blob: 0d5ad7311fbd10524a8f2442c8cf03802afc659c [file] [log] [blame]
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnera5526832010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattnerc0f58002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattnerc0f58002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#include "llvm/Transforms/Scalar.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000024#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/PostOrderIterator.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SetVector.h"
28#include "llvm/ADT/Statistic.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000029#include "llvm/IR/CFG.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000030#include "llvm/IR/Constants.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/IRBuilder.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth4220e9c2014-03-04 11:17:44 +000036#include "llvm/IR/ValueHandle.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000037#include "llvm/Pass.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000038#include "llvm/Support/Debug.h"
Chris Lattnerb25de3f2009-08-23 04:37:46 +000039#include "llvm/Support/raw_ostream.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000040#include "llvm/Transforms/Utils/Local.h"
Chris Lattner1e506502005-05-07 21:59:39 +000041#include <algorithm>
Chris Lattner49525f82004-01-09 06:02:20 +000042using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000043
Chandler Carruth964daaa2014-04-22 02:55:47 +000044#define DEBUG_TYPE "reassociate"
45
Chris Lattner79a42ac2006-12-19 21:40:18 +000046STATISTIC(NumChanged, "Number of insts reassociated");
47STATISTIC(NumAnnihil, "Number of expr tree annihilated");
48STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000049
Chris Lattner79a42ac2006-12-19 21:40:18 +000050namespace {
Chris Lattner2dd09db2009-09-02 06:11:42 +000051 struct ValueEntry {
Chris Lattner1e506502005-05-07 21:59:39 +000052 unsigned Rank;
53 Value *Op;
54 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55 };
56 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
58 }
Chris Lattner4c065092006-03-04 09:31:13 +000059}
Chris Lattner1e506502005-05-07 21:59:39 +000060
Devang Patel702f45d2008-11-21 21:00:20 +000061#ifndef NDEBUG
Chris Lattner4c065092006-03-04 09:31:13 +000062/// PrintOps - Print out the expression identified in the Ops list.
63///
Chris Lattner38abecb2009-12-31 18:40:32 +000064static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner4c065092006-03-04 09:31:13 +000065 Module *M = I->getParent()->getParent()->getParent();
David Greened17c3912010-01-05 01:27:24 +000066 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattnerbc1512c2009-12-31 07:17:37 +000067 << *Ops[0].Op->getType() << '\t';
Chris Lattner57693dd2008-08-19 04:45:19 +000068 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greened17c3912010-01-05 01:27:24 +000069 dbgs() << "[ ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +000070 Ops[i].Op->printAsOperand(dbgs(), false, M);
David Greened17c3912010-01-05 01:27:24 +000071 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner57693dd2008-08-19 04:45:19 +000072 }
Chris Lattner4c065092006-03-04 09:31:13 +000073}
Devang Patelcb181bb2008-11-21 20:00:59 +000074#endif
Bill Wendlingc94d86c2012-05-02 23:43:23 +000075
Dan Gohmand78c4002008-05-13 00:00:25 +000076namespace {
Chandler Carruth739ef802012-04-26 05:30:30 +000077 /// \brief Utility class representing a base and exponent pair which form one
78 /// factor of some product.
79 struct Factor {
80 Value *Base;
81 unsigned Power;
82
83 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84
85 /// \brief Sort factors by their Base.
86 struct BaseSorter {
87 bool operator()(const Factor &LHS, const Factor &RHS) {
88 return LHS.Base < RHS.Base;
89 }
90 };
91
92 /// \brief Compare factors for equal bases.
93 struct BaseEqual {
94 bool operator()(const Factor &LHS, const Factor &RHS) {
95 return LHS.Base == RHS.Base;
96 }
97 };
98
99 /// \brief Sort factors in descending order by their power.
100 struct PowerDescendingSorter {
101 bool operator()(const Factor &LHS, const Factor &RHS) {
102 return LHS.Power > RHS.Power;
103 }
104 };
105
106 /// \brief Compare factors for equal powers.
107 struct PowerEqual {
108 bool operator()(const Factor &LHS, const Factor &RHS) {
109 return LHS.Power == RHS.Power;
110 }
111 };
112 };
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000113
114 /// Utility class representing a non-constant Xor-operand. We classify
115 /// non-constant Xor-Operands into two categories:
116 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0
117 /// C2)
118 /// C2.1) The operand is in the form of "X | C", where C is a non-zero
119 /// constant.
120 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
121 /// operand as "E | 0"
122 class XorOpnd {
123 public:
124 XorOpnd(Value *V);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000125
Craig Topperf40110f2014-04-25 05:29:35 +0000126 bool isInvalid() const { return SymbolicPart == nullptr; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000127 bool isOrExpr() const { return isOr; }
128 Value *getValue() const { return OrigVal; }
129 Value *getSymbolicPart() const { return SymbolicPart; }
130 unsigned getSymbolicRank() const { return SymbolicRank; }
131 const APInt &getConstPart() const { return ConstPart; }
132
Craig Topperf40110f2014-04-25 05:29:35 +0000133 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000134 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
135
136 // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
137 // The purpose is twofold:
138 // 1) Cluster together the operands sharing the same symbolic-value.
139 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
140 // could potentially shorten crital path, and expose more loop-invariants.
141 // Note that values' rank are basically defined in RPO order (FIXME).
142 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
143 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
144 // "z" in the order of X-Y-Z is better than any other orders.
Shuxin Yang331f01d2013-04-08 22:00:43 +0000145 struct PtrSortFunctor {
146 bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
147 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000148 }
149 };
150 private:
151 Value *OrigVal;
152 Value *SymbolicPart;
153 APInt ConstPart;
154 unsigned SymbolicRank;
155 bool isOr;
156 };
Chandler Carruth739ef802012-04-26 05:30:30 +0000157}
158
159namespace {
Chris Lattner2dd09db2009-09-02 06:11:42 +0000160 class Reassociate : public FunctionPass {
Chris Lattner17229a72010-01-01 00:01:34 +0000161 DenseMap<BasicBlock*, unsigned> RankMap;
Craig Topper6e80c282012-03-26 06:58:25 +0000162 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
Shuxin Yangc94c3bb2012-11-13 00:08:49 +0000163 SetVector<AssertingVH<Instruction> > RedoInsts;
Chris Lattner1e506502005-05-07 21:59:39 +0000164 bool MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000165 public:
Nick Lewyckye7da2d62007-05-06 13:37:16 +0000166 static char ID; // Pass identification, replacement for typeid
Owen Anderson6c18d1a2010-10-19 17:21:58 +0000167 Reassociate() : FunctionPass(ID) {
168 initializeReassociatePass(*PassRegistry::getPassRegistry());
169 }
Devang Patel09f162c2007-05-01 21:15:47 +0000170
Craig Topper3e4c6972014-03-05 09:10:37 +0000171 bool runOnFunction(Function &F) override;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000172
Craig Topper3e4c6972014-03-05 09:10:37 +0000173 void getAnalysisUsage(AnalysisUsage &AU) const override {
Chris Lattner820d9712002-10-21 20:00:28 +0000174 AU.setPreservesCFG();
Chris Lattnerc0f58002002-05-08 22:19:27 +0000175 }
176 private:
Chris Lattner113f4f42002-06-25 16:13:24 +0000177 void BuildRankMap(Function &F);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000178 unsigned getRank(Value *V);
Duncan Sands78386032012-06-15 08:37:50 +0000179 void ReassociateExpression(BinaryOperator *I);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000180 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner38abecb2009-12-31 18:40:32 +0000181 Value *OptimizeExpression(BinaryOperator *I,
182 SmallVectorImpl<ValueEntry> &Ops);
183 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000184 Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
185 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
186 Value *&Res);
187 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
188 APInt &ConstOpnd, Value *&Res);
Chandler Carruth739ef802012-04-26 05:30:30 +0000189 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
190 SmallVectorImpl<Factor> &Factors);
191 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
192 SmallVectorImpl<Factor> &Factors);
193 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner4c065092006-03-04 09:31:13 +0000194 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Duncan Sands3293f462012-06-08 20:15:33 +0000195 void EraseInst(Instruction *I);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +0000196 void optimizeFAddNegExpr(ConstantFP *ConstOperand, Instruction *I,
197 int OperandNr);
Duncan Sands3293f462012-06-08 20:15:33 +0000198 void OptimizeInst(Instruction *I);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000199 };
200}
201
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000202XorOpnd::XorOpnd(Value *V) {
Shuxin Yang6662fd02013-04-01 18:13:05 +0000203 assert(!isa<ConstantInt>(V) && "No ConstantInt");
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000204 OrigVal = V;
205 Instruction *I = dyn_cast<Instruction>(V);
206 SymbolicRank = 0;
207
208 if (I && (I->getOpcode() == Instruction::Or ||
209 I->getOpcode() == Instruction::And)) {
210 Value *V0 = I->getOperand(0);
211 Value *V1 = I->getOperand(1);
212 if (isa<ConstantInt>(V0))
213 std::swap(V0, V1);
214
215 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
216 ConstPart = C->getValue();
217 SymbolicPart = V0;
218 isOr = (I->getOpcode() == Instruction::Or);
219 return;
220 }
221 }
222
223 // view the operand as "V | 0"
224 SymbolicPart = V;
225 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
226 isOr = true;
227}
228
Dan Gohmand78c4002008-05-13 00:00:25 +0000229char Reassociate::ID = 0;
Owen Andersona57b97e2010-07-21 22:09:45 +0000230INITIALIZE_PASS(Reassociate, "reassociate",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000231 "Reassociate expressions", false, false)
Dan Gohmand78c4002008-05-13 00:00:25 +0000232
Brian Gaeke960707c2003-11-11 22:41:34 +0000233// Public interface to the Reassociate pass
Chris Lattner49525f82004-01-09 06:02:20 +0000234FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000235
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000236/// isReassociableOp - Return true if V is an instruction of the specified
237/// opcode and if it only has one use.
238static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
239 if (V->hasOneUse() && isa<Instruction>(V) &&
240 cast<Instruction>(V)->getOpcode() == Opcode)
241 return cast<BinaryOperator>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000242 return nullptr;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000243}
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000244
Chad Rosier11ab9412014-08-14 15:23:01 +0000245static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
246 unsigned Opcode2) {
247 if (V->hasOneUse() && isa<Instruction>(V) &&
248 (cast<Instruction>(V)->getOpcode() == Opcode1 ||
249 cast<Instruction>(V)->getOpcode() == Opcode2))
250 return cast<BinaryOperator>(V);
251 return nullptr;
252}
253
Chris Lattner9f284e02005-05-08 20:57:04 +0000254static bool isUnmovableInstruction(Instruction *I) {
Jakub Staszakd4d94062013-07-22 23:38:16 +0000255 switch (I->getOpcode()) {
256 case Instruction::PHI:
257 case Instruction::LandingPad:
258 case Instruction::Alloca:
259 case Instruction::Load:
260 case Instruction::Invoke:
261 case Instruction::UDiv:
262 case Instruction::SDiv:
263 case Instruction::FDiv:
264 case Instruction::URem:
265 case Instruction::SRem:
266 case Instruction::FRem:
Chris Lattner9f284e02005-05-08 20:57:04 +0000267 return true;
Jakub Staszakd4d94062013-07-22 23:38:16 +0000268 case Instruction::Call:
269 return !isa<DbgInfoIntrinsic>(I);
270 default:
271 return false;
272 }
Chris Lattner9f284e02005-05-08 20:57:04 +0000273}
274
Chris Lattner113f4f42002-06-25 16:13:24 +0000275void Reassociate::BuildRankMap(Function &F) {
Chris Lattner58c7eb62003-08-12 20:14:27 +0000276 unsigned i = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000277
278 // Assign distinct ranks to function arguments
Chris Lattner531f9e92005-03-15 04:54:21 +0000279 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000280 ValueRankMap[&*I] = ++i;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000281
Chris Lattner113f4f42002-06-25 16:13:24 +0000282 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000283 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9f284e02005-05-08 20:57:04 +0000284 E = RPOT.end(); I != E; ++I) {
285 BasicBlock *BB = *I;
286 unsigned BBRank = RankMap[BB] = ++i << 16;
287
288 // Walk the basic block, adding precomputed ranks for any instructions that
289 // we cannot move. This ensures that the ranks for these instructions are
290 // all different in the block.
291 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
292 if (isUnmovableInstruction(I))
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000293 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9f284e02005-05-08 20:57:04 +0000294 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000295}
296
297unsigned Reassociate::getRank(Value *V) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000298 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000299 if (!I) {
Chris Lattner17229a72010-01-01 00:01:34 +0000300 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
301 return 0; // Otherwise it's a global or constant, rank 0.
302 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000303
Chris Lattner17229a72010-01-01 00:01:34 +0000304 if (unsigned Rank = ValueRankMap[I])
305 return Rank; // Rank already known?
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000306
Chris Lattnerf43e9742005-05-07 04:08:02 +0000307 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
308 // we can reassociate expressions for code motion! Since we do not recurse
309 // for PHI nodes, we cannot have infinite recursion here, because there
310 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000311 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
312 for (unsigned i = 0, e = I->getNumOperands();
313 i != e && Rank != MaxRank; ++i)
314 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000315
Chris Lattner6e2086d2005-05-08 00:08:33 +0000316 // If this is a not or neg instruction, do not count it for rank. This
317 // assures us that X and ~X will have the same rank.
Chad Rosier11ab9412014-08-14 15:23:01 +0000318 Type *Ty = V->getType();
319 if ((!Ty->isIntegerTy() && !Ty->isFloatingPointTy()) ||
320 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
321 !BinaryOperator::isFNeg(I)))
Chris Lattner6e2086d2005-05-08 00:08:33 +0000322 ++Rank;
323
David Greened17c3912010-01-05 01:27:24 +0000324 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
Chris Lattnerb25de3f2009-08-23 04:37:46 +0000325 // << Rank << "\n");
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000326
Chris Lattner17229a72010-01-01 00:01:34 +0000327 return ValueRankMap[I] = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000328}
329
Chad Rosier11ab9412014-08-14 15:23:01 +0000330static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
331 Instruction *InsertBefore, Value *FlagsOp) {
332 if (S1->getType()->isIntegerTy())
333 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
334 else {
335 BinaryOperator *Res =
336 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
337 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
338 return Res;
339 }
340}
341
342static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
343 Instruction *InsertBefore, Value *FlagsOp) {
344 if (S1->getType()->isIntegerTy())
345 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
346 else {
347 BinaryOperator *Res =
348 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
349 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
350 return Res;
351 }
352}
353
354static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
355 Instruction *InsertBefore, Value *FlagsOp) {
356 if (S1->getType()->isIntegerTy())
357 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
358 else {
359 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
360 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
361 return Res;
362 }
363}
364
Chris Lattner877b1142005-05-08 21:28:52 +0000365/// LowerNegateToMultiply - Replace 0-X with X*-1.
366///
Duncan Sands3293f462012-06-08 20:15:33 +0000367static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000368 Type *Ty = Neg->getType();
369 Constant *NegOne = Ty->isIntegerTy() ? ConstantInt::getAllOnesValue(Ty)
370 : ConstantFP::get(Ty, -1.0);
Chris Lattner877b1142005-05-08 21:28:52 +0000371
Chad Rosier11ab9412014-08-14 15:23:01 +0000372 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
373 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000374 Res->takeName(Neg);
Chris Lattner877b1142005-05-08 21:28:52 +0000375 Neg->replaceAllUsesWith(Res);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000376 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattner877b1142005-05-08 21:28:52 +0000377 return Res;
378}
379
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000380/// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
381/// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
382/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
383/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
384/// even x in Bitwidth-bit arithmetic.
385static unsigned CarmichaelShift(unsigned Bitwidth) {
386 if (Bitwidth < 3)
387 return Bitwidth - 1;
388 return Bitwidth - 2;
389}
390
391/// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
392/// reducing the combined weight using any special properties of the operation.
393/// The existing weight LHS represents the computation X op X op ... op X where
394/// X occurs LHS times. The combined weight represents X op X op ... op X with
395/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
396/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
397/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
398static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
399 // If we were working with infinite precision arithmetic then the combined
400 // weight would be LHS + RHS. But we are using finite precision arithmetic,
401 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
402 // for nilpotent operations and addition, but not for idempotent operations
403 // and multiplication), so it is important to correctly reduce the combined
404 // weight back into range if wrapping would be wrong.
405
406 // If RHS is zero then the weight didn't change.
407 if (RHS.isMinValue())
408 return;
409 // If LHS is zero then the combined weight is RHS.
410 if (LHS.isMinValue()) {
411 LHS = RHS;
412 return;
413 }
414 // From this point on we know that neither LHS nor RHS is zero.
415
416 if (Instruction::isIdempotent(Opcode)) {
417 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
418 // weight of 1. Keeping weights at zero or one also means that wrapping is
419 // not a problem.
420 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
421 return; // Return a weight of 1.
422 }
423 if (Instruction::isNilpotent(Opcode)) {
424 // Nilpotent means X op X === 0, so reduce weights modulo 2.
425 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
426 LHS = 0; // 1 + 1 === 0 modulo 2.
427 return;
428 }
Chad Rosier11ab9412014-08-14 15:23:01 +0000429 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000430 // TODO: Reduce the weight by exploiting nsw/nuw?
431 LHS += RHS;
432 return;
433 }
434
Chad Rosier11ab9412014-08-14 15:23:01 +0000435 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
436 "Unknown associative operation!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000437 unsigned Bitwidth = LHS.getBitWidth();
438 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
439 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
440 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
441 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
442 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
443 // which by a happy accident means that they can always be represented using
444 // Bitwidth bits.
445 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
446 // the Carmichael number).
447 if (Bitwidth > 3) {
448 /// CM - The value of Carmichael's lambda function.
449 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
450 // Any weight W >= Threshold can be replaced with W - CM.
451 APInt Threshold = CM + Bitwidth;
452 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
453 // For Bitwidth 4 or more the following sum does not overflow.
454 LHS += RHS;
455 while (LHS.uge(Threshold))
456 LHS -= CM;
457 } else {
458 // To avoid problems with overflow do everything the same as above but using
459 // a larger type.
460 unsigned CM = 1U << CarmichaelShift(Bitwidth);
461 unsigned Threshold = CM + Bitwidth;
462 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
463 "Weights not reduced!");
464 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
465 while (Total >= Threshold)
466 Total -= CM;
467 LHS = Total;
468 }
469}
470
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000471typedef std::pair<Value*, APInt> RepeatedValue;
472
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000473/// LinearizeExprTree - Given an associative binary expression, return the leaf
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000474/// nodes in Ops along with their weights (how many times the leaf occurs). The
475/// original expression is the same as
476/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
Nadav Rotem465834c2012-07-24 10:51:42 +0000477/// op
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000478/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
479/// op
480/// ...
481/// op
482/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
483///
Duncan Sandsac852c72012-11-15 09:58:38 +0000484/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000485///
486/// This routine may modify the function, in which case it returns 'true'. The
487/// changes it makes may well be destructive, changing the value computed by 'I'
488/// to something completely different. Thus if the routine returns 'true' then
489/// you MUST either replace I with a new expression computed from the Ops array,
490/// or use RewriteExprTree to put the values back in.
Chris Lattner1e506502005-05-07 21:59:39 +0000491///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000492/// A leaf node is either not a binary operation of the same kind as the root
493/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
494/// opcode), or is the same kind of binary operator but has a use which either
495/// does not belong to the expression, or does belong to the expression but is
496/// a leaf node. Every leaf node has at least one use that is a non-leaf node
497/// of the expression, while for non-leaf nodes (except for the root 'I') every
498/// use is a non-leaf node of the expression.
499///
500/// For example:
501/// expression graph node names
502///
503/// + | I
504/// / \ |
505/// + + | A, B
506/// / \ / \ |
507/// * + * | C, D, E
508/// / \ / \ / \ |
509/// + * | F, G
510///
511/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000512/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000513///
514/// The expression is maximal: if some instruction is a binary operator of the
515/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
516/// then the instruction also belongs to the expression, is not a leaf node of
517/// it, and its operands also belong to the expression (but may be leaf nodes).
518///
519/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
520/// order to ensure that every non-root node in the expression has *exactly one*
521/// use by a non-leaf node of the expression. This destruction means that the
Duncan Sands3c05cd32012-05-26 16:42:52 +0000522/// caller MUST either replace 'I' with a new expression or use something like
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000523/// RewriteExprTree to put the values back in if the routine indicates that it
524/// made a change by returning 'true'.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000525///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000526/// In the above example either the right operand of A or the left operand of B
527/// will be replaced by undef. If it is B's operand then this gives:
528///
529/// + | I
530/// / \ |
531/// + + | A, B - operand of B replaced with undef
532/// / \ \ |
533/// * + * | C, D, E
534/// / \ / \ / \ |
535/// + * | F, G
536///
Duncan Sands3c05cd32012-05-26 16:42:52 +0000537/// Note that such undef operands can only be reached by passing through 'I'.
538/// For example, if you visit operands recursively starting from a leaf node
539/// then you will never see such an undef operand unless you get back to 'I',
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000540/// which requires passing through a phi node.
541///
542/// Note that this routine may also mutate binary operators of the wrong type
543/// that have all uses inside the expression (i.e. only used by non-leaf nodes
544/// of the expression) if it can turn them into binary operators of the right
545/// type and thus make the expression bigger.
546
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000547static bool LinearizeExprTree(BinaryOperator *I,
548 SmallVectorImpl<RepeatedValue> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000549 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000550 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
551 unsigned Opcode = I->getOpcode();
Chad Rosier11ab9412014-08-14 15:23:01 +0000552 assert(I->isAssociative() && I->isCommutative() &&
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000553 "Expected an associative and commutative operation!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000554
555 // Visit all operands of the expression, keeping track of their weight (the
556 // number of paths from the expression root to the operand, or if you like
557 // the number of times that operand occurs in the linearized expression).
558 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
559 // while A has weight two.
560
561 // Worklist of non-leaf nodes (their operands are in the expression too) along
562 // with their weights, representing a certain number of paths to the operator.
563 // If an operator occurs in the worklist multiple times then we found multiple
564 // ways to get to it.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000565 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
566 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
567 bool MadeChange = false;
Chris Lattner1e506502005-05-07 21:59:39 +0000568
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000569 // Leaves of the expression are values that either aren't the right kind of
570 // operation (eg: a constant, or a multiply in an add tree), or are, but have
571 // some uses that are not inside the expression. For example, in I = X + X,
572 // X = A + B, the value X has two uses (by I) that are in the expression. If
573 // X has any other uses, for example in a return instruction, then we consider
574 // X to be a leaf, and won't analyze it further. When we first visit a value,
575 // if it has more than one use then at first we conservatively consider it to
576 // be a leaf. Later, as the expression is explored, we may discover some more
577 // uses of the value from inside the expression. If all uses turn out to be
578 // from within the expression (and the value is a binary operator of the right
579 // kind) then the value is no longer considered to be a leaf, and its operands
580 // are explored.
Chris Lattner1e506502005-05-07 21:59:39 +0000581
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000582 // Leaves - Keeps track of the set of putative leaves as well as the number of
583 // paths to each leaf seen so far.
Duncan Sands72aea012012-06-12 20:26:43 +0000584 typedef DenseMap<Value*, APInt> LeafMap;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000585 LeafMap Leaves; // Leaf -> Total weight so far.
586 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
587
588#ifndef NDEBUG
589 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
590#endif
591 while (!Worklist.empty()) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000592 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000593 I = P.first; // We examine the operands of this binary operator.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000594
595 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
596 Value *Op = I->getOperand(OpIdx);
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000597 APInt Weight = P.second; // Number of paths to this operand.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000598 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
599 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
600
601 // If this is a binary operation of the right kind with only one use then
602 // add its operands to the expression.
603 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
604 assert(Visited.insert(Op) && "Not first visit!");
605 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
606 Worklist.push_back(std::make_pair(BO, Weight));
607 continue;
608 }
609
610 // Appears to be a leaf. Is the operand already in the set of leaves?
611 LeafMap::iterator It = Leaves.find(Op);
612 if (It == Leaves.end()) {
613 // Not in the leaf map. Must be the first time we saw this operand.
614 assert(Visited.insert(Op) && "Not first visit!");
615 if (!Op->hasOneUse()) {
616 // This value has uses not accounted for by the expression, so it is
617 // not safe to modify. Mark it as being a leaf.
618 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
619 LeafOrder.push_back(Op);
620 Leaves[Op] = Weight;
621 continue;
622 }
623 // No uses outside the expression, try morphing it.
624 } else if (It != Leaves.end()) {
625 // Already in the leaf map.
626 assert(Visited.count(Op) && "In leaf map but not visited!");
627
628 // Update the number of paths to the leaf.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000629 IncorporateWeight(It->second, Weight, Opcode);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000630
Duncan Sands56514522012-07-26 09:26:40 +0000631#if 0 // TODO: Re-enable once PR13021 is fixed.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000632 // The leaf already has one use from inside the expression. As we want
633 // exactly one such use, drop this new use of the leaf.
634 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
635 I->setOperand(OpIdx, UndefValue::get(I->getType()));
636 MadeChange = true;
637
638 // If the leaf is a binary operation of the right kind and we now see
639 // that its multiple original uses were in fact all by nodes belonging
640 // to the expression, then no longer consider it to be a leaf and add
641 // its operands to the expression.
642 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
643 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
644 Worklist.push_back(std::make_pair(BO, It->second));
645 Leaves.erase(It);
646 continue;
647 }
Duncan Sands56514522012-07-26 09:26:40 +0000648#endif
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000649
650 // If we still have uses that are not accounted for by the expression
651 // then it is not safe to modify the value.
652 if (!Op->hasOneUse())
653 continue;
654
655 // No uses outside the expression, try morphing it.
656 Weight = It->second;
657 Leaves.erase(It); // Since the value may be morphed below.
658 }
659
660 // At this point we have a value which, first of all, is not a binary
661 // expression of the right kind, and secondly, is only used inside the
662 // expression. This means that it can safely be modified. See if we
663 // can usefully morph it into an expression of the right kind.
664 assert((!isa<Instruction>(Op) ||
665 cast<Instruction>(Op)->getOpcode() != Opcode) &&
666 "Should have been handled above!");
667 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
668
669 // If this is a multiply expression, turn any internal negations into
670 // multiplies by -1 so they can be reassociated.
Chad Rosier11ab9412014-08-14 15:23:01 +0000671 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
672 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
673 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
674 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
675 BO = LowerNegateToMultiply(BO);
676 DEBUG(dbgs() << *BO << '\n');
677 Worklist.push_back(std::make_pair(BO, Weight));
678 MadeChange = true;
679 continue;
680 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000681
682 // Failed to morph into an expression of the right type. This really is
683 // a leaf.
684 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
685 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
686 LeafOrder.push_back(Op);
687 Leaves[Op] = Weight;
Chris Lattner877b1142005-05-08 21:28:52 +0000688 }
689 }
690
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000691 // The leaves, repeated according to their weights, represent the linearized
692 // form of the expression.
693 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
694 Value *V = LeafOrder[i];
695 LeafMap::iterator It = Leaves.find(V);
696 if (It == Leaves.end())
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000697 // Node initially thought to be a leaf wasn't.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000698 continue;
699 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000700 APInt Weight = It->second;
701 if (Weight.isMinValue())
702 // Leaf already output or weight reduction eliminated it.
703 continue;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000704 // Ensure the leaf is only output once.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000705 It->second = 0;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000706 Ops.push_back(std::make_pair(V, Weight));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000707 }
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000708
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000709 // For nilpotent operations or addition there may be no operands, for example
710 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
711 // in both cases the weight reduces to 0 causing the value to be skipped.
712 if (Ops.empty()) {
Duncan Sandsac852c72012-11-15 09:58:38 +0000713 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
Duncan Sands318a89d2012-06-13 09:42:13 +0000714 assert(Identity && "Associative operation without identity!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000715 Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
716 }
717
718 return MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000719}
720
Chris Lattner1e506502005-05-07 21:59:39 +0000721// RewriteExprTree - Now that the operands for this expression tree are
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000722// linearized and optimized, emit them in-order.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000723void Reassociate::RewriteExprTree(BinaryOperator *I,
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000724 SmallVectorImpl<ValueEntry> &Ops) {
725 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman08d2c982011-02-02 02:02:34 +0000726
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000727 // Since our optimizations should never increase the number of operations, the
728 // new expression can usually be written reusing the existing binary operators
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000729 // from the original expression tree, without creating any new instructions,
730 // though the rewritten expression may have a completely different topology.
731 // We take care to not change anything if the new expression will be the same
732 // as the original. If more than trivial changes (like commuting operands)
733 // were made then we are obliged to clear out any optional subclass data like
734 // nsw flags.
Dan Gohman08d2c982011-02-02 02:02:34 +0000735
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000736 /// NodesToRewrite - Nodes from the original expression available for writing
737 /// the new expression into.
738 SmallVector<BinaryOperator*, 8> NodesToRewrite;
739 unsigned Opcode = I->getOpcode();
Duncan Sands98382862012-06-29 19:03:05 +0000740 BinaryOperator *Op = I;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000741
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000742 /// NotRewritable - The operands being written will be the leaves of the new
743 /// expression and must not be used as inner nodes (via NodesToRewrite) by
744 /// mistake. Inner nodes are always reassociable, and usually leaves are not
745 /// (if they were they would have been incorporated into the expression and so
746 /// would not be leaves), so most of the time there is no danger of this. But
747 /// in rare cases a leaf may become reassociable if an optimization kills uses
748 /// of it, or it may momentarily become reassociable during rewriting (below)
749 /// due it being removed as an operand of one of its uses. Ensure that misuse
750 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
751 /// leaves and refusing to reuse any of them as inner nodes.
752 SmallPtrSet<Value*, 8> NotRewritable;
753 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
754 NotRewritable.insert(Ops[i].Op);
755
Duncan Sands3c05cd32012-05-26 16:42:52 +0000756 // ExpressionChanged - Non-null if the rewritten expression differs from the
757 // original in some non-trivial way, requiring the clearing of optional flags.
758 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
Craig Topperf40110f2014-04-25 05:29:35 +0000759 BinaryOperator *ExpressionChanged = nullptr;
Duncan Sands514db112012-06-27 14:19:00 +0000760 for (unsigned i = 0; ; ++i) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000761 // The last operation (which comes earliest in the IR) is special as both
762 // operands will come from Ops, rather than just one with the other being
763 // a subexpression.
764 if (i+2 == Ops.size()) {
765 Value *NewLHS = Ops[i].Op;
766 Value *NewRHS = Ops[i+1].Op;
767 Value *OldLHS = Op->getOperand(0);
768 Value *OldRHS = Op->getOperand(1);
769
770 if (NewLHS == OldLHS && NewRHS == OldRHS)
771 // Nothing changed, leave it alone.
772 break;
773
774 if (NewLHS == OldRHS && NewRHS == OldLHS) {
775 // The order of the operands was reversed. Swap them.
776 DEBUG(dbgs() << "RA: " << *Op << '\n');
777 Op->swapOperands();
778 DEBUG(dbgs() << "TO: " << *Op << '\n');
779 MadeChange = true;
780 ++NumChanged;
781 break;
782 }
783
784 // The new operation differs non-trivially from the original. Overwrite
785 // the old operands with the new ones.
786 DEBUG(dbgs() << "RA: " << *Op << '\n');
787 if (NewLHS != OldLHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000788 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
789 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000790 NodesToRewrite.push_back(BO);
791 Op->setOperand(0, NewLHS);
792 }
793 if (NewRHS != OldRHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000794 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
795 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000796 NodesToRewrite.push_back(BO);
797 Op->setOperand(1, NewRHS);
798 }
799 DEBUG(dbgs() << "TO: " << *Op << '\n');
800
Duncan Sands3c05cd32012-05-26 16:42:52 +0000801 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000802 MadeChange = true;
803 ++NumChanged;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000804
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000805 break;
Chris Lattner1e506502005-05-07 21:59:39 +0000806 }
Chris Lattner1e506502005-05-07 21:59:39 +0000807
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000808 // Not the last operation. The left-hand side will be a sub-expression
809 // while the right-hand side will be the current element of Ops.
810 Value *NewRHS = Ops[i].Op;
811 if (NewRHS != Op->getOperand(1)) {
812 DEBUG(dbgs() << "RA: " << *Op << '\n');
813 if (NewRHS == Op->getOperand(0)) {
814 // The new right-hand side was already present as the left operand. If
815 // we are lucky then swapping the operands will sort out both of them.
816 Op->swapOperands();
817 } else {
818 // Overwrite with the new right-hand side.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000819 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
820 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000821 NodesToRewrite.push_back(BO);
822 Op->setOperand(1, NewRHS);
Duncan Sands3c05cd32012-05-26 16:42:52 +0000823 ExpressionChanged = Op;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000824 }
825 DEBUG(dbgs() << "TO: " << *Op << '\n');
826 MadeChange = true;
827 ++NumChanged;
828 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000829
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000830 // Now deal with the left-hand side. If this is already an operation node
831 // from the original expression then just rewrite the rest of the expression
832 // into it.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000833 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
834 if (BO && !NotRewritable.count(BO)) {
Duncan Sands98382862012-06-29 19:03:05 +0000835 Op = BO;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000836 continue;
837 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000838
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000839 // Otherwise, grab a spare node from the original expression and use that as
Duncan Sands369c6d22012-06-29 13:25:06 +0000840 // the left-hand side. If there are no nodes left then the optimizers made
841 // an expression with more nodes than the original! This usually means that
842 // they did something stupid but it might mean that the problem was just too
843 // hard (finding the mimimal number of multiplications needed to realize a
844 // multiplication expression is NP-complete). Whatever the reason, smart or
845 // stupid, create a new node if there are none left.
Duncan Sands98382862012-06-29 19:03:05 +0000846 BinaryOperator *NewOp;
Duncan Sands369c6d22012-06-29 13:25:06 +0000847 if (NodesToRewrite.empty()) {
848 Constant *Undef = UndefValue::get(I->getType());
Duncan Sands98382862012-06-29 19:03:05 +0000849 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
850 Undef, Undef, "", I);
Chad Rosier11ab9412014-08-14 15:23:01 +0000851 if (NewOp->getType()->isFloatingPointTy())
852 NewOp->setFastMathFlags(I->getFastMathFlags());
Duncan Sands98382862012-06-29 19:03:05 +0000853 } else {
854 NewOp = NodesToRewrite.pop_back_val();
Duncan Sands369c6d22012-06-29 13:25:06 +0000855 }
856
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000857 DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sands98382862012-06-29 19:03:05 +0000858 Op->setOperand(0, NewOp);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000859 DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sands3c05cd32012-05-26 16:42:52 +0000860 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000861 MadeChange = true;
862 ++NumChanged;
Duncan Sands98382862012-06-29 19:03:05 +0000863 Op = NewOp;
Chris Lattner1e506502005-05-07 21:59:39 +0000864 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000865
Duncan Sands3c05cd32012-05-26 16:42:52 +0000866 // If the expression changed non-trivially then clear out all subclass data
Duncan Sands514db112012-06-27 14:19:00 +0000867 // starting from the operator specified in ExpressionChanged, and compactify
868 // the operators to just before the expression root to guarantee that the
869 // expression tree is dominated by all of Ops.
870 if (ExpressionChanged)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000871 do {
Chad Rosier11ab9412014-08-14 15:23:01 +0000872 // Preserve FastMathFlags.
873 if (isa<FPMathOperator>(I)) {
874 FastMathFlags Flags = I->getFastMathFlags();
875 ExpressionChanged->clearSubclassOptionalData();
876 ExpressionChanged->setFastMathFlags(Flags);
877 } else
878 ExpressionChanged->clearSubclassOptionalData();
879
Duncan Sands3c05cd32012-05-26 16:42:52 +0000880 if (ExpressionChanged == I)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000881 break;
Duncan Sands514db112012-06-27 14:19:00 +0000882 ExpressionChanged->moveBefore(I);
Chandler Carruthcdf47882014-03-09 03:16:01 +0000883 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000884 } while (1);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000885
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000886 // Throw away any left over nodes from the original expression.
887 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
Duncan Sands3293f462012-06-08 20:15:33 +0000888 RedoInsts.insert(NodesToRewrite[i]);
Chris Lattner1e506502005-05-07 21:59:39 +0000889}
890
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000891/// NegateValue - Insert instructions before the instruction pointed to by BI,
892/// that computes the negative version of the value specified. The negative
893/// version of the value is returned, and BI is left pointing at the instruction
894/// that should be processed next by the reassociation pass.
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000895static Value *NegateValue(Value *V, Instruction *BI) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000896 if (ConstantFP *C = dyn_cast<ConstantFP>(V))
897 return ConstantExpr::getFNeg(C);
Chris Lattnerfed33972009-12-31 20:34:32 +0000898 if (Constant *C = dyn_cast<Constant>(V))
899 return ConstantExpr::getNeg(C);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000900
Chris Lattner7bc532d2002-05-16 04:37:07 +0000901 // We are trying to expose opportunity for reassociation. One of the things
902 // that we want to do to achieve this is to push a negation as deep into an
903 // expression chain as possible, to expose the add instructions. In practice,
904 // this means that we turn this:
905 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
906 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
907 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattnera5526832010-01-01 00:04:26 +0000908 // we introduce tons of unnecessary negation instructions.
Chris Lattner7bc532d2002-05-16 04:37:07 +0000909 //
Chad Rosier11ab9412014-08-14 15:23:01 +0000910 if (BinaryOperator *I =
911 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000912 // Push the negates through the add.
913 I->setOperand(0, NegateValue(I->getOperand(0), BI));
914 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattner7bc532d2002-05-16 04:37:07 +0000915
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000916 // We must move the add instruction here, because the neg instructions do
917 // not dominate the old add instruction in general. By moving it, we are
918 // assured that the neg instructions we just inserted dominate the
919 // instruction we are about to insert after them.
920 //
921 I->moveBefore(BI);
922 I->setName(I->getName()+".neg");
923 return I;
924 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000925
Chris Lattnerfed33972009-12-31 20:34:32 +0000926 // Okay, we need to materialize a negated version of V with an instruction.
927 // Scan the use lists of V to see if we have one already.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000928 for (User *U : V->users()) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000929 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
930 continue;
Chris Lattnerfed33972009-12-31 20:34:32 +0000931
932 // We found one! Now we have to make sure that the definition dominates
933 // this use. We do this by moving it to the entry block (if it is a
934 // non-instruction value) or right after the definition. These negates will
935 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif782f6242010-07-12 12:03:02 +0000936 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattnere199d2d2010-01-02 21:46:33 +0000937
938 // Verify that the negate is in this function, V might be a constant expr.
939 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
940 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000941
Chris Lattnerfed33972009-12-31 20:34:32 +0000942 BasicBlock::iterator InsertPt;
943 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
944 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
945 InsertPt = II->getNormalDest()->begin();
946 } else {
947 InsertPt = InstInput;
948 ++InsertPt;
949 }
950 while (isa<PHINode>(InsertPt)) ++InsertPt;
951 } else {
952 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
953 }
954 TheNeg->moveBefore(InsertPt);
955 return TheNeg;
956 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000957
958 // Insert a 'neg' instruction that subtracts the value from zero to get the
959 // negation.
Chad Rosier11ab9412014-08-14 15:23:01 +0000960 return CreateNeg(V, V->getName() + ".neg", BI, BI);
Chris Lattnerf43e9742005-05-07 04:08:02 +0000961}
962
Chris Lattner902537c2008-02-17 20:44:51 +0000963/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
964/// X-Y into (X + -Y).
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000965static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner902537c2008-02-17 20:44:51 +0000966 // If this is a negation, we can't split it up!
Chad Rosier11ab9412014-08-14 15:23:01 +0000967 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
Chris Lattner902537c2008-02-17 20:44:51 +0000968 return false;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000969
Chad Rosierbd64d462014-10-09 20:06:29 +0000970 // Don't breakup X - undef.
971 if (isa<UndefValue>(Sub->getOperand(1)))
972 return false;
973
Chris Lattner902537c2008-02-17 20:44:51 +0000974 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattnera70d1382008-02-17 20:51:26 +0000975 // subtract or if this is only used by one.
Chad Rosier11ab9412014-08-14 15:23:01 +0000976 Value *V0 = Sub->getOperand(0);
977 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
978 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000979 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000980 Value *V1 = Sub->getOperand(1);
981 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
982 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000983 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000984 Value *VB = Sub->user_back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000985 if (Sub->hasOneUse() &&
Chad Rosier11ab9412014-08-14 15:23:01 +0000986 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
987 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
Chris Lattner902537c2008-02-17 20:44:51 +0000988 return true;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000989
Chris Lattner902537c2008-02-17 20:44:51 +0000990 return false;
991}
992
Chris Lattnerf43e9742005-05-07 04:08:02 +0000993/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
994/// only used by an add, transform this into (X+(0-Y)) to promote better
995/// reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +0000996static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
Chris Lattnera5526832010-01-01 00:04:26 +0000997 // Convert a subtract into an add and a neg instruction. This allows sub
998 // instructions to be commuted with other add instructions.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000999 //
Chris Lattnera5526832010-01-01 00:04:26 +00001000 // Calculate the negative value of Operand 1 of the sub instruction,
1001 // and set it as the RHS of the add instruction we just made.
Chris Lattnerf43e9742005-05-07 04:08:02 +00001002 //
Nick Lewycky7935bcb2009-11-14 07:25:54 +00001003 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Chad Rosier11ab9412014-08-14 15:23:01 +00001004 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
Duncan Sands3293f462012-06-08 20:15:33 +00001005 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
1006 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +00001007 New->takeName(Sub);
Chris Lattnerf43e9742005-05-07 04:08:02 +00001008
1009 // Everyone now refers to the add instruction.
1010 Sub->replaceAllUsesWith(New);
Devang Patel80d1d3a2011-04-28 22:48:14 +00001011 New->setDebugLoc(Sub->getDebugLoc());
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +00001012
David Greened17c3912010-01-05 01:27:24 +00001013 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattnerf43e9742005-05-07 04:08:02 +00001014 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +00001015}
1016
Chris Lattnercea57992005-05-07 04:24:13 +00001017/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
1018/// by one, change this into a multiply by a constant to assist with further
1019/// reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +00001020static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
1021 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
1022 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001023
Duncan Sands3293f462012-06-08 20:15:33 +00001024 BinaryOperator *Mul =
1025 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
1026 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
1027 Mul->takeName(Shl);
1028 Shl->replaceAllUsesWith(Mul);
1029 Mul->setDebugLoc(Shl->getDebugLoc());
1030 return Mul;
Chris Lattnercea57992005-05-07 04:24:13 +00001031}
1032
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001033/// FindInOperandList - Scan backwards and forwards among values with the same
1034/// rank as element i to see if X exists. If X does not exist, return i. This
1035/// is useful when scanning for 'x' when we see '-x' because they both get the
1036/// same rank.
Chris Lattner38abecb2009-12-31 18:40:32 +00001037static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner5847e5e2005-05-08 18:59:37 +00001038 Value *X) {
1039 unsigned XRank = Ops[i].Rank;
1040 unsigned e = Ops.size();
Owen Anderson8373d332014-10-05 23:41:26 +00001041 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +00001042 if (Ops[j].Op == X)
1043 return j;
Owen Anderson8373d332014-10-05 23:41:26 +00001044 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1045 if (Instruction *I2 = dyn_cast<Instruction>(X))
1046 if (I1->isIdenticalTo(I2))
1047 return j;
1048 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001049 // Scan backwards.
Owen Anderson8373d332014-10-05 23:41:26 +00001050 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +00001051 if (Ops[j].Op == X)
1052 return j;
Owen Anderson8373d332014-10-05 23:41:26 +00001053 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1054 if (Instruction *I2 = dyn_cast<Instruction>(X))
1055 if (I1->isIdenticalTo(I2))
1056 return j;
1057 }
Chris Lattner5847e5e2005-05-08 18:59:37 +00001058 return i;
1059}
1060
Chris Lattner4c065092006-03-04 09:31:13 +00001061/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
1062/// and returning the result. Insert the tree before I.
Bill Wendling274ba892012-05-02 09:59:45 +00001063static Value *EmitAddTreeOfValues(Instruction *I,
1064 SmallVectorImpl<WeakVH> &Ops){
Chris Lattner4c065092006-03-04 09:31:13 +00001065 if (Ops.size() == 1) return Ops.back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001066
Chris Lattner4c065092006-03-04 09:31:13 +00001067 Value *V1 = Ops.back();
1068 Ops.pop_back();
1069 Value *V2 = EmitAddTreeOfValues(I, Ops);
Chad Rosier11ab9412014-08-14 15:23:01 +00001070 return CreateAdd(V2, V1, "tmp", I, I);
Chris Lattner4c065092006-03-04 09:31:13 +00001071}
1072
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001073/// RemoveFactorFromExpression - If V is an expression tree that is a
Chris Lattner4c065092006-03-04 09:31:13 +00001074/// multiplication sequence, and if this sequence contains a multiply by Factor,
1075/// remove Factor from the tree and return the new tree.
1076Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001077 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1078 if (!BO)
1079 return nullptr;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001080
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001081 SmallVector<RepeatedValue, 8> Tree;
1082 MadeChange |= LinearizeExprTree(BO, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00001083 SmallVector<ValueEntry, 8> Factors;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001084 Factors.reserve(Tree.size());
1085 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1086 RepeatedValue E = Tree[i];
1087 Factors.append(E.second.getZExtValue(),
1088 ValueEntry(getRank(E.first), E.first));
1089 }
Chris Lattner4c065092006-03-04 09:31:13 +00001090
1091 bool FoundFactor = false;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001092 bool NeedsNegate = false;
1093 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattner4c065092006-03-04 09:31:13 +00001094 if (Factors[i].Op == Factor) {
1095 FoundFactor = true;
1096 Factors.erase(Factors.begin()+i);
1097 break;
1098 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001099
Chris Lattner0c59ac32010-01-01 01:13:15 +00001100 // If this is a negative version of this factor, remove it.
Chad Rosier11ab9412014-08-14 15:23:01 +00001101 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001102 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1103 if (FC1->getValue() == -FC2->getValue()) {
1104 FoundFactor = NeedsNegate = true;
1105 Factors.erase(Factors.begin()+i);
1106 break;
1107 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001108 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1109 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1110 APFloat F1(FC1->getValueAPF());
1111 APFloat F2(FC2->getValueAPF());
1112 F2.changeSign();
1113 if (F1.compare(F2) == APFloat::cmpEqual) {
1114 FoundFactor = NeedsNegate = true;
1115 Factors.erase(Factors.begin() + i);
1116 break;
1117 }
1118 }
1119 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001120 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001121
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001122 if (!FoundFactor) {
1123 // Make sure to restore the operands to the expression tree.
1124 RewriteExprTree(BO, Factors);
Craig Topperf40110f2014-04-25 05:29:35 +00001125 return nullptr;
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001126 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001127
Chris Lattner0c59ac32010-01-01 01:13:15 +00001128 BasicBlock::iterator InsertPt = BO; ++InsertPt;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001129
Chris Lattner1d897942009-12-31 19:34:45 +00001130 // If this was just a single multiply, remove the multiply and return the only
1131 // remaining operand.
1132 if (Factors.size() == 1) {
Duncan Sands3293f462012-06-08 20:15:33 +00001133 RedoInsts.insert(BO);
Chris Lattner0c59ac32010-01-01 01:13:15 +00001134 V = Factors[0].Op;
1135 } else {
1136 RewriteExprTree(BO, Factors);
1137 V = BO;
Chris Lattner1d897942009-12-31 19:34:45 +00001138 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001139
Chris Lattner0c59ac32010-01-01 01:13:15 +00001140 if (NeedsNegate)
Chad Rosier11ab9412014-08-14 15:23:01 +00001141 V = CreateNeg(V, "neg", InsertPt, BO);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001142
Chris Lattner0c59ac32010-01-01 01:13:15 +00001143 return V;
Chris Lattner4c065092006-03-04 09:31:13 +00001144}
1145
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001146/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
1147/// add its operands as factors, otherwise add V to the list of factors.
Chris Lattnerc6c15232010-03-05 07:18:54 +00001148///
1149/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001150static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattnerc6c15232010-03-05 07:18:54 +00001151 SmallVectorImpl<Value*> &Factors,
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001152 const SmallVectorImpl<ValueEntry> &Ops) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001153 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001154 if (!BO) {
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001155 Factors.push_back(V);
1156 return;
1157 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001158
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001159 // Otherwise, add the LHS and RHS to the list of factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001160 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1161 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001162}
1163
Chris Lattner5f8a0052009-12-31 07:59:34 +00001164/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
1165/// instruction. This optimizes based on identities. If it can be reduced to
1166/// a single Value, it is returned, otherwise the Ops list is mutated as
1167/// necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001168static Value *OptimizeAndOrXor(unsigned Opcode,
1169 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001170 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1171 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1172 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1173 // First, check for X and ~X in the operand list.
1174 assert(i < Ops.size());
1175 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1176 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1177 unsigned FoundX = FindInOperandList(Ops, i, X);
1178 if (FoundX != i) {
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001179 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattner5f8a0052009-12-31 07:59:34 +00001180 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001181
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001182 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattner5f8a0052009-12-31 07:59:34 +00001183 return Constant::getAllOnesValue(X->getType());
Chris Lattner5f8a0052009-12-31 07:59:34 +00001184 }
1185 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001186
Chris Lattner5f8a0052009-12-31 07:59:34 +00001187 // Next, check for duplicate pairs of values, which we assume are next to
1188 // each other, due to our sorting criteria.
1189 assert(i < Ops.size());
1190 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1191 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattner60c2ca72009-12-31 19:49:01 +00001192 // Drop duplicate values for And and Or.
Chris Lattner5f8a0052009-12-31 07:59:34 +00001193 Ops.erase(Ops.begin()+i);
1194 --i; --e;
1195 ++NumAnnihil;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001196 continue;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001197 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001198
Chris Lattner60c2ca72009-12-31 19:49:01 +00001199 // Drop pairs of values for Xor.
1200 assert(Opcode == Instruction::Xor);
1201 if (e == 2)
1202 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001203
Chris Lattnera5526832010-01-01 00:04:26 +00001204 // Y ^ X^X -> Y
Chris Lattner60c2ca72009-12-31 19:49:01 +00001205 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1206 i -= 1; e -= 2;
1207 ++NumAnnihil;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001208 }
1209 }
Craig Topperf40110f2014-04-25 05:29:35 +00001210 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001211}
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001212
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001213/// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
1214/// instruction with the given two operands, and return the resulting
1215/// instruction. There are two special cases: 1) if the constant operand is 0,
1216/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1217/// be returned.
1218static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1219 const APInt &ConstOpnd) {
1220 if (ConstOpnd != 0) {
1221 if (!ConstOpnd.isAllOnesValue()) {
1222 LLVMContext &Ctx = Opnd->getType()->getContext();
1223 Instruction *I;
1224 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1225 "and.ra", InsertBefore);
1226 I->setDebugLoc(InsertBefore->getDebugLoc());
1227 return I;
1228 }
1229 return Opnd;
1230 }
Craig Topperf40110f2014-04-25 05:29:35 +00001231 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001232}
1233
1234// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1235// into "R ^ C", where C would be 0, and R is a symbolic value.
1236//
1237// If it was successful, true is returned, and the "R" and "C" is returned
1238// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1239// and both "Res" and "ConstOpnd" remain unchanged.
1240//
1241bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1242 APInt &ConstOpnd, Value *&Res) {
1243 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1244 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1245 // = (x & ~c1) ^ (c1 ^ c2)
1246 // It is useful only when c1 == c2.
1247 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1248 if (!Opnd1->getValue()->hasOneUse())
1249 return false;
1250
1251 const APInt &C1 = Opnd1->getConstPart();
1252 if (C1 != ConstOpnd)
1253 return false;
1254
1255 Value *X = Opnd1->getSymbolicPart();
1256 Res = createAndInstr(I, X, ~C1);
1257 // ConstOpnd was C2, now C1 ^ C2.
1258 ConstOpnd ^= C1;
1259
1260 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1261 RedoInsts.insert(T);
1262 return true;
1263 }
1264 return false;
1265}
1266
1267
1268// Helper function of OptimizeXor(). It tries to simplify
1269// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1270// symbolic value.
1271//
1272// If it was successful, true is returned, and the "R" and "C" is returned
1273// via "Res" and "ConstOpnd", respectively (If the entire expression is
1274// evaluated to a constant, the Res is set to NULL); otherwise, false is
1275// returned, and both "Res" and "ConstOpnd" remain unchanged.
1276bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
1277 APInt &ConstOpnd, Value *&Res) {
1278 Value *X = Opnd1->getSymbolicPart();
1279 if (X != Opnd2->getSymbolicPart())
1280 return false;
1281
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001282 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1283 int DeadInstNum = 1;
1284 if (Opnd1->getValue()->hasOneUse())
1285 DeadInstNum++;
1286 if (Opnd2->getValue()->hasOneUse())
1287 DeadInstNum++;
1288
1289 // Xor-Rule 2:
1290 // (x | c1) ^ (x & c2)
1291 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1292 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1293 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1294 //
1295 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1296 if (Opnd2->isOrExpr())
1297 std::swap(Opnd1, Opnd2);
1298
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001299 const APInt &C1 = Opnd1->getConstPart();
1300 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001301 APInt C3((~C1) ^ C2);
1302
1303 // Do not increase code size!
1304 if (C3 != 0 && !C3.isAllOnesValue()) {
1305 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1306 if (NewInstNum > DeadInstNum)
1307 return false;
1308 }
1309
1310 Res = createAndInstr(I, X, C3);
1311 ConstOpnd ^= C1;
1312
1313 } else if (Opnd1->isOrExpr()) {
1314 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1315 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001316 const APInt &C1 = Opnd1->getConstPart();
1317 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001318 APInt C3 = C1 ^ C2;
1319
1320 // Do not increase code size
1321 if (C3 != 0 && !C3.isAllOnesValue()) {
1322 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1323 if (NewInstNum > DeadInstNum)
1324 return false;
1325 }
1326
1327 Res = createAndInstr(I, X, C3);
1328 ConstOpnd ^= C3;
1329 } else {
1330 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1331 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001332 const APInt &C1 = Opnd1->getConstPart();
1333 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001334 APInt C3 = C1 ^ C2;
1335 Res = createAndInstr(I, X, C3);
1336 }
1337
1338 // Put the original operands in the Redo list; hope they will be deleted
1339 // as dead code.
1340 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1341 RedoInsts.insert(T);
1342 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1343 RedoInsts.insert(T);
1344
1345 return true;
1346}
1347
1348/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1349/// to a single Value, it is returned, otherwise the Ops list is mutated as
1350/// necessary.
1351Value *Reassociate::OptimizeXor(Instruction *I,
1352 SmallVectorImpl<ValueEntry> &Ops) {
1353 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1354 return V;
1355
1356 if (Ops.size() == 1)
Craig Topperf40110f2014-04-25 05:29:35 +00001357 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001358
1359 SmallVector<XorOpnd, 8> Opnds;
Shuxin Yang331f01d2013-04-08 22:00:43 +00001360 SmallVector<XorOpnd*, 8> OpndPtrs;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001361 Type *Ty = Ops[0].Op->getType();
1362 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1363
1364 // Step 1: Convert ValueEntry to XorOpnd
1365 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1366 Value *V = Ops[i].Op;
1367 if (!isa<ConstantInt>(V)) {
1368 XorOpnd O(V);
1369 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1370 Opnds.push_back(O);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001371 } else
1372 ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1373 }
1374
Shuxin Yang331f01d2013-04-08 22:00:43 +00001375 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1376 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1377 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1378 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1379 // when new elements are added to the vector.
1380 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1381 OpndPtrs.push_back(&Opnds[i]);
1382
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001383 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1384 // the same symbolic value cluster together. For instance, the input operand
1385 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1386 // ("x | 123", "x & 789", "y & 456").
Chandler Carruth7b8e1122014-02-25 21:54:50 +00001387 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001388
1389 // Step 3: Combine adjacent operands
Craig Topperf40110f2014-04-25 05:29:35 +00001390 XorOpnd *PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001391 bool Changed = false;
1392 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
Shuxin Yang331f01d2013-04-08 22:00:43 +00001393 XorOpnd *CurrOpnd = OpndPtrs[i];
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001394 // The combined value
1395 Value *CV;
1396
1397 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1398 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1399 Changed = true;
1400 if (CV)
1401 *CurrOpnd = XorOpnd(CV);
1402 else {
1403 CurrOpnd->Invalidate();
1404 continue;
1405 }
1406 }
1407
1408 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1409 PrevOpnd = CurrOpnd;
1410 continue;
1411 }
1412
1413 // step 3.2: When previous and current operands share the same symbolic
1414 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1415 //
1416 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1417 // Remove previous operand
1418 PrevOpnd->Invalidate();
1419 if (CV) {
1420 *CurrOpnd = XorOpnd(CV);
1421 PrevOpnd = CurrOpnd;
1422 } else {
1423 CurrOpnd->Invalidate();
Craig Topperf40110f2014-04-25 05:29:35 +00001424 PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001425 }
1426 Changed = true;
1427 }
1428 }
1429
1430 // Step 4: Reassemble the Ops
1431 if (Changed) {
1432 Ops.clear();
1433 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1434 XorOpnd &O = Opnds[i];
1435 if (O.isInvalid())
1436 continue;
1437 ValueEntry VE(getRank(O.getValue()), O.getValue());
1438 Ops.push_back(VE);
1439 }
1440 if (ConstOpnd != 0) {
1441 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1442 ValueEntry VE(getRank(C), C);
1443 Ops.push_back(VE);
1444 }
1445 int Sz = Ops.size();
1446 if (Sz == 1)
1447 return Ops.back().Op;
1448 else if (Sz == 0) {
1449 assert(ConstOpnd == 0);
1450 return ConstantInt::get(Ty->getContext(), ConstOpnd);
1451 }
1452 }
1453
Craig Topperf40110f2014-04-25 05:29:35 +00001454 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001455}
1456
Chris Lattner5f8a0052009-12-31 07:59:34 +00001457/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
1458/// optimizes based on identities. If it can be reduced to a single Value, it
1459/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001460Value *Reassociate::OptimizeAdd(Instruction *I,
1461 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001462 // Scan the operand lists looking for X and -X pairs. If we find any, we
Benjamin Kramer49689442014-05-31 15:01:54 +00001463 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1464 // scan for any
Chris Lattner60b71b52009-12-31 19:24:52 +00001465 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Benjamin Kramer49689442014-05-31 15:01:54 +00001466
Chris Lattner5f8a0052009-12-31 07:59:34 +00001467 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001468 Value *TheOp = Ops[i].Op;
1469 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattner60c2ca72009-12-31 19:49:01 +00001470 // instances of the operand together. Due to our sorting criteria, we know
1471 // that these need to be next to each other in the vector.
1472 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1473 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner60b71b52009-12-31 19:24:52 +00001474 unsigned NumFound = 0;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001475 do {
1476 Ops.erase(Ops.begin()+i);
Chris Lattner60b71b52009-12-31 19:24:52 +00001477 ++NumFound;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001478 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001479
Chris Lattnered189172009-12-31 19:25:19 +00001480 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner60b71b52009-12-31 19:24:52 +00001481 ++NumFactor;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001482
Chris Lattner60b71b52009-12-31 19:24:52 +00001483 // Insert a new multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001484 Type *Ty = TheOp->getType();
1485 Constant *C = Ty->isIntegerTy() ? ConstantInt::get(Ty, NumFound)
1486 : ConstantFP::get(Ty, NumFound);
1487 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001488
Chris Lattner60b71b52009-12-31 19:24:52 +00001489 // Now that we have inserted a multiply, optimize it. This allows us to
1490 // handle cases that require multiple factoring steps, such as this:
1491 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Chad Rosier11ab9412014-08-14 15:23:01 +00001492 RedoInsts.insert(Mul);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001493
Chris Lattner60b71b52009-12-31 19:24:52 +00001494 // If every add operand was a duplicate, return the multiply.
1495 if (Ops.empty())
1496 return Mul;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001497
Chris Lattner60b71b52009-12-31 19:24:52 +00001498 // Otherwise, we had some input that didn't have the dupe, such as
1499 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1500 // things being added by this operation.
1501 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001502
Chris Lattner60c2ca72009-12-31 19:49:01 +00001503 --i;
1504 e = Ops.size();
1505 continue;
Chris Lattner60b71b52009-12-31 19:24:52 +00001506 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001507
Benjamin Kramer49689442014-05-31 15:01:54 +00001508 // Check for X and -X or X and ~X in the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001509 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1510 !BinaryOperator::isNot(TheOp))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001511 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001512
Benjamin Kramer49689442014-05-31 15:01:54 +00001513 Value *X = nullptr;
Chad Rosier11ab9412014-08-14 15:23:01 +00001514 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
Benjamin Kramer49689442014-05-31 15:01:54 +00001515 X = BinaryOperator::getNegArgument(TheOp);
1516 else if (BinaryOperator::isNot(TheOp))
1517 X = BinaryOperator::getNotArgument(TheOp);
1518
Chris Lattner5f8a0052009-12-31 07:59:34 +00001519 unsigned FoundX = FindInOperandList(Ops, i, X);
1520 if (FoundX == i)
1521 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001522
Chris Lattner5f8a0052009-12-31 07:59:34 +00001523 // Remove X and -X from the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001524 if (Ops.size() == 2 &&
1525 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001526 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001527
Benjamin Kramer49689442014-05-31 15:01:54 +00001528 // Remove X and ~X from the operand list.
1529 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1530 return Constant::getAllOnesValue(X->getType());
1531
Chris Lattner5f8a0052009-12-31 07:59:34 +00001532 Ops.erase(Ops.begin()+i);
1533 if (i < FoundX)
1534 --FoundX;
1535 else
1536 --i; // Need to back up an extra one.
1537 Ops.erase(Ops.begin()+FoundX);
1538 ++NumAnnihil;
1539 --i; // Revisit element.
1540 e -= 2; // Removed two elements.
Benjamin Kramer49689442014-05-31 15:01:54 +00001541
1542 // if X and ~X we append -1 to the operand list.
1543 if (BinaryOperator::isNot(TheOp)) {
1544 Value *V = Constant::getAllOnesValue(X->getType());
1545 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1546 e += 1;
1547 }
Chris Lattner5f8a0052009-12-31 07:59:34 +00001548 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001549
Chris Lattner177140a2009-12-31 18:17:13 +00001550 // Scan the operand list, checking to see if there are any common factors
1551 // between operands. Consider something like A*A+A*B*C+D. We would like to
1552 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1553 // To efficiently find this, we count the number of times a factor occurs
1554 // for any ADD operands that are MULs.
1555 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001556
Chris Lattner177140a2009-12-31 18:17:13 +00001557 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1558 // where they are actually the same multiply.
Chris Lattner177140a2009-12-31 18:17:13 +00001559 unsigned MaxOcc = 0;
Craig Topperf40110f2014-04-25 05:29:35 +00001560 Value *MaxOccVal = nullptr;
Chris Lattner177140a2009-12-31 18:17:13 +00001561 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001562 BinaryOperator *BOp =
1563 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001564 if (!BOp)
Chris Lattner177140a2009-12-31 18:17:13 +00001565 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001566
Chris Lattner177140a2009-12-31 18:17:13 +00001567 // Compute all of the factors of this added value.
1568 SmallVector<Value*, 8> Factors;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001569 FindSingleUseMultiplyFactors(BOp, Factors, Ops);
Chris Lattner177140a2009-12-31 18:17:13 +00001570 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001571
Chris Lattner177140a2009-12-31 18:17:13 +00001572 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner0c59ac32010-01-01 01:13:15 +00001573 SmallPtrSet<Value*, 8> Duplicates;
1574 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1575 Value *Factor = Factors[i];
Chad Rosier11ab9412014-08-14 15:23:01 +00001576 if (!Duplicates.insert(Factor))
1577 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001578
Chris Lattner0c59ac32010-01-01 01:13:15 +00001579 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001580 if (Occ > MaxOcc) {
1581 MaxOcc = Occ;
1582 MaxOccVal = Factor;
1583 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001584
Chris Lattner0c59ac32010-01-01 01:13:15 +00001585 // If Factor is a negative constant, add the negated value as a factor
1586 // because we can percolate the negate out. Watch for minint, which
1587 // cannot be positivified.
Chad Rosier11ab9412014-08-14 15:23:01 +00001588 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
Chris Lattnerb1a15122011-07-15 06:08:15 +00001589 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001590 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1591 assert(!Duplicates.count(Factor) &&
1592 "Shouldn't have two constant factors, missed a canonicalize");
Chris Lattner0c59ac32010-01-01 01:13:15 +00001593 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001594 if (Occ > MaxOcc) {
1595 MaxOcc = Occ;
1596 MaxOccVal = Factor;
1597 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001598 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001599 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1600 if (CF->isNegative()) {
1601 APFloat F(CF->getValueAPF());
1602 F.changeSign();
1603 Factor = ConstantFP::get(CF->getContext(), F);
1604 assert(!Duplicates.count(Factor) &&
1605 "Shouldn't have two constant factors, missed a canonicalize");
1606 unsigned Occ = ++FactorOccurrences[Factor];
1607 if (Occ > MaxOcc) {
1608 MaxOcc = Occ;
1609 MaxOccVal = Factor;
1610 }
1611 }
1612 }
Chris Lattner177140a2009-12-31 18:17:13 +00001613 }
1614 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001615
Chris Lattner177140a2009-12-31 18:17:13 +00001616 // If any factor occurred more than one time, we can pull it out.
1617 if (MaxOcc > 1) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001618 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner177140a2009-12-31 18:17:13 +00001619 ++NumFactor;
1620
1621 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1622 // this, we could otherwise run into situations where removing a factor
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001623 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner177140a2009-12-31 18:17:13 +00001624 // RemoveFactorFromExpression on successive values to behave differently.
Chad Rosier11ab9412014-08-14 15:23:01 +00001625 Instruction *DummyInst =
1626 I->getType()->isIntegerTy()
1627 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1628 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1629
Bill Wendling274ba892012-05-02 09:59:45 +00001630 SmallVector<WeakVH, 4> NewMulOps;
Duncan Sands69bdb582011-01-26 10:08:38 +00001631 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerab7087a2010-01-09 06:01:36 +00001632 // Only try to remove factors from expressions we're allowed to.
Chad Rosier11ab9412014-08-14 15:23:01 +00001633 BinaryOperator *BOp =
1634 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001635 if (!BOp)
Chris Lattnerab7087a2010-01-09 06:01:36 +00001636 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001637
Chris Lattner177140a2009-12-31 18:17:13 +00001638 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands69bdb582011-01-26 10:08:38 +00001639 // The factorized operand may occur several times. Convert them all in
1640 // one fell swoop.
1641 for (unsigned j = Ops.size(); j != i;) {
1642 --j;
1643 if (Ops[j].Op == Ops[i].Op) {
1644 NewMulOps.push_back(V);
1645 Ops.erase(Ops.begin()+j);
1646 }
1647 }
1648 --i;
Chris Lattner177140a2009-12-31 18:17:13 +00001649 }
1650 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001651
Chris Lattner177140a2009-12-31 18:17:13 +00001652 // No need for extra uses anymore.
1653 delete DummyInst;
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001654
Chris Lattner177140a2009-12-31 18:17:13 +00001655 unsigned NumAddedValues = NewMulOps.size();
1656 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001657
Chris Lattner60b71b52009-12-31 19:24:52 +00001658 // Now that we have inserted the add tree, optimize it. This allows us to
1659 // handle cases that require multiple factoring steps, such as this:
Chris Lattner177140a2009-12-31 18:17:13 +00001660 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattnerac615502009-12-31 18:18:46 +00001661 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001662 (void)NumAddedValues;
Duncan Sands3293f462012-06-08 20:15:33 +00001663 if (Instruction *VI = dyn_cast<Instruction>(V))
1664 RedoInsts.insert(VI);
Chris Lattner60b71b52009-12-31 19:24:52 +00001665
1666 // Create the multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001667 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
Chris Lattner60b71b52009-12-31 19:24:52 +00001668
Chris Lattner60c2ca72009-12-31 19:49:01 +00001669 // Rerun associate on the multiply in case the inner expression turned into
1670 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sands3293f462012-06-08 20:15:33 +00001671 RedoInsts.insert(V2);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001672
Chris Lattner177140a2009-12-31 18:17:13 +00001673 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1674 // entire result expression is just the multiply "A*(B+C)".
1675 if (Ops.empty())
1676 return V2;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001677
Chris Lattnerac615502009-12-31 18:18:46 +00001678 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner177140a2009-12-31 18:17:13 +00001679 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattnerac615502009-12-31 18:18:46 +00001680 // things being added by this operation.
Chris Lattner177140a2009-12-31 18:17:13 +00001681 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1682 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001683
Craig Topperf40110f2014-04-25 05:29:35 +00001684 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001685}
Chris Lattner4c065092006-03-04 09:31:13 +00001686
Chandler Carruth739ef802012-04-26 05:30:30 +00001687/// \brief Build up a vector of value/power pairs factoring a product.
1688///
1689/// Given a series of multiplication operands, build a vector of factors and
1690/// the powers each is raised to when forming the final product. Sort them in
1691/// the order of descending power.
1692///
1693/// (x*x) -> [(x, 2)]
1694/// ((x*x)*x) -> [(x, 3)]
1695/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1696///
1697/// \returns Whether any factors have a power greater than one.
1698bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1699 SmallVectorImpl<Factor> &Factors) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001700 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1701 // Compute the sum of powers of simplifiable factors.
Chandler Carruth739ef802012-04-26 05:30:30 +00001702 unsigned FactorPowerSum = 0;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001703 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1704 Value *Op = Ops[Idx-1].Op;
1705
1706 // Count the number of occurrences of this value.
1707 unsigned Count = 1;
1708 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1709 ++Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001710 // Track for simplification all factors which occur 2 or more times.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001711 if (Count > 1)
1712 FactorPowerSum += Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001713 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001714
Chandler Carruth739ef802012-04-26 05:30:30 +00001715 // We can only simplify factors if the sum of the powers of our simplifiable
1716 // factors is 4 or higher. When that is the case, we will *always* have
1717 // a simplification. This is an important invariant to prevent cyclicly
1718 // trying to simplify already minimal formations.
1719 if (FactorPowerSum < 4)
1720 return false;
1721
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001722 // Now gather the simplifiable factors, removing them from Ops.
1723 FactorPowerSum = 0;
1724 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1725 Value *Op = Ops[Idx-1].Op;
Chandler Carruth739ef802012-04-26 05:30:30 +00001726
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001727 // Count the number of occurrences of this value.
1728 unsigned Count = 1;
1729 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1730 ++Count;
1731 if (Count == 1)
1732 continue;
Benjamin Kramerbde91762012-06-02 10:20:22 +00001733 // Move an even number of occurrences to Factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001734 Count &= ~1U;
1735 Idx -= Count;
1736 FactorPowerSum += Count;
1737 Factors.push_back(Factor(Op, Count));
1738 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth739ef802012-04-26 05:30:30 +00001739 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001740
Chandler Carruth739ef802012-04-26 05:30:30 +00001741 // None of the adjustments above should have reduced the sum of factor powers
1742 // below our mininum of '4'.
1743 assert(FactorPowerSum >= 4);
1744
Chandler Carruth7b8e1122014-02-25 21:54:50 +00001745 std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
Chandler Carruth739ef802012-04-26 05:30:30 +00001746 return true;
1747}
1748
1749/// \brief Build a tree of multiplies, computing the product of Ops.
1750static Value *buildMultiplyTree(IRBuilder<> &Builder,
1751 SmallVectorImpl<Value*> &Ops) {
1752 if (Ops.size() == 1)
1753 return Ops.back();
1754
1755 Value *LHS = Ops.pop_back_val();
1756 do {
Chad Rosier11ab9412014-08-14 15:23:01 +00001757 if (LHS->getType()->isIntegerTy())
1758 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1759 else
1760 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
Chandler Carruth739ef802012-04-26 05:30:30 +00001761 } while (!Ops.empty());
1762
1763 return LHS;
1764}
1765
1766/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1767///
1768/// Given a vector of values raised to various powers, where no two values are
1769/// equal and the powers are sorted in decreasing order, compute the minimal
1770/// DAG of multiplies to compute the final product, and return that product
1771/// value.
1772Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1773 SmallVectorImpl<Factor> &Factors) {
1774 assert(Factors[0].Power);
1775 SmallVector<Value *, 4> OuterProduct;
1776 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1777 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1778 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1779 LastIdx = Idx;
1780 continue;
1781 }
1782
1783 // We want to multiply across all the factors with the same power so that
1784 // we can raise them to that power as a single entity. Build a mini tree
1785 // for that.
1786 SmallVector<Value *, 4> InnerProduct;
1787 InnerProduct.push_back(Factors[LastIdx].Base);
1788 do {
1789 InnerProduct.push_back(Factors[Idx].Base);
1790 ++Idx;
1791 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1792
1793 // Reset the base value of the first factor to the new expression tree.
1794 // We'll remove all the factors with the same power in a second pass.
Duncan Sands3293f462012-06-08 20:15:33 +00001795 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1796 if (Instruction *MI = dyn_cast<Instruction>(M))
1797 RedoInsts.insert(MI);
Chandler Carruth739ef802012-04-26 05:30:30 +00001798
1799 LastIdx = Idx;
1800 }
1801 // Unique factors with equal powers -- we've folded them into the first one's
1802 // base.
1803 Factors.erase(std::unique(Factors.begin(), Factors.end(),
1804 Factor::PowerEqual()),
1805 Factors.end());
1806
1807 // Iteratively collect the base of each factor with an add power into the
1808 // outer product, and halve each power in preparation for squaring the
1809 // expression.
1810 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1811 if (Factors[Idx].Power & 1)
1812 OuterProduct.push_back(Factors[Idx].Base);
1813 Factors[Idx].Power >>= 1;
1814 }
1815 if (Factors[0].Power) {
1816 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1817 OuterProduct.push_back(SquareRoot);
1818 OuterProduct.push_back(SquareRoot);
1819 }
1820 if (OuterProduct.size() == 1)
1821 return OuterProduct.front();
1822
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001823 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001824 return V;
Chandler Carruth739ef802012-04-26 05:30:30 +00001825}
1826
1827Value *Reassociate::OptimizeMul(BinaryOperator *I,
1828 SmallVectorImpl<ValueEntry> &Ops) {
1829 // We can only optimize the multiplies when there is a chain of more than
1830 // three, such that a balanced tree might require fewer total multiplies.
1831 if (Ops.size() < 4)
Craig Topperf40110f2014-04-25 05:29:35 +00001832 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001833
1834 // Try to turn linear trees of multiplies without other uses of the
1835 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1836 // re-use.
1837 SmallVector<Factor, 4> Factors;
1838 if (!collectMultiplyFactors(Ops, Factors))
Craig Topperf40110f2014-04-25 05:29:35 +00001839 return nullptr; // All distinct factors, so nothing left for us to do.
Chandler Carruth739ef802012-04-26 05:30:30 +00001840
1841 IRBuilder<> Builder(I);
1842 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1843 if (Ops.empty())
1844 return V;
1845
1846 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1847 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
Craig Topperf40110f2014-04-25 05:29:35 +00001848 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001849}
1850
Chris Lattner4c065092006-03-04 09:31:13 +00001851Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner38abecb2009-12-31 18:40:32 +00001852 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere1850b82005-05-08 00:19:31 +00001853 // Now that we have the linearized expression tree, try to optimize it.
1854 // Start by folding any constants that we found.
Craig Topperf40110f2014-04-25 05:29:35 +00001855 Constant *Cst = nullptr;
Chris Lattner4c065092006-03-04 09:31:13 +00001856 unsigned Opcode = I->getOpcode();
Duncan Sandsac852c72012-11-15 09:58:38 +00001857 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1858 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1859 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1860 }
1861 // If there was nothing but constants then we are done.
1862 if (Ops.empty())
1863 return Cst;
1864
1865 // Put the combined constant back at the end of the operand list, except if
1866 // there is no point. For example, an add of 0 gets dropped here, while a
1867 // multiplication by zero turns the whole expression into zero.
1868 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1869 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1870 return Cst;
1871 Ops.push_back(ValueEntry(0, Cst));
1872 }
1873
1874 if (Ops.size() == 1) return Ops[0].Op;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001875
Chris Lattner9039ff82009-12-31 07:33:14 +00001876 // Handle destructive annihilation due to identities between elements in the
Chris Lattnere1850b82005-05-08 00:19:31 +00001877 // argument list here.
Chandler Carruth739ef802012-04-26 05:30:30 +00001878 unsigned NumOps = Ops.size();
Chris Lattner5847e5e2005-05-08 18:59:37 +00001879 switch (Opcode) {
1880 default: break;
1881 case Instruction::And:
1882 case Instruction::Or:
Chris Lattner5f8a0052009-12-31 07:59:34 +00001883 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1884 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001885 break;
1886
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001887 case Instruction::Xor:
1888 if (Value *Result = OptimizeXor(I, Ops))
1889 return Result;
1890 break;
1891
Chandler Carruth739ef802012-04-26 05:30:30 +00001892 case Instruction::Add:
Chad Rosier11ab9412014-08-14 15:23:01 +00001893 case Instruction::FAdd:
Chris Lattner177140a2009-12-31 18:17:13 +00001894 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001895 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001896 break;
Chandler Carruth739ef802012-04-26 05:30:30 +00001897
1898 case Instruction::Mul:
Chad Rosier11ab9412014-08-14 15:23:01 +00001899 case Instruction::FMul:
Chandler Carruth739ef802012-04-26 05:30:30 +00001900 if (Value *Result = OptimizeMul(I, Ops))
1901 return Result;
1902 break;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001903 }
1904
Duncan Sands3293f462012-06-08 20:15:33 +00001905 if (Ops.size() != NumOps)
Chris Lattner4c065092006-03-04 09:31:13 +00001906 return OptimizeExpression(I, Ops);
Craig Topperf40110f2014-04-25 05:29:35 +00001907 return nullptr;
Chris Lattnere1850b82005-05-08 00:19:31 +00001908}
1909
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001910/// EraseInst - Zap the given instruction, adding interesting operands to the
1911/// work list.
1912void Reassociate::EraseInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001913 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1914 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1915 // Erase the dead instruction.
1916 ValueRankMap.erase(I);
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001917 RedoInsts.remove(I);
Duncan Sands3293f462012-06-08 20:15:33 +00001918 I->eraseFromParent();
1919 // Optimize its operands.
Duncan Sands78386032012-06-15 08:37:50 +00001920 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
Duncan Sands3293f462012-06-08 20:15:33 +00001921 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1922 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1923 // If this is a node in an expression tree, climb to the expression root
1924 // and add that since that's where optimization actually happens.
1925 unsigned Opcode = Op->getOpcode();
Chandler Carruthcdf47882014-03-09 03:16:01 +00001926 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
Duncan Sands78386032012-06-15 08:37:50 +00001927 Visited.insert(Op))
Chandler Carruthcdf47882014-03-09 03:16:01 +00001928 Op = Op->user_back();
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001929 RedoInsts.insert(Op);
Duncan Sands3293f462012-06-08 20:15:33 +00001930 }
1931}
1932
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001933void Reassociate::optimizeFAddNegExpr(ConstantFP *ConstOperand, Instruction *I,
1934 int OperandNr) {
1935 // Change the sign of the constant.
1936 APFloat Val = ConstOperand->getValueAPF();
1937 Val.changeSign();
1938 I->setOperand(0, ConstantFP::get(ConstOperand->getContext(), Val));
1939
1940 assert(I->hasOneUse() && "Only a single use can be replaced.");
1941 Instruction *Parent = I->user_back();
1942
1943 Value *OtherOperand = Parent->getOperand(1 - OperandNr);
1944
1945 unsigned Opcode = Parent->getOpcode();
1946 assert(Opcode == Instruction::FAdd ||
1947 (Opcode == Instruction::FSub && Parent->getOperand(1) == I));
1948
1949 BinaryOperator *NI = Opcode == Instruction::FAdd
1950 ? BinaryOperator::CreateFSub(OtherOperand, I)
1951 : BinaryOperator::CreateFAdd(OtherOperand, I);
1952 NI->setFastMathFlags(cast<FPMathOperator>(Parent)->getFastMathFlags());
1953 NI->insertBefore(Parent);
1954 NI->setName(Parent->getName() + ".repl");
1955 Parent->replaceAllUsesWith(NI);
1956 NI->setDebugLoc(I->getDebugLoc());
1957 MadeChange = true;
1958}
1959
Duncan Sands3293f462012-06-08 20:15:33 +00001960/// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
1961/// instructions is not allowed.
1962void Reassociate::OptimizeInst(Instruction *I) {
1963 // Only consider operations that we understand.
1964 if (!isa<BinaryOperator>(I))
1965 return;
1966
Chad Rosier11ab9412014-08-14 15:23:01 +00001967 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
Duncan Sands3293f462012-06-08 20:15:33 +00001968 // If an operand of this shift is a reassociable multiply, or if the shift
1969 // is used by a reassociable multiply or add, turn into a multiply.
1970 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1971 (I->hasOneUse() &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00001972 (isReassociableOp(I->user_back(), Instruction::Mul) ||
1973 isReassociableOp(I->user_back(), Instruction::Add)))) {
Duncan Sands3293f462012-06-08 20:15:33 +00001974 Instruction *NI = ConvertShiftToMul(I);
1975 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00001976 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00001977 I = NI;
Chris Lattner877b1142005-05-08 21:28:52 +00001978 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +00001979
Chad Rosier11ab9412014-08-14 15:23:01 +00001980 // Commute floating point binary operators, to canonicalize the order of their
1981 // operands. This can potentially expose more CSE opportunities, and makes
1982 // writing other transformations simpler.
1983 if (I->getType()->isFloatingPointTy() || I->getType()->isVectorTy()) {
1984
Owen Andersonf4f80e12012-05-07 20:47:23 +00001985 // FAdd and FMul can be commuted.
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001986 unsigned Opcode = I->getOpcode();
1987 if (Opcode == Instruction::FMul || Opcode == Instruction::FAdd) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001988 Value *LHS = I->getOperand(0);
1989 Value *RHS = I->getOperand(1);
1990 unsigned LHSRank = getRank(LHS);
1991 unsigned RHSRank = getRank(RHS);
Owen Andersonf4f80e12012-05-07 20:47:23 +00001992
Chad Rosier11ab9412014-08-14 15:23:01 +00001993 // Sort the operands by rank.
1994 if (RHSRank < LHSRank) {
1995 I->setOperand(0, RHS);
1996 I->setOperand(1, LHS);
1997 }
Owen Andersonf4f80e12012-05-07 20:47:23 +00001998 }
1999
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002000 // Reassociate: x + -ConstantFP * y -> x - ConstantFP * y
2001 // The FMul can also be an FDiv, and FAdd can be a FSub.
2002 if (Opcode == Instruction::FMul || Opcode == Instruction::FDiv) {
2003 if (ConstantFP *LHSConst = dyn_cast<ConstantFP>(I->getOperand(0))) {
2004 if (LHSConst->isNegative() && I->hasOneUse()) {
2005 Instruction *Parent = I->user_back();
2006 if (Parent->getOpcode() == Instruction::FAdd) {
2007 if (Parent->getOperand(0) == I)
2008 optimizeFAddNegExpr(LHSConst, I, 0);
2009 else if (Parent->getOperand(1) == I)
2010 optimizeFAddNegExpr(LHSConst, I, 1);
2011 } else if (Parent->getOpcode() == Instruction::FSub)
2012 if (Parent->getOperand(1) == I)
2013 optimizeFAddNegExpr(LHSConst, I, 1);
2014 }
2015 }
2016 }
2017
Chad Rosier11ab9412014-08-14 15:23:01 +00002018 // FIXME: We should commute vector instructions as well. However, this
2019 // requires further analysis to determine the effect on later passes.
2020
2021 // Don't try to optimize vector instructions or anything that doesn't have
2022 // unsafe algebra.
2023 if (I->getType()->isVectorTy() || !I->hasUnsafeAlgebra())
2024 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002025 }
2026
Dan Gohman1c6c3482011-04-12 00:11:56 +00002027 // Do not reassociate boolean (i1) expressions. We want to preserve the
2028 // original order of evaluation for short-circuited comparisons that
2029 // SimplifyCFG has folded to AND/OR expressions. If the expression
2030 // is not further optimized, it is likely to be transformed back to a
2031 // short-circuited form for code gen, and the source order may have been
2032 // optimized for the most likely conditions.
Duncan Sands3293f462012-06-08 20:15:33 +00002033 if (I->getType()->isIntegerTy(1))
Dan Gohman1c6c3482011-04-12 00:11:56 +00002034 return;
Chris Lattner7bc532d2002-05-16 04:37:07 +00002035
Dan Gohman1c6c3482011-04-12 00:11:56 +00002036 // If this is a subtract instruction which is not already in negate form,
2037 // see if we can convert it to X+-Y.
Duncan Sands3293f462012-06-08 20:15:33 +00002038 if (I->getOpcode() == Instruction::Sub) {
2039 if (ShouldBreakUpSubtract(I)) {
2040 Instruction *NI = BreakUpSubtract(I);
2041 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002042 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002043 I = NI;
2044 } else if (BinaryOperator::isNeg(I)) {
Dan Gohman1c6c3482011-04-12 00:11:56 +00002045 // Otherwise, this is a negation. See if the operand is a multiply tree
2046 // and if this is not an inner node of a multiply tree.
Duncan Sands3293f462012-06-08 20:15:33 +00002047 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2048 (!I->hasOneUse() ||
Chandler Carruthcdf47882014-03-09 03:16:01 +00002049 !isReassociableOp(I->user_back(), Instruction::Mul))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002050 Instruction *NI = LowerNegateToMultiply(I);
2051 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002052 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002053 I = NI;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002054 }
2055 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002056 } else if (I->getOpcode() == Instruction::FSub) {
2057 if (ShouldBreakUpSubtract(I)) {
2058 Instruction *NI = BreakUpSubtract(I);
2059 RedoInsts.insert(I);
2060 MadeChange = true;
2061 I = NI;
2062 } else if (BinaryOperator::isFNeg(I)) {
2063 // Otherwise, this is a negation. See if the operand is a multiply tree
2064 // and if this is not an inner node of a multiply tree.
2065 if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2066 (!I->hasOneUse() ||
2067 !isReassociableOp(I->user_back(), Instruction::FMul))) {
2068 Instruction *NI = LowerNegateToMultiply(I);
2069 RedoInsts.insert(I);
2070 MadeChange = true;
2071 I = NI;
2072 }
2073 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002074 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002075
Duncan Sands3293f462012-06-08 20:15:33 +00002076 // If this instruction is an associative binary operator, process it.
2077 if (!I->isAssociative()) return;
2078 BinaryOperator *BO = cast<BinaryOperator>(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002079
2080 // If this is an interior node of a reassociable tree, ignore it until we
2081 // get to the root of the tree, to avoid N^2 analysis.
Nadav Rotem10888112012-07-23 13:44:15 +00002082 unsigned Opcode = BO->getOpcode();
Chandler Carruthcdf47882014-03-09 03:16:01 +00002083 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode)
Dan Gohman1c6c3482011-04-12 00:11:56 +00002084 return;
2085
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002086 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohman1c6c3482011-04-12 00:11:56 +00002087 // until we process the subtract.
Duncan Sands3293f462012-06-08 20:15:33 +00002088 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002089 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
Dan Gohman1c6c3482011-04-12 00:11:56 +00002090 return;
Chad Rosier11ab9412014-08-14 15:23:01 +00002091 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2092 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2093 return;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002094
Duncan Sands3293f462012-06-08 20:15:33 +00002095 ReassociateExpression(BO);
Chris Lattner2fc319d2006-03-14 07:11:11 +00002096}
Chris Lattner1e506502005-05-07 21:59:39 +00002097
Duncan Sands78386032012-06-15 08:37:50 +00002098void Reassociate::ReassociateExpression(BinaryOperator *I) {
Chad Rosier11ab9412014-08-14 15:23:01 +00002099 assert(!I->getType()->isVectorTy() &&
2100 "Reassociation of vector instructions is not supported.");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002101
Chris Lattner60b71b52009-12-31 19:24:52 +00002102 // First, walk the expression tree, linearizing the tree, collecting the
2103 // operand information.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002104 SmallVector<RepeatedValue, 8> Tree;
2105 MadeChange |= LinearizeExprTree(I, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00002106 SmallVector<ValueEntry, 8> Ops;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002107 Ops.reserve(Tree.size());
2108 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2109 RepeatedValue E = Tree[i];
2110 Ops.append(E.second.getZExtValue(),
2111 ValueEntry(getRank(E.first), E.first));
2112 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002113
Duncan Sandsc94ac6f2012-05-26 07:47:48 +00002114 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2115
Chris Lattner2fc319d2006-03-14 07:11:11 +00002116 // Now that we have linearized the tree to a list and have gathered all of
2117 // the operands and their ranks, sort the operands by their rank. Use a
2118 // stable_sort so that values with equal ranks will have their relative
2119 // positions maintained (and so the compiler is deterministic). Note that
2120 // this sorts so that the highest ranking values end up at the beginning of
2121 // the vector.
2122 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002123
Chris Lattner2fc319d2006-03-14 07:11:11 +00002124 // OptimizeExpression - Now that we have the expression tree in a convenient
2125 // sorted form, optimize it globally if possible.
2126 if (Value *V = OptimizeExpression(I, Ops)) {
Duncan Sands78386032012-06-15 08:37:50 +00002127 if (V == I)
2128 // Self-referential expression in unreachable code.
2129 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002130 // This expression tree simplified to something that isn't a tree,
2131 // eliminate it.
David Greened17c3912010-01-05 01:27:24 +00002132 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner2fc319d2006-03-14 07:11:11 +00002133 I->replaceAllUsesWith(V);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002134 if (Instruction *VI = dyn_cast<Instruction>(V))
2135 VI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002136 RedoInsts.insert(I);
Chris Lattnerba1f36a2009-12-31 17:51:05 +00002137 ++NumAnnihil;
Duncan Sands78386032012-06-15 08:37:50 +00002138 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002139 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002140
Chris Lattner2fc319d2006-03-14 07:11:11 +00002141 // We want to sink immediates as deeply as possible except in the case where
2142 // this is a multiply tree used only by an add, and the immediate is a -1.
2143 // In this case we reassociate to put the negation on the outside so that we
2144 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
Chad Rosier11ab9412014-08-14 15:23:01 +00002145 if (I->hasOneUse()) {
2146 if (I->getOpcode() == Instruction::Mul &&
2147 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2148 isa<ConstantInt>(Ops.back().Op) &&
2149 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
2150 ValueEntry Tmp = Ops.pop_back_val();
2151 Ops.insert(Ops.begin(), Tmp);
2152 } else if (I->getOpcode() == Instruction::FMul &&
2153 cast<Instruction>(I->user_back())->getOpcode() ==
2154 Instruction::FAdd &&
2155 isa<ConstantFP>(Ops.back().Op) &&
2156 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2157 ValueEntry Tmp = Ops.pop_back_val();
2158 Ops.insert(Ops.begin(), Tmp);
2159 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002160 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002161
David Greened17c3912010-01-05 01:27:24 +00002162 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002163
Chris Lattner2fc319d2006-03-14 07:11:11 +00002164 if (Ops.size() == 1) {
Duncan Sands78386032012-06-15 08:37:50 +00002165 if (Ops[0].Op == I)
2166 // Self-referential expression in unreachable code.
2167 return;
2168
Chris Lattner2fc319d2006-03-14 07:11:11 +00002169 // This expression tree simplified to something that isn't a tree,
2170 // eliminate it.
2171 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002172 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2173 OI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002174 RedoInsts.insert(I);
Duncan Sands78386032012-06-15 08:37:50 +00002175 return;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002176 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002177
Chris Lattner60b71b52009-12-31 19:24:52 +00002178 // Now that we ordered and optimized the expressions, splat them back into
2179 // the expression tree, removing any unneeded nodes.
2180 RewriteExprTree(I, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002181}
2182
Chris Lattner113f4f42002-06-25 16:13:24 +00002183bool Reassociate::runOnFunction(Function &F) {
Paul Robinsonaf4e64d2014-02-06 00:07:05 +00002184 if (skipOptnoneFunction(F))
2185 return false;
2186
Duncan Sands3293f462012-06-08 20:15:33 +00002187 // Calculate the rank map for F
Chris Lattnerc0f58002002-05-08 22:19:27 +00002188 BuildRankMap(F);
2189
Chris Lattner1e506502005-05-07 21:59:39 +00002190 MadeChange = false;
Duncan Sands3293f462012-06-08 20:15:33 +00002191 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
2192 // Optimize every instruction in the basic block.
2193 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
2194 if (isInstructionTriviallyDead(II)) {
2195 EraseInst(II++);
2196 } else {
2197 OptimizeInst(II);
2198 assert(II->getParent() == BI && "Moved to a different block!");
2199 ++II;
2200 }
Duncan Sands9a5cf922012-06-08 13:37:30 +00002201
Duncan Sands3293f462012-06-08 20:15:33 +00002202 // If this produced extra instructions to optimize, handle them now.
2203 while (!RedoInsts.empty()) {
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00002204 Instruction *I = RedoInsts.pop_back_val();
Duncan Sands3293f462012-06-08 20:15:33 +00002205 if (isInstructionTriviallyDead(I))
2206 EraseInst(I);
2207 else
2208 OptimizeInst(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002209 }
Duncan Sands3293f462012-06-08 20:15:33 +00002210 }
Chris Lattnerc0f58002002-05-08 22:19:27 +00002211
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00002212 // We are done with the rank map.
2213 RankMap.clear();
2214 ValueRankMap.clear();
2215
Chris Lattner1e506502005-05-07 21:59:39 +00002216 return MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002217}