blob: b93f1d109a02df01ab0d29410fdccf237de9a1a2 [file] [log] [blame]
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001//===-- APFloat.cpp - Implement APFloat class -----------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Chris Lattnerb39cdde2007-08-20 22:49:32 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision floating
11// point values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattner36d26c22007-12-08 19:00:03 +000015#include "llvm/ADT/APFloat.h"
Ted Kremenek1f801fa2008-02-11 17:24:50 +000016#include "llvm/ADT/FoldingSet.h"
Dale Johannesend3b51fd2007-08-24 05:08:11 +000017#include "llvm/Support/MathExtras.h"
Chris Lattnerfad86b02008-08-17 07:19:36 +000018#include <cstring>
Chris Lattnerb39cdde2007-08-20 22:49:32 +000019
20using namespace llvm;
21
22#define convolve(lhs, rhs) ((lhs) * 4 + (rhs))
23
Neil Bootha30b0ee2007-10-03 22:26:02 +000024/* Assumed in hexadecimal significand parsing, and conversion to
25 hexadecimal strings. */
Chris Lattner9f17eb02008-08-17 04:58:58 +000026#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
Chris Lattnerb39cdde2007-08-20 22:49:32 +000027COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0);
28
29namespace llvm {
30
31 /* Represents floating point arithmetic semantics. */
32 struct fltSemantics {
33 /* The largest E such that 2^E is representable; this matches the
34 definition of IEEE 754. */
35 exponent_t maxExponent;
36
37 /* The smallest E such that 2^E is a normalized number; this
38 matches the definition of IEEE 754. */
39 exponent_t minExponent;
40
41 /* Number of bits in the significand. This includes the integer
42 bit. */
Neil Booth7a951ca2007-10-12 15:33:27 +000043 unsigned int precision;
Neil Boothcaf19d72007-10-14 10:29:28 +000044
45 /* True if arithmetic is supported. */
46 unsigned int arithmeticOK;
Chris Lattnerb39cdde2007-08-20 22:49:32 +000047 };
48
Neil Boothcaf19d72007-10-14 10:29:28 +000049 const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true };
50 const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true };
51 const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true };
52 const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, true };
53 const fltSemantics APFloat::Bogus = { 0, 0, 0, true };
Dale Johannesena471c2e2007-10-11 18:07:22 +000054
55 // The PowerPC format consists of two doubles. It does not map cleanly
56 // onto the usual format above. For now only storage of constants of
57 // this type is supported, no arithmetic.
Neil Boothcaf19d72007-10-14 10:29:28 +000058 const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022, 106, false };
Neil Booth96c74712007-10-12 16:02:31 +000059
60 /* A tight upper bound on number of parts required to hold the value
61 pow(5, power) is
62
Neil Booth686700e2007-10-15 15:00:55 +000063 power * 815 / (351 * integerPartWidth) + 1
Neil Booth96c74712007-10-12 16:02:31 +000064
65 However, whilst the result may require only this many parts,
66 because we are multiplying two values to get it, the
67 multiplication may require an extra part with the excess part
68 being zero (consider the trivial case of 1 * 1, tcFullMultiply
69 requires two parts to hold the single-part result). So we add an
70 extra one to guarantee enough space whilst multiplying. */
71 const unsigned int maxExponent = 16383;
72 const unsigned int maxPrecision = 113;
73 const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
Neil Booth686700e2007-10-15 15:00:55 +000074 const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815)
75 / (351 * integerPartWidth));
Chris Lattnerb39cdde2007-08-20 22:49:32 +000076}
77
78/* Put a bunch of private, handy routines in an anonymous namespace. */
79namespace {
80
Dan Gohman3bd659b2008-04-10 21:11:47 +000081 static inline unsigned int
Chris Lattnerb39cdde2007-08-20 22:49:32 +000082 partCountForBits(unsigned int bits)
83 {
84 return ((bits) + integerPartWidth - 1) / integerPartWidth;
85 }
86
Neil Booth1870f292007-10-14 10:16:12 +000087 /* Returns 0U-9U. Return values >= 10U are not digits. */
Dan Gohman3bd659b2008-04-10 21:11:47 +000088 static inline unsigned int
Neil Booth1870f292007-10-14 10:16:12 +000089 decDigitValue(unsigned int c)
Chris Lattnerb39cdde2007-08-20 22:49:32 +000090 {
Neil Booth1870f292007-10-14 10:16:12 +000091 return c - '0';
Chris Lattnerb39cdde2007-08-20 22:49:32 +000092 }
93
Dan Gohman3bd659b2008-04-10 21:11:47 +000094 static unsigned int
Neil Booth96c74712007-10-12 16:02:31 +000095 hexDigitValue(unsigned int c)
Chris Lattnerb39cdde2007-08-20 22:49:32 +000096 {
97 unsigned int r;
98
99 r = c - '0';
100 if(r <= 9)
101 return r;
102
103 r = c - 'A';
104 if(r <= 5)
105 return r + 10;
106
107 r = c - 'a';
108 if(r <= 5)
109 return r + 10;
110
111 return -1U;
112 }
113
Dan Gohman3bd659b2008-04-10 21:11:47 +0000114 static inline void
Neil Boothcaf19d72007-10-14 10:29:28 +0000115 assertArithmeticOK(const llvm::fltSemantics &semantics) {
116 assert(semantics.arithmeticOK
117 && "Compile-time arithmetic does not support these semantics");
118 }
119
Neil Booth1870f292007-10-14 10:16:12 +0000120 /* Return the value of a decimal exponent of the form
121 [+-]ddddddd.
122
123 If the exponent overflows, returns a large exponent with the
124 appropriate sign. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000125 static int
Neil Booth1870f292007-10-14 10:16:12 +0000126 readExponent(const char *p)
127 {
128 bool isNegative;
129 unsigned int absExponent;
130 const unsigned int overlargeExponent = 24000; /* FIXME. */
131
132 isNegative = (*p == '-');
133 if (*p == '-' || *p == '+')
134 p++;
135
136 absExponent = decDigitValue(*p++);
137 assert (absExponent < 10U);
138
139 for (;;) {
140 unsigned int value;
141
142 value = decDigitValue(*p);
143 if (value >= 10U)
144 break;
145
146 p++;
147 value += absExponent * 10;
148 if (absExponent >= overlargeExponent) {
149 absExponent = overlargeExponent;
150 break;
151 }
152 absExponent = value;
153 }
154
155 if (isNegative)
156 return -(int) absExponent;
157 else
158 return (int) absExponent;
159 }
160
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000161 /* This is ugly and needs cleaning up, but I don't immediately see
162 how whilst remaining safe. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000163 static int
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000164 totalExponent(const char *p, int exponentAdjustment)
165 {
Evan Cheng48e8c802008-05-02 21:15:08 +0000166 int unsignedExponent;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000167 bool negative, overflow;
Evan Cheng48e8c802008-05-02 21:15:08 +0000168 int exponent;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000169
170 /* Move past the exponent letter and sign to the digits. */
171 p++;
172 negative = *p == '-';
173 if(*p == '-' || *p == '+')
174 p++;
175
176 unsignedExponent = 0;
177 overflow = false;
178 for(;;) {
179 unsigned int value;
180
Neil Booth1870f292007-10-14 10:16:12 +0000181 value = decDigitValue(*p);
182 if(value >= 10U)
Neil Booth4f881702007-09-26 21:33:42 +0000183 break;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000184
185 p++;
186 unsignedExponent = unsignedExponent * 10 + value;
187 if(unsignedExponent > 65535)
Neil Booth4f881702007-09-26 21:33:42 +0000188 overflow = true;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000189 }
190
191 if(exponentAdjustment > 65535 || exponentAdjustment < -65536)
192 overflow = true;
193
194 if(!overflow) {
195 exponent = unsignedExponent;
196 if(negative)
Neil Booth4f881702007-09-26 21:33:42 +0000197 exponent = -exponent;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000198 exponent += exponentAdjustment;
199 if(exponent > 65535 || exponent < -65536)
Neil Booth4f881702007-09-26 21:33:42 +0000200 overflow = true;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000201 }
202
203 if(overflow)
204 exponent = negative ? -65536: 65535;
205
206 return exponent;
207 }
208
Dan Gohman3bd659b2008-04-10 21:11:47 +0000209 static const char *
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000210 skipLeadingZeroesAndAnyDot(const char *p, const char **dot)
211 {
212 *dot = 0;
213 while(*p == '0')
214 p++;
215
216 if(*p == '.') {
217 *dot = p++;
218 while(*p == '0')
Neil Booth4f881702007-09-26 21:33:42 +0000219 p++;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000220 }
221
222 return p;
223 }
224
Neil Booth1870f292007-10-14 10:16:12 +0000225 /* Given a normal decimal floating point number of the form
226
227 dddd.dddd[eE][+-]ddd
228
229 where the decimal point and exponent are optional, fill out the
Neil Booth686700e2007-10-15 15:00:55 +0000230 structure D. Exponent is appropriate if the significand is
231 treated as an integer, and normalizedExponent if the significand
232 is taken to have the decimal point after a single leading
233 non-zero digit.
234
Neil Bootha89e45f2007-12-05 13:01:24 +0000235 If the value is zero, V->firstSigDigit points to a non-digit, and
236 the return exponent is zero.
Neil Booth686700e2007-10-15 15:00:55 +0000237 */
Neil Booth1870f292007-10-14 10:16:12 +0000238 struct decimalInfo {
239 const char *firstSigDigit;
240 const char *lastSigDigit;
241 int exponent;
Neil Booth686700e2007-10-15 15:00:55 +0000242 int normalizedExponent;
Neil Booth1870f292007-10-14 10:16:12 +0000243 };
244
Dan Gohman3bd659b2008-04-10 21:11:47 +0000245 static void
Neil Booth1870f292007-10-14 10:16:12 +0000246 interpretDecimal(const char *p, decimalInfo *D)
247 {
248 const char *dot;
249
250 p = skipLeadingZeroesAndAnyDot (p, &dot);
251
252 D->firstSigDigit = p;
253 D->exponent = 0;
Neil Booth686700e2007-10-15 15:00:55 +0000254 D->normalizedExponent = 0;
Neil Booth1870f292007-10-14 10:16:12 +0000255
256 for (;;) {
257 if (*p == '.') {
258 assert(dot == 0);
259 dot = p++;
260 }
261 if (decDigitValue(*p) >= 10U)
262 break;
263 p++;
264 }
265
266 /* If number is all zerooes accept any exponent. */
Neil Boothcc233592007-12-05 13:06:04 +0000267 if (p != D->firstSigDigit) {
Neil Booth1870f292007-10-14 10:16:12 +0000268 if (*p == 'e' || *p == 'E')
269 D->exponent = readExponent(p + 1);
270
271 /* Implied decimal point? */
272 if (!dot)
273 dot = p;
274
275 /* Drop insignificant trailing zeroes. */
276 do
277 do
278 p--;
279 while (*p == '0');
280 while (*p == '.');
281
Neil Booth686700e2007-10-15 15:00:55 +0000282 /* Adjust the exponents for any decimal point. */
Evan Cheng48e8c802008-05-02 21:15:08 +0000283 D->exponent += static_cast<exponent_t>((dot - p) - (dot > p));
284 D->normalizedExponent = (D->exponent +
285 static_cast<exponent_t>((p - D->firstSigDigit)
286 - (dot > D->firstSigDigit && dot < p)));
Neil Booth1870f292007-10-14 10:16:12 +0000287 }
288
289 D->lastSigDigit = p;
290 }
291
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000292 /* Return the trailing fraction of a hexadecimal number.
293 DIGITVALUE is the first hex digit of the fraction, P points to
294 the next digit. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000295 static lostFraction
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000296 trailingHexadecimalFraction(const char *p, unsigned int digitValue)
297 {
298 unsigned int hexDigit;
299
300 /* If the first trailing digit isn't 0 or 8 we can work out the
301 fraction immediately. */
302 if(digitValue > 8)
303 return lfMoreThanHalf;
304 else if(digitValue < 8 && digitValue > 0)
305 return lfLessThanHalf;
306
307 /* Otherwise we need to find the first non-zero digit. */
308 while(*p == '0')
309 p++;
310
311 hexDigit = hexDigitValue(*p);
312
313 /* If we ran off the end it is exactly zero or one-half, otherwise
314 a little more. */
315 if(hexDigit == -1U)
316 return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
317 else
318 return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
319 }
320
Neil Boothb7dea4c2007-10-03 15:16:41 +0000321 /* Return the fraction lost were a bignum truncated losing the least
322 significant BITS bits. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000323 static lostFraction
Neil Bootha30b0ee2007-10-03 22:26:02 +0000324 lostFractionThroughTruncation(const integerPart *parts,
Neil Booth4f881702007-09-26 21:33:42 +0000325 unsigned int partCount,
326 unsigned int bits)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000327 {
328 unsigned int lsb;
329
330 lsb = APInt::tcLSB(parts, partCount);
331
332 /* Note this is guaranteed true if bits == 0, or LSB == -1U. */
333 if(bits <= lsb)
334 return lfExactlyZero;
335 if(bits == lsb + 1)
336 return lfExactlyHalf;
337 if(bits <= partCount * integerPartWidth
338 && APInt::tcExtractBit(parts, bits - 1))
339 return lfMoreThanHalf;
340
341 return lfLessThanHalf;
342 }
343
344 /* Shift DST right BITS bits noting lost fraction. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000345 static lostFraction
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000346 shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
347 {
348 lostFraction lost_fraction;
349
350 lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
351
352 APInt::tcShiftRight(dst, parts, bits);
353
354 return lost_fraction;
355 }
Neil Bootha30b0ee2007-10-03 22:26:02 +0000356
Neil Booth33d4c922007-10-07 08:51:21 +0000357 /* Combine the effect of two lost fractions. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000358 static lostFraction
Neil Booth33d4c922007-10-07 08:51:21 +0000359 combineLostFractions(lostFraction moreSignificant,
360 lostFraction lessSignificant)
361 {
362 if(lessSignificant != lfExactlyZero) {
363 if(moreSignificant == lfExactlyZero)
364 moreSignificant = lfLessThanHalf;
365 else if(moreSignificant == lfExactlyHalf)
366 moreSignificant = lfMoreThanHalf;
367 }
368
369 return moreSignificant;
370 }
Neil Bootha30b0ee2007-10-03 22:26:02 +0000371
Neil Booth96c74712007-10-12 16:02:31 +0000372 /* The error from the true value, in half-ulps, on multiplying two
373 floating point numbers, which differ from the value they
374 approximate by at most HUE1 and HUE2 half-ulps, is strictly less
375 than the returned value.
376
377 See "How to Read Floating Point Numbers Accurately" by William D
378 Clinger. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000379 static unsigned int
Neil Booth96c74712007-10-12 16:02:31 +0000380 HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
381 {
382 assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
383
384 if (HUerr1 + HUerr2 == 0)
385 return inexactMultiply * 2; /* <= inexactMultiply half-ulps. */
386 else
387 return inexactMultiply + 2 * (HUerr1 + HUerr2);
388 }
389
390 /* The number of ulps from the boundary (zero, or half if ISNEAREST)
391 when the least significant BITS are truncated. BITS cannot be
392 zero. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000393 static integerPart
Neil Booth96c74712007-10-12 16:02:31 +0000394 ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest)
395 {
396 unsigned int count, partBits;
397 integerPart part, boundary;
398
399 assert (bits != 0);
400
401 bits--;
402 count = bits / integerPartWidth;
403 partBits = bits % integerPartWidth + 1;
404
405 part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits));
406
407 if (isNearest)
408 boundary = (integerPart) 1 << (partBits - 1);
409 else
410 boundary = 0;
411
412 if (count == 0) {
413 if (part - boundary <= boundary - part)
414 return part - boundary;
415 else
416 return boundary - part;
417 }
418
419 if (part == boundary) {
420 while (--count)
421 if (parts[count])
422 return ~(integerPart) 0; /* A lot. */
423
424 return parts[0];
425 } else if (part == boundary - 1) {
426 while (--count)
427 if (~parts[count])
428 return ~(integerPart) 0; /* A lot. */
429
430 return -parts[0];
431 }
432
433 return ~(integerPart) 0; /* A lot. */
434 }
435
436 /* Place pow(5, power) in DST, and return the number of parts used.
437 DST must be at least one part larger than size of the answer. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000438 static unsigned int
Neil Booth96c74712007-10-12 16:02:31 +0000439 powerOf5(integerPart *dst, unsigned int power)
440 {
Dan Gohman7c2e4f22008-05-12 16:38:14 +0000441 static const integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125,
442 15625, 78125 };
Neil Booth96c74712007-10-12 16:02:31 +0000443 static integerPart pow5s[maxPowerOfFiveParts * 2 + 5] = { 78125 * 5 };
444 static unsigned int partsCount[16] = { 1 };
445
446 integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
447 unsigned int result;
448
449 assert(power <= maxExponent);
450
451 p1 = dst;
452 p2 = scratch;
453
454 *p1 = firstEightPowers[power & 7];
455 power >>= 3;
456
457 result = 1;
458 pow5 = pow5s;
459
460 for (unsigned int n = 0; power; power >>= 1, n++) {
461 unsigned int pc;
462
463 pc = partsCount[n];
464
465 /* Calculate pow(5,pow(2,n+3)) if we haven't yet. */
466 if (pc == 0) {
467 pc = partsCount[n - 1];
468 APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
469 pc *= 2;
470 if (pow5[pc - 1] == 0)
471 pc--;
472 partsCount[n] = pc;
473 }
474
475 if (power & 1) {
476 integerPart *tmp;
477
478 APInt::tcFullMultiply(p2, p1, pow5, result, pc);
479 result += pc;
480 if (p2[result - 1] == 0)
481 result--;
482
483 /* Now result is in p1 with partsCount parts and p2 is scratch
484 space. */
485 tmp = p1, p1 = p2, p2 = tmp;
486 }
487
488 pow5 += pc;
489 }
490
491 if (p1 != dst)
492 APInt::tcAssign(dst, p1, result);
493
494 return result;
495 }
496
Neil Bootha30b0ee2007-10-03 22:26:02 +0000497 /* Zero at the end to avoid modular arithmetic when adding one; used
498 when rounding up during hexadecimal output. */
499 static const char hexDigitsLower[] = "0123456789abcdef0";
500 static const char hexDigitsUpper[] = "0123456789ABCDEF0";
501 static const char infinityL[] = "infinity";
502 static const char infinityU[] = "INFINITY";
503 static const char NaNL[] = "nan";
504 static const char NaNU[] = "NAN";
505
506 /* Write out an integerPart in hexadecimal, starting with the most
507 significant nibble. Write out exactly COUNT hexdigits, return
508 COUNT. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000509 static unsigned int
Neil Bootha30b0ee2007-10-03 22:26:02 +0000510 partAsHex (char *dst, integerPart part, unsigned int count,
511 const char *hexDigitChars)
512 {
513 unsigned int result = count;
514
515 assert (count != 0 && count <= integerPartWidth / 4);
516
517 part >>= (integerPartWidth - 4 * count);
518 while (count--) {
519 dst[count] = hexDigitChars[part & 0xf];
520 part >>= 4;
521 }
522
523 return result;
524 }
525
Neil Booth92f7e8d2007-10-06 07:29:25 +0000526 /* Write out an unsigned decimal integer. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000527 static char *
Neil Booth92f7e8d2007-10-06 07:29:25 +0000528 writeUnsignedDecimal (char *dst, unsigned int n)
Neil Bootha30b0ee2007-10-03 22:26:02 +0000529 {
Neil Booth92f7e8d2007-10-06 07:29:25 +0000530 char buff[40], *p;
Neil Bootha30b0ee2007-10-03 22:26:02 +0000531
Neil Booth92f7e8d2007-10-06 07:29:25 +0000532 p = buff;
533 do
534 *p++ = '0' + n % 10;
535 while (n /= 10);
536
537 do
538 *dst++ = *--p;
539 while (p != buff);
540
541 return dst;
542 }
543
544 /* Write out a signed decimal integer. */
Dan Gohman3bd659b2008-04-10 21:11:47 +0000545 static char *
Neil Booth92f7e8d2007-10-06 07:29:25 +0000546 writeSignedDecimal (char *dst, int value)
547 {
548 if (value < 0) {
Neil Bootha30b0ee2007-10-03 22:26:02 +0000549 *dst++ = '-';
Neil Booth92f7e8d2007-10-06 07:29:25 +0000550 dst = writeUnsignedDecimal(dst, -(unsigned) value);
551 } else
552 dst = writeUnsignedDecimal(dst, value);
Neil Bootha30b0ee2007-10-03 22:26:02 +0000553
554 return dst;
555 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000556}
557
558/* Constructors. */
559void
560APFloat::initialize(const fltSemantics *ourSemantics)
561{
562 unsigned int count;
563
564 semantics = ourSemantics;
565 count = partCount();
566 if(count > 1)
567 significand.parts = new integerPart[count];
568}
569
570void
571APFloat::freeSignificand()
572{
573 if(partCount() > 1)
574 delete [] significand.parts;
575}
576
577void
578APFloat::assign(const APFloat &rhs)
579{
580 assert(semantics == rhs.semantics);
581
582 sign = rhs.sign;
583 category = rhs.category;
584 exponent = rhs.exponent;
Dale Johannesena471c2e2007-10-11 18:07:22 +0000585 sign2 = rhs.sign2;
586 exponent2 = rhs.exponent2;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000587 if(category == fcNormal || category == fcNaN)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000588 copySignificand(rhs);
589}
590
591void
592APFloat::copySignificand(const APFloat &rhs)
593{
Dale Johanneseneaf08942007-08-31 04:03:46 +0000594 assert(category == fcNormal || category == fcNaN);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000595 assert(rhs.partCount() >= partCount());
596
597 APInt::tcAssign(significandParts(), rhs.significandParts(),
Neil Booth4f881702007-09-26 21:33:42 +0000598 partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000599}
600
Neil Boothe5e01942007-10-14 10:39:51 +0000601/* Make this number a NaN, with an arbitrary but deterministic value
602 for the significand. */
603void
604APFloat::makeNaN(void)
605{
606 category = fcNaN;
607 APInt::tcSet(significandParts(), ~0U, partCount());
608}
609
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000610APFloat &
611APFloat::operator=(const APFloat &rhs)
612{
613 if(this != &rhs) {
614 if(semantics != rhs.semantics) {
615 freeSignificand();
616 initialize(rhs.semantics);
617 }
618 assign(rhs);
619 }
620
621 return *this;
622}
623
Dale Johannesen343e7702007-08-24 00:56:33 +0000624bool
Dale Johannesen12595d72007-08-24 22:09:56 +0000625APFloat::bitwiseIsEqual(const APFloat &rhs) const {
Dale Johannesen343e7702007-08-24 00:56:33 +0000626 if (this == &rhs)
627 return true;
628 if (semantics != rhs.semantics ||
Dale Johanneseneaf08942007-08-31 04:03:46 +0000629 category != rhs.category ||
630 sign != rhs.sign)
Dale Johannesen343e7702007-08-24 00:56:33 +0000631 return false;
Dan Gohmanb10abe12008-01-29 12:08:20 +0000632 if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
Dale Johannesena471c2e2007-10-11 18:07:22 +0000633 sign2 != rhs.sign2)
634 return false;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000635 if (category==fcZero || category==fcInfinity)
Dale Johannesen343e7702007-08-24 00:56:33 +0000636 return true;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000637 else if (category==fcNormal && exponent!=rhs.exponent)
638 return false;
Dan Gohmanb10abe12008-01-29 12:08:20 +0000639 else if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
Dale Johannesena471c2e2007-10-11 18:07:22 +0000640 exponent2!=rhs.exponent2)
641 return false;
Dale Johannesen343e7702007-08-24 00:56:33 +0000642 else {
Dale Johannesen343e7702007-08-24 00:56:33 +0000643 int i= partCount();
644 const integerPart* p=significandParts();
645 const integerPart* q=rhs.significandParts();
646 for (; i>0; i--, p++, q++) {
647 if (*p != *q)
648 return false;
649 }
650 return true;
651 }
652}
653
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000654APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
655{
Neil Boothcaf19d72007-10-14 10:29:28 +0000656 assertArithmeticOK(ourSemantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000657 initialize(&ourSemantics);
658 sign = 0;
659 zeroSignificand();
660 exponent = ourSemantics.precision - 1;
661 significandParts()[0] = value;
662 normalize(rmNearestTiesToEven, lfExactlyZero);
663}
664
665APFloat::APFloat(const fltSemantics &ourSemantics,
Neil Booth4f881702007-09-26 21:33:42 +0000666 fltCategory ourCategory, bool negative)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000667{
Neil Boothcaf19d72007-10-14 10:29:28 +0000668 assertArithmeticOK(ourSemantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000669 initialize(&ourSemantics);
670 category = ourCategory;
671 sign = negative;
672 if(category == fcNormal)
673 category = fcZero;
Neil Boothe5e01942007-10-14 10:39:51 +0000674 else if (ourCategory == fcNaN)
675 makeNaN();
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000676}
677
678APFloat::APFloat(const fltSemantics &ourSemantics, const char *text)
679{
Neil Boothcaf19d72007-10-14 10:29:28 +0000680 assertArithmeticOK(ourSemantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000681 initialize(&ourSemantics);
682 convertFromString(text, rmNearestTiesToEven);
683}
684
685APFloat::APFloat(const APFloat &rhs)
686{
687 initialize(rhs.semantics);
688 assign(rhs);
689}
690
691APFloat::~APFloat()
692{
693 freeSignificand();
694}
695
Ted Kremenek1f801fa2008-02-11 17:24:50 +0000696// Profile - This method 'profiles' an APFloat for use with FoldingSet.
697void APFloat::Profile(FoldingSetNodeID& ID) const {
698 ID.Add(convertToAPInt());
699}
700
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000701unsigned int
702APFloat::partCount() const
703{
Dale Johannesena72a5a02007-09-20 23:47:58 +0000704 return partCountForBits(semantics->precision + 1);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000705}
706
707unsigned int
708APFloat::semanticsPrecision(const fltSemantics &semantics)
709{
710 return semantics.precision;
711}
712
713const integerPart *
714APFloat::significandParts() const
715{
716 return const_cast<APFloat *>(this)->significandParts();
717}
718
719integerPart *
720APFloat::significandParts()
721{
Dale Johanneseneaf08942007-08-31 04:03:46 +0000722 assert(category == fcNormal || category == fcNaN);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000723
724 if(partCount() > 1)
725 return significand.parts;
726 else
727 return &significand.part;
728}
729
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000730void
731APFloat::zeroSignificand()
732{
733 category = fcNormal;
734 APInt::tcSet(significandParts(), 0, partCount());
735}
736
737/* Increment an fcNormal floating point number's significand. */
738void
739APFloat::incrementSignificand()
740{
741 integerPart carry;
742
743 carry = APInt::tcIncrement(significandParts(), partCount());
744
745 /* Our callers should never cause us to overflow. */
746 assert(carry == 0);
747}
748
749/* Add the significand of the RHS. Returns the carry flag. */
750integerPart
751APFloat::addSignificand(const APFloat &rhs)
752{
753 integerPart *parts;
754
755 parts = significandParts();
756
757 assert(semantics == rhs.semantics);
758 assert(exponent == rhs.exponent);
759
760 return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
761}
762
763/* Subtract the significand of the RHS with a borrow flag. Returns
764 the borrow flag. */
765integerPart
766APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
767{
768 integerPart *parts;
769
770 parts = significandParts();
771
772 assert(semantics == rhs.semantics);
773 assert(exponent == rhs.exponent);
774
775 return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
Neil Booth4f881702007-09-26 21:33:42 +0000776 partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000777}
778
779/* Multiply the significand of the RHS. If ADDEND is non-NULL, add it
780 on to the full-precision result of the multiplication. Returns the
781 lost fraction. */
782lostFraction
783APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
784{
Neil Booth4f881702007-09-26 21:33:42 +0000785 unsigned int omsb; // One, not zero, based MSB.
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000786 unsigned int partsCount, newPartsCount, precision;
787 integerPart *lhsSignificand;
788 integerPart scratch[4];
789 integerPart *fullSignificand;
790 lostFraction lost_fraction;
791
792 assert(semantics == rhs.semantics);
793
794 precision = semantics->precision;
795 newPartsCount = partCountForBits(precision * 2);
796
797 if(newPartsCount > 4)
798 fullSignificand = new integerPart[newPartsCount];
799 else
800 fullSignificand = scratch;
801
802 lhsSignificand = significandParts();
803 partsCount = partCount();
804
805 APInt::tcFullMultiply(fullSignificand, lhsSignificand,
Neil Booth978661d2007-10-06 00:24:48 +0000806 rhs.significandParts(), partsCount, partsCount);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000807
808 lost_fraction = lfExactlyZero;
809 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
810 exponent += rhs.exponent;
811
812 if(addend) {
813 Significand savedSignificand = significand;
814 const fltSemantics *savedSemantics = semantics;
815 fltSemantics extendedSemantics;
816 opStatus status;
817 unsigned int extendedPrecision;
818
819 /* Normalize our MSB. */
820 extendedPrecision = precision + precision - 1;
821 if(omsb != extendedPrecision)
822 {
Neil Booth4f881702007-09-26 21:33:42 +0000823 APInt::tcShiftLeft(fullSignificand, newPartsCount,
824 extendedPrecision - omsb);
825 exponent -= extendedPrecision - omsb;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000826 }
827
828 /* Create new semantics. */
829 extendedSemantics = *semantics;
830 extendedSemantics.precision = extendedPrecision;
831
832 if(newPartsCount == 1)
833 significand.part = fullSignificand[0];
834 else
835 significand.parts = fullSignificand;
836 semantics = &extendedSemantics;
837
838 APFloat extendedAddend(*addend);
839 status = extendedAddend.convert(extendedSemantics, rmTowardZero);
840 assert(status == opOK);
841 lost_fraction = addOrSubtractSignificand(extendedAddend, false);
842
843 /* Restore our state. */
844 if(newPartsCount == 1)
845 fullSignificand[0] = significand.part;
846 significand = savedSignificand;
847 semantics = savedSemantics;
848
849 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
850 }
851
852 exponent -= (precision - 1);
853
854 if(omsb > precision) {
855 unsigned int bits, significantParts;
856 lostFraction lf;
857
858 bits = omsb - precision;
859 significantParts = partCountForBits(omsb);
860 lf = shiftRight(fullSignificand, significantParts, bits);
861 lost_fraction = combineLostFractions(lf, lost_fraction);
862 exponent += bits;
863 }
864
865 APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
866
867 if(newPartsCount > 4)
868 delete [] fullSignificand;
869
870 return lost_fraction;
871}
872
873/* Multiply the significands of LHS and RHS to DST. */
874lostFraction
875APFloat::divideSignificand(const APFloat &rhs)
876{
877 unsigned int bit, i, partsCount;
878 const integerPart *rhsSignificand;
879 integerPart *lhsSignificand, *dividend, *divisor;
880 integerPart scratch[4];
881 lostFraction lost_fraction;
882
883 assert(semantics == rhs.semantics);
884
885 lhsSignificand = significandParts();
886 rhsSignificand = rhs.significandParts();
887 partsCount = partCount();
888
889 if(partsCount > 2)
890 dividend = new integerPart[partsCount * 2];
891 else
892 dividend = scratch;
893
894 divisor = dividend + partsCount;
895
896 /* Copy the dividend and divisor as they will be modified in-place. */
897 for(i = 0; i < partsCount; i++) {
898 dividend[i] = lhsSignificand[i];
899 divisor[i] = rhsSignificand[i];
900 lhsSignificand[i] = 0;
901 }
902
903 exponent -= rhs.exponent;
904
905 unsigned int precision = semantics->precision;
906
907 /* Normalize the divisor. */
908 bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
909 if(bit) {
910 exponent += bit;
911 APInt::tcShiftLeft(divisor, partsCount, bit);
912 }
913
914 /* Normalize the dividend. */
915 bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
916 if(bit) {
917 exponent -= bit;
918 APInt::tcShiftLeft(dividend, partsCount, bit);
919 }
920
Neil Booth96c74712007-10-12 16:02:31 +0000921 /* Ensure the dividend >= divisor initially for the loop below.
922 Incidentally, this means that the division loop below is
923 guaranteed to set the integer bit to one. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000924 if(APInt::tcCompare(dividend, divisor, partsCount) < 0) {
925 exponent--;
926 APInt::tcShiftLeft(dividend, partsCount, 1);
927 assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
928 }
929
930 /* Long division. */
931 for(bit = precision; bit; bit -= 1) {
932 if(APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
933 APInt::tcSubtract(dividend, divisor, 0, partsCount);
934 APInt::tcSetBit(lhsSignificand, bit - 1);
935 }
936
937 APInt::tcShiftLeft(dividend, partsCount, 1);
938 }
939
940 /* Figure out the lost fraction. */
941 int cmp = APInt::tcCompare(dividend, divisor, partsCount);
942
943 if(cmp > 0)
944 lost_fraction = lfMoreThanHalf;
945 else if(cmp == 0)
946 lost_fraction = lfExactlyHalf;
947 else if(APInt::tcIsZero(dividend, partsCount))
948 lost_fraction = lfExactlyZero;
949 else
950 lost_fraction = lfLessThanHalf;
951
952 if(partsCount > 2)
953 delete [] dividend;
954
955 return lost_fraction;
956}
957
958unsigned int
959APFloat::significandMSB() const
960{
961 return APInt::tcMSB(significandParts(), partCount());
962}
963
964unsigned int
965APFloat::significandLSB() const
966{
967 return APInt::tcLSB(significandParts(), partCount());
968}
969
970/* Note that a zero result is NOT normalized to fcZero. */
971lostFraction
972APFloat::shiftSignificandRight(unsigned int bits)
973{
974 /* Our exponent should not overflow. */
975 assert((exponent_t) (exponent + bits) >= exponent);
976
977 exponent += bits;
978
979 return shiftRight(significandParts(), partCount(), bits);
980}
981
982/* Shift the significand left BITS bits, subtract BITS from its exponent. */
983void
984APFloat::shiftSignificandLeft(unsigned int bits)
985{
986 assert(bits < semantics->precision);
987
988 if(bits) {
989 unsigned int partsCount = partCount();
990
991 APInt::tcShiftLeft(significandParts(), partsCount, bits);
992 exponent -= bits;
993
994 assert(!APInt::tcIsZero(significandParts(), partsCount));
995 }
996}
997
998APFloat::cmpResult
999APFloat::compareAbsoluteValue(const APFloat &rhs) const
1000{
1001 int compare;
1002
1003 assert(semantics == rhs.semantics);
1004 assert(category == fcNormal);
1005 assert(rhs.category == fcNormal);
1006
1007 compare = exponent - rhs.exponent;
1008
1009 /* If exponents are equal, do an unsigned bignum comparison of the
1010 significands. */
1011 if(compare == 0)
1012 compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
Neil Booth4f881702007-09-26 21:33:42 +00001013 partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001014
1015 if(compare > 0)
1016 return cmpGreaterThan;
1017 else if(compare < 0)
1018 return cmpLessThan;
1019 else
1020 return cmpEqual;
1021}
1022
1023/* Handle overflow. Sign is preserved. We either become infinity or
1024 the largest finite number. */
1025APFloat::opStatus
1026APFloat::handleOverflow(roundingMode rounding_mode)
1027{
1028 /* Infinity? */
1029 if(rounding_mode == rmNearestTiesToEven
1030 || rounding_mode == rmNearestTiesToAway
1031 || (rounding_mode == rmTowardPositive && !sign)
1032 || (rounding_mode == rmTowardNegative && sign))
1033 {
1034 category = fcInfinity;
1035 return (opStatus) (opOverflow | opInexact);
1036 }
1037
1038 /* Otherwise we become the largest finite number. */
1039 category = fcNormal;
1040 exponent = semantics->maxExponent;
1041 APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
Neil Booth4f881702007-09-26 21:33:42 +00001042 semantics->precision);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001043
1044 return opInexact;
1045}
1046
Neil Boothb7dea4c2007-10-03 15:16:41 +00001047/* Returns TRUE if, when truncating the current number, with BIT the
1048 new LSB, with the given lost fraction and rounding mode, the result
1049 would need to be rounded away from zero (i.e., by increasing the
1050 signficand). This routine must work for fcZero of both signs, and
1051 fcNormal numbers. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001052bool
1053APFloat::roundAwayFromZero(roundingMode rounding_mode,
Neil Boothb7dea4c2007-10-03 15:16:41 +00001054 lostFraction lost_fraction,
1055 unsigned int bit) const
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001056{
Dale Johanneseneaf08942007-08-31 04:03:46 +00001057 /* NaNs and infinities should not have lost fractions. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001058 assert(category == fcNormal || category == fcZero);
1059
Neil Boothb7dea4c2007-10-03 15:16:41 +00001060 /* Current callers never pass this so we don't handle it. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001061 assert(lost_fraction != lfExactlyZero);
1062
1063 switch(rounding_mode) {
1064 default:
1065 assert(0);
1066
1067 case rmNearestTiesToAway:
1068 return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
1069
1070 case rmNearestTiesToEven:
1071 if(lost_fraction == lfMoreThanHalf)
1072 return true;
1073
1074 /* Our zeroes don't have a significand to test. */
1075 if(lost_fraction == lfExactlyHalf && category != fcZero)
Neil Boothb7dea4c2007-10-03 15:16:41 +00001076 return APInt::tcExtractBit(significandParts(), bit);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001077
1078 return false;
1079
1080 case rmTowardZero:
1081 return false;
1082
1083 case rmTowardPositive:
1084 return sign == false;
1085
1086 case rmTowardNegative:
1087 return sign == true;
1088 }
1089}
1090
1091APFloat::opStatus
1092APFloat::normalize(roundingMode rounding_mode,
Neil Booth4f881702007-09-26 21:33:42 +00001093 lostFraction lost_fraction)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001094{
Neil Booth4f881702007-09-26 21:33:42 +00001095 unsigned int omsb; /* One, not zero, based MSB. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001096 int exponentChange;
1097
1098 if(category != fcNormal)
1099 return opOK;
1100
1101 /* Before rounding normalize the exponent of fcNormal numbers. */
1102 omsb = significandMSB() + 1;
1103
1104 if(omsb) {
1105 /* OMSB is numbered from 1. We want to place it in the integer
1106 bit numbered PRECISON if possible, with a compensating change in
1107 the exponent. */
1108 exponentChange = omsb - semantics->precision;
1109
1110 /* If the resulting exponent is too high, overflow according to
1111 the rounding mode. */
1112 if(exponent + exponentChange > semantics->maxExponent)
1113 return handleOverflow(rounding_mode);
1114
1115 /* Subnormal numbers have exponent minExponent, and their MSB
1116 is forced based on that. */
1117 if(exponent + exponentChange < semantics->minExponent)
1118 exponentChange = semantics->minExponent - exponent;
1119
1120 /* Shifting left is easy as we don't lose precision. */
1121 if(exponentChange < 0) {
1122 assert(lost_fraction == lfExactlyZero);
1123
1124 shiftSignificandLeft(-exponentChange);
1125
1126 return opOK;
1127 }
1128
1129 if(exponentChange > 0) {
1130 lostFraction lf;
1131
1132 /* Shift right and capture any new lost fraction. */
1133 lf = shiftSignificandRight(exponentChange);
1134
1135 lost_fraction = combineLostFractions(lf, lost_fraction);
1136
1137 /* Keep OMSB up-to-date. */
1138 if(omsb > (unsigned) exponentChange)
Neil Booth96c74712007-10-12 16:02:31 +00001139 omsb -= exponentChange;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001140 else
Neil Booth4f881702007-09-26 21:33:42 +00001141 omsb = 0;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001142 }
1143 }
1144
1145 /* Now round the number according to rounding_mode given the lost
1146 fraction. */
1147
1148 /* As specified in IEEE 754, since we do not trap we do not report
1149 underflow for exact results. */
1150 if(lost_fraction == lfExactlyZero) {
1151 /* Canonicalize zeroes. */
1152 if(omsb == 0)
1153 category = fcZero;
1154
1155 return opOK;
1156 }
1157
1158 /* Increment the significand if we're rounding away from zero. */
Neil Boothb7dea4c2007-10-03 15:16:41 +00001159 if(roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001160 if(omsb == 0)
1161 exponent = semantics->minExponent;
1162
1163 incrementSignificand();
1164 omsb = significandMSB() + 1;
1165
1166 /* Did the significand increment overflow? */
1167 if(omsb == (unsigned) semantics->precision + 1) {
1168 /* Renormalize by incrementing the exponent and shifting our
Neil Booth4f881702007-09-26 21:33:42 +00001169 significand right one. However if we already have the
1170 maximum exponent we overflow to infinity. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001171 if(exponent == semantics->maxExponent) {
Neil Booth4f881702007-09-26 21:33:42 +00001172 category = fcInfinity;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001173
Neil Booth4f881702007-09-26 21:33:42 +00001174 return (opStatus) (opOverflow | opInexact);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001175 }
1176
1177 shiftSignificandRight(1);
1178
1179 return opInexact;
1180 }
1181 }
1182
1183 /* The normal case - we were and are not denormal, and any
1184 significand increment above didn't overflow. */
1185 if(omsb == semantics->precision)
1186 return opInexact;
1187
1188 /* We have a non-zero denormal. */
1189 assert(omsb < semantics->precision);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001190
1191 /* Canonicalize zeroes. */
1192 if(omsb == 0)
1193 category = fcZero;
1194
1195 /* The fcZero case is a denormal that underflowed to zero. */
1196 return (opStatus) (opUnderflow | opInexact);
1197}
1198
1199APFloat::opStatus
1200APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
1201{
1202 switch(convolve(category, rhs.category)) {
1203 default:
1204 assert(0);
1205
Dale Johanneseneaf08942007-08-31 04:03:46 +00001206 case convolve(fcNaN, fcZero):
1207 case convolve(fcNaN, fcNormal):
1208 case convolve(fcNaN, fcInfinity):
1209 case convolve(fcNaN, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001210 case convolve(fcNormal, fcZero):
1211 case convolve(fcInfinity, fcNormal):
1212 case convolve(fcInfinity, fcZero):
1213 return opOK;
1214
Dale Johanneseneaf08942007-08-31 04:03:46 +00001215 case convolve(fcZero, fcNaN):
1216 case convolve(fcNormal, fcNaN):
1217 case convolve(fcInfinity, fcNaN):
1218 category = fcNaN;
1219 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001220 return opOK;
1221
1222 case convolve(fcNormal, fcInfinity):
1223 case convolve(fcZero, fcInfinity):
1224 category = fcInfinity;
1225 sign = rhs.sign ^ subtract;
1226 return opOK;
1227
1228 case convolve(fcZero, fcNormal):
1229 assign(rhs);
1230 sign = rhs.sign ^ subtract;
1231 return opOK;
1232
1233 case convolve(fcZero, fcZero):
1234 /* Sign depends on rounding mode; handled by caller. */
1235 return opOK;
1236
1237 case convolve(fcInfinity, fcInfinity):
1238 /* Differently signed infinities can only be validly
1239 subtracted. */
Hartmut Kaiser8df77a92007-10-25 23:15:31 +00001240 if((sign ^ rhs.sign) != subtract) {
Neil Boothe5e01942007-10-14 10:39:51 +00001241 makeNaN();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001242 return opInvalidOp;
1243 }
1244
1245 return opOK;
1246
1247 case convolve(fcNormal, fcNormal):
1248 return opDivByZero;
1249 }
1250}
1251
1252/* Add or subtract two normal numbers. */
1253lostFraction
1254APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
1255{
1256 integerPart carry;
1257 lostFraction lost_fraction;
1258 int bits;
1259
1260 /* Determine if the operation on the absolute values is effectively
1261 an addition or subtraction. */
Hartmut Kaiser8df77a92007-10-25 23:15:31 +00001262 subtract ^= (sign ^ rhs.sign) ? true : false;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001263
1264 /* Are we bigger exponent-wise than the RHS? */
1265 bits = exponent - rhs.exponent;
1266
1267 /* Subtraction is more subtle than one might naively expect. */
1268 if(subtract) {
1269 APFloat temp_rhs(rhs);
1270 bool reverse;
1271
Chris Lattnerada530b2007-08-24 03:02:34 +00001272 if (bits == 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001273 reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
1274 lost_fraction = lfExactlyZero;
Chris Lattnerada530b2007-08-24 03:02:34 +00001275 } else if (bits > 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001276 lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
1277 shiftSignificandLeft(1);
1278 reverse = false;
Chris Lattnerada530b2007-08-24 03:02:34 +00001279 } else {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001280 lost_fraction = shiftSignificandRight(-bits - 1);
1281 temp_rhs.shiftSignificandLeft(1);
1282 reverse = true;
1283 }
1284
Chris Lattnerada530b2007-08-24 03:02:34 +00001285 if (reverse) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001286 carry = temp_rhs.subtractSignificand
Neil Booth4f881702007-09-26 21:33:42 +00001287 (*this, lost_fraction != lfExactlyZero);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001288 copySignificand(temp_rhs);
1289 sign = !sign;
1290 } else {
1291 carry = subtractSignificand
Neil Booth4f881702007-09-26 21:33:42 +00001292 (temp_rhs, lost_fraction != lfExactlyZero);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001293 }
1294
1295 /* Invert the lost fraction - it was on the RHS and
1296 subtracted. */
1297 if(lost_fraction == lfLessThanHalf)
1298 lost_fraction = lfMoreThanHalf;
1299 else if(lost_fraction == lfMoreThanHalf)
1300 lost_fraction = lfLessThanHalf;
1301
1302 /* The code above is intended to ensure that no borrow is
1303 necessary. */
1304 assert(!carry);
1305 } else {
1306 if(bits > 0) {
1307 APFloat temp_rhs(rhs);
1308
1309 lost_fraction = temp_rhs.shiftSignificandRight(bits);
1310 carry = addSignificand(temp_rhs);
1311 } else {
1312 lost_fraction = shiftSignificandRight(-bits);
1313 carry = addSignificand(rhs);
1314 }
1315
1316 /* We have a guard bit; generating a carry cannot happen. */
1317 assert(!carry);
1318 }
1319
1320 return lost_fraction;
1321}
1322
1323APFloat::opStatus
1324APFloat::multiplySpecials(const APFloat &rhs)
1325{
1326 switch(convolve(category, rhs.category)) {
1327 default:
1328 assert(0);
1329
Dale Johanneseneaf08942007-08-31 04:03:46 +00001330 case convolve(fcNaN, fcZero):
1331 case convolve(fcNaN, fcNormal):
1332 case convolve(fcNaN, fcInfinity):
1333 case convolve(fcNaN, fcNaN):
1334 return opOK;
1335
1336 case convolve(fcZero, fcNaN):
1337 case convolve(fcNormal, fcNaN):
1338 case convolve(fcInfinity, fcNaN):
1339 category = fcNaN;
1340 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001341 return opOK;
1342
1343 case convolve(fcNormal, fcInfinity):
1344 case convolve(fcInfinity, fcNormal):
1345 case convolve(fcInfinity, fcInfinity):
1346 category = fcInfinity;
1347 return opOK;
1348
1349 case convolve(fcZero, fcNormal):
1350 case convolve(fcNormal, fcZero):
1351 case convolve(fcZero, fcZero):
1352 category = fcZero;
1353 return opOK;
1354
1355 case convolve(fcZero, fcInfinity):
1356 case convolve(fcInfinity, fcZero):
Neil Boothe5e01942007-10-14 10:39:51 +00001357 makeNaN();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001358 return opInvalidOp;
1359
1360 case convolve(fcNormal, fcNormal):
1361 return opOK;
1362 }
1363}
1364
1365APFloat::opStatus
1366APFloat::divideSpecials(const APFloat &rhs)
1367{
1368 switch(convolve(category, rhs.category)) {
1369 default:
1370 assert(0);
1371
Dale Johanneseneaf08942007-08-31 04:03:46 +00001372 case convolve(fcNaN, fcZero):
1373 case convolve(fcNaN, fcNormal):
1374 case convolve(fcNaN, fcInfinity):
1375 case convolve(fcNaN, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001376 case convolve(fcInfinity, fcZero):
1377 case convolve(fcInfinity, fcNormal):
1378 case convolve(fcZero, fcInfinity):
1379 case convolve(fcZero, fcNormal):
1380 return opOK;
1381
Dale Johanneseneaf08942007-08-31 04:03:46 +00001382 case convolve(fcZero, fcNaN):
1383 case convolve(fcNormal, fcNaN):
1384 case convolve(fcInfinity, fcNaN):
1385 category = fcNaN;
1386 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001387 return opOK;
1388
1389 case convolve(fcNormal, fcInfinity):
1390 category = fcZero;
1391 return opOK;
1392
1393 case convolve(fcNormal, fcZero):
1394 category = fcInfinity;
1395 return opDivByZero;
1396
1397 case convolve(fcInfinity, fcInfinity):
1398 case convolve(fcZero, fcZero):
Neil Boothe5e01942007-10-14 10:39:51 +00001399 makeNaN();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001400 return opInvalidOp;
1401
1402 case convolve(fcNormal, fcNormal):
1403 return opOK;
1404 }
1405}
1406
1407/* Change sign. */
1408void
1409APFloat::changeSign()
1410{
1411 /* Look mummy, this one's easy. */
1412 sign = !sign;
1413}
1414
Dale Johannesene15c2db2007-08-31 23:35:31 +00001415void
1416APFloat::clearSign()
1417{
1418 /* So is this one. */
1419 sign = 0;
1420}
1421
1422void
1423APFloat::copySign(const APFloat &rhs)
1424{
1425 /* And this one. */
1426 sign = rhs.sign;
1427}
1428
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001429/* Normalized addition or subtraction. */
1430APFloat::opStatus
1431APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
Neil Booth4f881702007-09-26 21:33:42 +00001432 bool subtract)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001433{
1434 opStatus fs;
1435
Neil Boothcaf19d72007-10-14 10:29:28 +00001436 assertArithmeticOK(*semantics);
1437
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001438 fs = addOrSubtractSpecials(rhs, subtract);
1439
1440 /* This return code means it was not a simple case. */
1441 if(fs == opDivByZero) {
1442 lostFraction lost_fraction;
1443
1444 lost_fraction = addOrSubtractSignificand(rhs, subtract);
1445 fs = normalize(rounding_mode, lost_fraction);
1446
1447 /* Can only be zero if we lost no fraction. */
1448 assert(category != fcZero || lost_fraction == lfExactlyZero);
1449 }
1450
1451 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1452 positive zero unless rounding to minus infinity, except that
1453 adding two like-signed zeroes gives that zero. */
1454 if(category == fcZero) {
1455 if(rhs.category != fcZero || (sign == rhs.sign) == subtract)
1456 sign = (rounding_mode == rmTowardNegative);
1457 }
1458
1459 return fs;
1460}
1461
1462/* Normalized addition. */
1463APFloat::opStatus
1464APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
1465{
1466 return addOrSubtract(rhs, rounding_mode, false);
1467}
1468
1469/* Normalized subtraction. */
1470APFloat::opStatus
1471APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
1472{
1473 return addOrSubtract(rhs, rounding_mode, true);
1474}
1475
1476/* Normalized multiply. */
1477APFloat::opStatus
1478APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
1479{
1480 opStatus fs;
1481
Neil Boothcaf19d72007-10-14 10:29:28 +00001482 assertArithmeticOK(*semantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001483 sign ^= rhs.sign;
1484 fs = multiplySpecials(rhs);
1485
1486 if(category == fcNormal) {
1487 lostFraction lost_fraction = multiplySignificand(rhs, 0);
1488 fs = normalize(rounding_mode, lost_fraction);
1489 if(lost_fraction != lfExactlyZero)
1490 fs = (opStatus) (fs | opInexact);
1491 }
1492
1493 return fs;
1494}
1495
1496/* Normalized divide. */
1497APFloat::opStatus
1498APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
1499{
1500 opStatus fs;
1501
Neil Boothcaf19d72007-10-14 10:29:28 +00001502 assertArithmeticOK(*semantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001503 sign ^= rhs.sign;
1504 fs = divideSpecials(rhs);
1505
1506 if(category == fcNormal) {
1507 lostFraction lost_fraction = divideSignificand(rhs);
1508 fs = normalize(rounding_mode, lost_fraction);
1509 if(lost_fraction != lfExactlyZero)
1510 fs = (opStatus) (fs | opInexact);
1511 }
1512
1513 return fs;
1514}
1515
Neil Bootha30b0ee2007-10-03 22:26:02 +00001516/* Normalized remainder. This is not currently doing TRT. */
Dale Johannesene15c2db2007-08-31 23:35:31 +00001517APFloat::opStatus
1518APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
1519{
1520 opStatus fs;
1521 APFloat V = *this;
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001522 unsigned int origSign = sign;
Neil Boothcaf19d72007-10-14 10:29:28 +00001523
1524 assertArithmeticOK(*semantics);
Dale Johannesene15c2db2007-08-31 23:35:31 +00001525 fs = V.divide(rhs, rmNearestTiesToEven);
1526 if (fs == opDivByZero)
1527 return fs;
1528
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001529 int parts = partCount();
1530 integerPart *x = new integerPart[parts];
Neil Booth4f881702007-09-26 21:33:42 +00001531 fs = V.convertToInteger(x, parts * integerPartWidth, true,
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001532 rmNearestTiesToEven);
Dale Johannesene15c2db2007-08-31 23:35:31 +00001533 if (fs==opInvalidOp)
1534 return fs;
1535
Neil Boothccf596a2007-10-07 11:45:55 +00001536 fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
1537 rmNearestTiesToEven);
Dale Johannesene15c2db2007-08-31 23:35:31 +00001538 assert(fs==opOK); // should always work
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001539
Dale Johannesene15c2db2007-08-31 23:35:31 +00001540 fs = V.multiply(rhs, rounding_mode);
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001541 assert(fs==opOK || fs==opInexact); // should not overflow or underflow
1542
Dale Johannesene15c2db2007-08-31 23:35:31 +00001543 fs = subtract(V, rounding_mode);
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001544 assert(fs==opOK || fs==opInexact); // likewise
1545
1546 if (isZero())
1547 sign = origSign; // IEEE754 requires this
1548 delete[] x;
Dale Johannesene15c2db2007-08-31 23:35:31 +00001549 return fs;
1550}
1551
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001552/* Normalized fused-multiply-add. */
1553APFloat::opStatus
1554APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
Neil Booth4f881702007-09-26 21:33:42 +00001555 const APFloat &addend,
1556 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001557{
1558 opStatus fs;
1559
Neil Boothcaf19d72007-10-14 10:29:28 +00001560 assertArithmeticOK(*semantics);
1561
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001562 /* Post-multiplication sign, before addition. */
1563 sign ^= multiplicand.sign;
1564
1565 /* If and only if all arguments are normal do we need to do an
1566 extended-precision calculation. */
1567 if(category == fcNormal
1568 && multiplicand.category == fcNormal
1569 && addend.category == fcNormal) {
1570 lostFraction lost_fraction;
1571
1572 lost_fraction = multiplySignificand(multiplicand, &addend);
1573 fs = normalize(rounding_mode, lost_fraction);
1574 if(lost_fraction != lfExactlyZero)
1575 fs = (opStatus) (fs | opInexact);
1576
1577 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1578 positive zero unless rounding to minus infinity, except that
1579 adding two like-signed zeroes gives that zero. */
1580 if(category == fcZero && sign != addend.sign)
1581 sign = (rounding_mode == rmTowardNegative);
1582 } else {
1583 fs = multiplySpecials(multiplicand);
1584
1585 /* FS can only be opOK or opInvalidOp. There is no more work
1586 to do in the latter case. The IEEE-754R standard says it is
1587 implementation-defined in this case whether, if ADDEND is a
Dale Johanneseneaf08942007-08-31 04:03:46 +00001588 quiet NaN, we raise invalid op; this implementation does so.
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001589
1590 If we need to do the addition we can do so with normal
1591 precision. */
1592 if(fs == opOK)
1593 fs = addOrSubtract(addend, rounding_mode, false);
1594 }
1595
1596 return fs;
1597}
1598
1599/* Comparison requires normalized numbers. */
1600APFloat::cmpResult
1601APFloat::compare(const APFloat &rhs) const
1602{
1603 cmpResult result;
1604
Neil Boothcaf19d72007-10-14 10:29:28 +00001605 assertArithmeticOK(*semantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001606 assert(semantics == rhs.semantics);
1607
1608 switch(convolve(category, rhs.category)) {
1609 default:
1610 assert(0);
1611
Dale Johanneseneaf08942007-08-31 04:03:46 +00001612 case convolve(fcNaN, fcZero):
1613 case convolve(fcNaN, fcNormal):
1614 case convolve(fcNaN, fcInfinity):
1615 case convolve(fcNaN, fcNaN):
1616 case convolve(fcZero, fcNaN):
1617 case convolve(fcNormal, fcNaN):
1618 case convolve(fcInfinity, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001619 return cmpUnordered;
1620
1621 case convolve(fcInfinity, fcNormal):
1622 case convolve(fcInfinity, fcZero):
1623 case convolve(fcNormal, fcZero):
1624 if(sign)
1625 return cmpLessThan;
1626 else
1627 return cmpGreaterThan;
1628
1629 case convolve(fcNormal, fcInfinity):
1630 case convolve(fcZero, fcInfinity):
1631 case convolve(fcZero, fcNormal):
1632 if(rhs.sign)
1633 return cmpGreaterThan;
1634 else
1635 return cmpLessThan;
1636
1637 case convolve(fcInfinity, fcInfinity):
1638 if(sign == rhs.sign)
1639 return cmpEqual;
1640 else if(sign)
1641 return cmpLessThan;
1642 else
1643 return cmpGreaterThan;
1644
1645 case convolve(fcZero, fcZero):
1646 return cmpEqual;
1647
1648 case convolve(fcNormal, fcNormal):
1649 break;
1650 }
1651
1652 /* Two normal numbers. Do they have the same sign? */
1653 if(sign != rhs.sign) {
1654 if(sign)
1655 result = cmpLessThan;
1656 else
1657 result = cmpGreaterThan;
1658 } else {
1659 /* Compare absolute values; invert result if negative. */
1660 result = compareAbsoluteValue(rhs);
1661
1662 if(sign) {
1663 if(result == cmpLessThan)
Neil Booth4f881702007-09-26 21:33:42 +00001664 result = cmpGreaterThan;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001665 else if(result == cmpGreaterThan)
Neil Booth4f881702007-09-26 21:33:42 +00001666 result = cmpLessThan;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001667 }
1668 }
1669
1670 return result;
1671}
1672
1673APFloat::opStatus
1674APFloat::convert(const fltSemantics &toSemantics,
Neil Booth4f881702007-09-26 21:33:42 +00001675 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001676{
Neil Boothc8db43d2007-09-22 02:56:19 +00001677 lostFraction lostFraction;
1678 unsigned int newPartCount, oldPartCount;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001679 opStatus fs;
Neil Booth4f881702007-09-26 21:33:42 +00001680
Neil Boothcaf19d72007-10-14 10:29:28 +00001681 assertArithmeticOK(*semantics);
Dale Johannesen79f82f92008-04-20 01:34:03 +00001682 assertArithmeticOK(toSemantics);
Neil Boothc8db43d2007-09-22 02:56:19 +00001683 lostFraction = lfExactlyZero;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001684 newPartCount = partCountForBits(toSemantics.precision + 1);
Neil Boothc8db43d2007-09-22 02:56:19 +00001685 oldPartCount = partCount();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001686
Neil Boothc8db43d2007-09-22 02:56:19 +00001687 /* Handle storage complications. If our new form is wider,
1688 re-allocate our bit pattern into wider storage. If it is
1689 narrower, we ignore the excess parts, but if narrowing to a
Dale Johannesen902ff942007-09-25 17:25:00 +00001690 single part we need to free the old storage.
1691 Be careful not to reference significandParts for zeroes
1692 and infinities, since it aborts. */
Neil Boothc8db43d2007-09-22 02:56:19 +00001693 if (newPartCount > oldPartCount) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001694 integerPart *newParts;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001695 newParts = new integerPart[newPartCount];
1696 APInt::tcSet(newParts, 0, newPartCount);
Dale Johannesen902ff942007-09-25 17:25:00 +00001697 if (category==fcNormal || category==fcNaN)
1698 APInt::tcAssign(newParts, significandParts(), oldPartCount);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001699 freeSignificand();
1700 significand.parts = newParts;
Neil Boothc8db43d2007-09-22 02:56:19 +00001701 } else if (newPartCount < oldPartCount) {
1702 /* Capture any lost fraction through truncation of parts so we get
1703 correct rounding whilst normalizing. */
Dale Johannesen902ff942007-09-25 17:25:00 +00001704 if (category==fcNormal)
1705 lostFraction = lostFractionThroughTruncation
1706 (significandParts(), oldPartCount, toSemantics.precision);
1707 if (newPartCount == 1) {
1708 integerPart newPart = 0;
Neil Booth4f881702007-09-26 21:33:42 +00001709 if (category==fcNormal || category==fcNaN)
Dale Johannesen902ff942007-09-25 17:25:00 +00001710 newPart = significandParts()[0];
1711 freeSignificand();
1712 significand.part = newPart;
1713 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001714 }
1715
1716 if(category == fcNormal) {
1717 /* Re-interpret our bit-pattern. */
1718 exponent += toSemantics.precision - semantics->precision;
1719 semantics = &toSemantics;
Neil Boothc8db43d2007-09-22 02:56:19 +00001720 fs = normalize(rounding_mode, lostFraction);
Dale Johannesen902ff942007-09-25 17:25:00 +00001721 } else if (category == fcNaN) {
1722 int shift = toSemantics.precision - semantics->precision;
Dale Johannesenb63fa052008-01-31 18:34:01 +00001723 // Do this now so significandParts gets the right answer
Dale Johannesen2df5eec2008-10-06 22:59:10 +00001724 const fltSemantics *oldSemantics = semantics;
Dale Johannesenb63fa052008-01-31 18:34:01 +00001725 semantics = &toSemantics;
Dale Johannesen2df5eec2008-10-06 22:59:10 +00001726 fs = opOK;
Dale Johannesen902ff942007-09-25 17:25:00 +00001727 // No normalization here, just truncate
1728 if (shift>0)
1729 APInt::tcShiftLeft(significandParts(), newPartCount, shift);
Dale Johannesen2df5eec2008-10-06 22:59:10 +00001730 else if (shift < 0) {
1731 unsigned ushift = -shift;
1732 // We mark this as Inexact if we are losing information. This happens
1733 // if are shifting out something other than 0s, or if the x87 long
1734 // double input did not have its integer bit set (pseudo-NaN), or if the
1735 // x87 long double input did not have its QNan bit set (because the x87
1736 // hardware sets this bit when converting a lower-precision NaN to
1737 // x87 long double).
1738 if (APInt::tcLSB(significandParts(), newPartCount) < ushift)
1739 fs = opInexact;
1740 if (oldSemantics == &APFloat::x87DoubleExtended &&
1741 (!(*significandParts() & 0x8000000000000000ULL) ||
1742 !(*significandParts() & 0x4000000000000000ULL)))
1743 fs = opInexact;
1744 APInt::tcShiftRight(significandParts(), newPartCount, ushift);
1745 }
Dale Johannesen902ff942007-09-25 17:25:00 +00001746 // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
1747 // does not give you back the same bits. This is dubious, and we
1748 // don't currently do it. You're really supposed to get
1749 // an invalid operation signal at runtime, but nobody does that.
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001750 } else {
1751 semantics = &toSemantics;
1752 fs = opOK;
1753 }
1754
1755 return fs;
1756}
1757
1758/* Convert a floating point number to an integer according to the
1759 rounding mode. If the rounded integer value is out of range this
Neil Boothee7ae382007-11-01 22:43:37 +00001760 returns an invalid operation exception and the contents of the
1761 destination parts are unspecified. If the rounded value is in
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001762 range but the floating point number is not the exact integer, the C
1763 standard doesn't require an inexact exception to be raised. IEEE
1764 854 does require it so we do that.
1765
1766 Note that for conversions to integer type the C standard requires
1767 round-to-zero to always be used. */
1768APFloat::opStatus
Neil Boothee7ae382007-11-01 22:43:37 +00001769APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
1770 bool isSigned,
1771 roundingMode rounding_mode) const
1772{
1773 lostFraction lost_fraction;
1774 const integerPart *src;
1775 unsigned int dstPartsCount, truncatedBits;
1776
Neil Boothe3d936a2007-11-02 15:10:05 +00001777 assertArithmeticOK(*semantics);
1778
Neil Boothee7ae382007-11-01 22:43:37 +00001779 /* Handle the three special cases first. */
1780 if(category == fcInfinity || category == fcNaN)
1781 return opInvalidOp;
1782
1783 dstPartsCount = partCountForBits(width);
1784
1785 if(category == fcZero) {
1786 APInt::tcSet(parts, 0, dstPartsCount);
1787 return opOK;
1788 }
1789
1790 src = significandParts();
1791
1792 /* Step 1: place our absolute value, with any fraction truncated, in
1793 the destination. */
1794 if (exponent < 0) {
1795 /* Our absolute value is less than one; truncate everything. */
1796 APInt::tcSet(parts, 0, dstPartsCount);
1797 truncatedBits = semantics->precision;
1798 } else {
1799 /* We want the most significant (exponent + 1) bits; the rest are
1800 truncated. */
1801 unsigned int bits = exponent + 1U;
1802
1803 /* Hopelessly large in magnitude? */
1804 if (bits > width)
1805 return opInvalidOp;
1806
1807 if (bits < semantics->precision) {
1808 /* We truncate (semantics->precision - bits) bits. */
1809 truncatedBits = semantics->precision - bits;
1810 APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits);
1811 } else {
1812 /* We want at least as many bits as are available. */
1813 APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0);
1814 APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision);
1815 truncatedBits = 0;
1816 }
1817 }
1818
1819 /* Step 2: work out any lost fraction, and increment the absolute
1820 value if we would round away from zero. */
1821 if (truncatedBits) {
1822 lost_fraction = lostFractionThroughTruncation(src, partCount(),
1823 truncatedBits);
1824 if (lost_fraction != lfExactlyZero
1825 && roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
1826 if (APInt::tcIncrement(parts, dstPartsCount))
1827 return opInvalidOp; /* Overflow. */
1828 }
1829 } else {
1830 lost_fraction = lfExactlyZero;
1831 }
1832
1833 /* Step 3: check if we fit in the destination. */
1834 unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1;
1835
1836 if (sign) {
1837 if (!isSigned) {
1838 /* Negative numbers cannot be represented as unsigned. */
1839 if (omsb != 0)
1840 return opInvalidOp;
1841 } else {
1842 /* It takes omsb bits to represent the unsigned integer value.
1843 We lose a bit for the sign, but care is needed as the
1844 maximally negative integer is a special case. */
1845 if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb)
1846 return opInvalidOp;
1847
1848 /* This case can happen because of rounding. */
1849 if (omsb > width)
1850 return opInvalidOp;
1851 }
1852
1853 APInt::tcNegate (parts, dstPartsCount);
1854 } else {
1855 if (omsb >= width + !isSigned)
1856 return opInvalidOp;
1857 }
1858
1859 if (lost_fraction == lfExactlyZero)
1860 return opOK;
1861 else
1862 return opInexact;
1863}
1864
1865/* Same as convertToSignExtendedInteger, except we provide
1866 deterministic values in case of an invalid operation exception,
1867 namely zero for NaNs and the minimal or maximal value respectively
1868 for underflow or overflow. */
1869APFloat::opStatus
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001870APFloat::convertToInteger(integerPart *parts, unsigned int width,
Neil Booth4f881702007-09-26 21:33:42 +00001871 bool isSigned,
1872 roundingMode rounding_mode) const
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001873{
Neil Boothee7ae382007-11-01 22:43:37 +00001874 opStatus fs;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001875
Neil Boothee7ae382007-11-01 22:43:37 +00001876 fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001877
Neil Boothee7ae382007-11-01 22:43:37 +00001878 if (fs == opInvalidOp) {
1879 unsigned int bits, dstPartsCount;
1880
1881 dstPartsCount = partCountForBits(width);
1882
1883 if (category == fcNaN)
1884 bits = 0;
1885 else if (sign)
1886 bits = isSigned;
1887 else
1888 bits = width - isSigned;
1889
1890 APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits);
1891 if (sign && isSigned)
1892 APInt::tcShiftLeft(parts, dstPartsCount, width - 1);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001893 }
1894
Neil Boothee7ae382007-11-01 22:43:37 +00001895 return fs;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001896}
1897
Neil Booth643ce592007-10-07 12:07:53 +00001898/* Convert an unsigned integer SRC to a floating point number,
1899 rounding according to ROUNDING_MODE. The sign of the floating
1900 point number is not modified. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001901APFloat::opStatus
Neil Booth643ce592007-10-07 12:07:53 +00001902APFloat::convertFromUnsignedParts(const integerPart *src,
1903 unsigned int srcCount,
1904 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001905{
Neil Booth5477f852007-10-08 14:39:42 +00001906 unsigned int omsb, precision, dstCount;
Neil Booth643ce592007-10-07 12:07:53 +00001907 integerPart *dst;
Neil Booth5477f852007-10-08 14:39:42 +00001908 lostFraction lost_fraction;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001909
Neil Boothcaf19d72007-10-14 10:29:28 +00001910 assertArithmeticOK(*semantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001911 category = fcNormal;
Neil Booth5477f852007-10-08 14:39:42 +00001912 omsb = APInt::tcMSB(src, srcCount) + 1;
Neil Booth643ce592007-10-07 12:07:53 +00001913 dst = significandParts();
1914 dstCount = partCount();
Neil Booth5477f852007-10-08 14:39:42 +00001915 precision = semantics->precision;
Neil Booth643ce592007-10-07 12:07:53 +00001916
Neil Booth5477f852007-10-08 14:39:42 +00001917 /* We want the most significant PRECISON bits of SRC. There may not
1918 be that many; extract what we can. */
1919 if (precision <= omsb) {
1920 exponent = omsb - 1;
Neil Booth643ce592007-10-07 12:07:53 +00001921 lost_fraction = lostFractionThroughTruncation(src, srcCount,
Neil Booth5477f852007-10-08 14:39:42 +00001922 omsb - precision);
1923 APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
1924 } else {
1925 exponent = precision - 1;
1926 lost_fraction = lfExactlyZero;
1927 APInt::tcExtract(dst, dstCount, src, omsb, 0);
Neil Booth643ce592007-10-07 12:07:53 +00001928 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001929
1930 return normalize(rounding_mode, lost_fraction);
1931}
1932
Dan Gohman93c276e2008-02-29 01:26:11 +00001933APFloat::opStatus
1934APFloat::convertFromAPInt(const APInt &Val,
1935 bool isSigned,
1936 roundingMode rounding_mode)
1937{
1938 unsigned int partCount = Val.getNumWords();
1939 APInt api = Val;
1940
1941 sign = false;
1942 if (isSigned && api.isNegative()) {
1943 sign = true;
1944 api = -api;
1945 }
1946
1947 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
1948}
1949
Neil Boothf16c5952007-10-07 12:15:41 +00001950/* Convert a two's complement integer SRC to a floating point number,
1951 rounding according to ROUNDING_MODE. ISSIGNED is true if the
1952 integer is signed, in which case it must be sign-extended. */
1953APFloat::opStatus
1954APFloat::convertFromSignExtendedInteger(const integerPart *src,
1955 unsigned int srcCount,
1956 bool isSigned,
1957 roundingMode rounding_mode)
1958{
1959 opStatus status;
1960
Neil Boothcaf19d72007-10-14 10:29:28 +00001961 assertArithmeticOK(*semantics);
Neil Boothf16c5952007-10-07 12:15:41 +00001962 if (isSigned
1963 && APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
1964 integerPart *copy;
1965
1966 /* If we're signed and negative negate a copy. */
1967 sign = true;
1968 copy = new integerPart[srcCount];
1969 APInt::tcAssign(copy, src, srcCount);
1970 APInt::tcNegate(copy, srcCount);
1971 status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
1972 delete [] copy;
1973 } else {
1974 sign = false;
1975 status = convertFromUnsignedParts(src, srcCount, rounding_mode);
1976 }
1977
1978 return status;
1979}
1980
Neil Boothccf596a2007-10-07 11:45:55 +00001981/* FIXME: should this just take a const APInt reference? */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001982APFloat::opStatus
Neil Boothccf596a2007-10-07 11:45:55 +00001983APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
1984 unsigned int width, bool isSigned,
1985 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001986{
Dale Johannesen910993e2007-09-21 22:09:37 +00001987 unsigned int partCount = partCountForBits(width);
Dale Johannesen910993e2007-09-21 22:09:37 +00001988 APInt api = APInt(width, partCount, parts);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001989
1990 sign = false;
Dale Johannesencce23a42007-09-30 18:17:01 +00001991 if(isSigned && APInt::tcExtractBit(parts, width - 1)) {
1992 sign = true;
1993 api = -api;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001994 }
1995
Neil Booth7a7bc0f2007-10-07 12:10:57 +00001996 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001997}
1998
1999APFloat::opStatus
2000APFloat::convertFromHexadecimalString(const char *p,
Neil Booth4f881702007-09-26 21:33:42 +00002001 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002002{
2003 lostFraction lost_fraction;
2004 integerPart *significand;
2005 unsigned int bitPos, partsCount;
2006 const char *dot, *firstSignificantDigit;
2007
2008 zeroSignificand();
2009 exponent = 0;
2010 category = fcNormal;
2011
2012 significand = significandParts();
2013 partsCount = partCount();
2014 bitPos = partsCount * integerPartWidth;
2015
Neil Booth33d4c922007-10-07 08:51:21 +00002016 /* Skip leading zeroes and any (hexa)decimal point. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002017 p = skipLeadingZeroesAndAnyDot(p, &dot);
2018 firstSignificantDigit = p;
2019
2020 for(;;) {
Dale Johannesen386f3e92008-05-14 22:53:25 +00002021 integerPart hex_value;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002022
2023 if(*p == '.') {
2024 assert(dot == 0);
2025 dot = p++;
2026 }
2027
2028 hex_value = hexDigitValue(*p);
2029 if(hex_value == -1U) {
2030 lost_fraction = lfExactlyZero;
2031 break;
2032 }
2033
2034 p++;
2035
2036 /* Store the number whilst 4-bit nibbles remain. */
2037 if(bitPos) {
2038 bitPos -= 4;
2039 hex_value <<= bitPos % integerPartWidth;
2040 significand[bitPos / integerPartWidth] |= hex_value;
2041 } else {
2042 lost_fraction = trailingHexadecimalFraction(p, hex_value);
2043 while(hexDigitValue(*p) != -1U)
Neil Booth4f881702007-09-26 21:33:42 +00002044 p++;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002045 break;
2046 }
2047 }
2048
2049 /* Hex floats require an exponent but not a hexadecimal point. */
2050 assert(*p == 'p' || *p == 'P');
2051
2052 /* Ignore the exponent if we are zero. */
2053 if(p != firstSignificantDigit) {
2054 int expAdjustment;
2055
2056 /* Implicit hexadecimal point? */
2057 if(!dot)
2058 dot = p;
2059
2060 /* Calculate the exponent adjustment implicit in the number of
2061 significant digits. */
Evan Cheng48e8c802008-05-02 21:15:08 +00002062 expAdjustment = static_cast<int>(dot - firstSignificantDigit);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002063 if(expAdjustment < 0)
2064 expAdjustment++;
2065 expAdjustment = expAdjustment * 4 - 1;
2066
2067 /* Adjust for writing the significand starting at the most
2068 significant nibble. */
2069 expAdjustment += semantics->precision;
2070 expAdjustment -= partsCount * integerPartWidth;
2071
2072 /* Adjust for the given exponent. */
2073 exponent = totalExponent(p, expAdjustment);
2074 }
2075
2076 return normalize(rounding_mode, lost_fraction);
2077}
2078
2079APFloat::opStatus
Neil Booth96c74712007-10-12 16:02:31 +00002080APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
2081 unsigned sigPartCount, int exp,
2082 roundingMode rounding_mode)
2083{
2084 unsigned int parts, pow5PartCount;
Neil Boothcaf19d72007-10-14 10:29:28 +00002085 fltSemantics calcSemantics = { 32767, -32767, 0, true };
Neil Booth96c74712007-10-12 16:02:31 +00002086 integerPart pow5Parts[maxPowerOfFiveParts];
2087 bool isNearest;
2088
2089 isNearest = (rounding_mode == rmNearestTiesToEven
2090 || rounding_mode == rmNearestTiesToAway);
2091
2092 parts = partCountForBits(semantics->precision + 11);
2093
2094 /* Calculate pow(5, abs(exp)). */
2095 pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
2096
2097 for (;; parts *= 2) {
2098 opStatus sigStatus, powStatus;
2099 unsigned int excessPrecision, truncatedBits;
2100
2101 calcSemantics.precision = parts * integerPartWidth - 1;
2102 excessPrecision = calcSemantics.precision - semantics->precision;
2103 truncatedBits = excessPrecision;
2104
2105 APFloat decSig(calcSemantics, fcZero, sign);
2106 APFloat pow5(calcSemantics, fcZero, false);
2107
2108 sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
2109 rmNearestTiesToEven);
2110 powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
2111 rmNearestTiesToEven);
2112 /* Add exp, as 10^n = 5^n * 2^n. */
2113 decSig.exponent += exp;
2114
2115 lostFraction calcLostFraction;
Evan Cheng48e8c802008-05-02 21:15:08 +00002116 integerPart HUerr, HUdistance;
2117 unsigned int powHUerr;
Neil Booth96c74712007-10-12 16:02:31 +00002118
2119 if (exp >= 0) {
2120 /* multiplySignificand leaves the precision-th bit set to 1. */
2121 calcLostFraction = decSig.multiplySignificand(pow5, NULL);
2122 powHUerr = powStatus != opOK;
2123 } else {
2124 calcLostFraction = decSig.divideSignificand(pow5);
2125 /* Denormal numbers have less precision. */
2126 if (decSig.exponent < semantics->minExponent) {
2127 excessPrecision += (semantics->minExponent - decSig.exponent);
2128 truncatedBits = excessPrecision;
2129 if (excessPrecision > calcSemantics.precision)
2130 excessPrecision = calcSemantics.precision;
2131 }
2132 /* Extra half-ulp lost in reciprocal of exponent. */
Evan Cheng48e8c802008-05-02 21:15:08 +00002133 powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
Neil Booth96c74712007-10-12 16:02:31 +00002134 }
2135
2136 /* Both multiplySignificand and divideSignificand return the
2137 result with the integer bit set. */
2138 assert (APInt::tcExtractBit
2139 (decSig.significandParts(), calcSemantics.precision - 1) == 1);
2140
2141 HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
2142 powHUerr);
2143 HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
2144 excessPrecision, isNearest);
2145
2146 /* Are we guaranteed to round correctly if we truncate? */
2147 if (HUdistance >= HUerr) {
2148 APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
2149 calcSemantics.precision - excessPrecision,
2150 excessPrecision);
2151 /* Take the exponent of decSig. If we tcExtract-ed less bits
2152 above we must adjust our exponent to compensate for the
2153 implicit right shift. */
2154 exponent = (decSig.exponent + semantics->precision
2155 - (calcSemantics.precision - excessPrecision));
2156 calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
2157 decSig.partCount(),
2158 truncatedBits);
2159 return normalize(rounding_mode, calcLostFraction);
2160 }
2161 }
2162}
2163
2164APFloat::opStatus
2165APFloat::convertFromDecimalString(const char *p, roundingMode rounding_mode)
2166{
Neil Booth1870f292007-10-14 10:16:12 +00002167 decimalInfo D;
Neil Booth96c74712007-10-12 16:02:31 +00002168 opStatus fs;
2169
Neil Booth1870f292007-10-14 10:16:12 +00002170 /* Scan the text. */
2171 interpretDecimal(p, &D);
Neil Booth96c74712007-10-12 16:02:31 +00002172
Neil Booth686700e2007-10-15 15:00:55 +00002173 /* Handle the quick cases. First the case of no significant digits,
2174 i.e. zero, and then exponents that are obviously too large or too
2175 small. Writing L for log 10 / log 2, a number d.ddddd*10^exp
2176 definitely overflows if
2177
2178 (exp - 1) * L >= maxExponent
2179
2180 and definitely underflows to zero where
2181
2182 (exp + 1) * L <= minExponent - precision
2183
2184 With integer arithmetic the tightest bounds for L are
2185
2186 93/28 < L < 196/59 [ numerator <= 256 ]
2187 42039/12655 < L < 28738/8651 [ numerator <= 65536 ]
2188 */
2189
Neil Boothcc233592007-12-05 13:06:04 +00002190 if (decDigitValue(*D.firstSigDigit) >= 10U) {
Neil Booth96c74712007-10-12 16:02:31 +00002191 category = fcZero;
2192 fs = opOK;
Neil Booth686700e2007-10-15 15:00:55 +00002193 } else if ((D.normalizedExponent + 1) * 28738
2194 <= 8651 * (semantics->minExponent - (int) semantics->precision)) {
2195 /* Underflow to zero and round. */
2196 zeroSignificand();
2197 fs = normalize(rounding_mode, lfLessThanHalf);
2198 } else if ((D.normalizedExponent - 1) * 42039
2199 >= 12655 * semantics->maxExponent) {
2200 /* Overflow and round. */
2201 fs = handleOverflow(rounding_mode);
Neil Booth96c74712007-10-12 16:02:31 +00002202 } else {
Neil Booth1870f292007-10-14 10:16:12 +00002203 integerPart *decSignificand;
2204 unsigned int partCount;
Neil Booth96c74712007-10-12 16:02:31 +00002205
Neil Booth1870f292007-10-14 10:16:12 +00002206 /* A tight upper bound on number of bits required to hold an
Neil Booth686700e2007-10-15 15:00:55 +00002207 N-digit decimal integer is N * 196 / 59. Allocate enough space
Neil Booth1870f292007-10-14 10:16:12 +00002208 to hold the full significand, and an extra part required by
2209 tcMultiplyPart. */
Evan Cheng48e8c802008-05-02 21:15:08 +00002210 partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
Neil Booth686700e2007-10-15 15:00:55 +00002211 partCount = partCountForBits(1 + 196 * partCount / 59);
Neil Booth1870f292007-10-14 10:16:12 +00002212 decSignificand = new integerPart[partCount + 1];
2213 partCount = 0;
Neil Booth96c74712007-10-12 16:02:31 +00002214
Neil Booth1870f292007-10-14 10:16:12 +00002215 /* Convert to binary efficiently - we do almost all multiplication
2216 in an integerPart. When this would overflow do we do a single
2217 bignum multiplication, and then revert again to multiplication
2218 in an integerPart. */
2219 do {
2220 integerPart decValue, val, multiplier;
2221
2222 val = 0;
2223 multiplier = 1;
2224
2225 do {
2226 if (*p == '.')
2227 p++;
2228
2229 decValue = decDigitValue(*p++);
2230 multiplier *= 10;
2231 val = val * 10 + decValue;
2232 /* The maximum number that can be multiplied by ten with any
2233 digit added without overflowing an integerPart. */
2234 } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
2235
2236 /* Multiply out the current part. */
2237 APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
2238 partCount, partCount + 1, false);
2239
2240 /* If we used another part (likely but not guaranteed), increase
2241 the count. */
2242 if (decSignificand[partCount])
2243 partCount++;
2244 } while (p <= D.lastSigDigit);
Neil Booth96c74712007-10-12 16:02:31 +00002245
Neil Booth43a4b282007-11-01 22:51:07 +00002246 category = fcNormal;
Neil Booth96c74712007-10-12 16:02:31 +00002247 fs = roundSignificandWithExponent(decSignificand, partCount,
Neil Booth1870f292007-10-14 10:16:12 +00002248 D.exponent, rounding_mode);
Neil Booth96c74712007-10-12 16:02:31 +00002249
Neil Booth1870f292007-10-14 10:16:12 +00002250 delete [] decSignificand;
2251 }
Neil Booth96c74712007-10-12 16:02:31 +00002252
2253 return fs;
2254}
2255
2256APFloat::opStatus
Neil Booth4f881702007-09-26 21:33:42 +00002257APFloat::convertFromString(const char *p, roundingMode rounding_mode)
2258{
Neil Boothcaf19d72007-10-14 10:29:28 +00002259 assertArithmeticOK(*semantics);
2260
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002261 /* Handle a leading minus sign. */
2262 if(*p == '-')
2263 sign = 1, p++;
2264 else
2265 sign = 0;
2266
2267 if(p[0] == '0' && (p[1] == 'x' || p[1] == 'X'))
2268 return convertFromHexadecimalString(p + 2, rounding_mode);
Neil Booth96c74712007-10-12 16:02:31 +00002269 else
2270 return convertFromDecimalString(p, rounding_mode);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002271}
Dale Johannesen343e7702007-08-24 00:56:33 +00002272
Neil Bootha30b0ee2007-10-03 22:26:02 +00002273/* Write out a hexadecimal representation of the floating point value
2274 to DST, which must be of sufficient size, in the C99 form
2275 [-]0xh.hhhhp[+-]d. Return the number of characters written,
2276 excluding the terminating NUL.
2277
2278 If UPPERCASE, the output is in upper case, otherwise in lower case.
2279
2280 HEXDIGITS digits appear altogether, rounding the value if
2281 necessary. If HEXDIGITS is 0, the minimal precision to display the
2282 number precisely is used instead. If nothing would appear after
2283 the decimal point it is suppressed.
2284
2285 The decimal exponent is always printed and has at least one digit.
2286 Zero values display an exponent of zero. Infinities and NaNs
2287 appear as "infinity" or "nan" respectively.
2288
2289 The above rules are as specified by C99. There is ambiguity about
2290 what the leading hexadecimal digit should be. This implementation
2291 uses whatever is necessary so that the exponent is displayed as
2292 stored. This implies the exponent will fall within the IEEE format
2293 range, and the leading hexadecimal digit will be 0 (for denormals),
2294 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
2295 any other digits zero).
2296*/
2297unsigned int
2298APFloat::convertToHexString(char *dst, unsigned int hexDigits,
2299 bool upperCase, roundingMode rounding_mode) const
2300{
2301 char *p;
2302
Neil Boothcaf19d72007-10-14 10:29:28 +00002303 assertArithmeticOK(*semantics);
2304
Neil Bootha30b0ee2007-10-03 22:26:02 +00002305 p = dst;
2306 if (sign)
2307 *dst++ = '-';
2308
2309 switch (category) {
2310 case fcInfinity:
2311 memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
2312 dst += sizeof infinityL - 1;
2313 break;
2314
2315 case fcNaN:
2316 memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
2317 dst += sizeof NaNU - 1;
2318 break;
2319
2320 case fcZero:
2321 *dst++ = '0';
2322 *dst++ = upperCase ? 'X': 'x';
2323 *dst++ = '0';
2324 if (hexDigits > 1) {
2325 *dst++ = '.';
2326 memset (dst, '0', hexDigits - 1);
2327 dst += hexDigits - 1;
2328 }
2329 *dst++ = upperCase ? 'P': 'p';
2330 *dst++ = '0';
2331 break;
2332
2333 case fcNormal:
2334 dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
2335 break;
2336 }
2337
2338 *dst = 0;
2339
Evan Cheng48e8c802008-05-02 21:15:08 +00002340 return static_cast<unsigned int>(dst - p);
Neil Bootha30b0ee2007-10-03 22:26:02 +00002341}
2342
2343/* Does the hard work of outputting the correctly rounded hexadecimal
2344 form of a normal floating point number with the specified number of
2345 hexadecimal digits. If HEXDIGITS is zero the minimum number of
2346 digits necessary to print the value precisely is output. */
2347char *
2348APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
2349 bool upperCase,
2350 roundingMode rounding_mode) const
2351{
2352 unsigned int count, valueBits, shift, partsCount, outputDigits;
2353 const char *hexDigitChars;
2354 const integerPart *significand;
2355 char *p;
2356 bool roundUp;
2357
2358 *dst++ = '0';
2359 *dst++ = upperCase ? 'X': 'x';
2360
2361 roundUp = false;
2362 hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
2363
2364 significand = significandParts();
2365 partsCount = partCount();
2366
2367 /* +3 because the first digit only uses the single integer bit, so
2368 we have 3 virtual zero most-significant-bits. */
2369 valueBits = semantics->precision + 3;
2370 shift = integerPartWidth - valueBits % integerPartWidth;
2371
2372 /* The natural number of digits required ignoring trailing
2373 insignificant zeroes. */
2374 outputDigits = (valueBits - significandLSB () + 3) / 4;
2375
2376 /* hexDigits of zero means use the required number for the
2377 precision. Otherwise, see if we are truncating. If we are,
Neil Booth978661d2007-10-06 00:24:48 +00002378 find out if we need to round away from zero. */
Neil Bootha30b0ee2007-10-03 22:26:02 +00002379 if (hexDigits) {
2380 if (hexDigits < outputDigits) {
2381 /* We are dropping non-zero bits, so need to check how to round.
2382 "bits" is the number of dropped bits. */
2383 unsigned int bits;
2384 lostFraction fraction;
2385
2386 bits = valueBits - hexDigits * 4;
2387 fraction = lostFractionThroughTruncation (significand, partsCount, bits);
2388 roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
2389 }
2390 outputDigits = hexDigits;
2391 }
2392
2393 /* Write the digits consecutively, and start writing in the location
2394 of the hexadecimal point. We move the most significant digit
2395 left and add the hexadecimal point later. */
2396 p = ++dst;
2397
2398 count = (valueBits + integerPartWidth - 1) / integerPartWidth;
2399
2400 while (outputDigits && count) {
2401 integerPart part;
2402
2403 /* Put the most significant integerPartWidth bits in "part". */
2404 if (--count == partsCount)
2405 part = 0; /* An imaginary higher zero part. */
2406 else
2407 part = significand[count] << shift;
2408
2409 if (count && shift)
2410 part |= significand[count - 1] >> (integerPartWidth - shift);
2411
2412 /* Convert as much of "part" to hexdigits as we can. */
2413 unsigned int curDigits = integerPartWidth / 4;
2414
2415 if (curDigits > outputDigits)
2416 curDigits = outputDigits;
2417 dst += partAsHex (dst, part, curDigits, hexDigitChars);
2418 outputDigits -= curDigits;
2419 }
2420
2421 if (roundUp) {
2422 char *q = dst;
2423
2424 /* Note that hexDigitChars has a trailing '0'. */
2425 do {
2426 q--;
2427 *q = hexDigitChars[hexDigitValue (*q) + 1];
Neil Booth978661d2007-10-06 00:24:48 +00002428 } while (*q == '0');
2429 assert (q >= p);
Neil Bootha30b0ee2007-10-03 22:26:02 +00002430 } else {
2431 /* Add trailing zeroes. */
2432 memset (dst, '0', outputDigits);
2433 dst += outputDigits;
2434 }
2435
2436 /* Move the most significant digit to before the point, and if there
2437 is something after the decimal point add it. This must come
2438 after rounding above. */
2439 p[-1] = p[0];
2440 if (dst -1 == p)
2441 dst--;
2442 else
2443 p[0] = '.';
2444
2445 /* Finally output the exponent. */
2446 *dst++ = upperCase ? 'P': 'p';
2447
Neil Booth92f7e8d2007-10-06 07:29:25 +00002448 return writeSignedDecimal (dst, exponent);
Neil Bootha30b0ee2007-10-03 22:26:02 +00002449}
2450
Dale Johannesen343e7702007-08-24 00:56:33 +00002451// For good performance it is desirable for different APFloats
2452// to produce different integers.
2453uint32_t
Neil Booth4f881702007-09-26 21:33:42 +00002454APFloat::getHashValue() const
2455{
Dale Johannesen343e7702007-08-24 00:56:33 +00002456 if (category==fcZero) return sign<<8 | semantics->precision ;
2457 else if (category==fcInfinity) return sign<<9 | semantics->precision;
Dale Johanneseneaf08942007-08-31 04:03:46 +00002458 else if (category==fcNaN) return 1<<10 | semantics->precision;
Dale Johannesen343e7702007-08-24 00:56:33 +00002459 else {
2460 uint32_t hash = sign<<11 | semantics->precision | exponent<<12;
2461 const integerPart* p = significandParts();
2462 for (int i=partCount(); i>0; i--, p++)
Evan Cheng48e8c802008-05-02 21:15:08 +00002463 hash ^= ((uint32_t)*p) ^ (uint32_t)((*p)>>32);
Dale Johannesen343e7702007-08-24 00:56:33 +00002464 return hash;
2465 }
2466}
2467
2468// Conversion from APFloat to/from host float/double. It may eventually be
2469// possible to eliminate these and have everybody deal with APFloats, but that
2470// will take a while. This approach will not easily extend to long double.
Dale Johannesena72a5a02007-09-20 23:47:58 +00002471// Current implementation requires integerPartWidth==64, which is correct at
2472// the moment but could be made more general.
Dale Johannesen343e7702007-08-24 00:56:33 +00002473
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002474// Denormals have exponent minExponent in APFloat, but minExponent-1 in
Dale Johannesena72a5a02007-09-20 23:47:58 +00002475// the actual IEEE respresentations. We compensate for that here.
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002476
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002477APInt
Neil Booth4f881702007-09-26 21:33:42 +00002478APFloat::convertF80LongDoubleAPFloatToAPInt() const
2479{
Dan Gohmanb10abe12008-01-29 12:08:20 +00002480 assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended);
Dale Johannesena72a5a02007-09-20 23:47:58 +00002481 assert (partCount()==2);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002482
2483 uint64_t myexponent, mysignificand;
2484
2485 if (category==fcNormal) {
2486 myexponent = exponent+16383; //bias
Dale Johannesena72a5a02007-09-20 23:47:58 +00002487 mysignificand = significandParts()[0];
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002488 if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
2489 myexponent = 0; // denormal
2490 } else if (category==fcZero) {
2491 myexponent = 0;
2492 mysignificand = 0;
2493 } else if (category==fcInfinity) {
2494 myexponent = 0x7fff;
2495 mysignificand = 0x8000000000000000ULL;
Chris Lattnera11ef822007-10-06 06:13:42 +00002496 } else {
2497 assert(category == fcNaN && "Unknown category");
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002498 myexponent = 0x7fff;
Dale Johannesena72a5a02007-09-20 23:47:58 +00002499 mysignificand = significandParts()[0];
Chris Lattnera11ef822007-10-06 06:13:42 +00002500 }
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002501
2502 uint64_t words[2];
Evan Cheng48e8c802008-05-02 21:15:08 +00002503 words[0] = ((uint64_t)(sign & 1) << 63) |
2504 ((myexponent & 0x7fffLL) << 48) |
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002505 ((mysignificand >>16) & 0xffffffffffffLL);
2506 words[1] = mysignificand & 0xffff;
Chris Lattnera11ef822007-10-06 06:13:42 +00002507 return APInt(80, 2, words);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002508}
2509
2510APInt
Dale Johannesena471c2e2007-10-11 18:07:22 +00002511APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
2512{
Dan Gohmanb10abe12008-01-29 12:08:20 +00002513 assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble);
Dale Johannesena471c2e2007-10-11 18:07:22 +00002514 assert (partCount()==2);
2515
2516 uint64_t myexponent, mysignificand, myexponent2, mysignificand2;
2517
2518 if (category==fcNormal) {
2519 myexponent = exponent + 1023; //bias
2520 myexponent2 = exponent2 + 1023;
2521 mysignificand = significandParts()[0];
2522 mysignificand2 = significandParts()[1];
2523 if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
2524 myexponent = 0; // denormal
2525 if (myexponent2==1 && !(mysignificand2 & 0x10000000000000LL))
2526 myexponent2 = 0; // denormal
2527 } else if (category==fcZero) {
2528 myexponent = 0;
2529 mysignificand = 0;
2530 myexponent2 = 0;
2531 mysignificand2 = 0;
2532 } else if (category==fcInfinity) {
2533 myexponent = 0x7ff;
2534 myexponent2 = 0;
2535 mysignificand = 0;
2536 mysignificand2 = 0;
2537 } else {
2538 assert(category == fcNaN && "Unknown category");
2539 myexponent = 0x7ff;
2540 mysignificand = significandParts()[0];
2541 myexponent2 = exponent2;
2542 mysignificand2 = significandParts()[1];
2543 }
2544
2545 uint64_t words[2];
Evan Cheng48e8c802008-05-02 21:15:08 +00002546 words[0] = ((uint64_t)(sign & 1) << 63) |
Dale Johannesena471c2e2007-10-11 18:07:22 +00002547 ((myexponent & 0x7ff) << 52) |
2548 (mysignificand & 0xfffffffffffffLL);
Evan Cheng48e8c802008-05-02 21:15:08 +00002549 words[1] = ((uint64_t)(sign2 & 1) << 63) |
Dale Johannesena471c2e2007-10-11 18:07:22 +00002550 ((myexponent2 & 0x7ff) << 52) |
2551 (mysignificand2 & 0xfffffffffffffLL);
2552 return APInt(128, 2, words);
2553}
2554
2555APInt
Neil Booth4f881702007-09-26 21:33:42 +00002556APFloat::convertDoubleAPFloatToAPInt() const
2557{
Dan Gohmancb648f92007-09-14 20:08:19 +00002558 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
Dale Johannesen343e7702007-08-24 00:56:33 +00002559 assert (partCount()==1);
2560
Dale Johanneseneaf08942007-08-31 04:03:46 +00002561 uint64_t myexponent, mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00002562
2563 if (category==fcNormal) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002564 myexponent = exponent+1023; //bias
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002565 mysignificand = *significandParts();
2566 if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
2567 myexponent = 0; // denormal
Dale Johannesen343e7702007-08-24 00:56:33 +00002568 } else if (category==fcZero) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002569 myexponent = 0;
2570 mysignificand = 0;
2571 } else if (category==fcInfinity) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002572 myexponent = 0x7ff;
2573 mysignificand = 0;
Chris Lattnera11ef822007-10-06 06:13:42 +00002574 } else {
2575 assert(category == fcNaN && "Unknown category!");
Dale Johannesen343e7702007-08-24 00:56:33 +00002576 myexponent = 0x7ff;
Dale Johanneseneaf08942007-08-31 04:03:46 +00002577 mysignificand = *significandParts();
Chris Lattnera11ef822007-10-06 06:13:42 +00002578 }
Dale Johannesen343e7702007-08-24 00:56:33 +00002579
Evan Cheng48e8c802008-05-02 21:15:08 +00002580 return APInt(64, ((((uint64_t)(sign & 1) << 63) |
Chris Lattnera11ef822007-10-06 06:13:42 +00002581 ((myexponent & 0x7ff) << 52) |
2582 (mysignificand & 0xfffffffffffffLL))));
Dale Johannesen343e7702007-08-24 00:56:33 +00002583}
2584
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002585APInt
Neil Booth4f881702007-09-26 21:33:42 +00002586APFloat::convertFloatAPFloatToAPInt() const
2587{
Dan Gohmancb648f92007-09-14 20:08:19 +00002588 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
Dale Johannesen343e7702007-08-24 00:56:33 +00002589 assert (partCount()==1);
Neil Booth4f881702007-09-26 21:33:42 +00002590
Dale Johanneseneaf08942007-08-31 04:03:46 +00002591 uint32_t myexponent, mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00002592
2593 if (category==fcNormal) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002594 myexponent = exponent+127; //bias
Evan Cheng48e8c802008-05-02 21:15:08 +00002595 mysignificand = (uint32_t)*significandParts();
Dale Johannesend0763b92007-11-17 01:02:27 +00002596 if (myexponent == 1 && !(mysignificand & 0x800000))
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002597 myexponent = 0; // denormal
Dale Johannesen343e7702007-08-24 00:56:33 +00002598 } else if (category==fcZero) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002599 myexponent = 0;
2600 mysignificand = 0;
2601 } else if (category==fcInfinity) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002602 myexponent = 0xff;
2603 mysignificand = 0;
Chris Lattnera11ef822007-10-06 06:13:42 +00002604 } else {
2605 assert(category == fcNaN && "Unknown category!");
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002606 myexponent = 0xff;
Evan Cheng48e8c802008-05-02 21:15:08 +00002607 mysignificand = (uint32_t)*significandParts();
Chris Lattnera11ef822007-10-06 06:13:42 +00002608 }
Dale Johannesen343e7702007-08-24 00:56:33 +00002609
Chris Lattnera11ef822007-10-06 06:13:42 +00002610 return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
2611 (mysignificand & 0x7fffff)));
Dale Johannesen343e7702007-08-24 00:56:33 +00002612}
2613
Dale Johannesena471c2e2007-10-11 18:07:22 +00002614// This function creates an APInt that is just a bit map of the floating
2615// point constant as it would appear in memory. It is not a conversion,
2616// and treating the result as a normal integer is unlikely to be useful.
2617
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002618APInt
Neil Booth4f881702007-09-26 21:33:42 +00002619APFloat::convertToAPInt() const
2620{
Dan Gohmanb10abe12008-01-29 12:08:20 +00002621 if (semantics == (const llvm::fltSemantics*)&IEEEsingle)
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002622 return convertFloatAPFloatToAPInt();
Chris Lattnera11ef822007-10-06 06:13:42 +00002623
Dan Gohmanb10abe12008-01-29 12:08:20 +00002624 if (semantics == (const llvm::fltSemantics*)&IEEEdouble)
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002625 return convertDoubleAPFloatToAPInt();
Neil Booth4f881702007-09-26 21:33:42 +00002626
Dan Gohmanb10abe12008-01-29 12:08:20 +00002627 if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble)
Dale Johannesena471c2e2007-10-11 18:07:22 +00002628 return convertPPCDoubleDoubleAPFloatToAPInt();
2629
Dan Gohmanb10abe12008-01-29 12:08:20 +00002630 assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended &&
Chris Lattnera11ef822007-10-06 06:13:42 +00002631 "unknown format!");
2632 return convertF80LongDoubleAPFloatToAPInt();
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002633}
2634
Neil Booth4f881702007-09-26 21:33:42 +00002635float
2636APFloat::convertToFloat() const
2637{
Dan Gohmanb10abe12008-01-29 12:08:20 +00002638 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002639 APInt api = convertToAPInt();
2640 return api.bitsToFloat();
2641}
2642
Neil Booth4f881702007-09-26 21:33:42 +00002643double
2644APFloat::convertToDouble() const
2645{
Dan Gohmanb10abe12008-01-29 12:08:20 +00002646 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002647 APInt api = convertToAPInt();
2648 return api.bitsToDouble();
2649}
2650
Dale Johannesend3d8ce32008-10-06 18:22:29 +00002651/// Integer bit is explicit in this format. Intel hardware (387 and later)
2652/// does not support these bit patterns:
2653/// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
2654/// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
2655/// exponent = 0, integer bit 1 ("pseudodenormal")
2656/// exponent!=0 nor all 1's, integer bit 0 ("unnormal")
2657/// At the moment, the first two are treated as NaNs, the second two as Normal.
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002658void
Neil Booth4f881702007-09-26 21:33:42 +00002659APFloat::initFromF80LongDoubleAPInt(const APInt &api)
2660{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002661 assert(api.getBitWidth()==80);
2662 uint64_t i1 = api.getRawData()[0];
2663 uint64_t i2 = api.getRawData()[1];
2664 uint64_t myexponent = (i1 >> 48) & 0x7fff;
2665 uint64_t mysignificand = ((i1 << 16) & 0xffffffffffff0000ULL) |
2666 (i2 & 0xffff);
2667
2668 initialize(&APFloat::x87DoubleExtended);
Dale Johannesena72a5a02007-09-20 23:47:58 +00002669 assert(partCount()==2);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002670
Evan Cheng48e8c802008-05-02 21:15:08 +00002671 sign = static_cast<unsigned int>(i1>>63);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002672 if (myexponent==0 && mysignificand==0) {
2673 // exponent, significand meaningless
2674 category = fcZero;
2675 } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
2676 // exponent, significand meaningless
2677 category = fcInfinity;
2678 } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) {
2679 // exponent meaningless
2680 category = fcNaN;
Dale Johannesena72a5a02007-09-20 23:47:58 +00002681 significandParts()[0] = mysignificand;
2682 significandParts()[1] = 0;
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002683 } else {
2684 category = fcNormal;
2685 exponent = myexponent - 16383;
Dale Johannesena72a5a02007-09-20 23:47:58 +00002686 significandParts()[0] = mysignificand;
2687 significandParts()[1] = 0;
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002688 if (myexponent==0) // denormal
2689 exponent = -16382;
Neil Booth4f881702007-09-26 21:33:42 +00002690 }
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002691}
2692
2693void
Dale Johannesena471c2e2007-10-11 18:07:22 +00002694APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
2695{
2696 assert(api.getBitWidth()==128);
2697 uint64_t i1 = api.getRawData()[0];
2698 uint64_t i2 = api.getRawData()[1];
2699 uint64_t myexponent = (i1 >> 52) & 0x7ff;
2700 uint64_t mysignificand = i1 & 0xfffffffffffffLL;
2701 uint64_t myexponent2 = (i2 >> 52) & 0x7ff;
2702 uint64_t mysignificand2 = i2 & 0xfffffffffffffLL;
2703
2704 initialize(&APFloat::PPCDoubleDouble);
2705 assert(partCount()==2);
2706
Evan Cheng48e8c802008-05-02 21:15:08 +00002707 sign = static_cast<unsigned int>(i1>>63);
2708 sign2 = static_cast<unsigned int>(i2>>63);
Dale Johannesena471c2e2007-10-11 18:07:22 +00002709 if (myexponent==0 && mysignificand==0) {
2710 // exponent, significand meaningless
2711 // exponent2 and significand2 are required to be 0; we don't check
2712 category = fcZero;
2713 } else if (myexponent==0x7ff && mysignificand==0) {
2714 // exponent, significand meaningless
2715 // exponent2 and significand2 are required to be 0; we don't check
2716 category = fcInfinity;
2717 } else if (myexponent==0x7ff && mysignificand!=0) {
2718 // exponent meaningless. So is the whole second word, but keep it
2719 // for determinism.
2720 category = fcNaN;
2721 exponent2 = myexponent2;
2722 significandParts()[0] = mysignificand;
2723 significandParts()[1] = mysignificand2;
2724 } else {
2725 category = fcNormal;
2726 // Note there is no category2; the second word is treated as if it is
2727 // fcNormal, although it might be something else considered by itself.
2728 exponent = myexponent - 1023;
2729 exponent2 = myexponent2 - 1023;
2730 significandParts()[0] = mysignificand;
2731 significandParts()[1] = mysignificand2;
2732 if (myexponent==0) // denormal
2733 exponent = -1022;
2734 else
2735 significandParts()[0] |= 0x10000000000000LL; // integer bit
2736 if (myexponent2==0)
2737 exponent2 = -1022;
2738 else
2739 significandParts()[1] |= 0x10000000000000LL; // integer bit
2740 }
2741}
2742
2743void
Neil Booth4f881702007-09-26 21:33:42 +00002744APFloat::initFromDoubleAPInt(const APInt &api)
2745{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002746 assert(api.getBitWidth()==64);
2747 uint64_t i = *api.getRawData();
Dale Johannesend3b51fd2007-08-24 05:08:11 +00002748 uint64_t myexponent = (i >> 52) & 0x7ff;
2749 uint64_t mysignificand = i & 0xfffffffffffffLL;
2750
Dale Johannesen343e7702007-08-24 00:56:33 +00002751 initialize(&APFloat::IEEEdouble);
Dale Johannesen343e7702007-08-24 00:56:33 +00002752 assert(partCount()==1);
2753
Evan Cheng48e8c802008-05-02 21:15:08 +00002754 sign = static_cast<unsigned int>(i>>63);
Dale Johannesen343e7702007-08-24 00:56:33 +00002755 if (myexponent==0 && mysignificand==0) {
2756 // exponent, significand meaningless
2757 category = fcZero;
Dale Johannesen343e7702007-08-24 00:56:33 +00002758 } else if (myexponent==0x7ff && mysignificand==0) {
2759 // exponent, significand meaningless
2760 category = fcInfinity;
Dale Johanneseneaf08942007-08-31 04:03:46 +00002761 } else if (myexponent==0x7ff && mysignificand!=0) {
2762 // exponent meaningless
2763 category = fcNaN;
2764 *significandParts() = mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00002765 } else {
Dale Johannesen343e7702007-08-24 00:56:33 +00002766 category = fcNormal;
2767 exponent = myexponent - 1023;
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002768 *significandParts() = mysignificand;
2769 if (myexponent==0) // denormal
2770 exponent = -1022;
2771 else
2772 *significandParts() |= 0x10000000000000LL; // integer bit
Neil Booth4f881702007-09-26 21:33:42 +00002773 }
Dale Johannesen343e7702007-08-24 00:56:33 +00002774}
2775
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002776void
Neil Booth4f881702007-09-26 21:33:42 +00002777APFloat::initFromFloatAPInt(const APInt & api)
2778{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002779 assert(api.getBitWidth()==32);
2780 uint32_t i = (uint32_t)*api.getRawData();
Dale Johannesend3b51fd2007-08-24 05:08:11 +00002781 uint32_t myexponent = (i >> 23) & 0xff;
2782 uint32_t mysignificand = i & 0x7fffff;
2783
Dale Johannesen343e7702007-08-24 00:56:33 +00002784 initialize(&APFloat::IEEEsingle);
Dale Johannesen343e7702007-08-24 00:56:33 +00002785 assert(partCount()==1);
2786
Dale Johanneseneaf08942007-08-31 04:03:46 +00002787 sign = i >> 31;
Dale Johannesen343e7702007-08-24 00:56:33 +00002788 if (myexponent==0 && mysignificand==0) {
2789 // exponent, significand meaningless
2790 category = fcZero;
Dale Johannesen343e7702007-08-24 00:56:33 +00002791 } else if (myexponent==0xff && mysignificand==0) {
2792 // exponent, significand meaningless
2793 category = fcInfinity;
Dale Johannesen902ff942007-09-25 17:25:00 +00002794 } else if (myexponent==0xff && mysignificand!=0) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002795 // sign, exponent, significand meaningless
Dale Johanneseneaf08942007-08-31 04:03:46 +00002796 category = fcNaN;
2797 *significandParts() = mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00002798 } else {
2799 category = fcNormal;
Dale Johannesen343e7702007-08-24 00:56:33 +00002800 exponent = myexponent - 127; //bias
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002801 *significandParts() = mysignificand;
2802 if (myexponent==0) // denormal
2803 exponent = -126;
2804 else
2805 *significandParts() |= 0x800000; // integer bit
Dale Johannesen343e7702007-08-24 00:56:33 +00002806 }
2807}
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002808
2809/// Treat api as containing the bits of a floating point number. Currently
Dale Johannesena471c2e2007-10-11 18:07:22 +00002810/// we infer the floating point type from the size of the APInt. The
2811/// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
2812/// when the size is anything else).
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002813void
Dale Johannesena471c2e2007-10-11 18:07:22 +00002814APFloat::initFromAPInt(const APInt& api, bool isIEEE)
Neil Booth4f881702007-09-26 21:33:42 +00002815{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002816 if (api.getBitWidth() == 32)
2817 return initFromFloatAPInt(api);
2818 else if (api.getBitWidth()==64)
2819 return initFromDoubleAPInt(api);
2820 else if (api.getBitWidth()==80)
2821 return initFromF80LongDoubleAPInt(api);
Dale Johannesena471c2e2007-10-11 18:07:22 +00002822 else if (api.getBitWidth()==128 && !isIEEE)
2823 return initFromPPCDoubleDoubleAPInt(api);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002824 else
2825 assert(0);
2826}
2827
Dale Johannesena471c2e2007-10-11 18:07:22 +00002828APFloat::APFloat(const APInt& api, bool isIEEE)
Neil Booth4f881702007-09-26 21:33:42 +00002829{
Dale Johannesena471c2e2007-10-11 18:07:22 +00002830 initFromAPInt(api, isIEEE);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002831}
2832
Neil Booth4f881702007-09-26 21:33:42 +00002833APFloat::APFloat(float f)
2834{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002835 APInt api = APInt(32, 0);
2836 initFromAPInt(api.floatToBits(f));
2837}
2838
Neil Booth4f881702007-09-26 21:33:42 +00002839APFloat::APFloat(double d)
2840{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002841 APInt api = APInt(64, 0);
2842 initFromAPInt(api.doubleToBits(d));
2843}