value is zero
2386 extended, truncated, or unchanged to make it fit in a pointer size.
2387 This one is *really* dangerous!
2388``bitcast (CST to TYPE)``
2389 Convert a constant, CST, to another TYPE. The constraints of the
2390 operands are the same as those for the :ref:`bitcast
2391 instruction <i_bitcast>`.
2392``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2393 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2394 constants. As with the :ref:`getelementptr <i_getelementptr>`
2395 instruction, the index list may have zero or more indexes, which are
2396 required to make sense for the type of "CSTPTR".
2397``select (COND, VAL1, VAL2)``
2398 Perform the :ref:`select operation <i_select>` on constants.
2399``icmp COND (VAL1, VAL2)``
2400 Performs the :ref:`icmp operation <i_icmp>` on constants.
2401``fcmp COND (VAL1, VAL2)``
2402 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2403``extractelement (VAL, IDX)``
2404 Perform the :ref:`extractelement operation <i_extractelement>` on
2405 constants.
2406``insertelement (VAL, ELT, IDX)``
2407 Perform the :ref:`insertelement operation <i_insertelement>` on
2408 constants.
2409``shufflevector (VEC1, VEC2, IDXMASK)``
2410 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2411 constants.
2412``extractvalue (VAL, IDX0, IDX1, ...)``
2413 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2414 constants. The index list is interpreted in a similar manner as
2415 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2416 least one index value must be specified.
2417``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2418 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2419 The index list is interpreted in a similar manner as indices in a
2420 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2421 value must be specified.
2422``OPCODE (LHS, RHS)``
2423 Perform the specified operation of the LHS and RHS constants. OPCODE
2424 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2425 binary <bitwiseops>` operations. The constraints on operands are
2426 the same as those for the corresponding instruction (e.g. no bitwise
2427 operations on floating point values are allowed).
2428
2429Other Values
2430============
2431
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002432.. _inlineasmexprs:
2433
Sean Silvab084af42012-12-07 10:36:55 +00002434Inline Assembler Expressions
2435----------------------------
2436
2437LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2438Inline Assembly <moduleasm>`) through the use of a special value. This
2439value represents the inline assembler as a string (containing the
2440instructions to emit), a list of operand constraints (stored as a
2441string), a flag that indicates whether or not the inline asm expression
2442has side effects, and a flag indicating whether the function containing
2443the asm needs to align its stack conservatively. An example inline
2444assembler expression is:
2445
2446.. code-block:: llvm
2447
2448 i32 (i32) asm "bswap $0", "=r,r"
2449
2450Inline assembler expressions may **only** be used as the callee operand
2451of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2452Thus, typically we have:
2453
2454.. code-block:: llvm
2455
2456 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2457
2458Inline asms with side effects not visible in the constraint list must be
2459marked as having side effects. This is done through the use of the
2460'``sideeffect``' keyword, like so:
2461
2462.. code-block:: llvm
2463
2464 call void asm sideeffect "eieio", ""()
2465
2466In some cases inline asms will contain code that will not work unless
2467the stack is aligned in some way, such as calls or SSE instructions on
2468x86, yet will not contain code that does that alignment within the asm.
2469The compiler should make conservative assumptions about what the asm
2470might contain and should generate its usual stack alignment code in the
2471prologue if the '``alignstack``' keyword is present:
2472
2473.. code-block:: llvm
2474
2475 call void asm alignstack "eieio", ""()
2476
2477Inline asms also support using non-standard assembly dialects. The
2478assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2479the inline asm is using the Intel dialect. Currently, ATT and Intel are
2480the only supported dialects. An example is:
2481
2482.. code-block:: llvm
2483
2484 call void asm inteldialect "eieio", ""()
2485
2486If multiple keywords appear the '``sideeffect``' keyword must come
2487first, the '``alignstack``' keyword second and the '``inteldialect``'
2488keyword last.
2489
2490Inline Asm Metadata
2491^^^^^^^^^^^^^^^^^^^
2492
2493The call instructions that wrap inline asm nodes may have a
2494"``!srcloc``" MDNode attached to it that contains a list of constant
2495integers. If present, the code generator will use the integer as the
2496location cookie value when report errors through the ``LLVMContext``
2497error reporting mechanisms. This allows a front-end to correlate backend
2498errors that occur with inline asm back to the source code that produced
2499it. For example:
2500
2501.. code-block:: llvm
2502
2503 call void asm sideeffect "something bad", ""(), !srcloc !42
2504 ...
2505 !42 = !{ i32 1234567 }
2506
2507It is up to the front-end to make sense of the magic numbers it places
2508in the IR. If the MDNode contains multiple constants, the code generator
2509will use the one that corresponds to the line of the asm that the error
2510occurs on.
2511
2512.. _metadata:
2513
2514Metadata Nodes and Metadata Strings
2515-----------------------------------
2516
2517LLVM IR allows metadata to be attached to instructions in the program
2518that can convey extra information about the code to the optimizers and
2519code generator. One example application of metadata is source-level
2520debug information. There are two metadata primitives: strings and nodes.
2521All metadata has the ``metadata`` type and is identified in syntax by a
2522preceding exclamation point ('``!``').
2523
2524A metadata string is a string surrounded by double quotes. It can
2525contain any character by escaping non-printable characters with
2526"``\xx``" where "``xx``" is the two digit hex code. For example:
2527"``!"test\00"``".
2528
2529Metadata nodes are represented with notation similar to structure
2530constants (a comma separated list of elements, surrounded by braces and
2531preceded by an exclamation point). Metadata nodes can have any values as
2532their operand. For example:
2533
2534.. code-block:: llvm
2535
2536 !{ metadata !"test\00", i32 10}
2537
2538A :ref:`named metadata <namedmetadatastructure>` is a collection of
2539metadata nodes, which can be looked up in the module symbol table. For
2540example:
2541
2542.. code-block:: llvm
2543
2544 !foo = metadata !{!4, !3}
2545
2546Metadata can be used as function arguments. Here ``llvm.dbg.value``
2547function is using two metadata arguments:
2548
2549.. code-block:: llvm
2550
2551 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2552
2553Metadata can be attached with an instruction. Here metadata ``!21`` is
2554attached to the ``add`` instruction using the ``!dbg`` identifier:
2555
2556.. code-block:: llvm
2557
2558 %indvar.next = add i64 %indvar, 1, !dbg !21
2559
2560More information about specific metadata nodes recognized by the
2561optimizers and code generator is found below.
2562
2563'``tbaa``' Metadata
2564^^^^^^^^^^^^^^^^^^^
2565
2566In LLVM IR, memory does not have types, so LLVM's own type system is not
2567suitable for doing TBAA. Instead, metadata is added to the IR to
2568describe a type system of a higher level language. This can be used to
2569implement typical C/C++ TBAA, but it can also be used to implement
2570custom alias analysis behavior for other languages.
2571
2572The current metadata format is very simple. TBAA metadata nodes have up
2573to three fields, e.g.:
2574
2575.. code-block:: llvm
2576
2577 !0 = metadata !{ metadata !"an example type tree" }
2578 !1 = metadata !{ metadata !"int", metadata !0 }
2579 !2 = metadata !{ metadata !"float", metadata !0 }
2580 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2581
2582The first field is an identity field. It can be any value, usually a
2583metadata string, which uniquely identifies the type. The most important
2584name in the tree is the name of the root node. Two trees with different
2585root node names are entirely disjoint, even if they have leaves with
2586common names.
2587
2588The second field identifies the type's parent node in the tree, or is
2589null or omitted for a root node. A type is considered to alias all of
2590its descendants and all of its ancestors in the tree. Also, a type is
2591considered to alias all types in other trees, so that bitcode produced
2592from multiple front-ends is handled conservatively.
2593
2594If the third field is present, it's an integer which if equal to 1
2595indicates that the type is "constant" (meaning
2596``pointsToConstantMemory`` should return true; see `other useful
2597AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2598
2599'``tbaa.struct``' Metadata
2600^^^^^^^^^^^^^^^^^^^^^^^^^^
2601
2602The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2603aggregate assignment operations in C and similar languages, however it
2604is defined to copy a contiguous region of memory, which is more than
2605strictly necessary for aggregate types which contain holes due to
2606padding. Also, it doesn't contain any TBAA information about the fields
2607of the aggregate.
2608
2609``!tbaa.struct`` metadata can describe which memory subregions in a
2610memcpy are padding and what the TBAA tags of the struct are.
2611
2612The current metadata format is very simple. ``!tbaa.struct`` metadata
2613nodes are a list of operands which are in conceptual groups of three.
2614For each group of three, the first operand gives the byte offset of a
2615field in bytes, the second gives its size in bytes, and the third gives
2616its tbaa tag. e.g.:
2617
2618.. code-block:: llvm
2619
2620 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2621
2622This describes a struct with two fields. The first is at offset 0 bytes
2623with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2624and has size 4 bytes and has tbaa tag !2.
2625
2626Note that the fields need not be contiguous. In this example, there is a
26274 byte gap between the two fields. This gap represents padding which
2628does not carry useful data and need not be preserved.
2629
2630'``fpmath``' Metadata
2631^^^^^^^^^^^^^^^^^^^^^
2632
2633``fpmath`` metadata may be attached to any instruction of floating point
2634type. It can be used to express the maximum acceptable error in the
2635result of that instruction, in ULPs, thus potentially allowing the
2636compiler to use a more efficient but less accurate method of computing
2637it. ULP is defined as follows:
2638
2639 If ``x`` is a real number that lies between two finite consecutive
2640 floating-point numbers ``a`` and ``b``, without being equal to one
2641 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2642 distance between the two non-equal finite floating-point numbers
2643 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2644
2645The metadata node shall consist of a single positive floating point
2646number representing the maximum relative error, for example:
2647
2648.. code-block:: llvm
2649
2650 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2651
2652'``range``' Metadata
2653^^^^^^^^^^^^^^^^^^^^
2654
2655``range`` metadata may be attached only to loads of integer types. It
2656expresses the possible ranges the loaded value is in. The ranges are
2657represented with a flattened list of integers. The loaded value is known
2658to be in the union of the ranges defined by each consecutive pair. Each
2659pair has the following properties:
2660
2661- The type must match the type loaded by the instruction.
2662- The pair ``a,b`` represents the range ``[a,b)``.
2663- Both ``a`` and ``b`` are constants.
2664- The range is allowed to wrap.
2665- The range should not represent the full or empty set. That is,
2666 ``a!=b``.
2667
2668In addition, the pairs must be in signed order of the lower bound and
2669they must be non-contiguous.
2670
2671Examples:
2672
2673.. code-block:: llvm
2674
2675 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2676 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2677 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2678 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2679 ...
2680 !0 = metadata !{ i8 0, i8 2 }
2681 !1 = metadata !{ i8 255, i8 2 }
2682 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2683 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2684
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002685'``llvm.loop``'
2686^^^^^^^^^^^^^^^
2687
2688It is sometimes useful to attach information to loop constructs. Currently,
2689loop metadata is implemented as metadata attached to the branch instruction
2690in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002691guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002692specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002693
2694The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002695itself to avoid merging it with any other identifier metadata, e.g.,
2696during module linkage or function inlining. That is, each loop should refer
2697to their own identification metadata even if they reside in separate functions.
2698The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002699constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002700
2701.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002702
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002703 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002704 !1 = metadata !{ metadata !1 }
2705
Paul Redmond5fdf8362013-05-28 20:00:34 +00002706The loop identifier metadata can be used to specify additional per-loop
2707metadata. Any operands after the first operand can be treated as user-defined
2708metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2709by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002710
Paul Redmond5fdf8362013-05-28 20:00:34 +00002711.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002712
Paul Redmond5fdf8362013-05-28 20:00:34 +00002713 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2714 ...
2715 !0 = metadata !{ metadata !0, metadata !1 }
2716 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002717
2718'``llvm.mem``'
2719^^^^^^^^^^^^^^^
2720
2721Metadata types used to annotate memory accesses with information helpful
2722for optimizations are prefixed with ``llvm.mem``.
2723
2724'``llvm.mem.parallel_loop_access``' Metadata
2725^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2726
2727For a loop to be parallel, in addition to using
Paul Redmond5fdf8362013-05-28 20:00:34 +00002728the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002729also all of the memory accessing instructions in the loop body need to be
2730marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2731is at least one memory accessing instruction not marked with the metadata,
Paul Redmond5fdf8362013-05-28 20:00:34 +00002732the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002733converted to sequential loops due to optimization passes that are unaware of
2734the parallel semantics and that insert new memory instructions to the loop
2735body.
2736
2737Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002738both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002739metadata types that refer to the same loop identifier metadata.
2740
2741.. code-block:: llvm
2742
2743 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002744 ...
2745 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2746 ...
2747 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2748 ...
2749 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002750
2751 for.end:
2752 ...
2753 !0 = metadata !{ metadata !0 }
2754
2755It is also possible to have nested parallel loops. In that case the
2756memory accesses refer to a list of loop identifier metadata nodes instead of
2757the loop identifier metadata node directly:
2758
2759.. code-block:: llvm
2760
2761 outer.for.body:
2762 ...
2763
2764 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002765 ...
2766 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2767 ...
2768 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2769 ...
2770 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002771
2772 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002773 ...
2774 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2775 ...
2776 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2777 ...
2778 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002779
2780 outer.for.end: ; preds = %for.body
2781 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002782 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2783 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2784 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002785
Paul Redmond5fdf8362013-05-28 20:00:34 +00002786'``llvm.vectorizer``'
2787^^^^^^^^^^^^^^^^^^^^^
2788
2789Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2790vectorization parameters such as vectorization factor and unroll factor.
2791
2792``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2793loop identification metadata.
2794
2795'``llvm.vectorizer.unroll``' Metadata
2796^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2797
2798This metadata instructs the loop vectorizer to unroll the specified
2799loop exactly ``N`` times.
2800
2801The first operand is the string ``llvm.vectorizer.unroll`` and the second
2802operand is an integer specifying the unroll factor. For example:
2803
2804.. code-block:: llvm
2805
2806 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2807
2808Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2809loop.
2810
2811If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2812determined automatically.
2813
2814'``llvm.vectorizer.width``' Metadata
2815^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2816
Paul Redmondeccbb322013-05-30 17:22:46 +00002817This metadata sets the target width of the vectorizer to ``N``. Without
2818this metadata, the vectorizer will choose a width automatically.
2819Regardless of this metadata, the vectorizer will only vectorize loops if
2820it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002821
2822The first operand is the string ``llvm.vectorizer.width`` and the second
2823operand is an integer specifying the width. For example:
2824
2825.. code-block:: llvm
2826
2827 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2828
2829Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2830loop.
2831
2832If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2833automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002834
Sean Silvab084af42012-12-07 10:36:55 +00002835Module Flags Metadata
2836=====================
2837
2838Information about the module as a whole is difficult to convey to LLVM's
2839subsystems. The LLVM IR isn't sufficient to transmit this information.
2840The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002841this. These flags are in the form of key / value pairs --- much like a
2842dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002843look it up.
2844
2845The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2846Each triplet has the following form:
2847
2848- The first element is a *behavior* flag, which specifies the behavior
2849 when two (or more) modules are merged together, and it encounters two
2850 (or more) metadata with the same ID. The supported behaviors are
2851 described below.
2852- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002853 metadata. Each module may only have one flag entry for each unique ID (not
2854 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002855- The third element is the value of the flag.
2856
2857When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002858``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2859each unique metadata ID string, there will be exactly one entry in the merged
2860modules ``llvm.module.flags`` metadata table, and the value for that entry will
2861be determined by the merge behavior flag, as described below. The only exception
2862is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002863
2864The following behaviors are supported:
2865
2866.. list-table::
2867 :header-rows: 1
2868 :widths: 10 90
2869
2870 * - Value
2871 - Behavior
2872
2873 * - 1
2874 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002875 Emits an error if two values disagree, otherwise the resulting value
2876 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002877
2878 * - 2
2879 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002880 Emits a warning if two values disagree. The result value will be the
2881 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002882
2883 * - 3
2884 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002885 Adds a requirement that another module flag be present and have a
2886 specified value after linking is performed. The value must be a
2887 metadata pair, where the first element of the pair is the ID of the
2888 module flag to be restricted, and the second element of the pair is
2889 the value the module flag should be restricted to. This behavior can
2890 be used to restrict the allowable results (via triggering of an
2891 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002892
2893 * - 4
2894 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002895 Uses the specified value, regardless of the behavior or value of the
2896 other module. If both modules specify **Override**, but the values
2897 differ, an error will be emitted.
2898
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002899 * - 5
2900 - **Append**
2901 Appends the two values, which are required to be metadata nodes.
2902
2903 * - 6
2904 - **AppendUnique**
2905 Appends the two values, which are required to be metadata
2906 nodes. However, duplicate entries in the second list are dropped
2907 during the append operation.
2908
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002909It is an error for a particular unique flag ID to have multiple behaviors,
2910except in the case of **Require** (which adds restrictions on another metadata
2911value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002912
2913An example of module flags:
2914
2915.. code-block:: llvm
2916
2917 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2918 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2919 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2920 !3 = metadata !{ i32 3, metadata !"qux",
2921 metadata !{
2922 metadata !"foo", i32 1
2923 }
2924 }
2925 !llvm.module.flags = !{ !0, !1, !2, !3 }
2926
2927- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2928 if two or more ``!"foo"`` flags are seen is to emit an error if their
2929 values are not equal.
2930
2931- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2932 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002933 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002934
2935- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2936 behavior if two or more ``!"qux"`` flags are seen is to emit a
2937 warning if their values are not equal.
2938
2939- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2940
2941 ::
2942
2943 metadata !{ metadata !"foo", i32 1 }
2944
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002945 The behavior is to emit an error if the ``llvm.module.flags`` does not
2946 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2947 performed.
Sean Silvab084af42012-12-07 10:36:55 +00002948
2949Objective-C Garbage Collection Module Flags Metadata
2950----------------------------------------------------
2951
2952On the Mach-O platform, Objective-C stores metadata about garbage
2953collection in a special section called "image info". The metadata
2954consists of a version number and a bitmask specifying what types of
2955garbage collection are supported (if any) by the file. If two or more
2956modules are linked together their garbage collection metadata needs to
2957be merged rather than appended together.
2958
2959The Objective-C garbage collection module flags metadata consists of the
2960following key-value pairs:
2961
2962.. list-table::
2963 :header-rows: 1
2964 :widths: 30 70
2965
2966 * - Key
2967 - Value
2968
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002969 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002970 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00002971
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002972 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002973 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00002974 always 0.
2975
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002976 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002977 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00002978 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2979 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2980 Objective-C ABI version 2.
2981
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002982 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002983 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00002984 not. Valid values are 0, for no garbage collection, and 2, for garbage
2985 collection supported.
2986
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002987 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002988 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00002989 If present, its value must be 6. This flag requires that the
2990 ``Objective-C Garbage Collection`` flag have the value 2.
2991
2992Some important flag interactions:
2993
2994- If a module with ``Objective-C Garbage Collection`` set to 0 is
2995 merged with a module with ``Objective-C Garbage Collection`` set to
2996 2, then the resulting module has the
2997 ``Objective-C Garbage Collection`` flag set to 0.
2998- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2999 merged with a module with ``Objective-C GC Only`` set to 6.
3000
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003001Automatic Linker Flags Module Flags Metadata
3002--------------------------------------------
3003
3004Some targets support embedding flags to the linker inside individual object
3005files. Typically this is used in conjunction with language extensions which
3006allow source files to explicitly declare the libraries they depend on, and have
3007these automatically be transmitted to the linker via object files.
3008
3009These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003010using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003011to be ``AppendUnique``, and the value for the key is expected to be a metadata
3012node which should be a list of other metadata nodes, each of which should be a
3013list of metadata strings defining linker options.
3014
3015For example, the following metadata section specifies two separate sets of
3016linker options, presumably to link against ``libz`` and the ``Cocoa``
3017framework::
3018
Michael Liaoa7699082013-03-06 18:24:34 +00003019 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003020 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003021 metadata !{ metadata !"-lz" },
3022 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003023 !llvm.module.flags = !{ !0 }
3024
3025The metadata encoding as lists of lists of options, as opposed to a collapsed
3026list of options, is chosen so that the IR encoding can use multiple option
3027strings to specify e.g., a single library, while still having that specifier be
3028preserved as an atomic element that can be recognized by a target specific
3029assembly writer or object file emitter.
3030
3031Each individual option is required to be either a valid option for the target's
3032linker, or an option that is reserved by the target specific assembly writer or
3033object file emitter. No other aspect of these options is defined by the IR.
3034
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003035.. _intrinsicglobalvariables:
3036
Sean Silvab084af42012-12-07 10:36:55 +00003037Intrinsic Global Variables
3038==========================
3039
3040LLVM has a number of "magic" global variables that contain data that
3041affect code generation or other IR semantics. These are documented here.
3042All globals of this sort should have a section specified as
3043"``llvm.metadata``". This section and all globals that start with
3044"``llvm.``" are reserved for use by LLVM.
3045
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003046.. _gv_llvmused:
3047
Sean Silvab084af42012-12-07 10:36:55 +00003048The '``llvm.used``' Global Variable
3049-----------------------------------
3050
Rafael Espindola74f2e462013-04-22 14:58:02 +00003051The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003052:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003053pointers to named global variables, functions and aliases which may optionally
3054have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003055use of it is:
3056
3057.. code-block:: llvm
3058
3059 @X = global i8 4
3060 @Y = global i32 123
3061
3062 @llvm.used = appending global [2 x i8*] [
3063 i8* @X,
3064 i8* bitcast (i32* @Y to i8*)
3065 ], section "llvm.metadata"
3066
Rafael Espindola74f2e462013-04-22 14:58:02 +00003067If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3068and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003069symbol that it cannot see (which is why they have to be named). For example, if
3070a variable has internal linkage and no references other than that from the
3071``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3072references from inline asms and other things the compiler cannot "see", and
3073corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003074
3075On some targets, the code generator must emit a directive to the
3076assembler or object file to prevent the assembler and linker from
3077molesting the symbol.
3078
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003079.. _gv_llvmcompilerused:
3080
Sean Silvab084af42012-12-07 10:36:55 +00003081The '``llvm.compiler.used``' Global Variable
3082--------------------------------------------
3083
3084The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3085directive, except that it only prevents the compiler from touching the
3086symbol. On targets that support it, this allows an intelligent linker to
3087optimize references to the symbol without being impeded as it would be
3088by ``@llvm.used``.
3089
3090This is a rare construct that should only be used in rare circumstances,
3091and should not be exposed to source languages.
3092
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003093.. _gv_llvmglobalctors:
3094
Sean Silvab084af42012-12-07 10:36:55 +00003095The '``llvm.global_ctors``' Global Variable
3096-------------------------------------------
3097
3098.. code-block:: llvm
3099
3100 %0 = type { i32, void ()* }
3101 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3102
3103The ``@llvm.global_ctors`` array contains a list of constructor
3104functions and associated priorities. The functions referenced by this
3105array will be called in ascending order of priority (i.e. lowest first)
3106when the module is loaded. The order of functions with the same priority
3107is not defined.
3108
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003109.. _llvmglobaldtors:
3110
Sean Silvab084af42012-12-07 10:36:55 +00003111The '``llvm.global_dtors``' Global Variable
3112-------------------------------------------
3113
3114.. code-block:: llvm
3115
3116 %0 = type { i32, void ()* }
3117 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3118
3119The ``@llvm.global_dtors`` array contains a list of destructor functions
3120and associated priorities. The functions referenced by this array will
3121be called in descending order of priority (i.e. highest first) when the
3122module is loaded. The order of functions with the same priority is not
3123defined.
3124
3125Instruction Reference
3126=====================
3127
3128The LLVM instruction set consists of several different classifications
3129of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3130instructions <binaryops>`, :ref:`bitwise binary
3131instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3132:ref:`other instructions <otherops>`.
3133
3134.. _terminators:
3135
3136Terminator Instructions
3137-----------------------
3138
3139As mentioned :ref:`previously <functionstructure>`, every basic block in a
3140program ends with a "Terminator" instruction, which indicates which
3141block should be executed after the current block is finished. These
3142terminator instructions typically yield a '``void``' value: they produce
3143control flow, not values (the one exception being the
3144':ref:`invoke <i_invoke>`' instruction).
3145
3146The terminator instructions are: ':ref:`ret <i_ret>`',
3147':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3148':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3149':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3150
3151.. _i_ret:
3152
3153'``ret``' Instruction
3154^^^^^^^^^^^^^^^^^^^^^
3155
3156Syntax:
3157"""""""
3158
3159::
3160
3161 ret <type> <value> ; Return a value from a non-void function
3162 ret void ; Return from void function
3163
3164Overview:
3165"""""""""
3166
3167The '``ret``' instruction is used to return control flow (and optionally
3168a value) from a function back to the caller.
3169
3170There are two forms of the '``ret``' instruction: one that returns a
3171value and then causes control flow, and one that just causes control
3172flow to occur.
3173
3174Arguments:
3175""""""""""
3176
3177The '``ret``' instruction optionally accepts a single argument, the
3178return value. The type of the return value must be a ':ref:`first
3179class <t_firstclass>`' type.
3180
3181A function is not :ref:`well formed <wellformed>` if it it has a non-void
3182return type and contains a '``ret``' instruction with no return value or
3183a return value with a type that does not match its type, or if it has a
3184void return type and contains a '``ret``' instruction with a return
3185value.
3186
3187Semantics:
3188""""""""""
3189
3190When the '``ret``' instruction is executed, control flow returns back to
3191the calling function's context. If the caller is a
3192":ref:`call <i_call>`" instruction, execution continues at the
3193instruction after the call. If the caller was an
3194":ref:`invoke <i_invoke>`" instruction, execution continues at the
3195beginning of the "normal" destination block. If the instruction returns
3196a value, that value shall set the call or invoke instruction's return
3197value.
3198
3199Example:
3200""""""""
3201
3202.. code-block:: llvm
3203
3204 ret i32 5 ; Return an integer value of 5
3205 ret void ; Return from a void function
3206 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3207
3208.. _i_br:
3209
3210'``br``' Instruction
3211^^^^^^^^^^^^^^^^^^^^
3212
3213Syntax:
3214"""""""
3215
3216::
3217
3218 br i1 <cond>, label <iftrue>, label <iffalse>
3219 br label <dest> ; Unconditional branch
3220
3221Overview:
3222"""""""""
3223
3224The '``br``' instruction is used to cause control flow to transfer to a
3225different basic block in the current function. There are two forms of
3226this instruction, corresponding to a conditional branch and an
3227unconditional branch.
3228
3229Arguments:
3230""""""""""
3231
3232The conditional branch form of the '``br``' instruction takes a single
3233'``i1``' value and two '``label``' values. The unconditional form of the
3234'``br``' instruction takes a single '``label``' value as a target.
3235
3236Semantics:
3237""""""""""
3238
3239Upon execution of a conditional '``br``' instruction, the '``i1``'
3240argument is evaluated. If the value is ``true``, control flows to the
3241'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3242to the '``iffalse``' ``label`` argument.
3243
3244Example:
3245""""""""
3246
3247.. code-block:: llvm
3248
3249 Test:
3250 %cond = icmp eq i32 %a, %b
3251 br i1 %cond, label %IfEqual, label %IfUnequal
3252 IfEqual:
3253 ret i32 1
3254 IfUnequal:
3255 ret i32 0
3256
3257.. _i_switch:
3258
3259'``switch``' Instruction
3260^^^^^^^^^^^^^^^^^^^^^^^^
3261
3262Syntax:
3263"""""""
3264
3265::
3266
3267 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3268
3269Overview:
3270"""""""""
3271
3272The '``switch``' instruction is used to transfer control flow to one of
3273several different places. It is a generalization of the '``br``'
3274instruction, allowing a branch to occur to one of many possible
3275destinations.
3276
3277Arguments:
3278""""""""""
3279
3280The '``switch``' instruction uses three parameters: an integer
3281comparison value '``value``', a default '``label``' destination, and an
3282array of pairs of comparison value constants and '``label``'s. The table
3283is not allowed to contain duplicate constant entries.
3284
3285Semantics:
3286""""""""""
3287
3288The ``switch`` instruction specifies a table of values and destinations.
3289When the '``switch``' instruction is executed, this table is searched
3290for the given value. If the value is found, control flow is transferred
3291to the corresponding destination; otherwise, control flow is transferred
3292to the default destination.
3293
3294Implementation:
3295"""""""""""""""
3296
3297Depending on properties of the target machine and the particular
3298``switch`` instruction, this instruction may be code generated in
3299different ways. For example, it could be generated as a series of
3300chained conditional branches or with a lookup table.
3301
3302Example:
3303""""""""
3304
3305.. code-block:: llvm
3306
3307 ; Emulate a conditional br instruction
3308 %Val = zext i1 %value to i32
3309 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3310
3311 ; Emulate an unconditional br instruction
3312 switch i32 0, label %dest [ ]
3313
3314 ; Implement a jump table:
3315 switch i32 %val, label %otherwise [ i32 0, label %onzero
3316 i32 1, label %onone
3317 i32 2, label %ontwo ]
3318
3319.. _i_indirectbr:
3320
3321'``indirectbr``' Instruction
3322^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3323
3324Syntax:
3325"""""""
3326
3327::
3328
3329 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3330
3331Overview:
3332"""""""""
3333
3334The '``indirectbr``' instruction implements an indirect branch to a
3335label within the current function, whose address is specified by
3336"``address``". Address must be derived from a
3337:ref:`blockaddress <blockaddress>` constant.
3338
3339Arguments:
3340""""""""""
3341
3342The '``address``' argument is the address of the label to jump to. The
3343rest of the arguments indicate the full set of possible destinations
3344that the address may point to. Blocks are allowed to occur multiple
3345times in the destination list, though this isn't particularly useful.
3346
3347This destination list is required so that dataflow analysis has an
3348accurate understanding of the CFG.
3349
3350Semantics:
3351""""""""""
3352
3353Control transfers to the block specified in the address argument. All
3354possible destination blocks must be listed in the label list, otherwise
3355this instruction has undefined behavior. This implies that jumps to
3356labels defined in other functions have undefined behavior as well.
3357
3358Implementation:
3359"""""""""""""""
3360
3361This is typically implemented with a jump through a register.
3362
3363Example:
3364""""""""
3365
3366.. code-block:: llvm
3367
3368 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3369
3370.. _i_invoke:
3371
3372'``invoke``' Instruction
3373^^^^^^^^^^^^^^^^^^^^^^^^
3374
3375Syntax:
3376"""""""
3377
3378::
3379
3380 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3381 to label <normal label> unwind label <exception label>
3382
3383Overview:
3384"""""""""
3385
3386The '``invoke``' instruction causes control to transfer to a specified
3387function, with the possibility of control flow transfer to either the
3388'``normal``' label or the '``exception``' label. If the callee function
3389returns with the "``ret``" instruction, control flow will return to the
3390"normal" label. If the callee (or any indirect callees) returns via the
3391":ref:`resume <i_resume>`" instruction or other exception handling
3392mechanism, control is interrupted and continued at the dynamically
3393nearest "exception" label.
3394
3395The '``exception``' label is a `landing
3396pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3397'``exception``' label is required to have the
3398":ref:`landingpad <i_landingpad>`" instruction, which contains the
3399information about the behavior of the program after unwinding happens,
3400as its first non-PHI instruction. The restrictions on the
3401"``landingpad``" instruction's tightly couples it to the "``invoke``"
3402instruction, so that the important information contained within the
3403"``landingpad``" instruction can't be lost through normal code motion.
3404
3405Arguments:
3406""""""""""
3407
3408This instruction requires several arguments:
3409
3410#. The optional "cconv" marker indicates which :ref:`calling
3411 convention <callingconv>` the call should use. If none is
3412 specified, the call defaults to using C calling conventions.
3413#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3414 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3415 are valid here.
3416#. '``ptr to function ty``': shall be the signature of the pointer to
3417 function value being invoked. In most cases, this is a direct
3418 function invocation, but indirect ``invoke``'s are just as possible,
3419 branching off an arbitrary pointer to function value.
3420#. '``function ptr val``': An LLVM value containing a pointer to a
3421 function to be invoked.
3422#. '``function args``': argument list whose types match the function
3423 signature argument types and parameter attributes. All arguments must
3424 be of :ref:`first class <t_firstclass>` type. If the function signature
3425 indicates the function accepts a variable number of arguments, the
3426 extra arguments can be specified.
3427#. '``normal label``': the label reached when the called function
3428 executes a '``ret``' instruction.
3429#. '``exception label``': the label reached when a callee returns via
3430 the :ref:`resume <i_resume>` instruction or other exception handling
3431 mechanism.
3432#. The optional :ref:`function attributes <fnattrs>` list. Only
3433 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3434 attributes are valid here.
3435
3436Semantics:
3437""""""""""
3438
3439This instruction is designed to operate as a standard '``call``'
3440instruction in most regards. The primary difference is that it
3441establishes an association with a label, which is used by the runtime
3442library to unwind the stack.
3443
3444This instruction is used in languages with destructors to ensure that
3445proper cleanup is performed in the case of either a ``longjmp`` or a
3446thrown exception. Additionally, this is important for implementation of
3447'``catch``' clauses in high-level languages that support them.
3448
3449For the purposes of the SSA form, the definition of the value returned
3450by the '``invoke``' instruction is deemed to occur on the edge from the
3451current block to the "normal" label. If the callee unwinds then no
3452return value is available.
3453
3454Example:
3455""""""""
3456
3457.. code-block:: llvm
3458
3459 %retval = invoke i32 @Test(i32 15) to label %Continue
3460 unwind label %TestCleanup ; {i32}:retval set
3461 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3462 unwind label %TestCleanup ; {i32}:retval set
3463
3464.. _i_resume:
3465
3466'``resume``' Instruction
3467^^^^^^^^^^^^^^^^^^^^^^^^
3468
3469Syntax:
3470"""""""
3471
3472::
3473
3474 resume <type> <value>
3475
3476Overview:
3477"""""""""
3478
3479The '``resume``' instruction is a terminator instruction that has no
3480successors.
3481
3482Arguments:
3483""""""""""
3484
3485The '``resume``' instruction requires one argument, which must have the
3486same type as the result of any '``landingpad``' instruction in the same
3487function.
3488
3489Semantics:
3490""""""""""
3491
3492The '``resume``' instruction resumes propagation of an existing
3493(in-flight) exception whose unwinding was interrupted with a
3494:ref:`landingpad <i_landingpad>` instruction.
3495
3496Example:
3497""""""""
3498
3499.. code-block:: llvm
3500
3501 resume { i8*, i32 } %exn
3502
3503.. _i_unreachable:
3504
3505'``unreachable``' Instruction
3506^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3507
3508Syntax:
3509"""""""
3510
3511::
3512
3513 unreachable
3514
3515Overview:
3516"""""""""
3517
3518The '``unreachable``' instruction has no defined semantics. This
3519instruction is used to inform the optimizer that a particular portion of
3520the code is not reachable. This can be used to indicate that the code
3521after a no-return function cannot be reached, and other facts.
3522
3523Semantics:
3524""""""""""
3525
3526The '``unreachable``' instruction has no defined semantics.
3527
3528.. _binaryops:
3529
3530Binary Operations
3531-----------------
3532
3533Binary operators are used to do most of the computation in a program.
3534They require two operands of the same type, execute an operation on
3535them, and produce a single value. The operands might represent multiple
3536data, as is the case with the :ref:`vector <t_vector>` data type. The
3537result value has the same type as its operands.
3538
3539There are several different binary operators:
3540
3541.. _i_add:
3542
3543'``add``' Instruction
3544^^^^^^^^^^^^^^^^^^^^^
3545
3546Syntax:
3547"""""""
3548
3549::
3550
3551 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3552 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3553 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3554 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3555
3556Overview:
3557"""""""""
3558
3559The '``add``' instruction returns the sum of its two operands.
3560
3561Arguments:
3562""""""""""
3563
3564The two arguments to the '``add``' instruction must be
3565:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3566arguments must have identical types.
3567
3568Semantics:
3569""""""""""
3570
3571The value produced is the integer sum of the two operands.
3572
3573If the sum has unsigned overflow, the result returned is the
3574mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3575the result.
3576
3577Because LLVM integers use a two's complement representation, this
3578instruction is appropriate for both signed and unsigned integers.
3579
3580``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3581respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3582result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3583unsigned and/or signed overflow, respectively, occurs.
3584
3585Example:
3586""""""""
3587
3588.. code-block:: llvm
3589
3590 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3591
3592.. _i_fadd:
3593
3594'``fadd``' Instruction
3595^^^^^^^^^^^^^^^^^^^^^^
3596
3597Syntax:
3598"""""""
3599
3600::
3601
3602 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3603
3604Overview:
3605"""""""""
3606
3607The '``fadd``' instruction returns the sum of its two operands.
3608
3609Arguments:
3610""""""""""
3611
3612The two arguments to the '``fadd``' instruction must be :ref:`floating
3613point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3614Both arguments must have identical types.
3615
3616Semantics:
3617""""""""""
3618
3619The value produced is the floating point sum of the two operands. This
3620instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3621which are optimization hints to enable otherwise unsafe floating point
3622optimizations:
3623
3624Example:
3625""""""""
3626
3627.. code-block:: llvm
3628
3629 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3630
3631'``sub``' Instruction
3632^^^^^^^^^^^^^^^^^^^^^
3633
3634Syntax:
3635"""""""
3636
3637::
3638
3639 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3640 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3641 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3642 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3643
3644Overview:
3645"""""""""
3646
3647The '``sub``' instruction returns the difference of its two operands.
3648
3649Note that the '``sub``' instruction is used to represent the '``neg``'
3650instruction present in most other intermediate representations.
3651
3652Arguments:
3653""""""""""
3654
3655The two arguments to the '``sub``' instruction must be
3656:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3657arguments must have identical types.
3658
3659Semantics:
3660""""""""""
3661
3662The value produced is the integer difference of the two operands.
3663
3664If the difference has unsigned overflow, the result returned is the
3665mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3666the result.
3667
3668Because LLVM integers use a two's complement representation, this
3669instruction is appropriate for both signed and unsigned integers.
3670
3671``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3672respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3673result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3674unsigned and/or signed overflow, respectively, occurs.
3675
3676Example:
3677""""""""
3678
3679.. code-block:: llvm
3680
3681 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3682 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3683
3684.. _i_fsub:
3685
3686'``fsub``' Instruction
3687^^^^^^^^^^^^^^^^^^^^^^
3688
3689Syntax:
3690"""""""
3691
3692::
3693
3694 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3695
3696Overview:
3697"""""""""
3698
3699The '``fsub``' instruction returns the difference of its two operands.
3700
3701Note that the '``fsub``' instruction is used to represent the '``fneg``'
3702instruction present in most other intermediate representations.
3703
3704Arguments:
3705""""""""""
3706
3707The two arguments to the '``fsub``' instruction must be :ref:`floating
3708point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3709Both arguments must have identical types.
3710
3711Semantics:
3712""""""""""
3713
3714The value produced is the floating point difference of the two operands.
3715This instruction can also take any number of :ref:`fast-math
3716flags <fastmath>`, which are optimization hints to enable otherwise
3717unsafe floating point optimizations:
3718
3719Example:
3720""""""""
3721
3722.. code-block:: llvm
3723
3724 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3725 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3726
3727'``mul``' Instruction
3728^^^^^^^^^^^^^^^^^^^^^
3729
3730Syntax:
3731"""""""
3732
3733::
3734
3735 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3736 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3737 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3738 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3739
3740Overview:
3741"""""""""
3742
3743The '``mul``' instruction returns the product of its two operands.
3744
3745Arguments:
3746""""""""""
3747
3748The two arguments to the '``mul``' instruction must be
3749:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3750arguments must have identical types.
3751
3752Semantics:
3753""""""""""
3754
3755The value produced is the integer product of the two operands.
3756
3757If the result of the multiplication has unsigned overflow, the result
3758returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3759bit width of the result.
3760
3761Because LLVM integers use a two's complement representation, and the
3762result is the same width as the operands, this instruction returns the
3763correct result for both signed and unsigned integers. If a full product
3764(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3765sign-extended or zero-extended as appropriate to the width of the full
3766product.
3767
3768``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3769respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3770result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3771unsigned and/or signed overflow, respectively, occurs.
3772
3773Example:
3774""""""""
3775
3776.. code-block:: llvm
3777
3778 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3779
3780.. _i_fmul:
3781
3782'``fmul``' Instruction
3783^^^^^^^^^^^^^^^^^^^^^^
3784
3785Syntax:
3786"""""""
3787
3788::
3789
3790 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3791
3792Overview:
3793"""""""""
3794
3795The '``fmul``' instruction returns the product of its two operands.
3796
3797Arguments:
3798""""""""""
3799
3800The two arguments to the '``fmul``' instruction must be :ref:`floating
3801point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3802Both arguments must have identical types.
3803
3804Semantics:
3805""""""""""
3806
3807The value produced is the floating point product of the two operands.
3808This instruction can also take any number of :ref:`fast-math
3809flags <fastmath>`, which are optimization hints to enable otherwise
3810unsafe floating point optimizations:
3811
3812Example:
3813""""""""
3814
3815.. code-block:: llvm
3816
3817 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3818
3819'``udiv``' Instruction
3820^^^^^^^^^^^^^^^^^^^^^^
3821
3822Syntax:
3823"""""""
3824
3825::
3826
3827 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3828 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3829
3830Overview:
3831"""""""""
3832
3833The '``udiv``' instruction returns the quotient of its two operands.
3834
3835Arguments:
3836""""""""""
3837
3838The two arguments to the '``udiv``' instruction must be
3839:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3840arguments must have identical types.
3841
3842Semantics:
3843""""""""""
3844
3845The value produced is the unsigned integer quotient of the two operands.
3846
3847Note that unsigned integer division and signed integer division are
3848distinct operations; for signed integer division, use '``sdiv``'.
3849
3850Division by zero leads to undefined behavior.
3851
3852If the ``exact`` keyword is present, the result value of the ``udiv`` is
3853a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3854such, "((a udiv exact b) mul b) == a").
3855
3856Example:
3857""""""""
3858
3859.. code-block:: llvm
3860
3861 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3862
3863'``sdiv``' Instruction
3864^^^^^^^^^^^^^^^^^^^^^^
3865
3866Syntax:
3867"""""""
3868
3869::
3870
3871 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3872 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3873
3874Overview:
3875"""""""""
3876
3877The '``sdiv``' instruction returns the quotient of its two operands.
3878
3879Arguments:
3880""""""""""
3881
3882The two arguments to the '``sdiv``' instruction must be
3883:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3884arguments must have identical types.
3885
3886Semantics:
3887""""""""""
3888
3889The value produced is the signed integer quotient of the two operands
3890rounded towards zero.
3891
3892Note that signed integer division and unsigned integer division are
3893distinct operations; for unsigned integer division, use '``udiv``'.
3894
3895Division by zero leads to undefined behavior. Overflow also leads to
3896undefined behavior; this is a rare case, but can occur, for example, by
3897doing a 32-bit division of -2147483648 by -1.
3898
3899If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3900a :ref:`poison value <poisonvalues>` if the result would be rounded.
3901
3902Example:
3903""""""""
3904
3905.. code-block:: llvm
3906
3907 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3908
3909.. _i_fdiv:
3910
3911'``fdiv``' Instruction
3912^^^^^^^^^^^^^^^^^^^^^^
3913
3914Syntax:
3915"""""""
3916
3917::
3918
3919 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3920
3921Overview:
3922"""""""""
3923
3924The '``fdiv``' instruction returns the quotient of its two operands.
3925
3926Arguments:
3927""""""""""
3928
3929The two arguments to the '``fdiv``' instruction must be :ref:`floating
3930point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3931Both arguments must have identical types.
3932
3933Semantics:
3934""""""""""
3935
3936The value produced is the floating point quotient of the two operands.
3937This instruction can also take any number of :ref:`fast-math
3938flags <fastmath>`, which are optimization hints to enable otherwise
3939unsafe floating point optimizations:
3940
3941Example:
3942""""""""
3943
3944.. code-block:: llvm
3945
3946 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3947
3948'``urem``' Instruction
3949^^^^^^^^^^^^^^^^^^^^^^
3950
3951Syntax:
3952"""""""
3953
3954::
3955
3956 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3957
3958Overview:
3959"""""""""
3960
3961The '``urem``' instruction returns the remainder from the unsigned
3962division of its two arguments.
3963
3964Arguments:
3965""""""""""
3966
3967The two arguments to the '``urem``' instruction must be
3968:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3969arguments must have identical types.
3970
3971Semantics:
3972""""""""""
3973
3974This instruction returns the unsigned integer *remainder* of a division.
3975This instruction always performs an unsigned division to get the
3976remainder.
3977
3978Note that unsigned integer remainder and signed integer remainder are
3979distinct operations; for signed integer remainder, use '``srem``'.
3980
3981Taking the remainder of a division by zero leads to undefined behavior.
3982
3983Example:
3984""""""""
3985
3986.. code-block:: llvm
3987
3988 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3989
3990'``srem``' Instruction
3991^^^^^^^^^^^^^^^^^^^^^^
3992
3993Syntax:
3994"""""""
3995
3996::
3997
3998 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3999
4000Overview:
4001"""""""""
4002
4003The '``srem``' instruction returns the remainder from the signed
4004division of its two operands. This instruction can also take
4005:ref:`vector <t_vector>` versions of the values in which case the elements
4006must be integers.
4007
4008Arguments:
4009""""""""""
4010
4011The two arguments to the '``srem``' instruction must be
4012:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4013arguments must have identical types.
4014
4015Semantics:
4016""""""""""
4017
4018This instruction returns the *remainder* of a division (where the result
4019is either zero or has the same sign as the dividend, ``op1``), not the
4020*modulo* operator (where the result is either zero or has the same sign
4021as the divisor, ``op2``) of a value. For more information about the
4022difference, see `The Math
4023Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4024table of how this is implemented in various languages, please see
4025`Wikipedia: modulo
4026operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4027
4028Note that signed integer remainder and unsigned integer remainder are
4029distinct operations; for unsigned integer remainder, use '``urem``'.
4030
4031Taking the remainder of a division by zero leads to undefined behavior.
4032Overflow also leads to undefined behavior; this is a rare case, but can
4033occur, for example, by taking the remainder of a 32-bit division of
4034-2147483648 by -1. (The remainder doesn't actually overflow, but this
4035rule lets srem be implemented using instructions that return both the
4036result of the division and the remainder.)
4037
4038Example:
4039""""""""
4040
4041.. code-block:: llvm
4042
4043 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4044
4045.. _i_frem:
4046
4047'``frem``' Instruction
4048^^^^^^^^^^^^^^^^^^^^^^
4049
4050Syntax:
4051"""""""
4052
4053::
4054
4055 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4056
4057Overview:
4058"""""""""
4059
4060The '``frem``' instruction returns the remainder from the division of
4061its two operands.
4062
4063Arguments:
4064""""""""""
4065
4066The two arguments to the '``frem``' instruction must be :ref:`floating
4067point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4068Both arguments must have identical types.
4069
4070Semantics:
4071""""""""""
4072
4073This instruction returns the *remainder* of a division. The remainder
4074has the same sign as the dividend. This instruction can also take any
4075number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4076to enable otherwise unsafe floating point optimizations:
4077
4078Example:
4079""""""""
4080
4081.. code-block:: llvm
4082
4083 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4084
4085.. _bitwiseops:
4086
4087Bitwise Binary Operations
4088-------------------------
4089
4090Bitwise binary operators are used to do various forms of bit-twiddling
4091in a program. They are generally very efficient instructions and can
4092commonly be strength reduced from other instructions. They require two
4093operands of the same type, execute an operation on them, and produce a
4094single value. The resulting value is the same type as its operands.
4095
4096'``shl``' Instruction
4097^^^^^^^^^^^^^^^^^^^^^
4098
4099Syntax:
4100"""""""
4101
4102::
4103
4104 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4105 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4106 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4107 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4108
4109Overview:
4110"""""""""
4111
4112The '``shl``' instruction returns the first operand shifted to the left
4113a specified number of bits.
4114
4115Arguments:
4116""""""""""
4117
4118Both arguments to the '``shl``' instruction must be the same
4119:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4120'``op2``' is treated as an unsigned value.
4121
4122Semantics:
4123""""""""""
4124
4125The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4126where ``n`` is the width of the result. If ``op2`` is (statically or
4127dynamically) negative or equal to or larger than the number of bits in
4128``op1``, the result is undefined. If the arguments are vectors, each
4129vector element of ``op1`` is shifted by the corresponding shift amount
4130in ``op2``.
4131
4132If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4133value <poisonvalues>` if it shifts out any non-zero bits. If the
4134``nsw`` keyword is present, then the shift produces a :ref:`poison
4135value <poisonvalues>` if it shifts out any bits that disagree with the
4136resultant sign bit. As such, NUW/NSW have the same semantics as they
4137would if the shift were expressed as a mul instruction with the same
4138nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4139
4140Example:
4141""""""""
4142
4143.. code-block:: llvm
4144
4145 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4146 <result> = shl i32 4, 2 ; yields {i32}: 16
4147 <result> = shl i32 1, 10 ; yields {i32}: 1024
4148 <result> = shl i32 1, 32 ; undefined
4149 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4150
4151'``lshr``' Instruction
4152^^^^^^^^^^^^^^^^^^^^^^
4153
4154Syntax:
4155"""""""
4156
4157::
4158
4159 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4160 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4161
4162Overview:
4163"""""""""
4164
4165The '``lshr``' instruction (logical shift right) returns the first
4166operand shifted to the right a specified number of bits with zero fill.
4167
4168Arguments:
4169""""""""""
4170
4171Both arguments to the '``lshr``' instruction must be the same
4172:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4173'``op2``' is treated as an unsigned value.
4174
4175Semantics:
4176""""""""""
4177
4178This instruction always performs a logical shift right operation. The
4179most significant bits of the result will be filled with zero bits after
4180the shift. If ``op2`` is (statically or dynamically) equal to or larger
4181than the number of bits in ``op1``, the result is undefined. If the
4182arguments are vectors, each vector element of ``op1`` is shifted by the
4183corresponding shift amount in ``op2``.
4184
4185If the ``exact`` keyword is present, the result value of the ``lshr`` is
4186a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4187non-zero.
4188
4189Example:
4190""""""""
4191
4192.. code-block:: llvm
4193
4194 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4195 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4196 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004197 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004198 <result> = lshr i32 1, 32 ; undefined
4199 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4200
4201'``ashr``' Instruction
4202^^^^^^^^^^^^^^^^^^^^^^
4203
4204Syntax:
4205"""""""
4206
4207::
4208
4209 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4210 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4211
4212Overview:
4213"""""""""
4214
4215The '``ashr``' instruction (arithmetic shift right) returns the first
4216operand shifted to the right a specified number of bits with sign
4217extension.
4218
4219Arguments:
4220""""""""""
4221
4222Both arguments to the '``ashr``' instruction must be the same
4223:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4224'``op2``' is treated as an unsigned value.
4225
4226Semantics:
4227""""""""""
4228
4229This instruction always performs an arithmetic shift right operation,
4230The most significant bits of the result will be filled with the sign bit
4231of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4232than the number of bits in ``op1``, the result is undefined. If the
4233arguments are vectors, each vector element of ``op1`` is shifted by the
4234corresponding shift amount in ``op2``.
4235
4236If the ``exact`` keyword is present, the result value of the ``ashr`` is
4237a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4238non-zero.
4239
4240Example:
4241""""""""
4242
4243.. code-block:: llvm
4244
4245 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4246 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4247 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4248 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4249 <result> = ashr i32 1, 32 ; undefined
4250 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4251
4252'``and``' Instruction
4253^^^^^^^^^^^^^^^^^^^^^
4254
4255Syntax:
4256"""""""
4257
4258::
4259
4260 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4261
4262Overview:
4263"""""""""
4264
4265The '``and``' instruction returns the bitwise logical and of its two
4266operands.
4267
4268Arguments:
4269""""""""""
4270
4271The two arguments to the '``and``' instruction must be
4272:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4273arguments must have identical types.
4274
4275Semantics:
4276""""""""""
4277
4278The truth table used for the '``and``' instruction is:
4279
4280+-----+-----+-----+
4281| In0 | In1 | Out |
4282+-----+-----+-----+
4283| 0 | 0 | 0 |
4284+-----+-----+-----+
4285| 0 | 1 | 0 |
4286+-----+-----+-----+
4287| 1 | 0 | 0 |
4288+-----+-----+-----+
4289| 1 | 1 | 1 |
4290+-----+-----+-----+
4291
4292Example:
4293""""""""
4294
4295.. code-block:: llvm
4296
4297 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4298 <result> = and i32 15, 40 ; yields {i32}:result = 8
4299 <result> = and i32 4, 8 ; yields {i32}:result = 0
4300
4301'``or``' Instruction
4302^^^^^^^^^^^^^^^^^^^^
4303
4304Syntax:
4305"""""""
4306
4307::
4308
4309 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4310
4311Overview:
4312"""""""""
4313
4314The '``or``' instruction returns the bitwise logical inclusive or of its
4315two operands.
4316
4317Arguments:
4318""""""""""
4319
4320The two arguments to the '``or``' instruction must be
4321:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4322arguments must have identical types.
4323
4324Semantics:
4325""""""""""
4326
4327The truth table used for the '``or``' instruction is:
4328
4329+-----+-----+-----+
4330| In0 | In1 | Out |
4331+-----+-----+-----+
4332| 0 | 0 | 0 |
4333+-----+-----+-----+
4334| 0 | 1 | 1 |
4335+-----+-----+-----+
4336| 1 | 0 | 1 |
4337+-----+-----+-----+
4338| 1 | 1 | 1 |
4339+-----+-----+-----+
4340
4341Example:
4342""""""""
4343
4344::
4345
4346 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4347 <result> = or i32 15, 40 ; yields {i32}:result = 47
4348 <result> = or i32 4, 8 ; yields {i32}:result = 12
4349
4350'``xor``' Instruction
4351^^^^^^^^^^^^^^^^^^^^^
4352
4353Syntax:
4354"""""""
4355
4356::
4357
4358 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4359
4360Overview:
4361"""""""""
4362
4363The '``xor``' instruction returns the bitwise logical exclusive or of
4364its two operands. The ``xor`` is used to implement the "one's
4365complement" operation, which is the "~" operator in C.
4366
4367Arguments:
4368""""""""""
4369
4370The two arguments to the '``xor``' instruction must be
4371:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4372arguments must have identical types.
4373
4374Semantics:
4375""""""""""
4376
4377The truth table used for the '``xor``' instruction is:
4378
4379+-----+-----+-----+
4380| In0 | In1 | Out |
4381+-----+-----+-----+
4382| 0 | 0 | 0 |
4383+-----+-----+-----+
4384| 0 | 1 | 1 |
4385+-----+-----+-----+
4386| 1 | 0 | 1 |
4387+-----+-----+-----+
4388| 1 | 1 | 0 |
4389+-----+-----+-----+
4390
4391Example:
4392""""""""
4393
4394.. code-block:: llvm
4395
4396 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4397 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4398 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4399 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4400
4401Vector Operations
4402-----------------
4403
4404LLVM supports several instructions to represent vector operations in a
4405target-independent manner. These instructions cover the element-access
4406and vector-specific operations needed to process vectors effectively.
4407While LLVM does directly support these vector operations, many
4408sophisticated algorithms will want to use target-specific intrinsics to
4409take full advantage of a specific target.
4410
4411.. _i_extractelement:
4412
4413'``extractelement``' Instruction
4414^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4415
4416Syntax:
4417"""""""
4418
4419::
4420
4421 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4422
4423Overview:
4424"""""""""
4425
4426The '``extractelement``' instruction extracts a single scalar element
4427from a vector at a specified index.
4428
4429Arguments:
4430""""""""""
4431
4432The first operand of an '``extractelement``' instruction is a value of
4433:ref:`vector <t_vector>` type. The second operand is an index indicating
4434the position from which to extract the element. The index may be a
4435variable.
4436
4437Semantics:
4438""""""""""
4439
4440The result is a scalar of the same type as the element type of ``val``.
4441Its value is the value at position ``idx`` of ``val``. If ``idx``
4442exceeds the length of ``val``, the results are undefined.
4443
4444Example:
4445""""""""
4446
4447.. code-block:: llvm
4448
4449 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4450
4451.. _i_insertelement:
4452
4453'``insertelement``' Instruction
4454^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4455
4456Syntax:
4457"""""""
4458
4459::
4460
4461 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4462
4463Overview:
4464"""""""""
4465
4466The '``insertelement``' instruction inserts a scalar element into a
4467vector at a specified index.
4468
4469Arguments:
4470""""""""""
4471
4472The first operand of an '``insertelement``' instruction is a value of
4473:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4474type must equal the element type of the first operand. The third operand
4475is an index indicating the position at which to insert the value. The
4476index may be a variable.
4477
4478Semantics:
4479""""""""""
4480
4481The result is a vector of the same type as ``val``. Its element values
4482are those of ``val`` except at position ``idx``, where it gets the value
4483``elt``. If ``idx`` exceeds the length of ``val``, the results are
4484undefined.
4485
4486Example:
4487""""""""
4488
4489.. code-block:: llvm
4490
4491 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4492
4493.. _i_shufflevector:
4494
4495'``shufflevector``' Instruction
4496^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4497
4498Syntax:
4499"""""""
4500
4501::
4502
4503 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4504
4505Overview:
4506"""""""""
4507
4508The '``shufflevector``' instruction constructs a permutation of elements
4509from two input vectors, returning a vector with the same element type as
4510the input and length that is the same as the shuffle mask.
4511
4512Arguments:
4513""""""""""
4514
4515The first two operands of a '``shufflevector``' instruction are vectors
4516with the same type. The third argument is a shuffle mask whose element
4517type is always 'i32'. The result of the instruction is a vector whose
4518length is the same as the shuffle mask and whose element type is the
4519same as the element type of the first two operands.
4520
4521The shuffle mask operand is required to be a constant vector with either
4522constant integer or undef values.
4523
4524Semantics:
4525""""""""""
4526
4527The elements of the two input vectors are numbered from left to right
4528across both of the vectors. The shuffle mask operand specifies, for each
4529element of the result vector, which element of the two input vectors the
4530result element gets. The element selector may be undef (meaning "don't
4531care") and the second operand may be undef if performing a shuffle from
4532only one vector.
4533
4534Example:
4535""""""""
4536
4537.. code-block:: llvm
4538
4539 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4540 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4541 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4542 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4543 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4544 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4545 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4546 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4547
4548Aggregate Operations
4549--------------------
4550
4551LLVM supports several instructions for working with
4552:ref:`aggregate <t_aggregate>` values.
4553
4554.. _i_extractvalue:
4555
4556'``extractvalue``' Instruction
4557^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4558
4559Syntax:
4560"""""""
4561
4562::
4563
4564 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4565
4566Overview:
4567"""""""""
4568
4569The '``extractvalue``' instruction extracts the value of a member field
4570from an :ref:`aggregate <t_aggregate>` value.
4571
4572Arguments:
4573""""""""""
4574
4575The first operand of an '``extractvalue``' instruction is a value of
4576:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4577constant indices to specify which value to extract in a similar manner
4578as indices in a '``getelementptr``' instruction.
4579
4580The major differences to ``getelementptr`` indexing are:
4581
4582- Since the value being indexed is not a pointer, the first index is
4583 omitted and assumed to be zero.
4584- At least one index must be specified.
4585- Not only struct indices but also array indices must be in bounds.
4586
4587Semantics:
4588""""""""""
4589
4590The result is the value at the position in the aggregate specified by
4591the index operands.
4592
4593Example:
4594""""""""
4595
4596.. code-block:: llvm
4597
4598 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4599
4600.. _i_insertvalue:
4601
4602'``insertvalue``' Instruction
4603^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4604
4605Syntax:
4606"""""""
4607
4608::
4609
4610 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4611
4612Overview:
4613"""""""""
4614
4615The '``insertvalue``' instruction inserts a value into a member field in
4616an :ref:`aggregate <t_aggregate>` value.
4617
4618Arguments:
4619""""""""""
4620
4621The first operand of an '``insertvalue``' instruction is a value of
4622:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4623a first-class value to insert. The following operands are constant
4624indices indicating the position at which to insert the value in a
4625similar manner as indices in a '``extractvalue``' instruction. The value
4626to insert must have the same type as the value identified by the
4627indices.
4628
4629Semantics:
4630""""""""""
4631
4632The result is an aggregate of the same type as ``val``. Its value is
4633that of ``val`` except that the value at the position specified by the
4634indices is that of ``elt``.
4635
4636Example:
4637""""""""
4638
4639.. code-block:: llvm
4640
4641 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4642 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4643 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4644
4645.. _memoryops:
4646
4647Memory Access and Addressing Operations
4648---------------------------------------
4649
4650A key design point of an SSA-based representation is how it represents
4651memory. In LLVM, no memory locations are in SSA form, which makes things
4652very simple. This section describes how to read, write, and allocate
4653memory in LLVM.
4654
4655.. _i_alloca:
4656
4657'``alloca``' Instruction
4658^^^^^^^^^^^^^^^^^^^^^^^^
4659
4660Syntax:
4661"""""""
4662
4663::
4664
4665 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4666
4667Overview:
4668"""""""""
4669
4670The '``alloca``' instruction allocates memory on the stack frame of the
4671currently executing function, to be automatically released when this
4672function returns to its caller. The object is always allocated in the
4673generic address space (address space zero).
4674
4675Arguments:
4676""""""""""
4677
4678The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4679bytes of memory on the runtime stack, returning a pointer of the
4680appropriate type to the program. If "NumElements" is specified, it is
4681the number of elements allocated, otherwise "NumElements" is defaulted
4682to be one. If a constant alignment is specified, the value result of the
4683allocation is guaranteed to be aligned to at least that boundary. If not
4684specified, or if zero, the target can choose to align the allocation on
4685any convenient boundary compatible with the type.
4686
4687'``type``' may be any sized type.
4688
4689Semantics:
4690""""""""""
4691
4692Memory is allocated; a pointer is returned. The operation is undefined
4693if there is insufficient stack space for the allocation. '``alloca``'d
4694memory is automatically released when the function returns. The
4695'``alloca``' instruction is commonly used to represent automatic
4696variables that must have an address available. When the function returns
4697(either with the ``ret`` or ``resume`` instructions), the memory is
4698reclaimed. Allocating zero bytes is legal, but the result is undefined.
4699The order in which memory is allocated (ie., which way the stack grows)
4700is not specified.
4701
4702Example:
4703""""""""
4704
4705.. code-block:: llvm
4706
4707 %ptr = alloca i32 ; yields {i32*}:ptr
4708 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4709 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4710 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4711
4712.. _i_load:
4713
4714'``load``' Instruction
4715^^^^^^^^^^^^^^^^^^^^^^
4716
4717Syntax:
4718"""""""
4719
4720::
4721
4722 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4723 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4724 !<index> = !{ i32 1 }
4725
4726Overview:
4727"""""""""
4728
4729The '``load``' instruction is used to read from memory.
4730
4731Arguments:
4732""""""""""
4733
Eli Bendersky239a78b2013-04-17 20:17:08 +00004734The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004735from which to load. The pointer must point to a :ref:`first
4736class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4737then the optimizer is not allowed to modify the number or order of
4738execution of this ``load`` with other :ref:`volatile
4739operations <volatile>`.
4740
4741If the ``load`` is marked as ``atomic``, it takes an extra
4742:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4743``release`` and ``acq_rel`` orderings are not valid on ``load``
4744instructions. Atomic loads produce :ref:`defined <memmodel>` results
4745when they may see multiple atomic stores. The type of the pointee must
4746be an integer type whose bit width is a power of two greater than or
4747equal to eight and less than or equal to a target-specific size limit.
4748``align`` must be explicitly specified on atomic loads, and the load has
4749undefined behavior if the alignment is not set to a value which is at
4750least the size in bytes of the pointee. ``!nontemporal`` does not have
4751any defined semantics for atomic loads.
4752
4753The optional constant ``align`` argument specifies the alignment of the
4754operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004755or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004756alignment for the target. It is the responsibility of the code emitter
4757to ensure that the alignment information is correct. Overestimating the
4758alignment results in undefined behavior. Underestimating the alignment
4759may produce less efficient code. An alignment of 1 is always safe.
4760
4761The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004762metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004763``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004764metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004765that this load is not expected to be reused in the cache. The code
4766generator may select special instructions to save cache bandwidth, such
4767as the ``MOVNT`` instruction on x86.
4768
4769The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004770metadata name ``<index>`` corresponding to a metadata node with no
4771entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004772instruction tells the optimizer and code generator that this load
4773address points to memory which does not change value during program
4774execution. The optimizer may then move this load around, for example, by
4775hoisting it out of loops using loop invariant code motion.
4776
4777Semantics:
4778""""""""""
4779
4780The location of memory pointed to is loaded. If the value being loaded
4781is of scalar type then the number of bytes read does not exceed the
4782minimum number of bytes needed to hold all bits of the type. For
4783example, loading an ``i24`` reads at most three bytes. When loading a
4784value of a type like ``i20`` with a size that is not an integral number
4785of bytes, the result is undefined if the value was not originally
4786written using a store of the same type.
4787
4788Examples:
4789"""""""""
4790
4791.. code-block:: llvm
4792
4793 %ptr = alloca i32 ; yields {i32*}:ptr
4794 store i32 3, i32* %ptr ; yields {void}
4795 %val = load i32* %ptr ; yields {i32}:val = i32 3
4796
4797.. _i_store:
4798
4799'``store``' Instruction
4800^^^^^^^^^^^^^^^^^^^^^^^
4801
4802Syntax:
4803"""""""
4804
4805::
4806
4807 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4808 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4809
4810Overview:
4811"""""""""
4812
4813The '``store``' instruction is used to write to memory.
4814
4815Arguments:
4816""""""""""
4817
Eli Benderskyca380842013-04-17 17:17:20 +00004818There are two arguments to the ``store`` instruction: a value to store
4819and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004820operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004821the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004822then the optimizer is not allowed to modify the number or order of
4823execution of this ``store`` with other :ref:`volatile
4824operations <volatile>`.
4825
4826If the ``store`` is marked as ``atomic``, it takes an extra
4827:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4828``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4829instructions. Atomic loads produce :ref:`defined <memmodel>` results
4830when they may see multiple atomic stores. The type of the pointee must
4831be an integer type whose bit width is a power of two greater than or
4832equal to eight and less than or equal to a target-specific size limit.
4833``align`` must be explicitly specified on atomic stores, and the store
4834has undefined behavior if the alignment is not set to a value which is
4835at least the size in bytes of the pointee. ``!nontemporal`` does not
4836have any defined semantics for atomic stores.
4837
Eli Benderskyca380842013-04-17 17:17:20 +00004838The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004839operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004840or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004841alignment for the target. It is the responsibility of the code emitter
4842to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004843alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004844alignment may produce less efficient code. An alignment of 1 is always
4845safe.
4846
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004847The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004848name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004849value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004850tells the optimizer and code generator that this load is not expected to
4851be reused in the cache. The code generator may select special
4852instructions to save cache bandwidth, such as the MOVNT instruction on
4853x86.
4854
4855Semantics:
4856""""""""""
4857
Eli Benderskyca380842013-04-17 17:17:20 +00004858The contents of memory are updated to contain ``<value>`` at the
4859location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004860of scalar type then the number of bytes written does not exceed the
4861minimum number of bytes needed to hold all bits of the type. For
4862example, storing an ``i24`` writes at most three bytes. When writing a
4863value of a type like ``i20`` with a size that is not an integral number
4864of bytes, it is unspecified what happens to the extra bits that do not
4865belong to the type, but they will typically be overwritten.
4866
4867Example:
4868""""""""
4869
4870.. code-block:: llvm
4871
4872 %ptr = alloca i32 ; yields {i32*}:ptr
4873 store i32 3, i32* %ptr ; yields {void}
4874 %val = load i32* %ptr ; yields {i32}:val = i32 3
4875
4876.. _i_fence:
4877
4878'``fence``' Instruction
4879^^^^^^^^^^^^^^^^^^^^^^^
4880
4881Syntax:
4882"""""""
4883
4884::
4885
4886 fence [singlethread] <ordering> ; yields {void}
4887
4888Overview:
4889"""""""""
4890
4891The '``fence``' instruction is used to introduce happens-before edges
4892between operations.
4893
4894Arguments:
4895""""""""""
4896
4897'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4898defines what *synchronizes-with* edges they add. They can only be given
4899``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4900
4901Semantics:
4902""""""""""
4903
4904A fence A which has (at least) ``release`` ordering semantics
4905*synchronizes with* a fence B with (at least) ``acquire`` ordering
4906semantics if and only if there exist atomic operations X and Y, both
4907operating on some atomic object M, such that A is sequenced before X, X
4908modifies M (either directly or through some side effect of a sequence
4909headed by X), Y is sequenced before B, and Y observes M. This provides a
4910*happens-before* dependency between A and B. Rather than an explicit
4911``fence``, one (but not both) of the atomic operations X or Y might
4912provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4913still *synchronize-with* the explicit ``fence`` and establish the
4914*happens-before* edge.
4915
4916A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4917``acquire`` and ``release`` semantics specified above, participates in
4918the global program order of other ``seq_cst`` operations and/or fences.
4919
4920The optional ":ref:`singlethread <singlethread>`" argument specifies
4921that the fence only synchronizes with other fences in the same thread.
4922(This is useful for interacting with signal handlers.)
4923
4924Example:
4925""""""""
4926
4927.. code-block:: llvm
4928
4929 fence acquire ; yields {void}
4930 fence singlethread seq_cst ; yields {void}
4931
4932.. _i_cmpxchg:
4933
4934'``cmpxchg``' Instruction
4935^^^^^^^^^^^^^^^^^^^^^^^^^
4936
4937Syntax:
4938"""""""
4939
4940::
4941
4942 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4943
4944Overview:
4945"""""""""
4946
4947The '``cmpxchg``' instruction is used to atomically modify memory. It
4948loads a value in memory and compares it to a given value. If they are
4949equal, it stores a new value into the memory.
4950
4951Arguments:
4952""""""""""
4953
4954There are three arguments to the '``cmpxchg``' instruction: an address
4955to operate on, a value to compare to the value currently be at that
4956address, and a new value to place at that address if the compared values
4957are equal. The type of '<cmp>' must be an integer type whose bit width
4958is a power of two greater than or equal to eight and less than or equal
4959to a target-specific size limit. '<cmp>' and '<new>' must have the same
4960type, and the type of '<pointer>' must be a pointer to that type. If the
4961``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4962to modify the number or order of execution of this ``cmpxchg`` with
4963other :ref:`volatile operations <volatile>`.
4964
4965The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4966synchronizes with other atomic operations.
4967
4968The optional "``singlethread``" argument declares that the ``cmpxchg``
4969is only atomic with respect to code (usually signal handlers) running in
4970the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4971respect to all other code in the system.
4972
4973The pointer passed into cmpxchg must have alignment greater than or
4974equal to the size in memory of the operand.
4975
4976Semantics:
4977""""""""""
4978
4979The contents of memory at the location specified by the '``<pointer>``'
4980operand is read and compared to '``<cmp>``'; if the read value is the
4981equal, '``<new>``' is written. The original value at the location is
4982returned.
4983
4984A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4985of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4986atomic load with an ordering parameter determined by dropping any
4987``release`` part of the ``cmpxchg``'s ordering.
4988
4989Example:
4990""""""""
4991
4992.. code-block:: llvm
4993
4994 entry:
4995 %orig = atomic load i32* %ptr unordered ; yields {i32}
4996 br label %loop
4997
4998 loop:
4999 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5000 %squared = mul i32 %cmp, %cmp
5001 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
5002 %success = icmp eq i32 %cmp, %old
5003 br i1 %success, label %done, label %loop
5004
5005 done:
5006 ...
5007
5008.. _i_atomicrmw:
5009
5010'``atomicrmw``' Instruction
5011^^^^^^^^^^^^^^^^^^^^^^^^^^^
5012
5013Syntax:
5014"""""""
5015
5016::
5017
5018 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5019
5020Overview:
5021"""""""""
5022
5023The '``atomicrmw``' instruction is used to atomically modify memory.
5024
5025Arguments:
5026""""""""""
5027
5028There are three arguments to the '``atomicrmw``' instruction: an
5029operation to apply, an address whose value to modify, an argument to the
5030operation. The operation must be one of the following keywords:
5031
5032- xchg
5033- add
5034- sub
5035- and
5036- nand
5037- or
5038- xor
5039- max
5040- min
5041- umax
5042- umin
5043
5044The type of '<value>' must be an integer type whose bit width is a power
5045of two greater than or equal to eight and less than or equal to a
5046target-specific size limit. The type of the '``<pointer>``' operand must
5047be a pointer to that type. If the ``atomicrmw`` is marked as
5048``volatile``, then the optimizer is not allowed to modify the number or
5049order of execution of this ``atomicrmw`` with other :ref:`volatile
5050operations <volatile>`.
5051
5052Semantics:
5053""""""""""
5054
5055The contents of memory at the location specified by the '``<pointer>``'
5056operand are atomically read, modified, and written back. The original
5057value at the location is returned. The modification is specified by the
5058operation argument:
5059
5060- xchg: ``*ptr = val``
5061- add: ``*ptr = *ptr + val``
5062- sub: ``*ptr = *ptr - val``
5063- and: ``*ptr = *ptr & val``
5064- nand: ``*ptr = ~(*ptr & val)``
5065- or: ``*ptr = *ptr | val``
5066- xor: ``*ptr = *ptr ^ val``
5067- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5068- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5069- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5070 comparison)
5071- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5072 comparison)
5073
5074Example:
5075""""""""
5076
5077.. code-block:: llvm
5078
5079 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5080
5081.. _i_getelementptr:
5082
5083'``getelementptr``' Instruction
5084^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5085
5086Syntax:
5087"""""""
5088
5089::
5090
5091 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5092 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5093 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5094
5095Overview:
5096"""""""""
5097
5098The '``getelementptr``' instruction is used to get the address of a
5099subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5100address calculation only and does not access memory.
5101
5102Arguments:
5103""""""""""
5104
5105The first argument is always a pointer or a vector of pointers, and
5106forms the basis of the calculation. The remaining arguments are indices
5107that indicate which of the elements of the aggregate object are indexed.
5108The interpretation of each index is dependent on the type being indexed
5109into. The first index always indexes the pointer value given as the
5110first argument, the second index indexes a value of the type pointed to
5111(not necessarily the value directly pointed to, since the first index
5112can be non-zero), etc. The first type indexed into must be a pointer
5113value, subsequent types can be arrays, vectors, and structs. Note that
5114subsequent types being indexed into can never be pointers, since that
5115would require loading the pointer before continuing calculation.
5116
5117The type of each index argument depends on the type it is indexing into.
5118When indexing into a (optionally packed) structure, only ``i32`` integer
5119**constants** are allowed (when using a vector of indices they must all
5120be the **same** ``i32`` integer constant). When indexing into an array,
5121pointer or vector, integers of any width are allowed, and they are not
5122required to be constant. These integers are treated as signed values
5123where relevant.
5124
5125For example, let's consider a C code fragment and how it gets compiled
5126to LLVM:
5127
5128.. code-block:: c
5129
5130 struct RT {
5131 char A;
5132 int B[10][20];
5133 char C;
5134 };
5135 struct ST {
5136 int X;
5137 double Y;
5138 struct RT Z;
5139 };
5140
5141 int *foo(struct ST *s) {
5142 return &s[1].Z.B[5][13];
5143 }
5144
5145The LLVM code generated by Clang is:
5146
5147.. code-block:: llvm
5148
5149 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5150 %struct.ST = type { i32, double, %struct.RT }
5151
5152 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5153 entry:
5154 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5155 ret i32* %arrayidx
5156 }
5157
5158Semantics:
5159""""""""""
5160
5161In the example above, the first index is indexing into the
5162'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5163= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5164indexes into the third element of the structure, yielding a
5165'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5166structure. The third index indexes into the second element of the
5167structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5168dimensions of the array are subscripted into, yielding an '``i32``'
5169type. The '``getelementptr``' instruction returns a pointer to this
5170element, thus computing a value of '``i32*``' type.
5171
5172Note that it is perfectly legal to index partially through a structure,
5173returning a pointer to an inner element. Because of this, the LLVM code
5174for the given testcase is equivalent to:
5175
5176.. code-block:: llvm
5177
5178 define i32* @foo(%struct.ST* %s) {
5179 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5180 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5181 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5182 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5183 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5184 ret i32* %t5
5185 }
5186
5187If the ``inbounds`` keyword is present, the result value of the
5188``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5189pointer is not an *in bounds* address of an allocated object, or if any
5190of the addresses that would be formed by successive addition of the
5191offsets implied by the indices to the base address with infinitely
5192precise signed arithmetic are not an *in bounds* address of that
5193allocated object. The *in bounds* addresses for an allocated object are
5194all the addresses that point into the object, plus the address one byte
5195past the end. In cases where the base is a vector of pointers the
5196``inbounds`` keyword applies to each of the computations element-wise.
5197
5198If the ``inbounds`` keyword is not present, the offsets are added to the
5199base address with silently-wrapping two's complement arithmetic. If the
5200offsets have a different width from the pointer, they are sign-extended
5201or truncated to the width of the pointer. The result value of the
5202``getelementptr`` may be outside the object pointed to by the base
5203pointer. The result value may not necessarily be used to access memory
5204though, even if it happens to point into allocated storage. See the
5205:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5206information.
5207
5208The getelementptr instruction is often confusing. For some more insight
5209into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5210
5211Example:
5212""""""""
5213
5214.. code-block:: llvm
5215
5216 ; yields [12 x i8]*:aptr
5217 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5218 ; yields i8*:vptr
5219 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5220 ; yields i8*:eptr
5221 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5222 ; yields i32*:iptr
5223 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5224
5225In cases where the pointer argument is a vector of pointers, each index
5226must be a vector with the same number of elements. For example:
5227
5228.. code-block:: llvm
5229
5230 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5231
5232Conversion Operations
5233---------------------
5234
5235The instructions in this category are the conversion instructions
5236(casting) which all take a single operand and a type. They perform
5237various bit conversions on the operand.
5238
5239'``trunc .. to``' Instruction
5240^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5241
5242Syntax:
5243"""""""
5244
5245::
5246
5247 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5248
5249Overview:
5250"""""""""
5251
5252The '``trunc``' instruction truncates its operand to the type ``ty2``.
5253
5254Arguments:
5255""""""""""
5256
5257The '``trunc``' instruction takes a value to trunc, and a type to trunc
5258it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5259of the same number of integers. The bit size of the ``value`` must be
5260larger than the bit size of the destination type, ``ty2``. Equal sized
5261types are not allowed.
5262
5263Semantics:
5264""""""""""
5265
5266The '``trunc``' instruction truncates the high order bits in ``value``
5267and converts the remaining bits to ``ty2``. Since the source size must
5268be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5269It will always truncate bits.
5270
5271Example:
5272""""""""
5273
5274.. code-block:: llvm
5275
5276 %X = trunc i32 257 to i8 ; yields i8:1
5277 %Y = trunc i32 123 to i1 ; yields i1:true
5278 %Z = trunc i32 122 to i1 ; yields i1:false
5279 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5280
5281'``zext .. to``' Instruction
5282^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5283
5284Syntax:
5285"""""""
5286
5287::
5288
5289 <result> = zext <ty> <value> to <ty2> ; yields ty2
5290
5291Overview:
5292"""""""""
5293
5294The '``zext``' instruction zero extends its operand to type ``ty2``.
5295
5296Arguments:
5297""""""""""
5298
5299The '``zext``' instruction takes a value to cast, and a type to cast it
5300to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5301the same number of integers. The bit size of the ``value`` must be
5302smaller than the bit size of the destination type, ``ty2``.
5303
5304Semantics:
5305""""""""""
5306
5307The ``zext`` fills the high order bits of the ``value`` with zero bits
5308until it reaches the size of the destination type, ``ty2``.
5309
5310When zero extending from i1, the result will always be either 0 or 1.
5311
5312Example:
5313""""""""
5314
5315.. code-block:: llvm
5316
5317 %X = zext i32 257 to i64 ; yields i64:257
5318 %Y = zext i1 true to i32 ; yields i32:1
5319 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5320
5321'``sext .. to``' Instruction
5322^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5323
5324Syntax:
5325"""""""
5326
5327::
5328
5329 <result> = sext <ty> <value> to <ty2> ; yields ty2
5330
5331Overview:
5332"""""""""
5333
5334The '``sext``' sign extends ``value`` to the type ``ty2``.
5335
5336Arguments:
5337""""""""""
5338
5339The '``sext``' instruction takes a value to cast, and a type to cast it
5340to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5341the same number of integers. The bit size of the ``value`` must be
5342smaller than the bit size of the destination type, ``ty2``.
5343
5344Semantics:
5345""""""""""
5346
5347The '``sext``' instruction performs a sign extension by copying the sign
5348bit (highest order bit) of the ``value`` until it reaches the bit size
5349of the type ``ty2``.
5350
5351When sign extending from i1, the extension always results in -1 or 0.
5352
5353Example:
5354""""""""
5355
5356.. code-block:: llvm
5357
5358 %X = sext i8 -1 to i16 ; yields i16 :65535
5359 %Y = sext i1 true to i32 ; yields i32:-1
5360 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5361
5362'``fptrunc .. to``' Instruction
5363^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5364
5365Syntax:
5366"""""""
5367
5368::
5369
5370 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5371
5372Overview:
5373"""""""""
5374
5375The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5376
5377Arguments:
5378""""""""""
5379
5380The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5381value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5382The size of ``value`` must be larger than the size of ``ty2``. This
5383implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5384
5385Semantics:
5386""""""""""
5387
5388The '``fptrunc``' instruction truncates a ``value`` from a larger
5389:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5390point <t_floating>` type. If the value cannot fit within the
5391destination type, ``ty2``, then the results are undefined.
5392
5393Example:
5394""""""""
5395
5396.. code-block:: llvm
5397
5398 %X = fptrunc double 123.0 to float ; yields float:123.0
5399 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5400
5401'``fpext .. to``' Instruction
5402^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5403
5404Syntax:
5405"""""""
5406
5407::
5408
5409 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5410
5411Overview:
5412"""""""""
5413
5414The '``fpext``' extends a floating point ``value`` to a larger floating
5415point value.
5416
5417Arguments:
5418""""""""""
5419
5420The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5421``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5422to. The source type must be smaller than the destination type.
5423
5424Semantics:
5425""""""""""
5426
5427The '``fpext``' instruction extends the ``value`` from a smaller
5428:ref:`floating point <t_floating>` type to a larger :ref:`floating
5429point <t_floating>` type. The ``fpext`` cannot be used to make a
5430*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5431*no-op cast* for a floating point cast.
5432
5433Example:
5434""""""""
5435
5436.. code-block:: llvm
5437
5438 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5439 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5440
5441'``fptoui .. to``' Instruction
5442^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5443
5444Syntax:
5445"""""""
5446
5447::
5448
5449 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5450
5451Overview:
5452"""""""""
5453
5454The '``fptoui``' converts a floating point ``value`` to its unsigned
5455integer equivalent of type ``ty2``.
5456
5457Arguments:
5458""""""""""
5459
5460The '``fptoui``' instruction takes a value to cast, which must be a
5461scalar or vector :ref:`floating point <t_floating>` value, and a type to
5462cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5463``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5464type with the same number of elements as ``ty``
5465
5466Semantics:
5467""""""""""
5468
5469The '``fptoui``' instruction converts its :ref:`floating
5470point <t_floating>` operand into the nearest (rounding towards zero)
5471unsigned integer value. If the value cannot fit in ``ty2``, the results
5472are undefined.
5473
5474Example:
5475""""""""
5476
5477.. code-block:: llvm
5478
5479 %X = fptoui double 123.0 to i32 ; yields i32:123
5480 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5481 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5482
5483'``fptosi .. to``' Instruction
5484^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5485
5486Syntax:
5487"""""""
5488
5489::
5490
5491 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5492
5493Overview:
5494"""""""""
5495
5496The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5497``value`` to type ``ty2``.
5498
5499Arguments:
5500""""""""""
5501
5502The '``fptosi``' instruction takes a value to cast, which must be a
5503scalar or vector :ref:`floating point <t_floating>` value, and a type to
5504cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5505``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5506type with the same number of elements as ``ty``
5507
5508Semantics:
5509""""""""""
5510
5511The '``fptosi``' instruction converts its :ref:`floating
5512point <t_floating>` operand into the nearest (rounding towards zero)
5513signed integer value. If the value cannot fit in ``ty2``, the results
5514are undefined.
5515
5516Example:
5517""""""""
5518
5519.. code-block:: llvm
5520
5521 %X = fptosi double -123.0 to i32 ; yields i32:-123
5522 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5523 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5524
5525'``uitofp .. to``' Instruction
5526^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5527
5528Syntax:
5529"""""""
5530
5531::
5532
5533 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5534
5535Overview:
5536"""""""""
5537
5538The '``uitofp``' instruction regards ``value`` as an unsigned integer
5539and converts that value to the ``ty2`` type.
5540
5541Arguments:
5542""""""""""
5543
5544The '``uitofp``' instruction takes a value to cast, which must be a
5545scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5546``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5547``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5548type with the same number of elements as ``ty``
5549
5550Semantics:
5551""""""""""
5552
5553The '``uitofp``' instruction interprets its operand as an unsigned
5554integer quantity and converts it to the corresponding floating point
5555value. If the value cannot fit in the floating point value, the results
5556are undefined.
5557
5558Example:
5559""""""""
5560
5561.. code-block:: llvm
5562
5563 %X = uitofp i32 257 to float ; yields float:257.0
5564 %Y = uitofp i8 -1 to double ; yields double:255.0
5565
5566'``sitofp .. to``' Instruction
5567^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5568
5569Syntax:
5570"""""""
5571
5572::
5573
5574 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5575
5576Overview:
5577"""""""""
5578
5579The '``sitofp``' instruction regards ``value`` as a signed integer and
5580converts that value to the ``ty2`` type.
5581
5582Arguments:
5583""""""""""
5584
5585The '``sitofp``' instruction takes a value to cast, which must be a
5586scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5587``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5588``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5589type with the same number of elements as ``ty``
5590
5591Semantics:
5592""""""""""
5593
5594The '``sitofp``' instruction interprets its operand as a signed integer
5595quantity and converts it to the corresponding floating point value. If
5596the value cannot fit in the floating point value, the results are
5597undefined.
5598
5599Example:
5600""""""""
5601
5602.. code-block:: llvm
5603
5604 %X = sitofp i32 257 to float ; yields float:257.0
5605 %Y = sitofp i8 -1 to double ; yields double:-1.0
5606
5607.. _i_ptrtoint:
5608
5609'``ptrtoint .. to``' Instruction
5610^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5611
5612Syntax:
5613"""""""
5614
5615::
5616
5617 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5618
5619Overview:
5620"""""""""
5621
5622The '``ptrtoint``' instruction converts the pointer or a vector of
5623pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5624
5625Arguments:
5626""""""""""
5627
5628The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5629a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5630type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5631a vector of integers type.
5632
5633Semantics:
5634""""""""""
5635
5636The '``ptrtoint``' instruction converts ``value`` to integer type
5637``ty2`` by interpreting the pointer value as an integer and either
5638truncating or zero extending that value to the size of the integer type.
5639If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5640``value`` is larger than ``ty2`` then a truncation is done. If they are
5641the same size, then nothing is done (*no-op cast*) other than a type
5642change.
5643
5644Example:
5645""""""""
5646
5647.. code-block:: llvm
5648
5649 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5650 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5651 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5652
5653.. _i_inttoptr:
5654
5655'``inttoptr .. to``' Instruction
5656^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5657
5658Syntax:
5659"""""""
5660
5661::
5662
5663 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5664
5665Overview:
5666"""""""""
5667
5668The '``inttoptr``' instruction converts an integer ``value`` to a
5669pointer type, ``ty2``.
5670
5671Arguments:
5672""""""""""
5673
5674The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5675cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5676type.
5677
5678Semantics:
5679""""""""""
5680
5681The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5682applying either a zero extension or a truncation depending on the size
5683of the integer ``value``. If ``value`` is larger than the size of a
5684pointer then a truncation is done. If ``value`` is smaller than the size
5685of a pointer then a zero extension is done. If they are the same size,
5686nothing is done (*no-op cast*).
5687
5688Example:
5689""""""""
5690
5691.. code-block:: llvm
5692
5693 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5694 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5695 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5696 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5697
5698.. _i_bitcast:
5699
5700'``bitcast .. to``' Instruction
5701^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5702
5703Syntax:
5704"""""""
5705
5706::
5707
5708 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5709
5710Overview:
5711"""""""""
5712
5713The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5714changing any bits.
5715
5716Arguments:
5717""""""""""
5718
5719The '``bitcast``' instruction takes a value to cast, which must be a
5720non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005721also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5722bit sizes of ``value`` and the destination type, ``ty2``, must be
5723identical. If the source type is a pointer, the destination type must
5724also be a pointer of the same size. This instruction supports bitwise
5725conversion of vectors to integers and to vectors of other types (as
5726long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005727
5728Semantics:
5729""""""""""
5730
Matt Arsenault24b49c42013-07-31 17:49:08 +00005731The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5732is always a *no-op cast* because no bits change with this
5733conversion. The conversion is done as if the ``value`` had been stored
5734to memory and read back as type ``ty2``. Pointer (or vector of
5735pointers) types may only be converted to other pointer (or vector of
5736pointers) types with this instruction if the pointer sizes are
5737equal. To convert pointers to other types, use the :ref:`inttoptr
5738<i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005739
5740Example:
5741""""""""
5742
5743.. code-block:: llvm
5744
5745 %X = bitcast i8 255 to i8 ; yields i8 :-1
5746 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5747 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5748 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5749
5750.. _otherops:
5751
5752Other Operations
5753----------------
5754
5755The instructions in this category are the "miscellaneous" instructions,
5756which defy better classification.
5757
5758.. _i_icmp:
5759
5760'``icmp``' Instruction
5761^^^^^^^^^^^^^^^^^^^^^^
5762
5763Syntax:
5764"""""""
5765
5766::
5767
5768 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5769
5770Overview:
5771"""""""""
5772
5773The '``icmp``' instruction returns a boolean value or a vector of
5774boolean values based on comparison of its two integer, integer vector,
5775pointer, or pointer vector operands.
5776
5777Arguments:
5778""""""""""
5779
5780The '``icmp``' instruction takes three operands. The first operand is
5781the condition code indicating the kind of comparison to perform. It is
5782not a value, just a keyword. The possible condition code are:
5783
5784#. ``eq``: equal
5785#. ``ne``: not equal
5786#. ``ugt``: unsigned greater than
5787#. ``uge``: unsigned greater or equal
5788#. ``ult``: unsigned less than
5789#. ``ule``: unsigned less or equal
5790#. ``sgt``: signed greater than
5791#. ``sge``: signed greater or equal
5792#. ``slt``: signed less than
5793#. ``sle``: signed less or equal
5794
5795The remaining two arguments must be :ref:`integer <t_integer>` or
5796:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5797must also be identical types.
5798
5799Semantics:
5800""""""""""
5801
5802The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5803code given as ``cond``. The comparison performed always yields either an
5804:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5805
5806#. ``eq``: yields ``true`` if the operands are equal, ``false``
5807 otherwise. No sign interpretation is necessary or performed.
5808#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5809 otherwise. No sign interpretation is necessary or performed.
5810#. ``ugt``: interprets the operands as unsigned values and yields
5811 ``true`` if ``op1`` is greater than ``op2``.
5812#. ``uge``: interprets the operands as unsigned values and yields
5813 ``true`` if ``op1`` is greater than or equal to ``op2``.
5814#. ``ult``: interprets the operands as unsigned values and yields
5815 ``true`` if ``op1`` is less than ``op2``.
5816#. ``ule``: interprets the operands as unsigned values and yields
5817 ``true`` if ``op1`` is less than or equal to ``op2``.
5818#. ``sgt``: interprets the operands as signed values and yields ``true``
5819 if ``op1`` is greater than ``op2``.
5820#. ``sge``: interprets the operands as signed values and yields ``true``
5821 if ``op1`` is greater than or equal to ``op2``.
5822#. ``slt``: interprets the operands as signed values and yields ``true``
5823 if ``op1`` is less than ``op2``.
5824#. ``sle``: interprets the operands as signed values and yields ``true``
5825 if ``op1`` is less than or equal to ``op2``.
5826
5827If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5828are compared as if they were integers.
5829
5830If the operands are integer vectors, then they are compared element by
5831element. The result is an ``i1`` vector with the same number of elements
5832as the values being compared. Otherwise, the result is an ``i1``.
5833
5834Example:
5835""""""""
5836
5837.. code-block:: llvm
5838
5839 <result> = icmp eq i32 4, 5 ; yields: result=false
5840 <result> = icmp ne float* %X, %X ; yields: result=false
5841 <result> = icmp ult i16 4, 5 ; yields: result=true
5842 <result> = icmp sgt i16 4, 5 ; yields: result=false
5843 <result> = icmp ule i16 -4, 5 ; yields: result=false
5844 <result> = icmp sge i16 4, 5 ; yields: result=false
5845
5846Note that the code generator does not yet support vector types with the
5847``icmp`` instruction.
5848
5849.. _i_fcmp:
5850
5851'``fcmp``' Instruction
5852^^^^^^^^^^^^^^^^^^^^^^
5853
5854Syntax:
5855"""""""
5856
5857::
5858
5859 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5860
5861Overview:
5862"""""""""
5863
5864The '``fcmp``' instruction returns a boolean value or vector of boolean
5865values based on comparison of its operands.
5866
5867If the operands are floating point scalars, then the result type is a
5868boolean (:ref:`i1 <t_integer>`).
5869
5870If the operands are floating point vectors, then the result type is a
5871vector of boolean with the same number of elements as the operands being
5872compared.
5873
5874Arguments:
5875""""""""""
5876
5877The '``fcmp``' instruction takes three operands. The first operand is
5878the condition code indicating the kind of comparison to perform. It is
5879not a value, just a keyword. The possible condition code are:
5880
5881#. ``false``: no comparison, always returns false
5882#. ``oeq``: ordered and equal
5883#. ``ogt``: ordered and greater than
5884#. ``oge``: ordered and greater than or equal
5885#. ``olt``: ordered and less than
5886#. ``ole``: ordered and less than or equal
5887#. ``one``: ordered and not equal
5888#. ``ord``: ordered (no nans)
5889#. ``ueq``: unordered or equal
5890#. ``ugt``: unordered or greater than
5891#. ``uge``: unordered or greater than or equal
5892#. ``ult``: unordered or less than
5893#. ``ule``: unordered or less than or equal
5894#. ``une``: unordered or not equal
5895#. ``uno``: unordered (either nans)
5896#. ``true``: no comparison, always returns true
5897
5898*Ordered* means that neither operand is a QNAN while *unordered* means
5899that either operand may be a QNAN.
5900
5901Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5902point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5903type. They must have identical types.
5904
5905Semantics:
5906""""""""""
5907
5908The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5909condition code given as ``cond``. If the operands are vectors, then the
5910vectors are compared element by element. Each comparison performed
5911always yields an :ref:`i1 <t_integer>` result, as follows:
5912
5913#. ``false``: always yields ``false``, regardless of operands.
5914#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5915 is equal to ``op2``.
5916#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5917 is greater than ``op2``.
5918#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5919 is greater than or equal to ``op2``.
5920#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5921 is less than ``op2``.
5922#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5923 is less than or equal to ``op2``.
5924#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5925 is not equal to ``op2``.
5926#. ``ord``: yields ``true`` if both operands are not a QNAN.
5927#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5928 equal to ``op2``.
5929#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5930 greater than ``op2``.
5931#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5932 greater than or equal to ``op2``.
5933#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5934 less than ``op2``.
5935#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5936 less than or equal to ``op2``.
5937#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5938 not equal to ``op2``.
5939#. ``uno``: yields ``true`` if either operand is a QNAN.
5940#. ``true``: always yields ``true``, regardless of operands.
5941
5942Example:
5943""""""""
5944
5945.. code-block:: llvm
5946
5947 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5948 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5949 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5950 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5951
5952Note that the code generator does not yet support vector types with the
5953``fcmp`` instruction.
5954
5955.. _i_phi:
5956
5957'``phi``' Instruction
5958^^^^^^^^^^^^^^^^^^^^^
5959
5960Syntax:
5961"""""""
5962
5963::
5964
5965 <result> = phi <ty> [ <val0>, <label0>], ...
5966
5967Overview:
5968"""""""""
5969
5970The '``phi``' instruction is used to implement the φ node in the SSA
5971graph representing the function.
5972
5973Arguments:
5974""""""""""
5975
5976The type of the incoming values is specified with the first type field.
5977After this, the '``phi``' instruction takes a list of pairs as
5978arguments, with one pair for each predecessor basic block of the current
5979block. Only values of :ref:`first class <t_firstclass>` type may be used as
5980the value arguments to the PHI node. Only labels may be used as the
5981label arguments.
5982
5983There must be no non-phi instructions between the start of a basic block
5984and the PHI instructions: i.e. PHI instructions must be first in a basic
5985block.
5986
5987For the purposes of the SSA form, the use of each incoming value is
5988deemed to occur on the edge from the corresponding predecessor block to
5989the current block (but after any definition of an '``invoke``'
5990instruction's return value on the same edge).
5991
5992Semantics:
5993""""""""""
5994
5995At runtime, the '``phi``' instruction logically takes on the value
5996specified by the pair corresponding to the predecessor basic block that
5997executed just prior to the current block.
5998
5999Example:
6000""""""""
6001
6002.. code-block:: llvm
6003
6004 Loop: ; Infinite loop that counts from 0 on up...
6005 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6006 %nextindvar = add i32 %indvar, 1
6007 br label %Loop
6008
6009.. _i_select:
6010
6011'``select``' Instruction
6012^^^^^^^^^^^^^^^^^^^^^^^^
6013
6014Syntax:
6015"""""""
6016
6017::
6018
6019 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6020
6021 selty is either i1 or {<N x i1>}
6022
6023Overview:
6024"""""""""
6025
6026The '``select``' instruction is used to choose one value based on a
6027condition, without branching.
6028
6029Arguments:
6030""""""""""
6031
6032The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6033values indicating the condition, and two values of the same :ref:`first
6034class <t_firstclass>` type. If the val1/val2 are vectors and the
6035condition is a scalar, then entire vectors are selected, not individual
6036elements.
6037
6038Semantics:
6039""""""""""
6040
6041If the condition is an i1 and it evaluates to 1, the instruction returns
6042the first value argument; otherwise, it returns the second value
6043argument.
6044
6045If the condition is a vector of i1, then the value arguments must be
6046vectors of the same size, and the selection is done element by element.
6047
6048Example:
6049""""""""
6050
6051.. code-block:: llvm
6052
6053 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6054
6055.. _i_call:
6056
6057'``call``' Instruction
6058^^^^^^^^^^^^^^^^^^^^^^
6059
6060Syntax:
6061"""""""
6062
6063::
6064
6065 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6066
6067Overview:
6068"""""""""
6069
6070The '``call``' instruction represents a simple function call.
6071
6072Arguments:
6073""""""""""
6074
6075This instruction requires several arguments:
6076
6077#. The optional "tail" marker indicates that the callee function does
6078 not access any allocas or varargs in the caller. Note that calls may
6079 be marked "tail" even if they do not occur before a
6080 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
6081 function call is eligible for tail call optimization, but `might not
6082 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
6083 The code generator may optimize calls marked "tail" with either 1)
6084 automatic `sibling call
6085 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6086 callee have matching signatures, or 2) forced tail call optimization
6087 when the following extra requirements are met:
6088
6089 - Caller and callee both have the calling convention ``fastcc``.
6090 - The call is in tail position (ret immediately follows call and ret
6091 uses value of call or is void).
6092 - Option ``-tailcallopt`` is enabled, or
6093 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6094 - `Platform specific constraints are
6095 met. <CodeGenerator.html#tailcallopt>`_
6096
6097#. The optional "cconv" marker indicates which :ref:`calling
6098 convention <callingconv>` the call should use. If none is
6099 specified, the call defaults to using C calling conventions. The
6100 calling convention of the call must match the calling convention of
6101 the target function, or else the behavior is undefined.
6102#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6103 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6104 are valid here.
6105#. '``ty``': the type of the call instruction itself which is also the
6106 type of the return value. Functions that return no value are marked
6107 ``void``.
6108#. '``fnty``': shall be the signature of the pointer to function value
6109 being invoked. The argument types must match the types implied by
6110 this signature. This type can be omitted if the function is not
6111 varargs and if the function type does not return a pointer to a
6112 function.
6113#. '``fnptrval``': An LLVM value containing a pointer to a function to
6114 be invoked. In most cases, this is a direct function invocation, but
6115 indirect ``call``'s are just as possible, calling an arbitrary pointer
6116 to function value.
6117#. '``function args``': argument list whose types match the function
6118 signature argument types and parameter attributes. All arguments must
6119 be of :ref:`first class <t_firstclass>` type. If the function signature
6120 indicates the function accepts a variable number of arguments, the
6121 extra arguments can be specified.
6122#. The optional :ref:`function attributes <fnattrs>` list. Only
6123 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6124 attributes are valid here.
6125
6126Semantics:
6127""""""""""
6128
6129The '``call``' instruction is used to cause control flow to transfer to
6130a specified function, with its incoming arguments bound to the specified
6131values. Upon a '``ret``' instruction in the called function, control
6132flow continues with the instruction after the function call, and the
6133return value of the function is bound to the result argument.
6134
6135Example:
6136""""""""
6137
6138.. code-block:: llvm
6139
6140 %retval = call i32 @test(i32 %argc)
6141 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6142 %X = tail call i32 @foo() ; yields i32
6143 %Y = tail call fastcc i32 @foo() ; yields i32
6144 call void %foo(i8 97 signext)
6145
6146 %struct.A = type { i32, i8 }
6147 %r = call %struct.A @foo() ; yields { 32, i8 }
6148 %gr = extractvalue %struct.A %r, 0 ; yields i32
6149 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6150 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6151 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6152
6153llvm treats calls to some functions with names and arguments that match
6154the standard C99 library as being the C99 library functions, and may
6155perform optimizations or generate code for them under that assumption.
6156This is something we'd like to change in the future to provide better
6157support for freestanding environments and non-C-based languages.
6158
6159.. _i_va_arg:
6160
6161'``va_arg``' Instruction
6162^^^^^^^^^^^^^^^^^^^^^^^^
6163
6164Syntax:
6165"""""""
6166
6167::
6168
6169 <resultval> = va_arg <va_list*> <arglist>, <argty>
6170
6171Overview:
6172"""""""""
6173
6174The '``va_arg``' instruction is used to access arguments passed through
6175the "variable argument" area of a function call. It is used to implement
6176the ``va_arg`` macro in C.
6177
6178Arguments:
6179""""""""""
6180
6181This instruction takes a ``va_list*`` value and the type of the
6182argument. It returns a value of the specified argument type and
6183increments the ``va_list`` to point to the next argument. The actual
6184type of ``va_list`` is target specific.
6185
6186Semantics:
6187""""""""""
6188
6189The '``va_arg``' instruction loads an argument of the specified type
6190from the specified ``va_list`` and causes the ``va_list`` to point to
6191the next argument. For more information, see the variable argument
6192handling :ref:`Intrinsic Functions <int_varargs>`.
6193
6194It is legal for this instruction to be called in a function which does
6195not take a variable number of arguments, for example, the ``vfprintf``
6196function.
6197
6198``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6199function <intrinsics>` because it takes a type as an argument.
6200
6201Example:
6202""""""""
6203
6204See the :ref:`variable argument processing <int_varargs>` section.
6205
6206Note that the code generator does not yet fully support va\_arg on many
6207targets. Also, it does not currently support va\_arg with aggregate
6208types on any target.
6209
6210.. _i_landingpad:
6211
6212'``landingpad``' Instruction
6213^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6214
6215Syntax:
6216"""""""
6217
6218::
6219
6220 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6221 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6222
6223 <clause> := catch <type> <value>
6224 <clause> := filter <array constant type> <array constant>
6225
6226Overview:
6227"""""""""
6228
6229The '``landingpad``' instruction is used by `LLVM's exception handling
6230system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006231is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006232code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6233defines values supplied by the personality function (``pers_fn``) upon
6234re-entry to the function. The ``resultval`` has the type ``resultty``.
6235
6236Arguments:
6237""""""""""
6238
6239This instruction takes a ``pers_fn`` value. This is the personality
6240function associated with the unwinding mechanism. The optional
6241``cleanup`` flag indicates that the landing pad block is a cleanup.
6242
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006243A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006244contains the global variable representing the "type" that may be caught
6245or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6246clause takes an array constant as its argument. Use
6247"``[0 x i8**] undef``" for a filter which cannot throw. The
6248'``landingpad``' instruction must contain *at least* one ``clause`` or
6249the ``cleanup`` flag.
6250
6251Semantics:
6252""""""""""
6253
6254The '``landingpad``' instruction defines the values which are set by the
6255personality function (``pers_fn``) upon re-entry to the function, and
6256therefore the "result type" of the ``landingpad`` instruction. As with
6257calling conventions, how the personality function results are
6258represented in LLVM IR is target specific.
6259
6260The clauses are applied in order from top to bottom. If two
6261``landingpad`` instructions are merged together through inlining, the
6262clauses from the calling function are appended to the list of clauses.
6263When the call stack is being unwound due to an exception being thrown,
6264the exception is compared against each ``clause`` in turn. If it doesn't
6265match any of the clauses, and the ``cleanup`` flag is not set, then
6266unwinding continues further up the call stack.
6267
6268The ``landingpad`` instruction has several restrictions:
6269
6270- A landing pad block is a basic block which is the unwind destination
6271 of an '``invoke``' instruction.
6272- A landing pad block must have a '``landingpad``' instruction as its
6273 first non-PHI instruction.
6274- There can be only one '``landingpad``' instruction within the landing
6275 pad block.
6276- A basic block that is not a landing pad block may not include a
6277 '``landingpad``' instruction.
6278- All '``landingpad``' instructions in a function must have the same
6279 personality function.
6280
6281Example:
6282""""""""
6283
6284.. code-block:: llvm
6285
6286 ;; A landing pad which can catch an integer.
6287 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6288 catch i8** @_ZTIi
6289 ;; A landing pad that is a cleanup.
6290 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6291 cleanup
6292 ;; A landing pad which can catch an integer and can only throw a double.
6293 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6294 catch i8** @_ZTIi
6295 filter [1 x i8**] [@_ZTId]
6296
6297.. _intrinsics:
6298
6299Intrinsic Functions
6300===================
6301
6302LLVM supports the notion of an "intrinsic function". These functions
6303have well known names and semantics and are required to follow certain
6304restrictions. Overall, these intrinsics represent an extension mechanism
6305for the LLVM language that does not require changing all of the
6306transformations in LLVM when adding to the language (or the bitcode
6307reader/writer, the parser, etc...).
6308
6309Intrinsic function names must all start with an "``llvm.``" prefix. This
6310prefix is reserved in LLVM for intrinsic names; thus, function names may
6311not begin with this prefix. Intrinsic functions must always be external
6312functions: you cannot define the body of intrinsic functions. Intrinsic
6313functions may only be used in call or invoke instructions: it is illegal
6314to take the address of an intrinsic function. Additionally, because
6315intrinsic functions are part of the LLVM language, it is required if any
6316are added that they be documented here.
6317
6318Some intrinsic functions can be overloaded, i.e., the intrinsic
6319represents a family of functions that perform the same operation but on
6320different data types. Because LLVM can represent over 8 million
6321different integer types, overloading is used commonly to allow an
6322intrinsic function to operate on any integer type. One or more of the
6323argument types or the result type can be overloaded to accept any
6324integer type. Argument types may also be defined as exactly matching a
6325previous argument's type or the result type. This allows an intrinsic
6326function which accepts multiple arguments, but needs all of them to be
6327of the same type, to only be overloaded with respect to a single
6328argument or the result.
6329
6330Overloaded intrinsics will have the names of its overloaded argument
6331types encoded into its function name, each preceded by a period. Only
6332those types which are overloaded result in a name suffix. Arguments
6333whose type is matched against another type do not. For example, the
6334``llvm.ctpop`` function can take an integer of any width and returns an
6335integer of exactly the same integer width. This leads to a family of
6336functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6337``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6338overloaded, and only one type suffix is required. Because the argument's
6339type is matched against the return type, it does not require its own
6340name suffix.
6341
6342To learn how to add an intrinsic function, please see the `Extending
6343LLVM Guide <ExtendingLLVM.html>`_.
6344
6345.. _int_varargs:
6346
6347Variable Argument Handling Intrinsics
6348-------------------------------------
6349
6350Variable argument support is defined in LLVM with the
6351:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6352functions. These functions are related to the similarly named macros
6353defined in the ``<stdarg.h>`` header file.
6354
6355All of these functions operate on arguments that use a target-specific
6356value type "``va_list``". The LLVM assembly language reference manual
6357does not define what this type is, so all transformations should be
6358prepared to handle these functions regardless of the type used.
6359
6360This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6361variable argument handling intrinsic functions are used.
6362
6363.. code-block:: llvm
6364
6365 define i32 @test(i32 %X, ...) {
6366 ; Initialize variable argument processing
6367 %ap = alloca i8*
6368 %ap2 = bitcast i8** %ap to i8*
6369 call void @llvm.va_start(i8* %ap2)
6370
6371 ; Read a single integer argument
6372 %tmp = va_arg i8** %ap, i32
6373
6374 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6375 %aq = alloca i8*
6376 %aq2 = bitcast i8** %aq to i8*
6377 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6378 call void @llvm.va_end(i8* %aq2)
6379
6380 ; Stop processing of arguments.
6381 call void @llvm.va_end(i8* %ap2)
6382 ret i32 %tmp
6383 }
6384
6385 declare void @llvm.va_start(i8*)
6386 declare void @llvm.va_copy(i8*, i8*)
6387 declare void @llvm.va_end(i8*)
6388
6389.. _int_va_start:
6390
6391'``llvm.va_start``' Intrinsic
6392^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6393
6394Syntax:
6395"""""""
6396
6397::
6398
Nick Lewycky04f6de02013-09-11 22:04:52 +00006399 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006400
6401Overview:
6402"""""""""
6403
6404The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6405subsequent use by ``va_arg``.
6406
6407Arguments:
6408""""""""""
6409
6410The argument is a pointer to a ``va_list`` element to initialize.
6411
6412Semantics:
6413""""""""""
6414
6415The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6416available in C. In a target-dependent way, it initializes the
6417``va_list`` element to which the argument points, so that the next call
6418to ``va_arg`` will produce the first variable argument passed to the
6419function. Unlike the C ``va_start`` macro, this intrinsic does not need
6420to know the last argument of the function as the compiler can figure
6421that out.
6422
6423'``llvm.va_end``' Intrinsic
6424^^^^^^^^^^^^^^^^^^^^^^^^^^^
6425
6426Syntax:
6427"""""""
6428
6429::
6430
6431 declare void @llvm.va_end(i8* <arglist>)
6432
6433Overview:
6434"""""""""
6435
6436The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6437initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6438
6439Arguments:
6440""""""""""
6441
6442The argument is a pointer to a ``va_list`` to destroy.
6443
6444Semantics:
6445""""""""""
6446
6447The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6448available in C. In a target-dependent way, it destroys the ``va_list``
6449element to which the argument points. Calls to
6450:ref:`llvm.va_start <int_va_start>` and
6451:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6452``llvm.va_end``.
6453
6454.. _int_va_copy:
6455
6456'``llvm.va_copy``' Intrinsic
6457^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6458
6459Syntax:
6460"""""""
6461
6462::
6463
6464 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6465
6466Overview:
6467"""""""""
6468
6469The '``llvm.va_copy``' intrinsic copies the current argument position
6470from the source argument list to the destination argument list.
6471
6472Arguments:
6473""""""""""
6474
6475The first argument is a pointer to a ``va_list`` element to initialize.
6476The second argument is a pointer to a ``va_list`` element to copy from.
6477
6478Semantics:
6479""""""""""
6480
6481The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6482available in C. In a target-dependent way, it copies the source
6483``va_list`` element into the destination ``va_list`` element. This
6484intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6485arbitrarily complex and require, for example, memory allocation.
6486
6487Accurate Garbage Collection Intrinsics
6488--------------------------------------
6489
6490LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6491(GC) requires the implementation and generation of these intrinsics.
6492These intrinsics allow identification of :ref:`GC roots on the
6493stack <int_gcroot>`, as well as garbage collector implementations that
6494require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6495Front-ends for type-safe garbage collected languages should generate
6496these intrinsics to make use of the LLVM garbage collectors. For more
6497details, see `Accurate Garbage Collection with
6498LLVM <GarbageCollection.html>`_.
6499
6500The garbage collection intrinsics only operate on objects in the generic
6501address space (address space zero).
6502
6503.. _int_gcroot:
6504
6505'``llvm.gcroot``' Intrinsic
6506^^^^^^^^^^^^^^^^^^^^^^^^^^^
6507
6508Syntax:
6509"""""""
6510
6511::
6512
6513 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6514
6515Overview:
6516"""""""""
6517
6518The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6519the code generator, and allows some metadata to be associated with it.
6520
6521Arguments:
6522""""""""""
6523
6524The first argument specifies the address of a stack object that contains
6525the root pointer. The second pointer (which must be either a constant or
6526a global value address) contains the meta-data to be associated with the
6527root.
6528
6529Semantics:
6530""""""""""
6531
6532At runtime, a call to this intrinsic stores a null pointer into the
6533"ptrloc" location. At compile-time, the code generator generates
6534information to allow the runtime to find the pointer at GC safe points.
6535The '``llvm.gcroot``' intrinsic may only be used in a function which
6536:ref:`specifies a GC algorithm <gc>`.
6537
6538.. _int_gcread:
6539
6540'``llvm.gcread``' Intrinsic
6541^^^^^^^^^^^^^^^^^^^^^^^^^^^
6542
6543Syntax:
6544"""""""
6545
6546::
6547
6548 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6549
6550Overview:
6551"""""""""
6552
6553The '``llvm.gcread``' intrinsic identifies reads of references from heap
6554locations, allowing garbage collector implementations that require read
6555barriers.
6556
6557Arguments:
6558""""""""""
6559
6560The second argument is the address to read from, which should be an
6561address allocated from the garbage collector. The first object is a
6562pointer to the start of the referenced object, if needed by the language
6563runtime (otherwise null).
6564
6565Semantics:
6566""""""""""
6567
6568The '``llvm.gcread``' intrinsic has the same semantics as a load
6569instruction, but may be replaced with substantially more complex code by
6570the garbage collector runtime, as needed. The '``llvm.gcread``'
6571intrinsic may only be used in a function which :ref:`specifies a GC
6572algorithm <gc>`.
6573
6574.. _int_gcwrite:
6575
6576'``llvm.gcwrite``' Intrinsic
6577^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6578
6579Syntax:
6580"""""""
6581
6582::
6583
6584 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6585
6586Overview:
6587"""""""""
6588
6589The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6590locations, allowing garbage collector implementations that require write
6591barriers (such as generational or reference counting collectors).
6592
6593Arguments:
6594""""""""""
6595
6596The first argument is the reference to store, the second is the start of
6597the object to store it to, and the third is the address of the field of
6598Obj to store to. If the runtime does not require a pointer to the
6599object, Obj may be null.
6600
6601Semantics:
6602""""""""""
6603
6604The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6605instruction, but may be replaced with substantially more complex code by
6606the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6607intrinsic may only be used in a function which :ref:`specifies a GC
6608algorithm <gc>`.
6609
6610Code Generator Intrinsics
6611-------------------------
6612
6613These intrinsics are provided by LLVM to expose special features that
6614may only be implemented with code generator support.
6615
6616'``llvm.returnaddress``' Intrinsic
6617^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6618
6619Syntax:
6620"""""""
6621
6622::
6623
6624 declare i8 *@llvm.returnaddress(i32 <level>)
6625
6626Overview:
6627"""""""""
6628
6629The '``llvm.returnaddress``' intrinsic attempts to compute a
6630target-specific value indicating the return address of the current
6631function or one of its callers.
6632
6633Arguments:
6634""""""""""
6635
6636The argument to this intrinsic indicates which function to return the
6637address for. Zero indicates the calling function, one indicates its
6638caller, etc. The argument is **required** to be a constant integer
6639value.
6640
6641Semantics:
6642""""""""""
6643
6644The '``llvm.returnaddress``' intrinsic either returns a pointer
6645indicating the return address of the specified call frame, or zero if it
6646cannot be identified. The value returned by this intrinsic is likely to
6647be incorrect or 0 for arguments other than zero, so it should only be
6648used for debugging purposes.
6649
6650Note that calling this intrinsic does not prevent function inlining or
6651other aggressive transformations, so the value returned may not be that
6652of the obvious source-language caller.
6653
6654'``llvm.frameaddress``' Intrinsic
6655^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6656
6657Syntax:
6658"""""""
6659
6660::
6661
6662 declare i8* @llvm.frameaddress(i32 <level>)
6663
6664Overview:
6665"""""""""
6666
6667The '``llvm.frameaddress``' intrinsic attempts to return the
6668target-specific frame pointer value for the specified stack frame.
6669
6670Arguments:
6671""""""""""
6672
6673The argument to this intrinsic indicates which function to return the
6674frame pointer for. Zero indicates the calling function, one indicates
6675its caller, etc. The argument is **required** to be a constant integer
6676value.
6677
6678Semantics:
6679""""""""""
6680
6681The '``llvm.frameaddress``' intrinsic either returns a pointer
6682indicating the frame address of the specified call frame, or zero if it
6683cannot be identified. The value returned by this intrinsic is likely to
6684be incorrect or 0 for arguments other than zero, so it should only be
6685used for debugging purposes.
6686
6687Note that calling this intrinsic does not prevent function inlining or
6688other aggressive transformations, so the value returned may not be that
6689of the obvious source-language caller.
6690
6691.. _int_stacksave:
6692
6693'``llvm.stacksave``' Intrinsic
6694^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6695
6696Syntax:
6697"""""""
6698
6699::
6700
6701 declare i8* @llvm.stacksave()
6702
6703Overview:
6704"""""""""
6705
6706The '``llvm.stacksave``' intrinsic is used to remember the current state
6707of the function stack, for use with
6708:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6709implementing language features like scoped automatic variable sized
6710arrays in C99.
6711
6712Semantics:
6713""""""""""
6714
6715This intrinsic returns a opaque pointer value that can be passed to
6716:ref:`llvm.stackrestore <int_stackrestore>`. When an
6717``llvm.stackrestore`` intrinsic is executed with a value saved from
6718``llvm.stacksave``, it effectively restores the state of the stack to
6719the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6720practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6721were allocated after the ``llvm.stacksave`` was executed.
6722
6723.. _int_stackrestore:
6724
6725'``llvm.stackrestore``' Intrinsic
6726^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6727
6728Syntax:
6729"""""""
6730
6731::
6732
6733 declare void @llvm.stackrestore(i8* %ptr)
6734
6735Overview:
6736"""""""""
6737
6738The '``llvm.stackrestore``' intrinsic is used to restore the state of
6739the function stack to the state it was in when the corresponding
6740:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6741useful for implementing language features like scoped automatic variable
6742sized arrays in C99.
6743
6744Semantics:
6745""""""""""
6746
6747See the description for :ref:`llvm.stacksave <int_stacksave>`.
6748
6749'``llvm.prefetch``' Intrinsic
6750^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6751
6752Syntax:
6753"""""""
6754
6755::
6756
6757 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6758
6759Overview:
6760"""""""""
6761
6762The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6763insert a prefetch instruction if supported; otherwise, it is a noop.
6764Prefetches have no effect on the behavior of the program but can change
6765its performance characteristics.
6766
6767Arguments:
6768""""""""""
6769
6770``address`` is the address to be prefetched, ``rw`` is the specifier
6771determining if the fetch should be for a read (0) or write (1), and
6772``locality`` is a temporal locality specifier ranging from (0) - no
6773locality, to (3) - extremely local keep in cache. The ``cache type``
6774specifies whether the prefetch is performed on the data (1) or
6775instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6776arguments must be constant integers.
6777
6778Semantics:
6779""""""""""
6780
6781This intrinsic does not modify the behavior of the program. In
6782particular, prefetches cannot trap and do not produce a value. On
6783targets that support this intrinsic, the prefetch can provide hints to
6784the processor cache for better performance.
6785
6786'``llvm.pcmarker``' Intrinsic
6787^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6788
6789Syntax:
6790"""""""
6791
6792::
6793
6794 declare void @llvm.pcmarker(i32 <id>)
6795
6796Overview:
6797"""""""""
6798
6799The '``llvm.pcmarker``' intrinsic is a method to export a Program
6800Counter (PC) in a region of code to simulators and other tools. The
6801method is target specific, but it is expected that the marker will use
6802exported symbols to transmit the PC of the marker. The marker makes no
6803guarantees that it will remain with any specific instruction after
6804optimizations. It is possible that the presence of a marker will inhibit
6805optimizations. The intended use is to be inserted after optimizations to
6806allow correlations of simulation runs.
6807
6808Arguments:
6809""""""""""
6810
6811``id`` is a numerical id identifying the marker.
6812
6813Semantics:
6814""""""""""
6815
6816This intrinsic does not modify the behavior of the program. Backends
6817that do not support this intrinsic may ignore it.
6818
6819'``llvm.readcyclecounter``' Intrinsic
6820^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6821
6822Syntax:
6823"""""""
6824
6825::
6826
6827 declare i64 @llvm.readcyclecounter()
6828
6829Overview:
6830"""""""""
6831
6832The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6833counter register (or similar low latency, high accuracy clocks) on those
6834targets that support it. On X86, it should map to RDTSC. On Alpha, it
6835should map to RPCC. As the backing counters overflow quickly (on the
6836order of 9 seconds on alpha), this should only be used for small
6837timings.
6838
6839Semantics:
6840""""""""""
6841
6842When directly supported, reading the cycle counter should not modify any
6843memory. Implementations are allowed to either return a application
6844specific value or a system wide value. On backends without support, this
6845is lowered to a constant 0.
6846
Tim Northoverbc933082013-05-23 19:11:20 +00006847Note that runtime support may be conditional on the privilege-level code is
6848running at and the host platform.
6849
Sean Silvab084af42012-12-07 10:36:55 +00006850Standard C Library Intrinsics
6851-----------------------------
6852
6853LLVM provides intrinsics for a few important standard C library
6854functions. These intrinsics allow source-language front-ends to pass
6855information about the alignment of the pointer arguments to the code
6856generator, providing opportunity for more efficient code generation.
6857
6858.. _int_memcpy:
6859
6860'``llvm.memcpy``' Intrinsic
6861^^^^^^^^^^^^^^^^^^^^^^^^^^^
6862
6863Syntax:
6864"""""""
6865
6866This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6867integer bit width and for different address spaces. Not all targets
6868support all bit widths however.
6869
6870::
6871
6872 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6873 i32 <len>, i32 <align>, i1 <isvolatile>)
6874 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6875 i64 <len>, i32 <align>, i1 <isvolatile>)
6876
6877Overview:
6878"""""""""
6879
6880The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6881source location to the destination location.
6882
6883Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6884intrinsics do not return a value, takes extra alignment/isvolatile
6885arguments and the pointers can be in specified address spaces.
6886
6887Arguments:
6888""""""""""
6889
6890The first argument is a pointer to the destination, the second is a
6891pointer to the source. The third argument is an integer argument
6892specifying the number of bytes to copy, the fourth argument is the
6893alignment of the source and destination locations, and the fifth is a
6894boolean indicating a volatile access.
6895
6896If the call to this intrinsic has an alignment value that is not 0 or 1,
6897then the caller guarantees that both the source and destination pointers
6898are aligned to that boundary.
6899
6900If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6901a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6902very cleanly specified and it is unwise to depend on it.
6903
6904Semantics:
6905""""""""""
6906
6907The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6908source location to the destination location, which are not allowed to
6909overlap. It copies "len" bytes of memory over. If the argument is known
6910to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00006911argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00006912
6913'``llvm.memmove``' Intrinsic
6914^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6915
6916Syntax:
6917"""""""
6918
6919This is an overloaded intrinsic. You can use llvm.memmove on any integer
6920bit width and for different address space. Not all targets support all
6921bit widths however.
6922
6923::
6924
6925 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6926 i32 <len>, i32 <align>, i1 <isvolatile>)
6927 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6928 i64 <len>, i32 <align>, i1 <isvolatile>)
6929
6930Overview:
6931"""""""""
6932
6933The '``llvm.memmove.*``' intrinsics move a block of memory from the
6934source location to the destination location. It is similar to the
6935'``llvm.memcpy``' intrinsic but allows the two memory locations to
6936overlap.
6937
6938Note that, unlike the standard libc function, the ``llvm.memmove.*``
6939intrinsics do not return a value, takes extra alignment/isvolatile
6940arguments and the pointers can be in specified address spaces.
6941
6942Arguments:
6943""""""""""
6944
6945The first argument is a pointer to the destination, the second is a
6946pointer to the source. The third argument is an integer argument
6947specifying the number of bytes to copy, the fourth argument is the
6948alignment of the source and destination locations, and the fifth is a
6949boolean indicating a volatile access.
6950
6951If the call to this intrinsic has an alignment value that is not 0 or 1,
6952then the caller guarantees that the source and destination pointers are
6953aligned to that boundary.
6954
6955If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6956is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6957not very cleanly specified and it is unwise to depend on it.
6958
6959Semantics:
6960""""""""""
6961
6962The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6963source location to the destination location, which may overlap. It
6964copies "len" bytes of memory over. If the argument is known to be
6965aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00006966otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00006967
6968'``llvm.memset.*``' Intrinsics
6969^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6970
6971Syntax:
6972"""""""
6973
6974This is an overloaded intrinsic. You can use llvm.memset on any integer
6975bit width and for different address spaces. However, not all targets
6976support all bit widths.
6977
6978::
6979
6980 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6981 i32 <len>, i32 <align>, i1 <isvolatile>)
6982 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6983 i64 <len>, i32 <align>, i1 <isvolatile>)
6984
6985Overview:
6986"""""""""
6987
6988The '``llvm.memset.*``' intrinsics fill a block of memory with a
6989particular byte value.
6990
6991Note that, unlike the standard libc function, the ``llvm.memset``
6992intrinsic does not return a value and takes extra alignment/volatile
6993arguments. Also, the destination can be in an arbitrary address space.
6994
6995Arguments:
6996""""""""""
6997
6998The first argument is a pointer to the destination to fill, the second
6999is the byte value with which to fill it, the third argument is an
7000integer argument specifying the number of bytes to fill, and the fourth
7001argument is the known alignment of the destination location.
7002
7003If the call to this intrinsic has an alignment value that is not 0 or 1,
7004then the caller guarantees that the destination pointer is aligned to
7005that boundary.
7006
7007If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7008a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7009very cleanly specified and it is unwise to depend on it.
7010
7011Semantics:
7012""""""""""
7013
7014The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7015at the destination location. If the argument is known to be aligned to
7016some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007017it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007018
7019'``llvm.sqrt.*``' Intrinsic
7020^^^^^^^^^^^^^^^^^^^^^^^^^^^
7021
7022Syntax:
7023"""""""
7024
7025This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7026floating point or vector of floating point type. Not all targets support
7027all types however.
7028
7029::
7030
7031 declare float @llvm.sqrt.f32(float %Val)
7032 declare double @llvm.sqrt.f64(double %Val)
7033 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7034 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7035 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7036
7037Overview:
7038"""""""""
7039
7040The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7041returning the same value as the libm '``sqrt``' functions would. Unlike
7042``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7043negative numbers other than -0.0 (which allows for better optimization,
7044because there is no need to worry about errno being set).
7045``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7046
7047Arguments:
7048""""""""""
7049
7050The argument and return value are floating point numbers of the same
7051type.
7052
7053Semantics:
7054""""""""""
7055
7056This function returns the sqrt of the specified operand if it is a
7057nonnegative floating point number.
7058
7059'``llvm.powi.*``' Intrinsic
7060^^^^^^^^^^^^^^^^^^^^^^^^^^^
7061
7062Syntax:
7063"""""""
7064
7065This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7066floating point or vector of floating point type. Not all targets support
7067all types however.
7068
7069::
7070
7071 declare float @llvm.powi.f32(float %Val, i32 %power)
7072 declare double @llvm.powi.f64(double %Val, i32 %power)
7073 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7074 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7075 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7076
7077Overview:
7078"""""""""
7079
7080The '``llvm.powi.*``' intrinsics return the first operand raised to the
7081specified (positive or negative) power. The order of evaluation of
7082multiplications is not defined. When a vector of floating point type is
7083used, the second argument remains a scalar integer value.
7084
7085Arguments:
7086""""""""""
7087
7088The second argument is an integer power, and the first is a value to
7089raise to that power.
7090
7091Semantics:
7092""""""""""
7093
7094This function returns the first value raised to the second power with an
7095unspecified sequence of rounding operations.
7096
7097'``llvm.sin.*``' Intrinsic
7098^^^^^^^^^^^^^^^^^^^^^^^^^^
7099
7100Syntax:
7101"""""""
7102
7103This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7104floating point or vector of floating point type. Not all targets support
7105all types however.
7106
7107::
7108
7109 declare float @llvm.sin.f32(float %Val)
7110 declare double @llvm.sin.f64(double %Val)
7111 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7112 declare fp128 @llvm.sin.f128(fp128 %Val)
7113 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7114
7115Overview:
7116"""""""""
7117
7118The '``llvm.sin.*``' intrinsics return the sine of the operand.
7119
7120Arguments:
7121""""""""""
7122
7123The argument and return value are floating point numbers of the same
7124type.
7125
7126Semantics:
7127""""""""""
7128
7129This function returns the sine of the specified operand, returning the
7130same values as the libm ``sin`` functions would, and handles error
7131conditions in the same way.
7132
7133'``llvm.cos.*``' Intrinsic
7134^^^^^^^^^^^^^^^^^^^^^^^^^^
7135
7136Syntax:
7137"""""""
7138
7139This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7140floating point or vector of floating point type. Not all targets support
7141all types however.
7142
7143::
7144
7145 declare float @llvm.cos.f32(float %Val)
7146 declare double @llvm.cos.f64(double %Val)
7147 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7148 declare fp128 @llvm.cos.f128(fp128 %Val)
7149 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7150
7151Overview:
7152"""""""""
7153
7154The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7155
7156Arguments:
7157""""""""""
7158
7159The argument and return value are floating point numbers of the same
7160type.
7161
7162Semantics:
7163""""""""""
7164
7165This function returns the cosine of the specified operand, returning the
7166same values as the libm ``cos`` functions would, and handles error
7167conditions in the same way.
7168
7169'``llvm.pow.*``' Intrinsic
7170^^^^^^^^^^^^^^^^^^^^^^^^^^
7171
7172Syntax:
7173"""""""
7174
7175This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7176floating point or vector of floating point type. Not all targets support
7177all types however.
7178
7179::
7180
7181 declare float @llvm.pow.f32(float %Val, float %Power)
7182 declare double @llvm.pow.f64(double %Val, double %Power)
7183 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7184 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7185 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7186
7187Overview:
7188"""""""""
7189
7190The '``llvm.pow.*``' intrinsics return the first operand raised to the
7191specified (positive or negative) power.
7192
7193Arguments:
7194""""""""""
7195
7196The second argument is a floating point power, and the first is a value
7197to raise to that power.
7198
7199Semantics:
7200""""""""""
7201
7202This function returns the first value raised to the second power,
7203returning the same values as the libm ``pow`` functions would, and
7204handles error conditions in the same way.
7205
7206'``llvm.exp.*``' Intrinsic
7207^^^^^^^^^^^^^^^^^^^^^^^^^^
7208
7209Syntax:
7210"""""""
7211
7212This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7213floating point or vector of floating point type. Not all targets support
7214all types however.
7215
7216::
7217
7218 declare float @llvm.exp.f32(float %Val)
7219 declare double @llvm.exp.f64(double %Val)
7220 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7221 declare fp128 @llvm.exp.f128(fp128 %Val)
7222 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7223
7224Overview:
7225"""""""""
7226
7227The '``llvm.exp.*``' intrinsics perform the exp function.
7228
7229Arguments:
7230""""""""""
7231
7232The argument and return value are floating point numbers of the same
7233type.
7234
7235Semantics:
7236""""""""""
7237
7238This function returns the same values as the libm ``exp`` functions
7239would, and handles error conditions in the same way.
7240
7241'``llvm.exp2.*``' Intrinsic
7242^^^^^^^^^^^^^^^^^^^^^^^^^^^
7243
7244Syntax:
7245"""""""
7246
7247This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7248floating point or vector of floating point type. Not all targets support
7249all types however.
7250
7251::
7252
7253 declare float @llvm.exp2.f32(float %Val)
7254 declare double @llvm.exp2.f64(double %Val)
7255 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7256 declare fp128 @llvm.exp2.f128(fp128 %Val)
7257 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7258
7259Overview:
7260"""""""""
7261
7262The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7263
7264Arguments:
7265""""""""""
7266
7267The argument and return value are floating point numbers of the same
7268type.
7269
7270Semantics:
7271""""""""""
7272
7273This function returns the same values as the libm ``exp2`` functions
7274would, and handles error conditions in the same way.
7275
7276'``llvm.log.*``' Intrinsic
7277^^^^^^^^^^^^^^^^^^^^^^^^^^
7278
7279Syntax:
7280"""""""
7281
7282This is an overloaded intrinsic. You can use ``llvm.log`` on any
7283floating point or vector of floating point type. Not all targets support
7284all types however.
7285
7286::
7287
7288 declare float @llvm.log.f32(float %Val)
7289 declare double @llvm.log.f64(double %Val)
7290 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7291 declare fp128 @llvm.log.f128(fp128 %Val)
7292 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7293
7294Overview:
7295"""""""""
7296
7297The '``llvm.log.*``' intrinsics perform the log function.
7298
7299Arguments:
7300""""""""""
7301
7302The argument and return value are floating point numbers of the same
7303type.
7304
7305Semantics:
7306""""""""""
7307
7308This function returns the same values as the libm ``log`` functions
7309would, and handles error conditions in the same way.
7310
7311'``llvm.log10.*``' Intrinsic
7312^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7313
7314Syntax:
7315"""""""
7316
7317This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7318floating point or vector of floating point type. Not all targets support
7319all types however.
7320
7321::
7322
7323 declare float @llvm.log10.f32(float %Val)
7324 declare double @llvm.log10.f64(double %Val)
7325 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7326 declare fp128 @llvm.log10.f128(fp128 %Val)
7327 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7328
7329Overview:
7330"""""""""
7331
7332The '``llvm.log10.*``' intrinsics perform the log10 function.
7333
7334Arguments:
7335""""""""""
7336
7337The argument and return value are floating point numbers of the same
7338type.
7339
7340Semantics:
7341""""""""""
7342
7343This function returns the same values as the libm ``log10`` functions
7344would, and handles error conditions in the same way.
7345
7346'``llvm.log2.*``' Intrinsic
7347^^^^^^^^^^^^^^^^^^^^^^^^^^^
7348
7349Syntax:
7350"""""""
7351
7352This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7353floating point or vector of floating point type. Not all targets support
7354all types however.
7355
7356::
7357
7358 declare float @llvm.log2.f32(float %Val)
7359 declare double @llvm.log2.f64(double %Val)
7360 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7361 declare fp128 @llvm.log2.f128(fp128 %Val)
7362 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7363
7364Overview:
7365"""""""""
7366
7367The '``llvm.log2.*``' intrinsics perform the log2 function.
7368
7369Arguments:
7370""""""""""
7371
7372The argument and return value are floating point numbers of the same
7373type.
7374
7375Semantics:
7376""""""""""
7377
7378This function returns the same values as the libm ``log2`` functions
7379would, and handles error conditions in the same way.
7380
7381'``llvm.fma.*``' Intrinsic
7382^^^^^^^^^^^^^^^^^^^^^^^^^^
7383
7384Syntax:
7385"""""""
7386
7387This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7388floating point or vector of floating point type. Not all targets support
7389all types however.
7390
7391::
7392
7393 declare float @llvm.fma.f32(float %a, float %b, float %c)
7394 declare double @llvm.fma.f64(double %a, double %b, double %c)
7395 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7396 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7397 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7398
7399Overview:
7400"""""""""
7401
7402The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7403operation.
7404
7405Arguments:
7406""""""""""
7407
7408The argument and return value are floating point numbers of the same
7409type.
7410
7411Semantics:
7412""""""""""
7413
7414This function returns the same values as the libm ``fma`` functions
7415would.
7416
7417'``llvm.fabs.*``' Intrinsic
7418^^^^^^^^^^^^^^^^^^^^^^^^^^^
7419
7420Syntax:
7421"""""""
7422
7423This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7424floating point or vector of floating point type. Not all targets support
7425all types however.
7426
7427::
7428
7429 declare float @llvm.fabs.f32(float %Val)
7430 declare double @llvm.fabs.f64(double %Val)
7431 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7432 declare fp128 @llvm.fabs.f128(fp128 %Val)
7433 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7434
7435Overview:
7436"""""""""
7437
7438The '``llvm.fabs.*``' intrinsics return the absolute value of the
7439operand.
7440
7441Arguments:
7442""""""""""
7443
7444The argument and return value are floating point numbers of the same
7445type.
7446
7447Semantics:
7448""""""""""
7449
7450This function returns the same values as the libm ``fabs`` functions
7451would, and handles error conditions in the same way.
7452
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007453'``llvm.copysign.*``' Intrinsic
7454^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7455
7456Syntax:
7457"""""""
7458
7459This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7460floating point or vector of floating point type. Not all targets support
7461all types however.
7462
7463::
7464
7465 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7466 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7467 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7468 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7469 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7470
7471Overview:
7472"""""""""
7473
7474The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7475first operand and the sign of the second operand.
7476
7477Arguments:
7478""""""""""
7479
7480The arguments and return value are floating point numbers of the same
7481type.
7482
7483Semantics:
7484""""""""""
7485
7486This function returns the same values as the libm ``copysign``
7487functions would, and handles error conditions in the same way.
7488
Sean Silvab084af42012-12-07 10:36:55 +00007489'``llvm.floor.*``' Intrinsic
7490^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7491
7492Syntax:
7493"""""""
7494
7495This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7496floating point or vector of floating point type. Not all targets support
7497all types however.
7498
7499::
7500
7501 declare float @llvm.floor.f32(float %Val)
7502 declare double @llvm.floor.f64(double %Val)
7503 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7504 declare fp128 @llvm.floor.f128(fp128 %Val)
7505 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7506
7507Overview:
7508"""""""""
7509
7510The '``llvm.floor.*``' intrinsics return the floor of the operand.
7511
7512Arguments:
7513""""""""""
7514
7515The argument and return value are floating point numbers of the same
7516type.
7517
7518Semantics:
7519""""""""""
7520
7521This function returns the same values as the libm ``floor`` functions
7522would, and handles error conditions in the same way.
7523
7524'``llvm.ceil.*``' Intrinsic
7525^^^^^^^^^^^^^^^^^^^^^^^^^^^
7526
7527Syntax:
7528"""""""
7529
7530This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7531floating point or vector of floating point type. Not all targets support
7532all types however.
7533
7534::
7535
7536 declare float @llvm.ceil.f32(float %Val)
7537 declare double @llvm.ceil.f64(double %Val)
7538 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7539 declare fp128 @llvm.ceil.f128(fp128 %Val)
7540 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7541
7542Overview:
7543"""""""""
7544
7545The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7546
7547Arguments:
7548""""""""""
7549
7550The argument and return value are floating point numbers of the same
7551type.
7552
7553Semantics:
7554""""""""""
7555
7556This function returns the same values as the libm ``ceil`` functions
7557would, and handles error conditions in the same way.
7558
7559'``llvm.trunc.*``' Intrinsic
7560^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7561
7562Syntax:
7563"""""""
7564
7565This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7566floating point or vector of floating point type. Not all targets support
7567all types however.
7568
7569::
7570
7571 declare float @llvm.trunc.f32(float %Val)
7572 declare double @llvm.trunc.f64(double %Val)
7573 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7574 declare fp128 @llvm.trunc.f128(fp128 %Val)
7575 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7576
7577Overview:
7578"""""""""
7579
7580The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7581nearest integer not larger in magnitude than the operand.
7582
7583Arguments:
7584""""""""""
7585
7586The argument and return value are floating point numbers of the same
7587type.
7588
7589Semantics:
7590""""""""""
7591
7592This function returns the same values as the libm ``trunc`` functions
7593would, and handles error conditions in the same way.
7594
7595'``llvm.rint.*``' Intrinsic
7596^^^^^^^^^^^^^^^^^^^^^^^^^^^
7597
7598Syntax:
7599"""""""
7600
7601This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7602floating point or vector of floating point type. Not all targets support
7603all types however.
7604
7605::
7606
7607 declare float @llvm.rint.f32(float %Val)
7608 declare double @llvm.rint.f64(double %Val)
7609 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7610 declare fp128 @llvm.rint.f128(fp128 %Val)
7611 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7612
7613Overview:
7614"""""""""
7615
7616The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7617nearest integer. It may raise an inexact floating-point exception if the
7618operand isn't an integer.
7619
7620Arguments:
7621""""""""""
7622
7623The argument and return value are floating point numbers of the same
7624type.
7625
7626Semantics:
7627""""""""""
7628
7629This function returns the same values as the libm ``rint`` functions
7630would, and handles error conditions in the same way.
7631
7632'``llvm.nearbyint.*``' Intrinsic
7633^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7634
7635Syntax:
7636"""""""
7637
7638This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7639floating point or vector of floating point type. Not all targets support
7640all types however.
7641
7642::
7643
7644 declare float @llvm.nearbyint.f32(float %Val)
7645 declare double @llvm.nearbyint.f64(double %Val)
7646 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7647 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7648 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7649
7650Overview:
7651"""""""""
7652
7653The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7654nearest integer.
7655
7656Arguments:
7657""""""""""
7658
7659The argument and return value are floating point numbers of the same
7660type.
7661
7662Semantics:
7663""""""""""
7664
7665This function returns the same values as the libm ``nearbyint``
7666functions would, and handles error conditions in the same way.
7667
Hal Finkel171817e2013-08-07 22:49:12 +00007668'``llvm.round.*``' Intrinsic
7669^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7670
7671Syntax:
7672"""""""
7673
7674This is an overloaded intrinsic. You can use ``llvm.round`` on any
7675floating point or vector of floating point type. Not all targets support
7676all types however.
7677
7678::
7679
7680 declare float @llvm.round.f32(float %Val)
7681 declare double @llvm.round.f64(double %Val)
7682 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7683 declare fp128 @llvm.round.f128(fp128 %Val)
7684 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7685
7686Overview:
7687"""""""""
7688
7689The '``llvm.round.*``' intrinsics returns the operand rounded to the
7690nearest integer.
7691
7692Arguments:
7693""""""""""
7694
7695The argument and return value are floating point numbers of the same
7696type.
7697
7698Semantics:
7699""""""""""
7700
7701This function returns the same values as the libm ``round``
7702functions would, and handles error conditions in the same way.
7703
Sean Silvab084af42012-12-07 10:36:55 +00007704Bit Manipulation Intrinsics
7705---------------------------
7706
7707LLVM provides intrinsics for a few important bit manipulation
7708operations. These allow efficient code generation for some algorithms.
7709
7710'``llvm.bswap.*``' Intrinsics
7711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7712
7713Syntax:
7714"""""""
7715
7716This is an overloaded intrinsic function. You can use bswap on any
7717integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7718
7719::
7720
7721 declare i16 @llvm.bswap.i16(i16 <id>)
7722 declare i32 @llvm.bswap.i32(i32 <id>)
7723 declare i64 @llvm.bswap.i64(i64 <id>)
7724
7725Overview:
7726"""""""""
7727
7728The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7729values with an even number of bytes (positive multiple of 16 bits).
7730These are useful for performing operations on data that is not in the
7731target's native byte order.
7732
7733Semantics:
7734""""""""""
7735
7736The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7737and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7738intrinsic returns an i32 value that has the four bytes of the input i32
7739swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7740returned i32 will have its bytes in 3, 2, 1, 0 order. The
7741``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7742concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7743respectively).
7744
7745'``llvm.ctpop.*``' Intrinsic
7746^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7747
7748Syntax:
7749"""""""
7750
7751This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7752bit width, or on any vector with integer elements. Not all targets
7753support all bit widths or vector types, however.
7754
7755::
7756
7757 declare i8 @llvm.ctpop.i8(i8 <src>)
7758 declare i16 @llvm.ctpop.i16(i16 <src>)
7759 declare i32 @llvm.ctpop.i32(i32 <src>)
7760 declare i64 @llvm.ctpop.i64(i64 <src>)
7761 declare i256 @llvm.ctpop.i256(i256 <src>)
7762 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7763
7764Overview:
7765"""""""""
7766
7767The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7768in a value.
7769
7770Arguments:
7771""""""""""
7772
7773The only argument is the value to be counted. The argument may be of any
7774integer type, or a vector with integer elements. The return type must
7775match the argument type.
7776
7777Semantics:
7778""""""""""
7779
7780The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7781each element of a vector.
7782
7783'``llvm.ctlz.*``' Intrinsic
7784^^^^^^^^^^^^^^^^^^^^^^^^^^^
7785
7786Syntax:
7787"""""""
7788
7789This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7790integer bit width, or any vector whose elements are integers. Not all
7791targets support all bit widths or vector types, however.
7792
7793::
7794
7795 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7796 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7797 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7798 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7799 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7800 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7801
7802Overview:
7803"""""""""
7804
7805The '``llvm.ctlz``' family of intrinsic functions counts the number of
7806leading zeros in a variable.
7807
7808Arguments:
7809""""""""""
7810
7811The first argument is the value to be counted. This argument may be of
7812any integer type, or a vectory with integer element type. The return
7813type must match the first argument type.
7814
7815The second argument must be a constant and is a flag to indicate whether
7816the intrinsic should ensure that a zero as the first argument produces a
7817defined result. Historically some architectures did not provide a
7818defined result for zero values as efficiently, and many algorithms are
7819now predicated on avoiding zero-value inputs.
7820
7821Semantics:
7822""""""""""
7823
7824The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7825zeros in a variable, or within each element of the vector. If
7826``src == 0`` then the result is the size in bits of the type of ``src``
7827if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7828``llvm.ctlz(i32 2) = 30``.
7829
7830'``llvm.cttz.*``' Intrinsic
7831^^^^^^^^^^^^^^^^^^^^^^^^^^^
7832
7833Syntax:
7834"""""""
7835
7836This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7837integer bit width, or any vector of integer elements. Not all targets
7838support all bit widths or vector types, however.
7839
7840::
7841
7842 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7843 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7844 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7845 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7846 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7847 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7848
7849Overview:
7850"""""""""
7851
7852The '``llvm.cttz``' family of intrinsic functions counts the number of
7853trailing zeros.
7854
7855Arguments:
7856""""""""""
7857
7858The first argument is the value to be counted. This argument may be of
7859any integer type, or a vectory with integer element type. The return
7860type must match the first argument type.
7861
7862The second argument must be a constant and is a flag to indicate whether
7863the intrinsic should ensure that a zero as the first argument produces a
7864defined result. Historically some architectures did not provide a
7865defined result for zero values as efficiently, and many algorithms are
7866now predicated on avoiding zero-value inputs.
7867
7868Semantics:
7869""""""""""
7870
7871The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7872zeros in a variable, or within each element of a vector. If ``src == 0``
7873then the result is the size in bits of the type of ``src`` if
7874``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7875``llvm.cttz(2) = 1``.
7876
7877Arithmetic with Overflow Intrinsics
7878-----------------------------------
7879
7880LLVM provides intrinsics for some arithmetic with overflow operations.
7881
7882'``llvm.sadd.with.overflow.*``' Intrinsics
7883^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7884
7885Syntax:
7886"""""""
7887
7888This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7889on any integer bit width.
7890
7891::
7892
7893 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7894 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7895 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7896
7897Overview:
7898"""""""""
7899
7900The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7901a signed addition of the two arguments, and indicate whether an overflow
7902occurred during the signed summation.
7903
7904Arguments:
7905""""""""""
7906
7907The arguments (%a and %b) and the first element of the result structure
7908may be of integer types of any bit width, but they must have the same
7909bit width. The second element of the result structure must be of type
7910``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7911addition.
7912
7913Semantics:
7914""""""""""
7915
7916The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007917a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007918first element of which is the signed summation, and the second element
7919of which is a bit specifying if the signed summation resulted in an
7920overflow.
7921
7922Examples:
7923"""""""""
7924
7925.. code-block:: llvm
7926
7927 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7928 %sum = extractvalue {i32, i1} %res, 0
7929 %obit = extractvalue {i32, i1} %res, 1
7930 br i1 %obit, label %overflow, label %normal
7931
7932'``llvm.uadd.with.overflow.*``' Intrinsics
7933^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7934
7935Syntax:
7936"""""""
7937
7938This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7939on any integer bit width.
7940
7941::
7942
7943 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7944 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7945 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7946
7947Overview:
7948"""""""""
7949
7950The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7951an unsigned addition of the two arguments, and indicate whether a carry
7952occurred during the unsigned summation.
7953
7954Arguments:
7955""""""""""
7956
7957The arguments (%a and %b) and the first element of the result structure
7958may be of integer types of any bit width, but they must have the same
7959bit width. The second element of the result structure must be of type
7960``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7961addition.
7962
7963Semantics:
7964""""""""""
7965
7966The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007967an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007968first element of which is the sum, and the second element of which is a
7969bit specifying if the unsigned summation resulted in a carry.
7970
7971Examples:
7972"""""""""
7973
7974.. code-block:: llvm
7975
7976 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7977 %sum = extractvalue {i32, i1} %res, 0
7978 %obit = extractvalue {i32, i1} %res, 1
7979 br i1 %obit, label %carry, label %normal
7980
7981'``llvm.ssub.with.overflow.*``' Intrinsics
7982^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7983
7984Syntax:
7985"""""""
7986
7987This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7988on any integer bit width.
7989
7990::
7991
7992 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7993 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7994 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7995
7996Overview:
7997"""""""""
7998
7999The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8000a signed subtraction of the two arguments, and indicate whether an
8001overflow occurred during the signed subtraction.
8002
8003Arguments:
8004""""""""""
8005
8006The arguments (%a and %b) and the first element of the result structure
8007may be of integer types of any bit width, but they must have the same
8008bit width. The second element of the result structure must be of type
8009``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8010subtraction.
8011
8012Semantics:
8013""""""""""
8014
8015The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008016a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008017first element of which is the subtraction, and the second element of
8018which is a bit specifying if the signed subtraction resulted in an
8019overflow.
8020
8021Examples:
8022"""""""""
8023
8024.. code-block:: llvm
8025
8026 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8027 %sum = extractvalue {i32, i1} %res, 0
8028 %obit = extractvalue {i32, i1} %res, 1
8029 br i1 %obit, label %overflow, label %normal
8030
8031'``llvm.usub.with.overflow.*``' Intrinsics
8032^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8033
8034Syntax:
8035"""""""
8036
8037This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8038on any integer bit width.
8039
8040::
8041
8042 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8043 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8044 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8045
8046Overview:
8047"""""""""
8048
8049The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8050an unsigned subtraction of the two arguments, and indicate whether an
8051overflow occurred during the unsigned subtraction.
8052
8053Arguments:
8054""""""""""
8055
8056The arguments (%a and %b) and the first element of the result structure
8057may be of integer types of any bit width, but they must have the same
8058bit width. The second element of the result structure must be of type
8059``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8060subtraction.
8061
8062Semantics:
8063""""""""""
8064
8065The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008066an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008067the first element of which is the subtraction, and the second element of
8068which is a bit specifying if the unsigned subtraction resulted in an
8069overflow.
8070
8071Examples:
8072"""""""""
8073
8074.. code-block:: llvm
8075
8076 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8077 %sum = extractvalue {i32, i1} %res, 0
8078 %obit = extractvalue {i32, i1} %res, 1
8079 br i1 %obit, label %overflow, label %normal
8080
8081'``llvm.smul.with.overflow.*``' Intrinsics
8082^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8083
8084Syntax:
8085"""""""
8086
8087This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8088on any integer bit width.
8089
8090::
8091
8092 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8093 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8094 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8095
8096Overview:
8097"""""""""
8098
8099The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8100a signed multiplication of the two arguments, and indicate whether an
8101overflow occurred during the signed multiplication.
8102
8103Arguments:
8104""""""""""
8105
8106The arguments (%a and %b) and the first element of the result structure
8107may be of integer types of any bit width, but they must have the same
8108bit width. The second element of the result structure must be of type
8109``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8110multiplication.
8111
8112Semantics:
8113""""""""""
8114
8115The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008116a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008117the first element of which is the multiplication, and the second element
8118of which is a bit specifying if the signed multiplication resulted in an
8119overflow.
8120
8121Examples:
8122"""""""""
8123
8124.. code-block:: llvm
8125
8126 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8127 %sum = extractvalue {i32, i1} %res, 0
8128 %obit = extractvalue {i32, i1} %res, 1
8129 br i1 %obit, label %overflow, label %normal
8130
8131'``llvm.umul.with.overflow.*``' Intrinsics
8132^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8133
8134Syntax:
8135"""""""
8136
8137This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8138on any integer bit width.
8139
8140::
8141
8142 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8143 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8144 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8145
8146Overview:
8147"""""""""
8148
8149The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8150a unsigned multiplication of the two arguments, and indicate whether an
8151overflow occurred during the unsigned multiplication.
8152
8153Arguments:
8154""""""""""
8155
8156The arguments (%a and %b) and the first element of the result structure
8157may be of integer types of any bit width, but they must have the same
8158bit width. The second element of the result structure must be of type
8159``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8160multiplication.
8161
8162Semantics:
8163""""""""""
8164
8165The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008166an unsigned multiplication of the two arguments. They return a structure ---
8167the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008168element of which is a bit specifying if the unsigned multiplication
8169resulted in an overflow.
8170
8171Examples:
8172"""""""""
8173
8174.. code-block:: llvm
8175
8176 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8177 %sum = extractvalue {i32, i1} %res, 0
8178 %obit = extractvalue {i32, i1} %res, 1
8179 br i1 %obit, label %overflow, label %normal
8180
8181Specialised Arithmetic Intrinsics
8182---------------------------------
8183
8184'``llvm.fmuladd.*``' Intrinsic
8185^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8186
8187Syntax:
8188"""""""
8189
8190::
8191
8192 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8193 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8194
8195Overview:
8196"""""""""
8197
8198The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008199expressions that can be fused if the code generator determines that (a) the
8200target instruction set has support for a fused operation, and (b) that the
8201fused operation is more efficient than the equivalent, separate pair of mul
8202and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008203
8204Arguments:
8205""""""""""
8206
8207The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8208multiplicands, a and b, and an addend c.
8209
8210Semantics:
8211""""""""""
8212
8213The expression:
8214
8215::
8216
8217 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8218
8219is equivalent to the expression a \* b + c, except that rounding will
8220not be performed between the multiplication and addition steps if the
8221code generator fuses the operations. Fusion is not guaranteed, even if
8222the target platform supports it. If a fused multiply-add is required the
8223corresponding llvm.fma.\* intrinsic function should be used instead.
8224
8225Examples:
8226"""""""""
8227
8228.. code-block:: llvm
8229
8230 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8231
8232Half Precision Floating Point Intrinsics
8233----------------------------------------
8234
8235For most target platforms, half precision floating point is a
8236storage-only format. This means that it is a dense encoding (in memory)
8237but does not support computation in the format.
8238
8239This means that code must first load the half-precision floating point
8240value as an i16, then convert it to float with
8241:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8242then be performed on the float value (including extending to double
8243etc). To store the value back to memory, it is first converted to float
8244if needed, then converted to i16 with
8245:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8246i16 value.
8247
8248.. _int_convert_to_fp16:
8249
8250'``llvm.convert.to.fp16``' Intrinsic
8251^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8252
8253Syntax:
8254"""""""
8255
8256::
8257
8258 declare i16 @llvm.convert.to.fp16(f32 %a)
8259
8260Overview:
8261"""""""""
8262
8263The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8264from single precision floating point format to half precision floating
8265point format.
8266
8267Arguments:
8268""""""""""
8269
8270The intrinsic function contains single argument - the value to be
8271converted.
8272
8273Semantics:
8274""""""""""
8275
8276The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8277from single precision floating point format to half precision floating
8278point format. The return value is an ``i16`` which contains the
8279converted number.
8280
8281Examples:
8282"""""""""
8283
8284.. code-block:: llvm
8285
8286 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8287 store i16 %res, i16* @x, align 2
8288
8289.. _int_convert_from_fp16:
8290
8291'``llvm.convert.from.fp16``' Intrinsic
8292^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8293
8294Syntax:
8295"""""""
8296
8297::
8298
8299 declare f32 @llvm.convert.from.fp16(i16 %a)
8300
8301Overview:
8302"""""""""
8303
8304The '``llvm.convert.from.fp16``' intrinsic function performs a
8305conversion from half precision floating point format to single precision
8306floating point format.
8307
8308Arguments:
8309""""""""""
8310
8311The intrinsic function contains single argument - the value to be
8312converted.
8313
8314Semantics:
8315""""""""""
8316
8317The '``llvm.convert.from.fp16``' intrinsic function performs a
8318conversion from half single precision floating point format to single
8319precision floating point format. The input half-float value is
8320represented by an ``i16`` value.
8321
8322Examples:
8323"""""""""
8324
8325.. code-block:: llvm
8326
8327 %a = load i16* @x, align 2
8328 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8329
8330Debugger Intrinsics
8331-------------------
8332
8333The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8334prefix), are described in the `LLVM Source Level
8335Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8336document.
8337
8338Exception Handling Intrinsics
8339-----------------------------
8340
8341The LLVM exception handling intrinsics (which all start with
8342``llvm.eh.`` prefix), are described in the `LLVM Exception
8343Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8344
8345.. _int_trampoline:
8346
8347Trampoline Intrinsics
8348---------------------
8349
8350These intrinsics make it possible to excise one parameter, marked with
8351the :ref:`nest <nest>` attribute, from a function. The result is a
8352callable function pointer lacking the nest parameter - the caller does
8353not need to provide a value for it. Instead, the value to use is stored
8354in advance in a "trampoline", a block of memory usually allocated on the
8355stack, which also contains code to splice the nest value into the
8356argument list. This is used to implement the GCC nested function address
8357extension.
8358
8359For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8360then the resulting function pointer has signature ``i32 (i32, i32)*``.
8361It can be created as follows:
8362
8363.. code-block:: llvm
8364
8365 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8366 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8367 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8368 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8369 %fp = bitcast i8* %p to i32 (i32, i32)*
8370
8371The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8372``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8373
8374.. _int_it:
8375
8376'``llvm.init.trampoline``' Intrinsic
8377^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8378
8379Syntax:
8380"""""""
8381
8382::
8383
8384 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8385
8386Overview:
8387"""""""""
8388
8389This fills the memory pointed to by ``tramp`` with executable code,
8390turning it into a trampoline.
8391
8392Arguments:
8393""""""""""
8394
8395The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8396pointers. The ``tramp`` argument must point to a sufficiently large and
8397sufficiently aligned block of memory; this memory is written to by the
8398intrinsic. Note that the size and the alignment are target-specific -
8399LLVM currently provides no portable way of determining them, so a
8400front-end that generates this intrinsic needs to have some
8401target-specific knowledge. The ``func`` argument must hold a function
8402bitcast to an ``i8*``.
8403
8404Semantics:
8405""""""""""
8406
8407The block of memory pointed to by ``tramp`` is filled with target
8408dependent code, turning it into a function. Then ``tramp`` needs to be
8409passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8410be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8411function's signature is the same as that of ``func`` with any arguments
8412marked with the ``nest`` attribute removed. At most one such ``nest``
8413argument is allowed, and it must be of pointer type. Calling the new
8414function is equivalent to calling ``func`` with the same argument list,
8415but with ``nval`` used for the missing ``nest`` argument. If, after
8416calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8417modified, then the effect of any later call to the returned function
8418pointer is undefined.
8419
8420.. _int_at:
8421
8422'``llvm.adjust.trampoline``' Intrinsic
8423^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8424
8425Syntax:
8426"""""""
8427
8428::
8429
8430 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8431
8432Overview:
8433"""""""""
8434
8435This performs any required machine-specific adjustment to the address of
8436a trampoline (passed as ``tramp``).
8437
8438Arguments:
8439""""""""""
8440
8441``tramp`` must point to a block of memory which already has trampoline
8442code filled in by a previous call to
8443:ref:`llvm.init.trampoline <int_it>`.
8444
8445Semantics:
8446""""""""""
8447
8448On some architectures the address of the code to be executed needs to be
8449different to the address where the trampoline is actually stored. This
8450intrinsic returns the executable address corresponding to ``tramp``
8451after performing the required machine specific adjustments. The pointer
8452returned can then be :ref:`bitcast and executed <int_trampoline>`.
8453
8454Memory Use Markers
8455------------------
8456
8457This class of intrinsics exists to information about the lifetime of
8458memory objects and ranges where variables are immutable.
8459
8460'``llvm.lifetime.start``' Intrinsic
8461^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8462
8463Syntax:
8464"""""""
8465
8466::
8467
8468 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8469
8470Overview:
8471"""""""""
8472
8473The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8474object's lifetime.
8475
8476Arguments:
8477""""""""""
8478
8479The first argument is a constant integer representing the size of the
8480object, or -1 if it is variable sized. The second argument is a pointer
8481to the object.
8482
8483Semantics:
8484""""""""""
8485
8486This intrinsic indicates that before this point in the code, the value
8487of the memory pointed to by ``ptr`` is dead. This means that it is known
8488to never be used and has an undefined value. A load from the pointer
8489that precedes this intrinsic can be replaced with ``'undef'``.
8490
8491'``llvm.lifetime.end``' Intrinsic
8492^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8493
8494Syntax:
8495"""""""
8496
8497::
8498
8499 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8500
8501Overview:
8502"""""""""
8503
8504The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8505object's lifetime.
8506
8507Arguments:
8508""""""""""
8509
8510The first argument is a constant integer representing the size of the
8511object, or -1 if it is variable sized. The second argument is a pointer
8512to the object.
8513
8514Semantics:
8515""""""""""
8516
8517This intrinsic indicates that after this point in the code, the value of
8518the memory pointed to by ``ptr`` is dead. This means that it is known to
8519never be used and has an undefined value. Any stores into the memory
8520object following this intrinsic may be removed as dead.
8521
8522'``llvm.invariant.start``' Intrinsic
8523^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8524
8525Syntax:
8526"""""""
8527
8528::
8529
8530 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8531
8532Overview:
8533"""""""""
8534
8535The '``llvm.invariant.start``' intrinsic specifies that the contents of
8536a memory object will not change.
8537
8538Arguments:
8539""""""""""
8540
8541The first argument is a constant integer representing the size of the
8542object, or -1 if it is variable sized. The second argument is a pointer
8543to the object.
8544
8545Semantics:
8546""""""""""
8547
8548This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8549the return value, the referenced memory location is constant and
8550unchanging.
8551
8552'``llvm.invariant.end``' Intrinsic
8553^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8554
8555Syntax:
8556"""""""
8557
8558::
8559
8560 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8561
8562Overview:
8563"""""""""
8564
8565The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8566memory object are mutable.
8567
8568Arguments:
8569""""""""""
8570
8571The first argument is the matching ``llvm.invariant.start`` intrinsic.
8572The second argument is a constant integer representing the size of the
8573object, or -1 if it is variable sized and the third argument is a
8574pointer to the object.
8575
8576Semantics:
8577""""""""""
8578
8579This intrinsic indicates that the memory is mutable again.
8580
8581General Intrinsics
8582------------------
8583
8584This class of intrinsics is designed to be generic and has no specific
8585purpose.
8586
8587'``llvm.var.annotation``' Intrinsic
8588^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8589
8590Syntax:
8591"""""""
8592
8593::
8594
8595 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8596
8597Overview:
8598"""""""""
8599
8600The '``llvm.var.annotation``' intrinsic.
8601
8602Arguments:
8603""""""""""
8604
8605The first argument is a pointer to a value, the second is a pointer to a
8606global string, the third is a pointer to a global string which is the
8607source file name, and the last argument is the line number.
8608
8609Semantics:
8610""""""""""
8611
8612This intrinsic allows annotation of local variables with arbitrary
8613strings. This can be useful for special purpose optimizations that want
8614to look for these annotations. These have no other defined use; they are
8615ignored by code generation and optimization.
8616
Michael Gottesman88d18832013-03-26 00:34:27 +00008617'``llvm.ptr.annotation.*``' Intrinsic
8618^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8619
8620Syntax:
8621"""""""
8622
8623This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8624pointer to an integer of any width. *NOTE* you must specify an address space for
8625the pointer. The identifier for the default address space is the integer
8626'``0``'.
8627
8628::
8629
8630 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8631 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8632 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8633 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8634 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8635
8636Overview:
8637"""""""""
8638
8639The '``llvm.ptr.annotation``' intrinsic.
8640
8641Arguments:
8642""""""""""
8643
8644The first argument is a pointer to an integer value of arbitrary bitwidth
8645(result of some expression), the second is a pointer to a global string, the
8646third is a pointer to a global string which is the source file name, and the
8647last argument is the line number. It returns the value of the first argument.
8648
8649Semantics:
8650""""""""""
8651
8652This intrinsic allows annotation of a pointer to an integer with arbitrary
8653strings. This can be useful for special purpose optimizations that want to look
8654for these annotations. These have no other defined use; they are ignored by code
8655generation and optimization.
8656
Sean Silvab084af42012-12-07 10:36:55 +00008657'``llvm.annotation.*``' Intrinsic
8658^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8659
8660Syntax:
8661"""""""
8662
8663This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8664any integer bit width.
8665
8666::
8667
8668 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8669 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8670 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8671 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8672 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8673
8674Overview:
8675"""""""""
8676
8677The '``llvm.annotation``' intrinsic.
8678
8679Arguments:
8680""""""""""
8681
8682The first argument is an integer value (result of some expression), the
8683second is a pointer to a global string, the third is a pointer to a
8684global string which is the source file name, and the last argument is
8685the line number. It returns the value of the first argument.
8686
8687Semantics:
8688""""""""""
8689
8690This intrinsic allows annotations to be put on arbitrary expressions
8691with arbitrary strings. This can be useful for special purpose
8692optimizations that want to look for these annotations. These have no
8693other defined use; they are ignored by code generation and optimization.
8694
8695'``llvm.trap``' Intrinsic
8696^^^^^^^^^^^^^^^^^^^^^^^^^
8697
8698Syntax:
8699"""""""
8700
8701::
8702
8703 declare void @llvm.trap() noreturn nounwind
8704
8705Overview:
8706"""""""""
8707
8708The '``llvm.trap``' intrinsic.
8709
8710Arguments:
8711""""""""""
8712
8713None.
8714
8715Semantics:
8716""""""""""
8717
8718This intrinsic is lowered to the target dependent trap instruction. If
8719the target does not have a trap instruction, this intrinsic will be
8720lowered to a call of the ``abort()`` function.
8721
8722'``llvm.debugtrap``' Intrinsic
8723^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8724
8725Syntax:
8726"""""""
8727
8728::
8729
8730 declare void @llvm.debugtrap() nounwind
8731
8732Overview:
8733"""""""""
8734
8735The '``llvm.debugtrap``' intrinsic.
8736
8737Arguments:
8738""""""""""
8739
8740None.
8741
8742Semantics:
8743""""""""""
8744
8745This intrinsic is lowered to code which is intended to cause an
8746execution trap with the intention of requesting the attention of a
8747debugger.
8748
8749'``llvm.stackprotector``' Intrinsic
8750^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8751
8752Syntax:
8753"""""""
8754
8755::
8756
8757 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8758
8759Overview:
8760"""""""""
8761
8762The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8763onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8764is placed on the stack before local variables.
8765
8766Arguments:
8767""""""""""
8768
8769The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8770The first argument is the value loaded from the stack guard
8771``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8772enough space to hold the value of the guard.
8773
8774Semantics:
8775""""""""""
8776
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008777This intrinsic causes the prologue/epilogue inserter to force the position of
8778the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8779to ensure that if a local variable on the stack is overwritten, it will destroy
8780the value of the guard. When the function exits, the guard on the stack is
8781checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8782different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8783calling the ``__stack_chk_fail()`` function.
8784
8785'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00008786^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008787
8788Syntax:
8789"""""""
8790
8791::
8792
8793 declare void @llvm.stackprotectorcheck(i8** <guard>)
8794
8795Overview:
8796"""""""""
8797
8798The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00008799created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00008800``__stack_chk_fail()`` function.
8801
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008802Arguments:
8803""""""""""
8804
8805The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8806the variable ``@__stack_chk_guard``.
8807
8808Semantics:
8809""""""""""
8810
8811This intrinsic is provided to perform the stack protector check by comparing
8812``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8813values do not match call the ``__stack_chk_fail()`` function.
8814
8815The reason to provide this as an IR level intrinsic instead of implementing it
8816via other IR operations is that in order to perform this operation at the IR
8817level without an intrinsic, one would need to create additional basic blocks to
8818handle the success/failure cases. This makes it difficult to stop the stack
8819protector check from disrupting sibling tail calls in Codegen. With this
8820intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00008821codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008822
Sean Silvab084af42012-12-07 10:36:55 +00008823'``llvm.objectsize``' Intrinsic
8824^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8825
8826Syntax:
8827"""""""
8828
8829::
8830
8831 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8832 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8833
8834Overview:
8835"""""""""
8836
8837The ``llvm.objectsize`` intrinsic is designed to provide information to
8838the optimizers to determine at compile time whether a) an operation
8839(like memcpy) will overflow a buffer that corresponds to an object, or
8840b) that a runtime check for overflow isn't necessary. An object in this
8841context means an allocation of a specific class, structure, array, or
8842other object.
8843
8844Arguments:
8845""""""""""
8846
8847The ``llvm.objectsize`` intrinsic takes two arguments. The first
8848argument is a pointer to or into the ``object``. The second argument is
8849a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8850or -1 (if false) when the object size is unknown. The second argument
8851only accepts constants.
8852
8853Semantics:
8854""""""""""
8855
8856The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8857the size of the object concerned. If the size cannot be determined at
8858compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8859on the ``min`` argument).
8860
8861'``llvm.expect``' Intrinsic
8862^^^^^^^^^^^^^^^^^^^^^^^^^^^
8863
8864Syntax:
8865"""""""
8866
8867::
8868
8869 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8870 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8871
8872Overview:
8873"""""""""
8874
8875The ``llvm.expect`` intrinsic provides information about expected (the
8876most probable) value of ``val``, which can be used by optimizers.
8877
8878Arguments:
8879""""""""""
8880
8881The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8882a value. The second argument is an expected value, this needs to be a
8883constant value, variables are not allowed.
8884
8885Semantics:
8886""""""""""
8887
8888This intrinsic is lowered to the ``val``.
8889
8890'``llvm.donothing``' Intrinsic
8891^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8892
8893Syntax:
8894"""""""
8895
8896::
8897
8898 declare void @llvm.donothing() nounwind readnone
8899
8900Overview:
8901"""""""""
8902
8903The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8904only intrinsic that can be called with an invoke instruction.
8905
8906Arguments:
8907""""""""""
8908
8909None.
8910
8911Semantics:
8912""""""""""
8913
8914This intrinsic does nothing, and it's removed by optimizers and ignored
8915by codegen.