blob: eb7d58517bcf25fdcffc502036659330303c1e48 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This library converts LLVM code to C code, compilable by GCC and other C
11// compilers.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CTargetMachine.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Module.h"
20#include "llvm/Instructions.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000021#include "llvm/Pass.h"
22#include "llvm/PassManager.h"
23#include "llvm/TypeSymbolTable.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Analysis/ConstantsScanner.h"
28#include "llvm/Analysis/FindUsedTypes.h"
29#include "llvm/Analysis/LoopInfo.h"
Gordon Henriksendf87fdc2008-01-07 01:30:38 +000030#include "llvm/CodeGen/Passes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000031#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/Transforms/Scalar.h"
33#include "llvm/Target/TargetMachineRegistry.h"
34#include "llvm/Target/TargetAsmInfo.h"
35#include "llvm/Target/TargetData.h"
36#include "llvm/Support/CallSite.h"
37#include "llvm/Support/CFG.h"
38#include "llvm/Support/GetElementPtrTypeIterator.h"
39#include "llvm/Support/InstVisitor.h"
40#include "llvm/Support/Mangler.h"
41#include "llvm/Support/MathExtras.h"
42#include "llvm/ADT/StringExtras.h"
43#include "llvm/ADT/STLExtras.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Config/config.h"
46#include <algorithm>
47#include <sstream>
48using namespace llvm;
49
50namespace {
51 // Register the target.
52 RegisterTarget<CTargetMachine> X("c", " C backend");
53
54 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
55 /// any unnamed structure types that are used by the program, and merges
56 /// external functions with the same name.
57 ///
58 class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
59 public:
60 static char ID;
61 CBackendNameAllUsedStructsAndMergeFunctions()
62 : ModulePass((intptr_t)&ID) {}
63 void getAnalysisUsage(AnalysisUsage &AU) const {
64 AU.addRequired<FindUsedTypes>();
65 }
66
67 virtual const char *getPassName() const {
68 return "C backend type canonicalizer";
69 }
70
71 virtual bool runOnModule(Module &M);
72 };
73
74 char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
75
76 /// CWriter - This class is the main chunk of code that converts an LLVM
77 /// module to a C translation unit.
78 class CWriter : public FunctionPass, public InstVisitor<CWriter> {
79 std::ostream &Out;
80 IntrinsicLowering *IL;
81 Mangler *Mang;
82 LoopInfo *LI;
83 const Module *TheModule;
84 const TargetAsmInfo* TAsm;
85 const TargetData* TD;
86 std::map<const Type *, std::string> TypeNames;
87 std::map<const ConstantFP *, unsigned> FPConstantMap;
88 std::set<Function*> intrinsicPrototypesAlreadyGenerated;
Chris Lattner8bbc8592008-03-02 08:07:24 +000089 std::set<const Argument*> ByValParams;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000090
91 public:
92 static char ID;
93 CWriter(std::ostream &o)
94 : FunctionPass((intptr_t)&ID), Out(o), IL(0), Mang(0), LI(0),
95 TheModule(0), TAsm(0), TD(0) {}
96
97 virtual const char *getPassName() const { return "C backend"; }
98
99 void getAnalysisUsage(AnalysisUsage &AU) const {
100 AU.addRequired<LoopInfo>();
101 AU.setPreservesAll();
102 }
103
104 virtual bool doInitialization(Module &M);
105
106 bool runOnFunction(Function &F) {
107 LI = &getAnalysis<LoopInfo>();
108
109 // Get rid of intrinsics we can't handle.
110 lowerIntrinsics(F);
111
112 // Output all floating point constants that cannot be printed accurately.
113 printFloatingPointConstants(F);
114
115 printFunction(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000116 return false;
117 }
118
119 virtual bool doFinalization(Module &M) {
120 // Free memory...
121 delete Mang;
Evan Cheng17254e62008-01-11 09:12:49 +0000122 FPConstantMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000123 TypeNames.clear();
Evan Cheng17254e62008-01-11 09:12:49 +0000124 ByValParams.clear();
Chris Lattner8bbc8592008-03-02 08:07:24 +0000125 intrinsicPrototypesAlreadyGenerated.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000126 return false;
127 }
128
129 std::ostream &printType(std::ostream &Out, const Type *Ty,
130 bool isSigned = false,
131 const std::string &VariableName = "",
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000132 bool IgnoreName = false,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000133 const PAListPtr &PAL = PAListPtr());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000134 std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
Chris Lattner63fb1f02008-03-02 03:16:38 +0000135 bool isSigned,
136 const std::string &NameSoFar = "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000137
138 void printStructReturnPointerFunctionType(std::ostream &Out,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000139 const PAListPtr &PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000140 const PointerType *Ty);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000141
142 /// writeOperandDeref - Print the result of dereferencing the specified
143 /// operand with '*'. This is equivalent to printing '*' then using
144 /// writeOperand, but avoids excess syntax in some cases.
145 void writeOperandDeref(Value *Operand) {
146 if (isAddressExposed(Operand)) {
147 // Already something with an address exposed.
148 writeOperandInternal(Operand);
149 } else {
150 Out << "*(";
151 writeOperand(Operand);
152 Out << ")";
153 }
154 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000155
156 void writeOperand(Value *Operand);
157 void writeOperandRaw(Value *Operand);
158 void writeOperandInternal(Value *Operand);
159 void writeOperandWithCast(Value* Operand, unsigned Opcode);
Chris Lattner389c9142007-09-15 06:51:03 +0000160 void writeOperandWithCast(Value* Operand, const ICmpInst &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000161 bool writeInstructionCast(const Instruction &I);
162
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +0000163 void writeMemoryAccess(Value *Operand, const Type *OperandType,
164 bool IsVolatile, unsigned Alignment);
165
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000166 private :
167 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
168
169 void lowerIntrinsics(Function &F);
170
171 void printModule(Module *M);
172 void printModuleTypes(const TypeSymbolTable &ST);
173 void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
174 void printFloatingPointConstants(Function &F);
175 void printFunctionSignature(const Function *F, bool Prototype);
176
177 void printFunction(Function &);
178 void printBasicBlock(BasicBlock *BB);
179 void printLoop(Loop *L);
180
181 void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
182 void printConstant(Constant *CPV);
183 void printConstantWithCast(Constant *CPV, unsigned Opcode);
184 bool printConstExprCast(const ConstantExpr *CE);
185 void printConstantArray(ConstantArray *CPA);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000186 void printConstantVector(ConstantVector *CV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000187
Chris Lattner8bbc8592008-03-02 08:07:24 +0000188 /// isAddressExposed - Return true if the specified value's name needs to
189 /// have its address taken in order to get a C value of the correct type.
190 /// This happens for global variables, byval parameters, and direct allocas.
191 bool isAddressExposed(const Value *V) const {
192 if (const Argument *A = dyn_cast<Argument>(V))
193 return ByValParams.count(A);
194 return isa<GlobalVariable>(V) || isDirectAlloca(V);
195 }
196
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000197 // isInlinableInst - Attempt to inline instructions into their uses to build
198 // trees as much as possible. To do this, we have to consistently decide
199 // what is acceptable to inline, so that variable declarations don't get
200 // printed and an extra copy of the expr is not emitted.
201 //
202 static bool isInlinableInst(const Instruction &I) {
203 // Always inline cmp instructions, even if they are shared by multiple
204 // expressions. GCC generates horrible code if we don't.
205 if (isa<CmpInst>(I))
206 return true;
207
208 // Must be an expression, must be used exactly once. If it is dead, we
209 // emit it inline where it would go.
210 if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
211 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
Chris Lattnerf41a7942008-03-02 03:52:39 +0000212 isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000213 // Don't inline a load across a store or other bad things!
214 return false;
215
Chris Lattnerf858a042008-03-02 05:41:07 +0000216 // Must not be used in inline asm, extractelement, or shufflevector.
217 if (I.hasOneUse()) {
218 const Instruction &User = cast<Instruction>(*I.use_back());
219 if (isInlineAsm(User) || isa<ExtractElementInst>(User) ||
220 isa<ShuffleVectorInst>(User))
221 return false;
222 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000223
224 // Only inline instruction it if it's use is in the same BB as the inst.
225 return I.getParent() == cast<Instruction>(I.use_back())->getParent();
226 }
227
228 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
229 // variables which are accessed with the & operator. This causes GCC to
230 // generate significantly better code than to emit alloca calls directly.
231 //
232 static const AllocaInst *isDirectAlloca(const Value *V) {
233 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
234 if (!AI) return false;
235 if (AI->isArrayAllocation())
236 return 0; // FIXME: we can also inline fixed size array allocas!
237 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
238 return 0;
239 return AI;
240 }
241
242 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
243 static bool isInlineAsm(const Instruction& I) {
244 if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
245 return true;
246 return false;
247 }
248
249 // Instruction visitation functions
250 friend class InstVisitor<CWriter>;
251
252 void visitReturnInst(ReturnInst &I);
253 void visitBranchInst(BranchInst &I);
254 void visitSwitchInst(SwitchInst &I);
255 void visitInvokeInst(InvokeInst &I) {
256 assert(0 && "Lowerinvoke pass didn't work!");
257 }
258
259 void visitUnwindInst(UnwindInst &I) {
260 assert(0 && "Lowerinvoke pass didn't work!");
261 }
262 void visitUnreachableInst(UnreachableInst &I);
263
264 void visitPHINode(PHINode &I);
265 void visitBinaryOperator(Instruction &I);
266 void visitICmpInst(ICmpInst &I);
267 void visitFCmpInst(FCmpInst &I);
268
269 void visitCastInst (CastInst &I);
270 void visitSelectInst(SelectInst &I);
271 void visitCallInst (CallInst &I);
272 void visitInlineAsm(CallInst &I);
Chris Lattnera74b9182008-03-02 08:29:41 +0000273 bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000274
275 void visitMallocInst(MallocInst &I);
276 void visitAllocaInst(AllocaInst &I);
277 void visitFreeInst (FreeInst &I);
278 void visitLoadInst (LoadInst &I);
279 void visitStoreInst (StoreInst &I);
280 void visitGetElementPtrInst(GetElementPtrInst &I);
281 void visitVAArgInst (VAArgInst &I);
Chris Lattnerf41a7942008-03-02 03:52:39 +0000282
283 void visitInsertElementInst(InsertElementInst &I);
Chris Lattnera5f0bc02008-03-02 03:57:08 +0000284 void visitExtractElementInst(ExtractElementInst &I);
Chris Lattnerf858a042008-03-02 05:41:07 +0000285 void visitShuffleVectorInst(ShuffleVectorInst &SVI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000286
287 void visitInstruction(Instruction &I) {
288 cerr << "C Writer does not know about " << I;
289 abort();
290 }
291
292 void outputLValue(Instruction *I) {
293 Out << " " << GetValueName(I) << " = ";
294 }
295
296 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
297 void printPHICopiesForSuccessor(BasicBlock *CurBlock,
298 BasicBlock *Successor, unsigned Indent);
299 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
300 unsigned Indent);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000301 void printGEPExpression(Value *Ptr, gep_type_iterator I,
302 gep_type_iterator E);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000303
304 std::string GetValueName(const Value *Operand);
305 };
306}
307
308char CWriter::ID = 0;
309
310/// This method inserts names for any unnamed structure types that are used by
311/// the program, and removes names from structure types that are not used by the
312/// program.
313///
314bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
315 // Get a set of types that are used by the program...
316 std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
317
318 // Loop over the module symbol table, removing types from UT that are
319 // already named, and removing names for types that are not used.
320 //
321 TypeSymbolTable &TST = M.getTypeSymbolTable();
322 for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
323 TI != TE; ) {
324 TypeSymbolTable::iterator I = TI++;
325
326 // If this isn't a struct type, remove it from our set of types to name.
327 // This simplifies emission later.
328 if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second)) {
329 TST.remove(I);
330 } else {
331 // If this is not used, remove it from the symbol table.
332 std::set<const Type *>::iterator UTI = UT.find(I->second);
333 if (UTI == UT.end())
334 TST.remove(I);
335 else
336 UT.erase(UTI); // Only keep one name for this type.
337 }
338 }
339
340 // UT now contains types that are not named. Loop over it, naming
341 // structure types.
342 //
343 bool Changed = false;
344 unsigned RenameCounter = 0;
345 for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
346 I != E; ++I)
347 if (const StructType *ST = dyn_cast<StructType>(*I)) {
348 while (M.addTypeName("unnamed"+utostr(RenameCounter), ST))
349 ++RenameCounter;
350 Changed = true;
351 }
352
353
354 // Loop over all external functions and globals. If we have two with
355 // identical names, merge them.
356 // FIXME: This code should disappear when we don't allow values with the same
357 // names when they have different types!
358 std::map<std::string, GlobalValue*> ExtSymbols;
359 for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
360 Function *GV = I++;
361 if (GV->isDeclaration() && GV->hasName()) {
362 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
363 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
364 if (!X.second) {
365 // Found a conflict, replace this global with the previous one.
366 GlobalValue *OldGV = X.first->second;
367 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
368 GV->eraseFromParent();
369 Changed = true;
370 }
371 }
372 }
373 // Do the same for globals.
374 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
375 I != E;) {
376 GlobalVariable *GV = I++;
377 if (GV->isDeclaration() && GV->hasName()) {
378 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
379 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
380 if (!X.second) {
381 // Found a conflict, replace this global with the previous one.
382 GlobalValue *OldGV = X.first->second;
383 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
384 GV->eraseFromParent();
385 Changed = true;
386 }
387 }
388 }
389
390 return Changed;
391}
392
393/// printStructReturnPointerFunctionType - This is like printType for a struct
394/// return type, except, instead of printing the type as void (*)(Struct*, ...)
395/// print it as "Struct (*)(...)", for struct return functions.
396void CWriter::printStructReturnPointerFunctionType(std::ostream &Out,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000397 const PAListPtr &PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000398 const PointerType *TheTy) {
399 const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
400 std::stringstream FunctionInnards;
401 FunctionInnards << " (*) (";
402 bool PrintedType = false;
403
404 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
405 const Type *RetTy = cast<PointerType>(I->get())->getElementType();
406 unsigned Idx = 1;
Evan Cheng2054cb02008-01-11 03:07:46 +0000407 for (++I, ++Idx; I != E; ++I, ++Idx) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000408 if (PrintedType)
409 FunctionInnards << ", ";
Evan Cheng2054cb02008-01-11 03:07:46 +0000410 const Type *ArgTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +0000411 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Cheng17254e62008-01-11 09:12:49 +0000412 assert(isa<PointerType>(ArgTy));
413 ArgTy = cast<PointerType>(ArgTy)->getElementType();
414 }
Evan Cheng2054cb02008-01-11 03:07:46 +0000415 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000416 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000417 PrintedType = true;
418 }
419 if (FTy->isVarArg()) {
420 if (PrintedType)
421 FunctionInnards << ", ...";
422 } else if (!PrintedType) {
423 FunctionInnards << "void";
424 }
425 FunctionInnards << ')';
426 std::string tstr = FunctionInnards.str();
427 printType(Out, RetTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000428 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000429}
430
431std::ostream &
432CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
Chris Lattnerd8090712008-03-02 03:41:23 +0000433 const std::string &NameSoFar) {
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000434 assert((Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000435 "Invalid type for printSimpleType");
436 switch (Ty->getTypeID()) {
437 case Type::VoidTyID: return Out << "void " << NameSoFar;
438 case Type::IntegerTyID: {
439 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
440 if (NumBits == 1)
441 return Out << "bool " << NameSoFar;
442 else if (NumBits <= 8)
443 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
444 else if (NumBits <= 16)
445 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
446 else if (NumBits <= 32)
447 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
448 else {
449 assert(NumBits <= 64 && "Bit widths > 64 not implemented yet");
450 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
451 }
452 }
453 case Type::FloatTyID: return Out << "float " << NameSoFar;
454 case Type::DoubleTyID: return Out << "double " << NameSoFar;
Dale Johannesen137cef62007-09-17 00:38:27 +0000455 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
456 // present matches host 'long double'.
457 case Type::X86_FP80TyID:
458 case Type::PPC_FP128TyID:
459 case Type::FP128TyID: return Out << "long double " << NameSoFar;
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000460
461 case Type::VectorTyID: {
462 const VectorType *VTy = cast<VectorType>(Ty);
Chris Lattnerd8090712008-03-02 03:41:23 +0000463 return printSimpleType(Out, VTy->getElementType(), isSigned,
Chris Lattnerfddca552008-03-02 03:39:43 +0000464 " __attribute__((vector_size(" +
465 utostr(TD->getABITypeSize(VTy)) + " ))) " + NameSoFar);
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000466 }
467
468 default:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000469 cerr << "Unknown primitive type: " << *Ty << "\n";
470 abort();
471 }
472}
473
474// Pass the Type* and the variable name and this prints out the variable
475// declaration.
476//
477std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
478 bool isSigned, const std::string &NameSoFar,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000479 bool IgnoreName, const PAListPtr &PAL) {
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000480 if (Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000481 printSimpleType(Out, Ty, isSigned, NameSoFar);
482 return Out;
483 }
484
485 // Check to see if the type is named.
486 if (!IgnoreName || isa<OpaqueType>(Ty)) {
487 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
488 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
489 }
490
491 switch (Ty->getTypeID()) {
492 case Type::FunctionTyID: {
493 const FunctionType *FTy = cast<FunctionType>(Ty);
494 std::stringstream FunctionInnards;
495 FunctionInnards << " (" << NameSoFar << ") (";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000496 unsigned Idx = 1;
497 for (FunctionType::param_iterator I = FTy->param_begin(),
498 E = FTy->param_end(); I != E; ++I) {
Evan Chengb8a072c2008-01-12 18:53:07 +0000499 const Type *ArgTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +0000500 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Chengb8a072c2008-01-12 18:53:07 +0000501 assert(isa<PointerType>(ArgTy));
502 ArgTy = cast<PointerType>(ArgTy)->getElementType();
503 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000504 if (I != FTy->param_begin())
505 FunctionInnards << ", ";
Evan Chengb8a072c2008-01-12 18:53:07 +0000506 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000507 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000508 ++Idx;
509 }
510 if (FTy->isVarArg()) {
511 if (FTy->getNumParams())
512 FunctionInnards << ", ...";
513 } else if (!FTy->getNumParams()) {
514 FunctionInnards << "void";
515 }
516 FunctionInnards << ')';
517 std::string tstr = FunctionInnards.str();
518 printType(Out, FTy->getReturnType(),
Chris Lattner1c8733e2008-03-12 17:45:29 +0000519 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000520 return Out;
521 }
522 case Type::StructTyID: {
523 const StructType *STy = cast<StructType>(Ty);
524 Out << NameSoFar + " {\n";
525 unsigned Idx = 0;
526 for (StructType::element_iterator I = STy->element_begin(),
527 E = STy->element_end(); I != E; ++I) {
528 Out << " ";
529 printType(Out, *I, false, "field" + utostr(Idx++));
530 Out << ";\n";
531 }
532 Out << '}';
533 if (STy->isPacked())
534 Out << " __attribute__ ((packed))";
535 return Out;
536 }
537
538 case Type::PointerTyID: {
539 const PointerType *PTy = cast<PointerType>(Ty);
540 std::string ptrName = "*" + NameSoFar;
541
542 if (isa<ArrayType>(PTy->getElementType()) ||
543 isa<VectorType>(PTy->getElementType()))
544 ptrName = "(" + ptrName + ")";
545
Chris Lattner1c8733e2008-03-12 17:45:29 +0000546 if (!PAL.isEmpty())
Evan Chengb8a072c2008-01-12 18:53:07 +0000547 // Must be a function ptr cast!
548 return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000549 return printType(Out, PTy->getElementType(), false, ptrName);
550 }
551
552 case Type::ArrayTyID: {
553 const ArrayType *ATy = cast<ArrayType>(Ty);
554 unsigned NumElements = ATy->getNumElements();
555 if (NumElements == 0) NumElements = 1;
556 return printType(Out, ATy->getElementType(), false,
557 NameSoFar + "[" + utostr(NumElements) + "]");
558 }
559
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000560 case Type::OpaqueTyID: {
561 static int Count = 0;
562 std::string TyName = "struct opaque_" + itostr(Count++);
563 assert(TypeNames.find(Ty) == TypeNames.end());
564 TypeNames[Ty] = TyName;
565 return Out << TyName << ' ' << NameSoFar;
566 }
567 default:
568 assert(0 && "Unhandled case in getTypeProps!");
569 abort();
570 }
571
572 return Out;
573}
574
575void CWriter::printConstantArray(ConstantArray *CPA) {
576
577 // As a special case, print the array as a string if it is an array of
578 // ubytes or an array of sbytes with positive values.
579 //
580 const Type *ETy = CPA->getType()->getElementType();
581 bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
582
583 // Make sure the last character is a null char, as automatically added by C
584 if (isString && (CPA->getNumOperands() == 0 ||
585 !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
586 isString = false;
587
588 if (isString) {
589 Out << '\"';
590 // Keep track of whether the last number was a hexadecimal escape
591 bool LastWasHex = false;
592
593 // Do not include the last character, which we know is null
594 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
595 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
596
597 // Print it out literally if it is a printable character. The only thing
598 // to be careful about is when the last letter output was a hex escape
599 // code, in which case we have to be careful not to print out hex digits
600 // explicitly (the C compiler thinks it is a continuation of the previous
601 // character, sheesh...)
602 //
603 if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
604 LastWasHex = false;
605 if (C == '"' || C == '\\')
606 Out << "\\" << C;
607 else
608 Out << C;
609 } else {
610 LastWasHex = false;
611 switch (C) {
612 case '\n': Out << "\\n"; break;
613 case '\t': Out << "\\t"; break;
614 case '\r': Out << "\\r"; break;
615 case '\v': Out << "\\v"; break;
616 case '\a': Out << "\\a"; break;
617 case '\"': Out << "\\\""; break;
618 case '\'': Out << "\\\'"; break;
619 default:
620 Out << "\\x";
621 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
622 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
623 LastWasHex = true;
624 break;
625 }
626 }
627 }
628 Out << '\"';
629 } else {
630 Out << '{';
631 if (CPA->getNumOperands()) {
632 Out << ' ';
633 printConstant(cast<Constant>(CPA->getOperand(0)));
634 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
635 Out << ", ";
636 printConstant(cast<Constant>(CPA->getOperand(i)));
637 }
638 }
639 Out << " }";
640 }
641}
642
643void CWriter::printConstantVector(ConstantVector *CP) {
644 Out << '{';
645 if (CP->getNumOperands()) {
646 Out << ' ';
647 printConstant(cast<Constant>(CP->getOperand(0)));
648 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
649 Out << ", ";
650 printConstant(cast<Constant>(CP->getOperand(i)));
651 }
652 }
653 Out << " }";
654}
655
656// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
657// textually as a double (rather than as a reference to a stack-allocated
658// variable). We decide this by converting CFP to a string and back into a
659// double, and then checking whether the conversion results in a bit-equal
660// double to the original value of CFP. This depends on us and the target C
661// compiler agreeing on the conversion process (which is pretty likely since we
662// only deal in IEEE FP).
663//
664static bool isFPCSafeToPrint(const ConstantFP *CFP) {
Dale Johannesen137cef62007-09-17 00:38:27 +0000665 // Do long doubles in hex for now.
Dale Johannesen2fc20782007-09-14 22:26:36 +0000666 if (CFP->getType()!=Type::FloatTy && CFP->getType()!=Type::DoubleTy)
667 return false;
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000668 APFloat APF = APFloat(CFP->getValueAPF()); // copy
669 if (CFP->getType()==Type::FloatTy)
670 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000671#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
672 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000673 sprintf(Buffer, "%a", APF.convertToDouble());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000674 if (!strncmp(Buffer, "0x", 2) ||
675 !strncmp(Buffer, "-0x", 3) ||
676 !strncmp(Buffer, "+0x", 3))
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000677 return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000678 return false;
679#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000680 std::string StrVal = ftostr(APF);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000681
682 while (StrVal[0] == ' ')
683 StrVal.erase(StrVal.begin());
684
685 // Check to make sure that the stringized number is not some string like "Inf"
686 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
687 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
688 ((StrVal[0] == '-' || StrVal[0] == '+') &&
689 (StrVal[1] >= '0' && StrVal[1] <= '9')))
690 // Reparse stringized version!
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000691 return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000692 return false;
693#endif
694}
695
696/// Print out the casting for a cast operation. This does the double casting
697/// necessary for conversion to the destination type, if necessary.
698/// @brief Print a cast
699void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
700 // Print the destination type cast
701 switch (opc) {
702 case Instruction::UIToFP:
703 case Instruction::SIToFP:
704 case Instruction::IntToPtr:
705 case Instruction::Trunc:
706 case Instruction::BitCast:
707 case Instruction::FPExt:
708 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
709 Out << '(';
710 printType(Out, DstTy);
711 Out << ')';
712 break;
713 case Instruction::ZExt:
714 case Instruction::PtrToInt:
715 case Instruction::FPToUI: // For these, make sure we get an unsigned dest
716 Out << '(';
717 printSimpleType(Out, DstTy, false);
718 Out << ')';
719 break;
720 case Instruction::SExt:
721 case Instruction::FPToSI: // For these, make sure we get a signed dest
722 Out << '(';
723 printSimpleType(Out, DstTy, true);
724 Out << ')';
725 break;
726 default:
727 assert(0 && "Invalid cast opcode");
728 }
729
730 // Print the source type cast
731 switch (opc) {
732 case Instruction::UIToFP:
733 case Instruction::ZExt:
734 Out << '(';
735 printSimpleType(Out, SrcTy, false);
736 Out << ')';
737 break;
738 case Instruction::SIToFP:
739 case Instruction::SExt:
740 Out << '(';
741 printSimpleType(Out, SrcTy, true);
742 Out << ')';
743 break;
744 case Instruction::IntToPtr:
745 case Instruction::PtrToInt:
746 // Avoid "cast to pointer from integer of different size" warnings
747 Out << "(unsigned long)";
748 break;
749 case Instruction::Trunc:
750 case Instruction::BitCast:
751 case Instruction::FPExt:
752 case Instruction::FPTrunc:
753 case Instruction::FPToSI:
754 case Instruction::FPToUI:
755 break; // These don't need a source cast.
756 default:
757 assert(0 && "Invalid cast opcode");
758 break;
759 }
760}
761
762// printConstant - The LLVM Constant to C Constant converter.
763void CWriter::printConstant(Constant *CPV) {
764 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
765 switch (CE->getOpcode()) {
766 case Instruction::Trunc:
767 case Instruction::ZExt:
768 case Instruction::SExt:
769 case Instruction::FPTrunc:
770 case Instruction::FPExt:
771 case Instruction::UIToFP:
772 case Instruction::SIToFP:
773 case Instruction::FPToUI:
774 case Instruction::FPToSI:
775 case Instruction::PtrToInt:
776 case Instruction::IntToPtr:
777 case Instruction::BitCast:
778 Out << "(";
779 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
780 if (CE->getOpcode() == Instruction::SExt &&
781 CE->getOperand(0)->getType() == Type::Int1Ty) {
782 // Make sure we really sext from bool here by subtracting from 0
783 Out << "0-";
784 }
785 printConstant(CE->getOperand(0));
786 if (CE->getType() == Type::Int1Ty &&
787 (CE->getOpcode() == Instruction::Trunc ||
788 CE->getOpcode() == Instruction::FPToUI ||
789 CE->getOpcode() == Instruction::FPToSI ||
790 CE->getOpcode() == Instruction::PtrToInt)) {
791 // Make sure we really truncate to bool here by anding with 1
792 Out << "&1u";
793 }
794 Out << ')';
795 return;
796
797 case Instruction::GetElementPtr:
Chris Lattner8bbc8592008-03-02 08:07:24 +0000798 Out << "(";
799 printGEPExpression(CE->getOperand(0), gep_type_begin(CPV),
800 gep_type_end(CPV));
801 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000802 return;
803 case Instruction::Select:
804 Out << '(';
805 printConstant(CE->getOperand(0));
806 Out << '?';
807 printConstant(CE->getOperand(1));
808 Out << ':';
809 printConstant(CE->getOperand(2));
810 Out << ')';
811 return;
812 case Instruction::Add:
813 case Instruction::Sub:
814 case Instruction::Mul:
815 case Instruction::SDiv:
816 case Instruction::UDiv:
817 case Instruction::FDiv:
818 case Instruction::URem:
819 case Instruction::SRem:
820 case Instruction::FRem:
821 case Instruction::And:
822 case Instruction::Or:
823 case Instruction::Xor:
824 case Instruction::ICmp:
825 case Instruction::Shl:
826 case Instruction::LShr:
827 case Instruction::AShr:
828 {
829 Out << '(';
830 bool NeedsClosingParens = printConstExprCast(CE);
831 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
832 switch (CE->getOpcode()) {
833 case Instruction::Add: Out << " + "; break;
834 case Instruction::Sub: Out << " - "; break;
835 case Instruction::Mul: Out << " * "; break;
836 case Instruction::URem:
837 case Instruction::SRem:
838 case Instruction::FRem: Out << " % "; break;
839 case Instruction::UDiv:
840 case Instruction::SDiv:
841 case Instruction::FDiv: Out << " / "; break;
842 case Instruction::And: Out << " & "; break;
843 case Instruction::Or: Out << " | "; break;
844 case Instruction::Xor: Out << " ^ "; break;
845 case Instruction::Shl: Out << " << "; break;
846 case Instruction::LShr:
847 case Instruction::AShr: Out << " >> "; break;
848 case Instruction::ICmp:
849 switch (CE->getPredicate()) {
850 case ICmpInst::ICMP_EQ: Out << " == "; break;
851 case ICmpInst::ICMP_NE: Out << " != "; break;
852 case ICmpInst::ICMP_SLT:
853 case ICmpInst::ICMP_ULT: Out << " < "; break;
854 case ICmpInst::ICMP_SLE:
855 case ICmpInst::ICMP_ULE: Out << " <= "; break;
856 case ICmpInst::ICMP_SGT:
857 case ICmpInst::ICMP_UGT: Out << " > "; break;
858 case ICmpInst::ICMP_SGE:
859 case ICmpInst::ICMP_UGE: Out << " >= "; break;
860 default: assert(0 && "Illegal ICmp predicate");
861 }
862 break;
863 default: assert(0 && "Illegal opcode here!");
864 }
865 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
866 if (NeedsClosingParens)
867 Out << "))";
868 Out << ')';
869 return;
870 }
871 case Instruction::FCmp: {
872 Out << '(';
873 bool NeedsClosingParens = printConstExprCast(CE);
874 if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
875 Out << "0";
876 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
877 Out << "1";
878 else {
879 const char* op = 0;
880 switch (CE->getPredicate()) {
881 default: assert(0 && "Illegal FCmp predicate");
882 case FCmpInst::FCMP_ORD: op = "ord"; break;
883 case FCmpInst::FCMP_UNO: op = "uno"; break;
884 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
885 case FCmpInst::FCMP_UNE: op = "une"; break;
886 case FCmpInst::FCMP_ULT: op = "ult"; break;
887 case FCmpInst::FCMP_ULE: op = "ule"; break;
888 case FCmpInst::FCMP_UGT: op = "ugt"; break;
889 case FCmpInst::FCMP_UGE: op = "uge"; break;
890 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
891 case FCmpInst::FCMP_ONE: op = "one"; break;
892 case FCmpInst::FCMP_OLT: op = "olt"; break;
893 case FCmpInst::FCMP_OLE: op = "ole"; break;
894 case FCmpInst::FCMP_OGT: op = "ogt"; break;
895 case FCmpInst::FCMP_OGE: op = "oge"; break;
896 }
897 Out << "llvm_fcmp_" << op << "(";
898 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
899 Out << ", ";
900 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
901 Out << ")";
902 }
903 if (NeedsClosingParens)
904 Out << "))";
905 Out << ')';
Anton Korobeynikov44891ce2007-12-21 23:33:44 +0000906 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000907 }
908 default:
909 cerr << "CWriter Error: Unhandled constant expression: "
910 << *CE << "\n";
911 abort();
912 }
913 } else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) {
914 Out << "((";
915 printType(Out, CPV->getType()); // sign doesn't matter
Chris Lattnerc72d9e32008-03-02 08:14:45 +0000916 Out << ")/*UNDEF*/";
917 if (!isa<VectorType>(CPV->getType())) {
918 Out << "0)";
919 } else {
920 Out << "{})";
921 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000922 return;
923 }
924
925 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
926 const Type* Ty = CI->getType();
927 if (Ty == Type::Int1Ty)
Chris Lattner63fb1f02008-03-02 03:16:38 +0000928 Out << (CI->getZExtValue() ? '1' : '0');
929 else if (Ty == Type::Int32Ty)
930 Out << CI->getZExtValue() << 'u';
931 else if (Ty->getPrimitiveSizeInBits() > 32)
932 Out << CI->getZExtValue() << "ull";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000933 else {
934 Out << "((";
935 printSimpleType(Out, Ty, false) << ')';
936 if (CI->isMinValue(true))
937 Out << CI->getZExtValue() << 'u';
938 else
939 Out << CI->getSExtValue();
Chris Lattner63fb1f02008-03-02 03:16:38 +0000940 Out << ')';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000941 }
942 return;
943 }
944
945 switch (CPV->getType()->getTypeID()) {
946 case Type::FloatTyID:
Dale Johannesen137cef62007-09-17 00:38:27 +0000947 case Type::DoubleTyID:
948 case Type::X86_FP80TyID:
949 case Type::PPC_FP128TyID:
950 case Type::FP128TyID: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000951 ConstantFP *FPC = cast<ConstantFP>(CPV);
952 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
953 if (I != FPConstantMap.end()) {
954 // Because of FP precision problems we must load from a stack allocated
955 // value that holds the value in hex.
Dale Johannesen137cef62007-09-17 00:38:27 +0000956 Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" :
957 FPC->getType() == Type::DoubleTy ? "double" :
958 "long double")
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000959 << "*)&FPConstant" << I->second << ')';
960 } else {
Dale Johannesen137cef62007-09-17 00:38:27 +0000961 assert(FPC->getType() == Type::FloatTy ||
962 FPC->getType() == Type::DoubleTy);
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000963 double V = FPC->getType() == Type::FloatTy ?
964 FPC->getValueAPF().convertToFloat() :
965 FPC->getValueAPF().convertToDouble();
966 if (IsNAN(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000967 // The value is NaN
968
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000969 // FIXME the actual NaN bits should be emitted.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000970 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
971 // it's 0x7ff4.
972 const unsigned long QuietNaN = 0x7ff8UL;
973 //const unsigned long SignalNaN = 0x7ff4UL;
974
975 // We need to grab the first part of the FP #
976 char Buffer[100];
977
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000978 uint64_t ll = DoubleToBits(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000979 sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
980
981 std::string Num(&Buffer[0], &Buffer[6]);
982 unsigned long Val = strtoul(Num.c_str(), 0, 16);
983
984 if (FPC->getType() == Type::FloatTy)
985 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
986 << Buffer << "\") /*nan*/ ";
987 else
988 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
989 << Buffer << "\") /*nan*/ ";
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000990 } else if (IsInf(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000991 // The value is Inf
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000992 if (V < 0) Out << '-';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000993 Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
994 << " /*inf*/ ";
995 } else {
996 std::string Num;
997#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
998 // Print out the constant as a floating point number.
999 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001000 sprintf(Buffer, "%a", V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001001 Num = Buffer;
1002#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001003 Num = ftostr(FPC->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001004#endif
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001005 Out << Num;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001006 }
1007 }
1008 break;
1009 }
1010
1011 case Type::ArrayTyID:
Chris Lattner8673e322008-03-02 05:46:57 +00001012 if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) {
Chris Lattner6d4cd9b2008-03-02 03:18:46 +00001013 printConstantArray(CA);
Chris Lattner63fb1f02008-03-02 03:16:38 +00001014 } else {
1015 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001016 const ArrayType *AT = cast<ArrayType>(CPV->getType());
1017 Out << '{';
1018 if (AT->getNumElements()) {
1019 Out << ' ';
1020 Constant *CZ = Constant::getNullValue(AT->getElementType());
1021 printConstant(CZ);
1022 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
1023 Out << ", ";
1024 printConstant(CZ);
1025 }
1026 }
1027 Out << " }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001028 }
1029 break;
1030
1031 case Type::VectorTyID:
Chris Lattner70f0f672008-03-02 03:29:50 +00001032 // Use C99 compound expression literal initializer syntax.
1033 Out << "(";
1034 printType(Out, CPV->getType());
1035 Out << ")";
Chris Lattner8673e322008-03-02 05:46:57 +00001036 if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) {
Chris Lattner63fb1f02008-03-02 03:16:38 +00001037 printConstantVector(CV);
1038 } else {
1039 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
1040 const VectorType *VT = cast<VectorType>(CPV->getType());
1041 Out << "{ ";
1042 Constant *CZ = Constant::getNullValue(VT->getElementType());
1043 printConstant(CZ);
Chris Lattner6d4cd9b2008-03-02 03:18:46 +00001044 for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
Chris Lattner63fb1f02008-03-02 03:16:38 +00001045 Out << ", ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001046 printConstant(CZ);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001047 }
1048 Out << " }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001049 }
1050 break;
1051
1052 case Type::StructTyID:
1053 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
1054 const StructType *ST = cast<StructType>(CPV->getType());
1055 Out << '{';
1056 if (ST->getNumElements()) {
1057 Out << ' ';
1058 printConstant(Constant::getNullValue(ST->getElementType(0)));
1059 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
1060 Out << ", ";
1061 printConstant(Constant::getNullValue(ST->getElementType(i)));
1062 }
1063 }
1064 Out << " }";
1065 } else {
1066 Out << '{';
1067 if (CPV->getNumOperands()) {
1068 Out << ' ';
1069 printConstant(cast<Constant>(CPV->getOperand(0)));
1070 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
1071 Out << ", ";
1072 printConstant(cast<Constant>(CPV->getOperand(i)));
1073 }
1074 }
1075 Out << " }";
1076 }
1077 break;
1078
1079 case Type::PointerTyID:
1080 if (isa<ConstantPointerNull>(CPV)) {
1081 Out << "((";
1082 printType(Out, CPV->getType()); // sign doesn't matter
1083 Out << ")/*NULL*/0)";
1084 break;
1085 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
1086 writeOperand(GV);
1087 break;
1088 }
1089 // FALL THROUGH
1090 default:
1091 cerr << "Unknown constant type: " << *CPV << "\n";
1092 abort();
1093 }
1094}
1095
1096// Some constant expressions need to be casted back to the original types
1097// because their operands were casted to the expected type. This function takes
1098// care of detecting that case and printing the cast for the ConstantExpr.
1099bool CWriter::printConstExprCast(const ConstantExpr* CE) {
1100 bool NeedsExplicitCast = false;
1101 const Type *Ty = CE->getOperand(0)->getType();
1102 bool TypeIsSigned = false;
1103 switch (CE->getOpcode()) {
1104 case Instruction::LShr:
1105 case Instruction::URem:
1106 case Instruction::UDiv: NeedsExplicitCast = true; break;
1107 case Instruction::AShr:
1108 case Instruction::SRem:
1109 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
1110 case Instruction::SExt:
1111 Ty = CE->getType();
1112 NeedsExplicitCast = true;
1113 TypeIsSigned = true;
1114 break;
1115 case Instruction::ZExt:
1116 case Instruction::Trunc:
1117 case Instruction::FPTrunc:
1118 case Instruction::FPExt:
1119 case Instruction::UIToFP:
1120 case Instruction::SIToFP:
1121 case Instruction::FPToUI:
1122 case Instruction::FPToSI:
1123 case Instruction::PtrToInt:
1124 case Instruction::IntToPtr:
1125 case Instruction::BitCast:
1126 Ty = CE->getType();
1127 NeedsExplicitCast = true;
1128 break;
1129 default: break;
1130 }
1131 if (NeedsExplicitCast) {
1132 Out << "((";
1133 if (Ty->isInteger() && Ty != Type::Int1Ty)
1134 printSimpleType(Out, Ty, TypeIsSigned);
1135 else
1136 printType(Out, Ty); // not integer, sign doesn't matter
1137 Out << ")(";
1138 }
1139 return NeedsExplicitCast;
1140}
1141
1142// Print a constant assuming that it is the operand for a given Opcode. The
1143// opcodes that care about sign need to cast their operands to the expected
1144// type before the operation proceeds. This function does the casting.
1145void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
1146
1147 // Extract the operand's type, we'll need it.
1148 const Type* OpTy = CPV->getType();
1149
1150 // Indicate whether to do the cast or not.
1151 bool shouldCast = false;
1152 bool typeIsSigned = false;
1153
1154 // Based on the Opcode for which this Constant is being written, determine
1155 // the new type to which the operand should be casted by setting the value
1156 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1157 // casted below.
1158 switch (Opcode) {
1159 default:
1160 // for most instructions, it doesn't matter
1161 break;
1162 case Instruction::LShr:
1163 case Instruction::UDiv:
1164 case Instruction::URem:
1165 shouldCast = true;
1166 break;
1167 case Instruction::AShr:
1168 case Instruction::SDiv:
1169 case Instruction::SRem:
1170 shouldCast = true;
1171 typeIsSigned = true;
1172 break;
1173 }
1174
1175 // Write out the casted constant if we should, otherwise just write the
1176 // operand.
1177 if (shouldCast) {
1178 Out << "((";
1179 printSimpleType(Out, OpTy, typeIsSigned);
1180 Out << ")";
1181 printConstant(CPV);
1182 Out << ")";
1183 } else
1184 printConstant(CPV);
1185}
1186
1187std::string CWriter::GetValueName(const Value *Operand) {
1188 std::string Name;
1189
1190 if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
1191 std::string VarName;
1192
1193 Name = Operand->getName();
1194 VarName.reserve(Name.capacity());
1195
1196 for (std::string::iterator I = Name.begin(), E = Name.end();
1197 I != E; ++I) {
1198 char ch = *I;
1199
1200 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
Lauro Ramos Venancio66842ee2008-02-28 20:26:04 +00001201 (ch >= '0' && ch <= '9') || ch == '_')) {
1202 char buffer[5];
1203 sprintf(buffer, "_%x_", ch);
1204 VarName += buffer;
1205 } else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001206 VarName += ch;
1207 }
1208
1209 Name = "llvm_cbe_" + VarName;
1210 } else {
1211 Name = Mang->getValueName(Operand);
1212 }
1213
1214 return Name;
1215}
1216
1217void CWriter::writeOperandInternal(Value *Operand) {
1218 if (Instruction *I = dyn_cast<Instruction>(Operand))
1219 if (isInlinableInst(*I) && !isDirectAlloca(I)) {
1220 // Should we inline this instruction to build a tree?
1221 Out << '(';
1222 visit(*I);
1223 Out << ')';
1224 return;
1225 }
1226
1227 Constant* CPV = dyn_cast<Constant>(Operand);
1228
1229 if (CPV && !isa<GlobalValue>(CPV))
1230 printConstant(CPV);
1231 else
1232 Out << GetValueName(Operand);
1233}
1234
1235void CWriter::writeOperandRaw(Value *Operand) {
1236 Constant* CPV = dyn_cast<Constant>(Operand);
1237 if (CPV && !isa<GlobalValue>(CPV)) {
1238 printConstant(CPV);
1239 } else {
1240 Out << GetValueName(Operand);
1241 }
1242}
1243
1244void CWriter::writeOperand(Value *Operand) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00001245 bool isAddressImplicit = isAddressExposed(Operand);
1246 if (isAddressImplicit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001247 Out << "(&"; // Global variables are referenced as their addresses by llvm
1248
1249 writeOperandInternal(Operand);
1250
Chris Lattner8bbc8592008-03-02 08:07:24 +00001251 if (isAddressImplicit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001252 Out << ')';
1253}
1254
1255// Some instructions need to have their result value casted back to the
1256// original types because their operands were casted to the expected type.
1257// This function takes care of detecting that case and printing the cast
1258// for the Instruction.
1259bool CWriter::writeInstructionCast(const Instruction &I) {
1260 const Type *Ty = I.getOperand(0)->getType();
1261 switch (I.getOpcode()) {
1262 case Instruction::LShr:
1263 case Instruction::URem:
1264 case Instruction::UDiv:
1265 Out << "((";
1266 printSimpleType(Out, Ty, false);
1267 Out << ")(";
1268 return true;
1269 case Instruction::AShr:
1270 case Instruction::SRem:
1271 case Instruction::SDiv:
1272 Out << "((";
1273 printSimpleType(Out, Ty, true);
1274 Out << ")(";
1275 return true;
1276 default: break;
1277 }
1278 return false;
1279}
1280
1281// Write the operand with a cast to another type based on the Opcode being used.
1282// This will be used in cases where an instruction has specific type
1283// requirements (usually signedness) for its operands.
1284void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
1285
1286 // Extract the operand's type, we'll need it.
1287 const Type* OpTy = Operand->getType();
1288
1289 // Indicate whether to do the cast or not.
1290 bool shouldCast = false;
1291
1292 // Indicate whether the cast should be to a signed type or not.
1293 bool castIsSigned = false;
1294
1295 // Based on the Opcode for which this Operand is being written, determine
1296 // the new type to which the operand should be casted by setting the value
1297 // of OpTy. If we change OpTy, also set shouldCast to true.
1298 switch (Opcode) {
1299 default:
1300 // for most instructions, it doesn't matter
1301 break;
1302 case Instruction::LShr:
1303 case Instruction::UDiv:
1304 case Instruction::URem: // Cast to unsigned first
1305 shouldCast = true;
1306 castIsSigned = false;
1307 break;
Chris Lattner7ce1ee42007-09-22 20:16:48 +00001308 case Instruction::GetElementPtr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001309 case Instruction::AShr:
1310 case Instruction::SDiv:
1311 case Instruction::SRem: // Cast to signed first
1312 shouldCast = true;
1313 castIsSigned = true;
1314 break;
1315 }
1316
1317 // Write out the casted operand if we should, otherwise just write the
1318 // operand.
1319 if (shouldCast) {
1320 Out << "((";
1321 printSimpleType(Out, OpTy, castIsSigned);
1322 Out << ")";
1323 writeOperand(Operand);
1324 Out << ")";
1325 } else
1326 writeOperand(Operand);
1327}
1328
1329// Write the operand with a cast to another type based on the icmp predicate
1330// being used.
Chris Lattner389c9142007-09-15 06:51:03 +00001331void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
1332 // This has to do a cast to ensure the operand has the right signedness.
1333 // Also, if the operand is a pointer, we make sure to cast to an integer when
1334 // doing the comparison both for signedness and so that the C compiler doesn't
1335 // optimize things like "p < NULL" to false (p may contain an integer value
1336 // f.e.).
1337 bool shouldCast = Cmp.isRelational();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001338
1339 // Write out the casted operand if we should, otherwise just write the
1340 // operand.
Chris Lattner389c9142007-09-15 06:51:03 +00001341 if (!shouldCast) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001342 writeOperand(Operand);
Chris Lattner389c9142007-09-15 06:51:03 +00001343 return;
1344 }
1345
1346 // Should this be a signed comparison? If so, convert to signed.
1347 bool castIsSigned = Cmp.isSignedPredicate();
1348
1349 // If the operand was a pointer, convert to a large integer type.
1350 const Type* OpTy = Operand->getType();
1351 if (isa<PointerType>(OpTy))
1352 OpTy = TD->getIntPtrType();
1353
1354 Out << "((";
1355 printSimpleType(Out, OpTy, castIsSigned);
1356 Out << ")";
1357 writeOperand(Operand);
1358 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001359}
1360
1361// generateCompilerSpecificCode - This is where we add conditional compilation
1362// directives to cater to specific compilers as need be.
1363//
1364static void generateCompilerSpecificCode(std::ostream& Out) {
1365 // Alloca is hard to get, and we don't want to include stdlib.h here.
1366 Out << "/* get a declaration for alloca */\n"
1367 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1368 << "#define alloca(x) __builtin_alloca((x))\n"
1369 << "#define _alloca(x) __builtin_alloca((x))\n"
1370 << "#elif defined(__APPLE__)\n"
1371 << "extern void *__builtin_alloca(unsigned long);\n"
1372 << "#define alloca(x) __builtin_alloca(x)\n"
1373 << "#define longjmp _longjmp\n"
1374 << "#define setjmp _setjmp\n"
1375 << "#elif defined(__sun__)\n"
1376 << "#if defined(__sparcv9)\n"
1377 << "extern void *__builtin_alloca(unsigned long);\n"
1378 << "#else\n"
1379 << "extern void *__builtin_alloca(unsigned int);\n"
1380 << "#endif\n"
1381 << "#define alloca(x) __builtin_alloca(x)\n"
Chris Lattner9bae27b2008-01-12 06:46:09 +00001382 << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001383 << "#define alloca(x) __builtin_alloca(x)\n"
1384 << "#elif defined(_MSC_VER)\n"
1385 << "#define inline _inline\n"
1386 << "#define alloca(x) _alloca(x)\n"
1387 << "#else\n"
1388 << "#include <alloca.h>\n"
1389 << "#endif\n\n";
1390
1391 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1392 // If we aren't being compiled with GCC, just drop these attributes.
1393 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1394 << "#define __attribute__(X)\n"
1395 << "#endif\n\n";
1396
1397 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1398 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1399 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1400 << "#elif defined(__GNUC__)\n"
1401 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1402 << "#else\n"
1403 << "#define __EXTERNAL_WEAK__\n"
1404 << "#endif\n\n";
1405
1406 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1407 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1408 << "#define __ATTRIBUTE_WEAK__\n"
1409 << "#elif defined(__GNUC__)\n"
1410 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1411 << "#else\n"
1412 << "#define __ATTRIBUTE_WEAK__\n"
1413 << "#endif\n\n";
1414
1415 // Add hidden visibility support. FIXME: APPLE_CC?
1416 Out << "#if defined(__GNUC__)\n"
1417 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1418 << "#endif\n\n";
1419
1420 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1421 // From the GCC documentation:
1422 //
1423 // double __builtin_nan (const char *str)
1424 //
1425 // This is an implementation of the ISO C99 function nan.
1426 //
1427 // Since ISO C99 defines this function in terms of strtod, which we do
1428 // not implement, a description of the parsing is in order. The string is
1429 // parsed as by strtol; that is, the base is recognized by leading 0 or
1430 // 0x prefixes. The number parsed is placed in the significand such that
1431 // the least significant bit of the number is at the least significant
1432 // bit of the significand. The number is truncated to fit the significand
1433 // field provided. The significand is forced to be a quiet NaN.
1434 //
1435 // This function, if given a string literal, is evaluated early enough
1436 // that it is considered a compile-time constant.
1437 //
1438 // float __builtin_nanf (const char *str)
1439 //
1440 // Similar to __builtin_nan, except the return type is float.
1441 //
1442 // double __builtin_inf (void)
1443 //
1444 // Similar to __builtin_huge_val, except a warning is generated if the
1445 // target floating-point format does not support infinities. This
1446 // function is suitable for implementing the ISO C99 macro INFINITY.
1447 //
1448 // float __builtin_inff (void)
1449 //
1450 // Similar to __builtin_inf, except the return type is float.
1451 Out << "#ifdef __GNUC__\n"
1452 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1453 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1454 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1455 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1456 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1457 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1458 << "#define LLVM_PREFETCH(addr,rw,locality) "
1459 "__builtin_prefetch(addr,rw,locality)\n"
1460 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1461 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1462 << "#define LLVM_ASM __asm__\n"
1463 << "#else\n"
1464 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1465 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1466 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1467 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1468 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1469 << "#define LLVM_INFF 0.0F /* Float */\n"
1470 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1471 << "#define __ATTRIBUTE_CTOR__\n"
1472 << "#define __ATTRIBUTE_DTOR__\n"
1473 << "#define LLVM_ASM(X)\n"
1474 << "#endif\n\n";
1475
1476 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1477 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1478 << "#define __builtin_stack_restore(X) /* noop */\n"
1479 << "#endif\n\n";
1480
1481 // Output target-specific code that should be inserted into main.
1482 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001483}
1484
1485/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1486/// the StaticTors set.
1487static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
1488 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
1489 if (!InitList) return;
1490
1491 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
1492 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
1493 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
1494
1495 if (CS->getOperand(1)->isNullValue())
1496 return; // Found a null terminator, exit printing.
1497 Constant *FP = CS->getOperand(1);
1498 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
1499 if (CE->isCast())
1500 FP = CE->getOperand(0);
1501 if (Function *F = dyn_cast<Function>(FP))
1502 StaticTors.insert(F);
1503 }
1504}
1505
1506enum SpecialGlobalClass {
1507 NotSpecial = 0,
1508 GlobalCtors, GlobalDtors,
1509 NotPrinted
1510};
1511
1512/// getGlobalVariableClass - If this is a global that is specially recognized
1513/// by LLVM, return a code that indicates how we should handle it.
1514static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
1515 // If this is a global ctors/dtors list, handle it now.
1516 if (GV->hasAppendingLinkage() && GV->use_empty()) {
1517 if (GV->getName() == "llvm.global_ctors")
1518 return GlobalCtors;
1519 else if (GV->getName() == "llvm.global_dtors")
1520 return GlobalDtors;
1521 }
1522
1523 // Otherwise, it it is other metadata, don't print it. This catches things
1524 // like debug information.
1525 if (GV->getSection() == "llvm.metadata")
1526 return NotPrinted;
1527
1528 return NotSpecial;
1529}
1530
1531
1532bool CWriter::doInitialization(Module &M) {
1533 // Initialize
1534 TheModule = &M;
1535
1536 TD = new TargetData(&M);
1537 IL = new IntrinsicLowering(*TD);
1538 IL->AddPrototypes(M);
1539
1540 // Ensure that all structure types have names...
1541 Mang = new Mangler(M);
1542 Mang->markCharUnacceptable('.');
1543
1544 // Keep track of which functions are static ctors/dtors so they can have
1545 // an attribute added to their prototypes.
1546 std::set<Function*> StaticCtors, StaticDtors;
1547 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1548 I != E; ++I) {
1549 switch (getGlobalVariableClass(I)) {
1550 default: break;
1551 case GlobalCtors:
1552 FindStaticTors(I, StaticCtors);
1553 break;
1554 case GlobalDtors:
1555 FindStaticTors(I, StaticDtors);
1556 break;
1557 }
1558 }
1559
1560 // get declaration for alloca
1561 Out << "/* Provide Declarations */\n";
1562 Out << "#include <stdarg.h>\n"; // Varargs support
1563 Out << "#include <setjmp.h>\n"; // Unwind support
1564 generateCompilerSpecificCode(Out);
1565
1566 // Provide a definition for `bool' if not compiling with a C++ compiler.
1567 Out << "\n"
1568 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1569
1570 << "\n\n/* Support for floating point constants */\n"
1571 << "typedef unsigned long long ConstantDoubleTy;\n"
1572 << "typedef unsigned int ConstantFloatTy;\n"
Dale Johannesen137cef62007-09-17 00:38:27 +00001573 << "typedef struct { unsigned long long f1; unsigned short f2; "
1574 "unsigned short pad[3]; } ConstantFP80Ty;\n"
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001575 // This is used for both kinds of 128-bit long double; meaning differs.
Dale Johannesen137cef62007-09-17 00:38:27 +00001576 << "typedef struct { unsigned long long f1; unsigned long long f2; }"
1577 " ConstantFP128Ty;\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001578 << "\n\n/* Global Declarations */\n";
1579
1580 // First output all the declarations for the program, because C requires
1581 // Functions & globals to be declared before they are used.
1582 //
1583
1584 // Loop over the symbol table, emitting all named constants...
1585 printModuleTypes(M.getTypeSymbolTable());
1586
1587 // Global variable declarations...
1588 if (!M.global_empty()) {
1589 Out << "\n/* External Global Variable Declarations */\n";
1590 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1591 I != E; ++I) {
1592
1593 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage())
1594 Out << "extern ";
1595 else if (I->hasDLLImportLinkage())
1596 Out << "__declspec(dllimport) ";
1597 else
1598 continue; // Internal Global
1599
1600 // Thread Local Storage
1601 if (I->isThreadLocal())
1602 Out << "__thread ";
1603
1604 printType(Out, I->getType()->getElementType(), false, GetValueName(I));
1605
1606 if (I->hasExternalWeakLinkage())
1607 Out << " __EXTERNAL_WEAK__";
1608 Out << ";\n";
1609 }
1610 }
1611
1612 // Function declarations
1613 Out << "\n/* Function Declarations */\n";
1614 Out << "double fmod(double, double);\n"; // Support for FP rem
1615 Out << "float fmodf(float, float);\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001616 Out << "long double fmodl(long double, long double);\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001617
1618 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1619 // Don't print declarations for intrinsic functions.
Duncan Sands79d28872007-12-03 20:06:50 +00001620 if (!I->isIntrinsic() && I->getName() != "setjmp" &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001621 I->getName() != "longjmp" && I->getName() != "_setjmp") {
1622 if (I->hasExternalWeakLinkage())
1623 Out << "extern ";
1624 printFunctionSignature(I, true);
1625 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
1626 Out << " __ATTRIBUTE_WEAK__";
1627 if (I->hasExternalWeakLinkage())
1628 Out << " __EXTERNAL_WEAK__";
1629 if (StaticCtors.count(I))
1630 Out << " __ATTRIBUTE_CTOR__";
1631 if (StaticDtors.count(I))
1632 Out << " __ATTRIBUTE_DTOR__";
1633 if (I->hasHiddenVisibility())
1634 Out << " __HIDDEN__";
1635
1636 if (I->hasName() && I->getName()[0] == 1)
1637 Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
1638
1639 Out << ";\n";
1640 }
1641 }
1642
1643 // Output the global variable declarations
1644 if (!M.global_empty()) {
1645 Out << "\n\n/* Global Variable Declarations */\n";
1646 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1647 I != E; ++I)
1648 if (!I->isDeclaration()) {
1649 // Ignore special globals, such as debug info.
1650 if (getGlobalVariableClass(I))
1651 continue;
1652
1653 if (I->hasInternalLinkage())
1654 Out << "static ";
1655 else
1656 Out << "extern ";
1657
1658 // Thread Local Storage
1659 if (I->isThreadLocal())
1660 Out << "__thread ";
1661
1662 printType(Out, I->getType()->getElementType(), false,
1663 GetValueName(I));
1664
1665 if (I->hasLinkOnceLinkage())
1666 Out << " __attribute__((common))";
1667 else if (I->hasWeakLinkage())
1668 Out << " __ATTRIBUTE_WEAK__";
1669 else if (I->hasExternalWeakLinkage())
1670 Out << " __EXTERNAL_WEAK__";
1671 if (I->hasHiddenVisibility())
1672 Out << " __HIDDEN__";
1673 Out << ";\n";
1674 }
1675 }
1676
1677 // Output the global variable definitions and contents...
1678 if (!M.global_empty()) {
1679 Out << "\n\n/* Global Variable Definitions and Initialization */\n";
1680 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1681 I != E; ++I)
1682 if (!I->isDeclaration()) {
1683 // Ignore special globals, such as debug info.
1684 if (getGlobalVariableClass(I))
1685 continue;
1686
1687 if (I->hasInternalLinkage())
1688 Out << "static ";
1689 else if (I->hasDLLImportLinkage())
1690 Out << "__declspec(dllimport) ";
1691 else if (I->hasDLLExportLinkage())
1692 Out << "__declspec(dllexport) ";
1693
1694 // Thread Local Storage
1695 if (I->isThreadLocal())
1696 Out << "__thread ";
1697
1698 printType(Out, I->getType()->getElementType(), false,
1699 GetValueName(I));
1700 if (I->hasLinkOnceLinkage())
1701 Out << " __attribute__((common))";
1702 else if (I->hasWeakLinkage())
1703 Out << " __ATTRIBUTE_WEAK__";
1704
1705 if (I->hasHiddenVisibility())
1706 Out << " __HIDDEN__";
1707
1708 // If the initializer is not null, emit the initializer. If it is null,
1709 // we try to avoid emitting large amounts of zeros. The problem with
1710 // this, however, occurs when the variable has weak linkage. In this
1711 // case, the assembler will complain about the variable being both weak
1712 // and common, so we disable this optimization.
1713 if (!I->getInitializer()->isNullValue()) {
1714 Out << " = " ;
1715 writeOperand(I->getInitializer());
1716 } else if (I->hasWeakLinkage()) {
1717 // We have to specify an initializer, but it doesn't have to be
1718 // complete. If the value is an aggregate, print out { 0 }, and let
1719 // the compiler figure out the rest of the zeros.
1720 Out << " = " ;
1721 if (isa<StructType>(I->getInitializer()->getType()) ||
1722 isa<ArrayType>(I->getInitializer()->getType()) ||
1723 isa<VectorType>(I->getInitializer()->getType())) {
1724 Out << "{ 0 }";
1725 } else {
1726 // Just print it out normally.
1727 writeOperand(I->getInitializer());
1728 }
1729 }
1730 Out << ";\n";
1731 }
1732 }
1733
1734 if (!M.empty())
1735 Out << "\n\n/* Function Bodies */\n";
1736
1737 // Emit some helper functions for dealing with FCMP instruction's
1738 // predicates
1739 Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
1740 Out << "return X == X && Y == Y; }\n";
1741 Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
1742 Out << "return X != X || Y != Y; }\n";
1743 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
1744 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
1745 Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
1746 Out << "return X != Y; }\n";
1747 Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
1748 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
1749 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
1750 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
1751 Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
1752 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
1753 Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
1754 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
1755 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
1756 Out << "return X == Y ; }\n";
1757 Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
1758 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
1759 Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
1760 Out << "return X < Y ; }\n";
1761 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
1762 Out << "return X > Y ; }\n";
1763 Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
1764 Out << "return X <= Y ; }\n";
1765 Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
1766 Out << "return X >= Y ; }\n";
1767 return false;
1768}
1769
1770
1771/// Output all floating point constants that cannot be printed accurately...
1772void CWriter::printFloatingPointConstants(Function &F) {
1773 // Scan the module for floating point constants. If any FP constant is used
1774 // in the function, we want to redirect it here so that we do not depend on
1775 // the precision of the printed form, unless the printed form preserves
1776 // precision.
1777 //
1778 static unsigned FPCounter = 0;
1779 for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
1780 I != E; ++I)
1781 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
1782 if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
1783 !FPConstantMap.count(FPC)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001784 FPConstantMap[FPC] = FPCounter; // Number the FP constants
1785
1786 if (FPC->getType() == Type::DoubleTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001787 double Val = FPC->getValueAPF().convertToDouble();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001788 uint64_t i = FPC->getValueAPF().convertToAPInt().getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001789 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001790 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001791 << "ULL; /* " << Val << " */\n";
1792 } else if (FPC->getType() == Type::FloatTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001793 float Val = FPC->getValueAPF().convertToFloat();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001794 uint32_t i = (uint32_t)FPC->getValueAPF().convertToAPInt().
1795 getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001796 Out << "static const ConstantFloatTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001797 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001798 << "U; /* " << Val << " */\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001799 } else if (FPC->getType() == Type::X86_FP80Ty) {
Dale Johannesen693aa822007-09-26 23:20:33 +00001800 // api needed to prevent premature destruction
1801 APInt api = FPC->getValueAPF().convertToAPInt();
1802 const uint64_t *p = api.getRawData();
Dale Johannesen137cef62007-09-17 00:38:27 +00001803 Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
1804 << " = { 0x" << std::hex
1805 << ((uint16_t)p[1] | (p[0] & 0xffffffffffffLL)<<16)
1806 << ", 0x" << (uint16_t)(p[0] >> 48) << ",0,0,0"
1807 << "}; /* Long double constant */\n" << std::dec;
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001808 } else if (FPC->getType() == Type::PPC_FP128Ty) {
1809 APInt api = FPC->getValueAPF().convertToAPInt();
1810 const uint64_t *p = api.getRawData();
1811 Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
1812 << " = { 0x" << std::hex
1813 << p[0] << ", 0x" << p[1]
1814 << "}; /* Long double constant */\n" << std::dec;
1815
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001816 } else
1817 assert(0 && "Unknown float type!");
1818 }
1819
1820 Out << '\n';
1821}
1822
1823
1824/// printSymbolTable - Run through symbol table looking for type names. If a
1825/// type name is found, emit its declaration...
1826///
1827void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
1828 Out << "/* Helper union for bitcasts */\n";
1829 Out << "typedef union {\n";
1830 Out << " unsigned int Int32;\n";
1831 Out << " unsigned long long Int64;\n";
1832 Out << " float Float;\n";
1833 Out << " double Double;\n";
1834 Out << "} llvmBitCastUnion;\n";
1835
1836 // We are only interested in the type plane of the symbol table.
1837 TypeSymbolTable::const_iterator I = TST.begin();
1838 TypeSymbolTable::const_iterator End = TST.end();
1839
1840 // If there are no type names, exit early.
1841 if (I == End) return;
1842
1843 // Print out forward declarations for structure types before anything else!
1844 Out << "/* Structure forward decls */\n";
1845 for (; I != End; ++I) {
1846 std::string Name = "struct l_" + Mang->makeNameProper(I->first);
1847 Out << Name << ";\n";
1848 TypeNames.insert(std::make_pair(I->second, Name));
1849 }
1850
1851 Out << '\n';
1852
1853 // Now we can print out typedefs. Above, we guaranteed that this can only be
1854 // for struct or opaque types.
1855 Out << "/* Typedefs */\n";
1856 for (I = TST.begin(); I != End; ++I) {
1857 std::string Name = "l_" + Mang->makeNameProper(I->first);
1858 Out << "typedef ";
1859 printType(Out, I->second, false, Name);
1860 Out << ";\n";
1861 }
1862
1863 Out << '\n';
1864
1865 // Keep track of which structures have been printed so far...
1866 std::set<const StructType *> StructPrinted;
1867
1868 // Loop over all structures then push them into the stack so they are
1869 // printed in the correct order.
1870 //
1871 Out << "/* Structure contents */\n";
1872 for (I = TST.begin(); I != End; ++I)
1873 if (const StructType *STy = dyn_cast<StructType>(I->second))
1874 // Only print out used types!
1875 printContainedStructs(STy, StructPrinted);
1876}
1877
1878// Push the struct onto the stack and recursively push all structs
1879// this one depends on.
1880//
1881// TODO: Make this work properly with vector types
1882//
1883void CWriter::printContainedStructs(const Type *Ty,
1884 std::set<const StructType*> &StructPrinted){
1885 // Don't walk through pointers.
1886 if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
1887
1888 // Print all contained types first.
1889 for (Type::subtype_iterator I = Ty->subtype_begin(),
1890 E = Ty->subtype_end(); I != E; ++I)
1891 printContainedStructs(*I, StructPrinted);
1892
1893 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1894 // Check to see if we have already printed this struct.
1895 if (StructPrinted.insert(STy).second) {
1896 // Print structure type out.
1897 std::string Name = TypeNames[STy];
1898 printType(Out, STy, false, Name, true);
1899 Out << ";\n\n";
1900 }
1901 }
1902}
1903
1904void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
1905 /// isStructReturn - Should this function actually return a struct by-value?
Devang Patel949a4b72008-03-03 21:46:28 +00001906 bool isStructReturn = F->hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001907
1908 if (F->hasInternalLinkage()) Out << "static ";
1909 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
1910 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
1911 switch (F->getCallingConv()) {
1912 case CallingConv::X86_StdCall:
1913 Out << "__stdcall ";
1914 break;
1915 case CallingConv::X86_FastCall:
1916 Out << "__fastcall ";
1917 break;
1918 }
1919
1920 // Loop over the arguments, printing them...
1921 const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
Chris Lattner1c8733e2008-03-12 17:45:29 +00001922 const PAListPtr &PAL = F->getParamAttrs();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001923
1924 std::stringstream FunctionInnards;
1925
1926 // Print out the name...
1927 FunctionInnards << GetValueName(F) << '(';
1928
1929 bool PrintedArg = false;
1930 if (!F->isDeclaration()) {
1931 if (!F->arg_empty()) {
1932 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
Evan Cheng2054cb02008-01-11 03:07:46 +00001933 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001934
1935 // If this is a struct-return function, don't print the hidden
1936 // struct-return argument.
1937 if (isStructReturn) {
1938 assert(I != E && "Invalid struct return function!");
1939 ++I;
Evan Cheng2054cb02008-01-11 03:07:46 +00001940 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001941 }
1942
1943 std::string ArgName;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001944 for (; I != E; ++I) {
1945 if (PrintedArg) FunctionInnards << ", ";
1946 if (I->hasName() || !Prototype)
1947 ArgName = GetValueName(I);
1948 else
1949 ArgName = "";
Evan Cheng2054cb02008-01-11 03:07:46 +00001950 const Type *ArgTy = I->getType();
Chris Lattner1c8733e2008-03-12 17:45:29 +00001951 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Cheng17254e62008-01-11 09:12:49 +00001952 ArgTy = cast<PointerType>(ArgTy)->getElementType();
Chris Lattner8bbc8592008-03-02 08:07:24 +00001953 ByValParams.insert(I);
Evan Cheng17254e62008-01-11 09:12:49 +00001954 }
Evan Cheng2054cb02008-01-11 03:07:46 +00001955 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +00001956 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001957 ArgName);
1958 PrintedArg = true;
1959 ++Idx;
1960 }
1961 }
1962 } else {
1963 // Loop over the arguments, printing them.
1964 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
Evan Chengf8956382008-01-11 23:10:11 +00001965 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001966
1967 // If this is a struct-return function, don't print the hidden
1968 // struct-return argument.
1969 if (isStructReturn) {
1970 assert(I != E && "Invalid struct return function!");
1971 ++I;
Evan Chengf8956382008-01-11 23:10:11 +00001972 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001973 }
1974
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001975 for (; I != E; ++I) {
1976 if (PrintedArg) FunctionInnards << ", ";
Evan Chengf8956382008-01-11 23:10:11 +00001977 const Type *ArgTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +00001978 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Chengf8956382008-01-11 23:10:11 +00001979 assert(isa<PointerType>(ArgTy));
1980 ArgTy = cast<PointerType>(ArgTy)->getElementType();
1981 }
1982 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +00001983 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001984 PrintedArg = true;
1985 ++Idx;
1986 }
1987 }
1988
1989 // Finish printing arguments... if this is a vararg function, print the ...,
1990 // unless there are no known types, in which case, we just emit ().
1991 //
1992 if (FT->isVarArg() && PrintedArg) {
1993 if (PrintedArg) FunctionInnards << ", ";
1994 FunctionInnards << "..."; // Output varargs portion of signature!
1995 } else if (!FT->isVarArg() && !PrintedArg) {
1996 FunctionInnards << "void"; // ret() -> ret(void) in C.
1997 }
1998 FunctionInnards << ')';
1999
2000 // Get the return tpe for the function.
2001 const Type *RetTy;
2002 if (!isStructReturn)
2003 RetTy = F->getReturnType();
2004 else {
2005 // If this is a struct-return function, print the struct-return type.
2006 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
2007 }
2008
2009 // Print out the return type and the signature built above.
2010 printType(Out, RetTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +00002011 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002012 FunctionInnards.str());
2013}
2014
2015static inline bool isFPIntBitCast(const Instruction &I) {
2016 if (!isa<BitCastInst>(I))
2017 return false;
2018 const Type *SrcTy = I.getOperand(0)->getType();
2019 const Type *DstTy = I.getType();
2020 return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
2021 (DstTy->isFloatingPoint() && SrcTy->isInteger());
2022}
2023
2024void CWriter::printFunction(Function &F) {
2025 /// isStructReturn - Should this function actually return a struct by-value?
Devang Patel949a4b72008-03-03 21:46:28 +00002026 bool isStructReturn = F.hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002027
2028 printFunctionSignature(&F, false);
2029 Out << " {\n";
2030
2031 // If this is a struct return function, handle the result with magic.
2032 if (isStructReturn) {
2033 const Type *StructTy =
2034 cast<PointerType>(F.arg_begin()->getType())->getElementType();
2035 Out << " ";
2036 printType(Out, StructTy, false, "StructReturn");
2037 Out << "; /* Struct return temporary */\n";
2038
2039 Out << " ";
2040 printType(Out, F.arg_begin()->getType(), false,
2041 GetValueName(F.arg_begin()));
2042 Out << " = &StructReturn;\n";
2043 }
2044
2045 bool PrintedVar = false;
2046
2047 // print local variable information for the function
2048 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
2049 if (const AllocaInst *AI = isDirectAlloca(&*I)) {
2050 Out << " ";
2051 printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
2052 Out << "; /* Address-exposed local */\n";
2053 PrintedVar = true;
2054 } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
2055 Out << " ";
2056 printType(Out, I->getType(), false, GetValueName(&*I));
2057 Out << ";\n";
2058
2059 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
2060 Out << " ";
2061 printType(Out, I->getType(), false,
2062 GetValueName(&*I)+"__PHI_TEMPORARY");
2063 Out << ";\n";
2064 }
2065 PrintedVar = true;
2066 }
2067 // We need a temporary for the BitCast to use so it can pluck a value out
2068 // of a union to do the BitCast. This is separate from the need for a
2069 // variable to hold the result of the BitCast.
2070 if (isFPIntBitCast(*I)) {
2071 Out << " llvmBitCastUnion " << GetValueName(&*I)
2072 << "__BITCAST_TEMPORARY;\n";
2073 PrintedVar = true;
2074 }
2075 }
2076
2077 if (PrintedVar)
2078 Out << '\n';
2079
2080 if (F.hasExternalLinkage() && F.getName() == "main")
2081 Out << " CODE_FOR_MAIN();\n";
2082
2083 // print the basic blocks
2084 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2085 if (Loop *L = LI->getLoopFor(BB)) {
2086 if (L->getHeader() == BB && L->getParentLoop() == 0)
2087 printLoop(L);
2088 } else {
2089 printBasicBlock(BB);
2090 }
2091 }
2092
2093 Out << "}\n\n";
2094}
2095
2096void CWriter::printLoop(Loop *L) {
2097 Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
2098 << "' to make GCC happy */\n";
2099 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
2100 BasicBlock *BB = L->getBlocks()[i];
2101 Loop *BBLoop = LI->getLoopFor(BB);
2102 if (BBLoop == L)
2103 printBasicBlock(BB);
2104 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
2105 printLoop(BBLoop);
2106 }
2107 Out << " } while (1); /* end of syntactic loop '"
2108 << L->getHeader()->getName() << "' */\n";
2109}
2110
2111void CWriter::printBasicBlock(BasicBlock *BB) {
2112
2113 // Don't print the label for the basic block if there are no uses, or if
2114 // the only terminator use is the predecessor basic block's terminator.
2115 // We have to scan the use list because PHI nodes use basic blocks too but
2116 // do not require a label to be generated.
2117 //
2118 bool NeedsLabel = false;
2119 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2120 if (isGotoCodeNecessary(*PI, BB)) {
2121 NeedsLabel = true;
2122 break;
2123 }
2124
2125 if (NeedsLabel) Out << GetValueName(BB) << ":\n";
2126
2127 // Output all of the instructions in the basic block...
2128 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
2129 ++II) {
2130 if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
2131 if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
2132 outputLValue(II);
2133 else
2134 Out << " ";
2135 visit(*II);
2136 Out << ";\n";
2137 }
2138 }
2139
2140 // Don't emit prefix or suffix for the terminator...
2141 visit(*BB->getTerminator());
2142}
2143
2144
2145// Specific Instruction type classes... note that all of the casts are
2146// necessary because we use the instruction classes as opaque types...
2147//
2148void CWriter::visitReturnInst(ReturnInst &I) {
2149 // If this is a struct return function, return the temporary struct.
Devang Patel949a4b72008-03-03 21:46:28 +00002150 bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002151
2152 if (isStructReturn) {
2153 Out << " return StructReturn;\n";
2154 return;
2155 }
2156
2157 // Don't output a void return if this is the last basic block in the function
2158 if (I.getNumOperands() == 0 &&
2159 &*--I.getParent()->getParent()->end() == I.getParent() &&
2160 !I.getParent()->size() == 1) {
2161 return;
2162 }
2163
2164 Out << " return";
2165 if (I.getNumOperands()) {
2166 Out << ' ';
2167 writeOperand(I.getOperand(0));
2168 }
2169 Out << ";\n";
2170}
2171
2172void CWriter::visitSwitchInst(SwitchInst &SI) {
2173
2174 Out << " switch (";
2175 writeOperand(SI.getOperand(0));
2176 Out << ") {\n default:\n";
2177 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
2178 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
2179 Out << ";\n";
2180 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
2181 Out << " case ";
2182 writeOperand(SI.getOperand(i));
2183 Out << ":\n";
2184 BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
2185 printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
2186 printBranchToBlock(SI.getParent(), Succ, 2);
2187 if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
2188 Out << " break;\n";
2189 }
2190 Out << " }\n";
2191}
2192
2193void CWriter::visitUnreachableInst(UnreachableInst &I) {
2194 Out << " /*UNREACHABLE*/;\n";
2195}
2196
2197bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
2198 /// FIXME: This should be reenabled, but loop reordering safe!!
2199 return true;
2200
2201 if (next(Function::iterator(From)) != Function::iterator(To))
2202 return true; // Not the direct successor, we need a goto.
2203
2204 //isa<SwitchInst>(From->getTerminator())
2205
2206 if (LI->getLoopFor(From) != LI->getLoopFor(To))
2207 return true;
2208 return false;
2209}
2210
2211void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
2212 BasicBlock *Successor,
2213 unsigned Indent) {
2214 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
2215 PHINode *PN = cast<PHINode>(I);
2216 // Now we have to do the printing.
2217 Value *IV = PN->getIncomingValueForBlock(CurBlock);
2218 if (!isa<UndefValue>(IV)) {
2219 Out << std::string(Indent, ' ');
2220 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
2221 writeOperand(IV);
2222 Out << "; /* for PHI node */\n";
2223 }
2224 }
2225}
2226
2227void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
2228 unsigned Indent) {
2229 if (isGotoCodeNecessary(CurBB, Succ)) {
2230 Out << std::string(Indent, ' ') << " goto ";
2231 writeOperand(Succ);
2232 Out << ";\n";
2233 }
2234}
2235
2236// Branch instruction printing - Avoid printing out a branch to a basic block
2237// that immediately succeeds the current one.
2238//
2239void CWriter::visitBranchInst(BranchInst &I) {
2240
2241 if (I.isConditional()) {
2242 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
2243 Out << " if (";
2244 writeOperand(I.getCondition());
2245 Out << ") {\n";
2246
2247 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
2248 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
2249
2250 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
2251 Out << " } else {\n";
2252 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2253 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2254 }
2255 } else {
2256 // First goto not necessary, assume second one is...
2257 Out << " if (!";
2258 writeOperand(I.getCondition());
2259 Out << ") {\n";
2260
2261 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2262 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2263 }
2264
2265 Out << " }\n";
2266 } else {
2267 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
2268 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
2269 }
2270 Out << "\n";
2271}
2272
2273// PHI nodes get copied into temporary values at the end of predecessor basic
2274// blocks. We now need to copy these temporary values into the REAL value for
2275// the PHI.
2276void CWriter::visitPHINode(PHINode &I) {
2277 writeOperand(&I);
2278 Out << "__PHI_TEMPORARY";
2279}
2280
2281
2282void CWriter::visitBinaryOperator(Instruction &I) {
2283 // binary instructions, shift instructions, setCond instructions.
2284 assert(!isa<PointerType>(I.getType()));
2285
2286 // We must cast the results of binary operations which might be promoted.
2287 bool needsCast = false;
2288 if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
2289 || (I.getType() == Type::FloatTy)) {
2290 needsCast = true;
2291 Out << "((";
2292 printType(Out, I.getType(), false);
2293 Out << ")(";
2294 }
2295
2296 // If this is a negation operation, print it out as such. For FP, we don't
2297 // want to print "-0.0 - X".
2298 if (BinaryOperator::isNeg(&I)) {
2299 Out << "-(";
2300 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
2301 Out << ")";
2302 } else if (I.getOpcode() == Instruction::FRem) {
2303 // Output a call to fmod/fmodf instead of emitting a%b
2304 if (I.getType() == Type::FloatTy)
2305 Out << "fmodf(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002306 else if (I.getType() == Type::DoubleTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002307 Out << "fmod(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002308 else // all 3 flavors of long double
2309 Out << "fmodl(";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002310 writeOperand(I.getOperand(0));
2311 Out << ", ";
2312 writeOperand(I.getOperand(1));
2313 Out << ")";
2314 } else {
2315
2316 // Write out the cast of the instruction's value back to the proper type
2317 // if necessary.
2318 bool NeedsClosingParens = writeInstructionCast(I);
2319
2320 // Certain instructions require the operand to be forced to a specific type
2321 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2322 // below for operand 1
2323 writeOperandWithCast(I.getOperand(0), I.getOpcode());
2324
2325 switch (I.getOpcode()) {
2326 case Instruction::Add: Out << " + "; break;
2327 case Instruction::Sub: Out << " - "; break;
2328 case Instruction::Mul: Out << " * "; break;
2329 case Instruction::URem:
2330 case Instruction::SRem:
2331 case Instruction::FRem: Out << " % "; break;
2332 case Instruction::UDiv:
2333 case Instruction::SDiv:
2334 case Instruction::FDiv: Out << " / "; break;
2335 case Instruction::And: Out << " & "; break;
2336 case Instruction::Or: Out << " | "; break;
2337 case Instruction::Xor: Out << " ^ "; break;
2338 case Instruction::Shl : Out << " << "; break;
2339 case Instruction::LShr:
2340 case Instruction::AShr: Out << " >> "; break;
2341 default: cerr << "Invalid operator type!" << I; abort();
2342 }
2343
2344 writeOperandWithCast(I.getOperand(1), I.getOpcode());
2345 if (NeedsClosingParens)
2346 Out << "))";
2347 }
2348
2349 if (needsCast) {
2350 Out << "))";
2351 }
2352}
2353
2354void CWriter::visitICmpInst(ICmpInst &I) {
2355 // We must cast the results of icmp which might be promoted.
2356 bool needsCast = false;
2357
2358 // Write out the cast of the instruction's value back to the proper type
2359 // if necessary.
2360 bool NeedsClosingParens = writeInstructionCast(I);
2361
2362 // Certain icmp predicate require the operand to be forced to a specific type
2363 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2364 // below for operand 1
Chris Lattner389c9142007-09-15 06:51:03 +00002365 writeOperandWithCast(I.getOperand(0), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002366
2367 switch (I.getPredicate()) {
2368 case ICmpInst::ICMP_EQ: Out << " == "; break;
2369 case ICmpInst::ICMP_NE: Out << " != "; break;
2370 case ICmpInst::ICMP_ULE:
2371 case ICmpInst::ICMP_SLE: Out << " <= "; break;
2372 case ICmpInst::ICMP_UGE:
2373 case ICmpInst::ICMP_SGE: Out << " >= "; break;
2374 case ICmpInst::ICMP_ULT:
2375 case ICmpInst::ICMP_SLT: Out << " < "; break;
2376 case ICmpInst::ICMP_UGT:
2377 case ICmpInst::ICMP_SGT: Out << " > "; break;
2378 default: cerr << "Invalid icmp predicate!" << I; abort();
2379 }
2380
Chris Lattner389c9142007-09-15 06:51:03 +00002381 writeOperandWithCast(I.getOperand(1), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002382 if (NeedsClosingParens)
2383 Out << "))";
2384
2385 if (needsCast) {
2386 Out << "))";
2387 }
2388}
2389
2390void CWriter::visitFCmpInst(FCmpInst &I) {
2391 if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
2392 Out << "0";
2393 return;
2394 }
2395 if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
2396 Out << "1";
2397 return;
2398 }
2399
2400 const char* op = 0;
2401 switch (I.getPredicate()) {
2402 default: assert(0 && "Illegal FCmp predicate");
2403 case FCmpInst::FCMP_ORD: op = "ord"; break;
2404 case FCmpInst::FCMP_UNO: op = "uno"; break;
2405 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
2406 case FCmpInst::FCMP_UNE: op = "une"; break;
2407 case FCmpInst::FCMP_ULT: op = "ult"; break;
2408 case FCmpInst::FCMP_ULE: op = "ule"; break;
2409 case FCmpInst::FCMP_UGT: op = "ugt"; break;
2410 case FCmpInst::FCMP_UGE: op = "uge"; break;
2411 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
2412 case FCmpInst::FCMP_ONE: op = "one"; break;
2413 case FCmpInst::FCMP_OLT: op = "olt"; break;
2414 case FCmpInst::FCMP_OLE: op = "ole"; break;
2415 case FCmpInst::FCMP_OGT: op = "ogt"; break;
2416 case FCmpInst::FCMP_OGE: op = "oge"; break;
2417 }
2418
2419 Out << "llvm_fcmp_" << op << "(";
2420 // Write the first operand
2421 writeOperand(I.getOperand(0));
2422 Out << ", ";
2423 // Write the second operand
2424 writeOperand(I.getOperand(1));
2425 Out << ")";
2426}
2427
2428static const char * getFloatBitCastField(const Type *Ty) {
2429 switch (Ty->getTypeID()) {
2430 default: assert(0 && "Invalid Type");
2431 case Type::FloatTyID: return "Float";
2432 case Type::DoubleTyID: return "Double";
2433 case Type::IntegerTyID: {
2434 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
2435 if (NumBits <= 32)
2436 return "Int32";
2437 else
2438 return "Int64";
2439 }
2440 }
2441}
2442
2443void CWriter::visitCastInst(CastInst &I) {
2444 const Type *DstTy = I.getType();
2445 const Type *SrcTy = I.getOperand(0)->getType();
2446 Out << '(';
2447 if (isFPIntBitCast(I)) {
2448 // These int<->float and long<->double casts need to be handled specially
2449 Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
2450 << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
2451 writeOperand(I.getOperand(0));
2452 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
2453 << getFloatBitCastField(I.getType());
2454 } else {
2455 printCast(I.getOpcode(), SrcTy, DstTy);
2456 if (I.getOpcode() == Instruction::SExt && SrcTy == Type::Int1Ty) {
2457 // Make sure we really get a sext from bool by subtracing the bool from 0
2458 Out << "0-";
2459 }
2460 writeOperand(I.getOperand(0));
2461 if (DstTy == Type::Int1Ty &&
2462 (I.getOpcode() == Instruction::Trunc ||
2463 I.getOpcode() == Instruction::FPToUI ||
2464 I.getOpcode() == Instruction::FPToSI ||
2465 I.getOpcode() == Instruction::PtrToInt)) {
2466 // Make sure we really get a trunc to bool by anding the operand with 1
2467 Out << "&1u";
2468 }
2469 }
2470 Out << ')';
2471}
2472
2473void CWriter::visitSelectInst(SelectInst &I) {
2474 Out << "((";
2475 writeOperand(I.getCondition());
2476 Out << ") ? (";
2477 writeOperand(I.getTrueValue());
2478 Out << ") : (";
2479 writeOperand(I.getFalseValue());
2480 Out << "))";
2481}
2482
2483
2484void CWriter::lowerIntrinsics(Function &F) {
2485 // This is used to keep track of intrinsics that get generated to a lowered
2486 // function. We must generate the prototypes before the function body which
2487 // will only be expanded on first use (by the loop below).
2488 std::vector<Function*> prototypesToGen;
2489
2490 // Examine all the instructions in this function to find the intrinsics that
2491 // need to be lowered.
2492 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
2493 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
2494 if (CallInst *CI = dyn_cast<CallInst>(I++))
2495 if (Function *F = CI->getCalledFunction())
2496 switch (F->getIntrinsicID()) {
2497 case Intrinsic::not_intrinsic:
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002498 case Intrinsic::memory_barrier:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002499 case Intrinsic::vastart:
2500 case Intrinsic::vacopy:
2501 case Intrinsic::vaend:
2502 case Intrinsic::returnaddress:
2503 case Intrinsic::frameaddress:
2504 case Intrinsic::setjmp:
2505 case Intrinsic::longjmp:
2506 case Intrinsic::prefetch:
2507 case Intrinsic::dbg_stoppoint:
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002508 case Intrinsic::powi:
Chris Lattner6a947cb2008-03-02 08:47:13 +00002509 case Intrinsic::x86_sse_cmp_ss:
2510 case Intrinsic::x86_sse_cmp_ps:
2511 case Intrinsic::x86_sse2_cmp_sd:
2512 case Intrinsic::x86_sse2_cmp_pd:
Chris Lattner709df322008-03-02 08:54:27 +00002513 case Intrinsic::ppc_altivec_lvsl:
Chris Lattner6a947cb2008-03-02 08:47:13 +00002514 // We directly implement these intrinsics
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002515 break;
2516 default:
2517 // If this is an intrinsic that directly corresponds to a GCC
2518 // builtin, we handle it.
2519 const char *BuiltinName = "";
2520#define GET_GCC_BUILTIN_NAME
2521#include "llvm/Intrinsics.gen"
2522#undef GET_GCC_BUILTIN_NAME
2523 // If we handle it, don't lower it.
2524 if (BuiltinName[0]) break;
2525
2526 // All other intrinsic calls we must lower.
2527 Instruction *Before = 0;
2528 if (CI != &BB->front())
2529 Before = prior(BasicBlock::iterator(CI));
2530
2531 IL->LowerIntrinsicCall(CI);
2532 if (Before) { // Move iterator to instruction after call
2533 I = Before; ++I;
2534 } else {
2535 I = BB->begin();
2536 }
2537 // If the intrinsic got lowered to another call, and that call has
2538 // a definition then we need to make sure its prototype is emitted
2539 // before any calls to it.
2540 if (CallInst *Call = dyn_cast<CallInst>(I))
2541 if (Function *NewF = Call->getCalledFunction())
2542 if (!NewF->isDeclaration())
2543 prototypesToGen.push_back(NewF);
2544
2545 break;
2546 }
2547
2548 // We may have collected some prototypes to emit in the loop above.
2549 // Emit them now, before the function that uses them is emitted. But,
2550 // be careful not to emit them twice.
2551 std::vector<Function*>::iterator I = prototypesToGen.begin();
2552 std::vector<Function*>::iterator E = prototypesToGen.end();
2553 for ( ; I != E; ++I) {
2554 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
2555 Out << '\n';
2556 printFunctionSignature(*I, true);
2557 Out << ";\n";
2558 }
2559 }
2560}
2561
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002562void CWriter::visitCallInst(CallInst &I) {
2563 //check if we have inline asm
2564 if (isInlineAsm(I)) {
2565 visitInlineAsm(I);
2566 return;
2567 }
2568
2569 bool WroteCallee = false;
2570
2571 // Handle intrinsic function calls first...
2572 if (Function *F = I.getCalledFunction())
Chris Lattnera74b9182008-03-02 08:29:41 +00002573 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2574 if (visitBuiltinCall(I, ID, WroteCallee))
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002575 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002576
2577 Value *Callee = I.getCalledValue();
2578
2579 const PointerType *PTy = cast<PointerType>(Callee->getType());
2580 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2581
2582 // If this is a call to a struct-return function, assign to the first
2583 // parameter instead of passing it to the call.
Chris Lattner1c8733e2008-03-12 17:45:29 +00002584 const PAListPtr &PAL = I.getParamAttrs();
Evan Chengb8a072c2008-01-12 18:53:07 +00002585 bool hasByVal = I.hasByValArgument();
Devang Patel949a4b72008-03-03 21:46:28 +00002586 bool isStructRet = I.hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002587 if (isStructRet) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00002588 writeOperandDeref(I.getOperand(1));
Evan Chengf8956382008-01-11 23:10:11 +00002589 Out << " = ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002590 }
2591
2592 if (I.isTailCall()) Out << " /*tail*/ ";
2593
2594 if (!WroteCallee) {
2595 // If this is an indirect call to a struct return function, we need to cast
Evan Chengb8a072c2008-01-12 18:53:07 +00002596 // the pointer. Ditto for indirect calls with byval arguments.
2597 bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002598
2599 // GCC is a real PITA. It does not permit codegening casts of functions to
2600 // function pointers if they are in a call (it generates a trap instruction
2601 // instead!). We work around this by inserting a cast to void* in between
2602 // the function and the function pointer cast. Unfortunately, we can't just
2603 // form the constant expression here, because the folder will immediately
2604 // nuke it.
2605 //
2606 // Note finally, that this is completely unsafe. ANSI C does not guarantee
2607 // that void* and function pointers have the same size. :( To deal with this
2608 // in the common case, we handle casts where the number of arguments passed
2609 // match exactly.
2610 //
2611 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
2612 if (CE->isCast())
2613 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
2614 NeedsCast = true;
2615 Callee = RF;
2616 }
2617
2618 if (NeedsCast) {
2619 // Ok, just cast the pointer type.
2620 Out << "((";
Evan Chengb8a072c2008-01-12 18:53:07 +00002621 if (isStructRet)
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002622 printStructReturnPointerFunctionType(Out, PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002623 cast<PointerType>(I.getCalledValue()->getType()));
Evan Chengb8a072c2008-01-12 18:53:07 +00002624 else if (hasByVal)
2625 printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
2626 else
2627 printType(Out, I.getCalledValue()->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002628 Out << ")(void*)";
2629 }
2630 writeOperand(Callee);
2631 if (NeedsCast) Out << ')';
2632 }
2633
2634 Out << '(';
2635
2636 unsigned NumDeclaredParams = FTy->getNumParams();
2637
2638 CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
2639 unsigned ArgNo = 0;
2640 if (isStructRet) { // Skip struct return argument.
2641 ++AI;
2642 ++ArgNo;
2643 }
2644
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002645 bool PrintedArg = false;
Evan Chengf8956382008-01-11 23:10:11 +00002646 for (; AI != AE; ++AI, ++ArgNo) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002647 if (PrintedArg) Out << ", ";
2648 if (ArgNo < NumDeclaredParams &&
2649 (*AI)->getType() != FTy->getParamType(ArgNo)) {
2650 Out << '(';
2651 printType(Out, FTy->getParamType(ArgNo),
Chris Lattner1c8733e2008-03-12 17:45:29 +00002652 /*isSigned=*/PAL.paramHasAttr(ArgNo+1, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002653 Out << ')';
2654 }
Evan Chengf8956382008-01-11 23:10:11 +00002655 // Check if the argument is expected to be passed by value.
Chris Lattner8bbc8592008-03-02 08:07:24 +00002656 if (I.paramHasAttr(ArgNo+1, ParamAttr::ByVal))
2657 writeOperandDeref(*AI);
2658 else
2659 writeOperand(*AI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002660 PrintedArg = true;
2661 }
2662 Out << ')';
2663}
2664
Chris Lattnera74b9182008-03-02 08:29:41 +00002665/// visitBuiltinCall - Handle the call to the specified builtin. Returns true
2666/// if the entire call is handled, return false it it wasn't handled, and
2667/// optionally set 'WroteCallee' if the callee has already been printed out.
2668bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID,
2669 bool &WroteCallee) {
2670 switch (ID) {
2671 default: {
2672 // If this is an intrinsic that directly corresponds to a GCC
2673 // builtin, we emit it here.
2674 const char *BuiltinName = "";
2675 Function *F = I.getCalledFunction();
2676#define GET_GCC_BUILTIN_NAME
2677#include "llvm/Intrinsics.gen"
2678#undef GET_GCC_BUILTIN_NAME
2679 assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
2680
2681 Out << BuiltinName;
2682 WroteCallee = true;
2683 return false;
2684 }
2685 case Intrinsic::memory_barrier:
Andrew Lenharth5c976182008-03-05 23:41:37 +00002686 Out << "__sync_synchronize()";
Chris Lattnera74b9182008-03-02 08:29:41 +00002687 return true;
2688 case Intrinsic::vastart:
2689 Out << "0; ";
2690
2691 Out << "va_start(*(va_list*)";
2692 writeOperand(I.getOperand(1));
2693 Out << ", ";
2694 // Output the last argument to the enclosing function.
2695 if (I.getParent()->getParent()->arg_empty()) {
2696 cerr << "The C backend does not currently support zero "
2697 << "argument varargs functions, such as '"
2698 << I.getParent()->getParent()->getName() << "'!\n";
2699 abort();
2700 }
2701 writeOperand(--I.getParent()->getParent()->arg_end());
2702 Out << ')';
2703 return true;
2704 case Intrinsic::vaend:
2705 if (!isa<ConstantPointerNull>(I.getOperand(1))) {
2706 Out << "0; va_end(*(va_list*)";
2707 writeOperand(I.getOperand(1));
2708 Out << ')';
2709 } else {
2710 Out << "va_end(*(va_list*)0)";
2711 }
2712 return true;
2713 case Intrinsic::vacopy:
2714 Out << "0; ";
2715 Out << "va_copy(*(va_list*)";
2716 writeOperand(I.getOperand(1));
2717 Out << ", *(va_list*)";
2718 writeOperand(I.getOperand(2));
2719 Out << ')';
2720 return true;
2721 case Intrinsic::returnaddress:
2722 Out << "__builtin_return_address(";
2723 writeOperand(I.getOperand(1));
2724 Out << ')';
2725 return true;
2726 case Intrinsic::frameaddress:
2727 Out << "__builtin_frame_address(";
2728 writeOperand(I.getOperand(1));
2729 Out << ')';
2730 return true;
2731 case Intrinsic::powi:
2732 Out << "__builtin_powi(";
2733 writeOperand(I.getOperand(1));
2734 Out << ", ";
2735 writeOperand(I.getOperand(2));
2736 Out << ')';
2737 return true;
2738 case Intrinsic::setjmp:
2739 Out << "setjmp(*(jmp_buf*)";
2740 writeOperand(I.getOperand(1));
2741 Out << ')';
2742 return true;
2743 case Intrinsic::longjmp:
2744 Out << "longjmp(*(jmp_buf*)";
2745 writeOperand(I.getOperand(1));
2746 Out << ", ";
2747 writeOperand(I.getOperand(2));
2748 Out << ')';
2749 return true;
2750 case Intrinsic::prefetch:
2751 Out << "LLVM_PREFETCH((const void *)";
2752 writeOperand(I.getOperand(1));
2753 Out << ", ";
2754 writeOperand(I.getOperand(2));
2755 Out << ", ";
2756 writeOperand(I.getOperand(3));
2757 Out << ")";
2758 return true;
2759 case Intrinsic::stacksave:
2760 // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
2761 // to work around GCC bugs (see PR1809).
2762 Out << "0; *((void**)&" << GetValueName(&I)
2763 << ") = __builtin_stack_save()";
2764 return true;
2765 case Intrinsic::dbg_stoppoint: {
2766 // If we use writeOperand directly we get a "u" suffix which is rejected
2767 // by gcc.
2768 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2769 Out << "\n#line "
2770 << SPI.getLine()
2771 << " \"" << SPI.getDirectory()
2772 << SPI.getFileName() << "\"\n";
2773 return true;
2774 }
Chris Lattner6a947cb2008-03-02 08:47:13 +00002775 case Intrinsic::x86_sse_cmp_ss:
2776 case Intrinsic::x86_sse_cmp_ps:
2777 case Intrinsic::x86_sse2_cmp_sd:
2778 case Intrinsic::x86_sse2_cmp_pd:
2779 Out << '(';
2780 printType(Out, I.getType());
2781 Out << ')';
2782 // Multiple GCC builtins multiplex onto this intrinsic.
2783 switch (cast<ConstantInt>(I.getOperand(3))->getZExtValue()) {
2784 default: assert(0 && "Invalid llvm.x86.sse.cmp!");
2785 case 0: Out << "__builtin_ia32_cmpeq"; break;
2786 case 1: Out << "__builtin_ia32_cmplt"; break;
2787 case 2: Out << "__builtin_ia32_cmple"; break;
2788 case 3: Out << "__builtin_ia32_cmpunord"; break;
2789 case 4: Out << "__builtin_ia32_cmpneq"; break;
2790 case 5: Out << "__builtin_ia32_cmpnlt"; break;
2791 case 6: Out << "__builtin_ia32_cmpnle"; break;
2792 case 7: Out << "__builtin_ia32_cmpord"; break;
2793 }
2794 if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd)
2795 Out << 'p';
2796 else
2797 Out << 's';
2798 if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps)
2799 Out << 's';
2800 else
2801 Out << 'd';
2802
2803 Out << "(";
2804 writeOperand(I.getOperand(1));
2805 Out << ", ";
2806 writeOperand(I.getOperand(2));
2807 Out << ")";
2808 return true;
Chris Lattner709df322008-03-02 08:54:27 +00002809 case Intrinsic::ppc_altivec_lvsl:
2810 Out << '(';
2811 printType(Out, I.getType());
2812 Out << ')';
2813 Out << "__builtin_altivec_lvsl(0, (void*)";
2814 writeOperand(I.getOperand(1));
2815 Out << ")";
2816 return true;
Chris Lattnera74b9182008-03-02 08:29:41 +00002817 }
2818}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002819
2820//This converts the llvm constraint string to something gcc is expecting.
2821//TODO: work out platform independent constraints and factor those out
2822// of the per target tables
2823// handle multiple constraint codes
2824std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
2825
2826 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
2827
2828 const char** table = 0;
2829
2830 //Grab the translation table from TargetAsmInfo if it exists
2831 if (!TAsm) {
2832 std::string E;
Gordon Henriksen99e34ab2007-10-17 21:28:48 +00002833 const TargetMachineRegistry::entry* Match =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002834 TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
2835 if (Match) {
2836 //Per platform Target Machines don't exist, so create it
2837 // this must be done only once
2838 const TargetMachine* TM = Match->CtorFn(*TheModule, "");
2839 TAsm = TM->getTargetAsmInfo();
2840 }
2841 }
2842 if (TAsm)
2843 table = TAsm->getAsmCBE();
2844
2845 //Search the translation table if it exists
2846 for (int i = 0; table && table[i]; i += 2)
2847 if (c.Codes[0] == table[i])
2848 return table[i+1];
2849
2850 //default is identity
2851 return c.Codes[0];
2852}
2853
2854//TODO: import logic from AsmPrinter.cpp
2855static std::string gccifyAsm(std::string asmstr) {
2856 for (std::string::size_type i = 0; i != asmstr.size(); ++i)
2857 if (asmstr[i] == '\n')
2858 asmstr.replace(i, 1, "\\n");
2859 else if (asmstr[i] == '\t')
2860 asmstr.replace(i, 1, "\\t");
2861 else if (asmstr[i] == '$') {
2862 if (asmstr[i + 1] == '{') {
2863 std::string::size_type a = asmstr.find_first_of(':', i + 1);
2864 std::string::size_type b = asmstr.find_first_of('}', i + 1);
2865 std::string n = "%" +
2866 asmstr.substr(a + 1, b - a - 1) +
2867 asmstr.substr(i + 2, a - i - 2);
2868 asmstr.replace(i, b - i + 1, n);
2869 i += n.size() - 1;
2870 } else
2871 asmstr.replace(i, 1, "%");
2872 }
2873 else if (asmstr[i] == '%')//grr
2874 { asmstr.replace(i, 1, "%%"); ++i;}
2875
2876 return asmstr;
2877}
2878
2879//TODO: assumptions about what consume arguments from the call are likely wrong
2880// handle communitivity
2881void CWriter::visitInlineAsm(CallInst &CI) {
2882 InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
2883 std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
2884 std::vector<std::pair<std::string, Value*> > Input;
2885 std::vector<std::pair<std::string, Value*> > Output;
2886 std::string Clobber;
2887 int count = CI.getType() == Type::VoidTy ? 1 : 0;
2888 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
2889 E = Constraints.end(); I != E; ++I) {
2890 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
2891 std::string c =
2892 InterpretASMConstraint(*I);
2893 switch(I->Type) {
2894 default:
2895 assert(0 && "Unknown asm constraint");
2896 break;
2897 case InlineAsm::isInput: {
2898 if (c.size()) {
2899 Input.push_back(std::make_pair(c, count ? CI.getOperand(count) : &CI));
2900 ++count; //consume arg
2901 }
2902 break;
2903 }
2904 case InlineAsm::isOutput: {
2905 if (c.size()) {
2906 Output.push_back(std::make_pair("="+((I->isEarlyClobber ? "&" : "")+c),
2907 count ? CI.getOperand(count) : &CI));
2908 ++count; //consume arg
2909 }
2910 break;
2911 }
2912 case InlineAsm::isClobber: {
2913 if (c.size())
2914 Clobber += ",\"" + c + "\"";
2915 break;
2916 }
2917 }
2918 }
2919
2920 //fix up the asm string for gcc
2921 std::string asmstr = gccifyAsm(as->getAsmString());
2922
2923 Out << "__asm__ volatile (\"" << asmstr << "\"\n";
2924 Out << " :";
Chris Lattner8bbc8592008-03-02 08:07:24 +00002925 for (std::vector<std::pair<std::string, Value*> >::iterator I =Output.begin(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002926 E = Output.end(); I != E; ++I) {
2927 Out << "\"" << I->first << "\"(";
2928 writeOperandRaw(I->second);
2929 Out << ")";
2930 if (I + 1 != E)
2931 Out << ",";
2932 }
2933 Out << "\n :";
2934 for (std::vector<std::pair<std::string, Value*> >::iterator I = Input.begin(),
2935 E = Input.end(); I != E; ++I) {
2936 Out << "\"" << I->first << "\"(";
2937 writeOperandRaw(I->second);
2938 Out << ")";
2939 if (I + 1 != E)
2940 Out << ",";
2941 }
2942 if (Clobber.size())
2943 Out << "\n :" << Clobber.substr(1);
2944 Out << ")";
2945}
2946
2947void CWriter::visitMallocInst(MallocInst &I) {
2948 assert(0 && "lowerallocations pass didn't work!");
2949}
2950
2951void CWriter::visitAllocaInst(AllocaInst &I) {
2952 Out << '(';
2953 printType(Out, I.getType());
2954 Out << ") alloca(sizeof(";
2955 printType(Out, I.getType()->getElementType());
2956 Out << ')';
2957 if (I.isArrayAllocation()) {
2958 Out << " * " ;
2959 writeOperand(I.getOperand(0));
2960 }
2961 Out << ')';
2962}
2963
2964void CWriter::visitFreeInst(FreeInst &I) {
2965 assert(0 && "lowerallocations pass didn't work!");
2966}
2967
Chris Lattner8bbc8592008-03-02 08:07:24 +00002968void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I,
2969 gep_type_iterator E) {
2970
2971 // If there are no indices, just print out the pointer.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002972 if (I == E) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00002973 writeOperand(Ptr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002974 return;
2975 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00002976
2977 // Find out if the last index is into a vector. If so, we have to print this
2978 // specially. Since vectors can't have elements of indexable type, only the
2979 // last index could possibly be of a vector element.
2980 const VectorType *LastIndexIsVector = 0;
2981 {
2982 for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI)
2983 LastIndexIsVector = dyn_cast<VectorType>(*TmpI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002984 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00002985
2986 Out << "(";
2987
2988 // If the last index is into a vector, we can't print it as &a[i][j] because
2989 // we can't index into a vector with j in GCC. Instead, emit this as
2990 // (((float*)&a[i])+j)
2991 if (LastIndexIsVector) {
2992 Out << "((";
2993 printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType()));
2994 Out << ")(";
2995 }
2996
2997 Out << '&';
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002998
Chris Lattner8bbc8592008-03-02 08:07:24 +00002999 // If the first index is 0 (very typical) we can do a number of
3000 // simplifications to clean up the code.
3001 Value *FirstOp = I.getOperand();
3002 if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) {
3003 // First index isn't simple, print it the hard way.
3004 writeOperand(Ptr);
3005 } else {
3006 ++I; // Skip the zero index.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003007
Chris Lattner8bbc8592008-03-02 08:07:24 +00003008 // Okay, emit the first operand. If Ptr is something that is already address
3009 // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead.
3010 if (isAddressExposed(Ptr)) {
3011 writeOperandInternal(Ptr);
3012 } else if (I != E && isa<StructType>(*I)) {
3013 // If we didn't already emit the first operand, see if we can print it as
3014 // P->f instead of "P[0].f"
3015 writeOperand(Ptr);
3016 Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
3017 ++I; // eat the struct index as well.
3018 } else {
3019 // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic.
3020 Out << "(*";
3021 writeOperand(Ptr);
3022 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003023 }
3024 }
3025
Chris Lattner8bbc8592008-03-02 08:07:24 +00003026 for (; I != E; ++I) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003027 if (isa<StructType>(*I)) {
3028 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
Chris Lattner8bbc8592008-03-02 08:07:24 +00003029 } else if (!isa<VectorType>(*I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003030 Out << '[';
Chris Lattner7ce1ee42007-09-22 20:16:48 +00003031 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003032 Out << ']';
Chris Lattner8bbc8592008-03-02 08:07:24 +00003033 } else {
3034 // If the last index is into a vector, then print it out as "+j)". This
3035 // works with the 'LastIndexIsVector' code above.
3036 if (isa<Constant>(I.getOperand()) &&
3037 cast<Constant>(I.getOperand())->isNullValue()) {
3038 Out << "))"; // avoid "+0".
3039 } else {
3040 Out << ")+(";
3041 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
3042 Out << "))";
3043 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003044 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00003045 }
3046 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003047}
3048
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003049void CWriter::writeMemoryAccess(Value *Operand, const Type *OperandType,
3050 bool IsVolatile, unsigned Alignment) {
3051
3052 bool IsUnaligned = Alignment &&
3053 Alignment < TD->getABITypeAlignment(OperandType);
3054
3055 if (!IsUnaligned)
3056 Out << '*';
3057 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003058 Out << "((";
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003059 if (IsUnaligned)
3060 Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
3061 printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
3062 if (IsUnaligned) {
3063 Out << "; } ";
3064 if (IsVolatile) Out << "volatile ";
3065 Out << "*";
3066 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003067 Out << ")";
3068 }
3069
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003070 writeOperand(Operand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003071
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003072 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003073 Out << ')';
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003074 if (IsUnaligned)
3075 Out << "->data";
3076 }
3077}
3078
3079void CWriter::visitLoadInst(LoadInst &I) {
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003080 writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
3081 I.getAlignment());
3082
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003083}
3084
3085void CWriter::visitStoreInst(StoreInst &I) {
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003086 writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
3087 I.isVolatile(), I.getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003088 Out << " = ";
3089 Value *Operand = I.getOperand(0);
3090 Constant *BitMask = 0;
3091 if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
3092 if (!ITy->isPowerOf2ByteWidth())
3093 // We have a bit width that doesn't match an even power-of-2 byte
3094 // size. Consequently we must & the value with the type's bit mask
3095 BitMask = ConstantInt::get(ITy, ITy->getBitMask());
3096 if (BitMask)
3097 Out << "((";
3098 writeOperand(Operand);
3099 if (BitMask) {
3100 Out << ") & ";
3101 printConstant(BitMask);
3102 Out << ")";
3103 }
3104}
3105
3106void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00003107 printGEPExpression(I.getPointerOperand(), gep_type_begin(I),
3108 gep_type_end(I));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003109}
3110
3111void CWriter::visitVAArgInst(VAArgInst &I) {
3112 Out << "va_arg(*(va_list*)";
3113 writeOperand(I.getOperand(0));
3114 Out << ", ";
3115 printType(Out, I.getType());
3116 Out << ");\n ";
3117}
3118
Chris Lattnerf41a7942008-03-02 03:52:39 +00003119void CWriter::visitInsertElementInst(InsertElementInst &I) {
3120 const Type *EltTy = I.getType()->getElementType();
3121 writeOperand(I.getOperand(0));
3122 Out << ";\n ";
3123 Out << "((";
3124 printType(Out, PointerType::getUnqual(EltTy));
3125 Out << ")(&" << GetValueName(&I) << "))[";
Chris Lattnerf41a7942008-03-02 03:52:39 +00003126 writeOperand(I.getOperand(2));
Chris Lattner09418362008-03-02 08:10:16 +00003127 Out << "] = (";
3128 writeOperand(I.getOperand(1));
Chris Lattnerf41a7942008-03-02 03:52:39 +00003129 Out << ")";
3130}
3131
Chris Lattnera5f0bc02008-03-02 03:57:08 +00003132void CWriter::visitExtractElementInst(ExtractElementInst &I) {
3133 // We know that our operand is not inlined.
3134 Out << "((";
3135 const Type *EltTy =
3136 cast<VectorType>(I.getOperand(0)->getType())->getElementType();
3137 printType(Out, PointerType::getUnqual(EltTy));
3138 Out << ")(&" << GetValueName(I.getOperand(0)) << "))[";
3139 writeOperand(I.getOperand(1));
3140 Out << "]";
3141}
3142
Chris Lattnerf858a042008-03-02 05:41:07 +00003143void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
3144 Out << "(";
3145 printType(Out, SVI.getType());
3146 Out << "){ ";
3147 const VectorType *VT = SVI.getType();
3148 unsigned NumElts = VT->getNumElements();
3149 const Type *EltTy = VT->getElementType();
3150
3151 for (unsigned i = 0; i != NumElts; ++i) {
3152 if (i) Out << ", ";
3153 int SrcVal = SVI.getMaskValue(i);
3154 if ((unsigned)SrcVal >= NumElts*2) {
3155 Out << " 0/*undef*/ ";
3156 } else {
3157 Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts);
3158 if (isa<Instruction>(Op)) {
3159 // Do an extractelement of this value from the appropriate input.
3160 Out << "((";
3161 printType(Out, PointerType::getUnqual(EltTy));
3162 Out << ")(&" << GetValueName(Op)
3163 << "))[" << (SrcVal & NumElts-1) << "]";
3164 } else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) {
3165 Out << "0";
3166 } else {
3167 printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal & NumElts-1));
3168 }
3169 }
3170 }
3171 Out << "}";
3172}
Chris Lattnera5f0bc02008-03-02 03:57:08 +00003173
Chris Lattnerf41a7942008-03-02 03:52:39 +00003174
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003175//===----------------------------------------------------------------------===//
3176// External Interface declaration
3177//===----------------------------------------------------------------------===//
3178
3179bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
3180 std::ostream &o,
3181 CodeGenFileType FileType,
3182 bool Fast) {
3183 if (FileType != TargetMachine::AssemblyFile) return true;
3184
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003185 PM.add(createGCLoweringPass());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003186 PM.add(createLowerAllocationsPass(true));
3187 PM.add(createLowerInvokePass());
3188 PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
3189 PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
3190 PM.add(new CWriter(o));
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003191 PM.add(createCollectorMetadataDeleter());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003192 return false;
3193}