blob: b2a1034eeaa5304fa11c3fe6adeec97e747b984b [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Chandler Carruthd9903882015-01-14 11:23:27 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000021#include "llvm/Analysis/LoopInfo.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000022#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000023#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000024#include "llvm/IR/Constants.h"
25#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000026#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000027#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000028#include "llvm/IR/GlobalAlias.h"
29#include "llvm/IR/GlobalVariable.h"
30#include "llvm/IR/Instructions.h"
31#include "llvm/IR/IntrinsicInst.h"
32#include "llvm/IR/LLVMContext.h"
33#include "llvm/IR/Metadata.h"
34#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000035#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000036#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000037#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000038#include "llvm/Support/MathExtras.h"
Chris Lattner64496902008-06-04 04:46:14 +000039#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000040using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000041using namespace llvm::PatternMatch;
42
43const unsigned MaxDepth = 6;
44
Philip Reames1c292272015-03-10 22:43:20 +000045/// Enable an experimental feature to leverage information about dominating
46/// conditions to compute known bits. The individual options below control how
Benjamin Kramerdf005cb2015-08-08 18:27:36 +000047/// hard we search. The defaults are chosen to be fairly aggressive. If you
Philip Reames1c292272015-03-10 22:43:20 +000048/// run into compile time problems when testing, scale them back and report
49/// your findings.
50static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions",
51 cl::Hidden, cl::init(false));
52
53// This is expensive, so we only do it for the top level query value.
54// (TODO: evaluate cost vs profit, consider higher thresholds)
55static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth",
56 cl::Hidden, cl::init(1));
57
58/// How many dominating blocks should be scanned looking for dominating
59/// conditions?
60static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks",
61 cl::Hidden,
Igor Laevskycea9ede2015-09-29 14:57:52 +000062 cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000063
64// Controls the number of uses of the value searched for possible
65// dominating comparisons.
66static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000067 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000068
69// If true, don't consider only compares whose only use is a branch.
70static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use",
71 cl::Hidden, cl::init(false));
72
Sanjay Patelaee84212014-11-04 16:27:42 +000073/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
74/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000075static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000076 if (unsigned BitWidth = Ty->getScalarSizeInBits())
77 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000078
Mehdi Aminia28d91d2015-03-10 02:37:25 +000079 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000080}
Chris Lattner965c7692008-06-02 01:18:21 +000081
Hal Finkel60db0582014-09-07 18:57:58 +000082// Many of these functions have internal versions that take an assumption
83// exclusion set. This is because of the potential for mutual recursion to
84// cause computeKnownBits to repeatedly visit the same assume intrinsic. The
85// classic case of this is assume(x = y), which will attempt to determine
86// bits in x from bits in y, which will attempt to determine bits in y from
87// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
88// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
89// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on.
90typedef SmallPtrSet<const Value *, 8> ExclInvsSet;
91
Benjamin Kramercfd8d902014-09-12 08:56:53 +000092namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000093// Simplifying using an assume can only be done in a particular control-flow
94// context (the context instruction provides that context). If an assume and
95// the context instruction are not in the same block then the DT helps in
96// figuring out if we can use it.
97struct Query {
98 ExclInvsSet ExclInvs;
Chandler Carruth66b31302015-01-04 12:03:27 +000099 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +0000100 const Instruction *CxtI;
101 const DominatorTree *DT;
102
Chandler Carruth66b31302015-01-04 12:03:27 +0000103 Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr,
Hal Finkel60db0582014-09-07 18:57:58 +0000104 const DominatorTree *DT = nullptr)
Chandler Carruth66b31302015-01-04 12:03:27 +0000105 : AC(AC), CxtI(CxtI), DT(DT) {}
Hal Finkel60db0582014-09-07 18:57:58 +0000106
107 Query(const Query &Q, const Value *NewExcl)
Chandler Carruth66b31302015-01-04 12:03:27 +0000108 : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000109 ExclInvs.insert(NewExcl);
110 }
111};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000112} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000113
Sanjay Patel547e9752014-11-04 16:09:50 +0000114// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000115// the preferred context instruction (if any).
116static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
117 // If we've been provided with a context instruction, then use that (provided
118 // it has been inserted).
119 if (CxtI && CxtI->getParent())
120 return CxtI;
121
122 // If the value is really an already-inserted instruction, then use that.
123 CxtI = dyn_cast<Instruction>(V);
124 if (CxtI && CxtI->getParent())
125 return CxtI;
126
127 return nullptr;
128}
129
130static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000131 const DataLayout &DL, unsigned Depth,
132 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000133
134void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000135 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000136 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000137 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000138 ::computeKnownBits(V, KnownZero, KnownOne, DL, Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000139 Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000140}
141
Jingyue Wuca321902015-05-14 23:53:19 +0000142bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
143 AssumptionCache *AC, const Instruction *CxtI,
144 const DominatorTree *DT) {
145 assert(LHS->getType() == RHS->getType() &&
146 "LHS and RHS should have the same type");
147 assert(LHS->getType()->isIntOrIntVectorTy() &&
148 "LHS and RHS should be integers");
149 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
150 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
151 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
152 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
153 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
154 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
155}
156
Hal Finkel60db0582014-09-07 18:57:58 +0000157static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000158 const DataLayout &DL, unsigned Depth,
159 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000160
161void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000162 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000163 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000164 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000165 ::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000166 Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000167}
168
169static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000170 const Query &Q, const DataLayout &DL);
Hal Finkel60db0582014-09-07 18:57:58 +0000171
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000172bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
Chandler Carruth66b31302015-01-04 12:03:27 +0000173 unsigned Depth, AssumptionCache *AC,
Hal Finkel60db0582014-09-07 18:57:58 +0000174 const Instruction *CxtI,
175 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000176 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
177 Query(AC, safeCxtI(V, CxtI), DT), DL);
178}
179
180static bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
181 const Query &Q);
182
183bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
184 AssumptionCache *AC, const Instruction *CxtI,
185 const DominatorTree *DT) {
186 return ::isKnownNonZero(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
187}
188
Jingyue Wu10fcea52015-08-20 18:27:04 +0000189bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
190 AssumptionCache *AC, const Instruction *CxtI,
191 const DominatorTree *DT) {
192 bool NonNegative, Negative;
193 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
194 return NonNegative;
195}
196
James Molloy1d88d6f2015-10-22 13:18:42 +0000197static bool isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
198 const Query &Q);
199
200bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
201 AssumptionCache *AC, const Instruction *CxtI,
202 const DominatorTree *DT) {
203 return ::isKnownNonEqual(V1, V2, DL, Query(AC,
204 safeCxtI(V1, safeCxtI(V2, CxtI)),
205 DT));
206}
207
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000208static bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
209 unsigned Depth, const Query &Q);
210
211bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
212 unsigned Depth, AssumptionCache *AC,
213 const Instruction *CxtI, const DominatorTree *DT) {
214 return ::MaskedValueIsZero(V, Mask, DL, Depth,
215 Query(AC, safeCxtI(V, CxtI), DT));
216}
217
218static unsigned ComputeNumSignBits(Value *V, const DataLayout &DL,
219 unsigned Depth, const Query &Q);
220
221unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
222 unsigned Depth, AssumptionCache *AC,
223 const Instruction *CxtI,
224 const DominatorTree *DT) {
225 return ::ComputeNumSignBits(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000226}
227
Jay Foada0653a32014-05-14 21:14:37 +0000228static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
229 APInt &KnownZero, APInt &KnownOne,
230 APInt &KnownZero2, APInt &KnownOne2,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000231 const DataLayout &DL, unsigned Depth,
Hal Finkel60db0582014-09-07 18:57:58 +0000232 const Query &Q) {
233 if (!Add) {
234 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
235 // We know that the top bits of C-X are clear if X contains less bits
236 // than C (i.e. no wrap-around can happen). For example, 20-X is
237 // positive if we can prove that X is >= 0 and < 16.
238 if (!CLHS->getValue().isNegative()) {
239 unsigned BitWidth = KnownZero.getBitWidth();
240 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
241 // NLZ can't be BitWidth with no sign bit
242 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000243 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000244
245 // If all of the MaskV bits are known to be zero, then we know the
246 // output top bits are zero, because we now know that the output is
247 // from [0-C].
248 if ((KnownZero2 & MaskV) == MaskV) {
249 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
250 // Top bits known zero.
251 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
252 }
253 }
254 }
255 }
256
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000257 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000258
David Majnemer97ddca32014-08-22 00:40:43 +0000259 // If an initial sequence of bits in the result is not needed, the
260 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000261 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000262 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, DL, Depth + 1, Q);
263 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000264
David Majnemer97ddca32014-08-22 00:40:43 +0000265 // Carry in a 1 for a subtract, rather than a 0.
266 APInt CarryIn(BitWidth, 0);
267 if (!Add) {
268 // Sum = LHS + ~RHS + 1
269 std::swap(KnownZero2, KnownOne2);
270 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000271 }
272
David Majnemer97ddca32014-08-22 00:40:43 +0000273 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
274 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
275
276 // Compute known bits of the carry.
277 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
278 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
279
280 // Compute set of known bits (where all three relevant bits are known).
281 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
282 APInt RHSKnown = KnownZero2 | KnownOne2;
283 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
284 APInt Known = LHSKnown & RHSKnown & CarryKnown;
285
286 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
287 "known bits of sum differ");
288
289 // Compute known bits of the result.
290 KnownZero = ~PossibleSumOne & Known;
291 KnownOne = PossibleSumOne & Known;
292
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000293 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000294 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000295 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000296 // Adding two non-negative numbers, or subtracting a negative number from
297 // a non-negative one, can't wrap into negative.
298 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
299 KnownZero |= APInt::getSignBit(BitWidth);
300 // Adding two negative numbers, or subtracting a non-negative number from
301 // a negative one, can't wrap into non-negative.
302 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
303 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000304 }
305 }
306}
307
Jay Foada0653a32014-05-14 21:14:37 +0000308static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
309 APInt &KnownZero, APInt &KnownOne,
310 APInt &KnownZero2, APInt &KnownOne2,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000311 const DataLayout &DL, unsigned Depth,
Hal Finkel60db0582014-09-07 18:57:58 +0000312 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000313 unsigned BitWidth = KnownZero.getBitWidth();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000314 computeKnownBits(Op1, KnownZero, KnownOne, DL, Depth + 1, Q);
315 computeKnownBits(Op0, KnownZero2, KnownOne2, DL, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000316
317 bool isKnownNegative = false;
318 bool isKnownNonNegative = false;
319 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000320 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000321 if (Op0 == Op1) {
322 // The product of a number with itself is non-negative.
323 isKnownNonNegative = true;
324 } else {
325 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
326 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
327 bool isKnownNegativeOp1 = KnownOne.isNegative();
328 bool isKnownNegativeOp0 = KnownOne2.isNegative();
329 // The product of two numbers with the same sign is non-negative.
330 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
331 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
332 // The product of a negative number and a non-negative number is either
333 // negative or zero.
334 if (!isKnownNonNegative)
335 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000336 isKnownNonZero(Op0, DL, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000337 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000338 isKnownNonZero(Op1, DL, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000339 }
340 }
341
342 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000343 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000344 // More trickiness is possible, but this is sufficient for the
345 // interesting case of alignment computation.
346 KnownOne.clearAllBits();
347 unsigned TrailZ = KnownZero.countTrailingOnes() +
348 KnownZero2.countTrailingOnes();
349 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
350 KnownZero2.countLeadingOnes(),
351 BitWidth) - BitWidth;
352
353 TrailZ = std::min(TrailZ, BitWidth);
354 LeadZ = std::min(LeadZ, BitWidth);
355 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
356 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000357
358 // Only make use of no-wrap flags if we failed to compute the sign bit
359 // directly. This matters if the multiplication always overflows, in
360 // which case we prefer to follow the result of the direct computation,
361 // though as the program is invoking undefined behaviour we can choose
362 // whatever we like here.
363 if (isKnownNonNegative && !KnownOne.isNegative())
364 KnownZero.setBit(BitWidth - 1);
365 else if (isKnownNegative && !KnownZero.isNegative())
366 KnownOne.setBit(BitWidth - 1);
367}
368
Jingyue Wu37fcb592014-06-19 16:50:16 +0000369void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000370 APInt &KnownZero,
371 APInt &KnownOne) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000372 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000373 unsigned NumRanges = Ranges.getNumOperands() / 2;
374 assert(NumRanges >= 1);
375
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000376 KnownZero.setAllBits();
377 KnownOne.setAllBits();
378
Rafael Espindola53190532012-03-30 15:52:11 +0000379 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000380 ConstantInt *Lower =
381 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
382 ConstantInt *Upper =
383 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000384 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000385
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000386 // The first CommonPrefixBits of all values in Range are equal.
387 unsigned CommonPrefixBits =
388 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
389
390 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
391 KnownOne &= Range.getUnsignedMax() & Mask;
392 KnownZero &= ~Range.getUnsignedMax() & Mask;
393 }
Rafael Espindola53190532012-03-30 15:52:11 +0000394}
Jay Foad5a29c362014-05-15 12:12:55 +0000395
Hal Finkel60db0582014-09-07 18:57:58 +0000396static bool isEphemeralValueOf(Instruction *I, const Value *E) {
397 SmallVector<const Value *, 16> WorkSet(1, I);
398 SmallPtrSet<const Value *, 32> Visited;
399 SmallPtrSet<const Value *, 16> EphValues;
400
Hal Finkelf2199b22015-10-23 20:37:08 +0000401 // The instruction defining an assumption's condition itself is always
402 // considered ephemeral to that assumption (even if it has other
403 // non-ephemeral users). See r246696's test case for an example.
404 if (std::find(I->op_begin(), I->op_end(), E) != I->op_end())
405 return true;
406
Hal Finkel60db0582014-09-07 18:57:58 +0000407 while (!WorkSet.empty()) {
408 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000409 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000410 continue;
411
412 // If all uses of this value are ephemeral, then so is this value.
Benjamin Kramer56115612015-10-24 19:30:37 +0000413 if (std::all_of(V->user_begin(), V->user_end(),
414 [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000415 if (V == E)
416 return true;
417
418 EphValues.insert(V);
419 if (const User *U = dyn_cast<User>(V))
420 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
421 J != JE; ++J) {
422 if (isSafeToSpeculativelyExecute(*J))
423 WorkSet.push_back(*J);
424 }
425 }
426 }
427
428 return false;
429}
430
431// Is this an intrinsic that cannot be speculated but also cannot trap?
432static bool isAssumeLikeIntrinsic(const Instruction *I) {
433 if (const CallInst *CI = dyn_cast<CallInst>(I))
434 if (Function *F = CI->getCalledFunction())
435 switch (F->getIntrinsicID()) {
436 default: break;
437 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
438 case Intrinsic::assume:
439 case Intrinsic::dbg_declare:
440 case Intrinsic::dbg_value:
441 case Intrinsic::invariant_start:
442 case Intrinsic::invariant_end:
443 case Intrinsic::lifetime_start:
444 case Intrinsic::lifetime_end:
445 case Intrinsic::objectsize:
446 case Intrinsic::ptr_annotation:
447 case Intrinsic::var_annotation:
448 return true;
449 }
450
451 return false;
452}
453
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000454static bool isValidAssumeForContext(Value *V, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000455 Instruction *Inv = cast<Instruction>(V);
456
457 // There are two restrictions on the use of an assume:
458 // 1. The assume must dominate the context (or the control flow must
459 // reach the assume whenever it reaches the context).
460 // 2. The context must not be in the assume's set of ephemeral values
461 // (otherwise we will use the assume to prove that the condition
462 // feeding the assume is trivially true, thus causing the removal of
463 // the assume).
464
465 if (Q.DT) {
466 if (Q.DT->dominates(Inv, Q.CxtI)) {
467 return true;
468 } else if (Inv->getParent() == Q.CxtI->getParent()) {
469 // The context comes first, but they're both in the same block. Make sure
470 // there is nothing in between that might interrupt the control flow.
471 for (BasicBlock::const_iterator I =
472 std::next(BasicBlock::const_iterator(Q.CxtI)),
473 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000474 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000475 return false;
476
477 return !isEphemeralValueOf(Inv, Q.CxtI);
478 }
479
480 return false;
481 }
482
483 // When we don't have a DT, we do a limited search...
484 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) {
485 return true;
486 } else if (Inv->getParent() == Q.CxtI->getParent()) {
487 // Search forward from the assume until we reach the context (or the end
488 // of the block); the common case is that the assume will come first.
489 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
490 IE = Inv->getParent()->end(); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000491 if (&*I == Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000492 return true;
493
494 // The context must come first...
495 for (BasicBlock::const_iterator I =
496 std::next(BasicBlock::const_iterator(Q.CxtI)),
497 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000498 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000499 return false;
500
501 return !isEphemeralValueOf(Inv, Q.CxtI);
502 }
503
504 return false;
505}
506
507bool llvm::isValidAssumeForContext(const Instruction *I,
508 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000509 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000510 return ::isValidAssumeForContext(const_cast<Instruction *>(I),
511 Query(nullptr, CxtI, DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000512}
513
514template<typename LHS, typename RHS>
515inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
516 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
517m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
518 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
519}
520
521template<typename LHS, typename RHS>
522inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
523 BinaryOp_match<RHS, LHS, Instruction::And>>
524m_c_And(const LHS &L, const RHS &R) {
525 return m_CombineOr(m_And(L, R), m_And(R, L));
526}
527
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000528template<typename LHS, typename RHS>
529inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
530 BinaryOp_match<RHS, LHS, Instruction::Or>>
531m_c_Or(const LHS &L, const RHS &R) {
532 return m_CombineOr(m_Or(L, R), m_Or(R, L));
533}
534
535template<typename LHS, typename RHS>
536inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
537 BinaryOp_match<RHS, LHS, Instruction::Xor>>
538m_c_Xor(const LHS &L, const RHS &R) {
539 return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
540}
541
Philip Reames1c292272015-03-10 22:43:20 +0000542/// Compute known bits in 'V' under the assumption that the condition 'Cmp' is
543/// true (at the context instruction.) This is mostly a utility function for
544/// the prototype dominating conditions reasoning below.
545static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp,
546 APInt &KnownZero,
547 APInt &KnownOne,
548 const DataLayout &DL,
549 unsigned Depth, const Query &Q) {
550 Value *LHS = Cmp->getOperand(0);
551 Value *RHS = Cmp->getOperand(1);
552 // TODO: We could potentially be more aggressive here. This would be worth
553 // evaluating. If we can, explore commoning this code with the assume
554 // handling logic.
555 if (LHS != V && RHS != V)
556 return;
557
558 const unsigned BitWidth = KnownZero.getBitWidth();
559
560 switch (Cmp->getPredicate()) {
561 default:
562 // We know nothing from this condition
563 break;
564 // TODO: implement unsigned bound from below (known one bits)
565 // TODO: common condition check implementations with assumes
566 // TODO: implement other patterns from assume (e.g. V & B == A)
567 case ICmpInst::ICMP_SGT:
568 if (LHS == V) {
569 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
570 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
571 if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) {
572 // We know that the sign bit is zero.
573 KnownZero |= APInt::getSignBit(BitWidth);
574 }
575 }
576 break;
577 case ICmpInst::ICMP_EQ:
Jingyue Wu12b0c282015-06-15 05:46:29 +0000578 {
579 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
580 if (LHS == V)
581 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
582 else if (RHS == V)
583 computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
584 else
585 llvm_unreachable("missing use?");
586 KnownZero |= KnownZeroTemp;
587 KnownOne |= KnownOneTemp;
588 }
Philip Reames1c292272015-03-10 22:43:20 +0000589 break;
590 case ICmpInst::ICMP_ULE:
591 if (LHS == V) {
592 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
593 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
594 // The known zero bits carry over
595 unsigned SignBits = KnownZeroTemp.countLeadingOnes();
596 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
597 }
598 break;
599 case ICmpInst::ICMP_ULT:
600 if (LHS == V) {
601 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
602 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
603 // Whatever high bits in rhs are zero are known to be zero (if rhs is a
604 // power of 2, then one more).
605 unsigned SignBits = KnownZeroTemp.countLeadingOnes();
606 if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp), DL))
607 SignBits++;
608 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
609 }
610 break;
611 };
612}
613
614/// Compute known bits in 'V' from conditions which are known to be true along
615/// all paths leading to the context instruction. In particular, look for
616/// cases where one branch of an interesting condition dominates the context
617/// instruction. This does not do general dataflow.
618/// NOTE: This code is EXPERIMENTAL and currently off by default.
619static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero,
620 APInt &KnownOne,
621 const DataLayout &DL,
622 unsigned Depth,
623 const Query &Q) {
624 // Need both the dominator tree and the query location to do anything useful
625 if (!Q.DT || !Q.CxtI)
626 return;
627 Instruction *Cxt = const_cast<Instruction *>(Q.CxtI);
Philip Reames963febd2015-09-21 22:04:10 +0000628 // The context instruction might be in a statically unreachable block. If
629 // so, asking dominator queries may yield suprising results. (e.g. the block
630 // may not have a dom tree node)
631 if (!Q.DT->isReachableFromEntry(Cxt->getParent()))
632 return;
Philip Reames1c292272015-03-10 22:43:20 +0000633
634 // Avoid useless work
635 if (auto VI = dyn_cast<Instruction>(V))
636 if (VI->getParent() == Cxt->getParent())
637 return;
638
639 // Note: We currently implement two options. It's not clear which of these
640 // will survive long term, we need data for that.
641 // Option 1 - Try walking the dominator tree looking for conditions which
642 // might apply. This works well for local conditions (loop guards, etc..),
643 // but not as well for things far from the context instruction (presuming a
644 // low max blocks explored). If we can set an high enough limit, this would
645 // be all we need.
646 // Option 2 - We restrict out search to those conditions which are uses of
647 // the value we're interested in. This is independent of dom structure,
648 // but is slightly less powerful without looking through lots of use chains.
649 // It does handle conditions far from the context instruction (e.g. early
650 // function exits on entry) really well though.
651
652 // Option 1 - Search the dom tree
653 unsigned NumBlocksExplored = 0;
654 BasicBlock *Current = Cxt->getParent();
655 while (true) {
656 // Stop searching if we've gone too far up the chain
657 if (NumBlocksExplored >= DomConditionsMaxDomBlocks)
658 break;
659 NumBlocksExplored++;
660
661 if (!Q.DT->getNode(Current)->getIDom())
662 break;
663 Current = Q.DT->getNode(Current)->getIDom()->getBlock();
664 if (!Current)
665 // found function entry
666 break;
667
668 BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator());
669 if (!BI || BI->isUnconditional())
670 continue;
671 ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition());
672 if (!Cmp)
673 continue;
674
675 // We're looking for conditions that are guaranteed to hold at the context
676 // instruction. Finding a condition where one path dominates the context
677 // isn't enough because both the true and false cases could merge before
678 // the context instruction we're actually interested in. Instead, we need
Philip Reames963febd2015-09-21 22:04:10 +0000679 // to ensure that the taken *edge* dominates the context instruction. We
680 // know that the edge must be reachable since we started from a reachable
681 // block.
Philip Reames1c292272015-03-10 22:43:20 +0000682 BasicBlock *BB0 = BI->getSuccessor(0);
683 BasicBlockEdge Edge(BI->getParent(), BB0);
684 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
685 continue;
686
687 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth,
688 Q);
689 }
690
691 // Option 2 - Search the other uses of V
692 unsigned NumUsesExplored = 0;
693 for (auto U : V->users()) {
694 // Avoid massive lists
695 if (NumUsesExplored >= DomConditionsMaxUses)
696 break;
697 NumUsesExplored++;
698 // Consider only compare instructions uniquely controlling a branch
699 ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
700 if (!Cmp)
701 continue;
702
703 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
704 continue;
705
706 for (auto *CmpU : Cmp->users()) {
707 BranchInst *BI = dyn_cast<BranchInst>(CmpU);
708 if (!BI || BI->isUnconditional())
709 continue;
710 // We're looking for conditions that are guaranteed to hold at the
711 // context instruction. Finding a condition where one path dominates
712 // the context isn't enough because both the true and false cases could
713 // merge before the context instruction we're actually interested in.
714 // Instead, we need to ensure that the taken *edge* dominates the context
715 // instruction.
716 BasicBlock *BB0 = BI->getSuccessor(0);
717 BasicBlockEdge Edge(BI->getParent(), BB0);
718 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
719 continue;
720
721 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth,
722 Q);
723 }
724 }
725}
726
Hal Finkel60db0582014-09-07 18:57:58 +0000727static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000728 APInt &KnownOne, const DataLayout &DL,
Hal Finkel60db0582014-09-07 18:57:58 +0000729 unsigned Depth, const Query &Q) {
730 // Use of assumptions is context-sensitive. If we don't have a context, we
731 // cannot use them!
Chandler Carruth66b31302015-01-04 12:03:27 +0000732 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000733 return;
734
735 unsigned BitWidth = KnownZero.getBitWidth();
736
Chandler Carruth66b31302015-01-04 12:03:27 +0000737 for (auto &AssumeVH : Q.AC->assumptions()) {
738 if (!AssumeVH)
739 continue;
740 CallInst *I = cast<CallInst>(AssumeVH);
Chandler Carruth75c11b82015-01-04 23:13:57 +0000741 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
Chandler Carruth66b31302015-01-04 12:03:27 +0000742 "Got assumption for the wrong function!");
Hal Finkel60db0582014-09-07 18:57:58 +0000743 if (Q.ExclInvs.count(I))
744 continue;
745
Philip Reames00d3b272014-11-24 23:44:28 +0000746 // Warning: This loop can end up being somewhat performance sensetive.
747 // We're running this loop for once for each value queried resulting in a
748 // runtime of ~O(#assumes * #values).
749
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000750 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
Philip Reames00d3b272014-11-24 23:44:28 +0000751 "must be an assume intrinsic");
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000752
Philip Reames00d3b272014-11-24 23:44:28 +0000753 Value *Arg = I->getArgOperand(0);
754
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000755 if (Arg == V && isValidAssumeForContext(I, Q)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000756 assert(BitWidth == 1 && "assume operand is not i1?");
757 KnownZero.clearAllBits();
758 KnownOne.setAllBits();
759 return;
760 }
761
David Majnemer9b609752014-12-12 23:59:29 +0000762 // The remaining tests are all recursive, so bail out if we hit the limit.
763 if (Depth == MaxDepth)
764 continue;
765
Hal Finkel60db0582014-09-07 18:57:58 +0000766 Value *A, *B;
767 auto m_V = m_CombineOr(m_Specific(V),
768 m_CombineOr(m_PtrToInt(m_Specific(V)),
769 m_BitCast(m_Specific(V))));
770
771 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000772 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000773 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000774 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000775 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000776 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
777 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
778 KnownZero |= RHSKnownZero;
779 KnownOne |= RHSKnownOne;
780 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000781 } else if (match(Arg,
782 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
783 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000784 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
785 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
786 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
787 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
788
789 // For those bits in the mask that are known to be one, we can propagate
790 // known bits from the RHS to V.
791 KnownZero |= RHSKnownZero & MaskKnownOne;
792 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000793 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000794 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
795 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000796 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000797 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
798 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
799 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
800 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
801
802 // For those bits in the mask that are known to be one, we can propagate
803 // inverted known bits from the RHS to V.
804 KnownZero |= RHSKnownOne & MaskKnownOne;
805 KnownOne |= RHSKnownZero & MaskKnownOne;
806 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000807 } else if (match(Arg,
808 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
809 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000810 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
811 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
812 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
813 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
814
815 // For those bits in B that are known to be zero, we can propagate known
816 // bits from the RHS to V.
817 KnownZero |= RHSKnownZero & BKnownZero;
818 KnownOne |= RHSKnownOne & BKnownZero;
819 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000820 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
821 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000822 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000823 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
824 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
825 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
826 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
827
828 // For those bits in B that are known to be zero, we can propagate
829 // inverted known bits from the RHS to V.
830 KnownZero |= RHSKnownOne & BKnownZero;
831 KnownOne |= RHSKnownZero & BKnownZero;
832 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000833 } else if (match(Arg,
834 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
835 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000836 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
837 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
838 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
839 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
840
841 // For those bits in B that are known to be zero, we can propagate known
842 // bits from the RHS to V. For those bits in B that are known to be one,
843 // we can propagate inverted known bits from the RHS to V.
844 KnownZero |= RHSKnownZero & BKnownZero;
845 KnownOne |= RHSKnownOne & BKnownZero;
846 KnownZero |= RHSKnownOne & BKnownOne;
847 KnownOne |= RHSKnownZero & BKnownOne;
848 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000849 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
850 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000851 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000852 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
853 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
854 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
855 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
856
857 // For those bits in B that are known to be zero, we can propagate
858 // inverted known bits from the RHS to V. For those bits in B that are
859 // known to be one, we can propagate known bits from the RHS to V.
860 KnownZero |= RHSKnownOne & BKnownZero;
861 KnownOne |= RHSKnownZero & BKnownZero;
862 KnownZero |= RHSKnownZero & BKnownOne;
863 KnownOne |= RHSKnownOne & BKnownOne;
864 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000865 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
866 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000867 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000868 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
869 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
870 // For those bits in RHS that are known, we can propagate them to known
871 // bits in V shifted to the right by C.
872 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
873 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
874 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000875 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
876 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000877 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000878 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
879 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
880 // For those bits in RHS that are known, we can propagate them inverted
881 // to known bits in V shifted to the right by C.
882 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
883 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
884 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000885 } else if (match(Arg,
886 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000887 m_AShr(m_V, m_ConstantInt(C))),
888 m_Value(A))) &&
889 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000890 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
891 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
892 // For those bits in RHS that are known, we can propagate them to known
893 // bits in V shifted to the right by C.
894 KnownZero |= RHSKnownZero << C->getZExtValue();
895 KnownOne |= RHSKnownOne << C->getZExtValue();
896 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000897 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000898 m_LShr(m_V, m_ConstantInt(C)),
899 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000900 m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000901 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000902 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
903 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
904 // For those bits in RHS that are known, we can propagate them inverted
905 // to known bits in V shifted to the right by C.
906 KnownZero |= RHSKnownOne << C->getZExtValue();
907 KnownOne |= RHSKnownZero << C->getZExtValue();
908 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000909 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000910 Pred == ICmpInst::ICMP_SGE && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000911 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
912 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
913
914 if (RHSKnownZero.isNegative()) {
915 // We know that the sign bit is zero.
916 KnownZero |= APInt::getSignBit(BitWidth);
917 }
918 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000919 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000920 Pred == ICmpInst::ICMP_SGT && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000921 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
922 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
923
924 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
925 // We know that the sign bit is zero.
926 KnownZero |= APInt::getSignBit(BitWidth);
927 }
928 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000929 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000930 Pred == ICmpInst::ICMP_SLE && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000931 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
932 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
933
934 if (RHSKnownOne.isNegative()) {
935 // We know that the sign bit is one.
936 KnownOne |= APInt::getSignBit(BitWidth);
937 }
938 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000939 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000940 Pred == ICmpInst::ICMP_SLT && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000941 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
942 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
943
944 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
945 // We know that the sign bit is one.
946 KnownOne |= APInt::getSignBit(BitWidth);
947 }
948 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000949 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000950 Pred == ICmpInst::ICMP_ULE && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000951 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
952 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
953
954 // Whatever high bits in c are zero are known to be zero.
955 KnownZero |=
956 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
957 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000958 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000959 Pred == ICmpInst::ICMP_ULT && isValidAssumeForContext(I, Q)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000960 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
961 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
962
963 // Whatever high bits in c are zero are known to be zero (if c is a power
964 // of 2, then one more).
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000965 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I), DL))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000966 KnownZero |=
967 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
968 else
969 KnownZero |=
970 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000971 }
972 }
973}
974
Hal Finkelf2199b22015-10-23 20:37:08 +0000975// Compute known bits from a shift operator, including those with a
976// non-constant shift amount. KnownZero and KnownOne are the outputs of this
977// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
978// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
979// functors that, given the known-zero or known-one bits respectively, and a
980// shift amount, compute the implied known-zero or known-one bits of the shift
981// operator's result respectively for that shift amount. The results from calling
982// KZF and KOF are conservatively combined for all permitted shift amounts.
983template <typename KZFunctor, typename KOFunctor>
984static void computeKnownBitsFromShiftOperator(Operator *I,
985 APInt &KnownZero, APInt &KnownOne,
986 APInt &KnownZero2, APInt &KnownOne2,
987 const DataLayout &DL, unsigned Depth, const Query &Q,
988 KZFunctor KZF, KOFunctor KOF) {
989 unsigned BitWidth = KnownZero.getBitWidth();
990
991 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
992 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
993
994 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
995 KnownZero = KZF(KnownZero, ShiftAmt);
996 KnownOne = KOF(KnownOne, ShiftAmt);
997 return;
998 }
999
1000 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
1001
1002 // Note: We cannot use KnownZero.getLimitedValue() here, because if
1003 // BitWidth > 64 and any upper bits are known, we'll end up returning the
1004 // limit value (which implies all bits are known).
1005 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
1006 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
1007
1008 // It would be more-clearly correct to use the two temporaries for this
1009 // calculation. Reusing the APInts here to prevent unnecessary allocations.
1010 KnownZero.clearAllBits(), KnownOne.clearAllBits();
1011
James Molloy493e57d2015-10-26 14:10:46 +00001012 // If we know the shifter operand is nonzero, we can sometimes infer more
1013 // known bits. However this is expensive to compute, so be lazy about it and
1014 // only compute it when absolutely necessary.
1015 Optional<bool> ShifterOperandIsNonZero;
1016
Hal Finkelf2199b22015-10-23 20:37:08 +00001017 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +00001018 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
1019 ShifterOperandIsNonZero =
1020 isKnownNonZero(I->getOperand(1), DL, Depth + 1, Q);
1021 if (!*ShifterOperandIsNonZero)
1022 return;
1023 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001024
1025 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
1026
1027 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
1028 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1029 // Combine the shifted known input bits only for those shift amounts
1030 // compatible with its known constraints.
1031 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1032 continue;
1033 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1034 continue;
James Molloy493e57d2015-10-26 14:10:46 +00001035 // If we know the shifter is nonzero, we may be able to infer more known
1036 // bits. This check is sunk down as far as possible to avoid the expensive
1037 // call to isKnownNonZero if the cheaper checks above fail.
1038 if (ShiftAmt == 0) {
1039 if (!ShifterOperandIsNonZero.hasValue())
1040 ShifterOperandIsNonZero =
1041 isKnownNonZero(I->getOperand(1), DL, Depth + 1, Q);
1042 if (*ShifterOperandIsNonZero)
1043 continue;
1044 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001045
1046 KnownZero &= KZF(KnownZero2, ShiftAmt);
1047 KnownOne &= KOF(KnownOne2, ShiftAmt);
1048 }
1049
1050 // If there are no compatible shift amounts, then we've proven that the shift
1051 // amount must be >= the BitWidth, and the result is undefined. We could
1052 // return anything we'd like, but we need to make sure the sets of known bits
1053 // stay disjoint (it should be better for some other code to actually
1054 // propagate the undef than to pick a value here using known bits).
1055 if ((KnownZero & KnownOne) != 0)
1056 KnownZero.clearAllBits(), KnownOne.clearAllBits();
1057}
1058
Jingyue Wu12b0c282015-06-15 05:46:29 +00001059static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
1060 APInt &KnownOne, const DataLayout &DL,
1061 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001062 unsigned BitWidth = KnownZero.getBitWidth();
1063
Chris Lattner965c7692008-06-02 01:18:21 +00001064 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001065 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001066 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +00001067 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001068 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001069 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jay Foad5a29c362014-05-15 12:12:55 +00001070 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001071 case Instruction::And: {
1072 // If either the LHS or the RHS are Zero, the result is zero.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001073 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
1074 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001075
Chris Lattner965c7692008-06-02 01:18:21 +00001076 // Output known-1 bits are only known if set in both the LHS & RHS.
1077 KnownOne &= KnownOne2;
1078 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1079 KnownZero |= KnownZero2;
Philip Reames2d858742015-11-10 18:46:14 +00001080
1081 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1082 // here we handle the more general case of adding any odd number by
1083 // matching the form add(x, add(x, y)) where y is odd.
1084 // TODO: This could be generalized to clearing any bit set in y where the
1085 // following bit is known to be unset in y.
1086 Value *Y = nullptr;
1087 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
1088 m_Value(Y))) ||
1089 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
1090 m_Value(Y)))) {
1091 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
1092 computeKnownBits(Y, KnownZero3, KnownOne3, DL, Depth + 1, Q);
1093 if (KnownOne3.countTrailingOnes() > 0)
1094 KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
1095 }
Jay Foad5a29c362014-05-15 12:12:55 +00001096 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001097 }
1098 case Instruction::Or: {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001099 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
1100 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001101
Chris Lattner965c7692008-06-02 01:18:21 +00001102 // Output known-0 bits are only known if clear in both the LHS & RHS.
1103 KnownZero &= KnownZero2;
1104 // Output known-1 are known to be set if set in either the LHS | RHS.
1105 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +00001106 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001107 }
1108 case Instruction::Xor: {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001109 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
1110 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001111
Chris Lattner965c7692008-06-02 01:18:21 +00001112 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1113 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1114 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1115 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1116 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +00001117 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001118 }
1119 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +00001120 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001121 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
1122 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001123 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001124 }
1125 case Instruction::UDiv: {
1126 // For the purposes of computing leading zeros we can conservatively
1127 // treat a udiv as a logical right shift by the power of 2 known to
1128 // be less than the denominator.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001129 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001130 unsigned LeadZ = KnownZero2.countLeadingOnes();
1131
Jay Foad25a5e4c2010-12-01 08:53:58 +00001132 KnownOne2.clearAllBits();
1133 KnownZero2.clearAllBits();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001134 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001135 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1136 if (RHSUnknownLeadingOnes != BitWidth)
1137 LeadZ = std::min(BitWidth,
1138 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1139
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001140 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +00001141 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001142 }
1143 case Instruction::Select:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001144 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, DL, Depth + 1, Q);
1145 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001146
1147 // Only known if known in both the LHS and RHS.
1148 KnownOne &= KnownOne2;
1149 KnownZero &= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +00001150 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001151 case Instruction::FPTrunc:
1152 case Instruction::FPExt:
1153 case Instruction::FPToUI:
1154 case Instruction::FPToSI:
1155 case Instruction::SIToFP:
1156 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001157 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001158 case Instruction::PtrToInt:
1159 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +00001160 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +00001161 // FALL THROUGH and handle them the same as zext/trunc.
1162 case Instruction::ZExt:
1163 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001164 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001165
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001166 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001167 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1168 // which fall through here.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001169 SrcBitWidth = DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001170
1171 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +00001172 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1173 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001174 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001175 KnownZero = KnownZero.zextOrTrunc(BitWidth);
1176 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001177 // Any top bits are known to be zero.
1178 if (BitWidth > SrcBitWidth)
1179 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001180 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001181 }
1182 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001183 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Patel9115cf82015-10-08 16:56:55 +00001184 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() ||
1185 SrcTy->isFloatingPointTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001186 // TODO: For now, not handling conversions like:
1187 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001188 !I->getType()->isVectorTy()) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001189 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001190 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001191 }
1192 break;
1193 }
1194 case Instruction::SExt: {
1195 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001196 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001197
Jay Foad583abbc2010-12-07 08:25:19 +00001198 KnownZero = KnownZero.trunc(SrcBitWidth);
1199 KnownOne = KnownOne.trunc(SrcBitWidth);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001200 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001201 KnownZero = KnownZero.zext(BitWidth);
1202 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001203
1204 // If the sign bit of the input is known set or clear, then we know the
1205 // top bits of the result.
1206 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1207 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1208 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1209 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001210 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001211 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001212 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001213 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001214 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1215 return (KnownZero << ShiftAmt) |
1216 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1217 };
1218
1219 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1220 return KnownOne << ShiftAmt;
1221 };
1222
1223 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1224 KnownZero2, KnownOne2, DL, Depth, Q,
1225 KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001226 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001227 }
1228 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001229 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001230 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1231 return APIntOps::lshr(KnownZero, ShiftAmt) |
1232 // High bits known zero.
1233 APInt::getHighBitsSet(BitWidth, ShiftAmt);
1234 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001235
Hal Finkelf2199b22015-10-23 20:37:08 +00001236 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1237 return APIntOps::lshr(KnownOne, ShiftAmt);
1238 };
1239
1240 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1241 KnownZero2, KnownOne2, DL, Depth, Q,
1242 KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001243 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001244 }
1245 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001246 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001247 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1248 return APIntOps::ashr(KnownZero, ShiftAmt);
1249 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001250
Hal Finkelf2199b22015-10-23 20:37:08 +00001251 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1252 return APIntOps::ashr(KnownOne, ShiftAmt);
1253 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001254
Hal Finkelf2199b22015-10-23 20:37:08 +00001255 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1256 KnownZero2, KnownOne2, DL, Depth, Q,
1257 KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001258 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001259 }
Chris Lattner965c7692008-06-02 01:18:21 +00001260 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001261 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001262 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001263 KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
1264 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001265 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001266 }
Chris Lattner965c7692008-06-02 01:18:21 +00001267 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001268 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001269 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001270 KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
1271 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001272 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001273 }
1274 case Instruction::SRem:
1275 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001276 APInt RA = Rem->getValue().abs();
1277 if (RA.isPowerOf2()) {
1278 APInt LowBits = RA - 1;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001279 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1,
1280 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001281
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001282 // The low bits of the first operand are unchanged by the srem.
1283 KnownZero = KnownZero2 & LowBits;
1284 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001285
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001286 // If the first operand is non-negative or has all low bits zero, then
1287 // the upper bits are all zero.
1288 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1289 KnownZero |= ~LowBits;
1290
1291 // If the first operand is negative and not all low bits are zero, then
1292 // the upper bits are all one.
1293 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1294 KnownOne |= ~LowBits;
1295
Craig Topper1bef2c82012-12-22 19:15:35 +00001296 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001297 }
1298 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001299
1300 // The sign bit is the LHS's sign bit, except when the result of the
1301 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001302 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001303 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001304 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, DL,
1305 Depth + 1, Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001306 // If it's known zero, our sign bit is also zero.
1307 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001308 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001309 }
1310
Chris Lattner965c7692008-06-02 01:18:21 +00001311 break;
1312 case Instruction::URem: {
1313 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1314 APInt RA = Rem->getValue();
1315 if (RA.isPowerOf2()) {
1316 APInt LowBits = (RA - 1);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001317 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1,
1318 Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001319 KnownZero |= ~LowBits;
1320 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001321 break;
1322 }
1323 }
1324
1325 // Since the result is less than or equal to either operand, any leading
1326 // zero bits in either operand must also exist in the result.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001327 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
1328 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001329
Chris Lattner4612ae12009-01-20 18:22:57 +00001330 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001331 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001332 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001333 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001334 break;
1335 }
1336
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001337 case Instruction::Alloca: {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001338 AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001339 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001340 if (Align == 0)
1341 Align = DL.getABITypeAlignment(AI->getType()->getElementType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001342
Chris Lattner965c7692008-06-02 01:18:21 +00001343 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001344 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001345 break;
1346 }
1347 case Instruction::GetElementPtr: {
1348 // Analyze all of the subscripts of this getelementptr instruction
1349 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001350 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001351 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, DL,
1352 Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001353 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1354
1355 gep_type_iterator GTI = gep_type_begin(I);
1356 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1357 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001358 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001359 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001360
1361 // Handle case when index is vector zeroinitializer
1362 Constant *CIndex = cast<Constant>(Index);
1363 if (CIndex->isZeroValue())
1364 continue;
1365
1366 if (CIndex->getType()->isVectorTy())
1367 Index = CIndex->getSplatValue();
1368
Chris Lattner965c7692008-06-02 01:18:21 +00001369 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001370 const StructLayout *SL = DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001371 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001372 TrailZ = std::min<unsigned>(TrailZ,
1373 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001374 } else {
1375 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001376 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001377 if (!IndexedTy->isSized()) {
1378 TrailZ = 0;
1379 break;
1380 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001381 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001382 uint64_t TypeSize = DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001383 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001384 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, DL, Depth + 1,
1385 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001386 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001387 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001388 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001389 }
1390 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001391
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001392 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001393 break;
1394 }
1395 case Instruction::PHI: {
1396 PHINode *P = cast<PHINode>(I);
1397 // Handle the case of a simple two-predecessor recurrence PHI.
1398 // There's a lot more that could theoretically be done here, but
1399 // this is sufficient to catch some interesting cases.
1400 if (P->getNumIncomingValues() == 2) {
1401 for (unsigned i = 0; i != 2; ++i) {
1402 Value *L = P->getIncomingValue(i);
1403 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001404 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001405 if (!LU)
1406 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001407 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001408 // Check for operations that have the property that if
1409 // both their operands have low zero bits, the result
1410 // will have low zero bits.
1411 if (Opcode == Instruction::Add ||
1412 Opcode == Instruction::Sub ||
1413 Opcode == Instruction::And ||
1414 Opcode == Instruction::Or ||
1415 Opcode == Instruction::Mul) {
1416 Value *LL = LU->getOperand(0);
1417 Value *LR = LU->getOperand(1);
1418 // Find a recurrence.
1419 if (LL == I)
1420 L = LR;
1421 else if (LR == I)
1422 L = LL;
1423 else
1424 break;
1425 // Ok, we have a PHI of the form L op= R. Check for low
1426 // zero bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001427 computeKnownBits(R, KnownZero2, KnownOne2, DL, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001428
1429 // We need to take the minimum number of known bits
1430 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001431 computeKnownBits(L, KnownZero3, KnownOne3, DL, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001432
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001433 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001434 std::min(KnownZero2.countTrailingOnes(),
1435 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001436 break;
1437 }
1438 }
1439 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001440
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001441 // Unreachable blocks may have zero-operand PHI nodes.
1442 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001443 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001444
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001445 // Otherwise take the unions of the known bit sets of the operands,
1446 // taking conservative care to avoid excessive recursion.
1447 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001448 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001449 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001450 break;
1451
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001452 KnownZero = APInt::getAllOnesValue(BitWidth);
1453 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001454 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001455 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001456 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001457
1458 KnownZero2 = APInt(BitWidth, 0);
1459 KnownOne2 = APInt(BitWidth, 0);
1460 // Recurse, but cap the recursion to one level, because we don't
1461 // want to waste time spinning around in loops.
Pete Cooper833f34d2015-05-12 20:05:31 +00001462 computeKnownBits(IncValue, KnownZero2, KnownOne2, DL,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001463 MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001464 KnownZero &= KnownZero2;
1465 KnownOne &= KnownOne2;
1466 // If all bits have been ruled out, there's no need to check
1467 // more operands.
1468 if (!KnownZero && !KnownOne)
1469 break;
1470 }
1471 }
Chris Lattner965c7692008-06-02 01:18:21 +00001472 break;
1473 }
1474 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001475 case Instruction::Invoke:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001476 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001477 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jingyue Wu37fcb592014-06-19 16:50:16 +00001478 // If a range metadata is attached to this IntrinsicInst, intersect the
1479 // explicit range specified by the metadata and the implicit range of
1480 // the intrinsic.
Chris Lattner965c7692008-06-02 01:18:21 +00001481 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1482 switch (II->getIntrinsicID()) {
1483 default: break;
Philip Reames675418e2015-10-06 20:20:45 +00001484 case Intrinsic::bswap:
1485 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL,
1486 Depth + 1, Q);
1487 KnownZero |= KnownZero2.byteSwap();
1488 KnownOne |= KnownOne2.byteSwap();
1489 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001490 case Intrinsic::ctlz:
1491 case Intrinsic::cttz: {
1492 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001493 // If this call is undefined for 0, the result will be less than 2^n.
1494 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1495 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001496 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001497 break;
1498 }
1499 case Intrinsic::ctpop: {
Philip Reamesddcf6b32015-10-14 22:42:12 +00001500 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL,
1501 Depth + 1, Q);
1502 // We can bound the space the count needs. Also, bits known to be zero
1503 // can't contribute to the population.
1504 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1505 unsigned LeadingZeros =
1506 APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
Aaron Ballman58f413c2015-10-15 13:55:43 +00001507 assert(LeadingZeros <= BitWidth);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001508 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1509 KnownOne &= ~KnownZero;
1510 // TODO: we could bound KnownOne using the lower bound on the number
1511 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001512 break;
1513 }
Sanjay Patel9115cf82015-10-08 16:56:55 +00001514 case Intrinsic::fabs: {
1515 Type *Ty = II->getType();
1516 APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits());
1517 KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit);
1518 break;
1519 }
Chad Rosierb3628842011-05-26 23:13:19 +00001520 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001521 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001522 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001523 }
1524 }
1525 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001526 case Instruction::ExtractValue:
1527 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1528 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1529 if (EVI->getNumIndices() != 1) break;
1530 if (EVI->getIndices()[0] == 0) {
1531 switch (II->getIntrinsicID()) {
1532 default: break;
1533 case Intrinsic::uadd_with_overflow:
1534 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001535 computeKnownBitsAddSub(true, II->getArgOperand(0),
1536 II->getArgOperand(1), false, KnownZero,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001537 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001538 break;
1539 case Intrinsic::usub_with_overflow:
1540 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001541 computeKnownBitsAddSub(false, II->getArgOperand(0),
1542 II->getArgOperand(1), false, KnownZero,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001543 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001544 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001545 case Intrinsic::umul_with_overflow:
1546 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001547 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1548 KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
1549 Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001550 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001551 }
1552 }
1553 }
Chris Lattner965c7692008-06-02 01:18:21 +00001554 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001555}
1556
Artur Pilipenkod94903c2015-10-07 16:01:18 +00001557static unsigned getAlignment(const Value *V, const DataLayout &DL) {
Artur Pilipenko029d8532015-09-30 11:55:45 +00001558 unsigned Align = 0;
1559 if (auto *GO = dyn_cast<GlobalObject>(V)) {
1560 Align = GO->getAlignment();
1561 if (Align == 0) {
1562 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
1563 Type *ObjectType = GVar->getType()->getElementType();
1564 if (ObjectType->isSized()) {
1565 // If the object is defined in the current Module, we'll be giving
1566 // it the preferred alignment. Otherwise, we have to assume that it
1567 // may only have the minimum ABI alignment.
1568 if (GVar->isStrongDefinitionForLinker())
1569 Align = DL.getPreferredAlignment(GVar);
1570 else
1571 Align = DL.getABITypeAlignment(ObjectType);
1572 }
1573 }
1574 }
Artur Pilipenkod94903c2015-10-07 16:01:18 +00001575 } else if (const Argument *A = dyn_cast<Argument>(V)) {
Artur Pilipenko029d8532015-09-30 11:55:45 +00001576 Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
1577
1578 if (!Align && A->hasStructRetAttr()) {
1579 // An sret parameter has at least the ABI alignment of the return type.
1580 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
1581 if (EltTy->isSized())
1582 Align = DL.getABITypeAlignment(EltTy);
1583 }
Artur Pilipenkod94903c2015-10-07 16:01:18 +00001584 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
1585 Align = AI->getAlignment();
1586 else if (auto CS = ImmutableCallSite(V))
1587 Align = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex);
1588 else if (const LoadInst *LI = dyn_cast<LoadInst>(V))
1589 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
1590 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
1591 Align = CI->getLimitedValue();
1592 }
1593
Artur Pilipenko029d8532015-09-30 11:55:45 +00001594 return Align;
1595}
1596
Jingyue Wu12b0c282015-06-15 05:46:29 +00001597/// Determine which bits of V are known to be either zero or one and return
1598/// them in the KnownZero/KnownOne bit sets.
1599///
1600/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1601/// we cannot optimize based on the assumption that it is zero without changing
1602/// it to be an explicit zero. If we don't change it to zero, other code could
1603/// optimized based on the contradictory assumption that it is non-zero.
1604/// Because instcombine aggressively folds operations with undef args anyway,
1605/// this won't lose us code quality.
1606///
1607/// This function is defined on values with integer type, values with pointer
1608/// type, and vectors of integers. In the case
1609/// where V is a vector, known zero, and known one values are the
1610/// same width as the vector element, and the bit is set only if it is true
1611/// for all of the elements in the vector.
1612void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
1613 const DataLayout &DL, unsigned Depth, const Query &Q) {
1614 assert(V && "No Value?");
1615 assert(Depth <= MaxDepth && "Limit Search Depth");
1616 unsigned BitWidth = KnownZero.getBitWidth();
1617
1618 assert((V->getType()->isIntOrIntVectorTy() ||
Sanjay Patel9115cf82015-10-08 16:56:55 +00001619 V->getType()->isFPOrFPVectorTy() ||
Jingyue Wu12b0c282015-06-15 05:46:29 +00001620 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Patel9115cf82015-10-08 16:56:55 +00001621 "Not integer, floating point, or pointer type!");
Jingyue Wu12b0c282015-06-15 05:46:29 +00001622 assert((DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
1623 (!V->getType()->isIntOrIntVectorTy() ||
1624 V->getType()->getScalarSizeInBits() == BitWidth) &&
1625 KnownZero.getBitWidth() == BitWidth &&
1626 KnownOne.getBitWidth() == BitWidth &&
1627 "V, KnownOne and KnownZero should have same BitWidth");
1628
1629 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1630 // We know all of the bits for a constant!
1631 KnownOne = CI->getValue();
1632 KnownZero = ~KnownOne;
1633 return;
1634 }
1635 // Null and aggregate-zero are all-zeros.
1636 if (isa<ConstantPointerNull>(V) ||
1637 isa<ConstantAggregateZero>(V)) {
1638 KnownOne.clearAllBits();
1639 KnownZero = APInt::getAllOnesValue(BitWidth);
1640 return;
1641 }
1642 // Handle a constant vector by taking the intersection of the known bits of
1643 // each element. There is no real need to handle ConstantVector here, because
1644 // we don't handle undef in any particularly useful way.
1645 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1646 // We know that CDS must be a vector of integers. Take the intersection of
1647 // each element.
1648 KnownZero.setAllBits(); KnownOne.setAllBits();
1649 APInt Elt(KnownZero.getBitWidth(), 0);
1650 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1651 Elt = CDS->getElementAsInteger(i);
1652 KnownZero &= ~Elt;
1653 KnownOne &= Elt;
1654 }
1655 return;
1656 }
1657
Jingyue Wu12b0c282015-06-15 05:46:29 +00001658 // Start out not knowing anything.
1659 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1660
1661 // Limit search depth.
1662 // All recursive calls that increase depth must come after this.
1663 if (Depth == MaxDepth)
1664 return;
1665
1666 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1667 // the bits of its aliasee.
1668 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1669 if (!GA->mayBeOverridden())
1670 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, DL, Depth + 1, Q);
1671 return;
1672 }
1673
1674 if (Operator *I = dyn_cast<Operator>(V))
1675 computeKnownBitsFromOperator(I, KnownZero, KnownOne, DL, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001676
Artur Pilipenko029d8532015-09-30 11:55:45 +00001677 // Aligned pointers have trailing zeros - refine KnownZero set
1678 if (V->getType()->isPointerTy()) {
1679 unsigned Align = getAlignment(V, DL);
1680 if (Align)
1681 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1682 }
1683
Jingyue Wu12b0c282015-06-15 05:46:29 +00001684 // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition
1685 // strictly refines KnownZero and KnownOne. Therefore, we run them after
1686 // computeKnownBitsFromOperator.
1687
1688 // Check whether a nearby assume intrinsic can determine some known bits.
1689 computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q);
1690
1691 // Check whether there's a dominating condition which implies something about
1692 // this value at the given context.
1693 if (EnableDomConditions && Depth <= DomConditionsMaxDepth)
1694 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, Depth,
1695 Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001696
1697 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001698}
1699
Sanjay Patelaee84212014-11-04 16:27:42 +00001700/// Determine whether the sign bit is known to be zero or one.
1701/// Convenience wrapper around computeKnownBits.
Hal Finkel60db0582014-09-07 18:57:58 +00001702void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001703 const DataLayout &DL, unsigned Depth, const Query &Q) {
1704 unsigned BitWidth = getBitWidth(V->getType(), DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001705 if (!BitWidth) {
1706 KnownZero = false;
1707 KnownOne = false;
1708 return;
1709 }
1710 APInt ZeroBits(BitWidth, 0);
1711 APInt OneBits(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001712 computeKnownBits(V, ZeroBits, OneBits, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001713 KnownOne = OneBits[BitWidth - 1];
1714 KnownZero = ZeroBits[BitWidth - 1];
1715}
1716
Sanjay Patelaee84212014-11-04 16:27:42 +00001717/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001718/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001719/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001720/// types and vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001721bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001722 const Query &Q, const DataLayout &DL) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001723 if (Constant *C = dyn_cast<Constant>(V)) {
1724 if (C->isNullValue())
1725 return OrZero;
1726 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1727 return CI->getValue().isPowerOf2();
1728 // TODO: Handle vector constants.
1729 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001730
1731 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1732 // it is shifted off the end then the result is undefined.
1733 if (match(V, m_Shl(m_One(), m_Value())))
1734 return true;
1735
1736 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1737 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001738 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001739 return true;
1740
1741 // The remaining tests are all recursive, so bail out if we hit the limit.
1742 if (Depth++ == MaxDepth)
1743 return false;
1744
Craig Topper9f008862014-04-15 04:59:12 +00001745 Value *X = nullptr, *Y = nullptr;
Duncan Sands985ba632011-10-28 18:30:05 +00001746 // A shift of a power of two is a power of two or zero.
1747 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1748 match(V, m_Shr(m_Value(X), m_Value()))))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001749 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL);
Duncan Sands985ba632011-10-28 18:30:05 +00001750
Duncan Sandsd3951082011-01-25 09:38:29 +00001751 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001752 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q, DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001753
1754 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001755 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q, DL) &&
1756 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q, DL);
Duncan Sandsba286d72011-10-26 20:55:21 +00001757
Duncan Sandsba286d72011-10-26 20:55:21 +00001758 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1759 // A power of two and'd with anything is a power of two or zero.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001760 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL) ||
1761 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q, DL))
Duncan Sandsba286d72011-10-26 20:55:21 +00001762 return true;
1763 // X & (-X) is always a power of two or zero.
1764 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1765 return true;
1766 return false;
1767 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001768
David Majnemerb7d54092013-07-30 21:01:36 +00001769 // Adding a power-of-two or zero to the same power-of-two or zero yields
1770 // either the original power-of-two, a larger power-of-two or zero.
1771 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1772 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1773 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1774 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1775 match(X, m_And(m_Value(), m_Specific(Y))))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001776 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q, DL))
David Majnemerb7d54092013-07-30 21:01:36 +00001777 return true;
1778 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1779 match(Y, m_And(m_Value(), m_Specific(X))))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001780 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q, DL))
David Majnemerb7d54092013-07-30 21:01:36 +00001781 return true;
1782
1783 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1784 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001785 computeKnownBits(X, LHSZeroBits, LHSOneBits, DL, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001786
1787 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001788 computeKnownBits(Y, RHSZeroBits, RHSOneBits, DL, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001789 // If i8 V is a power of two or zero:
1790 // ZeroBits: 1 1 1 0 1 1 1 1
1791 // ~ZeroBits: 0 0 0 1 0 0 0 0
1792 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1793 // If OrZero isn't set, we cannot give back a zero result.
1794 // Make sure either the LHS or RHS has a bit set.
1795 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1796 return true;
1797 }
1798 }
David Majnemerbeab5672013-05-18 19:30:37 +00001799
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001800 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001801 // is a power of two only if the first operand is a power of two and not
1802 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001803 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1804 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001805 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001806 Depth, Q, DL);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001807 }
1808
Duncan Sandsd3951082011-01-25 09:38:29 +00001809 return false;
1810}
1811
Chandler Carruth80d3e562012-12-07 02:08:58 +00001812/// \brief Test whether a GEP's result is known to be non-null.
1813///
1814/// Uses properties inherent in a GEP to try to determine whether it is known
1815/// to be non-null.
1816///
1817/// Currently this routine does not support vector GEPs.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001818static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL,
Hal Finkel60db0582014-09-07 18:57:58 +00001819 unsigned Depth, const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001820 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1821 return false;
1822
1823 // FIXME: Support vector-GEPs.
1824 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1825
1826 // If the base pointer is non-null, we cannot walk to a null address with an
1827 // inbounds GEP in address space zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001828 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001829 return true;
1830
Chandler Carruth80d3e562012-12-07 02:08:58 +00001831 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1832 // If so, then the GEP cannot produce a null pointer, as doing so would
1833 // inherently violate the inbounds contract within address space zero.
1834 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1835 GTI != GTE; ++GTI) {
1836 // Struct types are easy -- they must always be indexed by a constant.
1837 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1838 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1839 unsigned ElementIdx = OpC->getZExtValue();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001840 const StructLayout *SL = DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001841 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1842 if (ElementOffset > 0)
1843 return true;
1844 continue;
1845 }
1846
1847 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001848 if (DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001849 continue;
1850
1851 // Fast path the constant operand case both for efficiency and so we don't
1852 // increment Depth when just zipping down an all-constant GEP.
1853 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1854 if (!OpC->isZero())
1855 return true;
1856 continue;
1857 }
1858
1859 // We post-increment Depth here because while isKnownNonZero increments it
1860 // as well, when we pop back up that increment won't persist. We don't want
1861 // to recurse 10k times just because we have 10k GEP operands. We don't
1862 // bail completely out because we want to handle constant GEPs regardless
1863 // of depth.
1864 if (Depth++ >= MaxDepth)
1865 continue;
1866
Hal Finkel60db0582014-09-07 18:57:58 +00001867 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001868 return true;
1869 }
1870
1871 return false;
1872}
1873
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001874/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1875/// ensure that the value it's attached to is never Value? 'RangeType' is
1876/// is the type of the value described by the range.
1877static bool rangeMetadataExcludesValue(MDNode* Ranges,
1878 const APInt& Value) {
1879 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1880 assert(NumRanges >= 1);
1881 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001882 ConstantInt *Lower =
1883 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1884 ConstantInt *Upper =
1885 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001886 ConstantRange Range(Lower->getValue(), Upper->getValue());
1887 if (Range.contains(Value))
1888 return false;
1889 }
1890 return true;
1891}
1892
Sanjay Patelaee84212014-11-04 16:27:42 +00001893/// Return true if the given value is known to be non-zero when defined.
1894/// For vectors return true if every element is known to be non-zero when
1895/// defined. Supports values with integer or pointer type and vectors of
1896/// integers.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001897bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
Hal Finkel60db0582014-09-07 18:57:58 +00001898 const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001899 if (Constant *C = dyn_cast<Constant>(V)) {
1900 if (C->isNullValue())
1901 return false;
1902 if (isa<ConstantInt>(C))
1903 // Must be non-zero due to null test above.
1904 return true;
1905 // TODO: Handle vectors
1906 return false;
1907 }
1908
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001909 if (Instruction* I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001910 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001911 // If the possible ranges don't contain zero, then the value is
1912 // definitely non-zero.
1913 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1914 const APInt ZeroValue(Ty->getBitWidth(), 0);
1915 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1916 return true;
1917 }
1918 }
1919 }
1920
Duncan Sandsd3951082011-01-25 09:38:29 +00001921 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001922 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001923 return false;
1924
Chandler Carruth80d3e562012-12-07 02:08:58 +00001925 // Check for pointer simplifications.
1926 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001927 if (isKnownNonNull(V))
1928 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +00001929 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001930 if (isGEPKnownNonNull(GEP, DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001931 return true;
1932 }
1933
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001934 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001935
1936 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001937 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001938 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001939 return isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001940
1941 // ext X != 0 if X != 0.
1942 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001943 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001944
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001945 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001946 // if the lowest bit is shifted off the end.
1947 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001948 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001949 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001950 if (BO->hasNoUnsignedWrap())
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001951 return isKnownNonZero(X, DL, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001952
Duncan Sandsd3951082011-01-25 09:38:29 +00001953 APInt KnownZero(BitWidth, 0);
1954 APInt KnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001955 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001956 if (KnownOne[0])
1957 return true;
1958 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001959 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001960 // defined if the sign bit is shifted off the end.
1961 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001962 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001963 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001964 if (BO->isExact())
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001965 return isKnownNonZero(X, DL, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001966
Duncan Sandsd3951082011-01-25 09:38:29 +00001967 bool XKnownNonNegative, XKnownNegative;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001968 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001969 if (XKnownNegative)
1970 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001971
1972 // If the shifter operand is a constant, and all of the bits shifted
1973 // out are known to be zero, and X is known non-zero then at least one
1974 // non-zero bit must remain.
1975 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1976 APInt KnownZero(BitWidth, 0);
1977 APInt KnownOne(BitWidth, 0);
1978 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
1979
1980 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1981 // Is there a known one in the portion not shifted out?
1982 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1983 return true;
1984 // Are all the bits to be shifted out known zero?
1985 if (KnownZero.countTrailingOnes() >= ShiftVal)
1986 return isKnownNonZero(X, DL, Depth, Q);
1987 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001988 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001989 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001990 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001991 return isKnownNonZero(X, DL, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001992 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001993 // X + Y.
1994 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1995 bool XKnownNonNegative, XKnownNegative;
1996 bool YKnownNonNegative, YKnownNegative;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001997 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q);
1998 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001999
2000 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00002001 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00002002 if (XKnownNonNegative && YKnownNonNegative)
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002003 if (isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00002004 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00002005
2006 // If X and Y are both negative (as signed values) then their sum is not
2007 // zero unless both X and Y equal INT_MIN.
2008 if (BitWidth && XKnownNegative && YKnownNegative) {
2009 APInt KnownZero(BitWidth, 0);
2010 APInt KnownOne(BitWidth, 0);
2011 APInt Mask = APInt::getSignedMaxValue(BitWidth);
2012 // The sign bit of X is set. If some other bit is set then X is not equal
2013 // to INT_MIN.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002014 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002015 if ((KnownOne & Mask) != 0)
2016 return true;
2017 // The sign bit of Y is set. If some other bit is set then Y is not equal
2018 // to INT_MIN.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002019 computeKnownBits(Y, KnownZero, KnownOne, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002020 if ((KnownOne & Mask) != 0)
2021 return true;
2022 }
2023
2024 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00002025 if (XKnownNonNegative &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002026 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q, DL))
Duncan Sandsd3951082011-01-25 09:38:29 +00002027 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00002028 if (YKnownNonNegative &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002029 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q, DL))
Duncan Sandsd3951082011-01-25 09:38:29 +00002030 return true;
2031 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00002032 // X * Y.
2033 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2034 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2035 // If X and Y are non-zero then so is X * Y as long as the multiplication
2036 // does not overflow.
2037 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002038 isKnownNonZero(X, DL, Depth, Q) && isKnownNonZero(Y, DL, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00002039 return true;
2040 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002041 // (C ? X : Y) != 0 if X != 0 and Y != 0.
2042 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002043 if (isKnownNonZero(SI->getTrueValue(), DL, Depth, Q) &&
2044 isKnownNonZero(SI->getFalseValue(), DL, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002045 return true;
2046 }
James Molloy897048b2015-09-29 14:08:45 +00002047 // PHI
2048 else if (PHINode *PN = dyn_cast<PHINode>(V)) {
2049 // Try and detect a recurrence that monotonically increases from a
2050 // starting value, as these are common as induction variables.
2051 if (PN->getNumIncomingValues() == 2) {
2052 Value *Start = PN->getIncomingValue(0);
2053 Value *Induction = PN->getIncomingValue(1);
2054 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2055 std::swap(Start, Induction);
2056 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2057 if (!C->isZero() && !C->isNegative()) {
2058 ConstantInt *X;
2059 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2060 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2061 !X->isNegative())
2062 return true;
2063 }
2064 }
2065 }
2066 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002067
2068 if (!BitWidth) return false;
2069 APInt KnownZero(BitWidth, 0);
2070 APInt KnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002071 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002072 return KnownOne != 0;
2073}
2074
James Molloy1d88d6f2015-10-22 13:18:42 +00002075/// Return true if V2 == V1 + X, where X is known non-zero.
2076static bool isAddOfNonZero(Value *V1, Value *V2, const DataLayout &DL,
2077 const Query &Q) {
2078 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2079 if (!BO || BO->getOpcode() != Instruction::Add)
2080 return false;
2081 Value *Op = nullptr;
2082 if (V2 == BO->getOperand(0))
2083 Op = BO->getOperand(1);
2084 else if (V2 == BO->getOperand(1))
2085 Op = BO->getOperand(0);
2086 else
2087 return false;
2088 return isKnownNonZero(Op, DL, 0, Q);
2089}
2090
2091/// Return true if it is known that V1 != V2.
2092static bool isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
2093 const Query &Q) {
2094 if (V1->getType()->isVectorTy() || V1 == V2)
2095 return false;
2096 if (V1->getType() != V2->getType())
2097 // We can't look through casts yet.
2098 return false;
2099 if (isAddOfNonZero(V1, V2, DL, Q) || isAddOfNonZero(V2, V1, DL, Q))
2100 return true;
2101
2102 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
2103 // Are any known bits in V1 contradictory to known bits in V2? If V1
2104 // has a known zero where V2 has a known one, they must not be equal.
2105 auto BitWidth = Ty->getBitWidth();
2106 APInt KnownZero1(BitWidth, 0);
2107 APInt KnownOne1(BitWidth, 0);
2108 computeKnownBits(V1, KnownZero1, KnownOne1, DL, 0, Q);
2109 APInt KnownZero2(BitWidth, 0);
2110 APInt KnownOne2(BitWidth, 0);
2111 computeKnownBits(V2, KnownZero2, KnownOne2, DL, 0, Q);
2112
2113 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
2114 if (OppositeBits.getBoolValue())
2115 return true;
2116 }
2117 return false;
2118}
2119
Sanjay Patelaee84212014-11-04 16:27:42 +00002120/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2121/// simplify operations downstream. Mask is known to be zero for bits that V
2122/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002123///
2124/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002125/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002126/// where V is a vector, the mask, known zero, and known one values are the
2127/// same width as the vector element, and the bit is set only if it is true
2128/// for all of the elements in the vector.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002129bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
2130 unsigned Depth, const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00002131 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002132 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002133 return (KnownZero & Mask) == Mask;
2134}
2135
2136
2137
Sanjay Patelaee84212014-11-04 16:27:42 +00002138/// Return the number of times the sign bit of the register is replicated into
2139/// the other bits. We know that at least 1 bit is always equal to the sign bit
2140/// (itself), but other cases can give us information. For example, immediately
2141/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2142/// other, so we return 3.
Chris Lattner965c7692008-06-02 01:18:21 +00002143///
2144/// 'Op' must have a scalar integer type.
2145///
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002146unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth,
2147 const Query &Q) {
2148 unsigned TyBits = DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002149 unsigned Tmp, Tmp2;
2150 unsigned FirstAnswer = 1;
2151
Jay Foada0653a32014-05-14 21:14:37 +00002152 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002153 // below.
2154
Chris Lattner965c7692008-06-02 01:18:21 +00002155 if (Depth == 6)
2156 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002157
Dan Gohman80ca01c2009-07-17 20:47:02 +00002158 Operator *U = dyn_cast<Operator>(V);
2159 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002160 default: break;
2161 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002162 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002163 return ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002164
Nadav Rotemc99a3872015-03-06 00:23:58 +00002165 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002166 const APInt *Denominator;
2167 // sdiv X, C -> adds log(C) sign bits.
2168 if (match(U->getOperand(1), m_APInt(Denominator))) {
2169
2170 // Ignore non-positive denominator.
2171 if (!Denominator->isStrictlyPositive())
2172 break;
2173
2174 // Calculate the incoming numerator bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002175 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002176
2177 // Add floor(log(C)) bits to the numerator bits.
2178 return std::min(TyBits, NumBits + Denominator->logBase2());
2179 }
2180 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002181 }
2182
2183 case Instruction::SRem: {
2184 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002185 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2186 // positive constant. This let us put a lower bound on the number of sign
2187 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002188 if (match(U->getOperand(1), m_APInt(Denominator))) {
2189
2190 // Ignore non-positive denominator.
2191 if (!Denominator->isStrictlyPositive())
2192 break;
2193
2194 // Calculate the incoming numerator bits. SRem by a positive constant
2195 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002196 unsigned NumrBits =
2197 ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002198
2199 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002200 // denominator. Given that the denominator is positive, there are two
2201 // cases:
2202 //
2203 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2204 // (1 << ceilLogBase2(C)).
2205 //
2206 // 2. the numerator is negative. Then the result range is (-C,0] and
2207 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2208 //
2209 // Thus a lower bound on the number of sign bits is `TyBits -
2210 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002211
Sanjoy Dase561fee2015-03-25 22:33:53 +00002212 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002213 return std::max(NumrBits, ResBits);
2214 }
2215 break;
2216 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002217
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002218 case Instruction::AShr: {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002219 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002220 // ashr X, C -> adds C sign bits. Vectors too.
2221 const APInt *ShAmt;
2222 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2223 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00002224 if (Tmp > TyBits) Tmp = TyBits;
2225 }
2226 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002227 }
2228 case Instruction::Shl: {
2229 const APInt *ShAmt;
2230 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002231 // shl destroys sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002232 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002233 Tmp2 = ShAmt->getZExtValue();
2234 if (Tmp2 >= TyBits || // Bad shift.
2235 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2236 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002237 }
2238 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002239 }
Chris Lattner965c7692008-06-02 01:18:21 +00002240 case Instruction::And:
2241 case Instruction::Or:
2242 case Instruction::Xor: // NOT is handled here.
2243 // Logical binary ops preserve the number of sign bits at the worst.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002244 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002245 if (Tmp != 1) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002246 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002247 FirstAnswer = std::min(Tmp, Tmp2);
2248 // We computed what we know about the sign bits as our first
2249 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002250 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002251 }
2252 break;
2253
2254 case Instruction::Select:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002255 Tmp = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002256 if (Tmp == 1) return 1; // Early out.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002257 Tmp2 = ComputeNumSignBits(U->getOperand(2), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002258 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002259
Chris Lattner965c7692008-06-02 01:18:21 +00002260 case Instruction::Add:
2261 // Add can have at most one carry bit. Thus we know that the output
2262 // is, at worst, one more bit than the inputs.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002263 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002264 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002265
Chris Lattner965c7692008-06-02 01:18:21 +00002266 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002267 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002268 if (CRHS->isAllOnesValue()) {
2269 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002270 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, Depth + 1,
2271 Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002272
Chris Lattner965c7692008-06-02 01:18:21 +00002273 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2274 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002275 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002276 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002277
Chris Lattner965c7692008-06-02 01:18:21 +00002278 // If we are subtracting one from a positive number, there is no carry
2279 // out of the result.
2280 if (KnownZero.isNegative())
2281 return Tmp;
2282 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002283
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002284 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002285 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002286 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002287
Chris Lattner965c7692008-06-02 01:18:21 +00002288 case Instruction::Sub:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002289 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002290 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002291
Chris Lattner965c7692008-06-02 01:18:21 +00002292 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002293 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002294 if (CLHS->isNullValue()) {
2295 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002296 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, DL, Depth + 1,
2297 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002298 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2299 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002300 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002301 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002302
Chris Lattner965c7692008-06-02 01:18:21 +00002303 // If the input is known to be positive (the sign bit is known clear),
2304 // the output of the NEG has the same number of sign bits as the input.
2305 if (KnownZero.isNegative())
2306 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002307
Chris Lattner965c7692008-06-02 01:18:21 +00002308 // Otherwise, we treat this like a SUB.
2309 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002310
Chris Lattner965c7692008-06-02 01:18:21 +00002311 // Sub can have at most one carry bit. Thus we know that the output
2312 // is, at worst, one more bit than the inputs.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002313 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002314 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002315 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002316
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002317 case Instruction::PHI: {
2318 PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002319 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002320 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002321 if (NumIncomingValues > 4) break;
2322 // Unreachable blocks may have zero-operand PHI nodes.
2323 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002324
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002325 // Take the minimum of all incoming values. This can't infinitely loop
2326 // because of our depth threshold.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002327 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), DL, Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002328 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002329 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002330 Tmp = std::min(
2331 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), DL, Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002332 }
2333 return Tmp;
2334 }
2335
Chris Lattner965c7692008-06-02 01:18:21 +00002336 case Instruction::Trunc:
2337 // FIXME: it's tricky to do anything useful for this, but it is an important
2338 // case for targets like X86.
2339 break;
2340 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002341
Chris Lattner965c7692008-06-02 01:18:21 +00002342 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2343 // use this information.
2344 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002345 APInt Mask;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002346 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002347
Chris Lattner965c7692008-06-02 01:18:21 +00002348 if (KnownZero.isNegative()) { // sign bit is 0
2349 Mask = KnownZero;
2350 } else if (KnownOne.isNegative()) { // sign bit is 1;
2351 Mask = KnownOne;
2352 } else {
2353 // Nothing known.
2354 return FirstAnswer;
2355 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002356
Chris Lattner965c7692008-06-02 01:18:21 +00002357 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2358 // the number of identical bits in the top of the input value.
2359 Mask = ~Mask;
2360 Mask <<= Mask.getBitWidth()-TyBits;
2361 // Return # leading zeros. We use 'min' here in case Val was zero before
2362 // shifting. We don't want to return '64' as for an i32 "0".
2363 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
2364}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002365
Sanjay Patelaee84212014-11-04 16:27:42 +00002366/// This function computes the integer multiple of Base that equals V.
2367/// If successful, it returns true and returns the multiple in
2368/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002369/// through SExt instructions only if LookThroughSExt is true.
2370bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002371 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002372 const unsigned MaxDepth = 6;
2373
Dan Gohman6a976bb2009-11-18 00:58:27 +00002374 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002375 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002376 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002377
Chris Lattner229907c2011-07-18 04:54:35 +00002378 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002379
Dan Gohman6a976bb2009-11-18 00:58:27 +00002380 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002381
2382 if (Base == 0)
2383 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002384
Victor Hernandez47444882009-11-10 08:28:35 +00002385 if (Base == 1) {
2386 Multiple = V;
2387 return true;
2388 }
2389
2390 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2391 Constant *BaseVal = ConstantInt::get(T, Base);
2392 if (CO && CO == BaseVal) {
2393 // Multiple is 1.
2394 Multiple = ConstantInt::get(T, 1);
2395 return true;
2396 }
2397
2398 if (CI && CI->getZExtValue() % Base == 0) {
2399 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002400 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002401 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002402
Victor Hernandez47444882009-11-10 08:28:35 +00002403 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002404
Victor Hernandez47444882009-11-10 08:28:35 +00002405 Operator *I = dyn_cast<Operator>(V);
2406 if (!I) return false;
2407
2408 switch (I->getOpcode()) {
2409 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002410 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002411 if (!LookThroughSExt) return false;
2412 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002413 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002414 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2415 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002416 case Instruction::Shl:
2417 case Instruction::Mul: {
2418 Value *Op0 = I->getOperand(0);
2419 Value *Op1 = I->getOperand(1);
2420
2421 if (I->getOpcode() == Instruction::Shl) {
2422 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2423 if (!Op1CI) return false;
2424 // Turn Op0 << Op1 into Op0 * 2^Op1
2425 APInt Op1Int = Op1CI->getValue();
2426 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002427 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002428 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002429 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002430 }
2431
Craig Topper9f008862014-04-15 04:59:12 +00002432 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002433 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2434 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2435 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002436 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002437 MulC->getType()->getPrimitiveSizeInBits())
2438 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002439 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002440 MulC->getType()->getPrimitiveSizeInBits())
2441 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002442
Chris Lattner72d283c2010-09-05 17:20:46 +00002443 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2444 Multiple = ConstantExpr::getMul(MulC, Op1C);
2445 return true;
2446 }
Victor Hernandez47444882009-11-10 08:28:35 +00002447
2448 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2449 if (Mul0CI->getValue() == 1) {
2450 // V == Base * Op1, so return Op1
2451 Multiple = Op1;
2452 return true;
2453 }
2454 }
2455
Craig Topper9f008862014-04-15 04:59:12 +00002456 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002457 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2458 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2459 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002460 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002461 MulC->getType()->getPrimitiveSizeInBits())
2462 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002463 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002464 MulC->getType()->getPrimitiveSizeInBits())
2465 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002466
Chris Lattner72d283c2010-09-05 17:20:46 +00002467 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2468 Multiple = ConstantExpr::getMul(MulC, Op0C);
2469 return true;
2470 }
Victor Hernandez47444882009-11-10 08:28:35 +00002471
2472 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2473 if (Mul1CI->getValue() == 1) {
2474 // V == Base * Op0, so return Op0
2475 Multiple = Op0;
2476 return true;
2477 }
2478 }
Victor Hernandez47444882009-11-10 08:28:35 +00002479 }
2480 }
2481
2482 // We could not determine if V is a multiple of Base.
2483 return false;
2484}
2485
Sanjay Patelaee84212014-11-04 16:27:42 +00002486/// Return true if we can prove that the specified FP value is never equal to
2487/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002488///
2489/// NOTE: this function will need to be revisited when we support non-default
2490/// rounding modes!
2491///
2492bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
2493 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2494 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002495
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002496 // FIXME: Magic number! At the least, this should be given a name because it's
2497 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2498 // expose it as a parameter, so it can be used for testing / experimenting.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002499 if (Depth == 6)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002500 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002501
Dan Gohman80ca01c2009-07-17 20:47:02 +00002502 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002503 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002504
2505 // Check if the nsz fast-math flag is set
2506 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2507 if (FPO->hasNoSignedZeros())
2508 return true;
2509
Chris Lattnera12a6de2008-06-02 01:29:46 +00002510 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002511 if (I->getOpcode() == Instruction::FAdd)
2512 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2513 if (CFP->isNullValue())
2514 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002515
Chris Lattnera12a6de2008-06-02 01:29:46 +00002516 // sitofp and uitofp turn into +0.0 for zero.
2517 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2518 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002519
Chris Lattnera12a6de2008-06-02 01:29:46 +00002520 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2521 // sqrt(-0.0) = -0.0, no other negative results are possible.
2522 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif1abbde32010-06-23 23:38:07 +00002523 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +00002524
Chris Lattnera12a6de2008-06-02 01:29:46 +00002525 if (const CallInst *CI = dyn_cast<CallInst>(I))
2526 if (const Function *F = CI->getCalledFunction()) {
2527 if (F->isDeclaration()) {
Daniel Dunbarca414c72009-07-26 08:34:35 +00002528 // abs(x) != -0.0
2529 if (F->getName() == "abs") return true;
Dale Johannesenf6a987b2009-09-25 20:54:50 +00002530 // fabs[lf](x) != -0.0
2531 if (F->getName() == "fabs") return true;
2532 if (F->getName() == "fabsf") return true;
2533 if (F->getName() == "fabsl") return true;
2534 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
2535 F->getName() == "sqrtl")
Gabor Greif1abbde32010-06-23 23:38:07 +00002536 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattnera12a6de2008-06-02 01:29:46 +00002537 }
2538 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002539
Chris Lattnera12a6de2008-06-02 01:29:46 +00002540 return false;
2541}
2542
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002543bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) {
2544 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2545 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2546
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002547 // FIXME: Magic number! At the least, this should be given a name because it's
2548 // used similarly in CannotBeNegativeZero(). A better fix may be to
2549 // expose it as a parameter, so it can be used for testing / experimenting.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002550 if (Depth == 6)
2551 return false; // Limit search depth.
2552
2553 const Operator *I = dyn_cast<Operator>(V);
2554 if (!I) return false;
2555
2556 switch (I->getOpcode()) {
2557 default: break;
2558 case Instruction::FMul:
2559 // x*x is always non-negative or a NaN.
2560 if (I->getOperand(0) == I->getOperand(1))
2561 return true;
2562 // Fall through
2563 case Instruction::FAdd:
2564 case Instruction::FDiv:
2565 case Instruction::FRem:
2566 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
2567 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
2568 case Instruction::FPExt:
2569 case Instruction::FPTrunc:
2570 // Widening/narrowing never change sign.
2571 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2572 case Instruction::Call:
2573 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2574 switch (II->getIntrinsicID()) {
2575 default: break;
2576 case Intrinsic::exp:
2577 case Intrinsic::exp2:
2578 case Intrinsic::fabs:
2579 case Intrinsic::sqrt:
2580 return true;
2581 case Intrinsic::powi:
2582 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2583 // powi(x,n) is non-negative if n is even.
2584 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2585 return true;
2586 }
2587 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2588 case Intrinsic::fma:
2589 case Intrinsic::fmuladd:
2590 // x*x+y is non-negative if y is non-negative.
2591 return I->getOperand(0) == I->getOperand(1) &&
2592 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
2593 }
2594 break;
2595 }
2596 return false;
2597}
2598
Sanjay Patelaee84212014-11-04 16:27:42 +00002599/// If the specified value can be set by repeating the same byte in memory,
2600/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002601/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2602/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2603/// byte store (e.g. i16 0x1234), return null.
2604Value *llvm::isBytewiseValue(Value *V) {
2605 // All byte-wide stores are splatable, even of arbitrary variables.
2606 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002607
2608 // Handle 'null' ConstantArrayZero etc.
2609 if (Constant *C = dyn_cast<Constant>(V))
2610 if (C->isNullValue())
2611 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002612
Chris Lattner9cb10352010-12-26 20:15:01 +00002613 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002614 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002615 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2616 if (CFP->getType()->isFloatTy())
2617 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2618 if (CFP->getType()->isDoubleTy())
2619 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2620 // Don't handle long double formats, which have strange constraints.
2621 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002622
Benjamin Kramer17d90152015-02-07 19:29:02 +00002623 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002624 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002625 if (CI->getBitWidth() % 8 == 0) {
2626 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002627
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002628 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002629 return nullptr;
2630 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002631 }
2632 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002633
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002634 // A ConstantDataArray/Vector is splatable if all its members are equal and
2635 // also splatable.
2636 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2637 Value *Elt = CA->getElementAsConstant(0);
2638 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002639 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002640 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002641
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002642 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2643 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002644 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002645
Chris Lattner9cb10352010-12-26 20:15:01 +00002646 return Val;
2647 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002648
Chris Lattner9cb10352010-12-26 20:15:01 +00002649 // Conceptually, we could handle things like:
2650 // %a = zext i8 %X to i16
2651 // %b = shl i16 %a, 8
2652 // %c = or i16 %a, %b
2653 // but until there is an example that actually needs this, it doesn't seem
2654 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002655 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002656}
2657
2658
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002659// This is the recursive version of BuildSubAggregate. It takes a few different
2660// arguments. Idxs is the index within the nested struct From that we are
2661// looking at now (which is of type IndexedType). IdxSkip is the number of
2662// indices from Idxs that should be left out when inserting into the resulting
2663// struct. To is the result struct built so far, new insertvalue instructions
2664// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002665static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002666 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002667 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002668 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002669 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002670 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002671 // Save the original To argument so we can modify it
2672 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002673 // General case, the type indexed by Idxs is a struct
2674 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2675 // Process each struct element recursively
2676 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002677 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002678 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002679 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002680 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002681 if (!To) {
2682 // Couldn't find any inserted value for this index? Cleanup
2683 while (PrevTo != OrigTo) {
2684 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2685 PrevTo = Del->getAggregateOperand();
2686 Del->eraseFromParent();
2687 }
2688 // Stop processing elements
2689 break;
2690 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002691 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002692 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002693 if (To)
2694 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002695 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002696 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2697 // the struct's elements had a value that was inserted directly. In the latter
2698 // case, perhaps we can't determine each of the subelements individually, but
2699 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002700
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002701 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002702 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002703
2704 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002705 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002706
2707 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002708 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002709 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002710}
2711
2712// This helper takes a nested struct and extracts a part of it (which is again a
2713// struct) into a new value. For example, given the struct:
2714// { a, { b, { c, d }, e } }
2715// and the indices "1, 1" this returns
2716// { c, d }.
2717//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002718// It does this by inserting an insertvalue for each element in the resulting
2719// struct, as opposed to just inserting a single struct. This will only work if
2720// each of the elements of the substruct are known (ie, inserted into From by an
2721// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002722//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002723// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002724static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002725 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002726 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002727 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002728 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002729 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002730 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002731 unsigned IdxSkip = Idxs.size();
2732
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002733 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002734}
2735
Sanjay Patelaee84212014-11-04 16:27:42 +00002736/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002737/// the scalar value indexed is already around as a register, for example if it
2738/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002739///
2740/// If InsertBefore is not null, this function will duplicate (modified)
2741/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002742Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2743 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002744 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002745 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002746 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002747 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002748 // We have indices, so V should have an indexable type.
2749 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2750 "Not looking at a struct or array?");
2751 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2752 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002753
Chris Lattner67058832012-01-25 06:48:06 +00002754 if (Constant *C = dyn_cast<Constant>(V)) {
2755 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002756 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002757 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2758 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002759
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002760 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002761 // Loop the indices for the insertvalue instruction in parallel with the
2762 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002763 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002764 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2765 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002766 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002767 // We can't handle this without inserting insertvalues
2768 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002769 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002770
2771 // The requested index identifies a part of a nested aggregate. Handle
2772 // this specially. For example,
2773 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2774 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2775 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2776 // This can be changed into
2777 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2778 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2779 // which allows the unused 0,0 element from the nested struct to be
2780 // removed.
2781 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2782 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002783 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002784
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002785 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002786 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002787 // looking for, then.
2788 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002789 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002790 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002791 }
2792 // If we end up here, the indices of the insertvalue match with those
2793 // requested (though possibly only partially). Now we recursively look at
2794 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002795 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002796 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002797 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002798 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002799
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002800 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002801 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002802 // something else, we can extract from that something else directly instead.
2803 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002804
2805 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002806 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002807 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002808 SmallVector<unsigned, 5> Idxs;
2809 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002810 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002811 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002812
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002813 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002814 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002815
Craig Topper1bef2c82012-12-22 19:15:35 +00002816 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002817 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002818
Jay Foad57aa6362011-07-13 10:26:04 +00002819 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002820 }
2821 // Otherwise, we don't know (such as, extracting from a function return value
2822 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002823 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002824}
Evan Chengda3db112008-06-30 07:31:25 +00002825
Sanjay Patelaee84212014-11-04 16:27:42 +00002826/// Analyze the specified pointer to see if it can be expressed as a base
2827/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002828Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002829 const DataLayout &DL) {
2830 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002831 APInt ByteOffset(BitWidth, 0);
2832 while (1) {
2833 if (Ptr->getType()->isVectorTy())
2834 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002835
Nuno Lopes368c4d02012-12-31 20:48:35 +00002836 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002837 APInt GEPOffset(BitWidth, 0);
2838 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2839 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002840
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002841 ByteOffset += GEPOffset;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002842
Nuno Lopes368c4d02012-12-31 20:48:35 +00002843 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002844 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2845 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002846 Ptr = cast<Operator>(Ptr)->getOperand(0);
2847 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2848 if (GA->mayBeOverridden())
2849 break;
2850 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002851 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002852 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002853 }
2854 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002855 Offset = ByteOffset.getSExtValue();
2856 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002857}
2858
2859
Sanjay Patelaee84212014-11-04 16:27:42 +00002860/// This function computes the length of a null-terminated C string pointed to
2861/// by V. If successful, it returns true and returns the string in Str.
2862/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002863bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2864 uint64_t Offset, bool TrimAtNul) {
2865 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002866
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002867 // Look through bitcast instructions and geps.
2868 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002869
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002870 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002871 // offset.
2872 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Evan Chengda3db112008-06-30 07:31:25 +00002873 // Make sure the GEP has exactly three arguments.
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002874 if (GEP->getNumOperands() != 3)
2875 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002876
Evan Chengda3db112008-06-30 07:31:25 +00002877 // Make sure the index-ee is a pointer to array of i8.
Chris Lattner229907c2011-07-18 04:54:35 +00002878 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
2879 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Craig Topper9f008862014-04-15 04:59:12 +00002880 if (!AT || !AT->getElementType()->isIntegerTy(8))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002881 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002882
Evan Chengda3db112008-06-30 07:31:25 +00002883 // Check to make sure that the first operand of the GEP is an integer and
2884 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0b4df042010-04-14 22:20:45 +00002885 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Craig Topper9f008862014-04-15 04:59:12 +00002886 if (!FirstIdx || !FirstIdx->isZero())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002887 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002888
Evan Chengda3db112008-06-30 07:31:25 +00002889 // If the second index isn't a ConstantInt, then this is a variable index
2890 // into the array. If this occurs, we can't say anything meaningful about
2891 // the string.
2892 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002893 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002894 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002895 else
2896 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002897 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2898 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00002899 }
Nick Lewycky46209882011-10-20 00:34:35 +00002900
Evan Chengda3db112008-06-30 07:31:25 +00002901 // The GEP instruction, constant or instruction, must reference a global
2902 // variable that is a constant and is initialized. The referenced constant
2903 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002904 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002905 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002906 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002907
Nick Lewycky46209882011-10-20 00:34:35 +00002908 // Handle the all-zeros case
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002909 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002910 // This is a degenerate case. The initializer is constant zero so the
2911 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002912 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002913 return true;
2914 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002915
Evan Chengda3db112008-06-30 07:31:25 +00002916 // Must be a Constant Array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002917 const ConstantDataArray *Array =
2918 dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002919 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002920 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002921
Evan Chengda3db112008-06-30 07:31:25 +00002922 // Get the number of elements in the array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002923 uint64_t NumElts = Array->getType()->getArrayNumElements();
2924
2925 // Start out with the entire array in the StringRef.
2926 Str = Array->getAsString();
2927
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002928 if (Offset > NumElts)
2929 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002930
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002931 // Skip over 'offset' bytes.
2932 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002933
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002934 if (TrimAtNul) {
2935 // Trim off the \0 and anything after it. If the array is not nul
2936 // terminated, we just return the whole end of string. The client may know
2937 // some other way that the string is length-bound.
2938 Str = Str.substr(0, Str.find('\0'));
2939 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002940 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002941}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002942
2943// These next two are very similar to the above, but also look through PHI
2944// nodes.
2945// TODO: See if we can integrate these two together.
2946
Sanjay Patelaee84212014-11-04 16:27:42 +00002947/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002948/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00002949static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002950 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002951 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002952
2953 // If this is a PHI node, there are two cases: either we have already seen it
2954 // or we haven't.
2955 if (PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00002956 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00002957 return ~0ULL; // already in the set.
2958
2959 // If it was new, see if all the input strings are the same length.
2960 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00002961 for (Value *IncValue : PN->incoming_values()) {
2962 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00002963 if (Len == 0) return 0; // Unknown length -> unknown.
2964
2965 if (Len == ~0ULL) continue;
2966
2967 if (Len != LenSoFar && LenSoFar != ~0ULL)
2968 return 0; // Disagree -> unknown.
2969 LenSoFar = Len;
2970 }
2971
2972 // Success, all agree.
2973 return LenSoFar;
2974 }
2975
2976 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2977 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2978 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2979 if (Len1 == 0) return 0;
2980 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2981 if (Len2 == 0) return 0;
2982 if (Len1 == ~0ULL) return Len2;
2983 if (Len2 == ~0ULL) return Len1;
2984 if (Len1 != Len2) return 0;
2985 return Len1;
2986 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002987
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002988 // Otherwise, see if we can read the string.
2989 StringRef StrData;
2990 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00002991 return 0;
2992
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002993 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00002994}
2995
Sanjay Patelaee84212014-11-04 16:27:42 +00002996/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002997/// the specified pointer, return 'len+1'. If we can't, return 0.
2998uint64_t llvm::GetStringLength(Value *V) {
2999 if (!V->getType()->isPointerTy()) return 0;
3000
3001 SmallPtrSet<PHINode*, 32> PHIs;
3002 uint64_t Len = GetStringLengthH(V, PHIs);
3003 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3004 // an empty string as a length.
3005 return Len == ~0ULL ? 1 : Len;
3006}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003007
Adam Nemete2b885c2015-04-23 20:09:20 +00003008/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3009/// previous iteration of the loop was referring to the same object as \p PN.
3010static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
3011 // Find the loop-defined value.
3012 Loop *L = LI->getLoopFor(PN->getParent());
3013 if (PN->getNumIncomingValues() != 2)
3014 return true;
3015
3016 // Find the value from previous iteration.
3017 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3018 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3019 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3020 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3021 return true;
3022
3023 // If a new pointer is loaded in the loop, the pointer references a different
3024 // object in every iteration. E.g.:
3025 // for (i)
3026 // int *p = a[i];
3027 // ...
3028 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3029 if (!L->isLoopInvariant(Load->getPointerOperand()))
3030 return false;
3031 return true;
3032}
3033
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003034Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3035 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003036 if (!V->getType()->isPointerTy())
3037 return V;
3038 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3039 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3040 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003041 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3042 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003043 V = cast<Operator>(V)->getOperand(0);
3044 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3045 if (GA->mayBeOverridden())
3046 return V;
3047 V = GA->getAliasee();
3048 } else {
Dan Gohman05b18f12010-12-15 20:49:55 +00003049 // See if InstructionSimplify knows any relevant tricks.
3050 if (Instruction *I = dyn_cast<Instruction>(V))
Chandler Carruth66b31302015-01-04 12:03:27 +00003051 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003052 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003053 V = Simplified;
3054 continue;
3055 }
3056
Dan Gohmana4fcd242010-12-15 20:02:24 +00003057 return V;
3058 }
3059 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3060 }
3061 return V;
3062}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003063
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003064void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003065 const DataLayout &DL, LoopInfo *LI,
3066 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003067 SmallPtrSet<Value *, 4> Visited;
3068 SmallVector<Value *, 4> Worklist;
3069 Worklist.push_back(V);
3070 do {
3071 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003072 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003073
David Blaikie70573dc2014-11-19 07:49:26 +00003074 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003075 continue;
3076
3077 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3078 Worklist.push_back(SI->getTrueValue());
3079 Worklist.push_back(SI->getFalseValue());
3080 continue;
3081 }
3082
3083 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003084 // If this PHI changes the underlying object in every iteration of the
3085 // loop, don't look through it. Consider:
3086 // int **A;
3087 // for (i) {
3088 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3089 // Curr = A[i];
3090 // *Prev, *Curr;
3091 //
3092 // Prev is tracking Curr one iteration behind so they refer to different
3093 // underlying objects.
3094 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3095 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003096 for (Value *IncValue : PN->incoming_values())
3097 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003098 continue;
3099 }
3100
3101 Objects.push_back(P);
3102 } while (!Worklist.empty());
3103}
3104
Sanjay Patelaee84212014-11-04 16:27:42 +00003105/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003106bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003107 for (const User *U : V->users()) {
3108 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003109 if (!II) return false;
3110
3111 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3112 II->getIntrinsicID() != Intrinsic::lifetime_end)
3113 return false;
3114 }
3115 return true;
3116}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003117
Philip Reames5461d452015-04-23 17:36:48 +00003118static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset,
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003119 Type *Ty, const DataLayout &DL,
3120 const Instruction *CtxI,
3121 const DominatorTree *DT,
3122 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00003123 assert(Offset.isNonNegative() && "offset can't be negative");
3124 assert(Ty->isSized() && "must be sized");
3125
3126 APInt DerefBytes(Offset.getBitWidth(), 0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003127 bool CheckForNonNull = false;
Philip Reames5461d452015-04-23 17:36:48 +00003128 if (const Argument *A = dyn_cast<Argument>(BV)) {
3129 DerefBytes = A->getDereferenceableBytes();
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003130 if (!DerefBytes.getBoolValue()) {
3131 DerefBytes = A->getDereferenceableOrNullBytes();
3132 CheckForNonNull = true;
3133 }
Philip Reames5461d452015-04-23 17:36:48 +00003134 } else if (auto CS = ImmutableCallSite(BV)) {
3135 DerefBytes = CS.getDereferenceableBytes(0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003136 if (!DerefBytes.getBoolValue()) {
3137 DerefBytes = CS.getDereferenceableOrNullBytes(0);
3138 CheckForNonNull = true;
3139 }
Sanjoy Dasf9995472015-05-19 20:10:19 +00003140 } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) {
3141 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
3142 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
3143 DerefBytes = CI->getLimitedValue();
3144 }
3145 if (!DerefBytes.getBoolValue()) {
3146 if (MDNode *MD =
3147 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
3148 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
3149 DerefBytes = CI->getLimitedValue();
3150 }
3151 CheckForNonNull = true;
3152 }
Philip Reames5461d452015-04-23 17:36:48 +00003153 }
3154
3155 if (DerefBytes.getBoolValue())
3156 if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty)))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003157 if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI))
3158 return true;
3159
Philip Reames5461d452015-04-23 17:36:48 +00003160 return false;
3161}
3162
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003163static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL,
3164 const Instruction *CtxI,
3165 const DominatorTree *DT,
3166 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00003167 Type *VTy = V->getType();
3168 Type *Ty = VTy->getPointerElementType();
3169 if (!Ty->isSized())
3170 return false;
3171
3172 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003173 return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI);
Philip Reames5461d452015-04-23 17:36:48 +00003174}
3175
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003176static bool isAligned(const Value *Base, APInt Offset, unsigned Align,
3177 const DataLayout &DL) {
Artur Pilipenkoffd13282015-10-09 15:58:26 +00003178 APInt BaseAlign(Offset.getBitWidth(), getAlignment(Base, DL));
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003179
3180 if (!BaseAlign) {
3181 Type *Ty = Base->getType()->getPointerElementType();
3182 BaseAlign = DL.getABITypeAlignment(Ty);
3183 }
3184
3185 APInt Alignment(Offset.getBitWidth(), Align);
3186
3187 assert(Alignment.isPowerOf2() && "must be a power of 2!");
3188 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
3189}
3190
3191static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) {
3192 APInt Offset(DL.getTypeStoreSizeInBits(Base->getType()), 0);
3193 return isAligned(Base, Offset, Align, DL);
3194}
3195
Philip Reames5461d452015-04-23 17:36:48 +00003196/// Test if V is always a pointer to allocated and suitably aligned memory for
3197/// a simple load or store.
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003198static bool isDereferenceableAndAlignedPointer(
3199 const Value *V, unsigned Align, const DataLayout &DL,
3200 const Instruction *CtxI, const DominatorTree *DT,
3201 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) {
Philip Reames5461d452015-04-23 17:36:48 +00003202 // Note that it is not safe to speculate into a malloc'd region because
3203 // malloc may return null.
3204
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003205 // These are obviously ok if aligned.
3206 if (isa<AllocaInst>(V))
3207 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00003208
3209 // It's not always safe to follow a bitcast, for example:
3210 // bitcast i8* (alloca i8) to i32*
3211 // would result in a 4-byte load from a 1-byte alloca. However,
3212 // if we're casting from a pointer from a type of larger size
3213 // to a type of smaller size (or the same size), and the alignment
3214 // is at least as large as for the resulting pointer type, then
3215 // we can look through the bitcast.
3216 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
3217 Type *STy = BC->getSrcTy()->getPointerElementType(),
3218 *DTy = BC->getDestTy()->getPointerElementType();
3219 if (STy->isSized() && DTy->isSized() &&
3220 (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) &&
3221 (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy)))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003222 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL,
3223 CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003224 }
3225
3226 // Global variables which can't collapse to null are ok.
3227 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003228 if (!GV->hasExternalWeakLinkage())
3229 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00003230
3231 // byval arguments are okay.
3232 if (const Argument *A = dyn_cast<Argument>(V))
3233 if (A->hasByValAttr())
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003234 return isAligned(V, Align, DL);
3235
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003236 if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003237 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00003238
3239 // For GEPs, determine if the indexing lands within the allocated object.
3240 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003241 Type *VTy = GEP->getType();
3242 Type *Ty = VTy->getPointerElementType();
3243 const Value *Base = GEP->getPointerOperand();
3244
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003245 // Conservatively require that the base pointer be fully dereferenceable
3246 // and aligned.
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003247 if (!Visited.insert(Base).second)
Philip Reames5461d452015-04-23 17:36:48 +00003248 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003249 if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI,
3250 Visited))
Philip Reames5461d452015-04-23 17:36:48 +00003251 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003252
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003253 APInt Offset(DL.getPointerTypeSizeInBits(VTy), 0);
3254 if (!GEP->accumulateConstantOffset(DL, Offset))
3255 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003256
3257 // Check if the load is within the bounds of the underlying object
3258 // and offset is aligned.
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003259 uint64_t LoadSize = DL.getTypeStoreSize(Ty);
3260 Type *BaseType = Base->getType()->getPointerElementType();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003261 assert(isPowerOf2_32(Align) && "must be a power of 2!");
3262 return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) &&
3263 !(Offset & APInt(Offset.getBitWidth(), Align-1));
Philip Reames5461d452015-04-23 17:36:48 +00003264 }
3265
3266 // For gc.relocate, look through relocations
3267 if (const IntrinsicInst *I = dyn_cast<IntrinsicInst>(V))
3268 if (I->getIntrinsicID() == Intrinsic::experimental_gc_relocate) {
3269 GCRelocateOperands RelocateInst(I);
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003270 return isDereferenceableAndAlignedPointer(
3271 RelocateInst.getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003272 }
3273
3274 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003275 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL,
3276 CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003277
3278 // If we don't know, assume the worst.
3279 return false;
3280}
3281
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003282bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
3283 const DataLayout &DL,
3284 const Instruction *CtxI,
3285 const DominatorTree *DT,
3286 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00003287 // When dereferenceability information is provided by a dereferenceable
3288 // attribute, we know exactly how many bytes are dereferenceable. If we can
3289 // determine the exact offset to the attributed variable, we can use that
3290 // information here.
3291 Type *VTy = V->getType();
3292 Type *Ty = VTy->getPointerElementType();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003293
3294 // Require ABI alignment for loads without alignment specification
3295 if (Align == 0)
3296 Align = DL.getABITypeAlignment(Ty);
3297
Philip Reames5461d452015-04-23 17:36:48 +00003298 if (Ty->isSized()) {
3299 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
3300 const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003301
Philip Reames5461d452015-04-23 17:36:48 +00003302 if (Offset.isNonNegative())
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003303 if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) &&
3304 isAligned(BV, Offset, Align, DL))
Philip Reames5461d452015-04-23 17:36:48 +00003305 return true;
3306 }
3307
3308 SmallPtrSet<const Value *, 32> Visited;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003309 return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI,
3310 Visited);
3311}
3312
3313bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL,
3314 const Instruction *CtxI,
3315 const DominatorTree *DT,
3316 const TargetLibraryInfo *TLI) {
3317 return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI);
Philip Reames5461d452015-04-23 17:36:48 +00003318}
3319
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003320bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3321 const Instruction *CtxI,
3322 const DominatorTree *DT,
3323 const TargetLibraryInfo *TLI) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003324 const Operator *Inst = dyn_cast<Operator>(V);
3325 if (!Inst)
3326 return false;
3327
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003328 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3329 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3330 if (C->canTrap())
3331 return false;
3332
3333 switch (Inst->getOpcode()) {
3334 default:
3335 return true;
3336 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003337 case Instruction::URem: {
3338 // x / y is undefined if y == 0.
3339 const APInt *V;
3340 if (match(Inst->getOperand(1), m_APInt(V)))
3341 return *V != 0;
3342 return false;
3343 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003344 case Instruction::SDiv:
3345 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003346 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003347 const APInt *Numerator, *Denominator;
3348 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3349 return false;
3350 // We cannot hoist this division if the denominator is 0.
3351 if (*Denominator == 0)
3352 return false;
3353 // It's safe to hoist if the denominator is not 0 or -1.
3354 if (*Denominator != -1)
3355 return true;
3356 // At this point we know that the denominator is -1. It is safe to hoist as
3357 // long we know that the numerator is not INT_MIN.
3358 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3359 return !Numerator->isMinSignedValue();
3360 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003361 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003362 }
3363 case Instruction::Load: {
3364 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003365 if (!LI->isUnordered() ||
3366 // Speculative load may create a race that did not exist in the source.
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003367 LI->getParent()->getParent()->hasFnAttribute(
3368 Attribute::SanitizeThread) ||
3369 // Speculative load may load data from dirty regions.
3370 LI->getParent()->getParent()->hasFnAttribute(
3371 Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003372 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003373 const DataLayout &DL = LI->getModule()->getDataLayout();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003374 return isDereferenceableAndAlignedPointer(
3375 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003376 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003377 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003378 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3379 switch (II->getIntrinsicID()) {
3380 // These synthetic intrinsics have no side-effects and just mark
3381 // information about their operands.
3382 // FIXME: There are other no-op synthetic instructions that potentially
3383 // should be considered at least *safe* to speculate...
3384 case Intrinsic::dbg_declare:
3385 case Intrinsic::dbg_value:
3386 return true;
3387
3388 case Intrinsic::bswap:
3389 case Intrinsic::ctlz:
3390 case Intrinsic::ctpop:
3391 case Intrinsic::cttz:
3392 case Intrinsic::objectsize:
3393 case Intrinsic::sadd_with_overflow:
3394 case Intrinsic::smul_with_overflow:
3395 case Intrinsic::ssub_with_overflow:
3396 case Intrinsic::uadd_with_overflow:
3397 case Intrinsic::umul_with_overflow:
3398 case Intrinsic::usub_with_overflow:
3399 return true;
3400 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
3401 // errno like libm sqrt would.
3402 case Intrinsic::sqrt:
3403 case Intrinsic::fma:
3404 case Intrinsic::fmuladd:
3405 case Intrinsic::fabs:
3406 case Intrinsic::minnum:
3407 case Intrinsic::maxnum:
3408 return true;
3409 // TODO: some fp intrinsics are marked as having the same error handling
3410 // as libm. They're safe to speculate when they won't error.
3411 // TODO: are convert_{from,to}_fp16 safe?
3412 // TODO: can we list target-specific intrinsics here?
3413 default: break;
3414 }
3415 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003416 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003417 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003418 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003419 case Instruction::VAArg:
3420 case Instruction::Alloca:
3421 case Instruction::Invoke:
3422 case Instruction::PHI:
3423 case Instruction::Store:
3424 case Instruction::Ret:
3425 case Instruction::Br:
3426 case Instruction::IndirectBr:
3427 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003428 case Instruction::Unreachable:
3429 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003430 case Instruction::AtomicRMW:
3431 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003432 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003433 case Instruction::Resume:
David Majnemer654e1302015-07-31 17:58:14 +00003434 case Instruction::CatchPad:
3435 case Instruction::CatchEndPad:
3436 case Instruction::CatchRet:
3437 case Instruction::CleanupPad:
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00003438 case Instruction::CleanupEndPad:
David Majnemer654e1302015-07-31 17:58:14 +00003439 case Instruction::CleanupRet:
3440 case Instruction::TerminatePad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003441 return false; // Misc instructions which have effects
3442 }
3443}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003444
Quentin Colombet6443cce2015-08-06 18:44:34 +00003445bool llvm::mayBeMemoryDependent(const Instruction &I) {
3446 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3447}
3448
Sanjay Patelaee84212014-11-04 16:27:42 +00003449/// Return true if we know that the specified value is never null.
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003450bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
Chen Li0d043b52015-09-14 18:10:43 +00003451 assert(V->getType()->isPointerTy() && "V must be pointer type");
3452
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003453 // Alloca never returns null, malloc might.
3454 if (isa<AllocaInst>(V)) return true;
3455
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003456 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003457 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003458 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003459
Pete Cooper6b716212015-08-27 03:16:29 +00003460 // A global variable in address space 0 is non null unless extern weak.
3461 // Other address spaces may have null as a valid address for a global,
3462 // so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003463 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Pete Cooper6b716212015-08-27 03:16:29 +00003464 return !GV->hasExternalWeakLinkage() &&
3465 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003466
Philip Reamescdb72f32014-10-20 22:40:55 +00003467 // A Load tagged w/nonnull metadata is never null.
3468 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003469 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003470
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003471 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003472 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003473 return true;
3474
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003475 // operator new never returns null.
3476 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
3477 return true;
3478
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003479 return false;
3480}
David Majnemer491331a2015-01-02 07:29:43 +00003481
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003482static bool isKnownNonNullFromDominatingCondition(const Value *V,
3483 const Instruction *CtxI,
3484 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003485 assert(V->getType()->isPointerTy() && "V must be pointer type");
3486
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003487 unsigned NumUsesExplored = 0;
3488 for (auto U : V->users()) {
3489 // Avoid massive lists
3490 if (NumUsesExplored >= DomConditionsMaxUses)
3491 break;
3492 NumUsesExplored++;
3493 // Consider only compare instructions uniquely controlling a branch
3494 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
3495 if (!Cmp)
3496 continue;
3497
3498 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
3499 continue;
3500
3501 for (auto *CmpU : Cmp->users()) {
3502 const BranchInst *BI = dyn_cast<BranchInst>(CmpU);
3503 if (!BI)
3504 continue;
3505
3506 assert(BI->isConditional() && "uses a comparison!");
3507
3508 BasicBlock *NonNullSuccessor = nullptr;
3509 CmpInst::Predicate Pred;
3510
3511 if (match(const_cast<ICmpInst*>(Cmp),
3512 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) {
3513 if (Pred == ICmpInst::ICMP_EQ)
3514 NonNullSuccessor = BI->getSuccessor(1);
3515 else if (Pred == ICmpInst::ICMP_NE)
3516 NonNullSuccessor = BI->getSuccessor(0);
3517 }
3518
3519 if (NonNullSuccessor) {
3520 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3521 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3522 return true;
3523 }
3524 }
3525 }
3526
3527 return false;
3528}
3529
3530bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3531 const DominatorTree *DT, const TargetLibraryInfo *TLI) {
3532 if (isKnownNonNull(V, TLI))
3533 return true;
3534
3535 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3536}
3537
David Majnemer491331a2015-01-02 07:29:43 +00003538OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003539 const DataLayout &DL,
Chandler Carruth66b31302015-01-04 12:03:27 +00003540 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003541 const Instruction *CxtI,
3542 const DominatorTree *DT) {
3543 // Multiplying n * m significant bits yields a result of n + m significant
3544 // bits. If the total number of significant bits does not exceed the
3545 // result bit width (minus 1), there is no overflow.
3546 // This means if we have enough leading zero bits in the operands
3547 // we can guarantee that the result does not overflow.
3548 // Ref: "Hacker's Delight" by Henry Warren
3549 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3550 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003551 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003552 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003553 APInt RHSKnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003554 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3555 DT);
3556 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3557 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003558 // Note that underestimating the number of zero bits gives a more
3559 // conservative answer.
3560 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3561 RHSKnownZero.countLeadingOnes();
3562 // First handle the easy case: if we have enough zero bits there's
3563 // definitely no overflow.
3564 if (ZeroBits >= BitWidth)
3565 return OverflowResult::NeverOverflows;
3566
3567 // Get the largest possible values for each operand.
3568 APInt LHSMax = ~LHSKnownZero;
3569 APInt RHSMax = ~RHSKnownZero;
3570
3571 // We know the multiply operation doesn't overflow if the maximum values for
3572 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003573 bool MaxOverflow;
3574 LHSMax.umul_ov(RHSMax, MaxOverflow);
3575 if (!MaxOverflow)
3576 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003577
David Majnemerc8a576b2015-01-02 07:29:47 +00003578 // We know it always overflows if multiplying the smallest possible values for
3579 // the operands also results in overflow.
3580 bool MinOverflow;
3581 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3582 if (MinOverflow)
3583 return OverflowResult::AlwaysOverflows;
3584
3585 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003586}
David Majnemer5310c1e2015-01-07 00:39:50 +00003587
3588OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003589 const DataLayout &DL,
David Majnemer5310c1e2015-01-07 00:39:50 +00003590 AssumptionCache *AC,
3591 const Instruction *CxtI,
3592 const DominatorTree *DT) {
3593 bool LHSKnownNonNegative, LHSKnownNegative;
3594 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3595 AC, CxtI, DT);
3596 if (LHSKnownNonNegative || LHSKnownNegative) {
3597 bool RHSKnownNonNegative, RHSKnownNegative;
3598 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3599 AC, CxtI, DT);
3600
3601 if (LHSKnownNegative && RHSKnownNegative) {
3602 // The sign bit is set in both cases: this MUST overflow.
3603 // Create a simple add instruction, and insert it into the struct.
3604 return OverflowResult::AlwaysOverflows;
3605 }
3606
3607 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3608 // The sign bit is clear in both cases: this CANNOT overflow.
3609 // Create a simple add instruction, and insert it into the struct.
3610 return OverflowResult::NeverOverflows;
3611 }
3612 }
3613
3614 return OverflowResult::MayOverflow;
3615}
James Molloy71b91c22015-05-11 14:42:20 +00003616
Jingyue Wu10fcea52015-08-20 18:27:04 +00003617static OverflowResult computeOverflowForSignedAdd(
3618 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3619 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3620 if (Add && Add->hasNoSignedWrap()) {
3621 return OverflowResult::NeverOverflows;
3622 }
3623
3624 bool LHSKnownNonNegative, LHSKnownNegative;
3625 bool RHSKnownNonNegative, RHSKnownNegative;
3626 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3627 AC, CxtI, DT);
3628 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3629 AC, CxtI, DT);
3630
3631 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3632 (LHSKnownNegative && RHSKnownNonNegative)) {
3633 // The sign bits are opposite: this CANNOT overflow.
3634 return OverflowResult::NeverOverflows;
3635 }
3636
3637 // The remaining code needs Add to be available. Early returns if not so.
3638 if (!Add)
3639 return OverflowResult::MayOverflow;
3640
3641 // If the sign of Add is the same as at least one of the operands, this add
3642 // CANNOT overflow. This is particularly useful when the sum is
3643 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3644 // operands.
3645 bool LHSOrRHSKnownNonNegative =
3646 (LHSKnownNonNegative || RHSKnownNonNegative);
3647 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3648 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3649 bool AddKnownNonNegative, AddKnownNegative;
3650 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3651 /*Depth=*/0, AC, CxtI, DT);
3652 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3653 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3654 return OverflowResult::NeverOverflows;
3655 }
3656 }
3657
3658 return OverflowResult::MayOverflow;
3659}
3660
3661OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3662 const DataLayout &DL,
3663 AssumptionCache *AC,
3664 const Instruction *CxtI,
3665 const DominatorTree *DT) {
3666 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3667 Add, DL, AC, CxtI, DT);
3668}
3669
3670OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3671 const DataLayout &DL,
3672 AssumptionCache *AC,
3673 const Instruction *CxtI,
3674 const DominatorTree *DT) {
3675 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3676}
3677
Jingyue Wu42f1d672015-07-28 18:22:40 +00003678bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3679 // FIXME: This conservative implementation can be relaxed. E.g. most
3680 // atomic operations are guaranteed to terminate on most platforms
3681 // and most functions terminate.
3682
3683 return !I->isAtomic() && // atomics may never succeed on some platforms
3684 !isa<CallInst>(I) && // could throw and might not terminate
3685 !isa<InvokeInst>(I) && // might not terminate and could throw to
3686 // non-successor (see bug 24185 for details).
3687 !isa<ResumeInst>(I) && // has no successors
3688 !isa<ReturnInst>(I); // has no successors
3689}
3690
3691bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3692 const Loop *L) {
3693 // The loop header is guaranteed to be executed for every iteration.
3694 //
3695 // FIXME: Relax this constraint to cover all basic blocks that are
3696 // guaranteed to be executed at every iteration.
3697 if (I->getParent() != L->getHeader()) return false;
3698
3699 for (const Instruction &LI : *L->getHeader()) {
3700 if (&LI == I) return true;
3701 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3702 }
3703 llvm_unreachable("Instruction not contained in its own parent basic block.");
3704}
3705
3706bool llvm::propagatesFullPoison(const Instruction *I) {
3707 switch (I->getOpcode()) {
3708 case Instruction::Add:
3709 case Instruction::Sub:
3710 case Instruction::Xor:
3711 case Instruction::Trunc:
3712 case Instruction::BitCast:
3713 case Instruction::AddrSpaceCast:
3714 // These operations all propagate poison unconditionally. Note that poison
3715 // is not any particular value, so xor or subtraction of poison with
3716 // itself still yields poison, not zero.
3717 return true;
3718
3719 case Instruction::AShr:
3720 case Instruction::SExt:
3721 // For these operations, one bit of the input is replicated across
3722 // multiple output bits. A replicated poison bit is still poison.
3723 return true;
3724
3725 case Instruction::Shl: {
3726 // Left shift *by* a poison value is poison. The number of
3727 // positions to shift is unsigned, so no negative values are
3728 // possible there. Left shift by zero places preserves poison. So
3729 // it only remains to consider left shift of poison by a positive
3730 // number of places.
3731 //
3732 // A left shift by a positive number of places leaves the lowest order bit
3733 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3734 // make the poison operand violate that flag, yielding a fresh full-poison
3735 // value.
3736 auto *OBO = cast<OverflowingBinaryOperator>(I);
3737 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3738 }
3739
3740 case Instruction::Mul: {
3741 // A multiplication by zero yields a non-poison zero result, so we need to
3742 // rule out zero as an operand. Conservatively, multiplication by a
3743 // non-zero constant is not multiplication by zero.
3744 //
3745 // Multiplication by a non-zero constant can leave some bits
3746 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3747 // order bit unpoisoned. So we need to consider that.
3748 //
3749 // Multiplication by 1 preserves poison. If the multiplication has a
3750 // no-wrap flag, then we can make the poison operand violate that flag
3751 // when multiplied by any integer other than 0 and 1.
3752 auto *OBO = cast<OverflowingBinaryOperator>(I);
3753 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3754 for (Value *V : OBO->operands()) {
3755 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3756 // A ConstantInt cannot yield poison, so we can assume that it is
3757 // the other operand that is poison.
3758 return !CI->isZero();
3759 }
3760 }
3761 }
3762 return false;
3763 }
3764
3765 case Instruction::GetElementPtr:
3766 // A GEP implicitly represents a sequence of additions, subtractions,
3767 // truncations, sign extensions and multiplications. The multiplications
3768 // are by the non-zero sizes of some set of types, so we do not have to be
3769 // concerned with multiplication by zero. If the GEP is in-bounds, then
3770 // these operations are implicitly no-signed-wrap so poison is propagated
3771 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3772 return cast<GEPOperator>(I)->isInBounds();
3773
3774 default:
3775 return false;
3776 }
3777}
3778
3779const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3780 switch (I->getOpcode()) {
3781 case Instruction::Store:
3782 return cast<StoreInst>(I)->getPointerOperand();
3783
3784 case Instruction::Load:
3785 return cast<LoadInst>(I)->getPointerOperand();
3786
3787 case Instruction::AtomicCmpXchg:
3788 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3789
3790 case Instruction::AtomicRMW:
3791 return cast<AtomicRMWInst>(I)->getPointerOperand();
3792
3793 case Instruction::UDiv:
3794 case Instruction::SDiv:
3795 case Instruction::URem:
3796 case Instruction::SRem:
3797 return I->getOperand(1);
3798
3799 default:
3800 return nullptr;
3801 }
3802}
3803
3804bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3805 // We currently only look for uses of poison values within the same basic
3806 // block, as that makes it easier to guarantee that the uses will be
3807 // executed given that PoisonI is executed.
3808 //
3809 // FIXME: Expand this to consider uses beyond the same basic block. To do
3810 // this, look out for the distinction between post-dominance and strong
3811 // post-dominance.
3812 const BasicBlock *BB = PoisonI->getParent();
3813
3814 // Set of instructions that we have proved will yield poison if PoisonI
3815 // does.
3816 SmallSet<const Value *, 16> YieldsPoison;
3817 YieldsPoison.insert(PoisonI);
3818
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00003819 for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end();
3820 I != E; ++I) {
3821 if (&*I != PoisonI) {
3822 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I);
Jingyue Wu42f1d672015-07-28 18:22:40 +00003823 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true;
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00003824 if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
3825 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003826 }
3827
3828 // Mark poison that propagates from I through uses of I.
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00003829 if (YieldsPoison.count(&*I)) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00003830 for (const User *User : I->users()) {
3831 const Instruction *UserI = cast<Instruction>(User);
3832 if (UserI->getParent() == BB && propagatesFullPoison(UserI))
3833 YieldsPoison.insert(User);
3834 }
3835 }
3836 }
3837 return false;
3838}
3839
James Molloy134bec22015-08-11 09:12:57 +00003840static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3841 if (FMF.noNaNs())
3842 return true;
3843
3844 if (auto *C = dyn_cast<ConstantFP>(V))
3845 return !C->isNaN();
3846 return false;
3847}
3848
3849static bool isKnownNonZero(Value *V) {
3850 if (auto *C = dyn_cast<ConstantFP>(V))
3851 return !C->isZero();
3852 return false;
3853}
3854
3855static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3856 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00003857 Value *CmpLHS, Value *CmpRHS,
3858 Value *TrueVal, Value *FalseVal,
3859 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003860 LHS = CmpLHS;
3861 RHS = CmpRHS;
3862
James Molloy134bec22015-08-11 09:12:57 +00003863 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3864 // return inconsistent results between implementations.
3865 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3866 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3867 // Therefore we behave conservatively and only proceed if at least one of the
3868 // operands is known to not be zero, or if we don't care about signed zeroes.
3869 switch (Pred) {
3870 default: break;
3871 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3872 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3873 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3874 !isKnownNonZero(CmpRHS))
3875 return {SPF_UNKNOWN, SPNB_NA, false};
3876 }
3877
3878 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3879 bool Ordered = false;
3880
3881 // When given one NaN and one non-NaN input:
3882 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3883 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3884 // ordered comparison fails), which could be NaN or non-NaN.
3885 // so here we discover exactly what NaN behavior is required/accepted.
3886 if (CmpInst::isFPPredicate(Pred)) {
3887 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3888 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3889
3890 if (LHSSafe && RHSSafe) {
3891 // Both operands are known non-NaN.
3892 NaNBehavior = SPNB_RETURNS_ANY;
3893 } else if (CmpInst::isOrdered(Pred)) {
3894 // An ordered comparison will return false when given a NaN, so it
3895 // returns the RHS.
3896 Ordered = true;
3897 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003898 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003899 NaNBehavior = SPNB_RETURNS_NAN;
3900 else if (RHSSafe)
3901 NaNBehavior = SPNB_RETURNS_OTHER;
3902 else
3903 // Completely unsafe.
3904 return {SPF_UNKNOWN, SPNB_NA, false};
3905 } else {
3906 Ordered = false;
3907 // An unordered comparison will return true when given a NaN, so it
3908 // returns the LHS.
3909 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003910 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003911 NaNBehavior = SPNB_RETURNS_OTHER;
3912 else if (RHSSafe)
3913 NaNBehavior = SPNB_RETURNS_NAN;
3914 else
3915 // Completely unsafe.
3916 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003917 }
3918 }
3919
James Molloy71b91c22015-05-11 14:42:20 +00003920 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00003921 std::swap(CmpLHS, CmpRHS);
3922 Pred = CmpInst::getSwappedPredicate(Pred);
3923 if (NaNBehavior == SPNB_RETURNS_NAN)
3924 NaNBehavior = SPNB_RETURNS_OTHER;
3925 else if (NaNBehavior == SPNB_RETURNS_OTHER)
3926 NaNBehavior = SPNB_RETURNS_NAN;
3927 Ordered = !Ordered;
3928 }
3929
3930 // ([if]cmp X, Y) ? X : Y
3931 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003932 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00003933 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00003934 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00003935 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003936 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00003937 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003938 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00003939 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003940 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00003941 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3942 case FCmpInst::FCMP_UGT:
3943 case FCmpInst::FCMP_UGE:
3944 case FCmpInst::FCMP_OGT:
3945 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3946 case FCmpInst::FCMP_ULT:
3947 case FCmpInst::FCMP_ULE:
3948 case FCmpInst::FCMP_OLT:
3949 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00003950 }
3951 }
3952
3953 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3954 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3955 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3956
3957 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3958 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3959 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003960 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003961 }
3962
3963 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3964 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3965 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003966 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003967 }
3968 }
3969
3970 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3971 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
3972 if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() &&
3973 (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3974 match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3975 LHS = TrueVal;
3976 RHS = FalseVal;
James Molloy134bec22015-08-11 09:12:57 +00003977 return {SPF_SMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003978 }
3979 }
3980 }
3981
3982 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
3983
James Molloy134bec22015-08-11 09:12:57 +00003984 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003985}
James Molloy270ef8c2015-05-15 16:04:50 +00003986
James Molloy569cea62015-09-02 17:25:25 +00003987static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3988 Instruction::CastOps *CastOp) {
James Molloy270ef8c2015-05-15 16:04:50 +00003989 CastInst *CI = dyn_cast<CastInst>(V1);
3990 Constant *C = dyn_cast<Constant>(V2);
James Molloy569cea62015-09-02 17:25:25 +00003991 CastInst *CI2 = dyn_cast<CastInst>(V2);
3992 if (!CI)
James Molloy270ef8c2015-05-15 16:04:50 +00003993 return nullptr;
3994 *CastOp = CI->getOpcode();
3995
James Molloy569cea62015-09-02 17:25:25 +00003996 if (CI2) {
3997 // If V1 and V2 are both the same cast from the same type, we can look
3998 // through V1.
3999 if (CI2->getOpcode() == CI->getOpcode() &&
4000 CI2->getSrcTy() == CI->getSrcTy())
4001 return CI2->getOperand(0);
4002 return nullptr;
4003 } else if (!C) {
4004 return nullptr;
4005 }
4006
James Molloy2b21a7c2015-05-20 18:41:25 +00004007 if (isa<SExtInst>(CI) && CmpI->isSigned()) {
4008 Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy());
4009 // This is only valid if the truncated value can be sign-extended
4010 // back to the original value.
4011 if (ConstantExpr::getSExt(T, C->getType()) == C)
4012 return T;
4013 return nullptr;
4014 }
4015 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
James Molloy270ef8c2015-05-15 16:04:50 +00004016 return ConstantExpr::getTrunc(C, CI->getSrcTy());
4017
4018 if (isa<TruncInst>(CI))
4019 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
4020
James Molloy134bec22015-08-11 09:12:57 +00004021 if (isa<FPToUIInst>(CI))
4022 return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
4023
4024 if (isa<FPToSIInst>(CI))
4025 return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
4026
4027 if (isa<UIToFPInst>(CI))
4028 return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
4029
4030 if (isa<SIToFPInst>(CI))
4031 return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
4032
4033 if (isa<FPTruncInst>(CI))
4034 return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
4035
4036 if (isa<FPExtInst>(CI))
4037 return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
4038
James Molloy270ef8c2015-05-15 16:04:50 +00004039 return nullptr;
4040}
4041
James Molloy134bec22015-08-11 09:12:57 +00004042SelectPatternResult llvm::matchSelectPattern(Value *V,
James Molloy270ef8c2015-05-15 16:04:50 +00004043 Value *&LHS, Value *&RHS,
4044 Instruction::CastOps *CastOp) {
4045 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004046 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004047
James Molloy134bec22015-08-11 09:12:57 +00004048 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4049 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004050
James Molloy134bec22015-08-11 09:12:57 +00004051 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004052 Value *CmpLHS = CmpI->getOperand(0);
4053 Value *CmpRHS = CmpI->getOperand(1);
4054 Value *TrueVal = SI->getTrueValue();
4055 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004056 FastMathFlags FMF;
4057 if (isa<FPMathOperator>(CmpI))
4058 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004059
4060 // Bail out early.
4061 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004062 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004063
4064 // Deal with type mismatches.
4065 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004066 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004067 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004068 cast<CastInst>(TrueVal)->getOperand(0), C,
4069 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004070 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004071 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004072 C, cast<CastInst>(FalseVal)->getOperand(0),
4073 LHS, RHS);
4074 }
James Molloy134bec22015-08-11 09:12:57 +00004075 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004076 LHS, RHS);
4077}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004078
4079ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
4080 const unsigned NumRanges = Ranges.getNumOperands() / 2;
4081 assert(NumRanges >= 1 && "Must have at least one range!");
4082 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
4083
4084 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
4085 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
4086
4087 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
4088
4089 for (unsigned i = 1; i < NumRanges; ++i) {
4090 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
4091 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
4092
4093 // Note: unionWith will potentially create a range that contains values not
4094 // contained in any of the original N ranges.
4095 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
4096 }
4097
4098 return CR;
4099}
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004100
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004101/// Return true if "icmp Pred LHS RHS" is always true.
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004102static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
4103 const DataLayout &DL, unsigned Depth,
4104 AssumptionCache *AC, const Instruction *CxtI,
4105 const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004106 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004107 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4108 return true;
4109
4110 switch (Pred) {
4111 default:
4112 return false;
4113
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004114 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004115 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004116
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004117 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004118 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004119 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004120 return false;
4121 }
4122
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004123 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004124 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004125
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004126 // LHS u<= LHS +_{nuw} C for any C
4127 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004128 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004129
4130 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
4131 auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X,
4132 const APInt *&CA, const APInt *&CB) {
4133 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4134 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4135 return true;
4136
4137 // If X & C == 0 then (X | C) == X +_{nuw} C
4138 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4139 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4140 unsigned BitWidth = CA->getBitWidth();
4141 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4142 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
4143
4144 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4145 return true;
4146 }
4147
4148 return false;
4149 };
4150
4151 Value *X;
4152 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004153 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4154 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004155
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004156 return false;
4157 }
4158 }
4159}
4160
4161/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
4162/// ALHS ARHS" is true.
4163static bool isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS,
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004164 Value *ARHS, Value *BLHS, Value *BRHS,
4165 const DataLayout &DL, unsigned Depth,
4166 AssumptionCache *AC, const Instruction *CxtI,
4167 const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004168 switch (Pred) {
4169 default:
4170 return false;
4171
4172 case CmpInst::ICMP_SLT:
4173 case CmpInst::ICMP_SLE:
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004174 return isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
4175 DT) &&
4176 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI,
4177 DT);
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004178
4179 case CmpInst::ICMP_ULT:
4180 case CmpInst::ICMP_ULE:
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004181 return isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4182 DT) &&
4183 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI,
4184 DT);
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004185 }
4186}
4187
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004188bool llvm::isImpliedCondition(Value *LHS, Value *RHS, const DataLayout &DL,
4189 unsigned Depth, AssumptionCache *AC,
4190 const Instruction *CxtI,
4191 const DominatorTree *DT) {
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004192 assert(LHS->getType() == RHS->getType() && "mismatched type");
4193 Type *OpTy = LHS->getType();
4194 assert(OpTy->getScalarType()->isIntegerTy(1));
4195
4196 // LHS ==> RHS by definition
4197 if (LHS == RHS) return true;
4198
4199 if (OpTy->isVectorTy())
4200 // TODO: extending the code below to handle vectors
4201 return false;
4202 assert(OpTy->isIntegerTy(1) && "implied by above");
4203
4204 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004205 Value *ALHS, *ARHS;
4206 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004207
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004208 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4209 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
4210 return false;
4211
4212 if (APred == BPred)
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004213 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4214 CxtI, DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004215
4216 return false;
4217}