blob: 44e6fa126e029facbbfb13769acb803cbb725f66 [file] [log] [blame]
Misha Brukmanc501f552004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman76307852003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencercb84e432004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman76307852003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattner757528b0b2004-05-23 21:06:01 +000012
Misha Brukman76307852003-11-08 01:05:38 +000013<body>
Chris Lattner757528b0b2004-05-23 21:06:01 +000014
Chris Lattner48b383b02003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner2f7c9632001-06-06 20:29:01 +000016<ol>
Misha Brukman76307852003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnerd79749a2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattner0132aff2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerbc088212009-01-11 20:53:49 +000025 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000026 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000027 <li><a href="#functionstructure">Functions</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000028 <li><a href="#aliasstructure">Aliases</a></li>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +000029 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel9eb525d2008-09-26 23:51:19 +000030 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen71183b62007-12-10 03:18:06 +000031 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000032 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencer50c723a2007-02-19 23:54:10 +000033 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000034 </ol>
35 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000036 <li><a href="#typesystem">Type System</a>
37 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000038 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +000039 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner48b383b02003-11-25 01:02:51 +000040 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000041 <li><a href="#t_floating">Floating Point Types</a></li>
42 <li><a href="#t_void">Void Type</a></li>
43 <li><a href="#t_label">Label Type</a></li>
Nick Lewyckyadbc2842009-05-30 05:06:04 +000044 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000045 </ol>
46 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000047 <li><a href="#t_derived">Derived Types</a>
48 <ol>
Chris Lattner9a2e3cb2007-12-18 06:18:21 +000049 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000050 <li><a href="#t_array">Array Type</a></li>
Misha Brukman76307852003-11-08 01:05:38 +000051 <li><a href="#t_function">Function Type</a></li>
52 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000053 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth8df88e22006-12-08 17:13:00 +000054 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer404a3252007-02-15 03:07:05 +000055 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner37b6b092005-04-25 17:34:15 +000056 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000057 </ol>
58 </li>
Chris Lattnercf7a5842009-02-02 07:32:36 +000059 <li><a href="#t_uprefs">Type Up-references</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000060 </ol>
61 </li>
Chris Lattner6af02f32004-12-09 16:11:40 +000062 <li><a href="#constants">Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +000063 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +000064 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner361bfcd2009-02-28 18:32:25 +000065 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000066 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
67 <li><a href="#undefvalues">Undefined Values</a></li>
68 <li><a href="#constantexprs">Constant Expressions</a></li>
Nick Lewycky49f89192009-04-04 07:22:01 +000069 <li><a href="#metadata">Embedded Metadata</a></li>
Chris Lattner74d3f822004-12-09 17:30:23 +000070 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000071 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +000072 <li><a href="#othervalues">Other Values</a>
73 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +000074 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Chris Lattner98f013c2006-01-25 23:47:57 +000075 </ol>
76 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000077 <li><a href="#instref">Instruction Reference</a>
78 <ol>
79 <li><a href="#terminators">Terminator Instructions</a>
80 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000081 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
82 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +000083 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
84 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000085 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner08b7d5b2004-10-16 18:04:13 +000086 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000087 </ol>
88 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000089 <li><a href="#binaryops">Binary Operations</a>
90 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000091 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +000092 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000093 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +000094 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000095 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +000096 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer7e80b0b2006-10-26 06:15:43 +000097 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
98 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
99 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer7eb55b32006-11-02 01:53:59 +0000100 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
101 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
102 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000103 </ol>
104 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000105 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
106 <ol>
Reid Spencer2ab01932007-02-02 13:57:07 +0000107 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
108 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
109 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000110 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000111 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000112 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000113 </ol>
114 </li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000115 <li><a href="#vectorops">Vector Operations</a>
116 <ol>
117 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
118 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
119 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000120 </ol>
121 </li>
Dan Gohmanb9d66602008-05-12 23:51:09 +0000122 <li><a href="#aggregateops">Aggregate Operations</a>
123 <ol>
124 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
125 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
126 </ol>
127 </li>
Chris Lattner6ab66722006-08-15 00:45:58 +0000128 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000129 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000130 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
131 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
132 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +0000133 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
134 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
135 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000136 </ol>
137 </li>
Reid Spencer97c5fa42006-11-08 01:18:52 +0000138 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000139 <ol>
140 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
141 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
142 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
143 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
144 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencer51b07252006-11-09 23:03:26 +0000145 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
146 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
147 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
148 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencerb7344ff2006-11-11 21:00:47 +0000149 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
150 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5b950642006-11-11 23:08:07 +0000151 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000152 </ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000153 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000154 <li><a href="#otherops">Other Operations</a>
155 <ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +0000156 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
157 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000158 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnerb53c28d2004-03-12 05:50:16 +0000159 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000160 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattner33337472006-01-13 23:26:01 +0000161 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000162 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000163 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000164 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000165 </li>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000166 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000167 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000168 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
169 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000170 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
171 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
172 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000173 </ol>
174 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000175 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
176 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000177 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
178 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
179 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000180 </ol>
181 </li>
Chris Lattner3649c3a2004-02-14 04:08:35 +0000182 <li><a href="#int_codegen">Code Generator Intrinsics</a>
183 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000184 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
185 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
186 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
187 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
188 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
189 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
190 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswellaa1c3c12004-04-09 16:43:20 +0000191 </ol>
192 </li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000193 <li><a href="#int_libc">Standard C Library Intrinsics</a>
194 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000195 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
198 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
199 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohmanb6324c12007-10-15 20:30:11 +0000200 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
201 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
202 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000203 </ol>
204 </li>
Nate Begeman0f223bb2006-01-13 23:26:38 +0000205 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000206 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000207 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattnerb748c672006-01-16 22:34:14 +0000208 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
209 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
210 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000211 </ol>
212 </li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000213 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
214 <ol>
Bill Wendlingfd2bd722009-02-08 04:04:40 +0000215 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
216 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
217 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
218 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
219 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingb9a73272009-02-08 23:00:09 +0000220 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000221 </ol>
222 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000223 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskey2211f492007-03-14 19:31:19 +0000224 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands86e01192007-09-11 14:10:23 +0000225 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands644f9172007-07-27 12:58:54 +0000226 <ol>
227 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands644f9172007-07-27 12:58:54 +0000228 </ol>
229 </li>
Bill Wendlingf85850f2008-11-18 22:10:53 +0000230 <li><a href="#int_atomics">Atomic intrinsics</a>
231 <ol>
232 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
233 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
234 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
235 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
236 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
237 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
238 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
239 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
240 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
241 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
242 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
243 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
244 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
245 </ol>
246 </li>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000247 <li><a href="#int_general">General intrinsics</a>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000248 <ol>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000249 <li><a href="#int_var_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000250 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000251 <li><a href="#int_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000252 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +0000253 <li><a href="#int_trap">
Bill Wendling14313312008-11-19 05:56:17 +0000254 '<tt>llvm.trap</tt>' Intrinsic</a></li>
255 <li><a href="#int_stackprotector">
256 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000257 </ol>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000258 </li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000259 </ol>
260 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000261</ol>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000262
263<div class="doc_author">
264 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
265 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman76307852003-11-08 01:05:38 +0000266</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000267
Chris Lattner2f7c9632001-06-06 20:29:01 +0000268<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000269<div class="doc_section"> <a name="abstract">Abstract </a></div>
270<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000271
Misha Brukman76307852003-11-08 01:05:38 +0000272<div class="doc_text">
Chris Lattner48b383b02003-11-25 01:02:51 +0000273<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling6e03f9a2008-08-05 22:29:16 +0000274LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattner67c37d12008-08-05 18:29:16 +0000275type safety, low-level operations, flexibility, and the capability of
276representing 'all' high-level languages cleanly. It is the common code
Chris Lattner48b383b02003-11-25 01:02:51 +0000277representation used throughout all phases of the LLVM compilation
278strategy.</p>
Misha Brukman76307852003-11-08 01:05:38 +0000279</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000280
Chris Lattner2f7c9632001-06-06 20:29:01 +0000281<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000282<div class="doc_section"> <a name="introduction">Introduction</a> </div>
283<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000284
Misha Brukman76307852003-11-08 01:05:38 +0000285<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000286
Chris Lattner48b383b02003-11-25 01:02:51 +0000287<p>The LLVM code representation is designed to be used in three
Gabor Greifa54634a2007-07-06 22:07:22 +0000288different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner48b383b02003-11-25 01:02:51 +0000289representation (suitable for fast loading by a Just-In-Time compiler),
290and as a human readable assembly language representation. This allows
291LLVM to provide a powerful intermediate representation for efficient
292compiler transformations and analysis, while providing a natural means
293to debug and visualize the transformations. The three different forms
294of LLVM are all equivalent. This document describes the human readable
295representation and notation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000296
John Criswell4a3327e2005-05-13 22:25:59 +0000297<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner48b383b02003-11-25 01:02:51 +0000298while being expressive, typed, and extensible at the same time. It
299aims to be a "universal IR" of sorts, by being at a low enough level
300that high-level ideas may be cleanly mapped to it (similar to how
301microprocessors are "universal IR's", allowing many source languages to
302be mapped to them). By providing type information, LLVM can be used as
303the target of optimizations: for example, through pointer analysis, it
304can be proven that a C automatic variable is never accessed outside of
305the current function... allowing it to be promoted to a simple SSA
306value instead of a memory location.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000307
Misha Brukman76307852003-11-08 01:05:38 +0000308</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000309
Chris Lattner2f7c9632001-06-06 20:29:01 +0000310<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000311<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000312
Misha Brukman76307852003-11-08 01:05:38 +0000313<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000314
Chris Lattner48b383b02003-11-25 01:02:51 +0000315<p>It is important to note that this document describes 'well formed'
316LLVM assembly language. There is a difference between what the parser
317accepts and what is considered 'well formed'. For example, the
318following instruction is syntactically okay, but not well formed:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000319
Bill Wendling3716c5d2007-05-29 09:04:49 +0000320<div class="doc_code">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000321<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000322%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattner757528b0b2004-05-23 21:06:01 +0000323</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000324</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000325
Chris Lattner48b383b02003-11-25 01:02:51 +0000326<p>...because the definition of <tt>%x</tt> does not dominate all of
327its uses. The LLVM infrastructure provides a verification pass that may
328be used to verify that an LLVM module is well formed. This pass is
John Criswell4a3327e2005-05-13 22:25:59 +0000329automatically run by the parser after parsing input assembly and by
Gabor Greifa54634a2007-07-06 22:07:22 +0000330the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner48b383b02003-11-25 01:02:51 +0000331by the verifier pass indicate bugs in transformation passes or input to
332the parser.</p>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000333</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000334
Chris Lattner87a3dbe2007-10-03 17:34:29 +0000335<!-- Describe the typesetting conventions here. -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000336
Chris Lattner2f7c9632001-06-06 20:29:01 +0000337<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000338<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000339<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000340
Misha Brukman76307852003-11-08 01:05:38 +0000341<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000342
Reid Spencerb23b65f2007-08-07 14:34:28 +0000343 <p>LLVM identifiers come in two basic types: global and local. Global
344 identifiers (functions, global variables) begin with the @ character. Local
345 identifiers (register names, types) begin with the % character. Additionally,
Dan Gohmanef9462f2008-10-14 16:51:45 +0000346 there are three different formats for identifiers, for different purposes:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000347
Chris Lattner2f7c9632001-06-06 20:29:01 +0000348<ol>
Reid Spencerb23b65f2007-08-07 14:34:28 +0000349 <li>Named values are represented as a string of characters with their prefix.
350 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
351 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnerd79749a2004-12-09 16:36:40 +0000352 Identifiers which require other characters in their names can be surrounded
Daniel Dunbar0f8155a2008-10-14 23:51:43 +0000353 with quotes. Special characters may be escaped using "\xx" where xx is the
354 ASCII code for the character in hexadecimal. In this way, any character can
355 be used in a name value, even quotes themselves.
Chris Lattnerd79749a2004-12-09 16:36:40 +0000356
Reid Spencerb23b65f2007-08-07 14:34:28 +0000357 <li>Unnamed values are represented as an unsigned numeric value with their
358 prefix. For example, %12, @2, %44.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000359
Reid Spencer8f08d802004-12-09 18:02:53 +0000360 <li>Constants, which are described in a <a href="#constants">section about
361 constants</a>, below.</li>
Misha Brukman76307852003-11-08 01:05:38 +0000362</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000363
Reid Spencerb23b65f2007-08-07 14:34:28 +0000364<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnerd79749a2004-12-09 16:36:40 +0000365don't need to worry about name clashes with reserved words, and the set of
366reserved words may be expanded in the future without penalty. Additionally,
367unnamed identifiers allow a compiler to quickly come up with a temporary
368variable without having to avoid symbol table conflicts.</p>
369
Chris Lattner48b383b02003-11-25 01:02:51 +0000370<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5b950642006-11-11 23:08:07 +0000371languages. There are keywords for different opcodes
372('<tt><a href="#i_add">add</a></tt>',
373 '<tt><a href="#i_bitcast">bitcast</a></tt>',
374 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000375href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnerd79749a2004-12-09 16:36:40 +0000376and others. These reserved words cannot conflict with variable names, because
Reid Spencerb23b65f2007-08-07 14:34:28 +0000377none of them start with a prefix character ('%' or '@').</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000378
379<p>Here is an example of LLVM code to multiply the integer variable
380'<tt>%X</tt>' by 8:</p>
381
Misha Brukman76307852003-11-08 01:05:38 +0000382<p>The easy way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000383
Bill Wendling3716c5d2007-05-29 09:04:49 +0000384<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000385<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000386%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnerd79749a2004-12-09 16:36:40 +0000387</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000388</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000389
Misha Brukman76307852003-11-08 01:05:38 +0000390<p>After strength reduction:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000391
Bill Wendling3716c5d2007-05-29 09:04:49 +0000392<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000393<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000394%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnerd79749a2004-12-09 16:36:40 +0000395</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000396</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000397
Misha Brukman76307852003-11-08 01:05:38 +0000398<p>And the hard way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000399
Bill Wendling3716c5d2007-05-29 09:04:49 +0000400<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000401<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000402<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
403<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
404%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnerd79749a2004-12-09 16:36:40 +0000405</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000406</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000407
Chris Lattner48b383b02003-11-25 01:02:51 +0000408<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
409important lexical features of LLVM:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000410
Chris Lattner2f7c9632001-06-06 20:29:01 +0000411<ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000412
413 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
414 line.</li>
415
416 <li>Unnamed temporaries are created when the result of a computation is not
417 assigned to a named value.</li>
418
Misha Brukman76307852003-11-08 01:05:38 +0000419 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000420
Misha Brukman76307852003-11-08 01:05:38 +0000421</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000422
John Criswell02fdc6f2005-05-12 16:52:32 +0000423<p>...and it also shows a convention that we follow in this document. When
Chris Lattnerd79749a2004-12-09 16:36:40 +0000424demonstrating instructions, we will follow an instruction with a comment that
425defines the type and name of value produced. Comments are shown in italic
426text.</p>
427
Misha Brukman76307852003-11-08 01:05:38 +0000428</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000429
430<!-- *********************************************************************** -->
431<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
432<!-- *********************************************************************** -->
433
434<!-- ======================================================================= -->
435<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
436</div>
437
438<div class="doc_text">
439
440<p>LLVM programs are composed of "Module"s, each of which is a
441translation unit of the input programs. Each module consists of
442functions, global variables, and symbol table entries. Modules may be
443combined together with the LLVM linker, which merges function (and
444global variable) definitions, resolves forward declarations, and merges
445symbol table entries. Here is an example of the "hello world" module:</p>
446
Bill Wendling3716c5d2007-05-29 09:04:49 +0000447<div class="doc_code">
Chris Lattner6af02f32004-12-09 16:11:40 +0000448<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattner2b0bf4f2007-06-12 17:00:26 +0000449<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
450 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000451
452<i>; External declaration of the puts function</i>
Chris Lattner2b0bf4f2007-06-12 17:00:26 +0000453<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000454
455<i>; Definition of main function</i>
Chris Lattner2b0bf4f2007-06-12 17:00:26 +0000456define i32 @main() { <i>; i32()* </i>
Dan Gohman623806e2009-01-04 23:44:43 +0000457 <i>; Convert [13 x i8]* to i8 *...</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000458 %cast210 = <a
Dan Gohman623806e2009-01-04 23:44:43 +0000459 href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000460
461 <i>; Call puts function to write out the string to stdout...</i>
462 <a
Chris Lattner2b0bf4f2007-06-12 17:00:26 +0000463 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000464 <a
Bill Wendling3716c5d2007-05-29 09:04:49 +0000465 href="#i_ret">ret</a> i32 0<br>}<br>
466</pre>
467</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000468
469<p>This example is made up of a <a href="#globalvars">global variable</a>
470named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
471function, and a <a href="#functionstructure">function definition</a>
472for "<tt>main</tt>".</p>
473
Chris Lattnerd79749a2004-12-09 16:36:40 +0000474<p>In general, a module is made up of a list of global values,
475where both functions and global variables are global values. Global values are
476represented by a pointer to a memory location (in this case, a pointer to an
477array of char, and a pointer to a function), and have one of the following <a
478href="#linkage">linkage types</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000479
Chris Lattnerd79749a2004-12-09 16:36:40 +0000480</div>
481
482<!-- ======================================================================= -->
483<div class="doc_subsection">
484 <a name="linkage">Linkage Types</a>
485</div>
486
487<div class="doc_text">
488
489<p>
490All Global Variables and Functions have one of the following types of linkage:
491</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000492
493<dl>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000494
Rafael Espindola6de96a12009-01-15 20:18:42 +0000495 <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
496
497 <dd>Global values with private linkage are only directly accessible by
498 objects in the current module. In particular, linking code into a module with
499 an private global value may cause the private to be renamed as necessary to
500 avoid collisions. Because the symbol is private to the module, all
501 references can be updated. This doesn't show up in any symbol table in the
502 object file.
503 </dd>
504
Dale Johannesen4188aad2008-05-23 23:13:41 +0000505 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000506
Duncan Sands35e43c12009-01-16 09:29:46 +0000507 <dd> Similar to private, but the value shows as a local symbol (STB_LOCAL in
Rafael Espindola6de96a12009-01-15 20:18:42 +0000508 the case of ELF) in the object file. This corresponds to the notion of the
Chris Lattnere20b4702007-01-14 06:51:48 +0000509 '<tt>static</tt>' keyword in C.
Chris Lattner6af02f32004-12-09 16:11:40 +0000510 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000511
Chris Lattner184f1be2009-04-13 05:44:34 +0000512 <dt><tt><b><a name="available_externally">available_externally</a></b></tt>:
513 </dt>
514
515 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
516 into the object file corresponding to the LLVM module. They exist to
517 allow inlining and other optimizations to take place given knowledge of the
518 definition of the global, which is known to be somewhere outside the module.
519 Globals with <tt>available_externally</tt> linkage are allowed to be discarded
520 at will, and are otherwise the same as <tt>linkonce_odr</tt>. This linkage
521 type is only allowed on definitions, not declarations.</dd>
522
Chris Lattner6af02f32004-12-09 16:11:40 +0000523 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000524
Chris Lattnere20b4702007-01-14 06:51:48 +0000525 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
526 the same name when linkage occurs. This is typically used to implement
527 inline functions, templates, or other code which must be generated in each
528 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
529 allowed to be discarded.
Chris Lattner6af02f32004-12-09 16:11:40 +0000530 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000531
Dale Johannesen4188aad2008-05-23 23:13:41 +0000532 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
533
534 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
535 linkage, except that unreferenced <tt>common</tt> globals may not be
536 discarded. This is used for globals that may be emitted in multiple
537 translation units, but that are not guaranteed to be emitted into every
538 translation unit that uses them. One example of this is tentative
539 definitions in C, such as "<tt>int X;</tt>" at global scope.
540 </dd>
541
Chris Lattner6af02f32004-12-09 16:11:40 +0000542 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000543
Dale Johannesen4188aad2008-05-23 23:13:41 +0000544 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
545 that some targets may choose to emit different assembly sequences for them
546 for target-dependent reasons. This is used for globals that are declared
547 "weak" in C source code.
Chris Lattner6af02f32004-12-09 16:11:40 +0000548 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000549
Chris Lattner6af02f32004-12-09 16:11:40 +0000550 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000551
552 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
553 pointer to array type. When two global variables with appending linkage are
554 linked together, the two global arrays are appended together. This is the
555 LLVM, typesafe, equivalent of having the system linker append together
556 "sections" with identical names when .o files are linked.
Chris Lattner6af02f32004-12-09 16:11:40 +0000557 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000558
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000559 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000560
Chris Lattner67c37d12008-08-05 18:29:16 +0000561 <dd>The semantics of this linkage follow the ELF object file model: the
562 symbol is weak until linked, if not linked, the symbol becomes null instead
563 of being an undefined reference.
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000564 </dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000565
Duncan Sands12da8ce2009-03-07 15:45:40 +0000566 <dt><tt><b><a name="linkage_linkonce">linkonce_odr</a></b></tt>: </dt>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000567 <dt><tt><b><a name="linkage_weak">weak_odr</a></b></tt>: </dt>
Chris Lattner184f1be2009-04-13 05:44:34 +0000568 <dd>Some languages allow differing globals to be merged, such as two
Duncan Sands12da8ce2009-03-07 15:45:40 +0000569 functions with different semantics. Other languages, such as <tt>C++</tt>,
570 ensure that only equivalent globals are ever merged (the "one definition
Chris Lattner184f1be2009-04-13 05:44:34 +0000571 rule" - "ODR"). Such languages can use the <tt>linkonce_odr</tt>
Duncan Sands4581beb2009-03-11 20:14:15 +0000572 and <tt>weak_odr</tt> linkage types to indicate that the global will only
573 be merged with equivalent globals. These linkage types are otherwise the
574 same as their non-<tt>odr</tt> versions.
Duncan Sands12da8ce2009-03-07 15:45:40 +0000575 </dd>
576
Chris Lattner6af02f32004-12-09 16:11:40 +0000577 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000578
579 <dd>If none of the above identifiers are used, the global is externally
580 visible, meaning that it participates in linkage and can be used to resolve
581 external symbol references.
Chris Lattner6af02f32004-12-09 16:11:40 +0000582 </dd>
Reid Spencer7972c472007-04-11 23:49:50 +0000583</dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000584
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000585 <p>
586 The next two types of linkage are targeted for Microsoft Windows platform
587 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattner67c37d12008-08-05 18:29:16 +0000588 DLLs (Dynamic Link Libraries).
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000589 </p>
590
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000591 <dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000592 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
593
594 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
595 or variable via a global pointer to a pointer that is set up by the DLL
596 exporting the symbol. On Microsoft Windows targets, the pointer name is
Dan Gohman33a9cef2009-01-12 21:35:55 +0000597 formed by combining <code>__imp_</code> and the function or variable name.
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000598 </dd>
599
600 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
601
602 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
603 pointer to a pointer in a DLL, so that it can be referenced with the
604 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
Dan Gohman33a9cef2009-01-12 21:35:55 +0000605 name is formed by combining <code>__imp_</code> and the function or variable
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000606 name.
607 </dd>
608
Chris Lattner6af02f32004-12-09 16:11:40 +0000609</dl>
610
Dan Gohman8ef44982008-11-24 17:18:39 +0000611<p>For example, since the "<tt>.LC0</tt>"
Chris Lattner6af02f32004-12-09 16:11:40 +0000612variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
613variable and was linked with this one, one of the two would be renamed,
614preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
615external (i.e., lacking any linkage declarations), they are accessible
Reid Spencer92c671e2007-01-05 00:59:10 +0000616outside of the current module.</p>
617<p>It is illegal for a function <i>declaration</i>
Duncan Sandse2881052009-03-11 08:08:06 +0000618to have any linkage type other than "externally visible", <tt>dllimport</tt>
619or <tt>extern_weak</tt>.</p>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000620<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
621or <tt>weak_odr</tt> linkages.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000622</div>
623
624<!-- ======================================================================= -->
625<div class="doc_subsection">
Chris Lattner0132aff2005-05-06 22:57:40 +0000626 <a name="callingconv">Calling Conventions</a>
627</div>
628
629<div class="doc_text">
630
631<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
632and <a href="#i_invoke">invokes</a> can all have an optional calling convention
633specified for the call. The calling convention of any pair of dynamic
634caller/callee must match, or the behavior of the program is undefined. The
635following calling conventions are supported by LLVM, and more may be added in
636the future:</p>
637
638<dl>
639 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
640
641 <dd>This calling convention (the default if no other calling convention is
642 specified) matches the target C calling conventions. This calling convention
John Criswell02fdc6f2005-05-12 16:52:32 +0000643 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencer72ba4992006-12-31 21:30:18 +0000644 prototype and implemented declaration of the function (as does normal C).
Chris Lattner0132aff2005-05-06 22:57:40 +0000645 </dd>
646
647 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
648
649 <dd>This calling convention attempts to make calls as fast as possible
650 (e.g. by passing things in registers). This calling convention allows the
651 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattner67c37d12008-08-05 18:29:16 +0000652 without having to conform to an externally specified ABI (Application Binary
653 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer2c6b8882008-05-14 09:17:12 +0000654 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
655 supported. This calling convention does not support varargs and requires the
656 prototype of all callees to exactly match the prototype of the function
657 definition.
Chris Lattner0132aff2005-05-06 22:57:40 +0000658 </dd>
659
660 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
661
662 <dd>This calling convention attempts to make code in the caller as efficient
663 as possible under the assumption that the call is not commonly executed. As
664 such, these calls often preserve all registers so that the call does not break
665 any live ranges in the caller side. This calling convention does not support
666 varargs and requires the prototype of all callees to exactly match the
667 prototype of the function definition.
668 </dd>
669
Chris Lattner573f64e2005-05-07 01:46:40 +0000670 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000671
672 <dd>Any calling convention may be specified by number, allowing
673 target-specific calling conventions to be used. Target specific calling
674 conventions start at 64.
675 </dd>
Chris Lattner573f64e2005-05-07 01:46:40 +0000676</dl>
Chris Lattner0132aff2005-05-06 22:57:40 +0000677
678<p>More calling conventions can be added/defined on an as-needed basis, to
679support pascal conventions or any other well-known target-independent
680convention.</p>
681
682</div>
683
684<!-- ======================================================================= -->
685<div class="doc_subsection">
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000686 <a name="visibility">Visibility Styles</a>
687</div>
688
689<div class="doc_text">
690
691<p>
692All Global Variables and Functions have one of the following visibility styles:
693</p>
694
695<dl>
696 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
697
Chris Lattner67c37d12008-08-05 18:29:16 +0000698 <dd>On targets that use the ELF object file format, default visibility means
699 that the declaration is visible to other
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000700 modules and, in shared libraries, means that the declared entity may be
701 overridden. On Darwin, default visibility means that the declaration is
702 visible to other modules. Default visibility corresponds to "external
703 linkage" in the language.
704 </dd>
705
706 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
707
708 <dd>Two declarations of an object with hidden visibility refer to the same
709 object if they are in the same shared object. Usually, hidden visibility
710 indicates that the symbol will not be placed into the dynamic symbol table,
711 so no other module (executable or shared library) can reference it
712 directly.
713 </dd>
714
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000715 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
716
717 <dd>On ELF, protected visibility indicates that the symbol will be placed in
718 the dynamic symbol table, but that references within the defining module will
719 bind to the local symbol. That is, the symbol cannot be overridden by another
720 module.
721 </dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000722</dl>
723
724</div>
725
726<!-- ======================================================================= -->
727<div class="doc_subsection">
Chris Lattnerbc088212009-01-11 20:53:49 +0000728 <a name="namedtypes">Named Types</a>
729</div>
730
731<div class="doc_text">
732
733<p>LLVM IR allows you to specify name aliases for certain types. This can make
734it easier to read the IR and make the IR more condensed (particularly when
735recursive types are involved). An example of a name specification is:
736</p>
737
738<div class="doc_code">
739<pre>
740%mytype = type { %mytype*, i32 }
741</pre>
742</div>
743
744<p>You may give a name to any <a href="#typesystem">type</a> except "<a
745href="t_void">void</a>". Type name aliases may be used anywhere a type is
746expected with the syntax "%mytype".</p>
747
748<p>Note that type names are aliases for the structural type that they indicate,
749and that you can therefore specify multiple names for the same type. This often
750leads to confusing behavior when dumping out a .ll file. Since LLVM IR uses
751structural typing, the name is not part of the type. When printing out LLVM IR,
752the printer will pick <em>one name</em> to render all types of a particular
753shape. This means that if you have code where two different source types end up
754having the same LLVM type, that the dumper will sometimes print the "wrong" or
755unexpected type. This is an important design point and isn't going to
756change.</p>
757
758</div>
759
Chris Lattnerbc088212009-01-11 20:53:49 +0000760<!-- ======================================================================= -->
761<div class="doc_subsection">
Chris Lattner6af02f32004-12-09 16:11:40 +0000762 <a name="globalvars">Global Variables</a>
763</div>
764
765<div class="doc_text">
766
Chris Lattner5d5aede2005-02-12 19:30:21 +0000767<p>Global variables define regions of memory allocated at compilation time
Chris Lattner662c8722005-11-12 00:45:07 +0000768instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000769an explicit section to be placed in, and may have an optional explicit alignment
770specified. A variable may be defined as "thread_local", which means that it
771will not be shared by threads (each thread will have a separated copy of the
772variable). A variable may be defined as a global "constant," which indicates
773that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner5d5aede2005-02-12 19:30:21 +0000774optimization, allowing the global data to be placed in the read-only section of
775an executable, etc). Note that variables that need runtime initialization
John Criswell4c0cf7f2005-10-24 16:17:18 +0000776cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner5d5aede2005-02-12 19:30:21 +0000777
778<p>
779LLVM explicitly allows <em>declarations</em> of global variables to be marked
780constant, even if the final definition of the global is not. This capability
781can be used to enable slightly better optimization of the program, but requires
782the language definition to guarantee that optimizations based on the
783'constantness' are valid for the translation units that do not include the
784definition.
785</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000786
787<p>As SSA values, global variables define pointer values that are in
788scope (i.e. they dominate) all basic blocks in the program. Global
789variables always define a pointer to their "content" type because they
790describe a region of memory, and all memory objects in LLVM are
791accessed through pointers.</p>
792
Chris Lattnercb3f64f2009-07-18 21:47:15 +0000793<p>A global variable may be declared to reside in a target-specific numbered
Christopher Lamb308121c2007-12-11 09:31:00 +0000794address space. For targets that support them, address spaces may affect how
795optimizations are performed and/or what target instructions are used to access
Christopher Lamb25f50762007-12-12 08:44:39 +0000796the variable. The default address space is zero. The address space qualifier
797must precede any other attributes.</p>
Christopher Lamb308121c2007-12-11 09:31:00 +0000798
Chris Lattner662c8722005-11-12 00:45:07 +0000799<p>LLVM allows an explicit section to be specified for globals. If the target
800supports it, it will emit globals to the section specified.</p>
801
Chris Lattner54611b42005-11-06 08:02:57 +0000802<p>An explicit alignment may be specified for a global. If not present, or if
803the alignment is set to zero, the alignment of the global is set by the target
804to whatever it feels convenient. If an explicit alignment is specified, the
805global is forced to have at least that much alignment. All alignments must be
806a power of 2.</p>
807
Christopher Lamb308121c2007-12-11 09:31:00 +0000808<p>For example, the following defines a global in a numbered address space with
809an initializer, section, and alignment:</p>
Chris Lattner5760c502007-01-14 00:27:09 +0000810
Bill Wendling3716c5d2007-05-29 09:04:49 +0000811<div class="doc_code">
Chris Lattner5760c502007-01-14 00:27:09 +0000812<pre>
Dan Gohmanaaa679b2009-01-11 00:40:00 +0000813@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner5760c502007-01-14 00:27:09 +0000814</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000815</div>
Chris Lattner5760c502007-01-14 00:27:09 +0000816
Chris Lattner6af02f32004-12-09 16:11:40 +0000817</div>
818
819
820<!-- ======================================================================= -->
821<div class="doc_subsection">
822 <a name="functionstructure">Functions</a>
823</div>
824
825<div class="doc_text">
826
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000827<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
828an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000829<a href="#visibility">visibility style</a>, an optional
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000830<a href="#callingconv">calling convention</a>, a return type, an optional
831<a href="#paramattrs">parameter attribute</a> for the return type, a function
832name, a (possibly empty) argument list (each with optional
Devang Patel7e9b05e2008-10-06 18:50:38 +0000833<a href="#paramattrs">parameter attributes</a>), optional
834<a href="#fnattrs">function attributes</a>, an optional section,
835an optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattnercbc4d2a2008-10-04 18:10:21 +0000836an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000837
838LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
839optional <a href="#linkage">linkage type</a>, an optional
840<a href="#visibility">visibility style</a>, an optional
841<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000842<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen71183b62007-12-10 03:18:06 +0000843name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksendc5cafb2007-12-10 03:30:21 +0000844<a href="#gc">garbage collector name</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000845
Chris Lattner67c37d12008-08-05 18:29:16 +0000846<p>A function definition contains a list of basic blocks, forming the CFG
847(Control Flow Graph) for
Chris Lattner6af02f32004-12-09 16:11:40 +0000848the function. Each basic block may optionally start with a label (giving the
849basic block a symbol table entry), contains a list of instructions, and ends
850with a <a href="#terminators">terminator</a> instruction (such as a branch or
851function return).</p>
852
Chris Lattnera59fb102007-06-08 16:52:14 +0000853<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattner6af02f32004-12-09 16:11:40 +0000854executed on entrance to the function, and it is not allowed to have predecessor
855basic blocks (i.e. there can not be any branches to the entry block of a
856function). Because the block can have no predecessors, it also cannot have any
857<a href="#i_phi">PHI nodes</a>.</p>
858
Chris Lattner662c8722005-11-12 00:45:07 +0000859<p>LLVM allows an explicit section to be specified for functions. If the target
860supports it, it will emit functions to the section specified.</p>
861
Chris Lattner54611b42005-11-06 08:02:57 +0000862<p>An explicit alignment may be specified for a function. If not present, or if
863the alignment is set to zero, the alignment of the function is set by the target
864to whatever it feels convenient. If an explicit alignment is specified, the
865function is forced to have at least that much alignment. All alignments must be
866a power of 2.</p>
867
Devang Patel02256232008-10-07 17:48:33 +0000868 <h5>Syntax:</h5>
869
870<div class="doc_code">
Chris Lattner0ae02092008-10-13 16:55:18 +0000871<tt>
872define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
873 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
874 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
875 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
876 [<a href="#gc">gc</a>] { ... }
877</tt>
Devang Patel02256232008-10-07 17:48:33 +0000878</div>
879
Chris Lattner6af02f32004-12-09 16:11:40 +0000880</div>
881
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000882
883<!-- ======================================================================= -->
884<div class="doc_subsection">
885 <a name="aliasstructure">Aliases</a>
886</div>
887<div class="doc_text">
888 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov25b2e822008-03-22 08:36:14 +0000889 function, global variable, another alias or bitcast of global value). Aliases
890 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000891 optional <a href="#visibility">visibility style</a>.</p>
892
893 <h5>Syntax:</h5>
894
Bill Wendling3716c5d2007-05-29 09:04:49 +0000895<div class="doc_code">
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000896<pre>
Duncan Sands7e99a942008-09-12 20:48:21 +0000897@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000898</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000899</div>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000900
901</div>
902
903
904
Chris Lattner91c15c42006-01-23 23:23:47 +0000905<!-- ======================================================================= -->
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000906<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
907<div class="doc_text">
908 <p>The return type and each parameter of a function type may have a set of
909 <i>parameter attributes</i> associated with them. Parameter attributes are
910 used to communicate additional information about the result or parameters of
Duncan Sandsad0ea2d2007-11-27 13:23:08 +0000911 a function. Parameter attributes are considered to be part of the function,
912 not of the function type, so functions with different parameter attributes
913 can have the same function type.</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000914
Reid Spencercf7ebf52007-01-15 18:27:39 +0000915 <p>Parameter attributes are simple keywords that follow the type specified. If
916 multiple parameter attributes are needed, they are space separated. For
Bill Wendling3716c5d2007-05-29 09:04:49 +0000917 example:</p>
918
919<div class="doc_code">
920<pre>
Nick Lewyckydac78d82009-02-15 23:06:14 +0000921declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattnerd2597d72008-10-04 18:33:34 +0000922declare i32 @atoi(i8 zeroext)
923declare signext i8 @returns_signed_char()
Bill Wendling3716c5d2007-05-29 09:04:49 +0000924</pre>
925</div>
926
Duncan Sandsad0ea2d2007-11-27 13:23:08 +0000927 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
928 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000929
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000930 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000931 <dl>
Reid Spencer314e1cb2007-07-19 23:13:04 +0000932 <dt><tt>zeroext</tt></dt>
Chris Lattnerd2597d72008-10-04 18:33:34 +0000933 <dd>This indicates to the code generator that the parameter or return value
934 should be zero-extended to a 32-bit value by the caller (for a parameter)
935 or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000936
Reid Spencer314e1cb2007-07-19 23:13:04 +0000937 <dt><tt>signext</tt></dt>
Chris Lattnerd2597d72008-10-04 18:33:34 +0000938 <dd>This indicates to the code generator that the parameter or return value
939 should be sign-extended to a 32-bit value by the caller (for a parameter)
940 or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000941
Anton Korobeynikove8166852007-01-28 14:30:45 +0000942 <dt><tt>inreg</tt></dt>
Dale Johannesenc50ada22008-09-25 20:47:45 +0000943 <dd>This indicates that this parameter or return value should be treated
944 in a special target-dependent fashion during while emitting code for a
945 function call or return (usually, by putting it in a register as opposed
Chris Lattnerd2597d72008-10-04 18:33:34 +0000946 to memory, though some targets use it to distinguish between two different
947 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000948
Duncan Sands2a1d8ba2008-10-06 08:14:18 +0000949 <dt><tt><a name="byval">byval</a></tt></dt>
Chris Lattner352ab9b2008-01-15 04:34:22 +0000950 <dd>This indicates that the pointer parameter should really be passed by
951 value to the function. The attribute implies that a hidden copy of the
952 pointee is made between the caller and the callee, so the callee is unable
Chris Lattner1ca5c642008-08-05 18:21:08 +0000953 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner352ab9b2008-01-15 04:34:22 +0000954 pointer arguments. It is generally used to pass structs and arrays by
Duncan Sands2a1d8ba2008-10-06 08:14:18 +0000955 value, but is also valid on pointers to scalars. The copy is considered to
956 belong to the caller not the callee (for example,
957 <tt><a href="#readonly">readonly</a></tt> functions should not write to
Devang Patel7e9b05e2008-10-06 18:50:38 +0000958 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattner08aa9062009-02-05 05:42:28 +0000959 values. The byval attribute also supports specifying an alignment with the
960 align attribute. This has a target-specific effect on the code generator
961 that usually indicates a desired alignment for the synthesized stack
962 slot.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000963
Anton Korobeynikove8166852007-01-28 14:30:45 +0000964 <dt><tt>sret</tt></dt>
Duncan Sandsfa4b6732008-02-18 04:19:38 +0000965 <dd>This indicates that the pointer parameter specifies the address of a
966 structure that is the return value of the function in the source program.
Chris Lattnerd2597d72008-10-04 18:33:34 +0000967 This pointer must be guaranteed by the caller to be valid: loads and stores
968 to the structure may be assumed by the callee to not to trap. This may only
Devang Patel7e9b05e2008-10-06 18:50:38 +0000969 be applied to the first parameter. This is not a valid attribute for
970 return values. </dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000971
Zhou Sheng2444a9a2007-06-05 05:28:26 +0000972 <dt><tt>noalias</tt></dt>
Nick Lewyckyf5ffcbc2008-11-24 03:41:24 +0000973 <dd>This indicates that the pointer does not alias any global or any other
974 parameter. The caller is responsible for ensuring that this is the
Nick Lewyckyd59572c2008-11-24 05:00:44 +0000975 case. On a function return value, <tt>noalias</tt> additionally indicates
976 that the pointer does not alias any other pointers visible to the
Nick Lewycky2abb1082008-12-19 06:39:12 +0000977 caller. For further details, please see the discussion of the NoAlias
978 response in
979 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
980 analysis</a>.</dd>
981
982 <dt><tt>nocapture</tt></dt>
983 <dd>This indicates that the callee does not make any copies of the pointer
984 that outlive the callee itself. This is not a valid attribute for return
985 values.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000986
Duncan Sands27e91592007-07-27 19:57:41 +0000987 <dt><tt>nest</tt></dt>
Duncan Sands825bde42008-07-08 09:27:25 +0000988 <dd>This indicates that the pointer parameter can be excised using the
Devang Patel7e9b05e2008-10-06 18:50:38 +0000989 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
990 attribute for return values.</dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000991 </dl>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000992
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000993</div>
994
995<!-- ======================================================================= -->
Chris Lattner91c15c42006-01-23 23:23:47 +0000996<div class="doc_subsection">
Gordon Henriksen71183b62007-12-10 03:18:06 +0000997 <a name="gc">Garbage Collector Names</a>
998</div>
999
1000<div class="doc_text">
1001<p>Each function may specify a garbage collector name, which is simply a
1002string.</p>
1003
1004<div class="doc_code"><pre
1005>define void @f() gc "name" { ...</pre></div>
1006
1007<p>The compiler declares the supported values of <i>name</i>. Specifying a
1008collector which will cause the compiler to alter its output in order to support
1009the named garbage collection algorithm.</p>
1010</div>
1011
1012<!-- ======================================================================= -->
1013<div class="doc_subsection">
Devang Patel9eb525d2008-09-26 23:51:19 +00001014 <a name="fnattrs">Function Attributes</a>
Devang Patelcaacdba2008-09-04 23:05:13 +00001015</div>
1016
1017<div class="doc_text">
Devang Patel9eb525d2008-09-26 23:51:19 +00001018
1019<p>Function attributes are set to communicate additional information about
1020 a function. Function attributes are considered to be part of the function,
1021 not of the function type, so functions with different parameter attributes
1022 can have the same function type.</p>
1023
1024 <p>Function attributes are simple keywords that follow the type specified. If
1025 multiple attributes are needed, they are space separated. For
1026 example:</p>
Devang Patelcaacdba2008-09-04 23:05:13 +00001027
1028<div class="doc_code">
Bill Wendlingb175fa42008-09-07 10:26:33 +00001029<pre>
Devang Patel9eb525d2008-09-26 23:51:19 +00001030define void @f() noinline { ... }
1031define void @f() alwaysinline { ... }
1032define void @f() alwaysinline optsize { ... }
1033define void @f() optsize
Bill Wendlingb175fa42008-09-07 10:26:33 +00001034</pre>
Devang Patelcaacdba2008-09-04 23:05:13 +00001035</div>
1036
Bill Wendlingb175fa42008-09-07 10:26:33 +00001037<dl>
Devang Patel9eb525d2008-09-26 23:51:19 +00001038<dt><tt>alwaysinline</tt></dt>
Chris Lattnerfbf60a42008-10-04 18:23:17 +00001039<dd>This attribute indicates that the inliner should attempt to inline this
1040function into callers whenever possible, ignoring any active inlining size
1041threshold for this caller.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001042
Devang Patel9eb525d2008-09-26 23:51:19 +00001043<dt><tt>noinline</tt></dt>
Chris Lattnerfbf60a42008-10-04 18:23:17 +00001044<dd>This attribute indicates that the inliner should never inline this function
Chris Lattner0625c282008-10-05 17:14:59 +00001045in any situation. This attribute may not be used together with the
Chris Lattnerfbf60a42008-10-04 18:23:17 +00001046<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001047
Devang Patel9eb525d2008-09-26 23:51:19 +00001048<dt><tt>optsize</tt></dt>
Devang Patele9743902008-09-29 18:34:44 +00001049<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattnerfbf60a42008-10-04 18:23:17 +00001050make choices that keep the code size of this function low, and otherwise do
1051optimizations specifically to reduce code size.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001052
Devang Patel9eb525d2008-09-26 23:51:19 +00001053<dt><tt>noreturn</tt></dt>
Chris Lattnerfbf60a42008-10-04 18:23:17 +00001054<dd>This function attribute indicates that the function never returns normally.
1055This produces undefined behavior at runtime if the function ever does
1056dynamically return.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001057
1058<dt><tt>nounwind</tt></dt>
Chris Lattnerfbf60a42008-10-04 18:23:17 +00001059<dd>This function attribute indicates that the function never returns with an
1060unwind or exceptional control flow. If the function does unwind, its runtime
1061behavior is undefined.</dd>
1062
1063<dt><tt>readnone</tt></dt>
Duncan Sands1efabaa2009-05-06 06:49:50 +00001064<dd>This attribute indicates that the function computes its result (or decides to
1065unwind an exception) based strictly on its arguments, without dereferencing any
Duncan Sands2a1d8ba2008-10-06 08:14:18 +00001066pointer arguments or otherwise accessing any mutable state (e.g. memory, control
1067registers, etc) visible to caller functions. It does not write through any
1068pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
Duncan Sands1efabaa2009-05-06 06:49:50 +00001069never changes any state visible to callers. This means that it cannot unwind
1070exceptions by calling the <tt>C++</tt> exception throwing methods, but could
1071use the <tt>unwind</tt> instruction.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001072
Duncan Sands2a1d8ba2008-10-06 08:14:18 +00001073<dt><tt><a name="readonly">readonly</a></tt></dt>
1074<dd>This attribute indicates that the function does not write through any
1075pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
1076or otherwise modify any state (e.g. memory, control registers, etc) visible to
1077caller functions. It may dereference pointer arguments and read state that may
Duncan Sands1efabaa2009-05-06 06:49:50 +00001078be set in the caller. A readonly function always returns the same value (or
1079unwinds an exception identically) when called with the same set of arguments
1080and global state. It cannot unwind an exception by calling the <tt>C++</tt>
1081exception throwing methods, but may use the <tt>unwind</tt> instruction.</dd>
Bill Wendlinga8130172008-11-13 01:02:51 +00001082
1083<dt><tt><a name="ssp">ssp</a></tt></dt>
Bill Wendling6e41add2008-11-26 19:19:05 +00001084<dd>This attribute indicates that the function should emit a stack smashing
Bill Wendlinga8130172008-11-13 01:02:51 +00001085protector. It is in the form of a "canary"&mdash;a random value placed on the
1086stack before the local variables that's checked upon return from the function to
1087see if it has been overwritten. A heuristic is used to determine if a function
Bill Wendling6e41add2008-11-26 19:19:05 +00001088needs stack protectors or not.
Bill Wendlinga8130172008-11-13 01:02:51 +00001089
Devang Patel310fd4a2009-06-12 19:45:19 +00001090<br><br>If a function that has an <tt>ssp</tt> attribute is inlined into a function
Bill Wendling0f5541e2008-11-26 19:07:40 +00001091that doesn't have an <tt>ssp</tt> attribute, then the resulting function will
Devang Patel310fd4a2009-06-12 19:45:19 +00001092have an <tt>ssp</tt> attribute.</dd>
Bill Wendling0f5541e2008-11-26 19:07:40 +00001093
1094<dt><tt>sspreq</tt></dt>
Bill Wendling6e41add2008-11-26 19:19:05 +00001095<dd>This attribute indicates that the function should <em>always</em> emit a
Bill Wendlinga8130172008-11-13 01:02:51 +00001096stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt>
Bill Wendling6e41add2008-11-26 19:19:05 +00001097function attribute.
Bill Wendling0f5541e2008-11-26 19:07:40 +00001098
Devang Patel310fd4a2009-06-12 19:45:19 +00001099If a function that has an <tt>sspreq</tt> attribute is inlined into a
Bill Wendling0f5541e2008-11-26 19:07:40 +00001100function that doesn't have an <tt>sspreq</tt> attribute or which has
1101an <tt>ssp</tt> attribute, then the resulting function will have
Devang Patel310fd4a2009-06-12 19:45:19 +00001102an <tt>sspreq</tt> attribute.</dd>
1103
1104<dt><tt>noredzone</tt></dt>
Dan Gohman1b1b7e12009-06-15 17:37:09 +00001105<dd>This attribute indicates that the code generator should not use a
Dan Gohman405cf6c2009-06-15 21:18:01 +00001106red zone, even if the target-specific ABI normally permits it.
Dan Gohman1b1b7e12009-06-15 17:37:09 +00001107</dd>
Devang Patel310fd4a2009-06-12 19:45:19 +00001108
1109<dt><tt>noimplicitfloat</tt></dt>
1110<dd>This attributes disables implicit floating point instructions.</dd>
1111
Anton Korobeynikovc8ce7b082009-07-17 18:07:26 +00001112<dt><tt>naked</tt></dt>
Chris Lattnerfd8dea42009-07-17 21:14:28 +00001113<dd>This attribute disables prologue / epilogue emission for the function.
1114This can have very system-specific consequences.</dd>
Anton Korobeynikovc8ce7b082009-07-17 18:07:26 +00001115
Bill Wendlingb175fa42008-09-07 10:26:33 +00001116</dl>
1117
Devang Patelcaacdba2008-09-04 23:05:13 +00001118</div>
1119
1120<!-- ======================================================================= -->
1121<div class="doc_subsection">
Chris Lattner93564892006-04-08 04:40:53 +00001122 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner91c15c42006-01-23 23:23:47 +00001123</div>
1124
1125<div class="doc_text">
1126<p>
1127Modules may contain "module-level inline asm" blocks, which corresponds to the
1128GCC "file scope inline asm" blocks. These blocks are internally concatenated by
1129LLVM and treated as a single unit, but may be separated in the .ll file if
1130desired. The syntax is very simple:
1131</p>
1132
Bill Wendling3716c5d2007-05-29 09:04:49 +00001133<div class="doc_code">
1134<pre>
1135module asm "inline asm code goes here"
1136module asm "more can go here"
1137</pre>
1138</div>
Chris Lattner91c15c42006-01-23 23:23:47 +00001139
1140<p>The strings can contain any character by escaping non-printable characters.
1141 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1142 for the number.
1143</p>
1144
1145<p>
1146 The inline asm code is simply printed to the machine code .s file when
1147 assembly code is generated.
1148</p>
1149</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001150
Reid Spencer50c723a2007-02-19 23:54:10 +00001151<!-- ======================================================================= -->
1152<div class="doc_subsection">
1153 <a name="datalayout">Data Layout</a>
1154</div>
1155
1156<div class="doc_text">
1157<p>A module may specify a target specific data layout string that specifies how
Reid Spencer7972c472007-04-11 23:49:50 +00001158data is to be laid out in memory. The syntax for the data layout is simply:</p>
1159<pre> target datalayout = "<i>layout specification</i>"</pre>
1160<p>The <i>layout specification</i> consists of a list of specifications
1161separated by the minus sign character ('-'). Each specification starts with a
1162letter and may include other information after the letter to define some
1163aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencer50c723a2007-02-19 23:54:10 +00001164<dl>
1165 <dt><tt>E</tt></dt>
1166 <dd>Specifies that the target lays out data in big-endian form. That is, the
1167 bits with the most significance have the lowest address location.</dd>
1168 <dt><tt>e</tt></dt>
Chris Lattner67c37d12008-08-05 18:29:16 +00001169 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencer50c723a2007-02-19 23:54:10 +00001170 the bits with the least significance have the lowest address location.</dd>
1171 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1172 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1173 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1174 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1175 too.</dd>
1176 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1177 <dd>This specifies the alignment for an integer type of a given bit
1178 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1179 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1180 <dd>This specifies the alignment for a vector type of a given bit
1181 <i>size</i>.</dd>
1182 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1183 <dd>This specifies the alignment for a floating point type of a given bit
1184 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1185 (double).</dd>
1186 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1187 <dd>This specifies the alignment for an aggregate type of a given bit
1188 <i>size</i>.</dd>
Daniel Dunbar7921a592009-06-08 22:17:53 +00001189 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1190 <dd>This specifies the alignment for a stack object of a given bit
1191 <i>size</i>.</dd>
Reid Spencer50c723a2007-02-19 23:54:10 +00001192</dl>
1193<p>When constructing the data layout for a given target, LLVM starts with a
1194default set of specifications which are then (possibly) overriden by the
1195specifications in the <tt>datalayout</tt> keyword. The default specifications
1196are given in this list:</p>
1197<ul>
1198 <li><tt>E</tt> - big endian</li>
1199 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1200 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1201 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1202 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1203 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner67c37d12008-08-05 18:29:16 +00001204 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencer50c723a2007-02-19 23:54:10 +00001205 alignment of 64-bits</li>
1206 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1207 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1208 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1209 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1210 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbar7921a592009-06-08 22:17:53 +00001211 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001212</ul>
Chris Lattner1ca5c642008-08-05 18:21:08 +00001213<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohmanef9462f2008-10-14 16:51:45 +00001214following rules:</p>
Reid Spencer50c723a2007-02-19 23:54:10 +00001215<ol>
1216 <li>If the type sought is an exact match for one of the specifications, that
1217 specification is used.</li>
1218 <li>If no match is found, and the type sought is an integer type, then the
1219 smallest integer type that is larger than the bitwidth of the sought type is
1220 used. If none of the specifications are larger than the bitwidth then the the
1221 largest integer type is used. For example, given the default specifications
1222 above, the i7 type will use the alignment of i8 (next largest) while both
1223 i65 and i256 will use the alignment of i64 (largest specified).</li>
1224 <li>If no match is found, and the type sought is a vector type, then the
1225 largest vector type that is smaller than the sought vector type will be used
Dan Gohmanef9462f2008-10-14 16:51:45 +00001226 as a fall back. This happens because &lt;128 x double&gt; can be implemented
1227 in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001228</ol>
1229</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001230
Chris Lattner2f7c9632001-06-06 20:29:01 +00001231<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001232<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1233<!-- *********************************************************************** -->
Chris Lattner6af02f32004-12-09 16:11:40 +00001234
Misha Brukman76307852003-11-08 01:05:38 +00001235<div class="doc_text">
Chris Lattner6af02f32004-12-09 16:11:40 +00001236
Misha Brukman76307852003-11-08 01:05:38 +00001237<p>The LLVM type system is one of the most important features of the
Chris Lattner48b383b02003-11-25 01:02:51 +00001238intermediate representation. Being typed enables a number of
Chris Lattner67c37d12008-08-05 18:29:16 +00001239optimizations to be performed on the intermediate representation directly,
1240without having to do
Chris Lattner48b383b02003-11-25 01:02:51 +00001241extra analyses on the side before the transformation. A strong type
1242system makes it easier to read the generated code and enables novel
1243analyses and transformations that are not feasible to perform on normal
1244three address code representations.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +00001245
1246</div>
1247
Chris Lattner2f7c9632001-06-06 20:29:01 +00001248<!-- ======================================================================= -->
Chris Lattner7824d182008-01-04 04:32:38 +00001249<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner48b383b02003-11-25 01:02:51 +00001250Classifications</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001251<div class="doc_text">
Chris Lattner7824d182008-01-04 04:32:38 +00001252<p>The types fall into a few useful
Chris Lattner48b383b02003-11-25 01:02:51 +00001253classifications:</p>
Misha Brukmanc501f552004-03-01 17:47:27 +00001254
1255<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00001256 <tbody>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001257 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001258 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001259 <td><a href="#t_integer">integer</a></td>
Reid Spencer138249b2007-05-16 18:44:01 +00001260 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001261 </tr>
1262 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001263 <td><a href="#t_floating">floating point</a></td>
1264 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001265 </tr>
1266 <tr>
1267 <td><a name="t_firstclass">first class</a></td>
Chris Lattner7824d182008-01-04 04:32:38 +00001268 <td><a href="#t_integer">integer</a>,
1269 <a href="#t_floating">floating point</a>,
1270 <a href="#t_pointer">pointer</a>,
Dan Gohman08783a882008-06-18 18:42:13 +00001271 <a href="#t_vector">vector</a>,
Dan Gohmanb9d66602008-05-12 23:51:09 +00001272 <a href="#t_struct">structure</a>,
1273 <a href="#t_array">array</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001274 <a href="#t_label">label</a>,
1275 <a href="#t_metadata">metadata</a>.
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001276 </td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001277 </tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001278 <tr>
1279 <td><a href="#t_primitive">primitive</a></td>
1280 <td><a href="#t_label">label</a>,
1281 <a href="#t_void">void</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001282 <a href="#t_floating">floating point</a>,
1283 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner7824d182008-01-04 04:32:38 +00001284 </tr>
1285 <tr>
1286 <td><a href="#t_derived">derived</a></td>
1287 <td><a href="#t_integer">integer</a>,
1288 <a href="#t_array">array</a>,
1289 <a href="#t_function">function</a>,
1290 <a href="#t_pointer">pointer</a>,
1291 <a href="#t_struct">structure</a>,
1292 <a href="#t_pstruct">packed structure</a>,
1293 <a href="#t_vector">vector</a>,
1294 <a href="#t_opaque">opaque</a>.
Dan Gohman93bf60d2008-10-14 16:32:04 +00001295 </td>
Chris Lattner7824d182008-01-04 04:32:38 +00001296 </tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001297 </tbody>
Misha Brukman76307852003-11-08 01:05:38 +00001298</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001299
Chris Lattner48b383b02003-11-25 01:02:51 +00001300<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1301most important. Values of these types are the only ones which can be
1302produced by instructions, passed as arguments, or used as operands to
Dan Gohman34d1c0d2008-05-23 21:53:15 +00001303instructions.</p>
Misha Brukman76307852003-11-08 01:05:38 +00001304</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001305
Chris Lattner2f7c9632001-06-06 20:29:01 +00001306<!-- ======================================================================= -->
Chris Lattner7824d182008-01-04 04:32:38 +00001307<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner43542b32008-01-04 04:34:14 +00001308
Chris Lattner7824d182008-01-04 04:32:38 +00001309<div class="doc_text">
1310<p>The primitive types are the fundamental building blocks of the LLVM
1311system.</p>
1312
Chris Lattner43542b32008-01-04 04:34:14 +00001313</div>
1314
Chris Lattner7824d182008-01-04 04:32:38 +00001315<!-- _______________________________________________________________________ -->
1316<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1317
1318<div class="doc_text">
1319 <table>
1320 <tbody>
1321 <tr><th>Type</th><th>Description</th></tr>
1322 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1323 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1324 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1325 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1326 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1327 </tbody>
1328 </table>
1329</div>
1330
1331<!-- _______________________________________________________________________ -->
1332<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1333
1334<div class="doc_text">
1335<h5>Overview:</h5>
1336<p>The void type does not represent any value and has no size.</p>
1337
1338<h5>Syntax:</h5>
1339
1340<pre>
1341 void
1342</pre>
1343</div>
1344
1345<!-- _______________________________________________________________________ -->
1346<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1347
1348<div class="doc_text">
1349<h5>Overview:</h5>
1350<p>The label type represents code labels.</p>
1351
1352<h5>Syntax:</h5>
1353
1354<pre>
1355 label
1356</pre>
1357</div>
1358
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001359<!-- _______________________________________________________________________ -->
1360<div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
1361
1362<div class="doc_text">
1363<h5>Overview:</h5>
1364<p>The metadata type represents embedded metadata. The only derived type that
1365may contain metadata is <tt>metadata*</tt> or a function type that returns or
1366takes metadata typed parameters, but not pointer to metadata types.</p>
1367
1368<h5>Syntax:</h5>
1369
1370<pre>
1371 metadata
1372</pre>
1373</div>
1374
Chris Lattner7824d182008-01-04 04:32:38 +00001375
1376<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001377<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001378
Misha Brukman76307852003-11-08 01:05:38 +00001379<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001380
Chris Lattner48b383b02003-11-25 01:02:51 +00001381<p>The real power in LLVM comes from the derived types in the system.
1382This is what allows a programmer to represent arrays, functions,
1383pointers, and other useful types. Note that these derived types may be
1384recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001385
Misha Brukman76307852003-11-08 01:05:38 +00001386</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001387
Chris Lattner2f7c9632001-06-06 20:29:01 +00001388<!-- _______________________________________________________________________ -->
Reid Spencer138249b2007-05-16 18:44:01 +00001389<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1390
1391<div class="doc_text">
1392
1393<h5>Overview:</h5>
1394<p>The integer type is a very simple derived type that simply specifies an
1395arbitrary bit width for the integer type desired. Any bit width from 1 bit to
13962^23-1 (about 8 million) can be specified.</p>
1397
1398<h5>Syntax:</h5>
1399
1400<pre>
1401 iN
1402</pre>
1403
1404<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1405value.</p>
1406
1407<h5>Examples:</h5>
1408<table class="layout">
Nick Lewyckyaab930a2009-05-24 02:46:06 +00001409 <tr class="layout">
1410 <td class="left"><tt>i1</tt></td>
1411 <td class="left">a single-bit integer.</td>
Reid Spencer138249b2007-05-16 18:44:01 +00001412 </tr>
Nick Lewyckyaab930a2009-05-24 02:46:06 +00001413 <tr class="layout">
1414 <td class="left"><tt>i32</tt></td>
1415 <td class="left">a 32-bit integer.</td>
1416 </tr>
1417 <tr class="layout">
1418 <td class="left"><tt>i1942652</tt></td>
1419 <td class="left">a really big integer of over 1 million bits.</td>
1420 </tr>
Reid Spencer138249b2007-05-16 18:44:01 +00001421</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001422
1423<p>Note that the code generator does not yet support large integer types
1424to be used as function return types. The specific limit on how large a
1425return type the code generator can currently handle is target-dependent;
1426currently it's often 64 bits for 32-bit targets and 128 bits for 64-bit
1427targets.</p>
1428
Bill Wendling3716c5d2007-05-29 09:04:49 +00001429</div>
Reid Spencer138249b2007-05-16 18:44:01 +00001430
1431<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001432<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001433
Misha Brukman76307852003-11-08 01:05:38 +00001434<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001435
Chris Lattner2f7c9632001-06-06 20:29:01 +00001436<h5>Overview:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +00001437
Misha Brukman76307852003-11-08 01:05:38 +00001438<p>The array type is a very simple derived type that arranges elements
Chris Lattner48b383b02003-11-25 01:02:51 +00001439sequentially in memory. The array type requires a size (number of
1440elements) and an underlying data type.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001441
Chris Lattner590645f2002-04-14 06:13:44 +00001442<h5>Syntax:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +00001443
1444<pre>
1445 [&lt;# elements&gt; x &lt;elementtype&gt;]
1446</pre>
1447
John Criswell02fdc6f2005-05-12 16:52:32 +00001448<p>The number of elements is a constant integer value; elementtype may
Chris Lattner48b383b02003-11-25 01:02:51 +00001449be any type with a size.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001450
Chris Lattner590645f2002-04-14 06:13:44 +00001451<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001452<table class="layout">
1453 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001454 <td class="left"><tt>[40 x i32]</tt></td>
1455 <td class="left">Array of 40 32-bit integer values.</td>
1456 </tr>
1457 <tr class="layout">
1458 <td class="left"><tt>[41 x i32]</tt></td>
1459 <td class="left">Array of 41 32-bit integer values.</td>
1460 </tr>
1461 <tr class="layout">
1462 <td class="left"><tt>[4 x i8]</tt></td>
1463 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001464 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001465</table>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001466<p>Here are some examples of multidimensional arrays:</p>
1467<table class="layout">
1468 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001469 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1470 <td class="left">3x4 array of 32-bit integer values.</td>
1471 </tr>
1472 <tr class="layout">
1473 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1474 <td class="left">12x10 array of single precision floating point values.</td>
1475 </tr>
1476 <tr class="layout">
1477 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1478 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001479 </tr>
1480</table>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001481
John Criswell4c0cf7f2005-10-24 16:17:18 +00001482<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1483length array. Normally, accesses past the end of an array are undefined in
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001484LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1485As a special case, however, zero length arrays are recognized to be variable
1486length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001487type "{ i32, [0 x float]}", for example.</p>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001488
Dan Gohman142ccc02009-01-24 15:58:40 +00001489<p>Note that the code generator does not yet support large aggregate types
1490to be used as function return types. The specific limit on how large an
1491aggregate return type the code generator can currently handle is
1492target-dependent, and also dependent on the aggregate element types.</p>
1493
Misha Brukman76307852003-11-08 01:05:38 +00001494</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001495
Chris Lattner2f7c9632001-06-06 20:29:01 +00001496<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001497<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001498<div class="doc_text">
Chris Lattnerda508ac2008-04-23 04:59:35 +00001499
Chris Lattner2f7c9632001-06-06 20:29:01 +00001500<h5>Overview:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001501
Chris Lattner48b383b02003-11-25 01:02:51 +00001502<p>The function type can be thought of as a function signature. It
Devang Patele3dfc1c2008-03-24 05:35:41 +00001503consists of a return type and a list of formal parameter types. The
Chris Lattnerda508ac2008-04-23 04:59:35 +00001504return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel9c1f8b12008-03-24 20:52:42 +00001505If the return type is a struct type then all struct elements must be of first
Chris Lattnerda508ac2008-04-23 04:59:35 +00001506class types, and the struct must have at least one element.</p>
Devang Pateld6cff512008-03-10 20:49:15 +00001507
Chris Lattner2f7c9632001-06-06 20:29:01 +00001508<h5>Syntax:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001509
1510<pre>
1511 &lt;returntype list&gt; (&lt;parameter list&gt;)
1512</pre>
1513
John Criswell4c0cf7f2005-10-24 16:17:18 +00001514<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukman20f9a622004-08-12 20:16:08 +00001515specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner5ed60612003-09-03 00:41:47 +00001516which indicates that the function takes a variable number of arguments.
1517Variable argument functions can access their arguments with the <a
Devang Pateld6cff512008-03-10 20:49:15 +00001518 href="#int_varargs">variable argument handling intrinsic</a> functions.
1519'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1520<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001521
Chris Lattner2f7c9632001-06-06 20:29:01 +00001522<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001523<table class="layout">
1524 <tr class="layout">
Reid Spencer58c08712006-12-31 07:18:34 +00001525 <td class="left"><tt>i32 (i32)</tt></td>
1526 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001527 </td>
Reid Spencer58c08712006-12-31 07:18:34 +00001528 </tr><tr class="layout">
Reid Spencer314e1cb2007-07-19 23:13:04 +00001529 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencer655dcc62006-12-31 07:20:23 +00001530 </tt></td>
Reid Spencer58c08712006-12-31 07:18:34 +00001531 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1532 an <tt>i16</tt> that should be sign extended and a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001533 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer58c08712006-12-31 07:18:34 +00001534 <tt>float</tt>.
1535 </td>
1536 </tr><tr class="layout">
1537 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1538 <td class="left">A vararg function that takes at least one
Reid Spencer3e628eb92007-01-04 16:43:23 +00001539 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer58c08712006-12-31 07:18:34 +00001540 which returns an integer. This is the signature for <tt>printf</tt> in
1541 LLVM.
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001542 </td>
Devang Patele3dfc1c2008-03-24 05:35:41 +00001543 </tr><tr class="layout">
1544 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Misha Brukmanc9813bd2008-11-27 06:41:20 +00001545 <td class="left">A function taking an <tt>i32</tt>, returning two
1546 <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patele3dfc1c2008-03-24 05:35:41 +00001547 </td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001548 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001549</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001550
Misha Brukman76307852003-11-08 01:05:38 +00001551</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001552<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001553<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001554<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00001555<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001556<p>The structure type is used to represent a collection of data members
1557together in memory. The packing of the field types is defined to match
1558the ABI of the underlying processor. The elements of a structure may
1559be any type that has a size.</p>
1560<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1561and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1562field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1563instruction.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001564<h5>Syntax:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001565<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001566<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001567<table class="layout">
1568 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00001569 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1570 <td class="left">A triple of three <tt>i32</tt> values</td>
1571 </tr><tr class="layout">
1572 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1573 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1574 second element is a <a href="#t_pointer">pointer</a> to a
1575 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1576 an <tt>i32</tt>.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001577 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001578</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001579
1580<p>Note that the code generator does not yet support large aggregate types
1581to be used as function return types. The specific limit on how large an
1582aggregate return type the code generator can currently handle is
1583target-dependent, and also dependent on the aggregate element types.</p>
1584
Misha Brukman76307852003-11-08 01:05:38 +00001585</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001586
Chris Lattner2f7c9632001-06-06 20:29:01 +00001587<!-- _______________________________________________________________________ -->
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001588<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1589</div>
1590<div class="doc_text">
1591<h5>Overview:</h5>
1592<p>The packed structure type is used to represent a collection of data members
1593together in memory. There is no padding between fields. Further, the alignment
1594of a packed structure is 1 byte. The elements of a packed structure may
1595be any type that has a size.</p>
1596<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1597and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1598field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1599instruction.</p>
1600<h5>Syntax:</h5>
1601<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1602<h5>Examples:</h5>
1603<table class="layout">
1604 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00001605 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1606 <td class="left">A triple of three <tt>i32</tt> values</td>
1607 </tr><tr class="layout">
Bill Wendlingb175fa42008-09-07 10:26:33 +00001608 <td class="left">
1609<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen5819f182007-04-22 01:17:39 +00001610 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1611 second element is a <a href="#t_pointer">pointer</a> to a
1612 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1613 an <tt>i32</tt>.</td>
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001614 </tr>
1615</table>
1616</div>
1617
1618<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001619<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001620<div class="doc_text">
Chris Lattner590645f2002-04-14 06:13:44 +00001621<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001622<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb308121c2007-12-11 09:31:00 +00001623reference to another object, which must live in memory. Pointer types may have
1624an optional address space attribute defining the target-specific numbered
1625address space where the pointed-to object resides. The default address space is
1626zero.</p>
Chris Lattner4a67c912009-02-08 19:53:29 +00001627
1628<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does
Chris Lattnerd1d4cff2009-02-08 22:21:28 +00001629it permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner4a67c912009-02-08 19:53:29 +00001630
Chris Lattner590645f2002-04-14 06:13:44 +00001631<h5>Syntax:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001632<pre> &lt;type&gt; *<br></pre>
Chris Lattner590645f2002-04-14 06:13:44 +00001633<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001634<table class="layout">
1635 <tr class="layout">
Dan Gohman623806e2009-01-04 23:44:43 +00001636 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00001637 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1638 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1639 </tr>
1640 <tr class="layout">
1641 <td class="left"><tt>i32 (i32 *) *</tt></td>
1642 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001643 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner747359f2007-12-19 05:04:11 +00001644 <tt>i32</tt>.</td>
1645 </tr>
1646 <tr class="layout">
1647 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1648 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1649 that resides in address space #5.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001650 </tr>
Misha Brukman76307852003-11-08 01:05:38 +00001651</table>
Misha Brukman76307852003-11-08 01:05:38 +00001652</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001653
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001654<!-- _______________________________________________________________________ -->
Reid Spencer404a3252007-02-15 03:07:05 +00001655<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001656<div class="doc_text">
Chris Lattner37b6b092005-04-25 17:34:15 +00001657
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001658<h5>Overview:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001659
Reid Spencer404a3252007-02-15 03:07:05 +00001660<p>A vector type is a simple derived type that represents a vector
1661of elements. Vector types are used when multiple primitive data
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001662are operated in parallel using a single instruction (SIMD).
Reid Spencer404a3252007-02-15 03:07:05 +00001663A vector type requires a size (number of
Chris Lattner330ce692005-11-10 01:44:22 +00001664elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer404a3252007-02-15 03:07:05 +00001665of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001666considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001667
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001668<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001669
1670<pre>
1671 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1672</pre>
1673
John Criswell4a3327e2005-05-13 22:25:59 +00001674<p>The number of elements is a constant integer value; elementtype may
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001675be any integer or floating point type.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001676
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001677<h5>Examples:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001678
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001679<table class="layout">
1680 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001681 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1682 <td class="left">Vector of 4 32-bit integer values.</td>
1683 </tr>
1684 <tr class="layout">
1685 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1686 <td class="left">Vector of 8 32-bit floating-point values.</td>
1687 </tr>
1688 <tr class="layout">
1689 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1690 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001691 </tr>
1692</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001693
1694<p>Note that the code generator does not yet support large vector types
1695to be used as function return types. The specific limit on how large a
1696vector return type codegen can currently handle is target-dependent;
1697currently it's often a few times longer than a hardware vector register.</p>
1698
Misha Brukman76307852003-11-08 01:05:38 +00001699</div>
1700
Chris Lattner37b6b092005-04-25 17:34:15 +00001701<!-- _______________________________________________________________________ -->
1702<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1703<div class="doc_text">
1704
1705<h5>Overview:</h5>
1706
1707<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksena699c4d2007-10-14 00:34:53 +00001708corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner37b6b092005-04-25 17:34:15 +00001709In LLVM, opaque types can eventually be resolved to any type (not just a
1710structure type).</p>
1711
1712<h5>Syntax:</h5>
1713
1714<pre>
1715 opaque
1716</pre>
1717
1718<h5>Examples:</h5>
1719
1720<table class="layout">
1721 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001722 <td class="left"><tt>opaque</tt></td>
1723 <td class="left">An opaque type.</td>
Chris Lattner37b6b092005-04-25 17:34:15 +00001724 </tr>
1725</table>
1726</div>
1727
Chris Lattnercf7a5842009-02-02 07:32:36 +00001728<!-- ======================================================================= -->
1729<div class="doc_subsection">
1730 <a name="t_uprefs">Type Up-references</a>
1731</div>
1732
1733<div class="doc_text">
1734<h5>Overview:</h5>
1735<p>
1736An "up reference" allows you to refer to a lexically enclosing type without
1737requiring it to have a name. For instance, a structure declaration may contain a
1738pointer to any of the types it is lexically a member of. Example of up
1739references (with their equivalent as named type declarations) include:</p>
1740
1741<pre>
Chris Lattnerbf1d5452009-02-09 10:00:56 +00001742 { \2 * } %x = type { %x* }
Chris Lattnercf7a5842009-02-02 07:32:36 +00001743 { \2 }* %y = type { %y }*
1744 \1* %z = type %z*
1745</pre>
1746
1747<p>
1748An up reference is needed by the asmprinter for printing out cyclic types when
1749there is no declared name for a type in the cycle. Because the asmprinter does
1750not want to print out an infinite type string, it needs a syntax to handle
1751recursive types that have no names (all names are optional in llvm IR).
1752</p>
1753
1754<h5>Syntax:</h5>
1755<pre>
1756 \&lt;level&gt;
1757</pre>
1758
1759<p>
1760The level is the count of the lexical type that is being referred to.
1761</p>
1762
1763<h5>Examples:</h5>
1764
1765<table class="layout">
1766 <tr class="layout">
1767 <td class="left"><tt>\1*</tt></td>
1768 <td class="left">Self-referential pointer.</td>
1769 </tr>
1770 <tr class="layout">
1771 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1772 <td class="left">Recursive structure where the upref refers to the out-most
1773 structure.</td>
1774 </tr>
1775</table>
1776</div>
1777
Chris Lattner37b6b092005-04-25 17:34:15 +00001778
Chris Lattner74d3f822004-12-09 17:30:23 +00001779<!-- *********************************************************************** -->
1780<div class="doc_section"> <a name="constants">Constants</a> </div>
1781<!-- *********************************************************************** -->
1782
1783<div class="doc_text">
1784
1785<p>LLVM has several different basic types of constants. This section describes
1786them all and their syntax.</p>
1787
1788</div>
1789
1790<!-- ======================================================================= -->
Reid Spencer8f08d802004-12-09 18:02:53 +00001791<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001792
1793<div class="doc_text">
1794
1795<dl>
1796 <dt><b>Boolean constants</b></dt>
1797
1798 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencer36a15422007-01-12 03:35:51 +00001799 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattner74d3f822004-12-09 17:30:23 +00001800 </dd>
1801
1802 <dt><b>Integer constants</b></dt>
1803
Reid Spencer8f08d802004-12-09 18:02:53 +00001804 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencer3e628eb92007-01-04 16:43:23 +00001805 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattner74d3f822004-12-09 17:30:23 +00001806 integer types.
1807 </dd>
1808
1809 <dt><b>Floating point constants</b></dt>
1810
1811 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1812 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattner1429e6f2008-04-01 18:45:27 +00001813 notation (see below). The assembler requires the exact decimal value of
1814 a floating-point constant. For example, the assembler accepts 1.25 but
1815 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1816 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001817
1818 <dt><b>Null pointer constants</b></dt>
1819
John Criswelldfe6a862004-12-10 15:51:16 +00001820 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattner74d3f822004-12-09 17:30:23 +00001821 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1822
1823</dl>
1824
Dale Johannesencd4a3012009-02-11 22:14:51 +00001825<p>The one non-intuitive notation for constants is the hexadecimal form
Chris Lattner74d3f822004-12-09 17:30:23 +00001826of floating point constants. For example, the form '<tt>double
18270x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
18284.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencer8f08d802004-12-09 18:02:53 +00001829(and the only time that they are generated by the disassembler) is when a
1830floating point constant must be emitted but it cannot be represented as a
Dale Johannesencd4a3012009-02-11 22:14:51 +00001831decimal floating point number in a reasonable number of digits. For example,
1832NaN's, infinities, and other
Reid Spencer8f08d802004-12-09 18:02:53 +00001833special values are represented in their IEEE hexadecimal format so that
1834assembly and disassembly do not cause any bits to change in the constants.</p>
Dale Johannesencd4a3012009-02-11 22:14:51 +00001835<p>When using the hexadecimal form, constants of types float and double are
1836represented using the 16-digit form shown above (which matches the IEEE754
1837representation for double); float values must, however, be exactly representable
1838as IEE754 single precision.
1839Hexadecimal format is always used for long
1840double, and there are three forms of long double. The 80-bit
1841format used by x86 is represented as <tt>0xK</tt>
1842followed by 20 hexadecimal digits.
1843The 128-bit format used by PowerPC (two adjacent doubles) is represented
1844by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit
1845format is represented
1846by <tt>0xL</tt> followed by 32 hexadecimal digits; no currently supported
1847target uses this format. Long doubles will only work if they match
1848the long double format on your target. All hexadecimal formats are big-endian
1849(sign bit at the left).</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001850</div>
1851
1852<!-- ======================================================================= -->
Chris Lattner361bfcd2009-02-28 18:32:25 +00001853<div class="doc_subsection">
1854<a name="aggregateconstants"> <!-- old anchor -->
1855<a name="complexconstants">Complex Constants</a></a>
Chris Lattner74d3f822004-12-09 17:30:23 +00001856</div>
1857
1858<div class="doc_text">
Chris Lattner361bfcd2009-02-28 18:32:25 +00001859<p>Complex constants are a (potentially recursive) combination of simple
1860constants and smaller complex constants.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001861
1862<dl>
1863 <dt><b>Structure constants</b></dt>
1864
1865 <dd>Structure constants are represented with notation similar to structure
1866 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattnerbea11172007-12-25 20:34:52 +00001867 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1868 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattner455fc8c2005-03-07 22:13:59 +00001869 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattner74d3f822004-12-09 17:30:23 +00001870 types of elements must match those specified by the type.
1871 </dd>
1872
1873 <dt><b>Array constants</b></dt>
1874
1875 <dd>Array constants are represented with notation similar to array type
1876 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001877 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattner74d3f822004-12-09 17:30:23 +00001878 constants must have <a href="#t_array">array type</a>, and the number and
1879 types of elements must match those specified by the type.
1880 </dd>
1881
Reid Spencer404a3252007-02-15 03:07:05 +00001882 <dt><b>Vector constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00001883
Reid Spencer404a3252007-02-15 03:07:05 +00001884 <dd>Vector constants are represented with notation similar to vector type
Chris Lattner74d3f822004-12-09 17:30:23 +00001885 definitions (a comma separated list of elements, surrounded by
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001886 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen5819f182007-04-22 01:17:39 +00001887 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer404a3252007-02-15 03:07:05 +00001888 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattner74d3f822004-12-09 17:30:23 +00001889 match those specified by the type.
1890 </dd>
1891
1892 <dt><b>Zero initialization</b></dt>
1893
1894 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1895 value to zero of <em>any</em> type, including scalar and aggregate types.
1896 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell4c0cf7f2005-10-24 16:17:18 +00001897 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattner74d3f822004-12-09 17:30:23 +00001898 initializers.
1899 </dd>
Nick Lewycky49f89192009-04-04 07:22:01 +00001900
1901 <dt><b>Metadata node</b></dt>
1902
Nick Lewycky8e2c4f42009-05-30 16:08:30 +00001903 <dd>A metadata node is a structure-like constant with
1904 <a href="#t_metadata">metadata type</a>. For example:
1905 "<tt>metadata !{ i32 0, metadata !"test" }</tt>". Unlike other constants
1906 that are meant to be interpreted as part of the instruction stream, metadata
1907 is a place to attach additional information such as debug info.
Nick Lewycky49f89192009-04-04 07:22:01 +00001908 </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001909</dl>
1910
1911</div>
1912
1913<!-- ======================================================================= -->
1914<div class="doc_subsection">
1915 <a name="globalconstants">Global Variable and Function Addresses</a>
1916</div>
1917
1918<div class="doc_text">
1919
1920<p>The addresses of <a href="#globalvars">global variables</a> and <a
1921href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswelldfe6a862004-12-10 15:51:16 +00001922constants. These constants are explicitly referenced when the <a
1923href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattner74d3f822004-12-09 17:30:23 +00001924href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1925file:</p>
1926
Bill Wendling3716c5d2007-05-29 09:04:49 +00001927<div class="doc_code">
Chris Lattner74d3f822004-12-09 17:30:23 +00001928<pre>
Chris Lattner00538a12007-06-06 18:28:13 +00001929@X = global i32 17
1930@Y = global i32 42
1931@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattner74d3f822004-12-09 17:30:23 +00001932</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001933</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001934
1935</div>
1936
1937<!-- ======================================================================= -->
Reid Spencer641f5c92004-12-09 18:13:12 +00001938<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001939<div class="doc_text">
Reid Spencer641f5c92004-12-09 18:13:12 +00001940 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswell4a3327e2005-05-13 22:25:59 +00001941 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer641f5c92004-12-09 18:13:12 +00001942 a constant is permitted.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001943
Reid Spencer641f5c92004-12-09 18:13:12 +00001944 <p>Undefined values indicate to the compiler that the program is well defined
1945 no matter what value is used, giving the compiler more freedom to optimize.
1946 </p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001947</div>
1948
1949<!-- ======================================================================= -->
1950<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1951</div>
1952
1953<div class="doc_text">
1954
1955<p>Constant expressions are used to allow expressions involving other constants
1956to be used as constants. Constant expressions may be of any <a
John Criswell4a3327e2005-05-13 22:25:59 +00001957href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattner74d3f822004-12-09 17:30:23 +00001958that does not have side effects (e.g. load and call are not supported). The
1959following is the syntax for constant expressions:</p>
1960
1961<dl>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001962 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1963 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001964 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001965
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001966 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1967 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001968 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001969
1970 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1971 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001972 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001973
1974 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1975 <dd>Truncate a floating point constant to another floating point type. The
1976 size of CST must be larger than the size of TYPE. Both types must be
1977 floating point.</dd>
1978
1979 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1980 <dd>Floating point extend a constant to another type. The size of CST must be
1981 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1982
Reid Spencer753163d2007-07-31 14:40:14 +00001983 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001984 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemand4d45c22007-11-17 03:58:34 +00001985 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1986 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1987 of the same number of elements. If the value won't fit in the integer type,
1988 the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001989
Reid Spencer51b07252006-11-09 23:03:26 +00001990 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001991 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemand4d45c22007-11-17 03:58:34 +00001992 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1993 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1994 of the same number of elements. If the value won't fit in the integer type,
1995 the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001996
Reid Spencer51b07252006-11-09 23:03:26 +00001997 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001998 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemand4d45c22007-11-17 03:58:34 +00001999 constant. TYPE must be a scalar or vector floating point type. CST must be of
2000 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
2001 of the same number of elements. If the value won't fit in the floating point
2002 type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002003
Reid Spencer51b07252006-11-09 23:03:26 +00002004 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002005 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemand4d45c22007-11-17 03:58:34 +00002006 constant. TYPE must be a scalar or vector floating point type. CST must be of
2007 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
2008 of the same number of elements. If the value won't fit in the floating point
2009 type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002010
Reid Spencer5b950642006-11-11 23:08:07 +00002011 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
2012 <dd>Convert a pointer typed constant to the corresponding integer constant
2013 TYPE must be an integer type. CST must be of pointer type. The CST value is
2014 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
2015
2016 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
2017 <dd>Convert a integer constant to a pointer constant. TYPE must be a
2018 pointer type. CST must be of integer type. The CST value is zero extended,
2019 truncated, or unchanged to make it fit in a pointer size. This one is
2020 <i>really</i> dangerous!</dd>
2021
2022 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Chris Lattner789dee32009-02-28 18:27:03 +00002023 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2024 are the same as those for the <a href="#i_bitcast">bitcast
2025 instruction</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002026
2027 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
2028
2029 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
2030 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2031 instruction, the index list may have zero or more indexes, which are required
2032 to make sense for the type of "CSTPTR".</dd>
2033
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002034 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
2035
2036 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer9965ee72006-12-04 19:23:19 +00002037 constants.</dd>
2038
2039 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
2040 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2041
2042 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
2043 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002044
2045 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
2046
2047 <dd>Perform the <a href="#i_extractelement">extractelement
Dan Gohmanef9462f2008-10-14 16:51:45 +00002048 operation</a> on constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002049
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00002050 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
2051
2052 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer9965ee72006-12-04 19:23:19 +00002053 operation</a> on constants.</dd>
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00002054
Chris Lattner016a0e52006-04-08 00:13:41 +00002055
2056 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
2057
2058 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer9965ee72006-12-04 19:23:19 +00002059 operation</a> on constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002060
Chris Lattner74d3f822004-12-09 17:30:23 +00002061 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
2062
Reid Spencer641f5c92004-12-09 18:13:12 +00002063 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2064 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattner74d3f822004-12-09 17:30:23 +00002065 binary</a> operations. The constraints on operands are the same as those for
2066 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswell02fdc6f2005-05-12 16:52:32 +00002067 values are allowed).</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002068</dl>
Chris Lattner74d3f822004-12-09 17:30:23 +00002069</div>
Chris Lattnerb1652612004-03-08 16:49:10 +00002070
Nick Lewycky49f89192009-04-04 07:22:01 +00002071<!-- ======================================================================= -->
2072<div class="doc_subsection"><a name="metadata">Embedded Metadata</a>
2073</div>
2074
2075<div class="doc_text">
2076
2077<p>Embedded metadata provides a way to attach arbitrary data to the
2078instruction stream without affecting the behaviour of the program. There are
Nick Lewyckyadbc2842009-05-30 05:06:04 +00002079two metadata primitives, strings and nodes. All metadata has the
2080<tt>metadata</tt> type and is identified in syntax by a preceding exclamation
2081point ('<tt>!</tt>').
Nick Lewycky49f89192009-04-04 07:22:01 +00002082</p>
2083
2084<p>A metadata string is a string surrounded by double quotes. It can contain
2085any character by escaping non-printable characters with "\xx" where "xx" is
2086the two digit hex code. For example: "<tt>!"test\00"</tt>".
2087</p>
2088
2089<p>Metadata nodes are represented with notation similar to structure constants
2090(a comma separated list of elements, surrounded by braces and preceeded by an
Nick Lewyckyadbc2842009-05-30 05:06:04 +00002091exclamation point). For example: "<tt>!{ metadata !"test\00", i32 10}</tt>".
Nick Lewycky49f89192009-04-04 07:22:01 +00002092</p>
2093
Nick Lewyckyb8f9b7a2009-05-10 20:57:05 +00002094<p>A metadata node will attempt to track changes to the values it holds. In
2095the event that a value is deleted, it will be replaced with a typeless
Nick Lewyckyadbc2842009-05-30 05:06:04 +00002096"<tt>null</tt>", such as "<tt>metadata !{null, i32 10}</tt>".</p>
Nick Lewyckyb8f9b7a2009-05-10 20:57:05 +00002097
Nick Lewycky49f89192009-04-04 07:22:01 +00002098<p>Optimizations may rely on metadata to provide additional information about
2099the program that isn't available in the instructions, or that isn't easily
2100computable. Similarly, the code generator may expect a certain metadata format
2101to be used to express debugging information.</p>
2102</div>
2103
Chris Lattner2f7c9632001-06-06 20:29:01 +00002104<!-- *********************************************************************** -->
Chris Lattner98f013c2006-01-25 23:47:57 +00002105<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2106<!-- *********************************************************************** -->
2107
2108<!-- ======================================================================= -->
2109<div class="doc_subsection">
2110<a name="inlineasm">Inline Assembler Expressions</a>
2111</div>
2112
2113<div class="doc_text">
2114
2115<p>
2116LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
2117Module-Level Inline Assembly</a>) through the use of a special value. This
2118value represents the inline assembler as a string (containing the instructions
2119to emit), a list of operand constraints (stored as a string), and a flag that
2120indicates whether or not the inline asm expression has side effects. An example
2121inline assembler expression is:
2122</p>
2123
Bill Wendling3716c5d2007-05-29 09:04:49 +00002124<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00002125<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002126i32 (i32) asm "bswap $0", "=r,r"
Chris Lattner98f013c2006-01-25 23:47:57 +00002127</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002128</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002129
2130<p>
2131Inline assembler expressions may <b>only</b> be used as the callee operand of
2132a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
2133</p>
2134
Bill Wendling3716c5d2007-05-29 09:04:49 +00002135<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00002136<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002137%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattner98f013c2006-01-25 23:47:57 +00002138</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002139</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002140
2141<p>
2142Inline asms with side effects not visible in the constraint list must be marked
2143as having side effects. This is done through the use of the
2144'<tt>sideeffect</tt>' keyword, like so:
2145</p>
2146
Bill Wendling3716c5d2007-05-29 09:04:49 +00002147<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00002148<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002149call void asm sideeffect "eieio", ""()
Chris Lattner98f013c2006-01-25 23:47:57 +00002150</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002151</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002152
2153<p>TODO: The format of the asm and constraints string still need to be
2154documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattnerd5528262008-10-04 18:36:02 +00002155need to be documented). This is probably best done by reference to another
2156document that covers inline asm from a holistic perspective.
Chris Lattner98f013c2006-01-25 23:47:57 +00002157</p>
2158
2159</div>
2160
2161<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002162<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2163<!-- *********************************************************************** -->
Chris Lattner74d3f822004-12-09 17:30:23 +00002164
Misha Brukman76307852003-11-08 01:05:38 +00002165<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00002166
Chris Lattner48b383b02003-11-25 01:02:51 +00002167<p>The LLVM instruction set consists of several different
2168classifications of instructions: <a href="#terminators">terminator
John Criswell4a3327e2005-05-13 22:25:59 +00002169instructions</a>, <a href="#binaryops">binary instructions</a>,
2170<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner48b383b02003-11-25 01:02:51 +00002171 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
2172instructions</a>.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002173
Misha Brukman76307852003-11-08 01:05:38 +00002174</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002175
Chris Lattner2f7c9632001-06-06 20:29:01 +00002176<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002177<div class="doc_subsection"> <a name="terminators">Terminator
2178Instructions</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002179
Misha Brukman76307852003-11-08 01:05:38 +00002180<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00002181
Chris Lattner48b383b02003-11-25 01:02:51 +00002182<p>As mentioned <a href="#functionstructure">previously</a>, every
2183basic block in a program ends with a "Terminator" instruction, which
2184indicates which block should be executed after the current block is
2185finished. These terminator instructions typically yield a '<tt>void</tt>'
2186value: they produce control flow, not values (the one exception being
2187the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswelldfe6a862004-12-10 15:51:16 +00002188<p>There are six different terminator instructions: the '<a
Chris Lattner48b383b02003-11-25 01:02:51 +00002189 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
2190instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002191the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
2192 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
2193 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002194
Misha Brukman76307852003-11-08 01:05:38 +00002195</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002196
Chris Lattner2f7c9632001-06-06 20:29:01 +00002197<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002198<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2199Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002200<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002201<h5>Syntax:</h5>
Dan Gohmancc3132e2008-10-04 19:00:07 +00002202<pre>
2203 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner590645f2002-04-14 06:13:44 +00002204 ret void <i>; Return from void function</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002205</pre>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002206
Chris Lattner2f7c9632001-06-06 20:29:01 +00002207<h5>Overview:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002208
Dan Gohmancc3132e2008-10-04 19:00:07 +00002209<p>The '<tt>ret</tt>' instruction is used to return control flow (and
2210optionally a value) from a function back to the caller.</p>
John Criswell417228d2004-04-09 16:48:45 +00002211<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Dan Gohmancc3132e2008-10-04 19:00:07 +00002212returns a value and then causes control flow, and one that just causes
Chris Lattner48b383b02003-11-25 01:02:51 +00002213control flow to occur.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002214
Chris Lattner2f7c9632001-06-06 20:29:01 +00002215<h5>Arguments:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002216
Dan Gohmancc3132e2008-10-04 19:00:07 +00002217<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
2218the return value. The type of the return value must be a
2219'<a href="#t_firstclass">first class</a>' type.</p>
2220
2221<p>A function is not <a href="#wellformed">well formed</a> if
2222it it has a non-void return type and contains a '<tt>ret</tt>'
2223instruction with no return value or a return value with a type that
2224does not match its type, or if it has a void return type and contains
2225a '<tt>ret</tt>' instruction with a return value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002226
Chris Lattner2f7c9632001-06-06 20:29:01 +00002227<h5>Semantics:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002228
Chris Lattner48b383b02003-11-25 01:02:51 +00002229<p>When the '<tt>ret</tt>' instruction is executed, control flow
2230returns back to the calling function's context. If the caller is a "<a
John Criswell40db33f2004-06-25 15:16:57 +00002231 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner48b383b02003-11-25 01:02:51 +00002232the instruction after the call. If the caller was an "<a
2233 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswell02fdc6f2005-05-12 16:52:32 +00002234at the beginning of the "normal" destination block. If the instruction
Chris Lattner48b383b02003-11-25 01:02:51 +00002235returns a value, that value shall set the call or invoke instruction's
Dan Gohmanef9462f2008-10-14 16:51:45 +00002236return value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002237
Chris Lattner2f7c9632001-06-06 20:29:01 +00002238<h5>Example:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002239
2240<pre>
2241 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner590645f2002-04-14 06:13:44 +00002242 ret void <i>; Return from a void function</i>
Bill Wendling050ee8f2009-02-28 22:12:54 +00002243 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002244</pre>
Dan Gohman3065b612009-01-12 23:12:39 +00002245
Dan Gohman142ccc02009-01-24 15:58:40 +00002246<p>Note that the code generator does not yet fully support large
2247 return values. The specific sizes that are currently supported are
2248 dependent on the target. For integers, on 32-bit targets the limit
2249 is often 64 bits, and on 64-bit targets the limit is often 128 bits.
2250 For aggregate types, the current limits are dependent on the element
2251 types; for example targets are often limited to 2 total integer
2252 elements and 2 total floating-point elements.</p>
Dan Gohman3065b612009-01-12 23:12:39 +00002253
Misha Brukman76307852003-11-08 01:05:38 +00002254</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002255<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002256<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002257<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002258<h5>Syntax:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00002259<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002260</pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002261<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002262<p>The '<tt>br</tt>' instruction is used to cause control flow to
2263transfer to a different basic block in the current function. There are
2264two forms of this instruction, corresponding to a conditional branch
2265and an unconditional branch.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002266<h5>Arguments:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002267<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencer36a15422007-01-12 03:35:51 +00002268single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencer50c723a2007-02-19 23:54:10 +00002269unconditional form of the '<tt>br</tt>' instruction takes a single
2270'<tt>label</tt>' value as a target.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002271<h5>Semantics:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00002272<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner48b383b02003-11-25 01:02:51 +00002273argument is evaluated. If the value is <tt>true</tt>, control flows
2274to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2275control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002276<h5>Example:</h5>
Chris Lattnere648c282009-05-09 18:11:50 +00002277<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002278 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman76307852003-11-08 01:05:38 +00002279</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002280<!-- _______________________________________________________________________ -->
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002281<div class="doc_subsubsection">
2282 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2283</div>
2284
Misha Brukman76307852003-11-08 01:05:38 +00002285<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002286<h5>Syntax:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002287
2288<pre>
2289 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2290</pre>
2291
Chris Lattner2f7c9632001-06-06 20:29:01 +00002292<h5>Overview:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002293
2294<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2295several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman76307852003-11-08 01:05:38 +00002296instruction, allowing a branch to occur to one of many possible
2297destinations.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002298
2299
Chris Lattner2f7c9632001-06-06 20:29:01 +00002300<h5>Arguments:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002301
2302<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2303comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
2304an array of pairs of comparison value constants and '<tt>label</tt>'s. The
2305table is not allowed to contain duplicate constant entries.</p>
2306
Chris Lattner2f7c9632001-06-06 20:29:01 +00002307<h5>Semantics:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002308
Chris Lattner48b383b02003-11-25 01:02:51 +00002309<p>The <tt>switch</tt> instruction specifies a table of values and
2310destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswellbcbb18c2004-06-25 16:05:06 +00002311table is searched for the given value. If the value is found, control flow is
2312transfered to the corresponding destination; otherwise, control flow is
2313transfered to the default destination.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002314
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002315<h5>Implementation:</h5>
2316
2317<p>Depending on properties of the target machine and the particular
2318<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswellbcbb18c2004-06-25 16:05:06 +00002319ways. For example, it could be generated as a series of chained conditional
2320branches or with a lookup table.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002321
2322<h5>Example:</h5>
2323
2324<pre>
2325 <i>; Emulate a conditional br instruction</i>
Reid Spencer36a15422007-01-12 03:35:51 +00002326 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman623806e2009-01-04 23:44:43 +00002327 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002328
2329 <i>; Emulate an unconditional br instruction</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002330 switch i32 0, label %dest [ ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002331
2332 <i>; Implement a jump table:</i>
Dan Gohman623806e2009-01-04 23:44:43 +00002333 switch i32 %val, label %otherwise [ i32 0, label %onzero
2334 i32 1, label %onone
2335 i32 2, label %ontwo ]
Chris Lattner2f7c9632001-06-06 20:29:01 +00002336</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002337</div>
Chris Lattner0132aff2005-05-06 22:57:40 +00002338
Chris Lattner2f7c9632001-06-06 20:29:01 +00002339<!-- _______________________________________________________________________ -->
Chris Lattner0132aff2005-05-06 22:57:40 +00002340<div class="doc_subsubsection">
2341 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2342</div>
2343
Misha Brukman76307852003-11-08 01:05:38 +00002344<div class="doc_text">
Chris Lattner0132aff2005-05-06 22:57:40 +00002345
Chris Lattner2f7c9632001-06-06 20:29:01 +00002346<h5>Syntax:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002347
2348<pre>
Devang Patel02256232008-10-07 17:48:33 +00002349 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner6b7a0082006-05-14 18:23:06 +00002350 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattner0132aff2005-05-06 22:57:40 +00002351</pre>
2352
Chris Lattnera8292f32002-05-06 22:08:29 +00002353<h5>Overview:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002354
2355<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2356function, with the possibility of control flow transfer to either the
John Criswell02fdc6f2005-05-12 16:52:32 +00002357'<tt>normal</tt>' label or the
2358'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattner0132aff2005-05-06 22:57:40 +00002359"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2360"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswell02fdc6f2005-05-12 16:52:32 +00002361href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Dan Gohmanef9462f2008-10-14 16:51:45 +00002362continued at the dynamically nearest "exception" label.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00002363
Chris Lattner2f7c9632001-06-06 20:29:01 +00002364<h5>Arguments:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002365
Misha Brukman76307852003-11-08 01:05:38 +00002366<p>This instruction requires several arguments:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00002367
Chris Lattner2f7c9632001-06-06 20:29:01 +00002368<ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00002369 <li>
Duncan Sands16f122e2007-03-30 12:22:09 +00002370 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattner0132aff2005-05-06 22:57:40 +00002371 convention</a> the call should use. If none is specified, the call defaults
2372 to using C calling conventions.
2373 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00002374
2375 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2376 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
2377 and '<tt>inreg</tt>' attributes are valid here.</li>
2378
Chris Lattner0132aff2005-05-06 22:57:40 +00002379 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2380 function value being invoked. In most cases, this is a direct function
2381 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2382 an arbitrary pointer to function value.
2383 </li>
2384
2385 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2386 function to be invoked. </li>
2387
2388 <li>'<tt>function args</tt>': argument list whose types match the function
2389 signature argument types. If the function signature indicates the function
2390 accepts a variable number of arguments, the extra arguments can be
2391 specified. </li>
2392
2393 <li>'<tt>normal label</tt>': the label reached when the called function
2394 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2395
2396 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2397 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2398
Devang Patel02256232008-10-07 17:48:33 +00002399 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patel7e9b05e2008-10-06 18:50:38 +00002400 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2401 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002402</ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00002403
Chris Lattner2f7c9632001-06-06 20:29:01 +00002404<h5>Semantics:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002405
Misha Brukman76307852003-11-08 01:05:38 +00002406<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattner0132aff2005-05-06 22:57:40 +00002407href="#i_call">call</a></tt>' instruction in most regards. The primary
2408difference is that it establishes an association with a label, which is used by
2409the runtime library to unwind the stack.</p>
2410
2411<p>This instruction is used in languages with destructors to ensure that proper
2412cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2413exception. Additionally, this is important for implementation of
2414'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2415
Jay Foad1a4eea52009-06-03 10:20:10 +00002416<p>For the purposes of the SSA form, the definition of the value
2417returned by the '<tt>invoke</tt>' instruction is deemed to occur on
2418the edge from the current block to the "normal" label. If the callee
2419unwinds then no return value is available.</p>
Dan Gohman9069d892009-05-22 21:47:08 +00002420
Chris Lattner2f7c9632001-06-06 20:29:01 +00002421<h5>Example:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002422<pre>
Nick Lewycky084ab472008-03-16 07:18:12 +00002423 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00002424 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewycky084ab472008-03-16 07:18:12 +00002425 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00002426 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002427</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002428</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002429
2430
Chris Lattner5ed60612003-09-03 00:41:47 +00002431<!-- _______________________________________________________________________ -->
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002432
Chris Lattner48b383b02003-11-25 01:02:51 +00002433<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2434Instruction</a> </div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002435
Misha Brukman76307852003-11-08 01:05:38 +00002436<div class="doc_text">
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002437
Chris Lattner5ed60612003-09-03 00:41:47 +00002438<h5>Syntax:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002439<pre>
2440 unwind
2441</pre>
2442
Chris Lattner5ed60612003-09-03 00:41:47 +00002443<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002444
2445<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2446at the first callee in the dynamic call stack which used an <a
2447href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2448primarily used to implement exception handling.</p>
2449
Chris Lattner5ed60612003-09-03 00:41:47 +00002450<h5>Semantics:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002451
Chris Lattnerfe8519c2008-04-19 21:01:16 +00002452<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002453immediately halt. The dynamic call stack is then searched for the first <a
2454href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2455execution continues at the "exceptional" destination block specified by the
2456<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2457dynamic call chain, undefined behavior results.</p>
Misha Brukman76307852003-11-08 01:05:38 +00002458</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002459
2460<!-- _______________________________________________________________________ -->
2461
2462<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2463Instruction</a> </div>
2464
2465<div class="doc_text">
2466
2467<h5>Syntax:</h5>
2468<pre>
2469 unreachable
2470</pre>
2471
2472<h5>Overview:</h5>
2473
2474<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2475instruction is used to inform the optimizer that a particular portion of the
2476code is not reachable. This can be used to indicate that the code after a
2477no-return function cannot be reached, and other facts.</p>
2478
2479<h5>Semantics:</h5>
2480
2481<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2482</div>
2483
2484
2485
Chris Lattner2f7c9632001-06-06 20:29:01 +00002486<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002487<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002488<div class="doc_text">
Chris Lattner48b383b02003-11-25 01:02:51 +00002489<p>Binary operators are used to do most of the computation in a
Chris Lattner81f92972008-04-01 18:47:32 +00002490program. They require two operands of the same type, execute an operation on them, and
John Criswelldfe6a862004-12-10 15:51:16 +00002491produce a single value. The operands might represent
Reid Spencer404a3252007-02-15 03:07:05 +00002492multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner81f92972008-04-01 18:47:32 +00002493The result value has the same type as its operands.</p>
Misha Brukman76307852003-11-08 01:05:38 +00002494<p>There are several different binary operators:</p>
Misha Brukman76307852003-11-08 01:05:38 +00002495</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002496<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002497<div class="doc_subsubsection">
2498 <a name="i_add">'<tt>add</tt>' Instruction</a>
2499</div>
2500
Misha Brukman76307852003-11-08 01:05:38 +00002501<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002502
Chris Lattner2f7c9632001-06-06 20:29:01 +00002503<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002504
2505<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002506 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002507</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002508
Chris Lattner2f7c9632001-06-06 20:29:01 +00002509<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002510
Misha Brukman76307852003-11-08 01:05:38 +00002511<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002512
Chris Lattner2f7c9632001-06-06 20:29:01 +00002513<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002514
2515<p>The two arguments to the '<tt>add</tt>' instruction must be <a
Dan Gohmana5b96452009-06-04 22:49:04 +00002516 href="#t_integer">integer</a> or
2517 <a href="#t_vector">vector</a> of integer values. Both arguments must
2518 have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002519
Chris Lattner2f7c9632001-06-06 20:29:01 +00002520<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002521
Dan Gohmana5b96452009-06-04 22:49:04 +00002522<p>The value produced is the integer sum of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002523
Dan Gohmana5b96452009-06-04 22:49:04 +00002524<p>If the sum has unsigned overflow, the result returned is the
Chris Lattner2f2427e2008-01-28 00:36:27 +00002525mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2526the result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002527
Chris Lattner2f2427e2008-01-28 00:36:27 +00002528<p>Because LLVM integers use a two's complement representation, this
2529instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002530
Chris Lattner2f7c9632001-06-06 20:29:01 +00002531<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002532
2533<pre>
2534 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002535</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002536</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002537<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002538<div class="doc_subsubsection">
Dan Gohmana5b96452009-06-04 22:49:04 +00002539 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
2540</div>
2541
2542<div class="doc_text">
2543
2544<h5>Syntax:</h5>
2545
2546<pre>
2547 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2548</pre>
2549
2550<h5>Overview:</h5>
2551
2552<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
2553
2554<h5>Arguments:</h5>
2555
2556<p>The two arguments to the '<tt>fadd</tt>' instruction must be
2557<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2558floating point values. Both arguments must have identical types.</p>
2559
2560<h5>Semantics:</h5>
2561
2562<p>The value produced is the floating point sum of the two operands.</p>
2563
2564<h5>Example:</h5>
2565
2566<pre>
2567 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
2568</pre>
2569</div>
2570<!-- _______________________________________________________________________ -->
2571<div class="doc_subsubsection">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002572 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2573</div>
2574
Misha Brukman76307852003-11-08 01:05:38 +00002575<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002576
Chris Lattner2f7c9632001-06-06 20:29:01 +00002577<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002578
2579<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002580 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002581</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002582
Chris Lattner2f7c9632001-06-06 20:29:01 +00002583<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002584
Misha Brukman76307852003-11-08 01:05:38 +00002585<p>The '<tt>sub</tt>' instruction returns the difference of its two
2586operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002587
2588<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2589'<tt>neg</tt>' instruction present in most other intermediate
2590representations.</p>
2591
Chris Lattner2f7c9632001-06-06 20:29:01 +00002592<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002593
2594<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
Dan Gohmana5b96452009-06-04 22:49:04 +00002595 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2596 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002597
Chris Lattner2f7c9632001-06-06 20:29:01 +00002598<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002599
Dan Gohmana5b96452009-06-04 22:49:04 +00002600<p>The value produced is the integer difference of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002601
Dan Gohmana5b96452009-06-04 22:49:04 +00002602<p>If the difference has unsigned overflow, the result returned is the
Chris Lattner2f2427e2008-01-28 00:36:27 +00002603mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2604the result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002605
Chris Lattner2f2427e2008-01-28 00:36:27 +00002606<p>Because LLVM integers use a two's complement representation, this
2607instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002608
Chris Lattner2f7c9632001-06-06 20:29:01 +00002609<h5>Example:</h5>
Bill Wendling2d8b9a82007-05-29 09:42:13 +00002610<pre>
2611 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002612 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002613</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002614</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002615
Chris Lattner2f7c9632001-06-06 20:29:01 +00002616<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002617<div class="doc_subsubsection">
Dan Gohmana5b96452009-06-04 22:49:04 +00002618 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
2619</div>
2620
2621<div class="doc_text">
2622
2623<h5>Syntax:</h5>
2624
2625<pre>
2626 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2627</pre>
2628
2629<h5>Overview:</h5>
2630
2631<p>The '<tt>fsub</tt>' instruction returns the difference of its two
2632operands.</p>
2633
2634<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
2635'<tt>fneg</tt>' instruction present in most other intermediate
2636representations.</p>
2637
2638<h5>Arguments:</h5>
2639
2640<p>The two arguments to the '<tt>fsub</tt>' instruction must be <a
2641 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2642 of floating point values. Both arguments must have identical types.</p>
2643
2644<h5>Semantics:</h5>
2645
2646<p>The value produced is the floating point difference of the two operands.</p>
2647
2648<h5>Example:</h5>
2649<pre>
2650 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
2651 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
2652</pre>
2653</div>
2654
2655<!-- _______________________________________________________________________ -->
2656<div class="doc_subsubsection">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002657 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2658</div>
2659
Misha Brukman76307852003-11-08 01:05:38 +00002660<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002661
Chris Lattner2f7c9632001-06-06 20:29:01 +00002662<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002663<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002664</pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002665<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002666<p>The '<tt>mul</tt>' instruction returns the product of its two
2667operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002668
Chris Lattner2f7c9632001-06-06 20:29:01 +00002669<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002670
2671<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
Dan Gohmana5b96452009-06-04 22:49:04 +00002672href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2673values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002674
Chris Lattner2f7c9632001-06-06 20:29:01 +00002675<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002676
Dan Gohmana5b96452009-06-04 22:49:04 +00002677<p>The value produced is the integer product of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002678
Dan Gohmana5b96452009-06-04 22:49:04 +00002679<p>If the result of the multiplication has unsigned overflow,
Chris Lattner2f2427e2008-01-28 00:36:27 +00002680the result returned is the mathematical result modulo
26812<sup>n</sup>, where n is the bit width of the result.</p>
2682<p>Because LLVM integers use a two's complement representation, and the
2683result is the same width as the operands, this instruction returns the
2684correct result for both signed and unsigned integers. If a full product
2685(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2686should be sign-extended or zero-extended as appropriate to the
2687width of the full product.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002688<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002689<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002690</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002691</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002692
Chris Lattner2f7c9632001-06-06 20:29:01 +00002693<!-- _______________________________________________________________________ -->
Dan Gohmana5b96452009-06-04 22:49:04 +00002694<div class="doc_subsubsection">
2695 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
2696</div>
2697
2698<div class="doc_text">
2699
2700<h5>Syntax:</h5>
2701<pre> &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2702</pre>
2703<h5>Overview:</h5>
2704<p>The '<tt>fmul</tt>' instruction returns the product of its two
2705operands.</p>
2706
2707<h5>Arguments:</h5>
2708
2709<p>The two arguments to the '<tt>fmul</tt>' instruction must be
2710<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2711of floating point values. Both arguments must have identical types.</p>
2712
2713<h5>Semantics:</h5>
2714
2715<p>The value produced is the floating point product of the two operands.</p>
2716
2717<h5>Example:</h5>
2718<pre> &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
2719</pre>
2720</div>
2721
2722<!-- _______________________________________________________________________ -->
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002723<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2724</a></div>
2725<div class="doc_text">
2726<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002727<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002728</pre>
2729<h5>Overview:</h5>
2730<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2731operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002732
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002733<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002734
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002735<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002736<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2737values. Both arguments must have identical types.</p>
2738
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002739<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002740
Chris Lattner2f2427e2008-01-28 00:36:27 +00002741<p>The value produced is the unsigned integer quotient of the two operands.</p>
2742<p>Note that unsigned integer division and signed integer division are distinct
2743operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2744<p>Division by zero leads to undefined behavior.</p>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002745<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002746<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002747</pre>
2748</div>
2749<!-- _______________________________________________________________________ -->
2750<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2751</a> </div>
2752<div class="doc_text">
2753<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002754<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002755 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002756</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002757
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002758<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002759
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002760<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2761operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002762
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002763<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002764
2765<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2766<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2767values. Both arguments must have identical types.</p>
2768
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002769<h5>Semantics:</h5>
Chris Lattner1429e6f2008-04-01 18:45:27 +00002770<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner2f2427e2008-01-28 00:36:27 +00002771<p>Note that signed integer division and unsigned integer division are distinct
2772operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2773<p>Division by zero leads to undefined behavior. Overflow also leads to
2774undefined behavior; this is a rare case, but can occur, for example,
2775by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002776<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002777<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002778</pre>
2779</div>
2780<!-- _______________________________________________________________________ -->
2781<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner48b383b02003-11-25 01:02:51 +00002782Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002783<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002784<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002785<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002786 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002787</pre>
2788<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002789
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002790<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner48b383b02003-11-25 01:02:51 +00002791operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002792
Chris Lattner48b383b02003-11-25 01:02:51 +00002793<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002794
Jeff Cohen5819f182007-04-22 01:17:39 +00002795<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002796<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2797of floating point values. Both arguments must have identical types.</p>
2798
Chris Lattner48b383b02003-11-25 01:02:51 +00002799<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002800
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002801<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002802
Chris Lattner48b383b02003-11-25 01:02:51 +00002803<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002804
2805<pre>
2806 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002807</pre>
2808</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002809
Chris Lattner48b383b02003-11-25 01:02:51 +00002810<!-- _______________________________________________________________________ -->
Reid Spencer7eb55b32006-11-02 01:53:59 +00002811<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2812</div>
2813<div class="doc_text">
2814<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002815<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002816</pre>
2817<h5>Overview:</h5>
2818<p>The '<tt>urem</tt>' instruction returns the remainder from the
2819unsigned division of its two arguments.</p>
2820<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002821<p>The two arguments to the '<tt>urem</tt>' instruction must be
2822<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2823values. Both arguments must have identical types.</p>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002824<h5>Semantics:</h5>
2825<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattner1429e6f2008-04-01 18:45:27 +00002826This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner2f2427e2008-01-28 00:36:27 +00002827<p>Note that unsigned integer remainder and signed integer remainder are
2828distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2829<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002830<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002831<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002832</pre>
2833
2834</div>
2835<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002836<div class="doc_subsubsection">
2837 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2838</div>
2839
Chris Lattner48b383b02003-11-25 01:02:51 +00002840<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002841
Chris Lattner48b383b02003-11-25 01:02:51 +00002842<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002843
2844<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002845 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002846</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002847
Chris Lattner48b383b02003-11-25 01:02:51 +00002848<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002849
Reid Spencer7eb55b32006-11-02 01:53:59 +00002850<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman08143e32007-11-05 23:35:22 +00002851signed division of its two operands. This instruction can also take
2852<a href="#t_vector">vector</a> versions of the values in which case
2853the elements must be integers.</p>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00002854
Chris Lattner48b383b02003-11-25 01:02:51 +00002855<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002856
Reid Spencer7eb55b32006-11-02 01:53:59 +00002857<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002858<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2859values. Both arguments must have identical types.</p>
2860
Chris Lattner48b383b02003-11-25 01:02:51 +00002861<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002862
Reid Spencer7eb55b32006-11-02 01:53:59 +00002863<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greif0f75ad02008-08-07 21:46:00 +00002864has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2865operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencer806ad6a2007-03-24 22:23:39 +00002866a value. For more information about the difference, see <a
Chris Lattner48b383b02003-11-25 01:02:51 +00002867 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencer806ad6a2007-03-24 22:23:39 +00002868Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencerdb3b93b2007-03-24 22:40:44 +00002869please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencer806ad6a2007-03-24 22:23:39 +00002870Wikipedia: modulo operation</a>.</p>
Chris Lattner2f2427e2008-01-28 00:36:27 +00002871<p>Note that signed integer remainder and unsigned integer remainder are
2872distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2873<p>Taking the remainder of a division by zero leads to undefined behavior.
2874Overflow also leads to undefined behavior; this is a rare case, but can occur,
2875for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2876(The remainder doesn't actually overflow, but this rule lets srem be
2877implemented using instructions that return both the result of the division
2878and the remainder.)</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00002879<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002880<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002881</pre>
2882
2883</div>
2884<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002885<div class="doc_subsubsection">
2886 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2887
Reid Spencer7eb55b32006-11-02 01:53:59 +00002888<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002889
Reid Spencer7eb55b32006-11-02 01:53:59 +00002890<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002891<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002892</pre>
2893<h5>Overview:</h5>
2894<p>The '<tt>frem</tt>' instruction returns the remainder from the
2895division of its two operands.</p>
2896<h5>Arguments:</h5>
2897<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002898<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2899of floating point values. Both arguments must have identical types.</p>
2900
Reid Spencer7eb55b32006-11-02 01:53:59 +00002901<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002902
Chris Lattner1429e6f2008-04-01 18:45:27 +00002903<p>This instruction returns the <i>remainder</i> of a division.
2904The remainder has the same sign as the dividend.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002905
Reid Spencer7eb55b32006-11-02 01:53:59 +00002906<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002907
2908<pre>
2909 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002910</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002911</div>
Robert Bocchino820bc75b2006-02-17 21:18:08 +00002912
Reid Spencer2ab01932007-02-02 13:57:07 +00002913<!-- ======================================================================= -->
2914<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2915Operations</a> </div>
2916<div class="doc_text">
2917<p>Bitwise binary operators are used to do various forms of
2918bit-twiddling in a program. They are generally very efficient
2919instructions and can commonly be strength reduced from other
Chris Lattner1429e6f2008-04-01 18:45:27 +00002920instructions. They require two operands of the same type, execute an operation on them,
2921and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer2ab01932007-02-02 13:57:07 +00002922</div>
2923
Reid Spencer04e259b2007-01-31 21:39:12 +00002924<!-- _______________________________________________________________________ -->
2925<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2926Instruction</a> </div>
2927<div class="doc_text">
2928<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002929<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002930</pre>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002931
Reid Spencer04e259b2007-01-31 21:39:12 +00002932<h5>Overview:</h5>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002933
Reid Spencer04e259b2007-01-31 21:39:12 +00002934<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2935the left a specified number of bits.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002936
Reid Spencer04e259b2007-01-31 21:39:12 +00002937<h5>Arguments:</h5>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002938
Reid Spencer04e259b2007-01-31 21:39:12 +00002939<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begemanfecbc8c2008-07-29 15:49:41 +00002940 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greif0f75ad02008-08-07 21:46:00 +00002941type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002942
Reid Spencer04e259b2007-01-31 21:39:12 +00002943<h5>Semantics:</h5>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002944
Gabor Greif0f75ad02008-08-07 21:46:00 +00002945<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2946where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
Mon P Wang68d4eee2008-12-10 08:55:09 +00002947equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.
2948If the arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2949corresponding shift amount in <tt>op2</tt>.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002950
Reid Spencer04e259b2007-01-31 21:39:12 +00002951<h5>Example:</h5><pre>
2952 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2953 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2954 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002955 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00002956 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002957</pre>
2958</div>
2959<!-- _______________________________________________________________________ -->
2960<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2961Instruction</a> </div>
2962<div class="doc_text">
2963<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002964<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002965</pre>
2966
2967<h5>Overview:</h5>
2968<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen5819f182007-04-22 01:17:39 +00002969operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002970
2971<h5>Arguments:</h5>
2972<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begemanfecbc8c2008-07-29 15:49:41 +00002973<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greif0f75ad02008-08-07 21:46:00 +00002974type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002975
2976<h5>Semantics:</h5>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002977
Reid Spencer04e259b2007-01-31 21:39:12 +00002978<p>This instruction always performs a logical shift right operation. The most
2979significant bits of the result will be filled with zero bits after the
Gabor Greif0f75ad02008-08-07 21:46:00 +00002980shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
Mon P Wang68d4eee2008-12-10 08:55:09 +00002981the number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
2982vectors, each vector element of <tt>op1</tt> is shifted by the corresponding shift
2983amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002984
2985<h5>Example:</h5>
2986<pre>
2987 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2988 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2989 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2990 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002991 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00002992 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002993</pre>
2994</div>
2995
Reid Spencer2ab01932007-02-02 13:57:07 +00002996<!-- _______________________________________________________________________ -->
Reid Spencer04e259b2007-01-31 21:39:12 +00002997<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2998Instruction</a> </div>
2999<div class="doc_text">
3000
3001<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003002<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003003</pre>
3004
3005<h5>Overview:</h5>
3006<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen5819f182007-04-22 01:17:39 +00003007operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003008
3009<h5>Arguments:</h5>
3010<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begemanfecbc8c2008-07-29 15:49:41 +00003011<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greif0f75ad02008-08-07 21:46:00 +00003012type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003013
3014<h5>Semantics:</h5>
3015<p>This instruction always performs an arithmetic shift right operation,
3016The most significant bits of the result will be filled with the sign bit
Gabor Greif0f75ad02008-08-07 21:46:00 +00003017of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
Mon P Wang68d4eee2008-12-10 08:55:09 +00003018larger than the number of bits in <tt>op1</tt>, the result is undefined. If the
3019arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
3020corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003021
3022<h5>Example:</h5>
3023<pre>
3024 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
3025 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
3026 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
3027 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003028 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00003029 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003030</pre>
3031</div>
3032
Chris Lattner2f7c9632001-06-06 20:29:01 +00003033<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003034<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
3035Instruction</a> </div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003036
Misha Brukman76307852003-11-08 01:05:38 +00003037<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003038
Chris Lattner2f7c9632001-06-06 20:29:01 +00003039<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003040
3041<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003042 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003043</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003044
Chris Lattner2f7c9632001-06-06 20:29:01 +00003045<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003046
Chris Lattner48b383b02003-11-25 01:02:51 +00003047<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
3048its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003049
Chris Lattner2f7c9632001-06-06 20:29:01 +00003050<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003051
3052<p>The two arguments to the '<tt>and</tt>' instruction must be
3053<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3054values. Both arguments must have identical types.</p>
3055
Chris Lattner2f7c9632001-06-06 20:29:01 +00003056<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003057<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00003058<p> </p>
Bill Wendling5703c6e2008-09-07 10:29:20 +00003059<div>
Misha Brukman76307852003-11-08 01:05:38 +00003060<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00003061 <tbody>
3062 <tr>
3063 <td>In0</td>
3064 <td>In1</td>
3065 <td>Out</td>
3066 </tr>
3067 <tr>
3068 <td>0</td>
3069 <td>0</td>
3070 <td>0</td>
3071 </tr>
3072 <tr>
3073 <td>0</td>
3074 <td>1</td>
3075 <td>0</td>
3076 </tr>
3077 <tr>
3078 <td>1</td>
3079 <td>0</td>
3080 <td>0</td>
3081 </tr>
3082 <tr>
3083 <td>1</td>
3084 <td>1</td>
3085 <td>1</td>
3086 </tr>
3087 </tbody>
3088</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00003089</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003090<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003091<pre>
3092 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003093 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
3094 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003095</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003096</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003097<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003098<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00003099<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00003100<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003101<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003102</pre>
Chris Lattner48b383b02003-11-25 01:02:51 +00003103<h5>Overview:</h5>
3104<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
3105or of its two operands.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003106<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003107
3108<p>The two arguments to the '<tt>or</tt>' instruction must be
3109<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3110values. Both arguments must have identical types.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003111<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003112<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00003113<p> </p>
Bill Wendling5703c6e2008-09-07 10:29:20 +00003114<div>
Chris Lattner48b383b02003-11-25 01:02:51 +00003115<table border="1" cellspacing="0" cellpadding="4">
3116 <tbody>
3117 <tr>
3118 <td>In0</td>
3119 <td>In1</td>
3120 <td>Out</td>
3121 </tr>
3122 <tr>
3123 <td>0</td>
3124 <td>0</td>
3125 <td>0</td>
3126 </tr>
3127 <tr>
3128 <td>0</td>
3129 <td>1</td>
3130 <td>1</td>
3131 </tr>
3132 <tr>
3133 <td>1</td>
3134 <td>0</td>
3135 <td>1</td>
3136 </tr>
3137 <tr>
3138 <td>1</td>
3139 <td>1</td>
3140 <td>1</td>
3141 </tr>
3142 </tbody>
3143</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00003144</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003145<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003146<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
3147 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3148 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003149</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003150</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003151<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003152<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
3153Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00003154<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00003155<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003156<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003157</pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003158<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00003159<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
3160or of its two operands. The <tt>xor</tt> is used to implement the
3161"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003162<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003163<p>The two arguments to the '<tt>xor</tt>' instruction must be
3164<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3165values. Both arguments must have identical types.</p>
3166
Chris Lattner2f7c9632001-06-06 20:29:01 +00003167<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003168
Misha Brukman76307852003-11-08 01:05:38 +00003169<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00003170<p> </p>
Bill Wendling5703c6e2008-09-07 10:29:20 +00003171<div>
Chris Lattner48b383b02003-11-25 01:02:51 +00003172<table border="1" cellspacing="0" cellpadding="4">
3173 <tbody>
3174 <tr>
3175 <td>In0</td>
3176 <td>In1</td>
3177 <td>Out</td>
3178 </tr>
3179 <tr>
3180 <td>0</td>
3181 <td>0</td>
3182 <td>0</td>
3183 </tr>
3184 <tr>
3185 <td>0</td>
3186 <td>1</td>
3187 <td>1</td>
3188 </tr>
3189 <tr>
3190 <td>1</td>
3191 <td>0</td>
3192 <td>1</td>
3193 </tr>
3194 <tr>
3195 <td>1</td>
3196 <td>1</td>
3197 <td>0</td>
3198 </tr>
3199 </tbody>
3200</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00003201</div>
Chris Lattner48b383b02003-11-25 01:02:51 +00003202<p> </p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003203<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003204<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
3205 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3206 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3207 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003208</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003209</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003210
Chris Lattner2f7c9632001-06-06 20:29:01 +00003211<!-- ======================================================================= -->
Chris Lattner54611b42005-11-06 08:02:57 +00003212<div class="doc_subsection">
Chris Lattnerce83bff2006-04-08 23:07:04 +00003213 <a name="vectorops">Vector Operations</a>
3214</div>
3215
3216<div class="doc_text">
3217
3218<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen5819f182007-04-22 01:17:39 +00003219target-independent manner. These instructions cover the element-access and
Chris Lattnerce83bff2006-04-08 23:07:04 +00003220vector-specific operations needed to process vectors effectively. While LLVM
3221does directly support these vector operations, many sophisticated algorithms
3222will want to use target-specific intrinsics to take full advantage of a specific
3223target.</p>
3224
3225</div>
3226
3227<!-- _______________________________________________________________________ -->
3228<div class="doc_subsubsection">
3229 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3230</div>
3231
3232<div class="doc_text">
3233
3234<h5>Syntax:</h5>
3235
3236<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003237 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003238</pre>
3239
3240<h5>Overview:</h5>
3241
3242<p>
3243The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer404a3252007-02-15 03:07:05 +00003244element from a vector at a specified index.
Chris Lattnerce83bff2006-04-08 23:07:04 +00003245</p>
3246
3247
3248<h5>Arguments:</h5>
3249
3250<p>
3251The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer404a3252007-02-15 03:07:05 +00003252value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattnerce83bff2006-04-08 23:07:04 +00003253an index indicating the position from which to extract the element.
3254The index may be a variable.</p>
3255
3256<h5>Semantics:</h5>
3257
3258<p>
3259The result is a scalar of the same type as the element type of
3260<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3261<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3262results are undefined.
3263</p>
3264
3265<h5>Example:</h5>
3266
3267<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003268 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003269</pre>
3270</div>
3271
3272
3273<!-- _______________________________________________________________________ -->
3274<div class="doc_subsubsection">
3275 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3276</div>
3277
3278<div class="doc_text">
3279
3280<h5>Syntax:</h5>
3281
3282<pre>
Dan Gohman43ba0672008-05-12 23:38:42 +00003283 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003284</pre>
3285
3286<h5>Overview:</h5>
3287
3288<p>
3289The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer404a3252007-02-15 03:07:05 +00003290element into a vector at a specified index.
Chris Lattnerce83bff2006-04-08 23:07:04 +00003291</p>
3292
3293
3294<h5>Arguments:</h5>
3295
3296<p>
3297The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer404a3252007-02-15 03:07:05 +00003298value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattnerce83bff2006-04-08 23:07:04 +00003299scalar value whose type must equal the element type of the first
3300operand. The third operand is an index indicating the position at
3301which to insert the value. The index may be a variable.</p>
3302
3303<h5>Semantics:</h5>
3304
3305<p>
Reid Spencer404a3252007-02-15 03:07:05 +00003306The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattnerce83bff2006-04-08 23:07:04 +00003307element values are those of <tt>val</tt> except at position
3308<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
3309exceeds the length of <tt>val</tt>, the results are undefined.
3310</p>
3311
3312<h5>Example:</h5>
3313
3314<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003315 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003316</pre>
3317</div>
3318
3319<!-- _______________________________________________________________________ -->
3320<div class="doc_subsubsection">
3321 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3322</div>
3323
3324<div class="doc_text">
3325
3326<h5>Syntax:</h5>
3327
3328<pre>
Mon P Wang25f01062008-11-10 04:46:22 +00003329 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003330</pre>
3331
3332<h5>Overview:</h5>
3333
3334<p>
3335The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
Mon P Wang25f01062008-11-10 04:46:22 +00003336from two input vectors, returning a vector with the same element type as
3337the input and length that is the same as the shuffle mask.
Chris Lattnerce83bff2006-04-08 23:07:04 +00003338</p>
3339
3340<h5>Arguments:</h5>
3341
3342<p>
Mon P Wang25f01062008-11-10 04:46:22 +00003343The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3344with types that match each other. The third argument is a shuffle mask whose
3345element type is always 'i32'. The result of the instruction is a vector whose
3346length is the same as the shuffle mask and whose element type is the same as
3347the element type of the first two operands.
Chris Lattnerce83bff2006-04-08 23:07:04 +00003348</p>
3349
3350<p>
3351The shuffle mask operand is required to be a constant vector with either
3352constant integer or undef values.
3353</p>
3354
3355<h5>Semantics:</h5>
3356
3357<p>
3358The elements of the two input vectors are numbered from left to right across
3359both of the vectors. The shuffle mask operand specifies, for each element of
Mon P Wang25f01062008-11-10 04:46:22 +00003360the result vector, which element of the two input vectors the result element
Chris Lattnerce83bff2006-04-08 23:07:04 +00003361gets. The element selector may be undef (meaning "don't care") and the second
3362operand may be undef if performing a shuffle from only one vector.
3363</p>
3364
3365<h5>Example:</h5>
3366
3367<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003368 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen5819f182007-04-22 01:17:39 +00003369 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003370 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
3371 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wang25f01062008-11-10 04:46:22 +00003372 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
3373 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
3374 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3375 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003376</pre>
3377</div>
3378
Tanya Lattnerb138bbe2006-04-14 19:24:33 +00003379
Chris Lattnerce83bff2006-04-08 23:07:04 +00003380<!-- ======================================================================= -->
3381<div class="doc_subsection">
Dan Gohmanb9d66602008-05-12 23:51:09 +00003382 <a name="aggregateops">Aggregate Operations</a>
3383</div>
3384
3385<div class="doc_text">
3386
3387<p>LLVM supports several instructions for working with aggregate values.
3388</p>
3389
3390</div>
3391
3392<!-- _______________________________________________________________________ -->
3393<div class="doc_subsubsection">
3394 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3395</div>
3396
3397<div class="doc_text">
3398
3399<h5>Syntax:</h5>
3400
3401<pre>
3402 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3403</pre>
3404
3405<h5>Overview:</h5>
3406
3407<p>
Dan Gohman35a835c2008-05-13 18:16:06 +00003408The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3409or array element from an aggregate value.
Dan Gohmanb9d66602008-05-12 23:51:09 +00003410</p>
3411
3412
3413<h5>Arguments:</h5>
3414
3415<p>
3416The first operand of an '<tt>extractvalue</tt>' instruction is a
3417value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohman35a835c2008-05-13 18:16:06 +00003418type. The operands are constant indices to specify which value to extract
Dan Gohman1ecaf452008-05-31 00:58:22 +00003419in a similar manner as indices in a
Dan Gohmanb9d66602008-05-12 23:51:09 +00003420'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3421</p>
3422
3423<h5>Semantics:</h5>
3424
3425<p>
3426The result is the value at the position in the aggregate specified by
3427the index operands.
3428</p>
3429
3430<h5>Example:</h5>
3431
3432<pre>
Dan Gohman1ecaf452008-05-31 00:58:22 +00003433 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003434</pre>
3435</div>
3436
3437
3438<!-- _______________________________________________________________________ -->
3439<div class="doc_subsubsection">
3440 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3441</div>
3442
3443<div class="doc_text">
3444
3445<h5>Syntax:</h5>
3446
3447<pre>
Dan Gohman1ecaf452008-05-31 00:58:22 +00003448 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003449</pre>
3450
3451<h5>Overview:</h5>
3452
3453<p>
3454The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohman35a835c2008-05-13 18:16:06 +00003455into a struct field or array element in an aggregate.
Dan Gohmanb9d66602008-05-12 23:51:09 +00003456</p>
3457
3458
3459<h5>Arguments:</h5>
3460
3461<p>
3462The first operand of an '<tt>insertvalue</tt>' instruction is a
3463value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3464The second operand is a first-class value to insert.
Dan Gohman34d1c0d2008-05-23 21:53:15 +00003465The following operands are constant indices
Dan Gohman1ecaf452008-05-31 00:58:22 +00003466indicating the position at which to insert the value in a similar manner as
Dan Gohman35a835c2008-05-13 18:16:06 +00003467indices in a
Dan Gohmanb9d66602008-05-12 23:51:09 +00003468'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3469The value to insert must have the same type as the value identified
Dan Gohman35a835c2008-05-13 18:16:06 +00003470by the indices.
Dan Gohmanef9462f2008-10-14 16:51:45 +00003471</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003472
3473<h5>Semantics:</h5>
3474
3475<p>
3476The result is an aggregate of the same type as <tt>val</tt>. Its
3477value is that of <tt>val</tt> except that the value at the position
Dan Gohman35a835c2008-05-13 18:16:06 +00003478specified by the indices is that of <tt>elt</tt>.
Dan Gohmanb9d66602008-05-12 23:51:09 +00003479</p>
3480
3481<h5>Example:</h5>
3482
3483<pre>
Dan Gohman88ce1a52008-06-23 15:26:37 +00003484 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003485</pre>
3486</div>
3487
3488
3489<!-- ======================================================================= -->
3490<div class="doc_subsection">
Chris Lattner6ab66722006-08-15 00:45:58 +00003491 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner54611b42005-11-06 08:02:57 +00003492</div>
3493
Misha Brukman76307852003-11-08 01:05:38 +00003494<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003495
Chris Lattner48b383b02003-11-25 01:02:51 +00003496<p>A key design point of an SSA-based representation is how it
3497represents memory. In LLVM, no memory locations are in SSA form, which
3498makes things very simple. This section describes how to read, write,
John Criswelldfe6a862004-12-10 15:51:16 +00003499allocate, and free memory in LLVM.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003500
Misha Brukman76307852003-11-08 01:05:38 +00003501</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003502
Chris Lattner2f7c9632001-06-06 20:29:01 +00003503<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00003504<div class="doc_subsubsection">
3505 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3506</div>
3507
Misha Brukman76307852003-11-08 01:05:38 +00003508<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003509
Chris Lattner2f7c9632001-06-06 20:29:01 +00003510<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003511
3512<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003513 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003514</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00003515
Chris Lattner2f7c9632001-06-06 20:29:01 +00003516<h5>Overview:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003517
Chris Lattner48b383b02003-11-25 01:02:51 +00003518<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00003519heap and returns a pointer to it. The object is always allocated in the generic
3520address space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003521
Chris Lattner2f7c9632001-06-06 20:29:01 +00003522<h5>Arguments:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003523
3524<p>The '<tt>malloc</tt>' instruction allocates
3525<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswella92e5862004-02-24 16:13:56 +00003526bytes of memory from the operating system and returns a pointer of the
Chris Lattner54611b42005-11-06 08:02:57 +00003527appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greifdd1fc982008-02-09 22:24:34 +00003528number of elements allocated, otherwise "NumElements" is defaulted to be one.
Duncan Sands2ae473f2009-06-20 13:26:06 +00003529If a constant alignment is specified, the value result of the allocation is
3530guaranteed to be aligned to at least that boundary. If not specified, or if
3531zero, the target can choose to align the allocation on any convenient boundary
3532compatible with the type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003533
Misha Brukman76307852003-11-08 01:05:38 +00003534<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003535
Chris Lattner2f7c9632001-06-06 20:29:01 +00003536<h5>Semantics:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003537
Chris Lattner48b383b02003-11-25 01:02:51 +00003538<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Nick Lewyckyf5ffcbc2008-11-24 03:41:24 +00003539a pointer is returned. The result of a zero byte allocation is undefined. The
Chris Lattnerfe8519c2008-04-19 21:01:16 +00003540result is null if there is insufficient memory available.</p>
Misha Brukman76307852003-11-08 01:05:38 +00003541
Chris Lattner54611b42005-11-06 08:02:57 +00003542<h5>Example:</h5>
3543
3544<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00003545 %array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner54611b42005-11-06 08:02:57 +00003546
Bill Wendling2d8b9a82007-05-29 09:42:13 +00003547 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3548 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3549 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3550 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3551 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003552</pre>
Dan Gohman3065b612009-01-12 23:12:39 +00003553
3554<p>Note that the code generator does not yet respect the
3555 alignment value.</p>
3556
Misha Brukman76307852003-11-08 01:05:38 +00003557</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003558
Chris Lattner2f7c9632001-06-06 20:29:01 +00003559<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00003560<div class="doc_subsubsection">
3561 <a name="i_free">'<tt>free</tt>' Instruction</a>
3562</div>
3563
Misha Brukman76307852003-11-08 01:05:38 +00003564<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003565
Chris Lattner2f7c9632001-06-06 20:29:01 +00003566<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003567
3568<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00003569 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003570</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00003571
Chris Lattner2f7c9632001-06-06 20:29:01 +00003572<h5>Overview:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003573
Chris Lattner48b383b02003-11-25 01:02:51 +00003574<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswell4a3327e2005-05-13 22:25:59 +00003575memory heap to be reallocated in the future.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003576
Chris Lattner2f7c9632001-06-06 20:29:01 +00003577<h5>Arguments:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003578
Chris Lattner48b383b02003-11-25 01:02:51 +00003579<p>'<tt>value</tt>' shall be a pointer value that points to a value
3580that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3581instruction.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003582
Chris Lattner2f7c9632001-06-06 20:29:01 +00003583<h5>Semantics:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003584
John Criswelldfe6a862004-12-10 15:51:16 +00003585<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattner0f103e12008-04-19 22:41:32 +00003586after this instruction executes. If the pointer is null, the operation
3587is a noop.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003588
Chris Lattner2f7c9632001-06-06 20:29:01 +00003589<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003590
3591<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00003592 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003593 free [4 x i8]* %array
Chris Lattner2f7c9632001-06-06 20:29:01 +00003594</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003595</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003596
Chris Lattner2f7c9632001-06-06 20:29:01 +00003597<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00003598<div class="doc_subsubsection">
3599 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3600</div>
3601
Misha Brukman76307852003-11-08 01:05:38 +00003602<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003603
Chris Lattner2f7c9632001-06-06 20:29:01 +00003604<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003605
3606<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003607 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003608</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00003609
Chris Lattner2f7c9632001-06-06 20:29:01 +00003610<h5>Overview:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003611
Jeff Cohen5819f182007-04-22 01:17:39 +00003612<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3613currently executing function, to be automatically released when this function
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00003614returns to its caller. The object is always allocated in the generic address
3615space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003616
Chris Lattner2f7c9632001-06-06 20:29:01 +00003617<h5>Arguments:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003618
John Criswelldfe6a862004-12-10 15:51:16 +00003619<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner48b383b02003-11-25 01:02:51 +00003620bytes of memory on the runtime stack, returning a pointer of the
Gabor Greifdd1fc982008-02-09 22:24:34 +00003621appropriate type to the program. If "NumElements" is specified, it is the
3622number of elements allocated, otherwise "NumElements" is defaulted to be one.
Duncan Sands2ae473f2009-06-20 13:26:06 +00003623If a constant alignment is specified, the value result of the allocation is
3624guaranteed to be aligned to at least that boundary. If not specified, or if
3625zero, the target can choose to align the allocation on any convenient boundary
3626compatible with the type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003627
Misha Brukman76307852003-11-08 01:05:38 +00003628<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003629
Chris Lattner2f7c9632001-06-06 20:29:01 +00003630<h5>Semantics:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003631
Bill Wendling9ee6a312009-05-08 20:49:29 +00003632<p>Memory is allocated; a pointer is returned. The operation is undefined if
Chris Lattnerfe8519c2008-04-19 21:01:16 +00003633there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner48b383b02003-11-25 01:02:51 +00003634memory is automatically released when the function returns. The '<tt>alloca</tt>'
3635instruction is commonly used to represent automatic variables that must
3636have an address available. When the function returns (either with the <tt><a
John Criswellc932bef2005-05-12 16:55:34 +00003637 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner1f17cce2008-04-02 00:38:26 +00003638instructions), the memory is reclaimed. Allocating zero bytes
3639is legal, but the result is undefined.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003640
Chris Lattner2f7c9632001-06-06 20:29:01 +00003641<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003642
3643<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00003644 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3645 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3646 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3647 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003648</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003649</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003650
Chris Lattner2f7c9632001-06-06 20:29:01 +00003651<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003652<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3653Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00003654<div class="doc_text">
Chris Lattner095735d2002-05-06 03:03:22 +00003655<h5>Syntax:</h5>
Christopher Lambbff50202007-04-21 08:16:25 +00003656<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner095735d2002-05-06 03:03:22 +00003657<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003658<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003659<h5>Arguments:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00003660<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell4c0cf7f2005-10-24 16:17:18 +00003661address from which to load. The pointer must point to a <a
Chris Lattner10ee9652004-06-03 22:57:15 +00003662 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell4c0cf7f2005-10-24 16:17:18 +00003663marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner48b383b02003-11-25 01:02:51 +00003664the number or order of execution of this <tt>load</tt> with other
3665volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3666instructions. </p>
Chris Lattner2a1993f2008-01-06 21:04:43 +00003667<p>
Chris Lattner1f17cce2008-04-02 00:38:26 +00003668The optional constant "align" argument specifies the alignment of the operation
Chris Lattner2a1993f2008-01-06 21:04:43 +00003669(that is, the alignment of the memory address). A value of 0 or an
3670omitted "align" argument means that the operation has the preferential
3671alignment for the target. It is the responsibility of the code emitter
3672to ensure that the alignment information is correct. Overestimating
3673the alignment results in an undefined behavior. Underestimating the
3674alignment may produce less efficient code. An alignment of 1 is always
3675safe.
3676</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003677<h5>Semantics:</h5>
Duncan Sandsb1656c12009-03-22 11:33:16 +00003678<p>The location of memory pointed to is loaded. If the value being loaded
3679is of scalar type then the number of bytes read does not exceed the minimum
3680number of bytes needed to hold all bits of the type. For example, loading an
3681<tt>i24</tt> reads at most three bytes. When loading a value of a type like
3682<tt>i20</tt> with a size that is not an integral number of bytes, the result
3683is undefined if the value was not originally written using a store of the
3684same type.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003685<h5>Examples:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003686<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003687 <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003688 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3689 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00003690</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003691</div>
Chris Lattner095735d2002-05-06 03:03:22 +00003692<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003693<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3694Instruction</a> </div>
Reid Spencera89fb182006-11-09 21:18:01 +00003695<div class="doc_text">
Chris Lattner095735d2002-05-06 03:03:22 +00003696<h5>Syntax:</h5>
Christopher Lambbff50202007-04-21 08:16:25 +00003697<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3698 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner095735d2002-05-06 03:03:22 +00003699</pre>
Chris Lattner095735d2002-05-06 03:03:22 +00003700<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003701<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003702<h5>Arguments:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00003703<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen5819f182007-04-22 01:17:39 +00003704to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner1f17cce2008-04-02 00:38:26 +00003705operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3706of the '<tt>&lt;value&gt;</tt>'
John Criswell4a3327e2005-05-13 22:25:59 +00003707operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner48b383b02003-11-25 01:02:51 +00003708optimizer is not allowed to modify the number or order of execution of
3709this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3710 href="#i_store">store</a></tt> instructions.</p>
Chris Lattner2a1993f2008-01-06 21:04:43 +00003711<p>
Chris Lattner1f17cce2008-04-02 00:38:26 +00003712The optional constant "align" argument specifies the alignment of the operation
Chris Lattner2a1993f2008-01-06 21:04:43 +00003713(that is, the alignment of the memory address). A value of 0 or an
3714omitted "align" argument means that the operation has the preferential
3715alignment for the target. It is the responsibility of the code emitter
3716to ensure that the alignment information is correct. Overestimating
3717the alignment results in an undefined behavior. Underestimating the
3718alignment may produce less efficient code. An alignment of 1 is always
3719safe.
3720</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00003721<h5>Semantics:</h5>
3722<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
Duncan Sandsb1656c12009-03-22 11:33:16 +00003723at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.
3724If '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes
3725written does not exceed the minimum number of bytes needed to hold all
3726bits of the type. For example, storing an <tt>i24</tt> writes at most
3727three bytes. When writing a value of a type like <tt>i20</tt> with a
3728size that is not an integral number of bytes, it is unspecified what
3729happens to the extra bits that do not belong to the type, but they will
3730typically be overwritten.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003731<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003732<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8830ffe2007-10-22 05:10:05 +00003733 store i32 3, i32* %ptr <i>; yields {void}</i>
3734 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00003735</pre>
Reid Spencer443460a2006-11-09 21:15:49 +00003736</div>
3737
Chris Lattner095735d2002-05-06 03:03:22 +00003738<!-- _______________________________________________________________________ -->
Chris Lattner33fd7022004-04-05 01:30:49 +00003739<div class="doc_subsubsection">
3740 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3741</div>
3742
Misha Brukman76307852003-11-08 01:05:38 +00003743<div class="doc_text">
Chris Lattner590645f2002-04-14 06:13:44 +00003744<h5>Syntax:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00003745<pre>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003746 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattner33fd7022004-04-05 01:30:49 +00003747</pre>
3748
Chris Lattner590645f2002-04-14 06:13:44 +00003749<h5>Overview:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00003750
3751<p>
3752The '<tt>getelementptr</tt>' instruction is used to get the address of a
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003753subelement of an aggregate data structure. It performs address calculation only
3754and does not access memory.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003755
Chris Lattner590645f2002-04-14 06:13:44 +00003756<h5>Arguments:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00003757
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003758<p>The first argument is always a pointer, and forms the basis of the
3759calculation. The remaining arguments are indices, that indicate which of the
3760elements of the aggregate object are indexed. The interpretation of each index
3761is dependent on the type being indexed into. The first index always indexes the
3762pointer value given as the first argument, the second index indexes a value of
3763the type pointed to (not necessarily the value directly pointed to, since the
3764first index can be non-zero), etc. The first type indexed into must be a pointer
3765value, subsequent types can be arrays, vectors and structs. Note that subsequent
3766types being indexed into can never be pointers, since that would require loading
3767the pointer before continuing calculation.</p>
3768
3769<p>The type of each index argument depends on the type it is indexing into.
3770When indexing into a (packed) structure, only <tt>i32</tt> integer
3771<b>constants</b> are allowed. When indexing into an array, pointer or vector,
Sanjiv Gupta1f8555a2009-04-27 03:21:00 +00003772integers of any width are allowed (also non-constants).</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003773
Chris Lattner48b383b02003-11-25 01:02:51 +00003774<p>For example, let's consider a C code fragment and how it gets
3775compiled to LLVM:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003776
Bill Wendling3716c5d2007-05-29 09:04:49 +00003777<div class="doc_code">
Chris Lattner33fd7022004-04-05 01:30:49 +00003778<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00003779struct RT {
3780 char A;
Chris Lattnera446f1b2007-05-29 15:43:56 +00003781 int B[10][20];
Bill Wendling3716c5d2007-05-29 09:04:49 +00003782 char C;
3783};
3784struct ST {
Chris Lattnera446f1b2007-05-29 15:43:56 +00003785 int X;
Bill Wendling3716c5d2007-05-29 09:04:49 +00003786 double Y;
3787 struct RT Z;
3788};
Chris Lattner33fd7022004-04-05 01:30:49 +00003789
Chris Lattnera446f1b2007-05-29 15:43:56 +00003790int *foo(struct ST *s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00003791 return &amp;s[1].Z.B[5][13];
3792}
Chris Lattner33fd7022004-04-05 01:30:49 +00003793</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00003794</div>
Chris Lattner33fd7022004-04-05 01:30:49 +00003795
Misha Brukman76307852003-11-08 01:05:38 +00003796<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003797
Bill Wendling3716c5d2007-05-29 09:04:49 +00003798<div class="doc_code">
Chris Lattner33fd7022004-04-05 01:30:49 +00003799<pre>
Chris Lattnerbc088212009-01-11 20:53:49 +00003800%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
3801%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattner33fd7022004-04-05 01:30:49 +00003802
Bill Wendling3716c5d2007-05-29 09:04:49 +00003803define i32* %foo(%ST* %s) {
3804entry:
3805 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3806 ret i32* %reg
3807}
Chris Lattner33fd7022004-04-05 01:30:49 +00003808</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00003809</div>
Chris Lattner33fd7022004-04-05 01:30:49 +00003810
Chris Lattner590645f2002-04-14 06:13:44 +00003811<h5>Semantics:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00003812
Misha Brukman76307852003-11-08 01:05:38 +00003813<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003814type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattner33fd7022004-04-05 01:30:49 +00003815}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003816the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3817i8 }</tt>' type, another structure. The third index indexes into the second
3818element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattner33fd7022004-04-05 01:30:49 +00003819array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003820'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3821to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003822
Chris Lattner48b383b02003-11-25 01:02:51 +00003823<p>Note that it is perfectly legal to index partially through a
3824structure, returning a pointer to an inner element. Because of this,
3825the LLVM code for the given testcase is equivalent to:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003826
3827<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003828 define i32* %foo(%ST* %s) {
3829 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen5819f182007-04-22 01:17:39 +00003830 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3831 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003832 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3833 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3834 ret i32* %t5
Chris Lattner33fd7022004-04-05 01:30:49 +00003835 }
Chris Lattnera8292f32002-05-06 22:08:29 +00003836</pre>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00003837
Chris Lattnerdd282822009-03-09 20:55:18 +00003838<p>Note that it is undefined to access an array out of bounds: array
3839and pointer indexes must always be within the defined bounds of the
3840array type when accessed with an instruction that dereferences the
3841pointer (e.g. a load or store instruction). The one exception for
3842this rule is zero length arrays. These arrays are defined to be
3843accessible as variable length arrays, which requires access beyond the
3844zero'th element.</p>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00003845
Chris Lattner6ab66722006-08-15 00:45:58 +00003846<p>The getelementptr instruction is often confusing. For some more insight
3847into how it works, see <a href="GetElementPtr.html">the getelementptr
3848FAQ</a>.</p>
3849
Chris Lattner590645f2002-04-14 06:13:44 +00003850<h5>Example:</h5>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00003851
Chris Lattner33fd7022004-04-05 01:30:49 +00003852<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003853 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003854 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
3855 <i>; yields i8*:vptr</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00003856 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003857 <i>; yields i8*:eptr</i>
3858 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta0c155e62009-04-25 07:27:44 +00003859 <i>; yields i32*:iptr</i>
Sanjiv Gupta77abea02009-04-24 16:38:13 +00003860 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattner33fd7022004-04-05 01:30:49 +00003861</pre>
Chris Lattner33fd7022004-04-05 01:30:49 +00003862</div>
Reid Spencer443460a2006-11-09 21:15:49 +00003863
Chris Lattner2f7c9632001-06-06 20:29:01 +00003864<!-- ======================================================================= -->
Reid Spencer97c5fa42006-11-08 01:18:52 +00003865<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman76307852003-11-08 01:05:38 +00003866</div>
Misha Brukman76307852003-11-08 01:05:38 +00003867<div class="doc_text">
Reid Spencer97c5fa42006-11-08 01:18:52 +00003868<p>The instructions in this category are the conversion instructions (casting)
3869which all take a single operand and a type. They perform various bit conversions
3870on the operand.</p>
Misha Brukman76307852003-11-08 01:05:38 +00003871</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003872
Chris Lattnera8292f32002-05-06 22:08:29 +00003873<!-- _______________________________________________________________________ -->
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003874<div class="doc_subsubsection">
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003875 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3876</div>
3877<div class="doc_text">
3878
3879<h5>Syntax:</h5>
3880<pre>
3881 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3882</pre>
3883
3884<h5>Overview:</h5>
3885<p>
3886The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3887</p>
3888
3889<h5>Arguments:</h5>
3890<p>
3891The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3892be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattnerc0f423a2007-01-15 01:54:13 +00003893and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencer51b07252006-11-09 23:03:26 +00003894type. The bit size of <tt>value</tt> must be larger than the bit size of
3895<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003896
3897<h5>Semantics:</h5>
3898<p>
3899The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencer51b07252006-11-09 23:03:26 +00003900and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3901larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3902It will always truncate bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003903
3904<h5>Example:</h5>
3905<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003906 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencer36a15422007-01-12 03:35:51 +00003907 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3908 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003909</pre>
3910</div>
3911
3912<!-- _______________________________________________________________________ -->
3913<div class="doc_subsubsection">
3914 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3915</div>
3916<div class="doc_text">
3917
3918<h5>Syntax:</h5>
3919<pre>
3920 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3921</pre>
3922
3923<h5>Overview:</h5>
3924<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3925<tt>ty2</tt>.</p>
3926
3927
3928<h5>Arguments:</h5>
3929<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattnerc0f423a2007-01-15 01:54:13 +00003930<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3931also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencer51b07252006-11-09 23:03:26 +00003932<tt>value</tt> must be smaller than the bit size of the destination type,
3933<tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003934
3935<h5>Semantics:</h5>
3936<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerc87f3df2007-05-24 19:13:27 +00003937bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003938
Reid Spencer07c9c682007-01-12 15:46:11 +00003939<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003940
3941<h5>Example:</h5>
3942<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003943 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencer36a15422007-01-12 03:35:51 +00003944 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003945</pre>
3946</div>
3947
3948<!-- _______________________________________________________________________ -->
3949<div class="doc_subsubsection">
3950 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3951</div>
3952<div class="doc_text">
3953
3954<h5>Syntax:</h5>
3955<pre>
3956 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3957</pre>
3958
3959<h5>Overview:</h5>
3960<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3961
3962<h5>Arguments:</h5>
3963<p>
3964The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattnerc0f423a2007-01-15 01:54:13 +00003965<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3966also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencer51b07252006-11-09 23:03:26 +00003967<tt>value</tt> must be smaller than the bit size of the destination type,
3968<tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003969
3970<h5>Semantics:</h5>
3971<p>
3972The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3973bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerc87f3df2007-05-24 19:13:27 +00003974the type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003975
Reid Spencer36a15422007-01-12 03:35:51 +00003976<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003977
3978<h5>Example:</h5>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003979<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003980 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencer36a15422007-01-12 03:35:51 +00003981 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003982</pre>
3983</div>
3984
3985<!-- _______________________________________________________________________ -->
3986<div class="doc_subsubsection">
Reid Spencer2e2740d2006-11-09 21:48:10 +00003987 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3988</div>
3989
3990<div class="doc_text">
3991
3992<h5>Syntax:</h5>
3993
3994<pre>
3995 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3996</pre>
3997
3998<h5>Overview:</h5>
3999<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
4000<tt>ty2</tt>.</p>
4001
4002
4003<h5>Arguments:</h5>
4004<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
4005 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
4006cast it to. The size of <tt>value</tt> must be larger than the size of
4007<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
4008<i>no-op cast</i>.</p>
4009
4010<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004011<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
4012<a href="#t_floating">floating point</a> type to a smaller
4013<a href="#t_floating">floating point</a> type. If the value cannot fit within
4014the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004015
4016<h5>Example:</h5>
4017<pre>
4018 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
4019 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
4020</pre>
4021</div>
4022
4023<!-- _______________________________________________________________________ -->
4024<div class="doc_subsubsection">
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004025 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
4026</div>
4027<div class="doc_text">
4028
4029<h5>Syntax:</h5>
4030<pre>
4031 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4032</pre>
4033
4034<h5>Overview:</h5>
4035<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
4036floating point value.</p>
4037
4038<h5>Arguments:</h5>
4039<p>The '<tt>fpext</tt>' instruction takes a
4040<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencer51b07252006-11-09 23:03:26 +00004041and a <a href="#t_floating">floating point</a> type to cast it to. The source
4042type must be smaller than the destination type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004043
4044<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004045<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands16f122e2007-03-30 12:22:09 +00004046<a href="#t_floating">floating point</a> type to a larger
4047<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencer51b07252006-11-09 23:03:26 +00004048used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5b950642006-11-11 23:08:07 +00004049<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004050
4051<h5>Example:</h5>
4052<pre>
4053 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
4054 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
4055</pre>
4056</div>
4057
4058<!-- _______________________________________________________________________ -->
4059<div class="doc_subsubsection">
Reid Spencer2eadb532007-01-21 00:29:26 +00004060 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004061</div>
4062<div class="doc_text">
4063
4064<h5>Syntax:</h5>
4065<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00004066 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004067</pre>
4068
4069<h5>Overview:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00004070<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004071unsigned integer equivalent of type <tt>ty2</tt>.
4072</p>
4073
4074<h5>Arguments:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00004075<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemand4d45c22007-11-17 03:58:34 +00004076scalar or vector <a href="#t_floating">floating point</a> value, and a type
4077to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4078type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4079vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004080
4081<h5>Semantics:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00004082<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004083<a href="#t_floating">floating point</a> operand into the nearest (rounding
4084towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
4085the results are undefined.</p>
4086
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004087<h5>Example:</h5>
4088<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00004089 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00004090 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer753163d2007-07-31 14:40:14 +00004091 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004092</pre>
4093</div>
4094
4095<!-- _______________________________________________________________________ -->
4096<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00004097 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004098</div>
4099<div class="doc_text">
4100
4101<h5>Syntax:</h5>
4102<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004103 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004104</pre>
4105
4106<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004107<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004108<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004109</p>
4110
Chris Lattnera8292f32002-05-06 22:08:29 +00004111<h5>Arguments:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004112<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemand4d45c22007-11-17 03:58:34 +00004113scalar or vector <a href="#t_floating">floating point</a> value, and a type
4114to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4115type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4116vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004117
Chris Lattnera8292f32002-05-06 22:08:29 +00004118<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004119<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004120<a href="#t_floating">floating point</a> operand into the nearest (rounding
4121towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4122the results are undefined.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004123
Chris Lattner70de6632001-07-09 00:26:23 +00004124<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004125<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00004126 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00004127 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004128 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004129</pre>
4130</div>
4131
4132<!-- _______________________________________________________________________ -->
4133<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00004134 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004135</div>
4136<div class="doc_text">
4137
4138<h5>Syntax:</h5>
4139<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004140 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004141</pre>
4142
4143<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004144<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004145integer and converts that value to the <tt>ty2</tt> type.</p>
4146
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004147<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00004148<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
4149scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
4150to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4151type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4152floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004153
4154<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004155<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004156integer quantity and converts it to the corresponding floating point value. If
Jeff Cohenbeccb742007-04-22 14:56:37 +00004157the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004158
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004159<h5>Example:</h5>
4160<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004161 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004162 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004163</pre>
4164</div>
4165
4166<!-- _______________________________________________________________________ -->
4167<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00004168 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004169</div>
4170<div class="doc_text">
4171
4172<h5>Syntax:</h5>
4173<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004174 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004175</pre>
4176
4177<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004178<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004179integer and converts that value to the <tt>ty2</tt> type.</p>
4180
4181<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00004182<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
4183scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
4184to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4185type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4186floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004187
4188<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004189<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004190integer quantity and converts it to the corresponding floating point value. If
Jeff Cohenbeccb742007-04-22 14:56:37 +00004191the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004192
4193<h5>Example:</h5>
4194<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004195 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004196 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004197</pre>
4198</div>
4199
4200<!-- _______________________________________________________________________ -->
4201<div class="doc_subsubsection">
Reid Spencerb7344ff2006-11-11 21:00:47 +00004202 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4203</div>
4204<div class="doc_text">
4205
4206<h5>Syntax:</h5>
4207<pre>
4208 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4209</pre>
4210
4211<h5>Overview:</h5>
4212<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4213the integer type <tt>ty2</tt>.</p>
4214
4215<h5>Arguments:</h5>
4216<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands16f122e2007-03-30 12:22:09 +00004217must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Dan Gohmanef9462f2008-10-14 16:51:45 +00004218<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004219
4220<h5>Semantics:</h5>
4221<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
4222<tt>ty2</tt> by interpreting the pointer value as an integer and either
4223truncating or zero extending that value to the size of the integer type. If
4224<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4225<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohen222a8a42007-04-29 01:07:00 +00004226are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4227change.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004228
4229<h5>Example:</h5>
4230<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004231 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4232 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004233</pre>
4234</div>
4235
4236<!-- _______________________________________________________________________ -->
4237<div class="doc_subsubsection">
4238 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4239</div>
4240<div class="doc_text">
4241
4242<h5>Syntax:</h5>
4243<pre>
4244 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4245</pre>
4246
4247<h5>Overview:</h5>
4248<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
4249a pointer type, <tt>ty2</tt>.</p>
4250
4251<h5>Arguments:</h5>
Duncan Sands16f122e2007-03-30 12:22:09 +00004252<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004253value to cast, and a type to cast it to, which must be a
Dan Gohmanef9462f2008-10-14 16:51:45 +00004254<a href="#t_pointer">pointer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004255
4256<h5>Semantics:</h5>
4257<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
4258<tt>ty2</tt> by applying either a zero extension or a truncation depending on
4259the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4260size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
4261the size of a pointer then a zero extension is done. If they are the same size,
4262nothing is done (<i>no-op cast</i>).</p>
4263
4264<h5>Example:</h5>
4265<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004266 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
4267 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4268 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004269</pre>
4270</div>
4271
4272<!-- _______________________________________________________________________ -->
4273<div class="doc_subsubsection">
Reid Spencer5b950642006-11-11 23:08:07 +00004274 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004275</div>
4276<div class="doc_text">
4277
4278<h5>Syntax:</h5>
4279<pre>
Reid Spencer5b950642006-11-11 23:08:07 +00004280 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004281</pre>
4282
4283<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004284
Reid Spencer5b950642006-11-11 23:08:07 +00004285<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004286<tt>ty2</tt> without changing any bits.</p>
4287
4288<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004289
Reid Spencer5b950642006-11-11 23:08:07 +00004290<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohmanc05dca92008-09-08 16:45:59 +00004291a non-aggregate first class value, and a type to cast it to, which must also be
4292a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
4293<tt>value</tt>
Reid Spencere3db84c2007-01-09 20:08:58 +00004294and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004295type is a pointer, the destination type must also be a pointer. This
4296instruction supports bitwise conversion of vectors to integers and to vectors
4297of other types (as long as they have the same size).</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004298
4299<h5>Semantics:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00004300<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencerb7344ff2006-11-11 21:00:47 +00004301<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4302this conversion. The conversion is done as if the <tt>value</tt> had been
4303stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
4304converted to other pointer types with this instruction. To convert pointers to
4305other types, use the <a href="#i_inttoptr">inttoptr</a> or
4306<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004307
4308<h5>Example:</h5>
4309<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004310 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004311 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004312 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner70de6632001-07-09 00:26:23 +00004313</pre>
Misha Brukman76307852003-11-08 01:05:38 +00004314</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004315
Reid Spencer97c5fa42006-11-08 01:18:52 +00004316<!-- ======================================================================= -->
4317<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
4318<div class="doc_text">
4319<p>The instructions in this category are the "miscellaneous"
4320instructions, which defy better classification.</p>
4321</div>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004322
4323<!-- _______________________________________________________________________ -->
4324<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4325</div>
4326<div class="doc_text">
4327<h5>Syntax:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004328<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004329</pre>
4330<h5>Overview:</h5>
Dan Gohmanc579d972008-09-09 01:02:47 +00004331<p>The '<tt>icmp</tt>' instruction returns a boolean value or
4332a vector of boolean values based on comparison
4333of its two integer, integer vector, or pointer operands.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004334<h5>Arguments:</h5>
4335<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohen222a8a42007-04-29 01:07:00 +00004336the condition code indicating the kind of comparison to perform. It is not
4337a value, just a keyword. The possible condition code are:
Dan Gohmanef9462f2008-10-14 16:51:45 +00004338</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004339<ol>
4340 <li><tt>eq</tt>: equal</li>
4341 <li><tt>ne</tt>: not equal </li>
4342 <li><tt>ugt</tt>: unsigned greater than</li>
4343 <li><tt>uge</tt>: unsigned greater or equal</li>
4344 <li><tt>ult</tt>: unsigned less than</li>
4345 <li><tt>ule</tt>: unsigned less or equal</li>
4346 <li><tt>sgt</tt>: signed greater than</li>
4347 <li><tt>sge</tt>: signed greater or equal</li>
4348 <li><tt>slt</tt>: signed less than</li>
4349 <li><tt>sle</tt>: signed less or equal</li>
4350</ol>
Chris Lattnerc0f423a2007-01-15 01:54:13 +00004351<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanc579d972008-09-09 01:02:47 +00004352<a href="#t_pointer">pointer</a>
4353or integer <a href="#t_vector">vector</a> typed.
4354They must also be identical types.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004355<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004356<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerc828a0e2006-11-18 21:50:54 +00004357the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanc579d972008-09-09 01:02:47 +00004358yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Dan Gohmanef9462f2008-10-14 16:51:45 +00004359</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004360<ol>
4361 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
4362 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
4363 </li>
4364 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Dan Gohmanef9462f2008-10-14 16:51:45 +00004365 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004366 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004367 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004368 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004369 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004370 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004371 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004372 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004373 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004374 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004375 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004376 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004377 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004378 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004379 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004380 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00004381 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004382</ol>
4383<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohen222a8a42007-04-29 01:07:00 +00004384values are compared as if they were integers.</p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004385<p>If the operands are integer vectors, then they are compared
4386element by element. The result is an <tt>i1</tt> vector with
4387the same number of elements as the values being compared.
4388Otherwise, the result is an <tt>i1</tt>.
4389</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004390
4391<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004392<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
4393 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4394 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4395 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4396 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4397 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004398</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00004399
4400<p>Note that the code generator does not yet support vector types with
4401 the <tt>icmp</tt> instruction.</p>
4402
Reid Spencerc828a0e2006-11-18 21:50:54 +00004403</div>
4404
4405<!-- _______________________________________________________________________ -->
4406<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4407</div>
4408<div class="doc_text">
4409<h5>Syntax:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004410<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004411</pre>
4412<h5>Overview:</h5>
Dan Gohmanc579d972008-09-09 01:02:47 +00004413<p>The '<tt>fcmp</tt>' instruction returns a boolean value
4414or vector of boolean values based on comparison
Dan Gohmanef9462f2008-10-14 16:51:45 +00004415of its operands.</p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004416<p>
4417If the operands are floating point scalars, then the result
4418type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
4419</p>
4420<p>If the operands are floating point vectors, then the result type
4421is a vector of boolean with the same number of elements as the
4422operands being compared.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004423<h5>Arguments:</h5>
4424<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohen222a8a42007-04-29 01:07:00 +00004425the condition code indicating the kind of comparison to perform. It is not
Dan Gohmanef9462f2008-10-14 16:51:45 +00004426a value, just a keyword. The possible condition code are:</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004427<ol>
Reid Spencerf69acf32006-11-19 03:00:14 +00004428 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004429 <li><tt>oeq</tt>: ordered and equal</li>
4430 <li><tt>ogt</tt>: ordered and greater than </li>
4431 <li><tt>oge</tt>: ordered and greater than or equal</li>
4432 <li><tt>olt</tt>: ordered and less than </li>
4433 <li><tt>ole</tt>: ordered and less than or equal</li>
4434 <li><tt>one</tt>: ordered and not equal</li>
4435 <li><tt>ord</tt>: ordered (no nans)</li>
4436 <li><tt>ueq</tt>: unordered or equal</li>
4437 <li><tt>ugt</tt>: unordered or greater than </li>
4438 <li><tt>uge</tt>: unordered or greater than or equal</li>
4439 <li><tt>ult</tt>: unordered or less than </li>
4440 <li><tt>ule</tt>: unordered or less than or equal</li>
4441 <li><tt>une</tt>: unordered or not equal</li>
4442 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004443 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004444</ol>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004445<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer02e0d1d2006-12-06 07:08:07 +00004446<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004447<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
4448either a <a href="#t_floating">floating point</a> type
4449or a <a href="#t_vector">vector</a> of floating point type.
4450They must have identical types.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004451<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004452<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanc579d972008-09-09 01:02:47 +00004453according to the condition code given as <tt>cond</tt>.
4454If the operands are vectors, then the vectors are compared
4455element by element.
4456Each comparison performed
Dan Gohmanef9462f2008-10-14 16:51:45 +00004457always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004458<ol>
4459 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004460 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004461 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004462 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004463 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004464 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004465 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004466 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004467 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004468 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004469 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004470 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004471 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004472 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4473 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004474 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004475 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004476 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004477 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004478 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004479 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004480 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004481 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004482 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004483 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004484 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004485 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004486 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4487</ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004488
4489<h5>Example:</h5>
4490<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanc579d972008-09-09 01:02:47 +00004491 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4492 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4493 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004494</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00004495
4496<p>Note that the code generator does not yet support vector types with
4497 the <tt>fcmp</tt> instruction.</p>
4498
Reid Spencerc828a0e2006-11-18 21:50:54 +00004499</div>
4500
Reid Spencer97c5fa42006-11-08 01:18:52 +00004501<!-- _______________________________________________________________________ -->
Nate Begemand2195702008-05-12 19:01:56 +00004502<div class="doc_subsubsection">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004503 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4504</div>
4505
Reid Spencer97c5fa42006-11-08 01:18:52 +00004506<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004507
Reid Spencer97c5fa42006-11-08 01:18:52 +00004508<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004509
Reid Spencer97c5fa42006-11-08 01:18:52 +00004510<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4511<h5>Overview:</h5>
4512<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4513the SSA graph representing the function.</p>
4514<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004515
Jeff Cohen222a8a42007-04-29 01:07:00 +00004516<p>The type of the incoming values is specified with the first type
Reid Spencer97c5fa42006-11-08 01:18:52 +00004517field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4518as arguments, with one pair for each predecessor basic block of the
4519current block. Only values of <a href="#t_firstclass">first class</a>
4520type may be used as the value arguments to the PHI node. Only labels
4521may be used as the label arguments.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004522
Reid Spencer97c5fa42006-11-08 01:18:52 +00004523<p>There must be no non-phi instructions between the start of a basic
4524block and the PHI instructions: i.e. PHI instructions must be first in
4525a basic block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004526
Jay Foad1a4eea52009-06-03 10:20:10 +00004527<p>For the purposes of the SSA form, the use of each incoming value is
4528deemed to occur on the edge from the corresponding predecessor block
4529to the current block (but after any definition of an '<tt>invoke</tt>'
4530instruction's return value on the same edge).</p>
4531
Reid Spencer97c5fa42006-11-08 01:18:52 +00004532<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004533
Jeff Cohen222a8a42007-04-29 01:07:00 +00004534<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4535specified by the pair corresponding to the predecessor basic block that executed
4536just prior to the current block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004537
Reid Spencer97c5fa42006-11-08 01:18:52 +00004538<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004539<pre>
4540Loop: ; Infinite loop that counts from 0 on up...
4541 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4542 %nextindvar = add i32 %indvar, 1
4543 br label %Loop
4544</pre>
Reid Spencer97c5fa42006-11-08 01:18:52 +00004545</div>
4546
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004547<!-- _______________________________________________________________________ -->
4548<div class="doc_subsubsection">
4549 <a name="i_select">'<tt>select</tt>' Instruction</a>
4550</div>
4551
4552<div class="doc_text">
4553
4554<h5>Syntax:</h5>
4555
4556<pre>
Dan Gohmanc579d972008-09-09 01:02:47 +00004557 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4558
Dan Gohmanef9462f2008-10-14 16:51:45 +00004559 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004560</pre>
4561
4562<h5>Overview:</h5>
4563
4564<p>
4565The '<tt>select</tt>' instruction is used to choose one value based on a
4566condition, without branching.
4567</p>
4568
4569
4570<h5>Arguments:</h5>
4571
4572<p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004573The '<tt>select</tt>' instruction requires an 'i1' value or
4574a vector of 'i1' values indicating the
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004575condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanc579d972008-09-09 01:02:47 +00004576type. If the val1/val2 are vectors and
4577the condition is a scalar, then entire vectors are selected, not
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004578individual elements.
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004579</p>
4580
4581<h5>Semantics:</h5>
4582
4583<p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004584If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswell88190562005-05-16 16:17:45 +00004585value argument; otherwise, it returns the second value argument.
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004586</p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004587<p>
4588If the condition is a vector of i1, then the value arguments must
4589be vectors of the same size, and the selection is done element
4590by element.
4591</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004592
4593<h5>Example:</h5>
4594
4595<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00004596 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004597</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00004598
4599<p>Note that the code generator does not yet support conditions
4600 with vector type.</p>
4601
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004602</div>
4603
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00004604
4605<!-- _______________________________________________________________________ -->
4606<div class="doc_subsubsection">
Chris Lattnere23c1392005-05-06 05:47:36 +00004607 <a name="i_call">'<tt>call</tt>' Instruction</a>
4608</div>
4609
Misha Brukman76307852003-11-08 01:05:38 +00004610<div class="doc_text">
Chris Lattnere23c1392005-05-06 05:47:36 +00004611
Chris Lattner2f7c9632001-06-06 20:29:01 +00004612<h5>Syntax:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004613<pre>
Devang Patel02256232008-10-07 17:48:33 +00004614 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattnere23c1392005-05-06 05:47:36 +00004615</pre>
4616
Chris Lattner2f7c9632001-06-06 20:29:01 +00004617<h5>Overview:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004618
Misha Brukman76307852003-11-08 01:05:38 +00004619<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004620
Chris Lattner2f7c9632001-06-06 20:29:01 +00004621<h5>Arguments:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004622
Misha Brukman76307852003-11-08 01:05:38 +00004623<p>This instruction requires several arguments:</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004624
Chris Lattnera8292f32002-05-06 22:08:29 +00004625<ol>
Chris Lattner48b383b02003-11-25 01:02:51 +00004626 <li>
Chris Lattner0132aff2005-05-06 22:57:40 +00004627 <p>The optional "tail" marker indicates whether the callee function accesses
4628 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattnere23c1392005-05-06 05:47:36 +00004629 function call is eligible for tail call optimization. Note that calls may
4630 be marked "tail" even if they do not occur before a <a
Dan Gohmanef9462f2008-10-14 16:51:45 +00004631 href="#i_ret"><tt>ret</tt></a> instruction.</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00004632 </li>
4633 <li>
Duncan Sands16f122e2007-03-30 12:22:09 +00004634 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattner0132aff2005-05-06 22:57:40 +00004635 convention</a> the call should use. If none is specified, the call defaults
Dan Gohmanef9462f2008-10-14 16:51:45 +00004636 to using C calling conventions.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00004637 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00004638
4639 <li>
4640 <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4641 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
4642 and '<tt>inreg</tt>' attributes are valid here.</p>
4643 </li>
4644
Chris Lattner0132aff2005-05-06 22:57:40 +00004645 <li>
Nick Lewyckya9b13d52007-09-08 13:57:50 +00004646 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4647 the type of the return value. Functions that return no value are marked
4648 <tt><a href="#t_void">void</a></tt>.</p>
4649 </li>
4650 <li>
4651 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4652 value being invoked. The argument types must match the types implied by
4653 this signature. This type can be omitted if the function is not varargs
4654 and if the function type does not return a pointer to a function.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004655 </li>
4656 <li>
4657 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4658 be invoked. In most cases, this is a direct function invocation, but
4659 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswell88190562005-05-16 16:17:45 +00004660 to function value.</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00004661 </li>
4662 <li>
4663 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencerd845d162005-05-01 22:22:57 +00004664 function signature argument types. All arguments must be of
4665 <a href="#t_firstclass">first class</a> type. If the function signature
4666 indicates the function accepts a variable number of arguments, the extra
4667 arguments can be specified.</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00004668 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00004669 <li>
Devang Patel02256232008-10-07 17:48:33 +00004670 <p>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patel7e9b05e2008-10-06 18:50:38 +00004671 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4672 '<tt>readnone</tt>' attributes are valid here.</p>
4673 </li>
Chris Lattnera8292f32002-05-06 22:08:29 +00004674</ol>
Chris Lattnere23c1392005-05-06 05:47:36 +00004675
Chris Lattner2f7c9632001-06-06 20:29:01 +00004676<h5>Semantics:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004677
Chris Lattner48b383b02003-11-25 01:02:51 +00004678<p>The '<tt>call</tt>' instruction is used to cause control flow to
4679transfer to a specified function, with its incoming arguments bound to
4680the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4681instruction in the called function, control flow continues with the
4682instruction after the function call, and the return value of the
Dan Gohmanef9462f2008-10-14 16:51:45 +00004683function is bound to the result argument.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004684
Chris Lattner2f7c9632001-06-06 20:29:01 +00004685<h5>Example:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004686
4687<pre>
Nick Lewyckya9b13d52007-09-08 13:57:50 +00004688 %retval = call i32 @test(i32 %argc)
Chris Lattnerfb7c88d2008-03-21 17:24:17 +00004689 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4690 %X = tail call i32 @foo() <i>; yields i32</i>
4691 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4692 call void %foo(i8 97 signext)
Devang Pateld6cff512008-03-10 20:49:15 +00004693
4694 %struct.A = type { i32, i8 }
Devang Patel7e9b05e2008-10-06 18:50:38 +00004695 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmancc3132e2008-10-04 19:00:07 +00004696 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4697 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner6cbe8e92008-10-08 06:26:11 +00004698 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmaneefa7df2008-10-07 10:03:45 +00004699 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattnere23c1392005-05-06 05:47:36 +00004700</pre>
4701
Misha Brukman76307852003-11-08 01:05:38 +00004702</div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004703
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004704<!-- _______________________________________________________________________ -->
Chris Lattner6a4a0492004-09-27 21:51:25 +00004705<div class="doc_subsubsection">
Chris Lattner33337472006-01-13 23:26:01 +00004706 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004707</div>
4708
Misha Brukman76307852003-11-08 01:05:38 +00004709<div class="doc_text">
Chris Lattner6a4a0492004-09-27 21:51:25 +00004710
Chris Lattner26ca62e2003-10-18 05:51:36 +00004711<h5>Syntax:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004712
4713<pre>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004714 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattner6a4a0492004-09-27 21:51:25 +00004715</pre>
4716
Chris Lattner26ca62e2003-10-18 05:51:36 +00004717<h5>Overview:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004718
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004719<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattner6a4a0492004-09-27 21:51:25 +00004720the "variable argument" area of a function call. It is used to implement the
4721<tt>va_arg</tt> macro in C.</p>
4722
Chris Lattner26ca62e2003-10-18 05:51:36 +00004723<h5>Arguments:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004724
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004725<p>This instruction takes a <tt>va_list*</tt> value and the type of
4726the argument. It returns a value of the specified argument type and
Jeff Cohen222a8a42007-04-29 01:07:00 +00004727increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004728actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004729
Chris Lattner26ca62e2003-10-18 05:51:36 +00004730<h5>Semantics:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004731
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004732<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4733type from the specified <tt>va_list</tt> and causes the
4734<tt>va_list</tt> to point to the next argument. For more information,
4735see the variable argument handling <a href="#int_varargs">Intrinsic
4736Functions</a>.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004737
4738<p>It is legal for this instruction to be called in a function which does not
4739take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman76307852003-11-08 01:05:38 +00004740function.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004741
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004742<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswell88190562005-05-16 16:17:45 +00004743href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattner6a4a0492004-09-27 21:51:25 +00004744argument.</p>
4745
Chris Lattner26ca62e2003-10-18 05:51:36 +00004746<h5>Example:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004747
4748<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4749
Dan Gohman3065b612009-01-12 23:12:39 +00004750<p>Note that the code generator does not yet fully support va_arg
4751 on many targets. Also, it does not currently support va_arg with
4752 aggregate types on any target.</p>
4753
Misha Brukman76307852003-11-08 01:05:38 +00004754</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004755
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004756<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00004757<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4758<!-- *********************************************************************** -->
Chris Lattner941515c2004-01-06 05:31:32 +00004759
Misha Brukman76307852003-11-08 01:05:38 +00004760<div class="doc_text">
Chris Lattnerfee11462004-02-12 17:01:32 +00004761
4762<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer4eefaab2007-04-01 08:04:23 +00004763well known names and semantics and are required to follow certain restrictions.
4764Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohen222a8a42007-04-29 01:07:00 +00004765language that does not require changing all of the transformations in LLVM when
Gabor Greifa54634a2007-07-06 22:07:22 +00004766adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00004767
John Criswell88190562005-05-16 16:17:45 +00004768<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohen222a8a42007-04-29 01:07:00 +00004769prefix is reserved in LLVM for intrinsic names; thus, function names may not
4770begin with this prefix. Intrinsic functions must always be external functions:
4771you cannot define the body of intrinsic functions. Intrinsic functions may
4772only be used in call or invoke instructions: it is illegal to take the address
4773of an intrinsic function. Additionally, because intrinsic functions are part
4774of the LLVM language, it is required if any are added that they be documented
4775here.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00004776
Chandler Carruth7132e002007-08-04 01:51:18 +00004777<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4778a family of functions that perform the same operation but on different data
4779types. Because LLVM can represent over 8 million different integer types,
4780overloading is used commonly to allow an intrinsic function to operate on any
4781integer type. One or more of the argument types or the result type can be
4782overloaded to accept any integer type. Argument types may also be defined as
4783exactly matching a previous argument's type or the result type. This allows an
4784intrinsic function which accepts multiple arguments, but needs all of them to
4785be of the same type, to only be overloaded with respect to a single argument or
4786the result.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00004787
Chandler Carruth7132e002007-08-04 01:51:18 +00004788<p>Overloaded intrinsics will have the names of its overloaded argument types
4789encoded into its function name, each preceded by a period. Only those types
4790which are overloaded result in a name suffix. Arguments whose type is matched
4791against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4792take an integer of any width and returns an integer of exactly the same integer
4793width. This leads to a family of functions such as
4794<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4795Only one type, the return type, is overloaded, and only one type suffix is
4796required. Because the argument's type is matched against the return type, it
4797does not require its own name suffix.</p>
Reid Spencer4eefaab2007-04-01 08:04:23 +00004798
4799<p>To learn how to add an intrinsic function, please see the
4800<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattnerfee11462004-02-12 17:01:32 +00004801</p>
4802
Misha Brukman76307852003-11-08 01:05:38 +00004803</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004804
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004805<!-- ======================================================================= -->
Chris Lattner941515c2004-01-06 05:31:32 +00004806<div class="doc_subsection">
4807 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4808</div>
4809
Misha Brukman76307852003-11-08 01:05:38 +00004810<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +00004811
Misha Brukman76307852003-11-08 01:05:38 +00004812<p>Variable argument support is defined in LLVM with the <a
Chris Lattner33337472006-01-13 23:26:01 +00004813 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner48b383b02003-11-25 01:02:51 +00004814intrinsic functions. These functions are related to the similarly
4815named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004816
Chris Lattner48b383b02003-11-25 01:02:51 +00004817<p>All of these functions operate on arguments that use a
4818target-specific value type "<tt>va_list</tt>". The LLVM assembly
4819language reference manual does not define what this type is, so all
Jeff Cohen222a8a42007-04-29 01:07:00 +00004820transformations should be prepared to handle these functions regardless of
4821the type used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004822
Chris Lattner30b868d2006-05-15 17:26:46 +00004823<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner48b383b02003-11-25 01:02:51 +00004824instruction and the variable argument handling intrinsic functions are
4825used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004826
Bill Wendling3716c5d2007-05-29 09:04:49 +00004827<div class="doc_code">
Chris Lattnerfee11462004-02-12 17:01:32 +00004828<pre>
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004829define i32 @test(i32 %X, ...) {
Chris Lattnerfee11462004-02-12 17:01:32 +00004830 ; Initialize variable argument processing
Jeff Cohen222a8a42007-04-29 01:07:00 +00004831 %ap = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004832 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004833 call void @llvm.va_start(i8* %ap2)
Chris Lattnerfee11462004-02-12 17:01:32 +00004834
4835 ; Read a single integer argument
Jeff Cohen222a8a42007-04-29 01:07:00 +00004836 %tmp = va_arg i8** %ap, i32
Chris Lattnerfee11462004-02-12 17:01:32 +00004837
4838 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohen222a8a42007-04-29 01:07:00 +00004839 %aq = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004840 %aq2 = bitcast i8** %aq to i8*
Jeff Cohen222a8a42007-04-29 01:07:00 +00004841 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004842 call void @llvm.va_end(i8* %aq2)
Chris Lattnerfee11462004-02-12 17:01:32 +00004843
4844 ; Stop processing of arguments.
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004845 call void @llvm.va_end(i8* %ap2)
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004846 ret i32 %tmp
Chris Lattnerfee11462004-02-12 17:01:32 +00004847}
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004848
4849declare void @llvm.va_start(i8*)
4850declare void @llvm.va_copy(i8*, i8*)
4851declare void @llvm.va_end(i8*)
Chris Lattnerfee11462004-02-12 17:01:32 +00004852</pre>
Misha Brukman76307852003-11-08 01:05:38 +00004853</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004854
Bill Wendling3716c5d2007-05-29 09:04:49 +00004855</div>
4856
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004857<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00004858<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004859 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00004860</div>
4861
4862
Misha Brukman76307852003-11-08 01:05:38 +00004863<div class="doc_text">
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004864<h5>Syntax:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004865<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004866<h5>Overview:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004867<p>The '<tt>llvm.va_start</tt>' intrinsic initializes
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004868<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4869href="#i_va_arg">va_arg</a></tt>.</p>
4870
4871<h5>Arguments:</h5>
4872
Dan Gohmanef9462f2008-10-14 16:51:45 +00004873<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004874
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004875<h5>Semantics:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004876
Dan Gohmanef9462f2008-10-14 16:51:45 +00004877<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004878macro available in C. In a target-dependent way, it initializes the
Jeff Cohen222a8a42007-04-29 01:07:00 +00004879<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004880<tt>va_arg</tt> will produce the first variable argument passed to the function.
4881Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohen222a8a42007-04-29 01:07:00 +00004882last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004883
Misha Brukman76307852003-11-08 01:05:38 +00004884</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004885
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004886<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00004887<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004888 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00004889</div>
4890
Misha Brukman76307852003-11-08 01:05:38 +00004891<div class="doc_text">
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004892<h5>Syntax:</h5>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00004893<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004894<h5>Overview:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004895
Jeff Cohen222a8a42007-04-29 01:07:00 +00004896<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencer96a5f022007-04-04 02:42:35 +00004897which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner48b383b02003-11-25 01:02:51 +00004898or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004899
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004900<h5>Arguments:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004901
Jeff Cohen222a8a42007-04-29 01:07:00 +00004902<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004903
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004904<h5>Semantics:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004905
Misha Brukman76307852003-11-08 01:05:38 +00004906<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004907macro available in C. In a target-dependent way, it destroys the
4908<tt>va_list</tt> element to which the argument points. Calls to <a
4909href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4910<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4911<tt>llvm.va_end</tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004912
Misha Brukman76307852003-11-08 01:05:38 +00004913</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004914
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004915<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00004916<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004917 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00004918</div>
4919
Misha Brukman76307852003-11-08 01:05:38 +00004920<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +00004921
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004922<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004923
4924<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00004925 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattner757528b0b2004-05-23 21:06:01 +00004926</pre>
4927
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004928<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004929
Jeff Cohen222a8a42007-04-29 01:07:00 +00004930<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4931from the source argument list to the destination argument list.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004932
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004933<h5>Arguments:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004934
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004935<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharth5305ea52005-06-22 20:38:11 +00004936The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004937
Chris Lattner757528b0b2004-05-23 21:06:01 +00004938
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004939<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004940
Jeff Cohen222a8a42007-04-29 01:07:00 +00004941<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4942macro available in C. In a target-dependent way, it copies the source
4943<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4944intrinsic is necessary because the <tt><a href="#int_va_start">
4945llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4946example, memory allocation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004947
Misha Brukman76307852003-11-08 01:05:38 +00004948</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004949
Chris Lattnerfee11462004-02-12 17:01:32 +00004950<!-- ======================================================================= -->
4951<div class="doc_subsection">
Chris Lattner757528b0b2004-05-23 21:06:01 +00004952 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4953</div>
4954
4955<div class="doc_text">
4956
4957<p>
4958LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner67c37d12008-08-05 18:29:16 +00004959Collection</a> (GC) requires the implementation and generation of these
4960intrinsics.
Reid Spencer96a5f022007-04-04 02:42:35 +00004961These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattner757528b0b2004-05-23 21:06:01 +00004962stack</a>, as well as garbage collector implementations that require <a
Reid Spencer96a5f022007-04-04 02:42:35 +00004963href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattner757528b0b2004-05-23 21:06:01 +00004964Front-ends for type-safe garbage collected languages should generate these
4965intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4966href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4967</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00004968
4969<p>The garbage collection intrinsics only operate on objects in the generic
4970 address space (address space zero).</p>
4971
Chris Lattner757528b0b2004-05-23 21:06:01 +00004972</div>
4973
4974<!-- _______________________________________________________________________ -->
4975<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004976 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004977</div>
4978
4979<div class="doc_text">
4980
4981<h5>Syntax:</h5>
4982
4983<pre>
Chris Lattner12477732007-09-21 17:30:40 +00004984 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattner757528b0b2004-05-23 21:06:01 +00004985</pre>
4986
4987<h5>Overview:</h5>
4988
John Criswelldfe6a862004-12-10 15:51:16 +00004989<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattner757528b0b2004-05-23 21:06:01 +00004990the code generator, and allows some metadata to be associated with it.</p>
4991
4992<h5>Arguments:</h5>
4993
4994<p>The first argument specifies the address of a stack object that contains the
4995root pointer. The second pointer (which must be either a constant or a global
4996value address) contains the meta-data to be associated with the root.</p>
4997
4998<h5>Semantics:</h5>
4999
Chris Lattner851b7712008-04-24 05:59:56 +00005000<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattner757528b0b2004-05-23 21:06:01 +00005001location. At compile-time, the code generator generates information to allow
Gordon Henriksenfb56bde2007-12-25 02:31:26 +00005002the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5003intrinsic may only be used in a function which <a href="#gc">specifies a GC
5004algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005005
5006</div>
5007
5008
5009<!-- _______________________________________________________________________ -->
5010<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005011 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005012</div>
5013
5014<div class="doc_text">
5015
5016<h5>Syntax:</h5>
5017
5018<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005019 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005020</pre>
5021
5022<h5>Overview:</h5>
5023
5024<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
5025locations, allowing garbage collector implementations that require read
5026barriers.</p>
5027
5028<h5>Arguments:</h5>
5029
Chris Lattnerf9228072006-03-14 20:02:51 +00005030<p>The second argument is the address to read from, which should be an address
5031allocated from the garbage collector. The first object is a pointer to the
5032start of the referenced object, if needed by the language runtime (otherwise
5033null).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005034
5035<h5>Semantics:</h5>
5036
5037<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
5038instruction, but may be replaced with substantially more complex code by the
Gordon Henriksenfb56bde2007-12-25 02:31:26 +00005039garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5040may only be used in a function which <a href="#gc">specifies a GC
5041algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005042
5043</div>
5044
5045
5046<!-- _______________________________________________________________________ -->
5047<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005048 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005049</div>
5050
5051<div class="doc_text">
5052
5053<h5>Syntax:</h5>
5054
5055<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005056 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005057</pre>
5058
5059<h5>Overview:</h5>
5060
5061<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
5062locations, allowing garbage collector implementations that require write
5063barriers (such as generational or reference counting collectors).</p>
5064
5065<h5>Arguments:</h5>
5066
Chris Lattnerf9228072006-03-14 20:02:51 +00005067<p>The first argument is the reference to store, the second is the start of the
5068object to store it to, and the third is the address of the field of Obj to
5069store to. If the runtime does not require a pointer to the object, Obj may be
5070null.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005071
5072<h5>Semantics:</h5>
5073
5074<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
5075instruction, but may be replaced with substantially more complex code by the
Gordon Henriksenfb56bde2007-12-25 02:31:26 +00005076garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5077may only be used in a function which <a href="#gc">specifies a GC
5078algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005079
5080</div>
5081
5082
5083
5084<!-- ======================================================================= -->
5085<div class="doc_subsection">
Chris Lattner3649c3a2004-02-14 04:08:35 +00005086 <a name="int_codegen">Code Generator Intrinsics</a>
5087</div>
5088
5089<div class="doc_text">
5090<p>
5091These intrinsics are provided by LLVM to expose special features that may only
5092be implemented with code generator support.
5093</p>
5094
5095</div>
5096
5097<!-- _______________________________________________________________________ -->
5098<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005099 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005100</div>
5101
5102<div class="doc_text">
5103
5104<h5>Syntax:</h5>
5105<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005106 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005107</pre>
5108
5109<h5>Overview:</h5>
5110
5111<p>
Chris Lattnerc1fb4262006-10-15 20:05:59 +00005112The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5113target-specific value indicating the return address of the current function
5114or one of its callers.
Chris Lattner3649c3a2004-02-14 04:08:35 +00005115</p>
5116
5117<h5>Arguments:</h5>
5118
5119<p>
5120The argument to this intrinsic indicates which function to return the address
5121for. Zero indicates the calling function, one indicates its caller, etc. The
5122argument is <b>required</b> to be a constant integer value.
5123</p>
5124
5125<h5>Semantics:</h5>
5126
5127<p>
5128The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
5129the return address of the specified call frame, or zero if it cannot be
5130identified. The value returned by this intrinsic is likely to be incorrect or 0
5131for arguments other than zero, so it should only be used for debugging purposes.
5132</p>
5133
5134<p>
5135Note that calling this intrinsic does not prevent function inlining or other
Chris Lattner2e6eb5f2005-03-07 20:30:51 +00005136aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner3649c3a2004-02-14 04:08:35 +00005137source-language caller.
5138</p>
5139</div>
5140
5141
5142<!-- _______________________________________________________________________ -->
5143<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005144 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005145</div>
5146
5147<div class="doc_text">
5148
5149<h5>Syntax:</h5>
5150<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005151 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005152</pre>
5153
5154<h5>Overview:</h5>
5155
5156<p>
Chris Lattnerc1fb4262006-10-15 20:05:59 +00005157The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5158target-specific frame pointer value for the specified stack frame.
Chris Lattner3649c3a2004-02-14 04:08:35 +00005159</p>
5160
5161<h5>Arguments:</h5>
5162
5163<p>
5164The argument to this intrinsic indicates which function to return the frame
5165pointer for. Zero indicates the calling function, one indicates its caller,
5166etc. The argument is <b>required</b> to be a constant integer value.
5167</p>
5168
5169<h5>Semantics:</h5>
5170
5171<p>
5172The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
5173the frame address of the specified call frame, or zero if it cannot be
5174identified. The value returned by this intrinsic is likely to be incorrect or 0
5175for arguments other than zero, so it should only be used for debugging purposes.
5176</p>
5177
5178<p>
5179Note that calling this intrinsic does not prevent function inlining or other
Chris Lattner2e6eb5f2005-03-07 20:30:51 +00005180aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner3649c3a2004-02-14 04:08:35 +00005181source-language caller.
5182</p>
5183</div>
5184
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005185<!-- _______________________________________________________________________ -->
5186<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005187 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005188</div>
5189
5190<div class="doc_text">
5191
5192<h5>Syntax:</h5>
5193<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005194 declare i8 *@llvm.stacksave()
Chris Lattner2f0f0012006-01-13 02:03:13 +00005195</pre>
5196
5197<h5>Overview:</h5>
5198
5199<p>
5200The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencer96a5f022007-04-04 02:42:35 +00005201the function stack, for use with <a href="#int_stackrestore">
Chris Lattner2f0f0012006-01-13 02:03:13 +00005202<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
5203features like scoped automatic variable sized arrays in C99.
5204</p>
5205
5206<h5>Semantics:</h5>
5207
5208<p>
5209This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencer96a5f022007-04-04 02:42:35 +00005210href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner2f0f0012006-01-13 02:03:13 +00005211<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
5212<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
5213state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
5214practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
5215that were allocated after the <tt>llvm.stacksave</tt> was executed.
5216</p>
5217
5218</div>
5219
5220<!-- _______________________________________________________________________ -->
5221<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005222 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005223</div>
5224
5225<div class="doc_text">
5226
5227<h5>Syntax:</h5>
5228<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005229 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner2f0f0012006-01-13 02:03:13 +00005230</pre>
5231
5232<h5>Overview:</h5>
5233
5234<p>
5235The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5236the function stack to the state it was in when the corresponding <a
Reid Spencer96a5f022007-04-04 02:42:35 +00005237href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner2f0f0012006-01-13 02:03:13 +00005238useful for implementing language features like scoped automatic variable sized
5239arrays in C99.
5240</p>
5241
5242<h5>Semantics:</h5>
5243
5244<p>
Reid Spencer96a5f022007-04-04 02:42:35 +00005245See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner2f0f0012006-01-13 02:03:13 +00005246</p>
5247
5248</div>
5249
5250
5251<!-- _______________________________________________________________________ -->
5252<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005253 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005254</div>
5255
5256<div class="doc_text">
5257
5258<h5>Syntax:</h5>
5259<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005260 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005261</pre>
5262
5263<h5>Overview:</h5>
5264
5265
5266<p>
5267The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswell88190562005-05-16 16:17:45 +00005268a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
5269no
5270effect on the behavior of the program but can change its performance
Chris Lattnerff851072005-02-28 19:47:14 +00005271characteristics.
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005272</p>
5273
5274<h5>Arguments:</h5>
5275
5276<p>
5277<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
5278determining if the fetch should be for a read (0) or write (1), and
5279<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattnerd3e641c2005-03-07 20:31:38 +00005280locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005281<tt>locality</tt> arguments must be constant integers.
5282</p>
5283
5284<h5>Semantics:</h5>
5285
5286<p>
5287This intrinsic does not modify the behavior of the program. In particular,
5288prefetches cannot trap and do not produce a value. On targets that support this
5289intrinsic, the prefetch can provide hints to the processor cache for better
5290performance.
5291</p>
5292
5293</div>
5294
Andrew Lenharthb4427912005-03-28 20:05:49 +00005295<!-- _______________________________________________________________________ -->
5296<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005297 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005298</div>
5299
5300<div class="doc_text">
5301
5302<h5>Syntax:</h5>
5303<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005304 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharthb4427912005-03-28 20:05:49 +00005305</pre>
5306
5307<h5>Overview:</h5>
5308
5309
5310<p>
John Criswell88190562005-05-16 16:17:45 +00005311The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattner67c37d12008-08-05 18:29:16 +00005312(PC) in a region of
5313code to simulators and other tools. The method is target specific, but it is
5314expected that the marker will use exported symbols to transmit the PC of the
5315marker.
5316The marker makes no guarantees that it will remain with any specific instruction
5317after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb40261e2006-03-24 07:16:10 +00005318optimizations. The intended use is to be inserted after optimizations to allow
John Criswell88190562005-05-16 16:17:45 +00005319correlations of simulation runs.
Andrew Lenharthb4427912005-03-28 20:05:49 +00005320</p>
5321
5322<h5>Arguments:</h5>
5323
5324<p>
5325<tt>id</tt> is a numerical id identifying the marker.
5326</p>
5327
5328<h5>Semantics:</h5>
5329
5330<p>
5331This intrinsic does not modify the behavior of the program. Backends that do not
5332support this intrinisic may ignore it.
5333</p>
5334
5335</div>
5336
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005337<!-- _______________________________________________________________________ -->
5338<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005339 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005340</div>
5341
5342<div class="doc_text">
5343
5344<h5>Syntax:</h5>
5345<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005346 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005347</pre>
5348
5349<h5>Overview:</h5>
5350
5351
5352<p>
5353The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5354counter register (or similar low latency, high accuracy clocks) on those targets
5355that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5356As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5357should only be used for small timings.
5358</p>
5359
5360<h5>Semantics:</h5>
5361
5362<p>
5363When directly supported, reading the cycle counter should not modify any memory.
5364Implementations are allowed to either return a application specific value or a
5365system wide value. On backends without support, this is lowered to a constant 0.
5366</p>
5367
5368</div>
5369
Chris Lattner3649c3a2004-02-14 04:08:35 +00005370<!-- ======================================================================= -->
5371<div class="doc_subsection">
Chris Lattnerfee11462004-02-12 17:01:32 +00005372 <a name="int_libc">Standard C Library Intrinsics</a>
5373</div>
5374
5375<div class="doc_text">
5376<p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005377LLVM provides intrinsics for a few important standard C library functions.
5378These intrinsics allow source-language front-ends to pass information about the
5379alignment of the pointer arguments to the code generator, providing opportunity
5380for more efficient code generation.
Chris Lattnerfee11462004-02-12 17:01:32 +00005381</p>
5382
5383</div>
5384
5385<!-- _______________________________________________________________________ -->
5386<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005387 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattnerfee11462004-02-12 17:01:32 +00005388</div>
5389
5390<div class="doc_text">
5391
5392<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00005393<p>This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit
5394width. Not all targets support all bit widths however.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005395<pre>
Chris Lattnerdd708342008-11-21 16:42:48 +00005396 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5397 i8 &lt;len&gt;, i32 &lt;align&gt;)
5398 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5399 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005400 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005401 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005402 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005403 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerfee11462004-02-12 17:01:32 +00005404</pre>
5405
5406<h5>Overview:</h5>
5407
5408<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005409The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattnerfee11462004-02-12 17:01:32 +00005410location to the destination location.
5411</p>
5412
5413<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005414Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5415intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattnerfee11462004-02-12 17:01:32 +00005416</p>
5417
5418<h5>Arguments:</h5>
5419
5420<p>
5421The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner0c8b2592006-03-03 00:07:20 +00005422the source. The third argument is an integer argument
Chris Lattnerfee11462004-02-12 17:01:32 +00005423specifying the number of bytes to copy, and the fourth argument is the alignment
5424of the source and destination locations.
5425</p>
5426
Chris Lattner4c67c482004-02-12 21:18:15 +00005427<p>
5428If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattner5316e5d2006-03-04 00:02:10 +00005429the caller guarantees that both the source and destination pointers are aligned
5430to that boundary.
Chris Lattner4c67c482004-02-12 21:18:15 +00005431</p>
5432
Chris Lattnerfee11462004-02-12 17:01:32 +00005433<h5>Semantics:</h5>
5434
5435<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005436The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattnerfee11462004-02-12 17:01:32 +00005437location to the destination location, which are not allowed to overlap. It
5438copies "len" bytes of memory over. If the argument is known to be aligned to
5439some boundary, this can be specified as the fourth argument, otherwise it should
5440be set to 0 or 1.
5441</p>
5442</div>
5443
5444
Chris Lattnerf30152e2004-02-12 18:10:10 +00005445<!-- _______________________________________________________________________ -->
5446<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005447 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005448</div>
5449
5450<div class="doc_text">
5451
5452<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00005453<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
5454width. Not all targets support all bit widths however.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005455<pre>
Chris Lattnerdd708342008-11-21 16:42:48 +00005456 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5457 i8 &lt;len&gt;, i32 &lt;align&gt;)
5458 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5459 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005460 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005461 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005462 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005463 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerf30152e2004-02-12 18:10:10 +00005464</pre>
5465
5466<h5>Overview:</h5>
5467
5468<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005469The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5470location to the destination location. It is similar to the
Chris Lattnerec564022008-01-06 19:51:52 +00005471'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattnerf30152e2004-02-12 18:10:10 +00005472</p>
5473
5474<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005475Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5476intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattnerf30152e2004-02-12 18:10:10 +00005477</p>
5478
5479<h5>Arguments:</h5>
5480
5481<p>
5482The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner0c8b2592006-03-03 00:07:20 +00005483the source. The third argument is an integer argument
Chris Lattnerf30152e2004-02-12 18:10:10 +00005484specifying the number of bytes to copy, and the fourth argument is the alignment
5485of the source and destination locations.
5486</p>
5487
Chris Lattner4c67c482004-02-12 21:18:15 +00005488<p>
5489If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattner5316e5d2006-03-04 00:02:10 +00005490the caller guarantees that the source and destination pointers are aligned to
5491that boundary.
Chris Lattner4c67c482004-02-12 21:18:15 +00005492</p>
5493
Chris Lattnerf30152e2004-02-12 18:10:10 +00005494<h5>Semantics:</h5>
5495
5496<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005497The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattnerf30152e2004-02-12 18:10:10 +00005498location to the destination location, which may overlap. It
5499copies "len" bytes of memory over. If the argument is known to be aligned to
5500some boundary, this can be specified as the fourth argument, otherwise it should
5501be set to 0 or 1.
5502</p>
5503</div>
5504
Chris Lattner941515c2004-01-06 05:31:32 +00005505
Chris Lattner3649c3a2004-02-14 04:08:35 +00005506<!-- _______________________________________________________________________ -->
5507<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005508 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005509</div>
5510
5511<div class="doc_text">
5512
5513<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00005514<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
5515width. Not all targets support all bit widths however.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005516<pre>
Chris Lattnerdd708342008-11-21 16:42:48 +00005517 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5518 i8 &lt;len&gt;, i32 &lt;align&gt;)
5519 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5520 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005521 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005522 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005523 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005524 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005525</pre>
5526
5527<h5>Overview:</h5>
5528
5529<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005530The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner3649c3a2004-02-14 04:08:35 +00005531byte value.
5532</p>
5533
5534<p>
5535Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5536does not return a value, and takes an extra alignment argument.
5537</p>
5538
5539<h5>Arguments:</h5>
5540
5541<p>
5542The first argument is a pointer to the destination to fill, the second is the
Chris Lattner0c8b2592006-03-03 00:07:20 +00005543byte value to fill it with, the third argument is an integer
Chris Lattner3649c3a2004-02-14 04:08:35 +00005544argument specifying the number of bytes to fill, and the fourth argument is the
5545known alignment of destination location.
5546</p>
5547
5548<p>
5549If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattner5316e5d2006-03-04 00:02:10 +00005550the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner3649c3a2004-02-14 04:08:35 +00005551</p>
5552
5553<h5>Semantics:</h5>
5554
5555<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005556The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5557the
Chris Lattner3649c3a2004-02-14 04:08:35 +00005558destination location. If the argument is known to be aligned to some boundary,
5559this can be specified as the fourth argument, otherwise it should be set to 0 or
55601.
5561</p>
5562</div>
5563
5564
Chris Lattner3b4f4372004-06-11 02:28:03 +00005565<!-- _______________________________________________________________________ -->
5566<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005567 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005568</div>
5569
5570<div class="doc_text">
5571
5572<h5>Syntax:</h5>
Dale Johannesendd89d272007-10-02 17:47:38 +00005573<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohmanb6324c12007-10-15 20:30:11 +00005574floating point or vector of floating point type. Not all targets support all
Dan Gohmanef9462f2008-10-14 16:51:45 +00005575types however.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005576<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00005577 declare float @llvm.sqrt.f32(float %Val)
5578 declare double @llvm.sqrt.f64(double %Val)
5579 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5580 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5581 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005582</pre>
5583
5584<h5>Overview:</h5>
5585
5586<p>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00005587The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohmanb6324c12007-10-15 20:30:11 +00005588returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005589<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner00d7cb92008-01-29 07:00:44 +00005590negative numbers other than -0.0 (which allows for better optimization, because
5591there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5592defined to return -0.0 like IEEE sqrt.
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005593</p>
5594
5595<h5>Arguments:</h5>
5596
5597<p>
5598The argument and return value are floating point numbers of the same type.
5599</p>
5600
5601<h5>Semantics:</h5>
5602
5603<p>
Dan Gohman33988db2007-07-16 14:37:41 +00005604This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005605floating point number.
5606</p>
5607</div>
5608
Chris Lattner33b73f92006-09-08 06:34:02 +00005609<!-- _______________________________________________________________________ -->
5610<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005611 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattner33b73f92006-09-08 06:34:02 +00005612</div>
5613
5614<div class="doc_text">
5615
5616<h5>Syntax:</h5>
Dale Johannesendd89d272007-10-02 17:47:38 +00005617<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohmanb6324c12007-10-15 20:30:11 +00005618floating point or vector of floating point type. Not all targets support all
Dan Gohmanef9462f2008-10-14 16:51:45 +00005619types however.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00005620<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00005621 declare float @llvm.powi.f32(float %Val, i32 %power)
5622 declare double @llvm.powi.f64(double %Val, i32 %power)
5623 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5624 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5625 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattner33b73f92006-09-08 06:34:02 +00005626</pre>
5627
5628<h5>Overview:</h5>
5629
5630<p>
5631The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5632specified (positive or negative) power. The order of evaluation of
Dan Gohmanb6324c12007-10-15 20:30:11 +00005633multiplications is not defined. When a vector of floating point type is
5634used, the second argument remains a scalar integer value.
Chris Lattner33b73f92006-09-08 06:34:02 +00005635</p>
5636
5637<h5>Arguments:</h5>
5638
5639<p>
5640The second argument is an integer power, and the first is a value to raise to
5641that power.
5642</p>
5643
5644<h5>Semantics:</h5>
5645
5646<p>
5647This function returns the first value raised to the second power with an
5648unspecified sequence of rounding operations.</p>
5649</div>
5650
Dan Gohmanb6324c12007-10-15 20:30:11 +00005651<!-- _______________________________________________________________________ -->
5652<div class="doc_subsubsection">
5653 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5654</div>
5655
5656<div class="doc_text">
5657
5658<h5>Syntax:</h5>
5659<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5660floating point or vector of floating point type. Not all targets support all
Dan Gohmanef9462f2008-10-14 16:51:45 +00005661types however.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005662<pre>
5663 declare float @llvm.sin.f32(float %Val)
5664 declare double @llvm.sin.f64(double %Val)
5665 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5666 declare fp128 @llvm.sin.f128(fp128 %Val)
5667 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5668</pre>
5669
5670<h5>Overview:</h5>
5671
5672<p>
5673The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5674</p>
5675
5676<h5>Arguments:</h5>
5677
5678<p>
5679The argument and return value are floating point numbers of the same type.
5680</p>
5681
5682<h5>Semantics:</h5>
5683
5684<p>
5685This function returns the sine of the specified operand, returning the
5686same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmand0806a02007-10-17 18:05:13 +00005687conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005688</div>
5689
5690<!-- _______________________________________________________________________ -->
5691<div class="doc_subsubsection">
5692 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5693</div>
5694
5695<div class="doc_text">
5696
5697<h5>Syntax:</h5>
5698<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5699floating point or vector of floating point type. Not all targets support all
Dan Gohmanef9462f2008-10-14 16:51:45 +00005700types however.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005701<pre>
5702 declare float @llvm.cos.f32(float %Val)
5703 declare double @llvm.cos.f64(double %Val)
5704 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5705 declare fp128 @llvm.cos.f128(fp128 %Val)
5706 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5707</pre>
5708
5709<h5>Overview:</h5>
5710
5711<p>
5712The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5713</p>
5714
5715<h5>Arguments:</h5>
5716
5717<p>
5718The argument and return value are floating point numbers of the same type.
5719</p>
5720
5721<h5>Semantics:</h5>
5722
5723<p>
5724This function returns the cosine of the specified operand, returning the
5725same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmand0806a02007-10-17 18:05:13 +00005726conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005727</div>
5728
5729<!-- _______________________________________________________________________ -->
5730<div class="doc_subsubsection">
5731 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5732</div>
5733
5734<div class="doc_text">
5735
5736<h5>Syntax:</h5>
5737<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5738floating point or vector of floating point type. Not all targets support all
Dan Gohmanef9462f2008-10-14 16:51:45 +00005739types however.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005740<pre>
5741 declare float @llvm.pow.f32(float %Val, float %Power)
5742 declare double @llvm.pow.f64(double %Val, double %Power)
5743 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5744 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5745 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5746</pre>
5747
5748<h5>Overview:</h5>
5749
5750<p>
5751The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5752specified (positive or negative) power.
5753</p>
5754
5755<h5>Arguments:</h5>
5756
5757<p>
5758The second argument is a floating point power, and the first is a value to
5759raise to that power.
5760</p>
5761
5762<h5>Semantics:</h5>
5763
5764<p>
5765This function returns the first value raised to the second power,
5766returning the
5767same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmand0806a02007-10-17 18:05:13 +00005768conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005769</div>
5770
Chris Lattner33b73f92006-09-08 06:34:02 +00005771
Andrew Lenharth1d463522005-05-03 18:01:48 +00005772<!-- ======================================================================= -->
5773<div class="doc_subsection">
Nate Begeman0f223bb2006-01-13 23:26:38 +00005774 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005775</div>
5776
5777<div class="doc_text">
5778<p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00005779LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005780These allow efficient code generation for some algorithms.
5781</p>
5782
5783</div>
5784
5785<!-- _______________________________________________________________________ -->
5786<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005787 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman0f223bb2006-01-13 23:26:38 +00005788</div>
5789
5790<div class="doc_text">
5791
5792<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005793<p>This is an overloaded intrinsic function. You can use bswap on any integer
Dan Gohmanef9462f2008-10-14 16:51:45 +00005794type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00005795<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005796 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5797 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5798 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman0f223bb2006-01-13 23:26:38 +00005799</pre>
5800
5801<h5>Overview:</h5>
5802
5803<p>
Reid Spencerf361c4f2007-04-02 02:25:19 +00005804The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer4eefaab2007-04-01 08:04:23 +00005805values with an even number of bytes (positive multiple of 16 bits). These are
5806useful for performing operations on data that is not in the target's native
5807byte order.
Nate Begeman0f223bb2006-01-13 23:26:38 +00005808</p>
5809
5810<h5>Semantics:</h5>
5811
5812<p>
Chandler Carruth7132e002007-08-04 01:51:18 +00005813The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005814and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5815intrinsic returns an i32 value that has the four bytes of the input i32
5816swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth7132e002007-08-04 01:51:18 +00005817i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5818<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer4eefaab2007-04-01 08:04:23 +00005819additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman0f223bb2006-01-13 23:26:38 +00005820</p>
5821
5822</div>
5823
5824<!-- _______________________________________________________________________ -->
5825<div class="doc_subsubsection">
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00005826 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005827</div>
5828
5829<div class="doc_text">
5830
5831<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005832<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Dan Gohmanef9462f2008-10-14 16:51:45 +00005833width. Not all targets support all bit widths however.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005834<pre>
Bill Wendlingf4d70622009-02-08 01:40:31 +00005835 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00005836 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005837 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00005838 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5839 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00005840</pre>
5841
5842<h5>Overview:</h5>
5843
5844<p>
Chris Lattner069b5bd2006-01-16 22:38:59 +00005845The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5846value.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005847</p>
5848
5849<h5>Arguments:</h5>
5850
5851<p>
Chris Lattner573f64e2005-05-07 01:46:40 +00005852The only argument is the value to be counted. The argument may be of any
Reid Spencer3e628eb92007-01-04 16:43:23 +00005853integer type. The return type must match the argument type.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005854</p>
5855
5856<h5>Semantics:</h5>
5857
5858<p>
5859The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5860</p>
5861</div>
5862
5863<!-- _______________________________________________________________________ -->
5864<div class="doc_subsubsection">
Chris Lattnerb748c672006-01-16 22:34:14 +00005865 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005866</div>
5867
5868<div class="doc_text">
5869
5870<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005871<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Dan Gohmanef9462f2008-10-14 16:51:45 +00005872integer bit width. Not all targets support all bit widths however.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005873<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005874 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5875 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005876 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00005877 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5878 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00005879</pre>
5880
5881<h5>Overview:</h5>
5882
5883<p>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00005884The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5885leading zeros in a variable.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005886</p>
5887
5888<h5>Arguments:</h5>
5889
5890<p>
Chris Lattner573f64e2005-05-07 01:46:40 +00005891The only argument is the value to be counted. The argument may be of any
Reid Spencer3e628eb92007-01-04 16:43:23 +00005892integer type. The return type must match the argument type.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005893</p>
5894
5895<h5>Semantics:</h5>
5896
5897<p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005898The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5899in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005900of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005901</p>
5902</div>
Chris Lattner3b4f4372004-06-11 02:28:03 +00005903
5904
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005905
5906<!-- _______________________________________________________________________ -->
5907<div class="doc_subsubsection">
Chris Lattnerb748c672006-01-16 22:34:14 +00005908 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005909</div>
5910
5911<div class="doc_text">
5912
5913<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005914<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Dan Gohmanef9462f2008-10-14 16:51:45 +00005915integer bit width. Not all targets support all bit widths however.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005916<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005917 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5918 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005919 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00005920 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5921 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005922</pre>
5923
5924<h5>Overview:</h5>
5925
5926<p>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00005927The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5928trailing zeros.
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005929</p>
5930
5931<h5>Arguments:</h5>
5932
5933<p>
5934The only argument is the value to be counted. The argument may be of any
Reid Spencer3e628eb92007-01-04 16:43:23 +00005935integer type. The return type must match the argument type.
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005936</p>
5937
5938<h5>Semantics:</h5>
5939
5940<p>
5941The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5942in a variable. If the src == 0 then the result is the size in bits of the type
5943of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5944</p>
5945</div>
5946
Bill Wendlingf4d70622009-02-08 01:40:31 +00005947
Bill Wendlingfd2bd722009-02-08 04:04:40 +00005948<!-- ======================================================================= -->
5949<div class="doc_subsection">
5950 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
5951</div>
5952
5953<div class="doc_text">
5954<p>
5955LLVM provides intrinsics for some arithmetic with overflow operations.
5956</p>
5957
5958</div>
5959
Bill Wendlingf4d70622009-02-08 01:40:31 +00005960<!-- _______________________________________________________________________ -->
5961<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00005962 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00005963</div>
5964
5965<div class="doc_text">
5966
5967<h5>Syntax:</h5>
5968
5969<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00005970on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00005971
5972<pre>
5973 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
5974 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
5975 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
5976</pre>
5977
5978<h5>Overview:</h5>
5979
5980<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
5981a signed addition of the two arguments, and indicate whether an overflow
5982occurred during the signed summation.</p>
5983
5984<h5>Arguments:</h5>
5985
5986<p>The arguments (%a and %b) and the first element of the result structure may
5987be of integer types of any bit width, but they must have the same bit width. The
5988second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
5989and <tt>%b</tt> are the two values that will undergo signed addition.</p>
5990
5991<h5>Semantics:</h5>
5992
5993<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
5994a signed addition of the two variables. They return a structure &mdash; the
5995first element of which is the signed summation, and the second element of which
5996is a bit specifying if the signed summation resulted in an overflow.</p>
5997
5998<h5>Examples:</h5>
5999<pre>
6000 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6001 %sum = extractvalue {i32, i1} %res, 0
6002 %obit = extractvalue {i32, i1} %res, 1
6003 br i1 %obit, label %overflow, label %normal
6004</pre>
6005
6006</div>
6007
6008<!-- _______________________________________________________________________ -->
6009<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006010 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006011</div>
6012
6013<div class="doc_text">
6014
6015<h5>Syntax:</h5>
6016
6017<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006018on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006019
6020<pre>
6021 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6022 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6023 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6024</pre>
6025
6026<h5>Overview:</h5>
6027
6028<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6029an unsigned addition of the two arguments, and indicate whether a carry occurred
6030during the unsigned summation.</p>
6031
6032<h5>Arguments:</h5>
6033
6034<p>The arguments (%a and %b) and the first element of the result structure may
6035be of integer types of any bit width, but they must have the same bit width. The
6036second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6037and <tt>%b</tt> are the two values that will undergo unsigned addition.</p>
6038
6039<h5>Semantics:</h5>
6040
6041<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6042an unsigned addition of the two arguments. They return a structure &mdash; the
6043first element of which is the sum, and the second element of which is a bit
6044specifying if the unsigned summation resulted in a carry.</p>
6045
6046<h5>Examples:</h5>
6047<pre>
6048 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6049 %sum = extractvalue {i32, i1} %res, 0
6050 %obit = extractvalue {i32, i1} %res, 1
6051 br i1 %obit, label %carry, label %normal
6052</pre>
6053
6054</div>
6055
6056<!-- _______________________________________________________________________ -->
6057<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006058 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006059</div>
6060
6061<div class="doc_text">
6062
6063<h5>Syntax:</h5>
6064
6065<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006066on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006067
6068<pre>
6069 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6070 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6071 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6072</pre>
6073
6074<h5>Overview:</h5>
6075
6076<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6077a signed subtraction of the two arguments, and indicate whether an overflow
6078occurred during the signed subtraction.</p>
6079
6080<h5>Arguments:</h5>
6081
6082<p>The arguments (%a and %b) and the first element of the result structure may
6083be of integer types of any bit width, but they must have the same bit width. The
6084second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6085and <tt>%b</tt> are the two values that will undergo signed subtraction.</p>
6086
6087<h5>Semantics:</h5>
6088
6089<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6090a signed subtraction of the two arguments. They return a structure &mdash; the
6091first element of which is the subtraction, and the second element of which is a bit
6092specifying if the signed subtraction resulted in an overflow.</p>
6093
6094<h5>Examples:</h5>
6095<pre>
6096 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6097 %sum = extractvalue {i32, i1} %res, 0
6098 %obit = extractvalue {i32, i1} %res, 1
6099 br i1 %obit, label %overflow, label %normal
6100</pre>
6101
6102</div>
6103
6104<!-- _______________________________________________________________________ -->
6105<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006106 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006107</div>
6108
6109<div class="doc_text">
6110
6111<h5>Syntax:</h5>
6112
6113<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006114on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006115
6116<pre>
6117 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6118 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6119 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6120</pre>
6121
6122<h5>Overview:</h5>
6123
6124<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6125an unsigned subtraction of the two arguments, and indicate whether an overflow
6126occurred during the unsigned subtraction.</p>
6127
6128<h5>Arguments:</h5>
6129
6130<p>The arguments (%a and %b) and the first element of the result structure may
6131be of integer types of any bit width, but they must have the same bit width. The
6132second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6133and <tt>%b</tt> are the two values that will undergo unsigned subtraction.</p>
6134
6135<h5>Semantics:</h5>
6136
6137<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6138an unsigned subtraction of the two arguments. They return a structure &mdash; the
6139first element of which is the subtraction, and the second element of which is a bit
6140specifying if the unsigned subtraction resulted in an overflow.</p>
6141
6142<h5>Examples:</h5>
6143<pre>
6144 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6145 %sum = extractvalue {i32, i1} %res, 0
6146 %obit = extractvalue {i32, i1} %res, 1
6147 br i1 %obit, label %overflow, label %normal
6148</pre>
6149
6150</div>
6151
6152<!-- _______________________________________________________________________ -->
6153<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006154 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006155</div>
6156
6157<div class="doc_text">
6158
6159<h5>Syntax:</h5>
6160
6161<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006162on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006163
6164<pre>
6165 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6166 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6167 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6168</pre>
6169
6170<h5>Overview:</h5>
6171
6172<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6173a signed multiplication of the two arguments, and indicate whether an overflow
6174occurred during the signed multiplication.</p>
6175
6176<h5>Arguments:</h5>
6177
6178<p>The arguments (%a and %b) and the first element of the result structure may
6179be of integer types of any bit width, but they must have the same bit width. The
6180second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6181and <tt>%b</tt> are the two values that will undergo signed multiplication.</p>
6182
6183<h5>Semantics:</h5>
6184
6185<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6186a signed multiplication of the two arguments. They return a structure &mdash;
6187the first element of which is the multiplication, and the second element of
6188which is a bit specifying if the signed multiplication resulted in an
6189overflow.</p>
6190
6191<h5>Examples:</h5>
6192<pre>
6193 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6194 %sum = extractvalue {i32, i1} %res, 0
6195 %obit = extractvalue {i32, i1} %res, 1
6196 br i1 %obit, label %overflow, label %normal
6197</pre>
6198
Reid Spencer5bf54c82007-04-11 23:23:49 +00006199</div>
6200
Bill Wendlingb9a73272009-02-08 23:00:09 +00006201<!-- _______________________________________________________________________ -->
6202<div class="doc_subsubsection">
6203 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6204</div>
6205
6206<div class="doc_text">
6207
6208<h5>Syntax:</h5>
6209
6210<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
6211on any integer bit width.</p>
6212
6213<pre>
6214 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6215 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6216 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6217</pre>
6218
6219<h5>Overview:</h5>
6220
Bill Wendlingb9a73272009-02-08 23:00:09 +00006221<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6222a unsigned multiplication of the two arguments, and indicate whether an overflow
6223occurred during the unsigned multiplication.</p>
6224
6225<h5>Arguments:</h5>
6226
6227<p>The arguments (%a and %b) and the first element of the result structure may
6228be of integer types of any bit width, but they must have the same bit width. The
6229second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6230and <tt>%b</tt> are the two values that will undergo unsigned
6231multiplication.</p>
6232
6233<h5>Semantics:</h5>
6234
6235<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6236an unsigned multiplication of the two arguments. They return a structure &mdash;
6237the first element of which is the multiplication, and the second element of
6238which is a bit specifying if the unsigned multiplication resulted in an
6239overflow.</p>
6240
6241<h5>Examples:</h5>
6242<pre>
6243 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6244 %sum = extractvalue {i32, i1} %res, 0
6245 %obit = extractvalue {i32, i1} %res, 1
6246 br i1 %obit, label %overflow, label %normal
6247</pre>
6248
6249</div>
6250
Chris Lattner941515c2004-01-06 05:31:32 +00006251<!-- ======================================================================= -->
6252<div class="doc_subsection">
6253 <a name="int_debugger">Debugger Intrinsics</a>
6254</div>
6255
6256<div class="doc_text">
6257<p>
6258The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
6259are described in the <a
6260href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
6261Debugging</a> document.
6262</p>
6263</div>
6264
6265
Jim Laskey2211f492007-03-14 19:31:19 +00006266<!-- ======================================================================= -->
6267<div class="doc_subsection">
6268 <a name="int_eh">Exception Handling Intrinsics</a>
6269</div>
6270
6271<div class="doc_text">
6272<p> The LLVM exception handling intrinsics (which all start with
6273<tt>llvm.eh.</tt> prefix), are described in the <a
6274href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6275Handling</a> document. </p>
6276</div>
6277
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006278<!-- ======================================================================= -->
6279<div class="doc_subsection">
Duncan Sands86e01192007-09-11 14:10:23 +00006280 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands644f9172007-07-27 12:58:54 +00006281</div>
6282
6283<div class="doc_text">
6284<p>
Duncan Sands86e01192007-09-11 14:10:23 +00006285 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands644f9172007-07-27 12:58:54 +00006286 the <tt>nest</tt> attribute, from a function. The result is a callable
6287 function pointer lacking the nest parameter - the caller does not need
6288 to provide a value for it. Instead, the value to use is stored in
6289 advance in a "trampoline", a block of memory usually allocated
6290 on the stack, which also contains code to splice the nest value into the
6291 argument list. This is used to implement the GCC nested function address
6292 extension.
6293</p>
6294<p>
6295 For example, if the function is
6296 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling252570f2007-09-22 09:23:55 +00006297 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands644f9172007-07-27 12:58:54 +00006298<pre>
Duncan Sands86e01192007-09-11 14:10:23 +00006299 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6300 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6301 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6302 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands644f9172007-07-27 12:58:54 +00006303</pre>
Bill Wendling252570f2007-09-22 09:23:55 +00006304 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6305 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands644f9172007-07-27 12:58:54 +00006306</div>
6307
6308<!-- _______________________________________________________________________ -->
6309<div class="doc_subsubsection">
6310 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6311</div>
6312<div class="doc_text">
6313<h5>Syntax:</h5>
6314<pre>
Duncan Sands86e01192007-09-11 14:10:23 +00006315declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands644f9172007-07-27 12:58:54 +00006316</pre>
6317<h5>Overview:</h5>
6318<p>
Duncan Sands86e01192007-09-11 14:10:23 +00006319 This fills the memory pointed to by <tt>tramp</tt> with code
6320 and returns a function pointer suitable for executing it.
Duncan Sands644f9172007-07-27 12:58:54 +00006321</p>
6322<h5>Arguments:</h5>
6323<p>
6324 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6325 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
6326 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsf2bcd372007-08-22 23:39:54 +00006327 intrinsic. Note that the size and the alignment are target-specific - LLVM
6328 currently provides no portable way of determining them, so a front-end that
6329 generates this intrinsic needs to have some target-specific knowledge.
6330 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands644f9172007-07-27 12:58:54 +00006331</p>
6332<h5>Semantics:</h5>
6333<p>
6334 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sands86e01192007-09-11 14:10:23 +00006335 dependent code, turning it into a function. A pointer to this function is
6336 returned, but needs to be bitcast to an
Duncan Sands644f9172007-07-27 12:58:54 +00006337 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sands86e01192007-09-11 14:10:23 +00006338 before being called. The new function's signature is the same as that of
6339 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
6340 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
6341 of pointer type. Calling the new function is equivalent to calling
6342 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
6343 missing <tt>nest</tt> argument. If, after calling
6344 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
6345 modified, then the effect of any later call to the returned function pointer is
6346 undefined.
Duncan Sands644f9172007-07-27 12:58:54 +00006347</p>
6348</div>
6349
6350<!-- ======================================================================= -->
6351<div class="doc_subsection">
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006352 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6353</div>
6354
6355<div class="doc_text">
6356<p>
6357 These intrinsic functions expand the "universal IR" of LLVM to represent
6358 hardware constructs for atomic operations and memory synchronization. This
6359 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattner67c37d12008-08-05 18:29:16 +00006360 is aimed at a low enough level to allow any programming models or APIs
6361 (Application Programming Interfaces) which
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006362 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
6363 hardware behavior. Just as hardware provides a "universal IR" for source
6364 languages, it also provides a starting point for developing a "universal"
6365 atomic operation and synchronization IR.
6366</p>
6367<p>
6368 These do <em>not</em> form an API such as high-level threading libraries,
6369 software transaction memory systems, atomic primitives, and intrinsic
6370 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6371 application libraries. The hardware interface provided by LLVM should allow
6372 a clean implementation of all of these APIs and parallel programming models.
6373 No one model or paradigm should be selected above others unless the hardware
6374 itself ubiquitously does so.
6375
6376</p>
6377</div>
6378
6379<!-- _______________________________________________________________________ -->
6380<div class="doc_subsubsection">
6381 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6382</div>
6383<div class="doc_text">
6384<h5>Syntax:</h5>
6385<pre>
6386declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
6387i1 &lt;device&gt; )
6388
6389</pre>
6390<h5>Overview:</h5>
6391<p>
6392 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6393 specific pairs of memory access types.
6394</p>
6395<h5>Arguments:</h5>
6396<p>
6397 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6398 The first four arguments enables a specific barrier as listed below. The fith
6399 argument specifies that the barrier applies to io or device or uncached memory.
6400
6401</p>
6402 <ul>
6403 <li><tt>ll</tt>: load-load barrier</li>
6404 <li><tt>ls</tt>: load-store barrier</li>
6405 <li><tt>sl</tt>: store-load barrier</li>
6406 <li><tt>ss</tt>: store-store barrier</li>
Dan Gohmanef9462f2008-10-14 16:51:45 +00006407 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006408 </ul>
6409<h5>Semantics:</h5>
6410<p>
6411 This intrinsic causes the system to enforce some ordering constraints upon
6412 the loads and stores of the program. This barrier does not indicate
6413 <em>when</em> any events will occur, it only enforces an <em>order</em> in
6414 which they occur. For any of the specified pairs of load and store operations
6415 (f.ex. load-load, or store-load), all of the first operations preceding the
6416 barrier will complete before any of the second operations succeeding the
6417 barrier begin. Specifically the semantics for each pairing is as follows:
6418</p>
6419 <ul>
6420 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6421 after the barrier begins.</li>
6422
6423 <li><tt>ls</tt>: All loads before the barrier must complete before any
6424 store after the barrier begins.</li>
6425 <li><tt>ss</tt>: All stores before the barrier must complete before any
6426 store after the barrier begins.</li>
6427 <li><tt>sl</tt>: All stores before the barrier must complete before any
6428 load after the barrier begins.</li>
6429 </ul>
6430<p>
6431 These semantics are applied with a logical "and" behavior when more than one
6432 is enabled in a single memory barrier intrinsic.
6433</p>
6434<p>
6435 Backends may implement stronger barriers than those requested when they do not
6436 support as fine grained a barrier as requested. Some architectures do not
6437 need all types of barriers and on such architectures, these become noops.
6438</p>
6439<h5>Example:</h5>
6440<pre>
6441%ptr = malloc i32
6442 store i32 4, %ptr
6443
6444%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6445 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6446 <i>; guarantee the above finishes</i>
6447 store i32 8, %ptr <i>; before this begins</i>
6448</pre>
6449</div>
6450
Andrew Lenharth95528942008-02-21 06:45:13 +00006451<!-- _______________________________________________________________________ -->
6452<div class="doc_subsubsection">
Mon P Wang6a490372008-06-25 08:15:39 +00006453 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharth95528942008-02-21 06:45:13 +00006454</div>
6455<div class="doc_text">
6456<h5>Syntax:</h5>
6457<p>
Mon P Wang2c839d42008-07-30 04:36:53 +00006458 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6459 any integer bit width and for different address spaces. Not all targets
6460 support all bit widths however.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006461
6462<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006463declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6464declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6465declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6466declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00006467
6468</pre>
6469<h5>Overview:</h5>
6470<p>
6471 This loads a value in memory and compares it to a given value. If they are
6472 equal, it stores a new value into the memory.
6473</p>
6474<h5>Arguments:</h5>
6475<p>
Mon P Wang6a490372008-06-25 08:15:39 +00006476 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharth95528942008-02-21 06:45:13 +00006477 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6478 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6479 this integer type. While any bit width integer may be used, targets may only
6480 lower representations they support in hardware.
6481
6482</p>
6483<h5>Semantics:</h5>
6484<p>
6485 This entire intrinsic must be executed atomically. It first loads the value
6486 in memory pointed to by <tt>ptr</tt> and compares it with the value
6487 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
6488 loaded value is yielded in all cases. This provides the equivalent of an
6489 atomic compare-and-swap operation within the SSA framework.
6490</p>
6491<h5>Examples:</h5>
6492
6493<pre>
6494%ptr = malloc i32
6495 store i32 4, %ptr
6496
6497%val1 = add i32 4, 4
Mon P Wang2c839d42008-07-30 04:36:53 +00006498%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006499 <i>; yields {i32}:result1 = 4</i>
6500%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6501%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6502
6503%val2 = add i32 1, 1
Mon P Wang2c839d42008-07-30 04:36:53 +00006504%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006505 <i>; yields {i32}:result2 = 8</i>
6506%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6507
6508%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6509</pre>
6510</div>
6511
6512<!-- _______________________________________________________________________ -->
6513<div class="doc_subsubsection">
6514 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6515</div>
6516<div class="doc_text">
6517<h5>Syntax:</h5>
6518
6519<p>
6520 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6521 integer bit width. Not all targets support all bit widths however.</p>
6522<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006523declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6524declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6525declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6526declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00006527
6528</pre>
6529<h5>Overview:</h5>
6530<p>
6531 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6532 the value from memory. It then stores the value in <tt>val</tt> in the memory
6533 at <tt>ptr</tt>.
6534</p>
6535<h5>Arguments:</h5>
6536
6537<p>
Mon P Wang6a490372008-06-25 08:15:39 +00006538 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharth95528942008-02-21 06:45:13 +00006539 <tt>val</tt> argument and the result must be integers of the same bit width.
6540 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6541 integer type. The targets may only lower integer representations they
6542 support.
6543</p>
6544<h5>Semantics:</h5>
6545<p>
6546 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6547 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6548 equivalent of an atomic swap operation within the SSA framework.
6549
6550</p>
6551<h5>Examples:</h5>
6552<pre>
6553%ptr = malloc i32
6554 store i32 4, %ptr
6555
6556%val1 = add i32 4, 4
Mon P Wang2c839d42008-07-30 04:36:53 +00006557%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006558 <i>; yields {i32}:result1 = 4</i>
6559%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6560%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6561
6562%val2 = add i32 1, 1
Mon P Wang2c839d42008-07-30 04:36:53 +00006563%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006564 <i>; yields {i32}:result2 = 8</i>
6565
6566%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6567%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6568</pre>
6569</div>
6570
6571<!-- _______________________________________________________________________ -->
6572<div class="doc_subsubsection">
Mon P Wang6a490372008-06-25 08:15:39 +00006573 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharth95528942008-02-21 06:45:13 +00006574
6575</div>
6576<div class="doc_text">
6577<h5>Syntax:</h5>
6578<p>
Mon P Wang6a490372008-06-25 08:15:39 +00006579 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharth95528942008-02-21 06:45:13 +00006580 integer bit width. Not all targets support all bit widths however.</p>
6581<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006582declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6583declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6584declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6585declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00006586
6587</pre>
6588<h5>Overview:</h5>
6589<p>
6590 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6591 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6592</p>
6593<h5>Arguments:</h5>
6594<p>
6595
6596 The intrinsic takes two arguments, the first a pointer to an integer value
6597 and the second an integer value. The result is also an integer value. These
6598 integer types can have any bit width, but they must all have the same bit
6599 width. The targets may only lower integer representations they support.
6600</p>
6601<h5>Semantics:</h5>
6602<p>
6603 This intrinsic does a series of operations atomically. It first loads the
6604 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6605 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6606</p>
6607
6608<h5>Examples:</h5>
6609<pre>
6610%ptr = malloc i32
6611 store i32 4, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006612%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006613 <i>; yields {i32}:result1 = 4</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006614%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006615 <i>; yields {i32}:result2 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006616%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006617 <i>; yields {i32}:result3 = 10</i>
Mon P Wang6a490372008-06-25 08:15:39 +00006618%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharth95528942008-02-21 06:45:13 +00006619</pre>
6620</div>
6621
Mon P Wang6a490372008-06-25 08:15:39 +00006622<!-- _______________________________________________________________________ -->
6623<div class="doc_subsubsection">
6624 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6625
6626</div>
6627<div class="doc_text">
6628<h5>Syntax:</h5>
6629<p>
6630 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wang2c839d42008-07-30 04:36:53 +00006631 any integer bit width and for different address spaces. Not all targets
6632 support all bit widths however.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006633<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006634declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6635declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6636declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6637declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006638
6639</pre>
6640<h5>Overview:</h5>
6641<p>
6642 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6643 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6644</p>
6645<h5>Arguments:</h5>
6646<p>
6647
6648 The intrinsic takes two arguments, the first a pointer to an integer value
6649 and the second an integer value. The result is also an integer value. These
6650 integer types can have any bit width, but they must all have the same bit
6651 width. The targets may only lower integer representations they support.
6652</p>
6653<h5>Semantics:</h5>
6654<p>
6655 This intrinsic does a series of operations atomically. It first loads the
6656 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6657 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6658</p>
6659
6660<h5>Examples:</h5>
6661<pre>
6662%ptr = malloc i32
6663 store i32 8, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006664%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang6a490372008-06-25 08:15:39 +00006665 <i>; yields {i32}:result1 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006666%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang6a490372008-06-25 08:15:39 +00006667 <i>; yields {i32}:result2 = 4</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006668%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang6a490372008-06-25 08:15:39 +00006669 <i>; yields {i32}:result3 = 2</i>
6670%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6671</pre>
6672</div>
6673
6674<!-- _______________________________________________________________________ -->
6675<div class="doc_subsubsection">
6676 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6677 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6678 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6679 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6680
6681</div>
6682<div class="doc_text">
6683<h5>Syntax:</h5>
6684<p>
6685 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6686 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wang2c839d42008-07-30 04:36:53 +00006687 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6688 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006689<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006690declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6691declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6692declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6693declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006694
6695</pre>
6696
6697<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006698declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6699declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6700declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6701declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006702
6703</pre>
6704
6705<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006706declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6707declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6708declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6709declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006710
6711</pre>
6712
6713<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006714declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6715declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6716declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6717declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006718
6719</pre>
6720<h5>Overview:</h5>
6721<p>
6722 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6723 the value stored in memory at <tt>ptr</tt>. It yields the original value
6724 at <tt>ptr</tt>.
6725</p>
6726<h5>Arguments:</h5>
6727<p>
6728
6729 These intrinsics take two arguments, the first a pointer to an integer value
6730 and the second an integer value. The result is also an integer value. These
6731 integer types can have any bit width, but they must all have the same bit
6732 width. The targets may only lower integer representations they support.
6733</p>
6734<h5>Semantics:</h5>
6735<p>
6736 These intrinsics does a series of operations atomically. They first load the
6737 value stored at <tt>ptr</tt>. They then do the bitwise operation
6738 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6739 value stored at <tt>ptr</tt>.
6740</p>
6741
6742<h5>Examples:</h5>
6743<pre>
6744%ptr = malloc i32
6745 store i32 0x0F0F, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006746%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6a490372008-06-25 08:15:39 +00006747 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006748%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6a490372008-06-25 08:15:39 +00006749 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006750%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6a490372008-06-25 08:15:39 +00006751 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006752%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6a490372008-06-25 08:15:39 +00006753 <i>; yields {i32}:result3 = FF</i>
6754%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6755</pre>
6756</div>
6757
6758
6759<!-- _______________________________________________________________________ -->
6760<div class="doc_subsubsection">
6761 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6762 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6763 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6764 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6765
6766</div>
6767<div class="doc_text">
6768<h5>Syntax:</h5>
6769<p>
6770 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6771 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wang2c839d42008-07-30 04:36:53 +00006772 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6773 address spaces. Not all targets
Mon P Wang6a490372008-06-25 08:15:39 +00006774 support all bit widths however.</p>
6775<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006776declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6777declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6778declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6779declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006780
6781</pre>
6782
6783<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006784declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6785declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6786declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6787declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006788
6789</pre>
6790
6791<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006792declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6793declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6794declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6795declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006796
6797</pre>
6798
6799<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006800declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6801declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6802declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6803declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006804
6805</pre>
6806<h5>Overview:</h5>
6807<p>
6808 These intrinsics takes the signed or unsigned minimum or maximum of
6809 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6810 original value at <tt>ptr</tt>.
6811</p>
6812<h5>Arguments:</h5>
6813<p>
6814
6815 These intrinsics take two arguments, the first a pointer to an integer value
6816 and the second an integer value. The result is also an integer value. These
6817 integer types can have any bit width, but they must all have the same bit
6818 width. The targets may only lower integer representations they support.
6819</p>
6820<h5>Semantics:</h5>
6821<p>
6822 These intrinsics does a series of operations atomically. They first load the
6823 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6824 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6825 the original value stored at <tt>ptr</tt>.
6826</p>
6827
6828<h5>Examples:</h5>
6829<pre>
6830%ptr = malloc i32
6831 store i32 7, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006832%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang6a490372008-06-25 08:15:39 +00006833 <i>; yields {i32}:result0 = 7</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006834%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang6a490372008-06-25 08:15:39 +00006835 <i>; yields {i32}:result1 = -2</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006836%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang6a490372008-06-25 08:15:39 +00006837 <i>; yields {i32}:result2 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006838%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang6a490372008-06-25 08:15:39 +00006839 <i>; yields {i32}:result3 = 8</i>
6840%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6841</pre>
6842</div>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006843
6844<!-- ======================================================================= -->
6845<div class="doc_subsection">
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006846 <a name="int_general">General Intrinsics</a>
6847</div>
6848
6849<div class="doc_text">
6850<p> This class of intrinsics is designed to be generic and has
6851no specific purpose. </p>
6852</div>
6853
6854<!-- _______________________________________________________________________ -->
6855<div class="doc_subsubsection">
6856 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6857</div>
6858
6859<div class="doc_text">
6860
6861<h5>Syntax:</h5>
6862<pre>
Tanya Lattnerbed1d4d2007-06-18 23:42:37 +00006863 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006864</pre>
6865
6866<h5>Overview:</h5>
6867
6868<p>
6869The '<tt>llvm.var.annotation</tt>' intrinsic
6870</p>
6871
6872<h5>Arguments:</h5>
6873
6874<p>
Tanya Lattnerbed1d4d2007-06-18 23:42:37 +00006875The first argument is a pointer to a value, the second is a pointer to a
6876global string, the third is a pointer to a global string which is the source
6877file name, and the last argument is the line number.
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006878</p>
6879
6880<h5>Semantics:</h5>
6881
6882<p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00006883This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006884This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00006885annotations. These have no other defined use, they are ignored by code
6886generation and optimization.
6887</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006888</div>
6889
Tanya Lattner293c0372007-09-21 22:59:12 +00006890<!-- _______________________________________________________________________ -->
6891<div class="doc_subsubsection">
Tanya Lattner0186a652007-09-21 23:57:59 +00006892 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattner293c0372007-09-21 22:59:12 +00006893</div>
6894
6895<div class="doc_text">
6896
6897<h5>Syntax:</h5>
Tanya Lattner23dbd572007-09-21 23:56:27 +00006898<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6899any integer bit width.
6900</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00006901<pre>
Tanya Lattnercf3e26f2007-09-22 00:03:01 +00006902 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6903 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6904 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6905 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6906 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner293c0372007-09-21 22:59:12 +00006907</pre>
6908
6909<h5>Overview:</h5>
Tanya Lattner23dbd572007-09-21 23:56:27 +00006910
6911<p>
6912The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattner293c0372007-09-21 22:59:12 +00006913</p>
6914
6915<h5>Arguments:</h5>
6916
6917<p>
6918The first argument is an integer value (result of some expression),
6919the second is a pointer to a global string, the third is a pointer to a global
6920string which is the source file name, and the last argument is the line number.
Tanya Lattner23dbd572007-09-21 23:56:27 +00006921It returns the value of the first argument.
Tanya Lattner293c0372007-09-21 22:59:12 +00006922</p>
6923
6924<h5>Semantics:</h5>
6925
6926<p>
6927This intrinsic allows annotations to be put on arbitrary expressions
6928with arbitrary strings. This can be useful for special purpose optimizations
6929that want to look for these annotations. These have no other defined use, they
6930are ignored by code generation and optimization.
Dan Gohmanef9462f2008-10-14 16:51:45 +00006931</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00006932</div>
Jim Laskey2211f492007-03-14 19:31:19 +00006933
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00006934<!-- _______________________________________________________________________ -->
6935<div class="doc_subsubsection">
6936 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6937</div>
6938
6939<div class="doc_text">
6940
6941<h5>Syntax:</h5>
6942<pre>
6943 declare void @llvm.trap()
6944</pre>
6945
6946<h5>Overview:</h5>
6947
6948<p>
6949The '<tt>llvm.trap</tt>' intrinsic
6950</p>
6951
6952<h5>Arguments:</h5>
6953
6954<p>
6955None
6956</p>
6957
6958<h5>Semantics:</h5>
6959
6960<p>
6961This intrinsics is lowered to the target dependent trap instruction. If the
6962target does not have a trap instruction, this intrinsic will be lowered to the
6963call of the abort() function.
6964</p>
6965</div>
6966
Bill Wendling14313312008-11-19 05:56:17 +00006967<!-- _______________________________________________________________________ -->
6968<div class="doc_subsubsection">
Misha Brukman50de2b22008-11-22 23:55:29 +00006969 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling14313312008-11-19 05:56:17 +00006970</div>
6971<div class="doc_text">
6972<h5>Syntax:</h5>
6973<pre>
6974declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
6975
6976</pre>
6977<h5>Overview:</h5>
6978<p>
6979 The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and stores
6980 it onto the stack at <tt>slot</tt>. The stack slot is adjusted to ensure that
6981 it is placed on the stack before local variables.
6982</p>
6983<h5>Arguments:</h5>
6984<p>
6985 The <tt>llvm.stackprotector</tt> intrinsic requires two pointer arguments. The
6986 first argument is the value loaded from the stack guard
6987 <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> that
6988 has enough space to hold the value of the guard.
6989</p>
6990<h5>Semantics:</h5>
6991<p>
6992 This intrinsic causes the prologue/epilogue inserter to force the position of
6993 the <tt>AllocaInst</tt> stack slot to be before local variables on the
6994 stack. This is to ensure that if a local variable on the stack is overwritten,
6995 it will destroy the value of the guard. When the function exits, the guard on
6996 the stack is checked against the original guard. If they're different, then
6997 the program aborts by calling the <tt>__stack_chk_fail()</tt> function.
6998</p>
6999</div>
7000
Chris Lattner2f7c9632001-06-06 20:29:01 +00007001<!-- *********************************************************************** -->
Chris Lattner2f7c9632001-06-06 20:29:01 +00007002<hr>
Misha Brukmanc501f552004-03-01 17:47:27 +00007003<address>
7004 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00007005 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00007006 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00007007 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00007008
7009 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencerca058542006-03-14 05:39:39 +00007010 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmanc501f552004-03-01 17:47:27 +00007011 Last modified: $Date$
7012</address>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00007013
Misha Brukman76307852003-11-08 01:05:38 +00007014</body>
7015</html>