blob: 5cfbf6baeaa9e618b68a94db8c2f15e167a897da [file] [log] [blame]
Davide Italiano7e274e02016-12-22 16:03:48 +00001//===---- NewGVN.cpp - Global Value Numbering Pass --------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements the new LLVM's Global Value Numbering pass.
11/// GVN partitions values computed by a function into congruence classes.
12/// Values ending up in the same congruence class are guaranteed to be the same
13/// for every execution of the program. In that respect, congruency is a
14/// compile-time approximation of equivalence of values at runtime.
15/// The algorithm implemented here uses a sparse formulation and it's based
16/// on the ideas described in the paper:
17/// "A Sparse Algorithm for Predicated Global Value Numbering" from
18/// Karthik Gargi.
19///
Daniel Berlindb3c7be2017-01-26 21:39:49 +000020/// A brief overview of the algorithm: The algorithm is essentially the same as
21/// the standard RPO value numbering algorithm (a good reference is the paper
22/// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23/// The RPO algorithm proceeds, on every iteration, to process every reachable
24/// block and every instruction in that block. This is because the standard RPO
25/// algorithm does not track what things have the same value number, it only
26/// tracks what the value number of a given operation is (the mapping is
27/// operation -> value number). Thus, when a value number of an operation
28/// changes, it must reprocess everything to ensure all uses of a value number
29/// get updated properly. In constrast, the sparse algorithm we use *also*
30/// tracks what operations have a given value number (IE it also tracks the
31/// reverse mapping from value number -> operations with that value number), so
32/// that it only needs to reprocess the instructions that are affected when
Daniel Berlinb527b2c2017-05-19 19:01:27 +000033/// something's value number changes. The vast majority of complexity and code
34/// in this file is devoted to tracking what value numbers could change for what
35/// instructions when various things happen. The rest of the algorithm is
36/// devoted to performing symbolic evaluation, forward propagation, and
37/// simplification of operations based on the value numbers deduced so far
38///
39/// In order to make the GVN mostly-complete, we use a technique derived from
40/// "Detection of Redundant Expressions: A Complete and Polynomial-time
41/// Algorithm in SSA" by R.R. Pai. The source of incompleteness in most SSA
42/// based GVN algorithms is related to their inability to detect equivalence
43/// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
44/// We resolve this issue by generating the equivalent "phi of ops" form for
45/// each op of phis we see, in a way that only takes polynomial time to resolve.
Daniel Berlindb3c7be2017-01-26 21:39:49 +000046///
47/// We also do not perform elimination by using any published algorithm. All
48/// published algorithms are O(Instructions). Instead, we use a technique that
49/// is O(number of operations with the same value number), enabling us to skip
50/// trying to eliminate things that have unique value numbers.
Davide Italiano7e274e02016-12-22 16:03:48 +000051//===----------------------------------------------------------------------===//
52
53#include "llvm/Transforms/Scalar/NewGVN.h"
54#include "llvm/ADT/BitVector.h"
55#include "llvm/ADT/DenseMap.h"
56#include "llvm/ADT/DenseSet.h"
57#include "llvm/ADT/DepthFirstIterator.h"
58#include "llvm/ADT/Hashing.h"
59#include "llvm/ADT/MapVector.h"
60#include "llvm/ADT/PostOrderIterator.h"
Daniel Berlind7c12ee2016-12-25 22:23:49 +000061#include "llvm/ADT/STLExtras.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000062#include "llvm/ADT/SmallPtrSet.h"
63#include "llvm/ADT/SmallSet.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000064#include "llvm/ADT/Statistic.h"
65#include "llvm/ADT/TinyPtrVector.h"
66#include "llvm/Analysis/AliasAnalysis.h"
67#include "llvm/Analysis/AssumptionCache.h"
68#include "llvm/Analysis/CFG.h"
69#include "llvm/Analysis/CFGPrinter.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/GlobalsModRef.h"
72#include "llvm/Analysis/InstructionSimplify.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000073#include "llvm/Analysis/MemoryBuiltins.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000074#include "llvm/Analysis/MemoryLocation.h"
Daniel Berlin2f72b192017-04-14 02:53:37 +000075#include "llvm/Analysis/MemorySSA.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000076#include "llvm/Analysis/TargetLibraryInfo.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000077#include "llvm/IR/DataLayout.h"
78#include "llvm/IR/Dominators.h"
79#include "llvm/IR/GlobalVariable.h"
80#include "llvm/IR/IRBuilder.h"
81#include "llvm/IR/IntrinsicInst.h"
82#include "llvm/IR/LLVMContext.h"
83#include "llvm/IR/Metadata.h"
84#include "llvm/IR/PatternMatch.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000085#include "llvm/IR/Type.h"
86#include "llvm/Support/Allocator.h"
87#include "llvm/Support/CommandLine.h"
88#include "llvm/Support/Debug.h"
Daniel Berlin283a6082017-03-01 19:59:26 +000089#include "llvm/Support/DebugCounter.h"
Davide Italiano7e274e02016-12-22 16:03:48 +000090#include "llvm/Transforms/Scalar.h"
91#include "llvm/Transforms/Scalar/GVNExpression.h"
92#include "llvm/Transforms/Utils/BasicBlockUtils.h"
93#include "llvm/Transforms/Utils/Local.h"
Daniel Berlinf7d95802017-02-18 23:06:50 +000094#include "llvm/Transforms/Utils/PredicateInfo.h"
Daniel Berlin07daac82017-04-02 13:23:44 +000095#include "llvm/Transforms/Utils/VNCoercion.h"
Daniel Berlin1316a942017-04-06 18:52:50 +000096#include <numeric>
Davide Italiano7e274e02016-12-22 16:03:48 +000097#include <unordered_map>
98#include <utility>
99#include <vector>
100using namespace llvm;
101using namespace PatternMatch;
102using namespace llvm::GVNExpression;
Daniel Berlin07daac82017-04-02 13:23:44 +0000103using namespace llvm::VNCoercion;
Davide Italiano7e274e02016-12-22 16:03:48 +0000104#define DEBUG_TYPE "newgvn"
105
106STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
107STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
108STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
109STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
Daniel Berlin04443432017-01-07 03:23:47 +0000110STATISTIC(NumGVNMaxIterations,
111 "Maximum Number of iterations it took to converge GVN");
Daniel Berlinc0431fd2017-01-13 22:40:01 +0000112STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
113STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
114STATISTIC(NumGVNAvoidedSortedLeaderChanges,
115 "Number of avoided sorted leader changes");
Daniel Berlinc4796862017-01-27 02:37:11 +0000116STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
Daniel Berlinb527b2c2017-05-19 19:01:27 +0000117STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
118STATISTIC(NumGVNPHIOfOpsEliminations,
119 "Number of things eliminated using PHI of ops");
Daniel Berlin283a6082017-03-01 19:59:26 +0000120DEBUG_COUNTER(VNCounter, "newgvn-vn",
121 "Controls which instructions are value numbered")
Daniel Berlinb527b2c2017-05-19 19:01:27 +0000122DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
123 "Controls which instructions we create phi of ops for")
Daniel Berlin1316a942017-04-06 18:52:50 +0000124// Currently store defining access refinement is too slow due to basicaa being
125// egregiously slow. This flag lets us keep it working while we work on this
126// issue.
127static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
128 cl::init(false), cl::Hidden);
129
Davide Italiano7e274e02016-12-22 16:03:48 +0000130//===----------------------------------------------------------------------===//
131// GVN Pass
132//===----------------------------------------------------------------------===//
133
134// Anchor methods.
135namespace llvm {
136namespace GVNExpression {
Daniel Berlin85f91b02016-12-26 20:06:58 +0000137Expression::~Expression() = default;
138BasicExpression::~BasicExpression() = default;
139CallExpression::~CallExpression() = default;
140LoadExpression::~LoadExpression() = default;
141StoreExpression::~StoreExpression() = default;
142AggregateValueExpression::~AggregateValueExpression() = default;
143PHIExpression::~PHIExpression() = default;
Davide Italiano7e274e02016-12-22 16:03:48 +0000144}
145}
146
Daniel Berlin2f72b192017-04-14 02:53:37 +0000147// Tarjan's SCC finding algorithm with Nuutila's improvements
148// SCCIterator is actually fairly complex for the simple thing we want.
149// It also wants to hand us SCC's that are unrelated to the phi node we ask
150// about, and have us process them there or risk redoing work.
151// Graph traits over a filter iterator also doesn't work that well here.
Daniel Berlin9d0042b2017-04-18 20:15:47 +0000152// This SCC finder is specialized to walk use-def chains, and only follows
153// instructions,
Daniel Berlin2f72b192017-04-14 02:53:37 +0000154// not generic values (arguments, etc).
155struct TarjanSCC {
156
157 TarjanSCC() : Components(1) {}
158
159 void Start(const Instruction *Start) {
160 if (Root.lookup(Start) == 0)
161 FindSCC(Start);
162 }
163
164 const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
165 unsigned ComponentID = ValueToComponent.lookup(V);
166
167 assert(ComponentID > 0 &&
168 "Asking for a component for a value we never processed");
169 return Components[ComponentID];
170 }
171
172private:
173 void FindSCC(const Instruction *I) {
174 Root[I] = ++DFSNum;
175 // Store the DFS Number we had before it possibly gets incremented.
176 unsigned int OurDFS = DFSNum;
177 for (auto &Op : I->operands()) {
178 if (auto *InstOp = dyn_cast<Instruction>(Op)) {
179 if (Root.lookup(Op) == 0)
180 FindSCC(InstOp);
181 if (!InComponent.count(Op))
182 Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
183 }
184 }
Daniel Berlin9d0042b2017-04-18 20:15:47 +0000185 // See if we really were the root of a component, by seeing if we still have
Daniel Berlinb527b2c2017-05-19 19:01:27 +0000186 // our DFSNumber. If we do, we are the root of the component, and we have
187 // completed a component. If we do not, we are not the root of a component,
188 // and belong on the component stack.
Daniel Berlin2f72b192017-04-14 02:53:37 +0000189 if (Root.lookup(I) == OurDFS) {
190 unsigned ComponentID = Components.size();
191 Components.resize(Components.size() + 1);
192 auto &Component = Components.back();
193 Component.insert(I);
194 DEBUG(dbgs() << "Component root is " << *I << "\n");
195 InComponent.insert(I);
196 ValueToComponent[I] = ComponentID;
197 // Pop a component off the stack and label it.
198 while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
199 auto *Member = Stack.back();
200 DEBUG(dbgs() << "Component member is " << *Member << "\n");
201 Component.insert(Member);
202 InComponent.insert(Member);
203 ValueToComponent[Member] = ComponentID;
204 Stack.pop_back();
205 }
206 } else {
207 // Part of a component, push to stack
208 Stack.push_back(I);
209 }
210 }
211 unsigned int DFSNum = 1;
212 SmallPtrSet<const Value *, 8> InComponent;
213 DenseMap<const Value *, unsigned int> Root;
214 SmallVector<const Value *, 8> Stack;
215 // Store the components as vector of ptr sets, because we need the topo order
216 // of SCC's, but not individual member order
217 SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
218 DenseMap<const Value *, unsigned> ValueToComponent;
219};
Davide Italiano7e274e02016-12-22 16:03:48 +0000220// Congruence classes represent the set of expressions/instructions
221// that are all the same *during some scope in the function*.
222// That is, because of the way we perform equality propagation, and
223// because of memory value numbering, it is not correct to assume
224// you can willy-nilly replace any member with any other at any
225// point in the function.
226//
227// For any Value in the Member set, it is valid to replace any dominated member
228// with that Value.
229//
Daniel Berlin1316a942017-04-06 18:52:50 +0000230// Every congruence class has a leader, and the leader is used to symbolize
231// instructions in a canonical way (IE every operand of an instruction that is a
232// member of the same congruence class will always be replaced with leader
233// during symbolization). To simplify symbolization, we keep the leader as a
234// constant if class can be proved to be a constant value. Otherwise, the
235// leader is the member of the value set with the smallest DFS number. Each
236// congruence class also has a defining expression, though the expression may be
237// null. If it exists, it can be used for forward propagation and reassociation
238// of values.
239
240// For memory, we also track a representative MemoryAccess, and a set of memory
241// members for MemoryPhis (which have no real instructions). Note that for
242// memory, it seems tempting to try to split the memory members into a
243// MemoryCongruenceClass or something. Unfortunately, this does not work
244// easily. The value numbering of a given memory expression depends on the
245// leader of the memory congruence class, and the leader of memory congruence
246// class depends on the value numbering of a given memory expression. This
247// leads to wasted propagation, and in some cases, missed optimization. For
248// example: If we had value numbered two stores together before, but now do not,
249// we move them to a new value congruence class. This in turn will move at one
250// of the memorydefs to a new memory congruence class. Which in turn, affects
251// the value numbering of the stores we just value numbered (because the memory
252// congruence class is part of the value number). So while theoretically
253// possible to split them up, it turns out to be *incredibly* complicated to get
254// it to work right, because of the interdependency. While structurally
255// slightly messier, it is algorithmically much simpler and faster to do what we
Daniel Berlina8236562017-04-07 18:38:09 +0000256// do here, and track them both at once in the same class.
257// Note: The default iterators for this class iterate over values
258class CongruenceClass {
259public:
260 using MemberType = Value;
261 using MemberSet = SmallPtrSet<MemberType *, 4>;
262 using MemoryMemberType = MemoryPhi;
263 using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
264
265 explicit CongruenceClass(unsigned ID) : ID(ID) {}
266 CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
267 : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
268 unsigned getID() const { return ID; }
269 // True if this class has no members left. This is mainly used for assertion
270 // purposes, and for skipping empty classes.
271 bool isDead() const {
272 // If it's both dead from a value perspective, and dead from a memory
273 // perspective, it's really dead.
274 return empty() && memory_empty();
275 }
276 // Leader functions
277 Value *getLeader() const { return RepLeader; }
278 void setLeader(Value *Leader) { RepLeader = Leader; }
279 const std::pair<Value *, unsigned int> &getNextLeader() const {
280 return NextLeader;
281 }
282 void resetNextLeader() { NextLeader = {nullptr, ~0}; }
283
284 void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
285 if (LeaderPair.second < NextLeader.second)
286 NextLeader = LeaderPair;
287 }
288
289 Value *getStoredValue() const { return RepStoredValue; }
290 void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
291 const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
292 void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
293
294 // Forward propagation info
295 const Expression *getDefiningExpr() const { return DefiningExpr; }
Daniel Berlina8236562017-04-07 18:38:09 +0000296
297 // Value member set
298 bool empty() const { return Members.empty(); }
299 unsigned size() const { return Members.size(); }
300 MemberSet::const_iterator begin() const { return Members.begin(); }
301 MemberSet::const_iterator end() const { return Members.end(); }
302 void insert(MemberType *M) { Members.insert(M); }
303 void erase(MemberType *M) { Members.erase(M); }
304 void swap(MemberSet &Other) { Members.swap(Other); }
305
306 // Memory member set
307 bool memory_empty() const { return MemoryMembers.empty(); }
308 unsigned memory_size() const { return MemoryMembers.size(); }
309 MemoryMemberSet::const_iterator memory_begin() const {
310 return MemoryMembers.begin();
311 }
312 MemoryMemberSet::const_iterator memory_end() const {
313 return MemoryMembers.end();
314 }
315 iterator_range<MemoryMemberSet::const_iterator> memory() const {
316 return make_range(memory_begin(), memory_end());
317 }
318 void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
319 void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
320
321 // Store count
322 unsigned getStoreCount() const { return StoreCount; }
323 void incStoreCount() { ++StoreCount; }
324 void decStoreCount() {
325 assert(StoreCount != 0 && "Store count went negative");
326 --StoreCount;
327 }
328
Davide Italianodc435322017-05-10 19:57:43 +0000329 // True if this class has no memory members.
330 bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
331
Daniel Berlina8236562017-04-07 18:38:09 +0000332 // Return true if two congruence classes are equivalent to each other. This
333 // means
334 // that every field but the ID number and the dead field are equivalent.
335 bool isEquivalentTo(const CongruenceClass *Other) const {
336 if (!Other)
337 return false;
338 if (this == Other)
339 return true;
340
341 if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
342 std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
343 Other->RepMemoryAccess))
344 return false;
345 if (DefiningExpr != Other->DefiningExpr)
346 if (!DefiningExpr || !Other->DefiningExpr ||
347 *DefiningExpr != *Other->DefiningExpr)
348 return false;
349 // We need some ordered set
350 std::set<Value *> AMembers(Members.begin(), Members.end());
351 std::set<Value *> BMembers(Members.begin(), Members.end());
352 return AMembers == BMembers;
353 }
354
355private:
Davide Italiano7e274e02016-12-22 16:03:48 +0000356 unsigned ID;
357 // Representative leader.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000358 Value *RepLeader = nullptr;
Daniel Berlina8236562017-04-07 18:38:09 +0000359 // The most dominating leader after our current leader, because the member set
360 // is not sorted and is expensive to keep sorted all the time.
361 std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
Daniel Berlin1316a942017-04-06 18:52:50 +0000362 // If this is represented by a store, the value of the store.
Daniel Berlin26addef2017-01-20 21:04:30 +0000363 Value *RepStoredValue = nullptr;
Daniel Berlin1316a942017-04-06 18:52:50 +0000364 // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
365 // access.
366 const MemoryAccess *RepMemoryAccess = nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +0000367 // Defining Expression.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000368 const Expression *DefiningExpr = nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +0000369 // Actual members of this class.
370 MemberSet Members;
Daniel Berlin1316a942017-04-06 18:52:50 +0000371 // This is the set of MemoryPhis that exist in the class. MemoryDefs and
372 // MemoryUses have real instructions representing them, so we only need to
373 // track MemoryPhis here.
374 MemoryMemberSet MemoryMembers;
Daniel Berlinf6eba4b2017-01-11 20:22:36 +0000375 // Number of stores in this congruence class.
376 // This is used so we can detect store equivalence changes properly.
Davide Italianoeac05f62017-01-11 23:41:24 +0000377 int StoreCount = 0;
Davide Italiano7e274e02016-12-22 16:03:48 +0000378};
379
Daniel Berlinb527b2c2017-05-19 19:01:27 +0000380struct HashedExpression;
Davide Italiano7e274e02016-12-22 16:03:48 +0000381namespace llvm {
Daniel Berlin85f91b02016-12-26 20:06:58 +0000382template <> struct DenseMapInfo<const Expression *> {
383 static const Expression *getEmptyKey() {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000384 auto Val = static_cast<uintptr_t>(-1);
Daniel Berlin85f91b02016-12-26 20:06:58 +0000385 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
386 return reinterpret_cast<const Expression *>(Val);
387 }
388 static const Expression *getTombstoneKey() {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000389 auto Val = static_cast<uintptr_t>(~1U);
Daniel Berlin85f91b02016-12-26 20:06:58 +0000390 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
391 return reinterpret_cast<const Expression *>(Val);
392 }
Daniel Berlinb527b2c2017-05-19 19:01:27 +0000393 static unsigned getHashValue(const Expression *E) {
394 return static_cast<unsigned>(E->getHashValue());
Daniel Berlin85f91b02016-12-26 20:06:58 +0000395 }
Daniel Berlinb527b2c2017-05-19 19:01:27 +0000396 static unsigned getHashValue(const HashedExpression &HE);
397 static bool isEqual(const HashedExpression &LHS, const Expression *RHS);
Daniel Berlin85f91b02016-12-26 20:06:58 +0000398 static bool isEqual(const Expression *LHS, const Expression *RHS) {
399 if (LHS == RHS)
400 return true;
401 if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
402 LHS == getEmptyKey() || RHS == getEmptyKey())
403 return false;
404 return *LHS == *RHS;
405 }
406};
Davide Italiano7e274e02016-12-22 16:03:48 +0000407} // end namespace llvm
408
Daniel Berlinb527b2c2017-05-19 19:01:27 +0000409// This is just a wrapper around Expression that computes the hash value once at
410// creation time. Hash values for an Expression can't change once they are
411// inserted into the DenseMap (it breaks DenseMap), so they must be immutable at
412// that point anyway.
413struct HashedExpression {
414 const Expression *E;
415 unsigned HashVal;
416 HashedExpression(const Expression *E)
417 : E(E), HashVal(DenseMapInfo<const Expression *>::getHashValue(E)) {}
418};
419
420unsigned
421DenseMapInfo<const Expression *>::getHashValue(const HashedExpression &HE) {
422 return HE.HashVal;
423}
424bool DenseMapInfo<const Expression *>::isEqual(const HashedExpression &LHS,
425 const Expression *RHS) {
426 return isEqual(LHS.E, RHS);
427}
428
Benjamin Kramerefcf06f2017-02-11 11:06:55 +0000429namespace {
Daniel Berlin64e68992017-03-12 04:46:45 +0000430class NewGVN {
431 Function &F;
Davide Italiano7e274e02016-12-22 16:03:48 +0000432 DominatorTree *DT;
Daniel Berlin64e68992017-03-12 04:46:45 +0000433 const TargetLibraryInfo *TLI;
Davide Italiano7e274e02016-12-22 16:03:48 +0000434 AliasAnalysis *AA;
435 MemorySSA *MSSA;
436 MemorySSAWalker *MSSAWalker;
Daniel Berlin64e68992017-03-12 04:46:45 +0000437 const DataLayout &DL;
Daniel Berlinf7d95802017-02-18 23:06:50 +0000438 std::unique_ptr<PredicateInfo> PredInfo;
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000439
440 // These are the only two things the create* functions should have
441 // side-effects on due to allocating memory.
442 mutable BumpPtrAllocator ExpressionAllocator;
443 mutable ArrayRecycler<Value *> ArgRecycler;
444 mutable TarjanSCC SCCFinder;
Daniel Berlinede130d2017-04-26 20:56:14 +0000445 const SimplifyQuery SQ;
Davide Italiano7e274e02016-12-22 16:03:48 +0000446
Daniel Berlin1c087672017-02-11 15:07:01 +0000447 // Number of function arguments, used by ranking
448 unsigned int NumFuncArgs;
449
Daniel Berlin2f72b192017-04-14 02:53:37 +0000450 // RPOOrdering of basic blocks
451 DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
452
Davide Italiano7e274e02016-12-22 16:03:48 +0000453 // Congruence class info.
Daniel Berlinb79f5362017-02-11 12:48:50 +0000454
455 // This class is called INITIAL in the paper. It is the class everything
456 // startsout in, and represents any value. Being an optimistic analysis,
Daniel Berlin5c338ff2017-03-10 19:05:04 +0000457 // anything in the TOP class has the value TOP, which is indeterminate and
Daniel Berlinb79f5362017-02-11 12:48:50 +0000458 // equivalent to everything.
Daniel Berlin5c338ff2017-03-10 19:05:04 +0000459 CongruenceClass *TOPClass;
Davide Italiano7e274e02016-12-22 16:03:48 +0000460 std::vector<CongruenceClass *> CongruenceClasses;
461 unsigned NextCongruenceNum;
462
463 // Value Mappings.
464 DenseMap<Value *, CongruenceClass *> ValueToClass;
465 DenseMap<Value *, const Expression *> ValueToExpression;
Daniel Berlinb527b2c2017-05-19 19:01:27 +0000466 // Value PHI handling, used to make equivalence between phi(op, op) and
467 // op(phi, phi).
468 // These mappings just store various data that would normally be part of the
469 // IR.
470 DenseSet<const Instruction *> PHINodeUses;
471 // Map a temporary instruction we created to a parent block.
472 DenseMap<const Value *, BasicBlock *> TempToBlock;
473 // Map between the temporary phis we created and the real instructions they
474 // are known equivalent to.
475 DenseMap<const Value *, PHINode *> RealToTemp;
476 // In order to know when we should re-process instructions that have
477 // phi-of-ops, we track the set of expressions that they needed as
478 // leaders. When we discover new leaders for those expressions, we process the
479 // associated phi-of-op instructions again in case they have changed. The
480 // other way they may change is if they had leaders, and those leaders
481 // disappear. However, at the point they have leaders, there are uses of the
482 // relevant operands in the created phi node, and so they will get reprocessed
483 // through the normal user marking we perform.
484 mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers;
485 DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>>
486 ExpressionToPhiOfOps;
487 // Map from basic block to the temporary operations we created
Daniel Berlin0207cca2017-05-21 23:41:56 +0000488 DenseMap<const BasicBlock *, SmallVector<PHINode *, 8>> PHIOfOpsPHIs;
Daniel Berlinb527b2c2017-05-19 19:01:27 +0000489 // Map from temporary operation to MemoryAccess.
490 DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory;
491 // Set of all temporary instructions we created.
492 DenseSet<Instruction *> AllTempInstructions;
Davide Italiano7e274e02016-12-22 16:03:48 +0000493
Daniel Berlinf7d95802017-02-18 23:06:50 +0000494 // Mapping from predicate info we used to the instructions we used it with.
495 // In order to correctly ensure propagation, we must keep track of what
496 // comparisons we used, so that when the values of the comparisons change, we
497 // propagate the information to the places we used the comparison.
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000498 mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
499 PredicateToUsers;
Daniel Berlin1316a942017-04-06 18:52:50 +0000500 // the same reasoning as PredicateToUsers. When we skip MemoryAccesses for
501 // stores, we no longer can rely solely on the def-use chains of MemorySSA.
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000502 mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
503 MemoryToUsers;
Daniel Berlinf7d95802017-02-18 23:06:50 +0000504
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000505 // A table storing which memorydefs/phis represent a memory state provably
506 // equivalent to another memory state.
507 // We could use the congruence class machinery, but the MemoryAccess's are
508 // abstract memory states, so they can only ever be equivalent to each other,
509 // and not to constants, etc.
Daniel Berlin1ea5f322017-01-26 22:21:48 +0000510 DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000511
Daniel Berlin1316a942017-04-06 18:52:50 +0000512 // We could, if we wanted, build MemoryPhiExpressions and
513 // MemoryVariableExpressions, etc, and value number them the same way we value
514 // number phi expressions. For the moment, this seems like overkill. They
515 // can only exist in one of three states: they can be TOP (equal to
516 // everything), Equivalent to something else, or unique. Because we do not
517 // create expressions for them, we need to simulate leader change not just
518 // when they change class, but when they change state. Note: We can do the
519 // same thing for phis, and avoid having phi expressions if we wanted, We
520 // should eventually unify in one direction or the other, so this is a little
521 // bit of an experiment in which turns out easier to maintain.
522 enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
523 DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
524
Daniel Berlinb527b2c2017-05-19 19:01:27 +0000525 enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
526 mutable DenseMap<const Instruction *, InstCycleState> InstCycleState;
Davide Italiano7e274e02016-12-22 16:03:48 +0000527 // Expression to class mapping.
Piotr Padlewskie4047b82016-12-28 19:29:26 +0000528 using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
Davide Italiano7e274e02016-12-22 16:03:48 +0000529 ExpressionClassMap ExpressionToClass;
530
Daniel Berline021d2d2017-05-19 20:22:20 +0000531 // We have a single expression that represents currently DeadExpressions.
532 // For dead expressions we can prove will stay dead, we mark them with
533 // DFS number zero. However, it's possible in the case of phi nodes
534 // for us to assume/prove all arguments are dead during fixpointing.
535 // We use DeadExpression for that case.
536 DeadExpression *SingletonDeadExpression = nullptr;
537
Davide Italiano7e274e02016-12-22 16:03:48 +0000538 // Which values have changed as a result of leader changes.
Daniel Berlin3a1bd022017-01-11 20:22:05 +0000539 SmallPtrSet<Value *, 8> LeaderChanges;
Davide Italiano7e274e02016-12-22 16:03:48 +0000540
541 // Reachability info.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000542 using BlockEdge = BasicBlockEdge;
Davide Italiano7e274e02016-12-22 16:03:48 +0000543 DenseSet<BlockEdge> ReachableEdges;
544 SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
545
546 // This is a bitvector because, on larger functions, we may have
547 // thousands of touched instructions at once (entire blocks,
548 // instructions with hundreds of uses, etc). Even with optimization
549 // for when we mark whole blocks as touched, when this was a
550 // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
551 // the time in GVN just managing this list. The bitvector, on the
552 // other hand, efficiently supports test/set/clear of both
553 // individual and ranges, as well as "find next element" This
554 // enables us to use it as a worklist with essentially 0 cost.
555 BitVector TouchedInstructions;
556
557 DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
Davide Italiano7e274e02016-12-22 16:03:48 +0000558
559#ifndef NDEBUG
560 // Debugging for how many times each block and instruction got processed.
561 DenseMap<const Value *, unsigned> ProcessedCount;
562#endif
563
564 // DFS info.
Davide Italiano71f2d9c2017-01-20 23:29:28 +0000565 // This contains a mapping from Instructions to DFS numbers.
566 // The numbering starts at 1. An instruction with DFS number zero
567 // means that the instruction is dead.
Davide Italiano7e274e02016-12-22 16:03:48 +0000568 DenseMap<const Value *, unsigned> InstrDFS;
Davide Italiano71f2d9c2017-01-20 23:29:28 +0000569
570 // This contains the mapping DFS numbers to instructions.
Daniel Berlin1f31fe522016-12-27 09:20:36 +0000571 SmallVector<Value *, 32> DFSToInstr;
Davide Italiano7e274e02016-12-22 16:03:48 +0000572
573 // Deletion info.
574 SmallPtrSet<Instruction *, 8> InstructionsToErase;
575
576public:
Daniel Berlin64e68992017-03-12 04:46:45 +0000577 NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
578 TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
579 const DataLayout &DL)
Daniel Berlin4d0fe642017-04-28 19:55:38 +0000580 : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), DL(DL),
Daniel Berlinede130d2017-04-26 20:56:14 +0000581 PredInfo(make_unique<PredicateInfo>(F, *DT, *AC)), SQ(DL, TLI, DT, AC) {
582 }
Daniel Berlin64e68992017-03-12 04:46:45 +0000583 bool runGVN();
Davide Italiano7e274e02016-12-22 16:03:48 +0000584
585private:
Davide Italiano7e274e02016-12-22 16:03:48 +0000586 // Expression handling.
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000587 const Expression *createExpression(Instruction *) const;
588 const Expression *createBinaryExpression(unsigned, Type *, Value *,
589 Value *) const;
590 PHIExpression *createPHIExpression(Instruction *, bool &HasBackEdge,
Daniel Berlinb527b2c2017-05-19 19:01:27 +0000591 bool &OriginalOpsConstant) const;
Daniel Berline021d2d2017-05-19 20:22:20 +0000592 const DeadExpression *createDeadExpression() const;
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000593 const VariableExpression *createVariableExpression(Value *) const;
594 const ConstantExpression *createConstantExpression(Constant *) const;
595 const Expression *createVariableOrConstant(Value *V) const;
596 const UnknownExpression *createUnknownExpression(Instruction *) const;
Daniel Berlin1316a942017-04-06 18:52:50 +0000597 const StoreExpression *createStoreExpression(StoreInst *,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000598 const MemoryAccess *) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000599 LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000600 const MemoryAccess *) const;
601 const CallExpression *createCallExpression(CallInst *,
602 const MemoryAccess *) const;
603 const AggregateValueExpression *
604 createAggregateValueExpression(Instruction *) const;
605 bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000606
607 // Congruence class handling.
608 CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000609 auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
Piotr Padlewski6c37d292016-12-28 23:24:02 +0000610 CongruenceClasses.emplace_back(result);
Davide Italiano7e274e02016-12-22 16:03:48 +0000611 return result;
612 }
613
Daniel Berlin1316a942017-04-06 18:52:50 +0000614 CongruenceClass *createMemoryClass(MemoryAccess *MA) {
615 auto *CC = createCongruenceClass(nullptr, nullptr);
Daniel Berlina8236562017-04-07 18:38:09 +0000616 CC->setMemoryLeader(MA);
Daniel Berlin1316a942017-04-06 18:52:50 +0000617 return CC;
618 }
619 CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
620 auto *CC = getMemoryClass(MA);
Daniel Berlina8236562017-04-07 18:38:09 +0000621 if (CC->getMemoryLeader() != MA)
Daniel Berlin1316a942017-04-06 18:52:50 +0000622 CC = createMemoryClass(MA);
623 return CC;
624 }
625
Davide Italiano7e274e02016-12-22 16:03:48 +0000626 CongruenceClass *createSingletonCongruenceClass(Value *Member) {
Davide Italiano0e714802016-12-28 14:00:11 +0000627 CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
Daniel Berlina8236562017-04-07 18:38:09 +0000628 CClass->insert(Member);
Davide Italiano7e274e02016-12-22 16:03:48 +0000629 ValueToClass[Member] = CClass;
630 return CClass;
631 }
632 void initializeCongruenceClasses(Function &F);
Daniel Berlinb527b2c2017-05-19 19:01:27 +0000633 const Expression *makePossiblePhiOfOps(Instruction *, bool,
634 SmallPtrSetImpl<Value *> &);
635 void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);
Davide Italiano7e274e02016-12-22 16:03:48 +0000636
Daniel Berlind7c12ee2016-12-25 22:23:49 +0000637 // Value number an Instruction or MemoryPhi.
638 void valueNumberMemoryPhi(MemoryPhi *);
639 void valueNumberInstruction(Instruction *);
640
Davide Italiano7e274e02016-12-22 16:03:48 +0000641 // Symbolic evaluation.
642 const Expression *checkSimplificationResults(Expression *, Instruction *,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000643 Value *) const;
Daniel Berlinb527b2c2017-05-19 19:01:27 +0000644 const Expression *performSymbolicEvaluation(Value *,
645 SmallPtrSetImpl<Value *> &) const;
Daniel Berlin07daac82017-04-02 13:23:44 +0000646 const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000647 Instruction *,
648 MemoryAccess *) const;
649 const Expression *performSymbolicLoadEvaluation(Instruction *) const;
650 const Expression *performSymbolicStoreEvaluation(Instruction *) const;
651 const Expression *performSymbolicCallEvaluation(Instruction *) const;
652 const Expression *performSymbolicPHIEvaluation(Instruction *) const;
653 const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
654 const Expression *performSymbolicCmpEvaluation(Instruction *) const;
655 const Expression *performSymbolicPredicateInfoEvaluation(Instruction *) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000656
657 // Congruence finding.
Daniel Berlin9d0796e2017-03-24 05:30:34 +0000658 bool someEquivalentDominates(const Instruction *, const Instruction *) const;
Daniel Berlin203f47b2017-01-31 22:31:53 +0000659 Value *lookupOperandLeader(Value *) const;
Daniel Berlinc0431fd2017-01-13 22:40:01 +0000660 void performCongruenceFinding(Instruction *, const Expression *);
Daniel Berlin1316a942017-04-06 18:52:50 +0000661 void moveValueToNewCongruenceClass(Instruction *, const Expression *,
662 CongruenceClass *, CongruenceClass *);
663 void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
664 CongruenceClass *, CongruenceClass *);
665 Value *getNextValueLeader(CongruenceClass *) const;
666 const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
667 bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
668 CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
669 const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
Daniel Berlinb527b2c2017-05-19 19:01:27 +0000670 bool isMemoryAccessTOP(const MemoryAccess *) const;
Daniel Berlin1316a942017-04-06 18:52:50 +0000671
Daniel Berlin1c087672017-02-11 15:07:01 +0000672 // Ranking
673 unsigned int getRank(const Value *) const;
674 bool shouldSwapOperands(const Value *, const Value *) const;
675
Davide Italiano7e274e02016-12-22 16:03:48 +0000676 // Reachability handling.
677 void updateReachableEdge(BasicBlock *, BasicBlock *);
678 void processOutgoingEdges(TerminatorInst *, BasicBlock *);
Daniel Berlin97718e62017-01-31 22:32:03 +0000679 Value *findConditionEquivalence(Value *) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000680
681 // Elimination.
682 struct ValueDFS;
Daniel Berlina8236562017-04-07 18:38:09 +0000683 void convertClassToDFSOrdered(const CongruenceClass &,
Daniel Berline3e69e12017-03-10 00:32:33 +0000684 SmallVectorImpl<ValueDFS> &,
685 DenseMap<const Value *, unsigned int> &,
Daniel Berlina8236562017-04-07 18:38:09 +0000686 SmallPtrSetImpl<Instruction *> &) const;
687 void convertClassToLoadsAndStores(const CongruenceClass &,
688 SmallVectorImpl<ValueDFS> &) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000689
690 bool eliminateInstructions(Function &);
691 void replaceInstruction(Instruction *, Value *);
692 void markInstructionForDeletion(Instruction *);
693 void deleteInstructionsInBlock(BasicBlock *);
Daniel Berlinb527b2c2017-05-19 19:01:27 +0000694 Value *findPhiOfOpsLeader(const Expression *E, const BasicBlock *BB) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000695
696 // New instruction creation.
697 void handleNewInstruction(Instruction *){};
Daniel Berlin32f8d562017-01-07 16:55:14 +0000698
699 // Various instruction touch utilities
Daniel Berlin0207cca2017-05-21 23:41:56 +0000700 template <typename Map, typename KeyType, typename Func>
701 void for_each_found(Map &, const KeyType &, Func);
702 template <typename Map, typename KeyType>
703 void touchAndErase(Map &, const KeyType &);
Davide Italiano7e274e02016-12-22 16:03:48 +0000704 void markUsersTouched(Value *);
Daniel Berlin1316a942017-04-06 18:52:50 +0000705 void markMemoryUsersTouched(const MemoryAccess *);
706 void markMemoryDefTouched(const MemoryAccess *);
Daniel Berlinf7d95802017-02-18 23:06:50 +0000707 void markPredicateUsersTouched(Instruction *);
Daniel Berlin1316a942017-04-06 18:52:50 +0000708 void markValueLeaderChangeTouched(CongruenceClass *CC);
709 void markMemoryLeaderChangeTouched(CongruenceClass *CC);
Daniel Berlinb527b2c2017-05-19 19:01:27 +0000710 void markPhiOfOpsChanged(const HashedExpression &HE);
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000711 void addPredicateUsers(const PredicateBase *, Instruction *) const;
712 void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
Daniel Berlinb527b2c2017-05-19 19:01:27 +0000713 void addAdditionalUsers(Value *To, Value *User) const;
Davide Italiano7e274e02016-12-22 16:03:48 +0000714
Daniel Berlin06329a92017-03-18 15:41:40 +0000715 // Main loop of value numbering
716 void iterateTouchedInstructions();
717
Davide Italiano7e274e02016-12-22 16:03:48 +0000718 // Utilities.
719 void cleanupTables();
720 std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
Daniel Berlinb527b2c2017-05-19 19:01:27 +0000721 void updateProcessedCount(const Value *V);
Daniel Berlinf6eba4b2017-01-11 20:22:36 +0000722 void verifyMemoryCongruency() const;
Daniel Berlin06329a92017-03-18 15:41:40 +0000723 void verifyIterationSettled(Function &F);
Daniel Berlin45403572017-05-16 19:58:47 +0000724 void verifyStoreExpressions() const;
Davide Italianoeab0de22017-05-18 23:22:44 +0000725 bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
726 const MemoryAccess *, const MemoryAccess *) const;
Daniel Berlin06329a92017-03-18 15:41:40 +0000727 BasicBlock *getBlockForValue(Value *V) const;
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000728 void deleteExpression(const Expression *E) const;
Daniel Berlinb527b2c2017-05-19 19:01:27 +0000729 MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
730 MemoryAccess *getDefiningAccess(const MemoryAccess *) const;
731 MemoryPhi *getMemoryAccess(const BasicBlock *) const;
732 template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
Daniel Berlin21279bd2017-04-06 18:52:58 +0000733 unsigned InstrToDFSNum(const Value *V) const {
Daniel Berlin1316a942017-04-06 18:52:50 +0000734 assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
735 return InstrDFS.lookup(V);
736 }
737
Daniel Berlin21279bd2017-04-06 18:52:58 +0000738 unsigned InstrToDFSNum(const MemoryAccess *MA) const {
739 return MemoryToDFSNum(MA);
740 }
741 Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
742 // Given a MemoryAccess, return the relevant instruction DFS number. Note:
743 // This deliberately takes a value so it can be used with Use's, which will
744 // auto-convert to Value's but not to MemoryAccess's.
745 unsigned MemoryToDFSNum(const Value *MA) const {
746 assert(isa<MemoryAccess>(MA) &&
747 "This should not be used with instructions");
748 return isa<MemoryUseOrDef>(MA)
749 ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
750 : InstrDFS.lookup(MA);
Daniel Berlin1316a942017-04-06 18:52:50 +0000751 }
Daniel Berlinb527b2c2017-05-19 19:01:27 +0000752 bool isCycleFree(const Instruction *) const;
753 bool isBackedge(BasicBlock *From, BasicBlock *To) const;
Daniel Berlin06329a92017-03-18 15:41:40 +0000754 // Debug counter info. When verifying, we have to reset the value numbering
755 // debug counter to the same state it started in to get the same results.
756 std::pair<int, int> StartingVNCounter;
Davide Italiano7e274e02016-12-22 16:03:48 +0000757};
Benjamin Kramerefcf06f2017-02-11 11:06:55 +0000758} // end anonymous namespace
Davide Italiano7e274e02016-12-22 16:03:48 +0000759
Davide Italianob1114092016-12-28 13:37:17 +0000760template <typename T>
761static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
Daniel Berlin9b498492017-04-01 09:44:29 +0000762 if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
Davide Italiano7e274e02016-12-22 16:03:48 +0000763 return false;
Daniel Berlin9b498492017-04-01 09:44:29 +0000764 return LHS.MemoryExpression::equals(RHS);
Davide Italiano7e274e02016-12-22 16:03:48 +0000765}
766
Davide Italianob1114092016-12-28 13:37:17 +0000767bool LoadExpression::equals(const Expression &Other) const {
768 return equalsLoadStoreHelper(*this, Other);
769}
Davide Italiano7e274e02016-12-22 16:03:48 +0000770
Davide Italianob1114092016-12-28 13:37:17 +0000771bool StoreExpression::equals(const Expression &Other) const {
Daniel Berlin9b498492017-04-01 09:44:29 +0000772 if (!equalsLoadStoreHelper(*this, Other))
773 return false;
Daniel Berlin26addef2017-01-20 21:04:30 +0000774 // Make sure that store vs store includes the value operand.
Daniel Berlin9b498492017-04-01 09:44:29 +0000775 if (const auto *S = dyn_cast<StoreExpression>(&Other))
776 if (getStoredValue() != S->getStoredValue())
777 return false;
778 return true;
Davide Italiano7e274e02016-12-22 16:03:48 +0000779}
780
Daniel Berlinb527b2c2017-05-19 19:01:27 +0000781// Determine if the edge From->To is a backedge
782bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
783 if (From == To)
784 return true;
785 auto *FromDTN = DT->getNode(From);
786 auto *ToDTN = DT->getNode(To);
787 return RPOOrdering.lookup(FromDTN) >= RPOOrdering.lookup(ToDTN);
788}
789
Davide Italiano7e274e02016-12-22 16:03:48 +0000790#ifndef NDEBUG
791static std::string getBlockName(const BasicBlock *B) {
Davide Italiano0e714802016-12-28 14:00:11 +0000792 return DOTGraphTraits<const Function *>::getSimpleNodeLabel(B, nullptr);
Davide Italiano7e274e02016-12-22 16:03:48 +0000793}
794#endif
795
Daniel Berlinb527b2c2017-05-19 19:01:27 +0000796// Get a MemoryAccess for an instruction, fake or real.
797MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
798 auto *Result = MSSA->getMemoryAccess(I);
799 return Result ? Result : TempToMemory.lookup(I);
800}
801
802// Get a MemoryPhi for a basic block. These are all real.
803MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
804 return MSSA->getMemoryAccess(BB);
805}
806
Daniel Berlin06329a92017-03-18 15:41:40 +0000807// Get the basic block from an instruction/memory value.
808BasicBlock *NewGVN::getBlockForValue(Value *V) const {
Daniel Berlinb527b2c2017-05-19 19:01:27 +0000809 if (auto *I = dyn_cast<Instruction>(V)) {
810 auto *Parent = I->getParent();
811 if (Parent)
812 return Parent;
813 Parent = TempToBlock.lookup(V);
814 assert(Parent && "Every fake instruction should have a block");
815 return Parent;
816 }
817
818 auto *MP = dyn_cast<MemoryPhi>(V);
819 assert(MP && "Should have been an instruction or a MemoryPhi");
820 return MP->getBlock();
Daniel Berlin06329a92017-03-18 15:41:40 +0000821}
822
Daniel Berlin0e900112017-03-24 06:33:48 +0000823// Delete a definitely dead expression, so it can be reused by the expression
824// allocator. Some of these are not in creation functions, so we have to accept
825// const versions.
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000826void NewGVN::deleteExpression(const Expression *E) const {
Daniel Berlin0e900112017-03-24 06:33:48 +0000827 assert(isa<BasicExpression>(E));
828 auto *BE = cast<BasicExpression>(E);
829 const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
830 ExpressionAllocator.Deallocate(E);
831}
Daniel Berlin2f72b192017-04-14 02:53:37 +0000832PHIExpression *NewGVN::createPHIExpression(Instruction *I, bool &HasBackedge,
Daniel Berlinb527b2c2017-05-19 19:01:27 +0000833 bool &OriginalOpsConstant) const {
834 BasicBlock *PHIBlock = getBlockForValue(I);
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000835 auto *PN = cast<PHINode>(I);
Daniel Berlind92e7f92017-01-07 00:01:42 +0000836 auto *E =
837 new (ExpressionAllocator) PHIExpression(PN->getNumOperands(), PHIBlock);
Davide Italiano7e274e02016-12-22 16:03:48 +0000838
839 E->allocateOperands(ArgRecycler, ExpressionAllocator);
840 E->setType(I->getType());
841 E->setOpcode(I->getOpcode());
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000842
Davide Italianod6bb8ca2017-05-09 16:58:28 +0000843 // NewGVN assumes the operands of a PHI node are in a consistent order across
844 // PHIs. LLVM doesn't seem to always guarantee this. While we need to fix
845 // this in LLVM at some point we don't want GVN to find wrong congruences.
846 // Therefore, here we sort uses in predecessor order.
Davide Italiano63998ec2017-05-09 18:29:37 +0000847 // We're sorting the values by pointer. In theory this might be cause of
848 // non-determinism, but here we don't rely on the ordering for anything
849 // significant, e.g. we don't create new instructions based on it so we're
850 // fine.
Davide Italianod6bb8ca2017-05-09 16:58:28 +0000851 SmallVector<const Use *, 4> PHIOperands;
852 for (const Use &U : PN->operands())
853 PHIOperands.push_back(&U);
854 std::sort(PHIOperands.begin(), PHIOperands.end(),
855 [&](const Use *U1, const Use *U2) {
856 return PN->getIncomingBlock(*U1) < PN->getIncomingBlock(*U2);
857 });
858
Davide Italianob3886dd2017-01-25 23:37:49 +0000859 // Filter out unreachable phi operands.
Davide Italianod6bb8ca2017-05-09 16:58:28 +0000860 auto Filtered = make_filter_range(PHIOperands, [&](const Use *U) {
861 return ReachableEdges.count({PN->getIncomingBlock(*U), PHIBlock});
Davide Italianob3886dd2017-01-25 23:37:49 +0000862 });
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000863 std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
Davide Italianod6bb8ca2017-05-09 16:58:28 +0000864 [&](const Use *U) -> Value * {
865 auto *BB = PN->getIncomingBlock(*U);
Daniel Berlinb527b2c2017-05-19 19:01:27 +0000866 HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
867 OriginalOpsConstant =
868 OriginalOpsConstant && isa<Constant>(*U);
Daniel Berline021d2d2017-05-19 20:22:20 +0000869 // Use nullptr to distinguish between things that were
870 // originally self-defined and those that have an operand
871 // leader that is self-defined.
Davide Italianod6bb8ca2017-05-09 16:58:28 +0000872 if (*U == PN)
Daniel Berline021d2d2017-05-19 20:22:20 +0000873 return nullptr;
874 // Things in TOPClass are equivalent to everything.
875 if (ValueToClass.lookup(*U) == TOPClass)
876 return nullptr;
Davide Italianod6bb8ca2017-05-09 16:58:28 +0000877 return lookupOperandLeader(*U);
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000878 });
Davide Italiano7e274e02016-12-22 16:03:48 +0000879 return E;
880}
881
882// Set basic expression info (Arguments, type, opcode) for Expression
883// E from Instruction I in block B.
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000884bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
Davide Italiano7e274e02016-12-22 16:03:48 +0000885 bool AllConstant = true;
886 if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
887 E->setType(GEP->getSourceElementType());
888 else
889 E->setType(I->getType());
890 E->setOpcode(I->getOpcode());
891 E->allocateOperands(ArgRecycler, ExpressionAllocator);
892
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000893 // Transform the operand array into an operand leader array, and keep track of
894 // whether all members are constant.
895 std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
Daniel Berlin203f47b2017-01-31 22:31:53 +0000896 auto Operand = lookupOperandLeader(O);
Daniel Berlinb527b2c2017-05-19 19:01:27 +0000897 AllConstant = AllConstant && isa<Constant>(Operand);
Daniel Berlin85cbc8c2016-12-26 19:57:25 +0000898 return Operand;
899 });
900
Davide Italiano7e274e02016-12-22 16:03:48 +0000901 return AllConstant;
902}
903
904const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000905 Value *Arg1,
906 Value *Arg2) const {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000907 auto *E = new (ExpressionAllocator) BasicExpression(2);
Davide Italiano7e274e02016-12-22 16:03:48 +0000908
909 E->setType(T);
910 E->setOpcode(Opcode);
911 E->allocateOperands(ArgRecycler, ExpressionAllocator);
912 if (Instruction::isCommutative(Opcode)) {
913 // Ensure that commutative instructions that only differ by a permutation
914 // of their operands get the same value number by sorting the operand value
915 // numbers. Since all commutative instructions have two operands it is more
916 // efficient to sort by hand rather than using, say, std::sort.
Daniel Berlin1c087672017-02-11 15:07:01 +0000917 if (shouldSwapOperands(Arg1, Arg2))
Davide Italiano7e274e02016-12-22 16:03:48 +0000918 std::swap(Arg1, Arg2);
919 }
Daniel Berlin203f47b2017-01-31 22:31:53 +0000920 E->op_push_back(lookupOperandLeader(Arg1));
921 E->op_push_back(lookupOperandLeader(Arg2));
Davide Italiano7e274e02016-12-22 16:03:48 +0000922
Daniel Berlinede130d2017-04-26 20:56:14 +0000923 Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), SQ);
Davide Italiano7e274e02016-12-22 16:03:48 +0000924 if (const Expression *SimplifiedE = checkSimplificationResults(E, nullptr, V))
925 return SimplifiedE;
926 return E;
927}
928
929// Take a Value returned by simplification of Expression E/Instruction
930// I, and see if it resulted in a simpler expression. If so, return
931// that expression.
932// TODO: Once finished, this should not take an Instruction, we only
933// use it for printing.
934const Expression *NewGVN::checkSimplificationResults(Expression *E,
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000935 Instruction *I,
936 Value *V) const {
Davide Italiano7e274e02016-12-22 16:03:48 +0000937 if (!V)
938 return nullptr;
939 if (auto *C = dyn_cast<Constant>(V)) {
940 if (I)
941 DEBUG(dbgs() << "Simplified " << *I << " to "
942 << " constant " << *C << "\n");
943 NumGVNOpsSimplified++;
944 assert(isa<BasicExpression>(E) &&
945 "We should always have had a basic expression here");
Daniel Berlin0e900112017-03-24 06:33:48 +0000946 deleteExpression(E);
Davide Italiano7e274e02016-12-22 16:03:48 +0000947 return createConstantExpression(C);
948 } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
949 if (I)
950 DEBUG(dbgs() << "Simplified " << *I << " to "
951 << " variable " << *V << "\n");
Daniel Berlin0e900112017-03-24 06:33:48 +0000952 deleteExpression(E);
Davide Italiano7e274e02016-12-22 16:03:48 +0000953 return createVariableExpression(V);
954 }
955
956 CongruenceClass *CC = ValueToClass.lookup(V);
Daniel Berlina8236562017-04-07 18:38:09 +0000957 if (CC && CC->getDefiningExpr()) {
Davide Italiano7e274e02016-12-22 16:03:48 +0000958 if (I)
959 DEBUG(dbgs() << "Simplified " << *I << " to "
Daniel Berlin01939972017-05-21 23:41:53 +0000960 << " expression " << *CC->getDefiningExpr() << "\n");
Davide Italiano7e274e02016-12-22 16:03:48 +0000961 NumGVNOpsSimplified++;
Daniel Berlin0e900112017-03-24 06:33:48 +0000962 deleteExpression(E);
Daniel Berlina8236562017-04-07 18:38:09 +0000963 return CC->getDefiningExpr();
Davide Italiano7e274e02016-12-22 16:03:48 +0000964 }
965 return nullptr;
966}
967
Daniel Berlin6604a2f2017-05-09 16:40:04 +0000968const Expression *NewGVN::createExpression(Instruction *I) const {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +0000969 auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
Davide Italiano7e274e02016-12-22 16:03:48 +0000970
Daniel Berlin97718e62017-01-31 22:32:03 +0000971 bool AllConstant = setBasicExpressionInfo(I, E);
Davide Italiano7e274e02016-12-22 16:03:48 +0000972
973 if (I->isCommutative()) {
974 // Ensure that commutative instructions that only differ by a permutation
975 // of their operands get the same value number by sorting the operand value
976 // numbers. Since all commutative instructions have two operands it is more
977 // efficient to sort by hand rather than using, say, std::sort.
978 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
Daniel Berlin508a1de2017-02-12 23:24:42 +0000979 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
Davide Italiano7e274e02016-12-22 16:03:48 +0000980 E->swapOperands(0, 1);
981 }
982
983 // Perform simplificaiton
984 // TODO: Right now we only check to see if we get a constant result.
985 // We may get a less than constant, but still better, result for
986 // some operations.
987 // IE
988 // add 0, x -> x
989 // and x, x -> x
990 // We should handle this by simply rewriting the expression.
991 if (auto *CI = dyn_cast<CmpInst>(I)) {
992 // Sort the operand value numbers so x<y and y>x get the same value
993 // number.
994 CmpInst::Predicate Predicate = CI->getPredicate();
Daniel Berlin1c087672017-02-11 15:07:01 +0000995 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
Davide Italiano7e274e02016-12-22 16:03:48 +0000996 E->swapOperands(0, 1);
997 Predicate = CmpInst::getSwappedPredicate(Predicate);
998 }
999 E->setOpcode((CI->getOpcode() << 8) | Predicate);
1000 // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
Davide Italiano7e274e02016-12-22 16:03:48 +00001001 assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
1002 "Wrong types on cmp instruction");
Daniel Berlin97718e62017-01-31 22:32:03 +00001003 assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
1004 E->getOperand(1)->getType() == I->getOperand(1)->getType()));
Daniel Berlinede130d2017-04-26 20:56:14 +00001005 Value *V =
1006 SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), SQ);
Daniel Berlinff12c922017-01-31 22:32:01 +00001007 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1008 return SimplifiedE;
Davide Italiano7e274e02016-12-22 16:03:48 +00001009 } else if (isa<SelectInst>(I)) {
1010 if (isa<Constant>(E->getOperand(0)) ||
Daniel Berlin97718e62017-01-31 22:32:03 +00001011 E->getOperand(0) == E->getOperand(1)) {
1012 assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
1013 E->getOperand(2)->getType() == I->getOperand(2)->getType());
Davide Italiano7e274e02016-12-22 16:03:48 +00001014 Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
Daniel Berlinede130d2017-04-26 20:56:14 +00001015 E->getOperand(2), SQ);
Davide Italiano7e274e02016-12-22 16:03:48 +00001016 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1017 return SimplifiedE;
1018 }
1019 } else if (I->isBinaryOp()) {
Daniel Berlinede130d2017-04-26 20:56:14 +00001020 Value *V =
1021 SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), SQ);
Davide Italiano7e274e02016-12-22 16:03:48 +00001022 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1023 return SimplifiedE;
1024 } else if (auto *BI = dyn_cast<BitCastInst>(I)) {
Daniel Berlin4d0fe642017-04-28 19:55:38 +00001025 Value *V =
1026 SimplifyCastInst(BI->getOpcode(), BI->getOperand(0), BI->getType(), SQ);
Davide Italiano7e274e02016-12-22 16:03:48 +00001027 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1028 return SimplifiedE;
1029 } else if (isa<GetElementPtrInst>(I)) {
Daniel Berlinede130d2017-04-26 20:56:14 +00001030 Value *V = SimplifyGEPInst(
1031 E->getType(), ArrayRef<Value *>(E->op_begin(), E->op_end()), SQ);
Davide Italiano7e274e02016-12-22 16:03:48 +00001032 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1033 return SimplifiedE;
1034 } else if (AllConstant) {
1035 // We don't bother trying to simplify unless all of the operands
1036 // were constant.
1037 // TODO: There are a lot of Simplify*'s we could call here, if we
1038 // wanted to. The original motivating case for this code was a
1039 // zext i1 false to i8, which we don't have an interface to
1040 // simplify (IE there is no SimplifyZExt).
1041
1042 SmallVector<Constant *, 8> C;
1043 for (Value *Arg : E->operands())
Piotr Padlewski6c37d292016-12-28 23:24:02 +00001044 C.emplace_back(cast<Constant>(Arg));
Davide Italiano7e274e02016-12-22 16:03:48 +00001045
Daniel Berlin64e68992017-03-12 04:46:45 +00001046 if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
Davide Italiano7e274e02016-12-22 16:03:48 +00001047 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1048 return SimplifiedE;
1049 }
1050 return E;
1051}
1052
1053const AggregateValueExpression *
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001054NewGVN::createAggregateValueExpression(Instruction *I) const {
Davide Italiano7e274e02016-12-22 16:03:48 +00001055 if (auto *II = dyn_cast<InsertValueInst>(I)) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001056 auto *E = new (ExpressionAllocator)
Davide Italiano7e274e02016-12-22 16:03:48 +00001057 AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
Daniel Berlin97718e62017-01-31 22:32:03 +00001058 setBasicExpressionInfo(I, E);
Davide Italiano7e274e02016-12-22 16:03:48 +00001059 E->allocateIntOperands(ExpressionAllocator);
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00001060 std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
Davide Italiano7e274e02016-12-22 16:03:48 +00001061 return E;
Davide Italiano7e274e02016-12-22 16:03:48 +00001062 } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001063 auto *E = new (ExpressionAllocator)
Davide Italiano7e274e02016-12-22 16:03:48 +00001064 AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
Daniel Berlin97718e62017-01-31 22:32:03 +00001065 setBasicExpressionInfo(EI, E);
Davide Italiano7e274e02016-12-22 16:03:48 +00001066 E->allocateIntOperands(ExpressionAllocator);
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00001067 std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
Davide Italiano7e274e02016-12-22 16:03:48 +00001068 return E;
1069 }
1070 llvm_unreachable("Unhandled type of aggregate value operation");
1071}
1072
Daniel Berline021d2d2017-05-19 20:22:20 +00001073const DeadExpression *NewGVN::createDeadExpression() const {
1074 // DeadExpression has no arguments and all DeadExpression's are the same,
1075 // so we only need one of them.
1076 return SingletonDeadExpression;
1077}
1078
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001079const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001080 auto *E = new (ExpressionAllocator) VariableExpression(V);
Davide Italiano7e274e02016-12-22 16:03:48 +00001081 E->setOpcode(V->getValueID());
1082 return E;
1083}
1084
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001085const Expression *NewGVN::createVariableOrConstant(Value *V) const {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001086 if (auto *C = dyn_cast<Constant>(V))
1087 return createConstantExpression(C);
1088 return createVariableExpression(V);
1089}
1090
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001091const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001092 auto *E = new (ExpressionAllocator) ConstantExpression(C);
Davide Italiano7e274e02016-12-22 16:03:48 +00001093 E->setOpcode(C->getValueID());
1094 return E;
1095}
1096
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001097const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
Daniel Berlin02c6b172017-01-02 18:00:53 +00001098 auto *E = new (ExpressionAllocator) UnknownExpression(I);
1099 E->setOpcode(I->getOpcode());
1100 return E;
1101}
1102
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001103const CallExpression *
1104NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
Davide Italiano7e274e02016-12-22 16:03:48 +00001105 // FIXME: Add operand bundles for calls.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001106 auto *E =
Daniel Berlin1316a942017-04-06 18:52:50 +00001107 new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
Daniel Berlin97718e62017-01-31 22:32:03 +00001108 setBasicExpressionInfo(CI, E);
Davide Italiano7e274e02016-12-22 16:03:48 +00001109 return E;
1110}
1111
Daniel Berlin9d0796e2017-03-24 05:30:34 +00001112// Return true if some equivalent of instruction Inst dominates instruction U.
1113bool NewGVN::someEquivalentDominates(const Instruction *Inst,
1114 const Instruction *U) const {
1115 auto *CC = ValueToClass.lookup(Inst);
Daniel Berlinffc30782017-03-24 06:33:51 +00001116 // This must be an instruction because we are only called from phi nodes
1117 // in the case that the value it needs to check against is an instruction.
1118
1119 // The most likely candiates for dominance are the leader and the next leader.
1120 // The leader or nextleader will dominate in all cases where there is an
1121 // equivalent that is higher up in the dom tree.
1122 // We can't *only* check them, however, because the
1123 // dominator tree could have an infinite number of non-dominating siblings
1124 // with instructions that are in the right congruence class.
1125 // A
1126 // B C D E F G
1127 // |
1128 // H
1129 // Instruction U could be in H, with equivalents in every other sibling.
1130 // Depending on the rpo order picked, the leader could be the equivalent in
1131 // any of these siblings.
1132 if (!CC)
1133 return false;
Daniel Berlina8236562017-04-07 18:38:09 +00001134 if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
Daniel Berlinffc30782017-03-24 06:33:51 +00001135 return true;
Daniel Berlina8236562017-04-07 18:38:09 +00001136 if (CC->getNextLeader().first &&
1137 DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
Daniel Berlinffc30782017-03-24 06:33:51 +00001138 return true;
Daniel Berlina8236562017-04-07 18:38:09 +00001139 return llvm::any_of(*CC, [&](const Value *Member) {
1140 return Member != CC->getLeader() &&
Daniel Berlinffc30782017-03-24 06:33:51 +00001141 DT->dominates(cast<Instruction>(Member), U);
1142 });
Daniel Berlin9d0796e2017-03-24 05:30:34 +00001143}
1144
Davide Italiano7e274e02016-12-22 16:03:48 +00001145// See if we have a congruence class and leader for this operand, and if so,
1146// return it. Otherwise, return the operand itself.
Daniel Berlin203f47b2017-01-31 22:31:53 +00001147Value *NewGVN::lookupOperandLeader(Value *V) const {
Davide Italiano7e274e02016-12-22 16:03:48 +00001148 CongruenceClass *CC = ValueToClass.lookup(V);
Daniel Berlinb79f5362017-02-11 12:48:50 +00001149 if (CC) {
Daniel Berline021d2d2017-05-19 20:22:20 +00001150 // Everything in TOP is represented by undef, as it can be any value.
Daniel Berlinb79f5362017-02-11 12:48:50 +00001151 // We do have to make sure we get the type right though, so we can't set the
1152 // RepLeader to undef.
Daniel Berlin5c338ff2017-03-10 19:05:04 +00001153 if (CC == TOPClass)
Daniel Berlinb79f5362017-02-11 12:48:50 +00001154 return UndefValue::get(V->getType());
Daniel Berlina8236562017-04-07 18:38:09 +00001155 return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
Daniel Berlinb79f5362017-02-11 12:48:50 +00001156 }
1157
Davide Italiano7e274e02016-12-22 16:03:48 +00001158 return V;
1159}
1160
Daniel Berlin1316a942017-04-06 18:52:50 +00001161const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
1162 auto *CC = getMemoryClass(MA);
Daniel Berlina8236562017-04-07 18:38:09 +00001163 assert(CC->getMemoryLeader() &&
Davide Italianob60f6e02017-05-12 15:25:56 +00001164 "Every MemoryAccess should be mapped to a congruence class with a "
1165 "representative memory access");
Daniel Berlina8236562017-04-07 18:38:09 +00001166 return CC->getMemoryLeader();
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001167}
1168
Daniel Berlinc4796862017-01-27 02:37:11 +00001169// Return true if the MemoryAccess is really equivalent to everything. This is
1170// equivalent to the lattice value "TOP" in most lattices. This is the initial
Daniel Berlin1316a942017-04-06 18:52:50 +00001171// state of all MemoryAccesses.
Daniel Berlinb527b2c2017-05-19 19:01:27 +00001172bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
Daniel Berlin1316a942017-04-06 18:52:50 +00001173 return getMemoryClass(MA) == TOPClass;
1174}
1175
Davide Italiano7e274e02016-12-22 16:03:48 +00001176LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
Daniel Berlin1316a942017-04-06 18:52:50 +00001177 LoadInst *LI,
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001178 const MemoryAccess *MA) const {
Daniel Berlin1316a942017-04-06 18:52:50 +00001179 auto *E =
1180 new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
Davide Italiano7e274e02016-12-22 16:03:48 +00001181 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1182 E->setType(LoadType);
1183
1184 // Give store and loads same opcode so they value number together.
1185 E->setOpcode(0);
Daniel Berlin1316a942017-04-06 18:52:50 +00001186 E->op_push_back(PointerOp);
Davide Italiano7e274e02016-12-22 16:03:48 +00001187 if (LI)
1188 E->setAlignment(LI->getAlignment());
1189
1190 // TODO: Value number heap versions. We may be able to discover
1191 // things alias analysis can't on it's own (IE that a store and a
1192 // load have the same value, and thus, it isn't clobbering the load).
1193 return E;
1194}
1195
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001196const StoreExpression *
1197NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
Daniel Berlin203f47b2017-01-31 22:31:53 +00001198 auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
Daniel Berlin26addef2017-01-20 21:04:30 +00001199 auto *E = new (ExpressionAllocator)
Daniel Berlin1316a942017-04-06 18:52:50 +00001200 StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
Davide Italiano7e274e02016-12-22 16:03:48 +00001201 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1202 E->setType(SI->getValueOperand()->getType());
1203
1204 // Give store and loads same opcode so they value number together.
1205 E->setOpcode(0);
Daniel Berlin203f47b2017-01-31 22:31:53 +00001206 E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
Davide Italiano7e274e02016-12-22 16:03:48 +00001207
1208 // TODO: Value number heap versions. We may be able to discover
1209 // things alias analysis can't on it's own (IE that a store and a
1210 // load have the same value, and thus, it isn't clobbering the load).
1211 return E;
1212}
1213
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001214const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
Daniel Berlin589cecc2017-01-02 18:00:46 +00001215 // Unlike loads, we never try to eliminate stores, so we do not check if they
1216 // are simple and avoid value numbering them.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001217 auto *SI = cast<StoreInst>(I);
Daniel Berlinb527b2c2017-05-19 19:01:27 +00001218 auto *StoreAccess = getMemoryAccess(SI);
Daniel Berlinc4796862017-01-27 02:37:11 +00001219 // Get the expression, if any, for the RHS of the MemoryDef.
Daniel Berlin1316a942017-04-06 18:52:50 +00001220 const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
1221 if (EnableStoreRefinement)
1222 StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
1223 // If we bypassed the use-def chains, make sure we add a use.
1224 if (StoreRHS != StoreAccess->getDefiningAccess())
1225 addMemoryUsers(StoreRHS, StoreAccess);
Daniel Berlin1316a942017-04-06 18:52:50 +00001226 StoreRHS = lookupMemoryLeader(StoreRHS);
Daniel Berlinc4796862017-01-27 02:37:11 +00001227 // If we are defined by ourselves, use the live on entry def.
1228 if (StoreRHS == StoreAccess)
1229 StoreRHS = MSSA->getLiveOnEntryDef();
1230
Daniel Berlin589cecc2017-01-02 18:00:46 +00001231 if (SI->isSimple()) {
Daniel Berlinc4796862017-01-27 02:37:11 +00001232 // See if we are defined by a previous store expression, it already has a
1233 // value, and it's the same value as our current store. FIXME: Right now, we
1234 // only do this for simple stores, we should expand to cover memcpys, etc.
Daniel Berlin1316a942017-04-06 18:52:50 +00001235 const auto *LastStore = createStoreExpression(SI, StoreRHS);
1236 const auto *LastCC = ExpressionToClass.lookup(LastStore);
Daniel Berlinb755aea2017-01-09 05:34:29 +00001237 // Basically, check if the congruence class the store is in is defined by a
1238 // store that isn't us, and has the same value. MemorySSA takes care of
1239 // ensuring the store has the same memory state as us already.
Daniel Berlin26addef2017-01-20 21:04:30 +00001240 // The RepStoredValue gets nulled if all the stores disappear in a class, so
1241 // we don't need to check if the class contains a store besides us.
Daniel Berlin1316a942017-04-06 18:52:50 +00001242 if (LastCC &&
Daniel Berlina8236562017-04-07 18:38:09 +00001243 LastCC->getStoredValue() == lookupOperandLeader(SI->getValueOperand()))
Daniel Berlin1316a942017-04-06 18:52:50 +00001244 return LastStore;
1245 deleteExpression(LastStore);
Daniel Berlinc4796862017-01-27 02:37:11 +00001246 // Also check if our value operand is defined by a load of the same memory
Daniel Berlin1316a942017-04-06 18:52:50 +00001247 // location, and the memory state is the same as it was then (otherwise, it
1248 // could have been overwritten later. See test32 in
1249 // transforms/DeadStoreElimination/simple.ll).
1250 if (auto *LI =
1251 dyn_cast<LoadInst>(lookupOperandLeader(SI->getValueOperand()))) {
Daniel Berlin203f47b2017-01-31 22:31:53 +00001252 if ((lookupOperandLeader(LI->getPointerOperand()) ==
1253 lookupOperandLeader(SI->getPointerOperand())) &&
Daniel Berlinb527b2c2017-05-19 19:01:27 +00001254 (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
Daniel Berlin1316a942017-04-06 18:52:50 +00001255 StoreRHS))
Davide Italiano9a0f5422017-05-20 00:46:54 +00001256 return createStoreExpression(SI, StoreRHS);
Daniel Berlinc4796862017-01-27 02:37:11 +00001257 }
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001258 }
Daniel Berlin1316a942017-04-06 18:52:50 +00001259
1260 // If the store is not equivalent to anything, value number it as a store that
1261 // produces a unique memory state (instead of using it's MemoryUse, we use
1262 // it's MemoryDef).
Daniel Berlin97718e62017-01-31 22:32:03 +00001263 return createStoreExpression(SI, StoreAccess);
Davide Italiano7e274e02016-12-22 16:03:48 +00001264}
1265
Daniel Berlin07daac82017-04-02 13:23:44 +00001266// See if we can extract the value of a loaded pointer from a load, a store, or
1267// a memory instruction.
1268const Expression *
1269NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
1270 LoadInst *LI, Instruction *DepInst,
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001271 MemoryAccess *DefiningAccess) const {
Daniel Berlin07daac82017-04-02 13:23:44 +00001272 assert((!LI || LI->isSimple()) && "Not a simple load");
1273 if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
1274 // Can't forward from non-atomic to atomic without violating memory model.
1275 // Also don't need to coerce if they are the same type, we will just
1276 // propogate..
1277 if (LI->isAtomic() > DepSI->isAtomic() ||
1278 LoadType == DepSI->getValueOperand()->getType())
1279 return nullptr;
1280 int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
1281 if (Offset >= 0) {
1282 if (auto *C = dyn_cast<Constant>(
1283 lookupOperandLeader(DepSI->getValueOperand()))) {
1284 DEBUG(dbgs() << "Coercing load from store " << *DepSI << " to constant "
1285 << *C << "\n");
1286 return createConstantExpression(
1287 getConstantStoreValueForLoad(C, Offset, LoadType, DL));
1288 }
1289 }
1290
1291 } else if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1292 // Can't forward from non-atomic to atomic without violating memory model.
1293 if (LI->isAtomic() > DepLI->isAtomic())
1294 return nullptr;
1295 int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
1296 if (Offset >= 0) {
1297 // We can coerce a constant load into a load
1298 if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
1299 if (auto *PossibleConstant =
1300 getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
1301 DEBUG(dbgs() << "Coercing load from load " << *LI << " to constant "
1302 << *PossibleConstant << "\n");
1303 return createConstantExpression(PossibleConstant);
1304 }
1305 }
1306
1307 } else if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1308 int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
1309 if (Offset >= 0) {
1310 if (auto *PossibleConstant =
1311 getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
1312 DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1313 << " to constant " << *PossibleConstant << "\n");
1314 return createConstantExpression(PossibleConstant);
1315 }
1316 }
1317 }
1318
1319 // All of the below are only true if the loaded pointer is produced
1320 // by the dependent instruction.
1321 if (LoadPtr != lookupOperandLeader(DepInst) &&
1322 !AA->isMustAlias(LoadPtr, DepInst))
1323 return nullptr;
1324 // If this load really doesn't depend on anything, then we must be loading an
1325 // undef value. This can happen when loading for a fresh allocation with no
1326 // intervening stores, for example. Note that this is only true in the case
1327 // that the result of the allocation is pointer equal to the load ptr.
1328 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
1329 return createConstantExpression(UndefValue::get(LoadType));
1330 }
1331 // If this load occurs either right after a lifetime begin,
1332 // then the loaded value is undefined.
1333 else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
1334 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1335 return createConstantExpression(UndefValue::get(LoadType));
1336 }
1337 // If this load follows a calloc (which zero initializes memory),
1338 // then the loaded value is zero
1339 else if (isCallocLikeFn(DepInst, TLI)) {
1340 return createConstantExpression(Constant::getNullValue(LoadType));
1341 }
1342
1343 return nullptr;
1344}
1345
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001346const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001347 auto *LI = cast<LoadInst>(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001348
1349 // We can eliminate in favor of non-simple loads, but we won't be able to
Daniel Berlin589cecc2017-01-02 18:00:46 +00001350 // eliminate the loads themselves.
Davide Italiano7e274e02016-12-22 16:03:48 +00001351 if (!LI->isSimple())
1352 return nullptr;
1353
Daniel Berlin203f47b2017-01-31 22:31:53 +00001354 Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
Davide Italiano7e274e02016-12-22 16:03:48 +00001355 // Load of undef is undef.
1356 if (isa<UndefValue>(LoadAddressLeader))
1357 return createConstantExpression(UndefValue::get(LI->getType()));
Daniel Berlinb527b2c2017-05-19 19:01:27 +00001358 MemoryAccess *OriginalAccess = getMemoryAccess(I);
1359 MemoryAccess *DefiningAccess =
1360 MSSAWalker->getClobberingMemoryAccess(OriginalAccess);
Davide Italiano7e274e02016-12-22 16:03:48 +00001361
1362 if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
1363 if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
1364 Instruction *DefiningInst = MD->getMemoryInst();
1365 // If the defining instruction is not reachable, replace with undef.
1366 if (!ReachableBlocks.count(DefiningInst->getParent()))
1367 return createConstantExpression(UndefValue::get(LI->getType()));
Daniel Berlin07daac82017-04-02 13:23:44 +00001368 // This will handle stores and memory insts. We only do if it the
1369 // defining access has a different type, or it is a pointer produced by
1370 // certain memory operations that cause the memory to have a fixed value
1371 // (IE things like calloc).
Daniel Berlin5845e052017-04-06 18:52:53 +00001372 if (const auto *CoercionResult =
1373 performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
1374 DefiningInst, DefiningAccess))
Daniel Berlin07daac82017-04-02 13:23:44 +00001375 return CoercionResult;
Davide Italiano7e274e02016-12-22 16:03:48 +00001376 }
1377 }
1378
Daniel Berlin1316a942017-04-06 18:52:50 +00001379 const Expression *E = createLoadExpression(LI->getType(), LoadAddressLeader,
1380 LI, DefiningAccess);
Davide Italiano7e274e02016-12-22 16:03:48 +00001381 return E;
1382}
1383
Daniel Berlinf7d95802017-02-18 23:06:50 +00001384const Expression *
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001385NewGVN::performSymbolicPredicateInfoEvaluation(Instruction *I) const {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001386 auto *PI = PredInfo->getPredicateInfoFor(I);
1387 if (!PI)
1388 return nullptr;
1389
1390 DEBUG(dbgs() << "Found predicate info from instruction !\n");
Daniel Berlinfccbda92017-02-22 22:20:58 +00001391
1392 auto *PWC = dyn_cast<PredicateWithCondition>(PI);
1393 if (!PWC)
Daniel Berlinf7d95802017-02-18 23:06:50 +00001394 return nullptr;
1395
Daniel Berlinfccbda92017-02-22 22:20:58 +00001396 auto *CopyOf = I->getOperand(0);
1397 auto *Cond = PWC->Condition;
1398
Daniel Berlinf7d95802017-02-18 23:06:50 +00001399 // If this a copy of the condition, it must be either true or false depending
1400 // on the predicate info type and edge
1401 if (CopyOf == Cond) {
Daniel Berlinfccbda92017-02-22 22:20:58 +00001402 // We should not need to add predicate users because the predicate info is
1403 // already a use of this operand.
Daniel Berlinf7d95802017-02-18 23:06:50 +00001404 if (isa<PredicateAssume>(PI))
1405 return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1406 if (auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1407 if (PBranch->TrueEdge)
1408 return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1409 return createConstantExpression(ConstantInt::getFalse(Cond->getType()));
1410 }
Daniel Berlinfccbda92017-02-22 22:20:58 +00001411 if (auto *PSwitch = dyn_cast<PredicateSwitch>(PI))
1412 return createConstantExpression(cast<Constant>(PSwitch->CaseValue));
Daniel Berlinf7d95802017-02-18 23:06:50 +00001413 }
Daniel Berlinfccbda92017-02-22 22:20:58 +00001414
Daniel Berlinf7d95802017-02-18 23:06:50 +00001415 // Not a copy of the condition, so see what the predicates tell us about this
1416 // value. First, though, we check to make sure the value is actually a copy
1417 // of one of the condition operands. It's possible, in certain cases, for it
1418 // to be a copy of a predicateinfo copy. In particular, if two branch
1419 // operations use the same condition, and one branch dominates the other, we
1420 // will end up with a copy of a copy. This is currently a small deficiency in
Daniel Berlinfccbda92017-02-22 22:20:58 +00001421 // predicateinfo. What will end up happening here is that we will value
Daniel Berlinf7d95802017-02-18 23:06:50 +00001422 // number both copies the same anyway.
Daniel Berlinfccbda92017-02-22 22:20:58 +00001423
1424 // Everything below relies on the condition being a comparison.
1425 auto *Cmp = dyn_cast<CmpInst>(Cond);
1426 if (!Cmp)
1427 return nullptr;
1428
1429 if (CopyOf != Cmp->getOperand(0) && CopyOf != Cmp->getOperand(1)) {
Davide Italianoc43a9f82017-05-12 15:28:12 +00001430 DEBUG(dbgs() << "Copy is not of any condition operands!\n");
Daniel Berlinf7d95802017-02-18 23:06:50 +00001431 return nullptr;
1432 }
Daniel Berlinfccbda92017-02-22 22:20:58 +00001433 Value *FirstOp = lookupOperandLeader(Cmp->getOperand(0));
1434 Value *SecondOp = lookupOperandLeader(Cmp->getOperand(1));
Daniel Berlinf7d95802017-02-18 23:06:50 +00001435 bool SwappedOps = false;
1436 // Sort the ops
1437 if (shouldSwapOperands(FirstOp, SecondOp)) {
1438 std::swap(FirstOp, SecondOp);
1439 SwappedOps = true;
1440 }
Daniel Berlinf7d95802017-02-18 23:06:50 +00001441 CmpInst::Predicate Predicate =
1442 SwappedOps ? Cmp->getSwappedPredicate() : Cmp->getPredicate();
1443
1444 if (isa<PredicateAssume>(PI)) {
1445 // If the comparison is true when the operands are equal, then we know the
1446 // operands are equal, because assumes must always be true.
1447 if (CmpInst::isTrueWhenEqual(Predicate)) {
1448 addPredicateUsers(PI, I);
Daniel Berlinb527b2c2017-05-19 19:01:27 +00001449 addAdditionalUsers(Cmp->getOperand(0), I);
Daniel Berlinf7d95802017-02-18 23:06:50 +00001450 return createVariableOrConstant(FirstOp);
1451 }
1452 }
1453 if (const auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1454 // If we are *not* a copy of the comparison, we may equal to the other
1455 // operand when the predicate implies something about equality of
1456 // operations. In particular, if the comparison is true/false when the
1457 // operands are equal, and we are on the right edge, we know this operation
1458 // is equal to something.
1459 if ((PBranch->TrueEdge && Predicate == CmpInst::ICMP_EQ) ||
1460 (!PBranch->TrueEdge && Predicate == CmpInst::ICMP_NE)) {
1461 addPredicateUsers(PI, I);
Daniel Berlinb527b2c2017-05-19 19:01:27 +00001462 addAdditionalUsers(Cmp->getOperand(0), I);
Daniel Berlinf7d95802017-02-18 23:06:50 +00001463 return createVariableOrConstant(FirstOp);
1464 }
1465 // Handle the special case of floating point.
1466 if (((PBranch->TrueEdge && Predicate == CmpInst::FCMP_OEQ) ||
1467 (!PBranch->TrueEdge && Predicate == CmpInst::FCMP_UNE)) &&
1468 isa<ConstantFP>(FirstOp) && !cast<ConstantFP>(FirstOp)->isZero()) {
1469 addPredicateUsers(PI, I);
Daniel Berlinb527b2c2017-05-19 19:01:27 +00001470 addAdditionalUsers(Cmp->getOperand(0), I);
Daniel Berlinf7d95802017-02-18 23:06:50 +00001471 return createConstantExpression(cast<Constant>(FirstOp));
1472 }
1473 }
1474 return nullptr;
1475}
1476
Davide Italiano7e274e02016-12-22 16:03:48 +00001477// Evaluate read only and pure calls, and create an expression result.
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001478const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001479 auto *CI = cast<CallInst>(I);
Daniel Berlinf7d95802017-02-18 23:06:50 +00001480 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1481 // Instrinsics with the returned attribute are copies of arguments.
1482 if (auto *ReturnedValue = II->getReturnedArgOperand()) {
1483 if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1484 if (const auto *Result = performSymbolicPredicateInfoEvaluation(I))
1485 return Result;
1486 return createVariableOrConstant(ReturnedValue);
1487 }
1488 }
1489 if (AA->doesNotAccessMemory(CI)) {
Daniel Berlina8236562017-04-07 18:38:09 +00001490 return createCallExpression(CI, TOPClass->getMemoryLeader());
Daniel Berlinf7d95802017-02-18 23:06:50 +00001491 } else if (AA->onlyReadsMemory(CI)) {
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00001492 MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(CI);
Daniel Berlin1316a942017-04-06 18:52:50 +00001493 return createCallExpression(CI, DefiningAccess);
Davide Italianob2225492016-12-27 18:15:39 +00001494 }
1495 return nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +00001496}
1497
Daniel Berlin1316a942017-04-06 18:52:50 +00001498// Retrieve the memory class for a given MemoryAccess.
1499CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
1500
1501 auto *Result = MemoryAccessToClass.lookup(MA);
1502 assert(Result && "Should have found memory class");
1503 return Result;
1504}
1505
1506// Update the MemoryAccess equivalence table to say that From is equal to To,
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001507// and return true if this is different from what already existed in the table.
Daniel Berlin1316a942017-04-06 18:52:50 +00001508bool NewGVN::setMemoryClass(const MemoryAccess *From,
1509 CongruenceClass *NewClass) {
1510 assert(NewClass &&
1511 "Every MemoryAccess should be getting mapped to a non-null class");
Daniel Berlin1ea5f322017-01-26 22:21:48 +00001512 DEBUG(dbgs() << "Setting " << *From);
Daniel Berlin1316a942017-04-06 18:52:50 +00001513 DEBUG(dbgs() << " equivalent to congruence class ");
Daniel Berlina8236562017-04-07 18:38:09 +00001514 DEBUG(dbgs() << NewClass->getID() << " with current MemoryAccess leader ");
Davide Italianob7a66982017-05-09 20:02:48 +00001515 DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
Daniel Berlin1ea5f322017-01-26 22:21:48 +00001516
1517 auto LookupResult = MemoryAccessToClass.find(From);
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001518 bool Changed = false;
1519 // If it's already in the table, see if the value changed.
Daniel Berlin1ea5f322017-01-26 22:21:48 +00001520 if (LookupResult != MemoryAccessToClass.end()) {
Daniel Berlin1316a942017-04-06 18:52:50 +00001521 auto *OldClass = LookupResult->second;
1522 if (OldClass != NewClass) {
1523 // If this is a phi, we have to handle memory member updates.
1524 if (auto *MP = dyn_cast<MemoryPhi>(From)) {
Daniel Berlina8236562017-04-07 18:38:09 +00001525 OldClass->memory_erase(MP);
1526 NewClass->memory_insert(MP);
Daniel Berlin1316a942017-04-06 18:52:50 +00001527 // This may have killed the class if it had no non-memory members
Daniel Berlina8236562017-04-07 18:38:09 +00001528 if (OldClass->getMemoryLeader() == From) {
Davide Italiano41f5c7b2017-05-12 15:22:45 +00001529 if (OldClass->definesNoMemory()) {
Daniel Berlina8236562017-04-07 18:38:09 +00001530 OldClass->setMemoryLeader(nullptr);
Daniel Berlin1316a942017-04-06 18:52:50 +00001531 } else {
Daniel Berlina8236562017-04-07 18:38:09 +00001532 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
Daniel Berlin1316a942017-04-06 18:52:50 +00001533 DEBUG(dbgs() << "Memory class leader change for class "
Daniel Berlina8236562017-04-07 18:38:09 +00001534 << OldClass->getID() << " to "
1535 << *OldClass->getMemoryLeader()
Daniel Berlin1316a942017-04-06 18:52:50 +00001536 << " due to removal of a memory member " << *From
1537 << "\n");
1538 markMemoryLeaderChangeTouched(OldClass);
1539 }
1540 }
1541 }
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001542 // It wasn't equivalent before, and now it is.
Daniel Berlin1316a942017-04-06 18:52:50 +00001543 LookupResult->second = NewClass;
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001544 Changed = true;
1545 }
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001546 }
Daniel Berlin589cecc2017-01-02 18:00:46 +00001547
Daniel Berlind7c12ee2016-12-25 22:23:49 +00001548 return Changed;
1549}
Daniel Berlin0e900112017-03-24 06:33:48 +00001550
Daniel Berlinb527b2c2017-05-19 19:01:27 +00001551// Determine if a instruction is cycle-free. That means the values in the
1552// instruction don't depend on any expressions that can change value as a result
1553// of the instruction. For example, a non-cycle free instruction would be v =
1554// phi(0, v+1).
1555bool NewGVN::isCycleFree(const Instruction *I) const {
1556 // In order to compute cycle-freeness, we do SCC finding on the instruction,
1557 // and see what kind of SCC it ends up in. If it is a singleton, it is
1558 // cycle-free. If it is not in a singleton, it is only cycle free if the
1559 // other members are all phi nodes (as they do not compute anything, they are
1560 // copies).
1561 auto ICS = InstCycleState.lookup(I);
1562 if (ICS == ICS_Unknown) {
1563 SCCFinder.Start(I);
1564 auto &SCC = SCCFinder.getComponentFor(I);
Daniel Berlin2f72b192017-04-14 02:53:37 +00001565 // It's cycle free if it's size 1 or or the SCC is *only* phi nodes.
1566 if (SCC.size() == 1)
Daniel Berlinb527b2c2017-05-19 19:01:27 +00001567 InstCycleState.insert({I, ICS_CycleFree});
Daniel Berlin2f72b192017-04-14 02:53:37 +00001568 else {
1569 bool AllPhis =
1570 llvm::all_of(SCC, [](const Value *V) { return isa<PHINode>(V); });
Daniel Berlinb527b2c2017-05-19 19:01:27 +00001571 ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
Daniel Berlin2f72b192017-04-14 02:53:37 +00001572 for (auto *Member : SCC)
1573 if (auto *MemberPhi = dyn_cast<PHINode>(Member))
Daniel Berlinb527b2c2017-05-19 19:01:27 +00001574 InstCycleState.insert({MemberPhi, ICS});
Daniel Berlin2f72b192017-04-14 02:53:37 +00001575 }
1576 }
Daniel Berlinb527b2c2017-05-19 19:01:27 +00001577 if (ICS == ICS_Cycle)
Daniel Berlin2f72b192017-04-14 02:53:37 +00001578 return false;
1579 return true;
1580}
1581
Davide Italiano7e274e02016-12-22 16:03:48 +00001582// Evaluate PHI nodes symbolically, and create an expression result.
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001583const Expression *NewGVN::performSymbolicPHIEvaluation(Instruction *I) const {
Daniel Berlin2f72b192017-04-14 02:53:37 +00001584 // True if one of the incoming phi edges is a backedge.
1585 bool HasBackedge = false;
1586 // All constant tracks the state of whether all the *original* phi operands
Daniel Berline021d2d2017-05-19 20:22:20 +00001587 // This is really shorthand for "this phi cannot cycle due to forward
1588 // change in value of the phi is guaranteed not to later change the value of
1589 // the phi. IE it can't be v = phi(undef, v+1)
Daniel Berlin2f72b192017-04-14 02:53:37 +00001590 bool AllConstant = true;
Daniel Berlinabd632d2017-05-16 06:06:12 +00001591 auto *E =
1592 cast<PHIExpression>(createPHIExpression(I, HasBackedge, AllConstant));
Daniel Berlind92e7f92017-01-07 00:01:42 +00001593 // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
Davide Italiano839c7e62017-05-02 21:11:40 +00001594 // See if all arguments are the same.
Daniel Berlind92e7f92017-01-07 00:01:42 +00001595 // We track if any were undef because they need special handling.
1596 bool HasUndef = false;
Daniel Berlind130b6c2017-05-21 23:41:58 +00001597 bool CycleFree = isCycleFree(I);
Daniel Berline021d2d2017-05-19 20:22:20 +00001598 auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
1599 if (Arg == nullptr)
1600 return false;
1601 // Original self-operands are already eliminated during expression creation.
1602 // We can only eliminate value-wise self-operands if it's cycle
1603 // free. Otherwise, eliminating the operand can cause our value to change,
1604 // which can cause us to not eliminate the operand, which changes the value
1605 // back to what it was before, cycling forever.
1606 if (CycleFree && Arg == I)
Daniel Berlind92e7f92017-01-07 00:01:42 +00001607 return false;
1608 if (isa<UndefValue>(Arg)) {
1609 HasUndef = true;
1610 return false;
1611 }
1612 return true;
1613 });
Daniel Berline021d2d2017-05-19 20:22:20 +00001614 // If we are left with no operands, it's dead.
Daniel Berlind92e7f92017-01-07 00:01:42 +00001615 if (Filtered.begin() == Filtered.end()) {
Daniel Berline021d2d2017-05-19 20:22:20 +00001616 DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
Daniel Berlin0e900112017-03-24 06:33:48 +00001617 deleteExpression(E);
Daniel Berline021d2d2017-05-19 20:22:20 +00001618 return createDeadExpression();
Davide Italiano7e274e02016-12-22 16:03:48 +00001619 }
Daniel Berlin2f72b192017-04-14 02:53:37 +00001620 unsigned NumOps = 0;
Daniel Berlind92e7f92017-01-07 00:01:42 +00001621 Value *AllSameValue = *(Filtered.begin());
1622 ++Filtered.begin();
1623 // Can't use std::equal here, sadly, because filter.begin moves.
Daniel Berline021d2d2017-05-19 20:22:20 +00001624 if (llvm::all_of(Filtered, [&](Value *Arg) {
Daniel Berlin2f72b192017-04-14 02:53:37 +00001625 ++NumOps;
Daniel Berline021d2d2017-05-19 20:22:20 +00001626 return Arg == AllSameValue;
Daniel Berlind92e7f92017-01-07 00:01:42 +00001627 })) {
1628 // In LLVM's non-standard representation of phi nodes, it's possible to have
1629 // phi nodes with cycles (IE dependent on other phis that are .... dependent
1630 // on the original phi node), especially in weird CFG's where some arguments
1631 // are unreachable, or uninitialized along certain paths. This can cause
1632 // infinite loops during evaluation. We work around this by not trying to
1633 // really evaluate them independently, but instead using a variable
1634 // expression to say if one is equivalent to the other.
1635 // We also special case undef, so that if we have an undef, we can't use the
1636 // common value unless it dominates the phi block.
1637 if (HasUndef) {
Daniel Berlin2f72b192017-04-14 02:53:37 +00001638 // If we have undef and at least one other value, this is really a
1639 // multivalued phi, and we need to know if it's cycle free in order to
1640 // evaluate whether we can ignore the undef. The other parts of this are
1641 // just shortcuts. If there is no backedge, or all operands are
1642 // constants, or all operands are ignored but the undef, it also must be
1643 // cycle free.
1644 if (!AllConstant && HasBackedge && NumOps > 0 &&
Daniel Berline021d2d2017-05-19 20:22:20 +00001645 !isa<UndefValue>(AllSameValue) && !CycleFree)
Daniel Berlin2f72b192017-04-14 02:53:37 +00001646 return E;
1647
Daniel Berlind92e7f92017-01-07 00:01:42 +00001648 // Only have to check for instructions
Davide Italiano1b97fc32017-01-07 02:05:50 +00001649 if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
Daniel Berlin9d0796e2017-03-24 05:30:34 +00001650 if (!someEquivalentDominates(AllSameInst, I))
Daniel Berlind92e7f92017-01-07 00:01:42 +00001651 return E;
Davide Italiano7e274e02016-12-22 16:03:48 +00001652 }
1653
Davide Italiano7e274e02016-12-22 16:03:48 +00001654 NumGVNPhisAllSame++;
1655 DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
1656 << "\n");
Daniel Berlin0e900112017-03-24 06:33:48 +00001657 deleteExpression(E);
Daniel Berlinf7d95802017-02-18 23:06:50 +00001658 return createVariableOrConstant(AllSameValue);
Davide Italiano7e274e02016-12-22 16:03:48 +00001659 }
1660 return E;
1661}
1662
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001663const Expression *
1664NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
Davide Italiano7e274e02016-12-22 16:03:48 +00001665 if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1666 auto *II = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
1667 if (II && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
1668 unsigned Opcode = 0;
1669 // EI might be an extract from one of our recognised intrinsics. If it
1670 // is we'll synthesize a semantically equivalent expression instead on
1671 // an extract value expression.
1672 switch (II->getIntrinsicID()) {
1673 case Intrinsic::sadd_with_overflow:
1674 case Intrinsic::uadd_with_overflow:
1675 Opcode = Instruction::Add;
1676 break;
1677 case Intrinsic::ssub_with_overflow:
1678 case Intrinsic::usub_with_overflow:
1679 Opcode = Instruction::Sub;
1680 break;
1681 case Intrinsic::smul_with_overflow:
1682 case Intrinsic::umul_with_overflow:
1683 Opcode = Instruction::Mul;
1684 break;
1685 default:
1686 break;
1687 }
1688
1689 if (Opcode != 0) {
1690 // Intrinsic recognized. Grab its args to finish building the
1691 // expression.
1692 assert(II->getNumArgOperands() == 2 &&
1693 "Expect two args for recognised intrinsics.");
Daniel Berlinb79f5362017-02-11 12:48:50 +00001694 return createBinaryExpression(
1695 Opcode, EI->getType(), II->getArgOperand(0), II->getArgOperand(1));
Davide Italiano7e274e02016-12-22 16:03:48 +00001696 }
1697 }
1698 }
1699
Daniel Berlin97718e62017-01-31 22:32:03 +00001700 return createAggregateValueExpression(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001701}
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001702const Expression *NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001703 auto *CI = dyn_cast<CmpInst>(I);
1704 // See if our operands are equal to those of a previous predicate, and if so,
1705 // if it implies true or false.
Daniel Berlinc22aafe2017-01-31 22:31:58 +00001706 auto Op0 = lookupOperandLeader(CI->getOperand(0));
1707 auto Op1 = lookupOperandLeader(CI->getOperand(1));
Daniel Berlinf7d95802017-02-18 23:06:50 +00001708 auto OurPredicate = CI->getPredicate();
Daniel Berlin0350a872017-03-04 00:44:43 +00001709 if (shouldSwapOperands(Op0, Op1)) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001710 std::swap(Op0, Op1);
1711 OurPredicate = CI->getSwappedPredicate();
1712 }
1713
1714 // Avoid processing the same info twice
1715 const PredicateBase *LastPredInfo = nullptr;
Daniel Berlinf7d95802017-02-18 23:06:50 +00001716 // See if we know something about the comparison itself, like it is the target
1717 // of an assume.
1718 auto *CmpPI = PredInfo->getPredicateInfoFor(I);
1719 if (dyn_cast_or_null<PredicateAssume>(CmpPI))
1720 return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1721
Daniel Berlinc22aafe2017-01-31 22:31:58 +00001722 if (Op0 == Op1) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001723 // This condition does not depend on predicates, no need to add users
Daniel Berlinc22aafe2017-01-31 22:31:58 +00001724 if (CI->isTrueWhenEqual())
1725 return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1726 else if (CI->isFalseWhenEqual())
1727 return createConstantExpression(ConstantInt::getFalse(CI->getType()));
1728 }
Daniel Berlinf7d95802017-02-18 23:06:50 +00001729
1730 // NOTE: Because we are comparing both operands here and below, and using
1731 // previous comparisons, we rely on fact that predicateinfo knows to mark
1732 // comparisons that use renamed operands as users of the earlier comparisons.
1733 // It is *not* enough to just mark predicateinfo renamed operands as users of
1734 // the earlier comparisons, because the *other* operand may have changed in a
1735 // previous iteration.
1736 // Example:
1737 // icmp slt %a, %b
1738 // %b.0 = ssa.copy(%b)
1739 // false branch:
1740 // icmp slt %c, %b.0
1741
1742 // %c and %a may start out equal, and thus, the code below will say the second
1743 // %icmp is false. c may become equal to something else, and in that case the
1744 // %second icmp *must* be reexamined, but would not if only the renamed
1745 // %operands are considered users of the icmp.
1746
1747 // *Currently* we only check one level of comparisons back, and only mark one
1748 // level back as touched when changes appen . If you modify this code to look
1749 // back farther through comparisons, you *must* mark the appropriate
1750 // comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if
1751 // we know something just from the operands themselves
1752
1753 // See if our operands have predicate info, so that we may be able to derive
1754 // something from a previous comparison.
1755 for (const auto &Op : CI->operands()) {
1756 auto *PI = PredInfo->getPredicateInfoFor(Op);
1757 if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
1758 if (PI == LastPredInfo)
1759 continue;
1760 LastPredInfo = PI;
Daniel Berlinfccbda92017-02-22 22:20:58 +00001761
Daniel Berlinf7d95802017-02-18 23:06:50 +00001762 // TODO: Along the false edge, we may know more things too, like icmp of
1763 // same operands is false.
1764 // TODO: We only handle actual comparison conditions below, not and/or.
1765 auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
1766 if (!BranchCond)
1767 continue;
1768 auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
1769 auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
1770 auto BranchPredicate = BranchCond->getPredicate();
Daniel Berlin0350a872017-03-04 00:44:43 +00001771 if (shouldSwapOperands(BranchOp0, BranchOp1)) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001772 std::swap(BranchOp0, BranchOp1);
1773 BranchPredicate = BranchCond->getSwappedPredicate();
1774 }
1775 if (BranchOp0 == Op0 && BranchOp1 == Op1) {
1776 if (PBranch->TrueEdge) {
1777 // If we know the previous predicate is true and we are in the true
1778 // edge then we may be implied true or false.
Davide Italiano2dfd46b2017-05-01 22:26:28 +00001779 if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
1780 OurPredicate)) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001781 addPredicateUsers(PI, I);
1782 return createConstantExpression(
1783 ConstantInt::getTrue(CI->getType()));
1784 }
1785
Davide Italiano2dfd46b2017-05-01 22:26:28 +00001786 if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
1787 OurPredicate)) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00001788 addPredicateUsers(PI, I);
1789 return createConstantExpression(
1790 ConstantInt::getFalse(CI->getType()));
1791 }
1792
1793 } else {
1794 // Just handle the ne and eq cases, where if we have the same
1795 // operands, we may know something.
1796 if (BranchPredicate == OurPredicate) {
1797 addPredicateUsers(PI, I);
1798 // Same predicate, same ops,we know it was false, so this is false.
1799 return createConstantExpression(
1800 ConstantInt::getFalse(CI->getType()));
1801 } else if (BranchPredicate ==
1802 CmpInst::getInversePredicate(OurPredicate)) {
1803 addPredicateUsers(PI, I);
1804 // Inverse predicate, we know the other was false, so this is true.
Daniel Berlinf7d95802017-02-18 23:06:50 +00001805 return createConstantExpression(
1806 ConstantInt::getTrue(CI->getType()));
1807 }
1808 }
1809 }
1810 }
1811 }
1812 // Create expression will take care of simplifyCmpInst
Daniel Berlin97718e62017-01-31 22:32:03 +00001813 return createExpression(I);
Daniel Berlinc22aafe2017-01-31 22:31:58 +00001814}
Davide Italiano7e274e02016-12-22 16:03:48 +00001815
Daniel Berlinb527b2c2017-05-19 19:01:27 +00001816// Return true if V is a value that will always be available (IE can
1817// be placed anywhere) in the function. We don't do globals here
1818// because they are often worse to put in place.
1819// TODO: Separate cost from availability
1820static bool alwaysAvailable(Value *V) {
1821 return isa<Constant>(V) || isa<Argument>(V);
1822}
1823
Davide Italiano7e274e02016-12-22 16:03:48 +00001824// Substitute and symbolize the value before value numbering.
Daniel Berlinb527b2c2017-05-19 19:01:27 +00001825const Expression *
1826NewGVN::performSymbolicEvaluation(Value *V,
1827 SmallPtrSetImpl<Value *> &Visited) const {
Davide Italiano0e714802016-12-28 14:00:11 +00001828 const Expression *E = nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +00001829 if (auto *C = dyn_cast<Constant>(V))
1830 E = createConstantExpression(C);
1831 else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1832 E = createVariableExpression(V);
1833 } else {
1834 // TODO: memory intrinsics.
1835 // TODO: Some day, we should do the forward propagation and reassociation
1836 // parts of the algorithm.
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00001837 auto *I = cast<Instruction>(V);
Davide Italiano7e274e02016-12-22 16:03:48 +00001838 switch (I->getOpcode()) {
1839 case Instruction::ExtractValue:
1840 case Instruction::InsertValue:
Daniel Berlin97718e62017-01-31 22:32:03 +00001841 E = performSymbolicAggrValueEvaluation(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001842 break;
1843 case Instruction::PHI:
Daniel Berlin97718e62017-01-31 22:32:03 +00001844 E = performSymbolicPHIEvaluation(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001845 break;
1846 case Instruction::Call:
Daniel Berlin97718e62017-01-31 22:32:03 +00001847 E = performSymbolicCallEvaluation(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001848 break;
1849 case Instruction::Store:
Daniel Berlin97718e62017-01-31 22:32:03 +00001850 E = performSymbolicStoreEvaluation(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001851 break;
1852 case Instruction::Load:
Daniel Berlin97718e62017-01-31 22:32:03 +00001853 E = performSymbolicLoadEvaluation(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001854 break;
1855 case Instruction::BitCast: {
Daniel Berlin97718e62017-01-31 22:32:03 +00001856 E = createExpression(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001857 } break;
Daniel Berlinc22aafe2017-01-31 22:31:58 +00001858 case Instruction::ICmp:
1859 case Instruction::FCmp: {
Daniel Berlin97718e62017-01-31 22:32:03 +00001860 E = performSymbolicCmpEvaluation(I);
Daniel Berlinc22aafe2017-01-31 22:31:58 +00001861 } break;
Davide Italiano7e274e02016-12-22 16:03:48 +00001862 case Instruction::Add:
1863 case Instruction::FAdd:
1864 case Instruction::Sub:
1865 case Instruction::FSub:
1866 case Instruction::Mul:
1867 case Instruction::FMul:
1868 case Instruction::UDiv:
1869 case Instruction::SDiv:
1870 case Instruction::FDiv:
1871 case Instruction::URem:
1872 case Instruction::SRem:
1873 case Instruction::FRem:
1874 case Instruction::Shl:
1875 case Instruction::LShr:
1876 case Instruction::AShr:
1877 case Instruction::And:
1878 case Instruction::Or:
1879 case Instruction::Xor:
Davide Italiano7e274e02016-12-22 16:03:48 +00001880 case Instruction::Trunc:
1881 case Instruction::ZExt:
1882 case Instruction::SExt:
1883 case Instruction::FPToUI:
1884 case Instruction::FPToSI:
1885 case Instruction::UIToFP:
1886 case Instruction::SIToFP:
1887 case Instruction::FPTrunc:
1888 case Instruction::FPExt:
1889 case Instruction::PtrToInt:
1890 case Instruction::IntToPtr:
1891 case Instruction::Select:
1892 case Instruction::ExtractElement:
1893 case Instruction::InsertElement:
1894 case Instruction::ShuffleVector:
1895 case Instruction::GetElementPtr:
Daniel Berlin97718e62017-01-31 22:32:03 +00001896 E = createExpression(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00001897 break;
1898 default:
1899 return nullptr;
1900 }
1901 }
Davide Italiano7e274e02016-12-22 16:03:48 +00001902 return E;
1903}
1904
Daniel Berlin0207cca2017-05-21 23:41:56 +00001905// Look up a container in a map, and then call a function for each thing in the
1906// found container.
1907template <typename Map, typename KeyType, typename Func>
1908void NewGVN::for_each_found(Map &M, const KeyType &Key, Func F) {
1909 const auto Result = M.find_as(Key);
1910 if (Result != M.end())
1911 for (typename Map::mapped_type::value_type Mapped : Result->second)
1912 F(Mapped);
1913}
1914
1915// Look up a container of values/instructions in a map, and touch all the
1916// instructions in the container. Then erase value from the map.
1917template <typename Map, typename KeyType>
1918void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
1919 const auto Result = M.find_as(Key);
1920 if (Result != M.end()) {
1921 for (const typename Map::mapped_type::value_type Mapped : Result->second)
1922 TouchedInstructions.set(InstrToDFSNum(Mapped));
1923 M.erase(Result);
1924 }
1925}
1926
Daniel Berlinb527b2c2017-05-19 19:01:27 +00001927void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
1928 AdditionalUsers[To].insert(User);
1929}
1930
Davide Italiano7e274e02016-12-22 16:03:48 +00001931void NewGVN::markUsersTouched(Value *V) {
1932 // Now mark the users as touched.
Daniel Berline0bd37e2016-12-29 22:15:12 +00001933 for (auto *User : V->users()) {
1934 assert(isa<Instruction>(User) && "Use of value not within an instruction?");
Daniel Berlin21279bd2017-04-06 18:52:58 +00001935 TouchedInstructions.set(InstrToDFSNum(User));
Davide Italiano7e274e02016-12-22 16:03:48 +00001936 }
Daniel Berlin0207cca2017-05-21 23:41:56 +00001937 touchAndErase(AdditionalUsers, V);
Davide Italiano7e274e02016-12-22 16:03:48 +00001938}
1939
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001940void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
Daniel Berlin1316a942017-04-06 18:52:50 +00001941 DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
1942 MemoryToUsers[To].insert(U);
1943}
1944
1945void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
Daniel Berlin21279bd2017-04-06 18:52:58 +00001946 TouchedInstructions.set(MemoryToDFSNum(MA));
Daniel Berlin1316a942017-04-06 18:52:50 +00001947}
1948
1949void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
1950 if (isa<MemoryUse>(MA))
1951 return;
1952 for (auto U : MA->users())
Daniel Berlin21279bd2017-04-06 18:52:58 +00001953 TouchedInstructions.set(MemoryToDFSNum(U));
Daniel Berlin0207cca2017-05-21 23:41:56 +00001954 touchAndErase(MemoryToUsers, MA);
Davide Italiano7e274e02016-12-22 16:03:48 +00001955}
1956
Daniel Berlinf7d95802017-02-18 23:06:50 +00001957// Add I to the set of users of a given predicate.
Daniel Berlin6604a2f2017-05-09 16:40:04 +00001958void NewGVN::addPredicateUsers(const PredicateBase *PB, Instruction *I) const {
Daniel Berlinb527b2c2017-05-19 19:01:27 +00001959 // Don't add temporary instructions to the user lists.
1960 if (AllTempInstructions.count(I))
1961 return;
1962
Daniel Berlinf7d95802017-02-18 23:06:50 +00001963 if (auto *PBranch = dyn_cast<PredicateBranch>(PB))
1964 PredicateToUsers[PBranch->Condition].insert(I);
1965 else if (auto *PAssume = dyn_cast<PredicateBranch>(PB))
1966 PredicateToUsers[PAssume->Condition].insert(I);
1967}
1968
1969// Touch all the predicates that depend on this instruction.
1970void NewGVN::markPredicateUsersTouched(Instruction *I) {
Daniel Berlin0207cca2017-05-21 23:41:56 +00001971 touchAndErase(PredicateToUsers, I);
Daniel Berlinf7d95802017-02-18 23:06:50 +00001972}
1973
Daniel Berlin1316a942017-04-06 18:52:50 +00001974// Mark users affected by a memory leader change.
1975void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
Daniel Berlina8236562017-04-07 18:38:09 +00001976 for (auto M : CC->memory())
Daniel Berlin1316a942017-04-06 18:52:50 +00001977 markMemoryDefTouched(M);
1978}
1979
Daniel Berlin32f8d562017-01-07 16:55:14 +00001980// Touch the instructions that need to be updated after a congruence class has a
1981// leader change, and mark changed values.
Daniel Berlin1316a942017-04-06 18:52:50 +00001982void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
Daniel Berlina8236562017-04-07 18:38:09 +00001983 for (auto M : *CC) {
Daniel Berlin32f8d562017-01-07 16:55:14 +00001984 if (auto *I = dyn_cast<Instruction>(M))
Daniel Berlin21279bd2017-04-06 18:52:58 +00001985 TouchedInstructions.set(InstrToDFSNum(I));
Daniel Berlin3a1bd022017-01-11 20:22:05 +00001986 LeaderChanges.insert(M);
1987 }
1988}
1989
Daniel Berlin1316a942017-04-06 18:52:50 +00001990// Give a range of things that have instruction DFS numbers, this will return
1991// the member of the range with the smallest dfs number.
1992template <class T, class Range>
1993T *NewGVN::getMinDFSOfRange(const Range &R) const {
1994 std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
1995 for (const auto X : R) {
Daniel Berlin21279bd2017-04-06 18:52:58 +00001996 auto DFSNum = InstrToDFSNum(X);
Daniel Berlin1316a942017-04-06 18:52:50 +00001997 if (DFSNum < MinDFS.second)
1998 MinDFS = {X, DFSNum};
1999 }
2000 return MinDFS.first;
2001}
2002
2003// This function returns the MemoryAccess that should be the next leader of
2004// congruence class CC, under the assumption that the current leader is going to
2005// disappear.
2006const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
2007 // TODO: If this ends up to slow, we can maintain a next memory leader like we
2008 // do for regular leaders.
2009 // Make sure there will be a leader to find
Davide Italianodc435322017-05-10 19:57:43 +00002010 assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
Daniel Berlina8236562017-04-07 18:38:09 +00002011 if (CC->getStoreCount() > 0) {
2012 if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
Daniel Berlinb527b2c2017-05-19 19:01:27 +00002013 return getMemoryAccess(NL);
Daniel Berlin1316a942017-04-06 18:52:50 +00002014 // Find the store with the minimum DFS number.
2015 auto *V = getMinDFSOfRange<Value>(make_filter_range(
Daniel Berlina8236562017-04-07 18:38:09 +00002016 *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
Daniel Berlinb527b2c2017-05-19 19:01:27 +00002017 return getMemoryAccess(cast<StoreInst>(V));
Daniel Berlin1316a942017-04-06 18:52:50 +00002018 }
Daniel Berlina8236562017-04-07 18:38:09 +00002019 assert(CC->getStoreCount() == 0);
Daniel Berlin1316a942017-04-06 18:52:50 +00002020
2021 // Given our assertion, hitting this part must mean
Daniel Berlina8236562017-04-07 18:38:09 +00002022 // !OldClass->memory_empty()
2023 if (CC->memory_size() == 1)
2024 return *CC->memory_begin();
2025 return getMinDFSOfRange<const MemoryPhi>(CC->memory());
Daniel Berlin1316a942017-04-06 18:52:50 +00002026}
2027
2028// This function returns the next value leader of a congruence class, under the
2029// assumption that the current leader is going away. This should end up being
2030// the next most dominating member.
2031Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
2032 // We don't need to sort members if there is only 1, and we don't care about
2033 // sorting the TOP class because everything either gets out of it or is
2034 // unreachable.
2035
Daniel Berlina8236562017-04-07 18:38:09 +00002036 if (CC->size() == 1 || CC == TOPClass) {
2037 return *(CC->begin());
2038 } else if (CC->getNextLeader().first) {
Daniel Berlin1316a942017-04-06 18:52:50 +00002039 ++NumGVNAvoidedSortedLeaderChanges;
Daniel Berlina8236562017-04-07 18:38:09 +00002040 return CC->getNextLeader().first;
Daniel Berlin1316a942017-04-06 18:52:50 +00002041 } else {
2042 ++NumGVNSortedLeaderChanges;
2043 // NOTE: If this ends up to slow, we can maintain a dual structure for
2044 // member testing/insertion, or keep things mostly sorted, and sort only
2045 // here, or use SparseBitVector or ....
Daniel Berlina8236562017-04-07 18:38:09 +00002046 return getMinDFSOfRange<Value>(*CC);
Daniel Berlin1316a942017-04-06 18:52:50 +00002047 }
2048}
2049
2050// Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
2051// the memory members, etc for the move.
2052//
2053// The invariants of this function are:
2054//
2055// I must be moving to NewClass from OldClass The StoreCount of OldClass and
2056// NewClass is expected to have been updated for I already if it is is a store.
2057// The OldClass memory leader has not been updated yet if I was the leader.
2058void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
2059 MemoryAccess *InstMA,
2060 CongruenceClass *OldClass,
2061 CongruenceClass *NewClass) {
2062 // If the leader is I, and we had a represenative MemoryAccess, it should
2063 // be the MemoryAccess of OldClass.
Davide Italianof58a30232017-04-10 23:08:35 +00002064 assert((!InstMA || !OldClass->getMemoryLeader() ||
2065 OldClass->getLeader() != I ||
2066 OldClass->getMemoryLeader() == InstMA) &&
2067 "Representative MemoryAccess mismatch");
Daniel Berlin1316a942017-04-06 18:52:50 +00002068 // First, see what happens to the new class
Daniel Berlina8236562017-04-07 18:38:09 +00002069 if (!NewClass->getMemoryLeader()) {
Daniel Berlin1316a942017-04-06 18:52:50 +00002070 // Should be a new class, or a store becoming a leader of a new class.
Daniel Berlina8236562017-04-07 18:38:09 +00002071 assert(NewClass->size() == 1 ||
2072 (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
2073 NewClass->setMemoryLeader(InstMA);
Daniel Berlin1316a942017-04-06 18:52:50 +00002074 // Mark it touched if we didn't just create a singleton
Daniel Berlina8236562017-04-07 18:38:09 +00002075 DEBUG(dbgs() << "Memory class leader change for class " << NewClass->getID()
Daniel Berlin1316a942017-04-06 18:52:50 +00002076 << " due to new memory instruction becoming leader\n");
2077 markMemoryLeaderChangeTouched(NewClass);
2078 }
2079 setMemoryClass(InstMA, NewClass);
2080 // Now, fixup the old class if necessary
Daniel Berlina8236562017-04-07 18:38:09 +00002081 if (OldClass->getMemoryLeader() == InstMA) {
Davide Italianodc435322017-05-10 19:57:43 +00002082 if (!OldClass->definesNoMemory()) {
Daniel Berlina8236562017-04-07 18:38:09 +00002083 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
2084 DEBUG(dbgs() << "Memory class leader change for class "
2085 << OldClass->getID() << " to "
2086 << *OldClass->getMemoryLeader()
Daniel Berlin1316a942017-04-06 18:52:50 +00002087 << " due to removal of old leader " << *InstMA << "\n");
2088 markMemoryLeaderChangeTouched(OldClass);
2089 } else
Daniel Berlina8236562017-04-07 18:38:09 +00002090 OldClass->setMemoryLeader(nullptr);
Daniel Berlin1316a942017-04-06 18:52:50 +00002091 }
2092}
2093
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002094// Move a value, currently in OldClass, to be part of NewClass
Daniel Berlin1316a942017-04-06 18:52:50 +00002095// Update OldClass and NewClass for the move (including changing leaders, etc).
2096void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002097 CongruenceClass *OldClass,
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002098 CongruenceClass *NewClass) {
Daniel Berlina8236562017-04-07 18:38:09 +00002099 if (I == OldClass->getNextLeader().first)
2100 OldClass->resetNextLeader();
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002101
Daniel Berlinff152002017-05-19 19:01:24 +00002102 OldClass->erase(I);
2103 NewClass->insert(I);
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002104
Daniel Berlina8236562017-04-07 18:38:09 +00002105 if (NewClass->getLeader() != I)
2106 NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
Daniel Berlin1316a942017-04-06 18:52:50 +00002107 // Handle our special casing of stores.
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002108 if (auto *SI = dyn_cast<StoreInst>(I)) {
Daniel Berlina8236562017-04-07 18:38:09 +00002109 OldClass->decStoreCount();
2110 // Okay, so when do we want to make a store a leader of a class?
2111 // If we have a store defined by an earlier load, we want the earlier load
2112 // to lead the class.
2113 // If we have a store defined by something else, we want the store to lead
2114 // the class so everything else gets the "something else" as a value.
Daniel Berlin1316a942017-04-06 18:52:50 +00002115 // If we have a store as the single member of the class, we want the store
Daniel Berlina8236562017-04-07 18:38:09 +00002116 // as the leader
2117 if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
Daniel Berlin1316a942017-04-06 18:52:50 +00002118 // If it's a store expression we are using, it means we are not equivalent
2119 // to something earlier.
Daniel Berlin629e1ff2017-05-16 06:06:15 +00002120 if (auto *SE = dyn_cast<StoreExpression>(E)) {
Daniel Berlin629e1ff2017-05-16 06:06:15 +00002121 NewClass->setStoredValue(SE->getStoredValue());
Daniel Berlin1316a942017-04-06 18:52:50 +00002122 markValueLeaderChangeTouched(NewClass);
2123 // Shift the new class leader to be the store
Daniel Berlina8236562017-04-07 18:38:09 +00002124 DEBUG(dbgs() << "Changing leader of congruence class "
2125 << NewClass->getID() << " from " << *NewClass->getLeader()
2126 << " to " << *SI << " because store joined class\n");
Daniel Berlin1316a942017-04-06 18:52:50 +00002127 // If we changed the leader, we have to mark it changed because we don't
2128 // know what it will do to symbolic evlauation.
Daniel Berlina8236562017-04-07 18:38:09 +00002129 NewClass->setLeader(SI);
Daniel Berlin1316a942017-04-06 18:52:50 +00002130 }
2131 // We rely on the code below handling the MemoryAccess change.
2132 }
Daniel Berlina8236562017-04-07 18:38:09 +00002133 NewClass->incStoreCount();
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002134 }
Daniel Berlin1316a942017-04-06 18:52:50 +00002135 // True if there is no memory instructions left in a class that had memory
2136 // instructions before.
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002137
Daniel Berlin1316a942017-04-06 18:52:50 +00002138 // If it's not a memory use, set the MemoryAccess equivalence
Daniel Berlinb527b2c2017-05-19 19:01:27 +00002139 auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
Daniel Berlin1316a942017-04-06 18:52:50 +00002140 if (InstMA)
2141 moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002142 ValueToClass[I] = NewClass;
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002143 // See if we destroyed the class or need to swap leaders.
Daniel Berlina8236562017-04-07 18:38:09 +00002144 if (OldClass->empty() && OldClass != TOPClass) {
2145 if (OldClass->getDefiningExpr()) {
Daniel Berlin629e1ff2017-05-16 06:06:15 +00002146 DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002147 << " from table\n");
Daniel Berlina8236562017-04-07 18:38:09 +00002148 ExpressionToClass.erase(OldClass->getDefiningExpr());
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002149 }
Daniel Berlina8236562017-04-07 18:38:09 +00002150 } else if (OldClass->getLeader() == I) {
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002151 // When the leader changes, the value numbering of
2152 // everything may change due to symbolization changes, so we need to
2153 // reprocess.
Daniel Berlina8236562017-04-07 18:38:09 +00002154 DEBUG(dbgs() << "Value class leader change for class " << OldClass->getID()
Daniel Berlin1316a942017-04-06 18:52:50 +00002155 << "\n");
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002156 ++NumGVNLeaderChanges;
Daniel Berlin26addef2017-01-20 21:04:30 +00002157 // Destroy the stored value if there are no more stores to represent it.
Daniel Berlin1316a942017-04-06 18:52:50 +00002158 // Note that this is basically clean up for the expression removal that
2159 // happens below. If we remove stores from a class, we may leave it as a
2160 // class of equivalent memory phis.
Daniel Berlina8236562017-04-07 18:38:09 +00002161 if (OldClass->getStoreCount() == 0) {
2162 if (OldClass->getStoredValue())
2163 OldClass->setStoredValue(nullptr);
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002164 }
Daniel Berlina8236562017-04-07 18:38:09 +00002165 OldClass->setLeader(getNextValueLeader(OldClass));
2166 OldClass->resetNextLeader();
Daniel Berlin1316a942017-04-06 18:52:50 +00002167 markValueLeaderChangeTouched(OldClass);
Daniel Berlin32f8d562017-01-07 16:55:14 +00002168 }
2169}
2170
Daniel Berlinb527b2c2017-05-19 19:01:27 +00002171// For a given expression, mark the phi of ops instructions that could have
2172// changed as a result.
2173void NewGVN::markPhiOfOpsChanged(const HashedExpression &HE) {
Daniel Berlin0207cca2017-05-21 23:41:56 +00002174 touchAndErase(ExpressionToPhiOfOps, HE);
Daniel Berlinb527b2c2017-05-19 19:01:27 +00002175}
Daniel Berlin0207cca2017-05-21 23:41:56 +00002176
Davide Italiano7e274e02016-12-22 16:03:48 +00002177// Perform congruence finding on a given value numbering expression.
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002178void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
Davide Italiano7e274e02016-12-22 16:03:48 +00002179 // This is guaranteed to return something, since it will at least find
Daniel Berlinb79f5362017-02-11 12:48:50 +00002180 // TOP.
Daniel Berline021d2d2017-05-19 20:22:20 +00002181
2182 CongruenceClass *IClass = ValueToClass.lookup(I);
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002183 assert(IClass && "Should have found a IClass");
Davide Italiano7e274e02016-12-22 16:03:48 +00002184 // Dead classes should have been eliminated from the mapping.
Daniel Berlin1316a942017-04-06 18:52:50 +00002185 assert(!IClass->isDead() && "Found a dead class");
Davide Italiano7e274e02016-12-22 16:03:48 +00002186
Daniel Berlinb527b2c2017-05-19 19:01:27 +00002187 CongruenceClass *EClass = nullptr;
2188 HashedExpression HE(E);
Daniel Berlin02c6b172017-01-02 18:00:53 +00002189 if (const auto *VE = dyn_cast<VariableExpression>(E)) {
Daniel Berlinb527b2c2017-05-19 19:01:27 +00002190 EClass = ValueToClass.lookup(VE->getVariableValue());
Daniel Berline021d2d2017-05-19 20:22:20 +00002191 } else if (isa<DeadExpression>(E)) {
2192 EClass = TOPClass;
2193 }
2194 if (!EClass) {
Daniel Berlinb527b2c2017-05-19 19:01:27 +00002195 auto lookupResult = ExpressionToClass.insert_as({E, nullptr}, HE);
Davide Italiano7e274e02016-12-22 16:03:48 +00002196
2197 // If it's not in the value table, create a new congruence class.
2198 if (lookupResult.second) {
Davide Italiano0e714802016-12-28 14:00:11 +00002199 CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
Davide Italiano7e274e02016-12-22 16:03:48 +00002200 auto place = lookupResult.first;
2201 place->second = NewClass;
2202
2203 // Constants and variables should always be made the leader.
Daniel Berlin32f8d562017-01-07 16:55:14 +00002204 if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
Daniel Berlina8236562017-04-07 18:38:09 +00002205 NewClass->setLeader(CE->getConstantValue());
Daniel Berlin32f8d562017-01-07 16:55:14 +00002206 } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
2207 StoreInst *SI = SE->getStoreInst();
Daniel Berlina8236562017-04-07 18:38:09 +00002208 NewClass->setLeader(SI);
Daniel Berlin629e1ff2017-05-16 06:06:15 +00002209 NewClass->setStoredValue(SE->getStoredValue());
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002210 // The RepMemoryAccess field will be filled in properly by the
2211 // moveValueToNewCongruenceClass call.
Daniel Berlin32f8d562017-01-07 16:55:14 +00002212 } else {
Daniel Berlina8236562017-04-07 18:38:09 +00002213 NewClass->setLeader(I);
Daniel Berlin32f8d562017-01-07 16:55:14 +00002214 }
2215 assert(!isa<VariableExpression>(E) &&
2216 "VariableExpression should have been handled already");
Davide Italiano7e274e02016-12-22 16:03:48 +00002217
2218 EClass = NewClass;
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002219 DEBUG(dbgs() << "Created new congruence class for " << *I
Daniel Berlina8236562017-04-07 18:38:09 +00002220 << " using expression " << *E << " at " << NewClass->getID()
2221 << " and leader " << *(NewClass->getLeader()));
2222 if (NewClass->getStoredValue())
2223 DEBUG(dbgs() << " and stored value " << *(NewClass->getStoredValue()));
Daniel Berlin26addef2017-01-20 21:04:30 +00002224 DEBUG(dbgs() << "\n");
Davide Italiano7e274e02016-12-22 16:03:48 +00002225 } else {
2226 EClass = lookupResult.first->second;
Daniel Berlin589cecc2017-01-02 18:00:46 +00002227 if (isa<ConstantExpression>(E))
Davide Italianof58a30232017-04-10 23:08:35 +00002228 assert((isa<Constant>(EClass->getLeader()) ||
2229 (EClass->getStoredValue() &&
2230 isa<Constant>(EClass->getStoredValue()))) &&
2231 "Any class with a constant expression should have a "
2232 "constant leader");
Daniel Berlin589cecc2017-01-02 18:00:46 +00002233
Davide Italiano7e274e02016-12-22 16:03:48 +00002234 assert(EClass && "Somehow don't have an eclass");
2235
Daniel Berlin1316a942017-04-06 18:52:50 +00002236 assert(!EClass->isDead() && "We accidentally looked up a dead class");
Davide Italiano7e274e02016-12-22 16:03:48 +00002237 }
2238 }
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002239 bool ClassChanged = IClass != EClass;
2240 bool LeaderChanged = LeaderChanges.erase(I);
Daniel Berlin3a1bd022017-01-11 20:22:05 +00002241 if (ClassChanged || LeaderChanged) {
Daniel Berlina8236562017-04-07 18:38:09 +00002242 DEBUG(dbgs() << "New class " << EClass->getID() << " for expression " << *E
Davide Italiano7e274e02016-12-22 16:03:48 +00002243 << "\n");
Daniel Berlinb527b2c2017-05-19 19:01:27 +00002244 if (ClassChanged) {
Daniel Berlin1316a942017-04-06 18:52:50 +00002245 moveValueToNewCongruenceClass(I, E, IClass, EClass);
Daniel Berlinb527b2c2017-05-19 19:01:27 +00002246 markPhiOfOpsChanged(HE);
2247 }
2248
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002249 markUsersTouched(I);
Daniel Berlinb527b2c2017-05-19 19:01:27 +00002250 if (MemoryAccess *MA = getMemoryAccess(I))
Daniel Berlinc0431fd2017-01-13 22:40:01 +00002251 markMemoryUsersTouched(MA);
Daniel Berlinf7d95802017-02-18 23:06:50 +00002252 if (auto *CI = dyn_cast<CmpInst>(I))
2253 markPredicateUsersTouched(CI);
Davide Italiano7e274e02016-12-22 16:03:48 +00002254 }
Daniel Berlin45403572017-05-16 19:58:47 +00002255 // If we changed the class of the store, we want to ensure nothing finds the
2256 // old store expression. In particular, loads do not compare against stored
2257 // value, so they will find old store expressions (and associated class
2258 // mappings) if we leave them in the table.
Davide Italianoee49f492017-05-19 04:06:10 +00002259 if (ClassChanged && isa<StoreInst>(I)) {
Daniel Berlin45403572017-05-16 19:58:47 +00002260 auto *OldE = ValueToExpression.lookup(I);
2261 // It could just be that the old class died. We don't want to erase it if we
2262 // just moved classes.
Davide Italianoee49f492017-05-19 04:06:10 +00002263 if (OldE && isa<StoreExpression>(OldE) && *E != *OldE)
Daniel Berlin45403572017-05-16 19:58:47 +00002264 ExpressionToClass.erase(OldE);
2265 }
2266 ValueToExpression[I] = E;
Davide Italiano7e274e02016-12-22 16:03:48 +00002267}
2268
2269// Process the fact that Edge (from, to) is reachable, including marking
2270// any newly reachable blocks and instructions for processing.
2271void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
2272 // Check if the Edge was reachable before.
2273 if (ReachableEdges.insert({From, To}).second) {
2274 // If this block wasn't reachable before, all instructions are touched.
2275 if (ReachableBlocks.insert(To).second) {
2276 DEBUG(dbgs() << "Block " << getBlockName(To) << " marked reachable\n");
2277 const auto &InstRange = BlockInstRange.lookup(To);
2278 TouchedInstructions.set(InstRange.first, InstRange.second);
2279 } else {
2280 DEBUG(dbgs() << "Block " << getBlockName(To)
2281 << " was reachable, but new edge {" << getBlockName(From)
2282 << "," << getBlockName(To) << "} to it found\n");
2283
2284 // We've made an edge reachable to an existing block, which may
2285 // impact predicates. Otherwise, only mark the phi nodes as touched, as
2286 // they are the only thing that depend on new edges. Anything using their
2287 // values will get propagated to if necessary.
Daniel Berlinb527b2c2017-05-19 19:01:27 +00002288 if (MemoryAccess *MemPhi = getMemoryAccess(To))
Daniel Berlin21279bd2017-04-06 18:52:58 +00002289 TouchedInstructions.set(InstrToDFSNum(MemPhi));
Daniel Berlin589cecc2017-01-02 18:00:46 +00002290
Davide Italiano7e274e02016-12-22 16:03:48 +00002291 auto BI = To->begin();
2292 while (isa<PHINode>(BI)) {
Daniel Berlin21279bd2017-04-06 18:52:58 +00002293 TouchedInstructions.set(InstrToDFSNum(&*BI));
Davide Italiano7e274e02016-12-22 16:03:48 +00002294 ++BI;
2295 }
Daniel Berlin0207cca2017-05-21 23:41:56 +00002296 for_each_found(PHIOfOpsPHIs, To, [&](const PHINode *I) {
2297 TouchedInstructions.set(InstrToDFSNum(I));
2298 });
Davide Italiano7e274e02016-12-22 16:03:48 +00002299 }
2300 }
2301}
2302
2303// Given a predicate condition (from a switch, cmp, or whatever) and a block,
2304// see if we know some constant value for it already.
Daniel Berlin97718e62017-01-31 22:32:03 +00002305Value *NewGVN::findConditionEquivalence(Value *Cond) const {
Daniel Berlin203f47b2017-01-31 22:31:53 +00002306 auto Result = lookupOperandLeader(Cond);
Davide Italiano7e274e02016-12-22 16:03:48 +00002307 if (isa<Constant>(Result))
2308 return Result;
2309 return nullptr;
2310}
2311
2312// Process the outgoing edges of a block for reachability.
2313void NewGVN::processOutgoingEdges(TerminatorInst *TI, BasicBlock *B) {
2314 // Evaluate reachability of terminator instruction.
2315 BranchInst *BR;
2316 if ((BR = dyn_cast<BranchInst>(TI)) && BR->isConditional()) {
2317 Value *Cond = BR->getCondition();
Daniel Berlin97718e62017-01-31 22:32:03 +00002318 Value *CondEvaluated = findConditionEquivalence(Cond);
Davide Italiano7e274e02016-12-22 16:03:48 +00002319 if (!CondEvaluated) {
2320 if (auto *I = dyn_cast<Instruction>(Cond)) {
Daniel Berlin97718e62017-01-31 22:32:03 +00002321 const Expression *E = createExpression(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00002322 if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2323 CondEvaluated = CE->getConstantValue();
2324 }
2325 } else if (isa<ConstantInt>(Cond)) {
2326 CondEvaluated = Cond;
2327 }
2328 }
2329 ConstantInt *CI;
2330 BasicBlock *TrueSucc = BR->getSuccessor(0);
2331 BasicBlock *FalseSucc = BR->getSuccessor(1);
2332 if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
2333 if (CI->isOne()) {
2334 DEBUG(dbgs() << "Condition for Terminator " << *TI
2335 << " evaluated to true\n");
2336 updateReachableEdge(B, TrueSucc);
2337 } else if (CI->isZero()) {
2338 DEBUG(dbgs() << "Condition for Terminator " << *TI
2339 << " evaluated to false\n");
2340 updateReachableEdge(B, FalseSucc);
2341 }
2342 } else {
2343 updateReachableEdge(B, TrueSucc);
2344 updateReachableEdge(B, FalseSucc);
2345 }
2346 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
2347 // For switches, propagate the case values into the case
2348 // destinations.
2349
2350 // Remember how many outgoing edges there are to every successor.
2351 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2352
Davide Italiano7e274e02016-12-22 16:03:48 +00002353 Value *SwitchCond = SI->getCondition();
Daniel Berlin97718e62017-01-31 22:32:03 +00002354 Value *CondEvaluated = findConditionEquivalence(SwitchCond);
Davide Italiano7e274e02016-12-22 16:03:48 +00002355 // See if we were able to turn this switch statement into a constant.
2356 if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00002357 auto *CondVal = cast<ConstantInt>(CondEvaluated);
Davide Italiano7e274e02016-12-22 16:03:48 +00002358 // We should be able to get case value for this.
Chandler Carruth927d8e62017-04-12 07:27:28 +00002359 auto Case = *SI->findCaseValue(CondVal);
2360 if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
Davide Italiano7e274e02016-12-22 16:03:48 +00002361 // We proved the value is outside of the range of the case.
2362 // We can't do anything other than mark the default dest as reachable,
2363 // and go home.
2364 updateReachableEdge(B, SI->getDefaultDest());
2365 return;
2366 }
2367 // Now get where it goes and mark it reachable.
Chandler Carruth927d8e62017-04-12 07:27:28 +00002368 BasicBlock *TargetBlock = Case.getCaseSuccessor();
Davide Italiano7e274e02016-12-22 16:03:48 +00002369 updateReachableEdge(B, TargetBlock);
Davide Italiano7e274e02016-12-22 16:03:48 +00002370 } else {
2371 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
2372 BasicBlock *TargetBlock = SI->getSuccessor(i);
2373 ++SwitchEdges[TargetBlock];
2374 updateReachableEdge(B, TargetBlock);
2375 }
2376 }
2377 } else {
2378 // Otherwise this is either unconditional, or a type we have no
2379 // idea about. Just mark successors as reachable.
2380 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
2381 BasicBlock *TargetBlock = TI->getSuccessor(i);
2382 updateReachableEdge(B, TargetBlock);
2383 }
Daniel Berlin589cecc2017-01-02 18:00:46 +00002384
2385 // This also may be a memory defining terminator, in which case, set it
Daniel Berlin1316a942017-04-06 18:52:50 +00002386 // equivalent only to itself.
2387 //
Daniel Berlinb527b2c2017-05-19 19:01:27 +00002388 auto *MA = getMemoryAccess(TI);
Daniel Berlin1316a942017-04-06 18:52:50 +00002389 if (MA && !isa<MemoryUse>(MA)) {
2390 auto *CC = ensureLeaderOfMemoryClass(MA);
2391 if (setMemoryClass(MA, CC))
2392 markMemoryUsersTouched(MA);
2393 }
Davide Italiano7e274e02016-12-22 16:03:48 +00002394 }
2395}
2396
Daniel Berlinb527b2c2017-05-19 19:01:27 +00002397void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
2398 Instruction *ExistingValue) {
2399 InstrDFS[Op] = InstrToDFSNum(ExistingValue);
2400 AllTempInstructions.insert(Op);
2401 PHIOfOpsPHIs[BB].push_back(Op);
2402 TempToBlock[Op] = BB;
2403 if (ExistingValue)
2404 RealToTemp[ExistingValue] = Op;
2405}
2406
2407static bool okayForPHIOfOps(const Instruction *I) {
2408 return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
2409 isa<LoadInst>(I);
2410}
2411
2412// When we see an instruction that is an op of phis, generate the equivalent phi
2413// of ops form.
2414const Expression *
2415NewGVN::makePossiblePhiOfOps(Instruction *I, bool HasBackedge,
2416 SmallPtrSetImpl<Value *> &Visited) {
2417 if (!okayForPHIOfOps(I))
2418 return nullptr;
2419
2420 if (!Visited.insert(I).second)
2421 return nullptr;
2422 // For now, we require the instruction be cycle free because we don't
2423 // *always* create a phi of ops for instructions that could be done as phi
2424 // of ops, we only do it if we think it is useful. If we did do it all the
2425 // time, we could remove the cycle free check.
2426 if (!isCycleFree(I))
2427 return nullptr;
2428
2429 unsigned IDFSNum = InstrToDFSNum(I);
2430 // Pretty much all of the instructions we can convert to phi of ops over a
2431 // backedge that are adds, are really induction variables, and those are
2432 // pretty much pointless to convert. This is very coarse-grained for a
2433 // test, so if we do find some value, we can change it later.
2434 // But otherwise, what can happen is we convert the induction variable from
2435 //
2436 // i = phi (0, tmp)
2437 // tmp = i + 1
2438 //
2439 // to
2440 // i = phi (0, tmpphi)
2441 // tmpphi = phi(1, tmpphi+1)
2442 //
2443 // Which we don't want to happen. We could just avoid this for all non-cycle
2444 // free phis, and we made go that route.
2445 if (HasBackedge && I->getOpcode() == Instruction::Add)
2446 return nullptr;
2447
2448 SmallPtrSet<const Value *, 8> ProcessedPHIs;
2449 // TODO: We don't do phi translation on memory accesses because it's
2450 // complicated. For a load, we'd need to be able to simulate a new memoryuse,
2451 // which we don't have a good way of doing ATM.
2452 auto *MemAccess = getMemoryAccess(I);
2453 // If the memory operation is defined by a memory operation this block that
2454 // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
2455 // can't help, as it would still be killed by that memory operation.
2456 if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
2457 MemAccess->getDefiningAccess()->getBlock() == I->getParent())
2458 return nullptr;
2459
2460 // Convert op of phis to phi of ops
2461 for (auto &Op : I->operands()) {
2462 if (!isa<PHINode>(Op))
2463 continue;
2464 auto *OpPHI = cast<PHINode>(Op);
2465 // No point in doing this for one-operand phis.
2466 if (OpPHI->getNumOperands() == 1)
2467 continue;
2468 if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
2469 return nullptr;
2470 SmallVector<std::pair<Value *, BasicBlock *>, 4> Ops;
2471 auto *PHIBlock = getBlockForValue(OpPHI);
2472 for (auto PredBB : OpPHI->blocks()) {
2473 Value *FoundVal = nullptr;
2474 // We could just skip unreachable edges entirely but it's tricky to do
2475 // with rewriting existing phi nodes.
2476 if (ReachableEdges.count({PredBB, PHIBlock})) {
2477 // Clone the instruction, create an expression from it, and see if we
2478 // have a leader.
2479 Instruction *ValueOp = I->clone();
2480 auto Iter = TempToMemory.end();
2481 if (MemAccess)
2482 Iter = TempToMemory.insert({ValueOp, MemAccess}).first;
2483
2484 for (auto &Op : ValueOp->operands()) {
2485 Op = Op->DoPHITranslation(PHIBlock, PredBB);
2486 // When this operand changes, it could change whether there is a
2487 // leader for us or not.
2488 addAdditionalUsers(Op, I);
2489 }
2490 // Make sure it's marked as a temporary instruction.
2491 AllTempInstructions.insert(ValueOp);
2492 // and make sure anything that tries to add it's DFS number is
2493 // redirected to the instruction we are making a phi of ops
2494 // for.
2495 InstrDFS.insert({ValueOp, IDFSNum});
2496 const Expression *E = performSymbolicEvaluation(ValueOp, Visited);
2497 InstrDFS.erase(ValueOp);
2498 AllTempInstructions.erase(ValueOp);
2499 ValueOp->deleteValue();
2500 if (MemAccess)
2501 TempToMemory.erase(Iter);
2502 if (!E)
2503 return nullptr;
2504 FoundVal = findPhiOfOpsLeader(E, PredBB);
2505 if (!FoundVal) {
2506 ExpressionToPhiOfOps[E].insert(I);
2507 return nullptr;
2508 }
2509 if (auto *SI = dyn_cast<StoreInst>(FoundVal))
2510 FoundVal = SI->getValueOperand();
2511 } else {
2512 DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
2513 << getBlockName(PredBB)
2514 << " because the block is unreachable\n");
2515 FoundVal = UndefValue::get(I->getType());
2516 }
2517
2518 Ops.push_back({FoundVal, PredBB});
2519 DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
2520 << getBlockName(PredBB) << "\n");
2521 }
2522 auto *ValuePHI = RealToTemp.lookup(I);
2523 bool NewPHI = false;
2524 if (!ValuePHI) {
2525 ValuePHI = PHINode::Create(I->getType(), OpPHI->getNumOperands());
2526 addPhiOfOps(ValuePHI, PHIBlock, I);
2527 NewPHI = true;
2528 NumGVNPHIOfOpsCreated++;
2529 }
2530 if (NewPHI) {
2531 for (auto PHIOp : Ops)
2532 ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
2533 } else {
2534 unsigned int i = 0;
2535 for (auto PHIOp : Ops) {
2536 ValuePHI->setIncomingValue(i, PHIOp.first);
2537 ValuePHI->setIncomingBlock(i, PHIOp.second);
2538 ++i;
2539 }
2540 }
2541
2542 DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
2543 << "\n");
2544 return performSymbolicEvaluation(ValuePHI, Visited);
2545 }
2546 return nullptr;
2547}
2548
Daniel Berlin5c338ff2017-03-10 19:05:04 +00002549// The algorithm initially places the values of the routine in the TOP
2550// congruence class. The leader of TOP is the undetermined value `undef`.
2551// When the algorithm has finished, values still in TOP are unreachable.
Davide Italiano7e274e02016-12-22 16:03:48 +00002552void NewGVN::initializeCongruenceClasses(Function &F) {
Daniel Berlin1316a942017-04-06 18:52:50 +00002553 NextCongruenceNum = 0;
2554
2555 // Note that even though we use the live on entry def as a representative
2556 // MemoryAccess, it is *not* the same as the actual live on entry def. We
2557 // have no real equivalemnt to undef for MemoryAccesses, and so we really
2558 // should be checking whether the MemoryAccess is top if we want to know if it
2559 // is equivalent to everything. Otherwise, what this really signifies is that
2560 // the access "it reaches all the way back to the beginning of the function"
2561
Daniel Berlin5c338ff2017-03-10 19:05:04 +00002562 // Initialize all other instructions to be in TOP class.
Daniel Berlin5c338ff2017-03-10 19:05:04 +00002563 TOPClass = createCongruenceClass(nullptr, nullptr);
Daniel Berlina8236562017-04-07 18:38:09 +00002564 TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
Daniel Berlin1316a942017-04-06 18:52:50 +00002565 // The live on entry def gets put into it's own class
2566 MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
2567 createMemoryClass(MSSA->getLiveOnEntryDef());
Daniel Berlin589cecc2017-01-02 18:00:46 +00002568
Daniel Berlinec9deb72017-04-18 17:06:11 +00002569 for (auto DTN : nodes(DT)) {
2570 BasicBlock *BB = DTN->getBlock();
Daniel Berlin1316a942017-04-06 18:52:50 +00002571 // All MemoryAccesses are equivalent to live on entry to start. They must
2572 // be initialized to something so that initial changes are noticed. For
2573 // the maximal answer, we initialize them all to be the same as
2574 // liveOnEntry.
Daniel Berlinec9deb72017-04-18 17:06:11 +00002575 auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
Daniel Berlin1316a942017-04-06 18:52:50 +00002576 if (MemoryBlockDefs)
2577 for (const auto &Def : *MemoryBlockDefs) {
2578 MemoryAccessToClass[&Def] = TOPClass;
2579 auto *MD = dyn_cast<MemoryDef>(&Def);
2580 // Insert the memory phis into the member list.
2581 if (!MD) {
2582 const MemoryPhi *MP = cast<MemoryPhi>(&Def);
Daniel Berlina8236562017-04-07 18:38:09 +00002583 TOPClass->memory_insert(MP);
Daniel Berlin1316a942017-04-06 18:52:50 +00002584 MemoryPhiState.insert({MP, MPS_TOP});
2585 }
2586
2587 if (MD && isa<StoreInst>(MD->getMemoryInst()))
Daniel Berlina8236562017-04-07 18:38:09 +00002588 TOPClass->incStoreCount();
Daniel Berlin1316a942017-04-06 18:52:50 +00002589 }
Daniel Berlinec9deb72017-04-18 17:06:11 +00002590 for (auto &I : *BB) {
Daniel Berlinb527b2c2017-05-19 19:01:27 +00002591 // TODO: Move to helper
2592 if (isa<PHINode>(&I))
2593 for (auto *U : I.users())
2594 if (auto *UInst = dyn_cast<Instruction>(U))
2595 if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
2596 PHINodeUses.insert(UInst);
Daniel Berlin22a4a012017-02-11 15:20:15 +00002597 // Don't insert void terminators into the class. We don't value number
Daniel Berlin5c338ff2017-03-10 19:05:04 +00002598 // them, and they just end up sitting in TOP.
Daniel Berlin22a4a012017-02-11 15:20:15 +00002599 if (isa<TerminatorInst>(I) && I.getType()->isVoidTy())
2600 continue;
Daniel Berlina8236562017-04-07 18:38:09 +00002601 TOPClass->insert(&I);
Daniel Berlin5c338ff2017-03-10 19:05:04 +00002602 ValueToClass[&I] = TOPClass;
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00002603 }
Daniel Berlin589cecc2017-01-02 18:00:46 +00002604 }
Davide Italiano7e274e02016-12-22 16:03:48 +00002605
2606 // Initialize arguments to be in their own unique congruence classes
2607 for (auto &FA : F.args())
2608 createSingletonCongruenceClass(&FA);
2609}
2610
2611void NewGVN::cleanupTables() {
2612 for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
Daniel Berlina8236562017-04-07 18:38:09 +00002613 DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID()
2614 << " has " << CongruenceClasses[i]->size() << " members\n");
Davide Italiano7e274e02016-12-22 16:03:48 +00002615 // Make sure we delete the congruence class (probably worth switching to
2616 // a unique_ptr at some point.
2617 delete CongruenceClasses[i];
Davide Italiano0e714802016-12-28 14:00:11 +00002618 CongruenceClasses[i] = nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +00002619 }
2620
Daniel Berlinb527b2c2017-05-19 19:01:27 +00002621 // Destroy the value expressions
2622 SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
2623 AllTempInstructions.end());
2624 AllTempInstructions.clear();
2625
2626 // We have to drop all references for everything first, so there are no uses
2627 // left as we delete them.
2628 for (auto *I : TempInst) {
2629 I->dropAllReferences();
2630 }
2631
2632 while (!TempInst.empty()) {
2633 auto *I = TempInst.back();
2634 TempInst.pop_back();
2635 I->deleteValue();
2636 }
2637
Davide Italiano7e274e02016-12-22 16:03:48 +00002638 ValueToClass.clear();
2639 ArgRecycler.clear(ExpressionAllocator);
2640 ExpressionAllocator.Reset();
2641 CongruenceClasses.clear();
2642 ExpressionToClass.clear();
2643 ValueToExpression.clear();
Daniel Berlinb527b2c2017-05-19 19:01:27 +00002644 RealToTemp.clear();
2645 AdditionalUsers.clear();
2646 ExpressionToPhiOfOps.clear();
2647 TempToBlock.clear();
2648 TempToMemory.clear();
2649 PHIOfOpsPHIs.clear();
Davide Italiano7e274e02016-12-22 16:03:48 +00002650 ReachableBlocks.clear();
2651 ReachableEdges.clear();
2652#ifndef NDEBUG
2653 ProcessedCount.clear();
2654#endif
Davide Italiano7e274e02016-12-22 16:03:48 +00002655 InstrDFS.clear();
2656 InstructionsToErase.clear();
Davide Italiano7e274e02016-12-22 16:03:48 +00002657 DFSToInstr.clear();
2658 BlockInstRange.clear();
2659 TouchedInstructions.clear();
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002660 MemoryAccessToClass.clear();
Daniel Berlinf7d95802017-02-18 23:06:50 +00002661 PredicateToUsers.clear();
Daniel Berlin1316a942017-04-06 18:52:50 +00002662 MemoryToUsers.clear();
Davide Italiano7e274e02016-12-22 16:03:48 +00002663}
2664
Daniel Berlinb527b2c2017-05-19 19:01:27 +00002665// Assign local DFS number mapping to instructions, and leave space for Value
2666// PHI's.
Davide Italiano7e274e02016-12-22 16:03:48 +00002667std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
2668 unsigned Start) {
2669 unsigned End = Start;
Daniel Berlinb527b2c2017-05-19 19:01:27 +00002670 if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002671 InstrDFS[MemPhi] = End++;
Piotr Padlewski6c37d292016-12-28 23:24:02 +00002672 DFSToInstr.emplace_back(MemPhi);
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002673 }
2674
Daniel Berlinb527b2c2017-05-19 19:01:27 +00002675 // Then the real block goes next.
Davide Italiano7e274e02016-12-22 16:03:48 +00002676 for (auto &I : *B) {
Daniel Berlin856fa142017-03-06 18:42:27 +00002677 // There's no need to call isInstructionTriviallyDead more than once on
2678 // an instruction. Therefore, once we know that an instruction is dead
2679 // we change its DFS number so that it doesn't get value numbered.
2680 if (isInstructionTriviallyDead(&I, TLI)) {
2681 InstrDFS[&I] = 0;
2682 DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
2683 markInstructionForDeletion(&I);
2684 continue;
2685 }
Davide Italiano7e274e02016-12-22 16:03:48 +00002686 InstrDFS[&I] = End++;
Piotr Padlewski6c37d292016-12-28 23:24:02 +00002687 DFSToInstr.emplace_back(&I);
Davide Italiano7e274e02016-12-22 16:03:48 +00002688 }
2689
2690 // All of the range functions taken half-open ranges (open on the end side).
2691 // So we do not subtract one from count, because at this point it is one
2692 // greater than the last instruction.
2693 return std::make_pair(Start, End);
2694}
2695
Daniel Berlinb527b2c2017-05-19 19:01:27 +00002696void NewGVN::updateProcessedCount(const Value *V) {
Davide Italiano7e274e02016-12-22 16:03:48 +00002697#ifndef NDEBUG
2698 if (ProcessedCount.count(V) == 0) {
2699 ProcessedCount.insert({V, 1});
2700 } else {
Davide Italiano7cf29dc2017-01-14 20:13:18 +00002701 ++ProcessedCount[V];
Davide Italiano7e274e02016-12-22 16:03:48 +00002702 assert(ProcessedCount[V] < 100 &&
Davide Italiano75e39f92016-12-30 15:01:17 +00002703 "Seem to have processed the same Value a lot");
Davide Italiano7e274e02016-12-22 16:03:48 +00002704 }
2705#endif
2706}
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002707// Evaluate MemoryPhi nodes symbolically, just like PHI nodes
2708void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
2709 // If all the arguments are the same, the MemoryPhi has the same value as the
Daniel Berlind130b6c2017-05-21 23:41:58 +00002710 // argument. Filter out unreachable blocks and self phis from our operands.
2711 // TODO: We could do cycle-checking on the memory phis to allow valueizing for
2712 // self-phi checking.
Daniel Berlin41b39162017-03-18 15:41:36 +00002713 const BasicBlock *PHIBlock = MP->getBlock();
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002714 auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
Daniel Berlind130b6c2017-05-21 23:41:58 +00002715 return cast<MemoryAccess>(U) != MP &&
Daniel Berlinb527b2c2017-05-19 19:01:27 +00002716 !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
Daniel Berlin41b39162017-03-18 15:41:36 +00002717 ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002718 });
Daniel Berlinc4796862017-01-27 02:37:11 +00002719 // If all that is left is nothing, our memoryphi is undef. We keep it as
2720 // InitialClass. Note: The only case this should happen is if we have at
2721 // least one self-argument.
2722 if (Filtered.begin() == Filtered.end()) {
Daniel Berlin1316a942017-04-06 18:52:50 +00002723 if (setMemoryClass(MP, TOPClass))
Daniel Berlinc4796862017-01-27 02:37:11 +00002724 markMemoryUsersTouched(MP);
2725 return;
2726 }
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002727
2728 // Transform the remaining operands into operand leaders.
2729 // FIXME: mapped_iterator should have a range version.
2730 auto LookupFunc = [&](const Use &U) {
Daniel Berlin1316a942017-04-06 18:52:50 +00002731 return lookupMemoryLeader(cast<MemoryAccess>(U));
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002732 };
2733 auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
2734 auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
2735
2736 // and now check if all the elements are equal.
2737 // Sadly, we can't use std::equals since these are random access iterators.
Daniel Berlin1316a942017-04-06 18:52:50 +00002738 const auto *AllSameValue = *MappedBegin;
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002739 ++MappedBegin;
2740 bool AllEqual = std::all_of(
2741 MappedBegin, MappedEnd,
2742 [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
2743
2744 if (AllEqual)
2745 DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue << "\n");
2746 else
2747 DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
Daniel Berlin1316a942017-04-06 18:52:50 +00002748 // If it's equal to something, it's in that class. Otherwise, it has to be in
2749 // a class where it is the leader (other things may be equivalent to it, but
2750 // it needs to start off in its own class, which means it must have been the
2751 // leader, and it can't have stopped being the leader because it was never
2752 // removed).
2753 CongruenceClass *CC =
2754 AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
2755 auto OldState = MemoryPhiState.lookup(MP);
2756 assert(OldState != MPS_Invalid && "Invalid memory phi state");
2757 auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
2758 MemoryPhiState[MP] = NewState;
2759 if (setMemoryClass(MP, CC) || OldState != NewState)
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002760 markMemoryUsersTouched(MP);
2761}
2762
2763// Value number a single instruction, symbolically evaluating, performing
2764// congruence finding, and updating mappings.
2765void NewGVN::valueNumberInstruction(Instruction *I) {
2766 DEBUG(dbgs() << "Processing instruction " << *I << "\n");
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002767 if (!I->isTerminator()) {
Daniel Berlin283a6082017-03-01 19:59:26 +00002768 const Expression *Symbolized = nullptr;
Daniel Berlinb527b2c2017-05-19 19:01:27 +00002769 SmallPtrSet<Value *, 2> Visited;
Daniel Berlin283a6082017-03-01 19:59:26 +00002770 if (DebugCounter::shouldExecute(VNCounter)) {
Daniel Berlinb527b2c2017-05-19 19:01:27 +00002771 Symbolized = performSymbolicEvaluation(I, Visited);
2772 // Make a phi of ops if necessary
2773 if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
2774 !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
2775 // FIXME: Backedge argument
2776 auto *PHIE = makePossiblePhiOfOps(I, false, Visited);
2777 if (PHIE)
2778 Symbolized = PHIE;
2779 }
2780
Daniel Berlin283a6082017-03-01 19:59:26 +00002781 } else {
Daniel Berlin343576a2017-03-06 18:42:39 +00002782 // Mark the instruction as unused so we don't value number it again.
2783 InstrDFS[I] = 0;
Daniel Berlin283a6082017-03-01 19:59:26 +00002784 }
Daniel Berlin02c6b172017-01-02 18:00:53 +00002785 // If we couldn't come up with a symbolic expression, use the unknown
2786 // expression
Daniel Berlinb527b2c2017-05-19 19:01:27 +00002787 if (Symbolized == nullptr)
Daniel Berlin02c6b172017-01-02 18:00:53 +00002788 Symbolized = createUnknownExpression(I);
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002789 performCongruenceFinding(I, Symbolized);
2790 } else {
Daniel Berlin02c6b172017-01-02 18:00:53 +00002791 // Handle terminators that return values. All of them produce values we
Daniel Berlinb79f5362017-02-11 12:48:50 +00002792 // don't currently understand. We don't place non-value producing
2793 // terminators in a class.
Daniel Berlin25f05b02017-01-02 18:22:38 +00002794 if (!I->getType()->isVoidTy()) {
Daniel Berlin02c6b172017-01-02 18:00:53 +00002795 auto *Symbolized = createUnknownExpression(I);
2796 performCongruenceFinding(I, Symbolized);
2797 }
Daniel Berlind7c12ee2016-12-25 22:23:49 +00002798 processOutgoingEdges(dyn_cast<TerminatorInst>(I), I->getParent());
2799 }
2800}
Davide Italiano7e274e02016-12-22 16:03:48 +00002801
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00002802// Check if there is a path, using single or equal argument phi nodes, from
2803// First to Second.
Davide Italianoeab0de22017-05-18 23:22:44 +00002804bool NewGVN::singleReachablePHIPath(
2805 SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First,
2806 const MemoryAccess *Second) const {
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00002807 if (First == Second)
2808 return true;
Daniel Berlin871ecd92017-04-01 09:44:24 +00002809 if (MSSA->isLiveOnEntryDef(First))
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00002810 return false;
Daniel Berlin1316a942017-04-06 18:52:50 +00002811
Davide Italianoeab0de22017-05-18 23:22:44 +00002812 // This is not perfect, but as we're just verifying here, we can live with
2813 // the loss of precision. The real solution would be that of doing strongly
2814 // connected component finding in this routine, and it's probably not worth
2815 // the complexity for the time being. So, we just keep a set of visited
2816 // MemoryAccess and return true when we hit a cycle.
2817 if (Visited.count(First))
2818 return true;
2819 Visited.insert(First);
2820
Daniel Berlin871ecd92017-04-01 09:44:24 +00002821 const auto *EndDef = First;
Daniel Berlin3082b8e2017-04-05 17:26:25 +00002822 for (auto *ChainDef : optimized_def_chain(First)) {
Daniel Berlin871ecd92017-04-01 09:44:24 +00002823 if (ChainDef == Second)
2824 return true;
2825 if (MSSA->isLiveOnEntryDef(ChainDef))
2826 return false;
2827 EndDef = ChainDef;
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00002828 }
Daniel Berlin871ecd92017-04-01 09:44:24 +00002829 auto *MP = cast<MemoryPhi>(EndDef);
2830 auto ReachableOperandPred = [&](const Use &U) {
2831 return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
2832 };
2833 auto FilteredPhiArgs =
2834 make_filter_range(MP->operands(), ReachableOperandPred);
2835 SmallVector<const Value *, 32> OperandList;
2836 std::copy(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
2837 std::back_inserter(OperandList));
2838 bool Okay = OperandList.size() == 1;
2839 if (!Okay)
2840 Okay =
2841 std::equal(OperandList.begin(), OperandList.end(), OperandList.begin());
2842 if (Okay)
Davide Italianoeab0de22017-05-18 23:22:44 +00002843 return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
2844 Second);
Daniel Berlin871ecd92017-04-01 09:44:24 +00002845 return false;
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00002846}
2847
Daniel Berlin589cecc2017-01-02 18:00:46 +00002848// Verify the that the memory equivalence table makes sense relative to the
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00002849// congruence classes. Note that this checking is not perfect, and is currently
Davide Italianoed67f192017-01-14 20:15:04 +00002850// subject to very rare false negatives. It is only useful for
2851// testing/debugging.
Daniel Berlinf6eba4b2017-01-11 20:22:36 +00002852void NewGVN::verifyMemoryCongruency() const {
Davide Italianoe9781e72017-03-25 02:40:02 +00002853#ifndef NDEBUG
Daniel Berlin1316a942017-04-06 18:52:50 +00002854 // Verify that the memory table equivalence and memory member set match
2855 for (const auto *CC : CongruenceClasses) {
2856 if (CC == TOPClass || CC->isDead())
2857 continue;
Daniel Berlina8236562017-04-07 18:38:09 +00002858 if (CC->getStoreCount() != 0) {
Davide Italianof58a30232017-04-10 23:08:35 +00002859 assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
Davide Italiano94bf7842017-05-04 17:26:15 +00002860 "Any class with a store as a leader should have a "
2861 "representative stored value");
Daniel Berlina8236562017-04-07 18:38:09 +00002862 assert(CC->getMemoryLeader() &&
Davide Italiano94bf7842017-05-04 17:26:15 +00002863 "Any congruence class with a store should have a "
2864 "representative access");
Daniel Berlin1316a942017-04-06 18:52:50 +00002865 }
2866
Daniel Berlina8236562017-04-07 18:38:09 +00002867 if (CC->getMemoryLeader())
2868 assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
Daniel Berlin1316a942017-04-06 18:52:50 +00002869 "Representative MemoryAccess does not appear to be reverse "
2870 "mapped properly");
Daniel Berlina8236562017-04-07 18:38:09 +00002871 for (auto M : CC->memory())
Daniel Berlin1316a942017-04-06 18:52:50 +00002872 assert(MemoryAccessToClass.lookup(M) == CC &&
2873 "Memory member does not appear to be reverse mapped properly");
2874 }
2875
2876 // Anything equivalent in the MemoryAccess table should be in the same
Daniel Berlin589cecc2017-01-02 18:00:46 +00002877 // congruence class.
2878
2879 // Filter out the unreachable and trivially dead entries, because they may
2880 // never have been updated if the instructions were not processed.
2881 auto ReachableAccessPred =
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002882 [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
Daniel Berlin589cecc2017-01-02 18:00:46 +00002883 bool Result = ReachableBlocks.count(Pair.first->getBlock());
Daniel Berlin9d0042b2017-04-18 20:15:47 +00002884 if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
2885 MemoryToDFSNum(Pair.first) == 0)
Daniel Berlin589cecc2017-01-02 18:00:46 +00002886 return false;
2887 if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
2888 return !isInstructionTriviallyDead(MemDef->getMemoryInst());
Davide Italiano6e7a2122017-05-15 18:50:53 +00002889
2890 // We could have phi nodes which operands are all trivially dead,
2891 // so we don't process them.
2892 if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
2893 for (auto &U : MemPHI->incoming_values()) {
2894 if (Instruction *I = dyn_cast<Instruction>(U.get())) {
2895 if (!isInstructionTriviallyDead(I))
2896 return true;
2897 }
2898 }
2899 return false;
2900 }
2901
Daniel Berlin589cecc2017-01-02 18:00:46 +00002902 return true;
2903 };
2904
Daniel Berlin1ea5f322017-01-26 22:21:48 +00002905 auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
Daniel Berlin589cecc2017-01-02 18:00:46 +00002906 for (auto KV : Filtered) {
Daniel Berlin589cecc2017-01-02 18:00:46 +00002907 if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
Daniel Berlina8236562017-04-07 18:38:09 +00002908 auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
Davide Italianoeab0de22017-05-18 23:22:44 +00002909 if (FirstMUD && SecondMUD) {
2910 SmallPtrSet<const MemoryAccess *, 8> VisitedMAS;
2911 assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
Davide Italianoed67f192017-01-14 20:15:04 +00002912 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
2913 ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
2914 "The instructions for these memory operations should have "
2915 "been in the same congruence class or reachable through"
2916 "a single argument phi");
Davide Italianoeab0de22017-05-18 23:22:44 +00002917 }
Daniel Berlin589cecc2017-01-02 18:00:46 +00002918 } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
Daniel Berlin589cecc2017-01-02 18:00:46 +00002919 // We can only sanely verify that MemoryDefs in the operand list all have
2920 // the same class.
2921 auto ReachableOperandPred = [&](const Use &U) {
Daniel Berlin41b39162017-03-18 15:41:36 +00002922 return ReachableEdges.count(
2923 {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
Daniel Berlin589cecc2017-01-02 18:00:46 +00002924 isa<MemoryDef>(U);
2925
2926 };
2927 // All arguments should in the same class, ignoring unreachable arguments
2928 auto FilteredPhiArgs =
2929 make_filter_range(FirstMP->operands(), ReachableOperandPred);
2930 SmallVector<const CongruenceClass *, 16> PhiOpClasses;
2931 std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
2932 std::back_inserter(PhiOpClasses), [&](const Use &U) {
2933 const MemoryDef *MD = cast<MemoryDef>(U);
2934 return ValueToClass.lookup(MD->getMemoryInst());
2935 });
2936 assert(std::equal(PhiOpClasses.begin(), PhiOpClasses.end(),
2937 PhiOpClasses.begin()) &&
2938 "All MemoryPhi arguments should be in the same class");
2939 }
2940 }
Davide Italianoe9781e72017-03-25 02:40:02 +00002941#endif
Daniel Berlin589cecc2017-01-02 18:00:46 +00002942}
2943
Daniel Berlin06329a92017-03-18 15:41:40 +00002944// Verify that the sparse propagation we did actually found the maximal fixpoint
2945// We do this by storing the value to class mapping, touching all instructions,
2946// and redoing the iteration to see if anything changed.
2947void NewGVN::verifyIterationSettled(Function &F) {
Daniel Berlinf7d95802017-02-18 23:06:50 +00002948#ifndef NDEBUG
Daniel Berlin1316a942017-04-06 18:52:50 +00002949 DEBUG(dbgs() << "Beginning iteration verification\n");
Daniel Berlin06329a92017-03-18 15:41:40 +00002950 if (DebugCounter::isCounterSet(VNCounter))
2951 DebugCounter::setCounterValue(VNCounter, StartingVNCounter);
2952
2953 // Note that we have to store the actual classes, as we may change existing
2954 // classes during iteration. This is because our memory iteration propagation
2955 // is not perfect, and so may waste a little work. But it should generate
2956 // exactly the same congruence classes we have now, with different IDs.
2957 std::map<const Value *, CongruenceClass> BeforeIteration;
2958
2959 for (auto &KV : ValueToClass) {
2960 if (auto *I = dyn_cast<Instruction>(KV.first))
2961 // Skip unused/dead instructions.
Daniel Berlin21279bd2017-04-06 18:52:58 +00002962 if (InstrToDFSNum(I) == 0)
Daniel Berlinf7d95802017-02-18 23:06:50 +00002963 continue;
Daniel Berlin06329a92017-03-18 15:41:40 +00002964 BeforeIteration.insert({KV.first, *KV.second});
2965 }
2966
2967 TouchedInstructions.set();
2968 TouchedInstructions.reset(0);
2969 iterateTouchedInstructions();
2970 DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
2971 EqualClasses;
2972 for (const auto &KV : ValueToClass) {
2973 if (auto *I = dyn_cast<Instruction>(KV.first))
2974 // Skip unused/dead instructions.
Daniel Berlin21279bd2017-04-06 18:52:58 +00002975 if (InstrToDFSNum(I) == 0)
Daniel Berlin06329a92017-03-18 15:41:40 +00002976 continue;
2977 // We could sink these uses, but i think this adds a bit of clarity here as
2978 // to what we are comparing.
2979 auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
2980 auto *AfterCC = KV.second;
2981 // Note that the classes can't change at this point, so we memoize the set
2982 // that are equal.
2983 if (!EqualClasses.count({BeforeCC, AfterCC})) {
Daniel Berlina8236562017-04-07 18:38:09 +00002984 assert(BeforeCC->isEquivalentTo(AfterCC) &&
Daniel Berlin06329a92017-03-18 15:41:40 +00002985 "Value number changed after main loop completed!");
2986 EqualClasses.insert({BeforeCC, AfterCC});
Daniel Berlinf7d95802017-02-18 23:06:50 +00002987 }
2988 }
2989#endif
2990}
2991
Daniel Berlin45403572017-05-16 19:58:47 +00002992// Verify that for each store expression in the expression to class mapping,
2993// only the latest appears, and multiple ones do not appear.
2994// Because loads do not use the stored value when doing equality with stores,
2995// if we don't erase the old store expressions from the table, a load can find
2996// a no-longer valid StoreExpression.
2997void NewGVN::verifyStoreExpressions() const {
Daniel Berlin6c66e9a2017-05-16 20:02:45 +00002998#ifndef NDEBUG
Daniel Berlin45403572017-05-16 19:58:47 +00002999 DenseSet<std::pair<const Value *, const Value *>> StoreExpressionSet;
3000 for (const auto &KV : ExpressionToClass) {
3001 if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
3002 // Make sure a version that will conflict with loads is not already there
3003 auto Res =
3004 StoreExpressionSet.insert({SE->getOperand(0), SE->getMemoryLeader()});
3005 assert(Res.second &&
3006 "Stored expression conflict exists in expression table");
3007 auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
3008 assert(ValueExpr && ValueExpr->equals(*SE) &&
3009 "StoreExpression in ExpressionToClass is not latest "
3010 "StoreExpression for value");
3011 }
3012 }
Daniel Berlin6c66e9a2017-05-16 20:02:45 +00003013#endif
Daniel Berlin45403572017-05-16 19:58:47 +00003014}
3015
Daniel Berlin06329a92017-03-18 15:41:40 +00003016// This is the main value numbering loop, it iterates over the initial touched
3017// instruction set, propagating value numbers, marking things touched, etc,
3018// until the set of touched instructions is completely empty.
3019void NewGVN::iterateTouchedInstructions() {
3020 unsigned int Iterations = 0;
3021 // Figure out where touchedinstructions starts
3022 int FirstInstr = TouchedInstructions.find_first();
3023 // Nothing set, nothing to iterate, just return.
3024 if (FirstInstr == -1)
3025 return;
Daniel Berlinb527b2c2017-05-19 19:01:27 +00003026 const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
Daniel Berlin06329a92017-03-18 15:41:40 +00003027 while (TouchedInstructions.any()) {
3028 ++Iterations;
3029 // Walk through all the instructions in all the blocks in RPO.
3030 // TODO: As we hit a new block, we should push and pop equalities into a
3031 // table lookupOperandLeader can use, to catch things PredicateInfo
3032 // might miss, like edge-only equivalences.
Francis Visoiu Mistrihb52e0362017-05-17 01:07:53 +00003033 for (unsigned InstrNum : TouchedInstructions.set_bits()) {
Daniel Berlin06329a92017-03-18 15:41:40 +00003034
3035 // This instruction was found to be dead. We don't bother looking
3036 // at it again.
3037 if (InstrNum == 0) {
3038 TouchedInstructions.reset(InstrNum);
3039 continue;
3040 }
3041
Daniel Berlin21279bd2017-04-06 18:52:58 +00003042 Value *V = InstrFromDFSNum(InstrNum);
Daniel Berlinb527b2c2017-05-19 19:01:27 +00003043 const BasicBlock *CurrBlock = getBlockForValue(V);
Daniel Berlin06329a92017-03-18 15:41:40 +00003044
3045 // If we hit a new block, do reachability processing.
3046 if (CurrBlock != LastBlock) {
3047 LastBlock = CurrBlock;
3048 bool BlockReachable = ReachableBlocks.count(CurrBlock);
3049 const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
3050
3051 // If it's not reachable, erase any touched instructions and move on.
3052 if (!BlockReachable) {
3053 TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
3054 DEBUG(dbgs() << "Skipping instructions in block "
3055 << getBlockName(CurrBlock)
3056 << " because it is unreachable\n");
3057 continue;
3058 }
3059 updateProcessedCount(CurrBlock);
3060 }
3061
3062 if (auto *MP = dyn_cast<MemoryPhi>(V)) {
3063 DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
3064 valueNumberMemoryPhi(MP);
3065 } else if (auto *I = dyn_cast<Instruction>(V)) {
3066 valueNumberInstruction(I);
3067 } else {
3068 llvm_unreachable("Should have been a MemoryPhi or Instruction");
3069 }
3070 updateProcessedCount(V);
3071 // Reset after processing (because we may mark ourselves as touched when
3072 // we propagate equalities).
3073 TouchedInstructions.reset(InstrNum);
3074 }
3075 }
3076 NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
3077}
3078
Daniel Berlin85f91b02016-12-26 20:06:58 +00003079// This is the main transformation entry point.
Daniel Berlin64e68992017-03-12 04:46:45 +00003080bool NewGVN::runGVN() {
Daniel Berlin06329a92017-03-18 15:41:40 +00003081 if (DebugCounter::isCounterSet(VNCounter))
3082 StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
Davide Italiano7e274e02016-12-22 16:03:48 +00003083 bool Changed = false;
Daniel Berlin1529bb92017-02-11 15:13:49 +00003084 NumFuncArgs = F.arg_size();
Davide Italiano7e274e02016-12-22 16:03:48 +00003085 MSSAWalker = MSSA->getWalker();
Daniel Berline021d2d2017-05-19 20:22:20 +00003086 SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();
Davide Italiano7e274e02016-12-22 16:03:48 +00003087
3088 // Count number of instructions for sizing of hash tables, and come
3089 // up with a global dfs numbering for instructions.
Daniel Berline0bd37e2016-12-29 22:15:12 +00003090 unsigned ICount = 1;
3091 // Add an empty instruction to account for the fact that we start at 1
3092 DFSToInstr.emplace_back(nullptr);
Daniel Berlinf7d95802017-02-18 23:06:50 +00003093 // Note: We want ideal RPO traversal of the blocks, which is not quite the
3094 // same as dominator tree order, particularly with regard whether backedges
3095 // get visited first or second, given a block with multiple successors.
Davide Italiano7e274e02016-12-22 16:03:48 +00003096 // If we visit in the wrong order, we will end up performing N times as many
3097 // iterations.
Daniel Berlin6658cc92016-12-29 01:12:36 +00003098 // The dominator tree does guarantee that, for a given dom tree node, it's
3099 // parent must occur before it in the RPO ordering. Thus, we only need to sort
3100 // the siblings.
Davide Italiano7e274e02016-12-22 16:03:48 +00003101 ReversePostOrderTraversal<Function *> RPOT(&F);
Daniel Berlin6658cc92016-12-29 01:12:36 +00003102 unsigned Counter = 0;
Davide Italiano7e274e02016-12-22 16:03:48 +00003103 for (auto &B : RPOT) {
Daniel Berlin6658cc92016-12-29 01:12:36 +00003104 auto *Node = DT->getNode(B);
3105 assert(Node && "RPO and Dominator tree should have same reachability");
3106 RPOOrdering[Node] = ++Counter;
3107 }
3108 // Sort dominator tree children arrays into RPO.
3109 for (auto &B : RPOT) {
3110 auto *Node = DT->getNode(B);
3111 if (Node->getChildren().size() > 1)
3112 std::sort(Node->begin(), Node->end(),
Daniel Berlin2f72b192017-04-14 02:53:37 +00003113 [&](const DomTreeNode *A, const DomTreeNode *B) {
Daniel Berlin6658cc92016-12-29 01:12:36 +00003114 return RPOOrdering[A] < RPOOrdering[B];
3115 });
3116 }
3117
3118 // Now a standard depth first ordering of the domtree is equivalent to RPO.
Daniel Berlinec9deb72017-04-18 17:06:11 +00003119 for (auto DTN : depth_first(DT->getRootNode())) {
3120 BasicBlock *B = DTN->getBlock();
Davide Italiano7e274e02016-12-22 16:03:48 +00003121 const auto &BlockRange = assignDFSNumbers(B, ICount);
3122 BlockInstRange.insert({B, BlockRange});
3123 ICount += BlockRange.second - BlockRange.first;
3124 }
Daniel Berlinb527b2c2017-05-19 19:01:27 +00003125 initializeCongruenceClasses(F);
Davide Italiano7e274e02016-12-22 16:03:48 +00003126
Daniel Berline0bd37e2016-12-29 22:15:12 +00003127 TouchedInstructions.resize(ICount);
Davide Italiano7e274e02016-12-22 16:03:48 +00003128 // Ensure we don't end up resizing the expressionToClass map, as
3129 // that can be quite expensive. At most, we have one expression per
3130 // instruction.
Daniel Berline0bd37e2016-12-29 22:15:12 +00003131 ExpressionToClass.reserve(ICount);
Davide Italiano7e274e02016-12-22 16:03:48 +00003132
3133 // Initialize the touched instructions to include the entry block.
3134 const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
3135 TouchedInstructions.set(InstRange.first, InstRange.second);
Daniel Berlinb527b2c2017-05-19 19:01:27 +00003136 DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
3137 << " marked reachable\n");
Davide Italiano7e274e02016-12-22 16:03:48 +00003138 ReachableBlocks.insert(&F.getEntryBlock());
3139
Daniel Berlin06329a92017-03-18 15:41:40 +00003140 iterateTouchedInstructions();
Daniel Berlin589cecc2017-01-02 18:00:46 +00003141 verifyMemoryCongruency();
Daniel Berlin06329a92017-03-18 15:41:40 +00003142 verifyIterationSettled(F);
Daniel Berlin45403572017-05-16 19:58:47 +00003143 verifyStoreExpressions();
Daniel Berlinf7d95802017-02-18 23:06:50 +00003144
Davide Italiano7e274e02016-12-22 16:03:48 +00003145 Changed |= eliminateInstructions(F);
3146
3147 // Delete all instructions marked for deletion.
3148 for (Instruction *ToErase : InstructionsToErase) {
3149 if (!ToErase->use_empty())
3150 ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType()));
3151
Daniel Berlinb527b2c2017-05-19 19:01:27 +00003152 if (ToErase->getParent())
3153 ToErase->eraseFromParent();
Davide Italiano7e274e02016-12-22 16:03:48 +00003154 }
3155
3156 // Delete all unreachable blocks.
Daniel Berlin85f91b02016-12-26 20:06:58 +00003157 auto UnreachableBlockPred = [&](const BasicBlock &BB) {
3158 return !ReachableBlocks.count(&BB);
3159 };
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00003160
3161 for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
3162 DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
Daniel Berlin85f91b02016-12-26 20:06:58 +00003163 << " is unreachable\n");
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00003164 deleteInstructionsInBlock(&BB);
3165 Changed = true;
Davide Italiano7e274e02016-12-22 16:03:48 +00003166 }
3167
3168 cleanupTables();
3169 return Changed;
3170}
3171
Davide Italiano7e274e02016-12-22 16:03:48 +00003172struct NewGVN::ValueDFS {
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00003173 int DFSIn = 0;
3174 int DFSOut = 0;
3175 int LocalNum = 0;
Daniel Berlinc0e008d2017-03-10 00:32:26 +00003176 // Only one of Def and U will be set.
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00003177 // The bool in the Def tells us whether the Def is the stored value of a
3178 // store.
3179 PointerIntPair<Value *, 1, bool> Def;
Piotr Padlewskifc5727b2016-12-28 19:17:17 +00003180 Use *U = nullptr;
Davide Italiano7e274e02016-12-22 16:03:48 +00003181 bool operator<(const ValueDFS &Other) const {
3182 // It's not enough that any given field be less than - we have sets
3183 // of fields that need to be evaluated together to give a proper ordering.
3184 // For example, if you have;
3185 // DFS (1, 3)
3186 // Val 0
3187 // DFS (1, 2)
3188 // Val 50
3189 // We want the second to be less than the first, but if we just go field
3190 // by field, we will get to Val 0 < Val 50 and say the first is less than
3191 // the second. We only want it to be less than if the DFS orders are equal.
3192 //
3193 // Each LLVM instruction only produces one value, and thus the lowest-level
3194 // differentiator that really matters for the stack (and what we use as as a
3195 // replacement) is the local dfs number.
Daniel Berlin85f91b02016-12-26 20:06:58 +00003196 // Everything else in the structure is instruction level, and only affects
3197 // the order in which we will replace operands of a given instruction.
Davide Italiano7e274e02016-12-22 16:03:48 +00003198 //
3199 // For a given instruction (IE things with equal dfsin, dfsout, localnum),
3200 // the order of replacement of uses does not matter.
3201 // IE given,
3202 // a = 5
3203 // b = a + a
Daniel Berlin85f91b02016-12-26 20:06:58 +00003204 // When you hit b, you will have two valuedfs with the same dfsin, out, and
3205 // localnum.
Davide Italiano7e274e02016-12-22 16:03:48 +00003206 // The .val will be the same as well.
3207 // The .u's will be different.
Daniel Berlin85f91b02016-12-26 20:06:58 +00003208 // You will replace both, and it does not matter what order you replace them
3209 // in (IE whether you replace operand 2, then operand 1, or operand 1, then
3210 // operand 2).
3211 // Similarly for the case of same dfsin, dfsout, localnum, but different
3212 // .val's
Davide Italiano7e274e02016-12-22 16:03:48 +00003213 // a = 5
3214 // b = 6
3215 // c = a + b
Daniel Berlin85f91b02016-12-26 20:06:58 +00003216 // in c, we will a valuedfs for a, and one for b,with everything the same
3217 // but .val and .u.
Davide Italiano7e274e02016-12-22 16:03:48 +00003218 // It does not matter what order we replace these operands in.
3219 // You will always end up with the same IR, and this is guaranteed.
Daniel Berlinc0e008d2017-03-10 00:32:26 +00003220 return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
3221 std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
Davide Italiano7e274e02016-12-22 16:03:48 +00003222 Other.U);
3223 }
3224};
3225
Daniel Berlinc4796862017-01-27 02:37:11 +00003226// This function converts the set of members for a congruence class from values,
Daniel Berlinc0e008d2017-03-10 00:32:26 +00003227// to sets of defs and uses with associated DFS info. The total number of
Daniel Berline3e69e12017-03-10 00:32:33 +00003228// reachable uses for each value is stored in UseCount, and instructions that
3229// seem
3230// dead (have no non-dead uses) are stored in ProbablyDead.
3231void NewGVN::convertClassToDFSOrdered(
Daniel Berlina8236562017-04-07 18:38:09 +00003232 const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
Daniel Berline3e69e12017-03-10 00:32:33 +00003233 DenseMap<const Value *, unsigned int> &UseCounts,
Daniel Berlina8236562017-04-07 18:38:09 +00003234 SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
Davide Italiano7e274e02016-12-22 16:03:48 +00003235 for (auto D : Dense) {
3236 // First add the value.
3237 BasicBlock *BB = getBlockForValue(D);
3238 // Constants are handled prior to ever calling this function, so
3239 // we should only be left with instructions as members.
Chandler Carruthee086762016-12-23 01:38:06 +00003240 assert(BB && "Should have figured out a basic block for value");
Daniel Berlinc0e008d2017-03-10 00:32:26 +00003241 ValueDFS VDDef;
Daniel Berlinb66164c2017-01-14 00:24:23 +00003242 DomTreeNode *DomNode = DT->getNode(BB);
Daniel Berlinc0e008d2017-03-10 00:32:26 +00003243 VDDef.DFSIn = DomNode->getDFSNumIn();
3244 VDDef.DFSOut = DomNode->getDFSNumOut();
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00003245 // If it's a store, use the leader of the value operand, if it's always
3246 // available, or the value operand. TODO: We could do dominance checks to
3247 // find a dominating leader, but not worth it ATM.
Daniel Berlin26addef2017-01-20 21:04:30 +00003248 if (auto *SI = dyn_cast<StoreInst>(D)) {
Daniel Berlin808e3ff2017-01-31 22:31:56 +00003249 auto Leader = lookupOperandLeader(SI->getValueOperand());
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00003250 if (alwaysAvailable(Leader)) {
3251 VDDef.Def.setPointer(Leader);
3252 } else {
3253 VDDef.Def.setPointer(SI->getValueOperand());
3254 VDDef.Def.setInt(true);
3255 }
Daniel Berlin26addef2017-01-20 21:04:30 +00003256 } else {
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00003257 VDDef.Def.setPointer(D);
Daniel Berlin26addef2017-01-20 21:04:30 +00003258 }
Daniel Berlinc0e008d2017-03-10 00:32:26 +00003259 assert(isa<Instruction>(D) &&
3260 "The dense set member should always be an instruction");
Daniel Berline3e69e12017-03-10 00:32:33 +00003261 Instruction *Def = cast<Instruction>(D);
Daniel Berlinb527b2c2017-05-19 19:01:27 +00003262 VDDef.LocalNum = InstrToDFSNum(D);
3263 DFSOrderedSet.push_back(VDDef);
3264 // If there is a phi node equivalent, add it
3265 if (auto *PN = RealToTemp.lookup(Def)) {
3266 auto *PHIE =
3267 dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
3268 if (PHIE) {
3269 VDDef.Def.setInt(false);
3270 VDDef.Def.setPointer(PN);
3271 VDDef.LocalNum = 0;
3272 DFSOrderedSet.push_back(VDDef);
3273 }
3274 }
3275
Daniel Berline3e69e12017-03-10 00:32:33 +00003276 unsigned int UseCount = 0;
Daniel Berlinb66164c2017-01-14 00:24:23 +00003277 // Now add the uses.
Daniel Berline3e69e12017-03-10 00:32:33 +00003278 for (auto &U : Def->uses()) {
Davide Italiano7e274e02016-12-22 16:03:48 +00003279 if (auto *I = dyn_cast<Instruction>(U.getUser())) {
Daniel Berline3e69e12017-03-10 00:32:33 +00003280 // Don't try to replace into dead uses
3281 if (InstructionsToErase.count(I))
3282 continue;
Daniel Berlinc0e008d2017-03-10 00:32:26 +00003283 ValueDFS VDUse;
Davide Italiano7e274e02016-12-22 16:03:48 +00003284 // Put the phi node uses in the incoming block.
3285 BasicBlock *IBlock;
3286 if (auto *P = dyn_cast<PHINode>(I)) {
3287 IBlock = P->getIncomingBlock(U);
3288 // Make phi node users appear last in the incoming block
3289 // they are from.
Daniel Berlinc0e008d2017-03-10 00:32:26 +00003290 VDUse.LocalNum = InstrDFS.size() + 1;
Davide Italiano7e274e02016-12-22 16:03:48 +00003291 } else {
Daniel Berlinb527b2c2017-05-19 19:01:27 +00003292 IBlock = getBlockForValue(I);
Daniel Berlin21279bd2017-04-06 18:52:58 +00003293 VDUse.LocalNum = InstrToDFSNum(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00003294 }
Davide Italianoccbbc832017-01-26 00:42:42 +00003295
3296 // Skip uses in unreachable blocks, as we're going
3297 // to delete them.
3298 if (ReachableBlocks.count(IBlock) == 0)
3299 continue;
3300
Daniel Berlinb66164c2017-01-14 00:24:23 +00003301 DomTreeNode *DomNode = DT->getNode(IBlock);
Daniel Berlinc0e008d2017-03-10 00:32:26 +00003302 VDUse.DFSIn = DomNode->getDFSNumIn();
3303 VDUse.DFSOut = DomNode->getDFSNumOut();
3304 VDUse.U = &U;
Daniel Berline3e69e12017-03-10 00:32:33 +00003305 ++UseCount;
Daniel Berlinc0e008d2017-03-10 00:32:26 +00003306 DFSOrderedSet.emplace_back(VDUse);
Davide Italiano7e274e02016-12-22 16:03:48 +00003307 }
3308 }
Daniel Berline3e69e12017-03-10 00:32:33 +00003309
3310 // If there are no uses, it's probably dead (but it may have side-effects,
3311 // so not definitely dead. Otherwise, store the number of uses so we can
3312 // track if it becomes dead later).
3313 if (UseCount == 0)
3314 ProbablyDead.insert(Def);
3315 else
3316 UseCounts[Def] = UseCount;
Davide Italiano7e274e02016-12-22 16:03:48 +00003317 }
3318}
3319
Daniel Berlinc4796862017-01-27 02:37:11 +00003320// This function converts the set of members for a congruence class from values,
3321// to the set of defs for loads and stores, with associated DFS info.
Daniel Berline3e69e12017-03-10 00:32:33 +00003322void NewGVN::convertClassToLoadsAndStores(
Daniel Berlina8236562017-04-07 18:38:09 +00003323 const CongruenceClass &Dense,
3324 SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
Daniel Berlinc4796862017-01-27 02:37:11 +00003325 for (auto D : Dense) {
3326 if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
3327 continue;
3328
3329 BasicBlock *BB = getBlockForValue(D);
3330 ValueDFS VD;
3331 DomTreeNode *DomNode = DT->getNode(BB);
3332 VD.DFSIn = DomNode->getDFSNumIn();
3333 VD.DFSOut = DomNode->getDFSNumOut();
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00003334 VD.Def.setPointer(D);
Daniel Berlinc4796862017-01-27 02:37:11 +00003335
3336 // If it's an instruction, use the real local dfs number.
3337 if (auto *I = dyn_cast<Instruction>(D))
Daniel Berlin21279bd2017-04-06 18:52:58 +00003338 VD.LocalNum = InstrToDFSNum(I);
Daniel Berlinc4796862017-01-27 02:37:11 +00003339 else
3340 llvm_unreachable("Should have been an instruction");
3341
3342 LoadsAndStores.emplace_back(VD);
3343 }
3344}
3345
Davide Italiano7e274e02016-12-22 16:03:48 +00003346static void patchReplacementInstruction(Instruction *I, Value *Repl) {
Daniel Berlin4d547962017-02-12 23:24:45 +00003347 auto *ReplInst = dyn_cast<Instruction>(Repl);
Daniel Berlin86eab152017-02-12 22:25:20 +00003348 if (!ReplInst)
3349 return;
3350
Davide Italiano7e274e02016-12-22 16:03:48 +00003351 // Patch the replacement so that it is not more restrictive than the value
3352 // being replaced.
Daniel Berlin86eab152017-02-12 22:25:20 +00003353 // Note that if 'I' is a load being replaced by some operation,
3354 // for example, by an arithmetic operation, then andIRFlags()
3355 // would just erase all math flags from the original arithmetic
3356 // operation, which is clearly not wanted and not needed.
3357 if (!isa<LoadInst>(I))
3358 ReplInst->andIRFlags(I);
Davide Italiano7e274e02016-12-22 16:03:48 +00003359
Daniel Berlin86eab152017-02-12 22:25:20 +00003360 // FIXME: If both the original and replacement value are part of the
3361 // same control-flow region (meaning that the execution of one
3362 // guarantees the execution of the other), then we can combine the
3363 // noalias scopes here and do better than the general conservative
3364 // answer used in combineMetadata().
Davide Italiano7e274e02016-12-22 16:03:48 +00003365
Daniel Berlin86eab152017-02-12 22:25:20 +00003366 // In general, GVN unifies expressions over different control-flow
3367 // regions, and so we need a conservative combination of the noalias
3368 // scopes.
3369 static const unsigned KnownIDs[] = {
3370 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
3371 LLVMContext::MD_noalias, LLVMContext::MD_range,
3372 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
3373 LLVMContext::MD_invariant_group};
3374 combineMetadata(ReplInst, I, KnownIDs);
Davide Italiano7e274e02016-12-22 16:03:48 +00003375}
3376
3377static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
3378 patchReplacementInstruction(I, Repl);
3379 I->replaceAllUsesWith(Repl);
3380}
3381
3382void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
3383 DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
3384 ++NumGVNBlocksDeleted;
3385
Daniel Berline19f0e02017-01-30 17:06:55 +00003386 // Delete the instructions backwards, as it has a reduced likelihood of having
3387 // to update as many def-use and use-def chains. Start after the terminator.
3388 auto StartPoint = BB->rbegin();
3389 ++StartPoint;
3390 // Note that we explicitly recalculate BB->rend() on each iteration,
3391 // as it may change when we remove the first instruction.
3392 for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
3393 Instruction &Inst = *I++;
3394 if (!Inst.use_empty())
3395 Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
3396 if (isa<LandingPadInst>(Inst))
3397 continue;
3398
3399 Inst.eraseFromParent();
3400 ++NumGVNInstrDeleted;
3401 }
Daniel Berlina53a7222017-01-30 18:12:56 +00003402 // Now insert something that simplifycfg will turn into an unreachable.
3403 Type *Int8Ty = Type::getInt8Ty(BB->getContext());
3404 new StoreInst(UndefValue::get(Int8Ty),
3405 Constant::getNullValue(Int8Ty->getPointerTo()),
3406 BB->getTerminator());
Davide Italiano7e274e02016-12-22 16:03:48 +00003407}
3408
3409void NewGVN::markInstructionForDeletion(Instruction *I) {
3410 DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
3411 InstructionsToErase.insert(I);
3412}
3413
3414void NewGVN::replaceInstruction(Instruction *I, Value *V) {
3415
3416 DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
3417 patchAndReplaceAllUsesWith(I, V);
3418 // We save the actual erasing to avoid invalidating memory
3419 // dependencies until we are done with everything.
3420 markInstructionForDeletion(I);
3421}
3422
3423namespace {
3424
3425// This is a stack that contains both the value and dfs info of where
3426// that value is valid.
3427class ValueDFSStack {
3428public:
3429 Value *back() const { return ValueStack.back(); }
3430 std::pair<int, int> dfs_back() const { return DFSStack.back(); }
3431
3432 void push_back(Value *V, int DFSIn, int DFSOut) {
Piotr Padlewski6c37d292016-12-28 23:24:02 +00003433 ValueStack.emplace_back(V);
Davide Italiano7e274e02016-12-22 16:03:48 +00003434 DFSStack.emplace_back(DFSIn, DFSOut);
3435 }
3436 bool empty() const { return DFSStack.empty(); }
3437 bool isInScope(int DFSIn, int DFSOut) const {
3438 if (empty())
3439 return false;
3440 return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
3441 }
3442
3443 void popUntilDFSScope(int DFSIn, int DFSOut) {
3444
3445 // These two should always be in sync at this point.
3446 assert(ValueStack.size() == DFSStack.size() &&
3447 "Mismatch between ValueStack and DFSStack");
3448 while (
3449 !DFSStack.empty() &&
3450 !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
3451 DFSStack.pop_back();
3452 ValueStack.pop_back();
3453 }
3454 }
3455
3456private:
3457 SmallVector<Value *, 8> ValueStack;
3458 SmallVector<std::pair<int, int>, 8> DFSStack;
3459};
3460}
Daniel Berlin04443432017-01-07 03:23:47 +00003461
Daniel Berlinb527b2c2017-05-19 19:01:27 +00003462// Given a value and a basic block we are trying to see if it is available in,
3463// see if the value has a leader available in that block.
3464Value *NewGVN::findPhiOfOpsLeader(const Expression *E,
3465 const BasicBlock *BB) const {
3466 // It would already be constant if we could make it constant
3467 if (auto *CE = dyn_cast<ConstantExpression>(E))
3468 return CE->getConstantValue();
3469 if (auto *VE = dyn_cast<VariableExpression>(E))
3470 return VE->getVariableValue();
3471
3472 auto *CC = ExpressionToClass.lookup(E);
3473 if (!CC)
3474 return nullptr;
3475 if (alwaysAvailable(CC->getLeader()))
3476 return CC->getLeader();
3477
3478 for (auto Member : *CC) {
3479 auto *MemberInst = dyn_cast<Instruction>(Member);
3480 // Anything that isn't an instruction is always available.
3481 if (!MemberInst)
3482 return Member;
3483 // If we are looking for something in the same block as the member, it must
3484 // be a leader because this function is looking for operands for a phi node.
3485 if (MemberInst->getParent() == BB ||
3486 DT->dominates(MemberInst->getParent(), BB)) {
3487 return Member;
3488 }
3489 }
3490 return nullptr;
3491}
3492
Davide Italiano7e274e02016-12-22 16:03:48 +00003493bool NewGVN::eliminateInstructions(Function &F) {
3494 // This is a non-standard eliminator. The normal way to eliminate is
3495 // to walk the dominator tree in order, keeping track of available
3496 // values, and eliminating them. However, this is mildly
3497 // pointless. It requires doing lookups on every instruction,
3498 // regardless of whether we will ever eliminate it. For
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00003499 // instructions part of most singleton congruence classes, we know we
3500 // will never eliminate them.
Davide Italiano7e274e02016-12-22 16:03:48 +00003501
3502 // Instead, this eliminator looks at the congruence classes directly, sorts
3503 // them into a DFS ordering of the dominator tree, and then we just
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00003504 // perform elimination straight on the sets by walking the congruence
Davide Italiano7e274e02016-12-22 16:03:48 +00003505 // class member uses in order, and eliminate the ones dominated by the
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00003506 // last member. This is worst case O(E log E) where E = number of
3507 // instructions in a single congruence class. In theory, this is all
3508 // instructions. In practice, it is much faster, as most instructions are
3509 // either in singleton congruence classes or can't possibly be eliminated
3510 // anyway (if there are no overlapping DFS ranges in class).
Davide Italiano7e274e02016-12-22 16:03:48 +00003511 // When we find something not dominated, it becomes the new leader
Daniel Berlin85cbc8c2016-12-26 19:57:25 +00003512 // for elimination purposes.
3513 // TODO: If we wanted to be faster, We could remove any members with no
3514 // overlapping ranges while sorting, as we will never eliminate anything
3515 // with those members, as they don't dominate anything else in our set.
3516
Davide Italiano7e274e02016-12-22 16:03:48 +00003517 bool AnythingReplaced = false;
3518
3519 // Since we are going to walk the domtree anyway, and we can't guarantee the
3520 // DFS numbers are updated, we compute some ourselves.
3521 DT->updateDFSNumbers();
3522
Daniel Berlin0207cca2017-05-21 23:41:56 +00003523 // Go through all of our phi nodes, and kill the arguments associated with
3524 // unreachable edges.
Daniel Berlinb527b2c2017-05-19 19:01:27 +00003525 auto ReplaceUnreachablePHIArgs = [&](PHINode &PHI, BasicBlock *BB) {
3526 for (auto &Operand : PHI.incoming_values())
3527 if (!ReachableEdges.count({PHI.getIncomingBlock(Operand), BB})) {
3528 DEBUG(dbgs() << "Replacing incoming value of " << PHI << " for block "
3529 << getBlockName(PHI.getIncomingBlock(Operand))
3530 << " with undef due to it being unreachable\n");
3531 Operand.set(UndefValue::get(PHI.getType()));
3532 }
3533 };
3534 SmallPtrSet<BasicBlock *, 8> BlocksWithPhis;
3535 for (auto &B : F)
3536 if ((!B.empty() && isa<PHINode>(*B.begin())) ||
3537 (PHIOfOpsPHIs.find(&B) != PHIOfOpsPHIs.end()))
3538 BlocksWithPhis.insert(&B);
3539 DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
3540 for (auto KV : ReachableEdges)
3541 ReachablePredCount[KV.getEnd()]++;
3542 for (auto *BB : BlocksWithPhis)
3543 // TODO: It would be faster to use getNumIncomingBlocks() on a phi node in
3544 // the block and subtract the pred count, but it's more complicated.
3545 if (ReachablePredCount.lookup(BB) !=
3546 std::distance(pred_begin(BB), pred_end(BB))) {
3547 for (auto II = BB->begin(); isa<PHINode>(II); ++II) {
3548 auto &PHI = cast<PHINode>(*II);
3549 ReplaceUnreachablePHIArgs(PHI, BB);
3550 }
Daniel Berlin0207cca2017-05-21 23:41:56 +00003551 for_each_found(PHIOfOpsPHIs, BB, [&](PHINode *PHI) {
3552 ReplaceUnreachablePHIArgs(*PHI, BB);
3553 });
Davide Italiano7e274e02016-12-22 16:03:48 +00003554 }
Davide Italiano7e274e02016-12-22 16:03:48 +00003555
Daniel Berline3e69e12017-03-10 00:32:33 +00003556 // Map to store the use counts
3557 DenseMap<const Value *, unsigned int> UseCounts;
Daniel Berlinb527b2c2017-05-19 19:01:27 +00003558 for (auto *CC : reverse(CongruenceClasses)) {
Daniel Berlinc4796862017-01-27 02:37:11 +00003559 // Track the equivalent store info so we can decide whether to try
3560 // dead store elimination.
3561 SmallVector<ValueDFS, 8> PossibleDeadStores;
Daniel Berline3e69e12017-03-10 00:32:33 +00003562 SmallPtrSet<Instruction *, 8> ProbablyDead;
Daniel Berlina8236562017-04-07 18:38:09 +00003563 if (CC->isDead() || CC->empty())
Davide Italiano7e274e02016-12-22 16:03:48 +00003564 continue;
Daniel Berlin5c338ff2017-03-10 19:05:04 +00003565 // Everything still in the TOP class is unreachable or dead.
3566 if (CC == TOPClass) {
Daniel Berline021d2d2017-05-19 20:22:20 +00003567 for (auto M : *CC) {
3568 auto *VTE = ValueToExpression.lookup(M);
3569 if (VTE && isa<DeadExpression>(VTE))
3570 markInstructionForDeletion(cast<Instruction>(M));
Daniel Berlinb79f5362017-02-11 12:48:50 +00003571 assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
3572 InstructionsToErase.count(cast<Instruction>(M))) &&
Daniel Berlin5c338ff2017-03-10 19:05:04 +00003573 "Everything in TOP should be unreachable or dead at this "
Daniel Berlinb79f5362017-02-11 12:48:50 +00003574 "point");
Daniel Berline021d2d2017-05-19 20:22:20 +00003575 }
Daniel Berlinb79f5362017-02-11 12:48:50 +00003576 continue;
3577 }
3578
Daniel Berlina8236562017-04-07 18:38:09 +00003579 assert(CC->getLeader() && "We should have had a leader");
Davide Italiano7e274e02016-12-22 16:03:48 +00003580 // If this is a leader that is always available, and it's a
3581 // constant or has no equivalences, just replace everything with
3582 // it. We then update the congruence class with whatever members
3583 // are left.
Daniel Berlina8236562017-04-07 18:38:09 +00003584 Value *Leader =
3585 CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
Daniel Berlin26addef2017-01-20 21:04:30 +00003586 if (alwaysAvailable(Leader)) {
Daniel Berlin08fe6e02017-04-06 18:52:55 +00003587 CongruenceClass::MemberSet MembersLeft;
Daniel Berlina8236562017-04-07 18:38:09 +00003588 for (auto M : *CC) {
Davide Italiano7e274e02016-12-22 16:03:48 +00003589 Value *Member = M;
Davide Italiano7e274e02016-12-22 16:03:48 +00003590 // Void things have no uses we can replace.
Daniel Berlin08fe6e02017-04-06 18:52:55 +00003591 if (Member == Leader || !isa<Instruction>(Member) ||
3592 Member->getType()->isVoidTy()) {
Davide Italiano7e274e02016-12-22 16:03:48 +00003593 MembersLeft.insert(Member);
3594 continue;
3595 }
Daniel Berlin26addef2017-01-20 21:04:30 +00003596 DEBUG(dbgs() << "Found replacement " << *(Leader) << " for " << *Member
3597 << "\n");
Daniel Berlin08fe6e02017-04-06 18:52:55 +00003598 auto *I = cast<Instruction>(Member);
3599 assert(Leader != I && "About to accidentally remove our leader");
3600 replaceInstruction(I, Leader);
3601 AnythingReplaced = true;
Davide Italiano7e274e02016-12-22 16:03:48 +00003602 }
Daniel Berlina8236562017-04-07 18:38:09 +00003603 CC->swap(MembersLeft);
Davide Italiano7e274e02016-12-22 16:03:48 +00003604 } else {
Daniel Berlina8236562017-04-07 18:38:09 +00003605 DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
3606 << "\n");
Davide Italiano7e274e02016-12-22 16:03:48 +00003607 // If this is a singleton, we can skip it.
Daniel Berlinb527b2c2017-05-19 19:01:27 +00003608 if (CC->size() != 1 || RealToTemp.lookup(Leader)) {
Davide Italiano7e274e02016-12-22 16:03:48 +00003609 // This is a stack because equality replacement/etc may place
3610 // constants in the middle of the member list, and we want to use
3611 // those constant values in preference to the current leader, over
3612 // the scope of those constants.
3613 ValueDFSStack EliminationStack;
3614
3615 // Convert the members to DFS ordered sets and then merge them.
Daniel Berlin2f1fbcc2017-01-09 05:34:19 +00003616 SmallVector<ValueDFS, 8> DFSOrderedSet;
Daniel Berlina8236562017-04-07 18:38:09 +00003617 convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
Davide Italiano7e274e02016-12-22 16:03:48 +00003618
3619 // Sort the whole thing.
Daniel Berlin2f1fbcc2017-01-09 05:34:19 +00003620 std::sort(DFSOrderedSet.begin(), DFSOrderedSet.end());
Daniel Berlin2f1fbcc2017-01-09 05:34:19 +00003621 for (auto &VD : DFSOrderedSet) {
3622 int MemberDFSIn = VD.DFSIn;
3623 int MemberDFSOut = VD.DFSOut;
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00003624 Value *Def = VD.Def.getPointer();
3625 bool FromStore = VD.Def.getInt();
Daniel Berline3e69e12017-03-10 00:32:33 +00003626 Use *U = VD.U;
Daniel Berlinc4796862017-01-27 02:37:11 +00003627 // We ignore void things because we can't get a value from them.
Daniel Berline3e69e12017-03-10 00:32:33 +00003628 if (Def && Def->getType()->isVoidTy())
Daniel Berlinc4796862017-01-27 02:37:11 +00003629 continue;
Daniel Berlinb527b2c2017-05-19 19:01:27 +00003630 auto *DefInst = dyn_cast_or_null<Instruction>(Def);
3631 if (DefInst && AllTempInstructions.count(DefInst)) {
3632 auto *PN = cast<PHINode>(DefInst);
3633
3634 // If this is a value phi and that's the expression we used, insert
3635 // it into the program
3636 // remove from temp instruction list.
3637 AllTempInstructions.erase(PN);
3638 auto *DefBlock = getBlockForValue(Def);
3639 DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
3640 << " into block "
3641 << getBlockName(getBlockForValue(Def)) << "\n");
3642 PN->insertBefore(&DefBlock->front());
3643 Def = PN;
3644 NumGVNPHIOfOpsEliminations++;
3645 }
Davide Italiano7e274e02016-12-22 16:03:48 +00003646
3647 if (EliminationStack.empty()) {
3648 DEBUG(dbgs() << "Elimination Stack is empty\n");
3649 } else {
3650 DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
3651 << EliminationStack.dfs_back().first << ","
3652 << EliminationStack.dfs_back().second << ")\n");
3653 }
Davide Italiano7e274e02016-12-22 16:03:48 +00003654
3655 DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
3656 << MemberDFSOut << ")\n");
3657 // First, we see if we are out of scope or empty. If so,
3658 // and there equivalences, we try to replace the top of
3659 // stack with equivalences (if it's on the stack, it must
3660 // not have been eliminated yet).
3661 // Then we synchronize to our current scope, by
3662 // popping until we are back within a DFS scope that
3663 // dominates the current member.
3664 // Then, what happens depends on a few factors
3665 // If the stack is now empty, we need to push
3666 // If we have a constant or a local equivalence we want to
3667 // start using, we also push.
3668 // Otherwise, we walk along, processing members who are
3669 // dominated by this scope, and eliminate them.
Daniel Berline3e69e12017-03-10 00:32:33 +00003670 bool ShouldPush = Def && EliminationStack.empty();
Davide Italiano7e274e02016-12-22 16:03:48 +00003671 bool OutOfScope =
3672 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
3673
3674 if (OutOfScope || ShouldPush) {
3675 // Sync to our current scope.
3676 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
Daniel Berline3e69e12017-03-10 00:32:33 +00003677 bool ShouldPush = Def && EliminationStack.empty();
Davide Italiano7e274e02016-12-22 16:03:48 +00003678 if (ShouldPush) {
Daniel Berline3e69e12017-03-10 00:32:33 +00003679 EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
Davide Italiano7e274e02016-12-22 16:03:48 +00003680 }
3681 }
3682
Daniel Berline3e69e12017-03-10 00:32:33 +00003683 // Skip the Def's, we only want to eliminate on their uses. But mark
3684 // dominated defs as dead.
3685 if (Def) {
3686 // For anything in this case, what and how we value number
3687 // guarantees that any side-effets that would have occurred (ie
3688 // throwing, etc) can be proven to either still occur (because it's
3689 // dominated by something that has the same side-effects), or never
3690 // occur. Otherwise, we would not have been able to prove it value
3691 // equivalent to something else. For these things, we can just mark
3692 // it all dead. Note that this is different from the "ProbablyDead"
3693 // set, which may not be dominated by anything, and thus, are only
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00003694 // easy to prove dead if they are also side-effect free. Note that
3695 // because stores are put in terms of the stored value, we skip
3696 // stored values here. If the stored value is really dead, it will
3697 // still be marked for deletion when we process it in its own class.
Daniel Berline3e69e12017-03-10 00:32:33 +00003698 if (!EliminationStack.empty() && Def != EliminationStack.back() &&
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00003699 isa<Instruction>(Def) && !FromStore)
Daniel Berline3e69e12017-03-10 00:32:33 +00003700 markInstructionForDeletion(cast<Instruction>(Def));
3701 continue;
3702 }
3703 // At this point, we know it is a Use we are trying to possibly
3704 // replace.
3705
3706 assert(isa<Instruction>(U->get()) &&
3707 "Current def should have been an instruction");
3708 assert(isa<Instruction>(U->getUser()) &&
3709 "Current user should have been an instruction");
3710
3711 // If the thing we are replacing into is already marked to be dead,
3712 // this use is dead. Note that this is true regardless of whether
3713 // we have anything dominating the use or not. We do this here
3714 // because we are already walking all the uses anyway.
3715 Instruction *InstUse = cast<Instruction>(U->getUser());
3716 if (InstructionsToErase.count(InstUse)) {
3717 auto &UseCount = UseCounts[U->get()];
3718 if (--UseCount == 0) {
3719 ProbablyDead.insert(cast<Instruction>(U->get()));
3720 }
Daniel Berlinc0e008d2017-03-10 00:32:26 +00003721 }
3722
Davide Italiano7e274e02016-12-22 16:03:48 +00003723 // If we get to this point, and the stack is empty we must have a use
Daniel Berline3e69e12017-03-10 00:32:33 +00003724 // with nothing we can use to eliminate this use, so just skip it.
Davide Italiano7e274e02016-12-22 16:03:48 +00003725 if (EliminationStack.empty())
3726 continue;
3727
Daniel Berlinc0e008d2017-03-10 00:32:26 +00003728 Value *DominatingLeader = EliminationStack.back();
Davide Italiano7e274e02016-12-22 16:03:48 +00003729
Davide Italianoa76e5fa2017-05-18 21:43:23 +00003730 auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
3731 if (II && II->getIntrinsicID() == Intrinsic::ssa_copy)
3732 DominatingLeader = II->getOperand(0);
3733
Daniel Berlind92e7f92017-01-07 00:01:42 +00003734 // Don't replace our existing users with ourselves.
Daniel Berline3e69e12017-03-10 00:32:33 +00003735 if (U->get() == DominatingLeader)
Davide Italiano7e274e02016-12-22 16:03:48 +00003736 continue;
Daniel Berlinc0e008d2017-03-10 00:32:26 +00003737 DEBUG(dbgs() << "Found replacement " << *DominatingLeader << " for "
Daniel Berline3e69e12017-03-10 00:32:33 +00003738 << *U->get() << " in " << *(U->getUser()) << "\n");
Davide Italiano7e274e02016-12-22 16:03:48 +00003739
3740 // If we replaced something in an instruction, handle the patching of
Daniel Berline3e69e12017-03-10 00:32:33 +00003741 // metadata. Skip this if we are replacing predicateinfo with its
3742 // original operand, as we already know we can just drop it.
3743 auto *ReplacedInst = cast<Instruction>(U->get());
Daniel Berlinc0e008d2017-03-10 00:32:26 +00003744 auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
3745 if (!PI || DominatingLeader != PI->OriginalOp)
3746 patchReplacementInstruction(ReplacedInst, DominatingLeader);
Daniel Berline3e69e12017-03-10 00:32:33 +00003747 U->set(DominatingLeader);
3748 // This is now a use of the dominating leader, which means if the
3749 // dominating leader was dead, it's now live!
3750 auto &LeaderUseCount = UseCounts[DominatingLeader];
3751 // It's about to be alive again.
3752 if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
3753 ProbablyDead.erase(cast<Instruction>(DominatingLeader));
Davide Italianoa76e5fa2017-05-18 21:43:23 +00003754 if (LeaderUseCount == 0 && II)
3755 ProbablyDead.insert(II);
Daniel Berline3e69e12017-03-10 00:32:33 +00003756 ++LeaderUseCount;
Davide Italiano7e274e02016-12-22 16:03:48 +00003757 AnythingReplaced = true;
3758 }
3759 }
3760 }
3761
Daniel Berline3e69e12017-03-10 00:32:33 +00003762 // At this point, anything still in the ProbablyDead set is actually dead if
3763 // would be trivially dead.
3764 for (auto *I : ProbablyDead)
3765 if (wouldInstructionBeTriviallyDead(I))
3766 markInstructionForDeletion(I);
3767
Davide Italiano7e274e02016-12-22 16:03:48 +00003768 // Cleanup the congruence class.
Daniel Berlin08fe6e02017-04-06 18:52:55 +00003769 CongruenceClass::MemberSet MembersLeft;
Daniel Berlina8236562017-04-07 18:38:09 +00003770 for (auto *Member : *CC)
Daniel Berlin08fe6e02017-04-06 18:52:55 +00003771 if (!isa<Instruction>(Member) ||
3772 !InstructionsToErase.count(cast<Instruction>(Member)))
Davide Italiano7e274e02016-12-22 16:03:48 +00003773 MembersLeft.insert(Member);
Daniel Berlina8236562017-04-07 18:38:09 +00003774 CC->swap(MembersLeft);
Daniel Berlinc4796862017-01-27 02:37:11 +00003775
3776 // If we have possible dead stores to look at, try to eliminate them.
Daniel Berlina8236562017-04-07 18:38:09 +00003777 if (CC->getStoreCount() > 0) {
3778 convertClassToLoadsAndStores(*CC, PossibleDeadStores);
Daniel Berlinc4796862017-01-27 02:37:11 +00003779 std::sort(PossibleDeadStores.begin(), PossibleDeadStores.end());
3780 ValueDFSStack EliminationStack;
3781 for (auto &VD : PossibleDeadStores) {
3782 int MemberDFSIn = VD.DFSIn;
3783 int MemberDFSOut = VD.DFSOut;
Daniel Berlin9a9c9ff2017-04-01 09:44:33 +00003784 Instruction *Member = cast<Instruction>(VD.Def.getPointer());
Daniel Berlinc4796862017-01-27 02:37:11 +00003785 if (EliminationStack.empty() ||
3786 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
3787 // Sync to our current scope.
3788 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
3789 if (EliminationStack.empty()) {
3790 EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
3791 continue;
3792 }
3793 }
3794 // We already did load elimination, so nothing to do here.
3795 if (isa<LoadInst>(Member))
3796 continue;
3797 assert(!EliminationStack.empty());
3798 Instruction *Leader = cast<Instruction>(EliminationStack.back());
Richard Trieu0b79aa32017-01-27 06:06:05 +00003799 (void)Leader;
Daniel Berlinc4796862017-01-27 02:37:11 +00003800 assert(DT->dominates(Leader->getParent(), Member->getParent()));
3801 // Member is dominater by Leader, and thus dead
3802 DEBUG(dbgs() << "Marking dead store " << *Member
3803 << " that is dominated by " << *Leader << "\n");
3804 markInstructionForDeletion(Member);
Daniel Berlina8236562017-04-07 18:38:09 +00003805 CC->erase(Member);
Daniel Berlinc4796862017-01-27 02:37:11 +00003806 ++NumGVNDeadStores;
3807 }
3808 }
Davide Italiano7e274e02016-12-22 16:03:48 +00003809 }
Davide Italiano7e274e02016-12-22 16:03:48 +00003810 return AnythingReplaced;
3811}
Daniel Berlin1c087672017-02-11 15:07:01 +00003812
3813// This function provides global ranking of operations so that we can place them
3814// in a canonical order. Note that rank alone is not necessarily enough for a
3815// complete ordering, as constants all have the same rank. However, generally,
3816// we will simplify an operation with all constants so that it doesn't matter
3817// what order they appear in.
3818unsigned int NewGVN::getRank(const Value *V) const {
Daniel Berlinb527b2c2017-05-19 19:01:27 +00003819 // Prefer constants to undef to anything else
3820 // Undef is a constant, have to check it first.
3821 // Prefer smaller constants to constantexprs
3822 if (isa<ConstantExpr>(V))
3823 return 2;
Daniel Berlinb355c4f2017-02-18 23:06:47 +00003824 if (isa<UndefValue>(V))
Daniel Berlinb355c4f2017-02-18 23:06:47 +00003825 return 1;
Daniel Berlinb527b2c2017-05-19 19:01:27 +00003826 if (isa<Constant>(V))
3827 return 0;
Daniel Berlin1c087672017-02-11 15:07:01 +00003828 else if (auto *A = dyn_cast<Argument>(V))
Daniel Berlinb527b2c2017-05-19 19:01:27 +00003829 return 3 + A->getArgNo();
Daniel Berlin1c087672017-02-11 15:07:01 +00003830
Daniel Berlinb355c4f2017-02-18 23:06:47 +00003831 // Need to shift the instruction DFS by number of arguments + 3 to account for
Daniel Berlin1c087672017-02-11 15:07:01 +00003832 // the constant and argument ranking above.
Daniel Berlin21279bd2017-04-06 18:52:58 +00003833 unsigned Result = InstrToDFSNum(V);
Daniel Berlin1c087672017-02-11 15:07:01 +00003834 if (Result > 0)
Daniel Berlinb527b2c2017-05-19 19:01:27 +00003835 return 4 + NumFuncArgs + Result;
Daniel Berlin1c087672017-02-11 15:07:01 +00003836 // Unreachable or something else, just return a really large number.
3837 return ~0;
3838}
3839
3840// This is a function that says whether two commutative operations should
3841// have their order swapped when canonicalizing.
3842bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
3843 // Because we only care about a total ordering, and don't rewrite expressions
3844 // in this order, we order by rank, which will give a strict weak ordering to
Daniel Berlinb355c4f2017-02-18 23:06:47 +00003845 // everything but constants, and then we order by pointer address.
Daniel Berlinf7d95802017-02-18 23:06:50 +00003846 return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
Daniel Berlin1c087672017-02-11 15:07:01 +00003847}
Daniel Berlin64e68992017-03-12 04:46:45 +00003848
3849class NewGVNLegacyPass : public FunctionPass {
3850public:
3851 static char ID; // Pass identification, replacement for typeid.
3852 NewGVNLegacyPass() : FunctionPass(ID) {
3853 initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
3854 }
3855 bool runOnFunction(Function &F) override;
3856
3857private:
3858 void getAnalysisUsage(AnalysisUsage &AU) const override {
3859 AU.addRequired<AssumptionCacheTracker>();
3860 AU.addRequired<DominatorTreeWrapperPass>();
3861 AU.addRequired<TargetLibraryInfoWrapperPass>();
3862 AU.addRequired<MemorySSAWrapperPass>();
3863 AU.addRequired<AAResultsWrapperPass>();
3864 AU.addPreserved<DominatorTreeWrapperPass>();
3865 AU.addPreserved<GlobalsAAWrapperPass>();
3866 }
3867};
3868
3869bool NewGVNLegacyPass::runOnFunction(Function &F) {
3870 if (skipFunction(F))
3871 return false;
3872 return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
3873 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
3874 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
3875 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
3876 &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
3877 F.getParent()->getDataLayout())
3878 .runGVN();
3879}
3880
3881INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",
3882 false, false)
3883INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3884INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
3885INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3886INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3887INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3888INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3889INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,
3890 false)
3891
3892char NewGVNLegacyPass::ID = 0;
3893
3894// createGVNPass - The public interface to this file.
3895FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
3896
3897PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
3898 // Apparently the order in which we get these results matter for
3899 // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
3900 // the same order here, just in case.
3901 auto &AC = AM.getResult<AssumptionAnalysis>(F);
3902 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
3903 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
3904 auto &AA = AM.getResult<AAManager>(F);
3905 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
3906 bool Changed =
3907 NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
3908 .runGVN();
3909 if (!Changed)
3910 return PreservedAnalyses::all();
3911 PreservedAnalyses PA;
3912 PA.preserve<DominatorTreeAnalysis>();
3913 PA.preserve<GlobalsAA>();
3914 return PA;
3915}