blob: 7fcc3dd51db36a930d0810e03e3ec98363388517 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This library converts LLVM code to C code, compilable by GCC and other C
11// compilers.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CTargetMachine.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Module.h"
20#include "llvm/Instructions.h"
Dale Johannesen98738822008-02-22 22:17:59 +000021#include "llvm/ParamAttrsList.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000022#include "llvm/Pass.h"
23#include "llvm/PassManager.h"
24#include "llvm/TypeSymbolTable.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Analysis/ConstantsScanner.h"
29#include "llvm/Analysis/FindUsedTypes.h"
30#include "llvm/Analysis/LoopInfo.h"
Gordon Henriksendf87fdc2008-01-07 01:30:38 +000031#include "llvm/CodeGen/Passes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000032#include "llvm/CodeGen/IntrinsicLowering.h"
33#include "llvm/Transforms/Scalar.h"
34#include "llvm/Target/TargetMachineRegistry.h"
35#include "llvm/Target/TargetAsmInfo.h"
36#include "llvm/Target/TargetData.h"
37#include "llvm/Support/CallSite.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/GetElementPtrTypeIterator.h"
40#include "llvm/Support/InstVisitor.h"
41#include "llvm/Support/Mangler.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/ADT/StringExtras.h"
44#include "llvm/ADT/STLExtras.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Config/config.h"
47#include <algorithm>
48#include <sstream>
49using namespace llvm;
50
51namespace {
52 // Register the target.
53 RegisterTarget<CTargetMachine> X("c", " C backend");
54
55 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
56 /// any unnamed structure types that are used by the program, and merges
57 /// external functions with the same name.
58 ///
59 class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
60 public:
61 static char ID;
62 CBackendNameAllUsedStructsAndMergeFunctions()
63 : ModulePass((intptr_t)&ID) {}
64 void getAnalysisUsage(AnalysisUsage &AU) const {
65 AU.addRequired<FindUsedTypes>();
66 }
67
68 virtual const char *getPassName() const {
69 return "C backend type canonicalizer";
70 }
71
72 virtual bool runOnModule(Module &M);
73 };
74
75 char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
76
77 /// CWriter - This class is the main chunk of code that converts an LLVM
78 /// module to a C translation unit.
79 class CWriter : public FunctionPass, public InstVisitor<CWriter> {
80 std::ostream &Out;
81 IntrinsicLowering *IL;
82 Mangler *Mang;
83 LoopInfo *LI;
84 const Module *TheModule;
85 const TargetAsmInfo* TAsm;
86 const TargetData* TD;
87 std::map<const Type *, std::string> TypeNames;
88 std::map<const ConstantFP *, unsigned> FPConstantMap;
89 std::set<Function*> intrinsicPrototypesAlreadyGenerated;
Evan Cheng17254e62008-01-11 09:12:49 +000090 std::set<const Value*> ByValParams;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000091
92 public:
93 static char ID;
94 CWriter(std::ostream &o)
95 : FunctionPass((intptr_t)&ID), Out(o), IL(0), Mang(0), LI(0),
96 TheModule(0), TAsm(0), TD(0) {}
97
98 virtual const char *getPassName() const { return "C backend"; }
99
100 void getAnalysisUsage(AnalysisUsage &AU) const {
101 AU.addRequired<LoopInfo>();
102 AU.setPreservesAll();
103 }
104
105 virtual bool doInitialization(Module &M);
106
107 bool runOnFunction(Function &F) {
108 LI = &getAnalysis<LoopInfo>();
109
110 // Get rid of intrinsics we can't handle.
111 lowerIntrinsics(F);
112
113 // Output all floating point constants that cannot be printed accurately.
114 printFloatingPointConstants(F);
115
116 printFunction(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000117 return false;
118 }
119
120 virtual bool doFinalization(Module &M) {
121 // Free memory...
122 delete Mang;
Evan Cheng17254e62008-01-11 09:12:49 +0000123 FPConstantMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000124 TypeNames.clear();
Evan Cheng17254e62008-01-11 09:12:49 +0000125 intrinsicPrototypesAlreadyGenerated.clear();
126 ByValParams.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 return false;
128 }
129
130 std::ostream &printType(std::ostream &Out, const Type *Ty,
131 bool isSigned = false,
132 const std::string &VariableName = "",
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000133 bool IgnoreName = false,
134 const ParamAttrsList *PAL = 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000135 std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
Chris Lattner63fb1f02008-03-02 03:16:38 +0000136 bool isSigned,
137 const std::string &NameSoFar = "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000138
139 void printStructReturnPointerFunctionType(std::ostream &Out,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000140 const ParamAttrsList *PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141 const PointerType *Ty);
142
143 void writeOperand(Value *Operand);
144 void writeOperandRaw(Value *Operand);
145 void writeOperandInternal(Value *Operand);
146 void writeOperandWithCast(Value* Operand, unsigned Opcode);
Chris Lattner389c9142007-09-15 06:51:03 +0000147 void writeOperandWithCast(Value* Operand, const ICmpInst &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000148 bool writeInstructionCast(const Instruction &I);
149
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +0000150 void writeMemoryAccess(Value *Operand, const Type *OperandType,
151 bool IsVolatile, unsigned Alignment);
152
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000153 private :
154 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
155
156 void lowerIntrinsics(Function &F);
157
158 void printModule(Module *M);
159 void printModuleTypes(const TypeSymbolTable &ST);
160 void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
161 void printFloatingPointConstants(Function &F);
162 void printFunctionSignature(const Function *F, bool Prototype);
163
164 void printFunction(Function &);
165 void printBasicBlock(BasicBlock *BB);
166 void printLoop(Loop *L);
167
168 void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
169 void printConstant(Constant *CPV);
170 void printConstantWithCast(Constant *CPV, unsigned Opcode);
171 bool printConstExprCast(const ConstantExpr *CE);
172 void printConstantArray(ConstantArray *CPA);
173 void printConstantVector(ConstantVector *CP);
174
175 // isInlinableInst - Attempt to inline instructions into their uses to build
176 // trees as much as possible. To do this, we have to consistently decide
177 // what is acceptable to inline, so that variable declarations don't get
178 // printed and an extra copy of the expr is not emitted.
179 //
180 static bool isInlinableInst(const Instruction &I) {
181 // Always inline cmp instructions, even if they are shared by multiple
182 // expressions. GCC generates horrible code if we don't.
183 if (isa<CmpInst>(I))
184 return true;
185
186 // Must be an expression, must be used exactly once. If it is dead, we
187 // emit it inline where it would go.
188 if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
189 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
Chris Lattnerf41a7942008-03-02 03:52:39 +0000190 isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000191 // Don't inline a load across a store or other bad things!
192 return false;
193
Chris Lattnerf858a042008-03-02 05:41:07 +0000194 // Must not be used in inline asm, extractelement, or shufflevector.
195 if (I.hasOneUse()) {
196 const Instruction &User = cast<Instruction>(*I.use_back());
197 if (isInlineAsm(User) || isa<ExtractElementInst>(User) ||
198 isa<ShuffleVectorInst>(User))
199 return false;
200 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000201
202 // Only inline instruction it if it's use is in the same BB as the inst.
203 return I.getParent() == cast<Instruction>(I.use_back())->getParent();
204 }
205
206 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
207 // variables which are accessed with the & operator. This causes GCC to
208 // generate significantly better code than to emit alloca calls directly.
209 //
210 static const AllocaInst *isDirectAlloca(const Value *V) {
211 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
212 if (!AI) return false;
213 if (AI->isArrayAllocation())
214 return 0; // FIXME: we can also inline fixed size array allocas!
215 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
216 return 0;
217 return AI;
218 }
219
220 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
221 static bool isInlineAsm(const Instruction& I) {
222 if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
223 return true;
224 return false;
225 }
226
227 // Instruction visitation functions
228 friend class InstVisitor<CWriter>;
229
230 void visitReturnInst(ReturnInst &I);
231 void visitBranchInst(BranchInst &I);
232 void visitSwitchInst(SwitchInst &I);
233 void visitInvokeInst(InvokeInst &I) {
234 assert(0 && "Lowerinvoke pass didn't work!");
235 }
236
237 void visitUnwindInst(UnwindInst &I) {
238 assert(0 && "Lowerinvoke pass didn't work!");
239 }
240 void visitUnreachableInst(UnreachableInst &I);
241
242 void visitPHINode(PHINode &I);
243 void visitBinaryOperator(Instruction &I);
244 void visitICmpInst(ICmpInst &I);
245 void visitFCmpInst(FCmpInst &I);
246
247 void visitCastInst (CastInst &I);
248 void visitSelectInst(SelectInst &I);
249 void visitCallInst (CallInst &I);
250 void visitInlineAsm(CallInst &I);
251
252 void visitMallocInst(MallocInst &I);
253 void visitAllocaInst(AllocaInst &I);
254 void visitFreeInst (FreeInst &I);
255 void visitLoadInst (LoadInst &I);
256 void visitStoreInst (StoreInst &I);
257 void visitGetElementPtrInst(GetElementPtrInst &I);
258 void visitVAArgInst (VAArgInst &I);
Chris Lattnerf41a7942008-03-02 03:52:39 +0000259
260 void visitInsertElementInst(InsertElementInst &I);
Chris Lattnera5f0bc02008-03-02 03:57:08 +0000261 void visitExtractElementInst(ExtractElementInst &I);
Chris Lattnerf858a042008-03-02 05:41:07 +0000262 void visitShuffleVectorInst(ShuffleVectorInst &SVI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000263
264 void visitInstruction(Instruction &I) {
265 cerr << "C Writer does not know about " << I;
266 abort();
267 }
268
269 void outputLValue(Instruction *I) {
270 Out << " " << GetValueName(I) << " = ";
271 }
272
273 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
274 void printPHICopiesForSuccessor(BasicBlock *CurBlock,
275 BasicBlock *Successor, unsigned Indent);
276 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
277 unsigned Indent);
278 void printIndexingExpression(Value *Ptr, gep_type_iterator I,
279 gep_type_iterator E);
280
281 std::string GetValueName(const Value *Operand);
282 };
283}
284
285char CWriter::ID = 0;
286
287/// This method inserts names for any unnamed structure types that are used by
288/// the program, and removes names from structure types that are not used by the
289/// program.
290///
291bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
292 // Get a set of types that are used by the program...
293 std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
294
295 // Loop over the module symbol table, removing types from UT that are
296 // already named, and removing names for types that are not used.
297 //
298 TypeSymbolTable &TST = M.getTypeSymbolTable();
299 for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
300 TI != TE; ) {
301 TypeSymbolTable::iterator I = TI++;
302
303 // If this isn't a struct type, remove it from our set of types to name.
304 // This simplifies emission later.
305 if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second)) {
306 TST.remove(I);
307 } else {
308 // If this is not used, remove it from the symbol table.
309 std::set<const Type *>::iterator UTI = UT.find(I->second);
310 if (UTI == UT.end())
311 TST.remove(I);
312 else
313 UT.erase(UTI); // Only keep one name for this type.
314 }
315 }
316
317 // UT now contains types that are not named. Loop over it, naming
318 // structure types.
319 //
320 bool Changed = false;
321 unsigned RenameCounter = 0;
322 for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
323 I != E; ++I)
324 if (const StructType *ST = dyn_cast<StructType>(*I)) {
325 while (M.addTypeName("unnamed"+utostr(RenameCounter), ST))
326 ++RenameCounter;
327 Changed = true;
328 }
329
330
331 // Loop over all external functions and globals. If we have two with
332 // identical names, merge them.
333 // FIXME: This code should disappear when we don't allow values with the same
334 // names when they have different types!
335 std::map<std::string, GlobalValue*> ExtSymbols;
336 for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
337 Function *GV = I++;
338 if (GV->isDeclaration() && GV->hasName()) {
339 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
340 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
341 if (!X.second) {
342 // Found a conflict, replace this global with the previous one.
343 GlobalValue *OldGV = X.first->second;
344 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
345 GV->eraseFromParent();
346 Changed = true;
347 }
348 }
349 }
350 // Do the same for globals.
351 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
352 I != E;) {
353 GlobalVariable *GV = I++;
354 if (GV->isDeclaration() && GV->hasName()) {
355 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
356 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
357 if (!X.second) {
358 // Found a conflict, replace this global with the previous one.
359 GlobalValue *OldGV = X.first->second;
360 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
361 GV->eraseFromParent();
362 Changed = true;
363 }
364 }
365 }
366
367 return Changed;
368}
369
370/// printStructReturnPointerFunctionType - This is like printType for a struct
371/// return type, except, instead of printing the type as void (*)(Struct*, ...)
372/// print it as "Struct (*)(...)", for struct return functions.
373void CWriter::printStructReturnPointerFunctionType(std::ostream &Out,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000374 const ParamAttrsList *PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000375 const PointerType *TheTy) {
376 const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
377 std::stringstream FunctionInnards;
378 FunctionInnards << " (*) (";
379 bool PrintedType = false;
380
381 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
382 const Type *RetTy = cast<PointerType>(I->get())->getElementType();
383 unsigned Idx = 1;
Evan Cheng2054cb02008-01-11 03:07:46 +0000384 for (++I, ++Idx; I != E; ++I, ++Idx) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000385 if (PrintedType)
386 FunctionInnards << ", ";
Evan Cheng2054cb02008-01-11 03:07:46 +0000387 const Type *ArgTy = *I;
Evan Cheng17254e62008-01-11 09:12:49 +0000388 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
389 assert(isa<PointerType>(ArgTy));
390 ArgTy = cast<PointerType>(ArgTy)->getElementType();
391 }
Evan Cheng2054cb02008-01-11 03:07:46 +0000392 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000393 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000394 PrintedType = true;
395 }
396 if (FTy->isVarArg()) {
397 if (PrintedType)
398 FunctionInnards << ", ...";
399 } else if (!PrintedType) {
400 FunctionInnards << "void";
401 }
402 FunctionInnards << ')';
403 std::string tstr = FunctionInnards.str();
404 printType(Out, RetTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000405 /*isSigned=*/PAL && PAL->paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000406}
407
408std::ostream &
409CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
Chris Lattnerd8090712008-03-02 03:41:23 +0000410 const std::string &NameSoFar) {
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000411 assert((Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000412 "Invalid type for printSimpleType");
413 switch (Ty->getTypeID()) {
414 case Type::VoidTyID: return Out << "void " << NameSoFar;
415 case Type::IntegerTyID: {
416 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
417 if (NumBits == 1)
418 return Out << "bool " << NameSoFar;
419 else if (NumBits <= 8)
420 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
421 else if (NumBits <= 16)
422 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
423 else if (NumBits <= 32)
424 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
425 else {
426 assert(NumBits <= 64 && "Bit widths > 64 not implemented yet");
427 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
428 }
429 }
430 case Type::FloatTyID: return Out << "float " << NameSoFar;
431 case Type::DoubleTyID: return Out << "double " << NameSoFar;
Dale Johannesen137cef62007-09-17 00:38:27 +0000432 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
433 // present matches host 'long double'.
434 case Type::X86_FP80TyID:
435 case Type::PPC_FP128TyID:
436 case Type::FP128TyID: return Out << "long double " << NameSoFar;
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000437
438 case Type::VectorTyID: {
439 const VectorType *VTy = cast<VectorType>(Ty);
Chris Lattnerd8090712008-03-02 03:41:23 +0000440 return printSimpleType(Out, VTy->getElementType(), isSigned,
Chris Lattnerfddca552008-03-02 03:39:43 +0000441 " __attribute__((vector_size(" +
442 utostr(TD->getABITypeSize(VTy)) + " ))) " + NameSoFar);
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000443 }
444
445 default:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000446 cerr << "Unknown primitive type: " << *Ty << "\n";
447 abort();
448 }
449}
450
451// Pass the Type* and the variable name and this prints out the variable
452// declaration.
453//
454std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
455 bool isSigned, const std::string &NameSoFar,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000456 bool IgnoreName, const ParamAttrsList* PAL) {
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000457 if (Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000458 printSimpleType(Out, Ty, isSigned, NameSoFar);
459 return Out;
460 }
461
462 // Check to see if the type is named.
463 if (!IgnoreName || isa<OpaqueType>(Ty)) {
464 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
465 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
466 }
467
468 switch (Ty->getTypeID()) {
469 case Type::FunctionTyID: {
470 const FunctionType *FTy = cast<FunctionType>(Ty);
471 std::stringstream FunctionInnards;
472 FunctionInnards << " (" << NameSoFar << ") (";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000473 unsigned Idx = 1;
474 for (FunctionType::param_iterator I = FTy->param_begin(),
475 E = FTy->param_end(); I != E; ++I) {
Evan Chengb8a072c2008-01-12 18:53:07 +0000476 const Type *ArgTy = *I;
477 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
478 assert(isa<PointerType>(ArgTy));
479 ArgTy = cast<PointerType>(ArgTy)->getElementType();
480 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000481 if (I != FTy->param_begin())
482 FunctionInnards << ", ";
Evan Chengb8a072c2008-01-12 18:53:07 +0000483 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000484 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000485 ++Idx;
486 }
487 if (FTy->isVarArg()) {
488 if (FTy->getNumParams())
489 FunctionInnards << ", ...";
490 } else if (!FTy->getNumParams()) {
491 FunctionInnards << "void";
492 }
493 FunctionInnards << ')';
494 std::string tstr = FunctionInnards.str();
495 printType(Out, FTy->getReturnType(),
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000496 /*isSigned=*/PAL && PAL->paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000497 return Out;
498 }
499 case Type::StructTyID: {
500 const StructType *STy = cast<StructType>(Ty);
501 Out << NameSoFar + " {\n";
502 unsigned Idx = 0;
503 for (StructType::element_iterator I = STy->element_begin(),
504 E = STy->element_end(); I != E; ++I) {
505 Out << " ";
506 printType(Out, *I, false, "field" + utostr(Idx++));
507 Out << ";\n";
508 }
509 Out << '}';
510 if (STy->isPacked())
511 Out << " __attribute__ ((packed))";
512 return Out;
513 }
514
515 case Type::PointerTyID: {
516 const PointerType *PTy = cast<PointerType>(Ty);
517 std::string ptrName = "*" + NameSoFar;
518
519 if (isa<ArrayType>(PTy->getElementType()) ||
520 isa<VectorType>(PTy->getElementType()))
521 ptrName = "(" + ptrName + ")";
522
Evan Chengb8a072c2008-01-12 18:53:07 +0000523 if (PAL)
524 // Must be a function ptr cast!
525 return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000526 return printType(Out, PTy->getElementType(), false, ptrName);
527 }
528
529 case Type::ArrayTyID: {
530 const ArrayType *ATy = cast<ArrayType>(Ty);
531 unsigned NumElements = ATy->getNumElements();
532 if (NumElements == 0) NumElements = 1;
533 return printType(Out, ATy->getElementType(), false,
534 NameSoFar + "[" + utostr(NumElements) + "]");
535 }
536
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000537 case Type::OpaqueTyID: {
538 static int Count = 0;
539 std::string TyName = "struct opaque_" + itostr(Count++);
540 assert(TypeNames.find(Ty) == TypeNames.end());
541 TypeNames[Ty] = TyName;
542 return Out << TyName << ' ' << NameSoFar;
543 }
544 default:
545 assert(0 && "Unhandled case in getTypeProps!");
546 abort();
547 }
548
549 return Out;
550}
551
552void CWriter::printConstantArray(ConstantArray *CPA) {
553
554 // As a special case, print the array as a string if it is an array of
555 // ubytes or an array of sbytes with positive values.
556 //
557 const Type *ETy = CPA->getType()->getElementType();
558 bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
559
560 // Make sure the last character is a null char, as automatically added by C
561 if (isString && (CPA->getNumOperands() == 0 ||
562 !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
563 isString = false;
564
565 if (isString) {
566 Out << '\"';
567 // Keep track of whether the last number was a hexadecimal escape
568 bool LastWasHex = false;
569
570 // Do not include the last character, which we know is null
571 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
572 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
573
574 // Print it out literally if it is a printable character. The only thing
575 // to be careful about is when the last letter output was a hex escape
576 // code, in which case we have to be careful not to print out hex digits
577 // explicitly (the C compiler thinks it is a continuation of the previous
578 // character, sheesh...)
579 //
580 if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
581 LastWasHex = false;
582 if (C == '"' || C == '\\')
583 Out << "\\" << C;
584 else
585 Out << C;
586 } else {
587 LastWasHex = false;
588 switch (C) {
589 case '\n': Out << "\\n"; break;
590 case '\t': Out << "\\t"; break;
591 case '\r': Out << "\\r"; break;
592 case '\v': Out << "\\v"; break;
593 case '\a': Out << "\\a"; break;
594 case '\"': Out << "\\\""; break;
595 case '\'': Out << "\\\'"; break;
596 default:
597 Out << "\\x";
598 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
599 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
600 LastWasHex = true;
601 break;
602 }
603 }
604 }
605 Out << '\"';
606 } else {
607 Out << '{';
608 if (CPA->getNumOperands()) {
609 Out << ' ';
610 printConstant(cast<Constant>(CPA->getOperand(0)));
611 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
612 Out << ", ";
613 printConstant(cast<Constant>(CPA->getOperand(i)));
614 }
615 }
616 Out << " }";
617 }
618}
619
620void CWriter::printConstantVector(ConstantVector *CP) {
621 Out << '{';
622 if (CP->getNumOperands()) {
623 Out << ' ';
624 printConstant(cast<Constant>(CP->getOperand(0)));
625 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
626 Out << ", ";
627 printConstant(cast<Constant>(CP->getOperand(i)));
628 }
629 }
630 Out << " }";
631}
632
633// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
634// textually as a double (rather than as a reference to a stack-allocated
635// variable). We decide this by converting CFP to a string and back into a
636// double, and then checking whether the conversion results in a bit-equal
637// double to the original value of CFP. This depends on us and the target C
638// compiler agreeing on the conversion process (which is pretty likely since we
639// only deal in IEEE FP).
640//
641static bool isFPCSafeToPrint(const ConstantFP *CFP) {
Dale Johannesen137cef62007-09-17 00:38:27 +0000642 // Do long doubles in hex for now.
Dale Johannesen2fc20782007-09-14 22:26:36 +0000643 if (CFP->getType()!=Type::FloatTy && CFP->getType()!=Type::DoubleTy)
644 return false;
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000645 APFloat APF = APFloat(CFP->getValueAPF()); // copy
646 if (CFP->getType()==Type::FloatTy)
647 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000648#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
649 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000650 sprintf(Buffer, "%a", APF.convertToDouble());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000651 if (!strncmp(Buffer, "0x", 2) ||
652 !strncmp(Buffer, "-0x", 3) ||
653 !strncmp(Buffer, "+0x", 3))
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000654 return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000655 return false;
656#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000657 std::string StrVal = ftostr(APF);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000658
659 while (StrVal[0] == ' ')
660 StrVal.erase(StrVal.begin());
661
662 // Check to make sure that the stringized number is not some string like "Inf"
663 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
664 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
665 ((StrVal[0] == '-' || StrVal[0] == '+') &&
666 (StrVal[1] >= '0' && StrVal[1] <= '9')))
667 // Reparse stringized version!
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000668 return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000669 return false;
670#endif
671}
672
673/// Print out the casting for a cast operation. This does the double casting
674/// necessary for conversion to the destination type, if necessary.
675/// @brief Print a cast
676void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
677 // Print the destination type cast
678 switch (opc) {
679 case Instruction::UIToFP:
680 case Instruction::SIToFP:
681 case Instruction::IntToPtr:
682 case Instruction::Trunc:
683 case Instruction::BitCast:
684 case Instruction::FPExt:
685 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
686 Out << '(';
687 printType(Out, DstTy);
688 Out << ')';
689 break;
690 case Instruction::ZExt:
691 case Instruction::PtrToInt:
692 case Instruction::FPToUI: // For these, make sure we get an unsigned dest
693 Out << '(';
694 printSimpleType(Out, DstTy, false);
695 Out << ')';
696 break;
697 case Instruction::SExt:
698 case Instruction::FPToSI: // For these, make sure we get a signed dest
699 Out << '(';
700 printSimpleType(Out, DstTy, true);
701 Out << ')';
702 break;
703 default:
704 assert(0 && "Invalid cast opcode");
705 }
706
707 // Print the source type cast
708 switch (opc) {
709 case Instruction::UIToFP:
710 case Instruction::ZExt:
711 Out << '(';
712 printSimpleType(Out, SrcTy, false);
713 Out << ')';
714 break;
715 case Instruction::SIToFP:
716 case Instruction::SExt:
717 Out << '(';
718 printSimpleType(Out, SrcTy, true);
719 Out << ')';
720 break;
721 case Instruction::IntToPtr:
722 case Instruction::PtrToInt:
723 // Avoid "cast to pointer from integer of different size" warnings
724 Out << "(unsigned long)";
725 break;
726 case Instruction::Trunc:
727 case Instruction::BitCast:
728 case Instruction::FPExt:
729 case Instruction::FPTrunc:
730 case Instruction::FPToSI:
731 case Instruction::FPToUI:
732 break; // These don't need a source cast.
733 default:
734 assert(0 && "Invalid cast opcode");
735 break;
736 }
737}
738
739// printConstant - The LLVM Constant to C Constant converter.
740void CWriter::printConstant(Constant *CPV) {
741 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
742 switch (CE->getOpcode()) {
743 case Instruction::Trunc:
744 case Instruction::ZExt:
745 case Instruction::SExt:
746 case Instruction::FPTrunc:
747 case Instruction::FPExt:
748 case Instruction::UIToFP:
749 case Instruction::SIToFP:
750 case Instruction::FPToUI:
751 case Instruction::FPToSI:
752 case Instruction::PtrToInt:
753 case Instruction::IntToPtr:
754 case Instruction::BitCast:
755 Out << "(";
756 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
757 if (CE->getOpcode() == Instruction::SExt &&
758 CE->getOperand(0)->getType() == Type::Int1Ty) {
759 // Make sure we really sext from bool here by subtracting from 0
760 Out << "0-";
761 }
762 printConstant(CE->getOperand(0));
763 if (CE->getType() == Type::Int1Ty &&
764 (CE->getOpcode() == Instruction::Trunc ||
765 CE->getOpcode() == Instruction::FPToUI ||
766 CE->getOpcode() == Instruction::FPToSI ||
767 CE->getOpcode() == Instruction::PtrToInt)) {
768 // Make sure we really truncate to bool here by anding with 1
769 Out << "&1u";
770 }
771 Out << ')';
772 return;
773
774 case Instruction::GetElementPtr:
775 Out << "(&(";
776 printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV),
777 gep_type_end(CPV));
778 Out << "))";
779 return;
780 case Instruction::Select:
781 Out << '(';
782 printConstant(CE->getOperand(0));
783 Out << '?';
784 printConstant(CE->getOperand(1));
785 Out << ':';
786 printConstant(CE->getOperand(2));
787 Out << ')';
788 return;
789 case Instruction::Add:
790 case Instruction::Sub:
791 case Instruction::Mul:
792 case Instruction::SDiv:
793 case Instruction::UDiv:
794 case Instruction::FDiv:
795 case Instruction::URem:
796 case Instruction::SRem:
797 case Instruction::FRem:
798 case Instruction::And:
799 case Instruction::Or:
800 case Instruction::Xor:
801 case Instruction::ICmp:
802 case Instruction::Shl:
803 case Instruction::LShr:
804 case Instruction::AShr:
805 {
806 Out << '(';
807 bool NeedsClosingParens = printConstExprCast(CE);
808 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
809 switch (CE->getOpcode()) {
810 case Instruction::Add: Out << " + "; break;
811 case Instruction::Sub: Out << " - "; break;
812 case Instruction::Mul: Out << " * "; break;
813 case Instruction::URem:
814 case Instruction::SRem:
815 case Instruction::FRem: Out << " % "; break;
816 case Instruction::UDiv:
817 case Instruction::SDiv:
818 case Instruction::FDiv: Out << " / "; break;
819 case Instruction::And: Out << " & "; break;
820 case Instruction::Or: Out << " | "; break;
821 case Instruction::Xor: Out << " ^ "; break;
822 case Instruction::Shl: Out << " << "; break;
823 case Instruction::LShr:
824 case Instruction::AShr: Out << " >> "; break;
825 case Instruction::ICmp:
826 switch (CE->getPredicate()) {
827 case ICmpInst::ICMP_EQ: Out << " == "; break;
828 case ICmpInst::ICMP_NE: Out << " != "; break;
829 case ICmpInst::ICMP_SLT:
830 case ICmpInst::ICMP_ULT: Out << " < "; break;
831 case ICmpInst::ICMP_SLE:
832 case ICmpInst::ICMP_ULE: Out << " <= "; break;
833 case ICmpInst::ICMP_SGT:
834 case ICmpInst::ICMP_UGT: Out << " > "; break;
835 case ICmpInst::ICMP_SGE:
836 case ICmpInst::ICMP_UGE: Out << " >= "; break;
837 default: assert(0 && "Illegal ICmp predicate");
838 }
839 break;
840 default: assert(0 && "Illegal opcode here!");
841 }
842 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
843 if (NeedsClosingParens)
844 Out << "))";
845 Out << ')';
846 return;
847 }
848 case Instruction::FCmp: {
849 Out << '(';
850 bool NeedsClosingParens = printConstExprCast(CE);
851 if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
852 Out << "0";
853 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
854 Out << "1";
855 else {
856 const char* op = 0;
857 switch (CE->getPredicate()) {
858 default: assert(0 && "Illegal FCmp predicate");
859 case FCmpInst::FCMP_ORD: op = "ord"; break;
860 case FCmpInst::FCMP_UNO: op = "uno"; break;
861 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
862 case FCmpInst::FCMP_UNE: op = "une"; break;
863 case FCmpInst::FCMP_ULT: op = "ult"; break;
864 case FCmpInst::FCMP_ULE: op = "ule"; break;
865 case FCmpInst::FCMP_UGT: op = "ugt"; break;
866 case FCmpInst::FCMP_UGE: op = "uge"; break;
867 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
868 case FCmpInst::FCMP_ONE: op = "one"; break;
869 case FCmpInst::FCMP_OLT: op = "olt"; break;
870 case FCmpInst::FCMP_OLE: op = "ole"; break;
871 case FCmpInst::FCMP_OGT: op = "ogt"; break;
872 case FCmpInst::FCMP_OGE: op = "oge"; break;
873 }
874 Out << "llvm_fcmp_" << op << "(";
875 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
876 Out << ", ";
877 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
878 Out << ")";
879 }
880 if (NeedsClosingParens)
881 Out << "))";
882 Out << ')';
Anton Korobeynikov44891ce2007-12-21 23:33:44 +0000883 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000884 }
885 default:
886 cerr << "CWriter Error: Unhandled constant expression: "
887 << *CE << "\n";
888 abort();
889 }
890 } else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) {
891 Out << "((";
892 printType(Out, CPV->getType()); // sign doesn't matter
893 Out << ")/*UNDEF*/0)";
894 return;
895 }
896
897 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
898 const Type* Ty = CI->getType();
899 if (Ty == Type::Int1Ty)
Chris Lattner63fb1f02008-03-02 03:16:38 +0000900 Out << (CI->getZExtValue() ? '1' : '0');
901 else if (Ty == Type::Int32Ty)
902 Out << CI->getZExtValue() << 'u';
903 else if (Ty->getPrimitiveSizeInBits() > 32)
904 Out << CI->getZExtValue() << "ull";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000905 else {
906 Out << "((";
907 printSimpleType(Out, Ty, false) << ')';
908 if (CI->isMinValue(true))
909 Out << CI->getZExtValue() << 'u';
910 else
911 Out << CI->getSExtValue();
Chris Lattner63fb1f02008-03-02 03:16:38 +0000912 Out << ')';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000913 }
914 return;
915 }
916
917 switch (CPV->getType()->getTypeID()) {
918 case Type::FloatTyID:
Dale Johannesen137cef62007-09-17 00:38:27 +0000919 case Type::DoubleTyID:
920 case Type::X86_FP80TyID:
921 case Type::PPC_FP128TyID:
922 case Type::FP128TyID: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000923 ConstantFP *FPC = cast<ConstantFP>(CPV);
924 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
925 if (I != FPConstantMap.end()) {
926 // Because of FP precision problems we must load from a stack allocated
927 // value that holds the value in hex.
Dale Johannesen137cef62007-09-17 00:38:27 +0000928 Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" :
929 FPC->getType() == Type::DoubleTy ? "double" :
930 "long double")
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000931 << "*)&FPConstant" << I->second << ')';
932 } else {
Dale Johannesen137cef62007-09-17 00:38:27 +0000933 assert(FPC->getType() == Type::FloatTy ||
934 FPC->getType() == Type::DoubleTy);
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000935 double V = FPC->getType() == Type::FloatTy ?
936 FPC->getValueAPF().convertToFloat() :
937 FPC->getValueAPF().convertToDouble();
938 if (IsNAN(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000939 // The value is NaN
940
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000941 // FIXME the actual NaN bits should be emitted.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000942 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
943 // it's 0x7ff4.
944 const unsigned long QuietNaN = 0x7ff8UL;
945 //const unsigned long SignalNaN = 0x7ff4UL;
946
947 // We need to grab the first part of the FP #
948 char Buffer[100];
949
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000950 uint64_t ll = DoubleToBits(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000951 sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
952
953 std::string Num(&Buffer[0], &Buffer[6]);
954 unsigned long Val = strtoul(Num.c_str(), 0, 16);
955
956 if (FPC->getType() == Type::FloatTy)
957 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
958 << Buffer << "\") /*nan*/ ";
959 else
960 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
961 << Buffer << "\") /*nan*/ ";
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000962 } else if (IsInf(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000963 // The value is Inf
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000964 if (V < 0) Out << '-';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000965 Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
966 << " /*inf*/ ";
967 } else {
968 std::string Num;
969#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
970 // Print out the constant as a floating point number.
971 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000972 sprintf(Buffer, "%a", V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000973 Num = Buffer;
974#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000975 Num = ftostr(FPC->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000976#endif
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000977 Out << Num;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000978 }
979 }
980 break;
981 }
982
983 case Type::ArrayTyID:
Chris Lattner8673e322008-03-02 05:46:57 +0000984 if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) {
Chris Lattner6d4cd9b2008-03-02 03:18:46 +0000985 printConstantArray(CA);
Chris Lattner63fb1f02008-03-02 03:16:38 +0000986 } else {
987 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000988 const ArrayType *AT = cast<ArrayType>(CPV->getType());
989 Out << '{';
990 if (AT->getNumElements()) {
991 Out << ' ';
992 Constant *CZ = Constant::getNullValue(AT->getElementType());
993 printConstant(CZ);
994 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
995 Out << ", ";
996 printConstant(CZ);
997 }
998 }
999 Out << " }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001000 }
1001 break;
1002
1003 case Type::VectorTyID:
Chris Lattner70f0f672008-03-02 03:29:50 +00001004 // Use C99 compound expression literal initializer syntax.
1005 Out << "(";
1006 printType(Out, CPV->getType());
1007 Out << ")";
Chris Lattner8673e322008-03-02 05:46:57 +00001008 if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) {
Chris Lattner63fb1f02008-03-02 03:16:38 +00001009 printConstantVector(CV);
1010 } else {
1011 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
1012 const VectorType *VT = cast<VectorType>(CPV->getType());
1013 Out << "{ ";
1014 Constant *CZ = Constant::getNullValue(VT->getElementType());
1015 printConstant(CZ);
Chris Lattner6d4cd9b2008-03-02 03:18:46 +00001016 for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
Chris Lattner63fb1f02008-03-02 03:16:38 +00001017 Out << ", ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001018 printConstant(CZ);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001019 }
1020 Out << " }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001021 }
1022 break;
1023
1024 case Type::StructTyID:
1025 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
1026 const StructType *ST = cast<StructType>(CPV->getType());
1027 Out << '{';
1028 if (ST->getNumElements()) {
1029 Out << ' ';
1030 printConstant(Constant::getNullValue(ST->getElementType(0)));
1031 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
1032 Out << ", ";
1033 printConstant(Constant::getNullValue(ST->getElementType(i)));
1034 }
1035 }
1036 Out << " }";
1037 } else {
1038 Out << '{';
1039 if (CPV->getNumOperands()) {
1040 Out << ' ';
1041 printConstant(cast<Constant>(CPV->getOperand(0)));
1042 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
1043 Out << ", ";
1044 printConstant(cast<Constant>(CPV->getOperand(i)));
1045 }
1046 }
1047 Out << " }";
1048 }
1049 break;
1050
1051 case Type::PointerTyID:
1052 if (isa<ConstantPointerNull>(CPV)) {
1053 Out << "((";
1054 printType(Out, CPV->getType()); // sign doesn't matter
1055 Out << ")/*NULL*/0)";
1056 break;
1057 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
1058 writeOperand(GV);
1059 break;
1060 }
1061 // FALL THROUGH
1062 default:
1063 cerr << "Unknown constant type: " << *CPV << "\n";
1064 abort();
1065 }
1066}
1067
1068// Some constant expressions need to be casted back to the original types
1069// because their operands were casted to the expected type. This function takes
1070// care of detecting that case and printing the cast for the ConstantExpr.
1071bool CWriter::printConstExprCast(const ConstantExpr* CE) {
1072 bool NeedsExplicitCast = false;
1073 const Type *Ty = CE->getOperand(0)->getType();
1074 bool TypeIsSigned = false;
1075 switch (CE->getOpcode()) {
1076 case Instruction::LShr:
1077 case Instruction::URem:
1078 case Instruction::UDiv: NeedsExplicitCast = true; break;
1079 case Instruction::AShr:
1080 case Instruction::SRem:
1081 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
1082 case Instruction::SExt:
1083 Ty = CE->getType();
1084 NeedsExplicitCast = true;
1085 TypeIsSigned = true;
1086 break;
1087 case Instruction::ZExt:
1088 case Instruction::Trunc:
1089 case Instruction::FPTrunc:
1090 case Instruction::FPExt:
1091 case Instruction::UIToFP:
1092 case Instruction::SIToFP:
1093 case Instruction::FPToUI:
1094 case Instruction::FPToSI:
1095 case Instruction::PtrToInt:
1096 case Instruction::IntToPtr:
1097 case Instruction::BitCast:
1098 Ty = CE->getType();
1099 NeedsExplicitCast = true;
1100 break;
1101 default: break;
1102 }
1103 if (NeedsExplicitCast) {
1104 Out << "((";
1105 if (Ty->isInteger() && Ty != Type::Int1Ty)
1106 printSimpleType(Out, Ty, TypeIsSigned);
1107 else
1108 printType(Out, Ty); // not integer, sign doesn't matter
1109 Out << ")(";
1110 }
1111 return NeedsExplicitCast;
1112}
1113
1114// Print a constant assuming that it is the operand for a given Opcode. The
1115// opcodes that care about sign need to cast their operands to the expected
1116// type before the operation proceeds. This function does the casting.
1117void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
1118
1119 // Extract the operand's type, we'll need it.
1120 const Type* OpTy = CPV->getType();
1121
1122 // Indicate whether to do the cast or not.
1123 bool shouldCast = false;
1124 bool typeIsSigned = false;
1125
1126 // Based on the Opcode for which this Constant is being written, determine
1127 // the new type to which the operand should be casted by setting the value
1128 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1129 // casted below.
1130 switch (Opcode) {
1131 default:
1132 // for most instructions, it doesn't matter
1133 break;
1134 case Instruction::LShr:
1135 case Instruction::UDiv:
1136 case Instruction::URem:
1137 shouldCast = true;
1138 break;
1139 case Instruction::AShr:
1140 case Instruction::SDiv:
1141 case Instruction::SRem:
1142 shouldCast = true;
1143 typeIsSigned = true;
1144 break;
1145 }
1146
1147 // Write out the casted constant if we should, otherwise just write the
1148 // operand.
1149 if (shouldCast) {
1150 Out << "((";
1151 printSimpleType(Out, OpTy, typeIsSigned);
1152 Out << ")";
1153 printConstant(CPV);
1154 Out << ")";
1155 } else
1156 printConstant(CPV);
1157}
1158
1159std::string CWriter::GetValueName(const Value *Operand) {
1160 std::string Name;
1161
1162 if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
1163 std::string VarName;
1164
1165 Name = Operand->getName();
1166 VarName.reserve(Name.capacity());
1167
1168 for (std::string::iterator I = Name.begin(), E = Name.end();
1169 I != E; ++I) {
1170 char ch = *I;
1171
1172 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
Lauro Ramos Venancio66842ee2008-02-28 20:26:04 +00001173 (ch >= '0' && ch <= '9') || ch == '_')) {
1174 char buffer[5];
1175 sprintf(buffer, "_%x_", ch);
1176 VarName += buffer;
1177 } else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001178 VarName += ch;
1179 }
1180
1181 Name = "llvm_cbe_" + VarName;
1182 } else {
1183 Name = Mang->getValueName(Operand);
1184 }
1185
1186 return Name;
1187}
1188
1189void CWriter::writeOperandInternal(Value *Operand) {
1190 if (Instruction *I = dyn_cast<Instruction>(Operand))
1191 if (isInlinableInst(*I) && !isDirectAlloca(I)) {
1192 // Should we inline this instruction to build a tree?
1193 Out << '(';
1194 visit(*I);
1195 Out << ')';
1196 return;
1197 }
1198
1199 Constant* CPV = dyn_cast<Constant>(Operand);
1200
1201 if (CPV && !isa<GlobalValue>(CPV))
1202 printConstant(CPV);
1203 else
1204 Out << GetValueName(Operand);
1205}
1206
1207void CWriter::writeOperandRaw(Value *Operand) {
1208 Constant* CPV = dyn_cast<Constant>(Operand);
1209 if (CPV && !isa<GlobalValue>(CPV)) {
1210 printConstant(CPV);
1211 } else {
1212 Out << GetValueName(Operand);
1213 }
1214}
1215
1216void CWriter::writeOperand(Value *Operand) {
Evan Chengc25c7742008-02-20 18:32:05 +00001217 if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001218 Out << "(&"; // Global variables are referenced as their addresses by llvm
1219
1220 writeOperandInternal(Operand);
1221
Evan Chengc25c7742008-02-20 18:32:05 +00001222 if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001223 Out << ')';
1224}
1225
1226// Some instructions need to have their result value casted back to the
1227// original types because their operands were casted to the expected type.
1228// This function takes care of detecting that case and printing the cast
1229// for the Instruction.
1230bool CWriter::writeInstructionCast(const Instruction &I) {
1231 const Type *Ty = I.getOperand(0)->getType();
1232 switch (I.getOpcode()) {
1233 case Instruction::LShr:
1234 case Instruction::URem:
1235 case Instruction::UDiv:
1236 Out << "((";
1237 printSimpleType(Out, Ty, false);
1238 Out << ")(";
1239 return true;
1240 case Instruction::AShr:
1241 case Instruction::SRem:
1242 case Instruction::SDiv:
1243 Out << "((";
1244 printSimpleType(Out, Ty, true);
1245 Out << ")(";
1246 return true;
1247 default: break;
1248 }
1249 return false;
1250}
1251
1252// Write the operand with a cast to another type based on the Opcode being used.
1253// This will be used in cases where an instruction has specific type
1254// requirements (usually signedness) for its operands.
1255void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
1256
1257 // Extract the operand's type, we'll need it.
1258 const Type* OpTy = Operand->getType();
1259
1260 // Indicate whether to do the cast or not.
1261 bool shouldCast = false;
1262
1263 // Indicate whether the cast should be to a signed type or not.
1264 bool castIsSigned = false;
1265
1266 // Based on the Opcode for which this Operand is being written, determine
1267 // the new type to which the operand should be casted by setting the value
1268 // of OpTy. If we change OpTy, also set shouldCast to true.
1269 switch (Opcode) {
1270 default:
1271 // for most instructions, it doesn't matter
1272 break;
1273 case Instruction::LShr:
1274 case Instruction::UDiv:
1275 case Instruction::URem: // Cast to unsigned first
1276 shouldCast = true;
1277 castIsSigned = false;
1278 break;
Chris Lattner7ce1ee42007-09-22 20:16:48 +00001279 case Instruction::GetElementPtr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001280 case Instruction::AShr:
1281 case Instruction::SDiv:
1282 case Instruction::SRem: // Cast to signed first
1283 shouldCast = true;
1284 castIsSigned = true;
1285 break;
1286 }
1287
1288 // Write out the casted operand if we should, otherwise just write the
1289 // operand.
1290 if (shouldCast) {
1291 Out << "((";
1292 printSimpleType(Out, OpTy, castIsSigned);
1293 Out << ")";
1294 writeOperand(Operand);
1295 Out << ")";
1296 } else
1297 writeOperand(Operand);
1298}
1299
1300// Write the operand with a cast to another type based on the icmp predicate
1301// being used.
Chris Lattner389c9142007-09-15 06:51:03 +00001302void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
1303 // This has to do a cast to ensure the operand has the right signedness.
1304 // Also, if the operand is a pointer, we make sure to cast to an integer when
1305 // doing the comparison both for signedness and so that the C compiler doesn't
1306 // optimize things like "p < NULL" to false (p may contain an integer value
1307 // f.e.).
1308 bool shouldCast = Cmp.isRelational();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001309
1310 // Write out the casted operand if we should, otherwise just write the
1311 // operand.
Chris Lattner389c9142007-09-15 06:51:03 +00001312 if (!shouldCast) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001313 writeOperand(Operand);
Chris Lattner389c9142007-09-15 06:51:03 +00001314 return;
1315 }
1316
1317 // Should this be a signed comparison? If so, convert to signed.
1318 bool castIsSigned = Cmp.isSignedPredicate();
1319
1320 // If the operand was a pointer, convert to a large integer type.
1321 const Type* OpTy = Operand->getType();
1322 if (isa<PointerType>(OpTy))
1323 OpTy = TD->getIntPtrType();
1324
1325 Out << "((";
1326 printSimpleType(Out, OpTy, castIsSigned);
1327 Out << ")";
1328 writeOperand(Operand);
1329 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001330}
1331
1332// generateCompilerSpecificCode - This is where we add conditional compilation
1333// directives to cater to specific compilers as need be.
1334//
1335static void generateCompilerSpecificCode(std::ostream& Out) {
1336 // Alloca is hard to get, and we don't want to include stdlib.h here.
1337 Out << "/* get a declaration for alloca */\n"
1338 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1339 << "#define alloca(x) __builtin_alloca((x))\n"
1340 << "#define _alloca(x) __builtin_alloca((x))\n"
1341 << "#elif defined(__APPLE__)\n"
1342 << "extern void *__builtin_alloca(unsigned long);\n"
1343 << "#define alloca(x) __builtin_alloca(x)\n"
1344 << "#define longjmp _longjmp\n"
1345 << "#define setjmp _setjmp\n"
1346 << "#elif defined(__sun__)\n"
1347 << "#if defined(__sparcv9)\n"
1348 << "extern void *__builtin_alloca(unsigned long);\n"
1349 << "#else\n"
1350 << "extern void *__builtin_alloca(unsigned int);\n"
1351 << "#endif\n"
1352 << "#define alloca(x) __builtin_alloca(x)\n"
Chris Lattner9bae27b2008-01-12 06:46:09 +00001353 << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001354 << "#define alloca(x) __builtin_alloca(x)\n"
1355 << "#elif defined(_MSC_VER)\n"
1356 << "#define inline _inline\n"
1357 << "#define alloca(x) _alloca(x)\n"
1358 << "#else\n"
1359 << "#include <alloca.h>\n"
1360 << "#endif\n\n";
1361
1362 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1363 // If we aren't being compiled with GCC, just drop these attributes.
1364 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1365 << "#define __attribute__(X)\n"
1366 << "#endif\n\n";
1367
1368 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1369 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1370 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1371 << "#elif defined(__GNUC__)\n"
1372 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1373 << "#else\n"
1374 << "#define __EXTERNAL_WEAK__\n"
1375 << "#endif\n\n";
1376
1377 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1378 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1379 << "#define __ATTRIBUTE_WEAK__\n"
1380 << "#elif defined(__GNUC__)\n"
1381 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1382 << "#else\n"
1383 << "#define __ATTRIBUTE_WEAK__\n"
1384 << "#endif\n\n";
1385
1386 // Add hidden visibility support. FIXME: APPLE_CC?
1387 Out << "#if defined(__GNUC__)\n"
1388 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1389 << "#endif\n\n";
1390
1391 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1392 // From the GCC documentation:
1393 //
1394 // double __builtin_nan (const char *str)
1395 //
1396 // This is an implementation of the ISO C99 function nan.
1397 //
1398 // Since ISO C99 defines this function in terms of strtod, which we do
1399 // not implement, a description of the parsing is in order. The string is
1400 // parsed as by strtol; that is, the base is recognized by leading 0 or
1401 // 0x prefixes. The number parsed is placed in the significand such that
1402 // the least significant bit of the number is at the least significant
1403 // bit of the significand. The number is truncated to fit the significand
1404 // field provided. The significand is forced to be a quiet NaN.
1405 //
1406 // This function, if given a string literal, is evaluated early enough
1407 // that it is considered a compile-time constant.
1408 //
1409 // float __builtin_nanf (const char *str)
1410 //
1411 // Similar to __builtin_nan, except the return type is float.
1412 //
1413 // double __builtin_inf (void)
1414 //
1415 // Similar to __builtin_huge_val, except a warning is generated if the
1416 // target floating-point format does not support infinities. This
1417 // function is suitable for implementing the ISO C99 macro INFINITY.
1418 //
1419 // float __builtin_inff (void)
1420 //
1421 // Similar to __builtin_inf, except the return type is float.
1422 Out << "#ifdef __GNUC__\n"
1423 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1424 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1425 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1426 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1427 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1428 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1429 << "#define LLVM_PREFETCH(addr,rw,locality) "
1430 "__builtin_prefetch(addr,rw,locality)\n"
1431 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1432 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1433 << "#define LLVM_ASM __asm__\n"
1434 << "#else\n"
1435 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1436 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1437 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1438 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1439 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1440 << "#define LLVM_INFF 0.0F /* Float */\n"
1441 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1442 << "#define __ATTRIBUTE_CTOR__\n"
1443 << "#define __ATTRIBUTE_DTOR__\n"
1444 << "#define LLVM_ASM(X)\n"
1445 << "#endif\n\n";
1446
1447 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1448 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1449 << "#define __builtin_stack_restore(X) /* noop */\n"
1450 << "#endif\n\n";
1451
1452 // Output target-specific code that should be inserted into main.
1453 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001454}
1455
1456/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1457/// the StaticTors set.
1458static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
1459 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
1460 if (!InitList) return;
1461
1462 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
1463 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
1464 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
1465
1466 if (CS->getOperand(1)->isNullValue())
1467 return; // Found a null terminator, exit printing.
1468 Constant *FP = CS->getOperand(1);
1469 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
1470 if (CE->isCast())
1471 FP = CE->getOperand(0);
1472 if (Function *F = dyn_cast<Function>(FP))
1473 StaticTors.insert(F);
1474 }
1475}
1476
1477enum SpecialGlobalClass {
1478 NotSpecial = 0,
1479 GlobalCtors, GlobalDtors,
1480 NotPrinted
1481};
1482
1483/// getGlobalVariableClass - If this is a global that is specially recognized
1484/// by LLVM, return a code that indicates how we should handle it.
1485static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
1486 // If this is a global ctors/dtors list, handle it now.
1487 if (GV->hasAppendingLinkage() && GV->use_empty()) {
1488 if (GV->getName() == "llvm.global_ctors")
1489 return GlobalCtors;
1490 else if (GV->getName() == "llvm.global_dtors")
1491 return GlobalDtors;
1492 }
1493
1494 // Otherwise, it it is other metadata, don't print it. This catches things
1495 // like debug information.
1496 if (GV->getSection() == "llvm.metadata")
1497 return NotPrinted;
1498
1499 return NotSpecial;
1500}
1501
1502
1503bool CWriter::doInitialization(Module &M) {
1504 // Initialize
1505 TheModule = &M;
1506
1507 TD = new TargetData(&M);
1508 IL = new IntrinsicLowering(*TD);
1509 IL->AddPrototypes(M);
1510
1511 // Ensure that all structure types have names...
1512 Mang = new Mangler(M);
1513 Mang->markCharUnacceptable('.');
1514
1515 // Keep track of which functions are static ctors/dtors so they can have
1516 // an attribute added to their prototypes.
1517 std::set<Function*> StaticCtors, StaticDtors;
1518 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1519 I != E; ++I) {
1520 switch (getGlobalVariableClass(I)) {
1521 default: break;
1522 case GlobalCtors:
1523 FindStaticTors(I, StaticCtors);
1524 break;
1525 case GlobalDtors:
1526 FindStaticTors(I, StaticDtors);
1527 break;
1528 }
1529 }
1530
1531 // get declaration for alloca
1532 Out << "/* Provide Declarations */\n";
1533 Out << "#include <stdarg.h>\n"; // Varargs support
1534 Out << "#include <setjmp.h>\n"; // Unwind support
1535 generateCompilerSpecificCode(Out);
1536
1537 // Provide a definition for `bool' if not compiling with a C++ compiler.
1538 Out << "\n"
1539 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1540
1541 << "\n\n/* Support for floating point constants */\n"
1542 << "typedef unsigned long long ConstantDoubleTy;\n"
1543 << "typedef unsigned int ConstantFloatTy;\n"
Dale Johannesen137cef62007-09-17 00:38:27 +00001544 << "typedef struct { unsigned long long f1; unsigned short f2; "
1545 "unsigned short pad[3]; } ConstantFP80Ty;\n"
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001546 // This is used for both kinds of 128-bit long double; meaning differs.
Dale Johannesen137cef62007-09-17 00:38:27 +00001547 << "typedef struct { unsigned long long f1; unsigned long long f2; }"
1548 " ConstantFP128Ty;\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001549 << "\n\n/* Global Declarations */\n";
1550
1551 // First output all the declarations for the program, because C requires
1552 // Functions & globals to be declared before they are used.
1553 //
1554
1555 // Loop over the symbol table, emitting all named constants...
1556 printModuleTypes(M.getTypeSymbolTable());
1557
1558 // Global variable declarations...
1559 if (!M.global_empty()) {
1560 Out << "\n/* External Global Variable Declarations */\n";
1561 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1562 I != E; ++I) {
1563
1564 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage())
1565 Out << "extern ";
1566 else if (I->hasDLLImportLinkage())
1567 Out << "__declspec(dllimport) ";
1568 else
1569 continue; // Internal Global
1570
1571 // Thread Local Storage
1572 if (I->isThreadLocal())
1573 Out << "__thread ";
1574
1575 printType(Out, I->getType()->getElementType(), false, GetValueName(I));
1576
1577 if (I->hasExternalWeakLinkage())
1578 Out << " __EXTERNAL_WEAK__";
1579 Out << ";\n";
1580 }
1581 }
1582
1583 // Function declarations
1584 Out << "\n/* Function Declarations */\n";
1585 Out << "double fmod(double, double);\n"; // Support for FP rem
1586 Out << "float fmodf(float, float);\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001587 Out << "long double fmodl(long double, long double);\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001588
1589 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1590 // Don't print declarations for intrinsic functions.
Duncan Sands79d28872007-12-03 20:06:50 +00001591 if (!I->isIntrinsic() && I->getName() != "setjmp" &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001592 I->getName() != "longjmp" && I->getName() != "_setjmp") {
1593 if (I->hasExternalWeakLinkage())
1594 Out << "extern ";
1595 printFunctionSignature(I, true);
1596 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
1597 Out << " __ATTRIBUTE_WEAK__";
1598 if (I->hasExternalWeakLinkage())
1599 Out << " __EXTERNAL_WEAK__";
1600 if (StaticCtors.count(I))
1601 Out << " __ATTRIBUTE_CTOR__";
1602 if (StaticDtors.count(I))
1603 Out << " __ATTRIBUTE_DTOR__";
1604 if (I->hasHiddenVisibility())
1605 Out << " __HIDDEN__";
1606
1607 if (I->hasName() && I->getName()[0] == 1)
1608 Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
1609
1610 Out << ";\n";
1611 }
1612 }
1613
1614 // Output the global variable declarations
1615 if (!M.global_empty()) {
1616 Out << "\n\n/* Global Variable Declarations */\n";
1617 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1618 I != E; ++I)
1619 if (!I->isDeclaration()) {
1620 // Ignore special globals, such as debug info.
1621 if (getGlobalVariableClass(I))
1622 continue;
1623
1624 if (I->hasInternalLinkage())
1625 Out << "static ";
1626 else
1627 Out << "extern ";
1628
1629 // Thread Local Storage
1630 if (I->isThreadLocal())
1631 Out << "__thread ";
1632
1633 printType(Out, I->getType()->getElementType(), false,
1634 GetValueName(I));
1635
1636 if (I->hasLinkOnceLinkage())
1637 Out << " __attribute__((common))";
1638 else if (I->hasWeakLinkage())
1639 Out << " __ATTRIBUTE_WEAK__";
1640 else if (I->hasExternalWeakLinkage())
1641 Out << " __EXTERNAL_WEAK__";
1642 if (I->hasHiddenVisibility())
1643 Out << " __HIDDEN__";
1644 Out << ";\n";
1645 }
1646 }
1647
1648 // Output the global variable definitions and contents...
1649 if (!M.global_empty()) {
1650 Out << "\n\n/* Global Variable Definitions and Initialization */\n";
1651 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1652 I != E; ++I)
1653 if (!I->isDeclaration()) {
1654 // Ignore special globals, such as debug info.
1655 if (getGlobalVariableClass(I))
1656 continue;
1657
1658 if (I->hasInternalLinkage())
1659 Out << "static ";
1660 else if (I->hasDLLImportLinkage())
1661 Out << "__declspec(dllimport) ";
1662 else if (I->hasDLLExportLinkage())
1663 Out << "__declspec(dllexport) ";
1664
1665 // Thread Local Storage
1666 if (I->isThreadLocal())
1667 Out << "__thread ";
1668
1669 printType(Out, I->getType()->getElementType(), false,
1670 GetValueName(I));
1671 if (I->hasLinkOnceLinkage())
1672 Out << " __attribute__((common))";
1673 else if (I->hasWeakLinkage())
1674 Out << " __ATTRIBUTE_WEAK__";
1675
1676 if (I->hasHiddenVisibility())
1677 Out << " __HIDDEN__";
1678
1679 // If the initializer is not null, emit the initializer. If it is null,
1680 // we try to avoid emitting large amounts of zeros. The problem with
1681 // this, however, occurs when the variable has weak linkage. In this
1682 // case, the assembler will complain about the variable being both weak
1683 // and common, so we disable this optimization.
1684 if (!I->getInitializer()->isNullValue()) {
1685 Out << " = " ;
1686 writeOperand(I->getInitializer());
1687 } else if (I->hasWeakLinkage()) {
1688 // We have to specify an initializer, but it doesn't have to be
1689 // complete. If the value is an aggregate, print out { 0 }, and let
1690 // the compiler figure out the rest of the zeros.
1691 Out << " = " ;
1692 if (isa<StructType>(I->getInitializer()->getType()) ||
1693 isa<ArrayType>(I->getInitializer()->getType()) ||
1694 isa<VectorType>(I->getInitializer()->getType())) {
1695 Out << "{ 0 }";
1696 } else {
1697 // Just print it out normally.
1698 writeOperand(I->getInitializer());
1699 }
1700 }
1701 Out << ";\n";
1702 }
1703 }
1704
1705 if (!M.empty())
1706 Out << "\n\n/* Function Bodies */\n";
1707
1708 // Emit some helper functions for dealing with FCMP instruction's
1709 // predicates
1710 Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
1711 Out << "return X == X && Y == Y; }\n";
1712 Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
1713 Out << "return X != X || Y != Y; }\n";
1714 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
1715 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
1716 Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
1717 Out << "return X != Y; }\n";
1718 Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
1719 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
1720 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
1721 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
1722 Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
1723 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
1724 Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
1725 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
1726 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
1727 Out << "return X == Y ; }\n";
1728 Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
1729 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
1730 Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
1731 Out << "return X < Y ; }\n";
1732 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
1733 Out << "return X > Y ; }\n";
1734 Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
1735 Out << "return X <= Y ; }\n";
1736 Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
1737 Out << "return X >= Y ; }\n";
1738 return false;
1739}
1740
1741
1742/// Output all floating point constants that cannot be printed accurately...
1743void CWriter::printFloatingPointConstants(Function &F) {
1744 // Scan the module for floating point constants. If any FP constant is used
1745 // in the function, we want to redirect it here so that we do not depend on
1746 // the precision of the printed form, unless the printed form preserves
1747 // precision.
1748 //
1749 static unsigned FPCounter = 0;
1750 for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
1751 I != E; ++I)
1752 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
1753 if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
1754 !FPConstantMap.count(FPC)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001755 FPConstantMap[FPC] = FPCounter; // Number the FP constants
1756
1757 if (FPC->getType() == Type::DoubleTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001758 double Val = FPC->getValueAPF().convertToDouble();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001759 uint64_t i = FPC->getValueAPF().convertToAPInt().getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001760 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001761 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001762 << "ULL; /* " << Val << " */\n";
1763 } else if (FPC->getType() == Type::FloatTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001764 float Val = FPC->getValueAPF().convertToFloat();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001765 uint32_t i = (uint32_t)FPC->getValueAPF().convertToAPInt().
1766 getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001767 Out << "static const ConstantFloatTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001768 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001769 << "U; /* " << Val << " */\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001770 } else if (FPC->getType() == Type::X86_FP80Ty) {
Dale Johannesen693aa822007-09-26 23:20:33 +00001771 // api needed to prevent premature destruction
1772 APInt api = FPC->getValueAPF().convertToAPInt();
1773 const uint64_t *p = api.getRawData();
Dale Johannesen137cef62007-09-17 00:38:27 +00001774 Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
1775 << " = { 0x" << std::hex
1776 << ((uint16_t)p[1] | (p[0] & 0xffffffffffffLL)<<16)
1777 << ", 0x" << (uint16_t)(p[0] >> 48) << ",0,0,0"
1778 << "}; /* Long double constant */\n" << std::dec;
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001779 } else if (FPC->getType() == Type::PPC_FP128Ty) {
1780 APInt api = FPC->getValueAPF().convertToAPInt();
1781 const uint64_t *p = api.getRawData();
1782 Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
1783 << " = { 0x" << std::hex
1784 << p[0] << ", 0x" << p[1]
1785 << "}; /* Long double constant */\n" << std::dec;
1786
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001787 } else
1788 assert(0 && "Unknown float type!");
1789 }
1790
1791 Out << '\n';
1792}
1793
1794
1795/// printSymbolTable - Run through symbol table looking for type names. If a
1796/// type name is found, emit its declaration...
1797///
1798void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
1799 Out << "/* Helper union for bitcasts */\n";
1800 Out << "typedef union {\n";
1801 Out << " unsigned int Int32;\n";
1802 Out << " unsigned long long Int64;\n";
1803 Out << " float Float;\n";
1804 Out << " double Double;\n";
1805 Out << "} llvmBitCastUnion;\n";
1806
1807 // We are only interested in the type plane of the symbol table.
1808 TypeSymbolTable::const_iterator I = TST.begin();
1809 TypeSymbolTable::const_iterator End = TST.end();
1810
1811 // If there are no type names, exit early.
1812 if (I == End) return;
1813
1814 // Print out forward declarations for structure types before anything else!
1815 Out << "/* Structure forward decls */\n";
1816 for (; I != End; ++I) {
1817 std::string Name = "struct l_" + Mang->makeNameProper(I->first);
1818 Out << Name << ";\n";
1819 TypeNames.insert(std::make_pair(I->second, Name));
1820 }
1821
1822 Out << '\n';
1823
1824 // Now we can print out typedefs. Above, we guaranteed that this can only be
1825 // for struct or opaque types.
1826 Out << "/* Typedefs */\n";
1827 for (I = TST.begin(); I != End; ++I) {
1828 std::string Name = "l_" + Mang->makeNameProper(I->first);
1829 Out << "typedef ";
1830 printType(Out, I->second, false, Name);
1831 Out << ";\n";
1832 }
1833
1834 Out << '\n';
1835
1836 // Keep track of which structures have been printed so far...
1837 std::set<const StructType *> StructPrinted;
1838
1839 // Loop over all structures then push them into the stack so they are
1840 // printed in the correct order.
1841 //
1842 Out << "/* Structure contents */\n";
1843 for (I = TST.begin(); I != End; ++I)
1844 if (const StructType *STy = dyn_cast<StructType>(I->second))
1845 // Only print out used types!
1846 printContainedStructs(STy, StructPrinted);
1847}
1848
1849// Push the struct onto the stack and recursively push all structs
1850// this one depends on.
1851//
1852// TODO: Make this work properly with vector types
1853//
1854void CWriter::printContainedStructs(const Type *Ty,
1855 std::set<const StructType*> &StructPrinted){
1856 // Don't walk through pointers.
1857 if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
1858
1859 // Print all contained types first.
1860 for (Type::subtype_iterator I = Ty->subtype_begin(),
1861 E = Ty->subtype_end(); I != E; ++I)
1862 printContainedStructs(*I, StructPrinted);
1863
1864 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1865 // Check to see if we have already printed this struct.
1866 if (StructPrinted.insert(STy).second) {
1867 // Print structure type out.
1868 std::string Name = TypeNames[STy];
1869 printType(Out, STy, false, Name, true);
1870 Out << ";\n\n";
1871 }
1872 }
1873}
1874
1875void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
1876 /// isStructReturn - Should this function actually return a struct by-value?
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001877 bool isStructReturn = F->isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001878
1879 if (F->hasInternalLinkage()) Out << "static ";
1880 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
1881 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
1882 switch (F->getCallingConv()) {
1883 case CallingConv::X86_StdCall:
1884 Out << "__stdcall ";
1885 break;
1886 case CallingConv::X86_FastCall:
1887 Out << "__fastcall ";
1888 break;
1889 }
1890
1891 // Loop over the arguments, printing them...
1892 const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001893 const ParamAttrsList *PAL = F->getParamAttrs();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001894
1895 std::stringstream FunctionInnards;
1896
1897 // Print out the name...
1898 FunctionInnards << GetValueName(F) << '(';
1899
1900 bool PrintedArg = false;
1901 if (!F->isDeclaration()) {
1902 if (!F->arg_empty()) {
1903 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
Evan Cheng2054cb02008-01-11 03:07:46 +00001904 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001905
1906 // If this is a struct-return function, don't print the hidden
1907 // struct-return argument.
1908 if (isStructReturn) {
1909 assert(I != E && "Invalid struct return function!");
1910 ++I;
Evan Cheng2054cb02008-01-11 03:07:46 +00001911 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001912 }
1913
1914 std::string ArgName;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001915 for (; I != E; ++I) {
1916 if (PrintedArg) FunctionInnards << ", ";
1917 if (I->hasName() || !Prototype)
1918 ArgName = GetValueName(I);
1919 else
1920 ArgName = "";
Evan Cheng2054cb02008-01-11 03:07:46 +00001921 const Type *ArgTy = I->getType();
Evan Cheng17254e62008-01-11 09:12:49 +00001922 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
1923 assert(isa<PointerType>(ArgTy));
1924 ArgTy = cast<PointerType>(ArgTy)->getElementType();
1925 const Value *Arg = &(*I);
1926 ByValParams.insert(Arg);
1927 }
Evan Cheng2054cb02008-01-11 03:07:46 +00001928 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001929 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001930 ArgName);
1931 PrintedArg = true;
1932 ++Idx;
1933 }
1934 }
1935 } else {
1936 // Loop over the arguments, printing them.
1937 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
Evan Chengf8956382008-01-11 23:10:11 +00001938 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001939
1940 // If this is a struct-return function, don't print the hidden
1941 // struct-return argument.
1942 if (isStructReturn) {
1943 assert(I != E && "Invalid struct return function!");
1944 ++I;
Evan Chengf8956382008-01-11 23:10:11 +00001945 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001946 }
1947
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001948 for (; I != E; ++I) {
1949 if (PrintedArg) FunctionInnards << ", ";
Evan Chengf8956382008-01-11 23:10:11 +00001950 const Type *ArgTy = *I;
1951 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
1952 assert(isa<PointerType>(ArgTy));
1953 ArgTy = cast<PointerType>(ArgTy)->getElementType();
1954 }
1955 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001956 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001957 PrintedArg = true;
1958 ++Idx;
1959 }
1960 }
1961
1962 // Finish printing arguments... if this is a vararg function, print the ...,
1963 // unless there are no known types, in which case, we just emit ().
1964 //
1965 if (FT->isVarArg() && PrintedArg) {
1966 if (PrintedArg) FunctionInnards << ", ";
1967 FunctionInnards << "..."; // Output varargs portion of signature!
1968 } else if (!FT->isVarArg() && !PrintedArg) {
1969 FunctionInnards << "void"; // ret() -> ret(void) in C.
1970 }
1971 FunctionInnards << ')';
1972
1973 // Get the return tpe for the function.
1974 const Type *RetTy;
1975 if (!isStructReturn)
1976 RetTy = F->getReturnType();
1977 else {
1978 // If this is a struct-return function, print the struct-return type.
1979 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
1980 }
1981
1982 // Print out the return type and the signature built above.
1983 printType(Out, RetTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001984 /*isSigned=*/ PAL && PAL->paramHasAttr(0, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001985 FunctionInnards.str());
1986}
1987
1988static inline bool isFPIntBitCast(const Instruction &I) {
1989 if (!isa<BitCastInst>(I))
1990 return false;
1991 const Type *SrcTy = I.getOperand(0)->getType();
1992 const Type *DstTy = I.getType();
1993 return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
1994 (DstTy->isFloatingPoint() && SrcTy->isInteger());
1995}
1996
1997void CWriter::printFunction(Function &F) {
1998 /// isStructReturn - Should this function actually return a struct by-value?
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001999 bool isStructReturn = F.isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002000
2001 printFunctionSignature(&F, false);
2002 Out << " {\n";
2003
2004 // If this is a struct return function, handle the result with magic.
2005 if (isStructReturn) {
2006 const Type *StructTy =
2007 cast<PointerType>(F.arg_begin()->getType())->getElementType();
2008 Out << " ";
2009 printType(Out, StructTy, false, "StructReturn");
2010 Out << "; /* Struct return temporary */\n";
2011
2012 Out << " ";
2013 printType(Out, F.arg_begin()->getType(), false,
2014 GetValueName(F.arg_begin()));
2015 Out << " = &StructReturn;\n";
2016 }
2017
2018 bool PrintedVar = false;
2019
2020 // print local variable information for the function
2021 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
2022 if (const AllocaInst *AI = isDirectAlloca(&*I)) {
2023 Out << " ";
2024 printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
2025 Out << "; /* Address-exposed local */\n";
2026 PrintedVar = true;
2027 } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
2028 Out << " ";
2029 printType(Out, I->getType(), false, GetValueName(&*I));
2030 Out << ";\n";
2031
2032 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
2033 Out << " ";
2034 printType(Out, I->getType(), false,
2035 GetValueName(&*I)+"__PHI_TEMPORARY");
2036 Out << ";\n";
2037 }
2038 PrintedVar = true;
2039 }
2040 // We need a temporary for the BitCast to use so it can pluck a value out
2041 // of a union to do the BitCast. This is separate from the need for a
2042 // variable to hold the result of the BitCast.
2043 if (isFPIntBitCast(*I)) {
2044 Out << " llvmBitCastUnion " << GetValueName(&*I)
2045 << "__BITCAST_TEMPORARY;\n";
2046 PrintedVar = true;
2047 }
2048 }
2049
2050 if (PrintedVar)
2051 Out << '\n';
2052
2053 if (F.hasExternalLinkage() && F.getName() == "main")
2054 Out << " CODE_FOR_MAIN();\n";
2055
2056 // print the basic blocks
2057 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2058 if (Loop *L = LI->getLoopFor(BB)) {
2059 if (L->getHeader() == BB && L->getParentLoop() == 0)
2060 printLoop(L);
2061 } else {
2062 printBasicBlock(BB);
2063 }
2064 }
2065
2066 Out << "}\n\n";
2067}
2068
2069void CWriter::printLoop(Loop *L) {
2070 Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
2071 << "' to make GCC happy */\n";
2072 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
2073 BasicBlock *BB = L->getBlocks()[i];
2074 Loop *BBLoop = LI->getLoopFor(BB);
2075 if (BBLoop == L)
2076 printBasicBlock(BB);
2077 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
2078 printLoop(BBLoop);
2079 }
2080 Out << " } while (1); /* end of syntactic loop '"
2081 << L->getHeader()->getName() << "' */\n";
2082}
2083
2084void CWriter::printBasicBlock(BasicBlock *BB) {
2085
2086 // Don't print the label for the basic block if there are no uses, or if
2087 // the only terminator use is the predecessor basic block's terminator.
2088 // We have to scan the use list because PHI nodes use basic blocks too but
2089 // do not require a label to be generated.
2090 //
2091 bool NeedsLabel = false;
2092 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2093 if (isGotoCodeNecessary(*PI, BB)) {
2094 NeedsLabel = true;
2095 break;
2096 }
2097
2098 if (NeedsLabel) Out << GetValueName(BB) << ":\n";
2099
2100 // Output all of the instructions in the basic block...
2101 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
2102 ++II) {
2103 if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
2104 if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
2105 outputLValue(II);
2106 else
2107 Out << " ";
2108 visit(*II);
2109 Out << ";\n";
2110 }
2111 }
2112
2113 // Don't emit prefix or suffix for the terminator...
2114 visit(*BB->getTerminator());
2115}
2116
2117
2118// Specific Instruction type classes... note that all of the casts are
2119// necessary because we use the instruction classes as opaque types...
2120//
2121void CWriter::visitReturnInst(ReturnInst &I) {
2122 // If this is a struct return function, return the temporary struct.
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002123 bool isStructReturn = I.getParent()->getParent()->isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002124
2125 if (isStructReturn) {
2126 Out << " return StructReturn;\n";
2127 return;
2128 }
2129
2130 // Don't output a void return if this is the last basic block in the function
2131 if (I.getNumOperands() == 0 &&
2132 &*--I.getParent()->getParent()->end() == I.getParent() &&
2133 !I.getParent()->size() == 1) {
2134 return;
2135 }
2136
2137 Out << " return";
2138 if (I.getNumOperands()) {
2139 Out << ' ';
2140 writeOperand(I.getOperand(0));
2141 }
2142 Out << ";\n";
2143}
2144
2145void CWriter::visitSwitchInst(SwitchInst &SI) {
2146
2147 Out << " switch (";
2148 writeOperand(SI.getOperand(0));
2149 Out << ") {\n default:\n";
2150 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
2151 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
2152 Out << ";\n";
2153 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
2154 Out << " case ";
2155 writeOperand(SI.getOperand(i));
2156 Out << ":\n";
2157 BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
2158 printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
2159 printBranchToBlock(SI.getParent(), Succ, 2);
2160 if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
2161 Out << " break;\n";
2162 }
2163 Out << " }\n";
2164}
2165
2166void CWriter::visitUnreachableInst(UnreachableInst &I) {
2167 Out << " /*UNREACHABLE*/;\n";
2168}
2169
2170bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
2171 /// FIXME: This should be reenabled, but loop reordering safe!!
2172 return true;
2173
2174 if (next(Function::iterator(From)) != Function::iterator(To))
2175 return true; // Not the direct successor, we need a goto.
2176
2177 //isa<SwitchInst>(From->getTerminator())
2178
2179 if (LI->getLoopFor(From) != LI->getLoopFor(To))
2180 return true;
2181 return false;
2182}
2183
2184void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
2185 BasicBlock *Successor,
2186 unsigned Indent) {
2187 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
2188 PHINode *PN = cast<PHINode>(I);
2189 // Now we have to do the printing.
2190 Value *IV = PN->getIncomingValueForBlock(CurBlock);
2191 if (!isa<UndefValue>(IV)) {
2192 Out << std::string(Indent, ' ');
2193 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
2194 writeOperand(IV);
2195 Out << "; /* for PHI node */\n";
2196 }
2197 }
2198}
2199
2200void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
2201 unsigned Indent) {
2202 if (isGotoCodeNecessary(CurBB, Succ)) {
2203 Out << std::string(Indent, ' ') << " goto ";
2204 writeOperand(Succ);
2205 Out << ";\n";
2206 }
2207}
2208
2209// Branch instruction printing - Avoid printing out a branch to a basic block
2210// that immediately succeeds the current one.
2211//
2212void CWriter::visitBranchInst(BranchInst &I) {
2213
2214 if (I.isConditional()) {
2215 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
2216 Out << " if (";
2217 writeOperand(I.getCondition());
2218 Out << ") {\n";
2219
2220 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
2221 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
2222
2223 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
2224 Out << " } else {\n";
2225 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2226 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2227 }
2228 } else {
2229 // First goto not necessary, assume second one is...
2230 Out << " if (!";
2231 writeOperand(I.getCondition());
2232 Out << ") {\n";
2233
2234 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2235 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2236 }
2237
2238 Out << " }\n";
2239 } else {
2240 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
2241 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
2242 }
2243 Out << "\n";
2244}
2245
2246// PHI nodes get copied into temporary values at the end of predecessor basic
2247// blocks. We now need to copy these temporary values into the REAL value for
2248// the PHI.
2249void CWriter::visitPHINode(PHINode &I) {
2250 writeOperand(&I);
2251 Out << "__PHI_TEMPORARY";
2252}
2253
2254
2255void CWriter::visitBinaryOperator(Instruction &I) {
2256 // binary instructions, shift instructions, setCond instructions.
2257 assert(!isa<PointerType>(I.getType()));
2258
2259 // We must cast the results of binary operations which might be promoted.
2260 bool needsCast = false;
2261 if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
2262 || (I.getType() == Type::FloatTy)) {
2263 needsCast = true;
2264 Out << "((";
2265 printType(Out, I.getType(), false);
2266 Out << ")(";
2267 }
2268
2269 // If this is a negation operation, print it out as such. For FP, we don't
2270 // want to print "-0.0 - X".
2271 if (BinaryOperator::isNeg(&I)) {
2272 Out << "-(";
2273 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
2274 Out << ")";
2275 } else if (I.getOpcode() == Instruction::FRem) {
2276 // Output a call to fmod/fmodf instead of emitting a%b
2277 if (I.getType() == Type::FloatTy)
2278 Out << "fmodf(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002279 else if (I.getType() == Type::DoubleTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002280 Out << "fmod(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002281 else // all 3 flavors of long double
2282 Out << "fmodl(";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002283 writeOperand(I.getOperand(0));
2284 Out << ", ";
2285 writeOperand(I.getOperand(1));
2286 Out << ")";
2287 } else {
2288
2289 // Write out the cast of the instruction's value back to the proper type
2290 // if necessary.
2291 bool NeedsClosingParens = writeInstructionCast(I);
2292
2293 // Certain instructions require the operand to be forced to a specific type
2294 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2295 // below for operand 1
2296 writeOperandWithCast(I.getOperand(0), I.getOpcode());
2297
2298 switch (I.getOpcode()) {
2299 case Instruction::Add: Out << " + "; break;
2300 case Instruction::Sub: Out << " - "; break;
2301 case Instruction::Mul: Out << " * "; break;
2302 case Instruction::URem:
2303 case Instruction::SRem:
2304 case Instruction::FRem: Out << " % "; break;
2305 case Instruction::UDiv:
2306 case Instruction::SDiv:
2307 case Instruction::FDiv: Out << " / "; break;
2308 case Instruction::And: Out << " & "; break;
2309 case Instruction::Or: Out << " | "; break;
2310 case Instruction::Xor: Out << " ^ "; break;
2311 case Instruction::Shl : Out << " << "; break;
2312 case Instruction::LShr:
2313 case Instruction::AShr: Out << " >> "; break;
2314 default: cerr << "Invalid operator type!" << I; abort();
2315 }
2316
2317 writeOperandWithCast(I.getOperand(1), I.getOpcode());
2318 if (NeedsClosingParens)
2319 Out << "))";
2320 }
2321
2322 if (needsCast) {
2323 Out << "))";
2324 }
2325}
2326
2327void CWriter::visitICmpInst(ICmpInst &I) {
2328 // We must cast the results of icmp which might be promoted.
2329 bool needsCast = false;
2330
2331 // Write out the cast of the instruction's value back to the proper type
2332 // if necessary.
2333 bool NeedsClosingParens = writeInstructionCast(I);
2334
2335 // Certain icmp predicate require the operand to be forced to a specific type
2336 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2337 // below for operand 1
Chris Lattner389c9142007-09-15 06:51:03 +00002338 writeOperandWithCast(I.getOperand(0), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002339
2340 switch (I.getPredicate()) {
2341 case ICmpInst::ICMP_EQ: Out << " == "; break;
2342 case ICmpInst::ICMP_NE: Out << " != "; break;
2343 case ICmpInst::ICMP_ULE:
2344 case ICmpInst::ICMP_SLE: Out << " <= "; break;
2345 case ICmpInst::ICMP_UGE:
2346 case ICmpInst::ICMP_SGE: Out << " >= "; break;
2347 case ICmpInst::ICMP_ULT:
2348 case ICmpInst::ICMP_SLT: Out << " < "; break;
2349 case ICmpInst::ICMP_UGT:
2350 case ICmpInst::ICMP_SGT: Out << " > "; break;
2351 default: cerr << "Invalid icmp predicate!" << I; abort();
2352 }
2353
Chris Lattner389c9142007-09-15 06:51:03 +00002354 writeOperandWithCast(I.getOperand(1), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002355 if (NeedsClosingParens)
2356 Out << "))";
2357
2358 if (needsCast) {
2359 Out << "))";
2360 }
2361}
2362
2363void CWriter::visitFCmpInst(FCmpInst &I) {
2364 if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
2365 Out << "0";
2366 return;
2367 }
2368 if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
2369 Out << "1";
2370 return;
2371 }
2372
2373 const char* op = 0;
2374 switch (I.getPredicate()) {
2375 default: assert(0 && "Illegal FCmp predicate");
2376 case FCmpInst::FCMP_ORD: op = "ord"; break;
2377 case FCmpInst::FCMP_UNO: op = "uno"; break;
2378 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
2379 case FCmpInst::FCMP_UNE: op = "une"; break;
2380 case FCmpInst::FCMP_ULT: op = "ult"; break;
2381 case FCmpInst::FCMP_ULE: op = "ule"; break;
2382 case FCmpInst::FCMP_UGT: op = "ugt"; break;
2383 case FCmpInst::FCMP_UGE: op = "uge"; break;
2384 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
2385 case FCmpInst::FCMP_ONE: op = "one"; break;
2386 case FCmpInst::FCMP_OLT: op = "olt"; break;
2387 case FCmpInst::FCMP_OLE: op = "ole"; break;
2388 case FCmpInst::FCMP_OGT: op = "ogt"; break;
2389 case FCmpInst::FCMP_OGE: op = "oge"; break;
2390 }
2391
2392 Out << "llvm_fcmp_" << op << "(";
2393 // Write the first operand
2394 writeOperand(I.getOperand(0));
2395 Out << ", ";
2396 // Write the second operand
2397 writeOperand(I.getOperand(1));
2398 Out << ")";
2399}
2400
2401static const char * getFloatBitCastField(const Type *Ty) {
2402 switch (Ty->getTypeID()) {
2403 default: assert(0 && "Invalid Type");
2404 case Type::FloatTyID: return "Float";
2405 case Type::DoubleTyID: return "Double";
2406 case Type::IntegerTyID: {
2407 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
2408 if (NumBits <= 32)
2409 return "Int32";
2410 else
2411 return "Int64";
2412 }
2413 }
2414}
2415
2416void CWriter::visitCastInst(CastInst &I) {
2417 const Type *DstTy = I.getType();
2418 const Type *SrcTy = I.getOperand(0)->getType();
2419 Out << '(';
2420 if (isFPIntBitCast(I)) {
2421 // These int<->float and long<->double casts need to be handled specially
2422 Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
2423 << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
2424 writeOperand(I.getOperand(0));
2425 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
2426 << getFloatBitCastField(I.getType());
2427 } else {
2428 printCast(I.getOpcode(), SrcTy, DstTy);
2429 if (I.getOpcode() == Instruction::SExt && SrcTy == Type::Int1Ty) {
2430 // Make sure we really get a sext from bool by subtracing the bool from 0
2431 Out << "0-";
2432 }
Evan Cheng17254e62008-01-11 09:12:49 +00002433 // If it's a byval parameter being casted, then takes its address.
2434 bool isByVal = ByValParams.count(I.getOperand(0));
2435 if (isByVal) {
2436 assert(I.getOpcode() == Instruction::BitCast &&
2437 "ByVal aggregate parameter must ptr type");
2438 Out << '&';
2439 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002440 writeOperand(I.getOperand(0));
2441 if (DstTy == Type::Int1Ty &&
2442 (I.getOpcode() == Instruction::Trunc ||
2443 I.getOpcode() == Instruction::FPToUI ||
2444 I.getOpcode() == Instruction::FPToSI ||
2445 I.getOpcode() == Instruction::PtrToInt)) {
2446 // Make sure we really get a trunc to bool by anding the operand with 1
2447 Out << "&1u";
2448 }
2449 }
2450 Out << ')';
2451}
2452
2453void CWriter::visitSelectInst(SelectInst &I) {
2454 Out << "((";
2455 writeOperand(I.getCondition());
2456 Out << ") ? (";
2457 writeOperand(I.getTrueValue());
2458 Out << ") : (";
2459 writeOperand(I.getFalseValue());
2460 Out << "))";
2461}
2462
2463
2464void CWriter::lowerIntrinsics(Function &F) {
2465 // This is used to keep track of intrinsics that get generated to a lowered
2466 // function. We must generate the prototypes before the function body which
2467 // will only be expanded on first use (by the loop below).
2468 std::vector<Function*> prototypesToGen;
2469
2470 // Examine all the instructions in this function to find the intrinsics that
2471 // need to be lowered.
2472 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
2473 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
2474 if (CallInst *CI = dyn_cast<CallInst>(I++))
2475 if (Function *F = CI->getCalledFunction())
2476 switch (F->getIntrinsicID()) {
2477 case Intrinsic::not_intrinsic:
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002478 case Intrinsic::memory_barrier:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002479 case Intrinsic::vastart:
2480 case Intrinsic::vacopy:
2481 case Intrinsic::vaend:
2482 case Intrinsic::returnaddress:
2483 case Intrinsic::frameaddress:
2484 case Intrinsic::setjmp:
2485 case Intrinsic::longjmp:
2486 case Intrinsic::prefetch:
2487 case Intrinsic::dbg_stoppoint:
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002488 case Intrinsic::powi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002489 // We directly implement these intrinsics
2490 break;
2491 default:
2492 // If this is an intrinsic that directly corresponds to a GCC
2493 // builtin, we handle it.
2494 const char *BuiltinName = "";
2495#define GET_GCC_BUILTIN_NAME
2496#include "llvm/Intrinsics.gen"
2497#undef GET_GCC_BUILTIN_NAME
2498 // If we handle it, don't lower it.
2499 if (BuiltinName[0]) break;
2500
2501 // All other intrinsic calls we must lower.
2502 Instruction *Before = 0;
2503 if (CI != &BB->front())
2504 Before = prior(BasicBlock::iterator(CI));
2505
2506 IL->LowerIntrinsicCall(CI);
2507 if (Before) { // Move iterator to instruction after call
2508 I = Before; ++I;
2509 } else {
2510 I = BB->begin();
2511 }
2512 // If the intrinsic got lowered to another call, and that call has
2513 // a definition then we need to make sure its prototype is emitted
2514 // before any calls to it.
2515 if (CallInst *Call = dyn_cast<CallInst>(I))
2516 if (Function *NewF = Call->getCalledFunction())
2517 if (!NewF->isDeclaration())
2518 prototypesToGen.push_back(NewF);
2519
2520 break;
2521 }
2522
2523 // We may have collected some prototypes to emit in the loop above.
2524 // Emit them now, before the function that uses them is emitted. But,
2525 // be careful not to emit them twice.
2526 std::vector<Function*>::iterator I = prototypesToGen.begin();
2527 std::vector<Function*>::iterator E = prototypesToGen.end();
2528 for ( ; I != E; ++I) {
2529 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
2530 Out << '\n';
2531 printFunctionSignature(*I, true);
2532 Out << ";\n";
2533 }
2534 }
2535}
2536
2537
2538void CWriter::visitCallInst(CallInst &I) {
2539 //check if we have inline asm
2540 if (isInlineAsm(I)) {
2541 visitInlineAsm(I);
2542 return;
2543 }
2544
2545 bool WroteCallee = false;
2546
2547 // Handle intrinsic function calls first...
2548 if (Function *F = I.getCalledFunction())
2549 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
2550 switch (ID) {
2551 default: {
2552 // If this is an intrinsic that directly corresponds to a GCC
2553 // builtin, we emit it here.
2554 const char *BuiltinName = "";
2555#define GET_GCC_BUILTIN_NAME
2556#include "llvm/Intrinsics.gen"
2557#undef GET_GCC_BUILTIN_NAME
2558 assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
2559
2560 Out << BuiltinName;
2561 WroteCallee = true;
2562 break;
2563 }
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002564 case Intrinsic::memory_barrier:
2565 Out << "0; __sync_syncronize()";
2566 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002567 case Intrinsic::vastart:
2568 Out << "0; ";
2569
2570 Out << "va_start(*(va_list*)";
2571 writeOperand(I.getOperand(1));
2572 Out << ", ";
2573 // Output the last argument to the enclosing function...
2574 if (I.getParent()->getParent()->arg_empty()) {
2575 cerr << "The C backend does not currently support zero "
2576 << "argument varargs functions, such as '"
2577 << I.getParent()->getParent()->getName() << "'!\n";
2578 abort();
2579 }
2580 writeOperand(--I.getParent()->getParent()->arg_end());
2581 Out << ')';
2582 return;
2583 case Intrinsic::vaend:
2584 if (!isa<ConstantPointerNull>(I.getOperand(1))) {
2585 Out << "0; va_end(*(va_list*)";
2586 writeOperand(I.getOperand(1));
2587 Out << ')';
2588 } else {
2589 Out << "va_end(*(va_list*)0)";
2590 }
2591 return;
2592 case Intrinsic::vacopy:
2593 Out << "0; ";
2594 Out << "va_copy(*(va_list*)";
2595 writeOperand(I.getOperand(1));
2596 Out << ", *(va_list*)";
2597 writeOperand(I.getOperand(2));
2598 Out << ')';
2599 return;
2600 case Intrinsic::returnaddress:
2601 Out << "__builtin_return_address(";
2602 writeOperand(I.getOperand(1));
2603 Out << ')';
2604 return;
2605 case Intrinsic::frameaddress:
2606 Out << "__builtin_frame_address(";
2607 writeOperand(I.getOperand(1));
2608 Out << ')';
2609 return;
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002610 case Intrinsic::powi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002611 Out << "__builtin_powi(";
2612 writeOperand(I.getOperand(1));
2613 Out << ", ";
2614 writeOperand(I.getOperand(2));
2615 Out << ')';
2616 return;
2617 case Intrinsic::setjmp:
2618 Out << "setjmp(*(jmp_buf*)";
2619 writeOperand(I.getOperand(1));
2620 Out << ')';
2621 return;
2622 case Intrinsic::longjmp:
2623 Out << "longjmp(*(jmp_buf*)";
2624 writeOperand(I.getOperand(1));
2625 Out << ", ";
2626 writeOperand(I.getOperand(2));
2627 Out << ')';
2628 return;
2629 case Intrinsic::prefetch:
2630 Out << "LLVM_PREFETCH((const void *)";
2631 writeOperand(I.getOperand(1));
2632 Out << ", ";
2633 writeOperand(I.getOperand(2));
2634 Out << ", ";
2635 writeOperand(I.getOperand(3));
2636 Out << ")";
2637 return;
Chris Lattner7627df32007-11-28 21:26:17 +00002638 case Intrinsic::stacksave:
2639 // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
2640 // to work around GCC bugs (see PR1809).
2641 Out << "0; *((void**)&" << GetValueName(&I)
2642 << ") = __builtin_stack_save()";
2643 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002644 case Intrinsic::dbg_stoppoint: {
2645 // If we use writeOperand directly we get a "u" suffix which is rejected
2646 // by gcc.
2647 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2648
2649 Out << "\n#line "
2650 << SPI.getLine()
2651 << " \"" << SPI.getDirectory()
2652 << SPI.getFileName() << "\"\n";
2653 return;
2654 }
2655 }
2656 }
2657
2658 Value *Callee = I.getCalledValue();
2659
2660 const PointerType *PTy = cast<PointerType>(Callee->getType());
2661 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2662
2663 // If this is a call to a struct-return function, assign to the first
2664 // parameter instead of passing it to the call.
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002665 const ParamAttrsList *PAL = I.getParamAttrs();
Evan Chengb8a072c2008-01-12 18:53:07 +00002666 bool hasByVal = I.hasByValArgument();
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002667 bool isStructRet = I.isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002668 if (isStructRet) {
Evan Chengf8956382008-01-11 23:10:11 +00002669 bool isByVal = ByValParams.count(I.getOperand(1));
2670 if (!isByVal) Out << "*(";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002671 writeOperand(I.getOperand(1));
Evan Chengf8956382008-01-11 23:10:11 +00002672 if (!isByVal) Out << ")";
2673 Out << " = ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002674 }
2675
2676 if (I.isTailCall()) Out << " /*tail*/ ";
2677
2678 if (!WroteCallee) {
2679 // If this is an indirect call to a struct return function, we need to cast
Evan Chengb8a072c2008-01-12 18:53:07 +00002680 // the pointer. Ditto for indirect calls with byval arguments.
2681 bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002682
2683 // GCC is a real PITA. It does not permit codegening casts of functions to
2684 // function pointers if they are in a call (it generates a trap instruction
2685 // instead!). We work around this by inserting a cast to void* in between
2686 // the function and the function pointer cast. Unfortunately, we can't just
2687 // form the constant expression here, because the folder will immediately
2688 // nuke it.
2689 //
2690 // Note finally, that this is completely unsafe. ANSI C does not guarantee
2691 // that void* and function pointers have the same size. :( To deal with this
2692 // in the common case, we handle casts where the number of arguments passed
2693 // match exactly.
2694 //
2695 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
2696 if (CE->isCast())
2697 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
2698 NeedsCast = true;
2699 Callee = RF;
2700 }
2701
2702 if (NeedsCast) {
2703 // Ok, just cast the pointer type.
2704 Out << "((";
Evan Chengb8a072c2008-01-12 18:53:07 +00002705 if (isStructRet)
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002706 printStructReturnPointerFunctionType(Out, PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002707 cast<PointerType>(I.getCalledValue()->getType()));
Evan Chengb8a072c2008-01-12 18:53:07 +00002708 else if (hasByVal)
2709 printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
2710 else
2711 printType(Out, I.getCalledValue()->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002712 Out << ")(void*)";
2713 }
2714 writeOperand(Callee);
2715 if (NeedsCast) Out << ')';
2716 }
2717
2718 Out << '(';
2719
2720 unsigned NumDeclaredParams = FTy->getNumParams();
2721
2722 CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
2723 unsigned ArgNo = 0;
2724 if (isStructRet) { // Skip struct return argument.
2725 ++AI;
2726 ++ArgNo;
2727 }
2728
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002729 bool PrintedArg = false;
Evan Chengf8956382008-01-11 23:10:11 +00002730 for (; AI != AE; ++AI, ++ArgNo) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002731 if (PrintedArg) Out << ", ";
2732 if (ArgNo < NumDeclaredParams &&
2733 (*AI)->getType() != FTy->getParamType(ArgNo)) {
2734 Out << '(';
2735 printType(Out, FTy->getParamType(ArgNo),
Evan Chengf8956382008-01-11 23:10:11 +00002736 /*isSigned=*/PAL && PAL->paramHasAttr(ArgNo+1, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002737 Out << ')';
2738 }
Evan Chengf8956382008-01-11 23:10:11 +00002739 // Check if the argument is expected to be passed by value.
2740 bool isOutByVal = PAL && PAL->paramHasAttr(ArgNo+1, ParamAttr::ByVal);
2741 // Check if this argument itself is passed in by reference.
Evan Chengc25c7742008-02-20 18:32:05 +00002742 bool isInByVal = ByValParams.count(*AI);
2743 if (isOutByVal && !isInByVal)
Evan Chengf8956382008-01-11 23:10:11 +00002744 Out << "*(";
Evan Chengc25c7742008-02-20 18:32:05 +00002745 else if (!isOutByVal && isInByVal)
2746 Out << "&(";
Evan Chengf8956382008-01-11 23:10:11 +00002747 writeOperand(*AI);
Evan Chengc25c7742008-02-20 18:32:05 +00002748 if (isOutByVal ^ isInByVal)
Evan Chengf8956382008-01-11 23:10:11 +00002749 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002750 PrintedArg = true;
2751 }
2752 Out << ')';
2753}
2754
2755
2756//This converts the llvm constraint string to something gcc is expecting.
2757//TODO: work out platform independent constraints and factor those out
2758// of the per target tables
2759// handle multiple constraint codes
2760std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
2761
2762 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
2763
2764 const char** table = 0;
2765
2766 //Grab the translation table from TargetAsmInfo if it exists
2767 if (!TAsm) {
2768 std::string E;
Gordon Henriksen99e34ab2007-10-17 21:28:48 +00002769 const TargetMachineRegistry::entry* Match =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002770 TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
2771 if (Match) {
2772 //Per platform Target Machines don't exist, so create it
2773 // this must be done only once
2774 const TargetMachine* TM = Match->CtorFn(*TheModule, "");
2775 TAsm = TM->getTargetAsmInfo();
2776 }
2777 }
2778 if (TAsm)
2779 table = TAsm->getAsmCBE();
2780
2781 //Search the translation table if it exists
2782 for (int i = 0; table && table[i]; i += 2)
2783 if (c.Codes[0] == table[i])
2784 return table[i+1];
2785
2786 //default is identity
2787 return c.Codes[0];
2788}
2789
2790//TODO: import logic from AsmPrinter.cpp
2791static std::string gccifyAsm(std::string asmstr) {
2792 for (std::string::size_type i = 0; i != asmstr.size(); ++i)
2793 if (asmstr[i] == '\n')
2794 asmstr.replace(i, 1, "\\n");
2795 else if (asmstr[i] == '\t')
2796 asmstr.replace(i, 1, "\\t");
2797 else if (asmstr[i] == '$') {
2798 if (asmstr[i + 1] == '{') {
2799 std::string::size_type a = asmstr.find_first_of(':', i + 1);
2800 std::string::size_type b = asmstr.find_first_of('}', i + 1);
2801 std::string n = "%" +
2802 asmstr.substr(a + 1, b - a - 1) +
2803 asmstr.substr(i + 2, a - i - 2);
2804 asmstr.replace(i, b - i + 1, n);
2805 i += n.size() - 1;
2806 } else
2807 asmstr.replace(i, 1, "%");
2808 }
2809 else if (asmstr[i] == '%')//grr
2810 { asmstr.replace(i, 1, "%%"); ++i;}
2811
2812 return asmstr;
2813}
2814
2815//TODO: assumptions about what consume arguments from the call are likely wrong
2816// handle communitivity
2817void CWriter::visitInlineAsm(CallInst &CI) {
2818 InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
2819 std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
2820 std::vector<std::pair<std::string, Value*> > Input;
2821 std::vector<std::pair<std::string, Value*> > Output;
2822 std::string Clobber;
2823 int count = CI.getType() == Type::VoidTy ? 1 : 0;
2824 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
2825 E = Constraints.end(); I != E; ++I) {
2826 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
2827 std::string c =
2828 InterpretASMConstraint(*I);
2829 switch(I->Type) {
2830 default:
2831 assert(0 && "Unknown asm constraint");
2832 break;
2833 case InlineAsm::isInput: {
2834 if (c.size()) {
2835 Input.push_back(std::make_pair(c, count ? CI.getOperand(count) : &CI));
2836 ++count; //consume arg
2837 }
2838 break;
2839 }
2840 case InlineAsm::isOutput: {
2841 if (c.size()) {
2842 Output.push_back(std::make_pair("="+((I->isEarlyClobber ? "&" : "")+c),
2843 count ? CI.getOperand(count) : &CI));
2844 ++count; //consume arg
2845 }
2846 break;
2847 }
2848 case InlineAsm::isClobber: {
2849 if (c.size())
2850 Clobber += ",\"" + c + "\"";
2851 break;
2852 }
2853 }
2854 }
2855
2856 //fix up the asm string for gcc
2857 std::string asmstr = gccifyAsm(as->getAsmString());
2858
2859 Out << "__asm__ volatile (\"" << asmstr << "\"\n";
2860 Out << " :";
2861 for (std::vector<std::pair<std::string, Value*> >::iterator I = Output.begin(),
2862 E = Output.end(); I != E; ++I) {
2863 Out << "\"" << I->first << "\"(";
2864 writeOperandRaw(I->second);
2865 Out << ")";
2866 if (I + 1 != E)
2867 Out << ",";
2868 }
2869 Out << "\n :";
2870 for (std::vector<std::pair<std::string, Value*> >::iterator I = Input.begin(),
2871 E = Input.end(); I != E; ++I) {
2872 Out << "\"" << I->first << "\"(";
2873 writeOperandRaw(I->second);
2874 Out << ")";
2875 if (I + 1 != E)
2876 Out << ",";
2877 }
2878 if (Clobber.size())
2879 Out << "\n :" << Clobber.substr(1);
2880 Out << ")";
2881}
2882
2883void CWriter::visitMallocInst(MallocInst &I) {
2884 assert(0 && "lowerallocations pass didn't work!");
2885}
2886
2887void CWriter::visitAllocaInst(AllocaInst &I) {
2888 Out << '(';
2889 printType(Out, I.getType());
2890 Out << ") alloca(sizeof(";
2891 printType(Out, I.getType()->getElementType());
2892 Out << ')';
2893 if (I.isArrayAllocation()) {
2894 Out << " * " ;
2895 writeOperand(I.getOperand(0));
2896 }
2897 Out << ')';
2898}
2899
2900void CWriter::visitFreeInst(FreeInst &I) {
2901 assert(0 && "lowerallocations pass didn't work!");
2902}
2903
2904void CWriter::printIndexingExpression(Value *Ptr, gep_type_iterator I,
2905 gep_type_iterator E) {
2906 bool HasImplicitAddress = false;
2907 // If accessing a global value with no indexing, avoid *(&GV) syndrome
2908 if (isa<GlobalValue>(Ptr)) {
2909 HasImplicitAddress = true;
2910 } else if (isDirectAlloca(Ptr)) {
2911 HasImplicitAddress = true;
2912 }
2913
2914 if (I == E) {
2915 if (!HasImplicitAddress)
2916 Out << '*'; // Implicit zero first argument: '*x' is equivalent to 'x[0]'
2917
2918 writeOperandInternal(Ptr);
2919 return;
2920 }
2921
2922 const Constant *CI = dyn_cast<Constant>(I.getOperand());
2923 if (HasImplicitAddress && (!CI || !CI->isNullValue()))
2924 Out << "(&";
2925
2926 writeOperandInternal(Ptr);
2927
2928 if (HasImplicitAddress && (!CI || !CI->isNullValue())) {
2929 Out << ')';
2930 HasImplicitAddress = false; // HIA is only true if we haven't addressed yet
2931 }
2932
Anton Korobeynikov8c90d2a2008-02-20 11:22:39 +00002933 assert((!HasImplicitAddress || (CI && CI->isNullValue())) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002934 "Can only have implicit address with direct accessing");
2935
2936 if (HasImplicitAddress) {
2937 ++I;
2938 } else if (CI && CI->isNullValue()) {
2939 gep_type_iterator TmpI = I; ++TmpI;
2940
2941 // Print out the -> operator if possible...
2942 if (TmpI != E && isa<StructType>(*TmpI)) {
Evan Cheng17254e62008-01-11 09:12:49 +00002943 // Check if it's actually an aggregate parameter passed by value.
2944 bool isByVal = ByValParams.count(Ptr);
2945 Out << ((HasImplicitAddress || isByVal) ? "." : "->");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002946 Out << "field" << cast<ConstantInt>(TmpI.getOperand())->getZExtValue();
2947 I = ++TmpI;
2948 }
2949 }
2950
2951 for (; I != E; ++I)
2952 if (isa<StructType>(*I)) {
2953 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
2954 } else {
2955 Out << '[';
Chris Lattner7ce1ee42007-09-22 20:16:48 +00002956 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002957 Out << ']';
2958 }
2959}
2960
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002961void CWriter::writeMemoryAccess(Value *Operand, const Type *OperandType,
2962 bool IsVolatile, unsigned Alignment) {
2963
2964 bool IsUnaligned = Alignment &&
2965 Alignment < TD->getABITypeAlignment(OperandType);
2966
2967 if (!IsUnaligned)
2968 Out << '*';
2969 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002970 Out << "((";
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002971 if (IsUnaligned)
2972 Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
2973 printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
2974 if (IsUnaligned) {
2975 Out << "; } ";
2976 if (IsVolatile) Out << "volatile ";
2977 Out << "*";
2978 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002979 Out << ")";
2980 }
2981
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002982 writeOperand(Operand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002983
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002984 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002985 Out << ')';
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002986 if (IsUnaligned)
2987 Out << "->data";
2988 }
2989}
2990
2991void CWriter::visitLoadInst(LoadInst &I) {
2992
2993 writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
2994 I.getAlignment());
2995
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002996}
2997
2998void CWriter::visitStoreInst(StoreInst &I) {
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002999
3000 writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
3001 I.isVolatile(), I.getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003002 Out << " = ";
3003 Value *Operand = I.getOperand(0);
3004 Constant *BitMask = 0;
3005 if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
3006 if (!ITy->isPowerOf2ByteWidth())
3007 // We have a bit width that doesn't match an even power-of-2 byte
3008 // size. Consequently we must & the value with the type's bit mask
3009 BitMask = ConstantInt::get(ITy, ITy->getBitMask());
3010 if (BitMask)
3011 Out << "((";
3012 writeOperand(Operand);
3013 if (BitMask) {
3014 Out << ") & ";
3015 printConstant(BitMask);
3016 Out << ")";
3017 }
3018}
3019
3020void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
3021 Out << '&';
3022 printIndexingExpression(I.getPointerOperand(), gep_type_begin(I),
3023 gep_type_end(I));
3024}
3025
3026void CWriter::visitVAArgInst(VAArgInst &I) {
3027 Out << "va_arg(*(va_list*)";
3028 writeOperand(I.getOperand(0));
3029 Out << ", ";
3030 printType(Out, I.getType());
3031 Out << ");\n ";
3032}
3033
Chris Lattnerf41a7942008-03-02 03:52:39 +00003034void CWriter::visitInsertElementInst(InsertElementInst &I) {
3035 const Type *EltTy = I.getType()->getElementType();
3036 writeOperand(I.getOperand(0));
3037 Out << ";\n ";
3038 Out << "((";
3039 printType(Out, PointerType::getUnqual(EltTy));
3040 Out << ")(&" << GetValueName(&I) << "))[";
3041 writeOperand(I.getOperand(1));
3042 Out << "] = (";
3043 writeOperand(I.getOperand(2));
3044 Out << ")";
3045}
3046
Chris Lattnera5f0bc02008-03-02 03:57:08 +00003047void CWriter::visitExtractElementInst(ExtractElementInst &I) {
3048 // We know that our operand is not inlined.
3049 Out << "((";
3050 const Type *EltTy =
3051 cast<VectorType>(I.getOperand(0)->getType())->getElementType();
3052 printType(Out, PointerType::getUnqual(EltTy));
3053 Out << ")(&" << GetValueName(I.getOperand(0)) << "))[";
3054 writeOperand(I.getOperand(1));
3055 Out << "]";
3056}
3057
Chris Lattnerf858a042008-03-02 05:41:07 +00003058void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
3059 Out << "(";
3060 printType(Out, SVI.getType());
3061 Out << "){ ";
3062 const VectorType *VT = SVI.getType();
3063 unsigned NumElts = VT->getNumElements();
3064 const Type *EltTy = VT->getElementType();
3065
3066 for (unsigned i = 0; i != NumElts; ++i) {
3067 if (i) Out << ", ";
3068 int SrcVal = SVI.getMaskValue(i);
3069 if ((unsigned)SrcVal >= NumElts*2) {
3070 Out << " 0/*undef*/ ";
3071 } else {
3072 Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts);
3073 if (isa<Instruction>(Op)) {
3074 // Do an extractelement of this value from the appropriate input.
3075 Out << "((";
3076 printType(Out, PointerType::getUnqual(EltTy));
3077 Out << ")(&" << GetValueName(Op)
3078 << "))[" << (SrcVal & NumElts-1) << "]";
3079 } else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) {
3080 Out << "0";
3081 } else {
3082 printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal & NumElts-1));
3083 }
3084 }
3085 }
3086 Out << "}";
3087}
Chris Lattnera5f0bc02008-03-02 03:57:08 +00003088
Chris Lattnerf41a7942008-03-02 03:52:39 +00003089
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003090//===----------------------------------------------------------------------===//
3091// External Interface declaration
3092//===----------------------------------------------------------------------===//
3093
3094bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
3095 std::ostream &o,
3096 CodeGenFileType FileType,
3097 bool Fast) {
3098 if (FileType != TargetMachine::AssemblyFile) return true;
3099
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003100 PM.add(createGCLoweringPass());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003101 PM.add(createLowerAllocationsPass(true));
3102 PM.add(createLowerInvokePass());
3103 PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
3104 PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
3105 PM.add(new CWriter(o));
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003106 PM.add(createCollectorMetadataDeleter());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003107 return false;
3108}