blob: 8c761b47bc34a18a51dc1b203b3ebd2644bb418c [file] [log] [blame]
Adam Nemet04563272015-02-01 16:56:15 +00001//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The implementation for the loop memory dependence that was originally
11// developed for the loop vectorizer.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/LoopAccessAnalysis.h"
16#include "llvm/Analysis/LoopInfo.h"
Xinliang David Li8a021312016-07-02 21:18:40 +000017#include "llvm/Analysis/LoopPassManager.h"
Adam Nemet5b3a5cf2016-07-20 21:44:26 +000018#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
Adam Nemet7206d7a2015-02-06 18:31:04 +000019#include "llvm/Analysis/ScalarEvolutionExpander.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000020#include "llvm/Analysis/TargetLibraryInfo.h"
Adam Nemet04563272015-02-01 16:56:15 +000021#include "llvm/Analysis/ValueTracking.h"
Adam Nemetf45594c2016-07-01 00:09:02 +000022#include "llvm/Analysis/VectorUtils.h"
Adam Nemet04563272015-02-01 16:56:15 +000023#include "llvm/IR/Dominators.h"
Adam Nemet7206d7a2015-02-06 18:31:04 +000024#include "llvm/IR/IRBuilder.h"
Xinliang David Li8a021312016-07-02 21:18:40 +000025#include "llvm/IR/PassManager.h"
Adam Nemet04563272015-02-01 16:56:15 +000026#include "llvm/Support/Debug.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000027#include "llvm/Support/raw_ostream.h"
Adam Nemet04563272015-02-01 16:56:15 +000028using namespace llvm;
29
Adam Nemet339f42b2015-02-19 19:15:07 +000030#define DEBUG_TYPE "loop-accesses"
Adam Nemet04563272015-02-01 16:56:15 +000031
Adam Nemetf219c642015-02-19 19:14:52 +000032static cl::opt<unsigned, true>
33VectorizationFactor("force-vector-width", cl::Hidden,
34 cl::desc("Sets the SIMD width. Zero is autoselect."),
35 cl::location(VectorizerParams::VectorizationFactor));
Adam Nemet1d862af2015-02-26 04:39:09 +000036unsigned VectorizerParams::VectorizationFactor;
Adam Nemetf219c642015-02-19 19:14:52 +000037
38static cl::opt<unsigned, true>
39VectorizationInterleave("force-vector-interleave", cl::Hidden,
40 cl::desc("Sets the vectorization interleave count. "
41 "Zero is autoselect."),
42 cl::location(
43 VectorizerParams::VectorizationInterleave));
Adam Nemet1d862af2015-02-26 04:39:09 +000044unsigned VectorizerParams::VectorizationInterleave;
Adam Nemetf219c642015-02-19 19:14:52 +000045
Adam Nemet1d862af2015-02-26 04:39:09 +000046static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
47 "runtime-memory-check-threshold", cl::Hidden,
48 cl::desc("When performing memory disambiguation checks at runtime do not "
49 "generate more than this number of comparisons (default = 8)."),
50 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
51unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
Adam Nemetf219c642015-02-19 19:14:52 +000052
Silviu Baranga1b6b50a2015-07-08 09:16:33 +000053/// \brief The maximum iterations used to merge memory checks
54static cl::opt<unsigned> MemoryCheckMergeThreshold(
55 "memory-check-merge-threshold", cl::Hidden,
56 cl::desc("Maximum number of comparisons done when trying to merge "
57 "runtime memory checks. (default = 100)"),
58 cl::init(100));
59
Adam Nemetf219c642015-02-19 19:14:52 +000060/// Maximum SIMD width.
61const unsigned VectorizerParams::MaxVectorWidth = 64;
62
Adam Nemeta2df7502015-11-03 21:39:52 +000063/// \brief We collect dependences up to this threshold.
64static cl::opt<unsigned>
65 MaxDependences("max-dependences", cl::Hidden,
66 cl::desc("Maximum number of dependences collected by "
67 "loop-access analysis (default = 100)"),
68 cl::init(100));
Adam Nemet9c926572015-03-10 17:40:37 +000069
Adam Nemeta9f09c62016-06-17 22:35:41 +000070/// This enables versioning on the strides of symbolically striding memory
71/// accesses in code like the following.
72/// for (i = 0; i < N; ++i)
73/// A[i * Stride1] += B[i * Stride2] ...
74///
75/// Will be roughly translated to
76/// if (Stride1 == 1 && Stride2 == 1) {
77/// for (i = 0; i < N; i+=4)
78/// A[i:i+3] += ...
79/// } else
80/// ...
81static cl::opt<bool> EnableMemAccessVersioning(
82 "enable-mem-access-versioning", cl::init(true), cl::Hidden,
83 cl::desc("Enable symbolic stride memory access versioning"));
84
Matthew Simpson37ec5f92016-05-16 17:00:56 +000085/// \brief Enable store-to-load forwarding conflict detection. This option can
86/// be disabled for correctness testing.
87static cl::opt<bool> EnableForwardingConflictDetection(
88 "store-to-load-forwarding-conflict-detection", cl::Hidden,
Matthew Simpsona250dc92016-05-16 14:14:49 +000089 cl::desc("Enable conflict detection in loop-access analysis"),
90 cl::init(true));
91
Adam Nemetf219c642015-02-19 19:14:52 +000092bool VectorizerParams::isInterleaveForced() {
93 return ::VectorizationInterleave.getNumOccurrences() > 0;
94}
95
Adam Nemet2bd6e982015-02-19 19:15:15 +000096void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
Adam Nemet5b3a5cf2016-07-20 21:44:26 +000097 const Loop *TheLoop, const char *PassName,
98 OptimizationRemarkEmitter &ORE) {
Adam Nemet04563272015-02-01 16:56:15 +000099 DebugLoc DL = TheLoop->getStartLoc();
Adam Nemet5b3a5cf2016-07-20 21:44:26 +0000100 const Value *V = TheLoop->getHeader();
101 if (const Instruction *I = Message.getInstr()) {
Adam Nemet04563272015-02-01 16:56:15 +0000102 DL = I->getDebugLoc();
Adam Nemet5b3a5cf2016-07-20 21:44:26 +0000103 V = I->getParent();
104 }
105 ORE.emitOptimizationRemarkAnalysis(PassName, DL, V, Message.str());
Adam Nemet04563272015-02-01 16:56:15 +0000106}
107
108Value *llvm::stripIntegerCast(Value *V) {
David Majnemer8b401012016-07-12 20:31:46 +0000109 if (auto *CI = dyn_cast<CastInst>(V))
Adam Nemet04563272015-02-01 16:56:15 +0000110 if (CI->getOperand(0)->getType()->isIntegerTy())
111 return CI->getOperand(0);
112 return V;
113}
114
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000115const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
Adam Nemet8bc61df2015-02-24 00:41:59 +0000116 const ValueToValueMap &PtrToStride,
Adam Nemet04563272015-02-01 16:56:15 +0000117 Value *Ptr, Value *OrigPtr) {
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000118 const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000119
120 // If there is an entry in the map return the SCEV of the pointer with the
121 // symbolic stride replaced by one.
Adam Nemet8bc61df2015-02-24 00:41:59 +0000122 ValueToValueMap::const_iterator SI =
123 PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000124 if (SI != PtrToStride.end()) {
125 Value *StrideVal = SI->second;
126
127 // Strip casts.
128 StrideVal = stripIntegerCast(StrideVal);
129
130 // Replace symbolic stride by one.
131 Value *One = ConstantInt::get(StrideVal->getType(), 1);
132 ValueToValueMap RewriteMap;
133 RewriteMap[StrideVal] = One;
134
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000135 ScalarEvolution *SE = PSE.getSE();
Silviu Barangae3c05342015-11-02 14:41:02 +0000136 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
137 const auto *CT =
138 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
139
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000140 PSE.addPredicate(*SE->getEqualPredicate(U, CT));
141 auto *Expr = PSE.getSCEV(Ptr);
Silviu Barangae3c05342015-11-02 14:41:02 +0000142
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000143 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr
Adam Nemet04563272015-02-01 16:56:15 +0000144 << "\n");
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000145 return Expr;
Adam Nemet04563272015-02-01 16:56:15 +0000146 }
147
148 // Otherwise, just return the SCEV of the original pointer.
Silviu Barangae3c05342015-11-02 14:41:02 +0000149 return OrigSCEV;
Adam Nemet04563272015-02-01 16:56:15 +0000150}
151
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +0000152/// Calculate Start and End points of memory access.
153/// Let's assume A is the first access and B is a memory access on N-th loop
154/// iteration. Then B is calculated as:
155/// B = A + Step*N .
156/// Step value may be positive or negative.
157/// N is a calculated back-edge taken count:
158/// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
159/// Start and End points are calculated in the following way:
160/// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
161/// where SizeOfElt is the size of single memory access in bytes.
162///
163/// There is no conflict when the intervals are disjoint:
164/// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
Adam Nemet7cdebac2015-07-14 22:32:44 +0000165void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
166 unsigned DepSetId, unsigned ASId,
Silviu Barangae3c05342015-11-02 14:41:02 +0000167 const ValueToValueMap &Strides,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000168 PredicatedScalarEvolution &PSE) {
Adam Nemet04563272015-02-01 16:56:15 +0000169 // Get the stride replaced scev.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000170 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000171 ScalarEvolution *SE = PSE.getSE();
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000172
Adam Nemet279784f2016-03-24 04:28:47 +0000173 const SCEV *ScStart;
174 const SCEV *ScEnd;
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000175
Adam Nemet59a65502016-03-24 05:15:24 +0000176 if (SE->isLoopInvariant(Sc, Lp))
Adam Nemet279784f2016-03-24 04:28:47 +0000177 ScStart = ScEnd = Sc;
Adam Nemet279784f2016-03-24 04:28:47 +0000178 else {
179 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
180 assert(AR && "Invalid addrec expression");
Silviu Baranga6f444df2016-04-08 14:29:09 +0000181 const SCEV *Ex = PSE.getBackedgeTakenCount();
Adam Nemet279784f2016-03-24 04:28:47 +0000182
183 ScStart = AR->getStart();
184 ScEnd = AR->evaluateAtIteration(Ex, *SE);
185 const SCEV *Step = AR->getStepRecurrence(*SE);
186
187 // For expressions with negative step, the upper bound is ScStart and the
188 // lower bound is ScEnd.
David Majnemer8b401012016-07-12 20:31:46 +0000189 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
Adam Nemet279784f2016-03-24 04:28:47 +0000190 if (CStep->getValue()->isNegative())
191 std::swap(ScStart, ScEnd);
192 } else {
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +0000193 // Fallback case: the step is not constant, but we can still
Adam Nemet279784f2016-03-24 04:28:47 +0000194 // get the upper and lower bounds of the interval by using min/max
195 // expressions.
196 ScStart = SE->getUMinExpr(ScStart, ScEnd);
197 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
198 }
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +0000199 // Add the size of the pointed element to ScEnd.
200 unsigned EltSize =
201 Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8;
202 const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize);
203 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000204 }
205
206 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000207}
208
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000209SmallVector<RuntimePointerChecking::PointerCheck, 4>
Adam Nemet38530882015-08-09 20:06:06 +0000210RuntimePointerChecking::generateChecks() const {
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000211 SmallVector<PointerCheck, 4> Checks;
212
Adam Nemet7c52e052015-07-27 19:38:50 +0000213 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
214 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
215 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
216 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000217
Adam Nemet38530882015-08-09 20:06:06 +0000218 if (needsChecking(CGI, CGJ))
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000219 Checks.push_back(std::make_pair(&CGI, &CGJ));
220 }
221 }
222 return Checks;
223}
224
Adam Nemet15840392015-08-07 22:44:15 +0000225void RuntimePointerChecking::generateChecks(
226 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
227 assert(Checks.empty() && "Checks is not empty");
228 groupChecks(DepCands, UseDependencies);
229 Checks = generateChecks();
230}
231
Adam Nemet651a5a22015-08-09 20:06:08 +0000232bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
233 const CheckingPtrGroup &N) const {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000234 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
235 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
Adam Nemet651a5a22015-08-09 20:06:08 +0000236 if (needsChecking(M.Members[I], N.Members[J]))
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000237 return true;
238 return false;
239}
240
241/// Compare \p I and \p J and return the minimum.
242/// Return nullptr in case we couldn't find an answer.
243static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
244 ScalarEvolution *SE) {
245 const SCEV *Diff = SE->getMinusSCEV(J, I);
246 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
247
248 if (!C)
249 return nullptr;
250 if (C->getValue()->isNegative())
251 return J;
252 return I;
253}
254
Adam Nemet7cdebac2015-07-14 22:32:44 +0000255bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000256 const SCEV *Start = RtCheck.Pointers[Index].Start;
257 const SCEV *End = RtCheck.Pointers[Index].End;
258
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000259 // Compare the starts and ends with the known minimum and maximum
260 // of this set. We need to know how we compare against the min/max
261 // of the set in order to be able to emit memchecks.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000262 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000263 if (!Min0)
264 return false;
265
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000266 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000267 if (!Min1)
268 return false;
269
270 // Update the low bound expression if we've found a new min value.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000271 if (Min0 == Start)
272 Low = Start;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000273
274 // Update the high bound expression if we've found a new max value.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000275 if (Min1 != End)
276 High = End;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000277
278 Members.push_back(Index);
279 return true;
280}
281
Adam Nemet7cdebac2015-07-14 22:32:44 +0000282void RuntimePointerChecking::groupChecks(
283 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000284 // We build the groups from dependency candidates equivalence classes
285 // because:
286 // - We know that pointers in the same equivalence class share
287 // the same underlying object and therefore there is a chance
288 // that we can compare pointers
289 // - We wouldn't be able to merge two pointers for which we need
290 // to emit a memcheck. The classes in DepCands are already
291 // conveniently built such that no two pointers in the same
292 // class need checking against each other.
293
294 // We use the following (greedy) algorithm to construct the groups
295 // For every pointer in the equivalence class:
296 // For each existing group:
297 // - if the difference between this pointer and the min/max bounds
298 // of the group is a constant, then make the pointer part of the
299 // group and update the min/max bounds of that group as required.
300
301 CheckingGroups.clear();
302
Silviu Baranga48250602015-07-28 13:44:08 +0000303 // If we need to check two pointers to the same underlying object
304 // with a non-constant difference, we shouldn't perform any pointer
305 // grouping with those pointers. This is because we can easily get
306 // into cases where the resulting check would return false, even when
307 // the accesses are safe.
308 //
309 // The following example shows this:
310 // for (i = 0; i < 1000; ++i)
311 // a[5000 + i * m] = a[i] + a[i + 9000]
312 //
313 // Here grouping gives a check of (5000, 5000 + 1000 * m) against
314 // (0, 10000) which is always false. However, if m is 1, there is no
315 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
316 // us to perform an accurate check in this case.
317 //
318 // The above case requires that we have an UnknownDependence between
319 // accesses to the same underlying object. This cannot happen unless
320 // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
321 // is also false. In this case we will use the fallback path and create
322 // separate checking groups for all pointers.
Mehdi Aminiafd13512015-11-05 05:49:43 +0000323
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000324 // If we don't have the dependency partitions, construct a new
Silviu Baranga48250602015-07-28 13:44:08 +0000325 // checking pointer group for each pointer. This is also required
326 // for correctness, because in this case we can have checking between
327 // pointers to the same underlying object.
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000328 if (!UseDependencies) {
329 for (unsigned I = 0; I < Pointers.size(); ++I)
330 CheckingGroups.push_back(CheckingPtrGroup(I, *this));
331 return;
332 }
333
334 unsigned TotalComparisons = 0;
335
336 DenseMap<Value *, unsigned> PositionMap;
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000337 for (unsigned Index = 0; Index < Pointers.size(); ++Index)
338 PositionMap[Pointers[Index].PointerValue] = Index;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000339
Silviu Barangace3877f2015-07-09 15:18:25 +0000340 // We need to keep track of what pointers we've already seen so we
341 // don't process them twice.
342 SmallSet<unsigned, 2> Seen;
343
Sanjay Patele4b9f502015-12-07 19:21:39 +0000344 // Go through all equivalence classes, get the "pointer check groups"
Silviu Barangace3877f2015-07-09 15:18:25 +0000345 // and add them to the overall solution. We use the order in which accesses
346 // appear in 'Pointers' to enforce determinism.
347 for (unsigned I = 0; I < Pointers.size(); ++I) {
348 // We've seen this pointer before, and therefore already processed
349 // its equivalence class.
350 if (Seen.count(I))
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000351 continue;
352
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000353 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
354 Pointers[I].IsWritePtr);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000355
Silviu Barangace3877f2015-07-09 15:18:25 +0000356 SmallVector<CheckingPtrGroup, 2> Groups;
357 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
358
Silviu Barangaa647c302015-07-13 14:48:24 +0000359 // Because DepCands is constructed by visiting accesses in the order in
360 // which they appear in alias sets (which is deterministic) and the
361 // iteration order within an equivalence class member is only dependent on
362 // the order in which unions and insertions are performed on the
363 // equivalence class, the iteration order is deterministic.
Silviu Barangace3877f2015-07-09 15:18:25 +0000364 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000365 MI != ME; ++MI) {
366 unsigned Pointer = PositionMap[MI->getPointer()];
367 bool Merged = false;
Silviu Barangace3877f2015-07-09 15:18:25 +0000368 // Mark this pointer as seen.
369 Seen.insert(Pointer);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000370
371 // Go through all the existing sets and see if we can find one
372 // which can include this pointer.
373 for (CheckingPtrGroup &Group : Groups) {
374 // Don't perform more than a certain amount of comparisons.
375 // This should limit the cost of grouping the pointers to something
376 // reasonable. If we do end up hitting this threshold, the algorithm
377 // will create separate groups for all remaining pointers.
378 if (TotalComparisons > MemoryCheckMergeThreshold)
379 break;
380
381 TotalComparisons++;
382
383 if (Group.addPointer(Pointer)) {
384 Merged = true;
385 break;
386 }
387 }
388
389 if (!Merged)
390 // We couldn't add this pointer to any existing set or the threshold
391 // for the number of comparisons has been reached. Create a new group
392 // to hold the current pointer.
393 Groups.push_back(CheckingPtrGroup(Pointer, *this));
394 }
395
396 // We've computed the grouped checks for this partition.
397 // Save the results and continue with the next one.
398 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
399 }
Adam Nemet04563272015-02-01 16:56:15 +0000400}
401
Adam Nemet041e6de2015-07-16 02:48:05 +0000402bool RuntimePointerChecking::arePointersInSamePartition(
403 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
404 unsigned PtrIdx2) {
405 return (PtrToPartition[PtrIdx1] != -1 &&
406 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
407}
408
Adam Nemet651a5a22015-08-09 20:06:08 +0000409bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000410 const PointerInfo &PointerI = Pointers[I];
411 const PointerInfo &PointerJ = Pointers[J];
412
Adam Nemeta8945b72015-02-18 03:43:58 +0000413 // No need to check if two readonly pointers intersect.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000414 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
Adam Nemeta8945b72015-02-18 03:43:58 +0000415 return false;
416
417 // Only need to check pointers between two different dependency sets.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000418 if (PointerI.DependencySetId == PointerJ.DependencySetId)
Adam Nemeta8945b72015-02-18 03:43:58 +0000419 return false;
420
421 // Only need to check pointers in the same alias set.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000422 if (PointerI.AliasSetId != PointerJ.AliasSetId)
Adam Nemeta8945b72015-02-18 03:43:58 +0000423 return false;
424
425 return true;
426}
427
Adam Nemet54f0b832015-07-27 23:54:41 +0000428void RuntimePointerChecking::printChecks(
429 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
430 unsigned Depth) const {
431 unsigned N = 0;
432 for (const auto &Check : Checks) {
433 const auto &First = Check.first->Members, &Second = Check.second->Members;
434
435 OS.indent(Depth) << "Check " << N++ << ":\n";
436
437 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
438 for (unsigned K = 0; K < First.size(); ++K)
439 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
440
441 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
442 for (unsigned K = 0; K < Second.size(); ++K)
443 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
444 }
445}
446
Adam Nemet3a91e942015-08-07 19:44:48 +0000447void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
Adam Nemete91cc6e2015-02-19 19:15:19 +0000448
449 OS.indent(Depth) << "Run-time memory checks:\n";
Adam Nemet15840392015-08-07 22:44:15 +0000450 printChecks(OS, Checks, Depth);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000451
452 OS.indent(Depth) << "Grouped accesses:\n";
453 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
Adam Nemet54f0b832015-07-27 23:54:41 +0000454 const auto &CG = CheckingGroups[I];
455
456 OS.indent(Depth + 2) << "Group " << &CG << ":\n";
457 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
458 << ")\n";
459 for (unsigned J = 0; J < CG.Members.size(); ++J) {
460 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000461 << "\n";
462 }
463 }
Adam Nemete91cc6e2015-02-19 19:15:19 +0000464}
465
Adam Nemet04563272015-02-01 16:56:15 +0000466namespace {
467/// \brief Analyses memory accesses in a loop.
468///
469/// Checks whether run time pointer checks are needed and builds sets for data
470/// dependence checking.
471class AccessAnalysis {
472public:
473 /// \brief Read or write access location.
474 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
475 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
476
Adam Nemete2b885c2015-04-23 20:09:20 +0000477 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000478 MemoryDepChecker::DepCandidates &DA,
479 PredicatedScalarEvolution &PSE)
Silviu Barangae3c05342015-11-02 14:41:02 +0000480 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000481 PSE(PSE) {}
Adam Nemet04563272015-02-01 16:56:15 +0000482
483 /// \brief Register a load and whether it is only read from.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000484 void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
Adam Nemet04563272015-02-01 16:56:15 +0000485 Value *Ptr = const_cast<Value*>(Loc.Ptr);
Chandler Carruthecbd1682015-06-17 07:21:38 +0000486 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000487 Accesses.insert(MemAccessInfo(Ptr, false));
488 if (IsReadOnly)
489 ReadOnlyPtr.insert(Ptr);
490 }
491
492 /// \brief Register a store.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000493 void addStore(MemoryLocation &Loc) {
Adam Nemet04563272015-02-01 16:56:15 +0000494 Value *Ptr = const_cast<Value*>(Loc.Ptr);
Chandler Carruthecbd1682015-06-17 07:21:38 +0000495 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000496 Accesses.insert(MemAccessInfo(Ptr, true));
497 }
498
499 /// \brief Check whether we can check the pointers at runtime for
Adam Nemetee614742015-07-09 22:17:38 +0000500 /// non-intersection.
501 ///
502 /// Returns true if we need no check or if we do and we can generate them
503 /// (i.e. the pointers have computable bounds).
Adam Nemet7cdebac2015-07-14 22:32:44 +0000504 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
505 Loop *TheLoop, const ValueToValueMap &Strides,
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000506 bool ShouldCheckWrap = false);
Adam Nemet04563272015-02-01 16:56:15 +0000507
508 /// \brief Goes over all memory accesses, checks whether a RT check is needed
509 /// and builds sets of dependent accesses.
510 void buildDependenceSets() {
511 processMemAccesses();
512 }
513
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000514 /// \brief Initial processing of memory accesses determined that we need to
515 /// perform dependency checking.
516 ///
517 /// Note that this can later be cleared if we retry memcheck analysis without
518 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
Adam Nemet04563272015-02-01 16:56:15 +0000519 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
Adam Nemetdf3dc5b2015-05-18 15:37:03 +0000520
521 /// We decided that no dependence analysis would be used. Reset the state.
522 void resetDepChecks(MemoryDepChecker &DepChecker) {
523 CheckDeps.clear();
Adam Nemeta2df7502015-11-03 21:39:52 +0000524 DepChecker.clearDependences();
Adam Nemetdf3dc5b2015-05-18 15:37:03 +0000525 }
Adam Nemet04563272015-02-01 16:56:15 +0000526
527 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
528
529private:
530 typedef SetVector<MemAccessInfo> PtrAccessSet;
531
532 /// \brief Go over all memory access and check whether runtime pointer checks
Adam Nemetb41d2d32015-07-09 06:47:21 +0000533 /// are needed and build sets of dependency check candidates.
Adam Nemet04563272015-02-01 16:56:15 +0000534 void processMemAccesses();
535
536 /// Set of all accesses.
537 PtrAccessSet Accesses;
538
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000539 const DataLayout &DL;
540
Adam Nemet04563272015-02-01 16:56:15 +0000541 /// Set of accesses that need a further dependence check.
542 MemAccessInfoSet CheckDeps;
543
544 /// Set of pointers that are read only.
545 SmallPtrSet<Value*, 16> ReadOnlyPtr;
546
Adam Nemet04563272015-02-01 16:56:15 +0000547 /// An alias set tracker to partition the access set by underlying object and
548 //intrinsic property (such as TBAA metadata).
549 AliasSetTracker AST;
550
Adam Nemete2b885c2015-04-23 20:09:20 +0000551 LoopInfo *LI;
552
Adam Nemet04563272015-02-01 16:56:15 +0000553 /// Sets of potentially dependent accesses - members of one set share an
554 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
555 /// dependence check.
Adam Nemetdee666b2015-03-10 17:40:34 +0000556 MemoryDepChecker::DepCandidates &DepCands;
Adam Nemet04563272015-02-01 16:56:15 +0000557
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000558 /// \brief Initial processing of memory accesses determined that we may need
559 /// to add memchecks. Perform the analysis to determine the necessary checks.
560 ///
561 /// Note that, this is different from isDependencyCheckNeeded. When we retry
562 /// memcheck analysis without dependency checking
563 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
564 /// while this remains set if we have potentially dependent accesses.
565 bool IsRTCheckAnalysisNeeded;
Silviu Barangae3c05342015-11-02 14:41:02 +0000566
567 /// The SCEV predicate containing all the SCEV-related assumptions.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000568 PredicatedScalarEvolution &PSE;
Adam Nemet04563272015-02-01 16:56:15 +0000569};
570
571} // end anonymous namespace
572
573/// \brief Check whether a pointer can participate in a runtime bounds check.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000574static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
Silviu Barangae3c05342015-11-02 14:41:02 +0000575 const ValueToValueMap &Strides, Value *Ptr,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000576 Loop *L) {
577 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
Adam Nemet279784f2016-03-24 04:28:47 +0000578
579 // The bounds for loop-invariant pointer is trivial.
580 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
581 return true;
582
Adam Nemet04563272015-02-01 16:56:15 +0000583 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
584 if (!AR)
585 return false;
586
587 return AR->isAffine();
588}
589
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000590/// \brief Check whether a pointer address cannot wrap.
591static bool isNoWrap(PredicatedScalarEvolution &PSE,
592 const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
593 const SCEV *PtrScev = PSE.getSCEV(Ptr);
594 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
595 return true;
596
David Majnemer7afb46d2016-07-07 06:24:36 +0000597 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000598 return Stride == 1;
599}
600
Adam Nemet7cdebac2015-07-14 22:32:44 +0000601bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
602 ScalarEvolution *SE, Loop *TheLoop,
603 const ValueToValueMap &StridesMap,
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000604 bool ShouldCheckWrap) {
Adam Nemet04563272015-02-01 16:56:15 +0000605 // Find pointers with computable bounds. We are going to use this information
606 // to place a runtime bound check.
607 bool CanDoRT = true;
608
Adam Nemetee614742015-07-09 22:17:38 +0000609 bool NeedRTCheck = false;
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000610 if (!IsRTCheckAnalysisNeeded) return true;
Silviu Baranga98a13712015-06-08 10:27:06 +0000611
Adam Nemet04563272015-02-01 16:56:15 +0000612 bool IsDepCheckNeeded = isDependencyCheckNeeded();
Adam Nemet04563272015-02-01 16:56:15 +0000613
614 // We assign a consecutive id to access from different alias sets.
615 // Accesses between different groups doesn't need to be checked.
616 unsigned ASId = 1;
617 for (auto &AS : AST) {
Adam Nemet424edc62015-07-08 22:58:48 +0000618 int NumReadPtrChecks = 0;
619 int NumWritePtrChecks = 0;
620
Adam Nemet04563272015-02-01 16:56:15 +0000621 // We assign consecutive id to access from different dependence sets.
622 // Accesses within the same set don't need a runtime check.
623 unsigned RunningDepId = 1;
624 DenseMap<Value *, unsigned> DepSetId;
625
626 for (auto A : AS) {
627 Value *Ptr = A.getValue();
628 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
629 MemAccessInfo Access(Ptr, IsWrite);
630
Adam Nemet424edc62015-07-08 22:58:48 +0000631 if (IsWrite)
632 ++NumWritePtrChecks;
633 else
634 ++NumReadPtrChecks;
635
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000636 if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000637 // When we run after a failing dependency check we have to make sure
638 // we don't have wrapping pointers.
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000639 (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) {
Adam Nemet04563272015-02-01 16:56:15 +0000640 // The id of the dependence set.
641 unsigned DepId;
642
643 if (IsDepCheckNeeded) {
644 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
645 unsigned &LeaderId = DepSetId[Leader];
646 if (!LeaderId)
647 LeaderId = RunningDepId++;
648 DepId = LeaderId;
649 } else
650 // Each access has its own dependence set.
651 DepId = RunningDepId++;
652
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000653 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
Adam Nemet04563272015-02-01 16:56:15 +0000654
Adam Nemet339f42b2015-02-19 19:15:07 +0000655 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000656 } else {
Adam Nemetf10ca272015-05-18 15:36:52 +0000657 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000658 CanDoRT = false;
659 }
660 }
661
Adam Nemet424edc62015-07-08 22:58:48 +0000662 // If we have at least two writes or one write and a read then we need to
663 // check them. But there is no need to checks if there is only one
664 // dependence set for this alias set.
665 //
666 // Note that this function computes CanDoRT and NeedRTCheck independently.
667 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
668 // for which we couldn't find the bounds but we don't actually need to emit
669 // any checks so it does not matter.
670 if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
671 NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
672 NumWritePtrChecks >= 1));
673
Adam Nemet04563272015-02-01 16:56:15 +0000674 ++ASId;
675 }
676
677 // If the pointers that we would use for the bounds comparison have different
678 // address spaces, assume the values aren't directly comparable, so we can't
679 // use them for the runtime check. We also have to assume they could
680 // overlap. In the future there should be metadata for whether address spaces
681 // are disjoint.
682 unsigned NumPointers = RtCheck.Pointers.size();
683 for (unsigned i = 0; i < NumPointers; ++i) {
684 for (unsigned j = i + 1; j < NumPointers; ++j) {
685 // Only need to check pointers between two different dependency sets.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000686 if (RtCheck.Pointers[i].DependencySetId ==
687 RtCheck.Pointers[j].DependencySetId)
Adam Nemet04563272015-02-01 16:56:15 +0000688 continue;
689 // Only need to check pointers in the same alias set.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000690 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
Adam Nemet04563272015-02-01 16:56:15 +0000691 continue;
692
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000693 Value *PtrI = RtCheck.Pointers[i].PointerValue;
694 Value *PtrJ = RtCheck.Pointers[j].PointerValue;
Adam Nemet04563272015-02-01 16:56:15 +0000695
696 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
697 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
698 if (ASi != ASj) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000699 DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
Adam Nemet04d41632015-02-19 19:14:34 +0000700 " different address spaces\n");
Adam Nemet04563272015-02-01 16:56:15 +0000701 return false;
702 }
703 }
704 }
705
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000706 if (NeedRTCheck && CanDoRT)
Adam Nemet15840392015-08-07 22:44:15 +0000707 RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000708
Adam Nemet155e8742015-08-07 22:44:21 +0000709 DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
Adam Nemetee614742015-07-09 22:17:38 +0000710 << " pointer comparisons.\n");
711
712 RtCheck.Need = NeedRTCheck;
713
714 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
715 if (!CanDoRTIfNeeded)
716 RtCheck.reset();
717 return CanDoRTIfNeeded;
Adam Nemet04563272015-02-01 16:56:15 +0000718}
719
720void AccessAnalysis::processMemAccesses() {
721 // We process the set twice: first we process read-write pointers, last we
722 // process read-only pointers. This allows us to skip dependence tests for
723 // read-only pointers.
724
Adam Nemet339f42b2015-02-19 19:15:07 +0000725 DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
Adam Nemet04563272015-02-01 16:56:15 +0000726 DEBUG(dbgs() << " AST: "; AST.dump());
Adam Nemet9c926572015-03-10 17:40:37 +0000727 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n");
Adam Nemet04563272015-02-01 16:56:15 +0000728 DEBUG({
729 for (auto A : Accesses)
730 dbgs() << "\t" << *A.getPointer() << " (" <<
731 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
732 "read-only" : "read")) << ")\n";
733 });
734
735 // The AliasSetTracker has nicely partitioned our pointers by metadata
736 // compatibility and potential for underlying-object overlap. As a result, we
737 // only need to check for potential pointer dependencies within each alias
738 // set.
739 for (auto &AS : AST) {
740 // Note that both the alias-set tracker and the alias sets themselves used
741 // linked lists internally and so the iteration order here is deterministic
742 // (matching the original instruction order within each set).
743
744 bool SetHasWrite = false;
745
746 // Map of pointers to last access encountered.
747 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
748 UnderlyingObjToAccessMap ObjToLastAccess;
749
750 // Set of access to check after all writes have been processed.
751 PtrAccessSet DeferredAccesses;
752
753 // Iterate over each alias set twice, once to process read/write pointers,
754 // and then to process read-only pointers.
755 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
756 bool UseDeferred = SetIteration > 0;
757 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
758
759 for (auto AV : AS) {
760 Value *Ptr = AV.getValue();
761
762 // For a single memory access in AliasSetTracker, Accesses may contain
763 // both read and write, and they both need to be handled for CheckDeps.
764 for (auto AC : S) {
765 if (AC.getPointer() != Ptr)
766 continue;
767
768 bool IsWrite = AC.getInt();
769
770 // If we're using the deferred access set, then it contains only
771 // reads.
772 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
773 if (UseDeferred && !IsReadOnlyPtr)
774 continue;
775 // Otherwise, the pointer must be in the PtrAccessSet, either as a
776 // read or a write.
777 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
778 S.count(MemAccessInfo(Ptr, false))) &&
779 "Alias-set pointer not in the access set?");
780
781 MemAccessInfo Access(Ptr, IsWrite);
782 DepCands.insert(Access);
783
784 // Memorize read-only pointers for later processing and skip them in
785 // the first round (they need to be checked after we have seen all
786 // write pointers). Note: we also mark pointer that are not
787 // consecutive as "read-only" pointers (so that we check
788 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
789 if (!UseDeferred && IsReadOnlyPtr) {
790 DeferredAccesses.insert(Access);
791 continue;
792 }
793
794 // If this is a write - check other reads and writes for conflicts. If
795 // this is a read only check other writes for conflicts (but only if
796 // there is no other write to the ptr - this is an optimization to
797 // catch "a[i] = a[i] + " without having to do a dependence check).
798 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
799 CheckDeps.insert(Access);
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000800 IsRTCheckAnalysisNeeded = true;
Adam Nemet04563272015-02-01 16:56:15 +0000801 }
802
803 if (IsWrite)
804 SetHasWrite = true;
805
806 // Create sets of pointers connected by a shared alias set and
807 // underlying object.
808 typedef SmallVector<Value *, 16> ValueVector;
809 ValueVector TempObjects;
Adam Nemete2b885c2015-04-23 20:09:20 +0000810
811 GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
812 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000813 for (Value *UnderlyingObj : TempObjects) {
Mehdi Aminiafd13512015-11-05 05:49:43 +0000814 // nullptr never alias, don't join sets for pointer that have "null"
815 // in their UnderlyingObjects list.
816 if (isa<ConstantPointerNull>(UnderlyingObj))
817 continue;
818
Adam Nemet04563272015-02-01 16:56:15 +0000819 UnderlyingObjToAccessMap::iterator Prev =
820 ObjToLastAccess.find(UnderlyingObj);
821 if (Prev != ObjToLastAccess.end())
822 DepCands.unionSets(Access, Prev->second);
823
824 ObjToLastAccess[UnderlyingObj] = Access;
Adam Nemete2b885c2015-04-23 20:09:20 +0000825 DEBUG(dbgs() << " " << *UnderlyingObj << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000826 }
827 }
828 }
829 }
830 }
831}
832
Adam Nemet04563272015-02-01 16:56:15 +0000833static bool isInBoundsGep(Value *Ptr) {
834 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
835 return GEP->isInBounds();
836 return false;
837}
838
Adam Nemetc4866d22015-06-26 17:25:43 +0000839/// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
840/// i.e. monotonically increasing/decreasing.
841static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000842 PredicatedScalarEvolution &PSE, const Loop *L) {
Adam Nemetc4866d22015-06-26 17:25:43 +0000843 // FIXME: This should probably only return true for NUW.
844 if (AR->getNoWrapFlags(SCEV::NoWrapMask))
845 return true;
846
847 // Scalar evolution does not propagate the non-wrapping flags to values that
848 // are derived from a non-wrapping induction variable because non-wrapping
849 // could be flow-sensitive.
850 //
851 // Look through the potentially overflowing instruction to try to prove
852 // non-wrapping for the *specific* value of Ptr.
853
854 // The arithmetic implied by an inbounds GEP can't overflow.
855 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
856 if (!GEP || !GEP->isInBounds())
857 return false;
858
859 // Make sure there is only one non-const index and analyze that.
860 Value *NonConstIndex = nullptr;
David Majnemer8b401012016-07-12 20:31:46 +0000861 for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end()))
862 if (!isa<ConstantInt>(Index)) {
Adam Nemetc4866d22015-06-26 17:25:43 +0000863 if (NonConstIndex)
864 return false;
David Majnemer8b401012016-07-12 20:31:46 +0000865 NonConstIndex = Index;
Adam Nemetc4866d22015-06-26 17:25:43 +0000866 }
867 if (!NonConstIndex)
868 // The recurrence is on the pointer, ignore for now.
869 return false;
870
871 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
872 // AddRec using a NSW operation.
873 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
874 if (OBO->hasNoSignedWrap() &&
875 // Assume constant for other the operand so that the AddRec can be
876 // easily found.
877 isa<ConstantInt>(OBO->getOperand(1))) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000878 auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
Adam Nemetc4866d22015-06-26 17:25:43 +0000879
880 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
881 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
882 }
883
884 return false;
885}
886
Adam Nemet04563272015-02-01 16:56:15 +0000887/// \brief Check whether the access through \p Ptr has a constant stride.
David Majnemer7afb46d2016-07-07 06:24:36 +0000888int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
889 const Loop *Lp, const ValueToValueMap &StridesMap,
890 bool Assume) {
Craig Toppere3dcce92015-08-01 22:20:21 +0000891 Type *Ty = Ptr->getType();
Adam Nemet04563272015-02-01 16:56:15 +0000892 assert(Ty->isPointerTy() && "Unexpected non-ptr");
893
894 // Make sure that the pointer does not point to aggregate types.
Craig Toppere3dcce92015-08-01 22:20:21 +0000895 auto *PtrTy = cast<PointerType>(Ty);
Adam Nemet04563272015-02-01 16:56:15 +0000896 if (PtrTy->getElementType()->isAggregateType()) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000897 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr
898 << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000899 return 0;
900 }
901
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000902 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000903
904 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000905 if (Assume && !AR)
Silviu Barangad68ed852016-03-23 15:29:30 +0000906 AR = PSE.getAsAddRec(Ptr);
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000907
Adam Nemet04563272015-02-01 16:56:15 +0000908 if (!AR) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000909 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
910 << " SCEV: " << *PtrScev << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000911 return 0;
912 }
913
914 // The accesss function must stride over the innermost loop.
915 if (Lp != AR->getLoop()) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000916 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000917 *Ptr << " SCEV: " << *AR << "\n");
Kyle Butta02ce982016-01-08 01:55:13 +0000918 return 0;
Adam Nemet04563272015-02-01 16:56:15 +0000919 }
920
921 // The address calculation must not wrap. Otherwise, a dependence could be
922 // inverted.
923 // An inbounds getelementptr that is a AddRec with a unit stride
924 // cannot wrap per definition. The unit stride requirement is checked later.
925 // An getelementptr without an inbounds attribute and unit stride would have
926 // to access the pointer value "0" which is undefined behavior in address
927 // space 0, therefore we can also vectorize this case.
928 bool IsInBoundsGEP = isInBoundsGep(Ptr);
Elena Demikhovsky5e21c942016-06-29 10:01:06 +0000929 bool IsNoWrapAddRec =
930 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
931 isNoWrapAddRec(Ptr, AR, PSE, Lp);
Adam Nemet04563272015-02-01 16:56:15 +0000932 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
933 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000934 if (Assume) {
935 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
936 IsNoWrapAddRec = true;
937 DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
938 << "LAA: Pointer: " << *Ptr << "\n"
939 << "LAA: SCEV: " << *AR << "\n"
940 << "LAA: Added an overflow assumption\n");
941 } else {
942 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
943 << *Ptr << " SCEV: " << *AR << "\n");
944 return 0;
945 }
Adam Nemet04563272015-02-01 16:56:15 +0000946 }
947
948 // Check the step is constant.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000949 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
Adam Nemet04563272015-02-01 16:56:15 +0000950
Adam Nemet943befe2015-07-09 00:03:22 +0000951 // Calculate the pointer stride and check if it is constant.
Adam Nemet04563272015-02-01 16:56:15 +0000952 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
953 if (!C) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000954 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000955 " SCEV: " << *AR << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000956 return 0;
957 }
958
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000959 auto &DL = Lp->getHeader()->getModule()->getDataLayout();
960 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000961 const APInt &APStepVal = C->getAPInt();
Adam Nemet04563272015-02-01 16:56:15 +0000962
963 // Huge step value - give up.
964 if (APStepVal.getBitWidth() > 64)
965 return 0;
966
967 int64_t StepVal = APStepVal.getSExtValue();
968
969 // Strided access.
970 int64_t Stride = StepVal / Size;
971 int64_t Rem = StepVal % Size;
972 if (Rem)
973 return 0;
974
975 // If the SCEV could wrap but we have an inbounds gep with a unit stride we
976 // know we can't "wrap around the address space". In case of address space
977 // zero we know that this won't happen without triggering undefined behavior.
978 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000979 Stride != 1 && Stride != -1) {
980 if (Assume) {
981 // We can avoid this case by adding a run-time check.
982 DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
983 << "inbouds or in address space 0 may wrap:\n"
984 << "LAA: Pointer: " << *Ptr << "\n"
985 << "LAA: SCEV: " << *AR << "\n"
986 << "LAA: Added an overflow assumption\n");
987 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
988 } else
989 return 0;
990 }
Adam Nemet04563272015-02-01 16:56:15 +0000991
992 return Stride;
993}
994
Haicheng Wuf1c00a22016-01-26 02:27:47 +0000995/// Take the pointer operand from the Load/Store instruction.
996/// Returns NULL if this is not a valid Load/Store instruction.
997static Value *getPointerOperand(Value *I) {
David Majnemer8b401012016-07-12 20:31:46 +0000998 if (auto *LI = dyn_cast<LoadInst>(I))
Haicheng Wuf1c00a22016-01-26 02:27:47 +0000999 return LI->getPointerOperand();
David Majnemer8b401012016-07-12 20:31:46 +00001000 if (auto *SI = dyn_cast<StoreInst>(I))
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001001 return SI->getPointerOperand();
1002 return nullptr;
1003}
1004
1005/// Take the address space operand from the Load/Store instruction.
1006/// Returns -1 if this is not a valid Load/Store instruction.
1007static unsigned getAddressSpaceOperand(Value *I) {
1008 if (LoadInst *L = dyn_cast<LoadInst>(I))
1009 return L->getPointerAddressSpace();
1010 if (StoreInst *S = dyn_cast<StoreInst>(I))
1011 return S->getPointerAddressSpace();
1012 return -1;
1013}
1014
1015/// Returns true if the memory operations \p A and \p B are consecutive.
1016bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1017 ScalarEvolution &SE, bool CheckType) {
1018 Value *PtrA = getPointerOperand(A);
1019 Value *PtrB = getPointerOperand(B);
1020 unsigned ASA = getAddressSpaceOperand(A);
1021 unsigned ASB = getAddressSpaceOperand(B);
1022
1023 // Check that the address spaces match and that the pointers are valid.
1024 if (!PtrA || !PtrB || (ASA != ASB))
1025 return false;
1026
1027 // Make sure that A and B are different pointers.
1028 if (PtrA == PtrB)
1029 return false;
1030
1031 // Make sure that A and B have the same type if required.
1032 if(CheckType && PtrA->getType() != PtrB->getType())
1033 return false;
1034
1035 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
1036 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1037 APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
1038
1039 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1040 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1041 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1042
1043 // OffsetDelta = OffsetB - OffsetA;
1044 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
1045 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1046 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1047 const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
1048 const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
1049 // Check if they are based on the same pointer. That makes the offsets
1050 // sufficient.
1051 if (PtrA == PtrB)
1052 return OffsetDelta == Size;
1053
1054 // Compute the necessary base pointer delta to have the necessary final delta
1055 // equal to the size.
1056 // BaseDelta = Size - OffsetDelta;
1057 const SCEV *SizeSCEV = SE.getConstant(Size);
1058 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1059
1060 // Otherwise compute the distance with SCEV between the base pointers.
1061 const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1062 const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1063 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1064 return X == PtrSCEVB;
1065}
1066
Adam Nemet9c926572015-03-10 17:40:37 +00001067bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1068 switch (Type) {
1069 case NoDep:
1070 case Forward:
1071 case BackwardVectorizable:
1072 return true;
1073
1074 case Unknown:
1075 case ForwardButPreventsForwarding:
1076 case Backward:
1077 case BackwardVectorizableButPreventsForwarding:
1078 return false;
1079 }
David Majnemerd388e932015-03-10 20:23:29 +00001080 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +00001081}
1082
Adam Nemet397f5822015-11-03 23:50:03 +00001083bool MemoryDepChecker::Dependence::isBackward() const {
Adam Nemet9c926572015-03-10 17:40:37 +00001084 switch (Type) {
1085 case NoDep:
1086 case Forward:
1087 case ForwardButPreventsForwarding:
Adam Nemet397f5822015-11-03 23:50:03 +00001088 case Unknown:
Adam Nemet9c926572015-03-10 17:40:37 +00001089 return false;
1090
Adam Nemet9c926572015-03-10 17:40:37 +00001091 case BackwardVectorizable:
1092 case Backward:
1093 case BackwardVectorizableButPreventsForwarding:
1094 return true;
1095 }
David Majnemerd388e932015-03-10 20:23:29 +00001096 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +00001097}
1098
Adam Nemet397f5822015-11-03 23:50:03 +00001099bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1100 return isBackward() || Type == Unknown;
1101}
1102
1103bool MemoryDepChecker::Dependence::isForward() const {
1104 switch (Type) {
1105 case Forward:
1106 case ForwardButPreventsForwarding:
1107 return true;
1108
1109 case NoDep:
1110 case Unknown:
1111 case BackwardVectorizable:
1112 case Backward:
1113 case BackwardVectorizableButPreventsForwarding:
1114 return false;
1115 }
1116 llvm_unreachable("unexpected DepType!");
1117}
1118
David Majnemer7afb46d2016-07-07 06:24:36 +00001119bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1120 uint64_t TypeByteSize) {
Adam Nemet04563272015-02-01 16:56:15 +00001121 // If loads occur at a distance that is not a multiple of a feasible vector
1122 // factor store-load forwarding does not take place.
1123 // Positive dependences might cause troubles because vectorizing them might
1124 // prevent store-load forwarding making vectorized code run a lot slower.
1125 // a[i] = a[i-3] ^ a[i-8];
1126 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1127 // hence on your typical architecture store-load forwarding does not take
1128 // place. Vectorizing in such cases does not make sense.
1129 // Store-load forwarding distance.
Adam Nemet884d3132016-05-16 16:57:47 +00001130
1131 // After this many iterations store-to-load forwarding conflicts should not
1132 // cause any slowdowns.
David Majnemer7afb46d2016-07-07 06:24:36 +00001133 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
Adam Nemet04563272015-02-01 16:56:15 +00001134 // Maximum vector factor.
David Majnemer7afb46d2016-07-07 06:24:36 +00001135 uint64_t MaxVFWithoutSLForwardIssues = std::min(
Adam Nemet2c34ab52016-05-12 21:41:53 +00001136 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
Adam Nemet04563272015-02-01 16:56:15 +00001137
Adam Nemet884d3132016-05-16 16:57:47 +00001138 // Compute the smallest VF at which the store and load would be misaligned.
David Majnemer7afb46d2016-07-07 06:24:36 +00001139 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
Adam Nemet9b5852a2016-05-16 16:57:42 +00001140 VF *= 2) {
Adam Nemet884d3132016-05-16 16:57:47 +00001141 // If the number of vector iteration between the store and the load are
1142 // small we could incur conflicts.
1143 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
Adam Nemet9b5852a2016-05-16 16:57:42 +00001144 MaxVFWithoutSLForwardIssues = (VF >>= 1);
Adam Nemet04563272015-02-01 16:56:15 +00001145 break;
1146 }
1147 }
1148
Adam Nemet9b5852a2016-05-16 16:57:42 +00001149 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1150 DEBUG(dbgs() << "LAA: Distance " << Distance
1151 << " that could cause a store-load forwarding conflict\n");
Adam Nemet04563272015-02-01 16:56:15 +00001152 return true;
1153 }
1154
1155 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
Adam Nemetf219c642015-02-19 19:14:52 +00001156 MaxVFWithoutSLForwardIssues !=
Adam Nemet9b5852a2016-05-16 16:57:42 +00001157 VectorizerParams::MaxVectorWidth * TypeByteSize)
Adam Nemet04563272015-02-01 16:56:15 +00001158 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1159 return false;
1160}
1161
Hao Liu751004a2015-06-08 04:48:37 +00001162/// \brief Check the dependence for two accesses with the same stride \p Stride.
1163/// \p Distance is the positive distance and \p TypeByteSize is type size in
1164/// bytes.
1165///
1166/// \returns true if they are independent.
David Majnemer7afb46d2016-07-07 06:24:36 +00001167static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1168 uint64_t TypeByteSize) {
Hao Liu751004a2015-06-08 04:48:37 +00001169 assert(Stride > 1 && "The stride must be greater than 1");
1170 assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1171 assert(Distance > 0 && "The distance must be non-zero");
1172
1173 // Skip if the distance is not multiple of type byte size.
1174 if (Distance % TypeByteSize)
1175 return false;
1176
David Majnemer7afb46d2016-07-07 06:24:36 +00001177 uint64_t ScaledDist = Distance / TypeByteSize;
Hao Liu751004a2015-06-08 04:48:37 +00001178
1179 // No dependence if the scaled distance is not multiple of the stride.
1180 // E.g.
1181 // for (i = 0; i < 1024 ; i += 4)
1182 // A[i+2] = A[i] + 1;
1183 //
1184 // Two accesses in memory (scaled distance is 2, stride is 4):
1185 // | A[0] | | | | A[4] | | | |
1186 // | | | A[2] | | | | A[6] | |
1187 //
1188 // E.g.
1189 // for (i = 0; i < 1024 ; i += 3)
1190 // A[i+4] = A[i] + 1;
1191 //
1192 // Two accesses in memory (scaled distance is 4, stride is 3):
1193 // | A[0] | | | A[3] | | | A[6] | | |
1194 // | | | | | A[4] | | | A[7] | |
1195 return ScaledDist % Stride;
1196}
1197
Adam Nemet9c926572015-03-10 17:40:37 +00001198MemoryDepChecker::Dependence::DepType
1199MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1200 const MemAccessInfo &B, unsigned BIdx,
1201 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001202 assert (AIdx < BIdx && "Must pass arguments in program order");
1203
1204 Value *APtr = A.getPointer();
1205 Value *BPtr = B.getPointer();
1206 bool AIsWrite = A.getInt();
1207 bool BIsWrite = B.getInt();
1208
1209 // Two reads are independent.
1210 if (!AIsWrite && !BIsWrite)
Adam Nemet9c926572015-03-10 17:40:37 +00001211 return Dependence::NoDep;
Adam Nemet04563272015-02-01 16:56:15 +00001212
1213 // We cannot check pointers in different address spaces.
1214 if (APtr->getType()->getPointerAddressSpace() !=
1215 BPtr->getType()->getPointerAddressSpace())
Adam Nemet9c926572015-03-10 17:40:37 +00001216 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001217
David Majnemer7afb46d2016-07-07 06:24:36 +00001218 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
1219 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
Adam Nemet04563272015-02-01 16:56:15 +00001220
Silviu Barangaadf4b732016-05-10 12:28:49 +00001221 const SCEV *Src = PSE.getSCEV(APtr);
1222 const SCEV *Sink = PSE.getSCEV(BPtr);
Adam Nemet04563272015-02-01 16:56:15 +00001223
1224 // If the induction step is negative we have to invert source and sink of the
1225 // dependence.
1226 if (StrideAPtr < 0) {
Adam Nemet04563272015-02-01 16:56:15 +00001227 std::swap(APtr, BPtr);
1228 std::swap(Src, Sink);
1229 std::swap(AIsWrite, BIsWrite);
1230 std::swap(AIdx, BIdx);
1231 std::swap(StrideAPtr, StrideBPtr);
1232 }
1233
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001234 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
Adam Nemet04563272015-02-01 16:56:15 +00001235
Adam Nemet339f42b2015-02-19 19:15:07 +00001236 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001237 << "(Induction step: " << StrideAPtr << ")\n");
Adam Nemet339f42b2015-02-19 19:15:07 +00001238 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001239 << *InstMap[BIdx] << ": " << *Dist << "\n");
Adam Nemet04563272015-02-01 16:56:15 +00001240
Adam Nemet943befe2015-07-09 00:03:22 +00001241 // Need accesses with constant stride. We don't want to vectorize
Adam Nemet04563272015-02-01 16:56:15 +00001242 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1243 // the address space.
1244 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
Adam Nemet943befe2015-07-09 00:03:22 +00001245 DEBUG(dbgs() << "Pointer access with non-constant stride\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001246 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001247 }
1248
1249 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1250 if (!C) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001251 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
Adam Nemet04563272015-02-01 16:56:15 +00001252 ShouldRetryWithRuntimeCheck = true;
Adam Nemet9c926572015-03-10 17:40:37 +00001253 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001254 }
1255
1256 Type *ATy = APtr->getType()->getPointerElementType();
1257 Type *BTy = BPtr->getType()->getPointerElementType();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001258 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
David Majnemer7afb46d2016-07-07 06:24:36 +00001259 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
Adam Nemet04563272015-02-01 16:56:15 +00001260
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001261 const APInt &Val = C->getAPInt();
Matthew Simpson6feebe92016-05-19 15:37:19 +00001262 int64_t Distance = Val.getSExtValue();
David Majnemer7afb46d2016-07-07 06:24:36 +00001263 uint64_t Stride = std::abs(StrideAPtr);
Matthew Simpson6feebe92016-05-19 15:37:19 +00001264
1265 // Attempt to prove strided accesses independent.
1266 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
1267 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1268 DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1269 return Dependence::NoDep;
1270 }
1271
1272 // Negative distances are not plausible dependencies.
Adam Nemet04563272015-02-01 16:56:15 +00001273 if (Val.isNegative()) {
1274 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
Matthew Simpson37ec5f92016-05-16 17:00:56 +00001275 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
Adam Nemet04563272015-02-01 16:56:15 +00001276 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
Adam Nemetb8486e52016-03-01 00:50:08 +00001277 ATy != BTy)) {
1278 DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001279 return Dependence::ForwardButPreventsForwarding;
Adam Nemetb8486e52016-03-01 00:50:08 +00001280 }
Adam Nemet04563272015-02-01 16:56:15 +00001281
Adam Nemet724ab222016-05-05 23:41:28 +00001282 DEBUG(dbgs() << "LAA: Dependence is negative\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001283 return Dependence::Forward;
Adam Nemet04563272015-02-01 16:56:15 +00001284 }
1285
1286 // Write to the same location with the same size.
1287 // Could be improved to assert type sizes are the same (i32 == float, etc).
1288 if (Val == 0) {
1289 if (ATy == BTy)
Adam Nemetd7037c52015-11-03 20:13:43 +00001290 return Dependence::Forward;
Adam Nemet339f42b2015-02-19 19:15:07 +00001291 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001292 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001293 }
1294
1295 assert(Val.isStrictlyPositive() && "Expect a positive value");
1296
Adam Nemet04563272015-02-01 16:56:15 +00001297 if (ATy != BTy) {
Adam Nemet04d41632015-02-19 19:14:34 +00001298 DEBUG(dbgs() <<
Adam Nemet339f42b2015-02-19 19:15:07 +00001299 "LAA: ReadWrite-Write positive dependency with different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001300 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001301 }
1302
Adam Nemet04563272015-02-01 16:56:15 +00001303 // Bail out early if passed-in parameters make vectorization not feasible.
Adam Nemetf219c642015-02-19 19:14:52 +00001304 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1305 VectorizerParams::VectorizationFactor : 1);
1306 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1307 VectorizerParams::VectorizationInterleave : 1);
Hao Liu751004a2015-06-08 04:48:37 +00001308 // The minimum number of iterations for a vectorized/unrolled version.
1309 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
Adam Nemet04563272015-02-01 16:56:15 +00001310
Hao Liu751004a2015-06-08 04:48:37 +00001311 // It's not vectorizable if the distance is smaller than the minimum distance
1312 // needed for a vectroized/unrolled version. Vectorizing one iteration in
1313 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1314 // TypeByteSize (No need to plus the last gap distance).
1315 //
1316 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1317 // foo(int *A) {
1318 // int *B = (int *)((char *)A + 14);
1319 // for (i = 0 ; i < 1024 ; i += 2)
1320 // B[i] = A[i] + 1;
1321 // }
1322 //
1323 // Two accesses in memory (stride is 2):
1324 // | A[0] | | A[2] | | A[4] | | A[6] | |
1325 // | B[0] | | B[2] | | B[4] |
1326 //
1327 // Distance needs for vectorizing iterations except the last iteration:
1328 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1329 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1330 //
1331 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1332 // 12, which is less than distance.
1333 //
1334 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1335 // the minimum distance needed is 28, which is greater than distance. It is
1336 // not safe to do vectorization.
David Majnemer7afb46d2016-07-07 06:24:36 +00001337 uint64_t MinDistanceNeeded =
Hao Liu751004a2015-06-08 04:48:37 +00001338 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
David Majnemer7afb46d2016-07-07 06:24:36 +00001339 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
Hao Liu751004a2015-06-08 04:48:37 +00001340 DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1341 << '\n');
1342 return Dependence::Backward;
1343 }
1344
1345 // Unsafe if the minimum distance needed is greater than max safe distance.
1346 if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1347 DEBUG(dbgs() << "LAA: Failure because it needs at least "
1348 << MinDistanceNeeded << " size in bytes");
Adam Nemet9c926572015-03-10 17:40:37 +00001349 return Dependence::Backward;
Adam Nemet04563272015-02-01 16:56:15 +00001350 }
1351
Adam Nemet9cc0c392015-02-26 17:58:48 +00001352 // Positive distance bigger than max vectorization factor.
Hao Liu751004a2015-06-08 04:48:37 +00001353 // FIXME: Should use max factor instead of max distance in bytes, which could
1354 // not handle different types.
1355 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1356 // void foo (int *A, char *B) {
1357 // for (unsigned i = 0; i < 1024; i++) {
1358 // A[i+2] = A[i] + 1;
1359 // B[i+2] = B[i] + 1;
1360 // }
1361 // }
1362 //
1363 // This case is currently unsafe according to the max safe distance. If we
1364 // analyze the two accesses on array B, the max safe dependence distance
1365 // is 2. Then we analyze the accesses on array A, the minimum distance needed
1366 // is 8, which is less than 2 and forbidden vectorization, But actually
1367 // both A and B could be vectorized by 2 iterations.
1368 MaxSafeDepDistBytes =
David Majnemer7afb46d2016-07-07 06:24:36 +00001369 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
Adam Nemet04563272015-02-01 16:56:15 +00001370
1371 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
Matthew Simpson37ec5f92016-05-16 17:00:56 +00001372 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
Adam Nemet04563272015-02-01 16:56:15 +00001373 couldPreventStoreLoadForward(Distance, TypeByteSize))
Adam Nemet9c926572015-03-10 17:40:37 +00001374 return Dependence::BackwardVectorizableButPreventsForwarding;
Adam Nemet04563272015-02-01 16:56:15 +00001375
Hao Liu751004a2015-06-08 04:48:37 +00001376 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1377 << " with max VF = "
1378 << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
Adam Nemet04563272015-02-01 16:56:15 +00001379
Adam Nemet9c926572015-03-10 17:40:37 +00001380 return Dependence::BackwardVectorizable;
Adam Nemet04563272015-02-01 16:56:15 +00001381}
1382
Adam Nemetdee666b2015-03-10 17:40:34 +00001383bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
Adam Nemet04563272015-02-01 16:56:15 +00001384 MemAccessInfoSet &CheckDeps,
Adam Nemet8bc61df2015-02-24 00:41:59 +00001385 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001386
David Majnemer7afb46d2016-07-07 06:24:36 +00001387 MaxSafeDepDistBytes = -1;
Adam Nemet04563272015-02-01 16:56:15 +00001388 while (!CheckDeps.empty()) {
1389 MemAccessInfo CurAccess = *CheckDeps.begin();
1390
1391 // Get the relevant memory access set.
1392 EquivalenceClasses<MemAccessInfo>::iterator I =
1393 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1394
1395 // Check accesses within this set.
Richard Trieu7a083812016-02-18 22:09:30 +00001396 EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1397 AccessSets.member_begin(I);
1398 EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1399 AccessSets.member_end();
Adam Nemet04563272015-02-01 16:56:15 +00001400
1401 // Check every access pair.
1402 while (AI != AE) {
1403 CheckDeps.erase(*AI);
1404 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1405 while (OI != AE) {
1406 // Check every accessing instruction pair in program order.
1407 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1408 I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1409 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1410 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
Adam Nemet9c926572015-03-10 17:40:37 +00001411 auto A = std::make_pair(&*AI, *I1);
1412 auto B = std::make_pair(&*OI, *I2);
1413
1414 assert(*I1 != *I2);
1415 if (*I1 > *I2)
1416 std::swap(A, B);
1417
1418 Dependence::DepType Type =
1419 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1420 SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1421
Adam Nemeta2df7502015-11-03 21:39:52 +00001422 // Gather dependences unless we accumulated MaxDependences
Adam Nemet9c926572015-03-10 17:40:37 +00001423 // dependences. In that case return as soon as we find the first
1424 // unsafe dependence. This puts a limit on this quadratic
1425 // algorithm.
Adam Nemeta2df7502015-11-03 21:39:52 +00001426 if (RecordDependences) {
1427 if (Type != Dependence::NoDep)
1428 Dependences.push_back(Dependence(A.second, B.second, Type));
Adam Nemet9c926572015-03-10 17:40:37 +00001429
Adam Nemeta2df7502015-11-03 21:39:52 +00001430 if (Dependences.size() >= MaxDependences) {
1431 RecordDependences = false;
1432 Dependences.clear();
Adam Nemet9c926572015-03-10 17:40:37 +00001433 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
1434 }
1435 }
Adam Nemeta2df7502015-11-03 21:39:52 +00001436 if (!RecordDependences && !SafeForVectorization)
Adam Nemet04563272015-02-01 16:56:15 +00001437 return false;
1438 }
1439 ++OI;
1440 }
1441 AI++;
1442 }
1443 }
Adam Nemet9c926572015-03-10 17:40:37 +00001444
Adam Nemeta2df7502015-11-03 21:39:52 +00001445 DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001446 return SafeForVectorization;
Adam Nemet04563272015-02-01 16:56:15 +00001447}
1448
Adam Nemetec1e2bb2015-03-10 18:54:26 +00001449SmallVector<Instruction *, 4>
1450MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1451 MemAccessInfo Access(Ptr, isWrite);
1452 auto &IndexVector = Accesses.find(Access)->second;
1453
1454 SmallVector<Instruction *, 4> Insts;
David Majnemer2d006e72016-08-12 04:32:42 +00001455 transform(IndexVector,
Adam Nemetec1e2bb2015-03-10 18:54:26 +00001456 std::back_inserter(Insts),
1457 [&](unsigned Idx) { return this->InstMap[Idx]; });
1458 return Insts;
1459}
1460
Adam Nemet58913d62015-03-10 17:40:43 +00001461const char *MemoryDepChecker::Dependence::DepName[] = {
1462 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1463 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1464
1465void MemoryDepChecker::Dependence::print(
1466 raw_ostream &OS, unsigned Depth,
1467 const SmallVectorImpl<Instruction *> &Instrs) const {
1468 OS.indent(Depth) << DepName[Type] << ":\n";
1469 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1470 OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1471}
1472
Adam Nemet929c38e2015-02-19 19:15:10 +00001473bool LoopAccessInfo::canAnalyzeLoop() {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001474 // We need to have a loop header.
Adam Nemetd8968f02016-01-18 21:16:33 +00001475 DEBUG(dbgs() << "LAA: Found a loop in "
1476 << TheLoop->getHeader()->getParent()->getName() << ": "
1477 << TheLoop->getHeader()->getName() << '\n');
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001478
Adam Nemetd8968f02016-01-18 21:16:33 +00001479 // We can only analyze innermost loops.
Adam Nemet929c38e2015-02-19 19:15:10 +00001480 if (!TheLoop->empty()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001481 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
Adam Nemet2bd6e982015-02-19 19:15:15 +00001482 emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
Adam Nemet929c38e2015-02-19 19:15:10 +00001483 return false;
1484 }
1485
1486 // We must have a single backedge.
1487 if (TheLoop->getNumBackEdges() != 1) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001488 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet929c38e2015-02-19 19:15:10 +00001489 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +00001490 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +00001491 "loop control flow is not understood by analyzer");
1492 return false;
1493 }
1494
1495 // We must have a single exiting block.
1496 if (!TheLoop->getExitingBlock()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001497 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet929c38e2015-02-19 19:15:10 +00001498 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +00001499 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +00001500 "loop control flow is not understood by analyzer");
1501 return false;
1502 }
1503
1504 // We only handle bottom-tested loops, i.e. loop in which the condition is
1505 // checked at the end of each iteration. With that we can assume that all
1506 // instructions in the loop are executed the same number of times.
1507 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001508 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet929c38e2015-02-19 19:15:10 +00001509 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +00001510 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +00001511 "loop control flow is not understood by analyzer");
1512 return false;
1513 }
1514
Adam Nemet929c38e2015-02-19 19:15:10 +00001515 // ScalarEvolution needs to be able to find the exit count.
Xinliang David Li94734ee2016-07-01 05:59:55 +00001516 const SCEV *ExitCount = PSE->getBackedgeTakenCount();
1517 if (ExitCount == PSE->getSE()->getCouldNotCompute()) {
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001518 emitAnalysis(LoopAccessReport()
1519 << "could not determine number of loop iterations");
Adam Nemet929c38e2015-02-19 19:15:10 +00001520 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1521 return false;
1522 }
1523
1524 return true;
1525}
1526
Adam Nemetb49d9a52016-07-13 22:36:27 +00001527void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
Adam Nemet7da74ab2016-07-13 22:36:35 +00001528 const TargetLibraryInfo *TLI,
1529 DominatorTree *DT) {
Adam Nemet04563272015-02-01 16:56:15 +00001530 typedef SmallPtrSet<Value*, 16> ValueSet;
1531
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001532 // Holds the Load and Store instructions.
1533 SmallVector<LoadInst *, 16> Loads;
1534 SmallVector<StoreInst *, 16> Stores;
Adam Nemet04563272015-02-01 16:56:15 +00001535
1536 // Holds all the different accesses in the loop.
1537 unsigned NumReads = 0;
1538 unsigned NumReadWrites = 0;
1539
Xinliang David Lice030ac2016-06-22 23:20:59 +00001540 PtrRtChecking->Pointers.clear();
1541 PtrRtChecking->Need = false;
Adam Nemet04563272015-02-01 16:56:15 +00001542
1543 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
Adam Nemet04563272015-02-01 16:56:15 +00001544
1545 // For each block.
David Majnemer8b401012016-07-12 20:31:46 +00001546 for (BasicBlock *BB : TheLoop->blocks()) {
Adam Nemet04563272015-02-01 16:56:15 +00001547 // Scan the BB and collect legal loads and stores.
David Majnemer8b401012016-07-12 20:31:46 +00001548 for (Instruction &I : *BB) {
Adam Nemet04563272015-02-01 16:56:15 +00001549 // If this is a load, save it. If this instruction can read from memory
1550 // but is not a load, then we quit. Notice that we don't handle function
1551 // calls that read or write.
David Majnemer8b401012016-07-12 20:31:46 +00001552 if (I.mayReadFromMemory()) {
Adam Nemet04563272015-02-01 16:56:15 +00001553 // Many math library functions read the rounding mode. We will only
1554 // vectorize a loop if it contains known function calls that don't set
1555 // the flag. Therefore, it is safe to ignore this read from memory.
David Majnemer8b401012016-07-12 20:31:46 +00001556 auto *Call = dyn_cast<CallInst>(&I);
David Majnemerb4b27232016-04-19 19:10:21 +00001557 if (Call && getVectorIntrinsicIDForCall(Call, TLI))
Adam Nemet04563272015-02-01 16:56:15 +00001558 continue;
1559
Michael Zolotukhin9b3cf602015-03-17 19:46:50 +00001560 // If the function has an explicit vectorized counterpart, we can safely
1561 // assume that it can be vectorized.
1562 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1563 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1564 continue;
1565
David Majnemer8b401012016-07-12 20:31:46 +00001566 auto *Ld = dyn_cast<LoadInst>(&I);
Adam Nemet04563272015-02-01 16:56:15 +00001567 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001568 emitAnalysis(LoopAccessReport(Ld)
Adam Nemet04563272015-02-01 16:56:15 +00001569 << "read with atomic ordering or volatile read");
Adam Nemet339f42b2015-02-19 19:15:07 +00001570 DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001571 CanVecMem = false;
1572 return;
Adam Nemet04563272015-02-01 16:56:15 +00001573 }
1574 NumLoads++;
1575 Loads.push_back(Ld);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001576 DepChecker->addAccess(Ld);
Adam Nemeta9f09c62016-06-17 22:35:41 +00001577 if (EnableMemAccessVersioning)
Adam Nemetc953bb92016-06-16 22:57:55 +00001578 collectStridedAccess(Ld);
Adam Nemet04563272015-02-01 16:56:15 +00001579 continue;
1580 }
1581
1582 // Save 'store' instructions. Abort if other instructions write to memory.
David Majnemer8b401012016-07-12 20:31:46 +00001583 if (I.mayWriteToMemory()) {
1584 auto *St = dyn_cast<StoreInst>(&I);
Adam Nemet04563272015-02-01 16:56:15 +00001585 if (!St) {
David Majnemer8b401012016-07-12 20:31:46 +00001586 emitAnalysis(LoopAccessReport(St)
1587 << "instruction cannot be vectorized");
Adam Nemet436018c2015-02-19 19:15:00 +00001588 CanVecMem = false;
1589 return;
Adam Nemet04563272015-02-01 16:56:15 +00001590 }
1591 if (!St->isSimple() && !IsAnnotatedParallel) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001592 emitAnalysis(LoopAccessReport(St)
Adam Nemet04563272015-02-01 16:56:15 +00001593 << "write with atomic ordering or volatile write");
Adam Nemet339f42b2015-02-19 19:15:07 +00001594 DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001595 CanVecMem = false;
1596 return;
Adam Nemet04563272015-02-01 16:56:15 +00001597 }
1598 NumStores++;
1599 Stores.push_back(St);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001600 DepChecker->addAccess(St);
Adam Nemeta9f09c62016-06-17 22:35:41 +00001601 if (EnableMemAccessVersioning)
Adam Nemetc953bb92016-06-16 22:57:55 +00001602 collectStridedAccess(St);
Adam Nemet04563272015-02-01 16:56:15 +00001603 }
1604 } // Next instr.
1605 } // Next block.
1606
1607 // Now we have two lists that hold the loads and the stores.
1608 // Next, we find the pointers that they use.
1609
1610 // Check if we see any stores. If there are no stores, then we don't
1611 // care if the pointers are *restrict*.
1612 if (!Stores.size()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001613 DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001614 CanVecMem = true;
1615 return;
Adam Nemet04563272015-02-01 16:56:15 +00001616 }
1617
Adam Nemetdee666b2015-03-10 17:40:34 +00001618 MemoryDepChecker::DepCandidates DependentAccesses;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001619 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
Xinliang David Li94734ee2016-07-01 05:59:55 +00001620 AA, LI, DependentAccesses, *PSE);
Adam Nemet04563272015-02-01 16:56:15 +00001621
1622 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1623 // multiple times on the same object. If the ptr is accessed twice, once
1624 // for read and once for write, it will only appear once (on the write
1625 // list). This is okay, since we are going to check for conflicts between
1626 // writes and between reads and writes, but not between reads and reads.
1627 ValueSet Seen;
1628
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001629 for (StoreInst *ST : Stores) {
1630 Value *Ptr = ST->getPointerOperand();
Adam Nemetce482502015-04-08 17:48:40 +00001631 // Check for store to loop invariant address.
1632 StoreToLoopInvariantAddress |= isUniform(Ptr);
Adam Nemet04563272015-02-01 16:56:15 +00001633 // If we did *not* see this pointer before, insert it to the read-write
1634 // list. At this phase it is only a 'write' list.
1635 if (Seen.insert(Ptr).second) {
1636 ++NumReadWrites;
1637
Chandler Carruthac80dc72015-06-17 07:18:54 +00001638 MemoryLocation Loc = MemoryLocation::get(ST);
Adam Nemet04563272015-02-01 16:56:15 +00001639 // The TBAA metadata could have a control dependency on the predication
1640 // condition, so we cannot rely on it when determining whether or not we
1641 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001642 if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001643 Loc.AATags.TBAA = nullptr;
1644
1645 Accesses.addStore(Loc);
1646 }
1647 }
1648
1649 if (IsAnnotatedParallel) {
Adam Nemet04d41632015-02-19 19:14:34 +00001650 DEBUG(dbgs()
Adam Nemet339f42b2015-02-19 19:15:07 +00001651 << "LAA: A loop annotated parallel, ignore memory dependency "
Adam Nemet04d41632015-02-19 19:14:34 +00001652 << "checks.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001653 CanVecMem = true;
1654 return;
Adam Nemet04563272015-02-01 16:56:15 +00001655 }
1656
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001657 for (LoadInst *LD : Loads) {
1658 Value *Ptr = LD->getPointerOperand();
Adam Nemet04563272015-02-01 16:56:15 +00001659 // If we did *not* see this pointer before, insert it to the
1660 // read list. If we *did* see it before, then it is already in
1661 // the read-write list. This allows us to vectorize expressions
1662 // such as A[i] += x; Because the address of A[i] is a read-write
1663 // pointer. This only works if the index of A[i] is consecutive.
1664 // If the address of i is unknown (for example A[B[i]]) then we may
1665 // read a few words, modify, and write a few words, and some of the
1666 // words may be written to the same address.
1667 bool IsReadOnlyPtr = false;
Adam Nemet139ffba2016-06-16 08:27:03 +00001668 if (Seen.insert(Ptr).second ||
Xinliang David Li94734ee2016-07-01 05:59:55 +00001669 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
Adam Nemet04563272015-02-01 16:56:15 +00001670 ++NumReads;
1671 IsReadOnlyPtr = true;
1672 }
1673
Chandler Carruthac80dc72015-06-17 07:18:54 +00001674 MemoryLocation Loc = MemoryLocation::get(LD);
Adam Nemet04563272015-02-01 16:56:15 +00001675 // The TBAA metadata could have a control dependency on the predication
1676 // condition, so we cannot rely on it when determining whether or not we
1677 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001678 if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001679 Loc.AATags.TBAA = nullptr;
1680
1681 Accesses.addLoad(Loc, IsReadOnlyPtr);
1682 }
1683
1684 // If we write (or read-write) to a single destination and there are no
1685 // other reads in this loop then is it safe to vectorize.
1686 if (NumReadWrites == 1 && NumReads == 0) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001687 DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001688 CanVecMem = true;
1689 return;
Adam Nemet04563272015-02-01 16:56:15 +00001690 }
1691
1692 // Build dependence sets and check whether we need a runtime pointer bounds
1693 // check.
1694 Accesses.buildDependenceSets();
Adam Nemet04563272015-02-01 16:56:15 +00001695
1696 // Find pointers with computable bounds. We are going to use this information
1697 // to place a runtime bound check.
Xinliang David Li94734ee2016-07-01 05:59:55 +00001698 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
Adam Nemet139ffba2016-06-16 08:27:03 +00001699 TheLoop, SymbolicStrides);
Adam Nemetee614742015-07-09 22:17:38 +00001700 if (!CanDoRTIfNeeded) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001701 emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
Adam Nemetee614742015-07-09 22:17:38 +00001702 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1703 << "the array bounds.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001704 CanVecMem = false;
1705 return;
Adam Nemet04563272015-02-01 16:56:15 +00001706 }
1707
Adam Nemetee614742015-07-09 22:17:38 +00001708 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
Adam Nemet04563272015-02-01 16:56:15 +00001709
Adam Nemet436018c2015-02-19 19:15:00 +00001710 CanVecMem = true;
Adam Nemet04563272015-02-01 16:56:15 +00001711 if (Accesses.isDependencyCheckNeeded()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001712 DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
Xinliang David Lice030ac2016-06-22 23:20:59 +00001713 CanVecMem = DepChecker->areDepsSafe(
Adam Nemet139ffba2016-06-16 08:27:03 +00001714 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001715 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
Adam Nemet04563272015-02-01 16:56:15 +00001716
Xinliang David Lice030ac2016-06-22 23:20:59 +00001717 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001718 DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
Adam Nemet04563272015-02-01 16:56:15 +00001719
1720 // Clear the dependency checks. We assume they are not needed.
Xinliang David Lice030ac2016-06-22 23:20:59 +00001721 Accesses.resetDepChecks(*DepChecker);
Adam Nemet04563272015-02-01 16:56:15 +00001722
Xinliang David Lice030ac2016-06-22 23:20:59 +00001723 PtrRtChecking->reset();
1724 PtrRtChecking->Need = true;
Adam Nemet04563272015-02-01 16:56:15 +00001725
Xinliang David Li94734ee2016-07-01 05:59:55 +00001726 auto *SE = PSE->getSE();
Xinliang David Lice030ac2016-06-22 23:20:59 +00001727 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
Adam Nemet139ffba2016-06-16 08:27:03 +00001728 SymbolicStrides, true);
Silviu Baranga98a13712015-06-08 10:27:06 +00001729
Adam Nemet949e91a2015-03-10 19:12:41 +00001730 // Check that we found the bounds for the pointer.
Adam Nemetee614742015-07-09 22:17:38 +00001731 if (!CanDoRTIfNeeded) {
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001732 emitAnalysis(LoopAccessReport()
1733 << "cannot check memory dependencies at runtime");
1734 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001735 CanVecMem = false;
1736 return;
1737 }
1738
Adam Nemet04563272015-02-01 16:56:15 +00001739 CanVecMem = true;
1740 }
1741 }
1742
Adam Nemet4bb90a72015-03-10 21:47:39 +00001743 if (CanVecMem)
1744 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
Xinliang David Lice030ac2016-06-22 23:20:59 +00001745 << (PtrRtChecking->Need ? "" : " don't")
Adam Nemet0f67c6c2015-07-09 22:17:41 +00001746 << " need runtime memory checks.\n");
Adam Nemet4bb90a72015-03-10 21:47:39 +00001747 else {
Adam Nemet0a77dfa2016-05-09 23:03:44 +00001748 emitAnalysis(
1749 LoopAccessReport()
1750 << "unsafe dependent memory operations in loop. Use "
1751 "#pragma loop distribute(enable) to allow loop distribution "
1752 "to attempt to isolate the offending operations into a separate "
1753 "loop");
Adam Nemet4bb90a72015-03-10 21:47:39 +00001754 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1755 }
Adam Nemet04563272015-02-01 16:56:15 +00001756}
1757
Adam Nemet01abb2c2015-02-18 03:43:19 +00001758bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1759 DominatorTree *DT) {
Adam Nemet04563272015-02-01 16:56:15 +00001760 assert(TheLoop->contains(BB) && "Unknown block used");
1761
1762 // Blocks that do not dominate the latch need predication.
1763 BasicBlock* Latch = TheLoop->getLoopLatch();
1764 return !DT->dominates(BB, Latch);
1765}
1766
Adam Nemet2bd6e982015-02-19 19:15:15 +00001767void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
Adam Nemetc9228532015-02-19 19:14:56 +00001768 assert(!Report && "Multiple reports generated");
1769 Report = Message;
Adam Nemet04563272015-02-01 16:56:15 +00001770}
1771
Adam Nemet57ac7662015-02-19 19:15:21 +00001772bool LoopAccessInfo::isUniform(Value *V) const {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +00001773 auto *SE = PSE->getSE();
1774 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
1775 // never considered uniform.
1776 // TODO: Is this really what we want? Even without FP SCEV, we may want some
1777 // trivially loop-invariant FP values to be considered uniform.
1778 if (!SE->isSCEVable(V->getType()))
1779 return false;
1780 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
Adam Nemet04563272015-02-01 16:56:15 +00001781}
Adam Nemet7206d7a2015-02-06 18:31:04 +00001782
1783// FIXME: this function is currently a duplicate of the one in
1784// LoopVectorize.cpp.
1785static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1786 Instruction *Loc) {
1787 if (FirstInst)
1788 return FirstInst;
1789 if (Instruction *I = dyn_cast<Instruction>(V))
1790 return I->getParent() == Loc->getParent() ? I : nullptr;
1791 return nullptr;
1792}
1793
Benjamin Kramer039b1042015-10-28 13:54:36 +00001794namespace {
Adam Nemet4e533ef2015-08-21 23:19:57 +00001795/// \brief IR Values for the lower and upper bounds of a pointer evolution. We
1796/// need to use value-handles because SCEV expansion can invalidate previously
1797/// expanded values. Thus expansion of a pointer can invalidate the bounds for
1798/// a previous one.
Adam Nemet1da7df32015-07-26 05:32:14 +00001799struct PointerBounds {
Adam Nemet4e533ef2015-08-21 23:19:57 +00001800 TrackingVH<Value> Start;
1801 TrackingVH<Value> End;
Adam Nemet1da7df32015-07-26 05:32:14 +00001802};
Benjamin Kramer039b1042015-10-28 13:54:36 +00001803} // end anonymous namespace
Adam Nemet7206d7a2015-02-06 18:31:04 +00001804
Adam Nemet1da7df32015-07-26 05:32:14 +00001805/// \brief Expand code for the lower and upper bound of the pointer group \p CG
1806/// in \p TheLoop. \return the values for the bounds.
1807static PointerBounds
1808expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
1809 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
1810 const RuntimePointerChecking &PtrRtChecking) {
1811 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
1812 const SCEV *Sc = SE->getSCEV(Ptr);
1813
1814 if (SE->isLoopInvariant(Sc, TheLoop)) {
1815 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
1816 << "\n");
1817 return {Ptr, Ptr};
1818 } else {
1819 unsigned AS = Ptr->getType()->getPointerAddressSpace();
1820 LLVMContext &Ctx = Loc->getContext();
1821
1822 // Use this type for pointer arithmetic.
1823 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1824 Value *Start = nullptr, *End = nullptr;
1825
1826 DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1827 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1828 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1829 DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1830 return {Start, End};
1831 }
1832}
1833
1834/// \brief Turns a collection of checks into a collection of expanded upper and
1835/// lower bounds for both pointers in the check.
1836static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
1837 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
1838 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
1839 const RuntimePointerChecking &PtrRtChecking) {
1840 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1841
1842 // Here we're relying on the SCEV Expander's cache to only emit code for the
1843 // same bounds once.
David Majnemer2d006e72016-08-12 04:32:42 +00001844 transform(
1845 PointerChecks, std::back_inserter(ChecksWithBounds),
Adam Nemet1da7df32015-07-26 05:32:14 +00001846 [&](const RuntimePointerChecking::PointerCheck &Check) {
NAKAMURA Takumi94abbbd2015-07-27 01:35:30 +00001847 PointerBounds
1848 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
1849 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
1850 return std::make_pair(First, Second);
Adam Nemet1da7df32015-07-26 05:32:14 +00001851 });
1852
1853 return ChecksWithBounds;
1854}
1855
Adam Nemet5b0a4792015-08-11 00:09:37 +00001856std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
Adam Nemet1da7df32015-07-26 05:32:14 +00001857 Instruction *Loc,
1858 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
1859 const {
Adam Nemet1824e412016-07-13 22:18:51 +00001860 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
Xinliang David Li94734ee2016-07-01 05:59:55 +00001861 auto *SE = PSE->getSE();
Adam Nemet1824e412016-07-13 22:18:51 +00001862 SCEVExpander Exp(*SE, DL, "induction");
Adam Nemet1da7df32015-07-26 05:32:14 +00001863 auto ExpandedChecks =
Xinliang David Lice030ac2016-06-22 23:20:59 +00001864 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking);
Adam Nemet7206d7a2015-02-06 18:31:04 +00001865
1866 LLVMContext &Ctx = Loc->getContext();
Adam Nemet7206d7a2015-02-06 18:31:04 +00001867 Instruction *FirstInst = nullptr;
Adam Nemet7206d7a2015-02-06 18:31:04 +00001868 IRBuilder<> ChkBuilder(Loc);
1869 // Our instructions might fold to a constant.
1870 Value *MemoryRuntimeCheck = nullptr;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +00001871
Adam Nemet1da7df32015-07-26 05:32:14 +00001872 for (const auto &Check : ExpandedChecks) {
1873 const PointerBounds &A = Check.first, &B = Check.second;
Adam Nemetcdb791c2015-08-19 17:24:36 +00001874 // Check if two pointers (A and B) conflict where conflict is computed as:
1875 // start(A) <= end(B) && start(B) <= end(A)
Adam Nemet1da7df32015-07-26 05:32:14 +00001876 unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1877 unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
Adam Nemet7206d7a2015-02-06 18:31:04 +00001878
Adam Nemet1da7df32015-07-26 05:32:14 +00001879 assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1880 (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1881 "Trying to bounds check pointers with different address spaces");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001882
Adam Nemet1da7df32015-07-26 05:32:14 +00001883 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1884 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
Adam Nemet7206d7a2015-02-06 18:31:04 +00001885
Adam Nemet1da7df32015-07-26 05:32:14 +00001886 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1887 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1888 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
1889 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001890
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +00001891 // [A|B].Start points to the first accessed byte under base [A|B].
1892 // [A|B].End points to the last accessed byte, plus one.
1893 // There is no conflict when the intervals are disjoint:
1894 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1895 //
1896 // bound0 = (B.Start < A.End)
1897 // bound1 = (A.Start < B.End)
1898 // IsConflict = bound0 & bound1
1899 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
Adam Nemet1da7df32015-07-26 05:32:14 +00001900 FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +00001901 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
Adam Nemet1da7df32015-07-26 05:32:14 +00001902 FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
1903 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1904 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1905 if (MemoryRuntimeCheck) {
1906 IsConflict =
1907 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001908 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
Adam Nemet7206d7a2015-02-06 18:31:04 +00001909 }
Adam Nemet1da7df32015-07-26 05:32:14 +00001910 MemoryRuntimeCheck = IsConflict;
Adam Nemet7206d7a2015-02-06 18:31:04 +00001911 }
1912
Adam Nemet90fec842015-04-02 17:51:57 +00001913 if (!MemoryRuntimeCheck)
1914 return std::make_pair(nullptr, nullptr);
1915
Adam Nemet7206d7a2015-02-06 18:31:04 +00001916 // We have to do this trickery because the IRBuilder might fold the check to a
1917 // constant expression in which case there is no Instruction anchored in a
1918 // the block.
1919 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1920 ConstantInt::getTrue(Ctx));
1921 ChkBuilder.Insert(Check, "memcheck.conflict");
1922 FirstInst = getFirstInst(FirstInst, Check, Loc);
1923 return std::make_pair(FirstInst, Check);
1924}
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001925
Adam Nemet5b0a4792015-08-11 00:09:37 +00001926std::pair<Instruction *, Instruction *>
1927LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
Xinliang David Lice030ac2016-06-22 23:20:59 +00001928 if (!PtrRtChecking->Need)
Adam Nemet1da7df32015-07-26 05:32:14 +00001929 return std::make_pair(nullptr, nullptr);
1930
Xinliang David Lice030ac2016-06-22 23:20:59 +00001931 return addRuntimeChecks(Loc, PtrRtChecking->getChecks());
Adam Nemet1da7df32015-07-26 05:32:14 +00001932}
1933
Adam Nemetc953bb92016-06-16 22:57:55 +00001934void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
1935 Value *Ptr = nullptr;
1936 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
1937 Ptr = LI->getPointerOperand();
1938 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
1939 Ptr = SI->getPointerOperand();
1940 else
1941 return;
1942
Xinliang David Li94734ee2016-07-01 05:59:55 +00001943 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
Adam Nemetc953bb92016-06-16 22:57:55 +00001944 if (!Stride)
1945 return;
1946
1947 DEBUG(dbgs() << "LAA: Found a strided access that we can version");
1948 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
1949 SymbolicStrides[Ptr] = Stride;
1950 StrideSet.insert(Stride);
1951}
1952
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001953LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001954 const TargetLibraryInfo *TLI, AliasAnalysis *AA,
Adam Nemeta9f09c62016-06-17 22:35:41 +00001955 DominatorTree *DT, LoopInfo *LI)
Xinliang David Li94734ee2016-07-01 05:59:55 +00001956 : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)),
Xinliang David Lice030ac2016-06-22 23:20:59 +00001957 PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)),
Xinliang David Li94734ee2016-07-01 05:59:55 +00001958 DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
Adam Nemet7da74ab2016-07-13 22:36:35 +00001959 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
1960 StoreToLoopInvariantAddress(false) {
Adam Nemet929c38e2015-02-19 19:15:10 +00001961 if (canAnalyzeLoop())
Adam Nemet7da74ab2016-07-13 22:36:35 +00001962 analyzeLoop(AA, LI, TLI, DT);
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001963}
1964
Adam Nemete91cc6e2015-02-19 19:15:19 +00001965void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
1966 if (CanVecMem) {
Adam Nemet4ad38b62016-05-13 22:49:09 +00001967 OS.indent(Depth) << "Memory dependences are safe";
David Majnemer7afb46d2016-07-07 06:24:36 +00001968 if (MaxSafeDepDistBytes != -1ULL)
Adam Nemetc62e5542016-05-13 22:49:13 +00001969 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
1970 << " bytes";
Xinliang David Lice030ac2016-06-22 23:20:59 +00001971 if (PtrRtChecking->Need)
Adam Nemet4ad38b62016-05-13 22:49:09 +00001972 OS << " with run-time checks";
1973 OS << "\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00001974 }
1975
1976 if (Report)
1977 OS.indent(Depth) << "Report: " << Report->str() << "\n";
1978
Xinliang David Lice030ac2016-06-22 23:20:59 +00001979 if (auto *Dependences = DepChecker->getDependences()) {
Adam Nemeta2df7502015-11-03 21:39:52 +00001980 OS.indent(Depth) << "Dependences:\n";
1981 for (auto &Dep : *Dependences) {
Xinliang David Lice030ac2016-06-22 23:20:59 +00001982 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
Adam Nemet58913d62015-03-10 17:40:43 +00001983 OS << "\n";
1984 }
1985 } else
Adam Nemeta2df7502015-11-03 21:39:52 +00001986 OS.indent(Depth) << "Too many dependences, not recorded\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00001987
1988 // List the pair of accesses need run-time checks to prove independence.
Xinliang David Lice030ac2016-06-22 23:20:59 +00001989 PtrRtChecking->print(OS, Depth);
Adam Nemete91cc6e2015-02-19 19:15:19 +00001990 OS << "\n";
Adam Nemetc3384322015-05-18 15:36:57 +00001991
1992 OS.indent(Depth) << "Store to invariant address was "
1993 << (StoreToLoopInvariantAddress ? "" : "not ")
1994 << "found in loop.\n";
Silviu Barangae3c05342015-11-02 14:41:02 +00001995
1996 OS.indent(Depth) << "SCEV assumptions:\n";
Xinliang David Li94734ee2016-07-01 05:59:55 +00001997 PSE->getUnionPredicate().print(OS, Depth);
Silviu Barangab77365b2016-04-14 16:08:45 +00001998
1999 OS << "\n";
2000
2001 OS.indent(Depth) << "Expressions re-written:\n";
Xinliang David Li94734ee2016-07-01 05:59:55 +00002002 PSE->print(OS, Depth);
Adam Nemete91cc6e2015-02-19 19:15:19 +00002003}
2004
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002005const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002006 auto &LAI = LoopAccessInfoMap[L];
2007
Adam Nemet1824e412016-07-13 22:18:51 +00002008 if (!LAI)
2009 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
2010
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002011 return *LAI.get();
2012}
2013
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002014void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
2015 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
Xinliang David Liecde1c72016-06-09 03:22:39 +00002016
Adam Nemete91cc6e2015-02-19 19:15:19 +00002017 for (Loop *TopLevelLoop : *LI)
2018 for (Loop *L : depth_first(TopLevelLoop)) {
2019 OS.indent(2) << L->getHeader()->getName() << ":\n";
Adam Nemetbdbc5222016-06-16 08:26:56 +00002020 auto &LAI = LAA.getInfo(L);
Adam Nemete91cc6e2015-02-19 19:15:19 +00002021 LAI.print(OS, 4);
2022 }
2023}
2024
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002025bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
Xinliang David Liecde1c72016-06-09 03:22:39 +00002026 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002027 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
Xinliang David Liecde1c72016-06-09 03:22:39 +00002028 TLI = TLIP ? &TLIP->getTLI() : nullptr;
2029 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2030 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2031 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002032
2033 return false;
2034}
2035
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002036void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002037 AU.addRequired<ScalarEvolutionWrapperPass>();
Chandler Carruth7b560d42015-09-09 17:55:00 +00002038 AU.addRequired<AAResultsWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002039 AU.addRequired<DominatorTreeWrapperPass>();
Adam Nemete91cc6e2015-02-19 19:15:19 +00002040 AU.addRequired<LoopInfoWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002041
2042 AU.setPreservesAll();
2043}
2044
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002045char LoopAccessLegacyAnalysis::ID = 0;
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002046static const char laa_name[] = "Loop Access Analysis";
2047#define LAA_NAME "loop-accesses"
2048
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002049INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
Chandler Carruth7b560d42015-09-09 17:55:00 +00002050INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002051INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002052INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Adam Nemete91cc6e2015-02-19 19:15:19 +00002053INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002054INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002055
Xinliang David Li07e08fa2016-07-08 21:21:44 +00002056char LoopAccessAnalysis::PassID;
Xinliang David Li8a021312016-07-02 21:18:40 +00002057
Sean Silva0746f3b2016-08-09 00:28:52 +00002058LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM) {
Sean Silva36e0d012016-08-09 00:28:15 +00002059 const FunctionAnalysisManager &FAM =
Sean Silva284b0322016-07-07 01:01:53 +00002060 AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager();
Xinliang David Li8a021312016-07-02 21:18:40 +00002061 Function &F = *L.getHeader()->getParent();
Sean Silva284b0322016-07-07 01:01:53 +00002062 auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(F);
Xinliang David Li8a021312016-07-02 21:18:40 +00002063 auto *TLI = FAM.getCachedResult<TargetLibraryAnalysis>(F);
Sean Silva284b0322016-07-07 01:01:53 +00002064 auto *AA = FAM.getCachedResult<AAManager>(F);
2065 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
2066 auto *LI = FAM.getCachedResult<LoopAnalysis>(F);
2067 if (!SE)
2068 report_fatal_error(
2069 "ScalarEvolution must have been cached at a higher level");
2070 if (!AA)
2071 report_fatal_error("AliasAnalysis must have been cached at a higher level");
2072 if (!DT)
2073 report_fatal_error("DominatorTree must have been cached at a higher level");
2074 if (!LI)
2075 report_fatal_error("LoopInfo must have been cached at a higher level");
Adam Nemet1824e412016-07-13 22:18:51 +00002076 return LoopAccessInfo(&L, SE, TLI, AA, DT, LI);
Xinliang David Li8a021312016-07-02 21:18:40 +00002077}
2078
2079PreservedAnalyses LoopAccessInfoPrinterPass::run(Loop &L,
Sean Silva0746f3b2016-08-09 00:28:52 +00002080 LoopAnalysisManager &AM) {
Xinliang David Li8a021312016-07-02 21:18:40 +00002081 Function &F = *L.getHeader()->getParent();
Xinliang David Li07e08fa2016-07-08 21:21:44 +00002082 auto &LAI = AM.getResult<LoopAccessAnalysis>(L);
Xinliang David Li8a021312016-07-02 21:18:40 +00002083 OS << "Loop access info in function '" << F.getName() << "':\n";
2084 OS.indent(2) << L.getHeader()->getName() << ":\n";
2085 LAI.print(OS, 4);
2086 return PreservedAnalyses::all();
2087}
2088
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002089namespace llvm {
2090 Pass *createLAAPass() {
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002091 return new LoopAccessLegacyAnalysis();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002092 }
2093}