blob: e02f6bc8a26b57c146d82229a3f41ddf4f5e1a24 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This library converts LLVM code to C code, compilable by GCC and other C
11// compilers.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CTargetMachine.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Module.h"
20#include "llvm/Instructions.h"
Dale Johannesen98738822008-02-22 22:17:59 +000021#include "llvm/ParamAttrsList.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000022#include "llvm/Pass.h"
23#include "llvm/PassManager.h"
24#include "llvm/TypeSymbolTable.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Analysis/ConstantsScanner.h"
29#include "llvm/Analysis/FindUsedTypes.h"
30#include "llvm/Analysis/LoopInfo.h"
Gordon Henriksendf87fdc2008-01-07 01:30:38 +000031#include "llvm/CodeGen/Passes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000032#include "llvm/CodeGen/IntrinsicLowering.h"
33#include "llvm/Transforms/Scalar.h"
34#include "llvm/Target/TargetMachineRegistry.h"
35#include "llvm/Target/TargetAsmInfo.h"
36#include "llvm/Target/TargetData.h"
37#include "llvm/Support/CallSite.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/GetElementPtrTypeIterator.h"
40#include "llvm/Support/InstVisitor.h"
41#include "llvm/Support/Mangler.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/ADT/StringExtras.h"
44#include "llvm/ADT/STLExtras.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Config/config.h"
47#include <algorithm>
48#include <sstream>
49using namespace llvm;
50
51namespace {
52 // Register the target.
53 RegisterTarget<CTargetMachine> X("c", " C backend");
54
55 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
56 /// any unnamed structure types that are used by the program, and merges
57 /// external functions with the same name.
58 ///
59 class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
60 public:
61 static char ID;
62 CBackendNameAllUsedStructsAndMergeFunctions()
63 : ModulePass((intptr_t)&ID) {}
64 void getAnalysisUsage(AnalysisUsage &AU) const {
65 AU.addRequired<FindUsedTypes>();
66 }
67
68 virtual const char *getPassName() const {
69 return "C backend type canonicalizer";
70 }
71
72 virtual bool runOnModule(Module &M);
73 };
74
75 char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
76
77 /// CWriter - This class is the main chunk of code that converts an LLVM
78 /// module to a C translation unit.
79 class CWriter : public FunctionPass, public InstVisitor<CWriter> {
80 std::ostream &Out;
81 IntrinsicLowering *IL;
82 Mangler *Mang;
83 LoopInfo *LI;
84 const Module *TheModule;
85 const TargetAsmInfo* TAsm;
86 const TargetData* TD;
87 std::map<const Type *, std::string> TypeNames;
88 std::map<const ConstantFP *, unsigned> FPConstantMap;
89 std::set<Function*> intrinsicPrototypesAlreadyGenerated;
Evan Cheng17254e62008-01-11 09:12:49 +000090 std::set<const Value*> ByValParams;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000091
92 public:
93 static char ID;
94 CWriter(std::ostream &o)
95 : FunctionPass((intptr_t)&ID), Out(o), IL(0), Mang(0), LI(0),
96 TheModule(0), TAsm(0), TD(0) {}
97
98 virtual const char *getPassName() const { return "C backend"; }
99
100 void getAnalysisUsage(AnalysisUsage &AU) const {
101 AU.addRequired<LoopInfo>();
102 AU.setPreservesAll();
103 }
104
105 virtual bool doInitialization(Module &M);
106
107 bool runOnFunction(Function &F) {
108 LI = &getAnalysis<LoopInfo>();
109
110 // Get rid of intrinsics we can't handle.
111 lowerIntrinsics(F);
112
113 // Output all floating point constants that cannot be printed accurately.
114 printFloatingPointConstants(F);
115
116 printFunction(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000117 return false;
118 }
119
120 virtual bool doFinalization(Module &M) {
121 // Free memory...
122 delete Mang;
Evan Cheng17254e62008-01-11 09:12:49 +0000123 FPConstantMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000124 TypeNames.clear();
Evan Cheng17254e62008-01-11 09:12:49 +0000125 intrinsicPrototypesAlreadyGenerated.clear();
126 ByValParams.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 return false;
128 }
129
130 std::ostream &printType(std::ostream &Out, const Type *Ty,
131 bool isSigned = false,
132 const std::string &VariableName = "",
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000133 bool IgnoreName = false,
134 const ParamAttrsList *PAL = 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000135 std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
Chris Lattner63fb1f02008-03-02 03:16:38 +0000136 bool isSigned,
137 const std::string &NameSoFar = "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000138
139 void printStructReturnPointerFunctionType(std::ostream &Out,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000140 const ParamAttrsList *PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141 const PointerType *Ty);
142
143 void writeOperand(Value *Operand);
144 void writeOperandRaw(Value *Operand);
145 void writeOperandInternal(Value *Operand);
146 void writeOperandWithCast(Value* Operand, unsigned Opcode);
Chris Lattner389c9142007-09-15 06:51:03 +0000147 void writeOperandWithCast(Value* Operand, const ICmpInst &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000148 bool writeInstructionCast(const Instruction &I);
149
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +0000150 void writeMemoryAccess(Value *Operand, const Type *OperandType,
151 bool IsVolatile, unsigned Alignment);
152
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000153 private :
154 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
155
156 void lowerIntrinsics(Function &F);
157
158 void printModule(Module *M);
159 void printModuleTypes(const TypeSymbolTable &ST);
160 void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
161 void printFloatingPointConstants(Function &F);
162 void printFunctionSignature(const Function *F, bool Prototype);
163
164 void printFunction(Function &);
165 void printBasicBlock(BasicBlock *BB);
166 void printLoop(Loop *L);
167
168 void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
169 void printConstant(Constant *CPV);
170 void printConstantWithCast(Constant *CPV, unsigned Opcode);
171 bool printConstExprCast(const ConstantExpr *CE);
172 void printConstantArray(ConstantArray *CPA);
173 void printConstantVector(ConstantVector *CP);
174
175 // isInlinableInst - Attempt to inline instructions into their uses to build
176 // trees as much as possible. To do this, we have to consistently decide
177 // what is acceptable to inline, so that variable declarations don't get
178 // printed and an extra copy of the expr is not emitted.
179 //
180 static bool isInlinableInst(const Instruction &I) {
181 // Always inline cmp instructions, even if they are shared by multiple
182 // expressions. GCC generates horrible code if we don't.
183 if (isa<CmpInst>(I))
184 return true;
185
186 // Must be an expression, must be used exactly once. If it is dead, we
187 // emit it inline where it would go.
188 if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
189 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
190 isa<LoadInst>(I) || isa<VAArgInst>(I))
191 // Don't inline a load across a store or other bad things!
192 return false;
193
194 // Must not be used in inline asm
195 if (I.hasOneUse() && isInlineAsm(*I.use_back())) return false;
196
197 // Only inline instruction it if it's use is in the same BB as the inst.
198 return I.getParent() == cast<Instruction>(I.use_back())->getParent();
199 }
200
201 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
202 // variables which are accessed with the & operator. This causes GCC to
203 // generate significantly better code than to emit alloca calls directly.
204 //
205 static const AllocaInst *isDirectAlloca(const Value *V) {
206 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
207 if (!AI) return false;
208 if (AI->isArrayAllocation())
209 return 0; // FIXME: we can also inline fixed size array allocas!
210 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
211 return 0;
212 return AI;
213 }
214
215 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
216 static bool isInlineAsm(const Instruction& I) {
217 if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
218 return true;
219 return false;
220 }
221
222 // Instruction visitation functions
223 friend class InstVisitor<CWriter>;
224
225 void visitReturnInst(ReturnInst &I);
226 void visitBranchInst(BranchInst &I);
227 void visitSwitchInst(SwitchInst &I);
228 void visitInvokeInst(InvokeInst &I) {
229 assert(0 && "Lowerinvoke pass didn't work!");
230 }
231
232 void visitUnwindInst(UnwindInst &I) {
233 assert(0 && "Lowerinvoke pass didn't work!");
234 }
235 void visitUnreachableInst(UnreachableInst &I);
236
237 void visitPHINode(PHINode &I);
238 void visitBinaryOperator(Instruction &I);
239 void visitICmpInst(ICmpInst &I);
240 void visitFCmpInst(FCmpInst &I);
241
242 void visitCastInst (CastInst &I);
243 void visitSelectInst(SelectInst &I);
244 void visitCallInst (CallInst &I);
245 void visitInlineAsm(CallInst &I);
246
247 void visitMallocInst(MallocInst &I);
248 void visitAllocaInst(AllocaInst &I);
249 void visitFreeInst (FreeInst &I);
250 void visitLoadInst (LoadInst &I);
251 void visitStoreInst (StoreInst &I);
252 void visitGetElementPtrInst(GetElementPtrInst &I);
253 void visitVAArgInst (VAArgInst &I);
254
255 void visitInstruction(Instruction &I) {
256 cerr << "C Writer does not know about " << I;
257 abort();
258 }
259
260 void outputLValue(Instruction *I) {
261 Out << " " << GetValueName(I) << " = ";
262 }
263
264 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
265 void printPHICopiesForSuccessor(BasicBlock *CurBlock,
266 BasicBlock *Successor, unsigned Indent);
267 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
268 unsigned Indent);
269 void printIndexingExpression(Value *Ptr, gep_type_iterator I,
270 gep_type_iterator E);
271
272 std::string GetValueName(const Value *Operand);
273 };
274}
275
276char CWriter::ID = 0;
277
278/// This method inserts names for any unnamed structure types that are used by
279/// the program, and removes names from structure types that are not used by the
280/// program.
281///
282bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
283 // Get a set of types that are used by the program...
284 std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
285
286 // Loop over the module symbol table, removing types from UT that are
287 // already named, and removing names for types that are not used.
288 //
289 TypeSymbolTable &TST = M.getTypeSymbolTable();
290 for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
291 TI != TE; ) {
292 TypeSymbolTable::iterator I = TI++;
293
294 // If this isn't a struct type, remove it from our set of types to name.
295 // This simplifies emission later.
296 if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second)) {
297 TST.remove(I);
298 } else {
299 // If this is not used, remove it from the symbol table.
300 std::set<const Type *>::iterator UTI = UT.find(I->second);
301 if (UTI == UT.end())
302 TST.remove(I);
303 else
304 UT.erase(UTI); // Only keep one name for this type.
305 }
306 }
307
308 // UT now contains types that are not named. Loop over it, naming
309 // structure types.
310 //
311 bool Changed = false;
312 unsigned RenameCounter = 0;
313 for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
314 I != E; ++I)
315 if (const StructType *ST = dyn_cast<StructType>(*I)) {
316 while (M.addTypeName("unnamed"+utostr(RenameCounter), ST))
317 ++RenameCounter;
318 Changed = true;
319 }
320
321
322 // Loop over all external functions and globals. If we have two with
323 // identical names, merge them.
324 // FIXME: This code should disappear when we don't allow values with the same
325 // names when they have different types!
326 std::map<std::string, GlobalValue*> ExtSymbols;
327 for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
328 Function *GV = I++;
329 if (GV->isDeclaration() && GV->hasName()) {
330 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
331 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
332 if (!X.second) {
333 // Found a conflict, replace this global with the previous one.
334 GlobalValue *OldGV = X.first->second;
335 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
336 GV->eraseFromParent();
337 Changed = true;
338 }
339 }
340 }
341 // Do the same for globals.
342 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
343 I != E;) {
344 GlobalVariable *GV = I++;
345 if (GV->isDeclaration() && GV->hasName()) {
346 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
347 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
348 if (!X.second) {
349 // Found a conflict, replace this global with the previous one.
350 GlobalValue *OldGV = X.first->second;
351 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
352 GV->eraseFromParent();
353 Changed = true;
354 }
355 }
356 }
357
358 return Changed;
359}
360
361/// printStructReturnPointerFunctionType - This is like printType for a struct
362/// return type, except, instead of printing the type as void (*)(Struct*, ...)
363/// print it as "Struct (*)(...)", for struct return functions.
364void CWriter::printStructReturnPointerFunctionType(std::ostream &Out,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000365 const ParamAttrsList *PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000366 const PointerType *TheTy) {
367 const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
368 std::stringstream FunctionInnards;
369 FunctionInnards << " (*) (";
370 bool PrintedType = false;
371
372 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
373 const Type *RetTy = cast<PointerType>(I->get())->getElementType();
374 unsigned Idx = 1;
Evan Cheng2054cb02008-01-11 03:07:46 +0000375 for (++I, ++Idx; I != E; ++I, ++Idx) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000376 if (PrintedType)
377 FunctionInnards << ", ";
Evan Cheng2054cb02008-01-11 03:07:46 +0000378 const Type *ArgTy = *I;
Evan Cheng17254e62008-01-11 09:12:49 +0000379 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
380 assert(isa<PointerType>(ArgTy));
381 ArgTy = cast<PointerType>(ArgTy)->getElementType();
382 }
Evan Cheng2054cb02008-01-11 03:07:46 +0000383 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000384 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000385 PrintedType = true;
386 }
387 if (FTy->isVarArg()) {
388 if (PrintedType)
389 FunctionInnards << ", ...";
390 } else if (!PrintedType) {
391 FunctionInnards << "void";
392 }
393 FunctionInnards << ')';
394 std::string tstr = FunctionInnards.str();
395 printType(Out, RetTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000396 /*isSigned=*/PAL && PAL->paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000397}
398
399std::ostream &
400CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
401 const std::string &NameSoFar) {
402 assert((Ty->isPrimitiveType() || Ty->isInteger()) &&
403 "Invalid type for printSimpleType");
404 switch (Ty->getTypeID()) {
405 case Type::VoidTyID: return Out << "void " << NameSoFar;
406 case Type::IntegerTyID: {
407 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
408 if (NumBits == 1)
409 return Out << "bool " << NameSoFar;
410 else if (NumBits <= 8)
411 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
412 else if (NumBits <= 16)
413 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
414 else if (NumBits <= 32)
415 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
416 else {
417 assert(NumBits <= 64 && "Bit widths > 64 not implemented yet");
418 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
419 }
420 }
421 case Type::FloatTyID: return Out << "float " << NameSoFar;
422 case Type::DoubleTyID: return Out << "double " << NameSoFar;
Dale Johannesen137cef62007-09-17 00:38:27 +0000423 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
424 // present matches host 'long double'.
425 case Type::X86_FP80TyID:
426 case Type::PPC_FP128TyID:
427 case Type::FP128TyID: return Out << "long double " << NameSoFar;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000428 default :
429 cerr << "Unknown primitive type: " << *Ty << "\n";
430 abort();
431 }
432}
433
434// Pass the Type* and the variable name and this prints out the variable
435// declaration.
436//
437std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
438 bool isSigned, const std::string &NameSoFar,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000439 bool IgnoreName, const ParamAttrsList* PAL) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000440 if (Ty->isPrimitiveType() || Ty->isInteger()) {
441 printSimpleType(Out, Ty, isSigned, NameSoFar);
442 return Out;
443 }
444
445 // Check to see if the type is named.
446 if (!IgnoreName || isa<OpaqueType>(Ty)) {
447 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
448 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
449 }
450
451 switch (Ty->getTypeID()) {
452 case Type::FunctionTyID: {
453 const FunctionType *FTy = cast<FunctionType>(Ty);
454 std::stringstream FunctionInnards;
455 FunctionInnards << " (" << NameSoFar << ") (";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000456 unsigned Idx = 1;
457 for (FunctionType::param_iterator I = FTy->param_begin(),
458 E = FTy->param_end(); I != E; ++I) {
Evan Chengb8a072c2008-01-12 18:53:07 +0000459 const Type *ArgTy = *I;
460 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
461 assert(isa<PointerType>(ArgTy));
462 ArgTy = cast<PointerType>(ArgTy)->getElementType();
463 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000464 if (I != FTy->param_begin())
465 FunctionInnards << ", ";
Evan Chengb8a072c2008-01-12 18:53:07 +0000466 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000467 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000468 ++Idx;
469 }
470 if (FTy->isVarArg()) {
471 if (FTy->getNumParams())
472 FunctionInnards << ", ...";
473 } else if (!FTy->getNumParams()) {
474 FunctionInnards << "void";
475 }
476 FunctionInnards << ')';
477 std::string tstr = FunctionInnards.str();
478 printType(Out, FTy->getReturnType(),
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000479 /*isSigned=*/PAL && PAL->paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000480 return Out;
481 }
482 case Type::StructTyID: {
483 const StructType *STy = cast<StructType>(Ty);
484 Out << NameSoFar + " {\n";
485 unsigned Idx = 0;
486 for (StructType::element_iterator I = STy->element_begin(),
487 E = STy->element_end(); I != E; ++I) {
488 Out << " ";
489 printType(Out, *I, false, "field" + utostr(Idx++));
490 Out << ";\n";
491 }
492 Out << '}';
493 if (STy->isPacked())
494 Out << " __attribute__ ((packed))";
495 return Out;
496 }
497
498 case Type::PointerTyID: {
499 const PointerType *PTy = cast<PointerType>(Ty);
500 std::string ptrName = "*" + NameSoFar;
501
502 if (isa<ArrayType>(PTy->getElementType()) ||
503 isa<VectorType>(PTy->getElementType()))
504 ptrName = "(" + ptrName + ")";
505
Evan Chengb8a072c2008-01-12 18:53:07 +0000506 if (PAL)
507 // Must be a function ptr cast!
508 return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000509 return printType(Out, PTy->getElementType(), false, ptrName);
510 }
511
512 case Type::ArrayTyID: {
513 const ArrayType *ATy = cast<ArrayType>(Ty);
514 unsigned NumElements = ATy->getNumElements();
515 if (NumElements == 0) NumElements = 1;
516 return printType(Out, ATy->getElementType(), false,
517 NameSoFar + "[" + utostr(NumElements) + "]");
518 }
519
520 case Type::VectorTyID: {
Chris Lattner6d4cd9b2008-03-02 03:18:46 +0000521 const VectorType *VTy = cast<VectorType>(Ty);
Chris Lattner6d4cd9b2008-03-02 03:18:46 +0000522 return printType(Out, VTy->getElementType(), false,
Chris Lattner70f0f672008-03-02 03:29:50 +0000523 NameSoFar + " __attribute__((vector_size(" +
524 utostr(TD->getABITypeSize(VTy)) + " ))) ");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000525 }
526
527 case Type::OpaqueTyID: {
528 static int Count = 0;
529 std::string TyName = "struct opaque_" + itostr(Count++);
530 assert(TypeNames.find(Ty) == TypeNames.end());
531 TypeNames[Ty] = TyName;
532 return Out << TyName << ' ' << NameSoFar;
533 }
534 default:
535 assert(0 && "Unhandled case in getTypeProps!");
536 abort();
537 }
538
539 return Out;
540}
541
542void CWriter::printConstantArray(ConstantArray *CPA) {
543
544 // As a special case, print the array as a string if it is an array of
545 // ubytes or an array of sbytes with positive values.
546 //
547 const Type *ETy = CPA->getType()->getElementType();
548 bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
549
550 // Make sure the last character is a null char, as automatically added by C
551 if (isString && (CPA->getNumOperands() == 0 ||
552 !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
553 isString = false;
554
555 if (isString) {
556 Out << '\"';
557 // Keep track of whether the last number was a hexadecimal escape
558 bool LastWasHex = false;
559
560 // Do not include the last character, which we know is null
561 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
562 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
563
564 // Print it out literally if it is a printable character. The only thing
565 // to be careful about is when the last letter output was a hex escape
566 // code, in which case we have to be careful not to print out hex digits
567 // explicitly (the C compiler thinks it is a continuation of the previous
568 // character, sheesh...)
569 //
570 if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
571 LastWasHex = false;
572 if (C == '"' || C == '\\')
573 Out << "\\" << C;
574 else
575 Out << C;
576 } else {
577 LastWasHex = false;
578 switch (C) {
579 case '\n': Out << "\\n"; break;
580 case '\t': Out << "\\t"; break;
581 case '\r': Out << "\\r"; break;
582 case '\v': Out << "\\v"; break;
583 case '\a': Out << "\\a"; break;
584 case '\"': Out << "\\\""; break;
585 case '\'': Out << "\\\'"; break;
586 default:
587 Out << "\\x";
588 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
589 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
590 LastWasHex = true;
591 break;
592 }
593 }
594 }
595 Out << '\"';
596 } else {
597 Out << '{';
598 if (CPA->getNumOperands()) {
599 Out << ' ';
600 printConstant(cast<Constant>(CPA->getOperand(0)));
601 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
602 Out << ", ";
603 printConstant(cast<Constant>(CPA->getOperand(i)));
604 }
605 }
606 Out << " }";
607 }
608}
609
610void CWriter::printConstantVector(ConstantVector *CP) {
611 Out << '{';
612 if (CP->getNumOperands()) {
613 Out << ' ';
614 printConstant(cast<Constant>(CP->getOperand(0)));
615 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
616 Out << ", ";
617 printConstant(cast<Constant>(CP->getOperand(i)));
618 }
619 }
620 Out << " }";
621}
622
623// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
624// textually as a double (rather than as a reference to a stack-allocated
625// variable). We decide this by converting CFP to a string and back into a
626// double, and then checking whether the conversion results in a bit-equal
627// double to the original value of CFP. This depends on us and the target C
628// compiler agreeing on the conversion process (which is pretty likely since we
629// only deal in IEEE FP).
630//
631static bool isFPCSafeToPrint(const ConstantFP *CFP) {
Dale Johannesen137cef62007-09-17 00:38:27 +0000632 // Do long doubles in hex for now.
Dale Johannesen2fc20782007-09-14 22:26:36 +0000633 if (CFP->getType()!=Type::FloatTy && CFP->getType()!=Type::DoubleTy)
634 return false;
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000635 APFloat APF = APFloat(CFP->getValueAPF()); // copy
636 if (CFP->getType()==Type::FloatTy)
637 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000638#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
639 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000640 sprintf(Buffer, "%a", APF.convertToDouble());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000641 if (!strncmp(Buffer, "0x", 2) ||
642 !strncmp(Buffer, "-0x", 3) ||
643 !strncmp(Buffer, "+0x", 3))
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000644 return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000645 return false;
646#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000647 std::string StrVal = ftostr(APF);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000648
649 while (StrVal[0] == ' ')
650 StrVal.erase(StrVal.begin());
651
652 // Check to make sure that the stringized number is not some string like "Inf"
653 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
654 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
655 ((StrVal[0] == '-' || StrVal[0] == '+') &&
656 (StrVal[1] >= '0' && StrVal[1] <= '9')))
657 // Reparse stringized version!
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000658 return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000659 return false;
660#endif
661}
662
663/// Print out the casting for a cast operation. This does the double casting
664/// necessary for conversion to the destination type, if necessary.
665/// @brief Print a cast
666void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
667 // Print the destination type cast
668 switch (opc) {
669 case Instruction::UIToFP:
670 case Instruction::SIToFP:
671 case Instruction::IntToPtr:
672 case Instruction::Trunc:
673 case Instruction::BitCast:
674 case Instruction::FPExt:
675 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
676 Out << '(';
677 printType(Out, DstTy);
678 Out << ')';
679 break;
680 case Instruction::ZExt:
681 case Instruction::PtrToInt:
682 case Instruction::FPToUI: // For these, make sure we get an unsigned dest
683 Out << '(';
684 printSimpleType(Out, DstTy, false);
685 Out << ')';
686 break;
687 case Instruction::SExt:
688 case Instruction::FPToSI: // For these, make sure we get a signed dest
689 Out << '(';
690 printSimpleType(Out, DstTy, true);
691 Out << ')';
692 break;
693 default:
694 assert(0 && "Invalid cast opcode");
695 }
696
697 // Print the source type cast
698 switch (opc) {
699 case Instruction::UIToFP:
700 case Instruction::ZExt:
701 Out << '(';
702 printSimpleType(Out, SrcTy, false);
703 Out << ')';
704 break;
705 case Instruction::SIToFP:
706 case Instruction::SExt:
707 Out << '(';
708 printSimpleType(Out, SrcTy, true);
709 Out << ')';
710 break;
711 case Instruction::IntToPtr:
712 case Instruction::PtrToInt:
713 // Avoid "cast to pointer from integer of different size" warnings
714 Out << "(unsigned long)";
715 break;
716 case Instruction::Trunc:
717 case Instruction::BitCast:
718 case Instruction::FPExt:
719 case Instruction::FPTrunc:
720 case Instruction::FPToSI:
721 case Instruction::FPToUI:
722 break; // These don't need a source cast.
723 default:
724 assert(0 && "Invalid cast opcode");
725 break;
726 }
727}
728
729// printConstant - The LLVM Constant to C Constant converter.
730void CWriter::printConstant(Constant *CPV) {
731 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
732 switch (CE->getOpcode()) {
733 case Instruction::Trunc:
734 case Instruction::ZExt:
735 case Instruction::SExt:
736 case Instruction::FPTrunc:
737 case Instruction::FPExt:
738 case Instruction::UIToFP:
739 case Instruction::SIToFP:
740 case Instruction::FPToUI:
741 case Instruction::FPToSI:
742 case Instruction::PtrToInt:
743 case Instruction::IntToPtr:
744 case Instruction::BitCast:
745 Out << "(";
746 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
747 if (CE->getOpcode() == Instruction::SExt &&
748 CE->getOperand(0)->getType() == Type::Int1Ty) {
749 // Make sure we really sext from bool here by subtracting from 0
750 Out << "0-";
751 }
752 printConstant(CE->getOperand(0));
753 if (CE->getType() == Type::Int1Ty &&
754 (CE->getOpcode() == Instruction::Trunc ||
755 CE->getOpcode() == Instruction::FPToUI ||
756 CE->getOpcode() == Instruction::FPToSI ||
757 CE->getOpcode() == Instruction::PtrToInt)) {
758 // Make sure we really truncate to bool here by anding with 1
759 Out << "&1u";
760 }
761 Out << ')';
762 return;
763
764 case Instruction::GetElementPtr:
765 Out << "(&(";
766 printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV),
767 gep_type_end(CPV));
768 Out << "))";
769 return;
770 case Instruction::Select:
771 Out << '(';
772 printConstant(CE->getOperand(0));
773 Out << '?';
774 printConstant(CE->getOperand(1));
775 Out << ':';
776 printConstant(CE->getOperand(2));
777 Out << ')';
778 return;
779 case Instruction::Add:
780 case Instruction::Sub:
781 case Instruction::Mul:
782 case Instruction::SDiv:
783 case Instruction::UDiv:
784 case Instruction::FDiv:
785 case Instruction::URem:
786 case Instruction::SRem:
787 case Instruction::FRem:
788 case Instruction::And:
789 case Instruction::Or:
790 case Instruction::Xor:
791 case Instruction::ICmp:
792 case Instruction::Shl:
793 case Instruction::LShr:
794 case Instruction::AShr:
795 {
796 Out << '(';
797 bool NeedsClosingParens = printConstExprCast(CE);
798 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
799 switch (CE->getOpcode()) {
800 case Instruction::Add: Out << " + "; break;
801 case Instruction::Sub: Out << " - "; break;
802 case Instruction::Mul: Out << " * "; break;
803 case Instruction::URem:
804 case Instruction::SRem:
805 case Instruction::FRem: Out << " % "; break;
806 case Instruction::UDiv:
807 case Instruction::SDiv:
808 case Instruction::FDiv: Out << " / "; break;
809 case Instruction::And: Out << " & "; break;
810 case Instruction::Or: Out << " | "; break;
811 case Instruction::Xor: Out << " ^ "; break;
812 case Instruction::Shl: Out << " << "; break;
813 case Instruction::LShr:
814 case Instruction::AShr: Out << " >> "; break;
815 case Instruction::ICmp:
816 switch (CE->getPredicate()) {
817 case ICmpInst::ICMP_EQ: Out << " == "; break;
818 case ICmpInst::ICMP_NE: Out << " != "; break;
819 case ICmpInst::ICMP_SLT:
820 case ICmpInst::ICMP_ULT: Out << " < "; break;
821 case ICmpInst::ICMP_SLE:
822 case ICmpInst::ICMP_ULE: Out << " <= "; break;
823 case ICmpInst::ICMP_SGT:
824 case ICmpInst::ICMP_UGT: Out << " > "; break;
825 case ICmpInst::ICMP_SGE:
826 case ICmpInst::ICMP_UGE: Out << " >= "; break;
827 default: assert(0 && "Illegal ICmp predicate");
828 }
829 break;
830 default: assert(0 && "Illegal opcode here!");
831 }
832 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
833 if (NeedsClosingParens)
834 Out << "))";
835 Out << ')';
836 return;
837 }
838 case Instruction::FCmp: {
839 Out << '(';
840 bool NeedsClosingParens = printConstExprCast(CE);
841 if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
842 Out << "0";
843 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
844 Out << "1";
845 else {
846 const char* op = 0;
847 switch (CE->getPredicate()) {
848 default: assert(0 && "Illegal FCmp predicate");
849 case FCmpInst::FCMP_ORD: op = "ord"; break;
850 case FCmpInst::FCMP_UNO: op = "uno"; break;
851 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
852 case FCmpInst::FCMP_UNE: op = "une"; break;
853 case FCmpInst::FCMP_ULT: op = "ult"; break;
854 case FCmpInst::FCMP_ULE: op = "ule"; break;
855 case FCmpInst::FCMP_UGT: op = "ugt"; break;
856 case FCmpInst::FCMP_UGE: op = "uge"; break;
857 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
858 case FCmpInst::FCMP_ONE: op = "one"; break;
859 case FCmpInst::FCMP_OLT: op = "olt"; break;
860 case FCmpInst::FCMP_OLE: op = "ole"; break;
861 case FCmpInst::FCMP_OGT: op = "ogt"; break;
862 case FCmpInst::FCMP_OGE: op = "oge"; break;
863 }
864 Out << "llvm_fcmp_" << op << "(";
865 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
866 Out << ", ";
867 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
868 Out << ")";
869 }
870 if (NeedsClosingParens)
871 Out << "))";
872 Out << ')';
Anton Korobeynikov44891ce2007-12-21 23:33:44 +0000873 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000874 }
875 default:
876 cerr << "CWriter Error: Unhandled constant expression: "
877 << *CE << "\n";
878 abort();
879 }
880 } else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) {
881 Out << "((";
882 printType(Out, CPV->getType()); // sign doesn't matter
883 Out << ")/*UNDEF*/0)";
884 return;
885 }
886
887 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
888 const Type* Ty = CI->getType();
889 if (Ty == Type::Int1Ty)
Chris Lattner63fb1f02008-03-02 03:16:38 +0000890 Out << (CI->getZExtValue() ? '1' : '0');
891 else if (Ty == Type::Int32Ty)
892 Out << CI->getZExtValue() << 'u';
893 else if (Ty->getPrimitiveSizeInBits() > 32)
894 Out << CI->getZExtValue() << "ull";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000895 else {
896 Out << "((";
897 printSimpleType(Out, Ty, false) << ')';
898 if (CI->isMinValue(true))
899 Out << CI->getZExtValue() << 'u';
900 else
901 Out << CI->getSExtValue();
Chris Lattner63fb1f02008-03-02 03:16:38 +0000902 Out << ')';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000903 }
904 return;
905 }
906
907 switch (CPV->getType()->getTypeID()) {
908 case Type::FloatTyID:
Dale Johannesen137cef62007-09-17 00:38:27 +0000909 case Type::DoubleTyID:
910 case Type::X86_FP80TyID:
911 case Type::PPC_FP128TyID:
912 case Type::FP128TyID: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000913 ConstantFP *FPC = cast<ConstantFP>(CPV);
914 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
915 if (I != FPConstantMap.end()) {
916 // Because of FP precision problems we must load from a stack allocated
917 // value that holds the value in hex.
Dale Johannesen137cef62007-09-17 00:38:27 +0000918 Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" :
919 FPC->getType() == Type::DoubleTy ? "double" :
920 "long double")
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000921 << "*)&FPConstant" << I->second << ')';
922 } else {
Dale Johannesen137cef62007-09-17 00:38:27 +0000923 assert(FPC->getType() == Type::FloatTy ||
924 FPC->getType() == Type::DoubleTy);
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000925 double V = FPC->getType() == Type::FloatTy ?
926 FPC->getValueAPF().convertToFloat() :
927 FPC->getValueAPF().convertToDouble();
928 if (IsNAN(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000929 // The value is NaN
930
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000931 // FIXME the actual NaN bits should be emitted.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000932 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
933 // it's 0x7ff4.
934 const unsigned long QuietNaN = 0x7ff8UL;
935 //const unsigned long SignalNaN = 0x7ff4UL;
936
937 // We need to grab the first part of the FP #
938 char Buffer[100];
939
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000940 uint64_t ll = DoubleToBits(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000941 sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
942
943 std::string Num(&Buffer[0], &Buffer[6]);
944 unsigned long Val = strtoul(Num.c_str(), 0, 16);
945
946 if (FPC->getType() == Type::FloatTy)
947 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
948 << Buffer << "\") /*nan*/ ";
949 else
950 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
951 << Buffer << "\") /*nan*/ ";
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000952 } else if (IsInf(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000953 // The value is Inf
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000954 if (V < 0) Out << '-';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000955 Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
956 << " /*inf*/ ";
957 } else {
958 std::string Num;
959#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
960 // Print out the constant as a floating point number.
961 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000962 sprintf(Buffer, "%a", V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000963 Num = Buffer;
964#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000965 Num = ftostr(FPC->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000966#endif
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000967 Out << Num;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000968 }
969 }
970 break;
971 }
972
973 case Type::ArrayTyID:
Chris Lattner6d4cd9b2008-03-02 03:18:46 +0000974 if (ConstantArray *CA = cast<ConstantArray>(CPV)) {
975 printConstantArray(CA);
Chris Lattner63fb1f02008-03-02 03:16:38 +0000976 } else {
977 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000978 const ArrayType *AT = cast<ArrayType>(CPV->getType());
979 Out << '{';
980 if (AT->getNumElements()) {
981 Out << ' ';
982 Constant *CZ = Constant::getNullValue(AT->getElementType());
983 printConstant(CZ);
984 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
985 Out << ", ";
986 printConstant(CZ);
987 }
988 }
989 Out << " }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000990 }
991 break;
992
993 case Type::VectorTyID:
Chris Lattner70f0f672008-03-02 03:29:50 +0000994 // Use C99 compound expression literal initializer syntax.
995 Out << "(";
996 printType(Out, CPV->getType());
997 Out << ")";
Chris Lattner6d4cd9b2008-03-02 03:18:46 +0000998 if (ConstantVector *CV = cast<ConstantVector>(CPV)) {
Chris Lattner63fb1f02008-03-02 03:16:38 +0000999 printConstantVector(CV);
1000 } else {
1001 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
1002 const VectorType *VT = cast<VectorType>(CPV->getType());
1003 Out << "{ ";
1004 Constant *CZ = Constant::getNullValue(VT->getElementType());
1005 printConstant(CZ);
Chris Lattner6d4cd9b2008-03-02 03:18:46 +00001006 for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
Chris Lattner63fb1f02008-03-02 03:16:38 +00001007 Out << ", ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001008 printConstant(CZ);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001009 }
1010 Out << " }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001011 }
1012 break;
1013
1014 case Type::StructTyID:
1015 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
1016 const StructType *ST = cast<StructType>(CPV->getType());
1017 Out << '{';
1018 if (ST->getNumElements()) {
1019 Out << ' ';
1020 printConstant(Constant::getNullValue(ST->getElementType(0)));
1021 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
1022 Out << ", ";
1023 printConstant(Constant::getNullValue(ST->getElementType(i)));
1024 }
1025 }
1026 Out << " }";
1027 } else {
1028 Out << '{';
1029 if (CPV->getNumOperands()) {
1030 Out << ' ';
1031 printConstant(cast<Constant>(CPV->getOperand(0)));
1032 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
1033 Out << ", ";
1034 printConstant(cast<Constant>(CPV->getOperand(i)));
1035 }
1036 }
1037 Out << " }";
1038 }
1039 break;
1040
1041 case Type::PointerTyID:
1042 if (isa<ConstantPointerNull>(CPV)) {
1043 Out << "((";
1044 printType(Out, CPV->getType()); // sign doesn't matter
1045 Out << ")/*NULL*/0)";
1046 break;
1047 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
1048 writeOperand(GV);
1049 break;
1050 }
1051 // FALL THROUGH
1052 default:
1053 cerr << "Unknown constant type: " << *CPV << "\n";
1054 abort();
1055 }
1056}
1057
1058// Some constant expressions need to be casted back to the original types
1059// because their operands were casted to the expected type. This function takes
1060// care of detecting that case and printing the cast for the ConstantExpr.
1061bool CWriter::printConstExprCast(const ConstantExpr* CE) {
1062 bool NeedsExplicitCast = false;
1063 const Type *Ty = CE->getOperand(0)->getType();
1064 bool TypeIsSigned = false;
1065 switch (CE->getOpcode()) {
1066 case Instruction::LShr:
1067 case Instruction::URem:
1068 case Instruction::UDiv: NeedsExplicitCast = true; break;
1069 case Instruction::AShr:
1070 case Instruction::SRem:
1071 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
1072 case Instruction::SExt:
1073 Ty = CE->getType();
1074 NeedsExplicitCast = true;
1075 TypeIsSigned = true;
1076 break;
1077 case Instruction::ZExt:
1078 case Instruction::Trunc:
1079 case Instruction::FPTrunc:
1080 case Instruction::FPExt:
1081 case Instruction::UIToFP:
1082 case Instruction::SIToFP:
1083 case Instruction::FPToUI:
1084 case Instruction::FPToSI:
1085 case Instruction::PtrToInt:
1086 case Instruction::IntToPtr:
1087 case Instruction::BitCast:
1088 Ty = CE->getType();
1089 NeedsExplicitCast = true;
1090 break;
1091 default: break;
1092 }
1093 if (NeedsExplicitCast) {
1094 Out << "((";
1095 if (Ty->isInteger() && Ty != Type::Int1Ty)
1096 printSimpleType(Out, Ty, TypeIsSigned);
1097 else
1098 printType(Out, Ty); // not integer, sign doesn't matter
1099 Out << ")(";
1100 }
1101 return NeedsExplicitCast;
1102}
1103
1104// Print a constant assuming that it is the operand for a given Opcode. The
1105// opcodes that care about sign need to cast their operands to the expected
1106// type before the operation proceeds. This function does the casting.
1107void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
1108
1109 // Extract the operand's type, we'll need it.
1110 const Type* OpTy = CPV->getType();
1111
1112 // Indicate whether to do the cast or not.
1113 bool shouldCast = false;
1114 bool typeIsSigned = false;
1115
1116 // Based on the Opcode for which this Constant is being written, determine
1117 // the new type to which the operand should be casted by setting the value
1118 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1119 // casted below.
1120 switch (Opcode) {
1121 default:
1122 // for most instructions, it doesn't matter
1123 break;
1124 case Instruction::LShr:
1125 case Instruction::UDiv:
1126 case Instruction::URem:
1127 shouldCast = true;
1128 break;
1129 case Instruction::AShr:
1130 case Instruction::SDiv:
1131 case Instruction::SRem:
1132 shouldCast = true;
1133 typeIsSigned = true;
1134 break;
1135 }
1136
1137 // Write out the casted constant if we should, otherwise just write the
1138 // operand.
1139 if (shouldCast) {
1140 Out << "((";
1141 printSimpleType(Out, OpTy, typeIsSigned);
1142 Out << ")";
1143 printConstant(CPV);
1144 Out << ")";
1145 } else
1146 printConstant(CPV);
1147}
1148
1149std::string CWriter::GetValueName(const Value *Operand) {
1150 std::string Name;
1151
1152 if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
1153 std::string VarName;
1154
1155 Name = Operand->getName();
1156 VarName.reserve(Name.capacity());
1157
1158 for (std::string::iterator I = Name.begin(), E = Name.end();
1159 I != E; ++I) {
1160 char ch = *I;
1161
1162 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
Lauro Ramos Venancio66842ee2008-02-28 20:26:04 +00001163 (ch >= '0' && ch <= '9') || ch == '_')) {
1164 char buffer[5];
1165 sprintf(buffer, "_%x_", ch);
1166 VarName += buffer;
1167 } else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001168 VarName += ch;
1169 }
1170
1171 Name = "llvm_cbe_" + VarName;
1172 } else {
1173 Name = Mang->getValueName(Operand);
1174 }
1175
1176 return Name;
1177}
1178
1179void CWriter::writeOperandInternal(Value *Operand) {
1180 if (Instruction *I = dyn_cast<Instruction>(Operand))
1181 if (isInlinableInst(*I) && !isDirectAlloca(I)) {
1182 // Should we inline this instruction to build a tree?
1183 Out << '(';
1184 visit(*I);
1185 Out << ')';
1186 return;
1187 }
1188
1189 Constant* CPV = dyn_cast<Constant>(Operand);
1190
1191 if (CPV && !isa<GlobalValue>(CPV))
1192 printConstant(CPV);
1193 else
1194 Out << GetValueName(Operand);
1195}
1196
1197void CWriter::writeOperandRaw(Value *Operand) {
1198 Constant* CPV = dyn_cast<Constant>(Operand);
1199 if (CPV && !isa<GlobalValue>(CPV)) {
1200 printConstant(CPV);
1201 } else {
1202 Out << GetValueName(Operand);
1203 }
1204}
1205
1206void CWriter::writeOperand(Value *Operand) {
Evan Chengc25c7742008-02-20 18:32:05 +00001207 if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001208 Out << "(&"; // Global variables are referenced as their addresses by llvm
1209
1210 writeOperandInternal(Operand);
1211
Evan Chengc25c7742008-02-20 18:32:05 +00001212 if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001213 Out << ')';
1214}
1215
1216// Some instructions need to have their result value casted back to the
1217// original types because their operands were casted to the expected type.
1218// This function takes care of detecting that case and printing the cast
1219// for the Instruction.
1220bool CWriter::writeInstructionCast(const Instruction &I) {
1221 const Type *Ty = I.getOperand(0)->getType();
1222 switch (I.getOpcode()) {
1223 case Instruction::LShr:
1224 case Instruction::URem:
1225 case Instruction::UDiv:
1226 Out << "((";
1227 printSimpleType(Out, Ty, false);
1228 Out << ")(";
1229 return true;
1230 case Instruction::AShr:
1231 case Instruction::SRem:
1232 case Instruction::SDiv:
1233 Out << "((";
1234 printSimpleType(Out, Ty, true);
1235 Out << ")(";
1236 return true;
1237 default: break;
1238 }
1239 return false;
1240}
1241
1242// Write the operand with a cast to another type based on the Opcode being used.
1243// This will be used in cases where an instruction has specific type
1244// requirements (usually signedness) for its operands.
1245void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
1246
1247 // Extract the operand's type, we'll need it.
1248 const Type* OpTy = Operand->getType();
1249
1250 // Indicate whether to do the cast or not.
1251 bool shouldCast = false;
1252
1253 // Indicate whether the cast should be to a signed type or not.
1254 bool castIsSigned = false;
1255
1256 // Based on the Opcode for which this Operand is being written, determine
1257 // the new type to which the operand should be casted by setting the value
1258 // of OpTy. If we change OpTy, also set shouldCast to true.
1259 switch (Opcode) {
1260 default:
1261 // for most instructions, it doesn't matter
1262 break;
1263 case Instruction::LShr:
1264 case Instruction::UDiv:
1265 case Instruction::URem: // Cast to unsigned first
1266 shouldCast = true;
1267 castIsSigned = false;
1268 break;
Chris Lattner7ce1ee42007-09-22 20:16:48 +00001269 case Instruction::GetElementPtr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001270 case Instruction::AShr:
1271 case Instruction::SDiv:
1272 case Instruction::SRem: // Cast to signed first
1273 shouldCast = true;
1274 castIsSigned = true;
1275 break;
1276 }
1277
1278 // Write out the casted operand if we should, otherwise just write the
1279 // operand.
1280 if (shouldCast) {
1281 Out << "((";
1282 printSimpleType(Out, OpTy, castIsSigned);
1283 Out << ")";
1284 writeOperand(Operand);
1285 Out << ")";
1286 } else
1287 writeOperand(Operand);
1288}
1289
1290// Write the operand with a cast to another type based on the icmp predicate
1291// being used.
Chris Lattner389c9142007-09-15 06:51:03 +00001292void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
1293 // This has to do a cast to ensure the operand has the right signedness.
1294 // Also, if the operand is a pointer, we make sure to cast to an integer when
1295 // doing the comparison both for signedness and so that the C compiler doesn't
1296 // optimize things like "p < NULL" to false (p may contain an integer value
1297 // f.e.).
1298 bool shouldCast = Cmp.isRelational();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001299
1300 // Write out the casted operand if we should, otherwise just write the
1301 // operand.
Chris Lattner389c9142007-09-15 06:51:03 +00001302 if (!shouldCast) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001303 writeOperand(Operand);
Chris Lattner389c9142007-09-15 06:51:03 +00001304 return;
1305 }
1306
1307 // Should this be a signed comparison? If so, convert to signed.
1308 bool castIsSigned = Cmp.isSignedPredicate();
1309
1310 // If the operand was a pointer, convert to a large integer type.
1311 const Type* OpTy = Operand->getType();
1312 if (isa<PointerType>(OpTy))
1313 OpTy = TD->getIntPtrType();
1314
1315 Out << "((";
1316 printSimpleType(Out, OpTy, castIsSigned);
1317 Out << ")";
1318 writeOperand(Operand);
1319 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001320}
1321
1322// generateCompilerSpecificCode - This is where we add conditional compilation
1323// directives to cater to specific compilers as need be.
1324//
1325static void generateCompilerSpecificCode(std::ostream& Out) {
1326 // Alloca is hard to get, and we don't want to include stdlib.h here.
1327 Out << "/* get a declaration for alloca */\n"
1328 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1329 << "#define alloca(x) __builtin_alloca((x))\n"
1330 << "#define _alloca(x) __builtin_alloca((x))\n"
1331 << "#elif defined(__APPLE__)\n"
1332 << "extern void *__builtin_alloca(unsigned long);\n"
1333 << "#define alloca(x) __builtin_alloca(x)\n"
1334 << "#define longjmp _longjmp\n"
1335 << "#define setjmp _setjmp\n"
1336 << "#elif defined(__sun__)\n"
1337 << "#if defined(__sparcv9)\n"
1338 << "extern void *__builtin_alloca(unsigned long);\n"
1339 << "#else\n"
1340 << "extern void *__builtin_alloca(unsigned int);\n"
1341 << "#endif\n"
1342 << "#define alloca(x) __builtin_alloca(x)\n"
Chris Lattner9bae27b2008-01-12 06:46:09 +00001343 << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001344 << "#define alloca(x) __builtin_alloca(x)\n"
1345 << "#elif defined(_MSC_VER)\n"
1346 << "#define inline _inline\n"
1347 << "#define alloca(x) _alloca(x)\n"
1348 << "#else\n"
1349 << "#include <alloca.h>\n"
1350 << "#endif\n\n";
1351
1352 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1353 // If we aren't being compiled with GCC, just drop these attributes.
1354 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1355 << "#define __attribute__(X)\n"
1356 << "#endif\n\n";
1357
1358 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1359 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1360 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1361 << "#elif defined(__GNUC__)\n"
1362 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1363 << "#else\n"
1364 << "#define __EXTERNAL_WEAK__\n"
1365 << "#endif\n\n";
1366
1367 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1368 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1369 << "#define __ATTRIBUTE_WEAK__\n"
1370 << "#elif defined(__GNUC__)\n"
1371 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1372 << "#else\n"
1373 << "#define __ATTRIBUTE_WEAK__\n"
1374 << "#endif\n\n";
1375
1376 // Add hidden visibility support. FIXME: APPLE_CC?
1377 Out << "#if defined(__GNUC__)\n"
1378 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1379 << "#endif\n\n";
1380
1381 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1382 // From the GCC documentation:
1383 //
1384 // double __builtin_nan (const char *str)
1385 //
1386 // This is an implementation of the ISO C99 function nan.
1387 //
1388 // Since ISO C99 defines this function in terms of strtod, which we do
1389 // not implement, a description of the parsing is in order. The string is
1390 // parsed as by strtol; that is, the base is recognized by leading 0 or
1391 // 0x prefixes. The number parsed is placed in the significand such that
1392 // the least significant bit of the number is at the least significant
1393 // bit of the significand. The number is truncated to fit the significand
1394 // field provided. The significand is forced to be a quiet NaN.
1395 //
1396 // This function, if given a string literal, is evaluated early enough
1397 // that it is considered a compile-time constant.
1398 //
1399 // float __builtin_nanf (const char *str)
1400 //
1401 // Similar to __builtin_nan, except the return type is float.
1402 //
1403 // double __builtin_inf (void)
1404 //
1405 // Similar to __builtin_huge_val, except a warning is generated if the
1406 // target floating-point format does not support infinities. This
1407 // function is suitable for implementing the ISO C99 macro INFINITY.
1408 //
1409 // float __builtin_inff (void)
1410 //
1411 // Similar to __builtin_inf, except the return type is float.
1412 Out << "#ifdef __GNUC__\n"
1413 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1414 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1415 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1416 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1417 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1418 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1419 << "#define LLVM_PREFETCH(addr,rw,locality) "
1420 "__builtin_prefetch(addr,rw,locality)\n"
1421 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1422 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1423 << "#define LLVM_ASM __asm__\n"
1424 << "#else\n"
1425 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1426 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1427 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1428 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1429 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1430 << "#define LLVM_INFF 0.0F /* Float */\n"
1431 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1432 << "#define __ATTRIBUTE_CTOR__\n"
1433 << "#define __ATTRIBUTE_DTOR__\n"
1434 << "#define LLVM_ASM(X)\n"
1435 << "#endif\n\n";
1436
1437 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1438 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1439 << "#define __builtin_stack_restore(X) /* noop */\n"
1440 << "#endif\n\n";
1441
1442 // Output target-specific code that should be inserted into main.
1443 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001444}
1445
1446/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1447/// the StaticTors set.
1448static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
1449 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
1450 if (!InitList) return;
1451
1452 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
1453 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
1454 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
1455
1456 if (CS->getOperand(1)->isNullValue())
1457 return; // Found a null terminator, exit printing.
1458 Constant *FP = CS->getOperand(1);
1459 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
1460 if (CE->isCast())
1461 FP = CE->getOperand(0);
1462 if (Function *F = dyn_cast<Function>(FP))
1463 StaticTors.insert(F);
1464 }
1465}
1466
1467enum SpecialGlobalClass {
1468 NotSpecial = 0,
1469 GlobalCtors, GlobalDtors,
1470 NotPrinted
1471};
1472
1473/// getGlobalVariableClass - If this is a global that is specially recognized
1474/// by LLVM, return a code that indicates how we should handle it.
1475static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
1476 // If this is a global ctors/dtors list, handle it now.
1477 if (GV->hasAppendingLinkage() && GV->use_empty()) {
1478 if (GV->getName() == "llvm.global_ctors")
1479 return GlobalCtors;
1480 else if (GV->getName() == "llvm.global_dtors")
1481 return GlobalDtors;
1482 }
1483
1484 // Otherwise, it it is other metadata, don't print it. This catches things
1485 // like debug information.
1486 if (GV->getSection() == "llvm.metadata")
1487 return NotPrinted;
1488
1489 return NotSpecial;
1490}
1491
1492
1493bool CWriter::doInitialization(Module &M) {
1494 // Initialize
1495 TheModule = &M;
1496
1497 TD = new TargetData(&M);
1498 IL = new IntrinsicLowering(*TD);
1499 IL->AddPrototypes(M);
1500
1501 // Ensure that all structure types have names...
1502 Mang = new Mangler(M);
1503 Mang->markCharUnacceptable('.');
1504
1505 // Keep track of which functions are static ctors/dtors so they can have
1506 // an attribute added to their prototypes.
1507 std::set<Function*> StaticCtors, StaticDtors;
1508 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1509 I != E; ++I) {
1510 switch (getGlobalVariableClass(I)) {
1511 default: break;
1512 case GlobalCtors:
1513 FindStaticTors(I, StaticCtors);
1514 break;
1515 case GlobalDtors:
1516 FindStaticTors(I, StaticDtors);
1517 break;
1518 }
1519 }
1520
1521 // get declaration for alloca
1522 Out << "/* Provide Declarations */\n";
1523 Out << "#include <stdarg.h>\n"; // Varargs support
1524 Out << "#include <setjmp.h>\n"; // Unwind support
1525 generateCompilerSpecificCode(Out);
1526
1527 // Provide a definition for `bool' if not compiling with a C++ compiler.
1528 Out << "\n"
1529 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1530
1531 << "\n\n/* Support for floating point constants */\n"
1532 << "typedef unsigned long long ConstantDoubleTy;\n"
1533 << "typedef unsigned int ConstantFloatTy;\n"
Dale Johannesen137cef62007-09-17 00:38:27 +00001534 << "typedef struct { unsigned long long f1; unsigned short f2; "
1535 "unsigned short pad[3]; } ConstantFP80Ty;\n"
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001536 // This is used for both kinds of 128-bit long double; meaning differs.
Dale Johannesen137cef62007-09-17 00:38:27 +00001537 << "typedef struct { unsigned long long f1; unsigned long long f2; }"
1538 " ConstantFP128Ty;\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001539 << "\n\n/* Global Declarations */\n";
1540
1541 // First output all the declarations for the program, because C requires
1542 // Functions & globals to be declared before they are used.
1543 //
1544
1545 // Loop over the symbol table, emitting all named constants...
1546 printModuleTypes(M.getTypeSymbolTable());
1547
1548 // Global variable declarations...
1549 if (!M.global_empty()) {
1550 Out << "\n/* External Global Variable Declarations */\n";
1551 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1552 I != E; ++I) {
1553
1554 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage())
1555 Out << "extern ";
1556 else if (I->hasDLLImportLinkage())
1557 Out << "__declspec(dllimport) ";
1558 else
1559 continue; // Internal Global
1560
1561 // Thread Local Storage
1562 if (I->isThreadLocal())
1563 Out << "__thread ";
1564
1565 printType(Out, I->getType()->getElementType(), false, GetValueName(I));
1566
1567 if (I->hasExternalWeakLinkage())
1568 Out << " __EXTERNAL_WEAK__";
1569 Out << ";\n";
1570 }
1571 }
1572
1573 // Function declarations
1574 Out << "\n/* Function Declarations */\n";
1575 Out << "double fmod(double, double);\n"; // Support for FP rem
1576 Out << "float fmodf(float, float);\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001577 Out << "long double fmodl(long double, long double);\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001578
1579 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1580 // Don't print declarations for intrinsic functions.
Duncan Sands79d28872007-12-03 20:06:50 +00001581 if (!I->isIntrinsic() && I->getName() != "setjmp" &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001582 I->getName() != "longjmp" && I->getName() != "_setjmp") {
1583 if (I->hasExternalWeakLinkage())
1584 Out << "extern ";
1585 printFunctionSignature(I, true);
1586 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
1587 Out << " __ATTRIBUTE_WEAK__";
1588 if (I->hasExternalWeakLinkage())
1589 Out << " __EXTERNAL_WEAK__";
1590 if (StaticCtors.count(I))
1591 Out << " __ATTRIBUTE_CTOR__";
1592 if (StaticDtors.count(I))
1593 Out << " __ATTRIBUTE_DTOR__";
1594 if (I->hasHiddenVisibility())
1595 Out << " __HIDDEN__";
1596
1597 if (I->hasName() && I->getName()[0] == 1)
1598 Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
1599
1600 Out << ";\n";
1601 }
1602 }
1603
1604 // Output the global variable declarations
1605 if (!M.global_empty()) {
1606 Out << "\n\n/* Global Variable Declarations */\n";
1607 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1608 I != E; ++I)
1609 if (!I->isDeclaration()) {
1610 // Ignore special globals, such as debug info.
1611 if (getGlobalVariableClass(I))
1612 continue;
1613
1614 if (I->hasInternalLinkage())
1615 Out << "static ";
1616 else
1617 Out << "extern ";
1618
1619 // Thread Local Storage
1620 if (I->isThreadLocal())
1621 Out << "__thread ";
1622
1623 printType(Out, I->getType()->getElementType(), false,
1624 GetValueName(I));
1625
1626 if (I->hasLinkOnceLinkage())
1627 Out << " __attribute__((common))";
1628 else if (I->hasWeakLinkage())
1629 Out << " __ATTRIBUTE_WEAK__";
1630 else if (I->hasExternalWeakLinkage())
1631 Out << " __EXTERNAL_WEAK__";
1632 if (I->hasHiddenVisibility())
1633 Out << " __HIDDEN__";
1634 Out << ";\n";
1635 }
1636 }
1637
1638 // Output the global variable definitions and contents...
1639 if (!M.global_empty()) {
1640 Out << "\n\n/* Global Variable Definitions and Initialization */\n";
1641 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1642 I != E; ++I)
1643 if (!I->isDeclaration()) {
1644 // Ignore special globals, such as debug info.
1645 if (getGlobalVariableClass(I))
1646 continue;
1647
1648 if (I->hasInternalLinkage())
1649 Out << "static ";
1650 else if (I->hasDLLImportLinkage())
1651 Out << "__declspec(dllimport) ";
1652 else if (I->hasDLLExportLinkage())
1653 Out << "__declspec(dllexport) ";
1654
1655 // Thread Local Storage
1656 if (I->isThreadLocal())
1657 Out << "__thread ";
1658
1659 printType(Out, I->getType()->getElementType(), false,
1660 GetValueName(I));
1661 if (I->hasLinkOnceLinkage())
1662 Out << " __attribute__((common))";
1663 else if (I->hasWeakLinkage())
1664 Out << " __ATTRIBUTE_WEAK__";
1665
1666 if (I->hasHiddenVisibility())
1667 Out << " __HIDDEN__";
1668
1669 // If the initializer is not null, emit the initializer. If it is null,
1670 // we try to avoid emitting large amounts of zeros. The problem with
1671 // this, however, occurs when the variable has weak linkage. In this
1672 // case, the assembler will complain about the variable being both weak
1673 // and common, so we disable this optimization.
1674 if (!I->getInitializer()->isNullValue()) {
1675 Out << " = " ;
1676 writeOperand(I->getInitializer());
1677 } else if (I->hasWeakLinkage()) {
1678 // We have to specify an initializer, but it doesn't have to be
1679 // complete. If the value is an aggregate, print out { 0 }, and let
1680 // the compiler figure out the rest of the zeros.
1681 Out << " = " ;
1682 if (isa<StructType>(I->getInitializer()->getType()) ||
1683 isa<ArrayType>(I->getInitializer()->getType()) ||
1684 isa<VectorType>(I->getInitializer()->getType())) {
1685 Out << "{ 0 }";
1686 } else {
1687 // Just print it out normally.
1688 writeOperand(I->getInitializer());
1689 }
1690 }
1691 Out << ";\n";
1692 }
1693 }
1694
1695 if (!M.empty())
1696 Out << "\n\n/* Function Bodies */\n";
1697
1698 // Emit some helper functions for dealing with FCMP instruction's
1699 // predicates
1700 Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
1701 Out << "return X == X && Y == Y; }\n";
1702 Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
1703 Out << "return X != X || Y != Y; }\n";
1704 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
1705 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
1706 Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
1707 Out << "return X != Y; }\n";
1708 Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
1709 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
1710 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
1711 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
1712 Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
1713 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
1714 Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
1715 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
1716 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
1717 Out << "return X == Y ; }\n";
1718 Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
1719 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
1720 Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
1721 Out << "return X < Y ; }\n";
1722 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
1723 Out << "return X > Y ; }\n";
1724 Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
1725 Out << "return X <= Y ; }\n";
1726 Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
1727 Out << "return X >= Y ; }\n";
1728 return false;
1729}
1730
1731
1732/// Output all floating point constants that cannot be printed accurately...
1733void CWriter::printFloatingPointConstants(Function &F) {
1734 // Scan the module for floating point constants. If any FP constant is used
1735 // in the function, we want to redirect it here so that we do not depend on
1736 // the precision of the printed form, unless the printed form preserves
1737 // precision.
1738 //
1739 static unsigned FPCounter = 0;
1740 for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
1741 I != E; ++I)
1742 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
1743 if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
1744 !FPConstantMap.count(FPC)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001745 FPConstantMap[FPC] = FPCounter; // Number the FP constants
1746
1747 if (FPC->getType() == Type::DoubleTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001748 double Val = FPC->getValueAPF().convertToDouble();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001749 uint64_t i = FPC->getValueAPF().convertToAPInt().getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001750 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001751 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001752 << "ULL; /* " << Val << " */\n";
1753 } else if (FPC->getType() == Type::FloatTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001754 float Val = FPC->getValueAPF().convertToFloat();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001755 uint32_t i = (uint32_t)FPC->getValueAPF().convertToAPInt().
1756 getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001757 Out << "static const ConstantFloatTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001758 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001759 << "U; /* " << Val << " */\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001760 } else if (FPC->getType() == Type::X86_FP80Ty) {
Dale Johannesen693aa822007-09-26 23:20:33 +00001761 // api needed to prevent premature destruction
1762 APInt api = FPC->getValueAPF().convertToAPInt();
1763 const uint64_t *p = api.getRawData();
Dale Johannesen137cef62007-09-17 00:38:27 +00001764 Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
1765 << " = { 0x" << std::hex
1766 << ((uint16_t)p[1] | (p[0] & 0xffffffffffffLL)<<16)
1767 << ", 0x" << (uint16_t)(p[0] >> 48) << ",0,0,0"
1768 << "}; /* Long double constant */\n" << std::dec;
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001769 } else if (FPC->getType() == Type::PPC_FP128Ty) {
1770 APInt api = FPC->getValueAPF().convertToAPInt();
1771 const uint64_t *p = api.getRawData();
1772 Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
1773 << " = { 0x" << std::hex
1774 << p[0] << ", 0x" << p[1]
1775 << "}; /* Long double constant */\n" << std::dec;
1776
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001777 } else
1778 assert(0 && "Unknown float type!");
1779 }
1780
1781 Out << '\n';
1782}
1783
1784
1785/// printSymbolTable - Run through symbol table looking for type names. If a
1786/// type name is found, emit its declaration...
1787///
1788void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
1789 Out << "/* Helper union for bitcasts */\n";
1790 Out << "typedef union {\n";
1791 Out << " unsigned int Int32;\n";
1792 Out << " unsigned long long Int64;\n";
1793 Out << " float Float;\n";
1794 Out << " double Double;\n";
1795 Out << "} llvmBitCastUnion;\n";
1796
1797 // We are only interested in the type plane of the symbol table.
1798 TypeSymbolTable::const_iterator I = TST.begin();
1799 TypeSymbolTable::const_iterator End = TST.end();
1800
1801 // If there are no type names, exit early.
1802 if (I == End) return;
1803
1804 // Print out forward declarations for structure types before anything else!
1805 Out << "/* Structure forward decls */\n";
1806 for (; I != End; ++I) {
1807 std::string Name = "struct l_" + Mang->makeNameProper(I->first);
1808 Out << Name << ";\n";
1809 TypeNames.insert(std::make_pair(I->second, Name));
1810 }
1811
1812 Out << '\n';
1813
1814 // Now we can print out typedefs. Above, we guaranteed that this can only be
1815 // for struct or opaque types.
1816 Out << "/* Typedefs */\n";
1817 for (I = TST.begin(); I != End; ++I) {
1818 std::string Name = "l_" + Mang->makeNameProper(I->first);
1819 Out << "typedef ";
1820 printType(Out, I->second, false, Name);
1821 Out << ";\n";
1822 }
1823
1824 Out << '\n';
1825
1826 // Keep track of which structures have been printed so far...
1827 std::set<const StructType *> StructPrinted;
1828
1829 // Loop over all structures then push them into the stack so they are
1830 // printed in the correct order.
1831 //
1832 Out << "/* Structure contents */\n";
1833 for (I = TST.begin(); I != End; ++I)
1834 if (const StructType *STy = dyn_cast<StructType>(I->second))
1835 // Only print out used types!
1836 printContainedStructs(STy, StructPrinted);
1837}
1838
1839// Push the struct onto the stack and recursively push all structs
1840// this one depends on.
1841//
1842// TODO: Make this work properly with vector types
1843//
1844void CWriter::printContainedStructs(const Type *Ty,
1845 std::set<const StructType*> &StructPrinted){
1846 // Don't walk through pointers.
1847 if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
1848
1849 // Print all contained types first.
1850 for (Type::subtype_iterator I = Ty->subtype_begin(),
1851 E = Ty->subtype_end(); I != E; ++I)
1852 printContainedStructs(*I, StructPrinted);
1853
1854 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1855 // Check to see if we have already printed this struct.
1856 if (StructPrinted.insert(STy).second) {
1857 // Print structure type out.
1858 std::string Name = TypeNames[STy];
1859 printType(Out, STy, false, Name, true);
1860 Out << ";\n\n";
1861 }
1862 }
1863}
1864
1865void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
1866 /// isStructReturn - Should this function actually return a struct by-value?
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001867 bool isStructReturn = F->isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001868
1869 if (F->hasInternalLinkage()) Out << "static ";
1870 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
1871 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
1872 switch (F->getCallingConv()) {
1873 case CallingConv::X86_StdCall:
1874 Out << "__stdcall ";
1875 break;
1876 case CallingConv::X86_FastCall:
1877 Out << "__fastcall ";
1878 break;
1879 }
1880
1881 // Loop over the arguments, printing them...
1882 const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001883 const ParamAttrsList *PAL = F->getParamAttrs();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001884
1885 std::stringstream FunctionInnards;
1886
1887 // Print out the name...
1888 FunctionInnards << GetValueName(F) << '(';
1889
1890 bool PrintedArg = false;
1891 if (!F->isDeclaration()) {
1892 if (!F->arg_empty()) {
1893 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
Evan Cheng2054cb02008-01-11 03:07:46 +00001894 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001895
1896 // If this is a struct-return function, don't print the hidden
1897 // struct-return argument.
1898 if (isStructReturn) {
1899 assert(I != E && "Invalid struct return function!");
1900 ++I;
Evan Cheng2054cb02008-01-11 03:07:46 +00001901 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001902 }
1903
1904 std::string ArgName;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001905 for (; I != E; ++I) {
1906 if (PrintedArg) FunctionInnards << ", ";
1907 if (I->hasName() || !Prototype)
1908 ArgName = GetValueName(I);
1909 else
1910 ArgName = "";
Evan Cheng2054cb02008-01-11 03:07:46 +00001911 const Type *ArgTy = I->getType();
Evan Cheng17254e62008-01-11 09:12:49 +00001912 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
1913 assert(isa<PointerType>(ArgTy));
1914 ArgTy = cast<PointerType>(ArgTy)->getElementType();
1915 const Value *Arg = &(*I);
1916 ByValParams.insert(Arg);
1917 }
Evan Cheng2054cb02008-01-11 03:07:46 +00001918 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001919 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001920 ArgName);
1921 PrintedArg = true;
1922 ++Idx;
1923 }
1924 }
1925 } else {
1926 // Loop over the arguments, printing them.
1927 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
Evan Chengf8956382008-01-11 23:10:11 +00001928 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001929
1930 // If this is a struct-return function, don't print the hidden
1931 // struct-return argument.
1932 if (isStructReturn) {
1933 assert(I != E && "Invalid struct return function!");
1934 ++I;
Evan Chengf8956382008-01-11 23:10:11 +00001935 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001936 }
1937
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001938 for (; I != E; ++I) {
1939 if (PrintedArg) FunctionInnards << ", ";
Evan Chengf8956382008-01-11 23:10:11 +00001940 const Type *ArgTy = *I;
1941 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
1942 assert(isa<PointerType>(ArgTy));
1943 ArgTy = cast<PointerType>(ArgTy)->getElementType();
1944 }
1945 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001946 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001947 PrintedArg = true;
1948 ++Idx;
1949 }
1950 }
1951
1952 // Finish printing arguments... if this is a vararg function, print the ...,
1953 // unless there are no known types, in which case, we just emit ().
1954 //
1955 if (FT->isVarArg() && PrintedArg) {
1956 if (PrintedArg) FunctionInnards << ", ";
1957 FunctionInnards << "..."; // Output varargs portion of signature!
1958 } else if (!FT->isVarArg() && !PrintedArg) {
1959 FunctionInnards << "void"; // ret() -> ret(void) in C.
1960 }
1961 FunctionInnards << ')';
1962
1963 // Get the return tpe for the function.
1964 const Type *RetTy;
1965 if (!isStructReturn)
1966 RetTy = F->getReturnType();
1967 else {
1968 // If this is a struct-return function, print the struct-return type.
1969 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
1970 }
1971
1972 // Print out the return type and the signature built above.
1973 printType(Out, RetTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001974 /*isSigned=*/ PAL && PAL->paramHasAttr(0, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001975 FunctionInnards.str());
1976}
1977
1978static inline bool isFPIntBitCast(const Instruction &I) {
1979 if (!isa<BitCastInst>(I))
1980 return false;
1981 const Type *SrcTy = I.getOperand(0)->getType();
1982 const Type *DstTy = I.getType();
1983 return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
1984 (DstTy->isFloatingPoint() && SrcTy->isInteger());
1985}
1986
1987void CWriter::printFunction(Function &F) {
1988 /// isStructReturn - Should this function actually return a struct by-value?
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001989 bool isStructReturn = F.isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001990
1991 printFunctionSignature(&F, false);
1992 Out << " {\n";
1993
1994 // If this is a struct return function, handle the result with magic.
1995 if (isStructReturn) {
1996 const Type *StructTy =
1997 cast<PointerType>(F.arg_begin()->getType())->getElementType();
1998 Out << " ";
1999 printType(Out, StructTy, false, "StructReturn");
2000 Out << "; /* Struct return temporary */\n";
2001
2002 Out << " ";
2003 printType(Out, F.arg_begin()->getType(), false,
2004 GetValueName(F.arg_begin()));
2005 Out << " = &StructReturn;\n";
2006 }
2007
2008 bool PrintedVar = false;
2009
2010 // print local variable information for the function
2011 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
2012 if (const AllocaInst *AI = isDirectAlloca(&*I)) {
2013 Out << " ";
2014 printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
2015 Out << "; /* Address-exposed local */\n";
2016 PrintedVar = true;
2017 } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
2018 Out << " ";
2019 printType(Out, I->getType(), false, GetValueName(&*I));
2020 Out << ";\n";
2021
2022 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
2023 Out << " ";
2024 printType(Out, I->getType(), false,
2025 GetValueName(&*I)+"__PHI_TEMPORARY");
2026 Out << ";\n";
2027 }
2028 PrintedVar = true;
2029 }
2030 // We need a temporary for the BitCast to use so it can pluck a value out
2031 // of a union to do the BitCast. This is separate from the need for a
2032 // variable to hold the result of the BitCast.
2033 if (isFPIntBitCast(*I)) {
2034 Out << " llvmBitCastUnion " << GetValueName(&*I)
2035 << "__BITCAST_TEMPORARY;\n";
2036 PrintedVar = true;
2037 }
2038 }
2039
2040 if (PrintedVar)
2041 Out << '\n';
2042
2043 if (F.hasExternalLinkage() && F.getName() == "main")
2044 Out << " CODE_FOR_MAIN();\n";
2045
2046 // print the basic blocks
2047 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2048 if (Loop *L = LI->getLoopFor(BB)) {
2049 if (L->getHeader() == BB && L->getParentLoop() == 0)
2050 printLoop(L);
2051 } else {
2052 printBasicBlock(BB);
2053 }
2054 }
2055
2056 Out << "}\n\n";
2057}
2058
2059void CWriter::printLoop(Loop *L) {
2060 Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
2061 << "' to make GCC happy */\n";
2062 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
2063 BasicBlock *BB = L->getBlocks()[i];
2064 Loop *BBLoop = LI->getLoopFor(BB);
2065 if (BBLoop == L)
2066 printBasicBlock(BB);
2067 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
2068 printLoop(BBLoop);
2069 }
2070 Out << " } while (1); /* end of syntactic loop '"
2071 << L->getHeader()->getName() << "' */\n";
2072}
2073
2074void CWriter::printBasicBlock(BasicBlock *BB) {
2075
2076 // Don't print the label for the basic block if there are no uses, or if
2077 // the only terminator use is the predecessor basic block's terminator.
2078 // We have to scan the use list because PHI nodes use basic blocks too but
2079 // do not require a label to be generated.
2080 //
2081 bool NeedsLabel = false;
2082 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2083 if (isGotoCodeNecessary(*PI, BB)) {
2084 NeedsLabel = true;
2085 break;
2086 }
2087
2088 if (NeedsLabel) Out << GetValueName(BB) << ":\n";
2089
2090 // Output all of the instructions in the basic block...
2091 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
2092 ++II) {
2093 if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
2094 if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
2095 outputLValue(II);
2096 else
2097 Out << " ";
2098 visit(*II);
2099 Out << ";\n";
2100 }
2101 }
2102
2103 // Don't emit prefix or suffix for the terminator...
2104 visit(*BB->getTerminator());
2105}
2106
2107
2108// Specific Instruction type classes... note that all of the casts are
2109// necessary because we use the instruction classes as opaque types...
2110//
2111void CWriter::visitReturnInst(ReturnInst &I) {
2112 // If this is a struct return function, return the temporary struct.
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002113 bool isStructReturn = I.getParent()->getParent()->isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002114
2115 if (isStructReturn) {
2116 Out << " return StructReturn;\n";
2117 return;
2118 }
2119
2120 // Don't output a void return if this is the last basic block in the function
2121 if (I.getNumOperands() == 0 &&
2122 &*--I.getParent()->getParent()->end() == I.getParent() &&
2123 !I.getParent()->size() == 1) {
2124 return;
2125 }
2126
2127 Out << " return";
2128 if (I.getNumOperands()) {
2129 Out << ' ';
2130 writeOperand(I.getOperand(0));
2131 }
2132 Out << ";\n";
2133}
2134
2135void CWriter::visitSwitchInst(SwitchInst &SI) {
2136
2137 Out << " switch (";
2138 writeOperand(SI.getOperand(0));
2139 Out << ") {\n default:\n";
2140 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
2141 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
2142 Out << ";\n";
2143 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
2144 Out << " case ";
2145 writeOperand(SI.getOperand(i));
2146 Out << ":\n";
2147 BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
2148 printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
2149 printBranchToBlock(SI.getParent(), Succ, 2);
2150 if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
2151 Out << " break;\n";
2152 }
2153 Out << " }\n";
2154}
2155
2156void CWriter::visitUnreachableInst(UnreachableInst &I) {
2157 Out << " /*UNREACHABLE*/;\n";
2158}
2159
2160bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
2161 /// FIXME: This should be reenabled, but loop reordering safe!!
2162 return true;
2163
2164 if (next(Function::iterator(From)) != Function::iterator(To))
2165 return true; // Not the direct successor, we need a goto.
2166
2167 //isa<SwitchInst>(From->getTerminator())
2168
2169 if (LI->getLoopFor(From) != LI->getLoopFor(To))
2170 return true;
2171 return false;
2172}
2173
2174void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
2175 BasicBlock *Successor,
2176 unsigned Indent) {
2177 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
2178 PHINode *PN = cast<PHINode>(I);
2179 // Now we have to do the printing.
2180 Value *IV = PN->getIncomingValueForBlock(CurBlock);
2181 if (!isa<UndefValue>(IV)) {
2182 Out << std::string(Indent, ' ');
2183 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
2184 writeOperand(IV);
2185 Out << "; /* for PHI node */\n";
2186 }
2187 }
2188}
2189
2190void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
2191 unsigned Indent) {
2192 if (isGotoCodeNecessary(CurBB, Succ)) {
2193 Out << std::string(Indent, ' ') << " goto ";
2194 writeOperand(Succ);
2195 Out << ";\n";
2196 }
2197}
2198
2199// Branch instruction printing - Avoid printing out a branch to a basic block
2200// that immediately succeeds the current one.
2201//
2202void CWriter::visitBranchInst(BranchInst &I) {
2203
2204 if (I.isConditional()) {
2205 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
2206 Out << " if (";
2207 writeOperand(I.getCondition());
2208 Out << ") {\n";
2209
2210 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
2211 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
2212
2213 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
2214 Out << " } else {\n";
2215 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2216 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2217 }
2218 } else {
2219 // First goto not necessary, assume second one is...
2220 Out << " if (!";
2221 writeOperand(I.getCondition());
2222 Out << ") {\n";
2223
2224 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2225 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2226 }
2227
2228 Out << " }\n";
2229 } else {
2230 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
2231 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
2232 }
2233 Out << "\n";
2234}
2235
2236// PHI nodes get copied into temporary values at the end of predecessor basic
2237// blocks. We now need to copy these temporary values into the REAL value for
2238// the PHI.
2239void CWriter::visitPHINode(PHINode &I) {
2240 writeOperand(&I);
2241 Out << "__PHI_TEMPORARY";
2242}
2243
2244
2245void CWriter::visitBinaryOperator(Instruction &I) {
2246 // binary instructions, shift instructions, setCond instructions.
2247 assert(!isa<PointerType>(I.getType()));
2248
2249 // We must cast the results of binary operations which might be promoted.
2250 bool needsCast = false;
2251 if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
2252 || (I.getType() == Type::FloatTy)) {
2253 needsCast = true;
2254 Out << "((";
2255 printType(Out, I.getType(), false);
2256 Out << ")(";
2257 }
2258
2259 // If this is a negation operation, print it out as such. For FP, we don't
2260 // want to print "-0.0 - X".
2261 if (BinaryOperator::isNeg(&I)) {
2262 Out << "-(";
2263 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
2264 Out << ")";
2265 } else if (I.getOpcode() == Instruction::FRem) {
2266 // Output a call to fmod/fmodf instead of emitting a%b
2267 if (I.getType() == Type::FloatTy)
2268 Out << "fmodf(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002269 else if (I.getType() == Type::DoubleTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002270 Out << "fmod(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002271 else // all 3 flavors of long double
2272 Out << "fmodl(";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002273 writeOperand(I.getOperand(0));
2274 Out << ", ";
2275 writeOperand(I.getOperand(1));
2276 Out << ")";
2277 } else {
2278
2279 // Write out the cast of the instruction's value back to the proper type
2280 // if necessary.
2281 bool NeedsClosingParens = writeInstructionCast(I);
2282
2283 // Certain instructions require the operand to be forced to a specific type
2284 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2285 // below for operand 1
2286 writeOperandWithCast(I.getOperand(0), I.getOpcode());
2287
2288 switch (I.getOpcode()) {
2289 case Instruction::Add: Out << " + "; break;
2290 case Instruction::Sub: Out << " - "; break;
2291 case Instruction::Mul: Out << " * "; break;
2292 case Instruction::URem:
2293 case Instruction::SRem:
2294 case Instruction::FRem: Out << " % "; break;
2295 case Instruction::UDiv:
2296 case Instruction::SDiv:
2297 case Instruction::FDiv: Out << " / "; break;
2298 case Instruction::And: Out << " & "; break;
2299 case Instruction::Or: Out << " | "; break;
2300 case Instruction::Xor: Out << " ^ "; break;
2301 case Instruction::Shl : Out << " << "; break;
2302 case Instruction::LShr:
2303 case Instruction::AShr: Out << " >> "; break;
2304 default: cerr << "Invalid operator type!" << I; abort();
2305 }
2306
2307 writeOperandWithCast(I.getOperand(1), I.getOpcode());
2308 if (NeedsClosingParens)
2309 Out << "))";
2310 }
2311
2312 if (needsCast) {
2313 Out << "))";
2314 }
2315}
2316
2317void CWriter::visitICmpInst(ICmpInst &I) {
2318 // We must cast the results of icmp which might be promoted.
2319 bool needsCast = false;
2320
2321 // Write out the cast of the instruction's value back to the proper type
2322 // if necessary.
2323 bool NeedsClosingParens = writeInstructionCast(I);
2324
2325 // Certain icmp predicate require the operand to be forced to a specific type
2326 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2327 // below for operand 1
Chris Lattner389c9142007-09-15 06:51:03 +00002328 writeOperandWithCast(I.getOperand(0), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002329
2330 switch (I.getPredicate()) {
2331 case ICmpInst::ICMP_EQ: Out << " == "; break;
2332 case ICmpInst::ICMP_NE: Out << " != "; break;
2333 case ICmpInst::ICMP_ULE:
2334 case ICmpInst::ICMP_SLE: Out << " <= "; break;
2335 case ICmpInst::ICMP_UGE:
2336 case ICmpInst::ICMP_SGE: Out << " >= "; break;
2337 case ICmpInst::ICMP_ULT:
2338 case ICmpInst::ICMP_SLT: Out << " < "; break;
2339 case ICmpInst::ICMP_UGT:
2340 case ICmpInst::ICMP_SGT: Out << " > "; break;
2341 default: cerr << "Invalid icmp predicate!" << I; abort();
2342 }
2343
Chris Lattner389c9142007-09-15 06:51:03 +00002344 writeOperandWithCast(I.getOperand(1), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002345 if (NeedsClosingParens)
2346 Out << "))";
2347
2348 if (needsCast) {
2349 Out << "))";
2350 }
2351}
2352
2353void CWriter::visitFCmpInst(FCmpInst &I) {
2354 if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
2355 Out << "0";
2356 return;
2357 }
2358 if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
2359 Out << "1";
2360 return;
2361 }
2362
2363 const char* op = 0;
2364 switch (I.getPredicate()) {
2365 default: assert(0 && "Illegal FCmp predicate");
2366 case FCmpInst::FCMP_ORD: op = "ord"; break;
2367 case FCmpInst::FCMP_UNO: op = "uno"; break;
2368 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
2369 case FCmpInst::FCMP_UNE: op = "une"; break;
2370 case FCmpInst::FCMP_ULT: op = "ult"; break;
2371 case FCmpInst::FCMP_ULE: op = "ule"; break;
2372 case FCmpInst::FCMP_UGT: op = "ugt"; break;
2373 case FCmpInst::FCMP_UGE: op = "uge"; break;
2374 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
2375 case FCmpInst::FCMP_ONE: op = "one"; break;
2376 case FCmpInst::FCMP_OLT: op = "olt"; break;
2377 case FCmpInst::FCMP_OLE: op = "ole"; break;
2378 case FCmpInst::FCMP_OGT: op = "ogt"; break;
2379 case FCmpInst::FCMP_OGE: op = "oge"; break;
2380 }
2381
2382 Out << "llvm_fcmp_" << op << "(";
2383 // Write the first operand
2384 writeOperand(I.getOperand(0));
2385 Out << ", ";
2386 // Write the second operand
2387 writeOperand(I.getOperand(1));
2388 Out << ")";
2389}
2390
2391static const char * getFloatBitCastField(const Type *Ty) {
2392 switch (Ty->getTypeID()) {
2393 default: assert(0 && "Invalid Type");
2394 case Type::FloatTyID: return "Float";
2395 case Type::DoubleTyID: return "Double";
2396 case Type::IntegerTyID: {
2397 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
2398 if (NumBits <= 32)
2399 return "Int32";
2400 else
2401 return "Int64";
2402 }
2403 }
2404}
2405
2406void CWriter::visitCastInst(CastInst &I) {
2407 const Type *DstTy = I.getType();
2408 const Type *SrcTy = I.getOperand(0)->getType();
2409 Out << '(';
2410 if (isFPIntBitCast(I)) {
2411 // These int<->float and long<->double casts need to be handled specially
2412 Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
2413 << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
2414 writeOperand(I.getOperand(0));
2415 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
2416 << getFloatBitCastField(I.getType());
2417 } else {
2418 printCast(I.getOpcode(), SrcTy, DstTy);
2419 if (I.getOpcode() == Instruction::SExt && SrcTy == Type::Int1Ty) {
2420 // Make sure we really get a sext from bool by subtracing the bool from 0
2421 Out << "0-";
2422 }
Evan Cheng17254e62008-01-11 09:12:49 +00002423 // If it's a byval parameter being casted, then takes its address.
2424 bool isByVal = ByValParams.count(I.getOperand(0));
2425 if (isByVal) {
2426 assert(I.getOpcode() == Instruction::BitCast &&
2427 "ByVal aggregate parameter must ptr type");
2428 Out << '&';
2429 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002430 writeOperand(I.getOperand(0));
2431 if (DstTy == Type::Int1Ty &&
2432 (I.getOpcode() == Instruction::Trunc ||
2433 I.getOpcode() == Instruction::FPToUI ||
2434 I.getOpcode() == Instruction::FPToSI ||
2435 I.getOpcode() == Instruction::PtrToInt)) {
2436 // Make sure we really get a trunc to bool by anding the operand with 1
2437 Out << "&1u";
2438 }
2439 }
2440 Out << ')';
2441}
2442
2443void CWriter::visitSelectInst(SelectInst &I) {
2444 Out << "((";
2445 writeOperand(I.getCondition());
2446 Out << ") ? (";
2447 writeOperand(I.getTrueValue());
2448 Out << ") : (";
2449 writeOperand(I.getFalseValue());
2450 Out << "))";
2451}
2452
2453
2454void CWriter::lowerIntrinsics(Function &F) {
2455 // This is used to keep track of intrinsics that get generated to a lowered
2456 // function. We must generate the prototypes before the function body which
2457 // will only be expanded on first use (by the loop below).
2458 std::vector<Function*> prototypesToGen;
2459
2460 // Examine all the instructions in this function to find the intrinsics that
2461 // need to be lowered.
2462 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
2463 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
2464 if (CallInst *CI = dyn_cast<CallInst>(I++))
2465 if (Function *F = CI->getCalledFunction())
2466 switch (F->getIntrinsicID()) {
2467 case Intrinsic::not_intrinsic:
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002468 case Intrinsic::memory_barrier:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002469 case Intrinsic::vastart:
2470 case Intrinsic::vacopy:
2471 case Intrinsic::vaend:
2472 case Intrinsic::returnaddress:
2473 case Intrinsic::frameaddress:
2474 case Intrinsic::setjmp:
2475 case Intrinsic::longjmp:
2476 case Intrinsic::prefetch:
2477 case Intrinsic::dbg_stoppoint:
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002478 case Intrinsic::powi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002479 // We directly implement these intrinsics
2480 break;
2481 default:
2482 // If this is an intrinsic that directly corresponds to a GCC
2483 // builtin, we handle it.
2484 const char *BuiltinName = "";
2485#define GET_GCC_BUILTIN_NAME
2486#include "llvm/Intrinsics.gen"
2487#undef GET_GCC_BUILTIN_NAME
2488 // If we handle it, don't lower it.
2489 if (BuiltinName[0]) break;
2490
2491 // All other intrinsic calls we must lower.
2492 Instruction *Before = 0;
2493 if (CI != &BB->front())
2494 Before = prior(BasicBlock::iterator(CI));
2495
2496 IL->LowerIntrinsicCall(CI);
2497 if (Before) { // Move iterator to instruction after call
2498 I = Before; ++I;
2499 } else {
2500 I = BB->begin();
2501 }
2502 // If the intrinsic got lowered to another call, and that call has
2503 // a definition then we need to make sure its prototype is emitted
2504 // before any calls to it.
2505 if (CallInst *Call = dyn_cast<CallInst>(I))
2506 if (Function *NewF = Call->getCalledFunction())
2507 if (!NewF->isDeclaration())
2508 prototypesToGen.push_back(NewF);
2509
2510 break;
2511 }
2512
2513 // We may have collected some prototypes to emit in the loop above.
2514 // Emit them now, before the function that uses them is emitted. But,
2515 // be careful not to emit them twice.
2516 std::vector<Function*>::iterator I = prototypesToGen.begin();
2517 std::vector<Function*>::iterator E = prototypesToGen.end();
2518 for ( ; I != E; ++I) {
2519 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
2520 Out << '\n';
2521 printFunctionSignature(*I, true);
2522 Out << ";\n";
2523 }
2524 }
2525}
2526
2527
2528void CWriter::visitCallInst(CallInst &I) {
2529 //check if we have inline asm
2530 if (isInlineAsm(I)) {
2531 visitInlineAsm(I);
2532 return;
2533 }
2534
2535 bool WroteCallee = false;
2536
2537 // Handle intrinsic function calls first...
2538 if (Function *F = I.getCalledFunction())
2539 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
2540 switch (ID) {
2541 default: {
2542 // If this is an intrinsic that directly corresponds to a GCC
2543 // builtin, we emit it here.
2544 const char *BuiltinName = "";
2545#define GET_GCC_BUILTIN_NAME
2546#include "llvm/Intrinsics.gen"
2547#undef GET_GCC_BUILTIN_NAME
2548 assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
2549
2550 Out << BuiltinName;
2551 WroteCallee = true;
2552 break;
2553 }
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002554 case Intrinsic::memory_barrier:
2555 Out << "0; __sync_syncronize()";
2556 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002557 case Intrinsic::vastart:
2558 Out << "0; ";
2559
2560 Out << "va_start(*(va_list*)";
2561 writeOperand(I.getOperand(1));
2562 Out << ", ";
2563 // Output the last argument to the enclosing function...
2564 if (I.getParent()->getParent()->arg_empty()) {
2565 cerr << "The C backend does not currently support zero "
2566 << "argument varargs functions, such as '"
2567 << I.getParent()->getParent()->getName() << "'!\n";
2568 abort();
2569 }
2570 writeOperand(--I.getParent()->getParent()->arg_end());
2571 Out << ')';
2572 return;
2573 case Intrinsic::vaend:
2574 if (!isa<ConstantPointerNull>(I.getOperand(1))) {
2575 Out << "0; va_end(*(va_list*)";
2576 writeOperand(I.getOperand(1));
2577 Out << ')';
2578 } else {
2579 Out << "va_end(*(va_list*)0)";
2580 }
2581 return;
2582 case Intrinsic::vacopy:
2583 Out << "0; ";
2584 Out << "va_copy(*(va_list*)";
2585 writeOperand(I.getOperand(1));
2586 Out << ", *(va_list*)";
2587 writeOperand(I.getOperand(2));
2588 Out << ')';
2589 return;
2590 case Intrinsic::returnaddress:
2591 Out << "__builtin_return_address(";
2592 writeOperand(I.getOperand(1));
2593 Out << ')';
2594 return;
2595 case Intrinsic::frameaddress:
2596 Out << "__builtin_frame_address(";
2597 writeOperand(I.getOperand(1));
2598 Out << ')';
2599 return;
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002600 case Intrinsic::powi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002601 Out << "__builtin_powi(";
2602 writeOperand(I.getOperand(1));
2603 Out << ", ";
2604 writeOperand(I.getOperand(2));
2605 Out << ')';
2606 return;
2607 case Intrinsic::setjmp:
2608 Out << "setjmp(*(jmp_buf*)";
2609 writeOperand(I.getOperand(1));
2610 Out << ')';
2611 return;
2612 case Intrinsic::longjmp:
2613 Out << "longjmp(*(jmp_buf*)";
2614 writeOperand(I.getOperand(1));
2615 Out << ", ";
2616 writeOperand(I.getOperand(2));
2617 Out << ')';
2618 return;
2619 case Intrinsic::prefetch:
2620 Out << "LLVM_PREFETCH((const void *)";
2621 writeOperand(I.getOperand(1));
2622 Out << ", ";
2623 writeOperand(I.getOperand(2));
2624 Out << ", ";
2625 writeOperand(I.getOperand(3));
2626 Out << ")";
2627 return;
Chris Lattner7627df32007-11-28 21:26:17 +00002628 case Intrinsic::stacksave:
2629 // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
2630 // to work around GCC bugs (see PR1809).
2631 Out << "0; *((void**)&" << GetValueName(&I)
2632 << ") = __builtin_stack_save()";
2633 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002634 case Intrinsic::dbg_stoppoint: {
2635 // If we use writeOperand directly we get a "u" suffix which is rejected
2636 // by gcc.
2637 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2638
2639 Out << "\n#line "
2640 << SPI.getLine()
2641 << " \"" << SPI.getDirectory()
2642 << SPI.getFileName() << "\"\n";
2643 return;
2644 }
2645 }
2646 }
2647
2648 Value *Callee = I.getCalledValue();
2649
2650 const PointerType *PTy = cast<PointerType>(Callee->getType());
2651 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2652
2653 // If this is a call to a struct-return function, assign to the first
2654 // parameter instead of passing it to the call.
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002655 const ParamAttrsList *PAL = I.getParamAttrs();
Evan Chengb8a072c2008-01-12 18:53:07 +00002656 bool hasByVal = I.hasByValArgument();
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002657 bool isStructRet = I.isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002658 if (isStructRet) {
Evan Chengf8956382008-01-11 23:10:11 +00002659 bool isByVal = ByValParams.count(I.getOperand(1));
2660 if (!isByVal) Out << "*(";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002661 writeOperand(I.getOperand(1));
Evan Chengf8956382008-01-11 23:10:11 +00002662 if (!isByVal) Out << ")";
2663 Out << " = ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002664 }
2665
2666 if (I.isTailCall()) Out << " /*tail*/ ";
2667
2668 if (!WroteCallee) {
2669 // If this is an indirect call to a struct return function, we need to cast
Evan Chengb8a072c2008-01-12 18:53:07 +00002670 // the pointer. Ditto for indirect calls with byval arguments.
2671 bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002672
2673 // GCC is a real PITA. It does not permit codegening casts of functions to
2674 // function pointers if they are in a call (it generates a trap instruction
2675 // instead!). We work around this by inserting a cast to void* in between
2676 // the function and the function pointer cast. Unfortunately, we can't just
2677 // form the constant expression here, because the folder will immediately
2678 // nuke it.
2679 //
2680 // Note finally, that this is completely unsafe. ANSI C does not guarantee
2681 // that void* and function pointers have the same size. :( To deal with this
2682 // in the common case, we handle casts where the number of arguments passed
2683 // match exactly.
2684 //
2685 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
2686 if (CE->isCast())
2687 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
2688 NeedsCast = true;
2689 Callee = RF;
2690 }
2691
2692 if (NeedsCast) {
2693 // Ok, just cast the pointer type.
2694 Out << "((";
Evan Chengb8a072c2008-01-12 18:53:07 +00002695 if (isStructRet)
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002696 printStructReturnPointerFunctionType(Out, PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002697 cast<PointerType>(I.getCalledValue()->getType()));
Evan Chengb8a072c2008-01-12 18:53:07 +00002698 else if (hasByVal)
2699 printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
2700 else
2701 printType(Out, I.getCalledValue()->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002702 Out << ")(void*)";
2703 }
2704 writeOperand(Callee);
2705 if (NeedsCast) Out << ')';
2706 }
2707
2708 Out << '(';
2709
2710 unsigned NumDeclaredParams = FTy->getNumParams();
2711
2712 CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
2713 unsigned ArgNo = 0;
2714 if (isStructRet) { // Skip struct return argument.
2715 ++AI;
2716 ++ArgNo;
2717 }
2718
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002719 bool PrintedArg = false;
Evan Chengf8956382008-01-11 23:10:11 +00002720 for (; AI != AE; ++AI, ++ArgNo) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002721 if (PrintedArg) Out << ", ";
2722 if (ArgNo < NumDeclaredParams &&
2723 (*AI)->getType() != FTy->getParamType(ArgNo)) {
2724 Out << '(';
2725 printType(Out, FTy->getParamType(ArgNo),
Evan Chengf8956382008-01-11 23:10:11 +00002726 /*isSigned=*/PAL && PAL->paramHasAttr(ArgNo+1, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002727 Out << ')';
2728 }
Evan Chengf8956382008-01-11 23:10:11 +00002729 // Check if the argument is expected to be passed by value.
2730 bool isOutByVal = PAL && PAL->paramHasAttr(ArgNo+1, ParamAttr::ByVal);
2731 // Check if this argument itself is passed in by reference.
Evan Chengc25c7742008-02-20 18:32:05 +00002732 bool isInByVal = ByValParams.count(*AI);
2733 if (isOutByVal && !isInByVal)
Evan Chengf8956382008-01-11 23:10:11 +00002734 Out << "*(";
Evan Chengc25c7742008-02-20 18:32:05 +00002735 else if (!isOutByVal && isInByVal)
2736 Out << "&(";
Evan Chengf8956382008-01-11 23:10:11 +00002737 writeOperand(*AI);
Evan Chengc25c7742008-02-20 18:32:05 +00002738 if (isOutByVal ^ isInByVal)
Evan Chengf8956382008-01-11 23:10:11 +00002739 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002740 PrintedArg = true;
2741 }
2742 Out << ')';
2743}
2744
2745
2746//This converts the llvm constraint string to something gcc is expecting.
2747//TODO: work out platform independent constraints and factor those out
2748// of the per target tables
2749// handle multiple constraint codes
2750std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
2751
2752 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
2753
2754 const char** table = 0;
2755
2756 //Grab the translation table from TargetAsmInfo if it exists
2757 if (!TAsm) {
2758 std::string E;
Gordon Henriksen99e34ab2007-10-17 21:28:48 +00002759 const TargetMachineRegistry::entry* Match =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002760 TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
2761 if (Match) {
2762 //Per platform Target Machines don't exist, so create it
2763 // this must be done only once
2764 const TargetMachine* TM = Match->CtorFn(*TheModule, "");
2765 TAsm = TM->getTargetAsmInfo();
2766 }
2767 }
2768 if (TAsm)
2769 table = TAsm->getAsmCBE();
2770
2771 //Search the translation table if it exists
2772 for (int i = 0; table && table[i]; i += 2)
2773 if (c.Codes[0] == table[i])
2774 return table[i+1];
2775
2776 //default is identity
2777 return c.Codes[0];
2778}
2779
2780//TODO: import logic from AsmPrinter.cpp
2781static std::string gccifyAsm(std::string asmstr) {
2782 for (std::string::size_type i = 0; i != asmstr.size(); ++i)
2783 if (asmstr[i] == '\n')
2784 asmstr.replace(i, 1, "\\n");
2785 else if (asmstr[i] == '\t')
2786 asmstr.replace(i, 1, "\\t");
2787 else if (asmstr[i] == '$') {
2788 if (asmstr[i + 1] == '{') {
2789 std::string::size_type a = asmstr.find_first_of(':', i + 1);
2790 std::string::size_type b = asmstr.find_first_of('}', i + 1);
2791 std::string n = "%" +
2792 asmstr.substr(a + 1, b - a - 1) +
2793 asmstr.substr(i + 2, a - i - 2);
2794 asmstr.replace(i, b - i + 1, n);
2795 i += n.size() - 1;
2796 } else
2797 asmstr.replace(i, 1, "%");
2798 }
2799 else if (asmstr[i] == '%')//grr
2800 { asmstr.replace(i, 1, "%%"); ++i;}
2801
2802 return asmstr;
2803}
2804
2805//TODO: assumptions about what consume arguments from the call are likely wrong
2806// handle communitivity
2807void CWriter::visitInlineAsm(CallInst &CI) {
2808 InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
2809 std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
2810 std::vector<std::pair<std::string, Value*> > Input;
2811 std::vector<std::pair<std::string, Value*> > Output;
2812 std::string Clobber;
2813 int count = CI.getType() == Type::VoidTy ? 1 : 0;
2814 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
2815 E = Constraints.end(); I != E; ++I) {
2816 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
2817 std::string c =
2818 InterpretASMConstraint(*I);
2819 switch(I->Type) {
2820 default:
2821 assert(0 && "Unknown asm constraint");
2822 break;
2823 case InlineAsm::isInput: {
2824 if (c.size()) {
2825 Input.push_back(std::make_pair(c, count ? CI.getOperand(count) : &CI));
2826 ++count; //consume arg
2827 }
2828 break;
2829 }
2830 case InlineAsm::isOutput: {
2831 if (c.size()) {
2832 Output.push_back(std::make_pair("="+((I->isEarlyClobber ? "&" : "")+c),
2833 count ? CI.getOperand(count) : &CI));
2834 ++count; //consume arg
2835 }
2836 break;
2837 }
2838 case InlineAsm::isClobber: {
2839 if (c.size())
2840 Clobber += ",\"" + c + "\"";
2841 break;
2842 }
2843 }
2844 }
2845
2846 //fix up the asm string for gcc
2847 std::string asmstr = gccifyAsm(as->getAsmString());
2848
2849 Out << "__asm__ volatile (\"" << asmstr << "\"\n";
2850 Out << " :";
2851 for (std::vector<std::pair<std::string, Value*> >::iterator I = Output.begin(),
2852 E = Output.end(); I != E; ++I) {
2853 Out << "\"" << I->first << "\"(";
2854 writeOperandRaw(I->second);
2855 Out << ")";
2856 if (I + 1 != E)
2857 Out << ",";
2858 }
2859 Out << "\n :";
2860 for (std::vector<std::pair<std::string, Value*> >::iterator I = Input.begin(),
2861 E = Input.end(); I != E; ++I) {
2862 Out << "\"" << I->first << "\"(";
2863 writeOperandRaw(I->second);
2864 Out << ")";
2865 if (I + 1 != E)
2866 Out << ",";
2867 }
2868 if (Clobber.size())
2869 Out << "\n :" << Clobber.substr(1);
2870 Out << ")";
2871}
2872
2873void CWriter::visitMallocInst(MallocInst &I) {
2874 assert(0 && "lowerallocations pass didn't work!");
2875}
2876
2877void CWriter::visitAllocaInst(AllocaInst &I) {
2878 Out << '(';
2879 printType(Out, I.getType());
2880 Out << ") alloca(sizeof(";
2881 printType(Out, I.getType()->getElementType());
2882 Out << ')';
2883 if (I.isArrayAllocation()) {
2884 Out << " * " ;
2885 writeOperand(I.getOperand(0));
2886 }
2887 Out << ')';
2888}
2889
2890void CWriter::visitFreeInst(FreeInst &I) {
2891 assert(0 && "lowerallocations pass didn't work!");
2892}
2893
2894void CWriter::printIndexingExpression(Value *Ptr, gep_type_iterator I,
2895 gep_type_iterator E) {
2896 bool HasImplicitAddress = false;
2897 // If accessing a global value with no indexing, avoid *(&GV) syndrome
2898 if (isa<GlobalValue>(Ptr)) {
2899 HasImplicitAddress = true;
2900 } else if (isDirectAlloca(Ptr)) {
2901 HasImplicitAddress = true;
2902 }
2903
2904 if (I == E) {
2905 if (!HasImplicitAddress)
2906 Out << '*'; // Implicit zero first argument: '*x' is equivalent to 'x[0]'
2907
2908 writeOperandInternal(Ptr);
2909 return;
2910 }
2911
2912 const Constant *CI = dyn_cast<Constant>(I.getOperand());
2913 if (HasImplicitAddress && (!CI || !CI->isNullValue()))
2914 Out << "(&";
2915
2916 writeOperandInternal(Ptr);
2917
2918 if (HasImplicitAddress && (!CI || !CI->isNullValue())) {
2919 Out << ')';
2920 HasImplicitAddress = false; // HIA is only true if we haven't addressed yet
2921 }
2922
Anton Korobeynikov8c90d2a2008-02-20 11:22:39 +00002923 assert((!HasImplicitAddress || (CI && CI->isNullValue())) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002924 "Can only have implicit address with direct accessing");
2925
2926 if (HasImplicitAddress) {
2927 ++I;
2928 } else if (CI && CI->isNullValue()) {
2929 gep_type_iterator TmpI = I; ++TmpI;
2930
2931 // Print out the -> operator if possible...
2932 if (TmpI != E && isa<StructType>(*TmpI)) {
Evan Cheng17254e62008-01-11 09:12:49 +00002933 // Check if it's actually an aggregate parameter passed by value.
2934 bool isByVal = ByValParams.count(Ptr);
2935 Out << ((HasImplicitAddress || isByVal) ? "." : "->");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002936 Out << "field" << cast<ConstantInt>(TmpI.getOperand())->getZExtValue();
2937 I = ++TmpI;
2938 }
2939 }
2940
2941 for (; I != E; ++I)
2942 if (isa<StructType>(*I)) {
2943 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
2944 } else {
2945 Out << '[';
Chris Lattner7ce1ee42007-09-22 20:16:48 +00002946 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002947 Out << ']';
2948 }
2949}
2950
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002951void CWriter::writeMemoryAccess(Value *Operand, const Type *OperandType,
2952 bool IsVolatile, unsigned Alignment) {
2953
2954 bool IsUnaligned = Alignment &&
2955 Alignment < TD->getABITypeAlignment(OperandType);
2956
2957 if (!IsUnaligned)
2958 Out << '*';
2959 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002960 Out << "((";
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002961 if (IsUnaligned)
2962 Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
2963 printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
2964 if (IsUnaligned) {
2965 Out << "; } ";
2966 if (IsVolatile) Out << "volatile ";
2967 Out << "*";
2968 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002969 Out << ")";
2970 }
2971
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002972 writeOperand(Operand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002973
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002974 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002975 Out << ')';
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002976 if (IsUnaligned)
2977 Out << "->data";
2978 }
2979}
2980
2981void CWriter::visitLoadInst(LoadInst &I) {
2982
2983 writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
2984 I.getAlignment());
2985
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002986}
2987
2988void CWriter::visitStoreInst(StoreInst &I) {
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002989
2990 writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
2991 I.isVolatile(), I.getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002992 Out << " = ";
2993 Value *Operand = I.getOperand(0);
2994 Constant *BitMask = 0;
2995 if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
2996 if (!ITy->isPowerOf2ByteWidth())
2997 // We have a bit width that doesn't match an even power-of-2 byte
2998 // size. Consequently we must & the value with the type's bit mask
2999 BitMask = ConstantInt::get(ITy, ITy->getBitMask());
3000 if (BitMask)
3001 Out << "((";
3002 writeOperand(Operand);
3003 if (BitMask) {
3004 Out << ") & ";
3005 printConstant(BitMask);
3006 Out << ")";
3007 }
3008}
3009
3010void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
3011 Out << '&';
3012 printIndexingExpression(I.getPointerOperand(), gep_type_begin(I),
3013 gep_type_end(I));
3014}
3015
3016void CWriter::visitVAArgInst(VAArgInst &I) {
3017 Out << "va_arg(*(va_list*)";
3018 writeOperand(I.getOperand(0));
3019 Out << ", ";
3020 printType(Out, I.getType());
3021 Out << ");\n ";
3022}
3023
3024//===----------------------------------------------------------------------===//
3025// External Interface declaration
3026//===----------------------------------------------------------------------===//
3027
3028bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
3029 std::ostream &o,
3030 CodeGenFileType FileType,
3031 bool Fast) {
3032 if (FileType != TargetMachine::AssemblyFile) return true;
3033
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003034 PM.add(createGCLoweringPass());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003035 PM.add(createLowerAllocationsPass(true));
3036 PM.add(createLowerInvokePass());
3037 PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
3038 PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
3039 PM.add(new CWriter(o));
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003040 PM.add(createCollectorMetadataDeleter());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003041 return false;
3042}