blob: f18cdca486115a540fa6e273f31629bcffa8c028 [file] [log] [blame]
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001//===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLoweringBase class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/ADT/STLExtras.h"
Sanjay Patel0051efc2016-10-20 16:55:45 +000017#include "llvm/ADT/StringExtras.h"
Paul Redmondf29ddfe2013-02-15 18:45:18 +000018#include "llvm/ADT/Triple.h"
Benjamin Kramer56b31bd2013-01-11 20:05:37 +000019#include "llvm/CodeGen/Analysis.h"
20#include "llvm/CodeGen/MachineFrameInfo.h"
21#include "llvm/CodeGen/MachineFunction.h"
Lang Hames39609992013-11-29 03:07:54 +000022#include "llvm/CodeGen/MachineInstrBuilder.h"
Benjamin Kramer56b31bd2013-01-11 20:05:37 +000023#include "llvm/CodeGen/MachineJumpTableInfo.h"
Lang Hames39609992013-11-29 03:07:54 +000024#include "llvm/CodeGen/StackMaps.h"
Benjamin Kramer56b31bd2013-01-11 20:05:37 +000025#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/DerivedTypes.h"
27#include "llvm/IR/GlobalVariable.h"
Rafael Espindoladaeafb42014-02-19 17:23:20 +000028#include "llvm/IR/Mangler.h"
Benjamin Kramer56b31bd2013-01-11 20:05:37 +000029#include "llvm/MC/MCAsmInfo.h"
Rafael Espindoladaeafb42014-02-19 17:23:20 +000030#include "llvm/MC/MCContext.h"
Benjamin Kramer56b31bd2013-01-11 20:05:37 +000031#include "llvm/MC/MCExpr.h"
Sanjay Pateld66607b2016-04-26 17:11:17 +000032#include "llvm/Support/BranchProbability.h"
Benjamin Kramer56b31bd2013-01-11 20:05:37 +000033#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Target/TargetLoweringObjectFile.h"
37#include "llvm/Target/TargetMachine.h"
38#include "llvm/Target/TargetRegisterInfo.h"
Eric Christopherd9134482014-08-04 21:25:23 +000039#include "llvm/Target/TargetSubtargetInfo.h"
Benjamin Kramer56b31bd2013-01-11 20:05:37 +000040#include <cctype>
41using namespace llvm;
42
Sanjay Patel943829a2015-07-01 18:10:20 +000043static cl::opt<bool> JumpIsExpensiveOverride(
44 "jump-is-expensive", cl::init(false),
45 cl::desc("Do not create extra branches to split comparison logic."),
46 cl::Hidden);
47
Evandro Menezeseb97e352016-10-25 19:53:51 +000048static cl::opt<unsigned> MinimumJumpTableEntries
49 ("min-jump-table-entries", cl::init(4), cl::Hidden,
50 cl::desc("Set minimum number of entries to use a jump table."));
51
Evandro Menezese45de8a2016-09-26 15:32:33 +000052static cl::opt<unsigned> MaximumJumpTableSize
Evandro Menezeseb97e352016-10-25 19:53:51 +000053 ("max-jump-table-size", cl::init(0), cl::Hidden,
54 cl::desc("Set maximum size of jump tables; zero for no limit."));
Evandro Menezese45de8a2016-09-26 15:32:33 +000055
Sanjay Pateld66607b2016-04-26 17:11:17 +000056// Although this default value is arbitrary, it is not random. It is assumed
57// that a condition that evaluates the same way by a higher percentage than this
58// is best represented as control flow. Therefore, the default value N should be
59// set such that the win from N% correct executions is greater than the loss
60// from (100 - N)% mispredicted executions for the majority of intended targets.
61static cl::opt<int> MinPercentageForPredictableBranch(
62 "min-predictable-branch", cl::init(99),
63 cl::desc("Minimum percentage (0-100) that a condition must be either true "
64 "or false to assume that the condition is predictable"),
65 cl::Hidden);
66
Benjamin Kramer56b31bd2013-01-11 20:05:37 +000067/// InitLibcallNames - Set default libcall names.
68///
Eric Christopherd91d6052014-06-02 20:51:49 +000069static void InitLibcallNames(const char **Names, const Triple &TT) {
Benjamin Kramer56b31bd2013-01-11 20:05:37 +000070 Names[RTLIB::SHL_I16] = "__ashlhi3";
71 Names[RTLIB::SHL_I32] = "__ashlsi3";
72 Names[RTLIB::SHL_I64] = "__ashldi3";
73 Names[RTLIB::SHL_I128] = "__ashlti3";
74 Names[RTLIB::SRL_I16] = "__lshrhi3";
75 Names[RTLIB::SRL_I32] = "__lshrsi3";
76 Names[RTLIB::SRL_I64] = "__lshrdi3";
77 Names[RTLIB::SRL_I128] = "__lshrti3";
78 Names[RTLIB::SRA_I16] = "__ashrhi3";
79 Names[RTLIB::SRA_I32] = "__ashrsi3";
80 Names[RTLIB::SRA_I64] = "__ashrdi3";
81 Names[RTLIB::SRA_I128] = "__ashrti3";
82 Names[RTLIB::MUL_I8] = "__mulqi3";
83 Names[RTLIB::MUL_I16] = "__mulhi3";
84 Names[RTLIB::MUL_I32] = "__mulsi3";
85 Names[RTLIB::MUL_I64] = "__muldi3";
86 Names[RTLIB::MUL_I128] = "__multi3";
87 Names[RTLIB::MULO_I32] = "__mulosi4";
88 Names[RTLIB::MULO_I64] = "__mulodi4";
89 Names[RTLIB::MULO_I128] = "__muloti4";
90 Names[RTLIB::SDIV_I8] = "__divqi3";
91 Names[RTLIB::SDIV_I16] = "__divhi3";
92 Names[RTLIB::SDIV_I32] = "__divsi3";
93 Names[RTLIB::SDIV_I64] = "__divdi3";
94 Names[RTLIB::SDIV_I128] = "__divti3";
95 Names[RTLIB::UDIV_I8] = "__udivqi3";
96 Names[RTLIB::UDIV_I16] = "__udivhi3";
97 Names[RTLIB::UDIV_I32] = "__udivsi3";
98 Names[RTLIB::UDIV_I64] = "__udivdi3";
99 Names[RTLIB::UDIV_I128] = "__udivti3";
100 Names[RTLIB::SREM_I8] = "__modqi3";
101 Names[RTLIB::SREM_I16] = "__modhi3";
102 Names[RTLIB::SREM_I32] = "__modsi3";
103 Names[RTLIB::SREM_I64] = "__moddi3";
104 Names[RTLIB::SREM_I128] = "__modti3";
105 Names[RTLIB::UREM_I8] = "__umodqi3";
106 Names[RTLIB::UREM_I16] = "__umodhi3";
107 Names[RTLIB::UREM_I32] = "__umodsi3";
108 Names[RTLIB::UREM_I64] = "__umoddi3";
109 Names[RTLIB::UREM_I128] = "__umodti3";
110
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000111 Names[RTLIB::NEG_I32] = "__negsi2";
112 Names[RTLIB::NEG_I64] = "__negdi2";
113 Names[RTLIB::ADD_F32] = "__addsf3";
114 Names[RTLIB::ADD_F64] = "__adddf3";
115 Names[RTLIB::ADD_F80] = "__addxf3";
116 Names[RTLIB::ADD_F128] = "__addtf3";
117 Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
118 Names[RTLIB::SUB_F32] = "__subsf3";
119 Names[RTLIB::SUB_F64] = "__subdf3";
120 Names[RTLIB::SUB_F80] = "__subxf3";
121 Names[RTLIB::SUB_F128] = "__subtf3";
122 Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
123 Names[RTLIB::MUL_F32] = "__mulsf3";
124 Names[RTLIB::MUL_F64] = "__muldf3";
125 Names[RTLIB::MUL_F80] = "__mulxf3";
126 Names[RTLIB::MUL_F128] = "__multf3";
127 Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
128 Names[RTLIB::DIV_F32] = "__divsf3";
129 Names[RTLIB::DIV_F64] = "__divdf3";
130 Names[RTLIB::DIV_F80] = "__divxf3";
131 Names[RTLIB::DIV_F128] = "__divtf3";
132 Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
133 Names[RTLIB::REM_F32] = "fmodf";
134 Names[RTLIB::REM_F64] = "fmod";
135 Names[RTLIB::REM_F80] = "fmodl";
136 Names[RTLIB::REM_F128] = "fmodl";
137 Names[RTLIB::REM_PPCF128] = "fmodl";
138 Names[RTLIB::FMA_F32] = "fmaf";
139 Names[RTLIB::FMA_F64] = "fma";
140 Names[RTLIB::FMA_F80] = "fmal";
141 Names[RTLIB::FMA_F128] = "fmal";
142 Names[RTLIB::FMA_PPCF128] = "fmal";
143 Names[RTLIB::POWI_F32] = "__powisf2";
144 Names[RTLIB::POWI_F64] = "__powidf2";
145 Names[RTLIB::POWI_F80] = "__powixf2";
146 Names[RTLIB::POWI_F128] = "__powitf2";
147 Names[RTLIB::POWI_PPCF128] = "__powitf2";
148 Names[RTLIB::SQRT_F32] = "sqrtf";
149 Names[RTLIB::SQRT_F64] = "sqrt";
150 Names[RTLIB::SQRT_F80] = "sqrtl";
151 Names[RTLIB::SQRT_F128] = "sqrtl";
152 Names[RTLIB::SQRT_PPCF128] = "sqrtl";
153 Names[RTLIB::LOG_F32] = "logf";
154 Names[RTLIB::LOG_F64] = "log";
155 Names[RTLIB::LOG_F80] = "logl";
156 Names[RTLIB::LOG_F128] = "logl";
157 Names[RTLIB::LOG_PPCF128] = "logl";
158 Names[RTLIB::LOG2_F32] = "log2f";
159 Names[RTLIB::LOG2_F64] = "log2";
160 Names[RTLIB::LOG2_F80] = "log2l";
161 Names[RTLIB::LOG2_F128] = "log2l";
162 Names[RTLIB::LOG2_PPCF128] = "log2l";
163 Names[RTLIB::LOG10_F32] = "log10f";
164 Names[RTLIB::LOG10_F64] = "log10";
165 Names[RTLIB::LOG10_F80] = "log10l";
166 Names[RTLIB::LOG10_F128] = "log10l";
167 Names[RTLIB::LOG10_PPCF128] = "log10l";
168 Names[RTLIB::EXP_F32] = "expf";
169 Names[RTLIB::EXP_F64] = "exp";
170 Names[RTLIB::EXP_F80] = "expl";
171 Names[RTLIB::EXP_F128] = "expl";
172 Names[RTLIB::EXP_PPCF128] = "expl";
173 Names[RTLIB::EXP2_F32] = "exp2f";
174 Names[RTLIB::EXP2_F64] = "exp2";
175 Names[RTLIB::EXP2_F80] = "exp2l";
176 Names[RTLIB::EXP2_F128] = "exp2l";
177 Names[RTLIB::EXP2_PPCF128] = "exp2l";
178 Names[RTLIB::SIN_F32] = "sinf";
179 Names[RTLIB::SIN_F64] = "sin";
180 Names[RTLIB::SIN_F80] = "sinl";
181 Names[RTLIB::SIN_F128] = "sinl";
182 Names[RTLIB::SIN_PPCF128] = "sinl";
183 Names[RTLIB::COS_F32] = "cosf";
184 Names[RTLIB::COS_F64] = "cos";
185 Names[RTLIB::COS_F80] = "cosl";
186 Names[RTLIB::COS_F128] = "cosl";
187 Names[RTLIB::COS_PPCF128] = "cosl";
188 Names[RTLIB::POW_F32] = "powf";
189 Names[RTLIB::POW_F64] = "pow";
190 Names[RTLIB::POW_F80] = "powl";
191 Names[RTLIB::POW_F128] = "powl";
192 Names[RTLIB::POW_PPCF128] = "powl";
193 Names[RTLIB::CEIL_F32] = "ceilf";
194 Names[RTLIB::CEIL_F64] = "ceil";
195 Names[RTLIB::CEIL_F80] = "ceill";
196 Names[RTLIB::CEIL_F128] = "ceill";
197 Names[RTLIB::CEIL_PPCF128] = "ceill";
198 Names[RTLIB::TRUNC_F32] = "truncf";
199 Names[RTLIB::TRUNC_F64] = "trunc";
200 Names[RTLIB::TRUNC_F80] = "truncl";
201 Names[RTLIB::TRUNC_F128] = "truncl";
202 Names[RTLIB::TRUNC_PPCF128] = "truncl";
203 Names[RTLIB::RINT_F32] = "rintf";
204 Names[RTLIB::RINT_F64] = "rint";
205 Names[RTLIB::RINT_F80] = "rintl";
206 Names[RTLIB::RINT_F128] = "rintl";
207 Names[RTLIB::RINT_PPCF128] = "rintl";
208 Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
209 Names[RTLIB::NEARBYINT_F64] = "nearbyint";
210 Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
211 Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
212 Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
Hal Finkel171817e2013-08-07 22:49:12 +0000213 Names[RTLIB::ROUND_F32] = "roundf";
214 Names[RTLIB::ROUND_F64] = "round";
215 Names[RTLIB::ROUND_F80] = "roundl";
216 Names[RTLIB::ROUND_F128] = "roundl";
217 Names[RTLIB::ROUND_PPCF128] = "roundl";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000218 Names[RTLIB::FLOOR_F32] = "floorf";
219 Names[RTLIB::FLOOR_F64] = "floor";
220 Names[RTLIB::FLOOR_F80] = "floorl";
221 Names[RTLIB::FLOOR_F128] = "floorl";
222 Names[RTLIB::FLOOR_PPCF128] = "floorl";
Matt Arsenault7c936902014-10-21 23:01:01 +0000223 Names[RTLIB::FMIN_F32] = "fminf";
224 Names[RTLIB::FMIN_F64] = "fmin";
225 Names[RTLIB::FMIN_F80] = "fminl";
226 Names[RTLIB::FMIN_F128] = "fminl";
227 Names[RTLIB::FMIN_PPCF128] = "fminl";
228 Names[RTLIB::FMAX_F32] = "fmaxf";
229 Names[RTLIB::FMAX_F64] = "fmax";
230 Names[RTLIB::FMAX_F80] = "fmaxl";
231 Names[RTLIB::FMAX_F128] = "fmaxl";
232 Names[RTLIB::FMAX_PPCF128] = "fmaxl";
Tim Northover753eca02014-03-29 09:03:18 +0000233 Names[RTLIB::ROUND_F32] = "roundf";
234 Names[RTLIB::ROUND_F64] = "round";
235 Names[RTLIB::ROUND_F80] = "roundl";
236 Names[RTLIB::ROUND_F128] = "roundl";
237 Names[RTLIB::ROUND_PPCF128] = "roundl";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000238 Names[RTLIB::COPYSIGN_F32] = "copysignf";
239 Names[RTLIB::COPYSIGN_F64] = "copysign";
240 Names[RTLIB::COPYSIGN_F80] = "copysignl";
241 Names[RTLIB::COPYSIGN_F128] = "copysignl";
242 Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
Petar Jovanovic23e44f52016-02-04 14:43:50 +0000243 Names[RTLIB::FPEXT_F32_PPCF128] = "__gcc_stoq";
244 Names[RTLIB::FPEXT_F64_PPCF128] = "__gcc_dtoq";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000245 Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
246 Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
247 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
James Y Knight7873fb92016-04-12 22:32:47 +0000248 if (TT.isOSDarwin()) {
249 // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
250 // of the gnueabi-style __gnu_*_ieee.
251 // FIXME: What about other targets?
252 Names[RTLIB::FPEXT_F16_F32] = "__extendhfsf2";
253 Names[RTLIB::FPROUND_F32_F16] = "__truncsfhf2";
254 } else {
255 Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
256 Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
257 }
Tim Northover84ce0a62014-07-17 11:12:12 +0000258 Names[RTLIB::FPROUND_F64_F16] = "__truncdfhf2";
259 Names[RTLIB::FPROUND_F80_F16] = "__truncxfhf2";
260 Names[RTLIB::FPROUND_F128_F16] = "__trunctfhf2";
261 Names[RTLIB::FPROUND_PPCF128_F16] = "__trunctfhf2";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000262 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
263 Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
264 Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
Petar Jovanovic23e44f52016-02-04 14:43:50 +0000265 Names[RTLIB::FPROUND_PPCF128_F32] = "__gcc_qtos";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000266 Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
267 Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
Petar Jovanovic23e44f52016-02-04 14:43:50 +0000268 Names[RTLIB::FPROUND_PPCF128_F64] = "__gcc_qtod";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000269 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
270 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
271 Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000272 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
273 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
274 Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
275 Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
276 Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
277 Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
278 Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
279 Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
280 Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
Petar Jovanovic23e44f52016-02-04 14:43:50 +0000281 Names[RTLIB::FPTOSINT_PPCF128_I32] = "__gcc_qtou";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000282 Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
283 Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000284 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
285 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
286 Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000287 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
288 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
289 Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
290 Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
291 Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
292 Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
293 Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
294 Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
295 Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
296 Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
297 Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
298 Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
299 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
300 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
301 Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
302 Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
Petar Jovanovic23e44f52016-02-04 14:43:50 +0000303 Names[RTLIB::SINTTOFP_I32_PPCF128] = "__gcc_itoq";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000304 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
305 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
306 Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
307 Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
308 Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
309 Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
310 Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
311 Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
312 Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
313 Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
314 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
315 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
316 Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
317 Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
Petar Jovanovic23e44f52016-02-04 14:43:50 +0000318 Names[RTLIB::UINTTOFP_I32_PPCF128] = "__gcc_utoq";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000319 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
320 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
321 Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
322 Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
323 Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
324 Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
325 Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
326 Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
327 Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
328 Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
329 Names[RTLIB::OEQ_F32] = "__eqsf2";
330 Names[RTLIB::OEQ_F64] = "__eqdf2";
331 Names[RTLIB::OEQ_F128] = "__eqtf2";
Petar Jovanovic23e44f52016-02-04 14:43:50 +0000332 Names[RTLIB::OEQ_PPCF128] = "__gcc_qeq";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000333 Names[RTLIB::UNE_F32] = "__nesf2";
334 Names[RTLIB::UNE_F64] = "__nedf2";
335 Names[RTLIB::UNE_F128] = "__netf2";
Petar Jovanovic23e44f52016-02-04 14:43:50 +0000336 Names[RTLIB::UNE_PPCF128] = "__gcc_qne";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000337 Names[RTLIB::OGE_F32] = "__gesf2";
338 Names[RTLIB::OGE_F64] = "__gedf2";
339 Names[RTLIB::OGE_F128] = "__getf2";
Petar Jovanovic23e44f52016-02-04 14:43:50 +0000340 Names[RTLIB::OGE_PPCF128] = "__gcc_qge";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000341 Names[RTLIB::OLT_F32] = "__ltsf2";
342 Names[RTLIB::OLT_F64] = "__ltdf2";
343 Names[RTLIB::OLT_F128] = "__lttf2";
Petar Jovanovic23e44f52016-02-04 14:43:50 +0000344 Names[RTLIB::OLT_PPCF128] = "__gcc_qlt";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000345 Names[RTLIB::OLE_F32] = "__lesf2";
346 Names[RTLIB::OLE_F64] = "__ledf2";
347 Names[RTLIB::OLE_F128] = "__letf2";
Petar Jovanovic23e44f52016-02-04 14:43:50 +0000348 Names[RTLIB::OLE_PPCF128] = "__gcc_qle";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000349 Names[RTLIB::OGT_F32] = "__gtsf2";
350 Names[RTLIB::OGT_F64] = "__gtdf2";
351 Names[RTLIB::OGT_F128] = "__gttf2";
Petar Jovanovic23e44f52016-02-04 14:43:50 +0000352 Names[RTLIB::OGT_PPCF128] = "__gcc_qgt";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000353 Names[RTLIB::UO_F32] = "__unordsf2";
354 Names[RTLIB::UO_F64] = "__unorddf2";
355 Names[RTLIB::UO_F128] = "__unordtf2";
Petar Jovanovic23e44f52016-02-04 14:43:50 +0000356 Names[RTLIB::UO_PPCF128] = "__gcc_qunord";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000357 Names[RTLIB::O_F32] = "__unordsf2";
358 Names[RTLIB::O_F64] = "__unorddf2";
359 Names[RTLIB::O_F128] = "__unordtf2";
Petar Jovanovic23e44f52016-02-04 14:43:50 +0000360 Names[RTLIB::O_PPCF128] = "__gcc_qunord";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000361 Names[RTLIB::MEMCPY] = "memcpy";
362 Names[RTLIB::MEMMOVE] = "memmove";
363 Names[RTLIB::MEMSET] = "memset";
Igor Laevsky4f31e522016-12-29 14:31:07 +0000364 Names[RTLIB::MEMCPY_ELEMENT_ATOMIC_1] = "__llvm_memcpy_element_atomic_1";
365 Names[RTLIB::MEMCPY_ELEMENT_ATOMIC_2] = "__llvm_memcpy_element_atomic_2";
366 Names[RTLIB::MEMCPY_ELEMENT_ATOMIC_4] = "__llvm_memcpy_element_atomic_4";
367 Names[RTLIB::MEMCPY_ELEMENT_ATOMIC_8] = "__llvm_memcpy_element_atomic_8";
368 Names[RTLIB::MEMCPY_ELEMENT_ATOMIC_16] = "__llvm_memcpy_element_atomic_16";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000369 Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
370 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
371 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
372 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
373 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
David Majnemer451b7dd2013-10-18 08:03:43 +0000374 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000375 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
376 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
377 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
378 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
David Majnemer451b7dd2013-10-18 08:03:43 +0000379 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000380 Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
381 Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
382 Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
383 Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
David Majnemer451b7dd2013-10-18 08:03:43 +0000384 Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000385 Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
386 Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
387 Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
388 Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
David Majnemer451b7dd2013-10-18 08:03:43 +0000389 Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000390 Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
391 Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
392 Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
393 Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
David Majnemer451b7dd2013-10-18 08:03:43 +0000394 Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000395 Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
396 Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
397 Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
398 Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
David Majnemer451b7dd2013-10-18 08:03:43 +0000399 Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000400 Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
401 Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
402 Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
403 Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
David Majnemer451b7dd2013-10-18 08:03:43 +0000404 Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000405 Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
406 Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
407 Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
408 Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
David Majnemer451b7dd2013-10-18 08:03:43 +0000409 Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16";
Tim Northovera564d322013-10-25 09:30:20 +0000410 Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1";
411 Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2";
412 Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4";
413 Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8";
414 Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16";
415 Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1";
416 Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2";
417 Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4";
418 Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8";
419 Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16";
420 Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1";
421 Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2";
422 Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4";
423 Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8";
424 Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16";
425 Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1";
426 Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2";
427 Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4";
428 Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8";
429 Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16";
James Y Knight19f6cce2016-04-12 20:18:48 +0000430
431 Names[RTLIB::ATOMIC_LOAD] = "__atomic_load";
432 Names[RTLIB::ATOMIC_LOAD_1] = "__atomic_load_1";
433 Names[RTLIB::ATOMIC_LOAD_2] = "__atomic_load_2";
434 Names[RTLIB::ATOMIC_LOAD_4] = "__atomic_load_4";
435 Names[RTLIB::ATOMIC_LOAD_8] = "__atomic_load_8";
436 Names[RTLIB::ATOMIC_LOAD_16] = "__atomic_load_16";
437
438 Names[RTLIB::ATOMIC_STORE] = "__atomic_store";
439 Names[RTLIB::ATOMIC_STORE_1] = "__atomic_store_1";
440 Names[RTLIB::ATOMIC_STORE_2] = "__atomic_store_2";
441 Names[RTLIB::ATOMIC_STORE_4] = "__atomic_store_4";
442 Names[RTLIB::ATOMIC_STORE_8] = "__atomic_store_8";
443 Names[RTLIB::ATOMIC_STORE_16] = "__atomic_store_16";
444
445 Names[RTLIB::ATOMIC_EXCHANGE] = "__atomic_exchange";
446 Names[RTLIB::ATOMIC_EXCHANGE_1] = "__atomic_exchange_1";
447 Names[RTLIB::ATOMIC_EXCHANGE_2] = "__atomic_exchange_2";
448 Names[RTLIB::ATOMIC_EXCHANGE_4] = "__atomic_exchange_4";
449 Names[RTLIB::ATOMIC_EXCHANGE_8] = "__atomic_exchange_8";
450 Names[RTLIB::ATOMIC_EXCHANGE_16] = "__atomic_exchange_16";
451
452 Names[RTLIB::ATOMIC_COMPARE_EXCHANGE] = "__atomic_compare_exchange";
453 Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_1] = "__atomic_compare_exchange_1";
454 Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_2] = "__atomic_compare_exchange_2";
455 Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_4] = "__atomic_compare_exchange_4";
456 Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_8] = "__atomic_compare_exchange_8";
457 Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_16] = "__atomic_compare_exchange_16";
458
459 Names[RTLIB::ATOMIC_FETCH_ADD_1] = "__atomic_fetch_add_1";
460 Names[RTLIB::ATOMIC_FETCH_ADD_2] = "__atomic_fetch_add_2";
461 Names[RTLIB::ATOMIC_FETCH_ADD_4] = "__atomic_fetch_add_4";
462 Names[RTLIB::ATOMIC_FETCH_ADD_8] = "__atomic_fetch_add_8";
463 Names[RTLIB::ATOMIC_FETCH_ADD_16] = "__atomic_fetch_add_16";
464 Names[RTLIB::ATOMIC_FETCH_SUB_1] = "__atomic_fetch_sub_1";
465 Names[RTLIB::ATOMIC_FETCH_SUB_2] = "__atomic_fetch_sub_2";
466 Names[RTLIB::ATOMIC_FETCH_SUB_4] = "__atomic_fetch_sub_4";
467 Names[RTLIB::ATOMIC_FETCH_SUB_8] = "__atomic_fetch_sub_8";
468 Names[RTLIB::ATOMIC_FETCH_SUB_16] = "__atomic_fetch_sub_16";
469 Names[RTLIB::ATOMIC_FETCH_AND_1] = "__atomic_fetch_and_1";
470 Names[RTLIB::ATOMIC_FETCH_AND_2] = "__atomic_fetch_and_2";
471 Names[RTLIB::ATOMIC_FETCH_AND_4] = "__atomic_fetch_and_4";
472 Names[RTLIB::ATOMIC_FETCH_AND_8] = "__atomic_fetch_and_8";
473 Names[RTLIB::ATOMIC_FETCH_AND_16] = "__atomic_fetch_and_16";
474 Names[RTLIB::ATOMIC_FETCH_OR_1] = "__atomic_fetch_or_1";
475 Names[RTLIB::ATOMIC_FETCH_OR_2] = "__atomic_fetch_or_2";
476 Names[RTLIB::ATOMIC_FETCH_OR_4] = "__atomic_fetch_or_4";
477 Names[RTLIB::ATOMIC_FETCH_OR_8] = "__atomic_fetch_or_8";
478 Names[RTLIB::ATOMIC_FETCH_OR_16] = "__atomic_fetch_or_16";
479 Names[RTLIB::ATOMIC_FETCH_XOR_1] = "__atomic_fetch_xor_1";
480 Names[RTLIB::ATOMIC_FETCH_XOR_2] = "__atomic_fetch_xor_2";
481 Names[RTLIB::ATOMIC_FETCH_XOR_4] = "__atomic_fetch_xor_4";
482 Names[RTLIB::ATOMIC_FETCH_XOR_8] = "__atomic_fetch_xor_8";
483 Names[RTLIB::ATOMIC_FETCH_XOR_16] = "__atomic_fetch_xor_16";
484 Names[RTLIB::ATOMIC_FETCH_NAND_1] = "__atomic_fetch_nand_1";
485 Names[RTLIB::ATOMIC_FETCH_NAND_2] = "__atomic_fetch_nand_2";
486 Names[RTLIB::ATOMIC_FETCH_NAND_4] = "__atomic_fetch_nand_4";
487 Names[RTLIB::ATOMIC_FETCH_NAND_8] = "__atomic_fetch_nand_8";
488 Names[RTLIB::ATOMIC_FETCH_NAND_16] = "__atomic_fetch_nand_16";
489
Daniel Sandersbf2c03e2016-06-21 12:29:03 +0000490 if (TT.isGNUEnvironment()) {
Paul Redmondf29ddfe2013-02-15 18:45:18 +0000491 Names[RTLIB::SINCOS_F32] = "sincosf";
492 Names[RTLIB::SINCOS_F64] = "sincos";
493 Names[RTLIB::SINCOS_F80] = "sincosl";
494 Names[RTLIB::SINCOS_F128] = "sincosl";
495 Names[RTLIB::SINCOS_PPCF128] = "sincosl";
Paul Redmondf29ddfe2013-02-15 18:45:18 +0000496 }
Michael Gottesman7dce16f2013-08-12 18:45:38 +0000497
Simon Pilgrim2bfd9122014-11-29 19:18:21 +0000498 if (!TT.isOSOpenBSD()) {
Michael Gottesman7dce16f2013-08-12 18:45:38 +0000499 Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail";
Ahmed Bougacha6402ad22015-05-14 01:00:51 +0000500 }
Sanjoy Dasdf9ae702016-03-24 20:23:29 +0000501
502 Names[RTLIB::DEOPTIMIZE] = "__llvm_deoptimize";
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000503}
504
Saleem Abdulrasool02d98512016-09-07 17:56:09 +0000505/// Set default libcall CallingConvs.
Saleem Abdulrasool92e33a32016-09-09 20:11:31 +0000506static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
Saleem Abdulrasool02d98512016-09-07 17:56:09 +0000507 for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
508 CCs[LC] = CallingConv::C;
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000509}
510
511/// getFPEXT - Return the FPEXT_*_* value for the given types, or
512/// UNKNOWN_LIBCALL if there is none.
513RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
Tim Northoverf7a02c12014-07-21 09:13:56 +0000514 if (OpVT == MVT::f16) {
515 if (RetVT == MVT::f32)
516 return FPEXT_F16_F32;
517 } else if (OpVT == MVT::f32) {
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000518 if (RetVT == MVT::f64)
519 return FPEXT_F32_F64;
520 if (RetVT == MVT::f128)
521 return FPEXT_F32_F128;
Petar Jovanovic23e44f52016-02-04 14:43:50 +0000522 if (RetVT == MVT::ppcf128)
523 return FPEXT_F32_PPCF128;
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000524 } else if (OpVT == MVT::f64) {
525 if (RetVT == MVT::f128)
526 return FPEXT_F64_F128;
Petar Jovanovic23e44f52016-02-04 14:43:50 +0000527 else if (RetVT == MVT::ppcf128)
528 return FPEXT_F64_PPCF128;
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000529 }
530
531 return UNKNOWN_LIBCALL;
532}
533
534/// getFPROUND - Return the FPROUND_*_* value for the given types, or
535/// UNKNOWN_LIBCALL if there is none.
536RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
Tim Northover84ce0a62014-07-17 11:12:12 +0000537 if (RetVT == MVT::f16) {
538 if (OpVT == MVT::f32)
539 return FPROUND_F32_F16;
540 if (OpVT == MVT::f64)
541 return FPROUND_F64_F16;
542 if (OpVT == MVT::f80)
543 return FPROUND_F80_F16;
544 if (OpVT == MVT::f128)
545 return FPROUND_F128_F16;
546 if (OpVT == MVT::ppcf128)
547 return FPROUND_PPCF128_F16;
548 } else if (RetVT == MVT::f32) {
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000549 if (OpVT == MVT::f64)
550 return FPROUND_F64_F32;
551 if (OpVT == MVT::f80)
552 return FPROUND_F80_F32;
553 if (OpVT == MVT::f128)
554 return FPROUND_F128_F32;
555 if (OpVT == MVT::ppcf128)
556 return FPROUND_PPCF128_F32;
557 } else if (RetVT == MVT::f64) {
558 if (OpVT == MVT::f80)
559 return FPROUND_F80_F64;
560 if (OpVT == MVT::f128)
561 return FPROUND_F128_F64;
562 if (OpVT == MVT::ppcf128)
563 return FPROUND_PPCF128_F64;
564 }
565
566 return UNKNOWN_LIBCALL;
567}
568
569/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
570/// UNKNOWN_LIBCALL if there is none.
571RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
572 if (OpVT == MVT::f32) {
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000573 if (RetVT == MVT::i32)
574 return FPTOSINT_F32_I32;
575 if (RetVT == MVT::i64)
576 return FPTOSINT_F32_I64;
577 if (RetVT == MVT::i128)
578 return FPTOSINT_F32_I128;
579 } else if (OpVT == MVT::f64) {
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000580 if (RetVT == MVT::i32)
581 return FPTOSINT_F64_I32;
582 if (RetVT == MVT::i64)
583 return FPTOSINT_F64_I64;
584 if (RetVT == MVT::i128)
585 return FPTOSINT_F64_I128;
586 } else if (OpVT == MVT::f80) {
587 if (RetVT == MVT::i32)
588 return FPTOSINT_F80_I32;
589 if (RetVT == MVT::i64)
590 return FPTOSINT_F80_I64;
591 if (RetVT == MVT::i128)
592 return FPTOSINT_F80_I128;
593 } else if (OpVT == MVT::f128) {
594 if (RetVT == MVT::i32)
595 return FPTOSINT_F128_I32;
596 if (RetVT == MVT::i64)
597 return FPTOSINT_F128_I64;
598 if (RetVT == MVT::i128)
599 return FPTOSINT_F128_I128;
600 } else if (OpVT == MVT::ppcf128) {
601 if (RetVT == MVT::i32)
602 return FPTOSINT_PPCF128_I32;
603 if (RetVT == MVT::i64)
604 return FPTOSINT_PPCF128_I64;
605 if (RetVT == MVT::i128)
606 return FPTOSINT_PPCF128_I128;
607 }
608 return UNKNOWN_LIBCALL;
609}
610
611/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
612/// UNKNOWN_LIBCALL if there is none.
613RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
614 if (OpVT == MVT::f32) {
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000615 if (RetVT == MVT::i32)
616 return FPTOUINT_F32_I32;
617 if (RetVT == MVT::i64)
618 return FPTOUINT_F32_I64;
619 if (RetVT == MVT::i128)
620 return FPTOUINT_F32_I128;
621 } else if (OpVT == MVT::f64) {
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000622 if (RetVT == MVT::i32)
623 return FPTOUINT_F64_I32;
624 if (RetVT == MVT::i64)
625 return FPTOUINT_F64_I64;
626 if (RetVT == MVT::i128)
627 return FPTOUINT_F64_I128;
628 } else if (OpVT == MVT::f80) {
629 if (RetVT == MVT::i32)
630 return FPTOUINT_F80_I32;
631 if (RetVT == MVT::i64)
632 return FPTOUINT_F80_I64;
633 if (RetVT == MVT::i128)
634 return FPTOUINT_F80_I128;
635 } else if (OpVT == MVT::f128) {
636 if (RetVT == MVT::i32)
637 return FPTOUINT_F128_I32;
638 if (RetVT == MVT::i64)
639 return FPTOUINT_F128_I64;
640 if (RetVT == MVT::i128)
641 return FPTOUINT_F128_I128;
642 } else if (OpVT == MVT::ppcf128) {
643 if (RetVT == MVT::i32)
644 return FPTOUINT_PPCF128_I32;
645 if (RetVT == MVT::i64)
646 return FPTOUINT_PPCF128_I64;
647 if (RetVT == MVT::i128)
648 return FPTOUINT_PPCF128_I128;
649 }
650 return UNKNOWN_LIBCALL;
651}
652
653/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
654/// UNKNOWN_LIBCALL if there is none.
655RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
656 if (OpVT == MVT::i32) {
657 if (RetVT == MVT::f32)
658 return SINTTOFP_I32_F32;
659 if (RetVT == MVT::f64)
660 return SINTTOFP_I32_F64;
661 if (RetVT == MVT::f80)
662 return SINTTOFP_I32_F80;
663 if (RetVT == MVT::f128)
664 return SINTTOFP_I32_F128;
665 if (RetVT == MVT::ppcf128)
666 return SINTTOFP_I32_PPCF128;
667 } else if (OpVT == MVT::i64) {
668 if (RetVT == MVT::f32)
669 return SINTTOFP_I64_F32;
670 if (RetVT == MVT::f64)
671 return SINTTOFP_I64_F64;
672 if (RetVT == MVT::f80)
673 return SINTTOFP_I64_F80;
674 if (RetVT == MVT::f128)
675 return SINTTOFP_I64_F128;
676 if (RetVT == MVT::ppcf128)
677 return SINTTOFP_I64_PPCF128;
678 } else if (OpVT == MVT::i128) {
679 if (RetVT == MVT::f32)
680 return SINTTOFP_I128_F32;
681 if (RetVT == MVT::f64)
682 return SINTTOFP_I128_F64;
683 if (RetVT == MVT::f80)
684 return SINTTOFP_I128_F80;
685 if (RetVT == MVT::f128)
686 return SINTTOFP_I128_F128;
687 if (RetVT == MVT::ppcf128)
688 return SINTTOFP_I128_PPCF128;
689 }
690 return UNKNOWN_LIBCALL;
691}
692
693/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
694/// UNKNOWN_LIBCALL if there is none.
695RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
696 if (OpVT == MVT::i32) {
697 if (RetVT == MVT::f32)
698 return UINTTOFP_I32_F32;
699 if (RetVT == MVT::f64)
700 return UINTTOFP_I32_F64;
701 if (RetVT == MVT::f80)
702 return UINTTOFP_I32_F80;
703 if (RetVT == MVT::f128)
704 return UINTTOFP_I32_F128;
705 if (RetVT == MVT::ppcf128)
706 return UINTTOFP_I32_PPCF128;
707 } else if (OpVT == MVT::i64) {
708 if (RetVT == MVT::f32)
709 return UINTTOFP_I64_F32;
710 if (RetVT == MVT::f64)
711 return UINTTOFP_I64_F64;
712 if (RetVT == MVT::f80)
713 return UINTTOFP_I64_F80;
714 if (RetVT == MVT::f128)
715 return UINTTOFP_I64_F128;
716 if (RetVT == MVT::ppcf128)
717 return UINTTOFP_I64_PPCF128;
718 } else if (OpVT == MVT::i128) {
719 if (RetVT == MVT::f32)
720 return UINTTOFP_I128_F32;
721 if (RetVT == MVT::f64)
722 return UINTTOFP_I128_F64;
723 if (RetVT == MVT::f80)
724 return UINTTOFP_I128_F80;
725 if (RetVT == MVT::f128)
726 return UINTTOFP_I128_F128;
727 if (RetVT == MVT::ppcf128)
728 return UINTTOFP_I128_PPCF128;
729 }
730 return UNKNOWN_LIBCALL;
731}
732
James Y Knightf44fc522016-03-16 22:12:04 +0000733RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
Benjamin Kramerc54c38e2015-03-05 20:04:29 +0000734#define OP_TO_LIBCALL(Name, Enum) \
735 case Name: \
736 switch (VT.SimpleTy) { \
737 default: \
738 return UNKNOWN_LIBCALL; \
739 case MVT::i8: \
740 return Enum##_1; \
741 case MVT::i16: \
742 return Enum##_2; \
743 case MVT::i32: \
744 return Enum##_4; \
745 case MVT::i64: \
746 return Enum##_8; \
747 case MVT::i128: \
748 return Enum##_16; \
749 }
750
751 switch (Opc) {
752 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
753 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
754 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
755 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
756 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
757 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
758 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
759 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
760 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
761 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
762 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
763 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
764 }
765
766#undef OP_TO_LIBCALL
767
768 return UNKNOWN_LIBCALL;
769}
770
Igor Laevsky4f31e522016-12-29 14:31:07 +0000771RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_ATOMIC(uint64_t ElementSize) {
772 switch (ElementSize) {
773 case 1:
774 return MEMCPY_ELEMENT_ATOMIC_1;
775 case 2:
776 return MEMCPY_ELEMENT_ATOMIC_2;
777 case 4:
778 return MEMCPY_ELEMENT_ATOMIC_4;
779 case 8:
780 return MEMCPY_ELEMENT_ATOMIC_8;
781 case 16:
782 return MEMCPY_ELEMENT_ATOMIC_16;
783 default:
784 return UNKNOWN_LIBCALL;
785 }
786
787}
788
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000789/// InitCmpLibcallCCs - Set default comparison libcall CC.
790///
791static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
792 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
793 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
794 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
795 CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
Petar Jovanovic23e44f52016-02-04 14:43:50 +0000796 CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000797 CCs[RTLIB::UNE_F32] = ISD::SETNE;
798 CCs[RTLIB::UNE_F64] = ISD::SETNE;
799 CCs[RTLIB::UNE_F128] = ISD::SETNE;
Petar Jovanovic23e44f52016-02-04 14:43:50 +0000800 CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000801 CCs[RTLIB::OGE_F32] = ISD::SETGE;
802 CCs[RTLIB::OGE_F64] = ISD::SETGE;
803 CCs[RTLIB::OGE_F128] = ISD::SETGE;
Petar Jovanovic23e44f52016-02-04 14:43:50 +0000804 CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000805 CCs[RTLIB::OLT_F32] = ISD::SETLT;
806 CCs[RTLIB::OLT_F64] = ISD::SETLT;
807 CCs[RTLIB::OLT_F128] = ISD::SETLT;
Petar Jovanovic23e44f52016-02-04 14:43:50 +0000808 CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000809 CCs[RTLIB::OLE_F32] = ISD::SETLE;
810 CCs[RTLIB::OLE_F64] = ISD::SETLE;
811 CCs[RTLIB::OLE_F128] = ISD::SETLE;
Petar Jovanovic23e44f52016-02-04 14:43:50 +0000812 CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000813 CCs[RTLIB::OGT_F32] = ISD::SETGT;
814 CCs[RTLIB::OGT_F64] = ISD::SETGT;
815 CCs[RTLIB::OGT_F128] = ISD::SETGT;
Petar Jovanovic23e44f52016-02-04 14:43:50 +0000816 CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000817 CCs[RTLIB::UO_F32] = ISD::SETNE;
818 CCs[RTLIB::UO_F64] = ISD::SETNE;
819 CCs[RTLIB::UO_F128] = ISD::SETNE;
Petar Jovanovic23e44f52016-02-04 14:43:50 +0000820 CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000821 CCs[RTLIB::O_F32] = ISD::SETEQ;
822 CCs[RTLIB::O_F64] = ISD::SETEQ;
823 CCs[RTLIB::O_F128] = ISD::SETEQ;
Petar Jovanovic23e44f52016-02-04 14:43:50 +0000824 CCs[RTLIB::O_PPCF128] = ISD::SETEQ;
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000825}
826
Aditya Nandakumar30531552014-11-13 21:29:21 +0000827/// NOTE: The TargetMachine owns TLOF.
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000828TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
Bill Wendlingeb108ba2013-04-05 21:52:40 +0000829 initActions();
830
831 // Perform these initializations only once.
Bill Wendlingeb108ba2013-04-05 21:52:40 +0000832 MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
833 MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
834 = MaxStoresPerMemmoveOptSize = 4;
835 UseUnderscoreSetJmp = false;
836 UseUnderscoreLongJmp = false;
Hal Finkeldecb0242014-01-02 21:13:43 +0000837 HasMultipleConditionRegisters = false;
Yi Jiangb23edeb2014-04-21 22:22:44 +0000838 HasExtractBitsInsn = false;
Sanjay Patel943829a2015-07-01 18:10:20 +0000839 JumpIsExpensive = JumpIsExpensiveOverride;
Bill Wendlingeb108ba2013-04-05 21:52:40 +0000840 PredictableSelectIsExpensive = false;
Tim Northovercea0abb2014-03-29 08:22:29 +0000841 MaskAndBranchFoldingIsLegal = false;
Quentin Colombetfc2201e2014-12-17 01:36:17 +0000842 EnableExtLdPromotion = false;
Pedro Artigascaa56582014-08-08 16:46:53 +0000843 HasFloatingPointExceptions = true;
Bill Wendlingeb108ba2013-04-05 21:52:40 +0000844 StackPointerRegisterToSaveRestore = 0;
Bill Wendlingeb108ba2013-04-05 21:52:40 +0000845 BooleanContents = UndefinedBooleanContent;
Daniel Sanderscbd44c52014-07-10 10:18:12 +0000846 BooleanFloatContents = UndefinedBooleanContent;
Bill Wendlingeb108ba2013-04-05 21:52:40 +0000847 BooleanVectorContents = UndefinedBooleanContent;
848 SchedPreferenceInfo = Sched::ILP;
849 JumpBufSize = 0;
850 JumpBufAlignment = 0;
851 MinFunctionAlignment = 0;
852 PrefFunctionAlignment = 0;
853 PrefLoopAlignment = 0;
Nirav Davef5bf03c2016-12-14 16:43:44 +0000854 GatherAllAliasesMaxDepth = 6;
Bill Wendlingeb108ba2013-04-05 21:52:40 +0000855 MinStackArgumentAlignment = 1;
James Y Knight19f6cce2016-04-12 20:18:48 +0000856 // TODO: the default will be switched to 0 in the next commit, along
857 // with the Target-specific changes necessary.
858 MaxAtomicSizeInBitsSupported = 1024;
Bill Wendlingeb108ba2013-04-05 21:52:40 +0000859
James Y Knight148a6462016-06-17 18:11:48 +0000860 MinCmpXchgSizeInBits = 0;
861
James Y Knight7873fb92016-04-12 22:32:47 +0000862 std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
863
Daniel Sanders110bf6d2015-06-24 13:25:57 +0000864 InitLibcallNames(LibcallRoutineNames, TM.getTargetTriple());
Bill Wendlingeb108ba2013-04-05 21:52:40 +0000865 InitCmpLibcallCCs(CmpLibcallCCs);
Saleem Abdulrasool92e33a32016-09-09 20:11:31 +0000866 InitLibcallCallingConvs(LibcallCallingConvs);
Bill Wendlingeb108ba2013-04-05 21:52:40 +0000867}
868
Bill Wendlingeb108ba2013-04-05 21:52:40 +0000869void TargetLoweringBase::initActions() {
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000870 // All operations default to being supported.
871 memset(OpActions, 0, sizeof(OpActions));
872 memset(LoadExtActions, 0, sizeof(LoadExtActions));
873 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
874 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
875 memset(CondCodeActions, 0, sizeof(CondCodeActions));
Craig Topper00230802016-04-08 07:10:46 +0000876 std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
877 std::fill(std::begin(TargetDAGCombineArray),
878 std::end(TargetDAGCombineArray), 0);
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000879
880 // Set default actions for various operations.
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000881 for (MVT VT : MVT::all_valuetypes()) {
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000882 // Default all indexed load / store to expand.
883 for (unsigned IM = (unsigned)ISD::PRE_INC;
884 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000885 setIndexedLoadAction(IM, VT, Expand);
886 setIndexedStoreAction(IM, VT, Expand);
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000887 }
888
Tim Northover420a2162014-06-13 14:24:07 +0000889 // Most backends expect to see the node which just returns the value loaded.
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000890 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
Tim Northover420a2162014-06-13 14:24:07 +0000891
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000892 // These operations default to expand.
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000893 setOperationAction(ISD::FGETSIGN, VT, Expand);
894 setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
895 setOperationAction(ISD::FMINNUM, VT, Expand);
896 setOperationAction(ISD::FMAXNUM, VT, Expand);
James Molloy01cdecc2015-08-11 09:13:05 +0000897 setOperationAction(ISD::FMINNAN, VT, Expand);
898 setOperationAction(ISD::FMAXNAN, VT, Expand);
Matt Arsenault0dc54c42015-02-20 22:10:33 +0000899 setOperationAction(ISD::FMAD, VT, Expand);
James Molloy7e9776b2015-05-15 09:03:15 +0000900 setOperationAction(ISD::SMIN, VT, Expand);
901 setOperationAction(ISD::SMAX, VT, Expand);
902 setOperationAction(ISD::UMIN, VT, Expand);
903 setOperationAction(ISD::UMAX, VT, Expand);
Hal Finkel8ec43c62013-08-09 04:13:44 +0000904
Jan Vesely75395482015-04-29 16:30:46 +0000905 // Overflow operations default to expand
906 setOperationAction(ISD::SADDO, VT, Expand);
907 setOperationAction(ISD::SSUBO, VT, Expand);
908 setOperationAction(ISD::UADDO, VT, Expand);
909 setOperationAction(ISD::USUBO, VT, Expand);
910 setOperationAction(ISD::SMULO, VT, Expand);
911 setOperationAction(ISD::UMULO, VT, Expand);
Hal Finkelcd8664c2015-12-11 23:11:52 +0000912
Craig Topper33772c52016-04-28 03:34:31 +0000913 // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
914 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
915 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
916
James Molloy90111f72015-11-12 12:29:09 +0000917 setOperationAction(ISD::BITREVERSE, VT, Expand);
918
Hal Finkel8ec43c62013-08-09 04:13:44 +0000919 // These library functions default to expand.
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000920 setOperationAction(ISD::FROUND, VT, Expand);
Hal Finkel0c5c01aa2013-08-19 23:35:46 +0000921
922 // These operations default to expand for vector types.
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000923 if (VT.isVector()) {
924 setOperationAction(ISD::FCOPYSIGN, VT, Expand);
925 setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
926 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
927 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
Chandler Carruthd3561f62014-07-09 22:53:04 +0000928 }
Yury Gribovd7dbb662015-12-01 11:40:55 +0000929
Etienne Bergeron22bfa832016-06-07 20:15:35 +0000930 // For most targets @llvm.get.dynamic.area.offset just returns 0.
Yury Gribovd7dbb662015-12-01 11:40:55 +0000931 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000932 }
933
934 // Most targets ignore the @llvm.prefetch intrinsic.
935 setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
936
Ahmed Bougachaf9c19da2015-08-28 01:49:59 +0000937 // Most targets also ignore the @llvm.readcyclecounter intrinsic.
938 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
939
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000940 // ConstantFP nodes default to expand. Targets can either change this to
941 // Legal, in which case all fp constants are legal, or use isFPImmLegal()
942 // to optimize expansions for certain constants.
943 setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
944 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
945 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
946 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
947 setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
948
949 // These library functions default to expand.
Ahmed Bougacha2a20e272015-03-26 23:21:03 +0000950 for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
951 setOperationAction(ISD::FLOG , VT, Expand);
952 setOperationAction(ISD::FLOG2, VT, Expand);
953 setOperationAction(ISD::FLOG10, VT, Expand);
954 setOperationAction(ISD::FEXP , VT, Expand);
955 setOperationAction(ISD::FEXP2, VT, Expand);
956 setOperationAction(ISD::FFLOOR, VT, Expand);
Ahmed Bougacha2a20e272015-03-26 23:21:03 +0000957 setOperationAction(ISD::FNEARBYINT, VT, Expand);
958 setOperationAction(ISD::FCEIL, VT, Expand);
959 setOperationAction(ISD::FRINT, VT, Expand);
960 setOperationAction(ISD::FTRUNC, VT, Expand);
961 setOperationAction(ISD::FROUND, VT, Expand);
962 }
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000963
964 // Default ISD::TRAP to expand (which turns it into abort).
965 setOperationAction(ISD::TRAP, MVT::Other, Expand);
966
967 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
968 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
969 //
970 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000971}
972
Mehdi Aminieaabc512015-07-09 15:12:23 +0000973MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
974 EVT) const {
Mehdi Amini9639d652015-07-09 02:09:20 +0000975 return MVT::getIntegerVT(8 * DL.getPointerSize(0));
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000976}
977
Mehdi Amini9639d652015-07-09 02:09:20 +0000978EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy,
979 const DataLayout &DL) const {
Michael Liao6af16fc2013-03-01 18:40:30 +0000980 assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
981 if (LHSTy.isVector())
982 return LHSTy;
Mehdi Aminieaabc512015-07-09 15:12:23 +0000983 return getScalarShiftAmountTy(DL, LHSTy);
Michael Liao6af16fc2013-03-01 18:40:30 +0000984}
985
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000986bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
987 assert(isTypeLegal(VT));
988 switch (Op) {
989 default:
990 return false;
Benjamin Kramer56b31bd2013-01-11 20:05:37 +0000991 case ISD::SDIV:
992 case ISD::UDIV:
993 case ISD::SREM:
994 case ISD::UREM:
995 return true;
996 }
997}
998
Sanjay Patel943829a2015-07-01 18:10:20 +0000999void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
1000 // If the command-line option was specified, ignore this request.
1001 if (!JumpIsExpensiveOverride.getNumOccurrences())
1002 JumpIsExpensive = isExpensive;
1003}
1004
Eric Christopher75dbd7c2015-02-25 22:41:30 +00001005TargetLoweringBase::LegalizeKind
1006TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
1007 // If this is a simple type, use the ComputeRegisterProp mechanism.
1008 if (VT.isSimple()) {
1009 MVT SVT = VT.getSimpleVT();
1010 assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
1011 MVT NVT = TransformToType[SVT.SimpleTy];
1012 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
1013
1014 assert((LA == TypeLegal || LA == TypeSoftenFloat ||
1015 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) &&
1016 "Promote may not follow Expand or Promote");
1017
1018 if (LA == TypeSplitVector)
1019 return LegalizeKind(LA,
1020 EVT::getVectorVT(Context, SVT.getVectorElementType(),
1021 SVT.getVectorNumElements() / 2));
1022 if (LA == TypeScalarizeVector)
1023 return LegalizeKind(LA, SVT.getVectorElementType());
1024 return LegalizeKind(LA, NVT);
1025 }
1026
1027 // Handle Extended Scalar Types.
1028 if (!VT.isVector()) {
1029 assert(VT.isInteger() && "Float types must be simple");
1030 unsigned BitSize = VT.getSizeInBits();
1031 // First promote to a power-of-two size, then expand if necessary.
1032 if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1033 EVT NVT = VT.getRoundIntegerType(Context);
1034 assert(NVT != VT && "Unable to round integer VT");
1035 LegalizeKind NextStep = getTypeConversion(Context, NVT);
1036 // Avoid multi-step promotion.
1037 if (NextStep.first == TypePromoteInteger)
1038 return NextStep;
1039 // Return rounded integer type.
1040 return LegalizeKind(TypePromoteInteger, NVT);
1041 }
1042
1043 return LegalizeKind(TypeExpandInteger,
1044 EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
1045 }
1046
1047 // Handle vector types.
1048 unsigned NumElts = VT.getVectorNumElements();
1049 EVT EltVT = VT.getVectorElementType();
1050
1051 // Vectors with only one element are always scalarized.
1052 if (NumElts == 1)
1053 return LegalizeKind(TypeScalarizeVector, EltVT);
1054
1055 // Try to widen vector elements until the element type is a power of two and
1056 // promote it to a legal type later on, for example:
1057 // <3 x i8> -> <4 x i8> -> <4 x i32>
1058 if (EltVT.isInteger()) {
1059 // Vectors with a number of elements that is not a power of two are always
1060 // widened, for example <3 x i8> -> <4 x i8>.
1061 if (!VT.isPow2VectorType()) {
1062 NumElts = (unsigned)NextPowerOf2(NumElts);
1063 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1064 return LegalizeKind(TypeWidenVector, NVT);
1065 }
1066
1067 // Examine the element type.
1068 LegalizeKind LK = getTypeConversion(Context, EltVT);
1069
1070 // If type is to be expanded, split the vector.
1071 // <4 x i140> -> <2 x i140>
1072 if (LK.first == TypeExpandInteger)
1073 return LegalizeKind(TypeSplitVector,
1074 EVT::getVectorVT(Context, EltVT, NumElts / 2));
1075
1076 // Promote the integer element types until a legal vector type is found
1077 // or until the element integer type is too big. If a legal type was not
1078 // found, fallback to the usual mechanism of widening/splitting the
1079 // vector.
1080 EVT OldEltVT = EltVT;
1081 while (1) {
1082 // Increase the bitwidth of the element to the next pow-of-two
1083 // (which is greater than 8 bits).
1084 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1085 .getRoundIntegerType(Context);
1086
1087 // Stop trying when getting a non-simple element type.
1088 // Note that vector elements may be greater than legal vector element
1089 // types. Example: X86 XMM registers hold 64bit element on 32bit
1090 // systems.
1091 if (!EltVT.isSimple())
1092 break;
1093
1094 // Build a new vector type and check if it is legal.
1095 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1096 // Found a legal promoted vector type.
1097 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1098 return LegalizeKind(TypePromoteInteger,
1099 EVT::getVectorVT(Context, EltVT, NumElts));
1100 }
1101
1102 // Reset the type to the unexpanded type if we did not find a legal vector
1103 // type with a promoted vector element type.
1104 EltVT = OldEltVT;
1105 }
1106
1107 // Try to widen the vector until a legal type is found.
1108 // If there is no wider legal type, split the vector.
1109 while (1) {
1110 // Round up to the next power of 2.
1111 NumElts = (unsigned)NextPowerOf2(NumElts);
1112
1113 // If there is no simple vector type with this many elements then there
1114 // cannot be a larger legal vector type. Note that this assumes that
1115 // there are no skipped intermediate vector types in the simple types.
1116 if (!EltVT.isSimple())
1117 break;
1118 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1119 if (LargerVector == MVT())
1120 break;
1121
1122 // If this type is legal then widen the vector.
1123 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1124 return LegalizeKind(TypeWidenVector, LargerVector);
1125 }
1126
1127 // Widen odd vectors to next power of two.
1128 if (!VT.isPow2VectorType()) {
1129 EVT NVT = VT.getPow2VectorType(Context);
1130 return LegalizeKind(TypeWidenVector, NVT);
1131 }
1132
1133 // Vectors with illegal element types are expanded.
1134 EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
1135 return LegalizeKind(TypeSplitVector, NVT);
1136}
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001137
1138static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1139 unsigned &NumIntermediates,
1140 MVT &RegisterVT,
1141 TargetLoweringBase *TLI) {
1142 // Figure out the right, legal destination reg to copy into.
1143 unsigned NumElts = VT.getVectorNumElements();
1144 MVT EltTy = VT.getVectorElementType();
1145
1146 unsigned NumVectorRegs = 1;
1147
1148 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
1149 // could break down into LHS/RHS like LegalizeDAG does.
1150 if (!isPowerOf2_32(NumElts)) {
1151 NumVectorRegs = NumElts;
1152 NumElts = 1;
1153 }
1154
1155 // Divide the input until we get to a supported size. This will always
1156 // end with a scalar if the target doesn't support vectors.
1157 while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
1158 NumElts >>= 1;
1159 NumVectorRegs <<= 1;
1160 }
1161
1162 NumIntermediates = NumVectorRegs;
1163
1164 MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
1165 if (!TLI->isTypeLegal(NewVT))
1166 NewVT = EltTy;
1167 IntermediateVT = NewVT;
1168
1169 unsigned NewVTSize = NewVT.getSizeInBits();
1170
1171 // Convert sizes such as i33 to i64.
1172 if (!isPowerOf2_32(NewVTSize))
1173 NewVTSize = NextPowerOf2(NewVTSize);
1174
1175 MVT DestVT = TLI->getRegisterType(NewVT);
1176 RegisterVT = DestVT;
1177 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
1178 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1179
1180 // Otherwise, promotion or legal types use the same number of registers as
1181 // the vector decimated to the appropriate level.
1182 return NumVectorRegs;
1183}
1184
1185/// isLegalRC - Return true if the value types that can be represented by the
1186/// specified register class are all legal.
1187bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
1188 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1189 I != E; ++I) {
1190 if (isTypeLegal(*I))
1191 return true;
1192 }
1193 return false;
1194}
1195
Lang Hames39609992013-11-29 03:07:54 +00001196/// Replace/modify any TargetFrameIndex operands with a targte-dependent
1197/// sequence of memory operands that is recognized by PrologEpilogInserter.
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00001198MachineBasicBlock *
1199TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
Lang Hames39609992013-11-29 03:07:54 +00001200 MachineBasicBlock *MBB) const {
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00001201 MachineInstr *MI = &InitialMI;
Lang Hames39609992013-11-29 03:07:54 +00001202 MachineFunction &MF = *MI->getParent()->getParent();
Matthias Braun941a7052016-07-28 18:40:00 +00001203 MachineFrameInfo &MFI = MF.getFrameInfo();
Philip Reamescb0f9472015-12-23 23:44:28 +00001204
1205 // We're handling multiple types of operands here:
1206 // PATCHPOINT MetaArgs - live-in, read only, direct
1207 // STATEPOINT Deopt Spill - live-through, read only, indirect
1208 // STATEPOINT Deopt Alloca - live-through, read only, direct
1209 // (We're currently conservative and mark the deopt slots read/write in
1210 // practice.)
1211 // STATEPOINT GC Spill - live-through, read/write, indirect
1212 // STATEPOINT GC Alloca - live-through, read/write, direct
1213 // The live-in vs live-through is handled already (the live through ones are
1214 // all stack slots), but we need to handle the different type of stackmap
1215 // operands and memory effects here.
Lang Hames39609992013-11-29 03:07:54 +00001216
1217 // MI changes inside this loop as we grow operands.
1218 for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
1219 MachineOperand &MO = MI->getOperand(OperIdx);
1220 if (!MO.isFI())
1221 continue;
1222
1223 // foldMemoryOperand builds a new MI after replacing a single FI operand
1224 // with the canonical set of five x86 addressing-mode operands.
1225 int FI = MO.getIndex();
1226 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1227
1228 // Copy operands before the frame-index.
1229 for (unsigned i = 0; i < OperIdx; ++i)
Diana Picus116bbab2017-01-13 09:58:52 +00001230 MIB.add(MI->getOperand(i));
Philip Reamescb0f9472015-12-23 23:44:28 +00001231 // Add frame index operands recognized by stackmaps.cpp
1232 if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1233 // indirect-mem-ref tag, size, #FI, offset.
1234 // Used for spills inserted by StatepointLowering. This codepath is not
1235 // used for patchpoints/stackmaps at all, for these spilling is done via
1236 // foldMemoryOperand callback only.
1237 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1238 MIB.addImm(StackMaps::IndirectMemRefOp);
1239 MIB.addImm(MFI.getObjectSize(FI));
Diana Picus116bbab2017-01-13 09:58:52 +00001240 MIB.add(MI->getOperand(OperIdx));
Philip Reamescb0f9472015-12-23 23:44:28 +00001241 MIB.addImm(0);
1242 } else {
1243 // direct-mem-ref tag, #FI, offset.
1244 // Used by patchpoint, and direct alloca arguments to statepoints
1245 MIB.addImm(StackMaps::DirectMemRefOp);
Diana Picus116bbab2017-01-13 09:58:52 +00001246 MIB.add(MI->getOperand(OperIdx));
Philip Reamescb0f9472015-12-23 23:44:28 +00001247 MIB.addImm(0);
1248 }
Lang Hames39609992013-11-29 03:07:54 +00001249 // Copy the operands after the frame index.
1250 for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
Diana Picus116bbab2017-01-13 09:58:52 +00001251 MIB.add(MI->getOperand(i));
Lang Hames39609992013-11-29 03:07:54 +00001252
1253 // Inherit previous memory operands.
1254 MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
1255 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1256
1257 // Add a new memory operand for this FI.
Lang Hames39609992013-11-29 03:07:54 +00001258 assert(MFI.getObjectOffset(FI) != -1);
Philip Reames0365f1a2014-12-01 22:52:56 +00001259
Justin Lebar0af80cd2016-07-15 18:26:59 +00001260 auto Flags = MachineMemOperand::MOLoad;
Philip Reames0365f1a2014-12-01 22:52:56 +00001261 if (MI->getOpcode() == TargetOpcode::STATEPOINT) {
1262 Flags |= MachineMemOperand::MOStore;
1263 Flags |= MachineMemOperand::MOVolatile;
1264 }
Eric Christopherd9134482014-08-04 21:25:23 +00001265 MachineMemOperand *MMO = MF.getMachineMemOperand(
Alex Lorenze40c8a22015-08-11 23:09:45 +00001266 MachinePointerInfo::getFixedStack(MF, FI), Flags,
Mehdi Aminibd7287e2015-07-16 06:11:10 +00001267 MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
Lang Hames39609992013-11-29 03:07:54 +00001268 MIB->addMemOperand(MF, MMO);
1269
1270 // Replace the instruction and update the operand index.
1271 MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1272 OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
1273 MI->eraseFromParent();
1274 MI = MIB;
1275 }
1276 return MBB;
1277}
1278
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001279/// findRepresentativeClass - Return the largest legal super-reg register class
1280/// of the register class for the specified type and its associated "cost".
Eric Christopher720ab842015-03-03 19:47:14 +00001281// This function is in TargetLowering because it uses RegClassForVT which would
1282// need to be moved to TargetRegisterInfo and would necessitate moving
1283// isTypeLegal over as well - a massive change that would just require
1284// TargetLowering having a TargetRegisterInfo class member that it would use.
Eric Christopher23a3a7c2015-02-26 00:00:24 +00001285std::pair<const TargetRegisterClass *, uint8_t>
1286TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1287 MVT VT) const {
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001288 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1289 if (!RC)
1290 return std::make_pair(RC, 0);
1291
1292 // Compute the set of all super-register classes.
1293 BitVector SuperRegRC(TRI->getNumRegClasses());
1294 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1295 SuperRegRC.setBitsInMask(RCI.getMask());
1296
1297 // Find the first legal register class with the largest spill size.
1298 const TargetRegisterClass *BestRC = RC;
1299 for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
1300 const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1301 // We want the largest possible spill size.
1302 if (SuperRC->getSize() <= BestRC->getSize())
1303 continue;
1304 if (!isLegalRC(SuperRC))
1305 continue;
1306 BestRC = SuperRC;
1307 }
1308 return std::make_pair(BestRC, 1);
1309}
1310
1311/// computeRegisterProperties - Once all of the register classes are added,
1312/// this allows us to compute derived properties we expose.
Eric Christopher23a3a7c2015-02-26 00:00:24 +00001313void TargetLoweringBase::computeRegisterProperties(
1314 const TargetRegisterInfo *TRI) {
Craig Topper6438fc32014-11-17 00:26:50 +00001315 static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1316 "Too many value types for ValueTypeActions to hold!");
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001317
1318 // Everything defaults to needing one register.
1319 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1320 NumRegistersForVT[i] = 1;
1321 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1322 }
1323 // ...except isVoid, which doesn't need any registers.
1324 NumRegistersForVT[MVT::isVoid] = 0;
1325
1326 // Find the largest integer register class.
1327 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
Craig Topperc0196b12014-04-14 00:51:57 +00001328 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001329 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1330
1331 // Every integer value type larger than this largest register takes twice as
1332 // many registers to represent as the previous ValueType.
1333 for (unsigned ExpandedReg = LargestIntReg + 1;
1334 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1335 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1336 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1337 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1338 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1339 TypeExpandInteger);
1340 }
1341
1342 // Inspect all of the ValueType's smaller than the largest integer
1343 // register to see which ones need promotion.
1344 unsigned LegalIntReg = LargestIntReg;
1345 for (unsigned IntReg = LargestIntReg - 1;
1346 IntReg >= (unsigned)MVT::i1; --IntReg) {
1347 MVT IVT = (MVT::SimpleValueType)IntReg;
1348 if (isTypeLegal(IVT)) {
1349 LegalIntReg = IntReg;
1350 } else {
1351 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1352 (const MVT::SimpleValueType)LegalIntReg;
1353 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1354 }
1355 }
1356
1357 // ppcf128 type is really two f64's.
1358 if (!isTypeLegal(MVT::ppcf128)) {
Petar Jovanovic23e44f52016-02-04 14:43:50 +00001359 if (isTypeLegal(MVT::f64)) {
1360 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1361 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1362 TransformToType[MVT::ppcf128] = MVT::f64;
1363 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1364 } else {
1365 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1366 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1367 TransformToType[MVT::ppcf128] = MVT::i128;
1368 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1369 }
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001370 }
1371
Akira Hatanaka3d055582013-03-01 21:11:44 +00001372 // Decide how to handle f128. If the target does not have native f128 support,
1373 // expand it to i128 and we will be generating soft float library calls.
1374 if (!isTypeLegal(MVT::f128)) {
1375 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1376 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1377 TransformToType[MVT::f128] = MVT::i128;
1378 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1379 }
1380
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001381 // Decide how to handle f64. If the target does not have native f64 support,
1382 // expand it to i64 and we will be generating soft float library calls.
1383 if (!isTypeLegal(MVT::f64)) {
1384 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1385 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1386 TransformToType[MVT::f64] = MVT::i64;
1387 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1388 }
1389
Ahmed Bougachaa0f35592015-03-28 01:22:37 +00001390 // Decide how to handle f32. If the target does not have native f32 support,
1391 // expand it to i32 and we will be generating soft float library calls.
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001392 if (!isTypeLegal(MVT::f32)) {
Ahmed Bougachaa0f35592015-03-28 01:22:37 +00001393 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1394 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1395 TransformToType[MVT::f32] = MVT::i32;
1396 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001397 }
1398
Oliver Stannard56358572015-11-09 11:03:18 +00001399 // Decide how to handle f16. If the target does not have native f16 support,
1400 // promote it to f32, because there are no f16 library calls (except for
1401 // conversions).
Tim Northover20bd0ce2014-07-18 12:41:46 +00001402 if (!isTypeLegal(MVT::f16)) {
Oliver Stannard56358572015-11-09 11:03:18 +00001403 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1404 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1405 TransformToType[MVT::f16] = MVT::f32;
1406 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
Tim Northover20bd0ce2014-07-18 12:41:46 +00001407 }
1408
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001409 // Loop over all of the vector value types to see which need transformations.
1410 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1411 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
Chandler Carruth9d010ff2014-07-03 00:23:43 +00001412 MVT VT = (MVT::SimpleValueType) i;
1413 if (isTypeLegal(VT))
1414 continue;
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001415
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001416 MVT EltVT = VT.getVectorElementType();
1417 unsigned NElts = VT.getVectorNumElements();
Chandler Carruth9d010ff2014-07-03 00:23:43 +00001418 bool IsLegalWiderType = false;
1419 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1420 switch (PreferredAction) {
1421 case TypePromoteInteger: {
1422 // Try to promote the elements of integer vectors. If no legal
1423 // promotion was found, fall through to the widen-vector method.
Matt Arsenault940d19a2016-04-22 21:16:17 +00001424 for (unsigned nVT = i + 1; nVT <= MVT::LAST_INTEGER_VECTOR_VALUETYPE; ++nVT) {
Chandler Carruth9d010ff2014-07-03 00:23:43 +00001425 MVT SVT = (MVT::SimpleValueType) nVT;
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001426 // Promote vectors of integers to vectors with the same number
1427 // of elements, with a wider element type.
Sanjay Patel1ed771f2016-09-14 16:37:15 +00001428 if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() &&
Matt Arsenault940d19a2016-04-22 21:16:17 +00001429 SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)) {
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001430 TransformToType[i] = SVT;
1431 RegisterTypeForVT[i] = SVT;
1432 NumRegistersForVT[i] = 1;
1433 ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1434 IsLegalWiderType = true;
1435 break;
1436 }
1437 }
Chandler Carruth9d010ff2014-07-03 00:23:43 +00001438 if (IsLegalWiderType)
1439 break;
1440 }
1441 case TypeWidenVector: {
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001442 // Try to widen the vector.
Chandler Carruth9d010ff2014-07-03 00:23:43 +00001443 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1444 MVT SVT = (MVT::SimpleValueType) nVT;
1445 if (SVT.getVectorElementType() == EltVT
1446 && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001447 TransformToType[i] = SVT;
1448 RegisterTypeForVT[i] = SVT;
1449 NumRegistersForVT[i] = 1;
1450 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1451 IsLegalWiderType = true;
1452 break;
1453 }
1454 }
Chandler Carruth9d010ff2014-07-03 00:23:43 +00001455 if (IsLegalWiderType)
1456 break;
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001457 }
Chandler Carruth9d010ff2014-07-03 00:23:43 +00001458 case TypeSplitVector:
1459 case TypeScalarizeVector: {
1460 MVT IntermediateVT;
1461 MVT RegisterVT;
1462 unsigned NumIntermediates;
1463 NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1464 NumIntermediates, RegisterVT, this);
1465 RegisterTypeForVT[i] = RegisterVT;
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001466
Chandler Carruth9d010ff2014-07-03 00:23:43 +00001467 MVT NVT = VT.getPow2VectorType();
1468 if (NVT == VT) {
1469 // Type is already a power of 2. The default action is to split.
1470 TransformToType[i] = MVT::Other;
1471 if (PreferredAction == TypeScalarizeVector)
1472 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
Hao Liue02b1a02014-10-31 02:35:34 +00001473 else if (PreferredAction == TypeSplitVector)
Chandler Carruth9d010ff2014-07-03 00:23:43 +00001474 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
Hao Liue02b1a02014-10-31 02:35:34 +00001475 else
1476 // Set type action according to the number of elements.
1477 ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
1478 : TypeSplitVector);
Chandler Carruth9d010ff2014-07-03 00:23:43 +00001479 } else {
1480 TransformToType[i] = NVT;
1481 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1482 }
1483 break;
1484 }
1485 default:
1486 llvm_unreachable("Unknown vector legalization action!");
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001487 }
1488 }
1489
1490 // Determine the 'representative' register class for each value type.
1491 // An representative register class is the largest (meaning one which is
1492 // not a sub-register class / subreg register class) legal register class for
1493 // a group of value types. For example, on i386, i8, i16, and i32
1494 // representative would be GR32; while on x86_64 it's GR64.
1495 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1496 const TargetRegisterClass* RRC;
1497 uint8_t Cost;
Eric Christopher23a3a7c2015-02-26 00:00:24 +00001498 std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001499 RepRegClassForVT[i] = RRC;
1500 RepRegClassCostForVT[i] = Cost;
1501 }
1502}
1503
Mehdi Amini44ede332015-07-09 02:09:04 +00001504EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1505 EVT VT) const {
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001506 assert(!VT.isVector() && "No default SetCC type for vectors!");
Mehdi Amini44ede332015-07-09 02:09:04 +00001507 return getPointerTy(DL).SimpleTy;
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001508}
1509
1510MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1511 return MVT::i32; // return the default value
1512}
1513
1514/// getVectorTypeBreakdown - Vector types are broken down into some number of
1515/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
1516/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1517/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1518///
1519/// This method returns the number of registers needed, and the VT for each
1520/// register. It also returns the VT and quantity of the intermediate values
1521/// before they are promoted/expanded.
1522///
1523unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1524 EVT &IntermediateVT,
1525 unsigned &NumIntermediates,
1526 MVT &RegisterVT) const {
1527 unsigned NumElts = VT.getVectorNumElements();
1528
1529 // If there is a wider vector type with the same element type as this one,
1530 // or a promoted vector type that has the same number of elements which
1531 // are wider, then we should convert to that legal vector type.
1532 // This handles things like <2 x float> -> <4 x float> and
1533 // <4 x i1> -> <4 x i32>.
1534 LegalizeTypeAction TA = getTypeAction(Context, VT);
1535 if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1536 EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1537 if (isTypeLegal(RegisterEVT)) {
1538 IntermediateVT = RegisterEVT;
1539 RegisterVT = RegisterEVT.getSimpleVT();
1540 NumIntermediates = 1;
1541 return 1;
1542 }
1543 }
1544
1545 // Figure out the right, legal destination reg to copy into.
1546 EVT EltTy = VT.getVectorElementType();
1547
1548 unsigned NumVectorRegs = 1;
1549
1550 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
1551 // could break down into LHS/RHS like LegalizeDAG does.
1552 if (!isPowerOf2_32(NumElts)) {
1553 NumVectorRegs = NumElts;
1554 NumElts = 1;
1555 }
1556
1557 // Divide the input until we get to a supported size. This will always
1558 // end with a scalar if the target doesn't support vectors.
1559 while (NumElts > 1 && !isTypeLegal(
1560 EVT::getVectorVT(Context, EltTy, NumElts))) {
1561 NumElts >>= 1;
1562 NumVectorRegs <<= 1;
1563 }
1564
1565 NumIntermediates = NumVectorRegs;
1566
1567 EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1568 if (!isTypeLegal(NewVT))
1569 NewVT = EltTy;
1570 IntermediateVT = NewVT;
1571
1572 MVT DestVT = getRegisterType(Context, NewVT);
1573 RegisterVT = DestVT;
1574 unsigned NewVTSize = NewVT.getSizeInBits();
1575
1576 // Convert sizes such as i33 to i64.
1577 if (!isPowerOf2_32(NewVTSize))
1578 NewVTSize = NextPowerOf2(NewVTSize);
1579
1580 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
1581 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1582
1583 // Otherwise, promotion or legal types use the same number of registers as
1584 // the vector decimated to the appropriate level.
1585 return NumVectorRegs;
1586}
1587
1588/// Get the EVTs and ArgFlags collections that represent the legalized return
1589/// type of the given function. This does not require a DAG or a return value,
1590/// and is suitable for use before any DAGs for the function are constructed.
1591/// TODO: Move this out of TargetLowering.cpp.
Mehdi Amini56228da2015-07-09 01:57:34 +00001592void llvm::GetReturnInfo(Type *ReturnType, AttributeSet attr,
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001593 SmallVectorImpl<ISD::OutputArg> &Outs,
Mehdi Amini56228da2015-07-09 01:57:34 +00001594 const TargetLowering &TLI, const DataLayout &DL) {
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001595 SmallVector<EVT, 4> ValueVTs;
Mehdi Amini56228da2015-07-09 01:57:34 +00001596 ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001597 unsigned NumValues = ValueVTs.size();
1598 if (NumValues == 0) return;
1599
1600 for (unsigned j = 0, f = NumValues; j != f; ++j) {
1601 EVT VT = ValueVTs[j];
1602 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1603
1604 if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1605 ExtendKind = ISD::SIGN_EXTEND;
1606 else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1607 ExtendKind = ISD::ZERO_EXTEND;
1608
1609 // FIXME: C calling convention requires the return type to be promoted to
1610 // at least 32-bit. But this is not necessary for non-C calling
1611 // conventions. The frontend should mark functions whose return values
1612 // require promoting with signext or zeroext attributes.
1613 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1614 MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1615 if (VT.bitsLT(MinVT))
1616 VT = MinVT;
1617 }
1618
1619 unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1620 MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1621
1622 // 'inreg' on function refers to return value
1623 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1624 if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
1625 Flags.setInReg();
1626
1627 // Propagate extension type if any
1628 if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1629 Flags.setSExt();
1630 else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1631 Flags.setZExt();
1632
1633 for (unsigned i = 0; i < NumParts; ++i)
Tom Stellard8d7d4de2013-10-23 00:44:24 +00001634 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001635 }
1636}
1637
1638/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1639/// function arguments in the caller parameter area. This is the actual
1640/// alignment, not its logarithm.
Mehdi Amini5c183d52015-07-09 02:09:28 +00001641unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1642 const DataLayout &DL) const {
1643 return DL.getABITypeAlignment(Ty);
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001644}
1645
Sanjay Patel0f9dcf82015-07-29 18:24:18 +00001646bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1647 const DataLayout &DL, EVT VT,
1648 unsigned AddrSpace,
1649 unsigned Alignment,
1650 bool *Fast) const {
1651 // Check if the specified alignment is sufficient based on the data layout.
1652 // TODO: While using the data layout works in practice, a better solution
1653 // would be to implement this check directly (make this a virtual function).
1654 // For example, the ABI alignment may change based on software platform while
1655 // this function should only be affected by hardware implementation.
1656 Type *Ty = VT.getTypeForEVT(Context);
1657 if (Alignment >= DL.getABITypeAlignment(Ty)) {
1658 // Assume that an access that meets the ABI-specified alignment is fast.
1659 if (Fast != nullptr)
1660 *Fast = true;
1661 return true;
1662 }
1663
1664 // This is a misaligned access.
1665 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Fast);
1666}
1667
Sanjay Pateld66607b2016-04-26 17:11:17 +00001668BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
1669 return BranchProbability(MinPercentageForPredictableBranch, 100);
1670}
Sanjay Patel0f9dcf82015-07-29 18:24:18 +00001671
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001672//===----------------------------------------------------------------------===//
1673// TargetTransformInfo Helpers
1674//===----------------------------------------------------------------------===//
1675
1676int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1677 enum InstructionOpcodes {
1678#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1679#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1680#include "llvm/IR/Instruction.def"
1681 };
1682 switch (static_cast<InstructionOpcodes>(Opcode)) {
1683 case Ret: return 0;
1684 case Br: return 0;
1685 case Switch: return 0;
1686 case IndirectBr: return 0;
1687 case Invoke: return 0;
1688 case Resume: return 0;
1689 case Unreachable: return 0;
David Majnemer654e1302015-07-31 17:58:14 +00001690 case CleanupRet: return 0;
David Majnemer654e1302015-07-31 17:58:14 +00001691 case CatchRet: return 0;
David Majnemer8a1c45d2015-12-12 05:38:55 +00001692 case CatchPad: return 0;
1693 case CatchSwitch: return 0;
David Majnemer8a1c45d2015-12-12 05:38:55 +00001694 case CleanupPad: return 0;
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001695 case Add: return ISD::ADD;
1696 case FAdd: return ISD::FADD;
1697 case Sub: return ISD::SUB;
1698 case FSub: return ISD::FSUB;
1699 case Mul: return ISD::MUL;
1700 case FMul: return ISD::FMUL;
1701 case UDiv: return ISD::UDIV;
Benjamin Kramerce4b3fe2014-04-27 18:47:54 +00001702 case SDiv: return ISD::SDIV;
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001703 case FDiv: return ISD::FDIV;
1704 case URem: return ISD::UREM;
1705 case SRem: return ISD::SREM;
1706 case FRem: return ISD::FREM;
1707 case Shl: return ISD::SHL;
1708 case LShr: return ISD::SRL;
1709 case AShr: return ISD::SRA;
1710 case And: return ISD::AND;
1711 case Or: return ISD::OR;
1712 case Xor: return ISD::XOR;
1713 case Alloca: return 0;
1714 case Load: return ISD::LOAD;
1715 case Store: return ISD::STORE;
1716 case GetElementPtr: return 0;
1717 case Fence: return 0;
1718 case AtomicCmpXchg: return 0;
1719 case AtomicRMW: return 0;
1720 case Trunc: return ISD::TRUNCATE;
1721 case ZExt: return ISD::ZERO_EXTEND;
1722 case SExt: return ISD::SIGN_EXTEND;
1723 case FPToUI: return ISD::FP_TO_UINT;
1724 case FPToSI: return ISD::FP_TO_SINT;
1725 case UIToFP: return ISD::UINT_TO_FP;
1726 case SIToFP: return ISD::SINT_TO_FP;
1727 case FPTrunc: return ISD::FP_ROUND;
1728 case FPExt: return ISD::FP_EXTEND;
1729 case PtrToInt: return ISD::BITCAST;
1730 case IntToPtr: return ISD::BITCAST;
1731 case BitCast: return ISD::BITCAST;
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00001732 case AddrSpaceCast: return ISD::ADDRSPACECAST;
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001733 case ICmp: return ISD::SETCC;
1734 case FCmp: return ISD::SETCC;
1735 case PHI: return 0;
1736 case Call: return 0;
1737 case Select: return ISD::SELECT;
1738 case UserOp1: return 0;
1739 case UserOp2: return 0;
1740 case VAArg: return 0;
1741 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1742 case InsertElement: return ISD::INSERT_VECTOR_ELT;
1743 case ShuffleVector: return ISD::VECTOR_SHUFFLE;
1744 case ExtractValue: return ISD::MERGE_VALUES;
1745 case InsertValue: return ISD::MERGE_VALUES;
1746 case LandingPad: return 0;
1747 }
1748
1749 llvm_unreachable("Unknown instruction type encountered!");
1750}
1751
Chandler Carruth93205eb2015-08-05 18:08:10 +00001752std::pair<int, MVT>
Mehdi Amini44ede332015-07-09 02:09:04 +00001753TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1754 Type *Ty) const {
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001755 LLVMContext &C = Ty->getContext();
Mehdi Amini44ede332015-07-09 02:09:04 +00001756 EVT MTy = getValueType(DL, Ty);
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001757
Chandler Carruth93205eb2015-08-05 18:08:10 +00001758 int Cost = 1;
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001759 // We keep legalizing the type until we find a legal kind. We assume that
1760 // the only operation that costs anything is the split. After splitting
1761 // we need to handle two types.
1762 while (true) {
1763 LegalizeKind LK = getTypeConversion(C, MTy);
1764
1765 if (LK.first == TypeLegal)
1766 return std::make_pair(Cost, MTy.getSimpleVT());
1767
1768 if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1769 Cost *= 2;
1770
Chih-Hung Hsiehed7d81e2015-12-03 22:02:40 +00001771 // Do not loop with f128 type.
1772 if (MTy == LK.second)
1773 return std::make_pair(Cost, MTy.getSimpleVT());
1774
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001775 // Keep legalizing the type.
1776 MTy = LK.second;
1777 }
1778}
1779
David L Kreitzerd5c67552016-10-14 17:56:00 +00001780Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1781 bool UseTLS) const {
1782 // compiler-rt provides a variable with a magic name. Targets that do not
1783 // link with compiler-rt may also provide such a variable.
1784 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1785 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1786 auto UnsafeStackPtr =
1787 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1788
1789 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1790
1791 if (!UnsafeStackPtr) {
1792 auto TLSModel = UseTLS ?
1793 GlobalValue::InitialExecTLSModel :
1794 GlobalValue::NotThreadLocal;
1795 // The global variable is not defined yet, define it ourselves.
1796 // We use the initial-exec TLS model because we do not support the
1797 // variable living anywhere other than in the main executable.
1798 UnsafeStackPtr = new GlobalVariable(
1799 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1800 UnsafeStackPtrVar, nullptr, TLSModel);
1801 } else {
1802 // The variable exists, check its type and attributes.
1803 if (UnsafeStackPtr->getValueType() != StackPtrTy)
1804 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1805 if (UseTLS != UnsafeStackPtr->isThreadLocal())
1806 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1807 (UseTLS ? "" : "not ") + "be thread-local");
1808 }
1809 return UnsafeStackPtr;
1810}
1811
Evgeniy Stepanovd1aad262015-10-26 18:28:25 +00001812Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1813 if (!TM.getTargetTriple().isAndroid())
David L Kreitzerd5c67552016-10-14 17:56:00 +00001814 return getDefaultSafeStackPointerLocation(IRB, true);
Evgeniy Stepanovd1aad262015-10-26 18:28:25 +00001815
1816 // Android provides a libc function to retrieve the address of the current
1817 // thread's unsafe stack pointer.
1818 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1819 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1820 Value *Fn = M->getOrInsertFunction("__safestack_pointer_address",
1821 StackPtrTy->getPointerTo(0), nullptr);
1822 return IRB.CreateCall(Fn);
1823}
1824
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001825//===----------------------------------------------------------------------===//
1826// Loop Strength Reduction hooks
1827//===----------------------------------------------------------------------===//
1828
1829/// isLegalAddressingMode - Return true if the addressing mode represented
1830/// by AM is legal for this target, for a load/store of the specified type.
Mehdi Amini0cdec1e2015-07-09 02:09:40 +00001831bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1832 const AddrMode &AM, Type *Ty,
Matt Arsenaultbd7d80a2015-06-01 05:31:59 +00001833 unsigned AS) const {
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001834 // The default implementation of this implements a conservative RISCy, r+r and
1835 // r+i addr mode.
1836
1837 // Allows a sign-extended 16-bit immediate field.
1838 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1839 return false;
1840
1841 // No global is ever allowed as a base.
1842 if (AM.BaseGV)
1843 return false;
1844
1845 // Only support r+r,
1846 switch (AM.Scale) {
1847 case 0: // "r+i" or just "i", depending on HasBaseReg.
1848 break;
1849 case 1:
1850 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
1851 return false;
1852 // Otherwise we have r+r or r+i.
1853 break;
1854 case 2:
1855 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
1856 return false;
1857 // Allow 2*r as r+r.
1858 break;
Tom Stellard728d4172014-02-14 21:10:34 +00001859 default: // Don't allow n * r
1860 return false;
Benjamin Kramer56b31bd2013-01-11 20:05:37 +00001861 }
1862
1863 return true;
1864}
Tim Shen00127562016-04-08 21:26:31 +00001865
1866//===----------------------------------------------------------------------===//
1867// Stack Protector
1868//===----------------------------------------------------------------------===//
1869
1870// For OpenBSD return its special guard variable. Otherwise return nullptr,
1871// so that SelectionDAG handle SSP.
1872Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
1873 if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1874 Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1875 PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
Tim Shena5cc25e2016-08-22 18:26:27 +00001876 return M.getOrInsertGlobal("__guard_local", PtrTy);
Tim Shen00127562016-04-08 21:26:31 +00001877 }
1878 return nullptr;
1879}
1880
1881// Currently only support "standard" __stack_chk_guard.
1882// TODO: add LOAD_STACK_GUARD support.
1883void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1884 M.getOrInsertGlobal("__stack_chk_guard", Type::getInt8PtrTy(M.getContext()));
1885}
1886
1887// Currently only support "standard" __stack_chk_guard.
1888// TODO: add LOAD_STACK_GUARD support.
Tim Shena1d8bc52016-04-19 20:14:52 +00001889Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
Davide Italianobd4243c2016-06-09 14:23:38 +00001890 return M.getGlobalVariable("__stack_chk_guard", true);
Tim Shen00127562016-04-08 21:26:31 +00001891}
Etienne Bergeron22bfa832016-06-07 20:15:35 +00001892
1893Value *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1894 return nullptr;
1895}
Evandro Menezese45de8a2016-09-26 15:32:33 +00001896
Evandro Menezeseb97e352016-10-25 19:53:51 +00001897unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1898 return MinimumJumpTableEntries;
1899}
1900
1901void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1902 MinimumJumpTableEntries = Val;
1903}
1904
Evandro Menezese45de8a2016-09-26 15:32:33 +00001905unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
1906 return MaximumJumpTableSize;
1907}
1908
1909void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
1910 MaximumJumpTableSize = Val;
1911}
Sanjay Patel0051efc2016-10-20 16:55:45 +00001912
1913//===----------------------------------------------------------------------===//
1914// Reciprocal Estimates
1915//===----------------------------------------------------------------------===//
1916
1917/// Get the reciprocal estimate attribute string for a function that will
1918/// override the target defaults.
1919static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
1920 const Function *F = MF.getFunction();
David Majnemere0ebdf42017-01-13 22:24:25 +00001921 return F->getFnAttribute("reciprocal-estimates").getValueAsString();
Sanjay Patel0051efc2016-10-20 16:55:45 +00001922}
1923
1924/// Construct a string for the given reciprocal operation of the given type.
1925/// This string should match the corresponding option to the front-end's
1926/// "-mrecip" flag assuming those strings have been passed through in an
1927/// attribute string. For example, "vec-divf" for a division of a vXf32.
1928static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
1929 std::string Name = VT.isVector() ? "vec-" : "";
1930
1931 Name += IsSqrt ? "sqrt" : "div";
1932
1933 // TODO: Handle "half" or other float types?
1934 if (VT.getScalarType() == MVT::f64) {
1935 Name += "d";
1936 } else {
1937 assert(VT.getScalarType() == MVT::f32 &&
1938 "Unexpected FP type for reciprocal estimate");
1939 Name += "f";
1940 }
1941
1942 return Name;
1943}
1944
1945/// Return the character position and value (a single numeric character) of a
1946/// customized refinement operation in the input string if it exists. Return
1947/// false if there is no customized refinement step count.
1948static bool parseRefinementStep(StringRef In, size_t &Position,
1949 uint8_t &Value) {
1950 const char RefStepToken = ':';
1951 Position = In.find(RefStepToken);
1952 if (Position == StringRef::npos)
1953 return false;
1954
1955 StringRef RefStepString = In.substr(Position + 1);
1956 // Allow exactly one numeric character for the additional refinement
1957 // step parameter.
1958 if (RefStepString.size() == 1) {
1959 char RefStepChar = RefStepString[0];
1960 if (RefStepChar >= '0' && RefStepChar <= '9') {
1961 Value = RefStepChar - '0';
1962 return true;
1963 }
1964 }
1965 report_fatal_error("Invalid refinement step for -recip.");
1966}
1967
1968/// For the input attribute string, return one of the ReciprocalEstimate enum
1969/// status values (enabled, disabled, or not specified) for this operation on
1970/// the specified data type.
1971static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
1972 if (Override.empty())
1973 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1974
1975 SmallVector<StringRef, 4> OverrideVector;
1976 SplitString(Override, OverrideVector, ",");
1977 unsigned NumArgs = OverrideVector.size();
1978
1979 // Check if "all", "none", or "default" was specified.
1980 if (NumArgs == 1) {
1981 // Look for an optional setting of the number of refinement steps needed
1982 // for this type of reciprocal operation.
1983 size_t RefPos;
1984 uint8_t RefSteps;
1985 if (parseRefinementStep(Override, RefPos, RefSteps)) {
1986 // Split the string for further processing.
1987 Override = Override.substr(0, RefPos);
1988 }
1989
1990 // All reciprocal types are enabled.
1991 if (Override == "all")
1992 return TargetLoweringBase::ReciprocalEstimate::Enabled;
1993
1994 // All reciprocal types are disabled.
1995 if (Override == "none")
1996 return TargetLoweringBase::ReciprocalEstimate::Disabled;
1997
1998 // Target defaults for enablement are used.
1999 if (Override == "default")
2000 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2001 }
2002
2003 // The attribute string may omit the size suffix ('f'/'d').
2004 std::string VTName = getReciprocalOpName(IsSqrt, VT);
2005 std::string VTNameNoSize = VTName;
Sanjay Patel501be9b2016-10-21 14:58:30 +00002006 VTNameNoSize.pop_back();
Sanjay Patel0051efc2016-10-20 16:55:45 +00002007 static const char DisabledPrefix = '!';
2008
2009 for (StringRef RecipType : OverrideVector) {
2010 size_t RefPos;
2011 uint8_t RefSteps;
2012 if (parseRefinementStep(RecipType, RefPos, RefSteps))
2013 RecipType = RecipType.substr(0, RefPos);
2014
2015 // Ignore the disablement token for string matching.
2016 bool IsDisabled = RecipType[0] == DisabledPrefix;
2017 if (IsDisabled)
2018 RecipType = RecipType.substr(1);
2019
2020 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2021 return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
2022 : TargetLoweringBase::ReciprocalEstimate::Enabled;
2023 }
2024
2025 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2026}
2027
2028/// For the input attribute string, return the customized refinement step count
2029/// for this operation on the specified data type. If the step count does not
2030/// exist, return the ReciprocalEstimate enum value for unspecified.
2031static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2032 if (Override.empty())
2033 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2034
2035 SmallVector<StringRef, 4> OverrideVector;
2036 SplitString(Override, OverrideVector, ",");
2037 unsigned NumArgs = OverrideVector.size();
2038
2039 // Check if "all", "default", or "none" was specified.
2040 if (NumArgs == 1) {
2041 // Look for an optional setting of the number of refinement steps needed
2042 // for this type of reciprocal operation.
2043 size_t RefPos;
2044 uint8_t RefSteps;
2045 if (!parseRefinementStep(Override, RefPos, RefSteps))
2046 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2047
2048 // Split the string for further processing.
2049 Override = Override.substr(0, RefPos);
2050 assert(Override != "none" &&
2051 "Disabled reciprocals, but specifed refinement steps?");
2052
2053 // If this is a general override, return the specified number of steps.
2054 if (Override == "all" || Override == "default")
2055 return RefSteps;
2056 }
2057
2058 // The attribute string may omit the size suffix ('f'/'d').
2059 std::string VTName = getReciprocalOpName(IsSqrt, VT);
2060 std::string VTNameNoSize = VTName;
Sanjay Patel501be9b2016-10-21 14:58:30 +00002061 VTNameNoSize.pop_back();
Sanjay Patel0051efc2016-10-20 16:55:45 +00002062
2063 for (StringRef RecipType : OverrideVector) {
2064 size_t RefPos;
2065 uint8_t RefSteps;
2066 if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2067 continue;
2068
2069 RecipType = RecipType.substr(0, RefPos);
2070 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2071 return RefSteps;
2072 }
2073
2074 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2075}
2076
2077int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
2078 MachineFunction &MF) const {
2079 return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
2080}
2081
2082int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
2083 MachineFunction &MF) const {
2084 return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
2085}
2086
2087int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2088 MachineFunction &MF) const {
2089 return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2090}
2091
2092int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2093 MachineFunction &MF) const {
2094 return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2095}