blob: 3b27364cf5ec20ade3ca07ee361a12bdc919c399 [file] [log] [blame]
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001//===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2//
Chandler Carruth2946cd72019-01-19 08:50:56 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00006//
7//===----------------------------------------------------------------------===//
8//
9// The LoopPredication pass tries to convert loop variant range checks to loop
10// invariant by widening checks across loop iterations. For example, it will
11// convert
12//
13// for (i = 0; i < n; i++) {
14// guard(i < len);
15// ...
16// }
17//
18// to
19//
20// for (i = 0; i < n; i++) {
21// guard(n - 1 < len);
22// ...
23// }
24//
25// After this transformation the condition of the guard is loop invariant, so
26// loop-unswitch can later unswitch the loop by this condition which basically
27// predicates the loop by the widened condition:
28//
29// if (n - 1 < len)
30// for (i = 0; i < n; i++) {
31// ...
32// }
33// else
34// deoptimize
35//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000036// It's tempting to rely on SCEV here, but it has proven to be problematic.
37// Generally the facts SCEV provides about the increment step of add
38// recurrences are true if the backedge of the loop is taken, which implicitly
39// assumes that the guard doesn't fail. Using these facts to optimize the
40// guard results in a circular logic where the guard is optimized under the
41// assumption that it never fails.
42//
43// For example, in the loop below the induction variable will be marked as nuw
44// basing on the guard. Basing on nuw the guard predicate will be considered
45// monotonic. Given a monotonic condition it's tempting to replace the induction
46// variable in the condition with its value on the last iteration. But this
47// transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48//
49// for (int i = b; i != e; i++)
50// guard(i u< len)
51//
52// One of the ways to reason about this problem is to use an inductive proof
53// approach. Given the loop:
54//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000055// if (B(0)) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000056// do {
Artur Pilipenko8aadc642017-10-27 14:46:17 +000057// I = PHI(0, I.INC)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000058// I.INC = I + Step
59// guard(G(I));
Artur Pilipenko8aadc642017-10-27 14:46:17 +000060// } while (B(I));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000061// }
62//
63// where B(x) and G(x) are predicates that map integers to booleans, we want a
64// loop invariant expression M such the following program has the same semantics
65// as the above:
66//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000067// if (B(0)) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000068// do {
Artur Pilipenko8aadc642017-10-27 14:46:17 +000069// I = PHI(0, I.INC)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000070// I.INC = I + Step
Artur Pilipenko8aadc642017-10-27 14:46:17 +000071// guard(G(0) && M);
72// } while (B(I));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000073// }
74//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000075// One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
Fangrui Songf78650a2018-07-30 19:41:25 +000076//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000077// Informal proof that the transformation above is correct:
78//
79// By the definition of guards we can rewrite the guard condition to:
Artur Pilipenko8aadc642017-10-27 14:46:17 +000080// G(I) && G(0) && M
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000081//
82// Let's prove that for each iteration of the loop:
Artur Pilipenko8aadc642017-10-27 14:46:17 +000083// G(0) && M => G(I)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000084// And the condition above can be simplified to G(Start) && M.
Fangrui Songf78650a2018-07-30 19:41:25 +000085//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000086// Induction base.
Artur Pilipenko8aadc642017-10-27 14:46:17 +000087// G(0) && M => G(0)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000088//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000089// Induction step. Assuming G(0) && M => G(I) on the subsequent
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000090// iteration:
91//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000092// B(I) is true because it's the backedge condition.
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000093// G(I) is true because the backedge is guarded by this condition.
94//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000095// So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000096//
97// Note that we can use anything stronger than M, i.e. any condition which
98// implies M.
99//
Anna Thomas7b360432017-12-04 15:11:48 +0000100// When S = 1 (i.e. forward iterating loop), the transformation is supported
101// when:
Artur Pilipenkob4527e12017-10-12 20:40:27 +0000102// * The loop has a single latch with the condition of the form:
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000103// B(X) = latchStart + X <pred> latchLimit,
104// where <pred> is u<, u<=, s<, or s<=.
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000105// * The guard condition is of the form
106// G(X) = guardStart + X u< guardLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000107//
Anna Thomas7b360432017-12-04 15:11:48 +0000108// For the ult latch comparison case M is:
109// forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110// guardStart + X + 1 u< guardLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000111//
Anna Thomas7b360432017-12-04 15:11:48 +0000112// The only way the antecedent can be true and the consequent can be false is
113// if
114// X == guardLimit - 1 - guardStart
115// (and guardLimit is non-zero, but we won't use this latter fact).
116// If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117// latchStart + guardLimit - 1 - guardStart u< latchLimit
118// and its negation is
119// latchStart + guardLimit - 1 - guardStart u>= latchLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000120//
Anna Thomas7b360432017-12-04 15:11:48 +0000121// In other words, if
122// latchLimit u<= latchStart + guardLimit - 1 - guardStart
123// then:
124// (the ranges below are written in ConstantRange notation, where [A, B) is the
125// set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000126//
Anna Thomas7b360432017-12-04 15:11:48 +0000127// forall X . guardStart + X u< guardLimit &&
128// latchStart + X u< latchLimit =>
129// guardStart + X + 1 u< guardLimit
130// == forall X . guardStart + X u< guardLimit &&
131// latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132// guardStart + X + 1 u< guardLimit
133// == forall X . (guardStart + X) in [0, guardLimit) &&
134// (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135// (guardStart + X + 1) in [0, guardLimit)
136// == forall X . X in [-guardStart, guardLimit - guardStart) &&
137// X in [-latchStart, guardLimit - 1 - guardStart) =>
138// X in [-guardStart - 1, guardLimit - guardStart - 1)
139// == true
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000140//
Anna Thomas7b360432017-12-04 15:11:48 +0000141// So the widened condition is:
142// guardStart u< guardLimit &&
143// latchStart + guardLimit - 1 - guardStart u>= latchLimit
144// Similarly for ule condition the widened condition is:
145// guardStart u< guardLimit &&
146// latchStart + guardLimit - 1 - guardStart u> latchLimit
147// For slt condition the widened condition is:
148// guardStart u< guardLimit &&
149// latchStart + guardLimit - 1 - guardStart s>= latchLimit
150// For sle condition the widened condition is:
151// guardStart u< guardLimit &&
152// latchStart + guardLimit - 1 - guardStart s> latchLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000153//
Anna Thomas7b360432017-12-04 15:11:48 +0000154// When S = -1 (i.e. reverse iterating loop), the transformation is supported
155// when:
156// * The loop has a single latch with the condition of the form:
Serguei Katkovc8016e72018-02-08 10:34:08 +0000157// B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
Anna Thomas7b360432017-12-04 15:11:48 +0000158// * The guard condition is of the form
159// G(X) = X - 1 u< guardLimit
160//
161// For the ugt latch comparison case M is:
162// forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163//
164// The only way the antecedent can be true and the consequent can be false is if
165// X == 1.
166// If X == 1 then the second half of the antecedent is
167// 1 u> latchLimit, and its negation is latchLimit u>= 1.
168//
169// So the widened condition is:
170// guardStart u< guardLimit && latchLimit u>= 1.
171// Similarly for sgt condition the widened condition is:
172// guardStart u< guardLimit && latchLimit s>= 1.
Serguei Katkovc8016e72018-02-08 10:34:08 +0000173// For uge condition the widened condition is:
174// guardStart u< guardLimit && latchLimit u> 1.
175// For sge condition the widened condition is:
176// guardStart u< guardLimit && latchLimit s> 1.
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000177//===----------------------------------------------------------------------===//
178
179#include "llvm/Transforms/Scalar/LoopPredication.h"
Fedor Sergeevc297e842018-10-17 09:02:54 +0000180#include "llvm/ADT/Statistic.h"
Anna Thomas9b1176b2018-03-22 16:03:59 +0000181#include "llvm/Analysis/BranchProbabilityInfo.h"
Max Kazantsev28298e92018-12-26 08:22:25 +0000182#include "llvm/Analysis/GuardUtils.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000183#include "llvm/Analysis/LoopInfo.h"
184#include "llvm/Analysis/LoopPass.h"
185#include "llvm/Analysis/ScalarEvolution.h"
186#include "llvm/Analysis/ScalarEvolutionExpander.h"
187#include "llvm/Analysis/ScalarEvolutionExpressions.h"
188#include "llvm/IR/Function.h"
189#include "llvm/IR/GlobalValue.h"
190#include "llvm/IR/IntrinsicInst.h"
191#include "llvm/IR/Module.h"
192#include "llvm/IR/PatternMatch.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +0000193#include "llvm/Pass.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000194#include "llvm/Support/Debug.h"
195#include "llvm/Transforms/Scalar.h"
Philip Reamesd109e2a2019-04-01 16:05:15 +0000196#include "llvm/Transforms/Utils/Local.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000197#include "llvm/Transforms/Utils/LoopUtils.h"
198
199#define DEBUG_TYPE "loop-predication"
200
Fedor Sergeevc297e842018-10-17 09:02:54 +0000201STATISTIC(TotalConsidered, "Number of guards considered");
202STATISTIC(TotalWidened, "Number of checks widened");
203
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000204using namespace llvm;
205
Anna Thomas1d02b132017-11-02 21:21:02 +0000206static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
207 cl::Hidden, cl::init(true));
208
Anna Thomas7b360432017-12-04 15:11:48 +0000209static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
210 cl::Hidden, cl::init(true));
Anna Thomas9b1176b2018-03-22 16:03:59 +0000211
212static cl::opt<bool>
213 SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
214 cl::Hidden, cl::init(false));
215
216// This is the scale factor for the latch probability. We use this during
217// profitability analysis to find other exiting blocks that have a much higher
218// probability of exiting the loop instead of loop exiting via latch.
219// This value should be greater than 1 for a sane profitability check.
220static cl::opt<float> LatchExitProbabilityScale(
221 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
222 cl::desc("scale factor for the latch probability. Value should be greater "
223 "than 1. Lower values are ignored"));
224
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000225static cl::opt<bool> PredicateWidenableBranchGuards(
226 "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
227 cl::desc("Whether or not we should predicate guards "
228 "expressed as widenable branches to deoptimize blocks"),
229 cl::init(true));
230
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000231namespace {
232class LoopPredication {
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000233 /// Represents an induction variable check:
234 /// icmp Pred, <induction variable>, <loop invariant limit>
235 struct LoopICmp {
236 ICmpInst::Predicate Pred;
237 const SCEVAddRecExpr *IV;
238 const SCEV *Limit;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000239 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
240 const SCEV *Limit)
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000241 : Pred(Pred), IV(IV), Limit(Limit) {}
242 LoopICmp() {}
Anna Thomas68797212017-11-03 14:25:39 +0000243 void dump() {
244 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
245 << ", Limit = " << *Limit << "\n";
246 }
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000247 };
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000248
249 ScalarEvolution *SE;
Anna Thomas9b1176b2018-03-22 16:03:59 +0000250 BranchProbabilityInfo *BPI;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000251
252 Loop *L;
253 const DataLayout *DL;
254 BasicBlock *Preheader;
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000255 LoopICmp LatchCheck;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000256
Anna Thomas68797212017-11-03 14:25:39 +0000257 bool isSupportedStep(const SCEV* Step);
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000258 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
259 return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
260 ICI->getOperand(1));
261 }
262 Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
263 Value *RHS);
264
265 Optional<LoopICmp> parseLoopLatchICmp();
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000266
Philip Reamesfbe64a22019-04-15 15:53:25 +0000267 /// Return an insertion point suitable for inserting a safe to speculate
268 /// instruction whose only user will be 'User' which has operands 'Ops'. A
269 /// trivial result would be the at the User itself, but we try to return a
270 /// loop invariant location if possible.
271 Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
272
Anna Thomas68797212017-11-03 14:25:39 +0000273 bool CanExpand(const SCEV* S);
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000274 Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder,
Philip Reames3d4e1082019-03-29 23:06:57 +0000275 ICmpInst::Predicate Pred, const SCEV *LHS,
276 const SCEV *RHS);
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000277
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000278 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
279 IRBuilder<> &Builder);
Anna Thomas68797212017-11-03 14:25:39 +0000280 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
281 LoopICmp RangeCheck,
282 SCEVExpander &Expander,
283 IRBuilder<> &Builder);
Anna Thomas7b360432017-12-04 15:11:48 +0000284 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
285 LoopICmp RangeCheck,
286 SCEVExpander &Expander,
287 IRBuilder<> &Builder);
Max Kazantsevca450872019-01-22 10:13:36 +0000288 unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
289 SCEVExpander &Expander, IRBuilder<> &Builder);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000290 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000291 bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
Anna Thomas9b1176b2018-03-22 16:03:59 +0000292 // If the loop always exits through another block in the loop, we should not
293 // predicate based on the latch check. For example, the latch check can be a
294 // very coarse grained check and there can be more fine grained exit checks
295 // within the loop. We identify such unprofitable loops through BPI.
296 bool isLoopProfitableToPredicate();
297
Anna Thomas1d02b132017-11-02 21:21:02 +0000298 // When the IV type is wider than the range operand type, we can still do loop
299 // predication, by generating SCEVs for the range and latch that are of the
300 // same type. We achieve this by generating a SCEV truncate expression for the
301 // latch IV. This is done iff truncation of the IV is a safe operation,
302 // without loss of information.
303 // Another way to achieve this is by generating a wider type SCEV for the
304 // range check operand, however, this needs a more involved check that
305 // operands do not overflow. This can lead to loss of information when the
306 // range operand is of the form: add i32 %offset, %iv. We need to prove that
307 // sext(x + y) is same as sext(x) + sext(y).
308 // This function returns true if we can safely represent the IV type in
309 // the RangeCheckType without loss of information.
310 bool isSafeToTruncateWideIVType(Type *RangeCheckType);
311 // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
312 // so.
313 Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType);
Serguei Katkovebc90312018-02-07 06:53:37 +0000314
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000315public:
Anna Thomas9b1176b2018-03-22 16:03:59 +0000316 LoopPredication(ScalarEvolution *SE, BranchProbabilityInfo *BPI)
317 : SE(SE), BPI(BPI){};
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000318 bool runOnLoop(Loop *L);
319};
320
321class LoopPredicationLegacyPass : public LoopPass {
322public:
323 static char ID;
324 LoopPredicationLegacyPass() : LoopPass(ID) {
325 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
326 }
327
328 void getAnalysisUsage(AnalysisUsage &AU) const override {
Anna Thomas9b1176b2018-03-22 16:03:59 +0000329 AU.addRequired<BranchProbabilityInfoWrapperPass>();
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000330 getLoopAnalysisUsage(AU);
331 }
332
333 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
334 if (skipLoop(L))
335 return false;
336 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Anna Thomas9b1176b2018-03-22 16:03:59 +0000337 BranchProbabilityInfo &BPI =
338 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
339 LoopPredication LP(SE, &BPI);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000340 return LP.runOnLoop(L);
341 }
342};
343
344char LoopPredicationLegacyPass::ID = 0;
345} // end namespace llvm
346
347INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
348 "Loop predication", false, false)
Anna Thomas9b1176b2018-03-22 16:03:59 +0000349INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000350INITIALIZE_PASS_DEPENDENCY(LoopPass)
351INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
352 "Loop predication", false, false)
353
354Pass *llvm::createLoopPredicationPass() {
355 return new LoopPredicationLegacyPass();
356}
357
358PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
359 LoopStandardAnalysisResults &AR,
360 LPMUpdater &U) {
Anna Thomas9b1176b2018-03-22 16:03:59 +0000361 const auto &FAM =
362 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
363 Function *F = L.getHeader()->getParent();
364 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
365 LoopPredication LP(&AR.SE, BPI);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000366 if (!LP.runOnLoop(&L))
367 return PreservedAnalyses::all();
368
369 return getLoopPassPreservedAnalyses();
370}
371
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000372Optional<LoopPredication::LoopICmp>
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000373LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
374 Value *RHS) {
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000375 const SCEV *LHSS = SE->getSCEV(LHS);
376 if (isa<SCEVCouldNotCompute>(LHSS))
377 return None;
378 const SCEV *RHSS = SE->getSCEV(RHS);
379 if (isa<SCEVCouldNotCompute>(RHSS))
380 return None;
381
382 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
383 if (SE->isLoopInvariant(LHSS, L)) {
384 std::swap(LHS, RHS);
385 std::swap(LHSS, RHSS);
386 Pred = ICmpInst::getSwappedPredicate(Pred);
387 }
388
389 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
390 if (!AR || AR->getLoop() != L)
391 return None;
392
393 return LoopICmp(Pred, AR, RHSS);
394}
395
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000396Value *LoopPredication::expandCheck(SCEVExpander &Expander,
397 IRBuilder<> &Builder,
398 ICmpInst::Predicate Pred, const SCEV *LHS,
Philip Reames3d4e1082019-03-29 23:06:57 +0000399 const SCEV *RHS) {
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000400 Type *Ty = LHS->getType();
401 assert(Ty == RHS->getType() && "expandCheck operands have different types?");
Artur Pilipenkoead69ee2017-10-12 21:21:17 +0000402
403 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
404 return Builder.getTrue();
Philip Reames05e3e552019-04-01 16:26:08 +0000405 if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
406 LHS, RHS))
407 return Builder.getFalse();
Artur Pilipenkoead69ee2017-10-12 21:21:17 +0000408
Philip Reames3d4e1082019-03-29 23:06:57 +0000409 Instruction *InsertAt = &*Builder.GetInsertPoint();
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000410 Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt);
411 Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt);
412 return Builder.CreateICmp(Pred, LHSV, RHSV);
413}
414
Anna Thomas1d02b132017-11-02 21:21:02 +0000415Optional<LoopPredication::LoopICmp>
416LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) {
417
418 auto *LatchType = LatchCheck.IV->getType();
419 if (RangeCheckType == LatchType)
420 return LatchCheck;
421 // For now, bail out if latch type is narrower than range type.
422 if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType))
423 return None;
424 if (!isSafeToTruncateWideIVType(RangeCheckType))
425 return None;
426 // We can now safely identify the truncated version of the IV and limit for
427 // RangeCheckType.
428 LoopICmp NewLatchCheck;
429 NewLatchCheck.Pred = LatchCheck.Pred;
430 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
431 SE->getTruncateExpr(LatchCheck.IV, RangeCheckType));
432 if (!NewLatchCheck.IV)
433 return None;
434 NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType);
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000435 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
436 << "can be represented as range check type:"
437 << *RangeCheckType << "\n");
438 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
439 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
Anna Thomas1d02b132017-11-02 21:21:02 +0000440 return NewLatchCheck;
441}
442
Anna Thomas68797212017-11-03 14:25:39 +0000443bool LoopPredication::isSupportedStep(const SCEV* Step) {
Anna Thomas7b360432017-12-04 15:11:48 +0000444 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
Anna Thomas68797212017-11-03 14:25:39 +0000445}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000446
Philip Reamesfbe64a22019-04-15 15:53:25 +0000447Instruction *LoopPredication::findInsertPt(Instruction *Use,
448 ArrayRef<Value*> Ops) {
449 for (Value *Op : Ops)
450 if (!L->isLoopInvariant(Op))
451 return Use;
452 return Preheader->getTerminator();
453}
454
Anna Thomas68797212017-11-03 14:25:39 +0000455bool LoopPredication::CanExpand(const SCEV* S) {
456 return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
457}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000458
Anna Thomas68797212017-11-03 14:25:39 +0000459Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
460 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
461 SCEVExpander &Expander, IRBuilder<> &Builder) {
462 auto *Ty = RangeCheck.IV->getType();
463 // Generate the widened condition for the forward loop:
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000464 // guardStart u< guardLimit &&
465 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart
Artur Pilipenkob4527e12017-10-12 20:40:27 +0000466 // where <pred> depends on the latch condition predicate. See the file
467 // header comment for the reasoning.
Anna Thomas68797212017-11-03 14:25:39 +0000468 // guardLimit - guardStart + latchStart - 1
469 const SCEV *GuardStart = RangeCheck.IV->getStart();
470 const SCEV *GuardLimit = RangeCheck.Limit;
471 const SCEV *LatchStart = LatchCheck.IV->getStart();
472 const SCEV *LatchLimit = LatchCheck.Limit;
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000473
474 // guardLimit - guardStart + latchStart - 1
475 const SCEV *RHS =
476 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
477 SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
Anna Thomas68797212017-11-03 14:25:39 +0000478 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
479 !CanExpand(LatchLimit) || !CanExpand(RHS)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000480 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000481 return None;
482 }
Serguei Katkov3cb4c342018-02-09 07:59:07 +0000483 auto LimitCheckPred =
484 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
Artur Pilipenkoaab28662017-05-19 14:00:04 +0000485
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000486 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
487 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
488 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
Philip Reames3d4e1082019-03-29 23:06:57 +0000489
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000490 auto *LimitCheck =
Philip Reames3d4e1082019-03-29 23:06:57 +0000491 expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS);
Anna Thomas68797212017-11-03 14:25:39 +0000492 auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred,
Philip Reames3d4e1082019-03-29 23:06:57 +0000493 GuardStart, GuardLimit);
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000494 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000495}
Anna Thomas7b360432017-12-04 15:11:48 +0000496
497Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
498 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
499 SCEVExpander &Expander, IRBuilder<> &Builder) {
500 auto *Ty = RangeCheck.IV->getType();
501 const SCEV *GuardStart = RangeCheck.IV->getStart();
502 const SCEV *GuardLimit = RangeCheck.Limit;
503 const SCEV *LatchLimit = LatchCheck.Limit;
504 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
505 !CanExpand(LatchLimit)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000506 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000507 return None;
508 }
509 // The decrement of the latch check IV should be the same as the
510 // rangeCheckIV.
511 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
512 if (RangeCheck.IV != PostDecLatchCheckIV) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000513 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
514 << *PostDecLatchCheckIV
515 << " and RangeCheckIV: " << *RangeCheck.IV << "\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000516 return None;
517 }
518
519 // Generate the widened condition for CountDownLoop:
520 // guardStart u< guardLimit &&
521 // latchLimit <pred> 1.
522 // See the header comment for reasoning of the checks.
Serguei Katkov3cb4c342018-02-09 07:59:07 +0000523 auto LimitCheckPred =
524 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
Anna Thomas7b360432017-12-04 15:11:48 +0000525 auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT,
Philip Reames3d4e1082019-03-29 23:06:57 +0000526 GuardStart, GuardLimit);
Anna Thomas7b360432017-12-04 15:11:48 +0000527 auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit,
Philip Reames3d4e1082019-03-29 23:06:57 +0000528 SE->getOne(Ty));
Anna Thomas7b360432017-12-04 15:11:48 +0000529 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
530}
531
Anna Thomas68797212017-11-03 14:25:39 +0000532/// If ICI can be widened to a loop invariant condition emits the loop
533/// invariant condition in the loop preheader and return it, otherwise
534/// returns None.
535Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
536 SCEVExpander &Expander,
537 IRBuilder<> &Builder) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000538 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
539 LLVM_DEBUG(ICI->dump());
Anna Thomas68797212017-11-03 14:25:39 +0000540
541 // parseLoopStructure guarantees that the latch condition is:
542 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
543 // We are looking for the range checks of the form:
544 // i u< guardLimit
545 auto RangeCheck = parseLoopICmp(ICI);
546 if (!RangeCheck) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000547 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000548 return None;
549 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000550 LLVM_DEBUG(dbgs() << "Guard check:\n");
551 LLVM_DEBUG(RangeCheck->dump());
Anna Thomas68797212017-11-03 14:25:39 +0000552 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000553 LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
554 << RangeCheck->Pred << ")!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000555 return None;
556 }
557 auto *RangeCheckIV = RangeCheck->IV;
558 if (!RangeCheckIV->isAffine()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000559 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000560 return None;
561 }
562 auto *Step = RangeCheckIV->getStepRecurrence(*SE);
563 // We cannot just compare with latch IV step because the latch and range IVs
564 // may have different types.
565 if (!isSupportedStep(Step)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000566 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000567 return None;
568 }
569 auto *Ty = RangeCheckIV->getType();
570 auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty);
571 if (!CurrLatchCheckOpt) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000572 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
573 "corresponding to range type: "
574 << *Ty << "\n");
Anna Thomas68797212017-11-03 14:25:39 +0000575 return None;
576 }
577
578 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
Anna Thomas7b360432017-12-04 15:11:48 +0000579 // At this point, the range and latch step should have the same type, but need
580 // not have the same value (we support both 1 and -1 steps).
581 assert(Step->getType() ==
582 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
583 "Range and latch steps should be of same type!");
584 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000585 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000586 return None;
587 }
Anna Thomas68797212017-11-03 14:25:39 +0000588
Anna Thomas7b360432017-12-04 15:11:48 +0000589 if (Step->isOne())
590 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
591 Expander, Builder);
592 else {
593 assert(Step->isAllOnesValue() && "Step should be -1!");
594 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
595 Expander, Builder);
596 }
Anna Thomas68797212017-11-03 14:25:39 +0000597}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000598
Max Kazantsevca450872019-01-22 10:13:36 +0000599unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
600 Value *Condition,
601 SCEVExpander &Expander,
602 IRBuilder<> &Builder) {
603 unsigned NumWidened = 0;
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000604 // The guard condition is expected to be in form of:
605 // cond1 && cond2 && cond3 ...
Hiroshi Inoue0909ca12018-01-26 08:15:29 +0000606 // Iterate over subconditions looking for icmp conditions which can be
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000607 // widened across loop iterations. Widening these conditions remember the
608 // resulting list of subconditions in Checks vector.
Max Kazantsevca450872019-01-22 10:13:36 +0000609 SmallVector<Value *, 4> Worklist(1, Condition);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000610 SmallPtrSet<Value *, 4> Visited;
Philip Reamesadb3ece2019-04-02 02:42:57 +0000611 Value *WideableCond = nullptr;
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000612 do {
613 Value *Condition = Worklist.pop_back_val();
614 if (!Visited.insert(Condition).second)
615 continue;
616
617 Value *LHS, *RHS;
618 using namespace llvm::PatternMatch;
619 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
620 Worklist.push_back(LHS);
621 Worklist.push_back(RHS);
622 continue;
623 }
624
Philip Reamesadb3ece2019-04-02 02:42:57 +0000625 if (match(Condition,
626 m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
627 // Pick any, we don't care which
628 WideableCond = Condition;
629 continue;
630 }
631
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000632 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
Philip Reames3d4e1082019-03-29 23:06:57 +0000633 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
634 Builder)) {
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000635 Checks.push_back(NewRangeCheck.getValue());
636 NumWidened++;
637 continue;
638 }
639 }
640
641 // Save the condition as is if we can't widen it
642 Checks.push_back(Condition);
Max Kazantsevca450872019-01-22 10:13:36 +0000643 } while (!Worklist.empty());
Philip Reamesadb3ece2019-04-02 02:42:57 +0000644 // At the moment, our matching logic for wideable conditions implicitly
645 // assumes we preserve the form: (br (and Cond, WC())). FIXME
646 // Note that if there were multiple calls to wideable condition in the
647 // traversal, we only need to keep one, and which one is arbitrary.
648 if (WideableCond)
649 Checks.push_back(WideableCond);
Max Kazantsevca450872019-01-22 10:13:36 +0000650 return NumWidened;
651}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000652
Max Kazantsevca450872019-01-22 10:13:36 +0000653bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
654 SCEVExpander &Expander) {
655 LLVM_DEBUG(dbgs() << "Processing guard:\n");
656 LLVM_DEBUG(Guard->dump());
657
658 TotalConsidered++;
659 SmallVector<Value *, 4> Checks;
660 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
661 unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
662 Builder);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000663 if (NumWidened == 0)
664 return false;
665
Fedor Sergeevc297e842018-10-17 09:02:54 +0000666 TotalWidened += NumWidened;
667
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000668 // Emit the new guard condition
Philip Reamesfbe64a22019-04-15 15:53:25 +0000669 Builder.SetInsertPoint(findInsertPt(Guard, Checks));
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000670 Value *LastCheck = nullptr;
671 for (auto *Check : Checks)
672 if (!LastCheck)
673 LastCheck = Check;
674 else
675 LastCheck = Builder.CreateAnd(LastCheck, Check);
Philip Reamesd109e2a2019-04-01 16:05:15 +0000676 auto *OldCond = Guard->getOperand(0);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000677 Guard->setOperand(0, LastCheck);
Philip Reamesd109e2a2019-04-01 16:05:15 +0000678 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000679
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000680 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000681 return true;
682}
683
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000684bool LoopPredication::widenWidenableBranchGuardConditions(
Philip Reamesf6086782019-04-01 22:39:54 +0000685 BranchInst *BI, SCEVExpander &Expander) {
686 assert(isGuardAsWidenableBranch(BI) && "Must be!");
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000687 LLVM_DEBUG(dbgs() << "Processing guard:\n");
Philip Reamesf6086782019-04-01 22:39:54 +0000688 LLVM_DEBUG(BI->dump());
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000689
690 TotalConsidered++;
691 SmallVector<Value *, 4> Checks;
692 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
Philip Reamesadb3ece2019-04-02 02:42:57 +0000693 unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
694 Expander, Builder);
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000695 if (NumWidened == 0)
696 return false;
697
698 TotalWidened += NumWidened;
699
700 // Emit the new guard condition
Philip Reamesfbe64a22019-04-15 15:53:25 +0000701 Builder.SetInsertPoint(findInsertPt(BI, Checks));
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000702 Value *LastCheck = nullptr;
703 for (auto *Check : Checks)
704 if (!LastCheck)
705 LastCheck = Check;
706 else
707 LastCheck = Builder.CreateAnd(LastCheck, Check);
Philip Reamesadb3ece2019-04-02 02:42:57 +0000708 auto *OldCond = BI->getCondition();
709 BI->setCondition(LastCheck);
Philip Reamesf6086782019-04-01 22:39:54 +0000710 assert(isGuardAsWidenableBranch(BI) &&
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000711 "Stopped being a guard after transform?");
Philip Reamesd109e2a2019-04-01 16:05:15 +0000712 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000713
714 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
715 return true;
716}
717
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000718Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
719 using namespace PatternMatch;
720
721 BasicBlock *LoopLatch = L->getLoopLatch();
722 if (!LoopLatch) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000723 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000724 return None;
725 }
726
727 ICmpInst::Predicate Pred;
728 Value *LHS, *RHS;
729 BasicBlock *TrueDest, *FalseDest;
730
731 if (!match(LoopLatch->getTerminator(),
732 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
733 FalseDest))) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000734 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000735 return None;
736 }
737 assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
738 "One of the latch's destinations must be the header");
739 if (TrueDest != L->getHeader())
740 Pred = ICmpInst::getInversePredicate(Pred);
741
742 auto Result = parseLoopICmp(Pred, LHS, RHS);
743 if (!Result) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000744 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000745 return None;
746 }
747
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000748 // Check affine first, so if it's not we don't try to compute the step
749 // recurrence.
750 if (!Result->IV->isAffine()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000751 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000752 return None;
753 }
754
755 auto *Step = Result->IV->getStepRecurrence(*SE);
Anna Thomas68797212017-11-03 14:25:39 +0000756 if (!isSupportedStep(Step)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000757 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000758 return None;
759 }
760
Anna Thomas68797212017-11-03 14:25:39 +0000761 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
Anna Thomas7b360432017-12-04 15:11:48 +0000762 if (Step->isOne()) {
763 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
764 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
765 } else {
766 assert(Step->isAllOnesValue() && "Step should be -1!");
Serguei Katkovc8016e72018-02-08 10:34:08 +0000767 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
768 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
Anna Thomas7b360432017-12-04 15:11:48 +0000769 }
Anna Thomas68797212017-11-03 14:25:39 +0000770 };
771
772 if (IsUnsupportedPredicate(Step, Result->Pred)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000773 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
774 << ")!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000775 return None;
776 }
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000777 return Result;
778}
779
Anna Thomas1d02b132017-11-02 21:21:02 +0000780// Returns true if its safe to truncate the IV to RangeCheckType.
781bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) {
782 if (!EnableIVTruncation)
783 return false;
784 assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) >
785 DL->getTypeSizeInBits(RangeCheckType) &&
786 "Expected latch check IV type to be larger than range check operand "
787 "type!");
788 // The start and end values of the IV should be known. This is to guarantee
789 // that truncating the wide type will not lose information.
790 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
791 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
792 if (!Limit || !Start)
793 return false;
794 // This check makes sure that the IV does not change sign during loop
795 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
796 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
797 // IV wraps around, and the truncation of the IV would lose the range of
798 // iterations between 2^32 and 2^64.
799 bool Increasing;
800 if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
801 return false;
802 // The active bits should be less than the bits in the RangeCheckType. This
803 // guarantees that truncating the latch check to RangeCheckType is a safe
804 // operation.
805 auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType);
806 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
807 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
808}
809
Anna Thomas9b1176b2018-03-22 16:03:59 +0000810bool LoopPredication::isLoopProfitableToPredicate() {
811 if (SkipProfitabilityChecks || !BPI)
812 return true;
813
814 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges;
815 L->getExitEdges(ExitEdges);
816 // If there is only one exiting edge in the loop, it is always profitable to
817 // predicate the loop.
818 if (ExitEdges.size() == 1)
819 return true;
820
821 // Calculate the exiting probabilities of all exiting edges from the loop,
822 // starting with the LatchExitProbability.
823 // Heuristic for profitability: If any of the exiting blocks' probability of
824 // exiting the loop is larger than exiting through the latch block, it's not
825 // profitable to predicate the loop.
826 auto *LatchBlock = L->getLoopLatch();
827 assert(LatchBlock && "Should have a single latch at this point!");
828 auto *LatchTerm = LatchBlock->getTerminator();
829 assert(LatchTerm->getNumSuccessors() == 2 &&
830 "expected to be an exiting block with 2 succs!");
831 unsigned LatchBrExitIdx =
832 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
833 BranchProbability LatchExitProbability =
834 BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
835
836 // Protect against degenerate inputs provided by the user. Providing a value
837 // less than one, can invert the definition of profitable loop predication.
838 float ScaleFactor = LatchExitProbabilityScale;
839 if (ScaleFactor < 1) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000840 LLVM_DEBUG(
Anna Thomas9b1176b2018-03-22 16:03:59 +0000841 dbgs()
842 << "Ignored user setting for loop-predication-latch-probability-scale: "
843 << LatchExitProbabilityScale << "\n");
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000844 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
Anna Thomas9b1176b2018-03-22 16:03:59 +0000845 ScaleFactor = 1.0;
846 }
847 const auto LatchProbabilityThreshold =
848 LatchExitProbability * ScaleFactor;
849
850 for (const auto &ExitEdge : ExitEdges) {
851 BranchProbability ExitingBlockProbability =
852 BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
853 // Some exiting edge has higher probability than the latch exiting edge.
854 // No longer profitable to predicate.
855 if (ExitingBlockProbability > LatchProbabilityThreshold)
856 return false;
857 }
858 // Using BPI, we have concluded that the most probable way to exit from the
859 // loop is through the latch (or there's no profile information and all
860 // exits are equally likely).
861 return true;
862}
863
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000864bool LoopPredication::runOnLoop(Loop *Loop) {
865 L = Loop;
866
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000867 LLVM_DEBUG(dbgs() << "Analyzing ");
868 LLVM_DEBUG(L->dump());
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000869
870 Module *M = L->getHeader()->getModule();
871
872 // There is nothing to do if the module doesn't use guards
873 auto *GuardDecl =
874 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000875 bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
876 auto *WCDecl = M->getFunction(
877 Intrinsic::getName(Intrinsic::experimental_widenable_condition));
878 bool HasWidenableConditions =
879 PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
880 if (!HasIntrinsicGuards && !HasWidenableConditions)
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000881 return false;
882
883 DL = &M->getDataLayout();
884
885 Preheader = L->getLoopPreheader();
886 if (!Preheader)
887 return false;
888
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000889 auto LatchCheckOpt = parseLoopLatchICmp();
890 if (!LatchCheckOpt)
891 return false;
892 LatchCheck = *LatchCheckOpt;
893
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000894 LLVM_DEBUG(dbgs() << "Latch check:\n");
895 LLVM_DEBUG(LatchCheck.dump());
Anna Thomas68797212017-11-03 14:25:39 +0000896
Anna Thomas9b1176b2018-03-22 16:03:59 +0000897 if (!isLoopProfitableToPredicate()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000898 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
Anna Thomas9b1176b2018-03-22 16:03:59 +0000899 return false;
900 }
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000901 // Collect all the guards into a vector and process later, so as not
902 // to invalidate the instruction iterator.
903 SmallVector<IntrinsicInst *, 4> Guards;
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000904 SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
905 for (const auto BB : L->blocks()) {
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000906 for (auto &I : *BB)
Max Kazantsev28298e92018-12-26 08:22:25 +0000907 if (isGuard(&I))
908 Guards.push_back(cast<IntrinsicInst>(&I));
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000909 if (PredicateWidenableBranchGuards &&
910 isGuardAsWidenableBranch(BB->getTerminator()))
911 GuardsAsWidenableBranches.push_back(
912 cast<BranchInst>(BB->getTerminator()));
913 }
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000914
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000915 if (Guards.empty() && GuardsAsWidenableBranches.empty())
Artur Pilipenko46c4e0a2017-05-19 13:59:34 +0000916 return false;
917
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000918 SCEVExpander Expander(*SE, *DL, "loop-predication");
919
920 bool Changed = false;
921 for (auto *Guard : Guards)
922 Changed |= widenGuardConditions(Guard, Expander);
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000923 for (auto *Guard : GuardsAsWidenableBranches)
924 Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000925
926 return Changed;
927}