blob: 1edb470dd685303dc33964e88053b59f1ac75501 [file] [log] [blame]
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
Douglas Gregor94b1dd22008-10-24 04:54:22 +000015#include "SemaInherit.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000016#include "clang/Basic/Diagnostic.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000017#include "clang/Lex/Preprocessor.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000018#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
Douglas Gregorf9eb9052008-11-19 21:05:33 +000020#include "clang/AST/ExprCXX.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000021#include "clang/AST/TypeOrdering.h"
Douglas Gregorbf3af052008-11-13 20:12:29 +000022#include "llvm/ADT/SmallPtrSet.h"
Douglas Gregor3fc749d2008-12-23 00:26:44 +000023#include "llvm/ADT/STLExtras.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000024#include "llvm/Support/Compiler.h"
25#include <algorithm>
26
27namespace clang {
28
29/// GetConversionCategory - Retrieve the implicit conversion
30/// category corresponding to the given implicit conversion kind.
31ImplicitConversionCategory
32GetConversionCategory(ImplicitConversionKind Kind) {
33 static const ImplicitConversionCategory
34 Category[(int)ICK_Num_Conversion_Kinds] = {
35 ICC_Identity,
36 ICC_Lvalue_Transformation,
37 ICC_Lvalue_Transformation,
38 ICC_Lvalue_Transformation,
39 ICC_Qualification_Adjustment,
40 ICC_Promotion,
41 ICC_Promotion,
42 ICC_Conversion,
43 ICC_Conversion,
44 ICC_Conversion,
45 ICC_Conversion,
46 ICC_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000047 ICC_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000048 ICC_Conversion
49 };
50 return Category[(int)Kind];
51}
52
53/// GetConversionRank - Retrieve the implicit conversion rank
54/// corresponding to the given implicit conversion kind.
55ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
56 static const ImplicitConversionRank
57 Rank[(int)ICK_Num_Conversion_Kinds] = {
58 ICR_Exact_Match,
59 ICR_Exact_Match,
60 ICR_Exact_Match,
61 ICR_Exact_Match,
62 ICR_Exact_Match,
63 ICR_Promotion,
64 ICR_Promotion,
65 ICR_Conversion,
66 ICR_Conversion,
67 ICR_Conversion,
68 ICR_Conversion,
69 ICR_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000070 ICR_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000071 ICR_Conversion
72 };
73 return Rank[(int)Kind];
74}
75
76/// GetImplicitConversionName - Return the name of this kind of
77/// implicit conversion.
78const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
79 static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
80 "No conversion",
81 "Lvalue-to-rvalue",
82 "Array-to-pointer",
83 "Function-to-pointer",
84 "Qualification",
85 "Integral promotion",
86 "Floating point promotion",
87 "Integral conversion",
88 "Floating conversion",
89 "Floating-integral conversion",
90 "Pointer conversion",
91 "Pointer-to-member conversion",
Douglas Gregor15da57e2008-10-29 02:00:59 +000092 "Boolean conversion",
93 "Derived-to-base conversion"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000094 };
95 return Name[Kind];
96}
97
Douglas Gregor60d62c22008-10-31 16:23:19 +000098/// StandardConversionSequence - Set the standard conversion
99/// sequence to the identity conversion.
100void StandardConversionSequence::setAsIdentityConversion() {
101 First = ICK_Identity;
102 Second = ICK_Identity;
103 Third = ICK_Identity;
104 Deprecated = false;
105 ReferenceBinding = false;
106 DirectBinding = false;
Douglas Gregor225c41e2008-11-03 19:09:14 +0000107 CopyConstructor = 0;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000108}
109
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000110/// getRank - Retrieve the rank of this standard conversion sequence
111/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
112/// implicit conversions.
113ImplicitConversionRank StandardConversionSequence::getRank() const {
114 ImplicitConversionRank Rank = ICR_Exact_Match;
115 if (GetConversionRank(First) > Rank)
116 Rank = GetConversionRank(First);
117 if (GetConversionRank(Second) > Rank)
118 Rank = GetConversionRank(Second);
119 if (GetConversionRank(Third) > Rank)
120 Rank = GetConversionRank(Third);
121 return Rank;
122}
123
124/// isPointerConversionToBool - Determines whether this conversion is
125/// a conversion of a pointer or pointer-to-member to bool. This is
126/// used as part of the ranking of standard conversion sequences
127/// (C++ 13.3.3.2p4).
128bool StandardConversionSequence::isPointerConversionToBool() const
129{
130 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
131 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
132
133 // Note that FromType has not necessarily been transformed by the
134 // array-to-pointer or function-to-pointer implicit conversions, so
135 // check for their presence as well as checking whether FromType is
136 // a pointer.
137 if (ToType->isBooleanType() &&
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000138 (FromType->isPointerType() || FromType->isBlockPointerType() ||
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000139 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
140 return true;
141
142 return false;
143}
144
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000145/// isPointerConversionToVoidPointer - Determines whether this
146/// conversion is a conversion of a pointer to a void pointer. This is
147/// used as part of the ranking of standard conversion sequences (C++
148/// 13.3.3.2p4).
149bool
150StandardConversionSequence::
151isPointerConversionToVoidPointer(ASTContext& Context) const
152{
153 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
154 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
155
156 // Note that FromType has not necessarily been transformed by the
157 // array-to-pointer implicit conversion, so check for its presence
158 // and redo the conversion to get a pointer.
159 if (First == ICK_Array_To_Pointer)
160 FromType = Context.getArrayDecayedType(FromType);
161
162 if (Second == ICK_Pointer_Conversion)
163 if (const PointerType* ToPtrType = ToType->getAsPointerType())
164 return ToPtrType->getPointeeType()->isVoidType();
165
166 return false;
167}
168
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000169/// DebugPrint - Print this standard conversion sequence to standard
170/// error. Useful for debugging overloading issues.
171void StandardConversionSequence::DebugPrint() const {
172 bool PrintedSomething = false;
173 if (First != ICK_Identity) {
174 fprintf(stderr, "%s", GetImplicitConversionName(First));
175 PrintedSomething = true;
176 }
177
178 if (Second != ICK_Identity) {
179 if (PrintedSomething) {
180 fprintf(stderr, " -> ");
181 }
182 fprintf(stderr, "%s", GetImplicitConversionName(Second));
Douglas Gregor225c41e2008-11-03 19:09:14 +0000183
184 if (CopyConstructor) {
185 fprintf(stderr, " (by copy constructor)");
186 } else if (DirectBinding) {
187 fprintf(stderr, " (direct reference binding)");
188 } else if (ReferenceBinding) {
189 fprintf(stderr, " (reference binding)");
190 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000191 PrintedSomething = true;
192 }
193
194 if (Third != ICK_Identity) {
195 if (PrintedSomething) {
196 fprintf(stderr, " -> ");
197 }
198 fprintf(stderr, "%s", GetImplicitConversionName(Third));
199 PrintedSomething = true;
200 }
201
202 if (!PrintedSomething) {
203 fprintf(stderr, "No conversions required");
204 }
205}
206
207/// DebugPrint - Print this user-defined conversion sequence to standard
208/// error. Useful for debugging overloading issues.
209void UserDefinedConversionSequence::DebugPrint() const {
210 if (Before.First || Before.Second || Before.Third) {
211 Before.DebugPrint();
212 fprintf(stderr, " -> ");
213 }
Chris Lattnerd9d22dd2008-11-24 05:29:24 +0000214 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000215 if (After.First || After.Second || After.Third) {
216 fprintf(stderr, " -> ");
217 After.DebugPrint();
218 }
219}
220
221/// DebugPrint - Print this implicit conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void ImplicitConversionSequence::DebugPrint() const {
224 switch (ConversionKind) {
225 case StandardConversion:
226 fprintf(stderr, "Standard conversion: ");
227 Standard.DebugPrint();
228 break;
229 case UserDefinedConversion:
230 fprintf(stderr, "User-defined conversion: ");
231 UserDefined.DebugPrint();
232 break;
233 case EllipsisConversion:
234 fprintf(stderr, "Ellipsis conversion");
235 break;
236 case BadConversion:
237 fprintf(stderr, "Bad conversion");
238 break;
239 }
240
241 fprintf(stderr, "\n");
242}
243
244// IsOverload - Determine whether the given New declaration is an
245// overload of the Old declaration. This routine returns false if New
246// and Old cannot be overloaded, e.g., if they are functions with the
247// same signature (C++ 1.3.10) or if the Old declaration isn't a
248// function (or overload set). When it does return false and Old is an
249// OverloadedFunctionDecl, MatchedDecl will be set to point to the
250// FunctionDecl that New cannot be overloaded with.
251//
252// Example: Given the following input:
253//
254// void f(int, float); // #1
255// void f(int, int); // #2
256// int f(int, int); // #3
257//
258// When we process #1, there is no previous declaration of "f",
259// so IsOverload will not be used.
260//
261// When we process #2, Old is a FunctionDecl for #1. By comparing the
262// parameter types, we see that #1 and #2 are overloaded (since they
263// have different signatures), so this routine returns false;
264// MatchedDecl is unchanged.
265//
266// When we process #3, Old is an OverloadedFunctionDecl containing #1
267// and #2. We compare the signatures of #3 to #1 (they're overloaded,
268// so we do nothing) and then #3 to #2. Since the signatures of #3 and
269// #2 are identical (return types of functions are not part of the
270// signature), IsOverload returns false and MatchedDecl will be set to
271// point to the FunctionDecl for #2.
272bool
273Sema::IsOverload(FunctionDecl *New, Decl* OldD,
274 OverloadedFunctionDecl::function_iterator& MatchedDecl)
275{
276 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
277 // Is this new function an overload of every function in the
278 // overload set?
279 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
280 FuncEnd = Ovl->function_end();
281 for (; Func != FuncEnd; ++Func) {
282 if (!IsOverload(New, *Func, MatchedDecl)) {
283 MatchedDecl = Func;
284 return false;
285 }
286 }
287
288 // This function overloads every function in the overload set.
289 return true;
290 } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
291 // Is the function New an overload of the function Old?
292 QualType OldQType = Context.getCanonicalType(Old->getType());
293 QualType NewQType = Context.getCanonicalType(New->getType());
294
295 // Compare the signatures (C++ 1.3.10) of the two functions to
296 // determine whether they are overloads. If we find any mismatch
297 // in the signature, they are overloads.
298
299 // If either of these functions is a K&R-style function (no
300 // prototype), then we consider them to have matching signatures.
301 if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
302 isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
303 return false;
304
305 FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
306 FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());
307
308 // The signature of a function includes the types of its
309 // parameters (C++ 1.3.10), which includes the presence or absence
310 // of the ellipsis; see C++ DR 357).
311 if (OldQType != NewQType &&
312 (OldType->getNumArgs() != NewType->getNumArgs() ||
313 OldType->isVariadic() != NewType->isVariadic() ||
314 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
315 NewType->arg_type_begin())))
316 return true;
317
318 // If the function is a class member, its signature includes the
319 // cv-qualifiers (if any) on the function itself.
320 //
321 // As part of this, also check whether one of the member functions
322 // is static, in which case they are not overloads (C++
323 // 13.1p2). While not part of the definition of the signature,
324 // this check is important to determine whether these functions
325 // can be overloaded.
326 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
327 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
328 if (OldMethod && NewMethod &&
329 !OldMethod->isStatic() && !NewMethod->isStatic() &&
Douglas Gregor1ca50c32008-11-21 15:36:28 +0000330 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000331 return true;
332
333 // The signatures match; this is not an overload.
334 return false;
335 } else {
336 // (C++ 13p1):
337 // Only function declarations can be overloaded; object and type
338 // declarations cannot be overloaded.
339 return false;
340 }
341}
342
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000343/// TryImplicitConversion - Attempt to perform an implicit conversion
344/// from the given expression (Expr) to the given type (ToType). This
345/// function returns an implicit conversion sequence that can be used
346/// to perform the initialization. Given
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000347///
348/// void f(float f);
349/// void g(int i) { f(i); }
350///
351/// this routine would produce an implicit conversion sequence to
352/// describe the initialization of f from i, which will be a standard
353/// conversion sequence containing an lvalue-to-rvalue conversion (C++
354/// 4.1) followed by a floating-integral conversion (C++ 4.9).
355//
356/// Note that this routine only determines how the conversion can be
357/// performed; it does not actually perform the conversion. As such,
358/// it will not produce any diagnostics if no conversion is available,
359/// but will instead return an implicit conversion sequence of kind
360/// "BadConversion".
Douglas Gregor225c41e2008-11-03 19:09:14 +0000361///
362/// If @p SuppressUserConversions, then user-defined conversions are
363/// not permitted.
Douglas Gregor09f41cf2009-01-14 15:45:31 +0000364/// If @p AllowExplicit, then explicit user-defined conversions are
365/// permitted.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000366ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +0000367Sema::TryImplicitConversion(Expr* From, QualType ToType,
Douglas Gregor09f41cf2009-01-14 15:45:31 +0000368 bool SuppressUserConversions,
Douglas Gregor734d9862009-01-30 23:27:23 +0000369 bool AllowExplicit)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000370{
371 ImplicitConversionSequence ICS;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000372 if (IsStandardConversion(From, ToType, ICS.Standard))
373 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
Douglas Gregor734d9862009-01-30 23:27:23 +0000374 else if (IsUserDefinedConversion(From, ToType, ICS.UserDefined,
375 !SuppressUserConversions, AllowExplicit)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000376 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000377 // C++ [over.ics.user]p4:
378 // A conversion of an expression of class type to the same class
379 // type is given Exact Match rank, and a conversion of an
380 // expression of class type to a base class of that type is
381 // given Conversion rank, in spite of the fact that a copy
382 // constructor (i.e., a user-defined conversion function) is
383 // called for those cases.
384 if (CXXConstructorDecl *Constructor
385 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
Douglas Gregor2b1e0032009-02-02 22:11:10 +0000386 QualType FromCanon
387 = Context.getCanonicalType(From->getType().getUnqualifiedType());
388 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
389 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
Douglas Gregor225c41e2008-11-03 19:09:14 +0000390 // Turn this into a "standard" conversion sequence, so that it
391 // gets ranked with standard conversion sequences.
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000392 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
393 ICS.Standard.setAsIdentityConversion();
394 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
395 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000396 ICS.Standard.CopyConstructor = Constructor;
Douglas Gregor2b1e0032009-02-02 22:11:10 +0000397 if (ToCanon != FromCanon)
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000398 ICS.Standard.Second = ICK_Derived_To_Base;
399 }
Douglas Gregor60d62c22008-10-31 16:23:19 +0000400 }
Douglas Gregor734d9862009-01-30 23:27:23 +0000401
402 // C++ [over.best.ics]p4:
403 // However, when considering the argument of a user-defined
404 // conversion function that is a candidate by 13.3.1.3 when
405 // invoked for the copying of the temporary in the second step
406 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
407 // 13.3.1.6 in all cases, only standard conversion sequences and
408 // ellipsis conversion sequences are allowed.
409 if (SuppressUserConversions &&
410 ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
411 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000412 } else
Douglas Gregor60d62c22008-10-31 16:23:19 +0000413 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000414
415 return ICS;
416}
417
418/// IsStandardConversion - Determines whether there is a standard
419/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
420/// expression From to the type ToType. Standard conversion sequences
421/// only consider non-class types; for conversions that involve class
422/// types, use TryImplicitConversion. If a conversion exists, SCS will
423/// contain the standard conversion sequence required to perform this
424/// conversion and this routine will return true. Otherwise, this
425/// routine will return false and the value of SCS is unspecified.
426bool
427Sema::IsStandardConversion(Expr* From, QualType ToType,
428 StandardConversionSequence &SCS)
429{
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000430 QualType FromType = From->getType();
431
Douglas Gregor60d62c22008-10-31 16:23:19 +0000432 // There are no standard conversions for class types, so abort early.
433 if (FromType->isRecordType() || ToType->isRecordType())
434 return false;
435
436 // Standard conversions (C++ [conv])
Douglas Gregoreb8f3062008-11-12 17:17:38 +0000437 SCS.setAsIdentityConversion();
Douglas Gregor60d62c22008-10-31 16:23:19 +0000438 SCS.Deprecated = false;
Douglas Gregor45920e82008-12-19 17:40:08 +0000439 SCS.IncompatibleObjC = false;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000440 SCS.FromTypePtr = FromType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000441 SCS.CopyConstructor = 0;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000442
443 // The first conversion can be an lvalue-to-rvalue conversion,
444 // array-to-pointer conversion, or function-to-pointer conversion
445 // (C++ 4p1).
446
447 // Lvalue-to-rvalue conversion (C++ 4.1):
448 // An lvalue (3.10) of a non-function, non-array type T can be
449 // converted to an rvalue.
450 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
451 if (argIsLvalue == Expr::LV_Valid &&
Douglas Gregor904eed32008-11-10 20:40:00 +0000452 !FromType->isFunctionType() && !FromType->isArrayType() &&
453 !FromType->isOverloadType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000454 SCS.First = ICK_Lvalue_To_Rvalue;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000455
456 // If T is a non-class type, the type of the rvalue is the
457 // cv-unqualified version of T. Otherwise, the type of the rvalue
458 // is T (C++ 4.1p1).
Douglas Gregor60d62c22008-10-31 16:23:19 +0000459 FromType = FromType.getUnqualifiedType();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000460 }
461 // Array-to-pointer conversion (C++ 4.2)
462 else if (FromType->isArrayType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000463 SCS.First = ICK_Array_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000464
465 // An lvalue or rvalue of type "array of N T" or "array of unknown
466 // bound of T" can be converted to an rvalue of type "pointer to
467 // T" (C++ 4.2p1).
468 FromType = Context.getArrayDecayedType(FromType);
469
470 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
471 // This conversion is deprecated. (C++ D.4).
Douglas Gregor60d62c22008-10-31 16:23:19 +0000472 SCS.Deprecated = true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000473
474 // For the purpose of ranking in overload resolution
475 // (13.3.3.1.1), this conversion is considered an
476 // array-to-pointer conversion followed by a qualification
477 // conversion (4.4). (C++ 4.2p2)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000478 SCS.Second = ICK_Identity;
479 SCS.Third = ICK_Qualification;
480 SCS.ToTypePtr = ToType.getAsOpaquePtr();
481 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000482 }
483 }
484 // Function-to-pointer conversion (C++ 4.3).
485 else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000486 SCS.First = ICK_Function_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000487
488 // An lvalue of function type T can be converted to an rvalue of
489 // type "pointer to T." The result is a pointer to the
490 // function. (C++ 4.3p1).
491 FromType = Context.getPointerType(FromType);
Sebastian Redl33b399a2009-02-04 21:23:32 +0000492 }
Douglas Gregor904eed32008-11-10 20:40:00 +0000493 // Address of overloaded function (C++ [over.over]).
494 else if (FunctionDecl *Fn
495 = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
496 SCS.First = ICK_Function_To_Pointer;
497
498 // We were able to resolve the address of the overloaded function,
499 // so we can convert to the type of that function.
500 FromType = Fn->getType();
501 if (ToType->isReferenceType())
502 FromType = Context.getReferenceType(FromType);
Sebastian Redl33b399a2009-02-04 21:23:32 +0000503 else if (ToType->isMemberPointerType()) {
504 // Resolve address only succeeds if both sides are member pointers,
505 // but it doesn't have to be the same class. See DR 247.
506 // Note that this means that the type of &Derived::fn can be
507 // Ret (Base::*)(Args) if the fn overload actually found is from the
508 // base class, even if it was brought into the derived class via a
509 // using declaration. The standard isn't clear on this issue at all.
510 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
511 FromType = Context.getMemberPointerType(FromType,
512 Context.getTypeDeclType(M->getParent()).getTypePtr());
513 } else
Douglas Gregor904eed32008-11-10 20:40:00 +0000514 FromType = Context.getPointerType(FromType);
515 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000516 // We don't require any conversions for the first step.
517 else {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000518 SCS.First = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000519 }
520
521 // The second conversion can be an integral promotion, floating
522 // point promotion, integral conversion, floating point conversion,
523 // floating-integral conversion, pointer conversion,
524 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
Douglas Gregor45920e82008-12-19 17:40:08 +0000525 bool IncompatibleObjC = false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000526 if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
527 Context.getCanonicalType(ToType).getUnqualifiedType()) {
528 // The unqualified versions of the types are the same: there's no
529 // conversion to do.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000530 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000531 }
532 // Integral promotion (C++ 4.5).
533 else if (IsIntegralPromotion(From, FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000534 SCS.Second = ICK_Integral_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000535 FromType = ToType.getUnqualifiedType();
536 }
537 // Floating point promotion (C++ 4.6).
538 else if (IsFloatingPointPromotion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000539 SCS.Second = ICK_Floating_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000540 FromType = ToType.getUnqualifiedType();
541 }
542 // Integral conversions (C++ 4.7).
Sebastian Redl07779722008-10-31 14:43:28 +0000543 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000544 else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
Sebastian Redl07779722008-10-31 14:43:28 +0000545 (ToType->isIntegralType() && !ToType->isEnumeralType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000546 SCS.Second = ICK_Integral_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000547 FromType = ToType.getUnqualifiedType();
548 }
549 // Floating point conversions (C++ 4.8).
550 else if (FromType->isFloatingType() && ToType->isFloatingType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000551 SCS.Second = ICK_Floating_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000552 FromType = ToType.getUnqualifiedType();
553 }
554 // Floating-integral conversions (C++ 4.9).
Sebastian Redl07779722008-10-31 14:43:28 +0000555 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000556 else if ((FromType->isFloatingType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000557 ToType->isIntegralType() && !ToType->isBooleanType() &&
558 !ToType->isEnumeralType()) ||
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000559 ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
560 ToType->isFloatingType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000561 SCS.Second = ICK_Floating_Integral;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000562 FromType = ToType.getUnqualifiedType();
563 }
564 // Pointer conversions (C++ 4.10).
Douglas Gregor45920e82008-12-19 17:40:08 +0000565 else if (IsPointerConversion(From, FromType, ToType, FromType,
566 IncompatibleObjC)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000567 SCS.Second = ICK_Pointer_Conversion;
Douglas Gregor45920e82008-12-19 17:40:08 +0000568 SCS.IncompatibleObjC = IncompatibleObjC;
Sebastian Redl07779722008-10-31 14:43:28 +0000569 }
Sebastian Redl4433aaf2009-01-25 19:43:20 +0000570 // Pointer to member conversions (4.11).
571 else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
572 SCS.Second = ICK_Pointer_Member;
573 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000574 // Boolean conversions (C++ 4.12).
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000575 else if (ToType->isBooleanType() &&
576 (FromType->isArithmeticType() ||
577 FromType->isEnumeralType() ||
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000578 FromType->isPointerType() ||
Sebastian Redl4433aaf2009-01-25 19:43:20 +0000579 FromType->isBlockPointerType() ||
580 FromType->isMemberPointerType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000581 SCS.Second = ICK_Boolean_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000582 FromType = Context.BoolTy;
583 } else {
584 // No second conversion required.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000585 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000586 }
587
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000588 QualType CanonFrom;
589 QualType CanonTo;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000590 // The third conversion can be a qualification conversion (C++ 4p1).
Douglas Gregor98cd5992008-10-21 23:43:52 +0000591 if (IsQualificationConversion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000592 SCS.Third = ICK_Qualification;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000593 FromType = ToType;
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000594 CanonFrom = Context.getCanonicalType(FromType);
595 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000596 } else {
597 // No conversion required
Douglas Gregor60d62c22008-10-31 16:23:19 +0000598 SCS.Third = ICK_Identity;
599
600 // C++ [over.best.ics]p6:
601 // [...] Any difference in top-level cv-qualification is
602 // subsumed by the initialization itself and does not constitute
603 // a conversion. [...]
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000604 CanonFrom = Context.getCanonicalType(FromType);
605 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor60d62c22008-10-31 16:23:19 +0000606 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000607 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
608 FromType = ToType;
609 CanonFrom = CanonTo;
610 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000611 }
612
613 // If we have not converted the argument type to the parameter type,
614 // this is a bad conversion sequence.
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000615 if (CanonFrom != CanonTo)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000616 return false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000617
Douglas Gregor60d62c22008-10-31 16:23:19 +0000618 SCS.ToTypePtr = FromType.getAsOpaquePtr();
619 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000620}
621
622/// IsIntegralPromotion - Determines whether the conversion from the
623/// expression From (whose potentially-adjusted type is FromType) to
624/// ToType is an integral promotion (C++ 4.5). If so, returns true and
625/// sets PromotedType to the promoted type.
626bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
627{
628 const BuiltinType *To = ToType->getAsBuiltinType();
Sebastian Redlf7be9442008-11-04 15:59:10 +0000629 // All integers are built-in.
Sebastian Redl07779722008-10-31 14:43:28 +0000630 if (!To) {
631 return false;
632 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000633
634 // An rvalue of type char, signed char, unsigned char, short int, or
635 // unsigned short int can be converted to an rvalue of type int if
636 // int can represent all the values of the source type; otherwise,
637 // the source rvalue can be converted to an rvalue of type unsigned
638 // int (C++ 4.5p1).
Sebastian Redl07779722008-10-31 14:43:28 +0000639 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000640 if (// We can promote any signed, promotable integer type to an int
641 (FromType->isSignedIntegerType() ||
642 // We can promote any unsigned integer type whose size is
643 // less than int to an int.
644 (!FromType->isSignedIntegerType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000645 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000646 return To->getKind() == BuiltinType::Int;
Sebastian Redl07779722008-10-31 14:43:28 +0000647 }
648
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000649 return To->getKind() == BuiltinType::UInt;
650 }
651
652 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
653 // can be converted to an rvalue of the first of the following types
654 // that can represent all the values of its underlying type: int,
655 // unsigned int, long, or unsigned long (C++ 4.5p2).
656 if ((FromType->isEnumeralType() || FromType->isWideCharType())
657 && ToType->isIntegerType()) {
658 // Determine whether the type we're converting from is signed or
659 // unsigned.
660 bool FromIsSigned;
661 uint64_t FromSize = Context.getTypeSize(FromType);
662 if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
663 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
664 FromIsSigned = UnderlyingType->isSignedIntegerType();
665 } else {
666 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
667 FromIsSigned = true;
668 }
669
670 // The types we'll try to promote to, in the appropriate
671 // order. Try each of these types.
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000672 QualType PromoteTypes[6] = {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000673 Context.IntTy, Context.UnsignedIntTy,
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000674 Context.LongTy, Context.UnsignedLongTy ,
675 Context.LongLongTy, Context.UnsignedLongLongTy
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000676 };
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000677 for (int Idx = 0; Idx < 6; ++Idx) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000678 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
679 if (FromSize < ToSize ||
680 (FromSize == ToSize &&
681 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
682 // We found the type that we can promote to. If this is the
683 // type we wanted, we have a promotion. Otherwise, no
684 // promotion.
Sebastian Redl07779722008-10-31 14:43:28 +0000685 return Context.getCanonicalType(ToType).getUnqualifiedType()
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000686 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
687 }
688 }
689 }
690
691 // An rvalue for an integral bit-field (9.6) can be converted to an
692 // rvalue of type int if int can represent all the values of the
693 // bit-field; otherwise, it can be converted to unsigned int if
694 // unsigned int can represent all the values of the bit-field. If
695 // the bit-field is larger yet, no integral promotion applies to
696 // it. If the bit-field has an enumerated type, it is treated as any
697 // other value of that type for promotion purposes (C++ 4.5p3).
698 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
699 using llvm::APSInt;
Douglas Gregor86f19402008-12-20 23:49:58 +0000700 if (FieldDecl *MemberDecl = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) {
701 APSInt BitWidth;
702 if (MemberDecl->isBitField() &&
703 FromType->isIntegralType() && !FromType->isEnumeralType() &&
704 From->isIntegerConstantExpr(BitWidth, Context)) {
705 APSInt ToSize(Context.getTypeSize(ToType));
706
707 // Are we promoting to an int from a bitfield that fits in an int?
708 if (BitWidth < ToSize ||
709 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
710 return To->getKind() == BuiltinType::Int;
711 }
712
713 // Are we promoting to an unsigned int from an unsigned bitfield
714 // that fits into an unsigned int?
715 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
716 return To->getKind() == BuiltinType::UInt;
717 }
718
719 return false;
Sebastian Redl07779722008-10-31 14:43:28 +0000720 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000721 }
722 }
723
724 // An rvalue of type bool can be converted to an rvalue of type int,
725 // with false becoming zero and true becoming one (C++ 4.5p4).
Sebastian Redl07779722008-10-31 14:43:28 +0000726 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000727 return true;
Sebastian Redl07779722008-10-31 14:43:28 +0000728 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000729
730 return false;
731}
732
733/// IsFloatingPointPromotion - Determines whether the conversion from
734/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
735/// returns true and sets PromotedType to the promoted type.
736bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
737{
738 /// An rvalue of type float can be converted to an rvalue of type
739 /// double. (C++ 4.6p1).
740 if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
741 if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
742 if (FromBuiltin->getKind() == BuiltinType::Float &&
743 ToBuiltin->getKind() == BuiltinType::Double)
744 return true;
745
746 return false;
747}
748
Douglas Gregorcb7de522008-11-26 23:31:11 +0000749/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
750/// the pointer type FromPtr to a pointer to type ToPointee, with the
751/// same type qualifiers as FromPtr has on its pointee type. ToType,
752/// if non-empty, will be a pointer to ToType that may or may not have
753/// the right set of qualifiers on its pointee.
754static QualType
755BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
756 QualType ToPointee, QualType ToType,
757 ASTContext &Context) {
758 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
759 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
760 unsigned Quals = CanonFromPointee.getCVRQualifiers();
761
762 // Exact qualifier match -> return the pointer type we're converting to.
763 if (CanonToPointee.getCVRQualifiers() == Quals) {
764 // ToType is exactly what we need. Return it.
765 if (ToType.getTypePtr())
766 return ToType;
767
768 // Build a pointer to ToPointee. It has the right qualifiers
769 // already.
770 return Context.getPointerType(ToPointee);
771 }
772
773 // Just build a canonical type that has the right qualifiers.
774 return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
775}
776
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000777/// IsPointerConversion - Determines whether the conversion of the
778/// expression From, which has the (possibly adjusted) type FromType,
779/// can be converted to the type ToType via a pointer conversion (C++
780/// 4.10). If so, returns true and places the converted type (that
781/// might differ from ToType in its cv-qualifiers at some level) into
782/// ConvertedType.
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000783///
Douglas Gregor7ca09762008-11-27 01:19:21 +0000784/// This routine also supports conversions to and from block pointers
785/// and conversions with Objective-C's 'id', 'id<protocols...>', and
786/// pointers to interfaces. FIXME: Once we've determined the
787/// appropriate overloading rules for Objective-C, we may want to
788/// split the Objective-C checks into a different routine; however,
789/// GCC seems to consider all of these conversions to be pointer
Douglas Gregor45920e82008-12-19 17:40:08 +0000790/// conversions, so for now they live here. IncompatibleObjC will be
791/// set if the conversion is an allowed Objective-C conversion that
792/// should result in a warning.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000793bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
Douglas Gregor45920e82008-12-19 17:40:08 +0000794 QualType& ConvertedType,
795 bool &IncompatibleObjC)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000796{
Douglas Gregor45920e82008-12-19 17:40:08 +0000797 IncompatibleObjC = false;
Douglas Gregorc7887512008-12-19 19:13:09 +0000798 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
799 return true;
Douglas Gregor45920e82008-12-19 17:40:08 +0000800
Douglas Gregor27b09ac2008-12-22 20:51:52 +0000801 // Conversion from a null pointer constant to any Objective-C pointer type.
802 if (Context.isObjCObjectPointerType(ToType) &&
803 From->isNullPointerConstant(Context)) {
804 ConvertedType = ToType;
805 return true;
806 }
807
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000808 // Blocks: Block pointers can be converted to void*.
809 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
810 ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
811 ConvertedType = ToType;
812 return true;
813 }
814 // Blocks: A null pointer constant can be converted to a block
815 // pointer type.
816 if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
817 ConvertedType = ToType;
818 return true;
819 }
820
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000821 const PointerType* ToTypePtr = ToType->getAsPointerType();
822 if (!ToTypePtr)
823 return false;
824
825 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
826 if (From->isNullPointerConstant(Context)) {
827 ConvertedType = ToType;
828 return true;
829 }
Sebastian Redl07779722008-10-31 14:43:28 +0000830
Douglas Gregorcb7de522008-11-26 23:31:11 +0000831 // Beyond this point, both types need to be pointers.
832 const PointerType *FromTypePtr = FromType->getAsPointerType();
833 if (!FromTypePtr)
834 return false;
835
836 QualType FromPointeeType = FromTypePtr->getPointeeType();
837 QualType ToPointeeType = ToTypePtr->getPointeeType();
838
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000839 // An rvalue of type "pointer to cv T," where T is an object type,
840 // can be converted to an rvalue of type "pointer to cv void" (C++
841 // 4.10p2).
Douglas Gregorc7887512008-12-19 19:13:09 +0000842 if (FromPointeeType->isIncompleteOrObjectType() &&
843 ToPointeeType->isVoidType()) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000844 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
845 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000846 ToType, Context);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000847 return true;
848 }
849
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000850 // C++ [conv.ptr]p3:
851 //
852 // An rvalue of type "pointer to cv D," where D is a class type,
853 // can be converted to an rvalue of type "pointer to cv B," where
854 // B is a base class (clause 10) of D. If B is an inaccessible
855 // (clause 11) or ambiguous (10.2) base class of D, a program that
856 // necessitates this conversion is ill-formed. The result of the
857 // conversion is a pointer to the base class sub-object of the
858 // derived class object. The null pointer value is converted to
859 // the null pointer value of the destination type.
860 //
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000861 // Note that we do not check for ambiguity or inaccessibility
862 // here. That is handled by CheckPointerConversion.
Douglas Gregorcb7de522008-11-26 23:31:11 +0000863 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
864 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000865 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
866 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000867 ToType, Context);
868 return true;
869 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000870
Douglas Gregorc7887512008-12-19 19:13:09 +0000871 return false;
872}
873
874/// isObjCPointerConversion - Determines whether this is an
875/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
876/// with the same arguments and return values.
877bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
878 QualType& ConvertedType,
879 bool &IncompatibleObjC) {
880 if (!getLangOptions().ObjC1)
881 return false;
882
883 // Conversions with Objective-C's id<...>.
884 if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
885 ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
886 ConvertedType = ToType;
887 return true;
888 }
889
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000890 // Beyond this point, both types need to be pointers or block pointers.
891 QualType ToPointeeType;
Douglas Gregorc7887512008-12-19 19:13:09 +0000892 const PointerType* ToTypePtr = ToType->getAsPointerType();
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000893 if (ToTypePtr)
894 ToPointeeType = ToTypePtr->getPointeeType();
895 else if (const BlockPointerType *ToBlockPtr = ToType->getAsBlockPointerType())
896 ToPointeeType = ToBlockPtr->getPointeeType();
897 else
Douglas Gregorc7887512008-12-19 19:13:09 +0000898 return false;
899
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000900 QualType FromPointeeType;
Douglas Gregorc7887512008-12-19 19:13:09 +0000901 const PointerType *FromTypePtr = FromType->getAsPointerType();
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000902 if (FromTypePtr)
903 FromPointeeType = FromTypePtr->getPointeeType();
904 else if (const BlockPointerType *FromBlockPtr
905 = FromType->getAsBlockPointerType())
906 FromPointeeType = FromBlockPtr->getPointeeType();
907 else
Douglas Gregorc7887512008-12-19 19:13:09 +0000908 return false;
909
Douglas Gregorcb7de522008-11-26 23:31:11 +0000910 // Objective C++: We're able to convert from a pointer to an
911 // interface to a pointer to a different interface.
912 const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
913 const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
914 if (FromIface && ToIface &&
915 Context.canAssignObjCInterfaces(ToIface, FromIface)) {
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000916 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
Douglas Gregorbf408182008-11-27 00:52:49 +0000917 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000918 ToType, Context);
919 return true;
920 }
921
Douglas Gregor45920e82008-12-19 17:40:08 +0000922 if (FromIface && ToIface &&
923 Context.canAssignObjCInterfaces(FromIface, ToIface)) {
924 // Okay: this is some kind of implicit downcast of Objective-C
925 // interfaces, which is permitted. However, we're going to
926 // complain about it.
927 IncompatibleObjC = true;
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000928 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
Douglas Gregor45920e82008-12-19 17:40:08 +0000929 ToPointeeType,
930 ToType, Context);
931 return true;
932 }
933
Douglas Gregorcb7de522008-11-26 23:31:11 +0000934 // Objective C++: We're able to convert between "id" and a pointer
935 // to any interface (in both directions).
936 if ((FromIface && Context.isObjCIdType(ToPointeeType))
937 || (ToIface && Context.isObjCIdType(FromPointeeType))) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000938 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
939 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000940 ToType, Context);
941 return true;
942 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000943
Douglas Gregordda78892008-12-18 23:43:31 +0000944 // Objective C++: Allow conversions between the Objective-C "id" and
945 // "Class", in either direction.
946 if ((Context.isObjCIdType(FromPointeeType) &&
947 Context.isObjCClassType(ToPointeeType)) ||
948 (Context.isObjCClassType(FromPointeeType) &&
949 Context.isObjCIdType(ToPointeeType))) {
950 ConvertedType = ToType;
951 return true;
952 }
953
Douglas Gregorc7887512008-12-19 19:13:09 +0000954 // If we have pointers to pointers, recursively check whether this
955 // is an Objective-C conversion.
956 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
957 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
958 IncompatibleObjC)) {
959 // We always complain about this conversion.
960 IncompatibleObjC = true;
961 ConvertedType = ToType;
962 return true;
963 }
964
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000965 // If we have pointers to functions or blocks, check whether the only
Douglas Gregorc7887512008-12-19 19:13:09 +0000966 // differences in the argument and result types are in Objective-C
967 // pointer conversions. If so, we permit the conversion (but
968 // complain about it).
969 const FunctionTypeProto *FromFunctionType
970 = FromPointeeType->getAsFunctionTypeProto();
971 const FunctionTypeProto *ToFunctionType
972 = ToPointeeType->getAsFunctionTypeProto();
973 if (FromFunctionType && ToFunctionType) {
974 // If the function types are exactly the same, this isn't an
975 // Objective-C pointer conversion.
976 if (Context.getCanonicalType(FromPointeeType)
977 == Context.getCanonicalType(ToPointeeType))
978 return false;
979
980 // Perform the quick checks that will tell us whether these
981 // function types are obviously different.
982 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
983 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
984 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
985 return false;
986
987 bool HasObjCConversion = false;
988 if (Context.getCanonicalType(FromFunctionType->getResultType())
989 == Context.getCanonicalType(ToFunctionType->getResultType())) {
990 // Okay, the types match exactly. Nothing to do.
991 } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
992 ToFunctionType->getResultType(),
993 ConvertedType, IncompatibleObjC)) {
994 // Okay, we have an Objective-C pointer conversion.
995 HasObjCConversion = true;
996 } else {
997 // Function types are too different. Abort.
998 return false;
999 }
1000
1001 // Check argument types.
1002 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1003 ArgIdx != NumArgs; ++ArgIdx) {
1004 QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1005 QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1006 if (Context.getCanonicalType(FromArgType)
1007 == Context.getCanonicalType(ToArgType)) {
1008 // Okay, the types match exactly. Nothing to do.
1009 } else if (isObjCPointerConversion(FromArgType, ToArgType,
1010 ConvertedType, IncompatibleObjC)) {
1011 // Okay, we have an Objective-C pointer conversion.
1012 HasObjCConversion = true;
1013 } else {
1014 // Argument types are too different. Abort.
1015 return false;
1016 }
1017 }
1018
1019 if (HasObjCConversion) {
1020 // We had an Objective-C conversion. Allow this pointer
1021 // conversion, but complain about it.
1022 ConvertedType = ToType;
1023 IncompatibleObjC = true;
1024 return true;
1025 }
1026 }
1027
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001028 return false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001029}
1030
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001031/// CheckPointerConversion - Check the pointer conversion from the
1032/// expression From to the type ToType. This routine checks for
1033/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
1034/// conversions for which IsPointerConversion has already returned
1035/// true. It returns true and produces a diagnostic if there was an
1036/// error, or returns false otherwise.
1037bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1038 QualType FromType = From->getType();
1039
1040 if (const PointerType *FromPtrType = FromType->getAsPointerType())
1041 if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001042 QualType FromPointeeType = FromPtrType->getPointeeType(),
1043 ToPointeeType = ToPtrType->getPointeeType();
Douglas Gregordda78892008-12-18 23:43:31 +00001044
1045 // Objective-C++ conversions are always okay.
1046 // FIXME: We should have a different class of conversions for
1047 // the Objective-C++ implicit conversions.
1048 if (Context.isObjCIdType(FromPointeeType) ||
1049 Context.isObjCIdType(ToPointeeType) ||
1050 Context.isObjCClassType(FromPointeeType) ||
1051 Context.isObjCClassType(ToPointeeType))
1052 return false;
1053
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001054 if (FromPointeeType->isRecordType() &&
1055 ToPointeeType->isRecordType()) {
1056 // We must have a derived-to-base conversion. Check an
1057 // ambiguous or inaccessible conversion.
Douglas Gregor0575d4a2008-10-24 16:17:19 +00001058 return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1059 From->getExprLoc(),
1060 From->getSourceRange());
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001061 }
1062 }
1063
1064 return false;
1065}
1066
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001067/// IsMemberPointerConversion - Determines whether the conversion of the
1068/// expression From, which has the (possibly adjusted) type FromType, can be
1069/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1070/// If so, returns true and places the converted type (that might differ from
1071/// ToType in its cv-qualifiers at some level) into ConvertedType.
1072bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1073 QualType ToType, QualType &ConvertedType)
1074{
1075 const MemberPointerType *ToTypePtr = ToType->getAsMemberPointerType();
1076 if (!ToTypePtr)
1077 return false;
1078
1079 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1080 if (From->isNullPointerConstant(Context)) {
1081 ConvertedType = ToType;
1082 return true;
1083 }
1084
1085 // Otherwise, both types have to be member pointers.
1086 const MemberPointerType *FromTypePtr = FromType->getAsMemberPointerType();
1087 if (!FromTypePtr)
1088 return false;
1089
1090 // A pointer to member of B can be converted to a pointer to member of D,
1091 // where D is derived from B (C++ 4.11p2).
1092 QualType FromClass(FromTypePtr->getClass(), 0);
1093 QualType ToClass(ToTypePtr->getClass(), 0);
1094 // FIXME: What happens when these are dependent? Is this function even called?
1095
1096 if (IsDerivedFrom(ToClass, FromClass)) {
1097 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1098 ToClass.getTypePtr());
1099 return true;
1100 }
1101
1102 return false;
1103}
1104
1105/// CheckMemberPointerConversion - Check the member pointer conversion from the
1106/// expression From to the type ToType. This routine checks for ambiguous or
1107/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1108/// for which IsMemberPointerConversion has already returned true. It returns
1109/// true and produces a diagnostic if there was an error, or returns false
1110/// otherwise.
1111bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
1112 QualType FromType = From->getType();
Sebastian Redl21593ac2009-01-28 18:33:18 +00001113 const MemberPointerType *FromPtrType = FromType->getAsMemberPointerType();
1114 if (!FromPtrType)
1115 return false;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001116
Sebastian Redl21593ac2009-01-28 18:33:18 +00001117 const MemberPointerType *ToPtrType = ToType->getAsMemberPointerType();
1118 assert(ToPtrType && "No member pointer cast has a target type "
1119 "that is not a member pointer.");
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001120
Sebastian Redl21593ac2009-01-28 18:33:18 +00001121 QualType FromClass = QualType(FromPtrType->getClass(), 0);
1122 QualType ToClass = QualType(ToPtrType->getClass(), 0);
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001123
Sebastian Redl21593ac2009-01-28 18:33:18 +00001124 // FIXME: What about dependent types?
1125 assert(FromClass->isRecordType() && "Pointer into non-class.");
1126 assert(ToClass->isRecordType() && "Pointer into non-class.");
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001127
Sebastian Redl21593ac2009-01-28 18:33:18 +00001128 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1129 /*DetectVirtual=*/true);
1130 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1131 assert(DerivationOkay &&
1132 "Should not have been called if derivation isn't OK.");
1133 (void)DerivationOkay;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001134
Sebastian Redl21593ac2009-01-28 18:33:18 +00001135 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1136 getUnqualifiedType())) {
1137 // Derivation is ambiguous. Redo the check to find the exact paths.
1138 Paths.clear();
1139 Paths.setRecordingPaths(true);
1140 bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1141 assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1142 (void)StillOkay;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001143
Sebastian Redl21593ac2009-01-28 18:33:18 +00001144 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1145 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1146 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1147 return true;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001148 }
Sebastian Redl21593ac2009-01-28 18:33:18 +00001149
1150 if (const CXXRecordType *VBase = Paths.getDetectedVirtual()) {
1151 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1152 << FromClass << ToClass << QualType(VBase, 0)
1153 << From->getSourceRange();
1154 return true;
1155 }
1156
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001157 return false;
1158}
1159
Douglas Gregor98cd5992008-10-21 23:43:52 +00001160/// IsQualificationConversion - Determines whether the conversion from
1161/// an rvalue of type FromType to ToType is a qualification conversion
1162/// (C++ 4.4).
1163bool
1164Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1165{
1166 FromType = Context.getCanonicalType(FromType);
1167 ToType = Context.getCanonicalType(ToType);
1168
1169 // If FromType and ToType are the same type, this is not a
1170 // qualification conversion.
1171 if (FromType == ToType)
1172 return false;
Sebastian Redl21593ac2009-01-28 18:33:18 +00001173
Douglas Gregor98cd5992008-10-21 23:43:52 +00001174 // (C++ 4.4p4):
1175 // A conversion can add cv-qualifiers at levels other than the first
1176 // in multi-level pointers, subject to the following rules: [...]
1177 bool PreviousToQualsIncludeConst = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +00001178 bool UnwrappedAnyPointer = false;
Douglas Gregor57373262008-10-22 14:17:15 +00001179 while (UnwrapSimilarPointerTypes(FromType, ToType)) {
Douglas Gregor98cd5992008-10-21 23:43:52 +00001180 // Within each iteration of the loop, we check the qualifiers to
1181 // determine if this still looks like a qualification
1182 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +00001183 // pointers or pointers-to-members and do it all again
Douglas Gregor98cd5992008-10-21 23:43:52 +00001184 // until there are no more pointers or pointers-to-members left to
1185 // unwrap.
Douglas Gregor57373262008-10-22 14:17:15 +00001186 UnwrappedAnyPointer = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +00001187
1188 // -- for every j > 0, if const is in cv 1,j then const is in cv
1189 // 2,j, and similarly for volatile.
Douglas Gregor9b6e2d22008-10-22 00:38:21 +00001190 if (!ToType.isAtLeastAsQualifiedAs(FromType))
Douglas Gregor98cd5992008-10-21 23:43:52 +00001191 return false;
Douglas Gregor57373262008-10-22 14:17:15 +00001192
Douglas Gregor98cd5992008-10-21 23:43:52 +00001193 // -- if the cv 1,j and cv 2,j are different, then const is in
1194 // every cv for 0 < k < j.
1195 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
Douglas Gregor57373262008-10-22 14:17:15 +00001196 && !PreviousToQualsIncludeConst)
Douglas Gregor98cd5992008-10-21 23:43:52 +00001197 return false;
Douglas Gregor57373262008-10-22 14:17:15 +00001198
Douglas Gregor98cd5992008-10-21 23:43:52 +00001199 // Keep track of whether all prior cv-qualifiers in the "to" type
1200 // include const.
1201 PreviousToQualsIncludeConst
1202 = PreviousToQualsIncludeConst && ToType.isConstQualified();
Douglas Gregor57373262008-10-22 14:17:15 +00001203 }
Douglas Gregor98cd5992008-10-21 23:43:52 +00001204
1205 // We are left with FromType and ToType being the pointee types
1206 // after unwrapping the original FromType and ToType the same number
1207 // of types. If we unwrapped any pointers, and if FromType and
1208 // ToType have the same unqualified type (since we checked
1209 // qualifiers above), then this is a qualification conversion.
1210 return UnwrappedAnyPointer &&
1211 FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1212}
1213
Douglas Gregor734d9862009-01-30 23:27:23 +00001214/// Determines whether there is a user-defined conversion sequence
1215/// (C++ [over.ics.user]) that converts expression From to the type
1216/// ToType. If such a conversion exists, User will contain the
1217/// user-defined conversion sequence that performs such a conversion
1218/// and this routine will return true. Otherwise, this routine returns
1219/// false and User is unspecified.
1220///
1221/// \param AllowConversionFunctions true if the conversion should
1222/// consider conversion functions at all. If false, only constructors
1223/// will be considered.
1224///
1225/// \param AllowExplicit true if the conversion should consider C++0x
1226/// "explicit" conversion functions as well as non-explicit conversion
1227/// functions (C++0x [class.conv.fct]p2).
Douglas Gregor60d62c22008-10-31 16:23:19 +00001228bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00001229 UserDefinedConversionSequence& User,
Douglas Gregor734d9862009-01-30 23:27:23 +00001230 bool AllowConversionFunctions,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00001231 bool AllowExplicit)
Douglas Gregor60d62c22008-10-31 16:23:19 +00001232{
1233 OverloadCandidateSet CandidateSet;
1234 if (const CXXRecordType *ToRecordType
1235 = dyn_cast_or_null<CXXRecordType>(ToType->getAsRecordType())) {
1236 // C++ [over.match.ctor]p1:
1237 // When objects of class type are direct-initialized (8.5), or
1238 // copy-initialized from an expression of the same or a
1239 // derived class type (8.5), overload resolution selects the
1240 // constructor. [...] For copy-initialization, the candidate
1241 // functions are all the converting constructors (12.3.1) of
1242 // that class. The argument list is the expression-list within
1243 // the parentheses of the initializer.
1244 CXXRecordDecl *ToRecordDecl = ToRecordType->getDecl();
Douglas Gregor9e7d9de2008-12-15 21:24:18 +00001245 DeclarationName ConstructorName
1246 = Context.DeclarationNames.getCXXConstructorName(
Douglas Gregore63ef482009-01-13 00:11:19 +00001247 Context.getCanonicalType(ToType).getUnqualifiedType());
Douglas Gregor3fc749d2008-12-23 00:26:44 +00001248 DeclContext::lookup_iterator Con, ConEnd;
Steve Naroff0701bbb2009-01-08 17:28:14 +00001249 for (llvm::tie(Con, ConEnd) = ToRecordDecl->lookup(ConstructorName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00001250 Con != ConEnd; ++Con) {
1251 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
Douglas Gregor60d62c22008-10-31 16:23:19 +00001252 if (Constructor->isConvertingConstructor())
Douglas Gregor225c41e2008-11-03 19:09:14 +00001253 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1254 /*SuppressUserConversions=*/true);
Douglas Gregor60d62c22008-10-31 16:23:19 +00001255 }
1256 }
1257
Douglas Gregor734d9862009-01-30 23:27:23 +00001258 if (!AllowConversionFunctions) {
1259 // Don't allow any conversion functions to enter the overload set.
1260 } else if (const CXXRecordType *FromRecordType
1261 = dyn_cast_or_null<CXXRecordType>(
1262 From->getType()->getAsRecordType())) {
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001263 // Add all of the conversion functions as candidates.
1264 // FIXME: Look for conversions in base classes!
1265 CXXRecordDecl *FromRecordDecl = FromRecordType->getDecl();
1266 OverloadedFunctionDecl *Conversions
1267 = FromRecordDecl->getConversionFunctions();
1268 for (OverloadedFunctionDecl::function_iterator Func
1269 = Conversions->function_begin();
1270 Func != Conversions->function_end(); ++Func) {
1271 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
Douglas Gregor09f41cf2009-01-14 15:45:31 +00001272 if (AllowExplicit || !Conv->isExplicit())
1273 AddConversionCandidate(Conv, From, ToType, CandidateSet);
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001274 }
1275 }
Douglas Gregor60d62c22008-10-31 16:23:19 +00001276
1277 OverloadCandidateSet::iterator Best;
1278 switch (BestViableFunction(CandidateSet, Best)) {
1279 case OR_Success:
1280 // Record the standard conversion we used and the conversion function.
Douglas Gregor60d62c22008-10-31 16:23:19 +00001281 if (CXXConstructorDecl *Constructor
1282 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1283 // C++ [over.ics.user]p1:
1284 // If the user-defined conversion is specified by a
1285 // constructor (12.3.1), the initial standard conversion
1286 // sequence converts the source type to the type required by
1287 // the argument of the constructor.
1288 //
1289 // FIXME: What about ellipsis conversions?
1290 QualType ThisType = Constructor->getThisType(Context);
1291 User.Before = Best->Conversions[0].Standard;
1292 User.ConversionFunction = Constructor;
1293 User.After.setAsIdentityConversion();
1294 User.After.FromTypePtr
1295 = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1296 User.After.ToTypePtr = ToType.getAsOpaquePtr();
1297 return true;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001298 } else if (CXXConversionDecl *Conversion
1299 = dyn_cast<CXXConversionDecl>(Best->Function)) {
1300 // C++ [over.ics.user]p1:
1301 //
1302 // [...] If the user-defined conversion is specified by a
1303 // conversion function (12.3.2), the initial standard
1304 // conversion sequence converts the source type to the
1305 // implicit object parameter of the conversion function.
1306 User.Before = Best->Conversions[0].Standard;
1307 User.ConversionFunction = Conversion;
1308
1309 // C++ [over.ics.user]p2:
1310 // The second standard conversion sequence converts the
1311 // result of the user-defined conversion to the target type
1312 // for the sequence. Since an implicit conversion sequence
1313 // is an initialization, the special rules for
1314 // initialization by user-defined conversion apply when
1315 // selecting the best user-defined conversion for a
1316 // user-defined conversion sequence (see 13.3.3 and
1317 // 13.3.3.1).
1318 User.After = Best->FinalConversion;
1319 return true;
Douglas Gregor60d62c22008-10-31 16:23:19 +00001320 } else {
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001321 assert(false && "Not a constructor or conversion function?");
Douglas Gregor60d62c22008-10-31 16:23:19 +00001322 return false;
1323 }
1324
1325 case OR_No_Viable_Function:
1326 // No conversion here! We're done.
1327 return false;
1328
1329 case OR_Ambiguous:
1330 // FIXME: See C++ [over.best.ics]p10 for the handling of
1331 // ambiguous conversion sequences.
1332 return false;
1333 }
1334
1335 return false;
1336}
1337
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001338/// CompareImplicitConversionSequences - Compare two implicit
1339/// conversion sequences to determine whether one is better than the
1340/// other or if they are indistinguishable (C++ 13.3.3.2).
1341ImplicitConversionSequence::CompareKind
1342Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1343 const ImplicitConversionSequence& ICS2)
1344{
1345 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1346 // conversion sequences (as defined in 13.3.3.1)
1347 // -- a standard conversion sequence (13.3.3.1.1) is a better
1348 // conversion sequence than a user-defined conversion sequence or
1349 // an ellipsis conversion sequence, and
1350 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
1351 // conversion sequence than an ellipsis conversion sequence
1352 // (13.3.3.1.3).
1353 //
1354 if (ICS1.ConversionKind < ICS2.ConversionKind)
1355 return ImplicitConversionSequence::Better;
1356 else if (ICS2.ConversionKind < ICS1.ConversionKind)
1357 return ImplicitConversionSequence::Worse;
1358
1359 // Two implicit conversion sequences of the same form are
1360 // indistinguishable conversion sequences unless one of the
1361 // following rules apply: (C++ 13.3.3.2p3):
1362 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1363 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1364 else if (ICS1.ConversionKind ==
1365 ImplicitConversionSequence::UserDefinedConversion) {
1366 // User-defined conversion sequence U1 is a better conversion
1367 // sequence than another user-defined conversion sequence U2 if
1368 // they contain the same user-defined conversion function or
1369 // constructor and if the second standard conversion sequence of
1370 // U1 is better than the second standard conversion sequence of
1371 // U2 (C++ 13.3.3.2p3).
1372 if (ICS1.UserDefined.ConversionFunction ==
1373 ICS2.UserDefined.ConversionFunction)
1374 return CompareStandardConversionSequences(ICS1.UserDefined.After,
1375 ICS2.UserDefined.After);
1376 }
1377
1378 return ImplicitConversionSequence::Indistinguishable;
1379}
1380
1381/// CompareStandardConversionSequences - Compare two standard
1382/// conversion sequences to determine whether one is better than the
1383/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1384ImplicitConversionSequence::CompareKind
1385Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1386 const StandardConversionSequence& SCS2)
1387{
1388 // Standard conversion sequence S1 is a better conversion sequence
1389 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1390
1391 // -- S1 is a proper subsequence of S2 (comparing the conversion
1392 // sequences in the canonical form defined by 13.3.3.1.1,
1393 // excluding any Lvalue Transformation; the identity conversion
1394 // sequence is considered to be a subsequence of any
1395 // non-identity conversion sequence) or, if not that,
1396 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1397 // Neither is a proper subsequence of the other. Do nothing.
1398 ;
1399 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1400 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1401 (SCS1.Second == ICK_Identity &&
1402 SCS1.Third == ICK_Identity))
1403 // SCS1 is a proper subsequence of SCS2.
1404 return ImplicitConversionSequence::Better;
1405 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1406 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1407 (SCS2.Second == ICK_Identity &&
1408 SCS2.Third == ICK_Identity))
1409 // SCS2 is a proper subsequence of SCS1.
1410 return ImplicitConversionSequence::Worse;
1411
1412 // -- the rank of S1 is better than the rank of S2 (by the rules
1413 // defined below), or, if not that,
1414 ImplicitConversionRank Rank1 = SCS1.getRank();
1415 ImplicitConversionRank Rank2 = SCS2.getRank();
1416 if (Rank1 < Rank2)
1417 return ImplicitConversionSequence::Better;
1418 else if (Rank2 < Rank1)
1419 return ImplicitConversionSequence::Worse;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001420
Douglas Gregor57373262008-10-22 14:17:15 +00001421 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1422 // are indistinguishable unless one of the following rules
1423 // applies:
1424
1425 // A conversion that is not a conversion of a pointer, or
1426 // pointer to member, to bool is better than another conversion
1427 // that is such a conversion.
1428 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1429 return SCS2.isPointerConversionToBool()
1430 ? ImplicitConversionSequence::Better
1431 : ImplicitConversionSequence::Worse;
1432
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001433 // C++ [over.ics.rank]p4b2:
1434 //
1435 // If class B is derived directly or indirectly from class A,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001436 // conversion of B* to A* is better than conversion of B* to
1437 // void*, and conversion of A* to void* is better than conversion
1438 // of B* to void*.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001439 bool SCS1ConvertsToVoid
1440 = SCS1.isPointerConversionToVoidPointer(Context);
1441 bool SCS2ConvertsToVoid
1442 = SCS2.isPointerConversionToVoidPointer(Context);
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001443 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1444 // Exactly one of the conversion sequences is a conversion to
1445 // a void pointer; it's the worse conversion.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001446 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1447 : ImplicitConversionSequence::Worse;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001448 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1449 // Neither conversion sequence converts to a void pointer; compare
1450 // their derived-to-base conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001451 if (ImplicitConversionSequence::CompareKind DerivedCK
1452 = CompareDerivedToBaseConversions(SCS1, SCS2))
1453 return DerivedCK;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001454 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1455 // Both conversion sequences are conversions to void
1456 // pointers. Compare the source types to determine if there's an
1457 // inheritance relationship in their sources.
1458 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1459 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1460
1461 // Adjust the types we're converting from via the array-to-pointer
1462 // conversion, if we need to.
1463 if (SCS1.First == ICK_Array_To_Pointer)
1464 FromType1 = Context.getArrayDecayedType(FromType1);
1465 if (SCS2.First == ICK_Array_To_Pointer)
1466 FromType2 = Context.getArrayDecayedType(FromType2);
1467
1468 QualType FromPointee1
1469 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1470 QualType FromPointee2
1471 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1472
1473 if (IsDerivedFrom(FromPointee2, FromPointee1))
1474 return ImplicitConversionSequence::Better;
1475 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1476 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001477
1478 // Objective-C++: If one interface is more specific than the
1479 // other, it is the better one.
1480 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1481 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1482 if (FromIface1 && FromIface1) {
1483 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1484 return ImplicitConversionSequence::Better;
1485 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1486 return ImplicitConversionSequence::Worse;
1487 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001488 }
Douglas Gregor57373262008-10-22 14:17:15 +00001489
1490 // Compare based on qualification conversions (C++ 13.3.3.2p3,
1491 // bullet 3).
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001492 if (ImplicitConversionSequence::CompareKind QualCK
Douglas Gregor57373262008-10-22 14:17:15 +00001493 = CompareQualificationConversions(SCS1, SCS2))
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001494 return QualCK;
Douglas Gregor57373262008-10-22 14:17:15 +00001495
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001496 // C++ [over.ics.rank]p3b4:
1497 // -- S1 and S2 are reference bindings (8.5.3), and the types to
1498 // which the references refer are the same type except for
1499 // top-level cv-qualifiers, and the type to which the reference
1500 // initialized by S2 refers is more cv-qualified than the type
1501 // to which the reference initialized by S1 refers.
1502 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1503 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1504 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1505 T1 = Context.getCanonicalType(T1);
1506 T2 = Context.getCanonicalType(T2);
1507 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1508 if (T2.isMoreQualifiedThan(T1))
1509 return ImplicitConversionSequence::Better;
1510 else if (T1.isMoreQualifiedThan(T2))
1511 return ImplicitConversionSequence::Worse;
1512 }
1513 }
Douglas Gregor57373262008-10-22 14:17:15 +00001514
1515 return ImplicitConversionSequence::Indistinguishable;
1516}
1517
1518/// CompareQualificationConversions - Compares two standard conversion
1519/// sequences to determine whether they can be ranked based on their
1520/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1521ImplicitConversionSequence::CompareKind
1522Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1523 const StandardConversionSequence& SCS2)
1524{
Douglas Gregorba7e2102008-10-22 15:04:37 +00001525 // C++ 13.3.3.2p3:
Douglas Gregor57373262008-10-22 14:17:15 +00001526 // -- S1 and S2 differ only in their qualification conversion and
1527 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
1528 // cv-qualification signature of type T1 is a proper subset of
1529 // the cv-qualification signature of type T2, and S1 is not the
1530 // deprecated string literal array-to-pointer conversion (4.2).
1531 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1532 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1533 return ImplicitConversionSequence::Indistinguishable;
1534
1535 // FIXME: the example in the standard doesn't use a qualification
1536 // conversion (!)
1537 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1538 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1539 T1 = Context.getCanonicalType(T1);
1540 T2 = Context.getCanonicalType(T2);
1541
1542 // If the types are the same, we won't learn anything by unwrapped
1543 // them.
1544 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1545 return ImplicitConversionSequence::Indistinguishable;
1546
1547 ImplicitConversionSequence::CompareKind Result
1548 = ImplicitConversionSequence::Indistinguishable;
1549 while (UnwrapSimilarPointerTypes(T1, T2)) {
1550 // Within each iteration of the loop, we check the qualifiers to
1551 // determine if this still looks like a qualification
1552 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +00001553 // pointers or pointers-to-members and do it all again
Douglas Gregor57373262008-10-22 14:17:15 +00001554 // until there are no more pointers or pointers-to-members left
1555 // to unwrap. This essentially mimics what
1556 // IsQualificationConversion does, but here we're checking for a
1557 // strict subset of qualifiers.
1558 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1559 // The qualifiers are the same, so this doesn't tell us anything
1560 // about how the sequences rank.
1561 ;
1562 else if (T2.isMoreQualifiedThan(T1)) {
1563 // T1 has fewer qualifiers, so it could be the better sequence.
1564 if (Result == ImplicitConversionSequence::Worse)
1565 // Neither has qualifiers that are a subset of the other's
1566 // qualifiers.
1567 return ImplicitConversionSequence::Indistinguishable;
1568
1569 Result = ImplicitConversionSequence::Better;
1570 } else if (T1.isMoreQualifiedThan(T2)) {
1571 // T2 has fewer qualifiers, so it could be the better sequence.
1572 if (Result == ImplicitConversionSequence::Better)
1573 // Neither has qualifiers that are a subset of the other's
1574 // qualifiers.
1575 return ImplicitConversionSequence::Indistinguishable;
1576
1577 Result = ImplicitConversionSequence::Worse;
1578 } else {
1579 // Qualifiers are disjoint.
1580 return ImplicitConversionSequence::Indistinguishable;
1581 }
1582
1583 // If the types after this point are equivalent, we're done.
1584 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1585 break;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001586 }
1587
Douglas Gregor57373262008-10-22 14:17:15 +00001588 // Check that the winning standard conversion sequence isn't using
1589 // the deprecated string literal array to pointer conversion.
1590 switch (Result) {
1591 case ImplicitConversionSequence::Better:
1592 if (SCS1.Deprecated)
1593 Result = ImplicitConversionSequence::Indistinguishable;
1594 break;
1595
1596 case ImplicitConversionSequence::Indistinguishable:
1597 break;
1598
1599 case ImplicitConversionSequence::Worse:
1600 if (SCS2.Deprecated)
1601 Result = ImplicitConversionSequence::Indistinguishable;
1602 break;
1603 }
1604
1605 return Result;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001606}
1607
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001608/// CompareDerivedToBaseConversions - Compares two standard conversion
1609/// sequences to determine whether they can be ranked based on their
Douglas Gregorcb7de522008-11-26 23:31:11 +00001610/// various kinds of derived-to-base conversions (C++
1611/// [over.ics.rank]p4b3). As part of these checks, we also look at
1612/// conversions between Objective-C interface types.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001613ImplicitConversionSequence::CompareKind
1614Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1615 const StandardConversionSequence& SCS2) {
1616 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1617 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1618 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1619 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1620
1621 // Adjust the types we're converting from via the array-to-pointer
1622 // conversion, if we need to.
1623 if (SCS1.First == ICK_Array_To_Pointer)
1624 FromType1 = Context.getArrayDecayedType(FromType1);
1625 if (SCS2.First == ICK_Array_To_Pointer)
1626 FromType2 = Context.getArrayDecayedType(FromType2);
1627
1628 // Canonicalize all of the types.
1629 FromType1 = Context.getCanonicalType(FromType1);
1630 ToType1 = Context.getCanonicalType(ToType1);
1631 FromType2 = Context.getCanonicalType(FromType2);
1632 ToType2 = Context.getCanonicalType(ToType2);
1633
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001634 // C++ [over.ics.rank]p4b3:
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001635 //
1636 // If class B is derived directly or indirectly from class A and
1637 // class C is derived directly or indirectly from B,
Douglas Gregorcb7de522008-11-26 23:31:11 +00001638 //
1639 // For Objective-C, we let A, B, and C also be Objective-C
1640 // interfaces.
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001641
1642 // Compare based on pointer conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001643 if (SCS1.Second == ICK_Pointer_Conversion &&
Douglas Gregor7ca09762008-11-27 01:19:21 +00001644 SCS2.Second == ICK_Pointer_Conversion &&
1645 /*FIXME: Remove if Objective-C id conversions get their own rank*/
1646 FromType1->isPointerType() && FromType2->isPointerType() &&
1647 ToType1->isPointerType() && ToType2->isPointerType()) {
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001648 QualType FromPointee1
1649 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1650 QualType ToPointee1
1651 = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1652 QualType FromPointee2
1653 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1654 QualType ToPointee2
1655 = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
Douglas Gregorcb7de522008-11-26 23:31:11 +00001656
1657 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1658 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1659 const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1660 const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1661
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001662 // -- conversion of C* to B* is better than conversion of C* to A*,
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001663 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1664 if (IsDerivedFrom(ToPointee1, ToPointee2))
1665 return ImplicitConversionSequence::Better;
1666 else if (IsDerivedFrom(ToPointee2, ToPointee1))
1667 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001668
1669 if (ToIface1 && ToIface2) {
1670 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1671 return ImplicitConversionSequence::Better;
1672 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1673 return ImplicitConversionSequence::Worse;
1674 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001675 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001676
1677 // -- conversion of B* to A* is better than conversion of C* to A*,
1678 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1679 if (IsDerivedFrom(FromPointee2, FromPointee1))
1680 return ImplicitConversionSequence::Better;
1681 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1682 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001683
1684 if (FromIface1 && FromIface2) {
1685 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1686 return ImplicitConversionSequence::Better;
1687 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1688 return ImplicitConversionSequence::Worse;
1689 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001690 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001691 }
1692
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001693 // Compare based on reference bindings.
1694 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1695 SCS1.Second == ICK_Derived_To_Base) {
1696 // -- binding of an expression of type C to a reference of type
1697 // B& is better than binding an expression of type C to a
1698 // reference of type A&,
1699 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1700 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1701 if (IsDerivedFrom(ToType1, ToType2))
1702 return ImplicitConversionSequence::Better;
1703 else if (IsDerivedFrom(ToType2, ToType1))
1704 return ImplicitConversionSequence::Worse;
1705 }
1706
Douglas Gregor225c41e2008-11-03 19:09:14 +00001707 // -- binding of an expression of type B to a reference of type
1708 // A& is better than binding an expression of type C to a
1709 // reference of type A&,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001710 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1711 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1712 if (IsDerivedFrom(FromType2, FromType1))
1713 return ImplicitConversionSequence::Better;
1714 else if (IsDerivedFrom(FromType1, FromType2))
1715 return ImplicitConversionSequence::Worse;
1716 }
1717 }
1718
1719
1720 // FIXME: conversion of A::* to B::* is better than conversion of
1721 // A::* to C::*,
1722
1723 // FIXME: conversion of B::* to C::* is better than conversion of
1724 // A::* to C::*, and
1725
Douglas Gregor225c41e2008-11-03 19:09:14 +00001726 if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1727 SCS1.Second == ICK_Derived_To_Base) {
1728 // -- conversion of C to B is better than conversion of C to A,
1729 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1730 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1731 if (IsDerivedFrom(ToType1, ToType2))
1732 return ImplicitConversionSequence::Better;
1733 else if (IsDerivedFrom(ToType2, ToType1))
1734 return ImplicitConversionSequence::Worse;
1735 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001736
Douglas Gregor225c41e2008-11-03 19:09:14 +00001737 // -- conversion of B to A is better than conversion of C to A.
1738 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1739 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1740 if (IsDerivedFrom(FromType2, FromType1))
1741 return ImplicitConversionSequence::Better;
1742 else if (IsDerivedFrom(FromType1, FromType2))
1743 return ImplicitConversionSequence::Worse;
1744 }
1745 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001746
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001747 return ImplicitConversionSequence::Indistinguishable;
1748}
1749
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001750/// TryCopyInitialization - Try to copy-initialize a value of type
1751/// ToType from the expression From. Return the implicit conversion
1752/// sequence required to pass this argument, which may be a bad
1753/// conversion sequence (meaning that the argument cannot be passed to
Douglas Gregor225c41e2008-11-03 19:09:14 +00001754/// a parameter of this type). If @p SuppressUserConversions, then we
1755/// do not permit any user-defined conversion sequences.
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001756ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +00001757Sema::TryCopyInitialization(Expr *From, QualType ToType,
1758 bool SuppressUserConversions) {
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001759 if (!getLangOptions().CPlusPlus) {
Douglas Gregor60d62c22008-10-31 16:23:19 +00001760 // In C, copy initialization is the same as performing an assignment.
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001761 AssignConvertType ConvTy =
1762 CheckSingleAssignmentConstraints(ToType, From);
1763 ImplicitConversionSequence ICS;
1764 if (getLangOptions().NoExtensions? ConvTy != Compatible
1765 : ConvTy == Incompatible)
1766 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1767 else
1768 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1769 return ICS;
1770 } else if (ToType->isReferenceType()) {
1771 ImplicitConversionSequence ICS;
Douglas Gregor225c41e2008-11-03 19:09:14 +00001772 CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001773 return ICS;
1774 } else {
Douglas Gregor225c41e2008-11-03 19:09:14 +00001775 return TryImplicitConversion(From, ToType, SuppressUserConversions);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001776 }
1777}
1778
1779/// PerformArgumentPassing - Pass the argument Arg into a parameter of
1780/// type ToType. Returns true (and emits a diagnostic) if there was
1781/// an error, returns false if the initialization succeeded.
1782bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1783 const char* Flavor) {
1784 if (!getLangOptions().CPlusPlus) {
1785 // In C, argument passing is the same as performing an assignment.
1786 QualType FromType = From->getType();
1787 AssignConvertType ConvTy =
1788 CheckSingleAssignmentConstraints(ToType, From);
1789
1790 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1791 FromType, From, Flavor);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001792 }
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001793
1794 if (ToType->isReferenceType())
1795 return CheckReferenceInit(From, ToType);
1796
Douglas Gregor45920e82008-12-19 17:40:08 +00001797 if (!PerformImplicitConversion(From, ToType, Flavor))
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001798 return false;
1799
1800 return Diag(From->getSourceRange().getBegin(),
1801 diag::err_typecheck_convert_incompatible)
1802 << ToType << From->getType() << Flavor << From->getSourceRange();
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001803}
1804
Douglas Gregor96176b32008-11-18 23:14:02 +00001805/// TryObjectArgumentInitialization - Try to initialize the object
1806/// parameter of the given member function (@c Method) from the
1807/// expression @p From.
1808ImplicitConversionSequence
1809Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1810 QualType ClassType = Context.getTypeDeclType(Method->getParent());
1811 unsigned MethodQuals = Method->getTypeQualifiers();
1812 QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1813
1814 // Set up the conversion sequence as a "bad" conversion, to allow us
1815 // to exit early.
1816 ImplicitConversionSequence ICS;
1817 ICS.Standard.setAsIdentityConversion();
1818 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1819
1820 // We need to have an object of class type.
1821 QualType FromType = From->getType();
1822 if (!FromType->isRecordType())
1823 return ICS;
1824
1825 // The implicit object parmeter is has the type "reference to cv X",
1826 // where X is the class of which the function is a member
1827 // (C++ [over.match.funcs]p4). However, when finding an implicit
1828 // conversion sequence for the argument, we are not allowed to
1829 // create temporaries or perform user-defined conversions
1830 // (C++ [over.match.funcs]p5). We perform a simplified version of
1831 // reference binding here, that allows class rvalues to bind to
1832 // non-constant references.
1833
1834 // First check the qualifiers. We don't care about lvalue-vs-rvalue
1835 // with the implicit object parameter (C++ [over.match.funcs]p5).
1836 QualType FromTypeCanon = Context.getCanonicalType(FromType);
1837 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1838 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1839 return ICS;
1840
1841 // Check that we have either the same type or a derived type. It
1842 // affects the conversion rank.
1843 QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1844 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1845 ICS.Standard.Second = ICK_Identity;
1846 else if (IsDerivedFrom(FromType, ClassType))
1847 ICS.Standard.Second = ICK_Derived_To_Base;
1848 else
1849 return ICS;
1850
1851 // Success. Mark this as a reference binding.
1852 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1853 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1854 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1855 ICS.Standard.ReferenceBinding = true;
1856 ICS.Standard.DirectBinding = true;
1857 return ICS;
1858}
1859
1860/// PerformObjectArgumentInitialization - Perform initialization of
1861/// the implicit object parameter for the given Method with the given
1862/// expression.
1863bool
1864Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1865 QualType ImplicitParamType
1866 = Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1867 ImplicitConversionSequence ICS
1868 = TryObjectArgumentInitialization(From, Method);
1869 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1870 return Diag(From->getSourceRange().getBegin(),
Chris Lattnerfa25bbb2008-11-19 05:08:23 +00001871 diag::err_implicit_object_parameter_init)
Chris Lattnerd1625842008-11-24 06:25:27 +00001872 << ImplicitParamType << From->getType() << From->getSourceRange();
Douglas Gregor96176b32008-11-18 23:14:02 +00001873
1874 if (ICS.Standard.Second == ICK_Derived_To_Base &&
1875 CheckDerivedToBaseConversion(From->getType(), ImplicitParamType,
1876 From->getSourceRange().getBegin(),
1877 From->getSourceRange()))
1878 return true;
1879
1880 ImpCastExprToType(From, ImplicitParamType, /*isLvalue=*/true);
1881 return false;
1882}
1883
Douglas Gregor09f41cf2009-01-14 15:45:31 +00001884/// TryContextuallyConvertToBool - Attempt to contextually convert the
1885/// expression From to bool (C++0x [conv]p3).
1886ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
1887 return TryImplicitConversion(From, Context.BoolTy, false, true);
1888}
1889
1890/// PerformContextuallyConvertToBool - Perform a contextual conversion
1891/// of the expression From to bool (C++0x [conv]p3).
1892bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
1893 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
1894 if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
1895 return false;
1896
1897 return Diag(From->getSourceRange().getBegin(),
1898 diag::err_typecheck_bool_condition)
1899 << From->getType() << From->getSourceRange();
1900}
1901
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001902/// AddOverloadCandidate - Adds the given function to the set of
Douglas Gregor225c41e2008-11-03 19:09:14 +00001903/// candidate functions, using the given function call arguments. If
1904/// @p SuppressUserConversions, then don't allow user-defined
1905/// conversions via constructors or conversion operators.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001906void
1907Sema::AddOverloadCandidate(FunctionDecl *Function,
1908 Expr **Args, unsigned NumArgs,
Douglas Gregor225c41e2008-11-03 19:09:14 +00001909 OverloadCandidateSet& CandidateSet,
1910 bool SuppressUserConversions)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001911{
1912 const FunctionTypeProto* Proto
1913 = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
1914 assert(Proto && "Functions without a prototype cannot be overloaded");
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001915 assert(!isa<CXXConversionDecl>(Function) &&
1916 "Use AddConversionCandidate for conversion functions");
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001917
Douglas Gregor88a35142008-12-22 05:46:06 +00001918 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
1919 // If we get here, it's because we're calling a member function
1920 // that is named without a member access expression (e.g.,
1921 // "this->f") that was either written explicitly or created
1922 // implicitly. This can happen with a qualified call to a member
1923 // function, e.g., X::f(). We use a NULL object as the implied
1924 // object argument (C++ [over.call.func]p3).
1925 AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
1926 SuppressUserConversions);
1927 return;
1928 }
1929
1930
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001931 // Add this candidate
1932 CandidateSet.push_back(OverloadCandidate());
1933 OverloadCandidate& Candidate = CandidateSet.back();
1934 Candidate.Function = Function;
Douglas Gregor88a35142008-12-22 05:46:06 +00001935 Candidate.Viable = true;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00001936 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00001937 Candidate.IgnoreObjectArgument = false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001938
1939 unsigned NumArgsInProto = Proto->getNumArgs();
1940
1941 // (C++ 13.3.2p2): A candidate function having fewer than m
1942 // parameters is viable only if it has an ellipsis in its parameter
1943 // list (8.3.5).
1944 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1945 Candidate.Viable = false;
1946 return;
1947 }
1948
1949 // (C++ 13.3.2p2): A candidate function having more than m parameters
1950 // is viable only if the (m+1)st parameter has a default argument
1951 // (8.3.6). For the purposes of overload resolution, the
1952 // parameter list is truncated on the right, so that there are
1953 // exactly m parameters.
1954 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
1955 if (NumArgs < MinRequiredArgs) {
1956 // Not enough arguments.
1957 Candidate.Viable = false;
1958 return;
1959 }
1960
1961 // Determine the implicit conversion sequences for each of the
1962 // arguments.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001963 Candidate.Conversions.resize(NumArgs);
1964 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1965 if (ArgIdx < NumArgsInProto) {
1966 // (C++ 13.3.2p3): for F to be a viable function, there shall
1967 // exist for each argument an implicit conversion sequence
1968 // (13.3.3.1) that converts that argument to the corresponding
1969 // parameter of F.
1970 QualType ParamType = Proto->getArgType(ArgIdx);
1971 Candidate.Conversions[ArgIdx]
Douglas Gregor225c41e2008-11-03 19:09:14 +00001972 = TryCopyInitialization(Args[ArgIdx], ParamType,
1973 SuppressUserConversions);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001974 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00001975 == ImplicitConversionSequence::BadConversion) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001976 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00001977 break;
1978 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001979 } else {
1980 // (C++ 13.3.2p2): For the purposes of overload resolution, any
1981 // argument for which there is no corresponding parameter is
1982 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1983 Candidate.Conversions[ArgIdx].ConversionKind
1984 = ImplicitConversionSequence::EllipsisConversion;
1985 }
1986 }
1987}
1988
Douglas Gregor96176b32008-11-18 23:14:02 +00001989/// AddMethodCandidate - Adds the given C++ member function to the set
1990/// of candidate functions, using the given function call arguments
1991/// and the object argument (@c Object). For example, in a call
1992/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
1993/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
1994/// allow user-defined conversions via constructors or conversion
1995/// operators.
1996void
1997Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
1998 Expr **Args, unsigned NumArgs,
1999 OverloadCandidateSet& CandidateSet,
2000 bool SuppressUserConversions)
2001{
2002 const FunctionTypeProto* Proto
2003 = dyn_cast<FunctionTypeProto>(Method->getType()->getAsFunctionType());
2004 assert(Proto && "Methods without a prototype cannot be overloaded");
2005 assert(!isa<CXXConversionDecl>(Method) &&
2006 "Use AddConversionCandidate for conversion functions");
2007
2008 // Add this candidate
2009 CandidateSet.push_back(OverloadCandidate());
2010 OverloadCandidate& Candidate = CandidateSet.back();
2011 Candidate.Function = Method;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002012 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002013 Candidate.IgnoreObjectArgument = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002014
2015 unsigned NumArgsInProto = Proto->getNumArgs();
2016
2017 // (C++ 13.3.2p2): A candidate function having fewer than m
2018 // parameters is viable only if it has an ellipsis in its parameter
2019 // list (8.3.5).
2020 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2021 Candidate.Viable = false;
2022 return;
2023 }
2024
2025 // (C++ 13.3.2p2): A candidate function having more than m parameters
2026 // is viable only if the (m+1)st parameter has a default argument
2027 // (8.3.6). For the purposes of overload resolution, the
2028 // parameter list is truncated on the right, so that there are
2029 // exactly m parameters.
2030 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2031 if (NumArgs < MinRequiredArgs) {
2032 // Not enough arguments.
2033 Candidate.Viable = false;
2034 return;
2035 }
2036
2037 Candidate.Viable = true;
2038 Candidate.Conversions.resize(NumArgs + 1);
2039
Douglas Gregor88a35142008-12-22 05:46:06 +00002040 if (Method->isStatic() || !Object)
2041 // The implicit object argument is ignored.
2042 Candidate.IgnoreObjectArgument = true;
2043 else {
2044 // Determine the implicit conversion sequence for the object
2045 // parameter.
2046 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2047 if (Candidate.Conversions[0].ConversionKind
2048 == ImplicitConversionSequence::BadConversion) {
2049 Candidate.Viable = false;
2050 return;
2051 }
Douglas Gregor96176b32008-11-18 23:14:02 +00002052 }
2053
2054 // Determine the implicit conversion sequences for each of the
2055 // arguments.
2056 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2057 if (ArgIdx < NumArgsInProto) {
2058 // (C++ 13.3.2p3): for F to be a viable function, there shall
2059 // exist for each argument an implicit conversion sequence
2060 // (13.3.3.1) that converts that argument to the corresponding
2061 // parameter of F.
2062 QualType ParamType = Proto->getArgType(ArgIdx);
2063 Candidate.Conversions[ArgIdx + 1]
2064 = TryCopyInitialization(Args[ArgIdx], ParamType,
2065 SuppressUserConversions);
2066 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2067 == ImplicitConversionSequence::BadConversion) {
2068 Candidate.Viable = false;
2069 break;
2070 }
2071 } else {
2072 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2073 // argument for which there is no corresponding parameter is
2074 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2075 Candidate.Conversions[ArgIdx + 1].ConversionKind
2076 = ImplicitConversionSequence::EllipsisConversion;
2077 }
2078 }
2079}
2080
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002081/// AddConversionCandidate - Add a C++ conversion function as a
2082/// candidate in the candidate set (C++ [over.match.conv],
2083/// C++ [over.match.copy]). From is the expression we're converting from,
2084/// and ToType is the type that we're eventually trying to convert to
2085/// (which may or may not be the same type as the type that the
2086/// conversion function produces).
2087void
2088Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2089 Expr *From, QualType ToType,
2090 OverloadCandidateSet& CandidateSet) {
2091 // Add this candidate
2092 CandidateSet.push_back(OverloadCandidate());
2093 OverloadCandidate& Candidate = CandidateSet.back();
2094 Candidate.Function = Conversion;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002095 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002096 Candidate.IgnoreObjectArgument = false;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002097 Candidate.FinalConversion.setAsIdentityConversion();
2098 Candidate.FinalConversion.FromTypePtr
2099 = Conversion->getConversionType().getAsOpaquePtr();
2100 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2101
Douglas Gregor96176b32008-11-18 23:14:02 +00002102 // Determine the implicit conversion sequence for the implicit
2103 // object parameter.
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002104 Candidate.Viable = true;
2105 Candidate.Conversions.resize(1);
Douglas Gregor96176b32008-11-18 23:14:02 +00002106 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002107
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002108 if (Candidate.Conversions[0].ConversionKind
2109 == ImplicitConversionSequence::BadConversion) {
2110 Candidate.Viable = false;
2111 return;
2112 }
2113
2114 // To determine what the conversion from the result of calling the
2115 // conversion function to the type we're eventually trying to
2116 // convert to (ToType), we need to synthesize a call to the
2117 // conversion function and attempt copy initialization from it. This
2118 // makes sure that we get the right semantics with respect to
2119 // lvalues/rvalues and the type. Fortunately, we can allocate this
2120 // call on the stack and we don't need its arguments to be
2121 // well-formed.
2122 DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2123 SourceLocation());
2124 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002125 &ConversionRef, false);
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002126 CallExpr Call(&ConversionFn, 0, 0,
2127 Conversion->getConversionType().getNonReferenceType(),
2128 SourceLocation());
2129 ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2130 switch (ICS.ConversionKind) {
2131 case ImplicitConversionSequence::StandardConversion:
2132 Candidate.FinalConversion = ICS.Standard;
2133 break;
2134
2135 case ImplicitConversionSequence::BadConversion:
2136 Candidate.Viable = false;
2137 break;
2138
2139 default:
2140 assert(false &&
2141 "Can only end up with a standard conversion sequence or failure");
2142 }
2143}
2144
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002145/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2146/// converts the given @c Object to a function pointer via the
2147/// conversion function @c Conversion, and then attempts to call it
2148/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2149/// the type of function that we'll eventually be calling.
2150void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2151 const FunctionTypeProto *Proto,
2152 Expr *Object, Expr **Args, unsigned NumArgs,
2153 OverloadCandidateSet& CandidateSet) {
2154 CandidateSet.push_back(OverloadCandidate());
2155 OverloadCandidate& Candidate = CandidateSet.back();
2156 Candidate.Function = 0;
2157 Candidate.Surrogate = Conversion;
2158 Candidate.Viable = true;
2159 Candidate.IsSurrogate = true;
Douglas Gregor88a35142008-12-22 05:46:06 +00002160 Candidate.IgnoreObjectArgument = false;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002161 Candidate.Conversions.resize(NumArgs + 1);
2162
2163 // Determine the implicit conversion sequence for the implicit
2164 // object parameter.
2165 ImplicitConversionSequence ObjectInit
2166 = TryObjectArgumentInitialization(Object, Conversion);
2167 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2168 Candidate.Viable = false;
2169 return;
2170 }
2171
2172 // The first conversion is actually a user-defined conversion whose
2173 // first conversion is ObjectInit's standard conversion (which is
2174 // effectively a reference binding). Record it as such.
2175 Candidate.Conversions[0].ConversionKind
2176 = ImplicitConversionSequence::UserDefinedConversion;
2177 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2178 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2179 Candidate.Conversions[0].UserDefined.After
2180 = Candidate.Conversions[0].UserDefined.Before;
2181 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2182
2183 // Find the
2184 unsigned NumArgsInProto = Proto->getNumArgs();
2185
2186 // (C++ 13.3.2p2): A candidate function having fewer than m
2187 // parameters is viable only if it has an ellipsis in its parameter
2188 // list (8.3.5).
2189 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2190 Candidate.Viable = false;
2191 return;
2192 }
2193
2194 // Function types don't have any default arguments, so just check if
2195 // we have enough arguments.
2196 if (NumArgs < NumArgsInProto) {
2197 // Not enough arguments.
2198 Candidate.Viable = false;
2199 return;
2200 }
2201
2202 // Determine the implicit conversion sequences for each of the
2203 // arguments.
2204 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2205 if (ArgIdx < NumArgsInProto) {
2206 // (C++ 13.3.2p3): for F to be a viable function, there shall
2207 // exist for each argument an implicit conversion sequence
2208 // (13.3.3.1) that converts that argument to the corresponding
2209 // parameter of F.
2210 QualType ParamType = Proto->getArgType(ArgIdx);
2211 Candidate.Conversions[ArgIdx + 1]
2212 = TryCopyInitialization(Args[ArgIdx], ParamType,
2213 /*SuppressUserConversions=*/false);
2214 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2215 == ImplicitConversionSequence::BadConversion) {
2216 Candidate.Viable = false;
2217 break;
2218 }
2219 } else {
2220 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2221 // argument for which there is no corresponding parameter is
2222 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2223 Candidate.Conversions[ArgIdx + 1].ConversionKind
2224 = ImplicitConversionSequence::EllipsisConversion;
2225 }
2226 }
2227}
2228
Douglas Gregor447b69e2008-11-19 03:25:36 +00002229/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
2230/// an acceptable non-member overloaded operator for a call whose
2231/// arguments have types T1 (and, if non-empty, T2). This routine
2232/// implements the check in C++ [over.match.oper]p3b2 concerning
2233/// enumeration types.
2234static bool
2235IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
2236 QualType T1, QualType T2,
2237 ASTContext &Context) {
2238 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
2239 return true;
2240
2241 const FunctionTypeProto *Proto = Fn->getType()->getAsFunctionTypeProto();
2242 if (Proto->getNumArgs() < 1)
2243 return false;
2244
2245 if (T1->isEnumeralType()) {
2246 QualType ArgType = Proto->getArgType(0).getNonReferenceType();
2247 if (Context.getCanonicalType(T1).getUnqualifiedType()
2248 == Context.getCanonicalType(ArgType).getUnqualifiedType())
2249 return true;
2250 }
2251
2252 if (Proto->getNumArgs() < 2)
2253 return false;
2254
2255 if (!T2.isNull() && T2->isEnumeralType()) {
2256 QualType ArgType = Proto->getArgType(1).getNonReferenceType();
2257 if (Context.getCanonicalType(T2).getUnqualifiedType()
2258 == Context.getCanonicalType(ArgType).getUnqualifiedType())
2259 return true;
2260 }
2261
2262 return false;
2263}
2264
Douglas Gregor96176b32008-11-18 23:14:02 +00002265/// AddOperatorCandidates - Add the overloaded operator candidates for
2266/// the operator Op that was used in an operator expression such as "x
2267/// Op y". S is the scope in which the expression occurred (used for
2268/// name lookup of the operator), Args/NumArgs provides the operator
2269/// arguments, and CandidateSet will store the added overload
2270/// candidates. (C++ [over.match.oper]).
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002271bool Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2272 SourceLocation OpLoc,
Douglas Gregor96176b32008-11-18 23:14:02 +00002273 Expr **Args, unsigned NumArgs,
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002274 OverloadCandidateSet& CandidateSet,
2275 SourceRange OpRange) {
Douglas Gregor96176b32008-11-18 23:14:02 +00002276 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2277
2278 // C++ [over.match.oper]p3:
2279 // For a unary operator @ with an operand of a type whose
2280 // cv-unqualified version is T1, and for a binary operator @ with
2281 // a left operand of a type whose cv-unqualified version is T1 and
2282 // a right operand of a type whose cv-unqualified version is T2,
2283 // three sets of candidate functions, designated member
2284 // candidates, non-member candidates and built-in candidates, are
2285 // constructed as follows:
2286 QualType T1 = Args[0]->getType();
2287 QualType T2;
2288 if (NumArgs > 1)
2289 T2 = Args[1]->getType();
2290
2291 // -- If T1 is a class type, the set of member candidates is the
2292 // result of the qualified lookup of T1::operator@
2293 // (13.3.1.1.1); otherwise, the set of member candidates is
2294 // empty.
2295 if (const RecordType *T1Rec = T1->getAsRecordType()) {
Douglas Gregor3fc749d2008-12-23 00:26:44 +00002296 DeclContext::lookup_const_iterator Oper, OperEnd;
Steve Naroff0701bbb2009-01-08 17:28:14 +00002297 for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(OpName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00002298 Oper != OperEnd; ++Oper)
2299 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2300 Args+1, NumArgs - 1, CandidateSet,
Douglas Gregor96176b32008-11-18 23:14:02 +00002301 /*SuppressUserConversions=*/false);
Douglas Gregor96176b32008-11-18 23:14:02 +00002302 }
2303
2304 // -- The set of non-member candidates is the result of the
2305 // unqualified lookup of operator@ in the context of the
2306 // expression according to the usual rules for name lookup in
2307 // unqualified function calls (3.4.2) except that all member
2308 // functions are ignored. However, if no operand has a class
2309 // type, only those non-member functions in the lookup set
2310 // that have a first parameter of type T1 or “reference to
2311 // (possibly cv-qualified) T1”, when T1 is an enumeration
2312 // type, or (if there is a right operand) a second parameter
2313 // of type T2 or “reference to (possibly cv-qualified) T2”,
2314 // when T2 is an enumeration type, are candidate functions.
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002315 LookupResult Operators = LookupName(S, OpName, LookupOperatorName);
2316
2317 if (Operators.isAmbiguous())
2318 return DiagnoseAmbiguousLookup(Operators, OpName, OpLoc, OpRange);
2319 else if (Operators) {
2320 for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
2321 Op != OpEnd; ++Op) {
2322 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Op))
2323 if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2324 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2325 /*SuppressUserConversions=*/false);
Douglas Gregor96176b32008-11-18 23:14:02 +00002326 }
Douglas Gregor96176b32008-11-18 23:14:02 +00002327 }
2328
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002329 // Since the set of non-member candidates corresponds to
2330 // *unqualified* lookup of the operator name, we also perform
2331 // argument-dependent lookup (C++ [basic.lookup.argdep]).
2332 AddArgumentDependentLookupCandidates(OpName, Args, NumArgs, CandidateSet);
2333
Douglas Gregor96176b32008-11-18 23:14:02 +00002334 // Add builtin overload candidates (C++ [over.built]).
Douglas Gregor74253732008-11-19 15:42:04 +00002335 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002336
2337 return false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002338}
2339
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002340/// AddBuiltinCandidate - Add a candidate for a built-in
2341/// operator. ResultTy and ParamTys are the result and parameter types
2342/// of the built-in candidate, respectively. Args and NumArgs are the
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002343/// arguments being passed to the candidate. IsAssignmentOperator
2344/// should be true when this built-in candidate is an assignment
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002345/// operator. NumContextualBoolArguments is the number of arguments
2346/// (at the beginning of the argument list) that will be contextually
2347/// converted to bool.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002348void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2349 Expr **Args, unsigned NumArgs,
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002350 OverloadCandidateSet& CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002351 bool IsAssignmentOperator,
2352 unsigned NumContextualBoolArguments) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002353 // Add this candidate
2354 CandidateSet.push_back(OverloadCandidate());
2355 OverloadCandidate& Candidate = CandidateSet.back();
2356 Candidate.Function = 0;
Douglas Gregorc9467cf2008-12-12 02:00:36 +00002357 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002358 Candidate.IgnoreObjectArgument = false;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002359 Candidate.BuiltinTypes.ResultTy = ResultTy;
2360 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2361 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2362
2363 // Determine the implicit conversion sequences for each of the
2364 // arguments.
2365 Candidate.Viable = true;
2366 Candidate.Conversions.resize(NumArgs);
2367 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002368 // C++ [over.match.oper]p4:
2369 // For the built-in assignment operators, conversions of the
2370 // left operand are restricted as follows:
2371 // -- no temporaries are introduced to hold the left operand, and
2372 // -- no user-defined conversions are applied to the left
2373 // operand to achieve a type match with the left-most
2374 // parameter of a built-in candidate.
2375 //
2376 // We block these conversions by turning off user-defined
2377 // conversions, since that is the only way that initialization of
2378 // a reference to a non-class type can occur from something that
2379 // is not of the same type.
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002380 if (ArgIdx < NumContextualBoolArguments) {
2381 assert(ParamTys[ArgIdx] == Context.BoolTy &&
2382 "Contextual conversion to bool requires bool type");
2383 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2384 } else {
2385 Candidate.Conversions[ArgIdx]
2386 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2387 ArgIdx == 0 && IsAssignmentOperator);
2388 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002389 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00002390 == ImplicitConversionSequence::BadConversion) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002391 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002392 break;
2393 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002394 }
2395}
2396
2397/// BuiltinCandidateTypeSet - A set of types that will be used for the
2398/// candidate operator functions for built-in operators (C++
2399/// [over.built]). The types are separated into pointer types and
2400/// enumeration types.
2401class BuiltinCandidateTypeSet {
2402 /// TypeSet - A set of types.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002403 typedef llvm::SmallPtrSet<void*, 8> TypeSet;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002404
2405 /// PointerTypes - The set of pointer types that will be used in the
2406 /// built-in candidates.
2407 TypeSet PointerTypes;
2408
2409 /// EnumerationTypes - The set of enumeration types that will be
2410 /// used in the built-in candidates.
2411 TypeSet EnumerationTypes;
2412
2413 /// Context - The AST context in which we will build the type sets.
2414 ASTContext &Context;
2415
2416 bool AddWithMoreQualifiedTypeVariants(QualType Ty);
2417
2418public:
2419 /// iterator - Iterates through the types that are part of the set.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002420 class iterator {
2421 TypeSet::iterator Base;
2422
2423 public:
2424 typedef QualType value_type;
2425 typedef QualType reference;
2426 typedef QualType pointer;
2427 typedef std::ptrdiff_t difference_type;
2428 typedef std::input_iterator_tag iterator_category;
2429
2430 iterator(TypeSet::iterator B) : Base(B) { }
2431
2432 iterator& operator++() {
2433 ++Base;
2434 return *this;
2435 }
2436
2437 iterator operator++(int) {
2438 iterator tmp(*this);
2439 ++(*this);
2440 return tmp;
2441 }
2442
2443 reference operator*() const {
2444 return QualType::getFromOpaquePtr(*Base);
2445 }
2446
2447 pointer operator->() const {
2448 return **this;
2449 }
2450
2451 friend bool operator==(iterator LHS, iterator RHS) {
2452 return LHS.Base == RHS.Base;
2453 }
2454
2455 friend bool operator!=(iterator LHS, iterator RHS) {
2456 return LHS.Base != RHS.Base;
2457 }
2458 };
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002459
2460 BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2461
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002462 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2463 bool AllowExplicitConversions);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002464
2465 /// pointer_begin - First pointer type found;
2466 iterator pointer_begin() { return PointerTypes.begin(); }
2467
2468 /// pointer_end - Last pointer type found;
2469 iterator pointer_end() { return PointerTypes.end(); }
2470
2471 /// enumeration_begin - First enumeration type found;
2472 iterator enumeration_begin() { return EnumerationTypes.begin(); }
2473
2474 /// enumeration_end - Last enumeration type found;
2475 iterator enumeration_end() { return EnumerationTypes.end(); }
2476};
2477
2478/// AddWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2479/// the set of pointer types along with any more-qualified variants of
2480/// that type. For example, if @p Ty is "int const *", this routine
2481/// will add "int const *", "int const volatile *", "int const
2482/// restrict *", and "int const volatile restrict *" to the set of
2483/// pointer types. Returns true if the add of @p Ty itself succeeded,
2484/// false otherwise.
2485bool BuiltinCandidateTypeSet::AddWithMoreQualifiedTypeVariants(QualType Ty) {
2486 // Insert this type.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002487 if (!PointerTypes.insert(Ty.getAsOpaquePtr()))
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002488 return false;
2489
2490 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2491 QualType PointeeTy = PointerTy->getPointeeType();
2492 // FIXME: Optimize this so that we don't keep trying to add the same types.
2493
2494 // FIXME: Do we have to add CVR qualifiers at *all* levels to deal
2495 // with all pointer conversions that don't cast away constness?
2496 if (!PointeeTy.isConstQualified())
2497 AddWithMoreQualifiedTypeVariants
2498 (Context.getPointerType(PointeeTy.withConst()));
2499 if (!PointeeTy.isVolatileQualified())
2500 AddWithMoreQualifiedTypeVariants
2501 (Context.getPointerType(PointeeTy.withVolatile()));
2502 if (!PointeeTy.isRestrictQualified())
2503 AddWithMoreQualifiedTypeVariants
2504 (Context.getPointerType(PointeeTy.withRestrict()));
2505 }
2506
2507 return true;
2508}
2509
2510/// AddTypesConvertedFrom - Add each of the types to which the type @p
2511/// Ty can be implicit converted to the given set of @p Types. We're
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002512/// primarily interested in pointer types and enumeration types.
2513/// AllowUserConversions is true if we should look at the conversion
2514/// functions of a class type, and AllowExplicitConversions if we
2515/// should also include the explicit conversion functions of a class
2516/// type.
2517void
2518BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2519 bool AllowUserConversions,
2520 bool AllowExplicitConversions) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002521 // Only deal with canonical types.
2522 Ty = Context.getCanonicalType(Ty);
2523
2524 // Look through reference types; they aren't part of the type of an
2525 // expression for the purposes of conversions.
2526 if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2527 Ty = RefTy->getPointeeType();
2528
2529 // We don't care about qualifiers on the type.
2530 Ty = Ty.getUnqualifiedType();
2531
2532 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2533 QualType PointeeTy = PointerTy->getPointeeType();
2534
2535 // Insert our type, and its more-qualified variants, into the set
2536 // of types.
2537 if (!AddWithMoreQualifiedTypeVariants(Ty))
2538 return;
2539
2540 // Add 'cv void*' to our set of types.
2541 if (!Ty->isVoidType()) {
2542 QualType QualVoid
2543 = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2544 AddWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2545 }
2546
2547 // If this is a pointer to a class type, add pointers to its bases
2548 // (with the same level of cv-qualification as the original
2549 // derived class, of course).
2550 if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2551 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2552 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2553 Base != ClassDecl->bases_end(); ++Base) {
2554 QualType BaseTy = Context.getCanonicalType(Base->getType());
2555 BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2556
2557 // Add the pointer type, recursively, so that we get all of
2558 // the indirect base classes, too.
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002559 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002560 }
2561 }
2562 } else if (Ty->isEnumeralType()) {
Douglas Gregorbf3af052008-11-13 20:12:29 +00002563 EnumerationTypes.insert(Ty.getAsOpaquePtr());
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002564 } else if (AllowUserConversions) {
2565 if (const RecordType *TyRec = Ty->getAsRecordType()) {
2566 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2567 // FIXME: Visit conversion functions in the base classes, too.
2568 OverloadedFunctionDecl *Conversions
2569 = ClassDecl->getConversionFunctions();
2570 for (OverloadedFunctionDecl::function_iterator Func
2571 = Conversions->function_begin();
2572 Func != Conversions->function_end(); ++Func) {
2573 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002574 if (AllowExplicitConversions || !Conv->isExplicit())
2575 AddTypesConvertedFrom(Conv->getConversionType(), false, false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002576 }
2577 }
2578 }
2579}
2580
Douglas Gregor74253732008-11-19 15:42:04 +00002581/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2582/// operator overloads to the candidate set (C++ [over.built]), based
2583/// on the operator @p Op and the arguments given. For example, if the
2584/// operator is a binary '+', this routine might add "int
2585/// operator+(int, int)" to cover integer addition.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002586void
Douglas Gregor74253732008-11-19 15:42:04 +00002587Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2588 Expr **Args, unsigned NumArgs,
2589 OverloadCandidateSet& CandidateSet) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002590 // The set of "promoted arithmetic types", which are the arithmetic
2591 // types are that preserved by promotion (C++ [over.built]p2). Note
2592 // that the first few of these types are the promoted integral
2593 // types; these types need to be first.
2594 // FIXME: What about complex?
2595 const unsigned FirstIntegralType = 0;
2596 const unsigned LastIntegralType = 13;
2597 const unsigned FirstPromotedIntegralType = 7,
2598 LastPromotedIntegralType = 13;
2599 const unsigned FirstPromotedArithmeticType = 7,
2600 LastPromotedArithmeticType = 16;
2601 const unsigned NumArithmeticTypes = 16;
2602 QualType ArithmeticTypes[NumArithmeticTypes] = {
2603 Context.BoolTy, Context.CharTy, Context.WCharTy,
2604 Context.SignedCharTy, Context.ShortTy,
2605 Context.UnsignedCharTy, Context.UnsignedShortTy,
2606 Context.IntTy, Context.LongTy, Context.LongLongTy,
2607 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2608 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2609 };
2610
2611 // Find all of the types that the arguments can convert to, but only
2612 // if the operator we're looking at has built-in operator candidates
2613 // that make use of these types.
2614 BuiltinCandidateTypeSet CandidateTypes(Context);
2615 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2616 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
Douglas Gregor74253732008-11-19 15:42:04 +00002617 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002618 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
Douglas Gregor74253732008-11-19 15:42:04 +00002619 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2620 (Op == OO_Star && NumArgs == 1)) {
2621 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002622 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2623 true,
2624 (Op == OO_Exclaim ||
2625 Op == OO_AmpAmp ||
2626 Op == OO_PipePipe));
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002627 }
2628
2629 bool isComparison = false;
2630 switch (Op) {
2631 case OO_None:
2632 case NUM_OVERLOADED_OPERATORS:
2633 assert(false && "Expected an overloaded operator");
2634 break;
2635
Douglas Gregor74253732008-11-19 15:42:04 +00002636 case OO_Star: // '*' is either unary or binary
2637 if (NumArgs == 1)
2638 goto UnaryStar;
2639 else
2640 goto BinaryStar;
2641 break;
2642
2643 case OO_Plus: // '+' is either unary or binary
2644 if (NumArgs == 1)
2645 goto UnaryPlus;
2646 else
2647 goto BinaryPlus;
2648 break;
2649
2650 case OO_Minus: // '-' is either unary or binary
2651 if (NumArgs == 1)
2652 goto UnaryMinus;
2653 else
2654 goto BinaryMinus;
2655 break;
2656
2657 case OO_Amp: // '&' is either unary or binary
2658 if (NumArgs == 1)
2659 goto UnaryAmp;
2660 else
2661 goto BinaryAmp;
2662
2663 case OO_PlusPlus:
2664 case OO_MinusMinus:
2665 // C++ [over.built]p3:
2666 //
2667 // For every pair (T, VQ), where T is an arithmetic type, and VQ
2668 // is either volatile or empty, there exist candidate operator
2669 // functions of the form
2670 //
2671 // VQ T& operator++(VQ T&);
2672 // T operator++(VQ T&, int);
2673 //
2674 // C++ [over.built]p4:
2675 //
2676 // For every pair (T, VQ), where T is an arithmetic type other
2677 // than bool, and VQ is either volatile or empty, there exist
2678 // candidate operator functions of the form
2679 //
2680 // VQ T& operator--(VQ T&);
2681 // T operator--(VQ T&, int);
2682 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2683 Arith < NumArithmeticTypes; ++Arith) {
2684 QualType ArithTy = ArithmeticTypes[Arith];
2685 QualType ParamTypes[2]
2686 = { Context.getReferenceType(ArithTy), Context.IntTy };
2687
2688 // Non-volatile version.
2689 if (NumArgs == 1)
2690 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2691 else
2692 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2693
2694 // Volatile version
2695 ParamTypes[0] = Context.getReferenceType(ArithTy.withVolatile());
2696 if (NumArgs == 1)
2697 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2698 else
2699 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2700 }
2701
2702 // C++ [over.built]p5:
2703 //
2704 // For every pair (T, VQ), where T is a cv-qualified or
2705 // cv-unqualified object type, and VQ is either volatile or
2706 // empty, there exist candidate operator functions of the form
2707 //
2708 // T*VQ& operator++(T*VQ&);
2709 // T*VQ& operator--(T*VQ&);
2710 // T* operator++(T*VQ&, int);
2711 // T* operator--(T*VQ&, int);
2712 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2713 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2714 // Skip pointer types that aren't pointers to object types.
Douglas Gregorcb7de522008-11-26 23:31:11 +00002715 if (!(*Ptr)->getAsPointerType()->getPointeeType()->isIncompleteOrObjectType())
Douglas Gregor74253732008-11-19 15:42:04 +00002716 continue;
2717
2718 QualType ParamTypes[2] = {
2719 Context.getReferenceType(*Ptr), Context.IntTy
2720 };
2721
2722 // Without volatile
2723 if (NumArgs == 1)
2724 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2725 else
2726 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2727
2728 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2729 // With volatile
2730 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2731 if (NumArgs == 1)
2732 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2733 else
2734 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2735 }
2736 }
2737 break;
2738
2739 UnaryStar:
2740 // C++ [over.built]p6:
2741 // For every cv-qualified or cv-unqualified object type T, there
2742 // exist candidate operator functions of the form
2743 //
2744 // T& operator*(T*);
2745 //
2746 // C++ [over.built]p7:
2747 // For every function type T, there exist candidate operator
2748 // functions of the form
2749 // T& operator*(T*);
2750 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2751 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2752 QualType ParamTy = *Ptr;
2753 QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
2754 AddBuiltinCandidate(Context.getReferenceType(PointeeTy),
2755 &ParamTy, Args, 1, CandidateSet);
2756 }
2757 break;
2758
2759 UnaryPlus:
2760 // C++ [over.built]p8:
2761 // For every type T, there exist candidate operator functions of
2762 // the form
2763 //
2764 // T* operator+(T*);
2765 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2766 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2767 QualType ParamTy = *Ptr;
2768 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2769 }
2770
2771 // Fall through
2772
2773 UnaryMinus:
2774 // C++ [over.built]p9:
2775 // For every promoted arithmetic type T, there exist candidate
2776 // operator functions of the form
2777 //
2778 // T operator+(T);
2779 // T operator-(T);
2780 for (unsigned Arith = FirstPromotedArithmeticType;
2781 Arith < LastPromotedArithmeticType; ++Arith) {
2782 QualType ArithTy = ArithmeticTypes[Arith];
2783 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2784 }
2785 break;
2786
2787 case OO_Tilde:
2788 // C++ [over.built]p10:
2789 // For every promoted integral type T, there exist candidate
2790 // operator functions of the form
2791 //
2792 // T operator~(T);
2793 for (unsigned Int = FirstPromotedIntegralType;
2794 Int < LastPromotedIntegralType; ++Int) {
2795 QualType IntTy = ArithmeticTypes[Int];
2796 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2797 }
2798 break;
2799
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002800 case OO_New:
2801 case OO_Delete:
2802 case OO_Array_New:
2803 case OO_Array_Delete:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002804 case OO_Call:
Douglas Gregor74253732008-11-19 15:42:04 +00002805 assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002806 break;
2807
2808 case OO_Comma:
Douglas Gregor74253732008-11-19 15:42:04 +00002809 UnaryAmp:
2810 case OO_Arrow:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002811 // C++ [over.match.oper]p3:
2812 // -- For the operator ',', the unary operator '&', or the
2813 // operator '->', the built-in candidates set is empty.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002814 break;
2815
2816 case OO_Less:
2817 case OO_Greater:
2818 case OO_LessEqual:
2819 case OO_GreaterEqual:
2820 case OO_EqualEqual:
2821 case OO_ExclaimEqual:
2822 // C++ [over.built]p15:
2823 //
2824 // For every pointer or enumeration type T, there exist
2825 // candidate operator functions of the form
2826 //
2827 // bool operator<(T, T);
2828 // bool operator>(T, T);
2829 // bool operator<=(T, T);
2830 // bool operator>=(T, T);
2831 // bool operator==(T, T);
2832 // bool operator!=(T, T);
2833 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2834 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2835 QualType ParamTypes[2] = { *Ptr, *Ptr };
2836 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2837 }
2838 for (BuiltinCandidateTypeSet::iterator Enum
2839 = CandidateTypes.enumeration_begin();
2840 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2841 QualType ParamTypes[2] = { *Enum, *Enum };
2842 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2843 }
2844
2845 // Fall through.
2846 isComparison = true;
2847
Douglas Gregor74253732008-11-19 15:42:04 +00002848 BinaryPlus:
2849 BinaryMinus:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002850 if (!isComparison) {
2851 // We didn't fall through, so we must have OO_Plus or OO_Minus.
2852
2853 // C++ [over.built]p13:
2854 //
2855 // For every cv-qualified or cv-unqualified object type T
2856 // there exist candidate operator functions of the form
2857 //
2858 // T* operator+(T*, ptrdiff_t);
2859 // T& operator[](T*, ptrdiff_t); [BELOW]
2860 // T* operator-(T*, ptrdiff_t);
2861 // T* operator+(ptrdiff_t, T*);
2862 // T& operator[](ptrdiff_t, T*); [BELOW]
2863 //
2864 // C++ [over.built]p14:
2865 //
2866 // For every T, where T is a pointer to object type, there
2867 // exist candidate operator functions of the form
2868 //
2869 // ptrdiff_t operator-(T, T);
2870 for (BuiltinCandidateTypeSet::iterator Ptr
2871 = CandidateTypes.pointer_begin();
2872 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2873 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2874
2875 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
2876 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2877
2878 if (Op == OO_Plus) {
2879 // T* operator+(ptrdiff_t, T*);
2880 ParamTypes[0] = ParamTypes[1];
2881 ParamTypes[1] = *Ptr;
2882 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2883 } else {
2884 // ptrdiff_t operator-(T, T);
2885 ParamTypes[1] = *Ptr;
2886 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
2887 Args, 2, CandidateSet);
2888 }
2889 }
2890 }
2891 // Fall through
2892
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002893 case OO_Slash:
Douglas Gregor74253732008-11-19 15:42:04 +00002894 BinaryStar:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002895 // C++ [over.built]p12:
2896 //
2897 // For every pair of promoted arithmetic types L and R, there
2898 // exist candidate operator functions of the form
2899 //
2900 // LR operator*(L, R);
2901 // LR operator/(L, R);
2902 // LR operator+(L, R);
2903 // LR operator-(L, R);
2904 // bool operator<(L, R);
2905 // bool operator>(L, R);
2906 // bool operator<=(L, R);
2907 // bool operator>=(L, R);
2908 // bool operator==(L, R);
2909 // bool operator!=(L, R);
2910 //
2911 // where LR is the result of the usual arithmetic conversions
2912 // between types L and R.
2913 for (unsigned Left = FirstPromotedArithmeticType;
2914 Left < LastPromotedArithmeticType; ++Left) {
2915 for (unsigned Right = FirstPromotedArithmeticType;
2916 Right < LastPromotedArithmeticType; ++Right) {
2917 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2918 QualType Result
2919 = isComparison? Context.BoolTy
2920 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2921 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2922 }
2923 }
2924 break;
2925
2926 case OO_Percent:
Douglas Gregor74253732008-11-19 15:42:04 +00002927 BinaryAmp:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002928 case OO_Caret:
2929 case OO_Pipe:
2930 case OO_LessLess:
2931 case OO_GreaterGreater:
2932 // C++ [over.built]p17:
2933 //
2934 // For every pair of promoted integral types L and R, there
2935 // exist candidate operator functions of the form
2936 //
2937 // LR operator%(L, R);
2938 // LR operator&(L, R);
2939 // LR operator^(L, R);
2940 // LR operator|(L, R);
2941 // L operator<<(L, R);
2942 // L operator>>(L, R);
2943 //
2944 // where LR is the result of the usual arithmetic conversions
2945 // between types L and R.
2946 for (unsigned Left = FirstPromotedIntegralType;
2947 Left < LastPromotedIntegralType; ++Left) {
2948 for (unsigned Right = FirstPromotedIntegralType;
2949 Right < LastPromotedIntegralType; ++Right) {
2950 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2951 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
2952 ? LandR[0]
2953 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2954 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2955 }
2956 }
2957 break;
2958
2959 case OO_Equal:
2960 // C++ [over.built]p20:
2961 //
2962 // For every pair (T, VQ), where T is an enumeration or
2963 // (FIXME:) pointer to member type and VQ is either volatile or
2964 // empty, there exist candidate operator functions of the form
2965 //
2966 // VQ T& operator=(VQ T&, T);
2967 for (BuiltinCandidateTypeSet::iterator Enum
2968 = CandidateTypes.enumeration_begin();
2969 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2970 QualType ParamTypes[2];
2971
2972 // T& operator=(T&, T)
2973 ParamTypes[0] = Context.getReferenceType(*Enum);
2974 ParamTypes[1] = *Enum;
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002975 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002976 /*IsAssignmentOperator=*/false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002977
Douglas Gregor74253732008-11-19 15:42:04 +00002978 if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
2979 // volatile T& operator=(volatile T&, T)
2980 ParamTypes[0] = Context.getReferenceType((*Enum).withVolatile());
2981 ParamTypes[1] = *Enum;
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002982 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002983 /*IsAssignmentOperator=*/false);
Douglas Gregor74253732008-11-19 15:42:04 +00002984 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002985 }
2986 // Fall through.
2987
2988 case OO_PlusEqual:
2989 case OO_MinusEqual:
2990 // C++ [over.built]p19:
2991 //
2992 // For every pair (T, VQ), where T is any type and VQ is either
2993 // volatile or empty, there exist candidate operator functions
2994 // of the form
2995 //
2996 // T*VQ& operator=(T*VQ&, T*);
2997 //
2998 // C++ [over.built]p21:
2999 //
3000 // For every pair (T, VQ), where T is a cv-qualified or
3001 // cv-unqualified object type and VQ is either volatile or
3002 // empty, there exist candidate operator functions of the form
3003 //
3004 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
3005 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
3006 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3007 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3008 QualType ParamTypes[2];
3009 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3010
3011 // non-volatile version
3012 ParamTypes[0] = Context.getReferenceType(*Ptr);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003013 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3014 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003015
Douglas Gregor74253732008-11-19 15:42:04 +00003016 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3017 // volatile version
3018 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003019 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3020 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor74253732008-11-19 15:42:04 +00003021 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003022 }
3023 // Fall through.
3024
3025 case OO_StarEqual:
3026 case OO_SlashEqual:
3027 // C++ [over.built]p18:
3028 //
3029 // For every triple (L, VQ, R), where L is an arithmetic type,
3030 // VQ is either volatile or empty, and R is a promoted
3031 // arithmetic type, there exist candidate operator functions of
3032 // the form
3033 //
3034 // VQ L& operator=(VQ L&, R);
3035 // VQ L& operator*=(VQ L&, R);
3036 // VQ L& operator/=(VQ L&, R);
3037 // VQ L& operator+=(VQ L&, R);
3038 // VQ L& operator-=(VQ L&, R);
3039 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3040 for (unsigned Right = FirstPromotedArithmeticType;
3041 Right < LastPromotedArithmeticType; ++Right) {
3042 QualType ParamTypes[2];
3043 ParamTypes[1] = ArithmeticTypes[Right];
3044
3045 // Add this built-in operator as a candidate (VQ is empty).
3046 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003047 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3048 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003049
3050 // Add this built-in operator as a candidate (VQ is 'volatile').
3051 ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
3052 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003053 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3054 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003055 }
3056 }
3057 break;
3058
3059 case OO_PercentEqual:
3060 case OO_LessLessEqual:
3061 case OO_GreaterGreaterEqual:
3062 case OO_AmpEqual:
3063 case OO_CaretEqual:
3064 case OO_PipeEqual:
3065 // C++ [over.built]p22:
3066 //
3067 // For every triple (L, VQ, R), where L is an integral type, VQ
3068 // is either volatile or empty, and R is a promoted integral
3069 // type, there exist candidate operator functions of the form
3070 //
3071 // VQ L& operator%=(VQ L&, R);
3072 // VQ L& operator<<=(VQ L&, R);
3073 // VQ L& operator>>=(VQ L&, R);
3074 // VQ L& operator&=(VQ L&, R);
3075 // VQ L& operator^=(VQ L&, R);
3076 // VQ L& operator|=(VQ L&, R);
3077 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3078 for (unsigned Right = FirstPromotedIntegralType;
3079 Right < LastPromotedIntegralType; ++Right) {
3080 QualType ParamTypes[2];
3081 ParamTypes[1] = ArithmeticTypes[Right];
3082
3083 // Add this built-in operator as a candidate (VQ is empty).
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003084 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
3085 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3086
3087 // Add this built-in operator as a candidate (VQ is 'volatile').
3088 ParamTypes[0] = ArithmeticTypes[Left];
3089 ParamTypes[0].addVolatile();
3090 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
3091 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3092 }
3093 }
3094 break;
3095
Douglas Gregor74253732008-11-19 15:42:04 +00003096 case OO_Exclaim: {
3097 // C++ [over.operator]p23:
3098 //
3099 // There also exist candidate operator functions of the form
3100 //
3101 // bool operator!(bool);
3102 // bool operator&&(bool, bool); [BELOW]
3103 // bool operator||(bool, bool); [BELOW]
3104 QualType ParamTy = Context.BoolTy;
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003105 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3106 /*IsAssignmentOperator=*/false,
3107 /*NumContextualBoolArguments=*/1);
Douglas Gregor74253732008-11-19 15:42:04 +00003108 break;
3109 }
3110
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003111 case OO_AmpAmp:
3112 case OO_PipePipe: {
3113 // C++ [over.operator]p23:
3114 //
3115 // There also exist candidate operator functions of the form
3116 //
Douglas Gregor74253732008-11-19 15:42:04 +00003117 // bool operator!(bool); [ABOVE]
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003118 // bool operator&&(bool, bool);
3119 // bool operator||(bool, bool);
3120 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003121 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3122 /*IsAssignmentOperator=*/false,
3123 /*NumContextualBoolArguments=*/2);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003124 break;
3125 }
3126
3127 case OO_Subscript:
3128 // C++ [over.built]p13:
3129 //
3130 // For every cv-qualified or cv-unqualified object type T there
3131 // exist candidate operator functions of the form
3132 //
3133 // T* operator+(T*, ptrdiff_t); [ABOVE]
3134 // T& operator[](T*, ptrdiff_t);
3135 // T* operator-(T*, ptrdiff_t); [ABOVE]
3136 // T* operator+(ptrdiff_t, T*); [ABOVE]
3137 // T& operator[](ptrdiff_t, T*);
3138 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3139 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3140 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3141 QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
3142 QualType ResultTy = Context.getReferenceType(PointeeType);
3143
3144 // T& operator[](T*, ptrdiff_t)
3145 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3146
3147 // T& operator[](ptrdiff_t, T*);
3148 ParamTypes[0] = ParamTypes[1];
3149 ParamTypes[1] = *Ptr;
3150 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3151 }
3152 break;
3153
3154 case OO_ArrowStar:
3155 // FIXME: No support for pointer-to-members yet.
3156 break;
3157 }
3158}
3159
Douglas Gregorfa047642009-02-04 00:32:51 +00003160/// \brief Add function candidates found via argument-dependent lookup
3161/// to the set of overloading candidates.
3162///
3163/// This routine performs argument-dependent name lookup based on the
3164/// given function name (which may also be an operator name) and adds
3165/// all of the overload candidates found by ADL to the overload
3166/// candidate set (C++ [basic.lookup.argdep]).
3167void
3168Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3169 Expr **Args, unsigned NumArgs,
3170 OverloadCandidateSet& CandidateSet) {
3171 // Find all of the associated namespaces and classes based on the
3172 // arguments we have.
3173 AssociatedNamespaceSet AssociatedNamespaces;
3174 AssociatedClassSet AssociatedClasses;
3175 FindAssociatedClassesAndNamespaces(Args, NumArgs,
3176 AssociatedNamespaces, AssociatedClasses);
3177
3178 // C++ [basic.lookup.argdep]p3:
3179 //
3180 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3181 // and let Y be the lookup set produced by argument dependent
3182 // lookup (defined as follows). If X contains [...] then Y is
3183 // empty. Otherwise Y is the set of declarations found in the
3184 // namespaces associated with the argument types as described
3185 // below. The set of declarations found by the lookup of the name
3186 // is the union of X and Y.
3187 //
3188 // Here, we compute Y and add its members to the overloaded
3189 // candidate set.
3190 llvm::SmallPtrSet<FunctionDecl *, 16> KnownCandidates;
3191 for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
3192 NSEnd = AssociatedNamespaces.end();
3193 NS != NSEnd; ++NS) {
3194 // When considering an associated namespace, the lookup is the
3195 // same as the lookup performed when the associated namespace is
3196 // used as a qualifier (3.4.3.2) except that:
3197 //
3198 // -- Any using-directives in the associated namespace are
3199 // ignored.
3200 //
3201 // -- FIXME: Any namespace-scope friend functions declared in
3202 // associated classes are visible within their respective
3203 // namespaces even if they are not visible during an ordinary
3204 // lookup (11.4).
3205 DeclContext::lookup_iterator I, E;
3206 for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
3207 FunctionDecl *Func = dyn_cast<FunctionDecl>(*I);
3208 if (!Func)
3209 break;
3210
3211 if (KnownCandidates.empty()) {
3212 // Record all of the function candidates that we've already
3213 // added to the overload set, so that we don't add those same
3214 // candidates a second time.
3215 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3216 CandEnd = CandidateSet.end();
3217 Cand != CandEnd; ++Cand)
3218 KnownCandidates.insert(Cand->Function);
3219 }
3220
3221 // If we haven't seen this function before, add it as a
3222 // candidate.
3223 if (KnownCandidates.insert(Func))
3224 AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3225 }
3226 }
3227}
3228
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003229/// isBetterOverloadCandidate - Determines whether the first overload
3230/// candidate is a better candidate than the second (C++ 13.3.3p1).
3231bool
3232Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3233 const OverloadCandidate& Cand2)
3234{
3235 // Define viable functions to be better candidates than non-viable
3236 // functions.
3237 if (!Cand2.Viable)
3238 return Cand1.Viable;
3239 else if (!Cand1.Viable)
3240 return false;
3241
Douglas Gregor88a35142008-12-22 05:46:06 +00003242 // C++ [over.match.best]p1:
3243 //
3244 // -- if F is a static member function, ICS1(F) is defined such
3245 // that ICS1(F) is neither better nor worse than ICS1(G) for
3246 // any function G, and, symmetrically, ICS1(G) is neither
3247 // better nor worse than ICS1(F).
3248 unsigned StartArg = 0;
3249 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3250 StartArg = 1;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003251
3252 // (C++ 13.3.3p1): a viable function F1 is defined to be a better
3253 // function than another viable function F2 if for all arguments i,
3254 // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
3255 // then...
3256 unsigned NumArgs = Cand1.Conversions.size();
3257 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3258 bool HasBetterConversion = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00003259 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003260 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3261 Cand2.Conversions[ArgIdx])) {
3262 case ImplicitConversionSequence::Better:
3263 // Cand1 has a better conversion sequence.
3264 HasBetterConversion = true;
3265 break;
3266
3267 case ImplicitConversionSequence::Worse:
3268 // Cand1 can't be better than Cand2.
3269 return false;
3270
3271 case ImplicitConversionSequence::Indistinguishable:
3272 // Do nothing.
3273 break;
3274 }
3275 }
3276
3277 if (HasBetterConversion)
3278 return true;
3279
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003280 // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
3281 // implemented, but they require template support.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003282
Douglas Gregorf1991ea2008-11-07 22:36:19 +00003283 // C++ [over.match.best]p1b4:
3284 //
3285 // -- the context is an initialization by user-defined conversion
3286 // (see 8.5, 13.3.1.5) and the standard conversion sequence
3287 // from the return type of F1 to the destination type (i.e.,
3288 // the type of the entity being initialized) is a better
3289 // conversion sequence than the standard conversion sequence
3290 // from the return type of F2 to the destination type.
Douglas Gregor447b69e2008-11-19 03:25:36 +00003291 if (Cand1.Function && Cand2.Function &&
3292 isa<CXXConversionDecl>(Cand1.Function) &&
Douglas Gregorf1991ea2008-11-07 22:36:19 +00003293 isa<CXXConversionDecl>(Cand2.Function)) {
3294 switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3295 Cand2.FinalConversion)) {
3296 case ImplicitConversionSequence::Better:
3297 // Cand1 has a better conversion sequence.
3298 return true;
3299
3300 case ImplicitConversionSequence::Worse:
3301 // Cand1 can't be better than Cand2.
3302 return false;
3303
3304 case ImplicitConversionSequence::Indistinguishable:
3305 // Do nothing
3306 break;
3307 }
3308 }
3309
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003310 return false;
3311}
3312
3313/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
3314/// within an overload candidate set. If overloading is successful,
3315/// the result will be OR_Success and Best will be set to point to the
3316/// best viable function within the candidate set. Otherwise, one of
3317/// several kinds of errors will be returned; see
3318/// Sema::OverloadingResult.
3319Sema::OverloadingResult
3320Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3321 OverloadCandidateSet::iterator& Best)
3322{
3323 // Find the best viable function.
3324 Best = CandidateSet.end();
3325 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3326 Cand != CandidateSet.end(); ++Cand) {
3327 if (Cand->Viable) {
3328 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3329 Best = Cand;
3330 }
3331 }
3332
3333 // If we didn't find any viable functions, abort.
3334 if (Best == CandidateSet.end())
3335 return OR_No_Viable_Function;
3336
3337 // Make sure that this function is better than every other viable
3338 // function. If not, we have an ambiguity.
3339 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3340 Cand != CandidateSet.end(); ++Cand) {
3341 if (Cand->Viable &&
3342 Cand != Best &&
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003343 !isBetterOverloadCandidate(*Best, *Cand)) {
3344 Best = CandidateSet.end();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003345 return OR_Ambiguous;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003346 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003347 }
3348
3349 // Best is the best viable function.
3350 return OR_Success;
3351}
3352
3353/// PrintOverloadCandidates - When overload resolution fails, prints
3354/// diagnostic messages containing the candidates in the candidate
3355/// set. If OnlyViable is true, only viable candidates will be printed.
3356void
3357Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3358 bool OnlyViable)
3359{
3360 OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3361 LastCand = CandidateSet.end();
3362 for (; Cand != LastCand; ++Cand) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003363 if (Cand->Viable || !OnlyViable) {
3364 if (Cand->Function) {
3365 // Normal function
3366 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003367 } else if (Cand->IsSurrogate) {
Douglas Gregor621b3932008-11-21 02:54:28 +00003368 // Desugar the type of the surrogate down to a function type,
3369 // retaining as many typedefs as possible while still showing
3370 // the function type (and, therefore, its parameter types).
3371 QualType FnType = Cand->Surrogate->getConversionType();
3372 bool isReference = false;
3373 bool isPointer = false;
3374 if (const ReferenceType *FnTypeRef = FnType->getAsReferenceType()) {
3375 FnType = FnTypeRef->getPointeeType();
3376 isReference = true;
3377 }
3378 if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
3379 FnType = FnTypePtr->getPointeeType();
3380 isPointer = true;
3381 }
3382 // Desugar down to a function type.
3383 FnType = QualType(FnType->getAsFunctionType(), 0);
3384 // Reconstruct the pointer/reference as appropriate.
3385 if (isPointer) FnType = Context.getPointerType(FnType);
3386 if (isReference) FnType = Context.getReferenceType(FnType);
3387
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003388 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
Chris Lattnerd1625842008-11-24 06:25:27 +00003389 << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003390 } else {
3391 // FIXME: We need to get the identifier in here
3392 // FIXME: Do we want the error message to point at the
3393 // operator? (built-ins won't have a location)
3394 QualType FnType
3395 = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3396 Cand->BuiltinTypes.ParamTypes,
3397 Cand->Conversions.size(),
3398 false, 0);
3399
Chris Lattnerd1625842008-11-24 06:25:27 +00003400 Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003401 }
3402 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003403 }
3404}
3405
Douglas Gregor904eed32008-11-10 20:40:00 +00003406/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3407/// an overloaded function (C++ [over.over]), where @p From is an
3408/// expression with overloaded function type and @p ToType is the type
3409/// we're trying to resolve to. For example:
3410///
3411/// @code
3412/// int f(double);
3413/// int f(int);
3414///
3415/// int (*pfd)(double) = f; // selects f(double)
3416/// @endcode
3417///
3418/// This routine returns the resulting FunctionDecl if it could be
3419/// resolved, and NULL otherwise. When @p Complain is true, this
3420/// routine will emit diagnostics if there is an error.
3421FunctionDecl *
Sebastian Redl33b399a2009-02-04 21:23:32 +00003422Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
Douglas Gregor904eed32008-11-10 20:40:00 +00003423 bool Complain) {
3424 QualType FunctionType = ToType;
Sebastian Redl33b399a2009-02-04 21:23:32 +00003425 bool IsMember = false;
Douglas Gregor904eed32008-11-10 20:40:00 +00003426 if (const PointerLikeType *ToTypePtr = ToType->getAsPointerLikeType())
3427 FunctionType = ToTypePtr->getPointeeType();
Sebastian Redl33b399a2009-02-04 21:23:32 +00003428 else if (const MemberPointerType *MemTypePtr =
3429 ToType->getAsMemberPointerType()) {
3430 FunctionType = MemTypePtr->getPointeeType();
3431 IsMember = true;
3432 }
Douglas Gregor904eed32008-11-10 20:40:00 +00003433
3434 // We only look at pointers or references to functions.
3435 if (!FunctionType->isFunctionType())
3436 return 0;
3437
3438 // Find the actual overloaded function declaration.
3439 OverloadedFunctionDecl *Ovl = 0;
3440
3441 // C++ [over.over]p1:
3442 // [...] [Note: any redundant set of parentheses surrounding the
3443 // overloaded function name is ignored (5.1). ]
3444 Expr *OvlExpr = From->IgnoreParens();
3445
3446 // C++ [over.over]p1:
3447 // [...] The overloaded function name can be preceded by the &
3448 // operator.
3449 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3450 if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3451 OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3452 }
3453
3454 // Try to dig out the overloaded function.
3455 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3456 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3457
3458 // If there's no overloaded function declaration, we're done.
3459 if (!Ovl)
3460 return 0;
3461
3462 // Look through all of the overloaded functions, searching for one
3463 // whose type matches exactly.
3464 // FIXME: When templates or using declarations come along, we'll actually
3465 // have to deal with duplicates, partial ordering, etc. For now, we
3466 // can just do a simple search.
3467 FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3468 for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3469 Fun != Ovl->function_end(); ++Fun) {
3470 // C++ [over.over]p3:
3471 // Non-member functions and static member functions match
3472 // targets of type “pointer-to-function”or
Sebastian Redl33b399a2009-02-04 21:23:32 +00003473 // “reference-to-function.” Nonstatic member functions match targets of
3474 // type "pointer-to-member-function."
3475 // Note that according to DR 247, the containing class does not matter.
3476 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3477 // Skip non-static functions when converting to pointer, and static
3478 // when converting to member pointer.
3479 if (Method->isStatic() == IsMember)
Douglas Gregor904eed32008-11-10 20:40:00 +00003480 continue;
Sebastian Redl33b399a2009-02-04 21:23:32 +00003481 } else if (IsMember)
3482 continue;
Douglas Gregor904eed32008-11-10 20:40:00 +00003483
3484 if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
3485 return *Fun;
3486 }
3487
3488 return 0;
3489}
3490
Douglas Gregorf6b89692008-11-26 05:54:23 +00003491/// ResolveOverloadedCallFn - Given the call expression that calls Fn
Douglas Gregorfa047642009-02-04 00:32:51 +00003492/// (which eventually refers to the declaration Func) and the call
3493/// arguments Args/NumArgs, attempt to resolve the function call down
3494/// to a specific function. If overload resolution succeeds, returns
3495/// the function declaration produced by overload
Douglas Gregor0a396682008-11-26 06:01:48 +00003496/// resolution. Otherwise, emits diagnostics, deletes all of the
Douglas Gregorf6b89692008-11-26 05:54:23 +00003497/// arguments and Fn, and returns NULL.
Douglas Gregorfa047642009-02-04 00:32:51 +00003498FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
Douglas Gregor17330012009-02-04 15:01:18 +00003499 DeclarationName UnqualifiedName,
Douglas Gregor0a396682008-11-26 06:01:48 +00003500 SourceLocation LParenLoc,
3501 Expr **Args, unsigned NumArgs,
3502 SourceLocation *CommaLocs,
Douglas Gregorfa047642009-02-04 00:32:51 +00003503 SourceLocation RParenLoc,
Douglas Gregor17330012009-02-04 15:01:18 +00003504 bool &ArgumentDependentLookup) {
Douglas Gregorf6b89692008-11-26 05:54:23 +00003505 OverloadCandidateSet CandidateSet;
Douglas Gregor17330012009-02-04 15:01:18 +00003506
3507 // Add the functions denoted by Callee to the set of candidate
3508 // functions. While we're doing so, track whether argument-dependent
3509 // lookup still applies, per:
3510 //
3511 // C++0x [basic.lookup.argdep]p3:
3512 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3513 // and let Y be the lookup set produced by argument dependent
3514 // lookup (defined as follows). If X contains
3515 //
3516 // -- a declaration of a class member, or
3517 //
3518 // -- a block-scope function declaration that is not a
3519 // using-declaration, or
3520 //
3521 // -- a declaration that is neither a function or a function
3522 // template
3523 //
3524 // then Y is empty.
Douglas Gregorfa047642009-02-04 00:32:51 +00003525 if (OverloadedFunctionDecl *Ovl
Douglas Gregor17330012009-02-04 15:01:18 +00003526 = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
3527 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3528 FuncEnd = Ovl->function_end();
3529 Func != FuncEnd; ++Func) {
3530 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
3531
3532 if ((*Func)->getDeclContext()->isRecord() ||
3533 (*Func)->getDeclContext()->isFunctionOrMethod())
3534 ArgumentDependentLookup = false;
3535 }
3536 } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
3537 AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3538
3539 if (Func->getDeclContext()->isRecord() ||
3540 Func->getDeclContext()->isFunctionOrMethod())
3541 ArgumentDependentLookup = false;
3542 }
3543
3544 if (Callee)
3545 UnqualifiedName = Callee->getDeclName();
3546
Douglas Gregorfa047642009-02-04 00:32:51 +00003547 if (ArgumentDependentLookup)
Douglas Gregor17330012009-02-04 15:01:18 +00003548 AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
Douglas Gregorfa047642009-02-04 00:32:51 +00003549 CandidateSet);
3550
Douglas Gregorf6b89692008-11-26 05:54:23 +00003551 OverloadCandidateSet::iterator Best;
3552 switch (BestViableFunction(CandidateSet, Best)) {
Douglas Gregor0a396682008-11-26 06:01:48 +00003553 case OR_Success:
3554 return Best->Function;
Douglas Gregorf6b89692008-11-26 05:54:23 +00003555
3556 case OR_No_Viable_Function:
3557 Diag(Fn->getSourceRange().getBegin(),
3558 diag::err_ovl_no_viable_function_in_call)
Douglas Gregor17330012009-02-04 15:01:18 +00003559 << UnqualifiedName << (unsigned)CandidateSet.size()
Douglas Gregorf6b89692008-11-26 05:54:23 +00003560 << Fn->getSourceRange();
3561 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3562 break;
3563
3564 case OR_Ambiguous:
3565 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
Douglas Gregor17330012009-02-04 15:01:18 +00003566 << UnqualifiedName << Fn->getSourceRange();
Douglas Gregorf6b89692008-11-26 05:54:23 +00003567 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3568 break;
3569 }
3570
3571 // Overload resolution failed. Destroy all of the subexpressions and
3572 // return NULL.
3573 Fn->Destroy(Context);
3574 for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3575 Args[Arg]->Destroy(Context);
3576 return 0;
3577}
3578
Douglas Gregor88a35142008-12-22 05:46:06 +00003579/// BuildCallToMemberFunction - Build a call to a member
3580/// function. MemExpr is the expression that refers to the member
3581/// function (and includes the object parameter), Args/NumArgs are the
3582/// arguments to the function call (not including the object
3583/// parameter). The caller needs to validate that the member
3584/// expression refers to a member function or an overloaded member
3585/// function.
3586Sema::ExprResult
3587Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
3588 SourceLocation LParenLoc, Expr **Args,
3589 unsigned NumArgs, SourceLocation *CommaLocs,
3590 SourceLocation RParenLoc) {
3591 // Dig out the member expression. This holds both the object
3592 // argument and the member function we're referring to.
3593 MemberExpr *MemExpr = 0;
3594 if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
3595 MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
3596 else
3597 MemExpr = dyn_cast<MemberExpr>(MemExprE);
3598 assert(MemExpr && "Building member call without member expression");
3599
3600 // Extract the object argument.
3601 Expr *ObjectArg = MemExpr->getBase();
3602 if (MemExpr->isArrow())
3603 ObjectArg = new UnaryOperator(ObjectArg, UnaryOperator::Deref,
3604 ObjectArg->getType()->getAsPointerType()->getPointeeType(),
3605 SourceLocation());
3606 CXXMethodDecl *Method = 0;
3607 if (OverloadedFunctionDecl *Ovl
3608 = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
3609 // Add overload candidates
3610 OverloadCandidateSet CandidateSet;
3611 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3612 FuncEnd = Ovl->function_end();
3613 Func != FuncEnd; ++Func) {
3614 assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
3615 Method = cast<CXXMethodDecl>(*Func);
3616 AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
3617 /*SuppressUserConversions=*/false);
3618 }
3619
3620 OverloadCandidateSet::iterator Best;
3621 switch (BestViableFunction(CandidateSet, Best)) {
3622 case OR_Success:
3623 Method = cast<CXXMethodDecl>(Best->Function);
3624 break;
3625
3626 case OR_No_Viable_Function:
3627 Diag(MemExpr->getSourceRange().getBegin(),
3628 diag::err_ovl_no_viable_member_function_in_call)
3629 << Ovl->getDeclName() << (unsigned)CandidateSet.size()
3630 << MemExprE->getSourceRange();
3631 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3632 // FIXME: Leaking incoming expressions!
3633 return true;
3634
3635 case OR_Ambiguous:
3636 Diag(MemExpr->getSourceRange().getBegin(),
3637 diag::err_ovl_ambiguous_member_call)
3638 << Ovl->getDeclName() << MemExprE->getSourceRange();
3639 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3640 // FIXME: Leaking incoming expressions!
3641 return true;
3642 }
3643
3644 FixOverloadedFunctionReference(MemExpr, Method);
3645 } else {
3646 Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
3647 }
3648
3649 assert(Method && "Member call to something that isn't a method?");
3650 llvm::OwningPtr<CXXMemberCallExpr>
3651 TheCall(new CXXMemberCallExpr(MemExpr, Args, NumArgs,
3652 Method->getResultType().getNonReferenceType(),
3653 RParenLoc));
3654
3655 // Convert the object argument (for a non-static member function call).
3656 if (!Method->isStatic() &&
3657 PerformObjectArgumentInitialization(ObjectArg, Method))
3658 return true;
3659 MemExpr->setBase(ObjectArg);
3660
3661 // Convert the rest of the arguments
3662 const FunctionTypeProto *Proto = cast<FunctionTypeProto>(Method->getType());
3663 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
3664 RParenLoc))
3665 return true;
3666
Sebastian Redl0eb23302009-01-19 00:08:26 +00003667 return CheckFunctionCall(Method, TheCall.take()).release();
Douglas Gregor88a35142008-12-22 05:46:06 +00003668}
3669
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003670/// BuildCallToObjectOfClassType - Build a call to an object of class
3671/// type (C++ [over.call.object]), which can end up invoking an
3672/// overloaded function call operator (@c operator()) or performing a
3673/// user-defined conversion on the object argument.
Douglas Gregor88a35142008-12-22 05:46:06 +00003674Sema::ExprResult
Douglas Gregor5c37de72008-12-06 00:22:45 +00003675Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
3676 SourceLocation LParenLoc,
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003677 Expr **Args, unsigned NumArgs,
3678 SourceLocation *CommaLocs,
3679 SourceLocation RParenLoc) {
3680 assert(Object->getType()->isRecordType() && "Requires object type argument");
3681 const RecordType *Record = Object->getType()->getAsRecordType();
3682
3683 // C++ [over.call.object]p1:
3684 // If the primary-expression E in the function call syntax
3685 // evaluates to a class object of type “cv T”, then the set of
3686 // candidate functions includes at least the function call
3687 // operators of T. The function call operators of T are obtained by
3688 // ordinary lookup of the name operator() in the context of
3689 // (E).operator().
3690 OverloadCandidateSet CandidateSet;
Douglas Gregor44b43212008-12-11 16:49:14 +00003691 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00003692 DeclContext::lookup_const_iterator Oper, OperEnd;
Steve Naroff0701bbb2009-01-08 17:28:14 +00003693 for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00003694 Oper != OperEnd; ++Oper)
3695 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
3696 CandidateSet, /*SuppressUserConversions=*/false);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003697
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003698 // C++ [over.call.object]p2:
3699 // In addition, for each conversion function declared in T of the
3700 // form
3701 //
3702 // operator conversion-type-id () cv-qualifier;
3703 //
3704 // where cv-qualifier is the same cv-qualification as, or a
3705 // greater cv-qualification than, cv, and where conversion-type-id
Douglas Gregora967a6f2008-11-20 13:33:37 +00003706 // denotes the type "pointer to function of (P1,...,Pn) returning
3707 // R", or the type "reference to pointer to function of
3708 // (P1,...,Pn) returning R", or the type "reference to function
3709 // of (P1,...,Pn) returning R", a surrogate call function [...]
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003710 // is also considered as a candidate function. Similarly,
3711 // surrogate call functions are added to the set of candidate
3712 // functions for each conversion function declared in an
3713 // accessible base class provided the function is not hidden
3714 // within T by another intervening declaration.
3715 //
3716 // FIXME: Look in base classes for more conversion operators!
3717 OverloadedFunctionDecl *Conversions
3718 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
Douglas Gregor621b3932008-11-21 02:54:28 +00003719 for (OverloadedFunctionDecl::function_iterator
3720 Func = Conversions->function_begin(),
3721 FuncEnd = Conversions->function_end();
3722 Func != FuncEnd; ++Func) {
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003723 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
3724
3725 // Strip the reference type (if any) and then the pointer type (if
3726 // any) to get down to what might be a function type.
3727 QualType ConvType = Conv->getConversionType().getNonReferenceType();
3728 if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
3729 ConvType = ConvPtrType->getPointeeType();
3730
3731 if (const FunctionTypeProto *Proto = ConvType->getAsFunctionTypeProto())
3732 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
3733 }
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003734
3735 // Perform overload resolution.
3736 OverloadCandidateSet::iterator Best;
3737 switch (BestViableFunction(CandidateSet, Best)) {
3738 case OR_Success:
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003739 // Overload resolution succeeded; we'll build the appropriate call
3740 // below.
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003741 break;
3742
3743 case OR_No_Viable_Function:
Sebastian Redle4c452c2008-11-22 13:44:36 +00003744 Diag(Object->getSourceRange().getBegin(),
3745 diag::err_ovl_no_viable_object_call)
Chris Lattnerd1625842008-11-24 06:25:27 +00003746 << Object->getType() << (unsigned)CandidateSet.size()
Sebastian Redle4c452c2008-11-22 13:44:36 +00003747 << Object->getSourceRange();
3748 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003749 break;
3750
3751 case OR_Ambiguous:
3752 Diag(Object->getSourceRange().getBegin(),
3753 diag::err_ovl_ambiguous_object_call)
Chris Lattnerd1625842008-11-24 06:25:27 +00003754 << Object->getType() << Object->getSourceRange();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003755 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3756 break;
3757 }
3758
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003759 if (Best == CandidateSet.end()) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003760 // We had an error; delete all of the subexpressions and return
3761 // the error.
3762 delete Object;
3763 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3764 delete Args[ArgIdx];
3765 return true;
3766 }
3767
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003768 if (Best->Function == 0) {
3769 // Since there is no function declaration, this is one of the
3770 // surrogate candidates. Dig out the conversion function.
3771 CXXConversionDecl *Conv
3772 = cast<CXXConversionDecl>(
3773 Best->Conversions[0].UserDefined.ConversionFunction);
3774
3775 // We selected one of the surrogate functions that converts the
3776 // object parameter to a function pointer. Perform the conversion
3777 // on the object argument, then let ActOnCallExpr finish the job.
3778 // FIXME: Represent the user-defined conversion in the AST!
Sebastian Redl0eb23302009-01-19 00:08:26 +00003779 ImpCastExprToType(Object,
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003780 Conv->getConversionType().getNonReferenceType(),
3781 Conv->getConversionType()->isReferenceType());
Sebastian Redl0eb23302009-01-19 00:08:26 +00003782 return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
3783 MultiExprArg(*this, (ExprTy**)Args, NumArgs),
3784 CommaLocs, RParenLoc).release();
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003785 }
3786
3787 // We found an overloaded operator(). Build a CXXOperatorCallExpr
3788 // that calls this method, using Object for the implicit object
3789 // parameter and passing along the remaining arguments.
3790 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003791 const FunctionTypeProto *Proto = Method->getType()->getAsFunctionTypeProto();
3792
3793 unsigned NumArgsInProto = Proto->getNumArgs();
3794 unsigned NumArgsToCheck = NumArgs;
3795
3796 // Build the full argument list for the method call (the
3797 // implicit object parameter is placed at the beginning of the
3798 // list).
3799 Expr **MethodArgs;
3800 if (NumArgs < NumArgsInProto) {
3801 NumArgsToCheck = NumArgsInProto;
3802 MethodArgs = new Expr*[NumArgsInProto + 1];
3803 } else {
3804 MethodArgs = new Expr*[NumArgs + 1];
3805 }
3806 MethodArgs[0] = Object;
3807 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3808 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
3809
3810 Expr *NewFn = new DeclRefExpr(Method, Method->getType(),
3811 SourceLocation());
3812 UsualUnaryConversions(NewFn);
3813
3814 // Once we've built TheCall, all of the expressions are properly
3815 // owned.
3816 QualType ResultTy = Method->getResultType().getNonReferenceType();
3817 llvm::OwningPtr<CXXOperatorCallExpr>
3818 TheCall(new CXXOperatorCallExpr(NewFn, MethodArgs, NumArgs + 1,
3819 ResultTy, RParenLoc));
3820 delete [] MethodArgs;
3821
Douglas Gregor518fda12009-01-13 05:10:00 +00003822 // We may have default arguments. If so, we need to allocate more
3823 // slots in the call for them.
3824 if (NumArgs < NumArgsInProto)
3825 TheCall->setNumArgs(NumArgsInProto + 1);
3826 else if (NumArgs > NumArgsInProto)
3827 NumArgsToCheck = NumArgsInProto;
3828
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003829 // Initialize the implicit object parameter.
Douglas Gregor518fda12009-01-13 05:10:00 +00003830 if (PerformObjectArgumentInitialization(Object, Method))
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003831 return true;
3832 TheCall->setArg(0, Object);
3833
3834 // Check the argument types.
3835 for (unsigned i = 0; i != NumArgsToCheck; i++) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003836 Expr *Arg;
Douglas Gregor518fda12009-01-13 05:10:00 +00003837 if (i < NumArgs) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003838 Arg = Args[i];
Douglas Gregor518fda12009-01-13 05:10:00 +00003839
3840 // Pass the argument.
3841 QualType ProtoArgType = Proto->getArgType(i);
3842 if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3843 return true;
3844 } else {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003845 Arg = new CXXDefaultArgExpr(Method->getParamDecl(i));
Douglas Gregor518fda12009-01-13 05:10:00 +00003846 }
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003847
3848 TheCall->setArg(i + 1, Arg);
3849 }
3850
3851 // If this is a variadic call, handle args passed through "...".
3852 if (Proto->isVariadic()) {
3853 // Promote the arguments (C99 6.5.2.2p7).
3854 for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3855 Expr *Arg = Args[i];
Anders Carlsson906fed02009-01-13 05:48:52 +00003856
Anders Carlssondce5e2c2009-01-16 16:48:51 +00003857 DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003858 TheCall->setArg(i + 1, Arg);
3859 }
3860 }
3861
Sebastian Redl0eb23302009-01-19 00:08:26 +00003862 return CheckFunctionCall(Method, TheCall.take()).release();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003863}
3864
Douglas Gregor8ba10742008-11-20 16:27:02 +00003865/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
3866/// (if one exists), where @c Base is an expression of class type and
3867/// @c Member is the name of the member we're trying to find.
3868Action::ExprResult
Douglas Gregor3fc749d2008-12-23 00:26:44 +00003869Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
Douglas Gregor8ba10742008-11-20 16:27:02 +00003870 SourceLocation MemberLoc,
3871 IdentifierInfo &Member) {
3872 assert(Base->getType()->isRecordType() && "left-hand side must have class type");
3873
3874 // C++ [over.ref]p1:
3875 //
3876 // [...] An expression x->m is interpreted as (x.operator->())->m
3877 // for a class object x of type T if T::operator->() exists and if
3878 // the operator is selected as the best match function by the
3879 // overload resolution mechanism (13.3).
3880 // FIXME: look in base classes.
3881 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
3882 OverloadCandidateSet CandidateSet;
3883 const RecordType *BaseRecord = Base->getType()->getAsRecordType();
Douglas Gregor3fc749d2008-12-23 00:26:44 +00003884
3885 DeclContext::lookup_const_iterator Oper, OperEnd;
Steve Naroff0701bbb2009-01-08 17:28:14 +00003886 for (llvm::tie(Oper, OperEnd) = BaseRecord->getDecl()->lookup(OpName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00003887 Oper != OperEnd; ++Oper)
3888 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
Douglas Gregor8ba10742008-11-20 16:27:02 +00003889 /*SuppressUserConversions=*/false);
Douglas Gregor8ba10742008-11-20 16:27:02 +00003890
Douglas Gregorfc195ef2008-11-21 03:04:22 +00003891 llvm::OwningPtr<Expr> BasePtr(Base);
3892
Douglas Gregor8ba10742008-11-20 16:27:02 +00003893 // Perform overload resolution.
3894 OverloadCandidateSet::iterator Best;
3895 switch (BestViableFunction(CandidateSet, Best)) {
3896 case OR_Success:
3897 // Overload resolution succeeded; we'll build the call below.
3898 break;
3899
3900 case OR_No_Viable_Function:
3901 if (CandidateSet.empty())
3902 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
Chris Lattnerd1625842008-11-24 06:25:27 +00003903 << BasePtr->getType() << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003904 else
3905 Diag(OpLoc, diag::err_ovl_no_viable_oper)
Sebastian Redle4c452c2008-11-22 13:44:36 +00003906 << "operator->" << (unsigned)CandidateSet.size()
3907 << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003908 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregor8ba10742008-11-20 16:27:02 +00003909 return true;
3910
3911 case OR_Ambiguous:
3912 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
Chris Lattnerd1625842008-11-24 06:25:27 +00003913 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003914 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
Douglas Gregor8ba10742008-11-20 16:27:02 +00003915 return true;
3916 }
3917
3918 // Convert the object parameter.
3919 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregorfc195ef2008-11-21 03:04:22 +00003920 if (PerformObjectArgumentInitialization(Base, Method))
Douglas Gregor8ba10742008-11-20 16:27:02 +00003921 return true;
Douglas Gregorfc195ef2008-11-21 03:04:22 +00003922
3923 // No concerns about early exits now.
3924 BasePtr.take();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003925
3926 // Build the operator call.
3927 Expr *FnExpr = new DeclRefExpr(Method, Method->getType(), SourceLocation());
3928 UsualUnaryConversions(FnExpr);
3929 Base = new CXXOperatorCallExpr(FnExpr, &Base, 1,
3930 Method->getResultType().getNonReferenceType(),
3931 OpLoc);
Sebastian Redl0eb23302009-01-19 00:08:26 +00003932 return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow,
3933 MemberLoc, Member).release();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003934}
3935
Douglas Gregor904eed32008-11-10 20:40:00 +00003936/// FixOverloadedFunctionReference - E is an expression that refers to
3937/// a C++ overloaded function (possibly with some parentheses and
3938/// perhaps a '&' around it). We have resolved the overloaded function
3939/// to the function declaration Fn, so patch up the expression E to
3940/// refer (possibly indirectly) to Fn.
3941void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
3942 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
3943 FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
3944 E->setType(PE->getSubExpr()->getType());
3945 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
3946 assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
3947 "Can only take the address of an overloaded function");
3948 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
3949 E->setType(Context.getPointerType(E->getType()));
3950 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
3951 assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
3952 "Expected overloaded function");
3953 DR->setDecl(Fn);
3954 E->setType(Fn->getType());
Douglas Gregor88a35142008-12-22 05:46:06 +00003955 } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
3956 MemExpr->setMemberDecl(Fn);
3957 E->setType(Fn->getType());
Douglas Gregor904eed32008-11-10 20:40:00 +00003958 } else {
3959 assert(false && "Invalid reference to overloaded function");
3960 }
3961}
3962
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003963} // end namespace clang