blob: 8987af254f0482e1dc1551d6277a0171d6753011 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
10 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
12
13<body>
14
15<div class="doc_title"> LLVM Language Reference Manual </div>
16<ol>
17 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
20 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
23 <li><a href="#linkage">Linkage Types</a></li>
24 <li><a href="#callingconv">Calling Conventions</a></li>
25 <li><a href="#globalvars">Global Variables</a></li>
26 <li><a href="#functionstructure">Functions</a></li>
27 <li><a href="#aliasstructure">Aliases</a>
28 <li><a href="#paramattrs">Parameter Attributes</a></li>
Gordon Henriksen13fe5e32007-12-10 03:18:06 +000029 <li><a href="#gc">Garbage Collector Names</a></li>
Devang Patel25928cb2008-09-04 23:10:26 +000030 <li><a href="#notes">Function Notes</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000031 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
32 <li><a href="#datalayout">Data Layout</a></li>
33 </ol>
34 </li>
35 <li><a href="#typesystem">Type System</a>
36 <ol>
Chris Lattner488772f2008-01-04 04:32:38 +000037 <li><a href="#t_classifications">Type Classifications</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000038 <li><a href="#t_primitive">Primitive Types</a>
39 <ol>
Chris Lattner488772f2008-01-04 04:32:38 +000040 <li><a href="#t_floating">Floating Point Types</a></li>
41 <li><a href="#t_void">Void Type</a></li>
42 <li><a href="#t_label">Label Type</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000043 </ol>
44 </li>
45 <li><a href="#t_derived">Derived Types</a>
46 <ol>
Chris Lattner251ab812007-12-18 06:18:21 +000047 <li><a href="#t_integer">Integer Type</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000048 <li><a href="#t_array">Array Type</a></li>
49 <li><a href="#t_function">Function Type</a></li>
50 <li><a href="#t_pointer">Pointer Type</a></li>
51 <li><a href="#t_struct">Structure Type</a></li>
52 <li><a href="#t_pstruct">Packed Structure Type</a></li>
53 <li><a href="#t_vector">Vector Type</a></li>
54 <li><a href="#t_opaque">Opaque Type</a></li>
55 </ol>
56 </li>
57 </ol>
58 </li>
59 <li><a href="#constants">Constants</a>
60 <ol>
61 <li><a href="#simpleconstants">Simple Constants</a>
62 <li><a href="#aggregateconstants">Aggregate Constants</a>
63 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
64 <li><a href="#undefvalues">Undefined Values</a>
65 <li><a href="#constantexprs">Constant Expressions</a>
66 </ol>
67 </li>
68 <li><a href="#othervalues">Other Values</a>
69 <ol>
70 <li><a href="#inlineasm">Inline Assembler Expressions</a>
71 </ol>
72 </li>
73 <li><a href="#instref">Instruction Reference</a>
74 <ol>
75 <li><a href="#terminators">Terminator Instructions</a>
76 <ol>
77 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
78 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
79 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
80 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
81 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
82 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
83 </ol>
84 </li>
85 <li><a href="#binaryops">Binary Operations</a>
86 <ol>
87 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
88 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
89 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
90 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
91 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
92 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
93 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
94 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
95 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
96 </ol>
97 </li>
98 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
99 <ol>
100 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
101 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
102 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
103 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
104 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
105 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
106 </ol>
107 </li>
108 <li><a href="#vectorops">Vector Operations</a>
109 <ol>
110 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
111 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
112 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
113 </ol>
114 </li>
Dan Gohman74d6faf2008-05-12 23:51:09 +0000115 <li><a href="#aggregateops">Aggregate Operations</a>
116 <ol>
117 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
118 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
119 </ol>
120 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000121 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
122 <ol>
123 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
124 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
125 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
126 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
127 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
128 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
129 </ol>
130 </li>
131 <li><a href="#convertops">Conversion Operations</a>
132 <ol>
133 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
134 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
135 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
136 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
137 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
138 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
139 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
140 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
141 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
142 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
143 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
144 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
145 </ol>
146 <li><a href="#otherops">Other Operations</a>
147 <ol>
148 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
149 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begeman646fa482008-05-12 19:01:56 +0000150 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
151 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000152 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
153 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
154 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
155 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Devang Patela3cc5372008-03-10 20:49:15 +0000156 <li><a href="#i_getresult">'<tt>getresult</tt>' Instruction</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000157 </ol>
158 </li>
159 </ol>
160 </li>
161 <li><a href="#intrinsics">Intrinsic Functions</a>
162 <ol>
163 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
164 <ol>
165 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
166 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
167 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
168 </ol>
169 </li>
170 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
171 <ol>
172 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
173 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
174 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
175 </ol>
176 </li>
177 <li><a href="#int_codegen">Code Generator Intrinsics</a>
178 <ol>
179 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
180 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
181 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
182 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
183 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
184 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
185 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
186 </ol>
187 </li>
188 <li><a href="#int_libc">Standard C Library Intrinsics</a>
189 <ol>
190 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
191 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
192 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
194 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman361079c2007-10-15 20:30:11 +0000195 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000198 </ol>
199 </li>
200 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
201 <ol>
202 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
203 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
204 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
205 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
206 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
207 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
208 </ol>
209 </li>
210 <li><a href="#int_debugger">Debugger intrinsics</a></li>
211 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands7407a9f2007-09-11 14:10:23 +0000212 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +0000213 <ol>
214 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands38947cd2007-07-27 12:58:54 +0000215 </ol>
216 </li>
Andrew Lenharth785610d2008-02-16 01:24:58 +0000217 <li><a href="#int_atomics">Atomic intrinsics</a>
218 <ol>
Andrew Lenharthe44f3902008-02-21 06:45:13 +0000219 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
Mon P Wang6bde9ec2008-06-25 08:15:39 +0000220 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
Andrew Lenharthe44f3902008-02-21 06:45:13 +0000221 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
Mon P Wang6bde9ec2008-06-25 08:15:39 +0000222 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
223 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
224 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
225 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
226 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
227 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
228 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
229 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
230 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
231 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
Andrew Lenharth785610d2008-02-16 01:24:58 +0000232 </ol>
233 </li>
Reid Spencerb043f672007-07-20 19:59:11 +0000234 <li><a href="#int_general">General intrinsics</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000235 <ol>
Reid Spencerb043f672007-07-20 19:59:11 +0000236 <li><a href="#int_var_annotation">
Tanya Lattner51369f32007-09-22 00:01:26 +0000237 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000238 <li><a href="#int_annotation">
Tanya Lattner51369f32007-09-22 00:01:26 +0000239 <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikove6e764f2008-01-15 22:31:34 +0000240 <li><a href="#int_trap">
241 <tt>llvm.trap</tt>' Intrinsic</a></li>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000242 </ol>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000243 </li>
244 </ol>
245 </li>
246</ol>
247
248<div class="doc_author">
249 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
250 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
251</div>
252
253<!-- *********************************************************************** -->
254<div class="doc_section"> <a name="abstract">Abstract </a></div>
255<!-- *********************************************************************** -->
256
257<div class="doc_text">
258<p>This document is a reference manual for the LLVM assembly language.
Bill Wendlinge7846a52008-08-05 22:29:16 +0000259LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattner96451482008-08-05 18:29:16 +0000260type safety, low-level operations, flexibility, and the capability of
261representing 'all' high-level languages cleanly. It is the common code
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000262representation used throughout all phases of the LLVM compilation
263strategy.</p>
264</div>
265
266<!-- *********************************************************************** -->
267<div class="doc_section"> <a name="introduction">Introduction</a> </div>
268<!-- *********************************************************************** -->
269
270<div class="doc_text">
271
272<p>The LLVM code representation is designed to be used in three
273different forms: as an in-memory compiler IR, as an on-disk bitcode
274representation (suitable for fast loading by a Just-In-Time compiler),
275and as a human readable assembly language representation. This allows
276LLVM to provide a powerful intermediate representation for efficient
277compiler transformations and analysis, while providing a natural means
278to debug and visualize the transformations. The three different forms
279of LLVM are all equivalent. This document describes the human readable
280representation and notation.</p>
281
282<p>The LLVM representation aims to be light-weight and low-level
283while being expressive, typed, and extensible at the same time. It
284aims to be a "universal IR" of sorts, by being at a low enough level
285that high-level ideas may be cleanly mapped to it (similar to how
286microprocessors are "universal IR's", allowing many source languages to
287be mapped to them). By providing type information, LLVM can be used as
288the target of optimizations: for example, through pointer analysis, it
289can be proven that a C automatic variable is never accessed outside of
290the current function... allowing it to be promoted to a simple SSA
291value instead of a memory location.</p>
292
293</div>
294
295<!-- _______________________________________________________________________ -->
296<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
297
298<div class="doc_text">
299
300<p>It is important to note that this document describes 'well formed'
301LLVM assembly language. There is a difference between what the parser
302accepts and what is considered 'well formed'. For example, the
303following instruction is syntactically okay, but not well formed:</p>
304
305<div class="doc_code">
306<pre>
307%x = <a href="#i_add">add</a> i32 1, %x
308</pre>
309</div>
310
311<p>...because the definition of <tt>%x</tt> does not dominate all of
312its uses. The LLVM infrastructure provides a verification pass that may
313be used to verify that an LLVM module is well formed. This pass is
314automatically run by the parser after parsing input assembly and by
315the optimizer before it outputs bitcode. The violations pointed out
316by the verifier pass indicate bugs in transformation passes or input to
317the parser.</p>
318</div>
319
Chris Lattnera83fdc02007-10-03 17:34:29 +0000320<!-- Describe the typesetting conventions here. -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000321
322<!-- *********************************************************************** -->
323<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
324<!-- *********************************************************************** -->
325
326<div class="doc_text">
327
Reid Spencerc8245b02007-08-07 14:34:28 +0000328 <p>LLVM identifiers come in two basic types: global and local. Global
329 identifiers (functions, global variables) begin with the @ character. Local
330 identifiers (register names, types) begin with the % character. Additionally,
331 there are three different formats for identifiers, for different purposes:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000332
333<ol>
Reid Spencerc8245b02007-08-07 14:34:28 +0000334 <li>Named values are represented as a string of characters with their prefix.
335 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
336 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000337 Identifiers which require other characters in their names can be surrounded
Reid Spencerc8245b02007-08-07 14:34:28 +0000338 with quotes. In this way, anything except a <tt>&quot;</tt> character can
339 be used in a named value.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000340
Reid Spencerc8245b02007-08-07 14:34:28 +0000341 <li>Unnamed values are represented as an unsigned numeric value with their
342 prefix. For example, %12, @2, %44.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000343
344 <li>Constants, which are described in a <a href="#constants">section about
345 constants</a>, below.</li>
346</ol>
347
Reid Spencerc8245b02007-08-07 14:34:28 +0000348<p>LLVM requires that values start with a prefix for two reasons: Compilers
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000349don't need to worry about name clashes with reserved words, and the set of
350reserved words may be expanded in the future without penalty. Additionally,
351unnamed identifiers allow a compiler to quickly come up with a temporary
352variable without having to avoid symbol table conflicts.</p>
353
354<p>Reserved words in LLVM are very similar to reserved words in other
355languages. There are keywords for different opcodes
356('<tt><a href="#i_add">add</a></tt>',
357 '<tt><a href="#i_bitcast">bitcast</a></tt>',
358 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
359href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
360and others. These reserved words cannot conflict with variable names, because
Reid Spencerc8245b02007-08-07 14:34:28 +0000361none of them start with a prefix character ('%' or '@').</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000362
363<p>Here is an example of LLVM code to multiply the integer variable
364'<tt>%X</tt>' by 8:</p>
365
366<p>The easy way:</p>
367
368<div class="doc_code">
369<pre>
370%result = <a href="#i_mul">mul</a> i32 %X, 8
371</pre>
372</div>
373
374<p>After strength reduction:</p>
375
376<div class="doc_code">
377<pre>
378%result = <a href="#i_shl">shl</a> i32 %X, i8 3
379</pre>
380</div>
381
382<p>And the hard way:</p>
383
384<div class="doc_code">
385<pre>
386<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
387<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
388%result = <a href="#i_add">add</a> i32 %1, %1
389</pre>
390</div>
391
392<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
393important lexical features of LLVM:</p>
394
395<ol>
396
397 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
398 line.</li>
399
400 <li>Unnamed temporaries are created when the result of a computation is not
401 assigned to a named value.</li>
402
403 <li>Unnamed temporaries are numbered sequentially</li>
404
405</ol>
406
407<p>...and it also shows a convention that we follow in this document. When
408demonstrating instructions, we will follow an instruction with a comment that
409defines the type and name of value produced. Comments are shown in italic
410text.</p>
411
412</div>
413
414<!-- *********************************************************************** -->
415<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
416<!-- *********************************************************************** -->
417
418<!-- ======================================================================= -->
419<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
420</div>
421
422<div class="doc_text">
423
424<p>LLVM programs are composed of "Module"s, each of which is a
425translation unit of the input programs. Each module consists of
426functions, global variables, and symbol table entries. Modules may be
427combined together with the LLVM linker, which merges function (and
428global variable) definitions, resolves forward declarations, and merges
429symbol table entries. Here is an example of the "hello world" module:</p>
430
431<div class="doc_code">
432<pre><i>; Declare the string constant as a global constant...</i>
433<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
434 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
435
436<i>; External declaration of the puts function</i>
437<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
438
439<i>; Definition of main function</i>
440define i32 @main() { <i>; i32()* </i>
441 <i>; Convert [13x i8 ]* to i8 *...</i>
442 %cast210 = <a
443 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
444
445 <i>; Call puts function to write out the string to stdout...</i>
446 <a
447 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
448 <a
449 href="#i_ret">ret</a> i32 0<br>}<br>
450</pre>
451</div>
452
453<p>This example is made up of a <a href="#globalvars">global variable</a>
454named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
455function, and a <a href="#functionstructure">function definition</a>
456for "<tt>main</tt>".</p>
457
458<p>In general, a module is made up of a list of global values,
459where both functions and global variables are global values. Global values are
460represented by a pointer to a memory location (in this case, a pointer to an
461array of char, and a pointer to a function), and have one of the following <a
462href="#linkage">linkage types</a>.</p>
463
464</div>
465
466<!-- ======================================================================= -->
467<div class="doc_subsection">
468 <a name="linkage">Linkage Types</a>
469</div>
470
471<div class="doc_text">
472
473<p>
474All Global Variables and Functions have one of the following types of linkage:
475</p>
476
477<dl>
478
Dale Johannesen96e7e092008-05-23 23:13:41 +0000479 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000480
481 <dd>Global values with internal linkage are only directly accessible by
482 objects in the current module. In particular, linking code into a module with
483 an internal global value may cause the internal to be renamed as necessary to
484 avoid collisions. Because the symbol is internal to the module, all
485 references can be updated. This corresponds to the notion of the
486 '<tt>static</tt>' keyword in C.
487 </dd>
488
489 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
490
491 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
492 the same name when linkage occurs. This is typically used to implement
493 inline functions, templates, or other code which must be generated in each
494 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
495 allowed to be discarded.
496 </dd>
497
Dale Johannesen96e7e092008-05-23 23:13:41 +0000498 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
499
500 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
501 linkage, except that unreferenced <tt>common</tt> globals may not be
502 discarded. This is used for globals that may be emitted in multiple
503 translation units, but that are not guaranteed to be emitted into every
504 translation unit that uses them. One example of this is tentative
505 definitions in C, such as "<tt>int X;</tt>" at global scope.
506 </dd>
507
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000508 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
509
Dale Johannesen96e7e092008-05-23 23:13:41 +0000510 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
511 that some targets may choose to emit different assembly sequences for them
512 for target-dependent reasons. This is used for globals that are declared
513 "weak" in C source code.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000514 </dd>
515
516 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
517
518 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
519 pointer to array type. When two global variables with appending linkage are
520 linked together, the two global arrays are appended together. This is the
521 LLVM, typesafe, equivalent of having the system linker append together
522 "sections" with identical names when .o files are linked.
523 </dd>
524
525 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Chris Lattner96451482008-08-05 18:29:16 +0000526 <dd>The semantics of this linkage follow the ELF object file model: the
527 symbol is weak until linked, if not linked, the symbol becomes null instead
528 of being an undefined reference.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000529 </dd>
530
531 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
532
533 <dd>If none of the above identifiers are used, the global is externally
534 visible, meaning that it participates in linkage and can be used to resolve
535 external symbol references.
536 </dd>
537</dl>
538
539 <p>
540 The next two types of linkage are targeted for Microsoft Windows platform
541 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattner96451482008-08-05 18:29:16 +0000542 DLLs (Dynamic Link Libraries).
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000543 </p>
544
545 <dl>
546 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
547
548 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
549 or variable via a global pointer to a pointer that is set up by the DLL
550 exporting the symbol. On Microsoft Windows targets, the pointer name is
551 formed by combining <code>_imp__</code> and the function or variable name.
552 </dd>
553
554 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
555
556 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
557 pointer to a pointer in a DLL, so that it can be referenced with the
558 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
559 name is formed by combining <code>_imp__</code> and the function or variable
560 name.
561 </dd>
562
563</dl>
564
565<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
566variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
567variable and was linked with this one, one of the two would be renamed,
568preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
569external (i.e., lacking any linkage declarations), they are accessible
570outside of the current module.</p>
571<p>It is illegal for a function <i>declaration</i>
572to have any linkage type other than "externally visible", <tt>dllimport</tt>,
573or <tt>extern_weak</tt>.</p>
574<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
575linkages.
576</div>
577
578<!-- ======================================================================= -->
579<div class="doc_subsection">
580 <a name="callingconv">Calling Conventions</a>
581</div>
582
583<div class="doc_text">
584
585<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
586and <a href="#i_invoke">invokes</a> can all have an optional calling convention
587specified for the call. The calling convention of any pair of dynamic
588caller/callee must match, or the behavior of the program is undefined. The
589following calling conventions are supported by LLVM, and more may be added in
590the future:</p>
591
592<dl>
593 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
594
595 <dd>This calling convention (the default if no other calling convention is
596 specified) matches the target C calling conventions. This calling convention
597 supports varargs function calls and tolerates some mismatch in the declared
598 prototype and implemented declaration of the function (as does normal C).
599 </dd>
600
601 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
602
603 <dd>This calling convention attempts to make calls as fast as possible
604 (e.g. by passing things in registers). This calling convention allows the
605 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattner96451482008-08-05 18:29:16 +0000606 without having to conform to an externally specified ABI (Application Binary
607 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer07444922008-05-14 09:17:12 +0000608 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
609 supported. This calling convention does not support varargs and requires the
610 prototype of all callees to exactly match the prototype of the function
611 definition.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000612 </dd>
613
614 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
615
616 <dd>This calling convention attempts to make code in the caller as efficient
617 as possible under the assumption that the call is not commonly executed. As
618 such, these calls often preserve all registers so that the call does not break
619 any live ranges in the caller side. This calling convention does not support
620 varargs and requires the prototype of all callees to exactly match the
621 prototype of the function definition.
622 </dd>
623
624 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
625
626 <dd>Any calling convention may be specified by number, allowing
627 target-specific calling conventions to be used. Target specific calling
628 conventions start at 64.
629 </dd>
630</dl>
631
632<p>More calling conventions can be added/defined on an as-needed basis, to
633support pascal conventions or any other well-known target-independent
634convention.</p>
635
636</div>
637
638<!-- ======================================================================= -->
639<div class="doc_subsection">
640 <a name="visibility">Visibility Styles</a>
641</div>
642
643<div class="doc_text">
644
645<p>
646All Global Variables and Functions have one of the following visibility styles:
647</p>
648
649<dl>
650 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
651
Chris Lattner96451482008-08-05 18:29:16 +0000652 <dd>On targets that use the ELF object file format, default visibility means
653 that the declaration is visible to other
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000654 modules and, in shared libraries, means that the declared entity may be
655 overridden. On Darwin, default visibility means that the declaration is
656 visible to other modules. Default visibility corresponds to "external
657 linkage" in the language.
658 </dd>
659
660 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
661
662 <dd>Two declarations of an object with hidden visibility refer to the same
663 object if they are in the same shared object. Usually, hidden visibility
664 indicates that the symbol will not be placed into the dynamic symbol table,
665 so no other module (executable or shared library) can reference it
666 directly.
667 </dd>
668
669 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
670
671 <dd>On ELF, protected visibility indicates that the symbol will be placed in
672 the dynamic symbol table, but that references within the defining module will
673 bind to the local symbol. That is, the symbol cannot be overridden by another
674 module.
675 </dd>
676</dl>
677
678</div>
679
680<!-- ======================================================================= -->
681<div class="doc_subsection">
682 <a name="globalvars">Global Variables</a>
683</div>
684
685<div class="doc_text">
686
687<p>Global variables define regions of memory allocated at compilation time
688instead of run-time. Global variables may optionally be initialized, may have
689an explicit section to be placed in, and may have an optional explicit alignment
690specified. A variable may be defined as "thread_local", which means that it
691will not be shared by threads (each thread will have a separated copy of the
692variable). A variable may be defined as a global "constant," which indicates
693that the contents of the variable will <b>never</b> be modified (enabling better
694optimization, allowing the global data to be placed in the read-only section of
695an executable, etc). Note that variables that need runtime initialization
696cannot be marked "constant" as there is a store to the variable.</p>
697
698<p>
699LLVM explicitly allows <em>declarations</em> of global variables to be marked
700constant, even if the final definition of the global is not. This capability
701can be used to enable slightly better optimization of the program, but requires
702the language definition to guarantee that optimizations based on the
703'constantness' are valid for the translation units that do not include the
704definition.
705</p>
706
707<p>As SSA values, global variables define pointer values that are in
708scope (i.e. they dominate) all basic blocks in the program. Global
709variables always define a pointer to their "content" type because they
710describe a region of memory, and all memory objects in LLVM are
711accessed through pointers.</p>
712
Christopher Lambdd0049d2007-12-11 09:31:00 +0000713<p>A global variable may be declared to reside in a target-specifc numbered
714address space. For targets that support them, address spaces may affect how
715optimizations are performed and/or what target instructions are used to access
Christopher Lamb20a39e92007-12-12 08:44:39 +0000716the variable. The default address space is zero. The address space qualifier
717must precede any other attributes.</p>
Christopher Lambdd0049d2007-12-11 09:31:00 +0000718
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000719<p>LLVM allows an explicit section to be specified for globals. If the target
720supports it, it will emit globals to the section specified.</p>
721
722<p>An explicit alignment may be specified for a global. If not present, or if
723the alignment is set to zero, the alignment of the global is set by the target
724to whatever it feels convenient. If an explicit alignment is specified, the
725global is forced to have at least that much alignment. All alignments must be
726a power of 2.</p>
727
Christopher Lambdd0049d2007-12-11 09:31:00 +0000728<p>For example, the following defines a global in a numbered address space with
729an initializer, section, and alignment:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000730
731<div class="doc_code">
732<pre>
Christopher Lambdd0049d2007-12-11 09:31:00 +0000733@G = constant float 1.0 addrspace(5), section "foo", align 4
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000734</pre>
735</div>
736
737</div>
738
739
740<!-- ======================================================================= -->
741<div class="doc_subsection">
742 <a name="functionstructure">Functions</a>
743</div>
744
745<div class="doc_text">
746
747<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
748an optional <a href="#linkage">linkage type</a>, an optional
749<a href="#visibility">visibility style</a>, an optional
750<a href="#callingconv">calling convention</a>, a return type, an optional
751<a href="#paramattrs">parameter attribute</a> for the return type, a function
752name, a (possibly empty) argument list (each with optional
753<a href="#paramattrs">parameter attributes</a>), an optional section, an
Devang Pateld468f1c2008-09-04 23:05:13 +0000754optional alignment, an optional <a href="#gc">garbage collector name</a>,
755an optional <a href="#notes">function notes</a>, an
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000756opening curly brace, a list of basic blocks, and a closing curly brace.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000757
758LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
759optional <a href="#linkage">linkage type</a>, an optional
760<a href="#visibility">visibility style</a>, an optional
761<a href="#callingconv">calling convention</a>, a return type, an optional
762<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000763name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksend606f5b2007-12-10 03:30:21 +0000764<a href="#gc">garbage collector name</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000765
Chris Lattner96451482008-08-05 18:29:16 +0000766<p>A function definition contains a list of basic blocks, forming the CFG
767(Control Flow Graph) for
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000768the function. Each basic block may optionally start with a label (giving the
769basic block a symbol table entry), contains a list of instructions, and ends
770with a <a href="#terminators">terminator</a> instruction (such as a branch or
771function return).</p>
772
773<p>The first basic block in a function is special in two ways: it is immediately
774executed on entrance to the function, and it is not allowed to have predecessor
775basic blocks (i.e. there can not be any branches to the entry block of a
776function). Because the block can have no predecessors, it also cannot have any
777<a href="#i_phi">PHI nodes</a>.</p>
778
779<p>LLVM allows an explicit section to be specified for functions. If the target
780supports it, it will emit functions to the section specified.</p>
781
782<p>An explicit alignment may be specified for a function. If not present, or if
783the alignment is set to zero, the alignment of the function is set by the target
784to whatever it feels convenient. If an explicit alignment is specified, the
785function is forced to have at least that much alignment. All alignments must be
786a power of 2.</p>
787
788</div>
789
790
791<!-- ======================================================================= -->
792<div class="doc_subsection">
793 <a name="aliasstructure">Aliases</a>
794</div>
795<div class="doc_text">
796 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov96822812008-03-22 08:36:14 +0000797 function, global variable, another alias or bitcast of global value). Aliases
798 may have an optional <a href="#linkage">linkage type</a>, and an
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000799 optional <a href="#visibility">visibility style</a>.</p>
800
801 <h5>Syntax:</h5>
802
803<div class="doc_code">
804<pre>
Duncan Sandsd7bfabf2008-09-12 20:48:21 +0000805@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000806</pre>
807</div>
808
809</div>
810
811
812
813<!-- ======================================================================= -->
814<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
815<div class="doc_text">
816 <p>The return type and each parameter of a function type may have a set of
817 <i>parameter attributes</i> associated with them. Parameter attributes are
818 used to communicate additional information about the result or parameters of
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000819 a function. Parameter attributes are considered to be part of the function,
820 not of the function type, so functions with different parameter attributes
821 can have the same function type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000822
823 <p>Parameter attributes are simple keywords that follow the type specified. If
824 multiple parameter attributes are needed, they are space separated. For
825 example:</p>
826
827<div class="doc_code">
828<pre>
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000829declare i32 @printf(i8* noalias , ...) nounwind
830declare i32 @atoi(i8*) nounwind readonly
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000831</pre>
832</div>
833
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000834 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
835 <tt>readonly</tt>) come immediately after the argument list.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000836
837 <p>Currently, only the following parameter attributes are defined:</p>
838 <dl>
Reid Spencerf234bed2007-07-19 23:13:04 +0000839 <dt><tt>zeroext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000840 <dd>This indicates that the parameter should be zero extended just before
841 a call to this function.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000842
Reid Spencerf234bed2007-07-19 23:13:04 +0000843 <dt><tt>signext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000844 <dd>This indicates that the parameter should be sign extended just before
845 a call to this function.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000846
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000847 <dt><tt>inreg</tt></dt>
Dale Johannesenc08a0e22008-09-25 20:47:45 +0000848 <dd>This indicates that this parameter or return value should be treated
849 in a special target-dependent fashion during while emitting code for a
850 function call or return (usually, by putting it in a register as opposed
851 to memory; in some places it is used to distinguish between two different
852 kinds of registers). Use of this attribute is target-specific</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000853
854 <dt><tt>byval</tt></dt>
Chris Lattner04c86182008-01-15 04:34:22 +0000855 <dd>This indicates that the pointer parameter should really be passed by
856 value to the function. The attribute implies that a hidden copy of the
857 pointee is made between the caller and the callee, so the callee is unable
Chris Lattner6a9f3c42008-08-05 18:21:08 +0000858 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner04c86182008-01-15 04:34:22 +0000859 pointer arguments. It is generally used to pass structs and arrays by
860 value, but is also valid on scalars (even though this is silly).</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000861
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000862 <dt><tt>sret</tt></dt>
Duncan Sands616cc032008-02-18 04:19:38 +0000863 <dd>This indicates that the pointer parameter specifies the address of a
864 structure that is the return value of the function in the source program.
Duncan Sandsef0e9e42008-03-17 12:17:41 +0000865 Loads and stores to the structure are assumed not to trap.
Duncan Sands616cc032008-02-18 04:19:38 +0000866 May only be applied to the first parameter.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000867
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000868 <dt><tt>noalias</tt></dt>
Owen Andersonc4fc4cd2008-02-18 04:09:01 +0000869 <dd>This indicates that the parameter does not alias any global or any other
870 parameter. The caller is responsible for ensuring that this is the case,
871 usually by placing the value in a stack allocation.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000872
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000873 <dt><tt>noreturn</tt></dt>
874 <dd>This function attribute indicates that the function never returns. This
875 indicates to LLVM that every call to this function should be treated as if
876 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000877
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000878 <dt><tt>nounwind</tt></dt>
Duncan Sandsef0e9e42008-03-17 12:17:41 +0000879 <dd>This function attribute indicates that no exceptions unwind out of the
880 function. Usually this is because the function makes no use of exceptions,
881 but it may also be that the function catches any exceptions thrown when
882 executing it.</dd>
883
Duncan Sands4ee46812007-07-27 19:57:41 +0000884 <dt><tt>nest</tt></dt>
Duncan Sandsf1a7d4c2008-07-08 09:27:25 +0000885 <dd>This indicates that the pointer parameter can be excised using the
Duncan Sands4ee46812007-07-27 19:57:41 +0000886 <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
Duncan Sands13e13f82007-11-22 20:23:04 +0000887 <dt><tt>readonly</tt></dt>
Duncan Sandsd69c0e62007-11-14 21:14:02 +0000888 <dd>This function attribute indicates that the function has no side-effects
Duncan Sands13e13f82007-11-22 20:23:04 +0000889 except for producing a return value or throwing an exception. The value
890 returned must only depend on the function arguments and/or global variables.
891 It may use values obtained by dereferencing pointers.</dd>
892 <dt><tt>readnone</tt></dt>
893 <dd>A <tt>readnone</tt> function has the same restrictions as a <tt>readonly</tt>
Duncan Sandsd69c0e62007-11-14 21:14:02 +0000894 function, but in addition it is not allowed to dereference any pointer arguments
895 or global variables.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000896 </dl>
897
898</div>
899
900<!-- ======================================================================= -->
901<div class="doc_subsection">
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000902 <a name="gc">Garbage Collector Names</a>
903</div>
904
905<div class="doc_text">
906<p>Each function may specify a garbage collector name, which is simply a
907string.</p>
908
909<div class="doc_code"><pre
910>define void @f() gc "name" { ...</pre></div>
911
912<p>The compiler declares the supported values of <i>name</i>. Specifying a
913collector which will cause the compiler to alter its output in order to support
914the named garbage collection algorithm.</p>
915</div>
916
917<!-- ======================================================================= -->
918<div class="doc_subsection">
Devang Pateld468f1c2008-09-04 23:05:13 +0000919 <a name="notes">Function Notes</a>
920</div>
921
922<div class="doc_text">
Devang Patel25928cb2008-09-04 23:10:26 +0000923<p>The function definition may list function notes which are used by
924various passes.</p>
Devang Pateld468f1c2008-09-04 23:05:13 +0000925
926<div class="doc_code">
Bill Wendling74d3eac2008-09-07 10:26:33 +0000927<pre>
928define void @f() notes(inline=Always) { ... }
929define void @f() notes(inline=Always,opt-size) { ... }
930define void @f() notes(inline=Never,opt-size) { ... }
931define void @f() notes(opt-size) { ... }
932</pre>
Devang Pateld468f1c2008-09-04 23:05:13 +0000933</div>
934
Bill Wendling74d3eac2008-09-07 10:26:33 +0000935<dl>
936<dt><tt>inline=Always</tt></dt>
937<dd>This note requests inliner to inline this function irrespective of inlining
938size threshold for this function.</dd>
939
940<dt><tt>inline=Never</tt></dt>
941<dd>This note requests inliner to never inline this function in any situation.
942This note may not be used together with <tt>inline=Always</tt> note.</dd>
943
944<dt><tt>opt-size</tt></dt>
945<dd>This note suggests optimization passes and code generator passes to make
946choices that help reduce code size.</dd>
947
948</dl>
949
950<p>Any notes that are not documented here are considered invalid notes.</p>
Devang Pateld468f1c2008-09-04 23:05:13 +0000951</div>
952
953<!-- ======================================================================= -->
954<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000955 <a name="moduleasm">Module-Level Inline Assembly</a>
956</div>
957
958<div class="doc_text">
959<p>
960Modules may contain "module-level inline asm" blocks, which corresponds to the
961GCC "file scope inline asm" blocks. These blocks are internally concatenated by
962LLVM and treated as a single unit, but may be separated in the .ll file if
963desired. The syntax is very simple:
964</p>
965
966<div class="doc_code">
967<pre>
968module asm "inline asm code goes here"
969module asm "more can go here"
970</pre>
971</div>
972
973<p>The strings can contain any character by escaping non-printable characters.
974 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
975 for the number.
976</p>
977
978<p>
979 The inline asm code is simply printed to the machine code .s file when
980 assembly code is generated.
981</p>
982</div>
983
984<!-- ======================================================================= -->
985<div class="doc_subsection">
986 <a name="datalayout">Data Layout</a>
987</div>
988
989<div class="doc_text">
990<p>A module may specify a target specific data layout string that specifies how
991data is to be laid out in memory. The syntax for the data layout is simply:</p>
992<pre> target datalayout = "<i>layout specification</i>"</pre>
993<p>The <i>layout specification</i> consists of a list of specifications
994separated by the minus sign character ('-'). Each specification starts with a
995letter and may include other information after the letter to define some
996aspect of the data layout. The specifications accepted are as follows: </p>
997<dl>
998 <dt><tt>E</tt></dt>
999 <dd>Specifies that the target lays out data in big-endian form. That is, the
1000 bits with the most significance have the lowest address location.</dd>
1001 <dt><tt>e</tt></dt>
Chris Lattner96451482008-08-05 18:29:16 +00001002 <dd>Specifies that the target lays out data in little-endian form. That is,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001003 the bits with the least significance have the lowest address location.</dd>
1004 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1005 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1006 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1007 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1008 too.</dd>
1009 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1010 <dd>This specifies the alignment for an integer type of a given bit
1011 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1012 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1013 <dd>This specifies the alignment for a vector type of a given bit
1014 <i>size</i>.</dd>
1015 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1016 <dd>This specifies the alignment for a floating point type of a given bit
1017 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1018 (double).</dd>
1019 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1020 <dd>This specifies the alignment for an aggregate type of a given bit
1021 <i>size</i>.</dd>
1022</dl>
1023<p>When constructing the data layout for a given target, LLVM starts with a
1024default set of specifications which are then (possibly) overriden by the
1025specifications in the <tt>datalayout</tt> keyword. The default specifications
1026are given in this list:</p>
1027<ul>
1028 <li><tt>E</tt> - big endian</li>
1029 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1030 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1031 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1032 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1033 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner96451482008-08-05 18:29:16 +00001034 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001035 alignment of 64-bits</li>
1036 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1037 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1038 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1039 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1040 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1041</ul>
Chris Lattner6a9f3c42008-08-05 18:21:08 +00001042<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001043following rules:
1044<ol>
1045 <li>If the type sought is an exact match for one of the specifications, that
1046 specification is used.</li>
1047 <li>If no match is found, and the type sought is an integer type, then the
1048 smallest integer type that is larger than the bitwidth of the sought type is
1049 used. If none of the specifications are larger than the bitwidth then the the
1050 largest integer type is used. For example, given the default specifications
1051 above, the i7 type will use the alignment of i8 (next largest) while both
1052 i65 and i256 will use the alignment of i64 (largest specified).</li>
1053 <li>If no match is found, and the type sought is a vector type, then the
1054 largest vector type that is smaller than the sought vector type will be used
1055 as a fall back. This happens because <128 x double> can be implemented in
1056 terms of 64 <2 x double>, for example.</li>
1057</ol>
1058</div>
1059
1060<!-- *********************************************************************** -->
1061<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1062<!-- *********************************************************************** -->
1063
1064<div class="doc_text">
1065
1066<p>The LLVM type system is one of the most important features of the
1067intermediate representation. Being typed enables a number of
Chris Lattner96451482008-08-05 18:29:16 +00001068optimizations to be performed on the intermediate representation directly,
1069without having to do
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001070extra analyses on the side before the transformation. A strong type
1071system makes it easier to read the generated code and enables novel
1072analyses and transformations that are not feasible to perform on normal
1073three address code representations.</p>
1074
1075</div>
1076
1077<!-- ======================================================================= -->
Chris Lattner488772f2008-01-04 04:32:38 +00001078<div class="doc_subsection"> <a name="t_classifications">Type
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001079Classifications</a> </div>
1080<div class="doc_text">
Chris Lattner488772f2008-01-04 04:32:38 +00001081<p>The types fall into a few useful
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001082classifications:</p>
1083
1084<table border="1" cellspacing="0" cellpadding="4">
1085 <tbody>
1086 <tr><th>Classification</th><th>Types</th></tr>
1087 <tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001088 <td><a href="#t_integer">integer</a></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001089 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
1090 </tr>
1091 <tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001092 <td><a href="#t_floating">floating point</a></td>
1093 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001094 </tr>
1095 <tr>
1096 <td><a name="t_firstclass">first class</a></td>
Chris Lattner488772f2008-01-04 04:32:38 +00001097 <td><a href="#t_integer">integer</a>,
1098 <a href="#t_floating">floating point</a>,
1099 <a href="#t_pointer">pointer</a>,
Dan Gohmanf6237db2008-06-18 18:42:13 +00001100 <a href="#t_vector">vector</a>,
Dan Gohman74d6faf2008-05-12 23:51:09 +00001101 <a href="#t_struct">structure</a>,
1102 <a href="#t_array">array</a>,
Dan Gohmand13951e2008-05-23 22:50:26 +00001103 <a href="#t_label">label</a>.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001104 </td>
1105 </tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001106 <tr>
1107 <td><a href="#t_primitive">primitive</a></td>
1108 <td><a href="#t_label">label</a>,
1109 <a href="#t_void">void</a>,
Chris Lattner488772f2008-01-04 04:32:38 +00001110 <a href="#t_floating">floating point</a>.</td>
1111 </tr>
1112 <tr>
1113 <td><a href="#t_derived">derived</a></td>
1114 <td><a href="#t_integer">integer</a>,
1115 <a href="#t_array">array</a>,
1116 <a href="#t_function">function</a>,
1117 <a href="#t_pointer">pointer</a>,
1118 <a href="#t_struct">structure</a>,
1119 <a href="#t_pstruct">packed structure</a>,
1120 <a href="#t_vector">vector</a>,
1121 <a href="#t_opaque">opaque</a>.
1122 </tr>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001123 </tbody>
1124</table>
1125
1126<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1127most important. Values of these types are the only ones which can be
1128produced by instructions, passed as arguments, or used as operands to
Dan Gohman4f29e422008-05-23 21:53:15 +00001129instructions.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001130</div>
1131
1132<!-- ======================================================================= -->
Chris Lattner488772f2008-01-04 04:32:38 +00001133<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner86437612008-01-04 04:34:14 +00001134
Chris Lattner488772f2008-01-04 04:32:38 +00001135<div class="doc_text">
1136<p>The primitive types are the fundamental building blocks of the LLVM
1137system.</p>
1138
Chris Lattner86437612008-01-04 04:34:14 +00001139</div>
1140
Chris Lattner488772f2008-01-04 04:32:38 +00001141<!-- _______________________________________________________________________ -->
1142<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1143
1144<div class="doc_text">
1145 <table>
1146 <tbody>
1147 <tr><th>Type</th><th>Description</th></tr>
1148 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1149 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1150 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1151 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1152 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1153 </tbody>
1154 </table>
1155</div>
1156
1157<!-- _______________________________________________________________________ -->
1158<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1159
1160<div class="doc_text">
1161<h5>Overview:</h5>
1162<p>The void type does not represent any value and has no size.</p>
1163
1164<h5>Syntax:</h5>
1165
1166<pre>
1167 void
1168</pre>
1169</div>
1170
1171<!-- _______________________________________________________________________ -->
1172<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1173
1174<div class="doc_text">
1175<h5>Overview:</h5>
1176<p>The label type represents code labels.</p>
1177
1178<h5>Syntax:</h5>
1179
1180<pre>
1181 label
1182</pre>
1183</div>
1184
1185
1186<!-- ======================================================================= -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001187<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
1188
1189<div class="doc_text">
1190
1191<p>The real power in LLVM comes from the derived types in the system.
1192This is what allows a programmer to represent arrays, functions,
1193pointers, and other useful types. Note that these derived types may be
1194recursive: For example, it is possible to have a two dimensional array.</p>
1195
1196</div>
1197
1198<!-- _______________________________________________________________________ -->
1199<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1200
1201<div class="doc_text">
1202
1203<h5>Overview:</h5>
1204<p>The integer type is a very simple derived type that simply specifies an
1205arbitrary bit width for the integer type desired. Any bit width from 1 bit to
12062^23-1 (about 8 million) can be specified.</p>
1207
1208<h5>Syntax:</h5>
1209
1210<pre>
1211 iN
1212</pre>
1213
1214<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1215value.</p>
1216
1217<h5>Examples:</h5>
1218<table class="layout">
Chris Lattner251ab812007-12-18 06:18:21 +00001219 <tbody>
1220 <tr>
1221 <td><tt>i1</tt></td>
1222 <td>a single-bit integer.</td>
1223 </tr><tr>
1224 <td><tt>i32</tt></td>
1225 <td>a 32-bit integer.</td>
1226 </tr><tr>
1227 <td><tt>i1942652</tt></td>
1228 <td>a really big integer of over 1 million bits.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001229 </tr>
Chris Lattner251ab812007-12-18 06:18:21 +00001230 </tbody>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001231</table>
1232</div>
1233
1234<!-- _______________________________________________________________________ -->
1235<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1236
1237<div class="doc_text">
1238
1239<h5>Overview:</h5>
1240
1241<p>The array type is a very simple derived type that arranges elements
1242sequentially in memory. The array type requires a size (number of
1243elements) and an underlying data type.</p>
1244
1245<h5>Syntax:</h5>
1246
1247<pre>
1248 [&lt;# elements&gt; x &lt;elementtype&gt;]
1249</pre>
1250
1251<p>The number of elements is a constant integer value; elementtype may
1252be any type with a size.</p>
1253
1254<h5>Examples:</h5>
1255<table class="layout">
1256 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001257 <td class="left"><tt>[40 x i32]</tt></td>
1258 <td class="left">Array of 40 32-bit integer values.</td>
1259 </tr>
1260 <tr class="layout">
1261 <td class="left"><tt>[41 x i32]</tt></td>
1262 <td class="left">Array of 41 32-bit integer values.</td>
1263 </tr>
1264 <tr class="layout">
1265 <td class="left"><tt>[4 x i8]</tt></td>
1266 <td class="left">Array of 4 8-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001267 </tr>
1268</table>
1269<p>Here are some examples of multidimensional arrays:</p>
1270<table class="layout">
1271 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001272 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1273 <td class="left">3x4 array of 32-bit integer values.</td>
1274 </tr>
1275 <tr class="layout">
1276 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1277 <td class="left">12x10 array of single precision floating point values.</td>
1278 </tr>
1279 <tr class="layout">
1280 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1281 <td class="left">2x3x4 array of 16-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001282 </tr>
1283</table>
1284
1285<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1286length array. Normally, accesses past the end of an array are undefined in
1287LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1288As a special case, however, zero length arrays are recognized to be variable
1289length. This allows implementation of 'pascal style arrays' with the LLVM
1290type "{ i32, [0 x float]}", for example.</p>
1291
1292</div>
1293
1294<!-- _______________________________________________________________________ -->
1295<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
1296<div class="doc_text">
Chris Lattner43030e72008-04-23 04:59:35 +00001297
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001298<h5>Overview:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001299
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001300<p>The function type can be thought of as a function signature. It
Devang Pateld4ba41d2008-03-24 05:35:41 +00001301consists of a return type and a list of formal parameter types. The
Chris Lattner43030e72008-04-23 04:59:35 +00001302return type of a function type is a scalar type, a void type, or a struct type.
Devang Pateld5404c02008-03-24 20:52:42 +00001303If the return type is a struct type then all struct elements must be of first
Chris Lattner43030e72008-04-23 04:59:35 +00001304class types, and the struct must have at least one element.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00001305
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001306<h5>Syntax:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001307
1308<pre>
1309 &lt;returntype list&gt; (&lt;parameter list&gt;)
1310</pre>
1311
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001312<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
1313specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1314which indicates that the function takes a variable number of arguments.
1315Variable argument functions can access their arguments with the <a
Devang Patela3cc5372008-03-10 20:49:15 +00001316 href="#int_varargs">variable argument handling intrinsic</a> functions.
1317'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1318<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00001319
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001320<h5>Examples:</h5>
1321<table class="layout">
1322 <tr class="layout">
1323 <td class="left"><tt>i32 (i32)</tt></td>
1324 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1325 </td>
1326 </tr><tr class="layout">
Reid Spencerf234bed2007-07-19 23:13:04 +00001327 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001328 </tt></td>
1329 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1330 an <tt>i16</tt> that should be sign extended and a
1331 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
1332 <tt>float</tt>.
1333 </td>
1334 </tr><tr class="layout">
1335 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1336 <td class="left">A vararg function that takes at least one
1337 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1338 which returns an integer. This is the signature for <tt>printf</tt> in
1339 LLVM.
1340 </td>
Devang Pateld4ba41d2008-03-24 05:35:41 +00001341 </tr><tr class="layout">
1342 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Devang Patel6dddba22008-03-24 18:10:52 +00001343 <td class="left">A function taking an <tt>i32></tt>, returning two
1344 <tt> i32 </tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Pateld4ba41d2008-03-24 05:35:41 +00001345 </td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001346 </tr>
1347</table>
1348
1349</div>
1350<!-- _______________________________________________________________________ -->
1351<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
1352<div class="doc_text">
1353<h5>Overview:</h5>
1354<p>The structure type is used to represent a collection of data members
1355together in memory. The packing of the field types is defined to match
1356the ABI of the underlying processor. The elements of a structure may
1357be any type that has a size.</p>
1358<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1359and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1360field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1361instruction.</p>
1362<h5>Syntax:</h5>
1363<pre> { &lt;type list&gt; }<br></pre>
1364<h5>Examples:</h5>
1365<table class="layout">
1366 <tr class="layout">
1367 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1368 <td class="left">A triple of three <tt>i32</tt> values</td>
1369 </tr><tr class="layout">
1370 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1371 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1372 second element is a <a href="#t_pointer">pointer</a> to a
1373 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1374 an <tt>i32</tt>.</td>
1375 </tr>
1376</table>
1377</div>
1378
1379<!-- _______________________________________________________________________ -->
1380<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1381</div>
1382<div class="doc_text">
1383<h5>Overview:</h5>
1384<p>The packed structure type is used to represent a collection of data members
1385together in memory. There is no padding between fields. Further, the alignment
1386of a packed structure is 1 byte. The elements of a packed structure may
1387be any type that has a size.</p>
1388<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1389and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1390field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1391instruction.</p>
1392<h5>Syntax:</h5>
1393<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1394<h5>Examples:</h5>
1395<table class="layout">
1396 <tr class="layout">
1397 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1398 <td class="left">A triple of three <tt>i32</tt> values</td>
1399 </tr><tr class="layout">
Bill Wendling74d3eac2008-09-07 10:26:33 +00001400 <td class="left">
1401<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001402 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1403 second element is a <a href="#t_pointer">pointer</a> to a
1404 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1405 an <tt>i32</tt>.</td>
1406 </tr>
1407</table>
1408</div>
1409
1410<!-- _______________________________________________________________________ -->
1411<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
1412<div class="doc_text">
1413<h5>Overview:</h5>
1414<p>As in many languages, the pointer type represents a pointer or
Christopher Lambdd0049d2007-12-11 09:31:00 +00001415reference to another object, which must live in memory. Pointer types may have
1416an optional address space attribute defining the target-specific numbered
1417address space where the pointed-to object resides. The default address space is
1418zero.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001419<h5>Syntax:</h5>
1420<pre> &lt;type&gt; *<br></pre>
1421<h5>Examples:</h5>
1422<table class="layout">
1423 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001424 <td class="left"><tt>[4x i32]*</tt></td>
1425 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1426 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1427 </tr>
1428 <tr class="layout">
1429 <td class="left"><tt>i32 (i32 *) *</tt></td>
1430 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001431 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner7311d222007-12-19 05:04:11 +00001432 <tt>i32</tt>.</td>
1433 </tr>
1434 <tr class="layout">
1435 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1436 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1437 that resides in address space #5.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001438 </tr>
1439</table>
1440</div>
1441
1442<!-- _______________________________________________________________________ -->
1443<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
1444<div class="doc_text">
1445
1446<h5>Overview:</h5>
1447
1448<p>A vector type is a simple derived type that represents a vector
1449of elements. Vector types are used when multiple primitive data
1450are operated in parallel using a single instruction (SIMD).
1451A vector type requires a size (number of
1452elements) and an underlying primitive data type. Vectors must have a power
1453of two length (1, 2, 4, 8, 16 ...). Vector types are
1454considered <a href="#t_firstclass">first class</a>.</p>
1455
1456<h5>Syntax:</h5>
1457
1458<pre>
1459 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1460</pre>
1461
1462<p>The number of elements is a constant integer value; elementtype may
1463be any integer or floating point type.</p>
1464
1465<h5>Examples:</h5>
1466
1467<table class="layout">
1468 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001469 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1470 <td class="left">Vector of 4 32-bit integer values.</td>
1471 </tr>
1472 <tr class="layout">
1473 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1474 <td class="left">Vector of 8 32-bit floating-point values.</td>
1475 </tr>
1476 <tr class="layout">
1477 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1478 <td class="left">Vector of 2 64-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001479 </tr>
1480</table>
1481</div>
1482
1483<!-- _______________________________________________________________________ -->
1484<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1485<div class="doc_text">
1486
1487<h5>Overview:</h5>
1488
1489<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksenda0706e2007-10-14 00:34:53 +00001490corresponds (for example) to the C notion of a forward declared structure type.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001491In LLVM, opaque types can eventually be resolved to any type (not just a
1492structure type).</p>
1493
1494<h5>Syntax:</h5>
1495
1496<pre>
1497 opaque
1498</pre>
1499
1500<h5>Examples:</h5>
1501
1502<table class="layout">
1503 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001504 <td class="left"><tt>opaque</tt></td>
1505 <td class="left">An opaque type.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001506 </tr>
1507</table>
1508</div>
1509
1510
1511<!-- *********************************************************************** -->
1512<div class="doc_section"> <a name="constants">Constants</a> </div>
1513<!-- *********************************************************************** -->
1514
1515<div class="doc_text">
1516
1517<p>LLVM has several different basic types of constants. This section describes
1518them all and their syntax.</p>
1519
1520</div>
1521
1522<!-- ======================================================================= -->
1523<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
1524
1525<div class="doc_text">
1526
1527<dl>
1528 <dt><b>Boolean constants</b></dt>
1529
1530 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
1531 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
1532 </dd>
1533
1534 <dt><b>Integer constants</b></dt>
1535
1536 <dd>Standard integers (such as '4') are constants of the <a
1537 href="#t_integer">integer</a> type. Negative numbers may be used with
1538 integer types.
1539 </dd>
1540
1541 <dt><b>Floating point constants</b></dt>
1542
1543 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1544 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00001545 notation (see below). The assembler requires the exact decimal value of
1546 a floating-point constant. For example, the assembler accepts 1.25 but
1547 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1548 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001549
1550 <dt><b>Null pointer constants</b></dt>
1551
1552 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
1553 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1554
1555</dl>
1556
1557<p>The one non-intuitive notation for constants is the optional hexadecimal form
1558of floating point constants. For example, the form '<tt>double
15590x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
15604.5e+15</tt>'. The only time hexadecimal floating point constants are required
1561(and the only time that they are generated by the disassembler) is when a
1562floating point constant must be emitted but it cannot be represented as a
1563decimal floating point number. For example, NaN's, infinities, and other
1564special values are represented in their IEEE hexadecimal format so that
1565assembly and disassembly do not cause any bits to change in the constants.</p>
1566
1567</div>
1568
1569<!-- ======================================================================= -->
1570<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1571</div>
1572
1573<div class="doc_text">
1574<p>Aggregate constants arise from aggregation of simple constants
1575and smaller aggregate constants.</p>
1576
1577<dl>
1578 <dt><b>Structure constants</b></dt>
1579
1580 <dd>Structure constants are represented with notation similar to structure
1581 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner6c8de962007-12-25 20:34:52 +00001582 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1583 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001584 must have <a href="#t_struct">structure type</a>, and the number and
1585 types of elements must match those specified by the type.
1586 </dd>
1587
1588 <dt><b>Array constants</b></dt>
1589
1590 <dd>Array constants are represented with notation similar to array type
1591 definitions (a comma separated list of elements, surrounded by square brackets
1592 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
1593 constants must have <a href="#t_array">array type</a>, and the number and
1594 types of elements must match those specified by the type.
1595 </dd>
1596
1597 <dt><b>Vector constants</b></dt>
1598
1599 <dd>Vector constants are represented with notation similar to vector type
1600 definitions (a comma separated list of elements, surrounded by
1601 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
1602 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
1603 href="#t_vector">vector type</a>, and the number and types of elements must
1604 match those specified by the type.
1605 </dd>
1606
1607 <dt><b>Zero initialization</b></dt>
1608
1609 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1610 value to zero of <em>any</em> type, including scalar and aggregate types.
1611 This is often used to avoid having to print large zero initializers (e.g. for
1612 large arrays) and is always exactly equivalent to using explicit zero
1613 initializers.
1614 </dd>
1615</dl>
1616
1617</div>
1618
1619<!-- ======================================================================= -->
1620<div class="doc_subsection">
1621 <a name="globalconstants">Global Variable and Function Addresses</a>
1622</div>
1623
1624<div class="doc_text">
1625
1626<p>The addresses of <a href="#globalvars">global variables</a> and <a
1627href="#functionstructure">functions</a> are always implicitly valid (link-time)
1628constants. These constants are explicitly referenced when the <a
1629href="#identifiers">identifier for the global</a> is used and always have <a
1630href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1631file:</p>
1632
1633<div class="doc_code">
1634<pre>
1635@X = global i32 17
1636@Y = global i32 42
1637@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1638</pre>
1639</div>
1640
1641</div>
1642
1643<!-- ======================================================================= -->
1644<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
1645<div class="doc_text">
1646 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
1647 no specific value. Undefined values may be of any type and be used anywhere
1648 a constant is permitted.</p>
1649
1650 <p>Undefined values indicate to the compiler that the program is well defined
1651 no matter what value is used, giving the compiler more freedom to optimize.
1652 </p>
1653</div>
1654
1655<!-- ======================================================================= -->
1656<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1657</div>
1658
1659<div class="doc_text">
1660
1661<p>Constant expressions are used to allow expressions involving other constants
1662to be used as constants. Constant expressions may be of any <a
1663href="#t_firstclass">first class</a> type and may involve any LLVM operation
1664that does not have side effects (e.g. load and call are not supported). The
1665following is the syntax for constant expressions:</p>
1666
1667<dl>
1668 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1669 <dd>Truncate a constant to another type. The bit size of CST must be larger
1670 than the bit size of TYPE. Both types must be integers.</dd>
1671
1672 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1673 <dd>Zero extend a constant to another type. The bit size of CST must be
1674 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1675
1676 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1677 <dd>Sign extend a constant to another type. The bit size of CST must be
1678 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1679
1680 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1681 <dd>Truncate a floating point constant to another floating point type. The
1682 size of CST must be larger than the size of TYPE. Both types must be
1683 floating point.</dd>
1684
1685 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1686 <dd>Floating point extend a constant to another type. The size of CST must be
1687 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1688
Reid Spencere6adee82007-07-31 14:40:14 +00001689 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001690 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begeman78246ca2007-11-17 03:58:34 +00001691 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1692 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1693 of the same number of elements. If the value won't fit in the integer type,
1694 the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001695
1696 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
1697 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begeman78246ca2007-11-17 03:58:34 +00001698 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1699 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1700 of the same number of elements. If the value won't fit in the integer type,
1701 the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001702
1703 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
1704 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begeman78246ca2007-11-17 03:58:34 +00001705 constant. TYPE must be a scalar or vector floating point type. CST must be of
1706 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1707 of the same number of elements. If the value won't fit in the floating point
1708 type, the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001709
1710 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
1711 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begeman78246ca2007-11-17 03:58:34 +00001712 constant. TYPE must be a scalar or vector floating point type. CST must be of
1713 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1714 of the same number of elements. If the value won't fit in the floating point
1715 type, the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001716
1717 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1718 <dd>Convert a pointer typed constant to the corresponding integer constant
1719 TYPE must be an integer type. CST must be of pointer type. The CST value is
1720 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1721
1722 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1723 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1724 pointer type. CST must be of integer type. The CST value is zero extended,
1725 truncated, or unchanged to make it fit in a pointer size. This one is
1726 <i>really</i> dangerous!</dd>
1727
1728 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
1729 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1730 identical (same number of bits). The conversion is done as if the CST value
1731 was stored to memory and read back as TYPE. In other words, no bits change
1732 with this operator, just the type. This can be used for conversion of
1733 vector types to any other type, as long as they have the same bit width. For
Dan Gohman7305fa02008-09-08 16:45:59 +00001734 pointers it is only valid to cast to another pointer type. It is not valid
1735 to bitcast to or from an aggregate type.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001736 </dd>
1737
1738 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1739
1740 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1741 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1742 instruction, the index list may have zero or more indexes, which are required
1743 to make sense for the type of "CSTPTR".</dd>
1744
1745 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1746
1747 <dd>Perform the <a href="#i_select">select operation</a> on
1748 constants.</dd>
1749
1750 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1751 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1752
1753 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1754 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
1755
Nate Begeman646fa482008-05-12 19:01:56 +00001756 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1757 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1758
1759 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1760 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1761
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001762 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1763
1764 <dd>Perform the <a href="#i_extractelement">extractelement
1765 operation</a> on constants.
1766
1767 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1768
1769 <dd>Perform the <a href="#i_insertelement">insertelement
1770 operation</a> on constants.</dd>
1771
1772
1773 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1774
1775 <dd>Perform the <a href="#i_shufflevector">shufflevector
1776 operation</a> on constants.</dd>
1777
1778 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1779
1780 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1781 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
1782 binary</a> operations. The constraints on operands are the same as those for
1783 the corresponding instruction (e.g. no bitwise operations on floating point
1784 values are allowed).</dd>
1785</dl>
1786</div>
1787
1788<!-- *********************************************************************** -->
1789<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1790<!-- *********************************************************************** -->
1791
1792<!-- ======================================================================= -->
1793<div class="doc_subsection">
1794<a name="inlineasm">Inline Assembler Expressions</a>
1795</div>
1796
1797<div class="doc_text">
1798
1799<p>
1800LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1801Module-Level Inline Assembly</a>) through the use of a special value. This
1802value represents the inline assembler as a string (containing the instructions
1803to emit), a list of operand constraints (stored as a string), and a flag that
1804indicates whether or not the inline asm expression has side effects. An example
1805inline assembler expression is:
1806</p>
1807
1808<div class="doc_code">
1809<pre>
1810i32 (i32) asm "bswap $0", "=r,r"
1811</pre>
1812</div>
1813
1814<p>
1815Inline assembler expressions may <b>only</b> be used as the callee operand of
1816a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1817</p>
1818
1819<div class="doc_code">
1820<pre>
1821%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
1822</pre>
1823</div>
1824
1825<p>
1826Inline asms with side effects not visible in the constraint list must be marked
1827as having side effects. This is done through the use of the
1828'<tt>sideeffect</tt>' keyword, like so:
1829</p>
1830
1831<div class="doc_code">
1832<pre>
1833call void asm sideeffect "eieio", ""()
1834</pre>
1835</div>
1836
1837<p>TODO: The format of the asm and constraints string still need to be
1838documented here. Constraints on what can be done (e.g. duplication, moving, etc
1839need to be documented).
1840</p>
1841
1842</div>
1843
1844<!-- *********************************************************************** -->
1845<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1846<!-- *********************************************************************** -->
1847
1848<div class="doc_text">
1849
1850<p>The LLVM instruction set consists of several different
1851classifications of instructions: <a href="#terminators">terminator
1852instructions</a>, <a href="#binaryops">binary instructions</a>,
1853<a href="#bitwiseops">bitwise binary instructions</a>, <a
1854 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1855instructions</a>.</p>
1856
1857</div>
1858
1859<!-- ======================================================================= -->
1860<div class="doc_subsection"> <a name="terminators">Terminator
1861Instructions</a> </div>
1862
1863<div class="doc_text">
1864
1865<p>As mentioned <a href="#functionstructure">previously</a>, every
1866basic block in a program ends with a "Terminator" instruction, which
1867indicates which block should be executed after the current block is
1868finished. These terminator instructions typically yield a '<tt>void</tt>'
1869value: they produce control flow, not values (the one exception being
1870the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
1871<p>There are six different terminator instructions: the '<a
1872 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1873instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
1874the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1875 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1876 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
1877
1878</div>
1879
1880<!-- _______________________________________________________________________ -->
1881<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1882Instruction</a> </div>
1883<div class="doc_text">
1884<h5>Syntax:</h5>
1885<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
1886 ret void <i>; Return from void function</i>
Devang Patela3cc5372008-03-10 20:49:15 +00001887 ret &lt;type&gt; &lt;value&gt;, &lt;type&gt; &lt;value&gt; <i>; Return two values from a non-void function </i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001888</pre>
Chris Lattner43030e72008-04-23 04:59:35 +00001889
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001890<h5>Overview:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001891
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001892<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
1893value) from a function back to the caller.</p>
1894<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Chris Lattner43030e72008-04-23 04:59:35 +00001895returns value(s) and then causes control flow, and one that just causes
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001896control flow to occur.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00001897
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001898<h5>Arguments:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001899
1900<p>The '<tt>ret</tt>' instruction may return zero, one or multiple values.
1901The type of each return value must be a '<a href="#t_firstclass">first
1902class</a>' type. Note that a function is not <a href="#wellformed">well
1903formed</a> if there exists a '<tt>ret</tt>' instruction inside of the
1904function that returns values that do not match the return type of the
1905function.</p>
1906
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001907<h5>Semantics:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001908
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001909<p>When the '<tt>ret</tt>' instruction is executed, control flow
1910returns back to the calling function's context. If the caller is a "<a
1911 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
1912the instruction after the call. If the caller was an "<a
1913 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
1914at the beginning of the "normal" destination block. If the instruction
1915returns a value, that value shall set the call or invoke instruction's
Devang Patela3cc5372008-03-10 20:49:15 +00001916return value. If the instruction returns multiple values then these
Devang Patelec8a5b02008-03-11 05:51:59 +00001917values can only be accessed through a '<a href="#i_getresult"><tt>getresult</tt>
1918</a>' instruction.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00001919
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001920<h5>Example:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001921
1922<pre>
1923 ret i32 5 <i>; Return an integer value of 5</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001924 ret void <i>; Return from a void function</i>
Devang Patela3cc5372008-03-10 20:49:15 +00001925 ret i32 4, i8 2 <i>; Return two values 4 and 2 </i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001926</pre>
1927</div>
1928<!-- _______________________________________________________________________ -->
1929<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
1930<div class="doc_text">
1931<h5>Syntax:</h5>
1932<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
1933</pre>
1934<h5>Overview:</h5>
1935<p>The '<tt>br</tt>' instruction is used to cause control flow to
1936transfer to a different basic block in the current function. There are
1937two forms of this instruction, corresponding to a conditional branch
1938and an unconditional branch.</p>
1939<h5>Arguments:</h5>
1940<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
1941single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
1942unconditional form of the '<tt>br</tt>' instruction takes a single
1943'<tt>label</tt>' value as a target.</p>
1944<h5>Semantics:</h5>
1945<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
1946argument is evaluated. If the value is <tt>true</tt>, control flows
1947to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1948control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
1949<h5>Example:</h5>
1950<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
1951 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
1952</div>
1953<!-- _______________________________________________________________________ -->
1954<div class="doc_subsubsection">
1955 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1956</div>
1957
1958<div class="doc_text">
1959<h5>Syntax:</h5>
1960
1961<pre>
1962 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1963</pre>
1964
1965<h5>Overview:</h5>
1966
1967<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1968several different places. It is a generalization of the '<tt>br</tt>'
1969instruction, allowing a branch to occur to one of many possible
1970destinations.</p>
1971
1972
1973<h5>Arguments:</h5>
1974
1975<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1976comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1977an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1978table is not allowed to contain duplicate constant entries.</p>
1979
1980<h5>Semantics:</h5>
1981
1982<p>The <tt>switch</tt> instruction specifies a table of values and
1983destinations. When the '<tt>switch</tt>' instruction is executed, this
1984table is searched for the given value. If the value is found, control flow is
1985transfered to the corresponding destination; otherwise, control flow is
1986transfered to the default destination.</p>
1987
1988<h5>Implementation:</h5>
1989
1990<p>Depending on properties of the target machine and the particular
1991<tt>switch</tt> instruction, this instruction may be code generated in different
1992ways. For example, it could be generated as a series of chained conditional
1993branches or with a lookup table.</p>
1994
1995<h5>Example:</h5>
1996
1997<pre>
1998 <i>; Emulate a conditional br instruction</i>
1999 %Val = <a href="#i_zext">zext</a> i1 %value to i32
2000 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
2001
2002 <i>; Emulate an unconditional br instruction</i>
2003 switch i32 0, label %dest [ ]
2004
2005 <i>; Implement a jump table:</i>
2006 switch i32 %val, label %otherwise [ i32 0, label %onzero
2007 i32 1, label %onone
2008 i32 2, label %ontwo ]
2009</pre>
2010</div>
2011
2012<!-- _______________________________________________________________________ -->
2013<div class="doc_subsubsection">
2014 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2015</div>
2016
2017<div class="doc_text">
2018
2019<h5>Syntax:</h5>
2020
2021<pre>
Nick Lewyckya1c11a12008-03-16 07:18:12 +00002022 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002023 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
2024</pre>
2025
2026<h5>Overview:</h5>
2027
2028<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2029function, with the possibility of control flow transfer to either the
2030'<tt>normal</tt>' label or the
2031'<tt>exception</tt>' label. If the callee function returns with the
2032"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2033"normal" label. If the callee (or any indirect callees) returns with the "<a
2034href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Devang Patela3cc5372008-03-10 20:49:15 +00002035continued at the dynamically nearest "exception" label. If the callee function
Devang Patelec8a5b02008-03-11 05:51:59 +00002036returns multiple values then individual return values are only accessible through
2037a '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002038
2039<h5>Arguments:</h5>
2040
2041<p>This instruction requires several arguments:</p>
2042
2043<ol>
2044 <li>
2045 The optional "cconv" marker indicates which <a href="#callingconv">calling
2046 convention</a> the call should use. If none is specified, the call defaults
2047 to using C calling conventions.
2048 </li>
2049 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2050 function value being invoked. In most cases, this is a direct function
2051 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2052 an arbitrary pointer to function value.
2053 </li>
2054
2055 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2056 function to be invoked. </li>
2057
2058 <li>'<tt>function args</tt>': argument list whose types match the function
2059 signature argument types. If the function signature indicates the function
2060 accepts a variable number of arguments, the extra arguments can be
2061 specified. </li>
2062
2063 <li>'<tt>normal label</tt>': the label reached when the called function
2064 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2065
2066 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2067 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2068
2069</ol>
2070
2071<h5>Semantics:</h5>
2072
2073<p>This instruction is designed to operate as a standard '<tt><a
2074href="#i_call">call</a></tt>' instruction in most regards. The primary
2075difference is that it establishes an association with a label, which is used by
2076the runtime library to unwind the stack.</p>
2077
2078<p>This instruction is used in languages with destructors to ensure that proper
2079cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2080exception. Additionally, this is important for implementation of
2081'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2082
2083<h5>Example:</h5>
2084<pre>
Nick Lewyckya1c11a12008-03-16 07:18:12 +00002085 %retval = invoke i32 @Test(i32 15) to label %Continue
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002086 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckya1c11a12008-03-16 07:18:12 +00002087 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002088 unwind label %TestCleanup <i>; {i32}:retval set</i>
2089</pre>
2090</div>
2091
2092
2093<!-- _______________________________________________________________________ -->
2094
2095<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2096Instruction</a> </div>
2097
2098<div class="doc_text">
2099
2100<h5>Syntax:</h5>
2101<pre>
2102 unwind
2103</pre>
2104
2105<h5>Overview:</h5>
2106
2107<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2108at the first callee in the dynamic call stack which used an <a
2109href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2110primarily used to implement exception handling.</p>
2111
2112<h5>Semantics:</h5>
2113
Chris Lattner8b094fc2008-04-19 21:01:16 +00002114<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002115immediately halt. The dynamic call stack is then searched for the first <a
2116href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2117execution continues at the "exceptional" destination block specified by the
2118<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2119dynamic call chain, undefined behavior results.</p>
2120</div>
2121
2122<!-- _______________________________________________________________________ -->
2123
2124<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2125Instruction</a> </div>
2126
2127<div class="doc_text">
2128
2129<h5>Syntax:</h5>
2130<pre>
2131 unreachable
2132</pre>
2133
2134<h5>Overview:</h5>
2135
2136<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2137instruction is used to inform the optimizer that a particular portion of the
2138code is not reachable. This can be used to indicate that the code after a
2139no-return function cannot be reached, and other facts.</p>
2140
2141<h5>Semantics:</h5>
2142
2143<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2144</div>
2145
2146
2147
2148<!-- ======================================================================= -->
2149<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
2150<div class="doc_text">
2151<p>Binary operators are used to do most of the computation in a
Chris Lattnerab596d92008-04-01 18:47:32 +00002152program. They require two operands of the same type, execute an operation on them, and
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002153produce a single value. The operands might represent
2154multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattnerab596d92008-04-01 18:47:32 +00002155The result value has the same type as its operands.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002156<p>There are several different binary operators:</p>
2157</div>
2158<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002159<div class="doc_subsubsection">
2160 <a name="i_add">'<tt>add</tt>' Instruction</a>
2161</div>
2162
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002163<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002164
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002165<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002166
2167<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002168 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002169</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002170
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002171<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002172
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002173<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002174
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002175<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002176
2177<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2178 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2179 <a href="#t_vector">vector</a> values. Both arguments must have identical
2180 types.</p>
2181
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002182<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002183
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002184<p>The value produced is the integer or floating point sum of the two
2185operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002186
Chris Lattner9aba1e22008-01-28 00:36:27 +00002187<p>If an integer sum has unsigned overflow, the result returned is the
2188mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2189the result.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002190
Chris Lattner9aba1e22008-01-28 00:36:27 +00002191<p>Because LLVM integers use a two's complement representation, this
2192instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002193
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002194<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002195
2196<pre>
2197 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002198</pre>
2199</div>
2200<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002201<div class="doc_subsubsection">
2202 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2203</div>
2204
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002205<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002206
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002207<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002208
2209<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002210 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002211</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002212
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002213<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002214
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002215<p>The '<tt>sub</tt>' instruction returns the difference of its two
2216operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002217
2218<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2219'<tt>neg</tt>' instruction present in most other intermediate
2220representations.</p>
2221
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002222<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002223
2224<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2225 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2226 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2227 types.</p>
2228
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002229<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002230
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002231<p>The value produced is the integer or floating point difference of
2232the two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002233
Chris Lattner9aba1e22008-01-28 00:36:27 +00002234<p>If an integer difference has unsigned overflow, the result returned is the
2235mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2236the result.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002237
Chris Lattner9aba1e22008-01-28 00:36:27 +00002238<p>Because LLVM integers use a two's complement representation, this
2239instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002240
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002241<h5>Example:</h5>
2242<pre>
2243 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
2244 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
2245</pre>
2246</div>
Chris Lattner6704c212008-05-20 20:48:21 +00002247
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002248<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002249<div class="doc_subsubsection">
2250 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2251</div>
2252
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002253<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002254
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002255<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002256<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002257</pre>
2258<h5>Overview:</h5>
2259<p>The '<tt>mul</tt>' instruction returns the product of its two
2260operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002261
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002262<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002263
2264<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2265href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2266or <a href="#t_vector">vector</a> values. Both arguments must have identical
2267types.</p>
2268
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002269<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002270
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002271<p>The value produced is the integer or floating point product of the
2272two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002273
Chris Lattner9aba1e22008-01-28 00:36:27 +00002274<p>If the result of an integer multiplication has unsigned overflow,
2275the result returned is the mathematical result modulo
22762<sup>n</sup>, where n is the bit width of the result.</p>
2277<p>Because LLVM integers use a two's complement representation, and the
2278result is the same width as the operands, this instruction returns the
2279correct result for both signed and unsigned integers. If a full product
2280(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2281should be sign-extended or zero-extended as appropriate to the
2282width of the full product.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002283<h5>Example:</h5>
2284<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
2285</pre>
2286</div>
Chris Lattner6704c212008-05-20 20:48:21 +00002287
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002288<!-- _______________________________________________________________________ -->
2289<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2290</a></div>
2291<div class="doc_text">
2292<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002293<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002294</pre>
2295<h5>Overview:</h5>
2296<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2297operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002298
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002299<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002300
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002301<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner6704c212008-05-20 20:48:21 +00002302<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2303values. Both arguments must have identical types.</p>
2304
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002305<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002306
Chris Lattner9aba1e22008-01-28 00:36:27 +00002307<p>The value produced is the unsigned integer quotient of the two operands.</p>
2308<p>Note that unsigned integer division and signed integer division are distinct
2309operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2310<p>Division by zero leads to undefined behavior.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002311<h5>Example:</h5>
2312<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2313</pre>
2314</div>
2315<!-- _______________________________________________________________________ -->
2316<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2317</a> </div>
2318<div class="doc_text">
2319<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002320<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002321 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002322</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002323
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002324<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002325
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002326<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2327operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002328
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002329<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002330
2331<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2332<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2333values. Both arguments must have identical types.</p>
2334
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002335<h5>Semantics:</h5>
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00002336<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner9aba1e22008-01-28 00:36:27 +00002337<p>Note that signed integer division and unsigned integer division are distinct
2338operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2339<p>Division by zero leads to undefined behavior. Overflow also leads to
2340undefined behavior; this is a rare case, but can occur, for example,
2341by doing a 32-bit division of -2147483648 by -1.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002342<h5>Example:</h5>
2343<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2344</pre>
2345</div>
2346<!-- _______________________________________________________________________ -->
2347<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
2348Instruction</a> </div>
2349<div class="doc_text">
2350<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002351<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002352 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002353</pre>
2354<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002355
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002356<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
2357operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002358
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002359<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002360
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002361<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner6704c212008-05-20 20:48:21 +00002362<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2363of floating point values. Both arguments must have identical types.</p>
2364
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002365<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002366
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002367<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002368
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002369<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002370
2371<pre>
2372 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002373</pre>
2374</div>
Chris Lattner6704c212008-05-20 20:48:21 +00002375
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002376<!-- _______________________________________________________________________ -->
2377<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2378</div>
2379<div class="doc_text">
2380<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002381<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002382</pre>
2383<h5>Overview:</h5>
2384<p>The '<tt>urem</tt>' instruction returns the remainder from the
2385unsigned division of its two arguments.</p>
2386<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002387<p>The two arguments to the '<tt>urem</tt>' instruction must be
2388<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2389values. Both arguments must have identical types.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002390<h5>Semantics:</h5>
2391<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00002392This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner9aba1e22008-01-28 00:36:27 +00002393<p>Note that unsigned integer remainder and signed integer remainder are
2394distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2395<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002396<h5>Example:</h5>
2397<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2398</pre>
2399
2400</div>
2401<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002402<div class="doc_subsubsection">
2403 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2404</div>
2405
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002406<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002407
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002408<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002409
2410<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002411 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002412</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002413
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002414<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002415
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002416<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman3e3fd8c2007-11-05 23:35:22 +00002417signed division of its two operands. This instruction can also take
2418<a href="#t_vector">vector</a> versions of the values in which case
2419the elements must be integers.</p>
Chris Lattner08497ce2008-01-04 04:33:49 +00002420
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002421<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002422
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002423<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner6704c212008-05-20 20:48:21 +00002424<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2425values. Both arguments must have identical types.</p>
2426
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002427<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002428
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002429<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greifd9068fe2008-08-07 21:46:00 +00002430has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2431operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002432a value. For more information about the difference, see <a
2433 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
2434Math Forum</a>. For a table of how this is implemented in various languages,
2435please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
2436Wikipedia: modulo operation</a>.</p>
Chris Lattner9aba1e22008-01-28 00:36:27 +00002437<p>Note that signed integer remainder and unsigned integer remainder are
2438distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2439<p>Taking the remainder of a division by zero leads to undefined behavior.
2440Overflow also leads to undefined behavior; this is a rare case, but can occur,
2441for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2442(The remainder doesn't actually overflow, but this rule lets srem be
2443implemented using instructions that return both the result of the division
2444and the remainder.)</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002445<h5>Example:</h5>
2446<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2447</pre>
2448
2449</div>
2450<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002451<div class="doc_subsubsection">
2452 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2453
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002454<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002455
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002456<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002457<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002458</pre>
2459<h5>Overview:</h5>
2460<p>The '<tt>frem</tt>' instruction returns the remainder from the
2461division of its two operands.</p>
2462<h5>Arguments:</h5>
2463<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner6704c212008-05-20 20:48:21 +00002464<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2465of floating point values. Both arguments must have identical types.</p>
2466
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002467<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002468
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00002469<p>This instruction returns the <i>remainder</i> of a division.
2470The remainder has the same sign as the dividend.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002471
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002472<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002473
2474<pre>
2475 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002476</pre>
2477</div>
2478
2479<!-- ======================================================================= -->
2480<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2481Operations</a> </div>
2482<div class="doc_text">
2483<p>Bitwise binary operators are used to do various forms of
2484bit-twiddling in a program. They are generally very efficient
2485instructions and can commonly be strength reduced from other
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00002486instructions. They require two operands of the same type, execute an operation on them,
2487and produce a single value. The resulting value is the same type as its operands.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002488</div>
2489
2490<!-- _______________________________________________________________________ -->
2491<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2492Instruction</a> </div>
2493<div class="doc_text">
2494<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002495<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002496</pre>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002497
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002498<h5>Overview:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002499
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002500<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2501the left a specified number of bits.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002502
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002503<h5>Arguments:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002504
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002505<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begemanbb1ce942008-07-29 15:49:41 +00002506 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greifd9068fe2008-08-07 21:46:00 +00002507type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002508
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002509<h5>Semantics:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002510
Gabor Greifd9068fe2008-08-07 21:46:00 +00002511<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2512where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
2513equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002514
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002515<h5>Example:</h5><pre>
2516 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2517 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2518 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002519 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002520</pre>
2521</div>
2522<!-- _______________________________________________________________________ -->
2523<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2524Instruction</a> </div>
2525<div class="doc_text">
2526<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002527<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002528</pre>
2529
2530<h5>Overview:</h5>
2531<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
2532operand shifted to the right a specified number of bits with zero fill.</p>
2533
2534<h5>Arguments:</h5>
2535<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begemanbb1ce942008-07-29 15:49:41 +00002536<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greifd9068fe2008-08-07 21:46:00 +00002537type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002538
2539<h5>Semantics:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002540
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002541<p>This instruction always performs a logical shift right operation. The most
2542significant bits of the result will be filled with zero bits after the
Gabor Greifd9068fe2008-08-07 21:46:00 +00002543shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
2544the number of bits in <tt>op1</tt>, the result is undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002545
2546<h5>Example:</h5>
2547<pre>
2548 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2549 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2550 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2551 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002552 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002553</pre>
2554</div>
2555
2556<!-- _______________________________________________________________________ -->
2557<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2558Instruction</a> </div>
2559<div class="doc_text">
2560
2561<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002562<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002563</pre>
2564
2565<h5>Overview:</h5>
2566<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
2567operand shifted to the right a specified number of bits with sign extension.</p>
2568
2569<h5>Arguments:</h5>
2570<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begemanbb1ce942008-07-29 15:49:41 +00002571<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greifd9068fe2008-08-07 21:46:00 +00002572type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002573
2574<h5>Semantics:</h5>
2575<p>This instruction always performs an arithmetic shift right operation,
2576The most significant bits of the result will be filled with the sign bit
Gabor Greifd9068fe2008-08-07 21:46:00 +00002577of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
2578larger than the number of bits in <tt>op1</tt>, the result is undefined.
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002579</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002580
2581<h5>Example:</h5>
2582<pre>
2583 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2584 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2585 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2586 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002587 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002588</pre>
2589</div>
2590
2591<!-- _______________________________________________________________________ -->
2592<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2593Instruction</a> </div>
Chris Lattner6704c212008-05-20 20:48:21 +00002594
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002595<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002596
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002597<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002598
2599<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002600 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002601</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002602
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002603<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002604
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002605<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2606its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002607
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002608<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002609
2610<p>The two arguments to the '<tt>and</tt>' instruction must be
2611<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2612values. Both arguments must have identical types.</p>
2613
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002614<h5>Semantics:</h5>
2615<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
2616<p> </p>
Bill Wendling1e19eac2008-09-07 10:29:20 +00002617<div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002618<table border="1" cellspacing="0" cellpadding="4">
2619 <tbody>
2620 <tr>
2621 <td>In0</td>
2622 <td>In1</td>
2623 <td>Out</td>
2624 </tr>
2625 <tr>
2626 <td>0</td>
2627 <td>0</td>
2628 <td>0</td>
2629 </tr>
2630 <tr>
2631 <td>0</td>
2632 <td>1</td>
2633 <td>0</td>
2634 </tr>
2635 <tr>
2636 <td>1</td>
2637 <td>0</td>
2638 <td>0</td>
2639 </tr>
2640 <tr>
2641 <td>1</td>
2642 <td>1</td>
2643 <td>1</td>
2644 </tr>
2645 </tbody>
2646</table>
2647</div>
2648<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002649<pre>
2650 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002651 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2652 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
2653</pre>
2654</div>
2655<!-- _______________________________________________________________________ -->
2656<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
2657<div class="doc_text">
2658<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002659<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002660</pre>
2661<h5>Overview:</h5>
2662<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2663or of its two operands.</p>
2664<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002665
2666<p>The two arguments to the '<tt>or</tt>' instruction must be
2667<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2668values. Both arguments must have identical types.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002669<h5>Semantics:</h5>
2670<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
2671<p> </p>
Bill Wendling1e19eac2008-09-07 10:29:20 +00002672<div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002673<table border="1" cellspacing="0" cellpadding="4">
2674 <tbody>
2675 <tr>
2676 <td>In0</td>
2677 <td>In1</td>
2678 <td>Out</td>
2679 </tr>
2680 <tr>
2681 <td>0</td>
2682 <td>0</td>
2683 <td>0</td>
2684 </tr>
2685 <tr>
2686 <td>0</td>
2687 <td>1</td>
2688 <td>1</td>
2689 </tr>
2690 <tr>
2691 <td>1</td>
2692 <td>0</td>
2693 <td>1</td>
2694 </tr>
2695 <tr>
2696 <td>1</td>
2697 <td>1</td>
2698 <td>1</td>
2699 </tr>
2700 </tbody>
2701</table>
2702</div>
2703<h5>Example:</h5>
2704<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2705 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2706 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
2707</pre>
2708</div>
2709<!-- _______________________________________________________________________ -->
2710<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2711Instruction</a> </div>
2712<div class="doc_text">
2713<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002714<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002715</pre>
2716<h5>Overview:</h5>
2717<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2718or of its two operands. The <tt>xor</tt> is used to implement the
2719"one's complement" operation, which is the "~" operator in C.</p>
2720<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002721<p>The two arguments to the '<tt>xor</tt>' instruction must be
2722<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2723values. Both arguments must have identical types.</p>
2724
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002725<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002726
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002727<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
2728<p> </p>
Bill Wendling1e19eac2008-09-07 10:29:20 +00002729<div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002730<table border="1" cellspacing="0" cellpadding="4">
2731 <tbody>
2732 <tr>
2733 <td>In0</td>
2734 <td>In1</td>
2735 <td>Out</td>
2736 </tr>
2737 <tr>
2738 <td>0</td>
2739 <td>0</td>
2740 <td>0</td>
2741 </tr>
2742 <tr>
2743 <td>0</td>
2744 <td>1</td>
2745 <td>1</td>
2746 </tr>
2747 <tr>
2748 <td>1</td>
2749 <td>0</td>
2750 <td>1</td>
2751 </tr>
2752 <tr>
2753 <td>1</td>
2754 <td>1</td>
2755 <td>0</td>
2756 </tr>
2757 </tbody>
2758</table>
2759</div>
2760<p> </p>
2761<h5>Example:</h5>
2762<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2763 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2764 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2765 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
2766</pre>
2767</div>
2768
2769<!-- ======================================================================= -->
2770<div class="doc_subsection">
2771 <a name="vectorops">Vector Operations</a>
2772</div>
2773
2774<div class="doc_text">
2775
2776<p>LLVM supports several instructions to represent vector operations in a
2777target-independent manner. These instructions cover the element-access and
2778vector-specific operations needed to process vectors effectively. While LLVM
2779does directly support these vector operations, many sophisticated algorithms
2780will want to use target-specific intrinsics to take full advantage of a specific
2781target.</p>
2782
2783</div>
2784
2785<!-- _______________________________________________________________________ -->
2786<div class="doc_subsubsection">
2787 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2788</div>
2789
2790<div class="doc_text">
2791
2792<h5>Syntax:</h5>
2793
2794<pre>
2795 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
2796</pre>
2797
2798<h5>Overview:</h5>
2799
2800<p>
2801The '<tt>extractelement</tt>' instruction extracts a single scalar
2802element from a vector at a specified index.
2803</p>
2804
2805
2806<h5>Arguments:</h5>
2807
2808<p>
2809The first operand of an '<tt>extractelement</tt>' instruction is a
2810value of <a href="#t_vector">vector</a> type. The second operand is
2811an index indicating the position from which to extract the element.
2812The index may be a variable.</p>
2813
2814<h5>Semantics:</h5>
2815
2816<p>
2817The result is a scalar of the same type as the element type of
2818<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2819<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2820results are undefined.
2821</p>
2822
2823<h5>Example:</h5>
2824
2825<pre>
2826 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
2827</pre>
2828</div>
2829
2830
2831<!-- _______________________________________________________________________ -->
2832<div class="doc_subsubsection">
2833 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2834</div>
2835
2836<div class="doc_text">
2837
2838<h5>Syntax:</h5>
2839
2840<pre>
Dan Gohmanbcc3c502008-05-12 23:38:42 +00002841 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002842</pre>
2843
2844<h5>Overview:</h5>
2845
2846<p>
2847The '<tt>insertelement</tt>' instruction inserts a scalar
2848element into a vector at a specified index.
2849</p>
2850
2851
2852<h5>Arguments:</h5>
2853
2854<p>
2855The first operand of an '<tt>insertelement</tt>' instruction is a
2856value of <a href="#t_vector">vector</a> type. The second operand is a
2857scalar value whose type must equal the element type of the first
2858operand. The third operand is an index indicating the position at
2859which to insert the value. The index may be a variable.</p>
2860
2861<h5>Semantics:</h5>
2862
2863<p>
2864The result is a vector of the same type as <tt>val</tt>. Its
2865element values are those of <tt>val</tt> except at position
2866<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2867exceeds the length of <tt>val</tt>, the results are undefined.
2868</p>
2869
2870<h5>Example:</h5>
2871
2872<pre>
2873 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
2874</pre>
2875</div>
2876
2877<!-- _______________________________________________________________________ -->
2878<div class="doc_subsubsection">
2879 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2880</div>
2881
2882<div class="doc_text">
2883
2884<h5>Syntax:</h5>
2885
2886<pre>
2887 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2888</pre>
2889
2890<h5>Overview:</h5>
2891
2892<p>
2893The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2894from two input vectors, returning a vector of the same type.
2895</p>
2896
2897<h5>Arguments:</h5>
2898
2899<p>
2900The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2901with types that match each other and types that match the result of the
2902instruction. The third argument is a shuffle mask, which has the same number
2903of elements as the other vector type, but whose element type is always 'i32'.
2904</p>
2905
2906<p>
2907The shuffle mask operand is required to be a constant vector with either
2908constant integer or undef values.
2909</p>
2910
2911<h5>Semantics:</h5>
2912
2913<p>
2914The elements of the two input vectors are numbered from left to right across
2915both of the vectors. The shuffle mask operand specifies, for each element of
2916the result vector, which element of the two input registers the result element
2917gets. The element selector may be undef (meaning "don't care") and the second
2918operand may be undef if performing a shuffle from only one vector.
2919</p>
2920
2921<h5>Example:</h5>
2922
2923<pre>
2924 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
2925 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
2926 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2927 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
2928</pre>
2929</div>
2930
2931
2932<!-- ======================================================================= -->
2933<div class="doc_subsection">
Dan Gohman74d6faf2008-05-12 23:51:09 +00002934 <a name="aggregateops">Aggregate Operations</a>
2935</div>
2936
2937<div class="doc_text">
2938
2939<p>LLVM supports several instructions for working with aggregate values.
2940</p>
2941
2942</div>
2943
2944<!-- _______________________________________________________________________ -->
2945<div class="doc_subsubsection">
2946 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
2947</div>
2948
2949<div class="doc_text">
2950
2951<h5>Syntax:</h5>
2952
2953<pre>
2954 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
2955</pre>
2956
2957<h5>Overview:</h5>
2958
2959<p>
Dan Gohman6c6dea02008-05-13 18:16:06 +00002960The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
2961or array element from an aggregate value.
Dan Gohman74d6faf2008-05-12 23:51:09 +00002962</p>
2963
2964
2965<h5>Arguments:</h5>
2966
2967<p>
2968The first operand of an '<tt>extractvalue</tt>' instruction is a
2969value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohman6c6dea02008-05-13 18:16:06 +00002970type. The operands are constant indices to specify which value to extract
Dan Gohmane5febe42008-05-31 00:58:22 +00002971in a similar manner as indices in a
Dan Gohman74d6faf2008-05-12 23:51:09 +00002972'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2973</p>
2974
2975<h5>Semantics:</h5>
2976
2977<p>
2978The result is the value at the position in the aggregate specified by
2979the index operands.
2980</p>
2981
2982<h5>Example:</h5>
2983
2984<pre>
Dan Gohmane5febe42008-05-31 00:58:22 +00002985 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00002986</pre>
2987</div>
2988
2989
2990<!-- _______________________________________________________________________ -->
2991<div class="doc_subsubsection">
2992 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
2993</div>
2994
2995<div class="doc_text">
2996
2997<h5>Syntax:</h5>
2998
2999<pre>
Dan Gohmane5febe42008-05-31 00:58:22 +00003000 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003001</pre>
3002
3003<h5>Overview:</h5>
3004
3005<p>
3006The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohman6c6dea02008-05-13 18:16:06 +00003007into a struct field or array element in an aggregate.
Dan Gohman74d6faf2008-05-12 23:51:09 +00003008</p>
3009
3010
3011<h5>Arguments:</h5>
3012
3013<p>
3014The first operand of an '<tt>insertvalue</tt>' instruction is a
3015value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3016The second operand is a first-class value to insert.
Dan Gohman4f29e422008-05-23 21:53:15 +00003017The following operands are constant indices
Dan Gohmane5febe42008-05-31 00:58:22 +00003018indicating the position at which to insert the value in a similar manner as
Dan Gohman6c6dea02008-05-13 18:16:06 +00003019indices in a
Dan Gohman74d6faf2008-05-12 23:51:09 +00003020'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3021The value to insert must have the same type as the value identified
Dan Gohman6c6dea02008-05-13 18:16:06 +00003022by the indices.
Dan Gohman74d6faf2008-05-12 23:51:09 +00003023
3024<h5>Semantics:</h5>
3025
3026<p>
3027The result is an aggregate of the same type as <tt>val</tt>. Its
3028value is that of <tt>val</tt> except that the value at the position
Dan Gohman6c6dea02008-05-13 18:16:06 +00003029specified by the indices is that of <tt>elt</tt>.
Dan Gohman74d6faf2008-05-12 23:51:09 +00003030</p>
3031
3032<h5>Example:</h5>
3033
3034<pre>
Dan Gohmanb1aab4e2008-06-23 15:26:37 +00003035 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003036</pre>
3037</div>
3038
3039
3040<!-- ======================================================================= -->
3041<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003042 <a name="memoryops">Memory Access and Addressing Operations</a>
3043</div>
3044
3045<div class="doc_text">
3046
3047<p>A key design point of an SSA-based representation is how it
3048represents memory. In LLVM, no memory locations are in SSA form, which
3049makes things very simple. This section describes how to read, write,
3050allocate, and free memory in LLVM.</p>
3051
3052</div>
3053
3054<!-- _______________________________________________________________________ -->
3055<div class="doc_subsubsection">
3056 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3057</div>
3058
3059<div class="doc_text">
3060
3061<h5>Syntax:</h5>
3062
3063<pre>
3064 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
3065</pre>
3066
3067<h5>Overview:</h5>
3068
3069<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lambcfe00962007-12-17 01:00:21 +00003070heap and returns a pointer to it. The object is always allocated in the generic
3071address space (address space zero).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003072
3073<h5>Arguments:</h5>
3074
3075<p>The '<tt>malloc</tt>' instruction allocates
3076<tt>sizeof(&lt;type&gt;)*NumElements</tt>
3077bytes of memory from the operating system and returns a pointer of the
3078appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif5082cf42008-02-09 22:24:34 +00003079number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner10368b62008-04-02 00:38:26 +00003080If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif5082cf42008-02-09 22:24:34 +00003081be aligned to at least that boundary. If not specified, or if zero, the target can
3082choose to align the allocation on any convenient boundary.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003083
3084<p>'<tt>type</tt>' must be a sized type.</p>
3085
3086<h5>Semantics:</h5>
3087
3088<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Chris Lattner8b094fc2008-04-19 21:01:16 +00003089a pointer is returned. The result of a zero byte allocattion is undefined. The
3090result is null if there is insufficient memory available.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003091
3092<h5>Example:</h5>
3093
3094<pre>
3095 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
3096
3097 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3098 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3099 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3100 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3101 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
3102</pre>
3103</div>
3104
3105<!-- _______________________________________________________________________ -->
3106<div class="doc_subsubsection">
3107 <a name="i_free">'<tt>free</tt>' Instruction</a>
3108</div>
3109
3110<div class="doc_text">
3111
3112<h5>Syntax:</h5>
3113
3114<pre>
3115 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
3116</pre>
3117
3118<h5>Overview:</h5>
3119
3120<p>The '<tt>free</tt>' instruction returns memory back to the unused
3121memory heap to be reallocated in the future.</p>
3122
3123<h5>Arguments:</h5>
3124
3125<p>'<tt>value</tt>' shall be a pointer value that points to a value
3126that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3127instruction.</p>
3128
3129<h5>Semantics:</h5>
3130
3131<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattner329d6532008-04-19 22:41:32 +00003132after this instruction executes. If the pointer is null, the operation
3133is a noop.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003134
3135<h5>Example:</h5>
3136
3137<pre>
3138 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
3139 free [4 x i8]* %array
3140</pre>
3141</div>
3142
3143<!-- _______________________________________________________________________ -->
3144<div class="doc_subsubsection">
3145 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3146</div>
3147
3148<div class="doc_text">
3149
3150<h5>Syntax:</h5>
3151
3152<pre>
3153 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
3154</pre>
3155
3156<h5>Overview:</h5>
3157
3158<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3159currently executing function, to be automatically released when this function
Christopher Lambcfe00962007-12-17 01:00:21 +00003160returns to its caller. The object is always allocated in the generic address
3161space (address space zero).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003162
3163<h5>Arguments:</h5>
3164
3165<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
3166bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif5082cf42008-02-09 22:24:34 +00003167appropriate type to the program. If "NumElements" is specified, it is the
3168number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner10368b62008-04-02 00:38:26 +00003169If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif5082cf42008-02-09 22:24:34 +00003170to be aligned to at least that boundary. If not specified, or if zero, the target
3171can choose to align the allocation on any convenient boundary.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003172
3173<p>'<tt>type</tt>' may be any sized type.</p>
3174
3175<h5>Semantics:</h5>
3176
Chris Lattner8b094fc2008-04-19 21:01:16 +00003177<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3178there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003179memory is automatically released when the function returns. The '<tt>alloca</tt>'
3180instruction is commonly used to represent automatic variables that must
3181have an address available. When the function returns (either with the <tt><a
3182 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner10368b62008-04-02 00:38:26 +00003183instructions), the memory is reclaimed. Allocating zero bytes
3184is legal, but the result is undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003185
3186<h5>Example:</h5>
3187
3188<pre>
3189 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3190 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3191 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3192 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
3193</pre>
3194</div>
3195
3196<!-- _______________________________________________________________________ -->
3197<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3198Instruction</a> </div>
3199<div class="doc_text">
3200<h5>Syntax:</h5>
3201<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
3202<h5>Overview:</h5>
3203<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
3204<h5>Arguments:</h5>
3205<p>The argument to the '<tt>load</tt>' instruction specifies the memory
3206address from which to load. The pointer must point to a <a
3207 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
3208marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
3209the number or order of execution of this <tt>load</tt> with other
3210volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3211instructions. </p>
Chris Lattner21003c82008-01-06 21:04:43 +00003212<p>
Chris Lattner10368b62008-04-02 00:38:26 +00003213The optional constant "align" argument specifies the alignment of the operation
Chris Lattner21003c82008-01-06 21:04:43 +00003214(that is, the alignment of the memory address). A value of 0 or an
3215omitted "align" argument means that the operation has the preferential
3216alignment for the target. It is the responsibility of the code emitter
3217to ensure that the alignment information is correct. Overestimating
3218the alignment results in an undefined behavior. Underestimating the
3219alignment may produce less efficient code. An alignment of 1 is always
3220safe.
3221</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003222<h5>Semantics:</h5>
3223<p>The location of memory pointed to is loaded.</p>
3224<h5>Examples:</h5>
3225<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
3226 <a
3227 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3228 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
3229</pre>
3230</div>
3231<!-- _______________________________________________________________________ -->
3232<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3233Instruction</a> </div>
3234<div class="doc_text">
3235<h5>Syntax:</h5>
3236<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3237 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3238</pre>
3239<h5>Overview:</h5>
3240<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
3241<h5>Arguments:</h5>
3242<p>There are two arguments to the '<tt>store</tt>' instruction: a value
3243to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner10368b62008-04-02 00:38:26 +00003244operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3245of the '<tt>&lt;value&gt;</tt>'
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003246operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
3247optimizer is not allowed to modify the number or order of execution of
3248this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3249 href="#i_store">store</a></tt> instructions.</p>
Chris Lattner21003c82008-01-06 21:04:43 +00003250<p>
Chris Lattner10368b62008-04-02 00:38:26 +00003251The optional constant "align" argument specifies the alignment of the operation
Chris Lattner21003c82008-01-06 21:04:43 +00003252(that is, the alignment of the memory address). A value of 0 or an
3253omitted "align" argument means that the operation has the preferential
3254alignment for the target. It is the responsibility of the code emitter
3255to ensure that the alignment information is correct. Overestimating
3256the alignment results in an undefined behavior. Underestimating the
3257alignment may produce less efficient code. An alignment of 1 is always
3258safe.
3259</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003260<h5>Semantics:</h5>
3261<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3262at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
3263<h5>Example:</h5>
3264<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling63ffa142007-10-22 05:10:05 +00003265 store i32 3, i32* %ptr <i>; yields {void}</i>
3266 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003267</pre>
3268</div>
3269
3270<!-- _______________________________________________________________________ -->
3271<div class="doc_subsubsection">
3272 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3273</div>
3274
3275<div class="doc_text">
3276<h5>Syntax:</h5>
3277<pre>
3278 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
3279</pre>
3280
3281<h5>Overview:</h5>
3282
3283<p>
3284The '<tt>getelementptr</tt>' instruction is used to get the address of a
3285subelement of an aggregate data structure.</p>
3286
3287<h5>Arguments:</h5>
3288
3289<p>This instruction takes a list of integer operands that indicate what
3290elements of the aggregate object to index to. The actual types of the arguments
3291provided depend on the type of the first pointer argument. The
3292'<tt>getelementptr</tt>' instruction is used to index down through the type
3293levels of a structure or to a specific index in an array. When indexing into a
3294structure, only <tt>i32</tt> integer constants are allowed. When indexing
Chris Lattnera7d94ba2008-04-24 05:59:56 +00003295into an array or pointer, only integers of 32 or 64 bits are allowed; 32-bit
3296values will be sign extended to 64-bits if required.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003297
3298<p>For example, let's consider a C code fragment and how it gets
3299compiled to LLVM:</p>
3300
3301<div class="doc_code">
3302<pre>
3303struct RT {
3304 char A;
3305 int B[10][20];
3306 char C;
3307};
3308struct ST {
3309 int X;
3310 double Y;
3311 struct RT Z;
3312};
3313
3314int *foo(struct ST *s) {
3315 return &amp;s[1].Z.B[5][13];
3316}
3317</pre>
3318</div>
3319
3320<p>The LLVM code generated by the GCC frontend is:</p>
3321
3322<div class="doc_code">
3323<pre>
3324%RT = type { i8 , [10 x [20 x i32]], i8 }
3325%ST = type { i32, double, %RT }
3326
3327define i32* %foo(%ST* %s) {
3328entry:
3329 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3330 ret i32* %reg
3331}
3332</pre>
3333</div>
3334
3335<h5>Semantics:</h5>
3336
3337<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
3338on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
3339and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
3340<a href="#t_integer">integer</a> type but the value will always be sign extended
Chris Lattner10368b62008-04-02 00:38:26 +00003341to 64-bits. <a href="#t_struct">Structure</a> and <a href="#t_pstruct">packed
3342structure</a> types require <tt>i32</tt> <b>constants</b>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003343
3344<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
3345type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
3346}</tt>' type, a structure. The second index indexes into the third element of
3347the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3348i8 }</tt>' type, another structure. The third index indexes into the second
3349element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
3350array. The two dimensions of the array are subscripted into, yielding an
3351'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3352to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
3353
3354<p>Note that it is perfectly legal to index partially through a
3355structure, returning a pointer to an inner element. Because of this,
3356the LLVM code for the given testcase is equivalent to:</p>
3357
3358<pre>
3359 define i32* %foo(%ST* %s) {
3360 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
3361 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3362 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
3363 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3364 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3365 ret i32* %t5
3366 }
3367</pre>
3368
3369<p>Note that it is undefined to access an array out of bounds: array and
3370pointer indexes must always be within the defined bounds of the array type.
Chris Lattnera7d94ba2008-04-24 05:59:56 +00003371The one exception for this rule is zero length arrays. These arrays are
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003372defined to be accessible as variable length arrays, which requires access
3373beyond the zero'th element.</p>
3374
3375<p>The getelementptr instruction is often confusing. For some more insight
3376into how it works, see <a href="GetElementPtr.html">the getelementptr
3377FAQ</a>.</p>
3378
3379<h5>Example:</h5>
3380
3381<pre>
3382 <i>; yields [12 x i8]*:aptr</i>
3383 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
3384</pre>
3385</div>
3386
3387<!-- ======================================================================= -->
3388<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
3389</div>
3390<div class="doc_text">
3391<p>The instructions in this category are the conversion instructions (casting)
3392which all take a single operand and a type. They perform various bit conversions
3393on the operand.</p>
3394</div>
3395
3396<!-- _______________________________________________________________________ -->
3397<div class="doc_subsubsection">
3398 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3399</div>
3400<div class="doc_text">
3401
3402<h5>Syntax:</h5>
3403<pre>
3404 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3405</pre>
3406
3407<h5>Overview:</h5>
3408<p>
3409The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3410</p>
3411
3412<h5>Arguments:</h5>
3413<p>
3414The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3415be an <a href="#t_integer">integer</a> type, and a type that specifies the size
3416and type of the result, which must be an <a href="#t_integer">integer</a>
3417type. The bit size of <tt>value</tt> must be larger than the bit size of
3418<tt>ty2</tt>. Equal sized types are not allowed.</p>
3419
3420<h5>Semantics:</h5>
3421<p>
3422The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
3423and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3424larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3425It will always truncate bits.</p>
3426
3427<h5>Example:</h5>
3428<pre>
3429 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
3430 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3431 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
3432</pre>
3433</div>
3434
3435<!-- _______________________________________________________________________ -->
3436<div class="doc_subsubsection">
3437 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3438</div>
3439<div class="doc_text">
3440
3441<h5>Syntax:</h5>
3442<pre>
3443 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3444</pre>
3445
3446<h5>Overview:</h5>
3447<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3448<tt>ty2</tt>.</p>
3449
3450
3451<h5>Arguments:</h5>
3452<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
3453<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3454also be of <a href="#t_integer">integer</a> type. The bit size of the
3455<tt>value</tt> must be smaller than the bit size of the destination type,
3456<tt>ty2</tt>.</p>
3457
3458<h5>Semantics:</h5>
3459<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
3460bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
3461
3462<p>When zero extending from i1, the result will always be either 0 or 1.</p>
3463
3464<h5>Example:</h5>
3465<pre>
3466 %X = zext i32 257 to i64 <i>; yields i64:257</i>
3467 %Y = zext i1 true to i32 <i>; yields i32:1</i>
3468</pre>
3469</div>
3470
3471<!-- _______________________________________________________________________ -->
3472<div class="doc_subsubsection">
3473 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3474</div>
3475<div class="doc_text">
3476
3477<h5>Syntax:</h5>
3478<pre>
3479 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3480</pre>
3481
3482<h5>Overview:</h5>
3483<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3484
3485<h5>Arguments:</h5>
3486<p>
3487The '<tt>sext</tt>' instruction takes a value to cast, which must be of
3488<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3489also be of <a href="#t_integer">integer</a> type. The bit size of the
3490<tt>value</tt> must be smaller than the bit size of the destination type,
3491<tt>ty2</tt>.</p>
3492
3493<h5>Semantics:</h5>
3494<p>
3495The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3496bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
3497the type <tt>ty2</tt>.</p>
3498
3499<p>When sign extending from i1, the extension always results in -1 or 0.</p>
3500
3501<h5>Example:</h5>
3502<pre>
3503 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
3504 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
3505</pre>
3506</div>
3507
3508<!-- _______________________________________________________________________ -->
3509<div class="doc_subsubsection">
3510 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3511</div>
3512
3513<div class="doc_text">
3514
3515<h5>Syntax:</h5>
3516
3517<pre>
3518 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3519</pre>
3520
3521<h5>Overview:</h5>
3522<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3523<tt>ty2</tt>.</p>
3524
3525
3526<h5>Arguments:</h5>
3527<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3528 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3529cast it to. The size of <tt>value</tt> must be larger than the size of
3530<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3531<i>no-op cast</i>.</p>
3532
3533<h5>Semantics:</h5>
3534<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3535<a href="#t_floating">floating point</a> type to a smaller
3536<a href="#t_floating">floating point</a> type. If the value cannot fit within
3537the destination type, <tt>ty2</tt>, then the results are undefined.</p>
3538
3539<h5>Example:</h5>
3540<pre>
3541 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3542 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3543</pre>
3544</div>
3545
3546<!-- _______________________________________________________________________ -->
3547<div class="doc_subsubsection">
3548 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3549</div>
3550<div class="doc_text">
3551
3552<h5>Syntax:</h5>
3553<pre>
3554 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3555</pre>
3556
3557<h5>Overview:</h5>
3558<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3559floating point value.</p>
3560
3561<h5>Arguments:</h5>
3562<p>The '<tt>fpext</tt>' instruction takes a
3563<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
3564and a <a href="#t_floating">floating point</a> type to cast it to. The source
3565type must be smaller than the destination type.</p>
3566
3567<h5>Semantics:</h5>
3568<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
3569<a href="#t_floating">floating point</a> type to a larger
3570<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
3571used to make a <i>no-op cast</i> because it always changes bits. Use
3572<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
3573
3574<h5>Example:</h5>
3575<pre>
3576 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3577 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3578</pre>
3579</div>
3580
3581<!-- _______________________________________________________________________ -->
3582<div class="doc_subsubsection">
3583 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
3584</div>
3585<div class="doc_text">
3586
3587<h5>Syntax:</h5>
3588<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003589 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003590</pre>
3591
3592<h5>Overview:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003593<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003594unsigned integer equivalent of type <tt>ty2</tt>.
3595</p>
3596
3597<h5>Arguments:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003598<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begeman78246ca2007-11-17 03:58:34 +00003599scalar or vector <a href="#t_floating">floating point</a> value, and a type
3600to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3601type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3602vector integer type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003603
3604<h5>Semantics:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003605<p> The '<tt>fptoui</tt>' instruction converts its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003606<a href="#t_floating">floating point</a> operand into the nearest (rounding
3607towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3608the results are undefined.</p>
3609
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003610<h5>Example:</h5>
3611<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003612 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00003613 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencere6adee82007-07-31 14:40:14 +00003614 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003615</pre>
3616</div>
3617
3618<!-- _______________________________________________________________________ -->
3619<div class="doc_subsubsection">
3620 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
3621</div>
3622<div class="doc_text">
3623
3624<h5>Syntax:</h5>
3625<pre>
3626 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3627</pre>
3628
3629<h5>Overview:</h5>
3630<p>The '<tt>fptosi</tt>' instruction converts
3631<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
3632</p>
3633
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003634<h5>Arguments:</h5>
3635<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begeman78246ca2007-11-17 03:58:34 +00003636scalar or vector <a href="#t_floating">floating point</a> value, and a type
3637to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3638type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3639vector integer type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003640
3641<h5>Semantics:</h5>
3642<p>The '<tt>fptosi</tt>' instruction converts its
3643<a href="#t_floating">floating point</a> operand into the nearest (rounding
3644towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3645the results are undefined.</p>
3646
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003647<h5>Example:</h5>
3648<pre>
3649 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00003650 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003651 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
3652</pre>
3653</div>
3654
3655<!-- _______________________________________________________________________ -->
3656<div class="doc_subsubsection">
3657 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
3658</div>
3659<div class="doc_text">
3660
3661<h5>Syntax:</h5>
3662<pre>
3663 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3664</pre>
3665
3666<h5>Overview:</h5>
3667<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
3668integer and converts that value to the <tt>ty2</tt> type.</p>
3669
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003670<h5>Arguments:</h5>
Nate Begeman78246ca2007-11-17 03:58:34 +00003671<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3672scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3673to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3674type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3675floating point type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003676
3677<h5>Semantics:</h5>
3678<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
3679integer quantity and converts it to the corresponding floating point value. If
3680the value cannot fit in the floating point value, the results are undefined.</p>
3681
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003682<h5>Example:</h5>
3683<pre>
3684 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
3685 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
3686</pre>
3687</div>
3688
3689<!-- _______________________________________________________________________ -->
3690<div class="doc_subsubsection">
3691 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
3692</div>
3693<div class="doc_text">
3694
3695<h5>Syntax:</h5>
3696<pre>
3697 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3698</pre>
3699
3700<h5>Overview:</h5>
3701<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
3702integer and converts that value to the <tt>ty2</tt> type.</p>
3703
3704<h5>Arguments:</h5>
Nate Begeman78246ca2007-11-17 03:58:34 +00003705<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3706scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3707to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3708type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3709floating point type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003710
3711<h5>Semantics:</h5>
3712<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
3713integer quantity and converts it to the corresponding floating point value. If
3714the value cannot fit in the floating point value, the results are undefined.</p>
3715
3716<h5>Example:</h5>
3717<pre>
3718 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
3719 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
3720</pre>
3721</div>
3722
3723<!-- _______________________________________________________________________ -->
3724<div class="doc_subsubsection">
3725 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3726</div>
3727<div class="doc_text">
3728
3729<h5>Syntax:</h5>
3730<pre>
3731 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3732</pre>
3733
3734<h5>Overview:</h5>
3735<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3736the integer type <tt>ty2</tt>.</p>
3737
3738<h5>Arguments:</h5>
3739<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
3740must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
3741<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3742
3743<h5>Semantics:</h5>
3744<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3745<tt>ty2</tt> by interpreting the pointer value as an integer and either
3746truncating or zero extending that value to the size of the integer type. If
3747<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3748<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
3749are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3750change.</p>
3751
3752<h5>Example:</h5>
3753<pre>
3754 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3755 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
3756</pre>
3757</div>
3758
3759<!-- _______________________________________________________________________ -->
3760<div class="doc_subsubsection">
3761 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3762</div>
3763<div class="doc_text">
3764
3765<h5>Syntax:</h5>
3766<pre>
3767 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3768</pre>
3769
3770<h5>Overview:</h5>
3771<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3772a pointer type, <tt>ty2</tt>.</p>
3773
3774<h5>Arguments:</h5>
3775<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
3776value to cast, and a type to cast it to, which must be a
3777<a href="#t_pointer">pointer</a> type.
3778
3779<h5>Semantics:</h5>
3780<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3781<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3782the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3783size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3784the size of a pointer then a zero extension is done. If they are the same size,
3785nothing is done (<i>no-op cast</i>).</p>
3786
3787<h5>Example:</h5>
3788<pre>
3789 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3790 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3791 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
3792</pre>
3793</div>
3794
3795<!-- _______________________________________________________________________ -->
3796<div class="doc_subsubsection">
3797 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
3798</div>
3799<div class="doc_text">
3800
3801<h5>Syntax:</h5>
3802<pre>
3803 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3804</pre>
3805
3806<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003807
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003808<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3809<tt>ty2</tt> without changing any bits.</p>
3810
3811<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003812
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003813<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman7305fa02008-09-08 16:45:59 +00003814a non-aggregate first class value, and a type to cast it to, which must also be
3815a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
3816<tt>value</tt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003817and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner6704c212008-05-20 20:48:21 +00003818type is a pointer, the destination type must also be a pointer. This
3819instruction supports bitwise conversion of vectors to integers and to vectors
3820of other types (as long as they have the same size).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003821
3822<h5>Semantics:</h5>
3823<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3824<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3825this conversion. The conversion is done as if the <tt>value</tt> had been
3826stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3827converted to other pointer types with this instruction. To convert pointers to
3828other types, use the <a href="#i_inttoptr">inttoptr</a> or
3829<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
3830
3831<h5>Example:</h5>
3832<pre>
3833 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
3834 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3835 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
3836</pre>
3837</div>
3838
3839<!-- ======================================================================= -->
3840<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3841<div class="doc_text">
3842<p>The instructions in this category are the "miscellaneous"
3843instructions, which defy better classification.</p>
3844</div>
3845
3846<!-- _______________________________________________________________________ -->
3847<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3848</div>
3849<div class="doc_text">
3850<h5>Syntax:</h5>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003851<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003852</pre>
3853<h5>Overview:</h5>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003854<p>The '<tt>icmp</tt>' instruction returns a boolean value or
3855a vector of boolean values based on comparison
3856of its two integer, integer vector, or pointer operands.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003857<h5>Arguments:</h5>
3858<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
3859the condition code indicating the kind of comparison to perform. It is not
3860a value, just a keyword. The possible condition code are:
3861<ol>
3862 <li><tt>eq</tt>: equal</li>
3863 <li><tt>ne</tt>: not equal </li>
3864 <li><tt>ugt</tt>: unsigned greater than</li>
3865 <li><tt>uge</tt>: unsigned greater or equal</li>
3866 <li><tt>ult</tt>: unsigned less than</li>
3867 <li><tt>ule</tt>: unsigned less or equal</li>
3868 <li><tt>sgt</tt>: signed greater than</li>
3869 <li><tt>sge</tt>: signed greater or equal</li>
3870 <li><tt>slt</tt>: signed less than</li>
3871 <li><tt>sle</tt>: signed less or equal</li>
3872</ol>
3873<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003874<a href="#t_pointer">pointer</a>
3875or integer <a href="#t_vector">vector</a> typed.
3876They must also be identical types.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003877<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00003878<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003879the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003880yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003881<ol>
3882 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3883 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3884 </li>
3885 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3886 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3887 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003888 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003889 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003890 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003891 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003892 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003893 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003894 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003895 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003896 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003897 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003898 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003899 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003900 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003901 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003902 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003903</ol>
3904<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
3905values are compared as if they were integers.</p>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003906<p>If the operands are integer vectors, then they are compared
3907element by element. The result is an <tt>i1</tt> vector with
3908the same number of elements as the values being compared.
3909Otherwise, the result is an <tt>i1</tt>.
3910</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003911
3912<h5>Example:</h5>
3913<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3914 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3915 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3916 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3917 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3918 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
3919</pre>
3920</div>
3921
3922<!-- _______________________________________________________________________ -->
3923<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3924</div>
3925<div class="doc_text">
3926<h5>Syntax:</h5>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003927<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003928</pre>
3929<h5>Overview:</h5>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003930<p>The '<tt>fcmp</tt>' instruction returns a boolean value
3931or vector of boolean values based on comparison
3932of its operands.
3933<p>
3934If the operands are floating point scalars, then the result
3935type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
3936</p>
3937<p>If the operands are floating point vectors, then the result type
3938is a vector of boolean with the same number of elements as the
3939operands being compared.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003940<h5>Arguments:</h5>
3941<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
3942the condition code indicating the kind of comparison to perform. It is not
3943a value, just a keyword. The possible condition code are:
3944<ol>
3945 <li><tt>false</tt>: no comparison, always returns false</li>
3946 <li><tt>oeq</tt>: ordered and equal</li>
3947 <li><tt>ogt</tt>: ordered and greater than </li>
3948 <li><tt>oge</tt>: ordered and greater than or equal</li>
3949 <li><tt>olt</tt>: ordered and less than </li>
3950 <li><tt>ole</tt>: ordered and less than or equal</li>
3951 <li><tt>one</tt>: ordered and not equal</li>
3952 <li><tt>ord</tt>: ordered (no nans)</li>
3953 <li><tt>ueq</tt>: unordered or equal</li>
3954 <li><tt>ugt</tt>: unordered or greater than </li>
3955 <li><tt>uge</tt>: unordered or greater than or equal</li>
3956 <li><tt>ult</tt>: unordered or less than </li>
3957 <li><tt>ule</tt>: unordered or less than or equal</li>
3958 <li><tt>une</tt>: unordered or not equal</li>
3959 <li><tt>uno</tt>: unordered (either nans)</li>
3960 <li><tt>true</tt>: no comparison, always returns true</li>
3961</ol>
3962<p><i>Ordered</i> means that neither operand is a QNAN while
3963<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003964<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
3965either a <a href="#t_floating">floating point</a> type
3966or a <a href="#t_vector">vector</a> of floating point type.
3967They must have identical types.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003968<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00003969<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003970according to the condition code given as <tt>cond</tt>.
3971If the operands are vectors, then the vectors are compared
3972element by element.
3973Each comparison performed
3974always yields an <a href="#t_primitive">i1</a> result, as follows:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003975<ol>
3976 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
3977 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003978 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003979 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003980 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003981 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003982 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003983 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003984 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003985 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003986 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003987 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003988 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003989 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3990 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00003991 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003992 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00003993 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003994 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00003995 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003996 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00003997 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003998 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00003999 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004000 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00004001 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004002 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
4003 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4004</ol>
4005
4006<h5>Example:</h5>
4007<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004008 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4009 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4010 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004011</pre>
4012</div>
4013
4014<!-- _______________________________________________________________________ -->
Nate Begeman646fa482008-05-12 19:01:56 +00004015<div class="doc_subsubsection">
4016 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4017</div>
4018<div class="doc_text">
4019<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00004020<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begeman646fa482008-05-12 19:01:56 +00004021</pre>
4022<h5>Overview:</h5>
4023<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4024element-wise comparison of its two integer vector operands.</p>
4025<h5>Arguments:</h5>
4026<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4027the condition code indicating the kind of comparison to perform. It is not
4028a value, just a keyword. The possible condition code are:
4029<ol>
4030 <li><tt>eq</tt>: equal</li>
4031 <li><tt>ne</tt>: not equal </li>
4032 <li><tt>ugt</tt>: unsigned greater than</li>
4033 <li><tt>uge</tt>: unsigned greater or equal</li>
4034 <li><tt>ult</tt>: unsigned less than</li>
4035 <li><tt>ule</tt>: unsigned less or equal</li>
4036 <li><tt>sgt</tt>: signed greater than</li>
4037 <li><tt>sge</tt>: signed greater or equal</li>
4038 <li><tt>slt</tt>: signed less than</li>
4039 <li><tt>sle</tt>: signed less or equal</li>
4040</ol>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004041<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begeman646fa482008-05-12 19:01:56 +00004042<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4043<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00004044<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begeman646fa482008-05-12 19:01:56 +00004045according to the condition code given as <tt>cond</tt>. The comparison yields a
4046<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4047identical type as the values being compared. The most significant bit in each
4048element is 1 if the element-wise comparison evaluates to true, and is 0
4049otherwise. All other bits of the result are undefined. The condition codes
4050are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
4051instruction</a>.
4052
4053<h5>Example:</h5>
4054<pre>
Chris Lattner6704c212008-05-20 20:48:21 +00004055 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4056 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begeman646fa482008-05-12 19:01:56 +00004057</pre>
4058</div>
4059
4060<!-- _______________________________________________________________________ -->
4061<div class="doc_subsubsection">
4062 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4063</div>
4064<div class="doc_text">
4065<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00004066<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begeman646fa482008-05-12 19:01:56 +00004067<h5>Overview:</h5>
4068<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4069element-wise comparison of its two floating point vector operands. The output
4070elements have the same width as the input elements.</p>
4071<h5>Arguments:</h5>
4072<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4073the condition code indicating the kind of comparison to perform. It is not
4074a value, just a keyword. The possible condition code are:
4075<ol>
4076 <li><tt>false</tt>: no comparison, always returns false</li>
4077 <li><tt>oeq</tt>: ordered and equal</li>
4078 <li><tt>ogt</tt>: ordered and greater than </li>
4079 <li><tt>oge</tt>: ordered and greater than or equal</li>
4080 <li><tt>olt</tt>: ordered and less than </li>
4081 <li><tt>ole</tt>: ordered and less than or equal</li>
4082 <li><tt>one</tt>: ordered and not equal</li>
4083 <li><tt>ord</tt>: ordered (no nans)</li>
4084 <li><tt>ueq</tt>: unordered or equal</li>
4085 <li><tt>ugt</tt>: unordered or greater than </li>
4086 <li><tt>uge</tt>: unordered or greater than or equal</li>
4087 <li><tt>ult</tt>: unordered or less than </li>
4088 <li><tt>ule</tt>: unordered or less than or equal</li>
4089 <li><tt>une</tt>: unordered or not equal</li>
4090 <li><tt>uno</tt>: unordered (either nans)</li>
4091 <li><tt>true</tt>: no comparison, always returns true</li>
4092</ol>
4093<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4094<a href="#t_floating">floating point</a> typed. They must also be identical
4095types.</p>
4096<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00004097<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begeman646fa482008-05-12 19:01:56 +00004098according to the condition code given as <tt>cond</tt>. The comparison yields a
4099<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4100an identical number of elements as the values being compared, and each element
4101having identical with to the width of the floating point elements. The most
4102significant bit in each element is 1 if the element-wise comparison evaluates to
4103true, and is 0 otherwise. All other bits of the result are undefined. The
4104condition codes are evaluated identically to the
4105<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.
4106
4107<h5>Example:</h5>
4108<pre>
Chris Lattner6704c212008-05-20 20:48:21 +00004109 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4110 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt; <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
Nate Begeman646fa482008-05-12 19:01:56 +00004111</pre>
4112</div>
4113
4114<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00004115<div class="doc_subsubsection">
4116 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4117</div>
4118
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004119<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00004120
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004121<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00004122
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004123<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4124<h5>Overview:</h5>
4125<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4126the SSA graph representing the function.</p>
4127<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00004128
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004129<p>The type of the incoming values is specified with the first type
4130field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4131as arguments, with one pair for each predecessor basic block of the
4132current block. Only values of <a href="#t_firstclass">first class</a>
4133type may be used as the value arguments to the PHI node. Only labels
4134may be used as the label arguments.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00004135
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004136<p>There must be no non-phi instructions between the start of a basic
4137block and the PHI instructions: i.e. PHI instructions must be first in
4138a basic block.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00004139
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004140<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00004141
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004142<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4143specified by the pair corresponding to the predecessor basic block that executed
4144just prior to the current block.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00004145
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004146<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00004147<pre>
4148Loop: ; Infinite loop that counts from 0 on up...
4149 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4150 %nextindvar = add i32 %indvar, 1
4151 br label %Loop
4152</pre>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004153</div>
4154
4155<!-- _______________________________________________________________________ -->
4156<div class="doc_subsubsection">
4157 <a name="i_select">'<tt>select</tt>' Instruction</a>
4158</div>
4159
4160<div class="doc_text">
4161
4162<h5>Syntax:</h5>
4163
4164<pre>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004165 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4166
4167 <i>selty</i> is either i1 or {&lt;N x i1&gt}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004168</pre>
4169
4170<h5>Overview:</h5>
4171
4172<p>
4173The '<tt>select</tt>' instruction is used to choose one value based on a
4174condition, without branching.
4175</p>
4176
4177
4178<h5>Arguments:</h5>
4179
4180<p>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004181The '<tt>select</tt>' instruction requires an 'i1' value or
4182a vector of 'i1' values indicating the
Chris Lattner6704c212008-05-20 20:48:21 +00004183condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004184type. If the val1/val2 are vectors and
4185the condition is a scalar, then entire vectors are selected, not
Chris Lattner6704c212008-05-20 20:48:21 +00004186individual elements.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004187</p>
4188
4189<h5>Semantics:</h5>
4190
4191<p>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004192If the condition is an i1 and it evaluates to 1, the instruction returns the first
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004193value argument; otherwise, it returns the second value argument.
4194</p>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004195<p>
4196If the condition is a vector of i1, then the value arguments must
4197be vectors of the same size, and the selection is done element
4198by element.
4199</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004200
4201<h5>Example:</h5>
4202
4203<pre>
4204 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
4205</pre>
4206</div>
4207
4208
4209<!-- _______________________________________________________________________ -->
4210<div class="doc_subsubsection">
4211 <a name="i_call">'<tt>call</tt>' Instruction</a>
4212</div>
4213
4214<div class="doc_text">
4215
4216<h5>Syntax:</h5>
4217<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00004218 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004219</pre>
4220
4221<h5>Overview:</h5>
4222
4223<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
4224
4225<h5>Arguments:</h5>
4226
4227<p>This instruction requires several arguments:</p>
4228
4229<ol>
4230 <li>
4231 <p>The optional "tail" marker indicates whether the callee function accesses
4232 any allocas or varargs in the caller. If the "tail" marker is present, the
4233 function call is eligible for tail call optimization. Note that calls may
4234 be marked "tail" even if they do not occur before a <a
4235 href="#i_ret"><tt>ret</tt></a> instruction.
4236 </li>
4237 <li>
4238 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
4239 convention</a> the call should use. If none is specified, the call defaults
4240 to using C calling conventions.
4241 </li>
4242 <li>
Nick Lewycky93082fc2007-09-08 13:57:50 +00004243 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4244 the type of the return value. Functions that return no value are marked
4245 <tt><a href="#t_void">void</a></tt>.</p>
4246 </li>
4247 <li>
4248 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4249 value being invoked. The argument types must match the types implied by
4250 this signature. This type can be omitted if the function is not varargs
4251 and if the function type does not return a pointer to a function.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004252 </li>
4253 <li>
4254 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4255 be invoked. In most cases, this is a direct function invocation, but
4256 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
4257 to function value.</p>
4258 </li>
4259 <li>
4260 <p>'<tt>function args</tt>': argument list whose types match the
4261 function signature argument types. All arguments must be of
4262 <a href="#t_firstclass">first class</a> type. If the function signature
4263 indicates the function accepts a variable number of arguments, the extra
4264 arguments can be specified.</p>
4265 </li>
4266</ol>
4267
4268<h5>Semantics:</h5>
4269
4270<p>The '<tt>call</tt>' instruction is used to cause control flow to
4271transfer to a specified function, with its incoming arguments bound to
4272the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4273instruction in the called function, control flow continues with the
4274instruction after the function call, and the return value of the
Chris Lattner5e893ef2008-03-21 17:24:17 +00004275function is bound to the result argument. If the callee returns multiple
4276values then the return values of the function are only accessible through
4277the '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004278
4279<h5>Example:</h5>
4280
4281<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00004282 %retval = call i32 @test(i32 %argc)
Chris Lattner5e893ef2008-03-21 17:24:17 +00004283 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4284 %X = tail call i32 @foo() <i>; yields i32</i>
4285 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4286 call void %foo(i8 97 signext)
Devang Patela3cc5372008-03-10 20:49:15 +00004287
4288 %struct.A = type { i32, i8 }
Chris Lattner5e893ef2008-03-21 17:24:17 +00004289 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
4290 %gr = getresult %struct.A %r, 0 <i>; yields i32</i>
4291 %gr1 = getresult %struct.A %r, 1 <i>; yields i8</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004292</pre>
4293
4294</div>
4295
4296<!-- _______________________________________________________________________ -->
4297<div class="doc_subsubsection">
4298 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
4299</div>
4300
4301<div class="doc_text">
4302
4303<h5>Syntax:</h5>
4304
4305<pre>
4306 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
4307</pre>
4308
4309<h5>Overview:</h5>
4310
4311<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
4312the "variable argument" area of a function call. It is used to implement the
4313<tt>va_arg</tt> macro in C.</p>
4314
4315<h5>Arguments:</h5>
4316
4317<p>This instruction takes a <tt>va_list*</tt> value and the type of
4318the argument. It returns a value of the specified argument type and
4319increments the <tt>va_list</tt> to point to the next argument. The
4320actual type of <tt>va_list</tt> is target specific.</p>
4321
4322<h5>Semantics:</h5>
4323
4324<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4325type from the specified <tt>va_list</tt> and causes the
4326<tt>va_list</tt> to point to the next argument. For more information,
4327see the variable argument handling <a href="#int_varargs">Intrinsic
4328Functions</a>.</p>
4329
4330<p>It is legal for this instruction to be called in a function which does not
4331take a variable number of arguments, for example, the <tt>vfprintf</tt>
4332function.</p>
4333
4334<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
4335href="#intrinsics">intrinsic function</a> because it takes a type as an
4336argument.</p>
4337
4338<h5>Example:</h5>
4339
4340<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4341
4342</div>
4343
Devang Patela3cc5372008-03-10 20:49:15 +00004344<!-- _______________________________________________________________________ -->
4345<div class="doc_subsubsection">
4346 <a name="i_getresult">'<tt>getresult</tt>' Instruction</a>
4347</div>
4348
4349<div class="doc_text">
4350
4351<h5>Syntax:</h5>
4352<pre>
Chris Lattneree9da3f2008-03-21 17:20:51 +00004353 &lt;resultval&gt; = getresult &lt;type&gt; &lt;retval&gt;, &lt;index&gt;
Devang Patela3cc5372008-03-10 20:49:15 +00004354</pre>
Chris Lattneree9da3f2008-03-21 17:20:51 +00004355
Devang Patela3cc5372008-03-10 20:49:15 +00004356<h5>Overview:</h5>
4357
4358<p> The '<tt>getresult</tt>' instruction is used to extract individual values
Chris Lattneree9da3f2008-03-21 17:20:51 +00004359from a '<tt><a href="#i_call">call</a></tt>'
4360or '<tt><a href="#i_invoke">invoke</a></tt>' instruction that returns multiple
4361results.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00004362
4363<h5>Arguments:</h5>
4364
Chris Lattneree9da3f2008-03-21 17:20:51 +00004365<p>The '<tt>getresult</tt>' instruction takes a call or invoke value as its
Chris Lattnerd8dd3522008-04-23 04:06:52 +00004366first argument, or an undef value. The value must have <a
4367href="#t_struct">structure type</a>. The second argument is a constant
4368unsigned index value which must be in range for the number of values returned
4369by the call.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00004370
4371<h5>Semantics:</h5>
4372
Chris Lattneree9da3f2008-03-21 17:20:51 +00004373<p>The '<tt>getresult</tt>' instruction extracts the element identified by
4374'<tt>index</tt>' from the aggregate value.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00004375
4376<h5>Example:</h5>
4377
4378<pre>
4379 %struct.A = type { i32, i8 }
4380
4381 %r = call %struct.A @foo()
Chris Lattneree9da3f2008-03-21 17:20:51 +00004382 %gr = getresult %struct.A %r, 0 <i>; yields i32:%gr</i>
4383 %gr1 = getresult %struct.A %r, 1 <i>; yields i8:%gr1</i>
Devang Patela3cc5372008-03-10 20:49:15 +00004384 add i32 %gr, 42
4385 add i8 %gr1, 41
4386</pre>
4387
4388</div>
4389
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004390<!-- *********************************************************************** -->
4391<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4392<!-- *********************************************************************** -->
4393
4394<div class="doc_text">
4395
4396<p>LLVM supports the notion of an "intrinsic function". These functions have
4397well known names and semantics and are required to follow certain restrictions.
4398Overall, these intrinsics represent an extension mechanism for the LLVM
4399language that does not require changing all of the transformations in LLVM when
4400adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
4401
4402<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
4403prefix is reserved in LLVM for intrinsic names; thus, function names may not
4404begin with this prefix. Intrinsic functions must always be external functions:
4405you cannot define the body of intrinsic functions. Intrinsic functions may
4406only be used in call or invoke instructions: it is illegal to take the address
4407of an intrinsic function. Additionally, because intrinsic functions are part
4408of the LLVM language, it is required if any are added that they be documented
4409here.</p>
4410
Chandler Carrutha228e392007-08-04 01:51:18 +00004411<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4412a family of functions that perform the same operation but on different data
4413types. Because LLVM can represent over 8 million different integer types,
4414overloading is used commonly to allow an intrinsic function to operate on any
4415integer type. One or more of the argument types or the result type can be
4416overloaded to accept any integer type. Argument types may also be defined as
4417exactly matching a previous argument's type or the result type. This allows an
4418intrinsic function which accepts multiple arguments, but needs all of them to
4419be of the same type, to only be overloaded with respect to a single argument or
4420the result.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004421
Chandler Carrutha228e392007-08-04 01:51:18 +00004422<p>Overloaded intrinsics will have the names of its overloaded argument types
4423encoded into its function name, each preceded by a period. Only those types
4424which are overloaded result in a name suffix. Arguments whose type is matched
4425against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4426take an integer of any width and returns an integer of exactly the same integer
4427width. This leads to a family of functions such as
4428<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4429Only one type, the return type, is overloaded, and only one type suffix is
4430required. Because the argument's type is matched against the return type, it
4431does not require its own name suffix.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004432
4433<p>To learn how to add an intrinsic function, please see the
4434<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
4435</p>
4436
4437</div>
4438
4439<!-- ======================================================================= -->
4440<div class="doc_subsection">
4441 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4442</div>
4443
4444<div class="doc_text">
4445
4446<p>Variable argument support is defined in LLVM with the <a
4447 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
4448intrinsic functions. These functions are related to the similarly
4449named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
4450
4451<p>All of these functions operate on arguments that use a
4452target-specific value type "<tt>va_list</tt>". The LLVM assembly
4453language reference manual does not define what this type is, so all
4454transformations should be prepared to handle these functions regardless of
4455the type used.</p>
4456
4457<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
4458instruction and the variable argument handling intrinsic functions are
4459used.</p>
4460
4461<div class="doc_code">
4462<pre>
4463define i32 @test(i32 %X, ...) {
4464 ; Initialize variable argument processing
4465 %ap = alloca i8*
4466 %ap2 = bitcast i8** %ap to i8*
4467 call void @llvm.va_start(i8* %ap2)
4468
4469 ; Read a single integer argument
4470 %tmp = va_arg i8** %ap, i32
4471
4472 ; Demonstrate usage of llvm.va_copy and llvm.va_end
4473 %aq = alloca i8*
4474 %aq2 = bitcast i8** %aq to i8*
4475 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
4476 call void @llvm.va_end(i8* %aq2)
4477
4478 ; Stop processing of arguments.
4479 call void @llvm.va_end(i8* %ap2)
4480 ret i32 %tmp
4481}
4482
4483declare void @llvm.va_start(i8*)
4484declare void @llvm.va_copy(i8*, i8*)
4485declare void @llvm.va_end(i8*)
4486</pre>
4487</div>
4488
4489</div>
4490
4491<!-- _______________________________________________________________________ -->
4492<div class="doc_subsubsection">
4493 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
4494</div>
4495
4496
4497<div class="doc_text">
4498<h5>Syntax:</h5>
4499<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
4500<h5>Overview:</h5>
4501<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
4502<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4503href="#i_va_arg">va_arg</a></tt>.</p>
4504
4505<h5>Arguments:</h5>
4506
4507<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
4508
4509<h5>Semantics:</h5>
4510
4511<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
4512macro available in C. In a target-dependent way, it initializes the
4513<tt>va_list</tt> element to which the argument points, so that the next call to
4514<tt>va_arg</tt> will produce the first variable argument passed to the function.
4515Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
4516last argument of the function as the compiler can figure that out.</p>
4517
4518</div>
4519
4520<!-- _______________________________________________________________________ -->
4521<div class="doc_subsubsection">
4522 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
4523</div>
4524
4525<div class="doc_text">
4526<h5>Syntax:</h5>
4527<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
4528<h5>Overview:</h5>
4529
4530<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
4531which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
4532or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
4533
4534<h5>Arguments:</h5>
4535
4536<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
4537
4538<h5>Semantics:</h5>
4539
4540<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
4541macro available in C. In a target-dependent way, it destroys the
4542<tt>va_list</tt> element to which the argument points. Calls to <a
4543href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4544<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4545<tt>llvm.va_end</tt>.</p>
4546
4547</div>
4548
4549<!-- _______________________________________________________________________ -->
4550<div class="doc_subsubsection">
4551 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
4552</div>
4553
4554<div class="doc_text">
4555
4556<h5>Syntax:</h5>
4557
4558<pre>
4559 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
4560</pre>
4561
4562<h5>Overview:</h5>
4563
4564<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4565from the source argument list to the destination argument list.</p>
4566
4567<h5>Arguments:</h5>
4568
4569<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
4570The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
4571
4572
4573<h5>Semantics:</h5>
4574
4575<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4576macro available in C. In a target-dependent way, it copies the source
4577<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4578intrinsic is necessary because the <tt><a href="#int_va_start">
4579llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4580example, memory allocation.</p>
4581
4582</div>
4583
4584<!-- ======================================================================= -->
4585<div class="doc_subsection">
4586 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4587</div>
4588
4589<div class="doc_text">
4590
4591<p>
4592LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner96451482008-08-05 18:29:16 +00004593Collection</a> (GC) requires the implementation and generation of these
4594intrinsics.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004595These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
4596stack</a>, as well as garbage collector implementations that require <a
4597href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
4598Front-ends for type-safe garbage collected languages should generate these
4599intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4600href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4601</p>
Christopher Lambcfe00962007-12-17 01:00:21 +00004602
4603<p>The garbage collection intrinsics only operate on objects in the generic
4604 address space (address space zero).</p>
4605
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004606</div>
4607
4608<!-- _______________________________________________________________________ -->
4609<div class="doc_subsubsection">
4610 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
4611</div>
4612
4613<div class="doc_text">
4614
4615<h5>Syntax:</h5>
4616
4617<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004618 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004619</pre>
4620
4621<h5>Overview:</h5>
4622
4623<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
4624the code generator, and allows some metadata to be associated with it.</p>
4625
4626<h5>Arguments:</h5>
4627
4628<p>The first argument specifies the address of a stack object that contains the
4629root pointer. The second pointer (which must be either a constant or a global
4630value address) contains the meta-data to be associated with the root.</p>
4631
4632<h5>Semantics:</h5>
4633
Chris Lattnera7d94ba2008-04-24 05:59:56 +00004634<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004635location. At compile-time, the code generator generates information to allow
Gordon Henriksen40393542007-12-25 02:31:26 +00004636the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4637intrinsic may only be used in a function which <a href="#gc">specifies a GC
4638algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004639
4640</div>
4641
4642
4643<!-- _______________________________________________________________________ -->
4644<div class="doc_subsubsection">
4645 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
4646</div>
4647
4648<div class="doc_text">
4649
4650<h5>Syntax:</h5>
4651
4652<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004653 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004654</pre>
4655
4656<h5>Overview:</h5>
4657
4658<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4659locations, allowing garbage collector implementations that require read
4660barriers.</p>
4661
4662<h5>Arguments:</h5>
4663
4664<p>The second argument is the address to read from, which should be an address
4665allocated from the garbage collector. The first object is a pointer to the
4666start of the referenced object, if needed by the language runtime (otherwise
4667null).</p>
4668
4669<h5>Semantics:</h5>
4670
4671<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4672instruction, but may be replaced with substantially more complex code by the
Gordon Henriksen40393542007-12-25 02:31:26 +00004673garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4674may only be used in a function which <a href="#gc">specifies a GC
4675algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004676
4677</div>
4678
4679
4680<!-- _______________________________________________________________________ -->
4681<div class="doc_subsubsection">
4682 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
4683</div>
4684
4685<div class="doc_text">
4686
4687<h5>Syntax:</h5>
4688
4689<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004690 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004691</pre>
4692
4693<h5>Overview:</h5>
4694
4695<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4696locations, allowing garbage collector implementations that require write
4697barriers (such as generational or reference counting collectors).</p>
4698
4699<h5>Arguments:</h5>
4700
4701<p>The first argument is the reference to store, the second is the start of the
4702object to store it to, and the third is the address of the field of Obj to
4703store to. If the runtime does not require a pointer to the object, Obj may be
4704null.</p>
4705
4706<h5>Semantics:</h5>
4707
4708<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4709instruction, but may be replaced with substantially more complex code by the
Gordon Henriksen40393542007-12-25 02:31:26 +00004710garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4711may only be used in a function which <a href="#gc">specifies a GC
4712algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004713
4714</div>
4715
4716
4717
4718<!-- ======================================================================= -->
4719<div class="doc_subsection">
4720 <a name="int_codegen">Code Generator Intrinsics</a>
4721</div>
4722
4723<div class="doc_text">
4724<p>
4725These intrinsics are provided by LLVM to expose special features that may only
4726be implemented with code generator support.
4727</p>
4728
4729</div>
4730
4731<!-- _______________________________________________________________________ -->
4732<div class="doc_subsubsection">
4733 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
4734</div>
4735
4736<div class="doc_text">
4737
4738<h5>Syntax:</h5>
4739<pre>
4740 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
4741</pre>
4742
4743<h5>Overview:</h5>
4744
4745<p>
4746The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4747target-specific value indicating the return address of the current function
4748or one of its callers.
4749</p>
4750
4751<h5>Arguments:</h5>
4752
4753<p>
4754The argument to this intrinsic indicates which function to return the address
4755for. Zero indicates the calling function, one indicates its caller, etc. The
4756argument is <b>required</b> to be a constant integer value.
4757</p>
4758
4759<h5>Semantics:</h5>
4760
4761<p>
4762The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4763the return address of the specified call frame, or zero if it cannot be
4764identified. The value returned by this intrinsic is likely to be incorrect or 0
4765for arguments other than zero, so it should only be used for debugging purposes.
4766</p>
4767
4768<p>
4769Note that calling this intrinsic does not prevent function inlining or other
4770aggressive transformations, so the value returned may not be that of the obvious
4771source-language caller.
4772</p>
4773</div>
4774
4775
4776<!-- _______________________________________________________________________ -->
4777<div class="doc_subsubsection">
4778 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
4779</div>
4780
4781<div class="doc_text">
4782
4783<h5>Syntax:</h5>
4784<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004785 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004786</pre>
4787
4788<h5>Overview:</h5>
4789
4790<p>
4791The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4792target-specific frame pointer value for the specified stack frame.
4793</p>
4794
4795<h5>Arguments:</h5>
4796
4797<p>
4798The argument to this intrinsic indicates which function to return the frame
4799pointer for. Zero indicates the calling function, one indicates its caller,
4800etc. The argument is <b>required</b> to be a constant integer value.
4801</p>
4802
4803<h5>Semantics:</h5>
4804
4805<p>
4806The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4807the frame address of the specified call frame, or zero if it cannot be
4808identified. The value returned by this intrinsic is likely to be incorrect or 0
4809for arguments other than zero, so it should only be used for debugging purposes.
4810</p>
4811
4812<p>
4813Note that calling this intrinsic does not prevent function inlining or other
4814aggressive transformations, so the value returned may not be that of the obvious
4815source-language caller.
4816</p>
4817</div>
4818
4819<!-- _______________________________________________________________________ -->
4820<div class="doc_subsubsection">
4821 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
4822</div>
4823
4824<div class="doc_text">
4825
4826<h5>Syntax:</h5>
4827<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004828 declare i8 *@llvm.stacksave()
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004829</pre>
4830
4831<h5>Overview:</h5>
4832
4833<p>
4834The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
4835the function stack, for use with <a href="#int_stackrestore">
4836<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4837features like scoped automatic variable sized arrays in C99.
4838</p>
4839
4840<h5>Semantics:</h5>
4841
4842<p>
4843This intrinsic returns a opaque pointer value that can be passed to <a
4844href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
4845<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4846<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4847state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4848practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4849that were allocated after the <tt>llvm.stacksave</tt> was executed.
4850</p>
4851
4852</div>
4853
4854<!-- _______________________________________________________________________ -->
4855<div class="doc_subsubsection">
4856 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
4857</div>
4858
4859<div class="doc_text">
4860
4861<h5>Syntax:</h5>
4862<pre>
4863 declare void @llvm.stackrestore(i8 * %ptr)
4864</pre>
4865
4866<h5>Overview:</h5>
4867
4868<p>
4869The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4870the function stack to the state it was in when the corresponding <a
4871href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
4872useful for implementing language features like scoped automatic variable sized
4873arrays in C99.
4874</p>
4875
4876<h5>Semantics:</h5>
4877
4878<p>
4879See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
4880</p>
4881
4882</div>
4883
4884
4885<!-- _______________________________________________________________________ -->
4886<div class="doc_subsubsection">
4887 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
4888</div>
4889
4890<div class="doc_text">
4891
4892<h5>Syntax:</h5>
4893<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004894 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004895</pre>
4896
4897<h5>Overview:</h5>
4898
4899
4900<p>
4901The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
4902a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4903no
4904effect on the behavior of the program but can change its performance
4905characteristics.
4906</p>
4907
4908<h5>Arguments:</h5>
4909
4910<p>
4911<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4912determining if the fetch should be for a read (0) or write (1), and
4913<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
4914locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
4915<tt>locality</tt> arguments must be constant integers.
4916</p>
4917
4918<h5>Semantics:</h5>
4919
4920<p>
4921This intrinsic does not modify the behavior of the program. In particular,
4922prefetches cannot trap and do not produce a value. On targets that support this
4923intrinsic, the prefetch can provide hints to the processor cache for better
4924performance.
4925</p>
4926
4927</div>
4928
4929<!-- _______________________________________________________________________ -->
4930<div class="doc_subsubsection">
4931 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
4932</div>
4933
4934<div class="doc_text">
4935
4936<h5>Syntax:</h5>
4937<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004938 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004939</pre>
4940
4941<h5>Overview:</h5>
4942
4943
4944<p>
4945The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattner96451482008-08-05 18:29:16 +00004946(PC) in a region of
4947code to simulators and other tools. The method is target specific, but it is
4948expected that the marker will use exported symbols to transmit the PC of the
4949marker.
4950The marker makes no guarantees that it will remain with any specific instruction
4951after optimizations. It is possible that the presence of a marker will inhibit
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004952optimizations. The intended use is to be inserted after optimizations to allow
4953correlations of simulation runs.
4954</p>
4955
4956<h5>Arguments:</h5>
4957
4958<p>
4959<tt>id</tt> is a numerical id identifying the marker.
4960</p>
4961
4962<h5>Semantics:</h5>
4963
4964<p>
4965This intrinsic does not modify the behavior of the program. Backends that do not
4966support this intrinisic may ignore it.
4967</p>
4968
4969</div>
4970
4971<!-- _______________________________________________________________________ -->
4972<div class="doc_subsubsection">
4973 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
4974</div>
4975
4976<div class="doc_text">
4977
4978<h5>Syntax:</h5>
4979<pre>
4980 declare i64 @llvm.readcyclecounter( )
4981</pre>
4982
4983<h5>Overview:</h5>
4984
4985
4986<p>
4987The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4988counter register (or similar low latency, high accuracy clocks) on those targets
4989that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4990As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4991should only be used for small timings.
4992</p>
4993
4994<h5>Semantics:</h5>
4995
4996<p>
4997When directly supported, reading the cycle counter should not modify any memory.
4998Implementations are allowed to either return a application specific value or a
4999system wide value. On backends without support, this is lowered to a constant 0.
5000</p>
5001
5002</div>
5003
5004<!-- ======================================================================= -->
5005<div class="doc_subsection">
5006 <a name="int_libc">Standard C Library Intrinsics</a>
5007</div>
5008
5009<div class="doc_text">
5010<p>
5011LLVM provides intrinsics for a few important standard C library functions.
5012These intrinsics allow source-language front-ends to pass information about the
5013alignment of the pointer arguments to the code generator, providing opportunity
5014for more efficient code generation.
5015</p>
5016
5017</div>
5018
5019<!-- _______________________________________________________________________ -->
5020<div class="doc_subsubsection">
5021 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
5022</div>
5023
5024<div class="doc_text">
5025
5026<h5>Syntax:</h5>
5027<pre>
5028 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5029 i32 &lt;len&gt;, i32 &lt;align&gt;)
5030 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5031 i64 &lt;len&gt;, i32 &lt;align&gt;)
5032</pre>
5033
5034<h5>Overview:</h5>
5035
5036<p>
5037The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
5038location to the destination location.
5039</p>
5040
5041<p>
5042Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5043intrinsics do not return a value, and takes an extra alignment argument.
5044</p>
5045
5046<h5>Arguments:</h5>
5047
5048<p>
5049The first argument is a pointer to the destination, the second is a pointer to
5050the source. The third argument is an integer argument
5051specifying the number of bytes to copy, and the fourth argument is the alignment
5052of the source and destination locations.
5053</p>
5054
5055<p>
5056If the call to this intrinisic has an alignment value that is not 0 or 1, then
5057the caller guarantees that both the source and destination pointers are aligned
5058to that boundary.
5059</p>
5060
5061<h5>Semantics:</h5>
5062
5063<p>
5064The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
5065location to the destination location, which are not allowed to overlap. It
5066copies "len" bytes of memory over. If the argument is known to be aligned to
5067some boundary, this can be specified as the fourth argument, otherwise it should
5068be set to 0 or 1.
5069</p>
5070</div>
5071
5072
5073<!-- _______________________________________________________________________ -->
5074<div class="doc_subsubsection">
5075 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
5076</div>
5077
5078<div class="doc_text">
5079
5080<h5>Syntax:</h5>
5081<pre>
5082 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5083 i32 &lt;len&gt;, i32 &lt;align&gt;)
5084 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5085 i64 &lt;len&gt;, i32 &lt;align&gt;)
5086</pre>
5087
5088<h5>Overview:</h5>
5089
5090<p>
5091The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5092location to the destination location. It is similar to the
Chris Lattnerdba16ea2008-01-06 19:51:52 +00005093'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005094</p>
5095
5096<p>
5097Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5098intrinsics do not return a value, and takes an extra alignment argument.
5099</p>
5100
5101<h5>Arguments:</h5>
5102
5103<p>
5104The first argument is a pointer to the destination, the second is a pointer to
5105the source. The third argument is an integer argument
5106specifying the number of bytes to copy, and the fourth argument is the alignment
5107of the source and destination locations.
5108</p>
5109
5110<p>
5111If the call to this intrinisic has an alignment value that is not 0 or 1, then
5112the caller guarantees that the source and destination pointers are aligned to
5113that boundary.
5114</p>
5115
5116<h5>Semantics:</h5>
5117
5118<p>
5119The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
5120location to the destination location, which may overlap. It
5121copies "len" bytes of memory over. If the argument is known to be aligned to
5122some boundary, this can be specified as the fourth argument, otherwise it should
5123be set to 0 or 1.
5124</p>
5125</div>
5126
5127
5128<!-- _______________________________________________________________________ -->
5129<div class="doc_subsubsection">
5130 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
5131</div>
5132
5133<div class="doc_text">
5134
5135<h5>Syntax:</h5>
5136<pre>
5137 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5138 i32 &lt;len&gt;, i32 &lt;align&gt;)
5139 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5140 i64 &lt;len&gt;, i32 &lt;align&gt;)
5141</pre>
5142
5143<h5>Overview:</h5>
5144
5145<p>
5146The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
5147byte value.
5148</p>
5149
5150<p>
5151Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5152does not return a value, and takes an extra alignment argument.
5153</p>
5154
5155<h5>Arguments:</h5>
5156
5157<p>
5158The first argument is a pointer to the destination to fill, the second is the
5159byte value to fill it with, the third argument is an integer
5160argument specifying the number of bytes to fill, and the fourth argument is the
5161known alignment of destination location.
5162</p>
5163
5164<p>
5165If the call to this intrinisic has an alignment value that is not 0 or 1, then
5166the caller guarantees that the destination pointer is aligned to that boundary.
5167</p>
5168
5169<h5>Semantics:</h5>
5170
5171<p>
5172The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5173the
5174destination location. If the argument is known to be aligned to some boundary,
5175this can be specified as the fourth argument, otherwise it should be set to 0 or
51761.
5177</p>
5178</div>
5179
5180
5181<!-- _______________________________________________________________________ -->
5182<div class="doc_subsubsection">
5183 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
5184</div>
5185
5186<div class="doc_text">
5187
5188<h5>Syntax:</h5>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005189<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman361079c2007-10-15 20:30:11 +00005190floating point or vector of floating point type. Not all targets support all
5191types however.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005192<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005193 declare float @llvm.sqrt.f32(float %Val)
5194 declare double @llvm.sqrt.f64(double %Val)
5195 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5196 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5197 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005198</pre>
5199
5200<h5>Overview:</h5>
5201
5202<p>
5203The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman361079c2007-10-15 20:30:11 +00005204returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005205<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattnerf914a002008-01-29 07:00:44 +00005206negative numbers other than -0.0 (which allows for better optimization, because
5207there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5208defined to return -0.0 like IEEE sqrt.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005209</p>
5210
5211<h5>Arguments:</h5>
5212
5213<p>
5214The argument and return value are floating point numbers of the same type.
5215</p>
5216
5217<h5>Semantics:</h5>
5218
5219<p>
5220This function returns the sqrt of the specified operand if it is a nonnegative
5221floating point number.
5222</p>
5223</div>
5224
5225<!-- _______________________________________________________________________ -->
5226<div class="doc_subsubsection">
5227 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
5228</div>
5229
5230<div class="doc_text">
5231
5232<h5>Syntax:</h5>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005233<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman361079c2007-10-15 20:30:11 +00005234floating point or vector of floating point type. Not all targets support all
5235types however.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005236<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005237 declare float @llvm.powi.f32(float %Val, i32 %power)
5238 declare double @llvm.powi.f64(double %Val, i32 %power)
5239 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5240 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5241 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005242</pre>
5243
5244<h5>Overview:</h5>
5245
5246<p>
5247The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5248specified (positive or negative) power. The order of evaluation of
Dan Gohman361079c2007-10-15 20:30:11 +00005249multiplications is not defined. When a vector of floating point type is
5250used, the second argument remains a scalar integer value.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005251</p>
5252
5253<h5>Arguments:</h5>
5254
5255<p>
5256The second argument is an integer power, and the first is a value to raise to
5257that power.
5258</p>
5259
5260<h5>Semantics:</h5>
5261
5262<p>
5263This function returns the first value raised to the second power with an
5264unspecified sequence of rounding operations.</p>
5265</div>
5266
Dan Gohman361079c2007-10-15 20:30:11 +00005267<!-- _______________________________________________________________________ -->
5268<div class="doc_subsubsection">
5269 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5270</div>
5271
5272<div class="doc_text">
5273
5274<h5>Syntax:</h5>
5275<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5276floating point or vector of floating point type. Not all targets support all
5277types however.
5278<pre>
5279 declare float @llvm.sin.f32(float %Val)
5280 declare double @llvm.sin.f64(double %Val)
5281 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5282 declare fp128 @llvm.sin.f128(fp128 %Val)
5283 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5284</pre>
5285
5286<h5>Overview:</h5>
5287
5288<p>
5289The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5290</p>
5291
5292<h5>Arguments:</h5>
5293
5294<p>
5295The argument and return value are floating point numbers of the same type.
5296</p>
5297
5298<h5>Semantics:</h5>
5299
5300<p>
5301This function returns the sine of the specified operand, returning the
5302same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00005303conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005304</div>
5305
5306<!-- _______________________________________________________________________ -->
5307<div class="doc_subsubsection">
5308 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5309</div>
5310
5311<div class="doc_text">
5312
5313<h5>Syntax:</h5>
5314<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5315floating point or vector of floating point type. Not all targets support all
5316types however.
5317<pre>
5318 declare float @llvm.cos.f32(float %Val)
5319 declare double @llvm.cos.f64(double %Val)
5320 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5321 declare fp128 @llvm.cos.f128(fp128 %Val)
5322 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5323</pre>
5324
5325<h5>Overview:</h5>
5326
5327<p>
5328The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5329</p>
5330
5331<h5>Arguments:</h5>
5332
5333<p>
5334The argument and return value are floating point numbers of the same type.
5335</p>
5336
5337<h5>Semantics:</h5>
5338
5339<p>
5340This function returns the cosine of the specified operand, returning the
5341same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00005342conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005343</div>
5344
5345<!-- _______________________________________________________________________ -->
5346<div class="doc_subsubsection">
5347 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5348</div>
5349
5350<div class="doc_text">
5351
5352<h5>Syntax:</h5>
5353<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5354floating point or vector of floating point type. Not all targets support all
5355types however.
5356<pre>
5357 declare float @llvm.pow.f32(float %Val, float %Power)
5358 declare double @llvm.pow.f64(double %Val, double %Power)
5359 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5360 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5361 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5362</pre>
5363
5364<h5>Overview:</h5>
5365
5366<p>
5367The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5368specified (positive or negative) power.
5369</p>
5370
5371<h5>Arguments:</h5>
5372
5373<p>
5374The second argument is a floating point power, and the first is a value to
5375raise to that power.
5376</p>
5377
5378<h5>Semantics:</h5>
5379
5380<p>
5381This function returns the first value raised to the second power,
5382returning the
5383same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00005384conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005385</div>
5386
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005387
5388<!-- ======================================================================= -->
5389<div class="doc_subsection">
5390 <a name="int_manip">Bit Manipulation Intrinsics</a>
5391</div>
5392
5393<div class="doc_text">
5394<p>
5395LLVM provides intrinsics for a few important bit manipulation operations.
5396These allow efficient code generation for some algorithms.
5397</p>
5398
5399</div>
5400
5401<!-- _______________________________________________________________________ -->
5402<div class="doc_subsubsection">
5403 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
5404</div>
5405
5406<div class="doc_text">
5407
5408<h5>Syntax:</h5>
5409<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carrutha228e392007-08-04 01:51:18 +00005410type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005411<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005412 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5413 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5414 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005415</pre>
5416
5417<h5>Overview:</h5>
5418
5419<p>
5420The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
5421values with an even number of bytes (positive multiple of 16 bits). These are
5422useful for performing operations on data that is not in the target's native
5423byte order.
5424</p>
5425
5426<h5>Semantics:</h5>
5427
5428<p>
Chandler Carrutha228e392007-08-04 01:51:18 +00005429The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005430and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5431intrinsic returns an i32 value that has the four bytes of the input i32
5432swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carrutha228e392007-08-04 01:51:18 +00005433i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5434<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005435additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
5436</p>
5437
5438</div>
5439
5440<!-- _______________________________________________________________________ -->
5441<div class="doc_subsubsection">
5442 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
5443</div>
5444
5445<div class="doc_text">
5446
5447<h5>Syntax:</h5>
5448<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
5449width. Not all targets support all bit widths however.
5450<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005451 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
5452 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005453 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00005454 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5455 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005456</pre>
5457
5458<h5>Overview:</h5>
5459
5460<p>
5461The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5462value.
5463</p>
5464
5465<h5>Arguments:</h5>
5466
5467<p>
5468The only argument is the value to be counted. The argument may be of any
5469integer type. The return type must match the argument type.
5470</p>
5471
5472<h5>Semantics:</h5>
5473
5474<p>
5475The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5476</p>
5477</div>
5478
5479<!-- _______________________________________________________________________ -->
5480<div class="doc_subsubsection">
5481 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
5482</div>
5483
5484<div class="doc_text">
5485
5486<h5>Syntax:</h5>
5487<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
5488integer bit width. Not all targets support all bit widths however.
5489<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005490 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5491 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005492 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00005493 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5494 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005495</pre>
5496
5497<h5>Overview:</h5>
5498
5499<p>
5500The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5501leading zeros in a variable.
5502</p>
5503
5504<h5>Arguments:</h5>
5505
5506<p>
5507The only argument is the value to be counted. The argument may be of any
5508integer type. The return type must match the argument type.
5509</p>
5510
5511<h5>Semantics:</h5>
5512
5513<p>
5514The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5515in a variable. If the src == 0 then the result is the size in bits of the type
5516of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
5517</p>
5518</div>
5519
5520
5521
5522<!-- _______________________________________________________________________ -->
5523<div class="doc_subsubsection">
5524 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
5525</div>
5526
5527<div class="doc_text">
5528
5529<h5>Syntax:</h5>
5530<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
5531integer bit width. Not all targets support all bit widths however.
5532<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005533 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5534 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005535 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00005536 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5537 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005538</pre>
5539
5540<h5>Overview:</h5>
5541
5542<p>
5543The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5544trailing zeros.
5545</p>
5546
5547<h5>Arguments:</h5>
5548
5549<p>
5550The only argument is the value to be counted. The argument may be of any
5551integer type. The return type must match the argument type.
5552</p>
5553
5554<h5>Semantics:</h5>
5555
5556<p>
5557The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5558in a variable. If the src == 0 then the result is the size in bits of the type
5559of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5560</p>
5561</div>
5562
5563<!-- _______________________________________________________________________ -->
5564<div class="doc_subsubsection">
5565 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
5566</div>
5567
5568<div class="doc_text">
5569
5570<h5>Syntax:</h5>
5571<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
5572on any integer bit width.
5573<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005574 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5575 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005576</pre>
5577
5578<h5>Overview:</h5>
5579<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
5580range of bits from an integer value and returns them in the same bit width as
5581the original value.</p>
5582
5583<h5>Arguments:</h5>
5584<p>The first argument, <tt>%val</tt> and the result may be integer types of
5585any bit width but they must have the same bit width. The second and third
5586arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
5587
5588<h5>Semantics:</h5>
5589<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
5590of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5591<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5592operates in forward mode.</p>
5593<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5594right by <tt>%loBit</tt> bits and then ANDing it with a mask with
5595only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5596<ol>
5597 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5598 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5599 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5600 to determine the number of bits to retain.</li>
5601 <li>A mask of the retained bits is created by shifting a -1 value.</li>
5602 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
5603</ol>
5604<p>In reverse mode, a similar computation is made except that the bits are
5605returned in the reverse order. So, for example, if <tt>X</tt> has the value
5606<tt>i16 0x0ACF (101011001111)</tt> and we apply
5607<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5608<tt>i16 0x0026 (000000100110)</tt>.</p>
5609</div>
5610
5611<div class="doc_subsubsection">
5612 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5613</div>
5614
5615<div class="doc_text">
5616
5617<h5>Syntax:</h5>
5618<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
5619on any integer bit width.
5620<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005621 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5622 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005623</pre>
5624
5625<h5>Overview:</h5>
5626<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5627of bits in an integer value with another integer value. It returns the integer
5628with the replaced bits.</p>
5629
5630<h5>Arguments:</h5>
5631<p>The first argument, <tt>%val</tt> and the result may be integer types of
5632any bit width but they must have the same bit width. <tt>%val</tt> is the value
5633whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5634integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5635type since they specify only a bit index.</p>
5636
5637<h5>Semantics:</h5>
5638<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5639of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5640<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5641operates in forward mode.</p>
5642<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5643truncating it down to the size of the replacement area or zero extending it
5644up to that size.</p>
5645<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5646are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5647in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
5648to the <tt>%hi</tt>th bit.
5649<p>In reverse mode, a similar computation is made except that the bits are
5650reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
5651<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
5652<h5>Examples:</h5>
5653<pre>
5654 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
5655 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5656 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5657 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
5658 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
5659</pre>
5660</div>
5661
5662<!-- ======================================================================= -->
5663<div class="doc_subsection">
5664 <a name="int_debugger">Debugger Intrinsics</a>
5665</div>
5666
5667<div class="doc_text">
5668<p>
5669The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5670are described in the <a
5671href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5672Debugging</a> document.
5673</p>
5674</div>
5675
5676
5677<!-- ======================================================================= -->
5678<div class="doc_subsection">
5679 <a name="int_eh">Exception Handling Intrinsics</a>
5680</div>
5681
5682<div class="doc_text">
5683<p> The LLVM exception handling intrinsics (which all start with
5684<tt>llvm.eh.</tt> prefix), are described in the <a
5685href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5686Handling</a> document. </p>
5687</div>
5688
5689<!-- ======================================================================= -->
5690<div class="doc_subsection">
Duncan Sands7407a9f2007-09-11 14:10:23 +00005691 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +00005692</div>
5693
5694<div class="doc_text">
5695<p>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005696 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands38947cd2007-07-27 12:58:54 +00005697 the <tt>nest</tt> attribute, from a function. The result is a callable
5698 function pointer lacking the nest parameter - the caller does not need
5699 to provide a value for it. Instead, the value to use is stored in
5700 advance in a "trampoline", a block of memory usually allocated
5701 on the stack, which also contains code to splice the nest value into the
5702 argument list. This is used to implement the GCC nested function address
5703 extension.
5704</p>
5705<p>
5706 For example, if the function is
5707 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendlinge262b4c2007-09-22 09:23:55 +00005708 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands38947cd2007-07-27 12:58:54 +00005709<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005710 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5711 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5712 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5713 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands38947cd2007-07-27 12:58:54 +00005714</pre>
Bill Wendlinge262b4c2007-09-22 09:23:55 +00005715 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5716 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands38947cd2007-07-27 12:58:54 +00005717</div>
5718
5719<!-- _______________________________________________________________________ -->
5720<div class="doc_subsubsection">
5721 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5722</div>
5723<div class="doc_text">
5724<h5>Syntax:</h5>
5725<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005726declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands38947cd2007-07-27 12:58:54 +00005727</pre>
5728<h5>Overview:</h5>
5729<p>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005730 This fills the memory pointed to by <tt>tramp</tt> with code
5731 and returns a function pointer suitable for executing it.
Duncan Sands38947cd2007-07-27 12:58:54 +00005732</p>
5733<h5>Arguments:</h5>
5734<p>
5735 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5736 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5737 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sands35012212007-08-22 23:39:54 +00005738 intrinsic. Note that the size and the alignment are target-specific - LLVM
5739 currently provides no portable way of determining them, so a front-end that
5740 generates this intrinsic needs to have some target-specific knowledge.
5741 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands38947cd2007-07-27 12:58:54 +00005742</p>
5743<h5>Semantics:</h5>
5744<p>
5745 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sands7407a9f2007-09-11 14:10:23 +00005746 dependent code, turning it into a function. A pointer to this function is
5747 returned, but needs to be bitcast to an
Duncan Sands38947cd2007-07-27 12:58:54 +00005748 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005749 before being called. The new function's signature is the same as that of
5750 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5751 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5752 of pointer type. Calling the new function is equivalent to calling
5753 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5754 missing <tt>nest</tt> argument. If, after calling
5755 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5756 modified, then the effect of any later call to the returned function pointer is
5757 undefined.
Duncan Sands38947cd2007-07-27 12:58:54 +00005758</p>
5759</div>
5760
5761<!-- ======================================================================= -->
5762<div class="doc_subsection">
Andrew Lenharth785610d2008-02-16 01:24:58 +00005763 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
5764</div>
5765
5766<div class="doc_text">
5767<p>
5768 These intrinsic functions expand the "universal IR" of LLVM to represent
5769 hardware constructs for atomic operations and memory synchronization. This
5770 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattner96451482008-08-05 18:29:16 +00005771 is aimed at a low enough level to allow any programming models or APIs
5772 (Application Programming Interfaces) which
Andrew Lenharth785610d2008-02-16 01:24:58 +00005773 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
5774 hardware behavior. Just as hardware provides a "universal IR" for source
5775 languages, it also provides a starting point for developing a "universal"
5776 atomic operation and synchronization IR.
5777</p>
5778<p>
5779 These do <em>not</em> form an API such as high-level threading libraries,
5780 software transaction memory systems, atomic primitives, and intrinsic
5781 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
5782 application libraries. The hardware interface provided by LLVM should allow
5783 a clean implementation of all of these APIs and parallel programming models.
5784 No one model or paradigm should be selected above others unless the hardware
5785 itself ubiquitously does so.
5786
5787</p>
5788</div>
5789
5790<!-- _______________________________________________________________________ -->
5791<div class="doc_subsubsection">
5792 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5793</div>
5794<div class="doc_text">
5795<h5>Syntax:</h5>
5796<pre>
5797declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
5798i1 &lt;device&gt; )
5799
5800</pre>
5801<h5>Overview:</h5>
5802<p>
5803 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5804 specific pairs of memory access types.
5805</p>
5806<h5>Arguments:</h5>
5807<p>
5808 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
5809 The first four arguments enables a specific barrier as listed below. The fith
5810 argument specifies that the barrier applies to io or device or uncached memory.
5811
5812</p>
5813 <ul>
5814 <li><tt>ll</tt>: load-load barrier</li>
5815 <li><tt>ls</tt>: load-store barrier</li>
5816 <li><tt>sl</tt>: store-load barrier</li>
5817 <li><tt>ss</tt>: store-store barrier</li>
5818 <li><tt>device</tt>: barrier applies to device and uncached memory also.
5819 </ul>
5820<h5>Semantics:</h5>
5821<p>
5822 This intrinsic causes the system to enforce some ordering constraints upon
5823 the loads and stores of the program. This barrier does not indicate
5824 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5825 which they occur. For any of the specified pairs of load and store operations
5826 (f.ex. load-load, or store-load), all of the first operations preceding the
5827 barrier will complete before any of the second operations succeeding the
5828 barrier begin. Specifically the semantics for each pairing is as follows:
5829</p>
5830 <ul>
5831 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5832 after the barrier begins.</li>
5833
5834 <li><tt>ls</tt>: All loads before the barrier must complete before any
5835 store after the barrier begins.</li>
5836 <li><tt>ss</tt>: All stores before the barrier must complete before any
5837 store after the barrier begins.</li>
5838 <li><tt>sl</tt>: All stores before the barrier must complete before any
5839 load after the barrier begins.</li>
5840 </ul>
5841<p>
5842 These semantics are applied with a logical "and" behavior when more than one
5843 is enabled in a single memory barrier intrinsic.
5844</p>
5845<p>
5846 Backends may implement stronger barriers than those requested when they do not
5847 support as fine grained a barrier as requested. Some architectures do not
5848 need all types of barriers and on such architectures, these become noops.
5849</p>
5850<h5>Example:</h5>
5851<pre>
5852%ptr = malloc i32
5853 store i32 4, %ptr
5854
5855%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5856 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5857 <i>; guarantee the above finishes</i>
5858 store i32 8, %ptr <i>; before this begins</i>
5859</pre>
5860</div>
5861
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005862<!-- _______________________________________________________________________ -->
5863<div class="doc_subsubsection">
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005864 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005865</div>
5866<div class="doc_text">
5867<h5>Syntax:</h5>
5868<p>
Mon P Wangce3ac892008-07-30 04:36:53 +00005869 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
5870 any integer bit width and for different address spaces. Not all targets
5871 support all bit widths however.</p>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005872
5873<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00005874declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
5875declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
5876declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
5877declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005878
5879</pre>
5880<h5>Overview:</h5>
5881<p>
5882 This loads a value in memory and compares it to a given value. If they are
5883 equal, it stores a new value into the memory.
5884</p>
5885<h5>Arguments:</h5>
5886<p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005887 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005888 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
5889 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
5890 this integer type. While any bit width integer may be used, targets may only
5891 lower representations they support in hardware.
5892
5893</p>
5894<h5>Semantics:</h5>
5895<p>
5896 This entire intrinsic must be executed atomically. It first loads the value
5897 in memory pointed to by <tt>ptr</tt> and compares it with the value
5898 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
5899 loaded value is yielded in all cases. This provides the equivalent of an
5900 atomic compare-and-swap operation within the SSA framework.
5901</p>
5902<h5>Examples:</h5>
5903
5904<pre>
5905%ptr = malloc i32
5906 store i32 4, %ptr
5907
5908%val1 = add i32 4, 4
Mon P Wangce3ac892008-07-30 04:36:53 +00005909%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005910 <i>; yields {i32}:result1 = 4</i>
5911%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5912%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5913
5914%val2 = add i32 1, 1
Mon P Wangce3ac892008-07-30 04:36:53 +00005915%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005916 <i>; yields {i32}:result2 = 8</i>
5917%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
5918
5919%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
5920</pre>
5921</div>
5922
5923<!-- _______________________________________________________________________ -->
5924<div class="doc_subsubsection">
5925 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
5926</div>
5927<div class="doc_text">
5928<h5>Syntax:</h5>
5929
5930<p>
5931 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
5932 integer bit width. Not all targets support all bit widths however.</p>
5933<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00005934declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
5935declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
5936declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
5937declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005938
5939</pre>
5940<h5>Overview:</h5>
5941<p>
5942 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
5943 the value from memory. It then stores the value in <tt>val</tt> in the memory
5944 at <tt>ptr</tt>.
5945</p>
5946<h5>Arguments:</h5>
5947
5948<p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005949 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005950 <tt>val</tt> argument and the result must be integers of the same bit width.
5951 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
5952 integer type. The targets may only lower integer representations they
5953 support.
5954</p>
5955<h5>Semantics:</h5>
5956<p>
5957 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
5958 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
5959 equivalent of an atomic swap operation within the SSA framework.
5960
5961</p>
5962<h5>Examples:</h5>
5963<pre>
5964%ptr = malloc i32
5965 store i32 4, %ptr
5966
5967%val1 = add i32 4, 4
Mon P Wangce3ac892008-07-30 04:36:53 +00005968%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005969 <i>; yields {i32}:result1 = 4</i>
5970%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5971%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5972
5973%val2 = add i32 1, 1
Mon P Wangce3ac892008-07-30 04:36:53 +00005974%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005975 <i>; yields {i32}:result2 = 8</i>
5976
5977%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
5978%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
5979</pre>
5980</div>
5981
5982<!-- _______________________________________________________________________ -->
5983<div class="doc_subsubsection">
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005984 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005985
5986</div>
5987<div class="doc_text">
5988<h5>Syntax:</h5>
5989<p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005990 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005991 integer bit width. Not all targets support all bit widths however.</p>
5992<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00005993declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
5994declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
5995declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
5996declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005997
5998</pre>
5999<h5>Overview:</h5>
6000<p>
6001 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6002 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6003</p>
6004<h5>Arguments:</h5>
6005<p>
6006
6007 The intrinsic takes two arguments, the first a pointer to an integer value
6008 and the second an integer value. The result is also an integer value. These
6009 integer types can have any bit width, but they must all have the same bit
6010 width. The targets may only lower integer representations they support.
6011</p>
6012<h5>Semantics:</h5>
6013<p>
6014 This intrinsic does a series of operations atomically. It first loads the
6015 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6016 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6017</p>
6018
6019<h5>Examples:</h5>
6020<pre>
6021%ptr = malloc i32
6022 store i32 4, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006023%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006024 <i>; yields {i32}:result1 = 4</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006025%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006026 <i>; yields {i32}:result2 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006027%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006028 <i>; yields {i32}:result3 = 10</i>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006029%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006030</pre>
6031</div>
6032
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006033<!-- _______________________________________________________________________ -->
6034<div class="doc_subsubsection">
6035 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6036
6037</div>
6038<div class="doc_text">
6039<h5>Syntax:</h5>
6040<p>
6041 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wangce3ac892008-07-30 04:36:53 +00006042 any integer bit width and for different address spaces. Not all targets
6043 support all bit widths however.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006044<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006045declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6046declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6047declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6048declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006049
6050</pre>
6051<h5>Overview:</h5>
6052<p>
6053 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6054 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6055</p>
6056<h5>Arguments:</h5>
6057<p>
6058
6059 The intrinsic takes two arguments, the first a pointer to an integer value
6060 and the second an integer value. The result is also an integer value. These
6061 integer types can have any bit width, but they must all have the same bit
6062 width. The targets may only lower integer representations they support.
6063</p>
6064<h5>Semantics:</h5>
6065<p>
6066 This intrinsic does a series of operations atomically. It first loads the
6067 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6068 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6069</p>
6070
6071<h5>Examples:</h5>
6072<pre>
6073%ptr = malloc i32
6074 store i32 8, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006075%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006076 <i>; yields {i32}:result1 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006077%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006078 <i>; yields {i32}:result2 = 4</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006079%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006080 <i>; yields {i32}:result3 = 2</i>
6081%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6082</pre>
6083</div>
6084
6085<!-- _______________________________________________________________________ -->
6086<div class="doc_subsubsection">
6087 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6088 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6089 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6090 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6091
6092</div>
6093<div class="doc_text">
6094<h5>Syntax:</h5>
6095<p>
6096 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6097 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wangce3ac892008-07-30 04:36:53 +00006098 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6099 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006100<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006101declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6102declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6103declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6104declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006105
6106</pre>
6107
6108<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006109declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6110declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6111declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6112declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006113
6114</pre>
6115
6116<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006117declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6118declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6119declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6120declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006121
6122</pre>
6123
6124<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006125declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6126declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6127declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6128declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006129
6130</pre>
6131<h5>Overview:</h5>
6132<p>
6133 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6134 the value stored in memory at <tt>ptr</tt>. It yields the original value
6135 at <tt>ptr</tt>.
6136</p>
6137<h5>Arguments:</h5>
6138<p>
6139
6140 These intrinsics take two arguments, the first a pointer to an integer value
6141 and the second an integer value. The result is also an integer value. These
6142 integer types can have any bit width, but they must all have the same bit
6143 width. The targets may only lower integer representations they support.
6144</p>
6145<h5>Semantics:</h5>
6146<p>
6147 These intrinsics does a series of operations atomically. They first load the
6148 value stored at <tt>ptr</tt>. They then do the bitwise operation
6149 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6150 value stored at <tt>ptr</tt>.
6151</p>
6152
6153<h5>Examples:</h5>
6154<pre>
6155%ptr = malloc i32
6156 store i32 0x0F0F, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006157%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006158 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006159%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006160 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006161%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006162 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006163%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006164 <i>; yields {i32}:result3 = FF</i>
6165%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6166</pre>
6167</div>
6168
6169
6170<!-- _______________________________________________________________________ -->
6171<div class="doc_subsubsection">
6172 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6173 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6174 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6175 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6176
6177</div>
6178<div class="doc_text">
6179<h5>Syntax:</h5>
6180<p>
6181 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6182 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wangce3ac892008-07-30 04:36:53 +00006183 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6184 address spaces. Not all targets
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006185 support all bit widths however.</p>
6186<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006187declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6188declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6189declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6190declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006191
6192</pre>
6193
6194<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006195declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6196declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6197declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6198declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006199
6200</pre>
6201
6202<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006203declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6204declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6205declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6206declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006207
6208</pre>
6209
6210<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006211declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6212declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6213declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6214declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006215
6216</pre>
6217<h5>Overview:</h5>
6218<p>
6219 These intrinsics takes the signed or unsigned minimum or maximum of
6220 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6221 original value at <tt>ptr</tt>.
6222</p>
6223<h5>Arguments:</h5>
6224<p>
6225
6226 These intrinsics take two arguments, the first a pointer to an integer value
6227 and the second an integer value. The result is also an integer value. These
6228 integer types can have any bit width, but they must all have the same bit
6229 width. The targets may only lower integer representations they support.
6230</p>
6231<h5>Semantics:</h5>
6232<p>
6233 These intrinsics does a series of operations atomically. They first load the
6234 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6235 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6236 the original value stored at <tt>ptr</tt>.
6237</p>
6238
6239<h5>Examples:</h5>
6240<pre>
6241%ptr = malloc i32
6242 store i32 7, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006243%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006244 <i>; yields {i32}:result0 = 7</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006245%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006246 <i>; yields {i32}:result1 = -2</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006247%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006248 <i>; yields {i32}:result2 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006249%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006250 <i>; yields {i32}:result3 = 8</i>
6251%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6252</pre>
6253</div>
Andrew Lenharth785610d2008-02-16 01:24:58 +00006254
6255<!-- ======================================================================= -->
6256<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006257 <a name="int_general">General Intrinsics</a>
6258</div>
6259
6260<div class="doc_text">
6261<p> This class of intrinsics is designed to be generic and has
6262no specific purpose. </p>
6263</div>
6264
6265<!-- _______________________________________________________________________ -->
6266<div class="doc_subsubsection">
6267 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6268</div>
6269
6270<div class="doc_text">
6271
6272<h5>Syntax:</h5>
6273<pre>
6274 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6275</pre>
6276
6277<h5>Overview:</h5>
6278
6279<p>
6280The '<tt>llvm.var.annotation</tt>' intrinsic
6281</p>
6282
6283<h5>Arguments:</h5>
6284
6285<p>
6286The first argument is a pointer to a value, the second is a pointer to a
6287global string, the third is a pointer to a global string which is the source
6288file name, and the last argument is the line number.
6289</p>
6290
6291<h5>Semantics:</h5>
6292
6293<p>
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00006294This intrinsic allows annotation of local variables with arbitrary strings.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006295This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00006296annotations. These have no other defined use, they are ignored by code
6297generation and optimization.
6298</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006299</div>
6300
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006301<!-- _______________________________________________________________________ -->
6302<div class="doc_subsubsection">
Tanya Lattnerc9869b12007-09-21 23:57:59 +00006303 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006304</div>
6305
6306<div class="doc_text">
6307
6308<h5>Syntax:</h5>
Tanya Lattnere545be72007-09-21 23:56:27 +00006309<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6310any integer bit width.
6311</p>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006312<pre>
Tanya Lattner09161fe2007-09-22 00:03:01 +00006313 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6314 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6315 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6316 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6317 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006318</pre>
6319
6320<h5>Overview:</h5>
Tanya Lattnere545be72007-09-21 23:56:27 +00006321
6322<p>
6323The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006324</p>
6325
6326<h5>Arguments:</h5>
6327
6328<p>
6329The first argument is an integer value (result of some expression),
6330the second is a pointer to a global string, the third is a pointer to a global
6331string which is the source file name, and the last argument is the line number.
Tanya Lattnere545be72007-09-21 23:56:27 +00006332It returns the value of the first argument.
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006333</p>
6334
6335<h5>Semantics:</h5>
6336
6337<p>
6338This intrinsic allows annotations to be put on arbitrary expressions
6339with arbitrary strings. This can be useful for special purpose optimizations
6340that want to look for these annotations. These have no other defined use, they
6341are ignored by code generation and optimization.
6342</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006343
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00006344<!-- _______________________________________________________________________ -->
6345<div class="doc_subsubsection">
6346 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6347</div>
6348
6349<div class="doc_text">
6350
6351<h5>Syntax:</h5>
6352<pre>
6353 declare void @llvm.trap()
6354</pre>
6355
6356<h5>Overview:</h5>
6357
6358<p>
6359The '<tt>llvm.trap</tt>' intrinsic
6360</p>
6361
6362<h5>Arguments:</h5>
6363
6364<p>
6365None
6366</p>
6367
6368<h5>Semantics:</h5>
6369
6370<p>
6371This intrinsics is lowered to the target dependent trap instruction. If the
6372target does not have a trap instruction, this intrinsic will be lowered to the
6373call of the abort() function.
6374</p>
6375</div>
6376
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006377<!-- *********************************************************************** -->
6378<hr>
6379<address>
6380 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
6381 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
6382 <a href="http://validator.w3.org/check/referer"><img
Chris Lattner08497ce2008-01-04 04:33:49 +00006383 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006384
6385 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
6386 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
6387 Last modified: $Date$
6388</address>
Chris Lattner08497ce2008-01-04 04:33:49 +00006389
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006390</body>
6391</html>