blob: 8b58c990cef1c842a129a909620d9c48f017c07d [file] [log] [blame]
Rui Ueyama0b289522016-02-25 18:43:51 +00001//===- ICF.cpp ------------------------------------------------------------===//
2//
3// The LLVM Linker
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000010// ICF is short for Identical Code Folding. This is a size optimization to
Rui Ueyama91ae8612016-12-01 19:45:22 +000011// identify and merge two or more read-only sections (typically functions)
12// that happened to have the same contents. It usually reduces output size
13// by a few percent.
Rui Ueyama0b289522016-02-25 18:43:51 +000014//
Rui Ueyama91ae8612016-12-01 19:45:22 +000015// In ICF, two sections are considered identical if they have the same
16// section flags, section data, and relocations. Relocations are tricky,
17// because two relocations are considered the same if they have the same
18// relocation types, values, and if they point to the same sections *in
19// terms of ICF*.
Rui Ueyama0b289522016-02-25 18:43:51 +000020//
Rui Ueyama91ae8612016-12-01 19:45:22 +000021// Here is an example. If foo and bar defined below are compiled to the
22// same machine instructions, ICF can and should merge the two, although
23// their relocations point to each other.
Rui Ueyama0b289522016-02-25 18:43:51 +000024//
25// void foo() { bar(); }
26// void bar() { foo(); }
27//
Rui Ueyama91ae8612016-12-01 19:45:22 +000028// If you merge the two, their relocations point to the same section and
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000029// thus you know they are mergeable, but how do you know they are
30// mergeable in the first place? This is not an easy problem to solve.
Rui Ueyama91ae8612016-12-01 19:45:22 +000031//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000032// What we are doing in LLD is to partition sections into equivalence
33// classes. Sections in the same equivalence class when the algorithm
34// terminates are considered identical. Here are details:
Rui Ueyama91ae8612016-12-01 19:45:22 +000035//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000036// 1. First, we partition sections using their hash values as keys. Hash
37// values contain section types, section contents and numbers of
38// relocations. During this step, relocation targets are not taken into
39// account. We just put sections that apparently differ into different
40// equivalence classes.
Rui Ueyama91ae8612016-12-01 19:45:22 +000041//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000042// 2. Next, for each equivalence class, we visit sections to compare
43// relocation targets. Relocation targets are considered equivalent if
44// their targets are in the same equivalence class. Sections with
45// different relocation targets are put into different equivalence
46// clases.
Rui Ueyama91ae8612016-12-01 19:45:22 +000047//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000048// 3. If we split an equivalence class in step 2, two relocations
49// previously target the same equivalence class may now target
50// different equivalence classes. Therefore, we repeat step 2 until a
51// convergence is obtained.
Rui Ueyama91ae8612016-12-01 19:45:22 +000052//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000053// 4. For each equivalence class C, pick an arbitrary section in C, and
54// merge all the other sections in C with it.
Rui Ueyama91ae8612016-12-01 19:45:22 +000055//
56// For small programs, this algorithm needs 3-5 iterations. For large
57// programs such as Chromium, it takes more than 20 iterations.
58//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000059// This algorithm was mentioned as an "optimistic algorithm" in [1],
60// though gold implements a different algorithm than this.
61//
Rui Ueyama91ae8612016-12-01 19:45:22 +000062// We parallelize each step so that multiple threads can work on different
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000063// equivalence classes concurrently. That gave us a large performance
64// boost when applying ICF on large programs. For example, MSVC link.exe
65// or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
66// size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
67// 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
68// faster than MSVC or gold though.
69//
70// [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
71// in the Gold Linker
72// http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
Rui Ueyama0b289522016-02-25 18:43:51 +000073//
74//===----------------------------------------------------------------------===//
75
76#include "ICF.h"
77#include "Config.h"
Rui Ueyama0b289522016-02-25 18:43:51 +000078#include "SymbolTable.h"
Rafael Espindolad26b52f2017-12-09 16:56:18 +000079#include "Symbols.h"
Bob Haarman4f5c8c22017-10-13 18:22:55 +000080#include "lld/Common/Threads.h"
Rui Ueyama0b289522016-02-25 18:43:51 +000081#include "llvm/ADT/Hashing.h"
Zachary Turner264b5d92017-06-07 03:48:56 +000082#include "llvm/BinaryFormat/ELF.h"
Rui Ueyama0b289522016-02-25 18:43:51 +000083#include "llvm/Object/ELF.h"
Rui Ueyamaa05134e2016-11-19 20:15:55 +000084#include <algorithm>
Rui Ueyama1b6bab02016-12-02 05:35:46 +000085#include <atomic>
Rui Ueyama0b289522016-02-25 18:43:51 +000086
87using namespace lld;
Rafael Espindolae0df00b2016-02-28 00:25:54 +000088using namespace lld::elf;
Rui Ueyama0b289522016-02-25 18:43:51 +000089using namespace llvm;
90using namespace llvm::ELF;
91using namespace llvm::object;
92
Rui Ueyamabd1f0632016-11-20 02:39:59 +000093namespace {
Rui Ueyama0b289522016-02-25 18:43:51 +000094template <class ELFT> class ICF {
Rui Ueyama0b289522016-02-25 18:43:51 +000095public:
Rui Ueyama4f8d21f2016-05-02 19:30:42 +000096 void run();
Rui Ueyama0b289522016-02-25 18:43:51 +000097
98private:
Rui Ueyama1b6bab02016-12-02 05:35:46 +000099 void segregate(size_t Begin, size_t End, bool Constant);
Rui Ueyama0b289522016-02-25 18:43:51 +0000100
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000101 template <class RelTy>
Peter Collingbournebfd51132017-06-12 00:05:54 +0000102 bool constantEq(const InputSection *A, ArrayRef<RelTy> RelsA,
103 const InputSection *B, ArrayRef<RelTy> RelsB);
Rui Ueyama0b289522016-02-25 18:43:51 +0000104
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000105 template <class RelTy>
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000106 bool variableEq(const InputSection *A, ArrayRef<RelTy> RelsA,
107 const InputSection *B, ArrayRef<RelTy> RelsB);
Rui Ueyama0b289522016-02-25 18:43:51 +0000108
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000109 bool equalsConstant(const InputSection *A, const InputSection *B);
110 bool equalsVariable(const InputSection *A, const InputSection *B);
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000111
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000112 size_t findBoundary(size_t Begin, size_t End);
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000113
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000114 void forEachClassRange(size_t Begin, size_t End,
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000115 std::function<void(size_t, size_t)> Fn);
116
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000117 void forEachClass(std::function<void(size_t, size_t)> Fn);
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000118
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000119 std::vector<InputSection *> Sections;
Rui Ueyama045d8282016-12-04 16:33:13 +0000120
121 // We repeat the main loop while `Repeat` is true.
122 std::atomic<bool> Repeat;
123
124 // The main loop counter.
Rui Ueyamac1835312016-12-01 17:09:04 +0000125 int Cnt = 0;
Rui Ueyama045d8282016-12-04 16:33:13 +0000126
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000127 // We have two locations for equivalence classes. On the first iteration
128 // of the main loop, Class[0] has a valid value, and Class[1] contains
129 // garbage. We read equivalence classes from slot 0 and write to slot 1.
130 // So, Class[0] represents the current class, and Class[1] represents
131 // the next class. On each iteration, we switch their roles and use them
132 // alternately.
Rui Ueyama045d8282016-12-04 16:33:13 +0000133 //
134 // Why are we doing this? Recall that other threads may be working on
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000135 // other equivalence classes in parallel. They may read sections that we
136 // are updating. We cannot update equivalence classes in place because
137 // it breaks the invariance that all possibly-identical sections must be
138 // in the same equivalence class at any moment. In other words, the for
139 // loop to update equivalence classes is not atomic, and that is
140 // observable from other threads. By writing new classes to other
141 // places, we can keep the invariance.
Rui Ueyama045d8282016-12-04 16:33:13 +0000142 //
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000143 // Below, `Current` has the index of the current class, and `Next` has
144 // the index of the next class. If threading is enabled, they are either
145 // (0, 1) or (1, 0).
Rui Ueyama045d8282016-12-04 16:33:13 +0000146 //
147 // Note on single-thread: if that's the case, they are always (0, 0)
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000148 // because we can safely read the next class without worrying about race
Rui Ueyama045d8282016-12-04 16:33:13 +0000149 // conditions. Using the same location makes this algorithm converge
150 // faster because it uses results of the same iteration earlier.
151 int Current = 0;
152 int Next = 0;
Rui Ueyama0b289522016-02-25 18:43:51 +0000153};
154}
Rui Ueyama0b289522016-02-25 18:43:51 +0000155
Rui Ueyama0b289522016-02-25 18:43:51 +0000156// Returns a hash value for S. Note that the information about
157// relocation targets is not included in the hash value.
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000158template <class ELFT> static uint32_t getHash(InputSection *S) {
Rui Ueyama274aa2f2017-10-02 01:21:07 +0000159 return hash_combine(S->Flags, S->getSize(), S->NumRelocations, S->Data);
Rui Ueyama0b289522016-02-25 18:43:51 +0000160}
161
Rui Ueyamabd1f0632016-11-20 02:39:59 +0000162// Returns true if section S is subject of ICF.
Rui Ueyama536a2672017-02-27 02:32:08 +0000163static bool isEligible(InputSection *S) {
Rafael Espindolab5506e62018-01-10 01:37:36 +0000164 // Don't merge read only data sections unless
165 // --ignore-data-address-equality was passed.
166 if (!(S->Flags & SHF_EXECINSTR) && !Config->IgnoreDataAddressEquality)
Rafael Espindola814ece62017-12-12 01:36:24 +0000167 return false;
168
Rui Ueyama0b289522016-02-25 18:43:51 +0000169 // .init and .fini contains instructions that must be executed to
170 // initialize and finalize the process. They cannot and should not
171 // be merged.
Rafael Espindola814ece62017-12-12 01:36:24 +0000172 return S->Live && (S->Flags & SHF_ALLOC) && !(S->Flags & SHF_WRITE) &&
173 S->Name != ".init" && S->Name != ".fini";
Rui Ueyama0b289522016-02-25 18:43:51 +0000174}
175
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000176// Split an equivalence class into smaller classes.
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000177template <class ELFT>
178void ICF<ELFT>::segregate(size_t Begin, size_t End, bool Constant) {
179 // This loop rearranges sections in [Begin, End) so that all sections
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000180 // that are equal in terms of equals{Constant,Variable} are contiguous
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000181 // in [Begin, End).
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000182 //
183 // The algorithm is quadratic in the worst case, but that is not an
184 // issue in practice because the number of the distinct sections in
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000185 // each range is usually very small.
Rui Ueyamac1835312016-12-01 17:09:04 +0000186
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000187 while (Begin < End) {
188 // Divide [Begin, End) into two. Let Mid be the start index of the
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000189 // second group.
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000190 auto Bound =
191 std::stable_partition(Sections.begin() + Begin + 1,
192 Sections.begin() + End, [&](InputSection *S) {
193 if (Constant)
194 return equalsConstant(Sections[Begin], S);
195 return equalsVariable(Sections[Begin], S);
196 });
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000197 size_t Mid = Bound - Sections.begin();
Rui Ueyama0b289522016-02-25 18:43:51 +0000198
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000199 // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
Rui Ueyamac9df1722017-01-15 02:34:42 +0000200 // updating the sections in [Begin, Mid). We use Mid as an equivalence
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000201 // class ID because every group ends with a unique index.
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000202 for (size_t I = Begin; I < Mid; ++I)
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000203 Sections[I]->Class[Next] = Mid;
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000204
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000205 // If we created a group, we need to iterate the main loop again.
206 if (Mid != End)
207 Repeat = true;
208
209 Begin = Mid;
Rui Ueyama0b289522016-02-25 18:43:51 +0000210 }
211}
212
213// Compare two lists of relocations.
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000214template <class ELFT>
215template <class RelTy>
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000216bool ICF<ELFT>::constantEq(const InputSection *SecA, ArrayRef<RelTy> RA,
217 const InputSection *SecB, ArrayRef<RelTy> RB) {
218 if (RA.size() != RB.size())
219 return false;
Peter Collingbournebfd51132017-06-12 00:05:54 +0000220
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000221 for (size_t I = 0; I < RA.size(); ++I) {
222 if (RA[I].r_offset != RB[I].r_offset ||
223 RA[I].getType(Config->IsMips64EL) != RB[I].getType(Config->IsMips64EL))
224 return false;
225
226 uint64_t AddA = getAddend<ELFT>(RA[I]);
227 uint64_t AddB = getAddend<ELFT>(RB[I]);
228
Rui Ueyamaf52496e2017-11-03 21:21:47 +0000229 Symbol &SA = SecA->template getFile<ELFT>()->getRelocTargetSym(RA[I]);
230 Symbol &SB = SecB->template getFile<ELFT>()->getRelocTargetSym(RB[I]);
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000231 if (&SA == &SB) {
232 if (AddA == AddB)
233 continue;
234 return false;
235 }
Peter Collingbournebfd51132017-06-12 00:05:54 +0000236
Peter Collingbournee9a9e0a2017-11-06 04:35:31 +0000237 auto *DA = dyn_cast<Defined>(&SA);
238 auto *DB = dyn_cast<Defined>(&SB);
Peter Collingbournebfd51132017-06-12 00:05:54 +0000239 if (!DA || !DB)
240 return false;
241
242 // Relocations referring to absolute symbols are constant-equal if their
243 // values are equal.
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000244 if (!DA->Section && !DB->Section && DA->Value + AddA == DB->Value + AddB)
245 continue;
Peter Collingbournebfd51132017-06-12 00:05:54 +0000246 if (!DA->Section || !DB->Section)
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000247 return false;
Peter Collingbournebfd51132017-06-12 00:05:54 +0000248
249 if (DA->Section->kind() != DB->Section->kind())
250 return false;
251
252 // Relocations referring to InputSections are constant-equal if their
253 // section offsets are equal.
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000254 if (isa<InputSection>(DA->Section)) {
255 if (DA->Value + AddA == DB->Value + AddB)
256 continue;
257 return false;
258 }
Peter Collingbournebfd51132017-06-12 00:05:54 +0000259
260 // Relocations referring to MergeInputSections are constant-equal if their
261 // offsets in the output section are equal.
262 auto *X = dyn_cast<MergeInputSection>(DA->Section);
263 if (!X)
264 return false;
265 auto *Y = cast<MergeInputSection>(DB->Section);
266 if (X->getParent() != Y->getParent())
267 return false;
268
269 uint64_t OffsetA =
270 SA.isSection() ? X->getOffset(AddA) : X->getOffset(DA->Value) + AddA;
271 uint64_t OffsetB =
272 SB.isSection() ? Y->getOffset(AddB) : Y->getOffset(DB->Value) + AddB;
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000273 if (OffsetA != OffsetB)
274 return false;
275 }
Rui Ueyamaa05134e2016-11-19 20:15:55 +0000276
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000277 return true;
Rui Ueyama0b289522016-02-25 18:43:51 +0000278}
279
280// Compare "non-moving" part of two InputSections, namely everything
281// except relocation targets.
282template <class ELFT>
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000283bool ICF<ELFT>::equalsConstant(const InputSection *A, const InputSection *B) {
Rui Ueyamabd1f0632016-11-20 02:39:59 +0000284 if (A->NumRelocations != B->NumRelocations || A->Flags != B->Flags ||
Rafael Espindola76b6bd32017-03-08 15:44:30 +0000285 A->getSize() != B->getSize() || A->Data != B->Data)
Rui Ueyama0b289522016-02-25 18:43:51 +0000286 return false;
287
Rui Ueyamabd1f0632016-11-20 02:39:59 +0000288 if (A->AreRelocsRela)
Peter Collingbournebfd51132017-06-12 00:05:54 +0000289 return constantEq(A, A->template relas<ELFT>(), B,
290 B->template relas<ELFT>());
291 return constantEq(A, A->template rels<ELFT>(), B, B->template rels<ELFT>());
Rui Ueyama0b289522016-02-25 18:43:51 +0000292}
293
Rui Ueyama7bed9ee2016-11-20 23:15:54 +0000294// Compare two lists of relocations. Returns true if all pairs of
295// relocations point to the same section in terms of ICF.
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000296template <class ELFT>
297template <class RelTy>
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000298bool ICF<ELFT>::variableEq(const InputSection *SecA, ArrayRef<RelTy> RA,
299 const InputSection *SecB, ArrayRef<RelTy> RB) {
300 assert(RA.size() == RB.size());
301
302 for (size_t I = 0; I < RA.size(); ++I) {
Rui Ueyama91ae8612016-12-01 19:45:22 +0000303 // The two sections must be identical.
Rui Ueyamaf52496e2017-11-03 21:21:47 +0000304 Symbol &SA = SecA->template getFile<ELFT>()->getRelocTargetSym(RA[I]);
305 Symbol &SB = SecB->template getFile<ELFT>()->getRelocTargetSym(RB[I]);
Rafael Espindola67d72c02016-03-11 12:06:30 +0000306 if (&SA == &SB)
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000307 continue;
Rui Ueyama0b289522016-02-25 18:43:51 +0000308
Peter Collingbournee9a9e0a2017-11-06 04:35:31 +0000309 auto *DA = cast<Defined>(&SA);
310 auto *DB = cast<Defined>(&SB);
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000311
Peter Collingbournebfd51132017-06-12 00:05:54 +0000312 // We already dealt with absolute and non-InputSection symbols in
313 // constantEq, and for InputSections we have already checked everything
314 // except the equivalence class.
315 if (!DA->Section)
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000316 continue;
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000317 auto *X = dyn_cast<InputSection>(DA->Section);
Peter Collingbournebfd51132017-06-12 00:05:54 +0000318 if (!X)
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000319 continue;
Peter Collingbournebfd51132017-06-12 00:05:54 +0000320 auto *Y = cast<InputSection>(DB->Section);
Rui Ueyamac1835312016-12-01 17:09:04 +0000321
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000322 // Ineligible sections are in the special equivalence class 0.
323 // They can never be the same in terms of the equivalence class.
324 if (X->Class[Current] == 0)
Rui Ueyama83ec6812016-12-02 17:23:58 +0000325 return false;
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000326 if (X->Class[Current] != Y->Class[Current])
327 return false;
Rui Ueyamaa05134e2016-11-19 20:15:55 +0000328 };
329
Rui Ueyama5ac94e72017-08-28 22:28:41 +0000330 return true;
Rui Ueyama0b289522016-02-25 18:43:51 +0000331}
332
333// Compare "moving" part of two InputSections, namely relocation targets.
334template <class ELFT>
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000335bool ICF<ELFT>::equalsVariable(const InputSection *A, const InputSection *B) {
Rafael Espindola9f0c4bb2016-11-10 14:53:24 +0000336 if (A->AreRelocsRela)
Rafael Espindolab4c9b812017-02-23 02:28:28 +0000337 return variableEq(A, A->template relas<ELFT>(), B,
338 B->template relas<ELFT>());
339 return variableEq(A, A->template rels<ELFT>(), B, B->template rels<ELFT>());
Rui Ueyama0b289522016-02-25 18:43:51 +0000340}
341
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000342template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t Begin, size_t End) {
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000343 uint32_t Class = Sections[Begin]->Class[Current];
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000344 for (size_t I = Begin + 1; I < End; ++I)
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000345 if (Class != Sections[I]->Class[Current])
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000346 return I;
347 return End;
348}
349
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000350// Sections in the same equivalence class are contiguous in Sections
351// vector. Therefore, Sections vector can be considered as contiguous
352// groups of sections, grouped by the class.
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000353//
354// This function calls Fn on every group that starts within [Begin, End).
Rui Ueyamac9df1722017-01-15 02:34:42 +0000355// Note that a group must start in that range but doesn't necessarily
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000356// have to end before End.
357template <class ELFT>
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000358void ICF<ELFT>::forEachClassRange(size_t Begin, size_t End,
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000359 std::function<void(size_t, size_t)> Fn) {
360 if (Begin > 0)
361 Begin = findBoundary(Begin - 1, End);
362
363 while (Begin < End) {
364 size_t Mid = findBoundary(Begin, Sections.size());
365 Fn(Begin, Mid);
366 Begin = Mid;
367 }
368}
369
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000370// Call Fn on each equivalence class.
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000371template <class ELFT>
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000372void ICF<ELFT>::forEachClass(std::function<void(size_t, size_t)> Fn) {
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000373 // If threading is disabled or the number of sections are
374 // too small to use threading, call Fn sequentially.
Bob Haarman4f5c8c22017-10-13 18:22:55 +0000375 if (!ThreadsEnabled || Sections.size() < 1024) {
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000376 forEachClassRange(0, Sections.size(), Fn);
Rui Ueyama045d8282016-12-04 16:33:13 +0000377 ++Cnt;
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000378 return;
379 }
380
Rui Ueyama045d8282016-12-04 16:33:13 +0000381 Current = Cnt % 2;
382 Next = (Cnt + 1) % 2;
383
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000384 // Split sections into 256 shards and call Fn in parallel.
385 size_t NumShards = 256;
386 size_t Step = Sections.size() / NumShards;
Rui Ueyama33d903d2017-05-10 20:02:19 +0000387 parallelForEachN(0, NumShards, [&](size_t I) {
Rui Ueyamaf04c0482017-05-24 19:22:34 +0000388 size_t End = (I == NumShards - 1) ? Sections.size() : (I + 1) * Step;
389 forEachClassRange(I * Step, End, Fn);
Rui Ueyama4995afd2017-03-22 23:03:35 +0000390 });
Rui Ueyama045d8282016-12-04 16:33:13 +0000391 ++Cnt;
Rui Ueyamac1835312016-12-01 17:09:04 +0000392}
393
Rui Ueyama2d9e7a82018-02-13 22:56:49 +0000394static void print(const Twine &S) {
395 if (Config->PrintIcfSections)
396 message(S);
Galina Kistanovac6cd1f02018-02-11 02:32:21 +0000397}
Rui Ueyama37a98892018-02-09 18:00:46 +0000398
Rui Ueyama0b289522016-02-25 18:43:51 +0000399// The main function of ICF.
Rui Ueyama4f8d21f2016-05-02 19:30:42 +0000400template <class ELFT> void ICF<ELFT>::run() {
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000401 // Collect sections to merge.
Rui Ueyama536a2672017-02-27 02:32:08 +0000402 for (InputSectionBase *Sec : InputSections)
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000403 if (auto *S = dyn_cast<InputSection>(Sec))
Rui Ueyama536a2672017-02-27 02:32:08 +0000404 if (isEligible(S))
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000405 Sections.push_back(S);
406
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000407 // Initially, we use hash values to partition sections.
Rui Ueyama274aa2f2017-10-02 01:21:07 +0000408 parallelForEach(Sections, [&](InputSection *S) {
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000409 // Set MSB to 1 to avoid collisions with non-hash IDs.
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000410 S->Class[0] = getHash<ELFT>(S) | (1 << 31);
Rui Ueyama274aa2f2017-10-02 01:21:07 +0000411 });
Rui Ueyama0b289522016-02-25 18:43:51 +0000412
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000413 // From now on, sections in Sections vector are ordered so that sections
414 // in the same equivalence class are consecutive in the vector.
Rui Ueyamae2dfbc12016-11-19 23:14:23 +0000415 std::stable_sort(Sections.begin(), Sections.end(),
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000416 [](InputSection *A, InputSection *B) {
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000417 return A->Class[0] < B->Class[0];
Rui Ueyama0b289522016-02-25 18:43:51 +0000418 });
419
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000420 // Compare static contents and assign unique IDs for each static content.
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000421 forEachClass([&](size_t Begin, size_t End) { segregate(Begin, End, true); });
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000422
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000423 // Split groups by comparing relocations until convergence is obtained.
424 do {
425 Repeat = false;
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000426 forEachClass(
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000427 [&](size_t Begin, size_t End) { segregate(Begin, End, false); });
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000428 } while (Repeat);
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000429
430 log("ICF needed " + Twine(Cnt) + " iterations");
Rui Ueyama0b289522016-02-25 18:43:51 +0000431
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000432 // Merge sections by the equivalence class.
Rui Ueyama153b04f2018-02-08 23:51:58 +0000433 forEachClassRange(0, Sections.size(), [&](size_t Begin, size_t End) {
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000434 if (End - Begin == 1)
435 return;
Rui Ueyama2d9e7a82018-02-13 22:56:49 +0000436 print("selected section " + toString(Sections[Begin]));
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000437 for (size_t I = Begin + 1; I < End; ++I) {
Rui Ueyama2d9e7a82018-02-13 22:56:49 +0000438 print(" removing identical section " + toString(Sections[I]));
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000439 Sections[Begin]->replace(Sections[I]);
George Rimar2d539672018-02-23 10:37:33 +0000440
441 // At this point we know sections merged are fully identical and hence
442 // we want to remove duplicate implicit dependencies such as link order
443 // and relocation sections.
444 for (InputSection *IS : Sections[I]->DependentSections)
445 IS->Live = false;
Rui Ueyama0b289522016-02-25 18:43:51 +0000446 }
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000447 });
Rui Ueyama0b289522016-02-25 18:43:51 +0000448}
449
450// ICF entry point function.
Rui Ueyama4f8d21f2016-05-02 19:30:42 +0000451template <class ELFT> void elf::doIcf() { ICF<ELFT>().run(); }
Rui Ueyama0b289522016-02-25 18:43:51 +0000452
Rui Ueyama4f8d21f2016-05-02 19:30:42 +0000453template void elf::doIcf<ELF32LE>();
454template void elf::doIcf<ELF32BE>();
455template void elf::doIcf<ELF64LE>();
456template void elf::doIcf<ELF64BE>();